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Abstract

Explicit and tractable characterizations of the dynamical behavior of virus particles are

pivotal for a thorough understanding of the infection mechanisms of viruses. This thesis

deals with the problem of extracting symbolic representations of the dynamical behav-

ior of fluorescent particles from fluorescence microscopy image sequences. The focus is

on the behavior of virus particles such as fusion with the cell membrane. A numerical

representation is obtained by tracking the particles in the image sequences. We have in-

vestigated probabilistic tracking approaches, including approaches based on the Kalman

filter as well as based on particle filters. For reasons of efficiency and robustness, we

developed a tracking approach based on the probabilistic data association (PDA) algo-

rithm in combination with an ellipsoidal sampling scheme that exploits effectively the

image data via parametric appearance models. To track objects in close proximity, we

compute the support that each image position provides to each tracked object relative to

the support provided to the object’s neighbors. After tracking, the problem of mapping

the trajectory information computed by the tracking approaches to symbolic representa-

tions of the behavior arises. To compute symbolic representations of behaviors related to

the fusion of single virus particles with the cell membrane based on their intensity over

time, we developed a layered probabilistic approach based on stochastic hybrid systems

as well as hidden Markov models (HMMs). We use a maxbelief strategy to efficiently

combine both representations. The layered approach describes the intensity, intensity

models, and behaviors of single virus particles. We introduce models for the evolution

of the intensity and the behavior. To compute estimates for the intensity, intensity

models, and behaviors we use a hybrid particle filter and the Viterbi algorithm. The de-
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veloped approaches have been applied to synthetic images as well as to real microscopy

image sequences displaying human immunodeficiency virus (HIV-1) particles. We have

performed an extensive quantitative evaluation of the performance and a comparison

with several existing approaches. It turned out that our approaches outperform previ-

ous ones, thus yielding more accurate and more reliable information about the behavior

of virus particles. Moreover, we have successfully applied our tracking approaches to

3D image sequences displaying herpes simplex virus (HSV) replication compartments.

We also applied the tracking approaches to image data displaying microtubule tips and

analyzed their motion. In addition, our tracking approaches were successfully applied

to the 2D and 3D image data of a Particle Tracking Challenge.
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Zusammenfassung

Explizite und traktable Charakterisierungen des dynamischen Verhaltens von Viruspar-

tikeln sind entscheidend für ein gründliches Verständnis der Infektionsmechanismen von

Viren. Diese Dissertation beschäftigt sich mit der Extraktion von symbolischen Reprä-

sentationen des dynamischen Verhaltens von fluoreszierenden Partikeln aus Fluoreszenz-

Mikroskopie Bildsequenzen. Der Schwerpunkt liegt auf dem Verhalten von Virusparti-

keln, wie beispielweise der Fusion einzelner Viruspartikel mit der Zellmembran. Eine

numerische Repräsentation wird durch Tracking (Verfolgung) von Partikeln erhalten.

Wir haben probabilistische Trackingverfahren einschließlich Verfahren basierend auf

dem Kalman-Filter und basierend auf dem Partikel-Filter untersucht. Aus Gründen

der Recheffizienz und Robustheit haben wir ein Trackingverfahren entwickelt basierend

auf dem Probabilistic Data Association (PDA) Algorithmus in Kombination mit einem

ellipsoidischen Abtastschema, das die Bilddaten durch parametrische Intensitätsmodelle

effektiv auswertet. Um Objekte zu verfolgen, die nah beieinander sind, berechnen wir

die Unterstützung, die jede Bildposition zu jedem verfolgten Objekt gibt, relativ zu der

Unterstützung, die zu den Nachbarn des Objektes gegeben wird. Nach dem Tracking

wird die Trajektorieninformation einer symbolischen Repräsentation des Verhaltens zu-

geordnet. Um symbolische Repräsentationen des Verhaltens der Fusion von einzelnen

Viruspartikeln mit der Zellmembran basierend auf der Bildintensität über der Zeit zu

berechnen, haben wir ein geschichtetes probabilistisches Verfahren basierend auf sto-

chastischen hybriden Systemen und Hidden Markov Modellen (HMM) entwickelt. Wir

verwenden eine maxbelief Strategie, um beide Repräsentationen zu kombinieren. Das
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geschichtete Verfahren beschreibt die Intensität, Intensitäts-Modelle, und das Verhalten

einzelner Viruspartikel. Wir stellen Modelle für die Entwicklung der Intensität und des

Verhaltens vor. Um Schätzungen der Variablen zu bestimmen, benutzen wir einen hy-

briden Partikel-Filter und den Viterbi Algorithmus. Die entwickelten Verfahren wurden

sowohl für synthetische Bilddaten als auch für reale Fluoreszenz-Mikroskopie Bilddaten,

die Humane Immundefizienz-Virus (HIV-1) Partikel zeigen, angewendet. Wir haben eine

umfangreiche quantitative Evaluierung der Performanz durchgeführt sowie einen Ver-

gleich mit mehreren existierenden Verfahren. Es hat sich gezeigt, dass unsere Verfahren

bessere Ergebnisse liefern als bisherige Verfahren, daher ergeben sich genauere und zu-

verlässigere Information über das Verhalten von Viruspartikeln. Ferner haben wir unsere

Trackingverfahren erfolgreich auf 3D Bildsequenzen angewendet, die Replikationskom-

partimente von Herpes-Simplex-Viren (HSV) zeigen. Wir haben die Trackingverfahren

auch auf Bildsequenzen angewendet, die Mikrotubuli-Enden zeigen und haben deren

Bewegung analysiert. Außerdem wurden die Trackingverfahren erfolgreich auf die 2D

und 3D Bilddaten einer Particle Tracking Challenge angewendet.
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Chapter 1

Introduction

1.1 Motivation

Infections caused by viruses generally represent a serious threat to human life. The

prejudicial potential of viral infections is highlighted by pandemic outbreaks of viruses

such as the H1N1 influenza A virus (e.g., [180]), the human-immunodeficiency virus type

1 (HIV-1) (e.g., [188]), as well as the hepatitis C virus (e.g., [112]). Entry of viruses

into cells is crucial for infection. In general, an enveloped virus particle, such as HIV-1,

can enter a cell via two alternative mechanisms: endocytosis or fusion at the plasma

membrane ([121], [197]). In the former case, the cell internalizes the virus particle by

engulfing it into an intracellular vesicle. In the latter case, the virus particle directly

fuses with the plasma membrane. However, the dynamics of these entry processes are

not well understood. Detailed insight into the fusion process results in a better under-

standing of the infectivity of the viruses, which in turn can lead to the development of

more effective antiviral drugs. In this thesis we focus on the fusion mechanisms of pseu-

dotyped human immunodeficiency virus type 1 (HIV-1) particles with the cell membrane

using live-cell microscopy as well as double fluorescent labeling strategies ([128], [108],

[103]). Concretely, each virus particle is tagged with two different fluorescent labels:

one label is attached to the outer shell of the particle while the other is attached to

its inner part. This labeling technique results in two-channel fluorescence microscopy

image sequences. Upon fusion with the cell membrane, the particle’s outer shell is dis-

rupted and the inner part is released into the cell. Fusion leads to the disappearance

of the fluorescent label attached to the outer shell because this label is diluted into the

cell membrane, and the label attached to the inner part remains visible. Hence, fusion

can be defined as a transient behavior that is described by changes in the fluorescence

intensities of a single particle. Time-lapse fluorescence microscopy allows a detailed ob-

servation of such changes. However, the resulting fluorescence image sequences provide
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an implicit representation of the behavior of the virus particles. To obtain a tractable

description of the behavior, explicit representations of the behavior are required, and to

draw statistically sound conclusions about the behavior, a large number of virus parti-

cles must be observed. This leads to a large amount of image data from which explicit

representations of the behavior are to be extracted. Manual extraction of such explicit

representations is tedious and error-prone. In contrast, automatic extraction via com-

puter vision approaches provides efficiency and reproducibility. This thesis presents a

solution grounded within a Bayesian framework for automatically estimating behaviors

of virus particles from fluorescence microscopy image sequences. While the focus is on

virus particles, we also demonstrate the applicability of the developed approaches to

other types of fluorescent structures (e.g., microtubule tips).

1.2 Estimating Behaviors of Fluorescent Particles

In this section, we consider the problems of estimating behaviors of fluorescent particles

in general by briefly discussing the challenging properties of the image data acquired

via time-lapse fluorescence microscopy. Next, we elaborate on the image analysis tasks

involved in estimating behaviors of fluorescent particles using time-lapse microscopy

image data.

1.2.1 Time-Lapse Fluorescence Microscopy

In time-lapse fluorescence microscopy, the subcellular structures of interest are labeled

with a fluorescent protein (e.g., the green fluorescent protein, GFP) that emits light

after excitation with a light source (e.g., a laser) [117]. Obtaining images of the struc-

tures in a temporally sequential manner allows the observation of the structures over

time. While fluorescence microscopy is a versatile technique for monitoring the behav-

ior of subcellular structures, the technique presents certain challenges. One problem

relates to both the optical limitations of typical fluorescent microscopes and the small

size of the studied structures. For example, storage vesicles containing glucose trans-

porter 4 (GLUT4) located in muscle cells have a size in the range of 50-100 nanometers

[81]. Human-immunodeficiency virus type 1 (HIV-1) particles have a size of ca. 140

nm. Since the optical system of typical microscopes has a limited spatial resolution

(ca. 200 nm laterally, i.e., in the focal plane [80]), small structures cannot be spatially

resolved. Instead, these point-like structures appear distorted, where the distortion is

described as a convolution between the object and the point spread function (PSF)

of the optical system of the microscope [2]. In several fluorescence microscopes (e.g.,

wide field fluorescence microscope, laser scanning confocal microscope), the PSF can
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Figure 1.1: Sample images from three real microscopy image sequences displaying HIV-
1 particles (black spots). It can be seen that the images differ quite a lot. (Image
intensities have been inverted for visualization purposes).

be well approximated by a Gaussian function [222]. A sub-resolution object appears in

the image as a Gaussian-like fluorescent particle. As an example, Figure 1.1 presents

three images displaying HIV-1 particles. The particles appear as black spots because

the image intensities have been inverted. The Gaussian-like appearance of the spots is

parametrized by the peak intensity and the standard deviation of the underlying Gaus-

sian function. Besides these two parameters, the Gaussian-like appearance reveals no

additional visual cues (e.g., texture, true shape) about the underlying structures. Often

the structures look very similar and thus identifying each particular structure over time

in an image sequence is difficult. Another consequence of the small size of the structures

is that a limited number of fluorescent molecules can be attached to them. This leads

to a relatively low fluorescence intensity. Since some structures within the cell (e.g.,

mitochondria, lysosomes) are naturally fluorescent [7], [16], the cellular background also

emits some light. The low fluorescence intensity of the studied structures in conjunction

with the cellular autofluorescence leads to a low image contrast for the particles. An-

other problem in time-lapse fluorescence microscopy is the process whereby the ability

of fluorescent proteins to emit light is damaged by the light cast onto them (i.e., the

incident light) [182]. This process, known as photobleaching, is of particular relevance

when acquiring a sequence of images in a temporally sequential manner, where light

is shed upon the fluorescent structures every time an image is acquired. Over time,

photobleaching leads to a decrease in the fluorescence intensity of the structure. Pho-

tobleaching has also implications on the rate at which the images are acquired. Higher

acquisition rates imply acquiring a large number of images over a relatively short pe-

riod of time. Because of photobleaching, the time during which the fluorescent proteins

remain visible is rather short and this prevents observing the behavior of the structures
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over a long period of time. Conversely, low acquisition rates may enable the observation

of the structures over longer periods. However the behavior of the structures between

the acquisition of two consecutive images is not observed. That is, such a low temporal

resolution may not provide a rich enough description of the dynamical behavior of the

structures. A compromise between the two acquisition strategies (i.e., high and low

acquisition rates) may be reached by reducing the intensity of the incident light, which

reduces the degradation of the fluorescent proteins. A low intensity light source is also

needed to prevent undesirable alterations of certain cellular processes, such as the cell’s

circadian rhythm. One drawback of using a low intensity light source is that the emitted

fluorescence intensity of the structures is quite low. A low level of fluorescence intensity

is given by a low number of emitted photons. The number of emitted photons over a

certain period of time is a random process modeled using a Poisson distribution, where

the mean and standard deviation of the distribution are given by the average number

of photons and the square root of the average number of photons, respectively [187],

[192]. Taking the average number of photons as the ‘signal’ and the square root of the

average number of photons as the ‘noise’, the signal-to-noise ratio (SNR) is essentially

the square root of the average number of photons. Thus, the low level of fluorescence

intensity induced by the low intensity light source that is required to prevent the degra-

dation of the fluorescent proteins leads to a low SNR. A low SNR is evident in the

images shown in Figure 1.1. Certainly there are other sources of noise in fluorescence

microscopy, such as leakage current caused by a poor insulation of the photomultiplier

tube that is used for photon counting in certain microscope setups. These distortions are

generally related to the shortcomings of the items involved in the microscopy system. To

summarize, the study of subcellular structures via time-lapse fluorescence microscopy

is circumscribed by certain challenges, such as the optical resolution of the microscope

system, photobleaching, as well as the inherent image noise.

1.2.2 Image Analysis Tasks and Challenges

Given a microscopy image sequence displaying multiple fluorescent particles, the task of

estimating dynamical behaviors of subcellular structures entails transforming the given

sequence into labels that provide a concrete interpretation of the behavior. Concretely,

images within a time-lapse microscopy image sequence are comprised by pixel data as-

sociated with intensity values that provide only an implicit indication of the behavior

of the individual structures. The aim is to transform the pixel data into an explicit

description of the behavior. This task can be approached by deriving descriptions of the

behavior of the individual structures at different levels of abstraction in a bottom-up

manner. Concretely, first the structures of interest are localized within the images. Sec-
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ond, using the calculated locations of the structures, the position over time of individual

structures is determined, i.e., the individual structures are tracked. Once the position

over time of the structures is calculated, the temporal statistics (e.g., displacement, in-

tensity over time, size over time) of the individual structures are computed. Based on

these statistics, explicit descriptions of the dominant behaviors underlying the tempo-

ral statistics are obtained. Thus, within such an approach, the problem of estimating

dynamical behaviors of subcellular structures based on fluorescence microscopy image

sequences can be decomposed into three tasks: (1) object localization, (2) tracking, as

well as (3) behavior identification. In general, these computer vision tasks are not trivial.

In fluorescence microscopy, the tasks must take into account the particular limitations

of this imaging technique, too. We discuss briefly these tasks and the challenges entailed

by time-lapse fluorescence microscopy images.

The task of object localization usually involves two steps: detection as well as localiza-

tion. The goal of detection is to determine image regions that correspond to the objects

of interest (in our case fluorescent particles). The detection of fluorescent particles is

mainly limited by the small size of the particles, which typically exhibit a Gaussian-like

appearance with a low intensity contrast. The cellular autofluorescence is also problem-

atic for object detection, since it reduces the contrast. Likewise, spurious fluorescent

compounds may lead to particle-like artefacts. The image noise also hinders the detec-

tion task. Figure 1.1 shows sample microscopy images displaying fluorescently labeled

HIV-1 particles, where one can observe instances of the challenges involved in detecting

fluorescent particles. The particle detection step may yield a set of detections that fails

to include image regions corresponding to particles (missed detections). Similarly, the

set of detections may include image regions corresponding to the cellular background

or other non-particle regions (false detections). Using the set of detections, the goal of

localization is to derive a set of measurements that explictly describe the image position

of each particle. To track the fluorescent particles, spatial-temporal filtering is typically

used. The aim of spatial-temporal filtering is to estimate the position of an object given

a set of (position) measurements. This task is usually formulated within a Bayesian

framework where the goal is to compute a posterior distribution on the position of the

object conditioned on a set of position measurements. Challenges for this task entailed

by fluorescence microscopy include the complex motion behavior of the particles, which

includes abrupt changes in speed and direction, as well as the degree of uncertainty

involved in the measurement process, which is typically related to the image noise. To

obtain the corresponding (position) measurements of each object, associations between

objects and position measurements are to be established. Finding these associations is

the goal of motion correspondence. The task is simplified in cases where the objects and
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the (position) measurements are sparsely located. Complications arise if the objects

and the (positions) measurements are densely located, since the associations become

ambiguous. Missed as well as false (position) measurements exacerbate the complexity

of the correspondence task. In microscopy image sequences displaying fluorescent parti-

cles, typically images display a high object density, so the task of motion correspondence

is not trivial. Assuming that the behavior of an individual particle can be decomposed

into certain behavior labels, the aim of behavior identification is the derivation of these

labels. Since the position of each particle is available, statistics (e.g., displacement, in-

tensity) representing the behavior of an individual particle over time may be computed.

The behavior identification task may be thus reformulated as estimating the behavior

labels that give rise to the observed temporal representations. One issue is defining a

set of labels that provides a suitable description of the considered behavior of a parti-

cle. Another issue is dealing with errors within the computed temporal representations.

These errors may be caused by the nature of the microscopy images (e.g., the intensity

over time of an individual particle is altered by photobleaching as well as by the image

noise). Errors in the tasks of object localization and position estimation generally lead

to errors of the temporal representations. In conclusion, the tasks involved in estimating

dynamical behaviors of subcellular structures based on fluorescence microscopy image

sequences are challenging.

1.3 Approach and Contributions

This dissertation is concerned with the estimation of dynamical behaviors of subcellular

structures based on time-lapse fluorescence microscopy images. We deal with the three

tasks entailed by this problem, namely object localization, tracking, as well as behavior

identification. We focus on tracking, in particular, on spatial-temporal filtering, as well

as on behavior identification, more specifically:

• To track individual fluorescent particles, we introduce an efficient and robust

approach based on probabilistic data association (PDA). We propose a localiza-

tion scheme that combines bottom-up and top-down strategies. The localization

scheme is underpinned by an efficient elliptical sampling scheme based on the

Gaussian densities underlying the spatial and temporal uncertainties involved in

the tasks of particle localization and position estimation over time. The scheme

explores systematically the solution space by generating multiple samples that are

integrated via the principle of a combined innovation as outlined by the PDA al-

gorithm. Since we use an elliptical sampling scheme we refer to our approach as

PDAE. The approach includes a recognition-by-synthesis strategy that evaluates
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an image likelihood which is constructed by directly querying the image data.

Synthesis is performed via parametric appearance models, and we present models

for round particles (e.g., HIV-1 particles) as well as for elongated particles (e.g.,

microtubule tips). Multiple motion models are also integrated in our tracking

approach.

• To effectively exploit the image data during tracking and to cope with objects in

close proximity, we construct an image likelihood. For efficiency, this likelihood

is built independently for each tracked particle. In cases where multiple particles

lie in close proximity, particles with high likelihoods may influence the position

estimates of neighboring particles. To prevent this influence, we propose an itera-

tive solution that computes the image support provided by each position to each

tracked particle relative to the support given to neighboring particles. The relative

image support takes into account the image likelihood of the particles as well as

the spatial dependency between two image positions in general.

• To identify behaviors of individual fluorescent particles, we have developed an ap-

proach grounded within the theory of Bayesian estimation for identifying fusion of

double labeled enveloped virus particles with the cell membrane in multi-channel

fluorescence microscopy images. Our approach adopts a layered architecture that

decomposes the actions of a single virus particle into three abstractions (viz., the

intensity, the underlying temporal intensity model, and the behavior). The three

abstractions are represented by the different layers, which are in turn described

using a stochastic hybrid system and a hidden Markov model (HMM). The two rep-

resentations are combined via a maxbelief strategy. The combination of stochastic

hybrid systems and HMMs offer an improved modeling capability. To estimate

the variables of the layers we use a hybrid particle filter as well as the Viterbi

algorithm. We introduce non-linear autoregressive models to intuitively describe

the behavior of the particles. The modularity of our layered approach endows it

with efficiency and flexibility, and so the approach can also be straightforwardly

adapted for identifying other behaviors.

• We have performed an extensive quantitative evaluation of deterministic and prob-

abilistic tracking approaches based on real microscopy image sequences displaying

HIV-1 particles. Such an evaluation is essential to predict the performance of the

approaches under realistic conditions. The deterministic approaches are based on

bottom-up localization schemes and a global nearest neighbor approach for mo-

tion correspondence. The probabilistic approaches are based on Kalman filters,

a mixture of particle filters (MPF), our previous approach based on independent
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particle filters (IPF) (e.g., [71], [70]), and our new approach based on probabilis-

tic data association in conjunction with the elliptical sampling scheme (PDAE).

The approaches have been applied to nine real microscopy image sequences (each

comprising between 150 and 400 frames) displaying HIV-1 particles. We have

compared the tracking results with ground truth obtained from manual tracking

and quantified the performance.

• We have quantitatively studied the performance of our approaches for tracking as

well as for behavior identification using synthetic 2D and 3D image sequences. We

investigated the performance relative to the level of image noise which showed the

robustness of our approaches to noisy conditions. We also analyzed the perfor-

mance as a function of the object density. This also showed the scalability of our

approach to a large number of objects. For behavior identification, we also stud-

ied the performance of our approach in image sequences where particles exhibit

heterogeneous behaviors.

• We have applied our approaches to real 2D and 3D multi-channel fluorescence

microscopy image sequences. The images display HIV-1 particles, herpes simplex

virus (HSV) replication compartments or microtubule tips within neurons. This

demonstrates the applicability of our approaches to a broad range of fluorescence

microscopy image data.

• We successfully applied the PDAE approach to the 2D and 3D image data of the

recent Particle Tracking Challenge at the International Symposium on Biomedi-

cal Imaging (ISBI) 2012, where 14 groups world-wide participated. The challenge

comprised four different application scenarios (vesicles, virus particles, receptors,

and microtubule tips) and different performance measures were computed. It

turned out that our approach yielded the best overall performance (result an-

nounced at ISBI’2012).

• Our approaches for tracking and behavior identification have been used in biologi-

cal applications in cooperation with our partners and have enabled novel biological

findings. A main advantage in these applications is that our approaches yield sci-

entific benefits in the form of objectivity, reproducibility, and statistical accuracy.

1.4 Overview of the Thesis

The thesis is organized as follows. Chapter 2 reviews prior work within the fields of

computer vision as well as biological image analysis for the tasks of tracking as well as
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behavior identification. In Chapter 3 we address the problem of tracking. We discuss

probabilistic approaches and introduce our approach based on probabilistic data asso-

ciation. We also present models for tracking round objects as well as elongated objects.

In Chapter 4 we tackle the problem of behavior identification using a layered probabilis-

tic approach based on hybrid stochastic systems and hidden Markov models (HMMs).

Models for the intensity over time as well as for the behavior of virus particles are in-

troduced. In Chapter 5 we present experimental results for synthetic image sequences

as well as for real microscopy image sequences displaying HIV-1 particles. We quantify

the performance of the developed approaches and carry out an experimental compari-

son with previous approaches. We also present the results obtained for image sequences

displaying HSV compartments as well as for image sequences displaying microtubule

tips within a neuron’s growth cone. Chapter 6 summarizes the results, presents our

conclusions, and provides suggestions for future work.
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Chapter 2

Overview of Previous Work

In this chapter, we review developments in the field of computer vision for tracking

as well as for behavior identification. We focus on tracking approaches dealing with

multiple objects. In particular, we discuss approaches for the task of tracking multiple

fluorescent particles. Approaches for the task of behavior identification of fluorescent

particles are also discussed.

2.1 Tracking Approaches in Computer Vision

Tracking multiple objects entails determining the position over time of each object in

successive images of an image sequence. The task of tracking multiple objects may be

solved in a deterministic way or in a probabilistic manner. We discuss both paradigms.

We briefly elaborate also on approaches that post-process an initial set of trajectories

(so-called tracklets) to obtain a refined set of trajectories. Since the latter type of

approaches relies on an initial set of trajectories, the focus is on building such an initial

set of trajectories given the image data only.

2.1.1 Deterministic Approaches

Deterministic approaches for tracking multiple objects typically follow a two-step paradigm

encompassing the steps of object localization and motion correspondence. We briefly dis-

cuss object localization and focus on motion correspondence.

2.1.1.1 Object Localization

Determining the location of an object within an image entails two tasks: detection and

localization. Depending on the type of object to be detected (e.g., pedestrians [157],

[45], [63], [59], [66], faces [204], [216], eyes [77], cars [225], birds [49]), several different
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approaches for object localization exist. Typically detection approaches combine the

steps of image pre-processing, feature computation, and a classification step [183], [59].

Pre-processing may include a step for the normalization of the image intensities. For

example, to detect faces [204], the intensities of an image are normalized using the

image’s intensity variance. If working with color images, pre-processing may also include

a step for choosing an appropriate color space. For example, to detect birds, the RGB

input images are mapped to a certain color space. The pre-processing stage may include

the removal of the background (e.g., [49]). Once the images have been pre-processed,

features (e.g., gradients) are calculated at each pixel. The features of several pixels

may be aggregated over regions via histograms (e.g., histogram of the orientation of the

gradients over a certain region [45]). The features or descriptors may be used as input for

classification schemes (e.g., Adaboost-based classifiers [204]) that determine whether a

candidate pixel or region corresponds to a true object. Once the regions that correspond

to objects have been established, a measurement y may be computed for each region.

Each measurement describes each object and may include information on its position,

shape, and appearance. Thus, for each image, an object localization scheme yields a set

Yt =
{

y1
t ,y

2
t , . . . ,y

Nt
t

}

of Nt measurements representing the objects detected within the

image at time step t. Since errors may arise in the steps involved in the task of object

localization, the set Yt may miss some true objects as well as include false objects. Also

the computed position of each object may include a localization error.

2.1.1.2 Motion Correspondence

The task of motion correspondence entails determining whether two measurements yt

and yt′ obtained at different time steps t and t′ originate from the same object [42].

In the case of deterministic approaches, this task typically amounts to determining the

associations between sets of measurements Yt and Yt′ obtained at different time steps.

2.1.1.2.1 Correspondence over Two Time Steps To solve the problem of motion

correspondence, one-to-one associations between measurements obtained at consecutive

time steps t and (t + 1) may be established. Typically a heuristic (e.g., smoothness of

motion) is translated into a distance function d(·, ·) that is used as a measure of the

degree of correspondence between two measurements. A common strategy to deter-

mine correspondences is the nearest neighbor (NN) strategy, where a correspondence is

established between a measurement yi
t and the measurement yj

t+1 by:

min
y
j
t+1

∈Yt+1

d(yi
t,y

j
t+1). (2.1)
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Figure 2.1: Sample bi-partite graph Γ with partitions Vt and Vt+1. Edges included in a
possible matching M are drawn with a thick line.

To consider only the most likely associations, only associations entailing a distance

d(·, ·) less than or equal to a certain threshold dmax are taken as valid. This amounts to

searching for a nearest neighbor in a vicinity Vyi
t
(dmax) defined by dmax around yi

t:

Vyi
t
(dmax) ≡ {yk

t+1 ∈ Yt+1 | d(yi
t,y

k
t+1) ≤ dmax}. (2.2)

The requirement presented in (2.1) can be reformulated as:

min
yk
t+1

∈V
y
i
t
(dmax)

d(yi
t,y

k
t+1). (2.3)

For two different measurements yi
t and yk

t , i 6= k that are closely positioned and whose

corresponding neighborhoods Vyi
t
(dmax) as well as Vyk

t
(dmax) overlap, the requirement

specified in (2.3) may be fulfilled by the same measurement y
j
t+1. In this case a con-

flicting correspondence arises. Since the NN strategy considers the correspondence of

one measurement at time step t without taking into consideration the correspondences

of the other measurements within the same time step, conflicting correspondences are

not handled properly and this may lead to correspondence errors.

To take into consideration the correspondences of all measurements, the correspon-

dence problem may be modeled using a weighted bi-partite graph Γ = (Vt, Vt+1, E)

where the vertices V = {Vt, Vt+1} of the graph are given by the measurements: vt,i ≡ yi
t.

The two partitions Vt and Vt+1 are induced by the two sets of measurements Yt and Yt+1.

An edge eij = {vt,i, vt+1,j} ∈ E between two vertices vt,i and vt+1,j stands for a possible

correspondence between the measurements yi
t and y

j
t+1. A weight wij is assigned to each

edge eij and is defined by the distance function wij ≡ d(yi
t,y

j
t+1). Assuming that only

1-to-1 correspondences are allowed, a set of valid correspondences for all measurements

is represented by the set of edges with no shared vertices, i.e., a matching M . To denote
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whether an edge eij is included in a matching M , we introduce an indicator variable aij:

aij =







1 eij is included in the matching M

0 otherwise
(2.4)

Since a correspondence must be established for each measurement, every vertex in the

graph must be incident with an edge within the matching M . This introduces the

following constraints:

Nt
∑

i=1

aij = 1, 1 ≤ j ≤ Nt+1 (2.5)

Nt+1
∑

j=1

aij = 1, 1 ≤ i ≤ Nt (2.6)

Here we assume that the size of both partitions is the same, i.e., Nt = Nt+1. While

this often does not hold in real applications, the situation may be remedied by adding

‘dummy’ measurements so that the equality is preserved (e.g., [199]). A sample bi-

partite graph and a possible matching is shown in Figure 2.1. Within this graph-

theoretical setting, the task of finding correspondences between two sets of measurements

Yt and Yt+1 amounts to finding a complete matching M that minimizes the following

cost function C2 over two time steps:

C2 =
Nt
∑

i=0

Nt+1
∑

j=0

aij wij. (2.7)

Minimizing this cost function C2 can be achieved via optimization algorithms for the

assignment problem, such as the Hungarian algorithm (e.g., [141], [199]) or via algo-

rithms for the transportation problem (e.g., [47]). Because this approach takes into

consideration the correspondences of all measurements, it is called the global nearest

neighbor (GNN) approach (e.g., [19]). While the GNN strategy might deliver optimal

results in terms of the cost function C2, the correspondences may not be the ‘best’ in

terms of correct trajectories. One reason for this is that the set of measurements at each

time step may be missing some measurements (because of missed detections) or may

include measurements that do not correspond to true objects (because of false detec-

tions). To resolve this, a larger number of time steps (images) may be used to establish

the correspondences (e.g., [173], [94], [223], [14]).
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2.1.1.3 Summary

In summary, deterministic approaches establish correspondences between the sets of

position measurements generated by an independent localization scheme. Because the

approaches rely on the detections provided by the localization scheme, the approaches

are also known in the literature as tracking-by-detection approaches. Most deterministic

approaches are thus restricted by the position measurements generated by an indepen-

dent localization scheme. Also the localization error is not taken into consideration. To

deal with correspondence conflicts, recent approaches use the measurements obtained

over several time steps. The correspondence task is often formulated within the frame-

work of graph theory and combinatorial optimization. Linear programming algorithms

(e.g., Hungarian algorithm [141], simplex algorithm, min-cost flow algorithms [143], l-

shortest paths) are often used to solve the optimization problems entailed by the graphs

(e.g., bi-partite graphs, flow networks). In most approaches the distance function that

measures the correspondence affinity is typically independent of previous time steps.

Deterministic approaches also use relatively simple models for the motion of the ob-

jects. Finally, the localization step and the correspondence step are uncoupled. This

entails that the localization scheme does not take into account the temporal information

encoded in the image sequence, and similarly the correspondence step does not exploit

all available image data. This diminishes the effectiveness of such approaches.

2.1.2 Probabilistic Approaches

Probabilistic approaches are characterized by defining a probability distribution on the

variables describing the motion of the objects. These variables may include the position

and velocity components of the object. In these cases, the probability distributions are

typically estimated sequentially based on the image data using a spatial-temporal filter.

The variables may also describe possible correspondences between the tracked objects

and the detected position measurements. In these cases, the probability distributions

may be computed using a probabilistic scheme for motion correspondence. Below, we

review recent developments for spatial temporal filtering as well as probabilistic ap-

proaches for motion correspondence.

2.1.2.1 Spatial-Temporal Filtering

Within a Bayesian framework, the theory of sequential state estimation (e.g., [5]) as-

sumes that an object is represented by a (hidden) state vector xt and that a noisy

measurement yt reflects the true state xt. At time step t, the aim is to estimate the

state xt given a sequence of measurements y1:t. A Bayesian approach to the problem is
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to estimate the posterior probability density function (pdf) p(xt|y1:t), which represents

a degree of “belief” on the state xt given a series of measurements y1:t. To compute

this posterior pdf, the recursive Bayesian filter ([55]) requires three elements: a dy-

namical model p(xt|xt−1), which represents the evolution of the state xt over time, a

measurement model p(yt|xt), which establishes the relation between the state xt and the

measurement yt, and an initial prior p(x0), which initializes the recursive computation.

At each time step, the Bayesian filter computes recursively the posterior pdf p(xt|y1:t)

by first generating the prior pdf p(xt|y1:t−1) using stochastic propagation (2.8) and then

updating the predicted prior using Bayes’ theorem (2.9):

p(xt|y1:t−1) =

∫

p(xt|xt−1) p(xt−1|y1:t−1) dxt−1 (2.8)

p(xt|y1:t) ∝ p(yt|xt) p(xt|y1:t−1). (2.9)

The recursive relation is often intractable since complex high-dimensional integrals must

be solved. Notwithstanding, the Kalman filter provides an analytical solution if the dy-

namical and measurement models are assumed to be linear and Gaussian. If these

assumptions do not hold, an Extended or Unscented Kalman filter may be used, yet the

resulting posterior pdf remains Gaussian. If the posterior pdf is multimodal, parametric

representations may be calculated via a Gaussian sum filter, which represents the pos-

terior pdf with a mixture of Gaussians. A more general non-parametric approximation

of the posterior pdf can be achieved via the particle filter. Below we review some of

these spatial-temporal filter techniques.

2.1.2.1.1 Kalman Filter The Kalman filter (e.g., [5], [207]) represents the poste-

rior pdf p(xt|y1:t) via a Gaussian probability distribution. The Kalman filter is discussed

in more detail in Chapter 3. Kalman filters have been used for tracking soccer players

(e.g., [91], [211]), cars in aerial image sequences (e.g., [142]), faces, (e.g., [174]), pedes-

trians (e.g., [157], [4]), as well as bats (e.g., [209]). In these cases, one Kalman filter is

instantiated for each object. Measurements obtained using an independent localization

scheme are assigned to each filter using a motion correspondence algorithm (see Section

2.1.1.2). The Kalman filter is computationally efficient, since only some matrices need to

be calculated and multiplied at each time step. Thus it scales well when tracking multi-

ple objects. The main limitations of the Kalman filter are that: 1) only linear functions

for the dynamical and measurement models are supported, and 2) the posterior pdf is

assumed to be Gaussian, i.e., unimodal, whereas in certain applications this distribution

may be multimodal. To address the first limitation, the Extended Kalman filter (EKF,

e.g., [9]) as well as the Unscented Kalman filter (UKF, e.g., [96]) have been introduced.

The second limitation may be dealt by using Gaussian sum filters (e.g., [5]) whereby
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the posterior distribution is approximated by a mixture of Gaussian components. The

approximation holds only for small values of the covariance matrices parametrizing the

Gaussian posterior densities of the individual components. If these covariance values

are too large, more general methods, such as the particle filter, are needed.

2.1.2.1.2 Particle Filter The particle filter (e.g., [72], [88]) is a numerical approach

that has been quite successful for non-linear and/or non-Gaussian models. The key

idea behind this approach is that the posterior p(xt|y1:t) is approximated with a set

of random samples (the ‘particles’) that are associated with importance weights. More

details on the particle filter are provided in Chapter 3. Particle filters have been used

for tracking multiple objects. Existing approaches for tracking multiple objects can be

classified into particle filters defined on a multiple-body state space, where the entire

configuration of all objects is jointly estimated, and particle filters defined on a one-

body state space, where the configuration of each object is independently estimated.

The former approach, known as joint particle filters (e.g., [120], [89], [196], [100], [109],

[181], [224], [15]), is quite suitable for modeling interactions and occlusions. The joint

strategy is only applicable to few objects due to the computational effort that is involved

in estimating the posterior distribution in the high-dimensional space entailed by the

joint configuration of all objects. The latter approach, denoted as independent particle

filters (e.g., [220], [67], [146], [214], [30], [27], [159]), while inducing lower computational

requirements, require additional mechanisms (e.g., using an inertia model that influences

the likelihood of each sample [146]) to prevent the independent filters from latching to

the object with the best likelihood ([100]).

2.1.2.1.3 Rao-Blackwellized Particle Filter When estimating a state vector xt

in a high dimensional state space X , a large number of samples is required to thoroughly

explore this space. Assuming that the state space X can be partitioned into two sub-

spaces R and B, the posterior distribution p(xt|y1:t) = p(rt,bt|y1:t), rt ∈ R, bt ∈ B
conditioned on a sequence of measurements y1:t can be written via Bayes’ theorem and

stochastic propagation as:

p(rt,bt|y1:t) ∝ p(yt|rt,bt)p(rt,bt|y1:t−1). (2.10)

Approximating this posterior with the standard particle filter would require sampling

jointly for rt and bt. Besides the computational burden that this entails, over time

the distribution of the weights of the samples in this large state space tends to be very

skewed (i.e., only few samples would have a large weight, while several samples would

tend to have much lower weights). This also reduces the accuracy of the sample-based
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approximation [56].

One strategy to cope with the large dimension of the state space is to marginalize

out (i.e., integrate over) some variables from the posterior [129], [99]. Integrating over

bt, the marginal p(rt|y1:t) can be obtained by:

p(rt|y1:t) ∝
∫

p(yt|rt,bt)p(rt,bt|y1:t−1)dbt. (2.11)

Within this strategy, the assumption is that the posterior p(rt−1,bt−1|y1:t−1) can be

factored via the chain rule of probability as:

p(rt−1,bt−1|y1:t−1) = p(bt−1|rt−1,y1:t−1)p(rt−1|y1:t−1), (2.12)

Assuming that bt−1 is independent of rt given rt−1 and also that bt is independent of

y1:t−1 given bt−1, and after some manipulations, the marginal p(rt|y1:t) (2.11) can be

rewritten as:

p(rt|y1:t) ∝ p(rt|y1:t−1)

∫

p(yt|rt,bt)

[∫

p(bt|bt−1, rt)p(bt−1|rt−1,y1:t−1)dbt−1

]

dbt.

(2.13)

The terms inside the outer integral in (2.13) can be seen as proportional to the posterior

density p(bt|rt,y1:t) conditioned on both the sequence of measurements y1:t as well as

on rt. If this density can be computed analytically, then only samples for rt are needed.

Since the dimension of R is smaller than that of the joint state space, fewer samples are

required [129]. Within the context of Bayesian filtering, the marginalization strategy

is known as ‘Rao-Blackwellization’. A particle filter used for solving the recursion in

(2.13) is thus known as the Rao-Blackwellized particle filter. The details of the Rao-

Blackwellized particle filter are given in [129].

While a smaller state space is explored, the Rao-Blackwellized particle filter estimates

a Gaussian distribution for each sample. This is computationally expensive because for

each sample a parametric representation must be updated over time. Certainly, samples

are proposed in a smaller space, so the accuracy of the sample-based representation

is better. Nonetheless, the assumptions for the Rao-Blackwellized particle filter are

relatively demanding: it assumes that a one-way dependency between the variables can

be established, and also that the dynamical and measurement models of some of the

variables are linear. Thus the Rao-Blackwellized particle filter may not be generally

applicable. Nevertheless it has been used for tracking single objects (e.g., single bees

[99] as well as single pedestrians [212]).
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2.1.2.1.4 Summary We have reviewed recent approaches for estimating the state

vector xt given a sequence of measurements y1:t. By modeling the temporal evolu-

tion using a dynamical model p(xt|xt−1) and incorporating measurements derived from

the images via a measurement model p(yt|xt), a spatial-temporal filter estimates the

posterior distribution p(xt|y1:t) from which an estimate for xt can be obtained. For

linear and Gaussian models, the Kalman filter provides a fast and exact solution. For

non-linear models, Extended Kalman filters as well as Unscented Kalman filters are

applicable, yet the posterior pdf p(xt|y1:t) remains Gaussian. Particle filters provide

a non-parametric approach to deal with non-linear, non-Gaussian models by using a

sample-based representation of the posterior pdf. If certain elements of the state vector

xt can be analytically estimated, the state space can be more efficiently explored using

a Rao-Blackwellized particle filter that proposes samples in a reduced state space.

For tracking multiple objects, Kalman filters (and related approaches, e.g., the Ex-

tended Kalman filter) remain popular because of their low computational demands.

Approaches based on the Kalman filter incorporate only the measurements computed

by an independent localization algorithm; thus localization and position estimation are

uncoupled steps. In this sense, approaches based on Kalman filters may be considered

as tracking-by-detection approaches, too. In contrast, the particle filter queries directly

multiple image positions (encoded by the position elements of the random samples)

to determine the location of an object. The filter thus combines localization and po-

sition estimation and achieves more robust results. Because of the random nature of

its top-down localization scheme, the filter uses a relatively large number of samples.

This introduces a high computational cost because an image likelihood is evaluated for

each sample. While one can improve the efficiency of the particle filter by, for exam-

ple, marginalization (cf. Section 2.1.2.1.3), several hundred samples are still required to

ensure a good approximation of the posterior pdf.

2.1.2.2 Motion Correspondence

Probabilistic approaches for motion correspondence evaluate the probability of possi-

ble correspondences between predicted measurements and the measurements obtained

via an independent localization scheme. These approaches are generally characterized

by using a spatial-temporal filter for building the trajectories. A review of probabilis-

tic approaches is provided in [42]. Here we briefly discuss an approach determining

correspondences over two time steps, namely the joint probabilistic data association

(JPDA) algorithm. We also discuss correspondence approaches taking into account sev-

eral time steps. We consider the multiple-hypothesis tracking (MHT) algorithm as well

as approaches based on sampling schemes (e.g., Markov Chain Monte Carlo (MCMC)
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methods).

2.1.2.2.1 Joint Probabilistic Data Association To determine the correspon-

dences between a set Ŷt of H predicted measurements as computed by a set of spatial-

temporal filters tracking H objects, and a set Yt consisting of Nt measurements obtained

by an independent localization scheme, one could use a global nearest neighbor scheme

(GNN; see Section 2.1.1.2.1) where the distance function d(·, ·) used to quantify the

degree of correspondence is given by the Mahalanobis distance:

dSh(yi, ŷh) = (yi − ŷh)TSh−1
(yi − ŷh) (2.14)

entailed by the associated measurement yi and the predicted measurement ŷh and pre-

dicted measurement covariance matrix Sh (see (3.12)) as calculated by each h-th spatial-

temporal filter; for readability, we have omitted the time index t of the measurements.

The GNN yields as a solution an assignment matrix A where each element aih indicates

whether a measurement i is associated with a spatial-temporal filter h. Since the set Yt

may not include measurements for some of the H tracked objects and may also include

a certain number NFD of false detections, the assignment A determined by the GNN

approach might lead to tracking errors. Instead of relying on a single (possibly incor-

rect) assignment A, a more robust approach would take into consideration all possible

assignments. When considering multiple assignments, each r-th possible assignment

Ar establishes a correspondence between a spatial-temporal filter h and a single mea-

surement. Multiple assignments thus imply that a single spatial-temporal filter h may

be associated with multiple measurements. Since not all measurements may entail the

same degree of correspondence relative to a given h spatial-temporal filter, a probabil-

ity of association βih is computed for each i-th measurement. To update a single h

spatial-temporal filter using multiple measurements, a combined innovation ν
h:

ν
h =

Nt
∑

i=1

βih(y
i − ŷh) (2.15)

is computed. The combined innovation ν
h is the inherent idea of the probabilistic data

association (PDA) algorithm. In the PDA algorithm, the association probability βih is

defined via the posterior probability P (aih|Yt) of the association aih between the mea-

surement yi and the filter h. This posterior probability is only useful in cases where only

single objects are tracked, since it does not take into account the probability of the asso-

ciations ajl, j 6= i, l 6= h between other measurements and other filters. In comparison,

the joint probabilistic data association (JPDA) algorithm takes into consideration all
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possible assignments between filters and measurements. Instead of using only a single

assignment A, the JPDA algorithm enumerates all feasible assignments Ar. In this case

the association probability βih between a measurement i and the spatial-temporal filter

h is relative to the posterior probability P (Ar|Y1:t) of each assignment Ar where the

association arih has been established, i.e., arih = 1:

βih ≡
∑

Ar

P (Ar|Y1:t)a
r
ih. (2.16)

The posterior probability P (Ar|Y1:t) is given by Bayes’ theorem [42] as:

P (Ar|Y1:t) ∝ p(Yt|Ar, Y1:t−1)P (Ar) (2.17)

where Ar is assumed to be independent of the previous sets of measurements Y1:t−1.

To compute the likelihood of the current measurements Yt given the assignment Ar,

the approach assumes that p(Yt|Ar, Y1:t−1) can be decomposed over all Nt individual

measurements yj:

p(Yt|Ar, Y1:t−1) =
Nt
∏

j

p(yj|Ar, Y1:t−1) (2.18)

If the assignment Ar establishes that the measurement yj is associated with a certain

spatial-temporal filter m, then the likelihood for the measurement p(yj|Ar, Y1:t−1) can

be evaluated using the predicted measurement density N (yj; ŷm,Sm) (see Section 3.5)

of the associated filter. Here N (·;µ,Σ) represents a Gaussian distribution with mean

vector µ and covariance matrix Σ. However, if the assignment Ar establishes that the

measurement yj is not associated with any filter, then the approach assumes that it

is a false detection. The probability of false detection is assumed to follow a uniform

distribution over the entire field of view V . Thus:

p(yj|Ar, Y1:t−1) =







N (yj; ŷm,Sm) arjm = 1

1/V yj is not associated with any object
(2.19)

Note that some of the measurements that are not associated with any object (second

case in (2.19)) may represent new objects in the field of view, but the standard JPDA

algorithm does not distinguish between false detections and new objects.

To evaluate the prior probability P (Ar) of an assignment Ar, the JPDA algorithm

takes into account the number of assigned measurements Nassigned and the number of

false detections NFD = Nt − Nassigned, i.e., Nt = Nassigned + NFD. The probability for

the number of assigned measurements Nassigned is defined as the probability of detecting

Nassigned true measurements out of all H currently tracked objects. This probability
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follows the binomial distribution:

P (Nassigned|H) =

(

H

Nassigned

)

P
Nassigned

D (1− PD)
H−Nassigned , (2.20)

where PD is the probability of detecting a single object and
(

H

Nassigned

)

= H!
Nassigned!(H−Nassigned)!

is the binomial coefficient that indicates the number of ways of choosing Nassigned mea-

surements out of H potential measurements for all H currently tracked objects. The

probability P (NFD) for the number false detections NFD follows either a Poisson dis-

tribution or a uniform distribution. Choosing a Poisson distribution leads to the para-

metric version of the JPDA algorithm while selecting a uniform distribution leads to

the non-parametric version of the JPDA algorithm [42]. So far only the probabilities

of the numbers (Nassigned, NFD) alone have been considered. The assignment Ar also

entails a specific way (i.e., arrangement) of choosing Nassigned as well as NFD measure-

ments out of all Nt measurements. The number of ways of choosing specifically Nassigned

measurements as well as NFD measurements out of Nt measurements is given by:

(

Nt

Nassigned

)(

Nt −Nassigned

NFD

)

, (2.21)

and so assuming that each combination is equally likely, the probability of a specific

combination is [152]:

P (combination|Nassigned, NFD) =
1

(

Nt

Nassigned

) . (2.22)

Finally, Ar also specifies exactly a way of assigning Nassigned measurement to H objects.

The number of ways in which Nassigned may be assigned to H objects is given by the

following permutation:
H!

(H −Nassigned)!
(2.23)

so the probability of each assignment given a certain combination is:

P (assignment|combination) =
(H −Nassigned)!

H!
. (2.24)

Putting together all these probabilities and after some simplifications one obtains the

prior probability P (Ar):

P (Ar) ∝ NFD!

Nt!
P (NFD)P

Nassigned

D (1− PD)
H−Nassigned . (2.25)

In comparison to deterministic approaches for finding correspondences over two time
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steps (see Section 2.1.1.2.1), the JPDA algorithm considers all possible assignments be-

tween the measurements and the objects. This amounts to considering associations

between all measurements and all objects. By evaluating the likelihood of each feasible

(global) assignment Ar, the JPDA algorithm weights the reliability of a particular asso-

ciation between a measurement and an object. Since the reliability of each assignment

is taken into consideration, the JPDA algorithm leads to better results in comparison

to deterministic approaches, which essentially assign a reliability of one to the selected

solution and zero to all other possible solutions. The robustness of the JPDA approach,

however, incurs a strong degradation in the computational performance because all pos-

sible assignments must be enumerated and evaluated. The JPDA also assumes that

the number of objects is constant over time, although this has been addressed by, for

instance, assuming that the number of objects entering the field of view as well as the

number of objects leaving the field of view follow a Poisson distribution [167], [50]. The

JPDA algorithm has been used for tracking a small number of objects in computer vi-

sion. For example, the approach in [149] approximates the JPDAF posterior P (Ar|Y1:t)

(see 2.17) with the likelihood p(zt|Xt) of an image zt given a particular joint configura-

tion Xt of all objects, which can be construed as an assignment between the predicted

positions of the objects and the corresponding image positions. The approach is sim-

ilar to approaches using joint particles filters (e.g., [120]) that also evaluate an image

likelihood given a certain joint configuration (‘sample’). The approach in [149] exploits

effectively the image data. This also increases the computational demands of the ap-

proach since the joint image likelihood p(z|Xt) has to be evaluated for each possible joint

configuration Xt. This is computational expensive because, to cope with occlusions, the

approach lists all permutations of the depth order of all objects, which leads to a rather

large number of possible configurations Xt, even for a relatively small number of ob-

jects. In the standard JPDAF as well as in [149], Kalman filters are used to estimate the

position of the individual objects. Recently, particle filters defined on a one-body state

space have been used instead (e.g., [167]). In this case the likelihood p(yj|Ar, Y1:t−1) for

a measurement yj assigned with a spatial-temporal filter m (first case in (2.19)) is given

by the mean likelihood obtained over all the samples of the m− th particle filter. Since

the image likelihood p(yt|xt) of each sample needs to be evaluated, the approach also

entails a large computational burden. For this reason the approach is only applicable

to a small number of objects (e.g., up to six objects [29]).

2.1.2.2.2 Multiple-Hypothesis Tracking Analogous to the deterministic case,

probabilistic approaches for motion correspondence benefit from taking into consid-

eration measurements obtained over several time steps. One assumption used by deter-

ministic approaches finding correspondences over several time steps is that the distance
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function d(·, ·) that quantifies the degree of correspondence between two measurements

is independent of previous time steps. In cases where a spatial-temporal filter is used

to estimate the position, the trajectories are built recursively so correspondences es-

tablished in the previous t− 1 time steps influence the possible correspondences in the

current time step t. In other words, previous and current correspondences are not inde-

pendent, and so assuming that the distance function d(·, ·) is independent of previous

correspondences is not very suitable.

One way to take into account previous correspondences is to evaluate all possible

assignments between time steps t − 1 and t for a set of disjoint trajectories At−1. For

each Ai
t−1, each possible assignment A

j
t between the trajectories Ai

t−1 and the set of

measurements Yt leads to a set of trajectories Aj
t . In other words, each Ai

t−1 branches

into multiple Aj
t . Over time, this leads to a tree of possible disjoint trajectories, where

each leaf node of the tree essentially represents a hypothesis Ai
t about a possible set of

trajectories. Since maintaining the full hypotheses tree leads to an exponential increase

in computational effort over time, the posterior probability P (Aj
t |Y1:t) of each set of

trajectories Aj
t given a sequence of sets of measurements Y1:t is evaluated. Hypotheses

with a low probability are discarded thereby pruning the hypotheses tree. Since sev-

eral hypotheses are considered, this approach is called the Multiple-Hypothesis Tracking

(MHT) algorithm [152], [19], [42]. Since each hypothesis Aj
t is defined via its parent hy-

pothesis Ai
t−1 together with the assignment Aj

t leading to Aj
t , the probability P (Aj

t |Y1:t)

can be formulated via Bayes’ theorem as:

P (Aj
t |Y1:t) = P (Aj

t ,Ai
t−1|Yt, Y1:t−1) (2.26)

∝ p(Yt|Aj
t ,Ai

t−1, Y1:t−1)P (Aj
t |Ai

t−1, Y1:t−1)P (Ai
t−1|Y1:t−1). (2.27)

This implicates evaluating the conditional likelihood of the current set of measure-

ments p(Yt|Aj
t ,Ai

t−1, Y1:t−1) as well as the prior probability on the current assignment

P (Aj
t |Ai

t−1, Y1:t−1). The exact formulas for these terms are given in [152].

In comparison to deterministic approaches finding correspondences over several time

steps (e.g., [173], [94], [223], [14]), the distance function used by the MHT depends

on previous correspondences. This advantage, however, comes at the expense of hav-

ing to maintain a large number of hypotheses, which entails updating a large number

of trajectories. Also, the MHT relies explicitly on spatial-temporal filters to estimate

the positions, whereas deterministic schemes use simplified motion and measurement

models that do not encode the uncertainty of the motion and measurement, respec-

tively. However, using spatial temporal filters also introduces additional computational

demands. For these reasons the MHT is usually considered to be quite computationally

demanding. Another drawback of the standard MHT is that it does not take into con-
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sideration directly the image data. In other words, the image information is not directly

used to evaluate the involved probabilities. Nonetheless, in computer vision, the MHT

algorithm has been used to track corners (e.g., [43]), vehicles (e.g., [185]) as well as the

components of articulated objects (e.g., [114], [34]).

2.1.2.2.3 Approaches Based on Sampling Schemes The underlying idea of the

MHT algorithm is to explore the space of possible disjoint trajectories over a certain

time period. This is done by deterministically enumerating all possible sets of disjoint

trajectories and evaluating their probability via the corresponding posterior (see (2.27)).

Another way of exploring the space of possible disjoint trajectories is by drawing random

samples from a distribution defined on this space. This is the main idea of approaches

for motion correspondence based on sampling schemes (e.g., Markov Chain Monte Carlo

methods, MCMC [73]). Here, one can distinguish between approaches drawing samples

in an iterative manner (e.g., via the Metropolis-Hastings algorithm [79]) and approaches

drawing samples in a sequential manner (e.g., via a Rao-Blackwell particle filter [168],

[163]).

Approaches based on Markov Chain Monte Carlo methods (MCMC, e.g., [135], [219],

[25]) draw samples from the following posterior distribution:

P (AT |Y1:T ) ∝ P (Y1:T |AT )P (AT ). (2.28)

As opposed to the MHT algorithm, the set of disjoint trajectories AT takes into con-

sideration all time steps T comprising the evaluated image sequence. In this case, the

Metropolis-Hastings (MH) algorithm is used to obtain samples from (2.28). The idea of

the MH algorithm is to obtain a set of samples by iterating along a Markov chain such

that its stationary distribution is set to P (AT |Y1:T ), i.e., such that the samples generated

by the Markov chain are distributed according to P (AT |Y1:T ). The iteration is driven

by a proposal distribution q(AT ,A′
T ) that proposes a sample A′

T taking into account

the current sample AT . The proposed sample A′
T is accepted as the next sample with

acceptance probability α(AT ,A′
T ):

α(AT ,A′
T ) = min

(

1,
P (A′

T |Y1:T )q(A′
T ,AT )

P (AT |Y1:T )q(AT ,A′
T )

)

. (2.29)

If the sample is not accepted, then the sampling scheme stays at AT . To generate a

sample A′
T , the proposal q(AT ,A′

T ) may choose a certain move (i.e., an update of

AT that leads to a particular A′
T ). In [135], the proposal consists of the following

moves (1) initialization and termination of trajectories, (2) splitting and merging of

trajectories, (3) extension and reduction of trajectories, (4) update of trajectories, and
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(5) trajectory switching. Using these moves to expand a set of empty trajectories would

be very time consuming. Instead, the MH sampler is initialized with a set of disjoint

trajectories obtained with a sequential approach based on Kalman filters and a nearest

neighbor scheme for motion correspondence. In [135], the set of position measurements is

given by an independent detection scheme. In [219], moves that generate new position

measurements by analyzing the image data are also proposed and so the approach

exploits more effectively the image data. Typically, trajectories are modeled via an

auto-regressive process embedded into a Kalman filter. In [25], trajectories are instead

modeled using Gaussian Processes (GPs) (e.g., [150]). Using GPs for generating the

trajectories leads to smoother trajectories. One disadvantage of approaches based on

MCMC methods for motion correspondence is that they do not support a sequential

analysis of the image data. In other words, all time steps must be available to apply

the approach.

Approaches based on Rao-Blackwellized particle filters (e.g., [168]) instead analyze

sequentially the image sequence to build the trajectories. Here the approach estimates

both the joint configuration Xt of all objects as well as the set of disjoint trajectories

A1:t, i.e., the concatenation of assignments A1,A2, . . . ,At. By conditioning the joint

configuration Xt on A1:t, the posterior distribution can be factored in the following way:

p(Xt,A1:t|Y1:t) = p(Xt|A1:t, Y1:t)P (A1:t|Y1:t). (2.30)

This posterior is amenable to the Rao-Blackwellized particle filter (see Section 2.1.2.1.3),

where the idea is to estimate P (A1:t|Y1:t) by sampling, and to determine analytically

p(Xt|A1:t, Y1:t) based on the samples obtained for P (A1:t|Y1:t). To obtain samples from

P (A1:t|Y1:t) ∝ P (At|A1:t−1, Y1:t)P (A1:t−1|Y1:t−1), the MH sampling scheme is used to

generate samples from P (At|A1:t−1, Y1:t). Note that here the Markov chain explores

only the space of assignments between two consecutive time steps and so in a sense the

approach is similar to the MHT algorithm, where the assignments are instead enumer-

ated in a deterministic way. Re-sampling the set of random samples to preserve the most

likely samples is also analogous to pruning the hypotheses tree in the MHT algorithm.

While the MCMC approach in principle explores the entire space of sets of disjoint

trajectories, the approach reduces the complexity entailed by the exploration of this

space by obtaining an initial set of trajectories via an alternative tracking approach

(e.g., based on Kalman filters and the GNN approach for motion correspondence). This

allows application of the approach to a relatively large number of objects (e.g., up to

100 objects [135]). The approach may be also applicable in a sequential way by applying

it only to a temporal window. The approach based on the Rao-Blackwellized particle

filter builds the trajectories in a sequential manner that resembles the MHT algorithm.
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As opposed to the latter, not all assignments (i.e., hypotheses) are listed, so it is more

efficient. For both approaches, obtaining a single set of disjoint trajectories AT as an

output for the approach is not so straightforward because the computed distribution

may be multimodal, i.e., multiple sets of of disjoint trajectories may provide a suitable

solution for the correspondence problem.

2.1.2.2.4 Summary This section presented probabilistic approaches for finding cor-

respondences. Approaches may take into consideration correspondences over two time

steps (e.g., approaches based on the JPDA algorithm), over a larger number of time steps

(e.g., approaches based on the MHT algorithm) as well as over all time steps (e.g., ap-

proaches based on MCMC methods). While the MHT algorithm in principle takes more

time steps into account, it has been empirically shown [102] that the performance of the

PDA algorithm together with the interacting multiple model (IMM) filter that accounts

for multiple modes of motion is comparable to that of the MHT algorithm. This suggests

that two images that are temporally distant may not contribute towards explaining the

phenomena shown in either image. Approaches based on the Rao-Blackwellized par-

ticle filter are reported to perform comparatively well relative to the MHT algorithm

[168]. The MCMC approach outperforms the MHT algorithm [135]. Certainly, the ap-

proach based MCMC requires the results of an additional tracking approach to reduce

the solution space.

In comparison to deterministic approaches, probabilistic approaches for motion cor-

respondence use spatial-temporal filters to build the trajectories. Since the spatial-

temporal filters allow computing a predicted measurement density N (·; ŷh,Sh), the Ma-

halanobis distance dSh(yi, ŷh) may be used to evaluate the likelihood of association

between a measurement yi and a predicted measurement ŷh. By virtue of using the

predicted measurement covariance Sh, the Mahalanobis distance takes into account the

uncertainty that has accumulated over time by choosing particular assignments over

time. In contrast to deterministic schemes for finding correspondences, the distance

function used by probabilistic approaches depends on previous time steps. Also be-

cause spatial-temporal filters are used, trajectories are built in a more robust way. For

example, in time steps where measurements may be missing, the predicted measure-

ment may be used to guide the estimation process. Certainly, probabilistic approaches

are more computationally demanding than deterministic since often the space of assign-

ments over time needs to be explored and this may hamper their application in scenarios

that involve a large number of objects.
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2.1.3 Approaches Based on Tracklets

Given an initial set of trajectories (i.e., tracklets), the idea is to find a more accurate

set of trajectories by modifying the initial set. Approaches based on tracklets (e.g.,

[184], [86]) often consider the task of finding tracklets that originated from the same

object, i.e., finding correspondences among broken trajectories. To find correspondences

among tracklets, the Hungarian algorithm is used. Approaches (e.g., [142]) also consider

cases where individual tracklets may merge into a (joint) tracklet or where a (joint)

tracklet may split into individual tracklets. In this case, correspondences between the

joint and individual tracklets are also found via the Hungarian algorithm. In this case,

finding correspondences between individual tracklets and a joint tracklet involves finding

correspondences between an arbitrary number of individual tracklets and a single joint

tracklet. However, the Hungarian algorithm supports only one-to-one correspondences.

As such, the individual tracklets are represented via a single abstract tracklet that

subsumes the individual tracklets. The problem of finding correspondences between

tracklets has been also addressed by formulating the problem using a flow network

(e.g., [209]). We refrain from delving further into these type of approaches since in any

case these approaches rely on an initial set of trajectories. An accurate set of initial

trajectories leads to better results for these approaches, so our focus is on obtaining

reliable trajectories from the image data without any preliminary tracking step.

2.2 Tracking Approaches for Fluorescent Particles

In this section, we review approaches for tracking fluorescent biological particles in

microscopy images. Analogous to the section on tracking approaches in computer vision,

we discuss deterministic approaches as well as probabilistic approaches.

2.2.1 Deterministic Approaches

Deterministic approaches typically address only the tasks of particle localization and

motion correspondence. We review schemes for particle localization as well as schemes

for motion correspondence.

2.2.1.1 Particle Localization

2.2.1.1.1 Bottom-up Localization Schemes To address the problem of particle

localization, either a bottom-up or a top-down strategy is generally adopted. Bottom-up

approaches are driven by the image data, while top-down approaches are guided by prior

knowledge on the expected shape and appearance of particles. Bottom-up localization

27



schemes for fluorescent particles typically comprise three consecutive steps: image pre-

processing, particle detection, and particle localization. In the pre-processing step, the

aim is threefold: first, to enhance the image intensities corresponding to particles; sec-

ond, to suppress the image noise; and third, to attenuate the intensities of background

structures (e.g., cellular background). One approach to pre-process the images is to use

linear filters (e.g., [166]). One common filter is the Gaussian filter. Given a 2D image

g(x, y), the filtered image gGauss(x, y) is described by the following convolution:

gGauss(x, y) = G2D
σF,xy

∗ g(x, y) (2.31)

=
n
∑

i=−n

n
∑

j=−n

G2D
σF,xy

(i, j)g(x− i, y − j) (2.32)

where the width NG of the Gaussian kernel G2D
σF,xy

is given by NG = 2n + 1 and the

kernel itself is defined by:

G2D
σF,xy

(x, y) =
1

2πσ2
F,xy

exp

(

−(x2 + y2)

2σ2
F,xy

)

. (2.33)

Doing a convolution with the kernel in (2.33) may be also seen as performing a correlation

with such a kernel. In that sense, image regions that resemble the Gaussian kernel

are enhanced. Since the appearance of sub-resolution fluorescent particles resembles a

Gaussian function, image regions corresponding to fluorescent particles are enhanced.

Another filter used for pre-processing the images is the Laplacian-of-Gaussian (LoG)

filter. In this case, the kernel LoG2D
σF,xy

of the filter is given by:

LoG2D
σF,xy

(x, y) =
x2 + y2 − 2σ2

F,xy

σ4
F,xy

G2D
σF,xy

(x, y). (2.34)

Because of the associative property of the convolution operation, applying a LoG filter

amounts to applying a Gaussian filter followed by a Laplacian filter. Thus, in principle

the LoG filter involves some degree of smoothing of the original image and likewise some

enhancement of image regions corresponding to fluorescent particles with a Gaussian-like

appearance. The LoG filter also entails evaluating the second derivatives of the image

intensities along the image’s spatial dimensions. As indicated by (2.34), the kernel has

negative values for the relative positions (x, y) | x2+ y2 < 2σ2
F,xy, i.e., for positions (x, y)

inside a circle of radius
√
2σF,xy. Positive values are obtained for positions outside this

circle. Over the neighborhood in which the convolution is performed, applying the LoG

amounts to computing the difference between the integrated intensity of positions in-

side the circle and the integrated intensity of positions outside the circle. Image regions
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where the difference is large result in a large response for the filter. For a neighborhood

corresponding to a single particle, and assuming that the circle of radius
√
2σF,xy cir-

cumscribes the particle, the difference is relatively large since the intensities within the

particle differ strongly from that of the background. This results in a large response

for the filter. In comparison, image regions corresponding to the background comprise

intensity values that are relatively homogeneous, and so the difference is relatively low

in comparison to the difference obtained at image regions displaying particles. This also

indicates that the standard deviation σF,xy is to be adjusted according to the size of

the particles. When applied to fluorescence microscopy images, the LoG filter is known

as the spot-enhancing filter (SEF) [160]. Additional approaches for pre-processing the

images include non-linear filters (e.g., median filter, anisotropic diffusion [195]), schemes

based on mathematical morphology (e.g., the top-hat filter [28], the H-dome transform

[179]) as well as schemes based on wavelets (e.g., [138]). Evaluations of several pre-

processing schemes for localizing fluorescent particles are presented in [177], [158]. In

[177], it turns out that in general no scheme “outperforms all others”. The evaluation in

[177] also established that schemes based on the multi-scale variance-stabilizing trans-

form (MS-VST) [221], H-dome transform, morphological top-hat, as well as on the SEF

are not too sensitive to the corresponding user-defined parameters. This is an important

property, since adjusting the parameters for each image is impractical.

In the particle detection step, the goal is to determine image regions that correspond

to particles. A common technique is to apply a threshold (e.g., [144], [166]) on the

intensities of a (pre-processed) image. Thus, pixels with intensity values above the

threshold are assumed to represent particles. The result of this technique depends

largely on the selected threshold. If the threshold is set too low, false positives might

arise; if the threshold is set too high, false negatives might ensue. Determining manually

a good threshold value is often impractical and may lead to inconsistent results for

different images. Automatic schemes for determining an optimal threshold (e.g., [139])

are therefore required. Usually these schemes compute the threshold as a function of

the histogram of the intensity values of an image. For fluorescence microscopy image

sequences, the automatic calculation of the threshold should also consider the influence

of photobleaching on the distribution of the intensity values.

In the particle localization step, the task is to derive an explicit description of each

detected particle. Such a description often includes the location of the particle within

an image as well as other properties (e.g., mean intensity of the particle). For instance,

to compute such a description, one can first identify sets of adjacent pixels (connected

components) via a connected-components labeling algorithm (e.g., [78]), which assigns

a unique label to each connected component. Each connected component is assumed
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to represent one particle and for each particle properties can then be computed. For

example, the position can be calculated as the intensity-weighted center-of-mass or the

mean intensity can be determined. Also, false positives can be rejected (e.g., [166]) by

verifying whether the properties of particles (e.g., pixel count, moments of intensity)

fulfill a set of discriminative criteria.

2.2.1.1.2 Top-down Localization Schemes Top-down approaches use model-driven

strategies where hypotheses on the possible configuration of the models are tested against

the information found in the images. We consider approaches that synthesize an im-

age using a parametric model describing the shape and appearance of a fluorescently

labeled particle. A typical model for the appearance of a fluorescence particle is the 2D

Gaussian function (e.g. [104], [190], [41], [208]):

gGaussian2D(x, y) = Ib + (Imax − Ib) exp

(

−(x− xp)
2 + (y − yp)

2

2σ2
xy

)

, (2.35)

where Ib represents the background intensity value, Imax denotes the peak intensity

value, (xp, yp) indicates the position of the particle in the image, and σxy is the standard

deviation of the 2D Gaussian function. To model M particles that are in close proximity,

a mixture of Gaussian functions may be used [190], [140]:

gGaussianMix(x, y) = Ib +
M
∑

m=1

(Imax,m − Ib) exp

(

−(x− xp,m)
2 + (y − yp,m)

2

2σ2
xy,m

)

. (2.36)

Here each m-th component is parametrized by its peak intensity value Imax,m, its position

(xp,m, yp,m), as well as by its standard deviation σxy,m. A 2D Lorentz function (e.g., [52])

has also been used to describe the appearance of a single fluorescence particle:

gLorentz2D(x, y) = Ib + (Imax − Ib)
1

(

1 + (x−xp)2+(y−yp)2

γ2
xy

) 3

2

, (2.37)

where γxy regulates the spread of the function. Analogous to the 2D Gaussian function,

a sum of 2D Lorentz functions may be used to describe multiple particles (e.g., [155],

[40]). In comparison to the Gaussian, using powers of the Lorentz function also allows

adjusting the shape of the function. Numerical evaluation of the function may also be

faster. Also, the function is amenable to analytical procedures. Top-down approaches

based on such parametric appearance models typically consist of two steps: detection

of particle candidates and model fitting. In the first step, typically a search for local

intensity maxima is carried out, where each identified maximum represents a candidate
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position. Here, the pre-processing schemes described in Section 2.2.1.1.1 may be used. In

the second step, for each candidate position the model is fitted to the image intensities.

Usually a least-squares fit of the model gmodel with the observed image intensities g is

achieved by minimizing the following objective function:

∑

(x,y)

(gmodel(x, y)− g(x, y))2, (2.38)

where the model gmodel may be defined by any of the parametric models described above

(e.g., the 2D Gaussian function (2.35)). Because of the non-linearity of the models, non-

linear minimization algorithms (e.g., Gauss-Newton algorithm, Levenberg-Marquardt

algorithm) are required. In images with a low SNR, it has been shown experimentally

that fitting a 2D Gaussian model outperforms other bottom-up localization algorithms

[36]. Nevertheless, robust bottom-up schemes are required to automatically initialize

the candidate positions for the fitting scheme. One issue when fitting a mixture model

(e.g., (2.36)) is estimating the correct number of M components, since a large value

for M leads to a better description of the image data, yet such a large value may not

correspond to the actual number of particles. To address this, the authors in [190] fit an

M -component mixture model as well as an M +1-component mixture model. For both

mixture models, the corresponding residuals and chi-square statistics are computed.

A test for significant differences on the chi-square statistics of the models determines

whether increasing the number of components is required. In [140], components are

iteratively merged and split until the rate of change of the objective function over the

iterations is low.

Classification schemes may be also categorized as top-down approaches since the

approaches also compare the information found in the images with pre-established in-

formation about the particles. For example, in [95], an Adaboost-based classifier using

Haar-like features is used to detect fluorescent particles.

2.2.1.2 Motion Correspondence

Deterministic schemes for motion correspondence can be categorized into schemes find-

ing correspondences over two time steps, and schemes finding correspondences over

multiple time steps.

One approach [195] for determining correspondences over two time steps involves

using a fuzzy logic system to determine the degree of correspondence between two mea-

surements. The system considers differences between two measurements, for example,

the difference in intensity as well as the difference in position. An associative rule of

the fuzzy logic system describes the extent of each difference. By using each of these
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rules the system determines whether each difference is small or large. To obtain a sin-

gle value describing the extent of all differences, a fuzzy centroid over all the rules is

computed and used as a distance function dfuzzy(·, ·) between two measurements. Cor-

respondences are found using a standard nearest neighbor (NN) strategy (see Section

2.1.1.2.1). Other approaches using a nearest neighbor strategy include [6], [171], [107],

[144], [105]. In image regions with a high density of particles, the search for correspon-

dences becomes ambiguous, since several possibilities are plausible. In those cases the

NN strategy may lead to correspondence errors. To cope with such cases, approaches

using a global nearest neighbor (GNN) strategy (cf. Section 2.1.1.2.1) have also been

proposed (e.g., [169], [166], [92]). The minimization of the cost function associated with

the resulting bi-partite graph is solved for example with algorithms for the transporta-

tion problem, the Vogel algorithm, or the Hungarian algorithm. The resulting bi-partite

graph may be transformed into a flow network and min-cost max-flow algorithms (e.g.,

[141]) may be used to find the correspondences (e.g., [198]). Regardless of the scheme

used for determining correspondences, approaches using only two consecutive time steps

are susceptible to errors of the localization scheme (e.g., missed detections, spurious de-

tections). To cope with detection errors, correspondences over multiple time steps may

be established. One approach for finding correspondences over multiple time steps in-

volves constructing a k-partite graph using the measurements obtained over a window

comprising k time steps. In this approach correspondences are only allowed between

consecutive time steps. The minimization of the cost function Ck is carried out within

an integer programming framework [60]. Another approach ([93]) for finding corre-

spondences over multiple time steps obtains an initial set of trajectories over the entire

image sequence using a GNN scheme. The approach refines this initial set by extending,

merging or splitting trajectories. In this sense such an approach may be viewed as an ap-

proach based on tracklets (cf. Section 2.1.3). Note that the initial trajectories (tracklets)

themselves are not updated, e.g., erroneous positions within a tracklet are not corrected.

Other deterministic approaches taking into account all time steps of an image sequence

include [160], [23], [213]. These approaches assume that, since a sequence of 2D images

over time may be represented as a 3D spatial-temporal volume V (x, y, t), finding tra-

jectories amounts to finding 3D curves within such a volume. These approaches define

an appropriate energy function for such 3D curves using the image data (or products

thereof, such as the response of the spot-enhancing filter) as well as prior constraints on

the frame-to-frame displacement of the particle. Computing 3D curves that minimize

such energy function via dynamic programming algorithms is thus equivalent to finding

trajectories. Because the energy is defined for individual 3D curves (trajectories) such

approaches can only deal with sparsely positioned particles. In real applications, often
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the particles are densely positioned and this limits the applicability of these type of

approaches.

In summary, deterministic approaches ignore the uncertainty involved in the behavior

of the fluorescent particles as well as in the imaging system; their applicability thus

remains limited to relatively straightforward scenarios (e.g., low object density, high

SNR).

2.2.2 Probabilistic Approaches

Formulated within a Bayesian framework (cf. Section 2.1.2.1), probabilistic approaches

cope with the uncertainty by defining a posterior distribution p(xt|y1:t) on the variables

xt describing the fluorescent particles given a series of image-derived measurements y1:t.

This posterior can be resolved via a Kalman filter or a particle filter. Approaches based

on the Kalman filter (e.g., [64], [38], [98], [123], [215]) incorporate only the measurements

computed by a bottom-up localization algorithm (cf. Section 2.2.1.1.1); thus localization

and position estimation are uncoupled steps. In contrast, the particle filter (e.g., [176],

[218], [70], [32], [75]) queries directly multiple image positions (represented by random

samples) to determine the location of an object. The filter thus combines localization

and position estimation and achieves more robust results (e.g., [70]). Rao-Blackwellized

particle filters have also been used (e.g., [178]) to track fluorescent particles. Because of

the random nature of its top-down localization scheme, the particle filter uses a relatively

large number of samples. This introduces a high computational cost because an image

likelihood is evaluated for each sample. While one can improve the efficiency of the

particle filter, (e.g., by exploring hierarchically the feature space [214], by biasing the

samples towards regions with high likelihoods [30], or by marginalization [99]), several

hundred samples are still required to ensure convergence. An approach based on Kalman

filters combining a bottom-up localization scheme with a top-down localization strategy

has been presented in [179], but there the combined localization scheme does not exploit

the appearance parameters of each object. Probabilistic approaches have also been

proposed for addressing the uncertainty involved in the task of motion correspondence

[42]. These include approaches based on the joint probabilistic data association filter

(JPDAF, e.g., [179], [98], [154]), the multiple hypothesis tracking algorithm (MHT, e.g.,

[38], [115]) as well as approaches sampling correspondences via Monte Carlo schemes

(e.g., [74]). These approaches explore exhaustively the space of correspondences over

two or multiple time steps, which entails a large computational overhead when tracking

a very large number of objects.
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2.3 Approaches for Behavior Identification in Com-

puter Vision

Given an image sequence, the task of behavior identification entails assigning a behavior

label to representations extracted from the image data [145]. Thus, approaches for be-

havior identification often deal with representation and representation extraction as well

as label computation [33]. In this context, a behavior label denotes a symbol carrying

a semantic connotation related to a certain action or behavior. The extracted repre-

sentations may correspond to low-level features (e.g., feature points ([205], [110], [53]),

optical flow vectors (e.g., [58]), and spatial-temporal volumes (e.g., [20]). Approaches

using such representations detect behaviors at the image level. Alternatively, the repre-

sentations may correspond to trajectories describing the motion of objects in an image

sequence (e.g., [175], [76], [37], [194]). In this case the behavior is detected at the object

level. Because the representations are extracted from image sequences, the representa-

tions also encode temporal information. The temporal information may have a global,

semi-global, or local scope, and approaches are designed to deal with a particular tempo-

ral scope. In computer vision, several approaches for behavior identification have been

developed, especially for identifying behaviors related to humans. This is motivated

by applications of such approaches in the fields of surveillance (e.g., [186], [46], [131],

[130]), gait analysis (e.g., [26], [201], [17], [48]), traffic analysis (e.g., [85], [205], [161],

[83]), sports (e.g., [58], [118]), face expression analysis (e.g., [54], [106]), hand gesture

analysis (e.g., [148], [13], [76]) as well as general identification of human actions (e.g.,

drinking coffee as in [111]). There is a large number of approaches for the identification

of human behaviors (see for example the recent surveys in [206], [31], [145], [127], [84]).

Animals are also the subjects of approaches for behavior identification. Approaches for

the identification of behaviors of bees (e.g., [134], [200]) as well as rodents (e.g., [53])

have been proposed.

In this section we review approaches for behavior identification. We focus on the task

of label computation for object-based representations, since these are readily extracted

by a tracking approach. We concentrate on algorithms grounded within a Bayesian

framework.

2.3.1 Label Computation

We focus on approaches computing labels for object-based representations with local

scopes. A Bayesian approach for computing labels involves finding the most proba-

ble sequence of labels given the observed local representations. Hidden Markov models

(HMMs) (e.g., [210]) are typically used for finding such sequences of labels. HMMs spec-
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ify transition probabilities over the labels and thus only plausible behavior sequences are

evaluated. One disadvantage of HMMs is that the hidden variables (i.e., the behaviors)

may only take discrete values. Moreover, HMMs describe the observed temporal rep-

resentations using piecewise constant functions. Approaches based on stochastic hybrid

systems overcome these limitations by estimating both the discrete behavior as well the

continuous representations.

Stochastic hybrid systems have first been introduced in automatic control applica-

tions (e.g., [193]), and have been recently revisited for behavior identification in the

field of computer vision. Applications include identification of behaviors based on face

expressions (e.g., [54], [106]), as well as on human gaits and pose (e.g., [17], [48]). Other

applications include the identification of the behavior of bees (e.g., [134], [200]). In bio-

logical imaging, hybrid stochastic systems have been used for estimating the position of

fluorescent particles (e.g., [64], [178]) or cells (e.g., [113]), however, in these approaches

the hybrid stochastic system does not exploit the intensity information of the biological

objects and the estimated discrete variables are not used for behavior identification. In

general, estimation of the hybrid states is often carried out within a Bayesian frame-

work where the aim is to compute a posterior distribution on the hybrid states given

the observed temporal representations of the object under consideration. This task is

challenging since the optimal solution entails an exponential computational effort with

respect to time. Therefore, approximate algorithms have been proposed. For example,

[200] suggested a greedy approach that involves first approximating the posterior dis-

tribution of the continuous variables followed by calculating maximum likelihood (ML)

estimates for the discrete behavior variables. While this approach significantly reduces

the complexity of the estimation task, the greedy ML estimates do not consider the

validity of transitions between behaviors. Another approach uses an approximation of

the posterior via a mixture of Gaussians (e.g., [17]). However, this approach is only ap-

plicable to linear Gaussian models. In [134], a data-driven Markov Chain Monte Carlo

(MCMC) method is used to approximate the posterior. There, the MCMC proposal

distribution is derived from the likelihood of the observed temporal representations as

well as from the transition probabilities between different behaviors. While the solution

space is efficiently explored, the approach requires a relatively large amount of train-

ing data that should include a label for each behavior at each time step. Additionally,

MCMC methods do not typically support sequential analysis of the observed temporal

representations, which limits their applicability to off-line inference tasks.

Particle filters (e.g., [88]) provide a sequential alternative to MCMC methods. Within

computer vision, the application of particle filters for carrying out inference in stochas-

tic hybrid systems is first described in [87]. Because of its applicability to non-linear
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and non-Gaussian models as well as its recognition-by-synthesis approach, such a hybrid

particle filter has seen increasing interest for identifying behaviors. For example, [18]

represent behaviors (e.g., facial expressions) as temporal trajectories within a certain

space (e.g., a space defined by the basis of optical flow fields). The temporal trajec-

tories are sequentially matched to a temporal neighborhood of the observed temporal

representations via a hybrid particle filter, where the temporal neighborhood is defined

by a temporal window. However, the length of this window influences the results and

determining the optimal length is not trivial. In certain applications, the transition

probabilities for certain behaviors may be low, which entails that unlikely behaviors

may be supported by very few hybrid samples. The lack of support in certain regions

of the discrete space reduces the accuracy of the approximated hybrid posterior. One

strategy to cope with this issue involves carrying out importance sampling on the dis-

crete variable only, whereby the discrete space is explored more effectively by using

an importance transition matrix ([156]). However, performing importance sampling on

the discrete variable only may generally decrease the accuracy of the estimates for the

continuous variables. Another strategy to cope with the lack of support for unlikely

behaviors is to increase the number of samples. This straightforward strategy works

well at the expense of an increase in the computational cost, which scales linearly with

respect to the number of samples. To compensate for the high computational cost, some

approaches (e.g., [226]) assume that the behavior remains fixed over time. Such an ap-

proach reduces significantly the extent of the solution space but it is not applicable to

the task of identifying disparate behaviors over time. Other schemes (e.g., [106]) assume

no direct dependence between the discrete variable and the continuous variables, but

such an assumption may not hold in many applications.

An additional issue with the hybrid particle filter is that the estimates for the vari-

ables are computed sequentially using only the temporal representations found up to

the current time step. Using all available temporal representations may increase the

accuracy of the computed estimates. A smoothing algorithm based on particle filters for

computing discrete and continuous variables based on all available temporal representa-

tions has been presented in [133]. However, the computational cost of such a smoothing

scheme is quadratic with respect to the number of samples. Most schemes based on the

hybrid particle filter deal with one object only, so smoothing may be applicable in those

cases. However, in cases where multiple objects are present over several time steps, such

a smoothing scheme may be impractical.
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2.4 Approaches for Behavior Identification of Fluores-

cent Particles

In this section, we concentrate on previous work identifying behaviors based on the

appearance of the fluorescent particles. We also review approaches for identifying fusion

of fluorescent particles.

Behaviors of fluorescent particles, such as fusion, are often reflected as fluctuations

of the temporal intensity statistics of individual particles. Changes in the intensity over

time may be detected at the image level by computing the difference image between two

consecutive images using single pixels (e.g., [132], [170], [125]) or image regions (e.g.,

[24]). Since changes in the intensity may also arise from other phenomena (e.g., motion of

the particles, image noise), approaches based on image differencing may not discriminate

accurately between changes in the intensity arising from behaviors of interest (e.g.,

fusion) and changes originating from other phenomena. Also, these approaches are

typically not applicable for detecting behaviors that entail changes in temporal statistics

other than the intensity (e.g., size of a particle). By tracking fluorescent particles and

thereby obtaining the temporal statistics of each object, the changes can be detected

at the object level. For example, within the context of neurobiology, the fusion of

a fluorescent neurotransmitter vesicle with the cell membrane is detected by fitting a

linear model to the curve of estimated radii over time of the fluorescent particle ([41]).

A statistical test on the fitted slope parameter, which reflects the rate of change in

the particle’s radii, determines whether fusion occurred. Such a global approach, while

taking advantage of all temporal data, assumes a constant behavior and is not able

to identify potentially disparate behaviors over time. In comparison, local approaches

identify behaviors of interest at each time step by taking into account the statistics of

few consecutive time steps.

Local approaches that detect fusion based on the intensity over time of an individ-

ual particle typically exploit the fact that this behavior entails a rapid change in the

intensity. For example, [61] used a derivative-based approach, where fusion of an in-

fluenza virus particle with the cell membrane is represented by large values of the first

derivative of the particle’s intensity with respect to time. To numerically estimate the

derivatives typically small temporal neighborhoods are incorporated and therefore these

approaches are susceptible to noise. In [11], [51] the rate of change in intensity has been

used for detecting fusion of glucose transporter 4 (GLUT4) vesicles with the cell mem-

brane. Local approaches do not take into account results from previous time steps for

analyzing subsequent time steps, i.e., the temporal coherence of the particle’s behavior

is not exploited. Approaches based on Hidden Markov Models (HMMs) address this
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shortcoming by specifying local transition probabilities between different behaviors.

2.5 Summary

In this chapter, we have reviewed previous work for tracking multiple particles as well as

for identifying behaviors of fluorescent particles. Tracking approaches are classified into

deterministic or probabilistic schemes. Behavior identification schemes are classified

based on their temporal scope and also based on the underlying approach for label

calculation. For tracking, probabilistic approaches deliver more robust results than

deterministic approaches. We delve deeper into probabilistic tracking approaches in

the next chapter. For behavior identification, we focus on hybrid stochastic systems,

since these estimate both discrete and continuous variables. Our approach for behavior

identification is presented in Chapter 4.
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Chapter 3

Tracking Fluorescent Particles

In this chapter, we describe our approaches for tracking multiple fluorescent particles.

We first discuss the tasks of object localization and motion correspondence. Then we

delve into probabilistic approaches grounded within the theory of Bayesian sequential

estimation. We introduce approaches based on the Kalman filter, and independent par-

ticle filters [70]. We also present our approach based on Probabilistic Data Association

(PDA) [68].

3.1 Spot Detection and Localization via

the Spot-Enhancing Filter

In fluorescence microscopy images, the intensity structure corresponding to a fluores-

cent particle typically resembles a 2D Gaussian function, where the peak intensity of the

particle is larger than the intensity of the background. One approach for localizing such

particles is threshold-based segmentation. However, due to image noise and other bio-

logical structures with similar intensities (e.g., cellular autofluorescence), this approach

generally leads to a high number of false detections. To improve object localization,

we use an algorithm based on the spot-enhancing filter (SEF) ([160]). The algorithm,

which consists in convolving an image with a Laplacian-of-Gaussian (LoG) kernel that is

parametrized by the standard deviation σLoG,xy (cf. (2.34) as well as Figure 3.1), has the

property that it enhances the intensities of Gaussian-like particles while simultaneously

suppressing noise, as well as attenuating the intensities of background structures. After

filtering, we apply an intensity threshold kintens, which is computed by

kintens = µintens + c σintens, (3.1)
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where µintens is the mean intensity of the image, σintens the standard deviation, and c

a user-defined factor. In our case, we compute a threshold value for each image of

an image sequence, since the intensity distribution generally changes over time. To

identify fluorescent particles, we employ a connected components labeling algorithm

([78]) assuming 8-connectivity. False positives are rejected by enforcing a minimum and

maximum number of pixels for each detected particle.
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Figure 3.1: Kernel of the Laplacian-of-Gaussian (LoG) filter (σF,xy = 1.5 pixels).

3.2 Spot Detection and Localization via 2D Gaussian

Fitting

Under the assumption that the intensity distribution of a fluorescent particle can be

represented by a 2D Gaussian function (see (2.35)), a natural approach for particle

localization consists in fitting such a function to candidate regions-of-interest (ROIs)

determined by local intensity maxima (e.g., [190], [208]) (see Figure 3.2 for a diagram-

matic representation). Prior to local maxima finding, we use intensity clipping and a

Gaussian filter for noise reduction. For each candidate ROI we apply 2D Gaussian fitting

via a least-squares estimator. The final step consists in rejecting false positives based on

the following set of criteria: maximum ellipticity of the fitted function, minimum total

intensity, minimum contrast, and maximum pixel count.
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Figure 3.2: Fitting a 2D Gaussian function (red) to image intensity values (blue).

3.3 Motion Correspondence via Global Nearest Neigh-

bor

When applied to an image displaying multiple fluorescent particles, a spot detection

scheme yields a set YBU , {yBU,1,yBU,2, . . . ,yBU,Nm,BU
} of Nm,BU bottom-up (BU)

measurements. To assign a single measurement to each tracked object, we find one-

to-one correspondences between the set of bottom-up measurements YBU and the set

Ŷ , {ŷ1, ŷ2, . . . , ŷNobj
} of Nobj predicted measurements. To solve this correspon-

dence problem, we use a global nearest neighbor (GNN) approach [166] based on a

graph-theoretical approach for the transportation problem (see Section 2.1.1.2.1). The

algorithm encodes the correspondences via an association matrix A (of dimensions

Nobj × Nm,BU) where the rows correspond to the predictions and the columns repre-

sent the measurements. The entries aij of the matrix A denote whether a match exists

between the prediction ŷi and the measurement yBU,j. In our case, aij is set to ‘1’ if

the prediction ŷi and measurement yBU,j correspond to each other; otherwise aij is set

to ‘0’:

aij =

{

1 if ŷi and yBU,j match

0 otherwise
. (3.2)

Since we restrict ourselves to one-to-one assignments, the association matrix A is subject

to the topological constraint that each row and column may have at most one ‘1’. Also,

since generally the number of predictions may not match the number of measurements,

i.e., Nobj 6= Nm,BU, it follows that some of these may remain unmatched. To solve the
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practical difficulties that this inequality introduces, the notions of a dummy prediction

ŷ0 and a dummy measurement yBU,0 are introduced. The purpose of these dummies is

the following: if a prediction ŷi remains unmatched, it will be assigned to the dummy

measurement yBU,0. Analogously, if a measurement yBU,j remains unmatched, it will

be assigned to the dummy prediction ŷ0. The introduction of the dummies entails the

augmentation of the matrix A by one row and one column. For this particular row and

column, the above-mentioned topological constraint does not hold, since, for instance,

several measurements may remain unmatched.

A global nearest neighbor algorithm aims at finding the correspondences between

both sets by adjusting the association matrix A such that the total displacement dtotal

induced by the set of correspondences is minimized. Let d(ŷi,yBU,j) denote the Eu-

clidean distance in R
2. The total displacement dtotal is defined as follows:

dtotal =

Nobj
∑

i=0

Nm,BU
∑

j=0

aij d(ŷi,yBU,j). (3.3)

To reduce the complexity of the task, only the most plausible matches (in terms of the

distance d(·, ·)) are considered. This is done by disregarding matches that induce a

relatively large distance. To this end, we discard those matches that introduce a dis-

placement larger than the expected maximum displacement dmax ([199]). Additionally,

the distance between a prediction ŷi and a dummy measurement yBU,0 as well as the

distance between a dummy prediction ŷ0 and a measurement yBU,j is set equal to dmax.

The motion correspondence algorithm proceeds in two stages: first, initial assign-

ments are created via a greedy nearest neighbor approach. In the second stage, the

optimal set of assignments (optimal in the sense that yields a minimal dtotal). To achieve

the latter, we employ the optimization algorithm presented in [166], which is based on

a graph-theoretical approach for the transportation problem.

For tracking, one needs to determine the start and end points of each trajectory. The

dummies, in principle, provide the means through which such start and end points can

be determined. Intuitively, a measurement assigned to a dummy prediction ŷ0 denotes

the start of a new trajectory. Similarly, a prediction matched to a dummy measurement

yBU,0 denotes the end of a trajectory.

3.4 Bayesian Framework

In our work, tracking is formulated as a Bayesian sequential estimation problem. We

recall here the theory within the context of tracking fluorescent particles. Within a one-

body state space, it is assumed that a fluorescent particle is represented by a state vector

42



xt and that a noisy measurement yt reflects the true state of xt. At time step t, the aim

is to estimate the state xt of a fluorescent particle given a sequence of measurements

y1:t. By modeling the temporal evolution using a dynamical model p(xt|xt−1) and incor-

porating measurements derived from the images via a measurement model p(yt|xt), a

Bayesian filter estimates the posterior distribution p(xt|y1:t) via stochastic propagation

and Bayes’ theorem:

p(xt|y1:t−1) =

∫

p(xt|xt−1) p(xt−1|y1:t−1) dxt−1 (3.4)

p(xt|y1:t) ∝ p(yt|xt) p(xt|y1:t−1). (3.5)

An estimate of xt can be obtained from the posterior p(xt|y1:t). For linear and Gaussian

models, one can resolve analytically the posterior using a Kalman filter; for non-linear

and/or non-parametric models, the particle filter provides a numerical solution.

3.5 Kalman Filter

The Kalman filter (e.g., [97],[5]) represents the posterior p(xt|y1:t) via a Gaussian prob-

ability distribution that is parametrized by its mean vector mt and its covariance matrix

Pt:

p(xt|y1:t) = N (·;mt,Pt), (3.6)

where N (·;µ,Σ) represents a Gaussian distribution with mean vector µ and covariance

matrix Σ. The Kalman filter also assumes that the dynamical model p(xt|xt−1) as well

as the measurement model p(yt|xt) are linear and Gaussian:

p(xt|xt−1) = N (xt;Fxt−1,Q) (3.7)

p(yt|xt) = N (yt;Hxt,R), (3.8)

where the transition matrix F and the measurement matrix H are known matrices.

The covariance matrices Q and R encode the uncertainty about the prediction and

the measurement, respectively. Given a posterior p(xt−1|y1:t−1) at time step t − 1, the

posterior at time step t can be computed by first carrying out a prediction on the state

vector as well as on the associated covariance matrix:

m̂ = Fmt−1 (3.9)

P̂ = FPt−1F
T +Q. (3.10)
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To improve the readability we omit the time step t index in the following. The predicted

state vector m̂ can be transformed onto the measurement space to obtain a predicted

measurement ŷ:

ŷ = Hm̂. (3.11)

The predicted errors as encoded by the predicted covariance matrix P̂ can also be

propagated onto the measurement space to obtain a predicted measurement covariance

S, which also takes into account the measurement noise process as encoded by R:

S = HP̂HT +R. (3.12)

Once a measurement y is derived from the image at time step t, the difference be-

tween the actual measurement and the predicted measurement, i.e., the innovation ν,

is calculated:

ν = y − ŷ. (3.13)

The Kalman gain K is computed as follows:

K = P̂HTS−1. (3.14)

An estimate for the mean vector m is finally calculated by correcting the prediction m̂

with the innovation ν, where the correction is regulated by the Kalman gain K:

m = m̂+Kν. (3.15)

The covariance matrix P can also be calculated by updating the predicted covariance

matrix P̂ with the Kalman gain K:

P = (I−KH)P̂, (3.16)

where I is the identity matrix.

3.6 Particle Filter

The particle filter (e.g., [72], [88]) is a numerical approach that has been quite successful

for non-linear and/or non-Gaussian models within the context of visual tracking, e.g.,

human tracking ([220], [109], [151]), face tracking ([227]), sports tracking ([203], [136],

[30]), animal tracking ([196], [100]), as well as vision-based simultaneous localization and

mapping for autonomous robots ([191]). In our application, fluorescent particles move

in a relatively unpredictable manner, and therefore the particle filter is well-suited.
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The key idea behind this approach is that the posterior probability density function

(pdf) p(xt|y1:t) is approximated with a set of random samples (the ‘particles’) that

are associated with importance weights. Let {xi
t;w

i
t}Ns

i=1 represent such a set, where Ns

denotes its size, xi
t is a sample and wi

t represents the corresponding (normalized) weight.

Using this particle set, the posterior distribution can be approximated as:

p(xt|y1:t) ≈
Ns
∑

i=1

wi
t δ(xt − xi

t), (3.17)

where δ(·) denotes the Dirac delta measure and
∑Ns

i=1 w
i
t = 1. The particle filter accom-

plishes the Bayesian recursion in (3.4) and (3.5) in a two-step fashion. First, candidate

samples {xi
t}Ns

i=1 are generated from a proposal distribution q(·), which is typically set to

be equivalent to the dynamical model, i.e.,

q(xt|xt−1) = p(xt|xt−1). (3.18)

That is, the samples are propagated over time by carrying out predictions by means of

the dynamical model. More convenient proposal distributions, i.e., proposal distribu-

tions that explore more efficiently the state space, may be employed; we delve further

into this point below. The second step of the algorithm involves reweighing the samples.

The weight of each sample xi
t is given by the following importance ratio:

wi
t ∝ wi

t−1

p(yt|xi
t) p(x

i
t|xi

t−1)

q(xi
t|xi

t−1)
. (3.19)

The importance ratio not only measures the plausibility of the predicted sample xi
t

by comparing it to the obtained measurement yt, but also compensates for any bias

introduced by the proposal distribution q(·). At certain time steps, a resampling step

may be required to maintain only the most likely samples (hypotheses), thereby avoiding

the degeneracy problem ([55], [9]). At each time step, an estimate of the object’s state

may be derived by, for instance, computing the mean of the approximated posterior pdf:

x̄t =
Ns
∑

i=1

wi
t x

i
t. (3.20)

3.6.1 Boosted Particle Filter

The performance of the particle filter may be enhanced by selecting an appropriate

proposal distribution q(·). For visual tracking, the proposal distribution can take into

account image information to explore regions of the state space with high likelihoods. For

instance, candidate samples may be generated around regions where objects have been
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located via a (deterministic) object localization algorithm. A particle filter employing

such a proposal distribution is denoted as a boosted particle filter ([136]).

More concretely, the proposal distribution q(·) of the boosted particle filter is defined

by taking into account both the dynamical model p(xt|xt−1) and the ‘boosted’ distri-

bution qboost(xt|yBU,t) resulting from the measurement yBU,t obtained by a bottom-up

(BU) particle localization algorithm (e.g., the approach based on the spot-enhancing

filter in Section 3.1). The boosted distribution qboost(xt|yBU,t) is generated by super-

imposing a Gaussian distribution centered at yBU,t with a diagonal covariance matrix

Qboost:

qboost(xt|yBU,t) = N (xt;yBU,Qboost), (3.21)

where N (·;µ,Σ) represents a Gaussian distribution with mean vector µ and covariance

matrix Σ. The mixture proposal distribution qmix(xt|xt−1,yBU,1:t) is now defined as

the mixture between the boosted distribution qboost(xt|yBU,t) and the dynamical model

p(xt|xt−1):

qmix(xt|xt−1,yBU,1:t) = αboost qboost(xt|yBU,t) + (1− αboost) p(xt|xt−1), (3.22)

where the parameter αboost regulates the influence of the boosted distribution qboost(xt|yBU,t).

If αboost = 0, the proposal distribution reduces to the traditional proposal distribution

of the particle filter. The bias introduced by this proposal distribution must be com-

pensated in the calculation of the importance weights compared to (3.19):

wi
t ∝ p(yt|xi

t) p(x
i
t|xi

t−1)

qmix(xi
t|xi

t−1,yBU,1:t)
(3.23)

∝ p(yt|xi
t)p(x

i
t|xi

t−1)

αboost qboost(xi
t|yBU,t) + (1− αboost) p(xi

t|xi
t−1)

. (3.24)

One must note that the mixture proposal distribution qmix(xt|xt−1,yBU,1:t) is only em-

ployed if the boosted distribution qboost(xt|yBU,t) and the distribution of the dynamical

model p(xt|xt−1) overlap. If there is no overlap, then αboost is set to zero, so that only

the distribution generated by the dynamical model is taken into account. In general, the

value for the parameter αboost is determined experimentally. The boosted particle filter

thus provides the means to explicitly combine a particle filter with measured position

estimates obtained by a bottom-up localization algorithm.
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3.6.2 Tracking Multiple Objects with Independent Particle Fil-

ters

One approach for tracking multiple objects that have a similar appearance consists in

instantiating one particle filter per object. This approach is denoted as independent

particle filters (IPF) [71]. The IPF operates on a relatively small state space, thereby

attaining a good approximation of the posterior p(xt|y1:t) with relatively few samples.

This entails low computational demands, which is a key property for our application,

where often a relatively large number of objects needs to be tracked simultaneously.

Note that the accuracy of the estimate of xt does not deteriorate as the number of

objects increases, since each filter instantiates an independent set of particles of size

Ns. The approach based on IPF works well if the distance between tracked objects is

relatively large. However, the approach generally fails in cases where objects pass close

to each other, since the corresponding filters, being unaware of each other, converge

towards the object with the best score in terms of p(yt|xt), i.e., the best likelihood.

Approaches to address this problem have been proposed by [146] and [30]. In [146], an

exclusion mechanism based on a magnetic potential model has been proposed, and the

approach has been applied for tracking human faces. In [30], the mean-shift algorithm

has been used for deterministically biasing the particles; the approach has been used for

tracking hockey players. The former approach prevents objects from merging, which is

not desirable in our application, while the mean-shift approach might yield an incorrect

offset due to the close proximity of multiple objects with a similar appearance. In

our work, we developed a penalization scheme that is based on both probabilistic and

deterministic information, and which does not necessarily preclude objects from merging

(see Figure 3.3 for a schematic representation). Our penalization scheme comprises three

steps: first, the scheme determines objects that are in close proximity. This reduces to

finding cliques in an undirected graph Γ = (V,E), where a vertex vi is defined by the

filtered position estimate of object i, and an edge e = {vi, vj} is said to join vertices

vi and vj if the Euclidean distance between the positions of the two objects is below a

predefined value. The second step determines the most plausible position x̂t for each

object in each clique. For this purpose, modes are sought in the probability density

function that is induced by merging all particles of all filters of one clique: given k

objects, such a distribution exhibits k modes. In some cases, k modes might not be

obtainable, for instance, if objects are too close to one another. The assignment of modes

to objects is carried out via a deterministic motion correspondence algorithm, namely a

global nearest neighbor approach [166]. If no mode (i.e., no most plausible position) is

assigned to an object, this object is not further considered in the penalization scheme.

This entails that the penalization scheme may allow filters to coalesce for a while. In
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the third step, the weights of those misleading particles that are relatively distant to

the most plausible position x̂t of an object are assigned lower values via a Gaussian

function centered at x̂t with a standard deviation σpenalize. Given the lower weights,

the resampling step of the particle filter may discard the misleading particles, thereby

preventing filters from coalescing.

x(i)

x(j)

x(k)

(a) Filtered estimates for three objects.

vi

vj

vk

(b) Graph Γ derived from the filtered esti-
mates. Cliques in this graph are assumed to
represent objects in close proximity.

p(x)

x

(c) Representation of the probability distribu-
tion that is induced by merging all samples
from a clique. Modes in this distribution are
assumed to represent the most plausible posi-
tions for the objects involved in a clique.

(d) Particles representing the filtered poste-
rior for object i: each particle is represented
by a solid circle and the corresponding weight
is proportional to the circle’s radius. The as-
signed mode x̂ is shown as a cross and the ball
Br is shown as a dashed circle. Particles out-
side the ball are subsequently penalized using
a Gaussian scheme.

Figure 3.3: Diagram illustrating the different steps of the penalization scheme.
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3.7 Probabilistic Data Association

The particle filter evaluates an image likelihood for each of its random samples. Because

of numerical issues, the particle filters requires several hundred samples. Thus several

hundred evaluations of the image likelihood are performed which is computationally

expensive. This precludes the efficient application of the particle filter in real applica-

tions where the number of objects is very high (e.g., 500 objects). Here we introduce

an efficient and robust approach for tracking multiple fluorescent particles based on

probabilistic data association (PDA). We propose a localization scheme that combines

bottom-up and top-down strategies. The bottom-up strategy relies on a spot detec-

tion scheme (e.g., the spot-enhancing filter [160]) while the top-down strategy generates

measurements via an ellipsoidal sampling scheme based on the Gaussian probabilities

calculated by the Kalman filter. Since we use an elliptical sampling scheme we refer

to our approach as PDAE. The localization scheme generates multiple measurements

which are integrated into the Kalman filter using the principle of a combined innova-

tion as proposed in the PDA algorithm (e.g., [102], [149]). Unlike the standard PDA

algorithm, our PDAE approach interprets the association probabilities of each measure-

ment as weights relative to the image likelihood of the object. To calculate the weights,

we synthesize hypotheses on the possible appearance and location of the object and

test the hypotheses against the information found in the images. Thus, rather than

using the combined innovation for addressing the correspondence problem, we use the

combined innovation as a localization mechanism based on a recognition-by-synthesis

scheme. Since the image likelihood considers only one object, an image region may

support the measurements of multiple neighboring objects. Thus, multiple filters may

converge towards the same image regions. To discourage this, we calculate the support

of each image position relative to the neighboring objects of a tracked object and use

this relative support to re-calculate the probabilities of each measurement of the tracked

object. To incorporate multiple motion models, we combine our PDAE approach with

the interacting multiple model (IMM) algorithm (e.g., [21], [64]). Analogous to the

particle filter (e.g., [176]), our approach capitalizes on multiple measurements, uses the

image data directly, and performs both localization and position estimation over time.

Unlike previous linear schemes (e.g., [162], [101] for microtubuli) or radial schemes (e.g.,

[44] for white blood cells, or [153] for C. elegans worms) for localization in biological

imaging, our ellipsoidal sampling scheme for generating measurements takes into con-

sideration the directions along which the main deviations from the predicted position

are expected. Also, the size of the ellipsoid is automatically determined. Moreover, our

approach can be used for 2D and 3D images. In contrast to previous approaches us-

ing the standard PDA algorithm, our approach does not rely exclusively on bottom-up
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measurements (e.g., [98], [154]) nor does it rely on random sampling (e.g., [179], [149]).

In contrast to approaches based on multiple hypothesis tracking (e.g., [38], [115]), the

computational cost when dealing with multiple objects is at most quadratic relative to

the number of objects (compared to exponential costs). In comparison to approaches

based on the IMM algorithm (e.g., [64], [60], [154]), our approach uses a top-down lo-

calization strategy, and to compute the likelihood of the motion models, our approach

does not assume Gaussian densities. To the best of our knowledge, this is the first time

that a tracking approach based on the PDA algorithm using a recognition-by-synthesis

scheme underpinned by an ellipsoidal sampling scheme that generates bottom-up as well

as top-down measurements is introduced in conjunction with either the Kalman filter

or the IMM algorithm to track multiple fluorescent particles in 2D and 3D microscopy

image sequences.

3.7.1 Measurement Process

3.7.1.1 Overview

In biological imaging, tracking approaches based on the Kalman filter typically use only

a single measurement y in (3.13) to update each filter (e.g., [64], [113], [38], [123]). In

contrast, we consider multiple measurements (e.g., [98], [179]) to update each Kalman

filter. In our approach, these measurements are obtained by considering the image

data (i.e., bottom-up localization) as well as by using a localization scheme that takes

into account the predicted measurement ŷ (i.e., top-down localization). The measure-

ments are assimilated by the Kalman filter via the combined innovation principle of the

probabilistic data association (PDA) algorithm. Below, we describe our schemes for

bottom-up and top-down localization as well as the scheme for measurement integration

via the PDA algorithm. In the following, we describe the measurement process consid-

ering only a single particle. The case of multiple particles is considered in Section 3.7.2

below.

3.7.1.2 Bottom-up Localization

For detecting and localizing a particle based on the image data only, any spot detection

scheme may be used (see [177], [158] for an evaluation of spot detection schemes in

fluorescence microscopy). For tracking virus particles, we use the approach based on

the spot-enhancing filter outline above (see Section 3.1). For elongated objects we use

the approach based on Gaussian fitting (see Section 3.2). Applying the spot detection

scheme to the image ideally yields a single bottom-up (BU) measurement yBU that

corresponds to the tracked particle. Note that both localization approaches do not
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take into account the predicted measurement ŷ and instead exhaustively examine each

position of the image to localize the particle.

3.7.1.3 Top-down Localization via Ellipsoidal Measurements

Instead of exhaustively examining each position, the top-down localization scheme in our

approach generates measurements in a neighborhood around the predicted measurement

ŷ ∈ Y . In biological imaging (e.g., [64], [178], [98], [116]), typically the measurement

space Y includes variables describing the position p of the particle in the image as well

as variables describing the appearance (e.g., the peak intensity Imax of the particle).

Certainly, one could generate measurements in the neighborhood of ŷ over the whole

space Y . For efficiency reasons, in our approach we only generate position measurements

p close to the predicted position p̂ within the position space P defined by the image.

The predicted position p̂ can be obtained by projecting the predicted measurement ŷ

to P via the projection matrix Φ:

p̂ = Φŷ. (3.25)

To define a neighborhood around p̂, first we define a submatrix Sp by transforming S

onto P :

Sp = ΦSΦT . (3.26)

Our approach generates measurements based on the predicted position distribution

N (·; p̂,Sp). The neighborhood around p̂ is described by the following ellipsoidal valida-

tion region Vp̂,Sp
(γp):

Vp̂,Sp
(γp) ≡ {p | (p− p̂)TS−1

p (p− p̂) ≤ γ2
p}. (3.27)

Within this region Vp̂,Sp
(γp) one finds position measurements p that entail a Mahalanobis

distance to p̂ less than or equal to γ2
p .

Top-down position measurements within the ellipsoidal region Vp̂,Sp
(γp) can be gen-

erated via, for instance, proposing split measurements (e.g., [65]), or performing random

sampling (e.g., [149], [179]). In our approach we generate measurements by first diago-

nalizing Sp thus obtaining the semi-axes of the ellipsoidal region Vp̂,Sp
(γp) as:

ri = γp
√

λiei, (3.28)

where λi and ei are the eigenvalues and eigenvectors of Sp, respectively. The ellipsoid

Ep̂,Sp
is explicitly described by its centroid p̂ and its semi-axes ri. The measurements

are generated by taking positions pj,c along Nc concentric ellipsoidal contours centered
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at p̂:

pj,c = p̂+
c

Nc

Auj, (3.29)

where uj is a position along an ellipsoid Ecanon
0,Sp

in canonical position whose semi-axes

have the same magnitude as the semi-axes of Ep̂,Sp
, A is a rotation matrix describing the

orientation of Ep̂,Sp
, and c = 1, 2, . . . , Nc is the concentric index. In 2D images, along

a single ellipsoidal contour, we take Nj ellipsoidal positions uj that take the following

parametric form:

uj =

(

|r0| cos 2πj
Nj

|r1| sin 2πj
Nj

)

, (3.30)

where |r0| ≥ |r1|, and j = 1, 2, . . . , Nj. The rotation matrix A is a matrix whose columns

are given by the eigenvectors ei:

A ≡
(

e0 e1

)

, (3.31)

where for the corresponding eigenvalues we have λ0 ≥ λ1. In 3D images, the measure-

ments pj,k,c are additionally indexed by the parameter k, and are defined as follows:

pj,k,c = p̂+
c

Nc

Auj,k. (3.32)

Here we take NjNk ellipsoidal positions uj,k which are defined as follows:

uj,k =









|r0| cos 2πj
Nj

sin πk
Nk

|r1| sin 2πj
Nj

sin πk
Nk

|r2| cos πk
Nk









, (3.33)

where |r0| ≥ |r1| ≥ |r2|, j = 1, 2, . . . , Nj, and k = 1, 2, . . . , Nk. The rotation matrix A

is given as follows:

A ≡
(

e0 e1 e2

)

, (3.34)

where λ0 ≥ λ1 ≥ λ2. Since the measurements are generated along ellipsoidal contours

we refer to these measurements as ellipsoidal measurements. Our scheme thus generates

NcNjNk (in 2D, Nk = 1) measurements based on N (·; p̂,Sp) within the position space

P . As an example, Figures 3.4 and 3.5 show the ellipsoidal measurements obtained for

sample 2D and 3D Gaussian distributions, respectively. The Kalman filter, however,

expects measurements y within Y . For this reason we map the position measurements

back to Y . Each i-th measurement pi is embedded into Y via the pseudoinverse Φ+:

yi,p = Φ+pi. (3.35)
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Figure 3.4: Ellipsoidal measurements (dots) for a 2D anisotropic Gaussian distribution.
For the Gaussian distribution, brighter intensities correspond to higher probabilities.
Here γp = 3. Also Nc = 4 and Nj = 16; thus 64 measurements are generated.

The vector yi,p only includes the position information and must be supplemented with

the additional variables (e.g., appearance variables) in Y . We extract these variables

from the predicted measurement ŷ via a selection matrix Ψ and add them to the em-

bedded vector yi,p to obtain measurement yi:

yi = yi,p +Ψŷ. (3.36)

Together with the predicted measurement ŷ the top-down localization strategy yields

NcNjNk + 1 measurements in total.

3.7.1.4 Ellipsoidal Measurements for Bottom-up Measurement

The prediction generated for time step t by the Kalman filter does not take into account

the image data of time step t (current image data). Thus the ellipsoidal measurements

based on the predicted position distribution N (·; p̂,Sp) do not take into account the

current image data. The current bottom-up measurement yBU encodes information

about the current image data. To take into account the current image data, we gen-

erate ellipsoidal measurements based on the measurement distribution N (·;pBU,Rp),

where pBU = ΦyBU includes the position variables of the bottom-up measurement yBU

and Rp = ΦRΦT is a submatrix derived from the covariance matrix R that regulates

the measurement noise process. For embedding the position measurements into the

measurement space, we use the bottom-up measurement yBU instead of the predicted

measurement ŷ in (3.36). Thus, for N (·;pBU,Rp), together with the bottom-up mea-

surement yBU, we generate NcNjNk + 1 additional measurements. Taking into account

the previous NcNjNk+1 measurements generated for N (·; p̂,Sp), our measurement pro-
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Figure 3.5: Ellipsoidal measurements (dots) for a 3D anisotropic Gaussian distribution.
For the Gaussian distribution, brighter intensities correspond to higher probabilities.
Here γp = 3. Also Nc = 1, Nj = 16, and Nk = 8; thus 128 measurements are generated.

cess yields up to Nm = 2NcNjNk+2 measurements in total. Note that if the bottom-up

measurement yBU is missing (e.g., due to image noise), N (·;pBU,Rp) is undefined and

the corresponding ellipsoidal measurements cannot be determined. In that case only

half the number of measurements is generated. Thus, regardless of the performance

of the bottom-up particle localization scheme, our measurement process supplies the

Kalman filter with at least Nm = NcNjNk + 1 measurements at each time step.

3.7.1.5 Measurement Integration via Probabilistic Data Association

The probabilistic data association algorithm (e.g., [42], [102]; see Section 2.1.2.2.1) is an

approach for solving the problem of motion correspondence, which entails determining

one-to-one correspondences between the tracked object and the set of measurements

Yt , {y1,y2, . . . ,yNm
} found within the validation region Vŷ,S(γ) (cf. (3.27)). A stan-

dard approach for solving this task is to select the measurement yi that is closest to the

predicted measurement ŷ. This local nearest neighbor strategy may lead to incorrect

correspondences in difficult tracking scenarios (e.g., low SNR), where the set Yt may

miss the true measurement corresponding to the tracked object, and/or may include

false measurements. Instead of committing to a single measurement (i.e., hard associ-

ation), the probabilistic data association algorithm computes an association probability

βi to quantify the degree of correspondence between the tracked object and the mea-

surement yi. To take into account all measurements within the validation region (i.e.,
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soft association), a combined innovation νcomb is computed:

νcomb =
Nm
∑

i=1

βiνi (3.37)

with νi = yi − ŷ and
∑Nm

i=0 βi = 1, where β0 is the probability that none of the mea-

surements corresponds to the tracked object. The combined innovation νcomb is used

to perform the update of the prediction in the Kalman filter (see (3.15)). To compute

the association probabilities βi, the standard PDA algorithm assumes that at most one

measurement within Yt represents the true measurement corresponding to the tracked

object and that all other measurements are false measurements. It is also assumed that

the false measurements are independent and identically distributed (i.i.d.) and that they

arise from a uniform distribution over the validation region Vŷ,S(γ). Additionally, the

number of false measurements is assumed to follow a Poisson distribution. The exact

formula for the association probabilities βi as used in the standard PDA algorithm is

given in [102] as:

βi =







ai/C, i = 1, ..., Nm

b/C, i = 0
(3.38)

where

ai , exp

(

−1

2
ν
T
i S

−1
νi

)

(3.39)

b , λF |2πS| 12 1− PDPG

PD

(3.40)

C , b+
Nm
∑

i=1

ai. (3.41)

Here Nm is the number of measurements, S is the predicted measurement covariance,

νi is the innovation due to the i-th measurement, λF represents the expected number

of false measurements, PD denotes the detection probability of true targets, and PG is

the gate probability that arises from restricting the validation region Vŷ,S(γ) with the

threshold γ2.

In our approach, because of our ellipsoidal sampling scheme for localization (cf. Sec-

tion 3.7.1.3), some of the fundamental assumptions of the PDA algorithm are not satis-

fied. For example, taking Yt as the set of measurements generated by our measurement

process, the ‘false’ measurements in Yt do not follow a uniform distribution (but rather

all measurements are distributed according to a Gaussian density). In addition, since

we generate measurements based on either the predicted measurement ŷ or based on

the bottom-up measurement yBU, the two respective sets of ellipsoidal measurements do
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not follow the same distribution. Also, the number of measurements generated by our

scheme is constant, so the number of ‘false’ measurements does not follow a Poisson dis-

tribution. A final consideration is that in the standard PDA algorithm the association

probabilities only take into account the Mahalanobis distance between each measure-

ment yi and the predicted measurement ŷ, i.e., the image data is not directly used in

the computation of βi. For these reasons, we adopt a different strategy for computing

βi. Instead of treating βi as association probabilities, we interpret them as weights that

quantify the probability that the image intensities z conform to the Kalman-based pre-

diction, as represented by the measurements raised with our measurement process. To

compute the weights, we query the image likelihood p(z|x), and thus βi , p(z|x = xi),

where xi = Ξ(yi; x̂) and the function Ξ(·; ·) transforms its argument (measurement y)

onto the state space X taking into account additional variables in the predicted state

vector x̂ = m̂. Given the image intensities z within a region-of-interest (ROI) about the

position encoded in x, the image likelihood p(z|x) is defined by the ratio:

p(z|x) , po(z|x)
pb(z|b)

. (3.42)

Here the image likelihood po(z|x) relative to the object is defined as:

po(z|x) ∝ exp

(

−D(z,g(x))2

2σ2
n

)

, (3.43)

where g(·) represents the image intensities synthesized via a parametric appearance

model g(·), D(·) is the Euclidean distance, and σn describes the expected degree of

noise. The image likelihood pb(z|b) relative to the background intensity is given as:

pb(z|b) ∝ exp

(

−D(z,b)2

2σ2
n

)

, (3.44)

where each element of b takes the value of the background intensity Ib. Note that a

similar image likelihood is used to compute the weights of samples in tracking approaches

based on particle filters (e.g., [176], [70]), while here we use a Kalman filter. Once

all weights have been evaluated with the image likelihood p(z|x), the weights βi, i =

1, . . . , Nm are normalized so that they sum up to unity. Since in our approach the

variables βi are computed using the principle of recognition-by-synthesis, the combined

innovation is not used for the problem of motion correspondence (as in the standard

PDA algorithm) but rather assimilates multiple measurements into the Kalman filter

taking into account the image information directly, i.e., segmentation of a particle from

the image data is not necessarily required for estimating the position over time. A
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diagram illustrating the measurement process in 2D images is shown in Figure 3.6.

In the following, we refer to our approach based on probabilistic data association in

conjunction with the ellipsoidal sampling scheme as PDAE.
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(a) Fluorescent particle and underlying Gaussian rep-
resentation
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(b) Kalman prediction
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(c) Exhaustive bottom-up localization
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(d) Ellipsoidal measurements
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(e) Measurement integration via PDA

Figure 3.6: Proposed measurement process.
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3.7.2 Tracking Multiple Fluorescent Particles

To track multiple objects, we instantiate one Kalman filter per object. The measurement

process as outlined in Section 3.7.1 considers only one object and therefore must be

extended to accommodate the task of tracking multiple fluorescent particles. Concretely,

two parts of the measurement process need additional steps: first, for the bottom-up

localization step in Section 3.7.1.2, we assume that only one bottom-up measurement

is generated by the spot detection scheme. This assumption is not satisfied within the

context of tracking multiple fluorescent particles, and thus a motion correspondence

step is required. We use the motion correspondence step presented in Section 3.3 above.

Second, we assume that modes in the image likelihood p(z|x) used to evaluate the

probabilities β in the measurement integration step in Section 3.7.1.5 are caused by the

tracked object only. Within the context of tracking multiple fluorescent particles, such

modes may actually be caused by neighboring objects with a similar appearance. To

minimize the influence of modes induced by other objects, we calculate the support of

an image position relative to the neighboring objects of each tracked object (see Section

3.7.2.2 below).

Note that since we use the combined innovation principle of PDA in our measure-

ment process, it would be conceivable that the task of tracking multiple objects could

be addressed via the joint probabilistic data association (JPDA) algorithm (see Sec-

tion 2.1.2.2.1). In the JPDA algorithm, each association probability β is calculated

over all possible global association hypotheses between the tracked objects and the mea-

surements. This requires deterministically enumerating all possible global association

hypotheses. Since our measurement scheme generates a large number of measurements,

the JPDA algorithm would entail a high computational cost. Additionally, in the JPDA

algorithm, the same assumptions concerning false measurements are made as in the

PDA algorithm. As mentioned above, in our measurement process such fundamental

assumptions are not met (cf. Section 3.7.1.5). The JPDA algorithm also assumes a one-

to-one correspondence between the tracked objects and the measurements. However,

in our measurement process, the measurements generated with our ellipsoidal sampling

scheme are already associated to the corresponding object (filter) and thus we have a

many-to-one correspondence. Finally, we do not interpret the weight β as an association

probability but rather as a weight computed based on an image likelihood. For these

reasons, the JPDA algorithm is not well suited to deal with the task of tracking multiple

particles within the context of our measurement process.
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3.7.2.1 Motion Correspondence

We use the motion correspondence step presented in Section 3.3 above. After finding

one-to-one correspondences, predicted measurements (i.e., and thus filters) in Ŷ may

remain unmatched. In this case, the measurement process of that filter generates only

measurements based on the predicted measurement.

3.7.2.2 Image Support Relative to Neighbors

In our measurement process, the probabilities β are calculated by querying the image

likelihood p(z|x). This likelihood is constructed under the assumption that only one

object is visible in the image, i.e., independently from other objects. Under this as-

sumption, a mode (or peak) in the image likelihood corresponds to the tracked object.

Within the context of tracking multiple objects, a peak in the image likelihood may

correspond to a neighboring object with a similar appearance. Thus, there is a risk that

a peak originating from a neighboring object may strongly influence the estimates of

the Kalman filter, eventually leading the filter to converge on neighboring objects. To

prevent this, the calculation of the probabilities β needs to also take into consideration

the probabilities β of the neighboring filters. After calculating the corresponding image

likelihoods of all filters, each filter j is associated with a set of weighted position mea-

surements {pj
k = Φy

j
k, β

j
k}Nm

k=1. Likewise, the neighboring filters Nb(j) around filter j

allow constructing a set of measurements ∪i∈Nb(j){pi
k, β

i
k}. By considering all positions

p up to pixel accuracy we define a neighborhood map:

MNb(j)(p) =
∑

i∈Nb(j)

∑

l∈Ki
p

βi
l , (3.45)

where Ki
p = {k |pi

k = p} is the set of indices of measurements in ∪i∈Nb(j){pi
k, β

i
k} lo-

cated at p. The map MNb(j) describes the support of each image position to neighboring

filters. The support provided to neighboring objects Nb(j) directly influences the sup-

port provided to the j-th tracked object: The higher the support to the neighbors, the

lower the support to the j-th tracked object. Thus each position p allows for a relative

support Sj(p) = exp(−MNb(j)(p)) for object j. For reasons of robustness, we also take

into account neighboring positions to compute the support Sj(p) at position p:

Sj(p) = exp

(

∑

p′

MNb(j)(p
′) log(θ(p,p′))

)

(3.46)
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where θ(p,p′) describes the spatial dependency between two image positions in general

and is defined as follows [220]:

θ(p,p′) = 1− exp

(

−D(p,p′)2

σ2
p

)

. (3.47)

In (3.46), log(θ(p,p′)) acts as a weighting factor over the neighboring positions. The

parameter σp regulates the strength of the contribution of neighboring positions towards

the calculation of the support. Since for the same position p we have θ(p,p) = 0 and

thus log(θ(p,p)) = −∞, we use a constant weight in this case (in our algorithm we use

a weight of −5). The probability β̂j
k for a measurement y

j
k of object j is computed as:

β̂j
k = p(z|x = Ξ(yj

k; x̂))Sj(Φy
j
k), (3.48)

and x̂ = m̂ is the prediction of the Kalman filter (3.9). The weights β̂j
k are subsequently

normalized so that they sum up to unity. This process is performed for all objects.

Since the probabilities β̂ of the neighbors are eventually different from the original

probabilities β that were used to calculate the support, we recalculate the neighborhood

map using the new weights β̂ and recalculate the probabilities. We perform this process

(i.e., recalculating the neighborhood map and calculating the probabilities) a certain

number of times. In practice we found that the values of the weights become relatively

stable after five iterations over all objects.

3.7.3 Multiple Motion Models

To better describe the motion of particles that alternate between distinct motion pat-

terns, we use the interacting multiple model (IMM) algorithm (e.g., [21], [22], [64]).

Below we present the IMM algorithm. We also introduce an approach for combining

our PDAE approach with the IMM algorithm.

3.7.3.1 Interacting Multiple Model Algorithm

The standard IMM algorithm assumes that the motion of a particle is described by a

finite set Ω of NΩ motion models. One Kalman filter is instantiated per motion model

ω ∈ Ω. Additionally, it is assumed that the dynamical model of a particle is well

described by a Markov chain with transition matrix ∆. The IMM algorithm recursively

computes a model-conditioned posterior density p(xt|ωt,y1:t) as well as a posterior model

probability P (ωt|y1:t). One iteration of the IMM algorithm involves the following steps:

First, the algorithm computes a predicted probability P̂i ≡ P (ωt = i|y1:t−1) of each
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model ω = i as follows:

P̂i ≡ P (ωt = i|y1:t−1) =

NΩ
∑

j=1

P (ωt−1 = j|y1:t−1)δij, (3.49)

where δij is an element of the transition matrix ∆. Using the predicted probability P̂i

of each model ω = i, the algorithm calculates the mixing probabilities Pj→i as follows:

Pj→i ≡
δijP (ωt−1 = j|y1:t−1)

P̂i

. (3.50)

For each i-th model, the IMM algorithm computes a mixed state and covariance matrix

taking into account the mixing probabilities Pj→i as well as the mean vector m
j
t−1 and

covariance matrix P
j
t of each j-th Kalman filter that were previously estimated:

m
i,mix
t−1 =

NΩ
∑

j=1

Pj→im
j
t−1 (3.51)

P
i,mix
t−1 =

NΩ
∑

j=1

Pj→i

{

P
j
t−1 +

[

m
j
t−1 −m

i,mix
t−1

] [

m
j
t−1 −m

i,mix
t−1

]T
}

. (3.52)

The mixing probabilities Pj→i quantify the relative contribution of each j-th model

towards the initial condition of the i-th model. The mixed state m
i,mix
t−1 and covariance

P
i,mix
t−1 are used as input for the i-th Kalman filter (see Section 3.5). Based on the

corresponding mixed estimate and covariance, each i-th model-matched filter performs

a prediction using the corresponding dynamical model Fi as well as the covariance

matrix Qi (see (3.9) as well as (3.10)). Taking into account a measurement yt obtained

from the images, each filter is updated using the standard Kalman filter equations,

thereby obtaining the model-conditioned posterior p(xt|ωt,y1:t). The IMM algorithm

also updates the predicted probabilities of each dynamical model ω via Bayes’ theorem:

P (ωt = i|y1:t) =
p(yt|ωt = i,y1:t−1) P̂i
∑

j

p(yt|ωt = j,y1:t−1) P̂j

(3.53)

where the likelihood p(yt|ωt = i,y1:t−1) of each i-th model is given by evaluating the

predicted measurement density N (·; ŷi,Si) (which is calculated by the i-th Kalman

filter) with the measurement yt obtained from the images. In other words, the likelihood

of each model is given by a Gaussian density. As output, the algorithm calculates

a weighted estimate over all NΩ Kalman filters, where the weights are given by the
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posterior model probabilities (see (3.53)):

mt =

NΩ
∑

j=1

P (ωt = j|y1:t)m
j
t (3.54)

Pt =

NΩ
∑

j=1

P (ωt = j|y1:t)
{

P
j
t +
[

m
j
t −mt

] [

m
j
t −mt

]T
}

. (3.55)

3.7.3.2 Combining the PDAE approach with the IMM Algorithm

Our measurement process as outlined in Section 3.7.1 above generates multiple measure-

ments for a single Kalman filter. The measurements are integrated into a single Kalman

filter via the combined innovation principle of the PDA algorithm (see Section 3.7.1.5).

Instead of considering a single Kalman filter per object, the IMM algorithm instantiates

NΩ model-matched Kalman filters per object. However, in the standard IMM algorithm,

only a single measurement yt is used to update all NΩ filters. Instead of relying on a

single measurement, we use the PDAE approach to feed multiple measurements to each

filter: each i-th Kalman filter raises its own set {yk, βk, ωk = i}Nm

k=1 of ellipsoidal mea-

surements. Note that besides being associated with an association probability β, each

measurement is also associated with the motion model ωk = i that led to such a mea-

surement. In the standard IMM algorithm, the likelihood p(yt|ωt = i,y1:t−1) of each i-th

model is given by a Gaussian density. In the standard PDA-IMM extension (e.g., [102]),

the probability of each measurement associated with the i-th filter is evaluated by query-

ing the predicted measurement density N (·; ŷi,Si). The mean value of these Gaussian

likelihoods over all measurements is used to calculate the likelihood p(yt|ωt = i,y1:t−1)

of each i-th model. In our case, to calculate the likelihood p(yt|ωt = i,y1:t−1) of each

i-th model, we first take the unnormalized values of the weights βk of each i-th filter

and normalize them with respect to the sum of all weights of all NΩ filters:

β′

k =
βk

∑NΩ

c

∑

j∈Υc
βj

, k ∈ Υi (3.56)

where the set Υi = {j | βj , ωj = i} indexes the weights of the measurements of the i-th

filter. The likelihood p(yt|ωt = i,y1:t−1) of each i-th model is given as the sum over its

normalized weights β′
k:

p(yt|ωt = i,y1:t−1) =
∑

j∈Υi

β′

j (3.57)

Since the weights β reflect the degree to which the image intensities conform to the

predictions of each filter, the likelihood p(yt|ωt = i,y1:t−1) of each i-th model may be

seen as the probability that the image intensities conform to the predictions generated
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by the i-th model relative to the probability that the image intensities conform to the

predictions generated by the other models. This is in contrast to the standard PDA-IMM

extension, where the likelihood of each model does not take into account the likelihoods

of the other models.

When tracking multiple objects, challenges arise in the motion correspondence step

(see Section 3.3) as well as in the calculation of the image support (see Section 3.7.2.2).

In the motion correspondence step, we assume that each tracked object is represented

by at most a single predicted measurement ŷ. The IMM algorithm instead uses NΩ

predicted measurements to represent an object. While the predicted measurements could

be mixed using the mixing probabilities Pj→i (e.g., [113]) to obtain a mean prediction,

this could lead to a less accurate prediction, since the mean prediction does not exactly

represent any particular motion model. Another scheme [64] uses all NΩ predicted

measurements of all Nobj objects as input for the correspondence scheme. There a (local)

nearest neighbor (see Section 2.1.1.2.1) is used to sequentially assign Nm,BU bottom-up

measurements to all NΩNobj predicted measurements. Once a measurement is assigned

to a predicted measurement of a filter corresponding to a certain object, the other NΩ−1

filters corresponding to the object are removed from the correspondence problem. This

greedy strategy may lead to errors in cases where objects are in close proximity. In our

approach, for each object we select the filter with the highest predicted probability P̂i

(3.49). This strategy leads to Nobj predicted measurements and so the correspondence

scheme based on a global nearest neighbor strategy (see Section 3.3) remains applicable.

The measurement assigned to the filter with the highest predicted probability of each

object is afterwards shared with all other NΩ−1 filters of the object. For the calculation

of the image support (see Section 3.7.2.2), we treat all filters NΩNobj as independent

filters. This allows the NΩ filters of a certain object to compete for image positions

among themselves, which helps to select the best motion model among all NΩ motion

models relative to the predicted positions of neighboring objects.

3.8 Models for Tracking Fluorescent Particles

In this section, we describe the appearance, dynamical, and measurement models that

we have used in our tracking approaches. We describe models for round particles as well

as for elongated particles.

3.8.1 Round Particles with a Random Walk Motion Model

In the following, we define models for tracking particles with a round appearance exhibit-

ing random motion. The models are particularly suitable for tracking virus particles.
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Models for 2D as well as 3D images are presented.

3.8.1.1 Appearance Model for Round Particles

In our approach, the intensities of each particle are represented by a 2D or 3D Gaussian

function. The Gaussian function is parametrized by the position p0 = (x0, y0)
T or

p0 = (x0, y0, z0)
T of the particle in a 2D or 3D image, respectively, by the peak intensity

Imax, as well as by the standard deviations σxy (2D case) or σxy, σz (3D case). These

parameters are encoded in the state vector x = (x0, y0, Imax, σxy)
T (2D case) or x =

(x0, y0, z0, Imax, σxy, σz)
T (3D case). For 2D images, the appearance model of a single

particle is given by:

gG2D(x, y;x) = Ib + (Imax − Ib) exp

(

−(x− x0)
2 + (y − y0)

2

2σ2
xy

)

, (3.58)

where Ib denotes the background intensity. For 3D images, the appearance model is

described by:

gG3D(x, y, z;x) = Ib + (Imax − Ib) exp

(

−(x− x0)
2 + (y − y0)

2

2σ2
xy

− (z − z0)
2

2σ2
z

)

. (3.59)

3.8.1.2 Dynamical Model: Random Motion

In our application, we observed that the motion of the virus particles is well charac-

terized by a random walk model. We assume that the position parameters x0, y0 (2D

case) or x0, y0, z0 (3D case) as well as the appearance parameters Imax, σxy (2D case)

or Imax, σxy, σz (3D case) follow Gaussian random walks with small perturbations. In

2D, the dynamical model is encoded by the transition matrix F = diag(1, 1, 1, 1) and

the covariance matrix Q = diag(qx, qy, qImax
, qσxy

). In 3D, the transition matrix takes

the following form: F = diag(1, 1, 1, 1, 1, 1), while the covariance matrix is defined by:

Q = diag(qx, qy, qz, qImax
, qσxy

, qσz
). The diagonal elements of Q account for the expected

squared deviations of the corresponding variables over a time interval.

3.8.1.3 Measurement Model for the Kalman Filter and PDAE

We have measurements y = (x′, y′, I ′max, σ
′
xy)

T (2D case) or y = (x′, y′, z′, I ′max, σ
′
xy, σ

′
z)

T

(3D case). In 2D, the measurement matrix is H = diag(1, 1, 1, 1) while the uncer-

tainties of the measurements are R = diag(rx, ry, rImax
, rσxy

). In 3D, the measurement

matrix is defined as H = diag(1, 1, 1, 1, 1, 1) while the covariance matrix is given as

R = diag(rx, ry, rz, rImax
, rσxy

, rσz
). The elements of the diagonal of R represent the ex-

pected squared errors for the corresponding variables. Since the measurement space and
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the state space share the same basis, the function Ξ(y; x̂) that maps the measurements

onto the state space is given by:

Ξ(y; x̂) = Iy, (3.60)

where I is the identity matrix. The matrix Φ used to project a 2D measurement y onto

a 2D position space is defined as follows:

Φ =

(

1 0 0 0

0 1 0 0

)

(3.61)

with the pseudoinverse Φ+ = ΦT . In 3D, the projection matrix is given by:

Φ =







1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0






. (3.62)

The selection matrix Ψ in the 2D case is given by Ψ = diag(0, 0, 1, 1) while in 3D this

matrix takes the form Ψ = diag(0, 0, 0, 1, 1, 1).

3.8.1.4 Measurement Model for the Particle Filter

For the approaches based on the particle filter, given the state x = (x0, y0, Imax, σxy)
T ,

the measurement y is defined as the image region enclosed via a bounding box centered

at (x0, y0) with dimensions (a⌈σxy⌉ + 1) × (a⌈σxy⌉ + 1), where a = 7 and ⌈·⌉ denotes

the ceiling operator; note that the measurement depends on the state. In 3D the state

is given by x = (x0, y0, z0, Imax, σxy, σz)
T , and the measurement y is given by the image

intensities in a region defined by a box centered at (x0, y0) with dimensions (a⌈σxy⌉ +
1)× (a⌈σxy⌉+ 1)× (a⌈σz⌉+ 1). The measurement model for both the 2D and 3D cases

is defined as the ratio:

p(y|x) , po(y|x)
pb(y|b)

. (3.63)

The likelihood po(y|x) relative to the object is the same as in (3.43) and likewise the

likelihood pb(y|b) relative to the background is defined as in (3.44), where in both cases

we have z = y.

3.8.1.5 Multi-Channel Measurement Model

The non-linear measurement model in (3.63) allows us to deal with two-channel mi-

croscopy images comprising a ‘red’ channel and a ‘green’ channel. This is achieved

analogously to measurement models employed for color images (e.g., RGB images). The

proposed measurement model p2-channel(y|x) is a straightforward extension of the above-
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described one-channel case. The model compares the hypothesized state vector x with

information in both red yr and green yg channels as follows:

p2-channel(y|x) ∝ exp

(

−D(yr,g(x))
2 +D(yg,g(x))

2

2σ2
n

)

. (3.64)

An advantage of this approach for the analysis of two-channel microscopy images is that

we do not have to carry out an explicit matching step between the images (as in, e.g.,

[39]). Extension to m channels is straightforward:

pm-channel(y|x) ∝ exp

(

−
∑

m D(ym,g(x))
2

2σ2
n

)

. (3.65)

Similarly, this approach can be adapted to accommodate differences in the channels

(e.g., one channel may display only the cellular autofluorescence while the other one

may display only particles).

3.8.2 Elongated Particles with a Directed Motion Model

Here we present models for tracking particles with an elongated appearance exhibiting

directed motion. The models are particularly suitable for tracking microtubule tips.

Models for 2D images are presented.

3.8.2.1 Appearance Model for Elongated Particles

For 2D image data of elongated objects, the underlying 2D Gaussian representation

takes into consideration the orientation of the object. We represent the object with a

2D anisotropic Gaussian function that is parametrized by the position p0 = (x0, y0)
T ,

the velocity ṗ = (ẋ, ẏ)T , the peak intensity Imax, and the standard deviations σx and

σy. The parameters are represented in the state vector x = (x0, ẋ, y0, ẏ, Imax, σx, σx)
T .

The appearance of an elongated object is given by:

gG2DA(x, y;x) = Ib + (Imax − Ib) exp

(

−1

2
(p− p0)

TΣ−1
G2DA(p− p0)

)

, (3.66)

where p = (x, y)T and ΣG2DA = ADAT is the covariance matrix defined by the rotation

matrix:

A =

(

cos(αG2DA) − sin(αG2DA)

sin(αG2DA) cos(αG2DA)

)

(3.67)

and the diagonal matrix:

D =

(

σ2
x 0

0 σ2
y

)

. (3.68)
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The angle αG2DA is given by the velocity components:

αG2DA = tan

(

ẏ

ẋ

)

. (3.69)

This entails that the orientation of the object is coupled with the orientation of the

velocity vector of the object. This might limit the capabilities of the model, since the

orientation of the object might not be governed by its motion. In the case of microtubule

tips, however, the orientation of the tips often agrees with the orientation of the velocity

vector. Also coupling the orientation with the motion reduces the number of parameters.

3.8.2.2 Dynamical Model: Directed Motion

In our application, we consider tracking microtubuli tips which belong to the cytoskele-

ton. The cytoskeleton is a system of filaments providing spatial (e.g., cell organization)

and mechanical (e.g., cell growth) functions to the cell. Microtubules are a type of

cytoskeletal filaments that guide the position of organelles as well as the intracellular

transport process [3]. Studying the dynamic behavior of microtubules allow observing

cell formation processes as well as intracellular transport processes. Often the ends

(tips) of the microtubules are fluorescently labeled and imaged. Microtubule tips ex-

hibit a strong direction in their movement. We therefore assume a directed motion

model with constant velocity for the position p0 with small deviations for the veloc-

ity ṗ. The appearance parameters Imax, σx, σy are assumed to follow Gaussian random

walks with small perturbations. The dynamical model is defined as:

F =



























1 ∆t 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 ∆t 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



























, (3.70)
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where ∆t is the time interval between two time steps. The covariance matrix regulating

the perturbations is defined as:

Q =



























qCV/3∆t3 qCV/2∆t2 0 0 0 0 0

qCV/2∆t2 qCV∆t 0 0 0 0 0

0 0 qCV/3∆t3 qCV/2∆t2 0 0 0

0 0 qCV/2∆t2 qCV∆t 0 0 0

0 0 0 0 qImax
0 0

0 0 0 0 0 qσx
0

0 0 0 0 0 0 qσy



























, (3.71)

where qCV is the expected squared deviation of the velocity over a time interval ∆t.

3.8.2.3 Measurement Model for the Kalman Filter and PDAE

For the Kalman filter and the PDAE we have measurements y = (x′, y′, I ′max, σ
′
x, σ

′
y)

T

and so the measurement matrix is given by:

H =

















1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

















. (3.72)

The uncertainties of the measurements are R = diag(rx, ry, rImax
, rσx

, rσy
). Here the

state space and the measurement space do not share the same basis so the function

Ξ(·; ·) is given by:

Ξ(y; x̂) = H+y +Λx̂ (3.73)

where H+ = HT and the matrix Λ = diag(0, 1, 0, 1, 0, 0, 0) selects the velocity compo-

nents represented in the prediction x̂. The matrix Φ used to project a measurement y

onto a 2D position space is defined as follows:

Φ =

(

1 0 0 0 0

0 0 1 0 0

)

(3.74)

The selection matrix Ψ for the measurements is given by Ψ = diag(0, 0, 1, 1, 1). To

obtain initial values for the velocity components we use the displacement vectors cal-

culated by the Lucas-Kanade optical flow approach [119] using the image data of two

consecutive time steps.
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3.8.2.4 Circular Sector Measurements for Dynamic Instability

Microtubule ends (tips) undergo periods of rapid growth as well as periods of disassem-

bly wherein the microtubule ends appear to shrink. This phenomenon is called dynamic

instability [3]. Dynamic instability results in rapid acceleration and deceleration periods

for the microtubule tips. These changes in acceleration may be captured by increasing

the values of the velocity parameter qCV but using a too large value for this parameter

may lead to tracking errors since changes in acceleration are allowed in all directions.

Instead, we sample positions along the direction of the velocity vector ṗ to cope with

rapid growth periods. To cope with disassembly, we sample positions around the oppo-

site direction −ṗ of the velocity vector.

Given the predicted position p̂ and the predicted velocity vector ṗ we define a circle

centered at p̂ with radius rcs = γcs|ṗ|, where γcs is a factor regulating the size of the

circle. We define an arc between positions p̂+A(−αcs(|rcs|))rcs and p̂+A(αcs(|rcs|))rcs

where A(αcs) is a rotation matrix and αcs(|rcs|) is a function determining the angle of

rotation based on the magnitude of the radius rcs, which is proportional to the velocity

vector. Concretely we have:

A(αcs) =

(

cos(αcs) − sin(αcs)

sin(αcs) cos(αcs)

)

, (3.75)

and

αcs(|rcs|)



















π/3 |rcs| < 1

π/4 1 ≤ |rcs| < 7.5

π/16 7.5 ≤ |rcs|
(3.76)

We obtain Ncs,c(Ncs,j + 1) measurements over the circular sector (CS) confined by the

arc as follows:

pCS,j,c = p̂+
c

NCS,c

A

(

αcs(|rcs|)
[

2j

NCS,j

− 1

])

rcs, (3.77)

where j = 0, 1, 2, . . . , Ncs,j and c = 1, 2, 3, . . . , Ncs,c. Figure 3.7 shows a schematic rep-

resentation of the circular sector measurements. We sample CS measurements in the

opposite direction by applying the scheme to −rcs. We therefore compute Ncs,m =

2(Ncs,c(Ncs,j +1)) circular sector measurements. The rationale for introducing a depen-

dency between the magnitude of the velocity vector |rcs| and the angle αcs that regulates

the size of the sector is that at high speeds the likelihood of a sudden change in direction

is low. Conversely, at low speeds, the likelihood that the object may change its direction

is high. Having a larger angle at low speeds allows us to capture such changes in the

direction. The CS measurements in the opposite direction serve as an ‘anchor’ and allow
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us to cope with sudden decelerations of the object.

Analogous to the ellipsoidal measurements (see Section 3.7.1.3), we evaluate the im-

age likelihood p(z|x) of the CS measurements by embedding them into the measurement

space as well as the state space via Ψ+ and ŷ (see (3.35)), as well as Ξ(·; ·) (see (3.73)),

respectively. The measurements are then integrated into the Kalman filter via the com-

bined innovation (see 3.37) that, in addition, integrates the ellipsoidal measurements

that are raised as by the standard procedure for the PDAE approach. Certainly, there

may be an overlap between the two sets of measurements, however, the redundancy em-

phasizes the importance of certain spatial regions that have a high (a priori) probability

for the object. The inclusion of the circular sector measurements shows also the versatil-

ity of the PDAE approach for including measurements raised taking into consideration

different information or a priori knowledge.

3.8.3 Round Particles with Multiple Motion Models

In cases where round particles alternate between random motion and directed mo-

tion, we use the PDAE approach in conjunction with the IMM algorithm (see Sec-

tion 3.7.3.2) using a random walk model as well as a directed motion model with

constant velocity. As appearance model we use the isotropic Gaussian model pre-

sented in Section 3.8.1.1. The state vector is given by x = (x0, ẋ, y0, ẏ, Imax, σxy)
T

(2D case) or x = (x0, ẋ, y0, ẏ, z0, ż, Imax, σxy, σz)
T (3D case). For the random walk

model (ω = 1), the dynamical model is given in 2D by F1 = diag(1, 1, 1, 1, 1, 1)

and the covariance matrix is Q1 = diag(qx, qẋ, qy, qẏ, qImax
, qσxy

). In 3D, the dynam-

ical model is defined as F1 = diag(1, 1, 1, 1, 1, 1, 1, 1, 1) and the covariance matrix is

Q1 = diag(qx, qẋ, qy, qẏ, qz, qż, qImax
, qσxy

, qσz
). For the directed motion model (ω = 2),

the dynamical model in 2D is defined as:

F2 =























1 ∆t 0 0 0 0

0 1 0 0 0 0

0 0 1 ∆t 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1























, (3.78)
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Figure 3.7: Sample circular sector measurements (black dots). The predicted position is
at the origin and the green lines delineate the circular sector. The extent of the circular
sector depends on the magnitude of the velocity vector (speed) shown in blue. For each
example Ncs,c = 3 and Ncs,j = 8, and so Ncs,c(Ncs,j + 1) = 27.
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while the covariance matrix takes the following form:

Q2 =























qCV/3∆t3 qCV/2∆t2 0 0 0 0

qCV/2∆t2 qCV∆t 0 0 0 0

0 0 qCV/3∆t3 qCV/2∆t2 0 0

0 0 qCV/2∆t2 qCV∆t 0 0

0 0 0 0 qImax
0

0 0 0 0 0 qσxy























. (3.79)

Likewise, in 3D the dynamical model is given by:

F2 =





































1 ∆t 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 ∆t 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 ∆t 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1





































, (3.80)

with covariance matrix:

Q2 =




































qCV/3∆t3 qCV/2∆t2 0 0 0 0 0 0 0

qCV/2∆t2 qCV∆t 0 0 0 0 0 0 0

0 0 qCV/3∆t3 qCV/2∆t2 0 0 0 0 0

0 0 qCV/2∆t2 qCV∆t 0 0 0 0 0

0 0 0 0 qCV/3∆t3 qCV/2∆t2 0 0 0

0 0 0 0 qCV/2∆t2 qCV∆t 0 0 0

0 0 0 0 0 0 qImax
0 0

0 0 0 0 0 0 0 qσxy
0

0 0 0 0 0 0 0 0 qσz





































.

(3.81)

We have measurements y = (x′, y′, I ′max, σ
′
xy)

T (2D case) or y = (x′, y′, z′, I ′max, σ
′
xy, σ

′
z)

T
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(3D case). For both models, the measurement matrix is given in 2D by:

H =













1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1













. (3.82)

The uncertainties of the measurements in 2D are represented by: R = diag(rx, ry, rImax
, rσxy

).

In 3D, the measurement matrix for both models is given by:

H =























1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1























. (3.83)

The uncertainties of the measurements in 3D are represented by:

R = diag(rx, ry, rz, rImax
, rσxy

, rσz
).

Since the appearance model does not rely on the velocity components, the function

Ξ(·; ·) is given by:

Ξ(y; x̂) = H+y (3.84)

where H+ = HT . The matrix Φ used to project a measurement y onto a 2D or 3D

position space are defined in (3.61) and (3.61), respectively. The transition matrix ∆ is

given by:

∆ =

(

0.75 0.36

0.25 0.64

)

. (3.85)

The relatively higher values on the diagonal reflect that, for a single particle, there is

a higher probability of remaining at a given motion model compared to the probability

of changing to a different motion model (which is reflected by the off-diagonal values).

The initial probabilities for the motion models are set to P (ω) = [ 0.6 0.4 ]T . We use

the Lucas-Kanade optical flow approach [119] to initialize the velocity components.

3.9 Summary

This chapter presented our probabilistic tracking approaches. We discussed approaches

based on the Kalman filter as well as particle filters. We also described our novel

approach based on probabilistic data association and an ellipsoidal sampling scheme
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(PDAE). To cope with multiple motion models, we also introduced an extension of the

PDAE approach based on the IMM algorithm. We presented models for tracking round

as well as elongated objects. In the next chapter, we describe an approach for behavior

identification of fluorescent particles based on the trajectory information extracted by

the developed tracking approaches.
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Chapter 4

Identifying Virus-Cell Fusion in

Multi-Channel Fluorescence

Microscopy Image Sequences

Tracking yields the trajectories of fluorescent particles displayed in an image sequence.

To obtain an explicit characterization of the behavior of the particles, object-based rep-

resentations of the particles may be readily extracted from the trajectories. For example,

the size over time of the particle may reveal certain behavior of the particle. Likewise,

the intensity over time of fluorescent particles may reflect the current behavior of the par-

ticle. In this chapter, we introduce an automatic approach grounded within the theory

of Bayesian estimation for identifying fusion of virus particles with the cell membrane

based on the intensity over time of individual particles extracted from multi-channel

fluorescence microscopy images [69]. Our approach adopts a layered architecture that

decomposes the actions of a single virus particle into three primitives (viz., the inten-

sity, the underlying temporal intensity model, and the behavior). The three primitives

are represented by the different layers, which are in turn described using a stochastic

hybrid system and a hidden Markov model (HMM). The two models are combined via a

maxbelief strategy (e.g., [137]). To estimate the primitives we use a hybrid particle filter

(e.g., [124]) as well as the Viterbi algorithm. Our layered probabilistic approach entails

several advantages: First, the combination of stochastic hybrid systems and HMMs offer

an improved modeling capability. Second, the maxbelief strategy is straightforward and

introduces no additional computational overhead. Third, the modularity of such a lay-

ered approach endows our scheme with efficiency, since the dimensionality of the state

space of the different layers is low. Because of the low dimensionality, a relatively low

number of samples for the hybrid particle filter is sufficient to ensure a good support of

the hybrid posterior. Additionally, the layers can also be adjusted; thus the approach is
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flexible and can be straightforwardly adapted for identifying other behaviors. We also

introduce temporal intensity models to describe the local fluctuations of the intensity of

single virus particles. The models are defined as auto-regressive (AR) processes and thus

allow an intuitive interpretation of the corresponding process parameters. To the best

of our knowledge, this is the first time that a layered probabilistic approach has been

introduced for identifying behaviors of fluorescent particles in multi-channel microscopy

image sequences.

4.1 Overview of the Approach

Our layered probabilistic approach for behavior identification in multi-channel microscopy

image data consists of three layers: The first layer corresponds to the intensity of a par-

ticle, and the second layer represents the temporal intensity model of the particle. The

third and topmost layer models the behavior (including fusion) of the particle. The

intensity is described via autoregressive (AR) processes while the temporal intensity

models follow a first-order Markov chain. The two layers are jointly modeled using

a stochastic hybrid system. We have applied the developed approach to two-channel

image sequences displaying virus particles. The hybrid stochastic system describes the

intensity and temporal intensity models of one channel and is thus used separately on

the temporal intensity statistics of each channel of the two-channel image data. To

take into account the information from both channels, the identified temporal intensity

models in the individual channels are fed to the layer which models the behavior. The

behavior is described via an HMM. By using the Viterbi algorithm we obtain the most

probable sequence of behaviors for a particle.

4.2 Stochastic Hybrid Systems of Virus Intensity:

Bayesian Framework

In our approach for identifying fusion of virus particles with the cell membrane we

represent the intensity of a virus particle via a set of temporal intensity models that

take the form of non-linear autoregressive processes. At a given time step it is assumed

that only one temporal intensity model specifies the observed intensity of the particle.

The aim is to estimate the intensity as well as the current temporal intensity model

from a given sequence of observed intensities. We formulate this task as a sequential

hybrid estimation problem. Within the theory of stochastic hybrid systems (e.g., [82],

[57]), it is assumed that a variable of interest of a system can be characterized via a set

A of NA predefined system models. At time step t, the variable is both governed by a
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certain model αt ∈ A, and manifested via a state vector xt (in our case, the intensity

of a particle), which in turn is reflected by a noisy measurement yt (in our case, the

intensity of a particle obtained from the image data). The goal is to estimate (xt, αt)

given a sequence of measurements y1:t. A Bayesian approach involves computing the

posterior densities p(xt, αt|y1:t), which can be factored as:

p(xt, αt|y1:t) = p(xt|αt,y1:t)P (αt|y1:t). (4.1)

This implicates computing the model-conditioned posterior densities p(xt|αt,y1:t) as

well as the posterior model probabilities P (αt|y1:t). At time step t − 1, all NA model-

conditioned posteriors are maintained. Since the evolution of the model αt−1 is repre-

sented using a Markov chain associated with a transition matrix Π, each model αt−1 = j

may ‘branch’ into any other model αt = i at the next time step t with probability πij.

The optimal solution involves computing each possible model history ([193], [82]), i.e.,

computing the full model history tree, which leads to an exponential increase in com-

putational effort w.r.t. time. Suboptimal strategies aim at maintaining a constant

computational load over time. One such strategy (e.g., [22], [57], [124]) with applica-

tion to biological particles (e.g., [64], [178]) involves first computing the prior model

probabilities P (αt|y1:t−1) via the Chapman-Kolmogorov equation for the Markov chain

underlying the model evolution:

P (αt|y1:t−1) =

NA
∑

αt−1=1

P (αt−1|y1:t−1)P (αt|αt−1), (4.2)

The branches entailed by the evolution of the Markov chain are ‘mixed’ into NA

model-conditioned prior densities p(xt−1|αt,y1:t−1). Assuming that xt−1 is independent

of αt given αt−1, the mixing of the densities amounts to a weighted sum of the model-

conditioned posteriors:

p(xt−1|αt,y1:t−1) =

NA
∑

αt−1=1

p(xt−1|αt−1,y1:t−1)P (αt−1|αt,y1:t−1). (4.3)

Here the weights are obtained by applying Bayes’ theorem:

P (αt−1|αt,y1:t−1) =
P (αt−1|y1:t−1)P (αt|αt−1)

P (αt|y1:t−1)
. (4.4)

Each of these NA mixture prior densities can now be employed within a model-matched

filtering framework. Concretely, the model-conditioned mixture priors in (4.3) are prop-

agated over time by applying the corresponding model-conditioned dynamical model
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p(xt|xt−1, αt):

p(xt|αt,y1:t−1) =

∫

p(xt|xt−1, αt) p(xt−1|αt,y1:t−1) dxt−1. (4.5)

Using a model-conditioned measurement model p(yt|xt, αt), an update of the predicted

densities p(xt|αt,y1:t−1) is obtained via Bayes’ theorem:

p(xt|αt,y1:t) ∝ p(yt|xt, αt) p(xt|αt,y1:t−1). (4.6)

Likewise, the predicted probabilities P (αt|y1:t−1) are updated using Bayes’ theorem:

P (αt|y1:t) =
p(yt|αt,y1:t−1)P (αt|y1:t−1)
∑

αt

p(yt|αt,y1:t−1)P (αt|y1:t−1)
, (4.7)

where the denominator acts as a normalization factor, and where, by the law of total

probability and assuming that the measurements are independent of each other, the

likelihood p(yt|αt,y1:t−1) is defined as:

p(yt|αt,y1:t−1) =

∫

p(yt|xt, αt)p(xt|αt,y1:t−1)dxt. (4.8)

This strategy consists of NA + 1 estimation processes: NA model-matched filters (see

(4.5) and (4.6)) as well as an estimator for the model (see (4.2) and (4.7)). Note that

the NA model-matched filters interact with the model estimator via (4.3) as well as

via (4.7). However, handling the NA mixture priors in (4.3) that are used as input for

the model-matched filters could be cumbersome, since these priors can have a complex

form. Algorithms adopting this strategy therefore reduce the complexity of the priors

by pruning or merging the components of the involved mixture densities. For example,

the Interacting Multiple Model (IMM) algorithm ([21], [22]; see Section 3.8.3) assumes

that the models are linear and Gaussian and thus each prior amounts to a Gaussian

mixture. The IMM converts this Gaussian mixture to a single Gaussian density of

matched first and second moments (see (3.51) and (3.52)) that is amenable to analytical

techniques based on the Kalman filter. In cases where the models are non-linear and/or

non-Gaussian, exact calculations of the above (multivariate) relations are in general not

possible. However, one may obtain a sound numerical approximation of these distri-

butions via particle filters. An approach combining the IMM algorithm with particle

filters has been introduced in [57] (see also [178]). Whereas in the standard IMM each

prior (4.3) is approximated by a single Gaussian density, in [57] each prior is more ac-

curately represented by a non-parametric mixture density with NA components, where
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each component is approximated by a particle filter with a fixed number of samples. In

comparison to that, in our work we resolve the recursions using a hybrid particle filter

that approximates the priors by directly simulating the dynamical models governing the

evolution of the hybrid system over time (i.e., each sample represents an instance of

the hybrid system at a given time step, cf. [124]). We use the hybrid particle filter to

estimate both the discrete and continuous variables, and we do not assume a Gaussian

density for the likelihood of each model. We use Ns samples for all NA models, and the

number of samples for each model varies over time. Using a large number of samples

Ns relative to the dimension of the state space allows our approach to cope well with

relatively small values for the transition probabilities, which represent rare events.

4.3 Stochastic Hybrid Systems of Virus Intensity: Im-

plementation via a Hybrid Particle Filter

Based on the principle of importance sampling, a set {xk;wk}Ns

k=1 of Ns random samples

xk (the ‘particles’) associated with importance weights wk is assumed to approximately

represent an arbitrary distribution p(x) in the sense that selecting a certain xk with

probability proportional to wk amounts to drawing a random sample from p(x). The

particle filter (e.g., [72], [88]; see Section 3.6) is a numerical scheme for recursively con-

structing such a set {xk
t ;w

k
t }Ns

k=1 for approximating the posterior distribution p(xt|y1:t),

which is defined by stochastic propagation and Bayes’ theorem as:

p(xt|y1:t) ∝ p(yt|xt)

∫

p(xt|xt−1) p(xt−1|y1:t−1) dxt−1. (4.9)

The weighted approximation of the posterior obtained by the particle filter is thus given

as:

p(xt|y1:t) ≈
Ns
∑

k=1

wk
t δ(xt − xk

t ), (4.10)

where δ(·) denotes the Dirac delta measure and
∑Ns

k=1 w
k
t = 1. Here we recall the main

steps of the particle filter. More details are presented in Section 3.6. Briefly, the parti-

cle filter resolves the (single model) Bayesian recursion defined in (4.9) in three steps.

Starting with the set {xk
t−1;w

k
t−1}Ns

k=1, the filter first generates each predicted sample

xk
t with a random draw from the dynamical model p(xt|xk

t−1). Second, these predicted

samples are re-weighted according to wk
t ∝ p(yt|xk

t ). The weights are normalized so

that they sum up to unity. Finally, to select the most representative samples, the filter

resamples Ns times from the set of weighted samples {xk
t ;w

k
t }Ns

k=1.

One approach for extending the particle filter to stochastic hybrid systems consists
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of augmenting each k -th sample with a model index αk
t thereby obtaining a set of hybrid

samples {xk
t , α

k
t ;w

k
t }Ns

k=1 (e.g., [124]). Based on this set of hybrid samples, the posterior

in (4.1) can be represented by the following weighted approximation ([8]):

p(xt, αt|y1:t) ≈
Ns
∑

k=1

wk
t δ(xt − xk

t )11αk
t
(αt). (4.11)

Here 11 ·(·) is the indicator function, where 11αk(α) = 1 if αk = α, else 11αk(α) = 0. At

time step t the hybrid particle filter maintains NA model-conditioned posterior den-

sities p(xt|αt = i,y1:t), where i ∈ A. Each i -th model-conditioned posterior is thus

approximated via the set of samples {xk
t , α

k
t = i}:

p(xt|αt = i,y1:t) ≈
∑

k∈Υi

w̃k
t δ(xt − xk

t ), (4.12)

where Υi = {k |xk
t , α

k
t = i} and w̃k

t =
wk

t∑
l∈Υ wl

t

. Similarly, the posterior model probabili-

ties P (αt|y1:t) are approximated by the proportion of samples supporting model i:

P (αt = i|y1:t) ≈
|{xk

t , α
k
t = i}|

Ns

, (4.13)

where | · | denotes the set size operator. The hybrid particle filter recursively constructs

a set of hybrid samples as follows. At time step t− 1, the predicted model index αk
t is

generated by drawing a random sample from P (αt|αk
t−1 = j), which is defined by the j -th

column of the transition matrix Π. Samples that branch from model αk
t−1 = j into model

αk
t = i represent approximately the branched priors p(xt−1|αt−1 = j, αt = i,y1:t−1). Fol-

lowing the mixing strategy as expressed by (4.3), the model-conditioned prior densities

p(xt−1|αt = i,y1:t−1) are supported by the set of samples with predicted model index

αk
t = i. The particle-based representation of each i -th model-conditioned prior is suit-

able for the sequential importance sampling-resampling scheme of the standard particle

filter. Specifically, a prediction for xk
t is obtained by drawing a random sample from

the dynamical model p(xt|xk
t−1, α

k
t = i) conditioned on the predicted model αk

t = i.

The predicted samples are assumed to support the predicted density p(xt|αt = i,y1:t−1).

Next, the weights of the predicted samples are re-calculated according to the model-

conditioned measurement model: wk
t ∝ p(yt|xk

t , α
k
t = i). The resampling step is finally

applied to the entire set of samples to obtain a set {xk
t , α

k
t ;w

k
t }Ns

k=1 of Ns hybrid samples.

At the end of each iteration, a maximum a posteriori (MAP) estimate for the model αt

may be obtained from the model posterior probabilities (e.g., [87]):

α̂t = argmax
i

P (αt = i|y1:t). (4.14)
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An estimate for xt may be computed as the weighted mean over all Ns samples:

x̄t =
Ns
∑

k=1

wk
t x

k
t . (4.15)

Alternatively, one may obtain the mean estimate of the model-conditioned posterior

corresponding to the MAP estimate α̂t:

x̄t =
∑

k∈Υ̂

w̃k
t x

k
t , (4.16)

where Υ̂ = {k |xk
t , α

k
t = α̂t} and w̃k

t =
wk

t∑
l∈Υ̂

wl
t

.

4.4 Hidden Markov Model of Virus Behavior

In our application, we study pseudotyped HIV-1 particles where fusion with the cell

membrane in two-channel microscopy image sequences is characterized by both the loss

of the fluorescent label attached to the outer shell in one channel as well as the preser-

vation of the label attached to the particle’s inner part in the other channel. Thus, the

intensity as well as the underlying temporal intensity models of the two channels must

be considered when automatically identifying individual fusion events. Using stochastic

hybrid systems for identifying the temporal intensity models of both channels entails

increasing the dimensionality of the state vector xt as well as increasing the number

of models NA. In the worst case, one would need to define N2
A models accounting for

the joint dynamics of the intensities of both channels. This would require building a

transition matrix Π of size N2
A×N2

A, which is generally impractical to define. Because of

the scarce amount of available training data, learning the transition matrix may lead to

inaccurate estimates of the transition probabilities. Additionally, increasing the number

of models NA requires a significant increase in the number of samples for the hybrid

particle filter to obtain a comparable performance. Instead of using this monolithic

strategy, we adopt the following hierarchical solution. First, we use hybrid particle

filters for the intensities measured on each channel separately. This yields a sequence

α̂c
1:T of T temporal intensity models per channel c that correspond to the MAP model

estimates, i.e., the models with the highest belief obtained at each time step t. The

sequence of vectors α1:T , which comprises the inferred models of both channels, is fed to

a Hidden Markov Model (HMM) (e.g., [147]) that maps these sequences to a sequence

of behaviors β1:T , where β represents a certain behavior from a set B of NB predefined

behaviors. Concretely, a Markov chain with transition matrix Φ is assumed to underlie

the sequence of behaviors β1:T . Using the HMM formalism, one can define a posterior
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distribution over the sequence of behaviors β1:T given a sequence of observed intensity

models α1:T as follows:

P (β1:T |α1:T ) ∝
T
∏

t=1

P (βt|βt−1)P (αt|βt), (4.17)

where P (βt = i|βt−1 = j) is given by the corresponding element φij of the transition

matrix Φ. P (αt|βt) denotes the measurement model defined by the HMM. Our aim is

to determine the MAP sequence of behaviors:

β̂1:T = argmax
β1:T

P (β1:T |α1:T ). (4.18)

Note that (4.18) can be efficiently solved using the Viterbi algorithm (e.g., [62]). Thus,

our approach represents the behavior β, the temporal intensity model α, as well as

the intensity statistics x via three stacked Markov processes that amount to a layered

probabilistic approach where a maxbelief strategy ([137]) is used for linking the two top

layers (namely behaviors and intensity models) in a bottom-up fashion.

4.5 Model Definitions

4.5.1 Temporal Intensity Models

In this section, we define explicit representations of the temporal intensity models un-

derlying the observed intensities. The models must account for the various phenomena

exhibited by the observed intensity values. For example, because of photobleaching, the

intensity exhibits a slow downward trend. In comparison, fusion with the cell membrane

is characterized by a steep decrease in the intensity of one channel. The models should

account for the different magnitudes of the change in intensity. In our case, the state

vector x is given by the scalar value corresponding to the intensity I (which refers to

the object intensity plus the background intensity). We define NA = 3 intensity models:

constant intensity (CI, α = 1), positive intensity change (PIC, α = 2), and negative

intensity change (NIC, α = 3). The corresponding dynamical models p(xt|xt−1, αt) are

described via first-order auto-regressive processes on the state vector xt, which take the

following form:

xt = fαt
(xt−1, vαt

), (4.19)

where vαt
is a noise variable sampled from a zero-mean Gaussian distribution with

variance Qαt
. To define the function f(·, ·) in (4.19), the CI model (α = 1) adopts the
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following relation:

fαt
(xt−1, vαt

) = It−1 + vαt
. (4.20)

For this model, we define Qαt
= qCI, where qCI is the variance of the deviation in the

intensity over a time interval. For the PIC model (α = 2), the function f(·, ·) in (4.19)

is given as:

fαt
(xt−1, vαt

) = It−1 + |vαt
| (4.21)

and Qαt
= qPIC. Likewise, the NIC model (α = 3) defines f(·, ·) in (4.19) as:

fαt
(xt−1, vαt

) = It−1 − |vαt
| (4.22)

and Qαt
= qNIC. Analogous to the CI model, qPIC and qNIC regulate the deviation for

the intensity variable over time. With a relatively small perturbation of the intensity,

as regulated by qCI, the CI model captures smooth changes in the intensity introduced

by photobleaching as well as other auto-fluorescent structures. By using a relatively

large value for qNIC, the NIC model represents sharp decreases in the intensity, which

in our application correspond to the specific behavior of fusion. The PIC model is

added for completeness. In addition to the model-conditioned dynamical model, each

temporal intensity model α could in principle define a model-conditioned measurement

model p(yt|xt, αt). In our case all models share a common measurement model, i.e.,

p(yt|xt, αt) = p(yt|xt). The proposed measurement model quantifies the probability

that the predicted intensity I matches the particle’s mean intensity y measured from

the image:

p(y|x) ∝ exp

(

−D(y, I)2

2σ2
n

)

, (4.23)

where D(·) is the Euclidean distance and σn describes the expected level of noise.

In our application, virus particles typically exhibit a constant behavior and fusion is

rare. In other words, we assume that once the intensity follows a certain temporal model,

the intensity will not jump between models but instead will adhere to a model for a cer-

tain time period. The entries πij of the transition matrix Π reflect these considerations.

Because of this model steadiness, the matrix Π is strongly diagonal, i.e., the entries

on the diagonal have larger values than the off-diagonal entries. For stability reasons,

we also assume that the intensity cannot switch directly from a PIC model to a NIC

model, or vice-versa. While the transition matrix could be learned from training data,

we manually set the entries for the following reasons. First, large amounts of training

data would be required to obtain sound estimates for the transition probabilities, espe-

cially since fusion of HIV-1 particles with the cell membrane is relatively rare ([126]),

and thus the number of exemplary periods of intensity changes (e.g., decrease of inten-
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sity) is inherently low. In addition, this training data would need to include one model

label for each time step. Such a labeling would be quite tedious and time-consuming to

obtain. Second, manually setting the values allows us to intuitively incorporate prior

knowledge on the transition between the models. This also gives us a fine control over

the approach. Certainly there is some risk that a user may adjust the values until in-

tended results are obtained. However, in our case this risk is relatively small since the

values for the transition probabilities were kept fixed for all our experiments.

4.5.2 Model of Virus Behavior

The behavior of HIV-1 particles throughout the cell entry process is not fully understood

and thus this topic is currently the subject of intensive research ([197]). Initially, HIV-1

was assumed to enter the cell exclusively by fusion with the cell membrane. This has

been recently challenged by [126], who contend that endocytosis, which is an alternative

entry mechanism, also plays a role in the cell entry process. Additionally, the process

is dependent on a large number of factors (e.g., sequence of the viral envelope protein,

or the presence and density of receptor and co-receptors on the cell surface) whose

description would lead to rather intricate models that still need to be established. Here,

we restrict ourselves to abstractions of the behavior relative to the inferred temporal

intensity models. A straightforward definition for these general behaviors would involve

only two abstractions: fusion and non-fusion. We refrain from this approach as it leads

to a coarse mapping between the behaviors and the intensity models. While certainly

fusion (along with the corresponding temporal intensity models) is the main behavior

that we aim to identify, other combinations of temporal intensity models correspond to

behaviors that could be of interest to biologists. In our case, we define NB = 4 general

behaviors. One behavior is introduced for instances where the intensity corresponding

to the outer shell’s label remains constant or increases; we denote this as the Outer

Shell Constant or Increasing (OSCI) behavior (β = 1). The preservation of the label

attached to the particle’s inner part is a prerequisite for fusion, and thus we assign

another behavior to these types of situations, which are referred as the Inner Part

Preservation (IPP) behavior (β = 2). The loss of the fluorescent label attached to the

outer shell is a precondition for fusion too, but also an interesting action in itself, and

thus we specify one general behavior to such occurrences; we call this the Outer Shell

Loss (OSL) behavior (β = 3). Finally, both the preservation of the inner part’s label as

well as the loss of the outer shell’s label are indicative of fusion (FUSION, β = 4). The

transition probabilities for this 4-state Markov chain could be learned from training data.

However, since we are working with high level abstractions of the behavior, we choose

manually the transition probabilities for this 4-state Markov chain. This has worked
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well in practice. For instance, since in our experimental setup the duration of the fusion

behavior is relatively short, we have set the probability for the transitions within the

fusion behavior to φ33 = 0.5. This mounts to an average duration of two frames, which

turned out to work well as a prior. The probabilities for transitions from and to the

fusion behavior are distributed almost equally. Similar considerations apply to the other

behaviors. This yields a flexible model which does not strongly favor transitions towards

a particular behavior, where the behaviors have similar durations, and where transitions

between all behaviors are allowed, i.e., φij 6= 0 , ∀ i, j ∈ B. Note that the entries on the

diagonal should have higher values than the off-diagonal entries. This reflects the fact

that there is usually a higher probability for the particle to remain within the same

behavior than to jump to another behavior. Nonetheless the off-diagonal values should

be relatively large as this would allow a relatively fast change between behaviors.

To define the measurement model P (αt|βt) for the HMM, we map the behavior

βt as well as the vector αt = (α̂0
t , α̂

1
t ) of the temporal intensity model estimates to

a common feature space. The chosen feature space should preserve a certain order

for the behaviors, since some behaviors are more closely related (e.g., the FUSION

behavior is related to the OSL behavior but it is more distant from the OSCI behavior).

To preserve this intuitive ordering over the different behaviors, we map the behaviors

to a two-dimensional Hamming space (e.g., [12]), which is a metric space defined by

the two-fold Cartesian product of the set {0, 1}, along with the Hamming distance

DH(·, ·). The mapping is achieved via the function h : B → {0, 1}2, where h(β) is the

binary representation of the behavior indices and is defined as follows: h(0) = (0, 0),

h(1) = (0, 1), h(2) = (1, 0), and h(3) = (1, 1). Similarly, we map the vector α to

this Hamming space using the surjective function g : A2 → {0, 1}2, where g(α) is

given in Table 4.1. Note that by adjusting the function g(·) we can cope with different

experimental conditions (e.g., in some cases the simultaneous loss of both fluorescent

labels may indicate fusion). Our definition of g(·) also implies that channel c = 0

corresponds to the intensity of the fluorescent label attached to the outer shell, while

channel c = 1 represents the intensity of the label tagged to the inner part of the virus

particle. To quantify the similarity between α and β via P (α|β), we use the following

exponential function:

P (α|β) ∝ exp

(

−DH(g(α), h(β))2

2σ2
H

)

, (4.24)

where σH inversely regulates the level of fidelity in the Hamming space (we used σH = 1).
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Table 4.1: Function g(α).

α (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)
g(α) (0, 1) (0, 0) (0, 0) (0, 1) (0, 0) (0, 0) (1, 1) (1, 0) (1, 0)

4.6 Summary

In this chapter, we presented a probabilistic approach for identifying behaviors of fluo-

rescent particles. In particular, we developed an approach for identifying fusion between

a virus particle and a cell based on the intensity over time of an individual virus par-

ticle. The proposed approach is grounded within a Bayesian framework and follows a

layered architecture. Note that our approach for behavior identification builds upon

a virus tracking approach (see Chapter 3) which is performed prior to applying our

approach for behavior identification. In the next chapter, we evaluate experimentally

the performance of both the tracking approaches as well as the behavior identification

approach.
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Chapter 5

Experimental Results

In this chapter, we present our experimental results [70], [69] for the developed tracking

approaches (Chapter 3) as well as for the developed behavior identification approach

(Chapter 4). To study the performance of the approaches, we use synthetic data as

well as real microscopy image sequences displaying HIV-1 particles. We defined perfor-

mance measures and quantify the performance of the approaches with respect to ground

truth. For the real images, the ground truth is determined manually. We have also per-

formed a quantitative comparison of the performance of the approaches with previous

approaches. In addition, we present tracking results obtained for image sequences dis-

playing HSV compartments as well as for image sequences displaying microtubule tips

within a neuron’s growth cone.

5.1 Tracking: Experimental Results

We evaluate the performance of several deterministic and probabilistic tracking ap-

proaches, including approaches based on the Kalman filter and the particle filter. We

also perform a detailed evaluation of our new PDAE tracking approach.

5.1.1 Performance Evaluation of Deterministic and Probabilis-

tic Approaches Based on Real 2D Image Sequences

We perform an extensive evaluation of eight different deterministic and probabilistic

tracking approaches based on nine real microscopy image sequences displaying HIV-1

particles [70]. Such an evaluation is essential to determine the performance of the

approaches under realistic conditions. Below, we describe the evaluated approaches and

present the results.
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5.1.1.1 Evaluated Tracking Approaches

We evaluate eight different tracking approaches. All approaches employ a 2D Gaussian

intensity model to represent fluorescent particles. The deterministic approaches are de-

fined based on the different combinations of the localization schemes (Section 3.1) and

the motion correspondence scheme (Section 3.3). We evaluate two deterministic ap-

proaches: 1) spot-enhancing filter with global nearest neighbor (SEF&GNN), and 2) 2D

Gaussian fitting with global nearest neighbor (GaussFit&GNN). Note that the motion

correspondence step requires a set Ŷ of predicted measurements. For the deterministic

schemes, a “predicted” measurement ŷi
t is given by the latest position estimate obtained

for the tracked fluorescent particle i at the previous time step t− 1.

The probabilistic approaches are analogously obtained by different combinations of

the localization schemes and the spatial-temporal filters. The filters use the models

for tracking round particles with a random walk motion model described in Section

3.8.1. We investigate the following probabilistic approaches: 3) spot-enhancing filter

and Kalman filters (Section 3.5) (SEF&Kalman), 4) spot-enhancing filter and a mixture

of particle filters (e.g., [203], [176]) (SEF&MPF), 5) spot-enhancing filter and indepen-

dent particle filters (Section 3.6) (SEF&IPF), 6) 2D Gaussian fitting and Kalman filters

(GaussFit&Kalman), 7) 2D Gaussian fitting and a mixture of particle filters (Gauss-

Fit&MPF), and 8) 2D Gaussian fitting and independent particle filters (GaussFit&IPF).

Note that the approaches using a mixture of particle filters can only track a fixed num-

ber of objects. The approaches using Kalman filters as well as those using independent

particle filters require a motion correspondence step. For these approaches, we have

employed the global nearest neighbor approach described in Section 3.3.

5.1.1.2 Performance Measure

To quantitatively evaluate the performance of the tracking approaches, we compute the

tracking accuracy Ptrack:

Ptrack =
ntrack,correct

ntrack,total

, (5.1)

where ntrack,correct is the number of correctly computed trajectories and ntrack,total repre-

sents the number of true trajectories. The value ntrack,correct is computed as the weighted

sum of the percentage of tracked time steps rtracked,i for each i-th true trajectory:

ntrack,correct =

ntrack,total
∑

i=1

wirtracked,i, (5.2)

where the weight wi is given by a Gaussian weighting scheme, which takes as its argument

the number of correctly computed trajectories ntrack,i corresponding to each i-th true
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(a) True trajectories for two ob-
jects i and j represented by solid
lines. Each trajectory comprises
10 time steps; ntrack,total = 2.

i

j

rtracked,i = 100%

rtracked,j = 100%

(b) True trajectories (solid
lines) and trajectories computed
by an ideal tracking approach
(dashed lines). In this case,
ntrack,correct = 2, and thus
Ptrack = 100%.

i

j

rtracked,i = 50%

rtracked,j = 90%

(c) True trajectories (solid
lines) and trajectories computed
by a non-ideal tracking ap-
proach (dashed lines). In this
case, ntrack,correct = 1.04, and
thus Ptrack = 52%.

Figure 5.1: Examples illustrating the performance measure Ptrack.

Table 5.1: Description of real image sequences.

Dimensions [pixels] No. of time steps No. of objects

Seq. 1 256×256 250 23
Seq. 2 256×256 250 10
Seq. 3 256×256 250 5
Seq. 4 256×256 150 21
Seq. 5 512×512 200 15
Seq. 6 512×512 400 29
Seq. 7 512×512 400 31
Seq. 8 512×512 400 43
Seq. 9 512×512 400 24

trajectory: wi = N (ntrack,i;µ = 1, σ = 1). Since ideally one expects a single correctly

computed trajectory for each i-th true trajectory (i.e., ideally ntrack,i = 1), we set the

mean of the Gaussian weighting scheme to µ = 1. The weighting scheme is introduced

to penalize computed trajectories that are broken. A computed trajectory is assumed

to be correct if the error (Euclidean distance) between the measured object position and

the true object position is below 2 pixels. Examples illustrating the measure Ptrack are

shown in Figure 5.1.

5.1.1.3 Experimental Setup

For our evaluation we used real microscopy image sequences displaying double fluores-

cently labeled HIV-1 particles. The particles were imaged using a fluorescence wide-field

setup based on a Zeiss Axiovert 200 M microscope with a Roper Scientific Cascade II

EM-CCD camera. Fluorophores were excited with their respective excitation wave-
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lengths and a pair of images (red and green images) was acquired every 100 ms. The

spatial resolution is 160 nm/pixel ([108]). Note that the number of virus particles, the

level of cellular autofluorescence, the image dimensions, the number of images, and the

level of image noise vary largely for the evaluated image sequences (see Figure 1.1 and

Table 5.1). Ground truth for the virus positions was obtained by manual tracking using

the commercial software MetaMorph. For all sequences, we use fixed parameter val-

ues for all approaches. For the approaches using the spot-enhancing filter, a factor of

c = 3.7 in (3.1) is used. For the approaches using the global nearest neighbor scheme

(cf. Section 3.3), the displacement parameter is set to dmax = 2 pixels and the disap-

pearance duration is set to 1 frame i.e., a particle can disappear for at most one frame.

For the approaches using independent particle filters (IPF), we use Ns = 1000 samples

per object. Similarly, for the approaches using a mixture of particle filters (MPF), each

mixture component is initially assigned 1000 samples. The noise parameters for the

dynamical model of the Kalman filter are set analogously as the ones employed for the

particle filter.

5.1.1.4 Results

Let us first consider one of the evaluated image sequences (“Seq. 4”) consisting of 150

images (256×256 pixels, 16-bit). To assess the performance of the algorithms in areas

with a relatively high object density, we select a region-of-interest (ROI) of 66×66

pixels. We first discuss the results for this ROI; the results for the whole sequence

are discussed thereafter. In this sequence, some of the virus particles go out of focus,

thereby introducing blurring effects. This in turn leads to difficulties for the virus

detection schemes, since they rely on the apparent size and intensity of the particles.

Photobleaching effects are also noticeable. Sample original images and results obtained

with the approaches using 2D Gaussian fitting are shown in Figure 5.2. It turned out that

the approaches based on particle filters can track particles with a decreasing contrast.

For instance, consider the particle at the lower right corner of the ROI (see the arrows).

The intensity contrast as well as the size of this particle decreases during the initial time

steps. The particle localization algorithms eventually fail to detect this particle. For the

deterministic approaches as well as for the Kalman filter, detection failures lead to broken

trajectories or no trajectories are obtained. The particle filter, in contrast, manages

such situations by virtue of its probabilistic ‘recognition-by-synthesis’ approach. That

is, given the previously estimated appearance parameters, the particle filter is able to

generate variations of the particle’s appearance, which are directly evaluated against the

image data by means of its non-linear measurement model. By generating samples that

resemble the distorted appearance of the particle, the particle filter is able to identify
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t=9 t=75

GNN, t=9 GNN, t=75

Kalman, t=9 Kalman, t=75

MPF, t=9 MPF, t=75

IPF, t=9 IPF, t=75

Figure 5.2: Original images (section, first row) and tracking results (second to fifth row)
for the real image sequence “Seq. 4”. For all shown results 2D Gaussian fitting is used for
particle localization. (Image intensities have been inverted for visualization purposes).

such a particle.

These remarks are supported by the tracking accuracy Ptrack obtained for the con-

sidered ROI: the best deterministic approach (GaussFit&GNN) achieves a tracking ac-
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Table 5.2: Results for real microscopy image sequences (Ptrack [%]). The mean value and
standard deviation over all sequences for each of the eight approaches are also given.

SEF& SEF& SEF& SEF& GaussFit& GaussFit& GaussFit& GaussFit&
GNN Kalman MPF IPF GNN Kalman MPF IPF

Seq. 1 75 81 85 87 71 81 82 83
Seq. 2 61 69 72 84 31 45 63 85
Seq. 3 45 32 77 43 41 60 60 80
Seq. 4 62 69 29 71 71 75 24 83
Seq. 5 94 94 85 94 81 94 86 94
Seq. 6 58 75 40 64 55 68 42 62
Seq. 7 65 81 48 82 53 77 31 78
Seq. 8 75 74 51 75 75 74 49 68
Seq. 9 73 83 49 74 68 81 53 77

Mean 68 73 60 75 61 73 54 79
Std. Dev. 14 17 21 15 17 14 21 9

curacy of 50%, whereas the best approach based on Kalman filters (GaussFit&Kalman)

attains a tracking accuracy of 58%. The best approach based on a mixture of par-

ticle filters (GaussFit&MPF) achieves a tracking accuracy of 54%. In contrast, the

best approach based on independent particle filters (GaussFit&IPF) obtains a tracking

accuracy of 90%, thereby outperforming the other approaches.

For the entire image sequence “Seq. 4” (see Table 5.2, fourth row), the results are

as follows: the best deterministic approach (GaussFit&GNN) achieves a tracking ac-

curacy of 71%, while the best approach based on Kalman filters (GaussFit&Kalman)

attains an accuracy of 75%. The best approach based on a mixture of particle filters

(SEF&MPF) attains an accuracy of 29%, whereas the approach based on independent

particle filters (GaussFit&IPF) yields an accuracy of 83%. The reason for the large

performance difference between the approaches using MPF and the approaches using

IPF is twofold. First, consider that the real images display a variable number of viruses.

Since MPF cannot track a variable number of objects, its performance is diminished.

In contrast, IPF is designed to handle an unknown and variable number of objects.

Second, consider the fact that MPF employs a reclustering algorithm to allocate a set

of particles to each of the components (objects) constituting the mixture model. Thus,

some components may be allocated fewer particles, thereby attaining worse estimation

results for these components. Instead, IPF uses a constant number of particles for each

object, which leads to a uniform performance for all independent filters. Additionally,

for MPF, in cases where virus particles lie in close proximity, the reclustering algorithm

might yield non-compact clusters of particles, which leads to inaccurate position esti-
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t = 50 t = 51 t = 52 t = 175 t = 176 t = 177

GNN, t = 50 GNN, t = 51 GNN, t = 52 GNN, t = 175 GNN, t = 176 GNN, t = 177

Kalman t=50 Kalman, t = 51 Kalman, t = 52 Kalman, t = 175 Kalman, t = 176 Kalman, t = 177

MPF t=50 MPF, t = 51 MPF, t = 52 MPF, t = 175 MPF, t = 176 MPF, t = 177

IPF, t = 50 IPF, t = 51 IPF, t = 52 IPF, t = 175 IPF, t = 176 IPF, t = 177

Figure 5.3: Original images (section, first row) and tracking results (second to fifth row)
for the real image sequence “Seq. 1”. For all shown results 2D Gaussian fitting was
used for particle localization. (Image intensities have been inverted for visualization
purposes).

mates. In contrast, IPF resolve such situations by means of our penalization scheme,

thereby exhibiting an improved accuracy.

Another evaluated image sequence (“Seq. 1”) consists of 250 images (256×256 pixels,

16-bit) and includes 23 well-defined virus particles. The experimental results for this

sequence are listed in the first row of Table 5.2. Figure 5.3 shows some sample results

for the approaches using 2D Gaussian fitting. It can be seen that both the MPF and

IPF maintain the correct identity of the two rightmost particles, while the remaining

approaches fail in this aspect. The reason for this result is that the deterministic ap-

proaches are easily misled by spurious objects. Similarly, the failures for the Kalman

filter arise by incorrect object-measurement assignments due to spurious objects. In

contrast, the particle filter is by design capable of handling various plausible hypotheses

at one time. For this sequence, the best deterministic approach (SEF&GNN) attains

a tracking accuracy of 75%, while the best approach based on Kalman filters (Gauss-

Fit&Kalman) obtains 81%. The best approach based on a mixture of particle filters

(SEF&MPF) attains 85%, and the best approach based on independent particle filters

(SEF&IPF) achieves an accuracy of 87%.
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t = 65 (RFP) t = 100 (RFP) t = 200 (RFP) t = 65 (GFP) t = 100 (GFP) t = 200 (GFP)

IPF,
t = 65 (RFP),
one channel

IPF,
t = 100 (RFP),
one channel

IPF,
t = 200 (RFP),
one channel

IPF,
t = 65 (GFP),
one channel

IPF,
t = 100 (GFP),
one channel

IPF,
t = 200 (GFP),
one channel

IPF,
t = 65 (RFP),
both channels

IPF,
t = 100 (RFP),
both channels

IPF,
t = 200 (RFP),
both channels

IPF,
t = 65 (GFP),
both channels

IPF,
t = 100 (GFP),
both channels

IPF,
t = 200 (GFP),
both channels

Figure 5.4: Original images (section) and tracking results for the real multi-channel
image sequence “Seq. 5”. The original images from the red fluorescent protein (RFP)
(left) and green fluorescent protein (GFP) (right) channels are displayed in the first row.
Tracking results for separate channels using IPF are shown in the second row; only the
trajectories for the considered object are displayed. Tracking results when exploiting
both channels using IPF are shown in the third row; only the trajectory of particle ‘3’
is displayed. 2D Gaussian fitting was used for particle localization. (Image intensities
have been inverted for visualization purposes).

The results obtained for all eight approaches applied to all nine image sequences are

presented in Table 5.2. The mean values and standard deviations over all sequences

are also given for each approach. It can be seen that the deterministic approaches

perform quite adequately. The approach SEF&GNN, by employing simpler criteria for

the rejection of noise-induced detections than GaussFit&GNN, yields fewer detection

failures, which, in general, entail an improved tracking accuracy (mean tracking accuracy

P̄track of 68%). However, these simple criteria lead to the detection of spurious objects

as well. On the other hand, the approach GaussFit&GNN employs stricter rejection

criteria, thereby rejecting not only spurious objects but also real virus particles. The

detection failures lead to broken trajectories, which result in a slightly lower tracking
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accuracy (P̄track = 61%). The approaches based on the Kalman filter tend to yield

a relatively good tracking accuracy, which is higher compared to the corresponding

deterministic approaches: both SEF&Kalman and GaussFit&Kalman attain P̄track =

73%. These results agree well with our initial contention, namely that a spatial-temporal

filtering step ought to enhance the overall tracking performance.

The approaches based on particle filters yield a fairly good tracking accuracy (see

columns 4, 5, 8, and 9 in Table 5.2). It turns out that the approaches using IPF yield a

significantly better result than the approaches using MPF. The reason for this difference,

as discussed above, is twofold: first, the MPF cannot track a variable number of objects;

second, MPF allocates a variable number of samples to each component (object), which

results in poor estimation results for components with few particles. In contrast, IPF is

able to cope with an unknown and variable number of objects. Additionally, IPF uses

a constant number of samples for each object. Furthermore, our penalization scheme

enables IPF to track successfully objects in close proximity. In fact, among all eight

tracking approaches, the best mean tracking accuracy is obtained by GaussFit&IPF.

In summary, the results shown in Table 5.2 indicate that the mean accuracy P̄track

for the best deterministic approach (SEF&GNN) is 68%, while the mean accuracy of the

best approach based on Kalman filters (SEF&Kalman) is 73%. In contrast, the mean

accuracy of the best approach based on particle filters (GaussFit&IPF) is 79%. Note

that, the performance for the last four image sequences is relatively low because of the

high level of cellular autofluorescence and the smaller size of the particles.

We have also applied our approaches to both channels of real two-channel microscopy

image sequences. In these sequences, the first channel corresponds to the red fluores-

cent protein (RFP) signal while the second channel corresponds to the green fluores-

cent protein (GFP) signal. Generally, virus particles are visible in both channels. In

some cases, a particle may disappear in one of the channels, while remaining visible

in the other channel. In these cases, it is important to exploit the information from

both channels. For two-channel microscopy image sequences, the deterministic tracking

approaches (SEF&GNN as well as GaussFit&GNN) work as follows: for particle local-

ization, a set of position estimates is obtained by applying a union operation to the

two sets of position estimates obtained by applying the localization approaches to the

individual channels; the motion correspondence algorithm (cf. Section 2) subsequently

operates on this consolidated set of measurements. Similarly, the Kalman filter operates

on this set of position estimates as well. For the approaches using particle filters, we

also use the consolidated set of position estimates and employ the multi-channel mea-

surement model described in Section 3.8.1.5. In Figure 5.4, tracking results obtained

with GaussFit&IPF for an ROI of 76×87 pixels for image sequence “Seq. 5” are shown.
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Note the relatively high level of noise as well as the non-homogeneous background. Such

a background generally poses a challenge to particle localization schemes based on in-

tensity thresholds. However, our particle localization algorithms, in particular, the 2D

Gaussian fitting approach, can cope well with such situations. The tracking results

demonstrate that if only the information of the individual channels is employed, broken

or incomplete trajectories are obtained for the virus particle in the middle of the ROI.

In contrast, by employing the information from both channels, our approaches (in this

case GaussFit&IPF) can retrieve the entire trajectory of this virus particle.

The computation times for the tracking approaches are as follows. For a synthetic

image sequence encompassing 100 frames (64×64 pixels) with five objects, the computa-

tion time for the deterministic approach SEF&GNN is below 2 s, while GaussFit&GNN

takes 11.06 s. The computation time for the probabilistic approach SEF&Kalman is

also below 2 s, whereas GaussFit&Kalman requires 11.25 s. The particle filter approach

GaussFit&MPF takes 1 min 33 s, while SEF&MPF requires 2 min 33 s. GaussFit&IPF

requires about 30 s, while SEF&IPF takes about 1 min. For a real image sequence of

200 frames (512×512 pixels) with about 20 objects, SEF&IPF requires 14 min 43 s while

GaussFit&IPF takes almost 3 h. All approaches were implemented in Java, except 2D

Gaussian fitting, which was implemented in C++. The approaches have been imple-

mented within our software named “ViroTracker” and were executed on a PC with an

AMD Opteron (2.4 GHz) CPU running Linux.

5.1.2 Performance Evaluation of PDAE Approach Based on 2D

and 3D Images

In the section above we have evaluated deterministic approaches and approaches based

on the Kalman filter and the particle filter. There it turned out that the approach

based on independent particle filters (IPF) yields the best result. However, the compu-

tational costs of the IPF are relatively high for applications in biological studies involving

a large number of particles (e.g., 500 particles). In this section, we evaluate the pro-

posed PDAE approach, which embraces the principles underlying the particle filter (e.g.,

multiple measurements, recognition-by-synthesis, use of parametric appearance models,

direct use of the image data) in a more efficient manner. In this section, we present a

quantitative evaluation of the PDAE approach and a comparison with approaches based

on the Kalman filter and the particle filter. The evaluation is based on synthetic and

real 2D and 3D image data.
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Table 5.3: Summary of the evaluated probabilistic approaches.

Kalman Filter IPF PDAE

Bottom-up

detection

SEF SEF SEF

Motion

correspondence

GNN GNN GNN

Number of

measurements

1 Ns Nm

Measurement

source

SEF qmix(·) N (·; p̂,Sp) and

N (·;pBU,Rp)

Search strat-

egy

Exhaustive Random Ellipsoidal

Measurement

evaluation

– p(y|x) p(z|x)

5.1.2.1 Evaluated Probabilistic Tracking Approaches

We compare experimentally the performance of our approach based on probabilistic

data association and an ellipsoidal sampling scheme (PDAE) with the performance of

the standard Kalman filter (Section 3.5) and the performance of the approach based

on independent particle filters (IPF) (Section 3.6). The Kalman filter as well as the

IPF use a random walk model in 2D and 3D as described in Section 3.8.1. For the

PDAE approach we also use a random walk model (see Section 3.8.1) or a random walk

model as well as a directed motion model (see Section 3.8.3). For efficiency reasons, we

used the spot-enhancing filter for bottom-up localization. For numerical stability, we use

Ns = 1000 (2D case) or Ns = 8000 (3D case) samples for each independent particle filter.

For the PDAE approach, we use Nc = 4 concentric contours and Nj = 16 positions along

each elliptical contour. In 3D, we additionally evaluate concentric elliptical contours at

Nk = 8 positions in z-direction. Together with the ellipsoidal measurements generated

using the bottom-up measurement we obtain Nm = 130 measurements (samples) per

filter (2D case) or Nm = 1026 measurements (3D case). Table 5.3 summarizes the

evaluated probabilistic tracking approaches and their properties.

5.1.2.2 Evaluation on 2D and 3D Synthetic Images

We evaluate the performance of the approaches using synthetic image sequences. We

consider two experimental scenarios. In the first scenario, we evaluate the localization

accuracy of the approaches as a function of the image noise. In the second scenario,
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we evaluate the tracking accuracy of the approaches as a function of the density of

the objects. In the synthetic images we render each object using either a 2D Gaussian

function (3.58) or a 3D Gaussian function (3.59) as the appearance model of the rendered

objects.

To evaluate the localization accuracy, here we also calculated the root mean square

error (RMSE) between the calculated positions pt,calc and the true positions pt,true of

a true trajectory whose positions are indexed in time by T = {. . . , t − 1, t, t + 1, . . .}
spanning |T | = Nsteps,true time steps:

RMSE =

√

1

Nsteps,true

∑

t∈T

|pt,calc − pt,true|2 (5.3)

5.1.2.2.1 First Synthetic Scenario In this scenario we evaluate the localization

accuracy of the approaches as a function of the image noise. The image noise is reflected

by the signal-to-noise ratio (SNR), which is defined as the difference between the peak

intensity Imax of an object and the intensity of the background Ib, divided by the stan-

dard deviation of the noise level σn ([36]). We assume a Poisson distribution for the

noise model. We set the background intensity to Ib = 10 and vary the peak intensity

Imax to explore different SNR levels. We explore the following SNR levels: 11.6, 8.8,

6.5, 4.6, 3.5, 2.8, 2, and 1.3. For each level we generate 30 image sequences. In 2D,

each image sequence has 50 time steps. The image dimensions are 64×64 pixels. In

3D, each image sequence has 30 time steps and the image dimensions are 64×64×32

voxels. Each image sequence displays one object. The object is initially positioned at

the center of the image. The motion of the object is governed by random walk, where

the expected magnitude of the displacement over two time steps is set to 1.3 pixels. The

true trajectory of the object is the same over all SNR levels. Thus for each SNR level

only the (random) noise configuration varies over the corresponding 30 image sequences.

For the appearance model, we use a value of σxy = 2 pixels and a value of σz = 1 pixel.

The parameters of the tracking approaches are defined as follows. For the detection

scheme based on the SEF, we adjust the factor c in (3.1) according to the SNR level

and use a standard deviation of σF,xy = 1.5 pixels in 2D and a standard deviation of

σF,z = 1.5 voxels in 3D. For all tracking approaches, the expected deviations for the

position variables are fixed to qx = qy = qz = 4 pixels2. For the appearance variables,

we use the following values: qImax
= 1 intensity level unit2, qσxy

= qσz
= 0.01 pixels2.

The measurement errors take the following values: rx = ry = rz = 0.01 pixels2, rImax
= 1

intensity level unit2, qσxy
= qσz

= 0.36 pixels2. The threshold for the validation region

is set to γ2
p = 5.99 in 2D and γ2

p = 7.82 in 3D. The expected degree of noise σn is set

according to the SNR level.
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Original image Ground truth

Kalman IPF-130

IPF-1000 PDAE

Figure 5.5: Original image, ground truth, and tracking results for the evaluated ap-
proaches on synthetic images. The SNR is 1.3 and the time step is t = 39. The small
rectangles along the trajectories indicate the intermediate positions while the large rect-
angle indicates the current position. Image intensities have been inverted.

In this scenario we examine the performance of the PDAE approach in comparison to

the IPF approach using the same number of samples Ns as the number of measurements

Nm in the PDAE approach, viz. Ns = 130 in 2D and Ns = 1026 in 3D. We refer to

these approaches as IPF-130 (2D case) and IPF-1026 (3D case), respectively; we refer

to the approaches with higher number of samples as IPF-1000 (2D case) and IPF-8000

(3D case). Sample results for all approaches at SNR = 1.3 are shown in Figure 5.5

and Figure 5.6 for 2D and 3D images, respectively. It can be seen that the accuracy

of the PDAE approach is superior to that of the Kalman filter at this challenging SNR

level. The performance of the PDAE approach is quite similar to that of the particle

filter using a large number of samples. Figures 5.7 and 5.8 show the results of all
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Original image Ground truth

Kalman IPF-1026

IPF-8000 PDAE

Figure 5.6: Original image, ground truth, and tracking results for the evaluated ap-
proaches on synthetic 3D images. The SNR is 1.3 and the time step is t = 12. A
z-slice (z = 13) of the original volume image as well as the ground truth are shown.
Trajectories are rendered as spheres (positions) and sticks (displacement vectors); the
cube shows the current position.

evaluated approaches in terms of their RMSE as a function of the SNR level. The mean

values of the RMSE computed over 30 image sequences corresponding to each SNR

level are shown. For both 2D and 3D images, the PDAE approach outperforms the

standard Kalman filter. This shows that the PDAE measurement process (cf. Section

3.7.1) improves the localization accuracy in comparison to using bottom-up particle

localization schemes only. Also, for both 2D and 3D images, the PDAE approach

outperforms the particle filter using the same number of samples (Ns = 130 in 2D

and Ns = 1026 in 3D). This indicates that for the IPF a relatively low number of

samples is not sufficient to obtain an accurate numerical approximation of the posterior

probabilities. The PDAE approach is not subject to such numerical issues since the
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Figure 5.7: Tracking accuracy (RMSE) as a function of the SNR for 2D synthetic image
sequences. The mean values computed over 30 image sequences at each SNR level are
shown.

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

SNR

R
M

S
E

 [
v
o

x
e

l]

 

 

Kalman
IPF−1026
IPF−8000
PDAE

Figure 5.8: Tracking accuracy (RMSE) as a function of the SNR for 3D synthetic image
sequences. The mean values computed over 30 image sequences at each SNR level are
shown.

posterior probabilities are represented analytically via the underlying Kalman filter.

Improved results are obtained for the IPF by using a larger number of samples (i.e.,

Ns = 1000 in 2D or Ns = 8000 in 3D). At the higher SNR levels, the PDAE approach

outperforms the IPF with a larger number of samples. A reason for this is that the

proposed ellipsoidal sampling scheme explores the position space systematically while

the IPF explores this space randomly. The systematic approach yields a comparable

performance relative to that of the random scheme with a large number of samples

at the lower SNR levels. Since both approaches query the same image likelihood, the

computation time of both approaches is linearly dependent on the number of samples

(measurements). Thus the computational cost entailed by the PDAE approach is ca.

7.7 times lower than that of the IPF. This is particularly beneficial when tracking a

large number of objects.
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Ground truth Kalman

IPF-1000 PDAE

Figure 5.9: Ground truth and tracking results for all evaluated approaches on synthetic
images. The probability of overlap of the objects is poverlap = 0.11 and the time step
is t = 27. The numbers label each trajectory. Insets show the tracking results of the
region enclosed with a rectangle at a higher resolution.

5.1.2.2.2 Second Synthetic Scenario We evaluate here the performance of the

PDAE approach as a function of the object density. The object density dobj is given by

the ratio between the number of objects Nobj and the size (area) of the image Simage.

Each object occupies a certain area Sobj. The definition of dobj, however, does not take

into account Sobj. To take into account the area occupied by each object, we calculate

the probability of overlap poverlap [172], which is defined as:

poverlap =
NobjSobj

Simage

. (5.4)

Thus, the higher the number of objects, the higher the probability of overlap among

objects, and therefore the more tracking errors occur. In this scenario we generate 2D

image sequences consisting of 30 time steps. The images have dimensions 100×100

pixels (16-bit) and thus Simage = 10000 pixels2. We use the following number of objects:

Nobj = 10, 20, 30, 40, 50, 75, and 100. We use the same appearance parameters as in

the first scenario for rendering all objects. Assuming that each Gaussian object with

σxy = 2 pixels can be described by a 2D disk with radius r = 1.5σxy = 3 pixels, the area

of each object is given by Sobj = r2π = 28 pixels2 and thus we explore the following
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Figure 5.10: Tracking accuracy (Ptrack) as a function of the probability of overlap of the
objects poverlap. The mean values computed over 30 image sequences for each probability
of overlap are shown.

values for the probability of overlap poverlap: 0.03, 0.06, 0.08, 0.11, 0.14, 0.21, 0.28. The

SNR is 11.6. The initial image position of each object is random and the motion is

governed by random walk. The expected deviation for the displacement takes values

of up to 1.3 pixels. For each number of objects Nobj, we generate 30 image sequences.

The factor c for the detection scheme based on the SEF is adjusted according to the

number of objects, since the image statistics (mean intensity and standard deviation)

vary with the number of objects. For all tracking approaches, the expected deviations

for the position variables are fixed to qx = qy = qz = 0.56 pixels2. Trajectories are

initialized only at the first time step. All other parameters are the same as in the first

synthetic scenario.

Results for all approaches at a probability of overlap poverlap = 0.11 (number of

objects Nobj = 40) are presented in Figure 5.9. The results show that the PDAE

approach preserves the identity of neighboring objects relatively well. The performance

of the approaches in terms of Ptrack is shown in Figure 5.10. The performance follows

approximately the theoretical detection performance 1 − poverlap [172]. It can be seen

that the PDAE approach consistently outperforms the other approaches. This shows

the viability of the image support scheme that computes the support at each image

position for tracking multiple objects. We also measured the computation time of each

approach. All approaches were implemented in Java within our software ViroTracker

[70] which was executed on an Intel Xeon X5650 (6 cores at 2.6 GHz) machine running

Linux. Figure 5.11 shows the computation time as a function of the number of objects

(mean computation time over 30 2D image sequences with 30 time steps each.) The

approach with the lowest computation time is the Kalman filter. For the IPF approach

and the PDAE approach, the computational cost is linearly dependent on the number
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Figure 5.11: Computation time (s) as a function of the number of objects. The mean
values computed over 30 2D image sequences consisting of 30 time steps for each number
of objects are shown.

of samples (measurements) per object. In comparison to the Kalman filter, the PDAE

approach is computationally somewhat more expensive (approximately a factor of 3). In

comparison to the IPF with 1000 samples, the PDAE approach using 130 measurements

is about 7.7 times faster, as expected. For example, for Nobj = 40, the PDAE approach

entails a mean computation time of 2.5 s while the IPF requires about 20 s. Thus, in

comparison to the Kalman filter, the PDAE approach yields a superior performance at

the expense of a somewhat higher computational cost. In comparison to the IPF, the

PDAE approach delivers also a better performance in terms of Ptrack at a significantly

lower computational cost.

5.1.2.3 Evaluation on 2D and 3D Real Microscopy Images

5.1.2.3.1 2D Images We have applied our PDAE tracking approach to the nine

real microscopy 2D image sequences described in Section 5.1.1.3. For the spot detection

scheme we use a standard deviation of σF,xy = 1.5 pixels. For the adaptive threshold, we

use a factor of c = 2.7 for the first four image sequences; for the other image sequences we

use c = 3.7. For the PDAE approach we use a random walk model as well as a directed

motion model. For the random walk motion model, we use a value of qx = qy = qz = 4

pixels2. For the directed motion model, we use a value of qCV = 4 pixels2/frame3. The

noise parameter σn is adjusted based on the measured peak intensity for the particles.

We performed a comparison with the Kalman filter and the IPF. For the Kalman filter,

the distance metric d(·, ·) used in the motion correspondence step is in this case defined

by the Mahalanobis distance using the predicted measurement covariance S in (3.12).

We set the maximum expected distance to dmax = 7.82. The disappearance duration is

set to 20 frames for both the approach based on the standard Kalman filter as well as

104



Table 5.4: Results for 2D real image sequences in terms of the tracking accuracy Ptrack

[%]. The mean values and standard deviations are also shown.

Sequence Kalman IPF-1000 PDAE

1 96 96 98

2 81 90 92

3 90 92 99

4 82 82 89

5 94 94 94

6 68 68 75

7 86 87 88

8 77 78 79

9 81 83 84

Mean 84 85 89

Std. Dev. 9 9 8

for the PDAE approach. All other parameters including those for the IPF are set as in

the first synthetic scenario (cf. Section 5.1.2.2.1).

Sample results for all approaches are shown in Figure 5.12. In this example, the

particle alternates between random motion and directed motion. The Kalman filter

and the IPF approach yield broken trajectories. In comparison, the PDAE approach

obtains a trajectory without gaps that is very similar to the ground truth trajectory.

For all approaches, Table 5.4 shows the quantitative results for all nine image sequences

in terms of Ptrack. The Kalman filter yields Ptrack= 84% (standard deviation of 9%)

while the IPF yields a mean accuracy of Ptrack= 85% (standard deviation of 9%). The

PDAE approach yields the best results with a mean accuracy of Ptrack= 89% (standard

deviation of 8%).

5.1.2.3.2 3D Images We have also applied the approaches to a real microscopy

3D image sequence. The image sequence displays budding HIV-1 particles [90]. The

particles are labeled with eGFP. Images were acquired with a Nikon TE2000-E spinning

disk confocal microscope using an Andor Technology EM-CCD camera. The image

sequence consists of 395 time steps. For each time step, a stack of 7 images (slices)

with dimensions 255 × 512 pixels was acquired. The ground truth for the 3D positions

of the particles was obtained manually with the Manual_Tracking plug-in of ImageJ

[1]. In total, 15 particles were manually tracked. For the spot detection scheme we use
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Ground truth Kalman

IPF-1000 PDAE

Figure 5.12: Ground truth and tracking results for the evaluated approaches on real
2D microscopy images (time step t = 400). The small rectangles along the trajectories
indicate the intermediate positions while the large rectangle indicates the final position.
Image intensities have been inverted.

(a) (b)

(c) (d)

Figure 5.13: Tracking results of the PDAE approach on a real 3D microscopy image
sequence (time step t = 368). Individual trajectories are shown. Z-slices of the orig-
inal volume image are displayed. Small spheres along the trajectories represent the
intermediate positions while cubes show the current position of the particles.

σLoG,xy = 1.5 voxels, σLoG,z = 1 voxel, and c = 5. All other parameters remain the same
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Figure 5.14: Tracking results of the PDAE approach on a real 3D microscopy image
sequence (time step t = 368). A z-slice (z = 6) of the original volume image is shown.
Small spheres along the trajectories represent the intermediate positions while cubes
show the current position of the particles. For visualization purposes, only the 50 previ-
ous intermediate positions are shown for each trajectory. Colors are used to distinguish
the different trajectories.

as for the 2D image sequences.

The performance of all approaches is relatively good. In terms of the tracking ac-

curacy Ptrack, the Kalman filter yields Ptrack=88%, the IPF yields Ptrack=90% while the

PDAE approach yields Ptrack=91%. Analogous to the 2D images, the proposed approach

performs better than the other approaches. In Figure 5.13 sample results for individual

trajectories obtained with the PDAE approach are presented. In Figure 5.14 all tra-

jectories computed by the PDAE approach are shown. It can be seen that the PDAE

approach deals successfully with a large number of particles.

5.2 Behavior Identification: Experimental Results

We have evaluated the performance of the layered probabilistic approach for behavior

identification described in Chapter 4 using synthetic image sequences as well as real

microscopy image sequences [69].

5.2.1 Experimental Procedures

To track virus particles in two-channel image sequences, we use our probabilistic tracking

approaches described in Chapter 3. Note that the image information from both chan-

nels is exploited simultaneously by using the measured position estimates computed on

both channels. We consider three synthetic scenarios and two real scenarios. For all

synthetic image sequences and for all real image sequences of the first scenario, we used
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independent particle filters for tracking (see Section 3.6). For the real images of the

second scenario, Kalman filters were used (cf. Section 3.5). Besides the positions of sin-

gle particles, the tracking approach determines the intensity over time y1:T . To reduce

the influence of noise on the measured intensity, the intensity statistic is computed as

a weighted mean of the intensities within a spatial neighborhood at the position of the

particle, with weights according to a 2D Gaussian function centered at the position of

the particle. Note that this approach for computing the intensity statistics is applicable

to different localization schemes (spot detection schemes). Since the dimension of our

state space is low, Ns = 1000 samples for the hybrid particle filter ensure a sufficient

support of each posterior model probability. In our experiments, the transition matrix

Π for the temporal intensity models takes the following form in accordance with the

considerations in Section 4.5.1:

Π =













0.8 0.1 0.1

0.1 0.9 0.0

0.1 0.0 0.9













. (5.5)

Similarly, the transition matrix Φ for the behaviors follows the considerations in Section

4.5.2 and is defined as follows:

Φ =



















0.5 0.2 0.2 0.1

0.2 0.4 0.2 0.2

0.2 0.2 0.4 0.2

0.1 0.2 0.2 0.5



















. (5.6)

Different values for the variances Qα according to the different intensity statistics of each

channel are specified. The initial prior probabilities P (α0) for the three different intensity

models are set to P (α0) = [ 0.7 0.15 0.15 ]T . Since most particles do not fuse, the prior

probabilities P (β0) for the four behaviors are set to P (β0) = [ 0.5 0.2 0.2 0.1 ]T .

For an experimental comparison with a previous approach, we implemented a recent

derivative-based approach [61] that exploits the first derivative of the intensity over

time. To compute the first derivative with respect to time, finite differences over a

local temporal neighborhood are used. Changes in the intensity are detected based on

a threshold Tderiv for the absolute value of the calculated derivative values. The sign of

the derivative values indicates whether the change is positive or negative. Time steps

associated with a positive or negative change are assumed to be governed by a positive

intensity change (PIC) or a negative intensity change (NIC) model, respectively. Time
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steps that are not associated with a change in intensity are assumed to follow a constant

intensity (CI) model. The approach determines the underlying behavior of the particle

by applying the composite function (h−1 ◦g)(α) (cf. Section 4.5.2) that maps the vector

α of temporal intensity models computed on both channels to a certain behavior β.

For each time step t, the evaluated approaches compute discrete values (i.e., labels)

for the intensity models αt = (α̂0
t , α̂

1
t ) as well as for the behavior βt. For each of these

three labels, we compute the labeling accuracy Plabel, which is given as the percentage

of correctly labeled time steps relative to all time steps of a single trajectory. The

labeling accuracy quantifies the performance over individual time steps. To obtain

a measure for individual trajectories, we categorize each trajectory associated with a

fusion behavior as a fusion trajectory ; otherwise the trajectory is defined as a non-

fusion trajectory. Based on these two categories, we compute the accuracy of behavior

identification Pident, the identification error Eident, as well as the precision Ppre. The

first performance measure Pident reflects the percentage of correctly identified fusion

trajectories (True Positives) relative to the number of true fusion trajectories (True

Positive Rate or recall/sensitivity). The second measure Eident is the percentage of false

fusion trajectories (False Positives) relative to the number of true non-fusion trajectories

(False Positive Rate). The precision Ppre is defined as the ratio between the number

of correctly identified fusion trajectories (True Positives) and the number of identified

fusion trajectories (True Positives and False Positives). The ground truth consists of a

set of trajectories with labels for the intensity models as well as for the behaviors. Each

trajectory is also designated as a fusion or a non-fusion trajectory. For the synthetic

data, the known intensity statistics of the objects are used to generate the ground truth.

For the real data, the ground truth is obtained by manual annotation.

5.2.2 Evaluation on Synthetic Images

We evaluate the robustness of our approach using synthetic two-channel image se-

quences. We compare the performance of our scheme with that of the derivative-based

approach [61]. We investigate the following three scenarios. In the first scenario, the

aim is to evaluate the performance of the layered approach for the task of detecting

fusion at different levels of image noise. This scenario considers single objects. In the

second scenario, we model multiple objects and the goal is to examine the capability of

the layered approach to retrieve the number of objects undergoing fusion from a set of

objects with heterogeneous behaviors. We also investigate different levels of image noise.

In the third scenario, multiple objects are considered and we examine the performance

of the layered approach as a function of the performance of the tracking scheme. In all

scenarios we render individual objects using a realistic appearance model defined by a
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First channel, t = 0 First channel, t = 16 First channel, t = 32

Second channel, t = 0 Second channel, t = 16 Second channel, t = 32

Figure 5.15: First synthetic scenario: Sample time steps of a synthetic image sequence.
The SNR is 2.8. The intensity over time of the particle in the first channel is governed
by a sigmoid model. The intensity over time in the second channel is given by an
exponential model. For visualization purposes, the image contrast has been enhanced
and the image intensities have been inverted.

2D Gaussian function (see (3.58)). We define the signal-to-noise ratio (SNR) as the dif-

ference between the peak intensity Imax of an object and the intensity of the background

Ib, divided by the standard deviation of the noise level σn ([36]). The noise model for

the intensity is assumed to follow a Poisson distribution. To model different levels of

SNR, we set the background intensity to Ib = 10 and vary the peak intensity Imax. In

total, we explore seven SNR levels: 11.6, 8.8, 6.5, 4.6, 3.5, 2.8, and 2. In the first and

second scenarios, the position (x, y) over time of individual particles is held constant. In

the third scenario, the position over time of individual particles changes and is governed

by random walk. The peak intensity Imax in each channel is varied over time according

to the simulated behaviors of the different scenarios.

5.2.2.1 First Synthetic Scenario

In the first synthetic scenario, we examine the performance of the layered approach for

identifying the behavior of a single particle undergoing fusion at different SNR levels.

For each of the seven SNR levels, we generate 30 two-channel image sequences. Each

two-channel image sequence consists of 50 time steps, and each time step includes two

images (one for each channel), where each image (16-bit) has dimensions 64×64 pixels.

We consider a stationary object positioned at the center of the image. The reason for

holding the position constant is to minimize tracking errors, which would otherwise bias

the true performance of the layered approach for fusion detection. The peak intensity
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Figure 5.16: First synthetic scenario: Ground truth for the intensity as well as for the
intensity models.

Imax of the object in the first channel is modeled using a sigmoid function (mirrored

about the y-axis) with a steep transition, which simulates the rapid decrease of the

intensity that characterizes the fusion behavior of real virus particles. The peak intensity

Imax in the second channel follows an exponential function. To generate the ground truth

labels for the temporal intensity models of each channel, we apply a threshold to the

derivative of the underlying intensity model (i.e., the sigmoid or the exponential model).

The ground truth labels for the temporal intensity models α are used for determining

the ground truth labels for the behavior β using the composite function (h−1 ◦ g)(α)

(cf. Section 4.5.2). For tracking, we use Gaussian fitting and independent particle filters

on each two-channel image sequence. We apply the derivative-based approach as well

as the layered approach to the synthetic images. For the derivative-based approach, the

threshold values Tderiv are adjusted according to the SNR level. For the layered approach,

the values for the variances Qα that regulate the temporal intensity models as well as the

noise parameter σn are also adjusted based on the SNR level. For both approaches, the

parameter values for the first channel are determined empirically so that the approaches

detect the negative change entailed by the sigmoid function without inducing too many

incorrect labels for the intensity models. The parameter values for the second channel

are chosen by taking into consideration that no significant changes in the intensity are
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Figure 5.17: First synthetic scenario: Results obtained using a derivative-based ap-
proach. The SNR is 2.8. The labeling accuracy is Plabel = 72% for the first channel and
Plabel = 100% for the second channel.

expected. For each SNR level, the parameter values are determined based on one image

sequence; these values are then used for all 30 image sequences of the corresponding

SNR level. The same parameter values are also used for the second and third synthetic

scenarios (see Sections 5.2.2.2 and 5.2.2.3 below).

Figure 5.15 displays sample images from the two channels at a SNR of 2.8. Note

the fast drop in the intensity for the object in the first channel. The original intensities

are shown in Figure 5.16 together with the true labels for the intensity models of both

channels. Although the intensity of the particle drops to the background level in the first

channel, the tracking approach determines correctly the position by exploiting the image

data from the second channel. The results for the derivative-based scheme, including the

calculated derivative values as well as the resulting labels for the intensity models, are

shown in Figure 5.17. For the first channel, one can see that the decrease in the intensity

introduced by the sigmoid model is detected, although the period corresponding to this

decrease is rather short. Because of the noise, positive changes in the intensity are also

detected. The labeling accuracy (see Section 5.2.1) is Plabel = 72% for the first channel

while for the second channel the approach achieves a labeling accuracy of Plabel = 100%.

Note that in Figure 5.17a the original intensity (solid line) represents the peak intensity

of a particle while the measured intensity (dashed line) represents a spatial average
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in the neighborhood of a particle (cf. Section 5.2.1), therefore the values are typically

lower. The results obtained by our layered approach for both channels are displayed

in Figure 5.18. The intensity for either channel is estimated well. The appropriate

intensity models are activated as the intensity fluctuates and the computed sequence

of intensity models agrees well with the sequence of true intensity models. Here the

labeling accuracy is Plabel = 86% for the first channel and Plabel = 100% for the second

channel. In comparison to the derivative-based approach, the layered approach yields a

less fragmented result for the sequence of intensity models. Also the layered approach

provides better results in the presence of noise. In Figure 5.19 we show the ground

truth labels for the behavior. The labels computed by the derivative-based approach as

well as by the layered approach are also shown. Both approaches detect the FUSION

behavior, however, the layered approach reconstructs the original labels with a higher

fidelity. A certain time lag between the original labels and the labels computed by the

layered approach can be observed. This delay is due to the adaptation time of the hybrid

particle filter and depends on the transition probabilities in Π, the variances Qα that

regulate the temporal intensity models, as well as the noise parameter σn. While the

adaptation time could be reduced, a compromise between the adaptation time and the

steady behavior of the hybrid particle filter needs to be found. The quantitative values

for the labeling accuracy confirm the superior performance of the layered approach,

since the derivative-based approach achieves a labeling accuracy of Plabel = 76% while

the layered approach attains a labeling accuracy of Plabel = 90%.

The labeling accuracy Plabel of the evaluated approaches as a function of the SNR

is presented in Figure 5.20. The diagrams display the mean and standard deviation of

the labeling accuracy for the intensity models of the individual channels as well as for

the behavior. For each SNR level, the mean and standard deviation are computed over

30 image sequences. For the first channel (see Fig. 5.20a), the layered approach yields

better results than those delivered by the derivative-based approach. For the second

channel (see Fig. 5.20b), the performance for both approaches is equally high. For

the behavior (see Figure 5.20c), the labeling performance attained by the derivative-

based approach is fair. Here, the performance for the behavior is bound by the labeling

performance on the intensity models. In comparison, the top-level Markov chain of our

layered approach copes well with potential errors in the computed intensity models. In

general, the degradation of the performance of both approaches relative to the SNR is

smooth and monotonic. This indicates that the SNR influences directly the performance

of the approaches. In summary, the results show that our layered approach performs

well for the task of behavior identification, achieving a fairly good performance at low

SNR levels.
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Figure 5.18: First synthetic scenario: Results obtained using a hybrid particle filter. The
SNR is 2.8. The labeling accuracy is Plabel = 86% for the first channel and Plabel = 100%
for the second channel.

Within this scenario we also evaluate the performance of the layered approach as a

function of the number of samples Ns. We use the same 30 two-channel image sequences

as above for SNR = 11.6 and evaluate the result for Ns = 30, 50, 100, 200, 500, and

1000. Figure 5.21a shows the mean and standard deviation of the labeling accuracy

Plabel for the first channel as a function of Ns. It can be seen that the performance of

the approach is fairly good even for a relatively low number of samples (e.g., Ns = 50).

The reason for this is that the dimension of the hybrid state space is relatively low.

However, as indicated by the error bars, the standard deviation is relatively large for a

low number of samples. Thus a larger number of samples (e.g., Ns ≥ 500) is required

to obtain robust results (in all our experiments we used Ns = 1000). A similar trend

is observed for the labeling accuracy Plabel for the second channel as well as for the

behavior (see Figs. 5.21b, 5.21c). Figure 5.22 shows how the error (1− Plabel) decreases

with an increasing number of samples Ns. Here Ns takes values between 10 and 200

with an increment of 10.
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Figure 5.19: First synthetic scenario: Ground truth for the behavior and results obtained
using a derivative-based approach as well as the layered probabilistic approach. The SNR
is 2.8. The labeling accuracy for the derivative-based approach is Plabel = 76% while for
the layered approach the labeling accuracy is Plabel = 90%.
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Figure 5.20: First synthetic scenario: Labeling accuracy Plabel as a function of the SNR
for the intensity models (first and second channel) as well as for the behavior. The
mean values (and standard deviations) of a derivative-based approach (‘Derivative’) as
well as the mean values (and standard deviations) of the layered probabilistic approach
(‘Layered’) are shown.

5.2.2.2 Second Synthetic Scenario

In the second scenario, we consider multiple objects and the goal is to study the per-

formance of the layered approach for determining fusion given a set of particles with

different behaviors. In this scenario, we generate two-channel image sequences consist-

ing of 50 time steps. The images (256×256 pixels, 16-bit) display 30 objects rendered

with a 2D Gaussian appearance model (see (2.35)). The image positions of the objects

are randomly chosen and their positions remain constant over time. For each SNR level

we generate 30 two-channel image sequences. The peak intensity Imax of each object

in the first channel is modeled by either a constant, linear, exponential, or sigmoid

function. In real microscopy images, photobleaching induces a slight decrease in the

intensity. To simulate this phenomenon in our experiment, the linear and exponential
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Figure 5.21: First synthetic scenario: Labeling accuracy Plabel as a function of the
number of samples Ns for the intensity models (first and second channel) as well as for
the behavior. The mean values (and standard deviations) of the layered probabilistic
approach (‘Layered’) are shown.
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Figure 5.22: First synthetic scenario: Error (1 − Plabel) as a function of the number of
samples Ns for the intensity models (first and second channel) as well as for the behav-
ior. The mean values (and standard deviations) of the layered probabilistic approach
(‘Layered’) are shown.

models describe a slight decrease in the intensity over time as well. Except for the sig-

moid function, similar models are used for the peak intensity Imax in the second channel,

and thus no sharp decreases in the intensity are visible in this channel. The models are

chosen randomly for each object. If for a certain object the sigmoid model is selected,

the corresponding object is assumed to undergo fusion. In this scenario, 12 out of the 30

objects exhibit a fusion behavior. Figure 5.23 displays sample image sections from both

channels at a SNR of 2.8. One can observe a significant reduction in the intensity of

the objects. We apply the tracking approach to each two-channel image sequence. We

use the same parameter values from the first synthetic scenario for the derivative-based

approach approach as well the for layered approach.

For each image sequence, we compute the mean labeling accuracy P̄label, which is

defined as the mean of the labeling accuracy Plabel obtained over all 30 objects. Then
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First channel, t = 0 First channel, t = 32 Second channel, t = 0 Second channel, t = 32

Figure 5.23: Second synthetic scenario: Sample time steps of a synthetic image sequence.
The SNR is 2.8. For visualization purposes, the image contrast has been enhanced and
the image intensities have been inverted.
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Figure 5.24: Second synthetic scenario: Mean labeling accuracy P̄label as a function of the
SNR for the intensity models (first and second channel) as well as for the behavior. The
mean values (and standard deviations) of a derivative-based approach (‘Derivative’) as
well as the mean values (and standard deviations) of the layered probabilistic approach
(‘Layered’) are shown.

we compute the mean values and standard deviations for P̄label over all 30 image se-

quences for the temporal intensity models in both channels as well as for the behavior.

These values are presented in Figure 5.24. Overall for both approaches the labeling

performance for the intensity models as well as for the behavior is above 80% for all

SNR levels. For example, at a SNR of 2.8 the derivative-based approach achieves a

mean value for P̄label of approximately 86% for the behavior while the layered approach

attains a mean value for P̄label of 90%. The layered approach outperforms generally the

derivative-based approach. The performance degrades smoothly for both approaches as

the SNR decreases. In this scenario we also compute the accuracy of behavior identifica-

tion Pident, the identification error Eident, as well as the precision Ppre (see Section 5.2.1)

as a function of the SNR. While Plabel is relatively tolerant to errors in the computed la-

bels for the behavior, Pident, Eident, as well as Ppre are relatively sensitive to such errors.

As such, a high labeling accuracy Plabel for the behavior may not necessarily correlate

117



0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

SNR

P
id

e
n

t

 

 

Derivative

Layered

(a) Pident

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

SNR

E
id

e
n

t

 

 

Derivative

Layered

(b) Eident

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

SNR

P
p

re

 

 

Derivative

Layered

(c) Ppre

Figure 5.25: Second synthetic scenario: Performance in terms of the identification accu-
racy Pident, identification error Eident, and the precision Ppre as a function of the SNR.
The mean values (and standard deviations) of a derivative-based approach (‘Deriva-
tive’) as well as the mean values (and standard deviations) of the layered probabilistic
approach (‘Layered’) are shown.

with a high accuracy of behavior identification Pident, a high precision Ppre, or conversely

with a low identification error Eident. The mean and standard deviation of these mea-

sures computed over 30 image sequences per SNR level are shown in Figure 5.25. The

derivative-based approach performs rather poorly in terms of Pident. As the SNR de-

creases, the identification accuracy decreases, i.e., the ability of the approach to identify

particles undergoing fusion is hampered by the noise. In terms of the identification error

Eident, the approach yields a large number of false positives, even at high SNR levels.

In other words, a large percentage of non-fusion trajectories are mistakenly identified as

fusion trajectories. The low precision Ppre also indicates that the number of correctly

identified fusion trajectories relative to the number of false positives is low, especially at

low SNR levels. The layered approach provides a better performance. The accuracy of

behavior identification Pident is close to 100% down to a SNR of approximately 3.5. Like-

wise, the identification error Eident remains below 22% down to a SNR of approximately

3.5. Below a SNR of 3.5 the accuracy of behavior identification Pident decreases rather

sharply. Nonetheless, the identification error Eident remains relatively small, which is

a favorable property because, while not all true fusion trajectories might be retrieved,

the approach also delivers fewer false positives. The precision Ppre shows that at large

SNR levels the approach identifies fusion trajectories without incurring a relatively large

number of false positives. At lower SNR levels the precision Ppre decreases relatively

strongly due to the increase in the number of false positives. Note that in Figure 5.25a,

at low SNR levels, the derivative-based approach achieves a higher Pident compared to

the layered approach. This is because at low SNR levels the derivative-based approach

(due to its sensitivity to noise) considers most trajectories as fusion trajectories, i.e.,

the approach correctly identifies most true fusion trajectories (high Pident), but it also
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Figure 5.26: Third synthetic scenario: Performance of the tracking approach in terms
of the linking error Elink as a function of the number of objects Nobj. The mean values
(and standard deviations) of a tracking approach based on independent particle filters
(‘Particle Filter’) are shown.
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Figure 5.27: Third synthetic scenario: Performance in terms of the identification accu-
racy Pident, identification error Eident, and the precision Ppre as a function of the linking
error Elink. The mean values (and standard deviations) of the layered probabilistic
approach (‘Layered’) are shown.

considers a large number of non-fusion trajectories as fusion trajectories (high Eident),

which is unfavorable. The poorer performance of the derivative-based approach is also

reflected by the significantly lower precision Ppre compared to the layered approach. In

general, the results suggest that the layered approach identifies fusion fairly well given

a set of objects exhibiting different behaviors.

5.2.2.3 Third Synthetic Scenario

We also evaluate the performance of the layered approach as a function of the perfor-

mance of the tracking approach. We generate two-channel image sequences consisting

of 50 time steps. The images have dimensions 256×256 pixels (16-bit). To control the

performance of the tracking approach, we vary the number of objects in the images using

Nobj = 30, 50, 100, 150, 200, 250, 300, 400, and 500. The higher Nobj, the higher the
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object density and thus more tracking errors occur. The initial image position of each

object is random and the motion is governed by random walk. The peak intensity Imax

of each object in each channel is modeled as in the second synthetic scenario (cf. Sec-

tion 5.2.2.2) and we use SNR = 11.6. For each number of objects Nobj, we generate

30 two-channel image sequences (thus in total we use 270 image sequences). We apply

our tracking approach based on independent particle filters to each two-channel image

sequence. To quantify the tracking performance, we calculate the linking error Elink

[202], [199], which is defined as:

Elink = 1− nlinks,correct

nlinks,total

, (5.7)

where nlinks,correct is the number of correct links and nlinks,total is the number of true

links. A link corresponds to a displacement vector between two consecutive positions of

a trajectory. A correct link corresponds to a displacement vector between two positions

close to two consecutive positions of a true trajectory. We apply the layered approach

for behavior identification using the computed trajectories. We use the same parameter

values for the layered approach as in the first and second synthetic scenarios.

For each number of objects Nobj, we compute the mean value for Elink over the 30

image sequences (see Figure 5.26). It can be seen that Elink increases linearly with Nobj

and that the tracking approach copes relatively well with a large number of objects (e.g.,

for Nobj = 500, Elink = 18%). We also determine the accuracy of behavior identification

Pident, the identification error Eident, as well as the precision Ppre as a function of Elink.

The result in Figure 5.27a shows that Pident degrades slowly as Elink increases. In

Figure 5.27b, Eident exhibits a linear relation with Elink which suggests that the number

of false positives is directly influenced by tracking errors. The precision Ppre (Figure

5.27c) decreases as Elink increases. To summarize, the layered approach copes well with a

small number of tracking errors. For a larger number of tracking errors, the performance

degrades, however, the degradation is smooth.

5.2.3 Evaluation on Real Microscopy Images

We have also applied the layered approach to real microscopy image sequences displaying

HIV-1 particles. We have considered two scenarios each involving a different technique

for fluorescently labeling the virus particles yielding different kinds of image data. We

have carried out an experimental comparison with a derivative-based approach [61].

In addition, we perform a comparison with a trajectory-based approach (cf. [70]) that

compares the endpoints of trajectories obtained by tracking using a single channel with

the endpoints of trajectories obtained by tracking using two channels. A fusion event
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Table 5.5: First real scenario: Description of the real image sequences.

Sequence No. of evaluated trajectories No. of fusion trajectories

1 20 1

2 20 0

3 20 0

4 20 0

5 20 0

is identified when the endpoint of a single-channel trajectory differs from the endpoint

of a corresponding two-channel trajectory. Since this approach based on trajectory

endpoints only takes into consideration spatial information, it cannot determine the oc-

curring temporal intensity models of an individual particle. Thus Plabel for the intensity

models cannot be calculated. Likewise, since the behaviors are defined in terms of the

intensity models (see Section 4.5.2), the occurring behavior for each time step could not

be determined and so Plabel for the behavior is not computed. Since the approach based

on trajectory endpoints categorizes each trajectory as a fusion or non-fusion trajectory,

we report results for Pident, Eident, and Ppre.

5.2.3.1 First Real Scenario

In the first real scenario, the outer shell (viral matrix) of individual pseudotyped HIV-1

particles is labeled with an enhanced green fluorescent protein (MA.eGFP) while the

inner core part (viral protein R) is tagged with the red fluorescent protein (mRFP.Vpr).

The HIV-1 particles are pseudotyped with the glycoprotein of the vesicular stomatitis

virus (VSV-G) and incubated with HeLa cells [108]. Images are acquired using a Zeiss

Axiovert 200 M microscope with a Roper Scientific Cascade II EM-CCD. A pair of

images (one per channel) is recorded every 100 ms. Upon fusion, the label attached

to the outer shell dissolves, and thus a decrease in the intensity in the corresponding

channel is observed. The acquired image sequences consist of 200-400 two-channel im-

ages (512×512 pixels; 16-bit). Within this scenario, we evaluate 5 image sequences. To

track the virus particles in the two-channel image sequences, we use Gaussian fitting

and independent particle filters [70]. Ground truth for the intensity labels is obtained

manually for 20 of the computed trajectories within each image sequence by inspecting

the intensity over time of the tracked virus particles. The labels for the behavior are

computed via the composite function (h−1 ◦g)(α) on the manually determined intensity

models α. Based on the labels for the behavior, trajectories are categorized as fusion
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Figure 5.28: First real scenario: Tracking results for the real image sequence “Sequence
1”. The time step is t = 199. For visualization purposes, the image contrast has been
enhanced and the image intensities have been inverted.

or non-fusion trajectories; see Table 5.5. For the evaluation, the parameter values for

the derivative-based approach as well as for the layered approach are kept fixed for all

image sequences.

Images from Sequence 1 in Table 5.5 and the corresponding tracking results are

shown in Figure 5.28. A particle undergoing fusion is displayed in Figure 5.29. The

ground truth labels for the intensity models for either channel reflect a decrease in the

intensity observed in the first channel that corresponds to fusion (see Figure 5.30a)

as well as an increase in the intensity in the second channel (see Figure 5.30b). The

corresponding changes in the intensity are illustrated in Figure 5.31a and Figure 5.31d,

where the measured intensity over time computed for each channel is shown. The

computed derivative values for the first channel as well as for the second channel are

shown in Figure 5.31b and Figure 5.31e, respectively. The results for the derivative-based

approach for the estimated intensity models for the first and second channels are shown

in Figure 5.31c and Figure 5.31f. Qualitatively, the derivative-based approach does not

recover very well the motif underlying the true sequence of the intensity models. In

particular, wrong labels scattered throughout the computed sequences of the intensity

models lead to fragmented segments within these sequences. Relative to the ground

truth labels, the derivative-based approach achieves a labeling accuracy of Plabel = 92%

for the intensity models of the first channel and Plabel = 94% for the intensity models

of the second channel. In comparison, the layered approach retrieves the underlying
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Table 5.6: First real scenario: Results for real image sequences in terms of the mean
labeling accuracy P̄label [%] for the temporal intensity models in both channels as well
as for the behavior. The mean values and standard deviations are also shown.

Derivative Layered

Sequence 1st Ch. 2nd Ch. Behavior 1st Ch. 2nd Ch. Behavior

1 96 94 87 98 97 93

2 99 96 95 100 98 98

3 99 89 85 100 97 93

4 94 88 82 96 91 86

5 97 92 91 98 95 95

Mean 97 92 88 98 96 93

Std. Dev. 2 3 5 1 3 5

motif relatively well (cf. Figure 5.32c and Figure 5.32f). Note the timely activation of

the appropriate intensity models (cf. Figure 5.32b and Figure 5.32e). Accordingly, the

approach achieves a labeling accuracy of Plabel = 96% for the first channel and Plabel =

95% for the second channel. Figure 5.33 displays the ground truth labels for the behavior

as well as the labels for the behavior computed by the derivative-based approach as

well as by the layered approach. Both approaches identify the fusion behavior. For

the derivative-based approach, the fragmentation observed in the sequences of intensity

models carries over to the sequence of behaviors. This leads to a lower labeling accuracy

for the behavior (Plabel = 87%). In contrast, the layered approach yields fairly accurate

results, as reflected by a higher labeling accuracy for the behavior (Plabel = 95%).

Table 5.6 displays the performance of the derivative-based scheme as well as the

layered approach in terms of the mean labeling accuracy P̄label for the intensity models

on both channels as well as for the behavior. The mean and standard deviation over

all five two-channel image sequences are shown as well. Overall, the labeling accuracy

for the intensity models is quite high for both approaches (the mean value for P̄label

is above 90%). For the behavior, the derivative-based scheme yields a mean value for

P̄label of 88% (standard deviation of 5%) while the layered approach delivers a mean

value for P̄label of 93% (standard deviation of 5%). In all sequences, the layered ap-

proach achieves a better labeling performance than the derivative-based approach. The

accuracy of behavior identification Pident, the identification error Eident, as well as the

precision Pident over all sequences are shown in Table 5.7. For instance, for Sequence 1
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Second channel, t = 0 Second channel, t = 40 Second channel, t = 80

Figure 5.29: First real scenario: Tracking results for a virus particle undergoing fu-
sion. For visualization purposes, the image contrast has been enhanced and the image
intensities have been inverted.
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Figure 5.30: First real scenario: Ground truth for the intensity models.

we obtain Pident = 100% for the derivative-based approach, for the approach based on

trajectory endpoints, as well as for the layered approach. The derivative-based approach

yields an identification error of Eident = 58% while the approach based on trajectory

endpoints incurs Eident = 5%. The reason for the high value of Eident for the derivative-

based approach is that this approach is quite sensitive to image noise. The approach

based on trajectory endpoints in comparison does not directly evaluate the image in-

tensities. However, this approach also delivers a certain number of false positives. In

comparison, the layered approach achieves Eident = 0%. The precision of the derivative-

based approach (Ppre = 8%) also reflects the larger number of false positives generated

by this approach. The approach based on trajectory endpoints yields Ppre = 50%. A

higher precision is achieved by the layered approach (Ppre = 100%). The other image
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Figure 5.31: First real scenario: Results obtained using a derivative-based approach.
The labeling accuracy is Plabel = 92% for the first channel and Plabel = 94% for the
second channel.

sequences studied within this scenario do not display particles undergoing fusion and

therefore Pident is not calculated. For the identification error Eident, the derivative-based

approach yields a mean value of Ēident = 37% (standard deviation of 13%). The val-

ues for Eident of the derivative-based approach are thus in accordance with the results

obtained for the second synthetic scenario (cf. Figure 5.25), where the derivative-based

approach yielded a large identification error Eident. In comparison, the approach based

on trajectory endpoints achieves a mean value of Ēident = 25% (standard deviation of

15%). This suggests that this approach yields a lower number of false positives compared

to the derivative-based approach. The layered approach achieves the lowest mean value

for the identification error (Ēident = 0%, standard deviation of 0%)) and the result is

in agreement with the results obtained for the synthetic images (cf. Figure 5.25), where

Eident of the layered approach is significantly lower compared to the derivative-based

approach. Because some image image sequences do not display fusion particles, and

because in those cases the derivative-based approach as well as the approach based on

trajectory endpoints yield a certain number of false positives, the precision Ppre of these

approaches is zero in these cases. Because the layered approach does not yield false

positives, Ppre cannot be calculated (division by zero). A more comprehensive analysis

of the performance in terms of Pident as well as Ppre requires a larger number of image
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Figure 5.32: First real scenario: Results obtained using a hybrid particle filter. The
labeling accuracy is Plabel = 96% for the first channel and Plabel = 95% for the second
channel.
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Figure 5.33: First real scenario: Ground truth for the behavior and results obtained
using a derivative-based approach as well as the layered probabilistic approach. The
labeling accuracy for the derivative-based approach is Plabel = 87% while for the layered
approach the labeling accuracy is Plabel = 95%.
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Table 5.7: First real scenario: Results for real image sequences in terms of the accuracy
for behavior identification Pident [%], the identification error Eident [%], and the precision
Ppre [%]. The mean values and standard deviations are also shown. Since in certain
image sequences no fusion events occurred, the corresponding Pident values could not
be computed (–). In cases where no fusion events occurred nor false positives were
obtained, the Ppre values could not be computed.

Derivative Trajectory Endpoints Layered

Sequence Pident Eident Ppre Pident Eident Ppre Pident Eident Ppre

1 100 58 8 100 5 50 100 0 100

2 – 35 0 – 20 0 – 0 –

3 – 30 0 – 40 0 – 0 –

4 – 35 0 – 40 0 – 0 –

5 – 25 0 – 20 0 – 0 –

Mean – 37 2 – 25 10 – 0 –

Std. Dev. – 13 4 – 15 22 – 0 –

sequences displaying particles undergoing fusion. Since we observed very few fusion

events using the fluorescent labeling technique (MA.eGFP, mRFP.Vpr) [108] within this

scenario, an improved labeling technique was developed that led to a larger number of

fusion occurrences.

5.2.3.2 Second Real Scenario

In the second real scenario, the outer shell (lipid envelope) of HIV-1 particles pseu-

dotyped with the Env glycoprotein of the ecotropic murine leukemia virus is labeled

with the yellow fluorescent protein (MLVEnv.YFP). The mCherry fluorescent protein

(MA.mCherry) is attached to the inner part (viral matrix) [103]. Images are acquired

using the same wide-field microscopy setup (but in TIRF mode) as in the first real

scenario. Here, the acquisition rate for a pair of images is 2 seconds, which experimen-

tally was found to be sufficient. Fusion entails a loss of the label attached to the outer

shell (lipid envelope) along with a decrease in intensity in the corresponding channel.

However, a decrease in intensity in both channels is also indicative of fusion when using

this labeling strategy. This variant is accommodated into the evaluated approaches by

adjusting the function g(α). We evaluate 8 image sequences. We use our approach

based on Kalman filters to track the virus particles (cf. [70]). The ground truth for the

fusion events is determined manually. A summary of the real image data is shown in
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Figure 5.34: Second real scenario: Tracking results for the real image sequence “Sequence
2”. The time step is t = 99. For visualization purposes, the image contrast has been
enhanced and the image intensities have been inverted.

Table 5.8.

As an example, images from Sequence 2 in Table 5.8 and the respective tracking

results are shown in Figure 5.34. Notwithstanding the relatively high object density, the

tracking approach determines successfully the trajectories of the virus particles. A virus

particle undergoing fusion is shown in Figure 5.35. In this case, the contrast of the first

channel is much lower, which entails subtler changes in the intensity. As fusion occurs,

the intensity drops almost simultaneously in both channels. Accordingly, the ground

truth labels for the intensity models for both channels include concurrent time periods

where the ‘Negative Intensity Change’ (NIC) model is dominant (see Figure 5.36). The

measured intensity for both channels shown in Figure 5.37a and Figure 5.37d reflects

more explicitly the aforementioned drop in intensity. Here the computed derivative

values are very noisy (Figure 5.37b and Figure 5.37e) and consequently the derivative-

based approach yields fragmented sequences for the estimated intensity models (Figure

5.37c and Figure 5.37f). The labeling accuracy for the intensity models is Plabel = 75%

for the first channel and Plabel = 91% for the second channel. The results obtained by the

layered approach are displayed in Figure 5.38. The approach achieves Plabel = 88% for

the first channel and Plabel = 85% for the second channel. Thus, the result for the first

channel is much better. The reason for the lower performance for the second channel is

that the hybrid particle filter did not adapt quickly enough to the fusion-induced change.
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Table 5.8: Second real scenario: Description of the real image sequences.

Sequence No. of evaluated trajectories No. of fusion trajectories

1 20 2

2 20 1

3 20 2

4 20 1

5 20 1

6 20 1

7 20 2

8 20 1

First channel, t = 0 First channel, t =
60

First channel, t =
99

Second channel,
t = 0

Second channel,
t = 60

Second channel,
t = 99

Figure 5.35: Second real scenario: Tracking results for a virus particle undergoing fu-
sion. For visualization purposes, the image contrast has been enhanced and the image
intensities have been inverted.

This could be addressed by choosing different values for the parameters (e.g., the noise

parameter σn). However, the adaptation time and the steady behavior of the hybrid

particle filter need to be balanced. The ground truth labels for the behavior of this

particle are shown in Figure 5.39. For the derivative-based approach erroneous labels

for the intensity models computed on either channel are propagated to the labels for the
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Figure 5.36: Second real scenario: Ground truth for the intensity models.
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Figure 5.37: Second real scenario: Results obtained using a derivative-based approach.
The labeling accuracy is Plabel = 75% for the first channel and Plabel = 91% for the
second channel.

behavior. Accordingly, the labeling performance for the behavior is Plabel = 74%. For

the layered approach, the computed behaviors are in better agreement with the ground

truth labels yielding a significantly higher labeling accuracy of Plabel = 87%.

As shown in Table 5.9, the overall labeling accuracy for the derivative-based approach

in this scenario is worse compared to the first real scenario (see Table 5.6). The reason

for this is that in the second real scenario the changes in the intensity corresponding to

fusion are smaller. To detect such weaker changes, the threshold applied to the derivative

values has to be lowered. Because of the noise, the low threshold leads to a larger number
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Figure 5.38: Second real scenario: Results obtained using a hybrid particle filter. The
labeling accuracy is Plabel = 88% for the first channel and Plabel = 85% for the second
channel.
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Figure 5.39: Second real scenario: Ground truth for the behavior and results obtained
using a derivative-based approach as well as the layered probabilistic approach. The
labeling accuracy for the derivative-based approach is Plabel = 74% while for the layered
approach the labeling accuracy is Plabel = 87%.
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Table 5.9: Second real scenario: Results for real image sequences in terms of the mean
labeling accuracy P̄label [%] for the temporal intensity models in both channels as well
as for the behavior. The mean values and standard deviations are also shown.

Derivative Layered

Sequence 1st Ch. 2nd Ch. Behavior 1st Ch. 2nd Ch. Behavior

1 95 86 90 97 97 98

2 90 90 88 98 98 99

3 66 46 56 96 90 95

4 98 98 97 98 99 99

5 86 99 92 97 99 98

6 100 100 100 100 100 100

7 88 98 92 89 98 98

8 82 62 71 96 96 98

Mean 88 85 86 96 97 98

Std. Dev. 11 20 15 3 3 1

Table 5.10: Second real scenario: Results for real image sequences obtained in terms
of the accuracy for behavior identification Pident [%], the identification error Eident [%],
and the precision Ppre [%]. The mean values and standard deviations are shown, too.

Derivative Trajectory Endpoints Layered

Sequence Pident Eident Ppre Pident Eident Ppre Pident Eident Ppre

1 50 83 6 50 22 20 50 0 100

2 100 100 5 100 16 25 100 0 100

3 100 100 10 50 17 25 100 0 100

4 100 26 17 0 0 – 100 5 50

5 100 95 5 100 11 33 100 11 33

6 100 11 33 100 32 14 100 0 100

7 100 83 12 0 6 0 100 17 40

8 100 100 5 100 42 11 100 11 33

Mean 94 75 12 62 18 18 94 5 70

Std. Dev. 18 36 10 44 14 11 18 7 33
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of errors for the labels of the intensity models. The errors in the labels for the intensity

models are propagated to the labels for the behavior, and thus the performance of

this approach suffers. Concretely, the mean value of P̄label for the intensity models as

well as for the behaviors is below 90%. The layered approach instead reconstructs the

underlying intensity via the proposed intensity models. A good reconstruction enhances

the dynamic properties of the underlying signal, which leads to a correct identification

of the dominant intensity models. Correct identification of the intensity models in turn

provides improved predictions for the intensity at subsequent time steps. This indicates

that the estimates for the intensity and the intensity models benefit from the joint

estimation process embodied by the stochastic hybrid system. For the layered approach,

the mean value of P̄label for the intensity models as well as for the behaviors is above 95%.

In Table 5.10, the performance of the approaches (and that of the approach based on

trajectory endpoints) is further reflected by the accuracy of behavior identification Pident,

the identification error Eident, as well as the precision Ppre computed for all eight image

sequences. Here, the derivative-based approach as well as the layered approach achieve a

mean accuracy of behavior identification of P̄ident = 94% (standard deviation of 18% for

both approaches). That is, both approaches recover well the true fusion trajectories. In

comparison, the approach based on trajectory endpoints yields P̄ident = 62% (standard

deviation of 44%). The reason for this is that this approach assumes that fusion is

described by a decrease in intensity in a single channel only. In this scenario, however,

fusion is described by a decrease in intensity in both channels.

For the identification error Eident, the derivative-based approach delivers a mean

value of Ēident = 75% (standard deviation of 36%), which further confirms the sensitivity

of the approach to the image noise. The result for the approach based on trajectory

endpoints is moderate (Ēident = 18%, standard deviation of 14%). The best result is

achieved by the layered approach (Ēident = 5%, standard deviation of 7%).

In terms of the precision Ppre, the derivative-based approach achieves a mean value

of P̄pre = 12% (standard deviation of 10%), where the low precision may be attributed

to the large number of false positives. The approach based on trajectory endpoints also

yields a low precision (P̄pre = 18%, standard deviation of 11%), which can be explained

by the low number of correctly identified fusion trajectories. The layered approach

achieves P̄pre = 70% (standard deviation of 33%), which highlights the improved perfor-

mance compared to previous approaches. Overall, the results suggest that the layered

approach is well suited for the task of identifying fusion of HIV-1 particles.

The approach was implemented in Java within our software ViroTracker ([70]). The

computation time of the approach scales linearly with respect to the number of samples

for the hybrid particle filter and quadratically with respect to the number of states in
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GFP, t = 0 GFP, t = 124

mCherry-LA, t = 0 mCherry-LA, t = 124

Figure 5.40: Real microscopy images displaying HSV replication compartments (GFP
channel) inside a nucleus (mCherry-LA channel). Maximum intensity projections are
shown.

the top-most Markov chain (i.e., number of behaviors). For example, the computation

time for one trajectory comprising 100 time steps and using 1000 samples is ca. 1 second

on an AMD Opteron (2.3 GHz) CPU running Linux.

5.3 Tracking and Motion Analysis of HSV Compart-

ments

We have also applied our tracking approaches to 3D image sequences displaying herpes

simplex virus (HSV) replication compartments [35]. Viral chromosomes are replicated

in intranuclear structures called replication compartments. Studying the motion of

the replication compartments reveals the reproduction strategies of the viruses. In

particular, the mechanisms and functions underlying the motion of HSV compartments

are not well known. To observe the motion of HSV compartments, the structures are

tagged with the GFP label while the nuclei within which the compartments are located

are tagged with the mCherry-LA label. A Zeiss Axiovert 200M microscope was used

to acquire a pair of image stacks (one stack corresponding to the compartments and

one stack corresponding to the nucleus) every minute over an observation period of up

3 hours. At each time step, stacks of up 32 images (z-slices) with dimensions of up to

512 × 512 pixels (16-bit) were acquired. Sample images from both channels are shown
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Original, t = 0 Original, t = 124

Registered, t = 0 Registered, t = 124

Figure 5.41: Original images and registration results. The nuclei are volume rendered
in green.

in Figure 5.40. In total, we analyzed 26 image sequences.

The replication compartments are located within the nucleus. Since the nucleus

undergoes motion, the observed motion of the compartments is a superposition of the

nucleus motion and the compartments’ motion. Figure 5.40 displays an example of

a nucleus undergoing a large translational motion. To remove the translational and

rotational motion of the observed nuclei, we developed a rigid registration approach.

With this approach, the following steps were carried out. For each time step of an

image sequence, we detected the image region corresponding to the nucleus using a 3D

Gaussian filter and an intensity threshold. The values for the standard deviations σF,xy

and σF,z of the Gaussian filter were chosen based on the size of the nucleus (typically,

we used values of σF,xy = 10 voxels and σF,z = 2 voxels). The position of the nucleus

was determined by computing the center of mass of the corresponding voxel positions,

whereas the orientation was obtained by diagonalizing the covariance matrix of the

voxel positions. Each time step t of the image sequence was aligned to time step zero

by computing a rigid transformation based on the position and orientation of the nu-

cleus at both time steps. Subsequently, we applied an intensity-based rigid registration

scheme [217]. Because of photobleaching, the intensities of the first time step differed

strongly from those of the latter time steps. To cope with this, we applied the reg-

istration approach to consecutive time steps of the image sequence, thereby obtaining

a rigid transformation between time steps t and t + 1. By recursively concatenating

the sequential transformations, we computed the required transformation between time

steps zero and t. We applied this registration approach to the images in the mCherry
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Figure 5.42: Trajectories of HSV compartments as determined by our tracking approach.
Trajectories are rendered as spheres (positions) and sticks (displacement vectors). The
numbers identify each trajectory. The compartments are represented via the green
surfaces. A z-slice of the original images (z = 21) is shown. The time step is t = 31.

channel. The resulting transformations were also applied to the corresponding images

in the GFP channel. Sample registration results for the images shown Figure 5.40 are

displayed in Figure 5.41. We used the registered 3D image sequences as input for the

tracking approach. Note that the appearance of the replication compartments does not

resemble well a Gaussian function. The tracking approaches based on the particle filter

as well as on the PDAE approach assume that the appearance of the objects is well

described by a Gaussian function. Since the appearance of the compartments does not

conform well to a Gaussian function, we used an approach based on the spot-enhancing

filter (see Section 3.1) for localization and the Kalman filter (see Section 3.5 as well

as Table 5.3) with a Brownian motion model for estimating the position over time of

the compartments. Tracking results for the registered images shown in Figure 5.41 are

presented in Figure 5.42. It can be seen that the tracking approach yields good results.

To determine the motion type of individual compartments, we developed a hierar-

chical approach based on both the anomalous diffusion coefficient α [165] as well as the

3D relative anisotropy κ2 [189], [164]. To obtain an estimate for the anomalous diffusion

coefficient α of a trajectory, we computed the mean-square displacement (MSD) as a

function of the time interval ∆t. We fit the anomalous diffusion model MSD = 6D∆tα

[165] to the calculated MSD values, thereby obtaining an estimate for the diffusion co-

efficient D as well as for the anomalous diffusion coefficient α. To improve the accuracy

of the estimates, we restricted the MSD calculations to time intervals t smaller than

Nsteps/3, where Nsteps is the total number of available positions in the trajectory. To

characterize the shape of the trajectory by its 3D relative anisotropy κ2, we first calcu-
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Figure 5.43: Sample 3D trajectories and their ellipsoids of gyration are shown along with
their κ2 values, which are defined as a function of the squared length of the semiaxes
of the ellipsoid. Trajectories I and II represent non-directed motion, and trajectory III
represents directed motion. Corresponding MSD curves are shown in Figure 5.44.

lated the squared radius of gyration s2, the asphericity b, and the acylindricity c using

the eigenvalues of the covariance matrix of the trajectory’s positions. Based on these

shape measures, we calculated the relative shape anisotropy:

κ2 =
b2 + 0.75c2

s4
. (5.8)

Note that κ2 ∈ [0, 1], where values close to 0 correspond to trajectories with an isotropic

shape (i.e., trajectories exhibiting random motion) while values tending towards 1 cor-

respond to trajectories with an anisotropic shape (i.e., trajectories displaying directed

motion). Thus, we used κ2 as our criterion to detect directed motion using a threshold

value of κ2 = 0.5. This threshold value was determined using simulated trajectories

where the true motion type of the trajectories was known. Our hierarchical approach

for determining the motion type of the compartments, therefore, first used κ2 to distin-

guish trajectories exhibiting directed motion from those displaying random motion. We

then used α to classify the latter into confined diffusion (α < 0.1), obstructed diffusion

(0.1 ≤ α < 0.9), or simple diffusion (α ≥ 0.9) (see also Bacher et al. [10]). Sam-

ple trajectories of HSV compartments and an illustration of the motion parameters κ2

as well as α are shown in Figures 5.43 and 5.44. A two-sample Kolmogorov-Smirnov

test was used to determine the statistical significance of differences between different

experimental conditions in the cumulative distribution of κ2 values.

We analyzed the behavior of the compartments under different experimental condi-
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Figure 5.44: Corresponding MSD curves (blue) and fitted curves (red) of the trajectories
in Figure 5.43 are shown. Based on their α-values, trajectories I and II are further
classified as obstructed diffusion and simple diffusion, respectively.

tions. Under the control (wildtype, WT) conditions, we determined the position over

time of 23 compartments and applied our hierarchical motion classification scheme. It

turned out that the majority (74%) of replication compartments undergo directed mo-

tion (see WT in Figure 5.45). No compartment displayed confined diffusion. Thus

the replication compartments move via an active process. To determine which nuclear

structures are involved in the motion process, cells were treated with the Butanedione

monoxime (BDM) drug that impairs the function of the nuclear myosin I (NMI). Cells

were also treated with the marine toxin Latrunculin A (Lat-A), which affects the func-

tion of the nuclear actin. Under both conditions we observed a decrease in the percentage

of compartments exhibiting directed motion as well as an increase in the percentage of

compartments exhibiting obstructed diffusion. To further analyze the influence of nu-

clear myosin I (NMI) on the motion of the compartments, cells were transfected with the

mutant NMI-E407V, which has an impaired motor activity. Under this condition again

a decrease in the percentage of compartments exhibiting directed motion was observed.

To further analyze the influence of nuclear actin, cells were transfected with the mutant

actin-G13, which inhibits long-range movement of chromosomal loci. This condition also

led to a decrease in the number of compartments undergoing directed motion. Cells were

also transfected with a nuclear-targeted wild-type actin (actin-NLS), which also led to

a reduction of the number of compartments exhibiting directed motion. The statistics

obtained for each condition are shown in Figure 5.45. In addition, transcription was

studied. Transcription is a process where a portion of a DNA nucleotide sequence (a

gene) is copied into a RNA nucleotide sequence [3]. Transcription plays presumably

a role in the movement of chromosomal loci. Cells were treated with the RNA pol II
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Figure 5.45: Distribution of motion types of HSV replication compartments under dif-
ferent experimental conditions. Trajectories were classified as directed motion (red),
simple diffusion (green), or obstructed diffusion (blue). The distributions of motion
types are displayed as a percentage of the total number of replication compartments in
each condition.

inhibitor, α-amanitin, which also led to a decrease in the percentage of compartments

exhibiting directed motion. In contrast, the protein synthesis inhibitor, cycloheximide,

did not lead to a decrease in the number of compartments exhibiting directed motion.

These results indicate that the motion of HSV replication compartments depends on

nuclear actin, myosin, and ongoing transcription [35].

5.4 Tracking Microtubule Tips in Xenopus laevis Neu-

rons

We have applied our tracking approaches to 2D image sequences displaying microtubule

ends (tips) in nerve cells (neurons) [122]. Neural development drives the formation

of the nervous system. Within the formation process, neurons connect to each other

thereby forming a network of neurons. The neuron thus receives and transmits signals

to other neurons. Within a single neuron, signals are transmitted over a large fiber

called the axon. During the growth phase of the neuron, the axon extends and at

the tip of the axon a cone-like structure is visible [3]. The dynamical behavior of the

growth cone plays an important role in neural development. Microtubules (MT) are

involved in the guidance of the growth cone. The understanding of the precise role of

MT dynamics in axon growth is limited. Fluorescent labeling of the MT ends allow

observing the motion of the MT ends during the growth process. Tracking the MT ends

allow an objective quantification of the motion properties of the MT ends under different
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Figure 5.46: Real microscopy images displaying MT tips (dark spots) within a growth
cone. Image intensities have been inverted for visualization purposes. The time step is
t = 100.

conditions. Microtubules, being elongated cylindrical-like structures, have two ends and

these are denoted as - and + ends, which denote their ‘polarity’. In our case, the +

ends were labeled with the end-binding protein 3 (EB3-mCherry). The focus is to study

the relation of MT motion and the cytoplasmic linker associated protein (XCLASP1) in

Xenopus laevis (African clawed frog) neurons. Images were acquired with a Nikon TiE

microscope equipped with a Hamamatsu ORCA CCD camera at a rate of one image

every 3 seconds. The dimensions of the images are typically 512 × 512 pixels (16-bit)

but larger images are also acquired (e.g., 1344× 1024 pixels). A sample image is shown

in Figure 5.46. We have analyzed 122 image sequences in total.

To track the microtubuli tips we applied the PDAE approach (see Section 3.7).

We used an anisotropic 2D Gaussian function to describe the appearance of a particle

(cf. Section 3.8.2.1). We used a directed motion model (cf. Section 3.8.2.2) as well as

circular sector measurements (cf. Section 3.8.2.4) to cope with the dynamic stability of

the microtubules. 2D Gaussian fitting was used for localization. Sample tracking results

are shown in Figure 5.47. It can be seen that the approach yields good results.

Based on the tracking results, parameters describing the motion of individual MT

tips were computed, viz: mean displacement, MT lifetime (as reflected by the temporal

duration of the corresponding trajectory), as well as the spatial extent covered during

the motion of the MT. The statistics revealed the motion patterns of the MT tips in

different parts of the neuron: axon, growth cone, as well as filamentous protrusions

coming out of the growth cone (filopodia). It turned out that the microtubules slow

as they transit into the growth cone’s periphery. The motion statistics obtained under

control and treatment conditions were compared. Cells were treated with the taxol drug

and this slowed down the MT tips within the growth cone as well as in the axon shaft.
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Figure 5.47: Tracking results for real microscopy images displaying MT tips. Trajectories
are displayed in blue. Images have been inverted for visualization purposes. The time
step is t = 100.

Thus taxol affects MT motion. In addition, the role of XCLASP1 was investigated

via a loss-of-function approach. XCLASP1 was depleted in the cells by injecting a

morpholino oligonucleotide. Under this condition, it turned out that the speed of the

MTs is significantly reduced. Similar to the taxol treatment, the advance of the MTs into

the periphery of the growth cone is inhibited and this correlates with a decreased axon

motion. Thus it appears that XCLASP1 promotes the motion of MTs, in particular,

the motion of those MTs going into the periphery of the growth cone [122].

5.5 Evaluation on the 2D and 3D Image Data of the

ISBI’2012 Particle Tracking Challenge

We have also applied our PDAE tracking approach to the image data of the Parti-

cle Tracking Challenge held in conjunction with the IEEE International Symposium on

Biomedical Imaging (ISBI) 2012 in Barcelona, Spain

(http://www.bioimageanalysis.org/track/). The challenge comprises four different ap-

plication scenarios: vesicles, virus particles, receptors, and microtubule tips. Realistic

synthetic image sequences were generated for each scenario with different levels of image

noise and object densities. For the virus particles, 3D image data was available and for

the other scenarios 2D image data. In total, the data consists of 48 image sequences with

100 time steps each. 14 different measures were computed to quantify the performance

of the tracking approaches (e.g., RMSE and Jaccard similarity index for the positions

[38]). For the images showing virus particles and receptors we used both a random walk

model as well as a directed motion model. For the vesicle images we used a random
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walk model while for the the microtubule images we used a directed motion model. In

the Particle Tracking Challenge, 14 groups world-wide participated. It turned out that

our approach yielded the best overall performance (result announced at ISBI’2012, a

journal publication on the Particle Tracking Challenge is in preparation).

5.6 Summary

This chapter presented the experimental evaluation of our approaches for tracking as

well as for behavior identification. The evaluations were conducted based on synthetic

images as well as real image sequences displaying HIV-1 particles. The performance of

the approaches was quantified. Experimental comparisons with other approaches have

also been carried out. In general, the experimental results show the good performance

of our approaches. We also applied the approaches to 3D microscopy images displaying

HSV replication compartments. From this study it turned out that certain nuclear

mechanisms play a role in the motion of the compartments. Tracking results on images

displaying microtubuli tips were also presented. In this study it was found that a certain

protein plays an influential role in the motion of the microtubules within a neuron’s

growth cone.
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Chapter 6

Conclusion

In this thesis, we considered the problem of estimating behaviors of fluorescent particles

based on time-lapse microscopy image sequences. We decomposed this problem into

three subtasks, viz. object localization, tracking, as well as behavior identification. We

focused on the tasks of tracking, in particular on spatial-temporal filtering for position

estimation, as well as on behavior identification. Below, we summarize our approaches,

discuss our experimental results, and describe possible future work.

6.1 Summary

We developed novel probabilistic approaches grounded within a Bayesian framework for

both tracking as well as behavior identification. In particular, we developed an efficient

and robust approach based on probabilistic data association and an ellipsoidal sam-

pling scheme (PDAE). We also developed a layered probabilistic approach for behavior

identification based on the intensity over time of individual fluorescent particles.

More specifically, we have developed fully automatic probabilistic approaches for

virus tracking in time-lapse fluorescence microscopy images. We have also performed

an extensive evaluation of deterministic and probabilistic tracking approaches based

on real microscopy image sequences displaying HIV-1 particles. The deterministic ap-

proaches follow a classic two-step paradigm, while the probabilistic approaches are based

on Kalman filters and particle filters. Our extensive evaluation based on real image se-

quences indicate that the deterministic approaches have problems under realistic imaging

situations (e.g., spurious particles). This arises mainly because of errors in both the lo-

calization algorithm (e.g., detection failures) and the motion correspondence step (e.g.,

incorrect assignments). The overall tracking accuracy can be enhanced by including

a spatial-temporal filtering step. This is demonstrated via the superior results by the

Kalman filter, and an even higher tracking accuracy is achieved with particle filters, in
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particular, with independent particle filters. The Kalman filter relies on a deterministic

particle localization approach, which diminishes its performance in cases where object

localization is difficult. In contrast, the approaches based on particle filters are more

robust and accurate under such conditions. The reason is mainly due to the compre-

hensive tracking machinery of the particle filter, which includes the steps of particle

localization, motion correspondence, and position estimation. The particle filter man-

ages to localize particles with poor contrast by directly analyzing the image data. In

addition, the good performance of our approach based on independent particle filters in

combination with our penalization scheme suggests that this approach is well-suited for

multiple object tracking. Moreover, our multiple-channel measurement model enables

handling of multi-channel microscopy image sequences.

A disadvantage of our approach based on independent particle filters is that the

computational costs are relatively high and thus the approach is not well suited for

biological applications with a large number of particles (e.g., 500 particles). For this

reason, we have introduced a new approach for tracking multiple particles in fluores-

cence microscopy image sequences based on probabilistic data association. The new

approach embraces the principles underlying the particle filter (e.g., multiple measure-

ments, recognition-by-synthesis, use of parametric appearance models, direct use of the

image data) in a more efficient manner. We have proposed a localization approach based

on both a bottom-up strategy using a spot detection scheme (e.g., the spot-enhancing

filter) as well as a top-down strategy using an elliptical sampling scheme for exploring

the position space. The multiple measurements generated by our localization approach

are integrated via the combined innovation principle of the probabilistic data associa-

tion algorithm. For calculating the combined innovation, a weight is assigned to each

measurement, and this weight is obtained by querying an image likelihood. In our case,

the image likelihood considers both the predicted appearance of the object as well as

the observed image intensities, and thus our approach uses the image information di-

rectly. For tracking multiple objects, we calculate the support that each image position

provides to a tracked object relative to the support that the position provides to its

neighboring objects. To incorporate multiple motion models, we used the interacting

multiple model (IMM) algorithm. In comparison to tracking approaches based on the

standard Kalman filter, our approach does not rely solely on a single measurement gen-

erated by a spot detection scheme and assigned by a motion correspondence algorithm.

Instead, in addition to the measurement generated by a spot detection scheme, our ap-

proach steadily supplies measurements to the Kalman filter via the proposed top-down

ellipsoidal sampling scheme. Thus, our approach is robust to errors arising from the

spot detection scheme and in the correspondence algorithm. Moreover, our approach
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considers the appearance of individual objects and uses the image information directly,

i.e., segmentation of a particle is not necessarily required for estimating the position

over time. For the approach based on independent particle filters, a relatively low num-

ber of samples (e.g., Ns = 130 in 2D) is not sufficient to obtain an accurate numerical

approximation of the posterior probabilities. In comparison, the PDAE approach is not

subject to such numerical issues since the posterior probabilities are represented analyt-

ically via the underlying Kalman filter, and so the PDAE approach operates well with

a relatively low number of samples. Also, the ellipsoidal sampling scheme explores the

position space more efficiently in comparison to the random strategy used by the particle

filter. In addition to the parameters of the standard Kalman filter (e.g., the covariance

matrices determining the noise processes) and of the IMM algorithm (e.g., transition

probabilities), the PDAE approach is parametrized by the image noise parameter σn as

well as by the discretization parameters Nc, Nj, and Nk that determine the number of

measurements generated by the ellipsoidal sampling scheme. The noise parameter σn is

adapted based on the measured image intensities for the particles. For the discretization

parameters we have used fixed values for all our experiments.

We have applied the PDAE approach to synthetic images as well to real microscopy

images and carried out an experimental comparison with approaches based on the stan-

dard Kalman filter as well as based on independent particle filters (IPF). Using synthetic

images, we explored different levels of image noise, and characterized the localization

performance of the approaches as a function of the SNR. For high SNR levels, the PDAE

approach outperformed the other approaches. For low SNR levels, the PDAE approach

performed better than the Kalman filter, and yielded a similar performance as the IPF

approach. In addition, by varying the number of objects in synthetic image sequences,

we characterized the performance of the approaches as a function of the probability

of overlap between objects. It turned out that the performance of the approaches de-

creased linearly with the probability of overlap. Overall, the proposed PDAE approach

outperformed the other approaches. We also determined the computation time of all

approaches relative to the number of objects. The Kalman filter induced the lowest

computation time, while the IPF entailed the highest computation time. The PDAE

approach was somewhat slower than the Kalman filter (factor of 3) but significantly

faster than the particle filter (factor of about 8). The application of the PDAE ap-

proach to real microscopy image data showed its suitability for tracking HIV-1 particles

in 2D as well as 3D real microscopy images. Compared to the Kalman filter and the

IPF, the PDAE approach yielded the best tracking accuracy on average.

We have also introduced a new approach for the identification of behaviors of interest

for single virus particles in two-channel fluorescence microscopy image sequences. Our
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approach is based on a layered architecture formulated within a Bayesian estimation

framework. We use a stochastic hybrid system for modeling the intensity and the tem-

poral intensity models. Our approach also employs a hidden Markov model (HMM) to

represent the top-level behaviors of a single particle. The stochastic hybrid system and

the HMM are combined using a maxbelief approach. Inference is carried out with a

hybrid particle filter as well as with the Viterbi algorithm. In comparison to previous

approaches for identifying behaviors of fluorescent particles, the approach does not as-

sume a constant behavior for the particles, and thus the approach can cope with objects

exhibiting heterogeneous behaviors. Also, we take into account the temporal coherence

of the particle’s behavior via the transition probabilities defined for the Markov chains

underlying the stochastic hybrid system and the HMM. By adopting a probabilistic

framework, we account for the inherent uncertainty involved in the behavior of single

virus particles.

We have applied our layered approach to synthetic image sequences as well as to

real image sequences. We also have compared the performance of our approach with

that of a previous derivative-based approach. In addition, we have performed a com-

parison with an approach based on trajectory endpoints. The results on two-channel

synthetic images demonstrated the applicability of our layered approach for identifying

the intensity models as well as the behavior of single particles. By exploring a range of

different levels of noise, we characterized the performance of our approach as a function

of the SNR level. The results established that our approach performed well at typical

SNR levels and relatively well at low SNR levels. Also the performance of the approach

degraded gracefully as the SNR decreased. In addition, we evaluated the performance

of the approach relative to the performance of the tracking approach. It turned out

that the layered approach tolerates well minor tracking errors and that the performance

degrades smoothly with larger tracking errors. The application of the layered approach

to real microscopy image data showed that the approach is well suited for detecting

fusion of HIV-1 particles with the cell membrane. Overall, the layered approach yielded

a significant improvement in the performance compared to a derivative-based approach,

which relies entirely on data-driven information. Instead, our approach integrates model-

driven information (e.g., predictions based on the temporal intensity models) with the

observed intensity information. The layered approach also outperformed an approach

using trajectory endpoints. This highlights the benefits of directly analyzing the image

intensities of individual particles. Certainly, the layered approach has also limitations.

Since a compromise between the adaptation time and the steady behavior of the hy-

brid particle filter has to be found, the labels computed by the approach may exhibit

a certain time delay. This time delay can be reduced by adjusting the transition prob-
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abilities in the matrix Π, the variance parameters Qα as well as the noise parameter

σn. However, doing this for single image sequences might be impractical. Alternatively,

these parameters could be optimized based on the image data.

Besides considering HIV-1 particles, we have additionally used our tracking ap-

proaches in other biological applications involving herpes simplex virus (HSV) repli-

cation compartments as well as microtubuli tips within the neural growth cone. For

analyzing the motion of the HSV compartments, we developed a hierarchical approach.

Through the results obtained with our approaches, novel biological findings were ob-

tained. The results also demonstrate the capability of the approaches for handling

different types of biological structures.

We also successfully applied our PDAE approach to the 2D and 3D image data of

the recent Particle Tracking Challenge at the International Symposium on Biomedical

Imaging (ISBI) 2012, where 14 groups world-wide participated. The challenge comprised

four different application scenarios (vesicles, virus particles, receptors, and microtubule

tips) and different performance measures were computed. It turned out, that the PDAE

approach yielded the best overall performance (result announced at ISBI’2012).

6.2 Future Work

The PDAE tracking approach currently uses the temporal information sequentially. One

extension would be using the temporal information from the entire image sequence to

improve the performance. Another issue is related to the high level of cellular autofluo-

rescence, which leads to spurious particles, thereby diminishing the performance of the

bottom-up detection scheme. Here, a more accurate recognition mechanism could be

used. The performance for larger object overlaps could also be improved by using a

more sophisticated algorithm for motion correspondence. Using image data of multiple

microscopy modalities (e.g., fluorescence microscopy, bright field microscopy) could also

improve the performance, since the image data of each modality might complement each

other. Instead of using the Kalman filter, one could also use one of its non-linear variants

(e.g., the unscented Kalman filter) which would allow incorporating non-linear dynami-

cal models. Finally, the PDAE approach could be extended to cope with photobleaching

effects by estimating the rate of change of the intensity over time.

Concerning the layered the approach for behavior identification, one issue is to im-

prove the performance of the approach in case of severe tracking errors. Here the layered

approach would also benefit from using the entire temporal information as opposed to

only using the temporal information sequentially. Also, the set of models describing

the temporal statistics as well as the behavior could be adjusted over time. Developing
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automatic schemes for adjusting the set of models as well as for automatically design-

ing new models would be another research avenue. The layered approach could also

be applied in other applications using image sequences with more than two channels.

Current and future work includes the further interpretation of the results delivered by

the layered approach in terms of their biological significance.
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