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Zusammenfassung

Verschiedene Studien zeigen, dass die ozeanischen Zwischenwassermassen wéhrend des
letzten Deglazials ungewohnlich stark im 4C abgereichert waren. Die C-Alter liegen bei
mehreren tausend Jahren im Vergleich zur Atmosphére jener Zeit. Als mogliche Erklarung
wird die Existenz eines isolierten Tiefenwasserreservoirs im Siidlichen Ozean wéahrend des
letzten glazialen Maximums postuliert, dessen Auflésung im Deglazial zudem grofle Mengen
C-armen Kohlenstoffs in Form von CO, in die Atmosphéire freisetzte. Die Idee eines
hypothetischen Tiefenreservoirs aufgreifend werden in dieser Arbeit subfossile Kaltwasserko-
rallen aus dem subtropischen siidwestlichen Atlantik vor Brasilien untersucht. Gekoppelte
230Th /U und *C-Messungen erméglichen die Rekonstruktion der Radiokohlenstoffverteilung
in intermedidren Tiefen fiir die letzten ~40 ka BP. Die Ergebnisse zeigen, dass stark *C-
abgereicherte Wassermassen auch wahrend des mittleren Holozéns und zu glazialen Zeiten
vor Beginn des Deglazials auftreten mit vergleichbaren *C-Altern anderer Studien. Des
Weiteren folgt der #C-Abfall in diesen Phasen scheinbar der Zerfallskurve und untermauert
die Idee einer aus dem Stiden kommenden isolierten Wassermasse. Lokale Phénomene,
etwa durch Austritte von kohlenwasserstoffhaltigen Fluiden am Kontinentalrand als eine
mogliche Quelle geologisch alten Kohlenstoffs, konnen anhand stabiler Isotopenmessungen
ausgeschlossen werden. Messungen der Neodymisotopie unterstreichen die siidliche Herkunft
des Wassers fiir die letzten mindestens 37 ka BP an den tiefergelegenen Korallenstandorten.
Fiir die Korallen aus den flacheren Gebieten werden bemerkenswert grofle Schwankungen in
der Neodymisotopie beobachtet, die mit dem Beginn der deglazialen Phase zusammenfallen
aber sehr wahrscheinlich lokalen Ursprungs sind.
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Abstract

Marine radiocarbon reconstructions from different intermediate depths reveal large deple-
tions exceeding several thousand '*C years compared to the contemporaneous atmosphere
during the last termination. It is suggested that very old waters from a radiocarbon-
deficient abyssal reservoir previously well isolated from the atmosphere during the last
glacial maximum was mixed back to the upper ocean and atmosphere during the deglacia-
tion thereby raising atmospheric CO,. In pursuing the idea of a hypothesized isolated
reservoir, measurements on sub-fossilized cold-water corals from intermediate depths off
Brazil are performed. Coupled ?*°Th/U and '*C dates allow reconstruction of the A*“C
history of the ambient seawater for the past ~40 ka BP. It becomes apparent that large
depletions in the radiocarbon content of these depths are not a phenomenon restricted to
the last termination. Injection of very old waters appear during the mid-Holocene and
glacial period before the onset of the last termination with depletions comparable to other
studies. Local hydrocarbon seepage activity as a possible source of #C-dead carbon can be
precluded as indicated by stable isotope measurements. Interestingly, 1*C activity decrease
apparently following in part the decay curve one would expect for a closed system pointing
to an isolated and continuously ageing water mass, which bathed the corals. ey, isotopic
composition indicate no significant changes of the water mass composition for the deeper
coral sites for the last 37 ka BP supporting the assumption of a southern origin of the water
also at times of large depletions in *C. For the shallower corals, however, ey, exhibits large
variations. It is suggested that local boundary exchange processes have altered the original
Nd isotopic signature in these depths.
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Motivation

Understanding the interplay between Earth’s different compartments (ocean, cryosphere,
marine and terrestrial biosphere, atmosphere etc.) is of great importance in grasping
current and past climates and climate changes. As revealed by paleodata, Earth’s climate
was significantly distinct during the last glacial period from that of the Holocene epoch.
Punctuated by millennial-scale climate shifts the last glacial period was characterized
by unstable and cooler conditions compared to the relatively warm and stable Holocene
(e.g. Grootes et al., 1993; Monnin et al., 2001; Jouzel et al., 2007). The reasons are
manifold. Complex intertwining physical processes and feedback mechanisms are rendering
the climate system tightly coupled, which behaves to a high degree non-linear. Unequivocal
identification of the triggers driving the system is thus difficult (Randall et al., 2007). In
addition to the ongoing proxy research and their applications to the real world, climate
models have been developed. Though their future projections seem to give satisfactory
outcomes in the first place, modeling attempts into the past have proven much more tedious
and often did not match paleoproxy records. The reasons for that might be in part today’s
limited computing power, ill-constrained boundary conditions or even further physical
mechanisms being not or only insufficiently described in the models (Robinson and Siddall,
2012). Providing reliable boundary conditions elicited from the paleorecords is tough but
fundamental in the attempt to model aspects of Earth’s climate and to gain a better
understanding of the relationships governing this system. Of special interest for many
paleoclimatologists is the time period of the most recent termination of the last glacial
period between ~11—19 ka BP. This vivid transition was accompanied by a sharp rise of
atmospheric COy concentrations concomitantly followed by a steep drop of the atmospheric
AC among others. There is common sense that CO, was released from the ocean, but
despite decades of paleoclimate research the exact mechanism how COy was stored in the
glacial ocean and deliberated again remains an unresolved issue. Previous studies have
inferred a vital role for the Southern Ocean as a possible locus for the deglacial CO, release
(e.g. Francois et al., 1997; Sigman and Boyle, 2000; Anderson et al., 2009). Discovered “C
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anomalies in intermediate-depth waters at various locations seem to have witnessed the
demise of a poorly ventilated abyssal reservoir presumably located in the Southern Ocean
region (Marchitto et al., 2007; Bryan et al., 2010; Mangini et al., 2010). Disintegration of a
formerly isolated carbon-rich reservoir could have been in part responsible for the observed
11C anomalies as well as for the rise in atmospheric CO, (Broecker and Barker, 2007). But
this idea is far from being accepted and there is a lot of controversy about the existence of
such a reservoir during glacial times (see Hain et al. (2011) and references therein).

In pursuing the reservoir hypothesis this thesis provides paleoceanographic data obtained
on cold-water corals from intermediate depths off Brazil covering the last ~40 ka BP. Most
cold-water coral studies stem from the North Atlantic, whereas the South Atlantic/ Atlantic
sector of the Southern Ocean was put in second place for many years. Our picture from
the paleoceanography in this region is, therefore, by far more incomplete than for the
north. Corals have proven to be suitable archives for paleoceanographic studies since their
aragonitic skeletons allow precise dating with 2°Th/U and record a wealth of distinct
proxies and water mass tracers among them “C and neodymium. The intermediate-depth
location off Brazil was chosen as a promising place to study the history of different water
mass tracers as this depth is in the direct reach of southerly-derived Antarctic Intermediate
Water. Variations in circulation and/or changes of the water mass composition within
the Southern Ocean are expected to reveal also off Brazil. Previous *C investigations on
cold-water corals from Brazil have shown large depletions in the “C content of the ambient
water between ~8—27 ka BP. But not all questions in this study could be addressed: Are
there further *C anomalies before 8 ka BP or beyond 27 ka BP? If so, are they related
in timing to major climate events? How long lasted the observed *C depletions in the
intermediate depth? Were these times accompanied by low oxygen levels even anoxic
conditions in the surrounding seawater? How large was the water depleted in 4C in respect
to the atmospheric *C record? Is the timing of the *C depletions in accordance to other
14C studies from intermediate depths? Did the depleted water off Brazil contributed to the
rise in atmospheric CO,. What can be derived about the origin of the in part extremely
14 (C-depleted water? Is the idea of an alleged deep-ocean reservoir flushing the mid-depth off
Brazil viable? To tackle all these questions properly, it would be necessary to substantially
increase the number of coral samples from this oceanic region to obtain a precise picture
of the C history in the intermediate water. Additional Nd isotope measurements on
the corals will deliver supporting informations on the characteristics of the ambient water
during coral formation and will potentially allow to determine the origin of the water
especially at times of massive *C depletions. This multi-proxy approach will help refining
our current understanding of the past oceanography in this region and will hopefully deliver
some further insights about the unresolved issue regarding deep-water reservoirs on a
glacial-interglacial timescale.
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Introduction






~What we know is a drop, what we don’t know
is an ocean. “

Isaac Newton

Ocean circulation

The world ocean constitutes an important key in grasping Earth’s climate system. It
is able to store and transport huge amounts of heat, nutrients, and also carbon thereby
modulating climate. As the largest carbon reservoir it poses a crucial sink and source
for the most important greenhouse gas, videlicet CO,. By sequestering and storing COq
in the deep ocean interior for centuries or even thousands of years and the subsequently
release, the ocean is able to significantly modulate atmospheric COy concentrations. As
revealed in Antarctic ice cores, atmospheric COy dramatically fluctuated over the past
several hundred thousand years in close concert with glacial-interglacial cycles. The last
glacial termination, for instance, was accompanied by a CO, increase of about 80 ppmv
indicating substantial variances in the marine carbon cycle intimately linked with changes
in ocean circulation. The ocean circulation is playing an important role in influencing
Earth’s climate by redistributing large amounts of heat stored in the water. This is shown
by many paleorecords suggesting severe shifts in atmospheric circulation with dramatic
consequences in Indian and African monsoon rainfall or changes in climate for Western
Europe. For that reason some word must be said about ocean circulation.

About 71% of Earth’s surface is covered by ocean water, that is, most of the energy
Earth received from the sun is withhold in the upper ocean. As water has a five to sixfold
higher heat capacity than the continents (consisting of rocks), the ocean constitute an
seemingly inexhaustible heat reservoir. To emphasize the importance of this reservoir it is
pointed out that the total amount of thermal energy within the first two to three meters
of the ocean surface is equal or larger than the total energy stored in the atmosphere!
This heat is continuously redistributed by ocean currents at all latitudes over thousand of
kilometers and for the most part released back in form of latent heat (Rahmstorf, 2002).
To illustrate the effects: the temperature difference between summer and winter in the
mid-latitudes is about 8 °C across the sea compared to several 10 °C within the continental
interior (Rahmstorf, 2002). Europe, in particular, benefits from this energy redistribution.
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2.1. Atlantic meridional overturning circulation

The power, Europe gains from the Gulf Stream and the North Atlantic Current, respectively
continuing the Gulf Stream northeast, is on the order of 1 PW (peaking with 1.2 + 0.3 PW
at 24 °N) contributing to the mild climate in northwestern Europe (Ganachaud and Wunsch,
2000). The heat is released and transported by winds across the European continent leading
to temperature rises by as much as 10°C as compared to other locations on the same
latitude (Rahmstorf, 2002). But not only the regional climate would be affected by absence
of any heat transport into the north. As a consequence enhanced formation of sea ice in
the North Atlantic could take place and by this might alter Earth’s albedo and thus the
global radiation budget.

2.1 Atlantic meridional overturning circulation

The large-scale ocean circulation consists of a series of currents driven either directly by
wind stress, exerted on the ocean surface reaching down to a couple of hundred meters or
currents driven by density gradients created by transport of surface heat and freshwater
into the ocean interior and subsequent turbulent mixing of heat and salt (Rahmstorf, 2002).
A third driving force arises from the gravitational pull of the Moon and the Sun. In
the Atlantic Ocean surface currents like the Gulf Stream and the North Atlantic Drift
continuing the Gulf Stream eastward, transport warm and saline water from the tropical
and subtropical region poleward into the high North Atlantic region. On its way to the
north the surface water gradually cools thereby becomes denser though freshwater input due
to precipitation takes place en route. The Norwegian and Greenland Sea north of Iceland
are considered to be important deep water formation areas where surface water is losing its
neutral buoyancy and eventually sinks to large depths forming North Atlantic Deep Water
(NADW). This water mass overflows the Greenland-Scotland ridge and spreads as a deep
western boundary current towards the South Atlantic (Dickson and Brown, 1994). As it
moves it is supplemented by deep water formation in the Labrador and Mediterranean Sea
(Sarmiento and Gruber, 2006) (Fig. 2.1). The geometry of this NADW is quite impressive:
depending on the location where to look it can reach a thickness of up to 2 km and widths
of up to 800 km. Average velocities are in the range of several centimeters per second
(Viana et al., 1998). Among other properties NADW stands out as a tongue of water of
high salinity and oxygen concentration, low nutrient content, and a high *C/!2C ratio
(Broecker, 1991). Further contributing factors driving the circulation in the Atlantic basin
is the wind-induced Ekman upwelling in the Southern Ocean allowing deep water to reach
at or near the ocean surface. Taken together, the establishing overturning circulation cell
in the Atlantic is commonly known as Atlantic meridional overturning circulation (AMOC)
and constitutes an important part of the considerably larger global conveyor circulation.
See Fig. 2.1 for a schematic view of the circulation on a global scale operating in today’s
ocean. Though the driving forces of the AMOC are adequately known they are interacting
in a non-linear way so that no unique decomposition exists (Rahmstorf, 2002). Hence, the
AMOC is usually depicted as a meridional cut representing a zonally averaged water mass



2. Ocean circulation

m=  Surface flow
== Deep flow

== Bottom flow Salinity > 36%o
< Deep Water Formation Salinity < 34%o

Fig. 2.1: Simplified representation of the global conveyor circulation. Surface
currents are shown in red, deep water in light blue and bottom water in dark
blue. Arrows indicate flow directions. Note the higher saline water in the Atlantic
compared to the Pacific Ocean resulting in absent deep-water formation in the North
Pacific. The Indian Ocean is restricted to the north by the Indian subcontinent
which impedes deep-water formation as well. A recent study from Fukamachi et al.
(2010) has shown a further formation site of deep water east of the Kerguelen islands,
not shown. Also forming deep water in the Mediterranean Sea is contributing to the
shallower part of NADW, not shown either. Figure modified from Rahmstorf (2002).

comprising a superposition of wind-driven and thermohaline components as shown in Fig. 2.2
(Kuhlbrodt et al., 2007). Another deep-water formation area driving the AMOC is located
around the Antarctic continent. Deep water is descending within the Weddell and Ross
Sea forming so-called Antarctic Bottom Water (AABW) occupying the deepest parts of
the Southern Ocean, which spreads along the seafloor of all ocean basins (Killworth, 1983).
In the Indian Ocean, for instance, AABW returns a little later as a near surface water
flowing in part back as a surface current into the Atlantic (Fig. 2.1). Different from the
genesis of NADW, AABW originates either to intensive evaporation usually taking place
within so-called polynyas (areas of open water surrounded by sea ice) or more typically
during sea ice formation fractionating salt by brine rejection, which lead to high seawater
salinity (Adkins et al., 2002b). All branches of the conveyor circulation also dubbed as
thermohaline circulation are connected with the fast moving Antarctic Circumpolar Current
(ACC) encircling the Southern Ocean. The ACC is acting as a giant blender strongly
mixing the various joining water masses in a short period of time until they cannot be
distinguished any more. For instance, NADW has lost its distinct water mass properties
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2.1. Atlantic meridional overturning circulation
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Fig. 2.2: Blue arrows show the flow directions of the AMOC. Color shading illustrates
the density stratification of the seawater, zonally averaged from observational data with
AABW (yellow) being the densest water mass and lightest water in blue. The most
important fluxes and mixing processes are shown. In the Southern Ocean, westerly
winds cause northward oriented Ekman transport resulting in upwelling of deep waters.
Figure modified from Kuhlbrodt et al. (2007). See Kuhlbrodt et al. (2007) for a more
comprehensive description.

after it half encircled the Antarctic continent (Broecker, 1991). All discrete locations of
deep water formation are the only ones existing in today’s ocean. The Pacific lacks any
comparable deep water as the sluggish flowing NADW. A possible reasons for that might be
the apparent twice as high observed evaporation rate in the Atlantic compared to the Pacific
as assessed by Baumgartner and Reichel (1975) (103 cm/year versus 55 cm/year) and the
concomitant salinity contrast between North Atlantic surface water to those at comparable
latitudes in the North Pacific (the difference in salinity amounts to 2—3 g/1). As pointed
out by Broecker (1991) this salinity contrast is so severe that even North Pacific water if
cooled to near its freezing point (—1.8 °C), would sink only to depths of several hundred
meters making it impossible to form deep water. In the Indian Ocean, simply the location
of the Indian subcontinent in the subtropics prevents any deep water formation (Brown
et al., 1989). It is important to note that the concept of a conveyor circulation envisioned in
Fig. 2.1 is hardly likely. There is no simple and closed world-spanning circulation which can
easily traced back by tracer experiments. There are a lot of circulation branches not shown
in this picture on which extensive mixing processes with the ambient seawater might occur,
not to mention intersecting currents. Though aspect of this global circulation might be



2. Ocean circulation

true many aspects are until today subject to current research and are not well understood.

2.2 AMOC during the last glacial period

As outlined above the highest surface densities in the ocean are reached where water
becomes densest. The AMOC is primarily thermally driven despite the lower salinity
of the surface water in the deep water formation regions compared to the subtropical
area (Fig. 2.1). Nevertheless, the salinity is playing an important role because it lead
to a surprising non-linearity behavior of the overturning circulation. Changes in salinity
accounts for a positive feedback in the sense that more saline surface water in the formation
regions is amplifying the circulation strength thereby transporting even more saline waters

A
Bistable regime
20
"
<
B Present Stommel
= climate? bifurcation
= A
- ','
<t Lo’
Z. 04 oz
! J |
—0.1 0 0.1

Freshwater forcing (Sv)

Fig. 2.3: Steady-state thermohaline driven circulation strength (flow rate) of
NADW as a function of the freshwater input (forcing) into the North Atlantic as
a solution of simple box model considerations of Rahmstorf (1996). The dashed
line is an unstable solution. Pushing the freshwater input beyond a critical point
(Stommel bifurcation) lead to two stable equilibrium states, with and without
NADW formation, posing the question of the stability of current deep water
circulation in the Atlantic. Figure modified from Rahmstorf (2002).

in these regions (Rahmstorf, 2002). As deep water formation areas are characterized
by a net precipitation, freshwater at the surface would accumulate and salinity would
drop if circulation slowed down or stopped. A more thoroughly investigation of this
thought experiment culminates into a mathematical relation connecting the freshwa-
ter input (forcing) with the circulation strength of the NADW. The solutions of this
quadratic equation suggest that the circulation strength behaves nonlinearly and can
take on two possible equilibrium states, with and without NADW with a well defined



2.2. AMOC during the last glacial period

threshold in between (Stommel bifurcation) (Fig. 2.3) (e.g. Stommel, 1961; Manabe
and Stouffer, 1993; Rahmstorf, 2002). This interesting feature of the thermohaline
part of the AMOC has been confirmed and extensively investigated in various climate
models and might play a crucial role in under-
standing and explaining past climate changes. A

. 0_ > wealth of ocenographic data from paleorecords
E 1 suggests that past circulation in the Atlantic
; 21 Ocean has significantly changed during the
*é 31 : glacial period. The existing paleoceanographic
A 44 Warm data allow to draw a picture of three distinct
B modes of circulation, which prevailed in the last
0 120,000 years in the Atlantic. These modes
= 1 ) have been dubbed as interstadial, stadial, and
SAPIE Heinrich mode (Rahmstorf, 2002). Fig. 2.4 il-
S 3l < lustrates the three modes. The rise in the bot-
) ) tom topography in Fig. 2.4 marks the shallow
A4 Cold Greenland-Scotland ridge. Today’s circulation is
g equal to the interstadial mode or modern mode
R (Warm). Deep-water formation takes place in
E 1 the deep basins to the north of Iceland (Nordic
) 27 ) Seas) through open-ocean convection followed
2, 37 by overflowing of the shallow sill. AABW is pen-
S 4 Off etrating the deeper parts of the Atlantic towards
5 e e O N north. However, the situation was much differ-
30° 0° 30° 60° 9

0°  ent during the glacial times (Cold), when deep
Fig. 2.4: Prevailing circulation modes water formation zones presumably have shifted
in the Atlantic Ocean during the last towards the subpolar Atlantic region south to
120 ka. Picture modified from Rahm. Lceland (Irminger Sea). NADW was replaced
storf (2002). by shallow Glacial North Atlantic Intermediate
Water (GNAIW), which occupied depths less
than 2,500 m (Labeyrie, 1992) thereby allowed
AABW to shallow significantly. During the Heinrich mode (Off), NADW formation presum-
ably ceased due to iceberg surges and associated freshwater input from the Laurentide ice
sheet through Hudson Strait, which is thought to have destabilized deep-water formation.
As a consequence, dominant southern-sourced water (AABW) filled the deep Atlantic basin
to depths as shallow as 1,000 m (Sarnthein et al., 1994; Rahmstorf, 2002).
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2. Ocean circulation

2.3 Heinrich events

Heinrich events are characterized by enhanced ice-rafted detritus (IRD) found in North
Atlantic sediment cores. Their timing is in good accordance to the pattern of millennial
scale climate fluctuations of the last glacial period as derived from ice cores and other
paleorecords (Bond et al., 1993). Heinrich events show an apparent cyclicity of about
6,000—7,000 years (Kirby and Andrews, 1999) and usually lasted about 500 + 250 years
(Hemming, 2004). During these events large amounts of icebergs, presumably released from
the Laurentide ice shield (LIS) were trans-
H3 ported across the northeast Atlantic Ocean
a2y H5 (Heinrich, 1988; Bond et al., 1992). The de-

|
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|

|

|
100 : tritus trapped within the ice were carried
A 80 | along across the Atlantic and deposited to
~ 60 ‘ the ocean sediments when ice melted. Geo-
x 40 chemical investigations of the sediment layers

20 point to the region around the Hudson Strait

0200 300 400 500 600 700 800 @s the major trough draining the eastern
A TN ! portion of the LIS by releasing an “iceberg

128 armada” (Broecker et al., 1992; Hemming,
Omi 60 | 2004). But the cause of these iceberg dis-
= 40 + charges restricted to the last glacial is still
= 20 7 a matter of debate. One explanation at-

0 tempt put forward by MacAyeal (1993) is
the binge-purge model. According to this

100 1 hypothesis, the LIS reached a critical vol-

80 1 . . .
QQi 60 4 ume due to ongoing accumulation of ice. At
= 40 1 some point the ice volume was thick enough
= 20 1 so that geothermal heat penetrating the ice
0 - from the bottom could not escaped into the

0 100 200 300 atmosphere anymore, which led to melting

ice at the bottom of the ice shield. Lubrica-
tion by water facilitated the collapse of the
LIS or parts of it, which finally lead to the
release of icebergs into the North Atlantic.
Fig. 2.5 depicts an example of three sediment
cores from the North Atlantic showing dis-
tinct Heinrich layers (ice-rafted debris (IRD).
The thickness of these layers usually increase
in the direction of the Hudson Strait from
typically ~1 cm in the eastern North Atlantic up to ~50 cm near the Hudson Bay (Andrews
et al., 1994). So far, six distinct layers have been identified in North Atlantic sediments,
which are attributed to Heinrich events, labeled H1-H6 from youngest to oldest (Bond et al.,
1992). Some authors consider the Younger Dryas (YD) as a further Heinrich event (HO)

Fig. 2.5: Stratigraphy of some North At-
lantic sediment cores exhibiting Heinrich
layers (H1-H5). %IRD here is defined as
the ratio of lithic grains (> 150 um) to
the total number of entities in the sedi-

ment. Picture modified from Hemming
(2004).
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2.3. Heinrich events

(Andrews et al., 1994; Broecker, 1994) even though it does not show up in Fig. 2.5. During
these extreme events, a staggering amount of fresh water was introduced into the glacial
ocean and very likely helped to destabilize deep water formation. According to model
estimates the fresh water flux during H4 has been estimated to 0.29 + 0.05 Sv (Roche et al.,
2004). Several dynamical ocean model results give reason to surmise that the AMOC is
sensitive to freshwater perturbations on the order of only 0.1 Sv (Stocker and Wright, 1991;
Manabe and Stouffer, 1997).
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Cold-water corals

3.1 Habitat and distribution

In the last three decades it has become apparent that corals, once thought to be restricted
to shallow waters in tropical and subtropical regions, are ubiquitous in all oceans on vir-
tually all latitudes and depths (Wilson, 1979a). This discovery, well beyond the reach of
scuba diving, was made possible by using new underwater techniques. Remotely operating
vehicles and manned submersibles are allowing exploration of never before seen deep-water
environments, where so-called cold-water corals thrive. Corals belong to the class anthozoa,
a subset within the phylum cnidaria. Most corals are sessile and colony-forming animals of
which the order scleractinia (scler = hard, actinia = ray; stony corals) is for the purpose
of this work the most important one to mention. Scleractinia are able to form skeletons
composed of calciumcarbonate forming reefs or reef-like structures both in shallow and
deep waters. Warm-water corals can build vast reefs structures, which sometimes can be
seen even from outer space.

These reefs are usually confined within the 20 degree centigrade isotherms between ~30° N
and ~30°8S. Cold-water corals, however, do not show this spatial restriction (see Fig. 3.1).
Over 5,100 coral species today are known to inhabit the world’s ocean of which about
65% live in cold-water environments (Cairns, 2007; Roberts et al., 2009). Their depth
distribution is eurybathic ranging from the relatively cold and shallow waters (40 m) of the
high northern and southern latitudes to the abyssal ocean (6,328 m) (Keller, 1976; Cairns
and Stanley, 1981). Because they usually live below the photic zone they are also referred to
as deep-water corals. In contrast to warm-water corals cold-water corals do not harbor any
endosymbiotic and phototrophic algae (zooxanthellae) living inside the cells of the polyp’s
gastroderm. Tropical shallow-water corals benefit from the symbiotic relationship with the
algae, which provides the coral with nutrients and helps facilitating the biomineralization of
its skeleton (Gattuso et al., 1999). The magnificent colors tropical corals exhibit are a side
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3.1. Habitat and distribution

product of this connection. By contrast, cold-water corals do not exhibit such a variety of
colors. The polyps of cold-water corals can reach sizes up to several centimeters in diameter
living at the outermost part of the skeletons on top of a cup-like structure called a corallite.
According to Sherwood (2007, p. 495), the corallite is 'supported by a thin horizontal plate
called the dissepiment’ and ... is lengthened by periodic uplift of the polyp and formation
of a new dissepiment.” Like their tropical-living counterparts they are also able to grow
large three-dimensional reef-like structures even if the majority are non-constructing and
solitary living species. One major framework builder is the cosmopolitan cold-water coral
Lophelia pertusa. Fig. 3.2 depicts a large L. pertusa framework in its natural environment

Fig. 3.1: Recent distribution of warm-water ( ®) and cold-water corals (®).
Warm-water reefs are usually confined within the 20 degree centigrade isotherms
between ~30° N and ~30°S. Cold-water corals, however, do not show this spatial
restriction. Picture available online at http://www.grida.no/graphicslib/
detail/distribution-of-coldwater-and-tropical-coral-reefs_1153,
UNEP World Conservation Monitoring Center (2013), Hugo Ahlenius,
UNEP/GRID-Arendal. Accessed 2013/4/23.

occurring at the Blake Plateau off the southeastern coast of the US in 450—1,000 m water
depth. The largest coherent L. pertusa structure discovered so far in 2002 has an expanse of
~120 km? located west of Rgst island in the Lofoten archipelago, which beats the previous
record holder covering already ~100 km? (Wilson, 1979b). Reef-like cold-water frameworks
are usually found along continental slopes, shelf breaks, fjords, bedrock outcrops, volcanic
mid-ocean ridges, offshore submarine banks, and artificial structures like oil rigs (Rogers,
1999). Only the uppermost part of such a reef-like structure is alive and covered with living
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3. Cold-water corals

Fig. 3.2: Manned submersible taking samples from a L. pertusa framework
at the Blake Plateau off Florida. Only the uppermost part of this coral
framework is alive (white parts) and covered with living tissue hosting
thousands of polyps. Picture from Roberts et al. (2009).

tissue hosting thousands of polyps (cf. Fig.3.2 the white parts of the L. pertusa framework),
the lower sections are dead (brown) and are exposed to erosion. The dead coral scaffold
often acts as a sediment trap strengthening the whole structure further while the living
part grows aloft reaching heights up to several hundred meters (DeMol et al., 2002). This
build-up is a steady process which takes up to several millennia. The resulting structure is
then called a carbonate mound. Though some cold-water coral species are becoming rather
old, a couple of hundred years (Andrews et al., 2002; Risk et al., 2002), their growth rate is
much slower than for the tropical ones. Observed rates are roughly between 0.24—25 mm/a
(Mortensen and Rapp, 1998; Brooke and Young, 2009) versus 100—200 mm/a for branching
tropical species (Buddemeier and Kienze, 1976). Even though deep-water coral ecosystems
are apparently discontinuously distributed and more patchy than the tropical reefs, their
predicted global coverage exceeds by far the tropical ones (Freiwald and Roberts, 2005).
Also, deep-water ecosystems seem to be biodiversity hotspots forming valuable nursing
grounds and provide shelter for many marine species (Roberts et al., 2006). Cold-water
reef systems are in this respect in no way inferior to their tropical counterparts.

15



3.2. Environmental controls on coral growth

3.2 Environmental controls on coral growth

Still little is known concerning the environmental controls responsible for the distribu-
tion of scleractinian cold-water corals. It appears that a variety of parameters such
as temperature, salinity, current strength, local geomorphic setting, food supply, and
even the substrate of the seafloor are influencing the distribution (Hovland et al., 2002).
The oxygen and nutrient availability and supply have a major impact as well as the
aragonite saturation. Hydrostatic pressure, however, seems to play a secondary role.
This becomes evident for some species, which have been found in rather shallow water
(< 40 m) in high latitude regions, rendering other aspects seemingly more important
than pressure (Freiwald et al., 2004).
A recent study from Dullo et al. (2008),
however, indicates that (potential) den-
sity might have after all an impact
on the distribution of species L. per-
tusa in the northeast Atlantic region.
The study has shown L. pertusa frame-
works on the Celtic and Norwegian
margin thrive in waters with a po-
tential density range between cg =
27.35—27.65 kg/m? Dullo et al. (2008).
The authors argue that this potential
density range might be a basic pre-
requisite for reef development along
the continental margin as this poten-

Fig. 3.3: Close-up of a living colored variety
of a L. pertusa colony with expanded tenta-

cles actively catching organic matter and zoo- . .
lank The color i d by th . tial density range appears to promote
plankton. ‘Lhe color Is caused by the corals larvae dispersal of L. pertusa (Dullo

organic tissue. Figure from (Roberts et al., et al., 2008). This idea is picked up

2009). in section 6.6.2. Cold-water corals are

suspension feeders equipped with ten-
tacles nourishing from food particles they capture from the ambient water. Fig. 3.3 shows
a close-up of a L. pertusa colony with expanded tentacles. Though their diet is mostly
uncertain they presumably live on organic matter and zooplankton even small pelagic
crustaceans (Henrich et al., 1997). Enhanced currents in these environments seem to play a
crucial role in generating preferred conditions for a possible coral settlement. On the one
hand currents are responsible for the food supply on the other hand hamper fast sediment
smothering (Roberts et al., 2009). Known cold-water coral species are stenothermic, toler-
ating temperatures only between 4—13 °C but are able to tolerate lower temperatures for
short periods of time (Bett, 2001; Freiwald, 2002). In contrast, they are able to tolerate
relatively wide salinity ranges comprising 32—38.8 psu, which are observed in the Ionian
Sea and in Scandinavian fjords (Taviani et al., 2005).
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3. Cold-water corals

3.3 Corals as a paleoceanographic archive

In the last two decades cold-water corals have become an indispensable mean in paleo-
ceanography and paleoclimate research. This success comes not by chance. Whether or
not marine sediments or shell-secreting organisms, like corals, come into question as a
paleo-environmental archive depends on if they faithfully record environmental signals of
climatic significance. A wide geographical distribution is also useful as well as an insensi-
tivity for external perturbations. Unlike marine sediments, which can be smeared by the
activity of ocean bottom dwellers, making it at times impossible to get reliable proxy data,
corals do not show this drawback. They provide a paramount archive for a whole variety of
(geo)chemical tracers and proxy informations (to name but a few: 1C, *3Nd/"*Nd, Cd/Ca,
13C, 180, Li/Mg, Sr/Ca, Mg/Ca etc.) preserved

in their calcareous skeletons. Their annual to

—— g decadal resolution, spanning several centuries

for solitary and several decades for branching
scleractinians such as for L. pertusa (Druffel
et al., 1990; Freiwald et al., 2004) facilitate to
document even rapid climate changes (Adkins
et al., 1998; Robinson et al., 2005). For instance,

T like the annual rings in trees, tropical reef corals
2 (1979 and some cold-water species show visual growth
0 (roo) / bandings deposited annually. Even growth

rings at a finer scale have been documented,
which are apparently related to the lunar cycle.
e The growth layers for cold-water corals can be
o ' rather narrow (10—100 pm (Lazier et al., 1999))
= + making sampling on an annual level difficult.

Since they usually have a more complicated

Fig. 3.4: Annual growth rings in a morphology than their shallow-water counter-

young (~30 year old) P. resedaeformis parts ring discrimination is in addition more
cold-water coral. Picture from (Sher-

15 (1989)

‘iO(IBSM

catchier. Fig. 3.4 depicts an example of annu-
wood et al., 2005). ally deposited incremental growth rings in a
young (~30 year old) skeleton from a Primnoa

resedaeformis cold-water coral colony collected in the northwest Atlantic from depths
between 250 m and 475 m (Sherwood et al., 2005). The arborescent skeleton composes
of calcite and gorgonin! rather than aragonite. It was possible to sample single growth
rings for 4C analysis from P. resedaeformis from seven different colonies. The results are
shown in Fig. 3.5 as AMC plotted against the counted ring age. The sharp rise in the
mid-ocean’s A'C distribution at this location due to atmospheric input of 4C through
aerial A- and H-bomb testing in the 1950s to mid-1960s are clearly visible. As a mat-
ter of fairness, however, it must be mentioned that interpretation of growth banding in

LGorgonin is a skleroprotein, which helps to stabilize the skeleton.
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3.3. Corals as a paleoceanographic archive

cold-water corals is not always that easy and a reliable chronometer since many species
do not show a visual banding, which is in part due to the lack of a strong seasonality
in the deep-water environments. Hence, ring growth is mostly far less pronounced than
in shallow-water corals (Adkins et al., 2004). This being the case, radiometric dating
methods will still be the first choice in establishing absolute ages or chronologies. In
recent years a wealth of other tools have been developed especially for reconstructing
past sea surface temperatures (SST), the key holder in understanding climate and climate
changes. In the early 1950s, Epstein et al. (1953) demonstrated that during secretion of
carbonate skeletons of some marine invertebrates like molluscs, isotopic oxygen composition
is the same as if precipitation had occurred inorganically under equilibrium conditions.
During this process oxygen isotopes (180, 170, 160) become slightly fractionated when
precipitating from a calcifying fluid com-
pared to the ambient seawater isotopic 100
composition. This fractionation? is on (o p ; H

. . resedaeformis ] ®
the order of several per mille and closely o «°
related to seawater temperature and its 50¢ o
isotopic composition. In general, §¥O
of marine carbonates increases with de-
creasing seawater temperatures and vice
versa (Mook and de Vries, 2000). The iso-
topic variations in 680 can be measured
with high precision and are used to recon-
struct paleo-seawater temperatures (e.g.
McCrea, 1950; Emiliani, 1955; Shackleton, —100— . . . .
1974). This method, however, is limited 1920 1940 1960 1980 2000
by the variability of the surface seawa- Year or ring count
ter 80, usually relatively constant dur-
ing the course of a year, can significantly Fig. 3.5: Recorded bomb-'C versus age

be influenced in areas of high rainfall or in cold-water corals from the northwest
evaporation and river input. Though, this Atlantic. Figure modified from Sherwood

A4C (%0)
o

—50} o

technique works in principle for shallow- et al. (2005).

water corals and deep-sea corals too, it

is more difficult to obtain reliable data. Applicability of the isotopic thermometer for
scleractinians is marred by the fact that precipitation of CaCQOj3 is moreover influenced by
the metabolism of the polyp, which is accountable for an observed disequilibrium in the
aragonite 610 relative to inorganically precipitated aragonite (Mikkelsen et al., 1982; Spiro
et al., 2000). Thus stable oxygen isotope values are not directly linked to temperatures.
This feature is referred to as vital-effect and is not well understood until today (Shirai
et al., 2005). In any case species dependent calibration slopes of temperature-§'#O-isotopic-
fractionations under experimental conditions and/or in field experiments must be carried
out. As deep-water environments show relatively stable conditions oxygen isotope ratios of

2... normally expressed as 630 = ((*¥0/*0)cora/(**0/%0)yvppp — 1) - 1000 %o.

18



3. Cold-water corals
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Fig. 3.6: Relation between SST and skele-
tal 6'80 from shallow-water corals of species
Porites lutea together with regression line.
Picture modified from Al-Rousan et al.

(2007).
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cold-water corals are even more influ-
enced by vital effects (Rollion-Bard
et al., 2010). For illustration Fig. 3.6
shows an example of a measured cali-
bration curve for the warm-water coral
Porites lutea from the northern Gulf
of Agaba (Red Sea), which reveals a
linear relationship between SST and
the skeletal 680 (Al-Rousan et al.,
2007). In recent years trace and mi-
nor element compositions like Mg/Ca,
Sr/Ca, U/Ca, Li/Mg, the 6'3C/§80-
line-technique and others have been in-
vestigated as additional potential tem-
perature proxies to validate and recon-
struct temperatures independently and
to find the most trustworthy method.
The above briefly described applica-
tions are just two examples of a large
selection of different techniques devel-
oped to get reliable proxy informations
from a coral skeleton. The reader is re-

ferred to the comprehensive literature
in this field.
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Tools and methods

4.1 Uranium-series disequilibrium

There are many radionuclides in our environment. Some of them have been produced
by human activity through artificial nuclear reactions in the past 65 years or so. Haz-
arding the consequences, for example, mankind intentionally liberated more than 200
different artificial radionuclides into the atmosphere during the A- and H-bomb testing

245.5 ka

>

beta decay

alpha decay

> A

Fig. 4.1: Excerpt of the uranium-radium
decay series. Numbers denote the corre-
sponding half-lives.
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era in the 1950s to mid 60’s result-
ing in a global fallout of these nu-
clides thereafter, which can be mea-
sured until today (Board on Health
Care Services, 1999; Froehlich, 2010).
Another large group of radionuclides
are cosmogenic produced. Earth’s at-
mosphere is continuously bombarded
by cosmic rays from outer space form-
ing radionuclides with half lives from
days up to 10° years. Among them “C
and 1°Be, which are important dating
tools. See section 4.3.1 for more in-
formation about the production and
use of radiocarbon. A third origin
of radionuclides widely used today as
a geochronological tool for the recon-
struction of different timescales and
discrete episodes in earth history are

the primordial nuclides. These include
the long-lived 238U, 23°U and 2*2Th, the



4.2. Nature of radioactive disequilibrium

starting points of the three so-called natural decay chains, which have existed in their
current form since before Earth was formed ~4.6 Ga ago and are still present. Fig. 4.1
exhibits a few decay steps of the 23U series ultimately ending in lead 2°°Pb. Especially for
the 238U decay chain all intermediate products show half-lives being much smaller than for
238U. Therefore, one would reason that radioactive equilibrium between these intermediate
products should have established a long time ago throughout the environment rendering
dating attempts impossible. This is not the case as will be outlined in the next section.

4.2 Nature of radioactive disequilibrium

Natural processes such as phase changes, adsorption, partial melting, degassing, crystal-
lization, oxidation/reduction and many more cause chemical fractionation among different
elements (nuclides) of a decay chain producing a transient state of parent-daughter disequi-
librium. This radioactive disequilibrium can be used to determine the age of the material
(Bourdon et al., 2003). For instance, uranium usually exists in two oxidation states mainly
U%t and U%". During weathering processes uranium is in its hexavalent oxidation state
forming a whole variety of uranyl complexes among them the quite soluble uranyl carbonate
UO,(CO3)3* (Starik and Kolyadin, 1957; Langmuir, 1978)! In a reducing environment,
however, uranium is in its U4* state where it is insoluble and thus far less mobile than U®*"
(Ivanovich and Harmon, 1992). In contrast to uranium, thorium, which exists in natural
waters in its quadrivalent Th** state, is insoluble and is efficiently stripped from the water
column by adsorption and reverse scavenging processes onto mineral surfaces of biogenic
and terrigenic origin or precipitated as a hydrolysate (Koczy et al., 1957). The ocean
surface water in particular has a negligible specific thorium activity compared to uranium.
During organically or inorganically mediated precipitation of calcium carbonate from an
aqueous solution thorium will not be incorporated, which results in a Th/U disequilibrium
as observed in corals or speleothems (Scholz, 2005).

Another totally unrelated process to that described above occurs in low-temperature
environments contributing to the disequilibrium at all phase boundaries is owed to the decay
itself. During the a-decay of 238U, 234Th is dislocated in the crystal lattice by around 20 nm
(depending on the substrate) (Kigoshi, 1971). This in turn gives rise to a preferred leaching
of the 24U during chemical weathering. This phenomenon is known as a-recoil-effect. In
rivers the 24U /238U activity ratios are usually larger than one and exhibit large deviations
from secular equilibrium up to several hundred per mille (Henderson, 2002). As a result
ocean seawater is also slightly enriched in 2*U with activity ratios of 231U /23U = 1.1468
(Anderson and Carr, 2010), normally expressed as 6*3*U = 146.8%¢%. This ocean value is

'The variety of different uranyl species is depending on the temperature and pH of the water, the above
mentioned uranyl complex is the dominant form for a pH level of ~8 (seawater).

2The §234U activity of a sample is defined as the relative deviation from a standard given as parts
per thousand, 634U = (234U /238U) /(234U /?8U)q — 1) - 1000. In case of reporting 234U to atomic ratios
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4. Tools and methods

governed by a fragile balance between input and output of uranium isotopes and is thought
to have been stable for the last 400,000 years (Henderson, 2002).

4.2.1 ?Th/U-dating of corals

In 1956 the important discovery was made that the 23¥U decay series in newly formed
coral carbonate shows a systematically radioactive disequilibrium (Barnes et al., 1956).
Further investigations approved that this is also the case for a broad variety of marine
carbonates (e.g. molluscs, foraminifera, coccoliths). This paved the way for a prolific era
of age determination, which continues until today thereby allowing the reconstruction of
various marine processes within the Quaternary period. As outlined in chapter 3 corals are
able to biogenically precipitate CaCOj3 from seawater. The exact mechanism is a matter of
debate, though. In the end the chemical conditions most likely within the coral endoderm
determines which dissolved large anion is precipitated from the aqueous medium.

The dominant species, which is coming into question is the uranyl carbonate UO,(CO3)5*
(Shen and Dunbar, 1995). Due to the octahedral configuration of this uranyl complex,
uranium is more compatible with the orthorhombic conformation of aragonite than the
rhombohedral form of calcite (Reeder et al., 2001). The result are lower uranium con-
centrations in the latter one. Uranium concentrations range from 0.02—0.05 ppmw for
foraminifera calcite to 2—5 ppmw for aragonitic corals (Ku, 1965; Russell et al., 1994).
Since almost all coral skeletons, shallow-water as well as cold-water corals, compose of
aragonite, uranium measurements can precisely be conducted with different proved mass
spectrometer techniques (Edwards et al., 1986/87).

4.2.2 ?Th/U age calculation

U-series decay equations are a set of differential equations describing the decay rate of a
certain nuclide with respect to the preceding nuclides of the same decay chain.

dN-
digg + )\238N238 =0 (41)
dN.
dzM + X234 Nazs — AaggNogs = 0 (4.2)
d N
dzm + A230Na30 — A234Na3q = 0 (4.3)

rather than activities, 234U /238U, is equal to Aazs/A2zs = 5.472 - 1075.
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4.2. Nature of radioactive disequilibrium

The equations for the short-lived intermediate daughters 23*Th and 2*Pa are neglected. By
successively solving these equations from top to down by applying the Laplace transformation

LIN() = N(s) = / TN () dt

0

to these equations one will obtain simple linear expressions that can be solved for the
Laplace transformed A (s). One example to illustrate the approach: Applying the Laplace
transformation to the first equation on both sides yields

sN(s) =N+ M (s) =0 with AN°= N the initial value of **U

Solving this equation gives

Inverting this expression by inverting the Laplace transformation using tables or by hand
one will find the time-dependent solution we are looking for

N(t)=LHN(s)} =L {Aj\fs}

Nass(t) = Niyg - €727

The solution to the second equation is given in addition

M AN
)\2 +s ()\2 + 8)()\1 + S)

NQ(S)

After applying partial fraction decomposition, A; 4+ s then can easily be transformed back
by replacing them with exp(\; - t)

1 o1 1

()\1 + S)()\Q + S) Cat ()\1;1 + S) Z]: )\j +s . Hikzlj ()\k — /\])

k#j

Thus for 234U

A
Nazy(t) = Ny - €729 + Ny -

2883 A (6_/\” - 6_)\2%)
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4. Tools and methods

In doing so for the third equation and by converting it to an activity expression® and making
some approximations Ag3s A Aggg => Aogg, one will finally find the marine age equation
used in this thesis.

230Th 230Th 5234U )\230
[ — 1 . _ 1 —A230-t 1 _ ()\234—>\230)'t 44
wy (( 2357 )0 ) T Y000 (Azgo o) L€ ) (44

This equation is transcendental in t and can be solved numerically, e.g. with the Newton-
Raphson method. I refer the interested reader to the appendix A for an alternative and
more detailed derivation of this last equation using no Laplace transformation. Information
about this topic can be found in (e.g. Bateman, 1910; Ivanovich and Harmon, 1992; Schiff,
1999). Fig.4.2 is showing the time evolution of the different isotopic activity ratios of a
closed system and their heading back towards secular equilibrium. This behavior is typical

2 T T T T
1.5F ]
=
=
—
> L _ -e-——ee——— - o ———————————
E 1 b secular equilibrium
5
“‘ 2341/2381
0.5F .
230Th /238U
OO 200 400 600 800 1000
cal age (ka)

Fig. 4.2: Time evolution of the different isotopic activity ratios
in a closed system with no initial 2°Th. Red and black lines
indicate different starting values in 2*4Th/#8U.

for marine carbonates like shallow-water corals. Since 2*°Th is effectively stripped from the
water column the initial 23°Th activity found in surface waters is virtually zero. This is
not the case for deep-water corals as thorium concentrations increase with water depth. As
a consequence, cold-water corals may incorporate so-called unsupported or non-radiogenic

3To obtain activities rather than atomic ratios, the above equation is simply multiplied by the decay
constant of 230Th.
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4.2. Nature of radioactive disequilibrium

thorium leading to older apparent *°Th/U ages. I will discuss this topic in-length in the
next section. The scope of the uranium-thorium dating method is between 400—600 ka
depending on the initial (34U /?3%U),, sample size, and measurement precision.

4.2.3 The necessity to correct for initial 2°Th
4.2.3.1 Hydrogenous and detrital derived thorium

A few words must be said about the correction for non-zero initial 2°Th in cold water corals
since the ability to precisely account for initial thorium has a relatively large impact on the
230Th /U dating. Several sources contribute to a possible incorporation of %Th during the
live span of a coral. Dissolved ?°Th concentrations increase with water depth and have

mostly negligible values at the water surface (Fig.4.3) (An-

230Th,, (fe/kg) derson et al., 1983; Roy-Barman et al., 1996). This is

11 a common feature in water where 2°Th is continuously

0 * being produced from the decay of dissolved 238U, which is
- dissolved homogenously distributed in the open ocean water having

~ particulate a residence time of about 400,000 years (Mangini et al.,

1979). The adjusting concentration gradient with depth
is expressing the high particle reactivity of thorium. The
increase with depth can be explained with the reverse-
1 scavenging model proposing a successively adsorption and
desorption of dissolved #**Th on sedimenting particles (Ba-
con and Anderson, 1982; Nozaki et al., 1987). This obser-
. vation also holds for ?32Th with the difference that 23*Th
is not being continuously produced since it is the start-
ing point of the 22Th decay chain. Sources for 232Th are
1 continental derived detrital weathering products, which
are transported into the ocean mainly by river runoff or
wind-borne dust. The concentration gradient for particu-
5 late 239Th is on average much less pronounced exhibiting
concentrations in part much lower than for dissolved 23°Th
(Fig.4.3). Therefore, deep-living corals bathing in elevated
thorium concentrations and show higher than expected
thorium concentrations in their skeletons*. Detrital clay in
secular equilibrium, however, exhibit ?*°Th/?3>Th atomic
ratios close to the bulk earth value of 4 - 107¢ based on a

Depth (km)

Fig. 4.3: 2°Th concentra-
tion profile from the eastern
North Atlantic. Picture after
(Vogler et al., 1998)).

4Surface water has dissolved atomic 239Th/#*0Th ratios smaller than 5—10 - 10~% compared to deeper
water with ratios larger than 700 - 10~% (Moore, 1981).
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mean 232Th/?**U concentration in Earth’s crust of 3.8 (Taylor and McLennan, 1985; Cheng
et al., 2000a). Thus, for deep-water corals a mixture between both #*°Th/*2Th sources
and their end-members can be expected to be found in the skeleton (Cheng et al., 2000a).

4.2.3.2 Coating derived thorium and uranium

Another effect that influences 2°Th/U dating of cold-water corals are metallic coatings
the inner and outer surface of the a skeleton acquire usually after death due to direct
exposure to the seawater. During the live span of a coral with its varies living polyps, the
calcareous exoskeleton is covered with living tissue called coenosarc, which spreads along
the surface connecting the different polyps. After their death, though, this mucus-like layer
corrodes exposing the corals’ skeleton to the surrounding seawater making it vulnerable
to chemical alteration and/or external biological activity. As a consequence one will often
find the surface of sub-fossilized corals littered with the housing remains of epifaunal living
organisms like the calcitic tubes of serpulid worms. Borings from endolithic organisms like
tiny sponges might also modify the Th concentrations, since they can become partially
filled with sediment and/or secondary precipitated aragonite. But if the corals’ skeleton
is longer exposed to the ambient seawater, dissolved Fe-Mn oxyhydroxides will constantly
precipitate on the surface of a coral covering it with time with a thin®, amorphic metallic
coating (Fig. 4.4) (Bayon et al., 2004). This authigenic coa-

1 cm

Fig. 4.4: Heavily coated calyx from the North
Atlantic region. Picture from Lomitschka (1999).

ting incorporates usually a large number of trace elements formerly dissolved in the seawater,
among them uranium and thorium, whose concentrations largely exceeds the genuine skeletal
concentrations of U and Th (Lomitschka and Mangini, 1999). Several minimal invasive
methods have been described in the literature to get rid of these coatings and to receive
enough pristine material for accurate dating (Shen and Boyle, 1988; Stein et al., 1991;
Lomitschka and Mangini, 1999). For instance, one method involves removal of the coatings

>The coating phase on average is several 100 um thick and often visible as a black layer (Fig.4.4).
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with ascorbic acid and subsequent use of a NasEDTA solution preventing the coatings’
constituents to readsorp onto the coral skeleton again (Lomitschka and Mangini, 1999).
This strategy may be useful in cases where only little material is left. For larger samples
though, a more rigorous mechanical cleaning procedure is often more beneficial.

4.2.4 Correcting for initial >*°Th

To cut the matter short, there is no way to precisely correct for initial 2*°Th in corals. For
the marine age equation (Eq. 4.4) the activity ratio

2307, ‘ 2327\ /230T}h
(238U>0 can be substituted by < 2y ) (232Th>0

The measured 2**Th/?*U activity in the carbonate serves as an indicator-ratio to assess the
incorporated initial 2**Th. This is possible as both isotopes have fairly large half-lives (*3>Th:
1.4-10% years, 238U: 4.46-10° years), thus the ratio does not change on the short timescales we
are looking at (< 50,000 years). The problem shifts toward estimating the initial water ratio
of (¥Th/*?Th), at the location of the corals at

Western Atlant m times the corals grew. Since there is no known

ic
Th-230 [dpm/10001] dissolved

fractionation occurring between the different tho-
rium isotopes during sklerogenesis, the thorium
ratio in water should be equal to the corals’ arag-
onite ratio. Water column measurements of dis-
solved 2°Th and ?*2Th have been measured in
great numbers. Data from the eastern North At-
lantic (Vogler et al., 1998) for instance depicted
values of 10 + 4 and Moran et al. (1997) reported
results from the Labrador Sea with 8.6+4.3. Over-

festemn Aclantic | ived all, reported values range from 0—30 (Cheng et al.,
e 2000a) (0—400 m water depth). There has also
ol il been efforts to model the 23°Th distribution in the
oceans with an OGCM (Ocean General Circula-
tion Model) (Henderson et al., 1999), which yield
a good fit to today’s water column measurements
of 29Th suggesting that the model is advecting
and removing 2*°Th within the ocean realistically.
Model runs have been performed along a merid-
ional transect through the West Atlantic with
Fig. 4.5: Modeled dissolved ***Th  (ifferent ocean flow patterns thought to have pre-
during the preindustrial Holocene  vailed during the Holocene and LGM (Last Glacial
and LGM (Henderson et al., 1999).  Maximum ~22—19 ka BP) (Fig. 4.5). The model

depth (km)

Glacial

depth (km)
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values can be used for a first order approach to correct for an initial 2**Th concentration.
As there are no modeled ?*2Th concentrations one must be content with present water
column measurements. A published seawater 232Th profile closest to the location of the
investigated corals in this thesis can be found in Chen et al. (1986). Differences in the
modeled ?3°Th seawater activity during the LGM and Holocene are not significant for the
depth range of interest (600—800 m) and are not affecting the coral dating.

4.2.5 Sensitivity check

After the substitution in section 4.2.4 the marine age equation is now dependent on the initial
(*3Th/?%Th), activity ratio. Though reported water values for this ratio exhibit a relatively
wide range between 0—30 (Cheng et al., 2000a), the measured 2**Th concentration (respec-
tively activity ratio) within the coral is actually the dominant factor for the age and error
calculation. Fig. 4.6 illustrates this sensitivity after having applied a first order Gaussian er-
ror propagation of equation 4.4. A higher measured 2**Th concentration in a coral results in
a larger absolute age uncertainty and concurrently lowers the age of a coral. The single white
dot stands for the uncorrected age

for a specific coral measured in this
thesis (age 27.1 ka BP) with a 20 1000l
error of 243 years. The colored dots .
show the course of the age and error &
development after corrections have o)
been made for initial 2°Th. The E
measured 2*2Th concentration for o
the yellow dots is chosen to be con-  © ¢ »Th = 0—30ppbw
stant to 1 ppbw (1ng/g), while the (3 - 2Th set to 2ppbw
initial water value was changed in © 2Th set to 1ppbw
thirty one steps between 0—30. The 0 232Th set to Oppbw
red dots are showing the same sit- 200 ' ' '

. . Y 25 26 27
uation but with a fixed *>*Th con-

) cal age (ka)

centration of 2 ppbw and a vary-
ing initial water ratio between 0—30 Fig. 4.6: Correlation between coral age and
again. Lastly, for the blue dots the age error as a function of measured #*?Th and
(230Th/232rl“h)O is set to 8 (arbitrar- estimated (**°Th/*?Th), ratio. Curves have
ily chosen) and the #**Th concentra- been slightly shifted in y-direction for better
tion varies between 0—30. As one visibility. See text for further description.

can see from Fig. 4.6 the #*2Th con-

tent of a coral has the largest impact on its age and error despite the fact that we do not
know the initial water ratio (**°Th/?**Th), precisely. It is clear from this point of view
that a rigorous cleaning technique is necessary to keep the 232Th concentration as small
as possible. While older corals are relatively impervious for initial 23°Th, for very young
corals the error is dominated by the initial Th correction. In this work the initial water
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(**Th/?*Th), value in 600—800 m water depth off Brazil is set to 8 with an appraised
uncertainty of 50%.

4.2.6 Diagenesis

Originally borrowed from geology and oceanography the term diagenesis describes ‘physical,
chemical, and biological changes occurring in sediments during and after the period of initial
deposition, including lithification, but excluding surficial alteration (weathering) and meta-
morphism’(Geyh and Schleicher, 1990). Regarding corals diagenesis comprises alterations
of the skeleton induced by carbonate dissolution, secondary aragonite precipitation, pore
filling, and conversion from aragonite to calcite potentially happening after the death of the
polyps. All of these effects lead to a gradual exchange of uranium and/or thorium with the
environment. These processes are obviously important as they can affect the accuracy of the
uranium-series clock. One approach to

300 (e Aqabar corals, Scholz 2005 | , , " , test corals for post-depositional diagen-
2501} “ ! | esis is to measure their uranium concen-

aC trations. Modern corals exhibit concen-
200+ .ll, | trations ranging between 2—3.5 ppmw

. (Shen and Dunbar, 1995). The ob-
- served scatter has been attributed in

part to a number of slightly changing
environmental parameters such as sea-
water temperature, pH, Ca?* ion con-
centration and variations in salinity.
Identifying one single cause for this

OO 0‘2 0‘ 4 0‘6 0.8 1 variation is hampered by the fact that
' ' ' ‘ the biological activity of the polyp af-

534U (%)
2

230 238

Th/=U fects the carbonate precipitation and
Fig. 4.7: The solid red lines show the iso- with that the uranium concentration
topic evolution of a closed system starting ~ as well. This is known as vital-effect
with a mean 024U of 146%¢ and a zero (Gvirtzman et al., 1973). Furthermore,
20Th /238U activity. Deviations from this borings from endolithic organisms like
span are symptomatic of diagenetic alteration tiny sponges may also modify the U
as indicated by the green error ellipses from content of the skeleton. These borings
Scholz (2005). can become partially filled with sed-

iment and/or secondary precipitated
aragonite. Less intuitive processes show that even dead, non-bioeroded corals can become
enriched in uranium along the skeletal margins and trabecular centers when exposed to
concentrated uranium solutions from the surroundings (Swart and Hubbard, 1982; Robinson
et al., 2006). Another process involves potentially filling of the coral’s porous aragonitic
skeleton within 1,000 years after its death with aragonite enriched in uranium relative to
the original coral. The corals’ porosity is thereby reduced by 5% leading to an apparent

30



4. Tools and methods

age rejuvenation of 7% with no measurable effect on the calculated initial uranium isotopic
composition (Lazar et al., 2004; Robinson et al., 2006). When speaking about the initial
uranium isotopic composition a second gauge to check diagenetic activity is to measure the
uranium isotopic activity ratio 24U /?38U. First shown by Broecker and Takahashi (1966),
marine carbonates incorporate the isotopic composition of the surrounding seawater. The
present-day open-ocean seawater 624U is ~147%o, as recently pointed out by Anderson
and Carr (2010) and Robinson et al. (2004) and is conservative within at least the upper
2,000 m (Cheng et al., 2000b) with only variations in the sub-%o level (Anderson and Carr,
2010). Some older studies by contrast report more variable values with a lower bound as
small as 139.54+3.5%0 (Chen et al., 1986) and an upper bound going as high as 149.6 &+ 1%
(Delanghe et al., 2002). All reported 31U /?*3U measurements consider already the newly
determined decay constant of 24U (Cheng et al., 2000a).

It is not just that very recent corals indeed build in this isotopic signature (Szabo et al.,
1994), they as well verify the assumed constancy of the measured water values to within
10%0 over the last several hundred thousand years (e.g. Henderson et al., 1993; Gallup
et al., 1994; Stirling et al., 1995; Henderson, 2002). If the coral’s skeleton behaved as
a closed system its initial §234U; (= §2*4U - e*4%) should be identical to that of today’s
ocean (Edwards et al., 1986/87). Fig 4.7 demonstrates the isotopic evolution of a closed
system (solid red lines) starting with a mean 624U of 146.819,%¢ and an initial 2°Th/?**Th
activity of zero. Deviations from this span are symptomatic of diagenetic alteration. Gray
lines are isochrones (isotopic pairs of values giving the same age). For illustration the data
from Scholz (2005) from last interglacial shallow-water corals from Barbados is plotted as
well (Fig 4.7). Corals feature strong diagenetic alterations making them unsuitable for
conventional age determination according to the marine age equation (Eq. 4.4).

4.2.6.1 X-ray diffraction (XRD)

Another potential pitfall is the post-depositional diagenetic alteration of aragonite to calcite
(McGregor and Gagan, 2003). As already mentioned in the beginning of this section,
aragonite is a metastable polymorph of calcium carbonate and gradually transforms into
the much more stable modification calcite. This process lead to an opening of the carbonate
system and allows the exchange of different isotopes compromising ?*°Th/U dating. The
X-ray diffraction technique allows to analyze the crystal structure of a variety of minerals
and moreover provides a quantitative evaluation of its composition. Fig. 4.8 exemplarily
shows a section of a typically measured X-ray diffractogram of a 65 ka old coral sample,
which in this case can be entirely explained by just one present mineral phase videlicet
aragonite. This finding is a strong evidence supporting the assumption that no alteration
from aragonite to calcite in this specific sample happened. It must be emphasized that all
these indicators used to test the closed system behavior of the coral carbonate are often
not meaningful when viewed alone.
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Fig. 4.8: X-ray diffractogram of a Desmophyllum dianthus (~65 ka
old) with distinct aragonite peaks and no detectable calcite. Picture
adapted from Adkins (1998).
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4.3 Radiocarbon dating

4.3.1 '"C production

The C age method has undoubtedly become more acquainted to the general public
than any other dating tool. Inextricably linked with this important dating technique is
the name of Willard Frank Libby who, as a pioneer in isotope research, was awarded
the Nobel Prize in chemistry in 1960 for his con-
tributions in this field. C is one of the so-called
cosmogenic radionuclides which are being continu-
ously produced in the upper layers of the atmosphere.
The locus of peak production of **C is above 15 km,

@ o §B o .. above
where the energy deposition of galactic cosmic rays
» . " . (GCR) is highest. GCR mainly consists of protons
N+,n— 5C+1p (89%), alpha particles (10%), and is galactic in origin
(Mursula and Usoskin, 2003). GCRs usually have en-
ergies of the order of ~1 GeV and show a flux of about
@ @ * 1,000 particles/m?/s. These high energy particles in-
duce spallation processes through collisions with the
lé C — IZ%N + _(i) e+ i ztarlrllé))sphlie’}sl molecules, m‘ainly nitrogen ‘(most. abun-
. gh energy particles released in this way
in turn produce cascading secondary particles down
Fig. 4.9: Production and de- the atmosphere including (thermal) neutrons, myons,
cay scheme for "*C. and electrons until the kinetic energy of this particle
shower is too small. The *C production equation is
schematically shown in Fig. 4.9, which is often abbreviated as N(n, p)*C. For this to
work N must capture a neutron within a relatively narrow energy range (Korff and Clarke,
1942). The resulting intermediate compound particle is unstable and immediately decays
into '4C emitting a single proton. *C spontaneously decays back by 5~ decay into 4N
with a half life of 5,730 £ 30 years, the so-called Cambridge half life®. The above particle
reaction is the main source of **C in the atmosphere and contributes to more than 99% of
the total 1*C-production rate. Our sun emits also relatively high energy particles namely
solar cosmic rays (SCR), whose production rate is usually below a percent of the GCR and
is therefore negligible (Masarik and Beer, 2009). *C production moreover exhibits large
variations with increasing atmospheric depth as well as a latitudinal dependence due to the
geomagnetic shielding. Owing to the dipole character of Earth’s magnetic field, neglecting
higher magnetic multipoles, there is a five times higher secondary neutron flux at the poles
than at the equator resulting in a latitudinal **C gradient which vanishes rapidly through
mixing between the stratosphere and the well-mixed troposphere (Harkness, 1970). Two

6Tt is thanks to a fail measurement from Libby and coworkers in the beginning of radiocarbon dating
that all age calculations are performed with a wrong half life of 5,568 years instead of the more precise half
life of 5,730 years.
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third of the *C production takes place in the stratosphere only one third in the troposphere
(e.g. Lal and Peters, 1967; O'Brien, 1979). After that, *C is rapidly oxidized to CO with
a mean life time of about days to months and is subsequently further oxidized to *CO,
showing a longer residence time in the atmosphere of about 5 years.

4.3.2 Carbon reservoirs

4 (C-tagged atmospheric CO, finally enters the Earth’s carbon cycle, one of Earth’s bio-
geochemical cycles, which consists of different reservoirs within those carbon in its var-
ious molecular forms is exchanged, subsequently recycled, and reused on different time-
scales. The reservoirs of the car-

bon cycle encompass the ocean, |

atmosphere’ blosPhere? and ter_ Atmosphere: CO, = 600 Pg C H Terrestrial: Corg =2,100Pg C
restrial hydrosphere from which Tamosury = 10Y7: T tory = 6 Y7 Tatm.tem) = 18y
the ocean is by far the largest and T
most important one (Froehlich, o ;

A , Surface ocean: DIC = 700 Pg C > River input of dissolved CaCOj:
2010). For instance, today’s at- Tt doop) = 25 )1 02PgCyr
mosphere COs inventory is about Jexport: Gy = 4Pg G yr| | cac0,=1PgCyr
750 GtC (1 GtC = 109 metric Sediments and crust:

v (Ca,Mg)CO, = 48,000,000 Pg C

tons of carbon) with a CO, res-
idence time of 5 years. Conse-
quently 20% of the CO, inventory
are annually exchanged with the CaCO0, burial: 02 Pg G yr-'
biosphere (ca. 60 GtC per year) | v
and the ocean surface waters

(ca. 90 GtC per year) (Schimel Fig. 4.10: Earth carbon inventories and their

et al., 1995). See Fig. 4.10 for a associated exchange fluxes and residence times.
highly simplified picture exhibit- Picture from Sigman and Boyle (2000).

ing carbon inventories and ex-

change fluxes across the reservoirs’ common boundaries. The given numbers in Fig. 4.10 are
still under debate. Natural sources and sinks of CO, are the living and dead biosphere and
the ocean. Plants, for instance, consume the gaseous carbon dioxide in a photosynthetic
process fixating carbon to build carbohydrates both on land and as dwelling phytoplankton
in the sunlit surface of the ocean. On the other hand COs is also released through plant
and root respiration, and rotting of organic material. Hence the short exchange time of
CO; on the order of a few years at least between the atmosphere and biosphere. Once
COy, is dissolved in the ocean water it stays there. The likelihood to get back soon to
the atmosphere is slim. The exchange time between the atmosphere and ocean is on the
order of a millennium. A complicating factor is that CO,, once dissolved, forms different
chemical species (carbonic acid (HoCO3), bicarbonate (HCOj3 ), and carbonate (CO37)) in
different portions depending on the pH and the alkalinity of the seawater. It subsequently
mixes within the deeper water and is vertically and laterally transported via ocean currents.

T(weathering) = 240 Myr
Corg = 15,000,000 Pg C
T(weathering) = 300 Myr

Deep ocean: DIC = 38,000 Pg/C
T(surf.deep) = 1,250 yr
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Since the ocean is the largest carbon reservoir with an inventory ~60 times the atmosphere,
minor changes in its chemical state are thought to be sufficient to have a huge impact on
atmospheric CO, concentration. Variations in the ocean carbonate chemistry could lead to
outgassing of molecular CO5 between the ocean-atmosphere boundary, which is a promising
mechanism to explain the observed ups and downs of atmospheric CO5 during the course of
glacial and interglacial cycles (Broecker, 1982). Since carbon *C is reasonably well mixed
in these different reservoirs, but not totally, especially not in the ocean during the average
lifetime for a *C atom to decay, renders it a very valuable tool to disentangle the complex
processes of the carbon cycle enlightening the spatial and temporal variability of carbon
sources and sinks. For example by measuring the *C deficiency per unit of ordinary carbon
in a reservoir one is able to use it as a tracer to determine the turnover time of seawater in
the ocean or of soil organic matter (Levin and Hesshaimer, 2000).

4.3.3 Measurements

The isotopic concentrations for the three naturally-occurring carbon isotopes are 98.89%
for 2C, 1.11% for 3C, and less than 1072 % for *C (Nier, 1950). These values are not
fixed and must be regarded as median values because isotopic fractionation and decay
during transfer of carbon between different geochemical phases lead to slight but significant
changes in these concentrations. To give the reader a better impression of how small Earth’s
14C inventory actually is, let us consider a steady-state case where radiocarbon production
equals its decay. From this it follows:

decay

—_—~
P14C . A — )\140 . N14C

with P being the production rate of ~2.05 1*C atoms cm=2 s~! (global average: integrated
over the depth of the Earth’s atmosphere and all latitudes) (Masarik and Beer, 2009)
and A representing the Earth’s surface, the whole *C budget would be no more than
~63 metric tons. The annually “C production is ~7.6 kg and is distributed over all active
carbon reservoirs leading to a mean specific activity in organic matter of around 15 dpm/gC
(dpm/gC decays per minute per gram carbon) (Anderson and Libby, 1951). When plants die
off the steady uptake of radiocarbon in the form of *CO, grinds to a halt. In the course of
time the specific activity is decreasing by *C decay. The age of a sample is then calculated
simply by measuring the residual **C activity (or equivalently the *C/2C isotopic ratio)
followed by normalization to the atmospheric reference level and applying of the exponential
law governing the decay. In the pioneering time of radiocarbon measurements in the
1950s Libby and coworkers used a beta-counting technique to count single decays, but the
background to signal ratio (16 : 1) eliminated the possibility of meaningful measurements
in the first place. The masterly performance was to shield the setup with a bundle of
anticoincidence-cosmic-ray-guard counters, which significantly reduced the background
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Fig. 4.11: First “C counting apparatus built by
Libby, which smoothed the way for radiocarbon
dating. Picture taken from Currie (2004).

signal coming from p~ radiation (Currie, 2004) (Fig. 4.11). Even today '*C measurements
are conducted with this counting technique. Though advances in shielding technique have
been made, which improved counting precision to as low as ~0.2% (Poisson relative standard
deviation) compared to Libby’s 1—5% uncertainties in the beginning of 1950, the technique
is dying breed and is replaced bit by bit by accelerator mass spectrometer techniques
(AMS).

4.3.4 Age calculation

There are three critical assumptions for 4C dating that need to be fulfilled in order to get
reliable absolute ages: 1. A constant “C production by cosmic rays over the applicable time
range of this method (about 10 half-lives ~50 ka). 2. The sizes of the exchangeable carbon
reservoirs should be constant on average for many thousands of years. 3. A uniform global
distribution of C is required shortly after its production. Early on it was realized that
atmospheric **CO, is well mixed within the atmosphere and without significant deviations
from an uniform global distribution (Anderson and Libby, 1951). Unfortunately, the former
two assumptions have proven false. It has been shown that *C production rate in the past
was subject to short-term changes in Earth’s magnetic shielding, modulated by the magnetic
field carried along by the solar wind filling the interplanetary space. The suns magnetic
field, however, just plays an indirect role and is mostly confined to the immediate vicinity
around the sun (e.g. de Vries, 1958; Stuiver, 1961; Stuiver and Quary, 1980). On a long
term basis (> than several hundred years), *C production is besides influenced through
changes in the geomagnetic dipole field (Damon et al., 1978). Reconstructions based on
paleomagnetic records suggest that the Earth’s magnetic-field strength has continuously in-
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creased over the past 40 ka BP (Laj 10 ' ' '

et al., 2002), thereby lowering the *C — IntCal09, Reimer et al. 2009
production rate. The flux and modu- 8}

lation of galactic protons, however, %

are thought to have been constant o ¢!

in time and should not influence the <= N

14C age calculation. Also the sizes of go 4l

the active carbon reservoirs, like the ¢

atmosphere, have been changed dur- =

ing the past, especially during transi- 27

tion between glacial-interglacial peri-

ods rendering absolute age determina- 00 2 4 6 8 10
tion completely impossible. To over- cal age (ka BP)

come these problems calculated *C

ages need to be calibrated in oder to Fig. 4.12: Cut-out from the tree ring cali-
get absolute ages. Fig. 4.12 depicts bration curve from Reimer et al. (2009) illus-
the MC calibration curve for the last trating the deviations between *C ages and

10 ka BP derived by C dating of tree calendar ages.

rings of known calendar ages. Since

absolute age calibration is not the subject of this thesis, the reader is referred to the
extensive literature about this topic. *C ages have been calculated in this thesis following
the equation:

(14C/12C)sample

In (Fy,), with F,, being the measured ratio (9020 gy

“C age =

1
N (4.5)

By definition the “C decay constant ) is chosen to be corresponding to the Libby half life
rather than the “true” half life. The reference activity "Rgandara = (**C/'2C) is based on
the activity of wood from AD 1890, which is thought to have been in equilibrium with the
atmosphere, corrected for decay to 1950. This specific activity was selected to represent
the last time atmospheric radiocarbon activity was undisturbed by human activities. By
convention the year 1950 is set 0 BP in radiocarbon dating.
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4.3.4.1 3C correction

Radiocarbon measurements must be corrected for isotopic fractionation since the lighter
carbon isotopes are preferentially taken up in any biological pathway. This can lead to
spurious 4C ages for contemporary existing material. This phenomenon is known since the
mid-1950s, when Harmon Craig first identified that certain biochemical processes alter the
equilibrium between the carbon isotopes in the different reservoirs (Craig, 1953). During
photosynthesis, plants, depending of which photosynthetic pathway they use, discriminate
the lighter carbon isotope 2C in favor of *C and '*C resulting in a deficiency of the last
ones giving the samples an apparently older radiocarbon age. The discrimination process is
in good agreement twice as much for *C than for *C.

Luckily, the ratio between the stable 3C and '2C atoms can be used to correct for the
initial depletion or enrichment of 4C, this correction is called normalization (Taylor, 1987).
Some figures for illustration: after assimilation of carbon, Cs plants deriving their CO,
directly from the atmosphere are depleted in *C/'2C by as much as 15%¢ relative to
the atmosphere’s COy (Harkness and Wilson, 1979) and therefore appear to be 240 years
older. In an non-biological process the situation can even be inversed: the ocean surface is
about 7%o enriched in DI*3C making the water apparently younger than the atmosphere.
Normally a 3C depletion or enrichment is given as relative deviation from a '*C standard
called VPDB and expressed as 613C:

13c/12c)‘ L
oBC = ( SR 1 - 1000
( (13C/12C)vppB ) o

The measured *C/12C isotope ratio is then normalized to an arbitrary set value of §*3C =
—25%o0, the mean value of wood, to insure that contemporary existing material has the
same radiocarbon age. Every per mille unaccounted for fractionation that is not normalized
to —25%0, will cause an age offset of ~16 years. For organic material this correction is as
large as 80 years and for marine shells accounts to up to 400 years. As '3C is routinely
measured during the data acquisition in an accelerator mass spectrometer all measurements
in this thesis have been corrected for fractionation following the equations below usually
applied for AMS dating:

2 - (25 + 03 Caample
14Rsample, n — 14l%sample . (1 - ( i ol )>

1000

Also the "C standard is normalized:

2(25+513Ct d d)
14R 14R standar
standard, n — standar -0.7459 - 1—
tandard, tandard (
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The fraction modern (F,,) then is:

YRgample - (1 — 2+ (25 + 6" Campie) /1000)

Fn. =
0.7459 - “Rgtandara - (1 — 2+ (25 4 0 Cgandara)/1000)

Inserted in Eq. 4.5 delivers the **C age. More information about calculating and reporting
14C ages can be found for example in Froehlich (2010) and Stuiver and Polach (1977).

4.3.5 The use of *C as a water mass tracer

Fig. 4.13: Gerard
barrels used for “C

sampling.

Early on in the history of *C dating it has become clear that
radiocarbon has also the potential to age ocean water as well as to
determine ocean ventilation rates. This is made possible because
14C0O,, after being formed in the atmosphere, becomes dispersed
throughout the Earth’s active carbon reservoirs. When entering
the ocean surface it is subject to a series of chemical reactions
as mentioned above. Being cut off from the atmosphere, the 4C-
tagged carbonate species then mix with deeper water layers either
by turbulent mixing or transport by ocean currents and by this
means are spread throughout the ocean. Chance brought it about
that the C half life is on the one hand long enough to mix well
with the ocean interior but on the other hand is short enough to
prevent completely mixing. It is this characteristic that makes *C
the preferential tracer to divulge residence times and renewal rates
for ocean water. Subsequently, large-scale programs in oceanog-
raphy were carried out to probe today’s *C distribution. Before
the mid-1980s large volumes of water were required to get enough
DICT for the radiocarbon measurements by the decay counting
method. Fig. 4.13 on the left-hand side illustrates a typical water
sampler (Gerard barrel) used to get water samples for radiocarbon
measurements. Above: Gerard barrel during collection on the high
seas. Below: scrapped water sampler in the entrance hall at the
Institute of Environmental Physics. With the advent of accelerator
mass spectrometry (AMS) in the mid-1980s, which directly allowed
counting of *C atoms samples sizes were significantly reduced
(factor of ~1,000). This improvement opened the door to recon-
struct past ocean ventilation rates by measuring calcite shells from
foraminifera deposited within the marine sediments. Ever since

"By definition, the sum of all dissolved inorganic carbonate species (CO5* + HyCO3 + HCO; + CO3")
is referred to as ¥COs or simply DIC.
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the strategy has been to measure the “C age difference between coexisting benthic and
planktic foraminifera (called B.P. age) from the same depth horizon in deep-sea cores. At
the best, this *C age difference provide a measure of the time elapsed for the surface water
to attain the same '*C signature as the bottom water. Relatively low B.P. ages indicate a
rapid overturning whereas high values indicate a more sluggish ocean ventilation. In a very
simplistic view, in the presence of a single moving water parcel and a constant atmospheric
radiocarbon activity over time, the B.P. age is equal to a true transport time. But those
requirements are usually not fulfilled in the real atmosphere-ocean system and B.P. ages do
not represent a transport time.

An alternative method to reconstruct paleo deep-water ventilation histories is by using the
projection-age concept first proposed by Adkins and Boyle (1997) and Mangini et al. (1998).
Rather than to calculate simply the *C age difference between planktic and benthic living
foraminifera, which can lead to spurious ventilation ages under a changing atmospheric
AM™C as shown by Adkins (1998), projection ages are inferred by decay-correcting the
measured benthic’s *C activity or AC (obtained from deep-water corals, benthic-dwelling
foraminfera or some other shell-bearing organism) back in time until it intersects with the
reconstructed atmospheric AC record. The difference between the calendar age of the
sample and the time (calendar age) of intersection of the atmospheric record yields the
so-called projection age. To get true paleoventilation ages, however, one need to correct for
an ocean surface reservoir offset. Since surface reservoir ages a poorly constrained especially
for the past ocean only projection ages can be obtained. As a consequence projection ages
always provide an upper estimate of the true ventilation age. This method circumvent
the problem of a changing atmosphere’s radiocarbon inventory but also cannot account
for changes in the surface reservoir age nor complicated mixing histories between different
water masses with different *C ages. By definition A'C is calculated according to the

C deep water C standard

AlZJLCdeep water — 140 - 1000%0 (46)
<mc>standard
" ecal age/8266
A Cdeep water — <€14(Jage/8033 - 1) . 1000%0 (47)

This equation can be rewritten to Eq. 4.7 to become more manageable since the dependences
of the calendar age and '*C age are now apparent, see Adkins and Boyle (1997) for derivation.
For more information about calculating the projection ages and results, see chapter 6. In
conclusion, both presented methods allow reconstruction of paleoventilation rates as best
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as possible. Once reconstructed it can be compared with the AC (tantamount 1C age)
distribution in the modern ocean to grasp past ocean circulation and circulation changes on
a regional and global level as well as on different timescales. Fig. 4.14 illustrates an example
of how the *C distribution looks like in the current ocean as inferred from measurements on
water samples. The age distribution at a depth of 3,500 m directly reflects the large-scale
meridional overturning circulation showing that the Atlantic Ocean is much better ventilated
than other ocean basins like the Pacific. As explained in chapter 2, deep-water forms north
of Iceland (predecessor of NADW), which penetrates until ~3,500 m and spreads as mature
NADW towards the South Atlantic indicated by increasing ages due to decay of *C along
its way. The radiocarbon activity of NADW today is the highest in the whole deep ocean.
Not depicted in Fig. 4.14, the eastern part of the deep Atlantic is slightly older than the
western part suggesting the outflow of NADW primarily happens as a western boundary

Latitude

500

100 W 0 100 E
Longitude

Fig. 4.14: Mapped conventional *C ages of natural radiocarbon (bomb-
corrected) as measured on DIC at 3,500 m water depth. The age distribution
directly reflects the large-scale overturning circulation pattern. Young deep
water forming in the North Atlantic (~400 years) spreads throughout all ocean
basins driving the conveyor circulation. Age contours reflect ageing of the water
by decay as well as mixing of water with different ages. The oldest deep water is
found in the North Pacific in (> 2,000 years). Figure modified from Matsumoto
and Key (2004).

current (Sarmiento and Gruber, 2006). It is important to mention that the radiocarbon
ages in the South Atlantic at this depth level cannot simply be interpreted as an ageing
by C decay alone as older AABW penetrates to the north and mixes with the younger
NADW lying above. Apart from these difficulties various water masses with distinct
ventilation histories meet in the Southern Ocean joining the ACC eastward, which is visible
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4.3. Radiocarbon dating

by increasing ages in the Indian Ocean and Pacific Ocean, respectively. The reader is
referred to the more pictorial Fig. 2.1 for direct comparison of the large-scale deep-ocean
circulation pattern. Comprehensive overviews, different depth layer, and discussions can
be found in the literature (e.g. Key et al., 2004; Matsumoto and Key, 2004; Sarmiento
and Gruber, 2006). Alternatively to *C as an oceanic tracer stable '*C/'>C can be used
as well. But it turns out the *C/!2C isotopic composition of the water shows a much
smaller dynamic range (only several per mille). Thus, the 3C/12C distribution is much
more complex, especially in shallow waters, where COy exchange with the atmosphere
and thermocline takes place, which can significantly alter the isotopic composition (e.g.
Kroopnick, 1980, 1985; Marchitto et al., 2007). Moreover, 1*C/12C is subject to fractionation
during photosynthesis in the surface water. Deep water 3C/C mostly do not show these
drawbacks as it is decoupled from the atmosphere and direct biological activity (Duplessy
et al., 1988).

42



4. Tools and methods

4.4 Neodymium

4.4.1 Origin of neodymium

Initially used to address geological problems in the field of geochronology as a dating tool
and to investigate geochemical processes in mantle and continental rock evolution on long
time-scales it has been used recently as a tracer tool in paleoceanography to unriddle past
ocean circulation (Frank, 2002). This is made possible due to the high resilience of the
samarium-neodymium isotope system against possible remobilisation during metamorphism
or weathering processes compared to other isotope systems within a rock (White, 2003).
Neodymium belongs to the group of the 14 naturally occurring rare earth elements (REE),
comprising the lanthanides supplemented
by the two transition metals scandium
and yttrium. Neodymium (Nd) comes in
%o% seven natural isotopes ranging in mass

fe%/[l from 142—150 u. In paleoceanographic

© . . . .

studies only the neodymium isotopic com-
position 3Nd/1Nd in seawater is of in-
terest. The stable radiogenic *3Nd iso-
tope is being continuously formed by a-
b decay from the long-lived samarium *4"Sm
(T1/2 = (1.0640.04)- 10" years) constitut-
ing ~15% of the natural Sm abundance
SN (Begemann et al., 2001). Primordial "*'Nd
. : : : : is used for normalization purposes and

2 1 0 quasi stable (T ~ 2.29 - 10'° years).
age (Ga) Though ®Sm is also unstable it is not
contributing to the natural abundance
level of ¥*Nd due to its much longer half
life of ~7-10' years (O’Nions et al., 1979).
Before Earth was formed ~4.5 Ga ago
(Rudge et al., 2010), the Sm/Nd element
concentration ratio in the solar nebula is
thought to have been constant with 43Nd
concentrations increasing in time through
decay of 7Sm (Fig. 4.15). During the
accretion of the Earth from the solar neb-
ula (SN) at time t. the Sm/Nd ratio, however, became fractionated, changing towards
a lower Sm/Nd concentration thereby altering the ingrowth rate of 3Nd of the newly
formed Earth compared to the previous rates in the SN. This chemical differentiation
between Sm and Nd is mainly a consequence of their different atomic radii (Boynton, 1975)
and determines the concentrations in subsequent melting events of Earth’ mantle. Nd is

13N d /14Nd (scale arbitr.)
N
£
>
o

e
)
~
w

Fig. 4.15: Evolution of the Nd isotopic com-
position of the bulk Earth (Iygr(t), UR: Uni-
form Reservoir) subsequently after its for-
mation from the SN. Every melting event in
Earth mantle fractionates Sm and Nd causing
different Nd isotopic compositions in the con-
tinental crust and the residual mantle. Pic-
ture after DePaolo and Wasserburg (1976).
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4.4. Neodymium

accommodated more easily into the partial melt of the mantle rock than Sm leading to more
depleted Sm/Nd concentrations in the continental crust compared to the residual mantle
(Fig. 4.15) (Goldstein and Hemming, 2003). The gray line describes the neodymium isotopic
evolution of the *3Nd/"Nd ratio in time of the hypothetical uniform reservoir (bulk
Earth). This bulk-earth evolution line also called as CHUR (Chrondritic Uniform Reservoir)
and serves as a model for the isotopic evolution of Earth’s primitive mantle. The red lines
show different isotopic histories after chemical differentiation caused by a melting event as
described. Continental- and mantle composition can be clearly distinguished. The initial
bulk Nd isotopic composition of Earth can be obtained from chrondritic meteorites, which
simultaneously originated from the SN as Earth. The accepted *3Nd/!*4Nd ratio in today’s
chrondrites is 0.512638, defining the standard value against all **3Nd /!**Nd measurements
are reported (Jacobsen and Wasserburg, 1980). The Nd ratios are conveniently expressed
as exq (the relative deviation of a sample’s 3Nd/!*Nd isotopic ratio to the standard value
expressed in parts per 10* (%o0)) Piepgras and Wasserburg (1980) following the equation:

(143Nd/144Nd)sample
ENa =

(BN d /N com — 1> - 10000%00 (4.8)

4.4.2 Continental distribution of neodymium

Sm/Nd concentrations of the continental crust are always lower than the hypothetical
chrondritic uniform reservoir, thus, ey, tend to be predominantly negative. Conversely,
positive values are expected to come from mantle rock relatively enriched in neodymium.
The observed large heterogeneity in ey, of the continental crust is the product of the different
Sm/Nd concentrations and their various ages. Besides, complex and long lasting reshuffling
processes of this crustal material through plate tectonics increases this heterogeneity even
further. This observed heterogeneity in the neodymium isotopic composition is the basis
for tracing sources and transport routes with ey, (Goldstein and Hemming, 2003). As
illustrated in Fig. 4.16, ey, exhibits a wide range encompassing basaltic rocks from the
mid-ocean ridges showing values up to +12 to old granitic cratons (continental rocks) giving
values by as much as —45 (Lacan and Jeandel, 2005). This wide range in ey, is of special
interest for tracing ocean currents as outlined in the next section.
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Fig. 4.16: This figure is an overview illustrating the large continental hetero-
geneity of the M3Nd/!Nd isotopes expressed as ey, of the margins surrounding
the oceans. Hatched areas indicate regions where ey, were estimated due to
insufficient data. Picture modified from Jeandel et al. (2007).

4.4.3 Neodymium as oceanic tracer

The following is abstracted and briefly summarized from the review articles of Frank
(2002) and Goldstein and Hemming (2003). The reader is cautioned to these extensive
sources for further reading. The neodymium isotopes dissolved in seawater enter the ocean
mainly by river run off and aeolian dust from weathering and erosion of continental rocks
and through particle-seawater interaction. Further suggested sources of neodymium are
the mid-ocean ridges as well as submarine volcanoes. The exact mechanism, however,
how ocean currents acquire their different Nd-isotope signatures is not well understood.
90—95% of the neodymium in the ocean persists dissolved in seawater exclusively in the
+3 state in oxygenated seawater and is stabilized mostly in the form of Nd-carbonate
(NdCO3) or Nd-sulfate (NdSOj ) with traces of Nd3* (Jeandel et al., 1995; Frank, 2002).
Predominantly negative ey, values in ocean water point to a continental origin of the Nd
isotopes. Concentrations in seawater range between 2—7 pg/g (Fig. 4.17) which is about 10°
to 107 smaller than the average Nd concentration in continental or oceanic rocks suggesting
a short residence time for this REE. Responsible for this effective removing from the water
column are adsorption (scavenging) onto particles affecting all rare earths. This behavior is
explained by their equal valence state in oxygenated seawater. Reported residence times
range between 500—1,000 years, which is relatively short compared to the oceanic mixing
time of ~1,500 years (Tachikawa et al., 2003). High Nd concentrations in the Atlantic
Ocean are mainly derived from the surrounding continents by higher river run off. This is
different in the Pacific Ocean where most of the Nd is supposably contributed from basaltic
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Fig. 4.17: Nd concentration measurements from all ocean basins. Apparently, Nd
concentrations increase with depth and vary with between different ocean basins.
Largest Nd values are found in the deep North Atlantic and deep North Pacific
(> 40 pmol/kg). Lowest surface values are found in the South Pacific (< 5 pmol/kg).
and the lowest values in the South Pacific respectively North Atlantic. This increase
with depth is a consequence of particle scavenging steadily happening in the water
column. There are some exceptions from this view, e.g. in the North Atlantic, where
other factors obviously play a role. Modified from Goldstein and Hemming (2003).

material as a result of volcanic activity. Hydrothermal sources of Nd seem to play a
secondary role in the Nd budget of the Pacific as it is quickly removed from the water by
scavenging on hydrothermal precipitates. Observed ey, in seawater differ between —26
(Baffin Bay surrounded by the old canadian craton) to high radiogenic +20 (island arc rocks
around the Pacific Ocean) and vary due to the systematic geographic variability within the
ocean provinces. Different from other marine tracers like §'*C or Cd/Ca, neodymium, once
dissolved, is not thought to be altered by biological processes and thus behave conservative
making them a valuable tracer for paleoceanography. This conservation is strictly speaking
only fulfilled in the absence of any lithogenic input along the flow path of a water mass.
143N d/MNd ratios are then not altered as long as no mixing of different water masses or
other input (riverine, aeolian) with distinct Nd ratios occur altering the original isotopic
Nd composition. For example, North Atlantic Deep Water (NADW) is fed in part from
water originated from north of Iceland (69°N) in a region which persists of young mantle
rock (high ey, values). This preformed NADW water mixes farther south with the quite
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-14-12-10 -8 -6-15 -12 -9 -6 -15 -12 -9 -6 -15 -13 -11 -16 -12 -8-20 -16 -12
1 1 1 1 ] L 1 1 1 L 1 1 1 L 1 L 1

L = i

-q:p:p.q:[-’p--

N
=}
=}
=}

|

Depth (km)
w
o
[=}
=}
1

T
40°S 0° 40°N
LATITUDE

Salinity West Atlantic Basin (psu)

Fig. 4.18: NADW flow in the West Atlantic is oriented to the south and characterized
by a high salinity. Water column Nd measurements are superimposed (open squares
and black lines), and resembles this salinity field. Pink dashed lines show the modern
NADW value of —13.5. Picture modified from von Blanckenburg (1999).

non-radiogenic water from the Labrador Sea from the Buffin Bay to form mature NADW
with a present-day eyy of —13.5, which can be traced several thousand kilometers without
essentially changing its isotopic signature. In Fig. 4.18 NADW flow in the Atlantic is
illustrated, visible on its relatively high salinities. The salinity transect from north to
south is superimposed by ey, water-column measurements (squares and black lines) that
nicely track the salinity distribution of NADW. Pink dashed lines depict the modern-day
average NADW value of —13.5. The southward flow of NADW is compensated by two other
water masses penetrating the Atlantic from south to north videlicet Antarctic Intermediate
Water (AAIW) and Antarctic Bottom Watter (AABW), both originating in the Southern
Ocean, which sandwich NADW. AAIW and AABW are clearly distinguishable from the
NADW water by their higher ey, values between —7 to —9 and also their lower salinity.
The NADW signature finally disappears at around 49 °S when it enters the realm of the
Antarctic Circumpolar Current. The applicability of this radiogenic isotope system has
been extended in recent years to many other marine archives. These include leaching of
ferromanganese coatings of bulk sediments, which form at the sediment-water interface
incorporating the ambient seawater Nd isotope signature. Also, cold water corals have been
proven to be a reliable archive for modern and past seawater Nd isotopic composition, which
is incorporated during the precipitation of their skeletons. Since their Nd concentrations are
usually very low extraction of Nd from aragonite is more complicated than for sediments
and requires more diligence during prior physical and chemical cleaning. Unlike sediments
corals have the advantage of being absolutely datable by the ?*°Th/U method (van de
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Flierdt and Frank, 2010). Other potential marine archives shown to incorporate neodymium
of surface and deep water are fish teeth, fish debris, and formaminifera.

4.5 (*'Pa/?*Th),s as a paleocirculation proxy

Some 231Pa/?%Th measurements have been performed in the course of this thesis. The
results are presented in appendix B.2 together with a short discussion. This being the case, a
few words must be spent on this issue especially since some results from other authors are pre-
sented and discussed. The decay-corrected sedimentary excess ratio 2*!Pa/?°Th (hereafter
Pa/Th) has been proposed as a promising isotopic tool for paleoceanographers to infer past
ocean circulation (Yu et al., 1996). Unlike the geochemical water mass tracer *3Nd/4Nd
and several nutrient proxies such as §'*C and Cd/Ca (e.g. Boyle and Keigwin, 1987; von
Blanckenburg, 1999; Goldstein and Hemming, 2003; Curry and Oppo, 2005) that only allow
differentiating between various water masses, the marine sediment Pa/Th ratio taken by
itself makes a qualitative point about the rate of overturning. This kinematic proxy is owing
its application to the fact that production of 2*!Pa and 23°Th in the ocean is constant and well
established simplifying the interpretation of its distribution compared to other marine trace
elements. The isotopes 22°Th and 23'Pa® are produced by uranium decay at uniform rates
throughout the world’s ocean. The production rates are: 8p, = 2.45+0.05-1072 dpm m 3 a~!
for protactinium and B, = 2.62 & 0.05- 1072 dpm m~2 a~! for thorium. The resultant
activity ratio is Opa/Brn ~ 0.093 at every point in the water column (Turekian and Chan,
1971).

As mentioned in chapter 4 thorium once dissolved is highly particle reactive. The same
applies to protactinium, which in aqueous environments is found in its pentavalent state.
Even though these isotopes show a different chemical behavior, both adsorb quickly onto
the surface of sinking particles and are in this way removed from the water column into the
underlying sediments by reverse particle scavenging. This rapidly removal is mirrored by
their very low seawater activities, which, without scavenging, would have the same activity
as the parent uranium isotopes (34U, #°U) (Moore and Sackett, 1964). Nevertheless,
as shown in Fig. 4.19 the isotopes’ mean residence times are different: 50—200 years for
21Pa and just 0—40 years for 2°Th (van der Loeff and Berger, 1993). Since 2*°Th is an
order of magnitude more particle reactive than 2*'Pa, the former is virtually not advected
horizontally. In contrast, the ?*'Pa residence time is similar to the one for the modern
deep-water in the Atlantic. As a result about 50% of the dissolved 23'Pa in the Atlantic
is exported to the Southern Ocean where #*!Pa is then preferentially scavenged from the
water column due to the relatively high affinity to existing biogenic opal (particulate silica)
(Asmus et al., 1999; Chase et al., 2002). This is a potential pitfall because it means that

8Pa-231 is the daughter product of 23°U the starting point of the actinium series. Its half life is
32.71 £ 0.11 ka (Robert et al., 1969), whereas 23°Th originates from the uranium series having a half life of
75.38 ka.
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Q Residence time of U in the ocean ~400 ka

Seawater U conc. ~ 3.3 ug/kg
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Fig. 4.19: ?3'Pa and #*°Th is constantly produced in ocean waters by decay of
dissolved uranium entering the ocean mainly by river runoff. Picture modified
from Frangois (2007).

Pa/Th close to the production ratio do not necessary reflect circulation changes (Bradtmiller
et al., 2007; Keigwin and Boyle, 2008). Thus, checking the sediment for opal concentration
is an integral part of every Pa/Th measurement. In case of a circulating water mass the
Pa/Th activity ratio, decay-corrected to the time of deposition, should therefore be lower
than the expected production ratio of 0.093. The greater the overturning strength (for
instance in the Atlantic Ocean) the lower the ratio is compared to the production value,
and the lower the overturning strength the closer this value is to 0.093. In the past decade
Pa/Th has been widely used in paleoceanography to reconstruct changes mainly in the
export of Atlantic deep-water (McManus et al., 2004; Gherardi et al., 2009). But this
method has been challenged when it became clear that also other parameters influence
the fractionation of Pa and Th in ocean water, namely particle flux (Anderson et al.,
1983), particle composition (Geibert and Usbeck, 2004) and even particle size (Kretschmer
et al., 2008). In such a case no easy interpretation of the Pa/Th ratio is on hand. Even
though, much research efforts have been spent in understanding the behavior of this semi-
quantitative proxy, further development of this ratio as a proxy for paleocirculation strength
is needed. Most notably to get additional insights of the interaction between particle
scavenging and ocean circulation in controlling the distribution of Pa/Th in the marine
sediments. Fig. 4.20 exhibits measurements of Pa/Th on two cores from off Bermuda Rise
(water depth ~4,500 m) encompassing the last 35 ka BP. Ratios for the Holocene deep
Atlantic on average oscillate around 0.055 4+ 0.006 and show no serious changes in deep
water strength for the last 10 ka BP. The situation was much different during the last
glacial period and deglaciation, respectively, when Pa/Th ratios reached almost production
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Fig. 4.20: Pa/Th ratios from two adjacent North Atlantic sediment
cores for the past 35 ka BP. High values in Pa/Th near the produc-
tion ratio indicate a theoretical cessation of the Atlantic meridional
overturning circulation.

values, indicating severe changes in the Atlantic meridional overturning circulation coinciding
with intense cooling throughout the North Atlantic realm (Denton et al., 2010). For
clarification, the abbreviation HS in Fig. 4.20 stands for Heinrich stadial. The difference
between Heinrich events and Heinrich stadials are not precisely defined in the literature.
Heinrich events are thought to be the trigger of the subsequently followed period of colder
conditions (stadials), which lasted up to several thousand years, but the exact relationship
between Heinrich events and and Heinrich stadials is unclear until today.
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5.1 Sediment core location

Four sediment cores have been retrieved within the framework of geological prospections
conducted by the Brazilian oil company Petrobras (Petréleo Brasileiro S.A.) by means
of the piston coring technique. The cores stem from the continental margin of southeast
Brazil located in the Brazilian Basin south of the Vitéria-Trindade-Seamount-Chain from
the Campos and Santos Basin. Both are adjacent coastal sedimentary basins out of fifteen,
which divide the ~7,000 km long Brazilian shoreline. The Campos Basin is located on the
southeastern Brazilian margin between 24 °S (Cabo Frio High) and 20.5°S (Vitéria High)
occupying a total area of ~100,000 km?, mostly off-shore. The adjoining South Brazilian
Bight (Sao Paulo Bight), hosting the Santos Basin, extends between 24 °S (Cabo Frio High)
and 28°S (Florian6polis Platform) constituting an area of over 200,000 km? and harbors
the most examined and prolific Brazilian off-shore petroleum fields (Cainelli et al., 1999;
Sumida et al., 2004).

The continental shelf in this region is on average 70—230 km wide. The shelf break
is found in depth between 120—180 m (da Silveira, 1999; de Mahiques et al., 2010). Both
areas are known for their oil wealth and are currently being extensively exploited by off-
shore oil rigs making them the most prolific basins in the western South Atlantic (Mohriak
et al., 1990). PC-ENG-111 and K-GLC-PPT-06 hereafter C1 and KGLC stem from the
Campos Basin respectively the Papa-Terra field in the southern Campos Basin about 350 km
(beeline) to the east of Rio from water depths between 621 m and 626 m. PC-21210009 and
MXL-030 hereafter C2 and MXL stem from the Santos Basin ~150 km south-southwest
of Rio from a water depths of 781 m and 808 m, respectively (R. Kowsmann 2010, pers.
comm.) (Fig. 5.1). All four sediment cores are situated within the domain of the middle
slope spanning over 40 km in width at an average gradient of ~2.5° (Arantes et al., 2009).
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1D Longitude Latitude Depth ..
# (W) (S) (mbSI) Sao Paulo
Plateau
C1 40°08'41"  22°24'46" 621 . A
KGLC 41°06'40" 23°29'27" 626 —
C2 43°12'06"  24°15'24" 781

MXL  44°01'09" 24°37'34" 808

Fig. 5.1: Location of investigated sediment cores C1, KGLC from the Campos
Basin and C2, MXL from the Santos Basin retrieved from off the Brazilian
margin. Also indicated on the figure are some regional physiographic features:
the Vitéria-Trindade seamount chain in the north and the Sao Paulo Plateau in
the south.

5.1.1 Sedimentology of the core sites

The following is a direct quote from Viana et al. (1998), p.147 summarizing the sedimento-
logical main characteristics of the core location as follows:

The middle slope 550—1200 m is characterized by iron-rich laminated indurated
fine sands and deep-water coral mounds that overlie a thick, metres to tens of
metres, package of silty-mud to sandy laminated mud (Caddah et al., 1998), in
some places disrupted by mass-flow processes. The iron-rich surface encrusted
layer is generally 10 cm thick, comprising siliciclastic and biogenic fine silty
sands (Caddah et al., 1994). They are yellowish brown, more rarely reddish
(‘rusty’). They show planar lamination marked by intercalations of fine sand
and silt layers, sometimes masked by Planolites-type bioturbation (Caddah et
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al., 1998). AAIW oxygen-rich flow probably oxidises the ocean bottom creating
iron-rich sandy crusts, and carries ahermatipic coral larvae (Viana, 1994). These
larvae grasp the gentle topographic mounds inherited from Late Pleistocene
mass movements (Kowsmann et al., 1994; Viana et al., 1994) and develop coral
banks elongated down-current.

5.2 Cold-water coral occurrences off southeast Brazil

There are several reports of fossil L. pertusa occurrences from Campos Basin (120 km
off the coastline) near the location where C1 and KGLC have been retrieved. L. per-
tusa are found in this area on elongated carbonate mounds exhibiting varying widths
of several tens of meters and heights up to 10—15 m. They cover an estimated area
of 600 km? (Hovland, 2008). Fossil coral banks are found in this area in water depths
between 570 to more than 850 m (Viana et al., 1998). As a side note 59 azooxanthellate
species are known to live in Brazilian waters (status 2007). This number is probably
a lower estimate, biased by the small number of research campaigns conducted so far.
On the contrary the number for zoox-
anthellate shallow-water corals in the
southernly Brazilian coastal area is
even more sparse with only 15 known
scleractinian species compared to ~130
in the Caribbean. It is believed that
the freshwater run-off of the mighty
Amazon River farther north forms a
geographic barrier making coral mi-
gration from north to south difficult
(Kitahara, 2007). Fig. 5.2 shows typi-
cal specimens of dead coral rubble col-

lected from sediment from the bottom
of Santos Basin exhibiting different Fig. 5.2: Cleaned fossil cold-water coral rub-

scleractinian skeletons (Sumida et al., ble collected from sediment of Santos Basin

2004). Sediment cores C2 and MXL  (Sumida et al., 2004).

have been acquired from the edge of

so-called pockmarks, which are described as circular or near-circular crater-like depressions
in the ambient seabed, generally 10—200 m in diameter and up to 35 m deep with exceptions
proving the rule (Pilcher and Argent, 2007). Pockmarks are common on continental margins
with hydrocarbon-rich sedimentary basins. The current explanation points to expulsion
of hydrocarbon-rich fluids escaping from fine-grained sediments. The source of this fluid
are deep oil-bearing deposits beneath the continental margins which are million of years
old. Bacteria living within the sediment decompose those hydrocarbons to lighter species
like methane, which then migrates slowly by pore water diffusion to shallower sediment
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5.2. Cold-water coral occurrences off southeast Brazil

horizons where it would stop and accumulates. If these methane-bubbles reach a critical
threshold in gas concentrations respectively pressure they may burst leaving behind these
crater-like depressions (Hovland et al., 1993; Figueiredo et al., 1999). Especially Santos
Basin is littered with pockmarks (Fig. 5.3). Cold-water communities preferentially devel-
oped and grouped around the edges of these pockmarks indicating a close relationship
between hydrocarbon seepage and coral settlement in this area. Santos Basin still host the
most southerly known cold-water reef-like structures in the Atlantic Ocean (Hovland, 2008).
Known fossil carbonate mounds in the Santos Basin reach heights of 20 m and are several
hundred meters long (Sumida et al., 2004).

Fig. 5.3: Hydroacoustic assessment of the bottom topography in the Santos
Basin showing profiles of some pockmarks. Also visible is a huge coral mound
up to 20 m height on the edge of one of these pockmarks. Numbers denote water
depth (Sumida et al., 2004).
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5. Coral study area

5.3 Piston cores

5.3.1 C1 and KGLC

Pictured are the 380 cm and 406 cm long piston cores Cl1 and KGLC. Seismic data
conducted by Petrobras show that KGLC was taken on an intercanyon ridge on a slope
carved by numerous canyons (R. Kowsmann 2011, pers. comm.). Fossil corallites from C1
are comprised mainly of the framework builders L. pertusa and to a minor extent of S.
variabilis in the lower sections of the core. Coral rubble is found in the first 300 cm of C1
followed by apparent darker sediment filling the core to the bottom (380 cm). A more pre-

Core C1 K-GLC-PPT-06
46 136 226

SEC01 SEC02 SEC03 SEC04 SECO05

Fig. 5.4: Piston cores C1 and KGLC showing coral rubble and
even whole coral branches mainly of the species L. pertusa and
S. wvariabilis.

cise determination of the species filling KGLC revealed that the core top (~10 cm) is
harbored by L. pertusa, the downcore sections, however, is exclusively crammed with
whole branches of fossil S. variabilis (R. Kowsmann 2010, pers. comm.). Interestingly,
no living corals from this species have been found on the Brazilian margin so far. Coral
rubble and whole branches in both cores acquire sizes up to 10 cm. Possible changes of
ecological significance will be discussed in chapter 6 section 6.6. It seems reasonable to
assume that all corals from the four sediment cores are autochthon in origin as to the
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5.3. Piston cores

proximity of the described fossilized reef-like structures in those areas. All coral fragments
in both cores are in a good state of preservation with no obvious signs of iron-manganese
coatings nor any, at least, visual a change that must be of evident diagenetic alterations
of their skeletons except for some endolithic borings every so often. Also the septa, a
characteristic morphologic feature within the calyx of those corals, are well preserved.
Especially the corals in KGLC look fresh and pristine. Former °Th/U dating on corals of
C1 (Ruckelshausen, 2009; Mangini et al., 2010) gave ages between ~8 500 a BP! for the
youngest and about 20,500 a BP for the oldest samples. Fragments from KGLC on the other
hand stretch the ages between 18,000—27,700 a BP with one single exception with an age of
~4,700 a BP. They, hence, constitute a record of ~27,000 a of the Brazilian oceanographic
history. The stratigraphic order? one would usually expect for sediment cores taken from
the plane abyssal ocean floor is disrupted in all four investigated cores pointing to complex
depositional processes, which is not that unusual for that kind of oceanic environments like
the continental slope. Nevertheless, a rough sedimentation rate can be calculated from the
corals. For C1 a sedimentation rate of ~40 c¢m/1,000 years is obtained, which is by a factor
of ~2.5 smaller than the rate deduced by the foraminiferal zonation scheme. For biozone
Y1B ~15,000—40,000 a BP a sedimentation rate of around 100 cm/1,000 a can be derived
(R. Kowsmann 2011, pers. comm.) (cf. chapter 6 section 6.5). The 20 cm long gap in C1
between 200 cm and 220 cm is due to the on-board sampling technique.

5.3.2 C2 and MXL

Figure 5.5 shows C2 with a core length of 363 cm beside the 419 cm long MXL core which
have been retrieved with the same coring technique. Both locations are ~160—185 m
deeper than the sites in the Campos Basin. Also seismic data compiled by Petrobras show
MXL-30 was taken on a lower slope, in a narrow linear depression riddled by pockmarks
and adjacent highs (resembling an egg carton) (R. Kowsmann 2011, pers. comm.). As well
as the cores from Campos Basin they both hold a high abundance of coral. The first 70 cm
of core C2 consist of coral rubble of species L. pertusa followed by a grayish colored section
between 70 cm and 220 cm with virtually no corals at all. After that, corals appear again
until the end of the core but with only occasional occurrences of L. pertusa and some S.
variabilis. The taxonomic rank of the remaining fragments in this section could not be
determined due to bad preservation. Previous #°Th/U-age screenings from this section
yielded ages of 370,000 years and older (A. Mangini 2008, pers. comm.). Most probably, if
not certainly, post depositional diagenetic alteration of the aragonite skeletons occurred so
that calendar ages cannot be regarded as reliable. This view is encouraged by investigations
on planktonic foraminifera assemblages on the core’s sediment, conducted by M. A. Vicalvi
who placed this core section within the X-zone, after the foraminiferal zonation scheme by

LAll given ages in this thesis are reported as BP (Before Present) where “Present” is defined as AD 1950.
2The law of superposition in geology states that sedimentary layers are deposited in a time sequence,
with the oldest on the bottom and the youngest on the top.
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MXL-030

90 183 288 363 SEC01 SEC02 SEC03 SEC04 SECO5

Fig. 5.5: Piston cores C2 and MXL showing coral rubble and
even whole coral branches mainly of the species L. pertusa and
S. variabilis.

Ericson and Wollin (1968), encompassing the Last Interglacial period (Mangini et al., 2010).
Coral ages determined within the uppermost 5—70 cm are between 10,500—29,300 a BP
(Ruckelshausen, 2009; Mangini et al., 2010). In sediment core MXL corals group in clusters
with gaps up to 30 cm wide. The genera in this core could not be determined as easily
as in KGLC as to the in parts small fragments found in this core. Only the core section
between 24—82 cm predominantly hosts L. pertusa, the remainder could not be determined
(R. Kowsmann 2010, pers. comm.). Coral fragments in C2 and MXL both look a bit more
corroded and worn, not as pristine as in C1 and KGLC, but nevertheless are relatively good
preserved. Age measurements range between ~10,735—90,000 a BP in MXL. Only for MXL
a rough sedimentation rate could be estimated yielding ~35 ¢m/1,000 a comparable with
those of C1. Many age inversions in C2 made sedimentation rate assessment impossible.
The sediment gap between 183 ¢cm and 213 cm is also due to on-board sampling technique.
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5.4 Modern hydrographic setting

The sources of the surface and deep South Atlantic water masses are manifold. Being fed
by the North Atlantic, the Pacific, via the Drake Passage, the Weddell Sea in the Southern
Ocean and the Indian Ocean by the western extent of the Agulhas Current, as a common
feature, all these water masses initially originated from the surface water in these regions
carrying the specific characteristic with them, which can be traced over long distances. Our
current understanding of global ocean circulation stems mainly from direct observations
of water mass tracers like salinity, temperature and nutrient distribution to name but a
few, without going into detail about various mixing processes between different oceanic
currents and biological activity within a specific water mass, however alter the original
tracer signatures. Nonetheless, recognizing these different ocean currents is possible (Reid
et al., 1977). Fig. 5.6 illustrates by means of the dissolved nutrient phosphate how water
masses can be distinguished by their different phosphate content, showing the major water
masses flowing alongside the indicated transect encompassing the Brazilian coastal region.
Every single dot on the picture marks a measurement. See the next section for a more
elaborate description of the hydrographic setting of this region. The following elucidates
the different water masses being found in the area of interest today. Physiographic features,
which are numerous in this region and are essential in delivering boundary conditions for
controlling modern circulation patterns are not going to be discussed. See Johnson (2007)
and Torres et al. (2010) for a description about the physiography in the Brazilian Basin.

Depth (km)
8y /1ourr ayeydsoyg

50°S 40°S 30°S 20°S 10°S ~ 10°N
Fig. 5.6: Phosphate distribution along the transect A17 of the World Ocean Cir-

culation Experiment (WOCE). Picture available online at http://www.ewoce.org
(Schlitzer, 2012). Accessed 2013/4/23.
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5. Coral study area

5.4.1 Local hydrography off Brazil

The surface water at the core locations is governed by the Brazil Current (BC), a 300 km
wide and weak western oligotrophic surface boundary current in the South Atlantic most
widely confined to the Brazilian coast between ~20°S and 30 °S carrying warm subtropical
water from north to south (Schmid et al., 1995; Viana et al., 1998). The BC is purely wind-
driven. Wind stress exerted to the ocean surface by the persistent anticyclone gyre located
in the subtropical South Atlantic leads to a levorotatory geostrophic evasion movement of
the water in the same direction. At ~22°S the BC bifurcates into a component flowing
eastward, the residual continues to flow in southward direction along the coastal area until
its scent finally lose (between 33—38°S) when it collides with the north-flowing Malvinas
(Falkland) Current (Olson et al., 1988). The BC consists of Superficial Tropical Water
(STW), which itself is actually a mixture of three water types videlicet Tropical Water,
Littoral Water and periodic contributions from upwelling South Atlantic Central Water
(SACW) lying below the STW Viana et al. (1998). The BC moves the STW as depicted

0 37 0
1 o 0.5
9 36 e )
E = £
;:/ 3 355 < =
2 s B
a g 915
4 35
2
5 34.5
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4
5
6 34 6
50°S 40°S 30°S 20°S 10°S EQ 40°W  35°W  30°W

Fig. 5.7: Left: Meridional profile of the salinity distribution along the shown tran-
sect (inlay) off the South American east coast. Data from the WOCE hydrographic
program. Right: Vertical stratification of water in the location area at around 22 °S.
Picture modified from Viana et al. (1998). The transition between the different
water masses depicted in the right-hand figure is smoother than indicated. Symbols
® and © refer to water flowing in and out the drawing plane.
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in the schematic representation of the right image of Fig. 5.7 accommodating the upper
250—300 m (Signorini, 1978; Evans et al., 1983). The BC thickens 50 km offshore to
more than 500 m (Lima, 1992). Now and then reaching depth of up to 3,000 m in the
Confluence Zone? at ~38°S (Reid et al., 1977; Saraceno et al., 2004). The subjacent Brazil
Countercurrent (¢cBC) flows in the opposite direction that is from south to north entraining
water from the so-called South Atlantic Central Water mass (SACW) occupying the depths
between 300—550 m. Though the current’s provenance is controversial some authors think
it might be the upper and warmer branch of the Antarctic Intermediate Water (AAIW)
(Sverdrup et al., 1942).

5.4.2 Antarctic Intermediate Water

Today AATW almost entirely fills the intermediate depth of the South Atlantic and tropical
oceans reaching out as far as 25°N where it becomes indistinguishable of the quite saline
Mediterranean Outflow Water (MOW) (Worthington, 1976). This water mass also irrigates
the Brazilian slope within the Campos and Santos Basin isobaths between 550 m and
1,200 m reaching velocities at around 0.5 m/s (e.g. Viana, 1994; Miiller et al., 1998; Viana
et al., 1998; Hovland, 2008). It is characterized and recognized among others by its high
dissolved-oxygen content, its unique low salinity and relatively high nutrient content (Reid
et al., 1977). Newer research has shown that present-day AAIW enters the Brazil Basin
between 20—28 °S from the east, bifurcating into a northward and southward flowing branch
as it meets the continental break off Brazil (Miiller et al., 1998). To put it in a nutshell,
the AAIW formation region lies just south to the Subantarctic Front (SAF) within the
Polar Frontal Zone (PFZ, 50—60 °S), a sharp transition zone separating water coming from
different hydrological regions namely the cold and fresher polar surface waters, to the
south, from the warmer and saltier surface waters in the Subantarctic Zone (SAZ). For
the sake of completeness, the SAZ itself is a transition zone encircled by two more water
fronts, the just mentioned SAF and the northerly so-called Subtropical Front. Generally
speaking, where these different water masses encounter or more precisely converge, usually
the colder and hence denser water subducts under the less dense water which is than being
transported towards the north. By this means several water masses among them AAIW
and the Subantarctic Mode Water (SAMW) have their origin in this naturally occurring
water boundary system continuously encircling the Southern Ocean around Antarctica (see
Sarmiento and Gruber (2006) and references therein). All four core locations are bathed
today within the northward flowing AAIW. The shallower two cores from Campos Basin
may be additionally influenced by the lower part of the SACW, see Fig. 5.7 (left) showing
the salinity distribution along the same transect as shown in Fig. 5.6 covering the latitudes
from the equator to 50 °S and depths between 0—6 km. The AAIW is clearly distinguishable
from the surrounding water masses by its relatively low salinity.

3In oceanography a confluence zone is defined as the region where currents are flowing together and/or
separates from the continent.
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5.4.3 North Atlantic Deep Water

Directly below the AATW is the North Atlantic Deep Water (NADW) flowing towards south.
As discussed in chapter 2 it has its origin in the northern North Atlantic traversing as a
strong deep western boundary current most of the Atlantic Ocean. It can be nicely traced
by their distinct layers of dissolved-oxygen within the NADW tongue or by its relatively
high salinity or low nutrient content to name but a few (Reid, 1989). Farther south at
around 50—55°S NADW finally heads to the east joining the Antarctic Circumpolar current
(ACC), the largest known water current in the oceans surrounding Antarctica in easterly
direction. By then at the latest, the NADW has irrevocably lost its distinction. It is an
up to 800 km wide and at the core location about 2 km thick water mass flowing between
1,200 m and 3,500 m (Viana et al., 1998). To make things more complicated it should
be mentioned that Circumpolar Deep Water (CPDW) (not shown in Fig. 5.7) which has
its origin also in Antarctic water bifurcates at 55°S into an upper and lower part which
sandwich the southward flowing NADW (Reid, 1989).

5.4.4 Antarctic Bottom Water

Finally one will find the so-called Antarctic Bottom Water (AABW) in the deepest regions
of Campos and Santos Basin reaching down not less than 3,500 m also moving in north
direction. Similar to the AAIW, AABW spreads throughout all ocean basins but being the
coldest and densest water mass in the world ocean and therefore usually found at its bottom,
hence the name. Flowing along the bottom of the ocean, the bathymetry significantly
prescribes the AABW'’s distribution in the different ocean basins. It is believed that AABW
owes its origin in part to ultra-cold katabatic winds blowing offshore Antarctica forming
mesoscale open water areas not covered with sea or only thin ice called polynyas where
surface water becomes fairly chilly and brine rejection due to enhanced sea ice formation
cause the water to sink (Smith et al., 1990). Another source which contributes to the upper
part of the AABW is found in the ACC consisting of old deep water (Reid, 1989). Main
formation areas are the Ross- and Weddell Sea. After formation and circulating around
the southernmost continent in east direction one branch separates flowing into the South
Atlantic basin towards north (Fig. 5.7).
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~For every complex problem, there is a solution
that is clear, simple and wrong. “

Henry L. Mencken

Results and Discussion: >'Th/U

6.1 Preface

In this thesis corals of different cold-water species from four sediment cores from off the
Brazilian slope have been investigated. Two of these cores, namely C1 and C2, have already
been examined in part for their 2°Th/U and *C in my diploma thesis (see Ruckelshausen
(2009). Results have also been published in Mangini et al. (2010). Here, I present a
variety of newly conducted measurements comprising all four sediment cores. Measurements
involve 220Th /U, MC, M3Nd/"Nd, 13C, 0O, and XRD complemented by some concentration
measurements of neodymium and manganese. Additionally, some 23!Pa/?°Th measurements
on the sediment fraction have been done as well as a few *3Nd/**Nd measurements of
the sediment’s Fe-Mn oxyhydroxide coating. Unless otherwise stated all presented and
discussed results are yet unpublished. As all core locations lie in close vicinity to each other
they quite likely host complement paleoceanographic information. It is therefore crucial
and necessary to compare this new dataset together with the former results obtained from
my diploma thesis.

6.2 *°Th/U measurements

Uranium and thorium isotopes were chromatographically separated and purified from the
coralline material for each sample following the chemical methodology described in my
diploma thesis covering also information about the preceding sample preparation (see
Ruckelshausen (2009)). A very concise overview of the chemical separation and purification
procedure is summarized as a flowchart in appendix C. After the chemistry uranium and
thorium were reduced to a single droplet of ~3 ul and loaded onto a rhenium filament.
Measurements were carried out on the thermal ionisation mass spectrometer (TIMS,
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Finnigan MAT 262 RPQ) at the Institut fir Umweltphysik (IUP) at Heidelberg University.
The TIMS has been run with the double filament technique allowing for higher ionisation
rates than the single filament technique. The sample evaporates from the evaporation
filament and is subsequently ionized from the adjacent ionisation band. Ionisation of the
atoms takes place in the gas phase, which is more efficient than evaporation from the
surface of the Re filament. Isotopes were measured as single charged oxides (UO™ and
ThO™) rather than in their charged elemental form to increase the counting statistic. More
information about the measurement technique and machine configuration (Faraday cups,
ion counter etc.) as well as the subsequently applied machine-related correction procedures
can be found elsewhere (e.g. Bollhofer, 1996; Frank, 1997; Neff, 2001). Before calculating
the final ages all samples in this work have been corrected for a total procedural 234U, 28U,
230Th, 232Th blank, which was regularly measured during this thesis (see Fig. B.1 for the
procedural blank development and Tab. D.3 for used mean values).

6.3 *'Th/U results

Most coral samples came out as glacial in age. Only seven samples out of fifty stem from
the Holocene epoch the rest were dated back up to ~90 ka BP with the majority covering
the last glacial until ~45 ka BP implying that most samples seem to be potentially suitable
for 14C dating too. Calculated activity ratios and 3°Th/U ages can be found in Tab. D.1
and Tab. D.2. In the following pages detailed results are presented and discussed with
emphasis on the reliability of the dataset. This is crucial since all drawn inferences in this
thesis depend highly on correct absolute ages.

6.3.1 Check for diagenesis

Owing to the relatively young ?*°Th/U ages for most corals investigated one would expect
diagenetic alterations having played a minor role and at best can be neglected. Nonetheless,
whether diagenesis on the coralline hard parts have occurred or not must be evaluated
for each sample. In Fig. 6.1 the measured 6***U against the 23°Th /23U activity ratio for
each coral sample is plotted along with the previous results from cores C1 and C2 from my
diploma thesis (Ruckelshausen, 2009) (two samples (M-119 and M-189) were omitted due to
their large errors). Vertical lines in light gray are isochrons indicating isotopic pairs giving
the same calendar age. The solid red line illustrates the time evolution of the activities for a
closed system starting with the present-day open ocean seawater 62U and a zero thorium
content. Latest 6**4U measurements on open ocean seawater from different authors show
activity ratios level out at 146.8 +0.1%0 (Robinson et al., 2004; Andersen et al., 2010) and
have been quite stable for the last ~360 ka with deviations not exceeding 15%0 from the
modern value as shown on U-rich slope sediments from the Bahamas (Henderson, 2002).
Corals, however, often exhibit a much wider range in §23*U thought to be the result of dia-
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Fig. 6.1: Displayed are the measured §2**U and #°Th/?38U activity ratios for all coral
samples. Vertical lines are isochrons showing calendar ages. The red solid line shows
the closed system seawater evolution for a present-day §?*U of 146.8%0 (Andersen
et al., 2010). Most samples lie within the empirical error margin but reveal relatively
large scatter. All error ellipses represent 20 uncertainties, which, due to multivariate
statistics, translate into a confidence level of ~86.5% rather than ~95.4%.

genetic activity. The dotted red lines in Fig. 6.1 give the “acceptable” error margin. Samples
within this band have only experienced minor diagenesis leaving their 23°Th/U ages mostly
unaffected. Corals deviating from this range are discarded and are not used for further
studies. Unfortunately, there is no consensus about where to place exactly an upper and
lower bound for the coral §?*4U. Fig. 6.2 summarizes some §?**U measurements from various
authors on seawater and corals collected either alive or from very recent colonies with
ages less than 2.35 ka BP dated by #°Th/U or by ring counting (Delanghe et al., 2002).
Undoubtedly, with improving mass spectrometer techniques, especially with the advent of
multicollector ICPMS, seawater and coral 224U /38U activity measurements have obviously
become more and more precise. But this diagram also shows that every hard definition of an
upper and lower bound for modern §%3*U in corals being reliable or being not trustworthy is
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somewhat artificial and does not go without a certain arbitrariness. Two very recent coral
samples, namely L.606 and S612 from the Campos Basin, which were dated in this thesis and
plotted in Fig. 6.2 too, are illustrating this problem. The exact location from where these
corals were retrieved is not known, however. Both corals have ages of —26 a BP and 34 a BP
and failed to record the measured seawater ratio within their respective 20 uncertainties
even though their preservation state is excellent (see Fig 6.6). As a consequence and
contrary to popular belief it is suggested that local processes occurring at the Brazilian
slope might be capable of slightly changing the #*U/?8U activity ratio questioning the
applicability of §23*U as a strict means of quality control. This issue is further discussed in
section 6.4. This observation might apply also for the older corals examined in this thesis.
Despite this issue, most corals in Fig. 6.1 scatter within the acceptable 624U range with the
upper bound set to 155%0 and the lower bound set to 136%0. As shown by (Cutler et al.,
2003), coupled #'Pa/?3TU and ?*°Th/U measurements on corals affected by diagenesis yield
discordant ages while showing the expected 234U /?*3U of seawater and vice versa suggesting
that further criteria should be taken into consideration when testing coral specimens for
open system behavior.

@ Coral data from Delanghe et al. 2002
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Fig. 6.2: This figure is a compilation of §2**U data from modern corals from various
authors, see Delanghe et al. (2002) and references therein, along with §2*1U seawater
measurements (hatched bars). In blue are the very recent coral samples L606 and
S612 with ages of only —26 a BP and 34 a BP. Both samples failed to record the latest
measured seawater activity from Andersen et al. (2010). Today’s seawater values
are from D: Delanghe et al. (2002), A: Andersen et al. (2010), C: Chen et al. (1986).
Error bars on corals denote 20, uncertainties. Seawater errors are £1SD. Picture
modified from Delanghe et al. (2002).
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6.3.2 Uranium concentrations of the coral samples

A further test to check the quality of the data is to look at the uranium content of
each sample. Collected data of uranium concentrations in modern and fossil corals have
shown prevalent values are between 2—3.5 ppmw going as high as 4 ppmw. Observed
variations in the concentration have been attributed in part to a number of slightly changing
environmental parameters such as seawater temperature, pH, Ca?* concentration, variations
in salinity as well as through the biological activity of the polyp of the coral itself (Ku,
1977; Shen and Dunbar, 1995). For example, changing the salinity from 34%0 to 38%o is
accompanied by an increase in the U concentration of the seawater by as much as 12%. The
average seawater concentration is 3.3 ppbw (Chen et al., 1986). Commonly, habitats where
cold-water corals thrive exhibit only small variations in their environmental parameters
compared to shallow-water areas. Relatively large changes in salinity within a single water
mass are therefore expected to be unlikely. But special hydrodynamic features occurring in
the Campos and Santos Basin, very likely, render the intermediate-depth environment more
susceptible for perturbations than at other intermediate-depth locations. Mesoscale surface
eddy activity is able to stir up the water colum in this region up to depth of ~800 m and
might have impacted the salinity in this depth as well. The hydrodynamic features will be
discussed in section 6.6.1 of this chapter. Because changes in seawater salinity for the core
sites cannot be ruled out a new U concentration boundary has been stipulated to 4.6 ppmw.
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Fig. 6.3: Uranium concentrations of new samples as a function of
their calendar age. Most corals display U concentrations between 2
and 4.6 ppmw. Uncertainties of the concentrations are smaller than
dot size. Calendar age errors have been omitted.
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Fig. 6.3 depicts the uranium concentrations of all measured samples against their calendar
ages. Uncertainties are smaller than the denoted dot size. Errors in calendar ages are not
shown. Most samples exhibit a concentration range within the hatched range and seem to
be suited for further investigations. Interestingly, a few samples younger than 20 ka BP
feature a larger scatter than the older ones. Usually one would expect the opposite to be
true, since the older a sample the more likely it is that diagenesis has altered the initial U
concentration. The impact of a possible diagenetic alteration on the ?*°Th/U age can often
be severe. For instance, coral S1032 from Tab D.2 (age ~3.14 ka BP) shows a somewhat
elevated U content of ~4.6 ppmw. For simplicity, considering that the coral gained extra
uranium from the water column without 1. changing the aragonite §2**U and 2. not adding
or losing any thorium. Correcting the seemingly elevated U concentration from ~4.6 ppmw
to 4 ppmw makes this specific sample older by around 500 years! Diagenetic exchange
processes are still poorly understood and subject of ongoing research. Anyhow, this simple

KGLC 322 cm MXL 51 cm
(27.080 £ 0.235) ka BP (12.100 £ 0.100) ka BP

Fig. 6.4: Close-up of two coral fragments from cores KGLC and MXL repre-
sentatively showing the excellent preservation state for the most samples.

example illustrates that caution should be exercised when using questionable samples
especially when it comes to reconstructing rapid climate change on the order of decades or
several centuries. The overall small scatter in Fig. 6.3 is indicative for a good preservation
state of the aragonitic samples. This may be due to the location of the sediment cores,
which is the continental slope where sedimentation rates are usually high. Coral fragments
once lying at the bottom are quickly buried and are thus no longer exposed to the corrosive
seawater. This is supported by the observation that nearly all corals, especially from cores
MXL and KGLC are free of any obvious metallic coatings on the outer and inner surface
they would usually acquire from the water column if the coral rubble are exposed on the
sediment surface just long enough. Only samples within the first 10 cm of the MXL core
show a black staining probably coating from Fe-Mn oxyhydroxides (see Fig. 5.5). Fig 6.4

70



6. Thorium-Uranium #°Th/U

shows a close-up of a S. variabilis branch from the KGLC core, which looks quite fresh
even after ~27 ka BP. On the right-hand side a L. pertusa specimen from core MXL is
shown too. The yellow appearance is probably some form of organic tissue sticking on the
coral’s surface.

6.3.3 ?Th content in coral samples

Another aspect which could have a large impact on the ages as well as age uncertainties of
a coral is the amount of initially incorporated 2*°Th in the aragonite lattice. As described
in-depth in section 4.2.3.1 the amount of non-radiogenic *°Th is estimated by assuming a
reasonable initial seawater 22°Th/#32Th activity multiplied by the amount of the measured
232Th within a sample (see Eq. 4.4 for recap). It is clear from this point of view that a
rigorous cleaning technique is necessary to keep the #*2Th, fetched from sediment residues
among others, as small as possible to ensure reliable ***Th/U ages. Experience suggests
that a sample’s 232Th concentration should not exceed 10 ppbw in order to get viable ages.
Fig. 6.5 displays the measured 2*?Th concentrations of all new samples plotted against their
ages. Uncertainties in the ?32Th concentrations are smaller than dot sizes. To avoid clutter
calendar age errors have been omitted. Except for one exceptional concentration exceeding
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Fig. 6.5: 232Th concentration of all new samples as a function of
their calendar age. Most samples are within the hatched area ranging
from 0—10 ppbw. Uncertainties in the #*Th concentrations are
smaller than dot sizes. To avoid clutter, calendar age errors have
been omitted.
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~50 ng/g (not shown) only four more measurements do not fulfill this criteria and are
not considered for further studies. In principle, past 2*°Th/??Th seawater activities are
unknown. All calendar ages in this thesis have been corrected with an estimated initial
230Th /232Th seawater activity ratio of eight considering a relative uncertainty of 50% (see
section 4.2.5). But the question arises how representative this initial ratio of eight really
is. A modern coral from off Brazil sheds light on this issue. Repeated *C measurements
on samples L606 and S612 have given much too young *C ages as one would expect to
find in this environment (depths ~600 m) (see Tab. E.2). The expected pre-bomb *C
reservoir offset for this depth is on the order of ~600 *C years (Key et al., 2004). The only
reasonable explanation to think of is in-situ contamination with bomb **C from stratospheric
hydrogen bomb testings conducted mainly during the 1960s. This finding would suggest
that the calendar ages should not be older than ~50 years from the time of measuring for
both corals. This age is constrained by the time delay from the moment of *C release
into the atmosphere and the time needed
for the intermediate-depth ocean water
to reach the core sites off Brazil. Vertical
transport of *C via diffusion across the
thermocline is negligible due to the rel-
atively small diffusion coefficient!. Lat-
eral water mass transport by ocean cur-
rents is a much more likely scenario for
the observed excess '4C measured in the
corals. Accurate #°Th/U age determi-
nation of such young samples by means
of mass spectrometer techniques alone is
often difficult to handle because of the
corals’ very small 2°Th content that
Fig. 6.6: Close-up of a L. pertusa (L606) even blank corrections subsequently car-
coral from Campos Basin showing clear signs ried out could have a significant influ-

of contamination with bomb '"C. ence on the ages. For L606 both ages
14C and #9Th/U ages agree well with

the scenario of bomb C reaching the site earliest during the 1960’s. An exact determination
of the arrival of the anthropogenic *C signal at this site is not possible, though. For the
second coral (S. variabilis, S612) also a very young C age has been measured suggesting
that this coral cannot be older than about 50 years. Although the ?°Th/U age came
out a little bit older (34 4= 15 a BP) than the 1C age would suggest this age discrepancy
can be reconciled with a somewhat higher applied initial seawater 2*°Th/?3?Th ratio of 12.
This is an accordance to the applied initial *°Th/?3?>Th activity ratio of 8 & 4 used for
correcting the calendar age calculations. Nonetheless, this qualitative exercise yields only
an estimate for one specific time interval. It is reasonable to assume that this ratio has not
been constant in time and could have varied significantly as suggested by a GCM modeling

L. pertusa, depth 606 m
—26+4 a BP

!The diffussion coefficient for the thermocline is roughly on the order of 1075 m?/s.
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approach deriving dissolved #*°Th specific activities for the Western Atlantic Ocean during
the Holocene and the LGM (Henderson et al., 1999).

6.3.4 X-ray diffraction analysis (XRD)

X-ray diffraction analyses were performed to investigate the aragonite and calcite content
of the coral samples. As outlined in section 4.2.6.1 this method allows a quantitative
evaluation of the composition of a variety of minerals, among others calcium carbonate.
For that thirteen samples have been selected with the emphasis on specimens exhibiting
relatively high and low values in §2**U. This analysis can be understood as complementary
to the previous checks being able to hint to open system behavior. The following syllabus
is a methodological description of the performed XRD analysis from C. Vogt 2011, personal
communication.

The X-ray diffraction pattern analyses were conducted in the laboratories of the research
group Crystallography (University of Bremen, Central Laboratory for Crystallography
and Applied Material Sciences, ZEKAM, Dept. of Geosciences). Dried bulk samples were
grounded to a fine powder (< 20 pum particle size). A thorough preparation commonly
increases reproducibility of the results, however, the standard deviation given by Moore
and Reynolds (1989) of 5% can be considered as a general guideline for mineral groups
with > 20% clay fraction. In addition, the determination of well crystallized minerals like
quartz, calcite or aragonite can be done with better standard deviations (Tucker, 1988;
Vogt et al., 2002). The measurements were done as a continuous scan from 3—85° 26,
with a calculated step size of 0.016° 20. Mineral identification were done by means of
the Philips software X'Pert HighScore™ [...] followed by full quantification of the min-
eral assemblage of the bulk fraction via the QUAX full pattern method (cf. Vogt et al. (2002).

In Fig. 6.7 the initial §23'U; (decay corrected according to Eq. A.4) for all new corals
versus the calendar age is plotted. The obtained §?34U; of each sample should lie within
the empirical error margin explained in section 6.3.1. To avoid clutter the error ellipses
which are outside the hatched area after decay correction have been removed and are not
used for further analysis. The red ellipses indicate the samples on which XRD analysis
were performed. It becomes apparent that all thirteen XRD samples are being devoid of
any calcite. The aragonite content for most corals is 100% (mass fraction) considering a 1%
uncertainty (1o). There is no need to explain the measured diffractograms with a further
mineral phase other than aragonite. Only three samples show a reduced aragonite content
(96-98%) with admixtures of other mineral phases like anatase or monazite-(Ce) but all
samples do not show any traces of calcite (see Tab. G.2). In conclusion, the somewhat
higher and lower §234U values observed in these samples suggest that diagenesis probably
cannot be called on for an explanation. This strengthens the previously made assumption
that instead localized variations in the seawater 2*1U/*¥U could have played a role. A
possible explanation attempt is discussed in the following section.
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Fig. 6.7: This figure illustrates the initial (age corrected) §2**U of the
dataset. Samples with initial §**U lying within the hatched area are
considered reliable if there are no other contradicting indications (high
uranium or thorium concentrations). To avoid clutter error ellipses, which
fall outside the hatched area after correction for decay have been removed.
For ellipses in red the aragonite content has been measured. Error ellipses
are 20.

6.4 Possible influences on the coral §23*U

As proposed previously the relatively large scatter observed in the coral §2**U cannot be
accounted for by diagenetic activity alone. It is hard to imagine what kind of processes
other than diagenesis might have influenced the coral 24U /23U activity ratio especially
on such short timescales. As mentioned above the incorporated uranium concentration
of the coral skeletons can change in the course of changing environmental parameters.
Also, changes of the whole ocean uranium inventory are imaginable to have happened
over longer periods of time but could not be assessed yet and probably would not affect
the seawater’s 234U /?38U activity. In addition, there is no mechanism in corals capable
of fractionating 234U over 28U during biomineralization of the skeleton. Compiled data
from tropical corals covering the last two interglacial periods revealed that seawater 624U
fluctuated significantly over the course of tens of thousands of years with an apparent rate
of ~1%0 per 1 ka during glacial to interglacial transitions (Esat and Yokoyama, 2006).
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Attempts to explain these fluctuations led to mass balance model calculations conducted by
Russell et al. (1996) calling on inflated riverine transport with elevated 2*'U/?%U activities
(between 1.2 and 1.3) to the ocean as a result of intense glacial-interglacial weathering. But
the model output suggest only a 7%o change in the oceanic 623U from a presumed seawater
value of 144%¢ over a time period of ~30 ka, assuming that the worldwide river runoff
has at maximum doubled as suggested by other indications (see Russell et al. (1996) and
references therein). Hence, this mechanism is too slow to account for the observed increase
in the seawater’s 6***U during glacial to interglacial transitions and is also too slow for the
short-term variations seen in the coral data off Brazil, which show nearly simultaneous
variations in 634U comprising up to ~19%¢ (Fig. 6.7).

Another mechanism put forward by Esat and Yokoyama (2006) to explain the seemingly
increase of oceanic 24U /23U during deglaciations considers accumulation of U enriched in
234U from riverine inflow previously deposited under reducing conditions during interglacials
and high sea-levels stand in near shore areas in anoxic and suboxic sediments, in salt marshes
and mangroves, in estuaries, and in continental margins. Throughout glacial times, however,
accompanied by low a low sea level the previously accumulated uranium was subsequently
oxidized to a soluble form and liberated

again during times of seawater transgres- 12:29:58  13/05/07 .

sions. Model calculations suggest that Pi=1.70 Ri40.70 Hi216 D:1134.2

this mechanism is a viable candidate to L T

explain the observed rate of change in
523U of about 1%0 per 1 ka for glacial to
interglacial transitions. It is noticeable in
Fig. 6.1, depicting the overview of all sam-
ples including the old results from cores
C1 and C2 that during the LGM, when ice
sheets had reached their maximum extend
and sea level stand had had a minimum,
the §234U activity seem to be conspicu-
ously lower and subsequently rose again ~ Fig. 6.8: This picture was taken by a ROV
over the course of the last deglaciation showing a carbonate chimney lying on the
reaching a plateau roughly 10 ka BP ago.  seabed of the middle to lower portions of the
The changes in the coral §***U amount to  continental slope ~1100 mbsl of the Cam-
~10%¢ and are apparently accompanied pos Basin. Length of the central chimney
by the global sea level rise during that ~40 cm (Wirsig et al., 2012). Photo by
time. This observation might be indica- courtesy of Petrobras.

tive of an increased release of 234U from

the Brazilian margin into the ocean during deglacial sea level rise. Other rapid ups and
downs of the §?**U in Fig. 6.1, for instance during the time interval between 30—25 ka
BP cannot be explained with a rising sea level. Furthermore, the short-term scatter in
the dataset cannot be explained by this hypothesis. An alternative explanation involves
fluid discharges from the Brazilian margin. As outlined by Esat and Yokoyama (2006)

H5U SALGUETRO
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coral growth close to shorelines can be influenced directly by outflow of 234U enriched
fluids. Whether the corals investigated in this thesis, originating from the continental
slope, are affected by groundwater discharge, commonly known to happen in immediate
coastal regions is questionable, but cannot be excluded. There is, however, evidence that
fluid seepage rich in hydrocarbons occurs at the passive continental margins off Brazil.
These water discharges, also known as cold seeps, often manifest as authigenic carbonate
formations in the form of chimneys or crusts found in the sediments or at the sediment
surface (Miller and Kowsmann, 2009; Wirsig et al., 2012) (Fig. 6.8). Authigenic carbon-
ates consisting of aragonite, calcite or even dolomite form only under conditions where
escaping CHy is oxidized anaerobically via sulfate reduction (Ferrell and Aharon, 1994;
Peckmann et al., 2001). The fluids originate from pressurized pore fluids from deep be-
neath the Brazilian margins supported by breakdowns in the sedimentary column, which
allow migrating to shallower sediment horizons (Figueiredo et al., 1999; Teichert et al., 2003).

These emanating fluids show a somewhat lower uranium concentration than typical for
seawater and are enriched in §23*U. There are only a few reported 62**U measurements
from such venting sites exhibiting values between 166—168%¢ (Teichert et al., 2003). It is
conceivable that corals growing in such a region can directly incorporate such 2**U enriched
fluids diffusing out of the margins prior to complete mixing with the bulk ocean (Esat
and Yokoyama, 2006). But little is known about the recent and past seepage or venting
activity from cold seeps off Brazil leaving room for speculation. Summarized, there is the
possibility that the reconstructed short-term variations in §2**U observed for the coral
locations are not reflecting the open ocean seawater uranium composition rather than being
locally influenced by yet unspecified processes occurring at the Brazilian margin. There is
a growing tendency to reject all corals with initial 24U /238U activities, which deviate more
than a few per mil from the modern seawater value. This criterion might be in error and
may, in fact, lead to the rejection of corals that have remained a closed system.

6.5 Stratigraphy of the sediment cores

For an open ocean environment one would expect sediment to be deposited in a stratigraphic
order, that is, with the oldest parts downcore and the youngest at the top. A brief glance
on the age-depth relationships for the four sediment cores (Fig. 6.9 and Fig. 6.10) from
the slope region reveals that this is not the case. As described in section 5.3 sediment
core KGLC was taken on an intercanyon ridge on a slope carved by numerous canyons.
A disturbed age-depth relation for this core should thus not come as a surprise and was
expected. Deposition of coral fragments in this core happened in three steps resembling
a staircase, which are explicitly segregated from each other by several-millennia enduring
hiatuses. The core covers the last ~16,200 years of the last glacial period. The lowermost
section of KGLC between ~1.8 m to ~4.0 m was seemingly deposited quasi simultaneously
followed by a ~6,600 year hiatus. Deposition of coral branches started again ~20,000 a BP
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Fig. 6.9: Age-depth-relation inferred from the corals within the two

sediment cores from Campos Basin. Especially core KGLC reveals
an unusual sedimentation pattern, see text for more information.
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6.5. Stratigraphy of the sediment cores

ago during the LGM, lasting roughly 2,500 years before it was again interrupted by a
further hiatus persisting another ~13,500 years. The uppermost coral found in this core is
4,727 a BP old. It is worth noting that all coral specimens from KGLC are of the species S.
variabilis with the exception of one single L. pertusa being the uppermost sample. The
sedimentary environment at the continental slope is complex due to strong bottom water
currents in this region. The dominant water mass today occupying the middle slope region
is the vigorous flowing AAIW. The sedimentary record, therefore, might often be incomplete
and full of stratigraphic breaks as can be seen by the two hiatuses in the KGLC core (several
tens of centimeters of sediment is missing). This is where corals come in handy as they
allow to detect such hiatuses often invisible in the sedimentary record. The surrounding
sediment is usually not of similar age as the deposited coral rubble since the sediment can
be of different origin comprising lateral and vertical sources. There are no geophysical
data to confirm that some tens of centimeters of sediment are missing in the KGLC core.
Unfortunately, no multi-sensor core logger or any other type of profiler was run along the
core (neither the other cores) to verify whether there is a break in sedimentation.

Action from bottom currents seem to be more likely to have removed those sediment
layers than mass movement along the slope as indicated by the lack of breaks in the degree
of sediment consolidation, which otherwise would indicate a sedimentary unconformity
caused by mass movement. A possible explanation for this unusual age-depth relation
considers the area around the KGLC core as a rubble plate zone, a zone where coral rubble
or whole branches of corals accumulate, fed by a steadily growing cold-water reef above
this area. Times of intense reef growth and times of degradation may led to significant
deposition of coral rubble/branches. The adjacent core C1 separated only ~100 km from
the KGLC location exhibits a totally different sedimentation history. This core has been
sedimented more or less steadily up to its whole length of ~3 m without any reversals
in the coral ages within their denoted 20 dating errors. C1 covers the time period from
the early to mid-Holocene to the end of the LGM. The uppermost 70 cm show a lower
mean sedimentation rate of about 9 ¢m/1,000 a than the rest of the core, which has a
higher sedimentation rate of approximately 36 cm/1,000 a covering the age interval from
~14,400—19,500 a BP.

The MXL core from Santos Basin was taken on a lower slope, in a narrow linear depression
riddled by pockmarks and adjacent highs (resembling an egg carton) (see section 5.3.2).
MXL is the only core covering three quarters of the last glacial period up to 89,000 a BP.
It depicts also a continuous deposition of sediment and coral rubble with increasing ages
downcore, but unlike C1 exhibits some age reversals which cannot be reconciled with the
20 dating error. A possible source of error that might be in part responsible for those age
inversions and also for possible inversions in all four cores could stem from core preparation
at Petrobras when coral branches/rubble were individually pulled out of the mud, washed
and then placed on the other core half for photography during core description. Some
of them may have been displaced from their original position (R. Kowsmann 2011, pers.
comm.). A rough sedimentation rate for MXL yields 35 cm/1,000 a. Core C2 encompasses
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Fig. 6.10: Stratigraphic age-depth-relation inferred from the corals
within the two sediment cores retrieved from the Santos Basin. Coral
sedimentation pattern for C2 is complex and reflects the harsh marine
setting of the slope region in this area.
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around 37,000 years confined in just 100 cm sediment but unfortunately has the most
complicated stratigraphic order. The many age reversals in C2 are indicative of a rough
sedimentary environment rather than man-made errors during core description. A mean-
ingful sedimentation rate for C2 cannot be given. All indicated sedimentation rates are
coarse estimates, however, and associated with large uncertainties. Reported rates from the
Campos Basin from the middle to lower portions of the continental slope (550—1200 mbsl)
give values between 120 cm/1,000 a and 70 cm /1,000 a for the southern parts of this basin
(Viana et al., 1998). By comparison, mean open ocean sedimentation rates do not exceed
several millimeters per thousand years. The stratigraphic order is not important for the
kind of investigations conducted in this thesis as 2°Th/U dating gives the absolute age of
the corals. But age-depth relations can serve additional informations like sedimentation
rates or might give us insights about preferred times of coral reef growth or reef degradation
associated with major climate changes. The last point will be discussed in the following
section.

6.6 Preferred periods of coral growth

In what follows the question is posed whether preferred periods of cold-water coral growth
took place at the continental slope off Brazil in the past. Fig. 6.11 shows the previously
presented age-depth relations summarized in one single picture to allow direct comparisons.
Also indicated are several major climate events and their appropriate durations from which
it is believed that they might have had an impact on the cold-water ecosystem off Brazil.
A closer look at Fig. 6.11 hint to apparently elevated occurrences of corals during times
of documented major climate events. Corals from all four cores group around Heinrich
stadial 1 (HS1) and its associated so-called precursor event (PC1), which is characterized
by enhanced iceberg calving from the Fennoscandian and Icelandic ice sheets preceding the
sediment pulses of Heinrich event 1 (Grousset et al., 2000; Jaeschke et al., 2007).

Especially corals from C1, mostly of L. pertusa, seem to have proliferated during this
time period, which started ~20 ka BP and ended with the start of the Bglling-Allergd
~14.6 ka BP ago. Before that, only sediment accumulated in C1 another ~80 cm until the
end of the core. Applying a mean sedimentation rate of ~40 cm/1 ka for this core section,
yield a ~2.1 ka year long time interval for those 80 cm to form. Hence, C1 did not cover the
time period of HS2 between ~23—26 ka BP. Whether L. pertusa growth took place in the
Campos Basin during HS2 and before cannot be decided. There is a noticeable gap between
~20—23 ka BP where no coral accumulation has been recorded at all four core locations.
Interestingly enough, this time period falls together with the approximate duration of the
LGM (19—23 ka BP). The KGLC core next to C1 exhibits a similar behavior although
intense deposition of coral rubble and even whole coral branches of the species S. variabilis
seem to have occurred during three distinct time periods, namely PC2, PC1, and HS1. The
coral ages in the ~4 m long KGLC core suggest that S. variabilis settled this specific Bra-
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Fig. 6.11: Merged age-depth relation of all four cores revealing times of
enhanced coral growth together with major climate events. Timing and duration
of Heinrich stadials and the YD were adopted from various authors (e.g. Bard
et al., 2000; Jaeschke et al., 2007; Pahnke et al., 2008; Barker et al., 2009).

zilian slope region at least since ~27 ka BP. Followed by a ~6.6 ka BP lasting hiatus in
the coral deposition, separating the precursor events PC2 and PC1, S. variabilis growth
reinstated ~20 ka BP and ended apparently at the beginning of HS1 (~18 ka BP). The
uppermost sample in this core is of species L. pertusa (~4.7 ka BP). Supposing that KGLC
delivers an unbiased view of the distribution of the S. variabilis’ flourish and demise in
the Campos Basin region, reef growth for this species was rather episodic and could not
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be restored until today implying conditions changed severely during the course of the last
glacial period. Drawing inferences about earlier growth stages for this species are not
possible due to the limited length of the core. To my knowledge, up to this day there
are no documented occurrences of living S. variabilis reefs in this region. However, the
significance of this statement is marred by the fact that sampling of the cores is rather
patchy with barely enough samples to give a representative and unbiased view of the past
distributions of the species S. variabilis. The same applies for the L. pertusa distribution in
this region. Therefore, every interpretation given in this section regarding preferred coral
growth needs to be treated with caution. Corals from cores C2 and MXL, predominantly
of the species L. pertusa, from larger water depths are featuring a similar behavior as their
shallower counterparts. C2 is the only core whose corals cover nearly all major climate
events grouping around the YD, HS1, and HS2.

In contrast to C2, MXL did not record any coral deposition during HS2 and PC2 but
on the other hand is the only core that exhibits occurrences reaching back as far as HS3
and HS4 thereby ignoring the fact that cores C1 and KGLC could also exhibit coral
occurrences but are just not long enough to cover this earlier period. In the overall pic-
ture L. pertusa, in contrast to S. variabilis, seem to have inhabited the Brazilian slope
almost continuously for at least the last 40 ka BP with only some minor gaps in be-
tween (during HS4 and the LGM). It is a priori not clear if the marked major climate
events in Fig. 6.11 actually had an impact on the southwestern Atlantic region. There
are several studies indicating indeed strong terrestrial and marine responses at times of
Heinrich events and during the YD in this region. Two sediment records, for instance,
from the northeastern Brazilian margin clearly show elevated Ti/Ca ratios during those
events. The CaCOgs-rich sediments are interrupted by layers where the calcium content
dropped significantly and were being replaced by continental-derived titan (Fig. 6.12). The
titan-rich layers mark periods of enhanced river runoff from the Brazilian hinterland into
the Atlantic Ocean and hint to increased precipitation during times of Heinrich events as a
consequence of large southward shifts of the Intertropical Convergence Zone (ITCZ) (Arz,
1998). Increased Ti/Ca ratios are escorted by cooling events in the sea surface temperature
(SST) off Brazil derived from alkenone-unsaturation ratios (Jaeschke et al., 2007) (Fig. 6.12).

The question arises if those events have facilitated enhanced coral growth in the intermediate-
depth water off Brazil. As described in section 2.2 a weakening or apparent absence of
NADW production in the high North Atlantic during HS2, HS1 and the Younger Dryas
is thought to have resulted in the intrusion of nutrient-rich water derived from the deep
South Atlantic reaching far into the North Atlantic basin. #'Pa/*Th measurements
covering the LGM, for instance, suggest that the meridional overturning strength was
reduced by 30—40% compared to today (McManus et al., 2004). §'3C reconstructions on
benthic-dwelling foraminifera from sediment cores from the western central Atlantic during
the LGM indicate that nutrient-rich AABW has invaded the Atlantic basin up to ~2,000 m
being traceable up to 60°N (Rickaby and Elderfield, 2005; Lynch-Stieglitz et al., 2007)
(Fig. 6.13). Whether this antarctic-derived water mass had reached the oligotrophic mixed
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Fig. 6.12: Reconstructed alkenone-based SST and X-ray fluorescence Ti/Ca ratios
from two glacial sediment deposits from off northeastern Brazil. Apparently, during
Heinrich stadials Ti/Ca increased significantly and drooped in between. Titan-rich
layers mark periods of enhanced river runoff from the Brazilian hinterland as a result
of increased precipitation during times of Heinrich events (Arz, 1998; Jaeschke et al.,
2007). Concomitantly, sea surface temperatures dropped as well as a consequence of
large southward shifts of the Intertropical Convergence Zone (ITCZ). Yellow boxes
indicate also drops in SST at times of the precursor events, which preceded the major
sediment pulses of the Heinrich events H2 and H1 (Jaeschke et al., 2007). Note the
large dating error in the Ti/Ca from Arz (1998).

layer zone of the southwestern Atlantic and stimulated enhanced phytoplankton production
remains elusive. A look at Fig. 6.11 exhibits that no coral growth was recorded in all four
sediment cores during the LGM (apart from corals during the brief precursor event PC1)
implying that despite the great shallowing of the nutrient rich AABW, it likely did not
reach the surface ocean. It is my opinion that this holds true also during the HSs and YD,
even though coral growth during these times was apparently enhanced. On the one hand
mixing processes across the thermocline have been in general greatly suppressed during
glacial times as is the case in the temperate latitudes of today’s ocean. Penetrating a
further ~2,000 m thick water layer seems to be an unjustifiable scenario. On the other
hand, during the LGM, NADW was replaced by an adjusting water mass from the north
filling the shallower depth of the Atlantic basin, namely the southward flowing Glacial
North Atlantic Intermediate Water (GNAIW) (see 6.13). This relatively nutrient low water
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Horowitz, 2000; Curry and Oppo,
2005). In addition, ?'Pa/*°Th
o measurements from the western At-
—os  lantic and accompanied model simu-
lations suggest that this shallow re-
‘ turn flow occupied depths of around
10°S  920°S 0° 90°N  40°N  60°N ~" 2,000 m being as vigorous as NADW
transport today (Lippold et al.,

Fig. 6.13: Compiled §'*C carbon isotopic data  2012). GNAIW could have acted as
(color-coded) from the western and central At-  an effective barrier preventing the
lantic Ocean during the LGM. NADW is replaced  subjacent nutrient rich AABW to
by GNAIW and a AABW-derived water mass  mix with the uppermost ocean lay-
filling large parts of deep to mid-depth Atlantic ers. In conclusion, large-scale mix-

basin. Black dots represent different measure-  ing processes between greatly shal-
ments. Picture modified from Lynch-Stieglitz lowed AABW and surface water dur-
et al. (2007). ing major climate events seem not

to be a viable candidate for stimu-
lating coral growth along the continental slope off Brazil.

6.6.1 Mesoscale eddies and coastal upwelling

A viable candidate for supplying nutrient-rich water from intermediate depths (SACW,
AAIW) to the surface ocean are eddies occurring in the Campos Basin. The continuously
flowing BC is birthplace of relatively cold cyclonic mesoscale eddies, which owe their
existence to strong instabilities of the meandering BC facilitated through topographically
induced shearing and exfoliation at the projection of Cabo Sao Tomé (Garfield, 1990; Viana
et al., 1998). Eddies, once tied off, were advected by the BC in southwestward direction
along the Brazilian slope and shelf region reaching velocities between 4—35 cm/s (see Viana
et al. (1998) and references therein). Present-day eddies show diameters between 50 to
more than 100 km being able to affect the water column up to a depth of ~800 m. By
raising the thermocline at the continental slope, SACW and AAIW are caused to upwell
bringing relatively nutrient rich water to the surface (Silva et al., 1994; Campos et al., 2000;
de Mahiques et al., 2002) thereby stimulating surface productivity. Considering that during
periods of apparent coral growth glacial sea level was reduced by up to ~130 m during the
LGM (see de Mahiques et al. (2010) and references therein), all cores could have been easily
within the reach of the eddy activity. Their average life expectancy is on the order of days
to a month (Viana et al., 1998). This local phenomenon could therefore be a promising
candidate to realize mixing processes across the thermocline, which otherwise would be quite
suppressed. It can be speculated that during periods of enhanced coral growth (during the
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YD and Heinrich stadials) the BC was probably more vigorous than today and as a result
less stable, which promoted exfoliation of more eddies. During the LGM, however, eddy
activity might have been strongly reduced, which would explain the lack of coral samples
during this period. A second unrelated process operating in this region during austral
summer also lead to upwelling of colder,
nutrient-rich waters at the Brazilian
slope around the Campos and Santos
Basin. The dominant wind system in
this area during austral summer is the
northeast trade wind as a consequence of
a shifting ITCZ below the equator. Due
to the abrupt break in the physiographic
orientation of the Brazilian coast be-
tween the Cabo S. Tomé and Cabo Frio
(Fig. 6.14), both, the coastal orienta-
tion and trade winds are becoming par-
allel aligned. As a consequence Ekman
transport demands a displacement of
Bragif e 2y R - the immediate coastal water towards the

24°5 7 o g Cyclonic s3lil ' open ocean which lead to upwelling of
g "‘-'-[' N the subjacent colder thermocline SACW

/ 2w, 8 (de Mahiques et al., 2005). The more
4°W constant the wind blows the more in-
tense this phenomenon is. As a result of

98 the Ekman transport the sea level near

the coast is lowered generating a pres-
sure gradient, which drives a geostroph-
ically balanced coastal current carrying
the upwelled water towards more south-
ern regions. Fig. 6.14 shows the SST
in the Campos and Santos Basin de-
rived from a satellite-born AVHRR dur-
ing an austral summer upwelling event
together with two eddies. Today, this
phenomenon is quasi-seasonal controlled
and might have been much more pro-
nounced during episodic shifts of the
ITCZ farther south during glacial times as indicated in Fig. 6.12 Arz (1998) during Heinrich
stadials, YD, and during the early Holocene Haug et al. (2001). Micropaleontological and
geochemical analyses conducted on assemblages of calcareous nannoplankton and plank-
tonic foraminifera of a sediment core covering the past 25 ka BP taken off southeast Brazil

20°S

Northeasterly Trades

22°S

26

Fig. 6.14: AVHRR measurements show-
ing the typical situation during austral sum-
mer: the meandering BC and the south-
ward shifted northeasterly trades are caus-
ing broad upwelling of colder and nutrient
rich water in the inner and outer shelf re-
gion. Crosses mark core locations. Curved
arrows indicate the direction of austral
trade wind flow. Image modified from
de Mahiques et al. (2005).

'AVHRR: Advanced Very High Resolution Radiometer.
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documented significant changes in the surface productivity (Toledo et al., 2007). This core
is directly aligned between the KGLC and C2 cores (not shown in Fig. 6.12). These findings
corroborate the idea of pronounced changes in the surface hydrography as a consequence
of intense north-south shifts of the ITCZ instigated by major climate events. Two further
mechanisms should be briefly mentioned here for the sake of completeness but are regarded
as improbable scenarios. After Kumar et al. (1995), amplified winds from Patagonia have
promoted the input of iron-rich lithospheric material into the South Atlantic during the
glacial period compared to the Holocene. Aeolian dust, rich in iron, is expected to have
had a fertilizing effect on the marine ecosystems. As a possible explanation attempt this
approach is getting along without any complex upwelling mechanism. But the reconstructed
proxy data indicating an increased export production lack the appropriate timing and
correlation with the indicated climate events in Fig. 6.11. Furthermore, augmented input
of aoelian dust was assessed only on sediment cores between ~40—55°S (Subantarctic
zone). The prevailing westerlies have carried the Patagonian dust from the South American
continent far into the eastern South Atlantic. Whether this dust has also reached the
Brazilian core sites several thousand kilometers farther north remains elusive. Last but not
least, areas with pockmarks actively venting hydrocarbon-rich fluids usually host a rich
benthic-dwelling ecosystem. It is thought that bacteria-based food webs nourishing from
hydrocarbon seepage have stimulated formation of such biological ecosystems (Dando et al.,
1991). As a side product, cold-water corals off Brazil might have benefited as they consume
redundant organic material coming from such communities in the immediate neighborhood.
This is highly speculative, since nothing is known about past seepage activity around
pockmarks off Brazil until today. Besides, cores KGLC and C1 from Campos Basin have
been retrieved from an area devoid of any pockmark activity.

6.6.2 The potential density hypothesis

In this subsection a hypothesis put forward by Dullo et al. (2008) is tested. Observations
of living cold-water coral reefs of species L. pertusa settling along the Celtic and Norwegian
margins have shown an apparent connection between reef occurrences in intermediate-depths
and the potential density anomaly of the ambient seawater. Though other environmental
parameters are widely changing at these locations, the potential density anomaly (hereafter
PDA), however, is found to be constant within a narrow range. It has been proposed that
the PDA might constitute an important physical boundary condition for the spreading of L.
pertusa and thus for the reef growth in these regions. Investigated L. pertusa frameworks
occur within a certain density envelope of ~27.35 to 27.65 kg/m?3. The PDA is defined
as 0o = psep — 1000 kg/ m?, where p(s,e.p) is the adiabatically corrected density a
water parcel would obtain after brought to a certain pressure (depth) level (the pressure
reference level is chosen to be the sea surface). By way of analogy, © is the potential
temperature a water parcel would acquire if brought to the sea surface as well. It has been
speculated that larvae transport preferentially occurs along those isopycnals encompassing
the observed density range of ~27.35—27.65 kg/m? (Dullo et al., 2008). This seems to
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be a viable mechanism if coral larvae behave neutral buoyant, that is, stays submerged,
while spreading along the related isopycnals. This has already been observed for some
shallow-water corals but is not yet confirmed for deep-water corals. Even though data on
larvae densities from L. pertusa are not available to test the hypothesis for the southwestern
subtropical Atlantic off Brazil, the question arises in which depths these isopycnal range can
be found at the Brazilian margin and if this depth corresponds to the L. pertusa occurrences
found at the core locations investigated in this thesis. Fig. 6.15 is depicting different
potential temperature and salinity profiles from MUC?2, CTD, and bottle measurements
collected from the continental slope
of the Santos Basin and one profile
from the Sao Paulo plateau as part
of the WOCE hydrographic pro-
gram. The gray lines are isopycnals
calculated for given temperatures
and salinities. The reddishly dashed
lines show the density range pro-
posed by Dullo et al. (2008), which
are found on the middle to lower
slope region off Brazil in depths
between ~1,547 m and ~1,000 m.
This is much deeper than the loca-
tions of the recovered L. pertusa fos-
sils. A lower sea level stand during 0 | | | | ",
glacial times has most likely reduced 34 345 35 35.5 36 36.5
the potential density at the core Salinity (psu)

sites even further. Assessing paleo-
isopycnals is difficult and beyond
the scope of this discussion. Correct-
ing for a likely sea level change of

—_ —
(@] (@

Potential temp. © (°C)
(@

Fig. 6.15: O-S plot showing the potential wa-
ter density at the Brazilian slope reconstructed
from MUC, CTD and bottle measurements to-

100130 m off Brazl (de Mahiques gether with the proposed density range from Dullo
et al., 2010) and under the assump- et al. (2008) (dashed lines). © Modern L. per-

tion that glacial seawater and salin- tusa (606 II]), and are the shallower cores
ity profiles in this area were compa- from Campos Basin and deeper cores from Santos
rable to today the PDA for the shal- ~ Basin, respectively, corrected for a 100—130 m
lower and deeper cores are placed glacial sea level change.

well above the present-day density

envelope for L. pertusa as suggested by Dullo et al. (2008) (see crosses in Fig. 6.15). The
yellow cross marks the PDA for the shallower cores C1 and KGLC, green represents the
deeper cores C2 and MXL and red is the single modern L. pertusa specimen from the
Campos Basin from a depth of 606 m. Adjusting today’s water mass characteristic in such
a way that the colored crosses fall within Dullo’s proposed density envelope would imply

2MUC: Multicorer, CTD: Conductivity, Temperature, and Depth.
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unrealistically large variations in either the salinity, temperature or both. The investigated
glacial L. pertusa corals in this thesis, therefore, seem to have thrived well beyond the
proposed density envelope. A captured living L. pertusa coming from the immediate vicinity
of core C1 (Campos Basin) from depths not deeper than ~750 m (Goff-Vitry et al., 2004)
supports my conclusions. Nevertheless, it cannot be ruled out that living L. pertusa reefs
do exist in the deeper parts of the Brazilian slope and are well situated in the expected
density range, but up to date no living L. pertusa reef has been found in this region. Due
to the scarcity of the dataset the potential density of a water mass as a basic prerequisite
for L. pertusa reef growth and distribution off Brazil cannot be verified.
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Results and Discussion: 4C

7.1 1“C measurements

Thirty four coral samples have been chosen for 4C dating after careful assessment of their
quality based on the previous investigations. 14C/12C isotope ratios have been measured on
the coralline material after carbon has been extracted by using standard hydrolysis methods.
After preceding sample preparation (physical cleaning and chemical leaching with weak
HNOs3) all samples were individually dissolved in 7M HCI to convert the carbonate into
carbon dioxide gas. The CO, was subsequently catalytically reduced to graphite following
the methodology already described in my diploma thesis covering also information about the
sample treatment (Ruckelshausen, 2009). Target pretreatments for Zurich and Mannheim
were conducted at the IUP. Except for two graphite targets that have been measured on
the Mini Carbon Dating System (MICADAS) at ETH-Zurich, the remainder has been
conducted either on the compact AMS (NEC 0.5 MV 1.5 SDH-2) at Keck-CCAMS facility
at the University of California, Irvine or at the MICADAS at the Curt-Engelhorn-Center
for Archacometry in Mannheim. Individual samples were counted for 50,000 *C events
and 10,000—30,000 at Keck-CCAMS and ETH-Zurich and Mannheim, respectively.

All results have been corrected for isotopic fractionation according to the conventions
of Stuiver and Polach (1977) with §'3C values simultaneously measured on the graphite
targets using the AMS spectrometer. These *C/!2C ratios can differ from the original
material if fractionation occurs during graphitization or during AMS measurements. All
uncertainties were calculated based on the counting statistics from multiple runs on each
sample, together with propagated uncertainties from blank corrections (based on measure-
ments of 1C free material), 6'3C corrections, and normalization, see Eq. 4.3.4.1 for isotopic
fractionation corrections. Tab. E.3 depicts *C blank measurements from the Keck-CCAMS
facility. One coral subset comprising samples exclusively from the MXL core has been
blank corrected by using the 1*C value returned from a coral sample (M-385) from the same
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core thought to be *C-free according to its 2°Th/U age (~90 ka BP). Because calcite is
“structurally speaking” cleaner than a coral (consisting of aragonite), it does normally return
lower backgrounds. A sufficiently old coral sample (= 60 ka) from the same core should
provide a more realistic blank. The relatively young *C age of sample M-385 indicates
that this coral had probably suffered from in-situ alterations which chemical pre-treatments
were not capable to remove. Since diagenetic alterations cannot be ruled out for the whole
coral subset the same blank correction was applied for these samples. All 14C results shifted
slightly toward older ages. The samples not measured at the Keck-CCAMS facility were
background corrected by using the in-house calcite blanks of the different laboratories since
no representative old coral samples from the other sediment cores were available for blank
correction. More information about the differently used AMS techniques as well as the
instrumental and offline data analysis can be found elsewhere (e.g. Unkel, 2006; Santos
et al., 2007; Wacker et al., 2010). C results are listed in Tab. E.1 and E.2.

7.2 Data representation

Before getting to the results and starting the discussion and comparison with other 4C
datasets from the literature, a few words need to be said about the chosen form of illustrating
the data. As can be seen in Fig. 7.1 the reconstructed atmospheric A“C from IntCal09
(Reimer et al., 2009) exhibits short-term variations superimposed by a steadily long-term
decline. A'C have been higher by as much as ~73% with respect to the modern “C/*2C
isotope ratio (AD 1950 = 0 a BP) during several stages in the past. Albeit these high-end
values lasted just a short amount of time, the atmosphere’s C activity was generally
enriched by at least 35% during the whole period between ~45 ka BP until the end of
the LGM. Thus, for a better comparison, the deviations in A'*C between the corals and
the contemporaneous atmosphere are a more reasonable measure to look at, rather than
comparing the A'*C of the coral alone. In the following, all outcomes are presented as
AAMC following the equation:

AA14C — A14Cseawater _ A14Ccontemporaneous (71)

atmosphere

The AA™C obtained can be interpreted as offsets between the two considered carbon
reservoirs, namely the atmosphere and the intermediate-depth water off Brazil (Fig. 7.1).
Another possibility is to assign these reservoir offsets a corresponding *C age. But because
there is no real benefit for doing so, I will stick to the first notation. The reader is referred
to annex B.3 where a overview plot is given in *C ages as well. For the sake of completeness,
a third and widely used alternative to illustrate marine *C data is to make use of the
projection ages concept first proposed by Adkins and Boyle (1997) and Mangini et al. (1998).
As outlined in section 4.3.5 this idea involves counting back the A™C (starting) value of a
sample in time until this “backtrack” intercepts the atmospheric AC record (Fig. 7.1).
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The difference between the calendar age of the atmospheric intersect and the sample’s
230Th /U age yields the so-called projection age, following the underlying equation:

t
Ch, - P

Cpipn 14
T = 8266 - In (() e © age/8033> — 20Th/U age (7.2)

Because the backtrack is calculated until its intercept with the atmosphere the factor
FMEpast (Mixed Layer), controlling the surface reservoir effect, is set to one. Today, the
mean surface reservoir offset amounts to roughly 0.95 corresponding to a ~400 *C year
offset from the atmosphere. CPP® denotes the **C/12C isotopic ratio of the radiocarbon
standard. CP%* is the ratio of the intersect between the backtrack and the atmospheric
A™C record. A more appropriate approach would be to backtrack the AC starting value
to the surface’s AMC from which the water mass supposedly gained its initial 1*C/2C
imprint. Ages obtained in this way are called ventilation ages. Unfortunately, the surface
reservoir ages are badly constrained as has been shown by many studies exhibiting large
variations in time and space making a reasonable correction for the surface water virtually
impossible. Hence, projection ages always overestimate the real ventilation ages by up to
several thousand years depending on the magnitude of the surface reservoir effect. There are
additional requirements which need to be fulfilled (see section 4.3.5) in order to make the
projection or ventilation ages a reliable measure for the true age of a water mass. Usually
these requirements are strictly speaking not satisfied. Though, this concept is tempting, I
am waiving to use projection ages in this thesis.

However, for illustration purposes projection ages for the whole dataset (old and new
coral data) are shown anyway without discussing the results (Fig. 7.2). Again, no surface
reservoir correction afterwards or directly backtracking to the Marine IntCal09 (which tries
to model the surface reservoir effect) was applied. For those readers interested in calculating
projection ages see appendix C for a Monte Carlo based Python script used to calculate
these ages and plotting them as 20 covariance ellipses using Matplotlib. The script does
not consider the 20 uncertainties in the A*C from the IntCal09 record, as indicated in
Fig. 7.1 (yellow AA™C intercept points at the end of the backtracks). Implementing these
errors should not pose any major difficulties but was not the focus of this thesis. However,
for all calculated AA™C values in this thesis also a Monte Carlo approach came in handy.
Generating normally distributed numbers (1,000) meeting the requirements of having the
same mean and 20 uncertainty as obtained from the C and ?**Th/U measurement of
a coral sample, the A'C is calculated according to Eq. 7.3 returning an ellipse-shaped
scatter diagram (Fig. 7.1) from which the error ellipse parameters can easily be deduced
(blue ellipses). In order to find the reservoir offset for each scatter point to the atmospheric
AC record it is more appropriate to find the nearest atmospheric A*C value in the
IntCal09 table for each scatter point rather than to interpolate an atmospheric A*C value.
Determine the next calendar age neighbor allowed to implement the IntCal09 uncertainty
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Fig. 7.1: Visualization of projection ages and AAMC. For each sample 1,000
Monte Carlo AMC values (red) were generated. The blue ellipses are 20 error
ellipses deduced from the MC generated scatter. Backtracks were calculated in
order to find the projection ages as illustrated. The 20 errors of the atmospheric
A™C were not considered. AA™C were calculated for each of the 1,000 MC
points with respect to the next corresponding atmospheric value using a next-
neigbor approach, see text. For AAMC, however, the 20 A™C errors of the
IntCal09 were taken into account. To avoid clutter only 100 MC points are
shown.

as well. This would otherwise be difficult since it is not clear how to assign an appropriate
A'C error for an interpolated atmospheric value. Once a next atmospheric A*C value for
a scatter point was found its associated atmospheric 20 uncertainty was used as a starting
point for a new set of normally distributed numbers (meeting the requirements of having
the specific atmospheric A™C and its corresponding 20 error) from which one is chosen
every time the next-neighbor-approach results in the same 20 uncertainty looked up in
the IntCal09 table. This method ensures that in this statistically approach the 20 error of
the IntCal09 is taken into account for the AA™C calculations. Interpolating the IntCal09,
however, is mandatory to find a sufficiently exact intercept for determining projection ages
which has been done in the Python script. All error ellipses in Fig. 7.3, which lie 50%
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(arbitrarily chosen threshold) above the atmospheric AC are omitted for the projection
age calculation. If the percentage is smaller, only the points above the atmosphere are
omitted, but a projection age is calculated anyway, knowing well that error ellipses with
projection ages smaller than, say, about 300 years are very likely distorted in their shapes.
It would be more reasonable to set the threshold value much smaller than the chosen 50%
to get more realistic error estimates.

8 ! ! ! | | | | |

[ @ Whole dataset]

| |

A

0 5 10 15 20 25 30 35 40 45
cal age (ka BP)

Projection age (ka)
A
—_

Fig. 7.2: If possible calculated projection ages are shown as 20 error ellipses
for the dataset. The ages range between several hundred years extending as
far as ~7.5 ka. By definition projection ages are calculated back to the known
atmospheric A™C instead to the ocean surface A*C, which is mostly not known.
Usually, initial surface-ocean reservoir ages are afflicted with large variations
in time and space making a precise correction nearly impossible to get true
ventilation ages. Furthermore, the possibility of mixing multiple intermediate-
and deep-water sources with different ventilation histories can already lead
to faulty projection ages (Adkins and Boyle, 1997). Neither projection nor
ventilation ages are further discussed in this thesis.
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7.3 A"C reconstruction

By using the following equation, introduced in section 4.7

ecal age/8266

A14de = (eMCage/&)?;B - 1) . 1000%0 (73)

combining the uncalibrated “C age with the age obtained from 2*°Th/U dating, the A*C
of a coral sample can be calculated. A'C is the relative deviation of the ?**Th/U age
corrected 1*C/12C ratio of a sample to the “C/'2C of the radiocarbon standard given in per
mille. As no fractionation between the seawater’s 4C-isotopic ratio and the coral carbon-

== IntCal09, Reimer et al. 2009

800 .
@ C1 and C2 (old data)
@ New coral data

600 | - Backtracks -

—200} .

400 |

_600 | | | | | | | |
0 5 10 15 20 25 30 35 40 45
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Fig. 7.3: Overview of the new coral data investigated in this thesis
depicted as blue 20 covariance ellipses together with the already published
coral data from sediment cores C1 and C2 (red). The whole dataset now
encompasses ~40 ka BP reaching from the late Holocene to the last third
of the glacial period of the Pleistocene. The green curve is the atmospheric
AMC from Reimer et al. (2009) with corresponding 20 uncertainties. The
dashed lines represent 4C decay curves, which will be discussed later.

94



7. Radiocarbon “C

ate occurs, the reconstructed AC directly reflect the radiocarbon value of the DIC of
the (deep)water in which the coral grew (Adkins et al., 2002a). Fig. 7.3 summarizes
the new coral AC dataset together with the already published measurements from my
diploma thesis (Ruckelshausen, 2009) revealing amazing variations in the *C history in
the intermediate-depth water of the Brazilian slope for the last ~40 ka BP. Depletions
are exceeding —500%o0 at times. Another remarkable feature is that depletions in AC
apparently follow the 4C decay curve, which hints to a closed system behavior of the water
mass bathing the coral sites (dashed lines (backtracks) in Fig. 7.3). I will discuss this
observation in-depth later on.

7.4 Hydrocarbon seepage activity and coral A™C

The reliability of the presented *C data is potentially marred by hydrocarbon seepage
activity, which might have occurred at the Brazilian margin. As outlined in sections 5.1 and
6.4 the Brazilian slope around the core locations is littered with pockmarks, the legacies of
catastrophic expulsions of hydrocarbon-rich fluids in the past. Hydrocarbon fluids are often
abundant in dissolved methane, which is partly oxidized by microbial anaerobic processes
to CO4 within the sediment. COs, once liberated to the above seawater, is subject to the
carbonate chemistry forming carbonate ions among others. Since the escaping methane is
geologically old and thus free of radiocarbon the resultant carbonate species could have
distorted the *C dating of the corals making them apparently older in *C than they
actually are.

To test this hypothesis coral samples from species L. pertusa from cores Cl1 and C2
have been measured for the stable isotope ratios *C/2C and ®0/'0. The idea is to
compare the carbon isotopic compositions (expressed as §C) of the corals with the C
isotopic signature of the allegedly released methane. Depending on the provenance of
the methane its §'*C signature exhibits a wide range from roughly —110%0 to —50%0
when biogenically derived and from —50%0 to —20%0 when the origin is thermogenic (e.g.
Whiticar, 1999; Peckmann et al., 2001; Stott et al., 2009; Wirsig, 2010). Reported §'3C from
authigenic carbonates from the Campos Basin range between ~—22%0 to —3%o featuring
unusually elevated values than typically found in such marine carbonates but have been
shown to be the result of post-depositional diagenetic effects (Wirsig et al., 2012). The
§13C and §'80 coral results exhibit large variations (~8%o for the carbon and ~5%o for
the oxygen isotopes) revealing a linear relationship between these two quantities (Fig. 7.4,
Tab. G), which is attributed to vital effects occurring during the calcification process caused
by the polyps of a coral, see Freiwald and Roberts (2005) and references therein. Possible
variations in 80 due to glacial sea level changes are much smaller than due to vital effects
and can be neglected. The stable isotope data are compared to a compilation of stable C
and O isotope measurements from L. pertusa from the northeast Atlantic region, which is
thought to be devoid of seepage activity. Carbonate samples (this study) were obtained

95



7.4. Hydrocarbon seepage activity and coral A*C

8180 (%o, VPDB)

O L .
—1F i
O
0§30 - .
7Lk o O Compilation L. pertusa NE-Atlantic
@ Brazilian L. pertusa corals (this study)
_ 3 ] O 1 ] ] ] ] |

-10 -8 -6 -4 =2 0 2
813C (%o, VPDB)

Fig. 7.4: Comparison of measured §'3C and §'80 of L. pertusa
from the Brazilian slope and L. pertusa from the northeast
Atlantic region. 20 uncertainties are equal or smaller than dot
sizes. Atlantic coral data are from Freiwald and Roberts (2005).

using the dental drill method. Measurements were provided by M. Segl on a conventional
mass spectrometer type Finnigan MAT 251/252 at the Center for Marine Environmental
Sciences (Marum), Bremen. The findings agree well with the data from the North Atlantic
suggesting that escaping methane has played, if ever, a neglectable role in the large “C
depletions observed in the intermediate depth off Brazil. A more quantitative approach
indicates a possible methane release at the Brazilian slope region in the past would have
had little or no effect on the radiocarbon ages of the corals. On the basis of some simplified
assumptions (such as the released methane’s §*C ranged between —110%0 to —40%o,
low coral radiocarbon ratios were solely the result of *C-free methane, and a present-
day DIC concentration of the intermediate water (before altered by input of methane)
of ~2.2—2.3 mmol/kg) the impact of a potential methane release on the skeletal §'3C
can be estimated. To illustrate this effect, coral C2-36 (age ~5.6 ka BP) has a A"C of
~—430%0 (corrected for a mean modern reservoir offset of ~85%¢ for the core locations),
it would be necessary to inject an additional ~1.2 mmol/kg *C-dead carbon into the
intermediate-depth water to explain the huge drop in its A*C. The outcome would be a
relatively large negative §'3C anomaly in the surrounding seawater, which should also stand
out in the coral carbonate. Calculated §'3C values for the coral skeletons range between
~2%0 to —44%0 depending on how depleted the methane originally was and considering
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that the water §'3C can become fractionated during the aragonite precipitation (vital effect),
which amounts up to ~10%c in §3C (Fig 7.4). Unfortunately, no *C measurement has
been performed for this specific sample. The maximum §3C range expected to be observed
in the skeletons affected by radiocarbon-dead methane is shown as gray bar in Fig. 7.5.

DIC
biogenic CHy
CHy
| | | | ] affectedI corals ] |
—120 —100 —80 —60 —40 -20 0 20

813C (%o, VPDB)

Fig. 7.5: Possible impact of biogenic methane on coral carbonate §3C. The
gray bar overlaps partly with the normal range in §*3C observed in the cold-water
corals of species L. pertusa. A discrimination in this range is, however, not
possible.

This bar overlaps with the normal (non-methane affected) section (green) rendering a
discrimination between these two possibilities impossible. However, for corals featuring
large depletions in *C their stable isotopic composition should clearly stick out beyond
the green bar indicating a potential influence from methane. Nevertheless, none of the
investigated L. pertusa samples from cores C1 and C2 indicate such a behavior (Fig. 7.4).
All measurements are in accordance with the results from the northeast Atlantic showing
the expected variability in §'3C and §'%0. Besides, very little is known about cold seep
activity off Brazil, not to mention the timing and duration of the fluid venting at this
location. Therefore, the conclusion is drawn that seeping methane did not have an impact
on the progressively *C ageing of the water off Brazil. A oceanographic origin of the
depleted water is a more likely scenario rather than just a local geologic phenomenon.

7.5 Intermediate-water AA“C between 0—14 ka BP

For readability reasons the whole dataset in Fig. 7.3 is divided into three sections. The
first period covers the last quarter of the deglaciation and the Holocene epoch, the second
comprises the deglaciation and LGM, and the last section encompasses the LGM up to the
scope of radiocarbon dating. Every part will be individually discussed and compared with
the available datasets from the literature. To constrain the wealth of other datasets only 4C
results from shallow to intermediate and deep waters, respectively, from the Atlantic Ocean
are used with two exceptions: the *C datasets from the Chilean continental slope at the
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eastern South Pacific from de Pol-Holz et al. (2010) and the eastern tropical North Pacific
data from Marchitto et al. (2007). Fig. 7.6 depicts the coral data in the section between
0—14 ka BP. The gray contour lines give the reader an impression how the AAC offsets
have changed due to changes in the radiocarbon inventory of the atmosphere with time.
Because atmospheric *C concentrations were higher in the past AA™C offsets translate
into smaller *C age offsets than they do today. Thus, all contour lines are somewhat tilted
towards larger calendar ages. Associated *C ages for each plotted contour line are shown
ditto. Fig. 7.6 reveals a short period of highly ventilated water ~13,000 a BP at the end of
the Bolling-Allergd (BA) interstadial, immediately before the start of the YD cold snap.
Intermediate water activities declined and subsequently attained modern values during the
middle of the 1,200 year lasting YD. For comparison, the small rectangle on the left-hand
side in Fig. 7.6 marks the preindustrial reservoir offset for the depths between 600—800 m
obtained in the immediate vicinity of the cores. Fig. 7.7 shows a AAMC water profile from
the WOCE hydrographic program (WHP) from the Sdo Paulo Plateau. AAIW can be
identified either by its distinct salinity or AA*C minimum. The horizontally dashed lines
in Fig. 7.7 depict the approximate extent of AAIW. The pronounced decline in AA“C in
Fig. 7.6 further continues beyond the end of the YD reaching an absolute minimum of about
—580%0 during the mid-Holocene, which equates to an *C age offset from the atmosphere
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Fig. 7.6: The AA"C data reveal a large excursion in the *C activity
lasting several millennia until the mid-Holocene. The gray contour lines
indicate how the reservoir ages have changed in these depths due to
shifts in the atmospheric radiocarbon inventory. Also plotted is the
duration of the Younger Dryas and the Preboreal.
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of ~6,000 years! However, this conclusion may be marred by the fact that the specific coral
sample at 5,600 a BP displays an anomalously high 238U content of nearly 7 ppmw, which
may be indicative for some diagenetic alteration. Though the §2%4U is within acceptable
range an additional XRD measurement was made to determine the aragonite content
but nothing suspicious has been found. The sample consists of 100% aragonite with no

traces of calcite or any other mineral phases

0 + within detection limit of the used XRD

A 5 method (Tab. G.2). This specific coral is

thus regarded trustworthy despite its ele-

0.54------------+ ;'g ----------- vated uranium content. Otherwise it would

} Coral be difficult to understand why the “C mea-

136 surement came out with the “right age” to be

11 AATW on the decay curve as the older samples show.

— = If this coral has experienced an open system
g % .

i 2, behavior one would expect the carbon atoms

;::: 1.51 -------':.; ----------------- I 45 &> inside the skeleton have exchanged with the

2 °s g seawater or pore waters within the sediment

A & as well. Thus, an arbitrary "*C age can be

2 , expected which would result in A™C values

s above or below the backtrack of Fig. 7.3.

34 But this is not the case, which can be re-

2.5 1 .’ garded as a further proof for the integrity

"': of the coral’s aragonite. The huge drop in

. : 140 ended abruptly and activities rebounded

T within no more than several hundred years

—120 —80 —40

to modern values at about 4,700 a BP. No re-
AAMC (%o0) lapse to such depleted AAM™C values seem to

Fig. 7.7: Local preindustrial AAMC ha\.fe.happened again until Foday. The.most
. .. striking feature, however, is that radiocar-
seawater profile together with salinity off )
. ) . . bon depletion supposedly followed the rate
Brazil. AAIW can be identified either by £ 140 g (Fig. 7.3). Th i
its distinct salinity or AAYC minimum. ecay \r1g. {.9). © Ctrot eTipses

The dashed lines give the approximate between ~5—' 14 ka BP line up like a string of
extent of AAIW. The curly bracket indi- pearls following the dashed backtrack curve.

cates the core/coral depth. This patterp seems to repeat more or le'ss

regularly with further pronounced dips in
A™C during the deglaciation and between
~23—27 ka BP. Such a behavior can only be expected for a mass of water that remained
closed over a long period of time to allow *C to decay significantly as reconstructed. Just
for clarification, plotting reservoir offsets (AAC), as in Fig. 7.6, eliminates this feature,
however. The lowest AC values observed in the modern ocean are found in the North
Pacific (at ~2 km) with depletions of ~240%¢ relative to the preindustrial atmosphere.
Depletions off Brazil were at times more than twice as large and what is really interesting
were recorded in depths of only 600—800 m. These findings hint to fundamental changes
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in ocean circulation during that time, which ultimately impacted the intermediate-depth
ventilation of the AAIW feeding the core locations. How can these results be explained?

7.5.1 Local ageing hypothesis

As all four core locations are situated in a region directly influenced by the AMOC (the
adjacent water mass to AAIW is NADW flowing in south direction, see Fig. 5.7) it is
difficult to imagine how AAIW, predominantly bathing the core sites, can become isolated
in order to allow *C to decay. Even if AAIW production had stopped for a longer period
of time, in-situ ageing would have been very improbable. In absence of lateral advection of
water by AAIW, the diapycnal mixing timescale is set by turbulence across the thermocline,
which follows above the AAIW (Viana et al., 1998). Diapycnal mixing is usually quite
suppressed across the thermocline owing to the strong density gradients within. According
to the diffusion equation the time to overcome a layer of water by diffusion alone can be
estimated with:

1'2

t =
4-K,

(7.4)

where K, is the vertical eddy diffusion coefficient, which is usually on the order of ~107° m?/s
for an open ocean setting but has been shown to vary locally, for instance, above the abyssal
plains in the Brazil basin exhibiting vertical eddy diffusivities of ~1073 m?/s (Polzin et al.,
1997). z is the diffusion length which is here set to the depth of the core locations corrected
for a potential glacial to Holocene sea-level change of 100 m. The resultant mixing time is
a rough estimate between 2 and 520 years depending on which vertical eddy diffusivity is
used. From this admittedly very simplistic view it follows already that in-situ ageing of a
resting water mass for several thousand years seems to be an unlikely scenario.

7.5.2 Production of AAIW in the Southern Ocean during glacial
times

There is by now a large array of evidences, which indicate Atlantic AAIW production
and its subsequent northward transport were quite variable during the last glacial and
deglacial period. For example opal flux reconstructions from 23'Pa/?3Th from an equatorial
Atlantic sediment core is interpreted as AAIW replacing a weaker NADW during the glacial
period (Bradtmiller et al., 2007). Nutrient proxies as Cd/Ca and §'*C obtained on benthic
foraminifera corroborate the idea of AAIW penetrating the Atlantic far into high latitudes
during the last glacial period (Rickaby and Elderfield, 2005). Authigenic exq measurements
from intermediate-depth sediment cores from the Brazilian margin, Tobago Basin, and
from the Florida Straits suggest abrupt changes of the neodymium source composition of
AAIW for at least the past 25,000 years. The data from Pahnke et al. (2008) indicate
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enhanced export of AAIW during HS1 and the YD visible by more radiogenic Nd values
(Fig. 7.8). However, controversy persists as to whether the northward flow of AAIW was
enhanced during these abrupt cold events. eng data from Xie et al. (2012) from Florida
Straits sediments, however, exhibit much more negative values during HS1 and the YD
indicating only a small to no intrusion of AAIW into the subtropical North Atlantic region
during these time periods. The discrepancies can be reconciled by considering the cores’
different water depths. It was argued that the Tobago core site lies beneath the modern
AAIW depth range and actually failed to record a deglacial AAIW signal (Xie et al., 2012).
Nonetheless, there is no evidence that AAIW came to a halt or was in any way significantly
reduced during the last glacial or the Holocene. The idea of a resting water mass, which
stayed isolated for several thousand years to explain the continuous drop in “C (AMC)
must be discarded.
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Fig. 7.8: Sediment authigenic enq measurements from
intermediate-depths core sites exhibit vividly waxing and
waning contributions of AAIW during glacial times. There
are no indications that AAIW transport came to a halt
for at least the last 25 ka BP.
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7.5.3 The oxygen conundrum at the Brazilian slope

Another problem, which needs to be addressed concerns the water’s oxygen content dur-
ing the phases of (very) low A"C (AAMC). Both quantities are tightly coupled in the
present-day ocean in such a way that AAC correlates linearly with the dissolved oxygen
concentrations in the same water parcel. The older the water the lower is the expected oxy-
gen concentration due to ongoing respiration and decomposition of organic mater within the
water column (Fig. 7.9). Measurements of the oxygen utilization rate (OUR) in the modern
Pacific Ocean yield values of ~14 49 mmol/m3/100 a due to remineralization below 1,500 m.
Mean values from the modern Atlantic Ocean below ~2,000 m give 12 mmol/m?/100 a

(Broecker, 1991). The oxygen con-
sumption owing to remineralization
alone (A[OZ]remin = [02]0bserved -
[Og] preformed) correlates with AAMC
(Fig. 7.9). The slope is equal to
the OUR. This relationship allows to
estimate the duration for a certain
oxygen level to be completely con-
sumed by remineralization. Southern
Component Water (SCW), encompass-
ing AAIW and AABW, usually has
a mean dissolved oxygen concentra-
tion of 250 mmol m~3. An ecophys-
iological study conducted by Dodds
et al. (2007) on the coral L. per-
tusa suggests that the species is inca-
pable to live in an environment with
an oxygen level permanently below
~3 ml 17! = 134 mmol m~3. Apply-
ing the above OUR for the present-day
Atlantic gives that the ambient oxy-
gen level would have dropped below
3 ml 17! after around 1,000 years of
isolating the water mass, which makes
it impossible for a L. pertusa polyp to
sustain its aerobic metabolic activity.

—40 T T T T T T T '
Western Basin o
. [ ] ‘
_35 | @ N. Hemi. . ]
O S. Hemi. o g
A_3O i . |
E
25+ |
p—
o
g 20t I
N—"
a—15F |
S
—10} Y l
‘ Eastern Basin
sl :‘ ® N. Hemi.
L+~ 1.ommol / m*/ %o ® S. Hemi.
1 1

0 —5 —10 =15 —20 —25 —30 —35—-40
AAYC (%o)

Fig. 7.9: This plot illustrates the measured
oxygen versus radiocarbon deficiency obtained
from different ocean basins. The slope of the
regression line yields the oxygen utilization
rate (OUR). Image modified from Sarmiento
and Gruber (2006).

Since the OUR is generally not known for the past ocean nor for the location off Brazil
the result can only be regarded as an educated guess. The fact that corals grew during
periods of extreme *C depletions indicates that dissolved *C and oxygen must have been
decoupled, which is not achievable for a locally resting water mass.
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7.6 Isolated abyssal water hypothesis

A much more likely scenario to explain the reconstructed AAM™C depletions off Brazil and
to reconcile the oxygen constraint is to invoke advection, rather than in-situ ageing of a
static water mass. A viable mechanism proposed by Ninnemann and Charles (1997) and
picked up later by Spero and Lea (2002) to explain observed carbon §'3C minimum events
recorded in thermocline-dwelling foraminifera from various core sites at the beginning
of glacial terminations suggests a common origin of the water. The nearly simultaneous
distribution of this isotopic signal spanning the Indo-Pacific, sub-Antarctic, and South
Atlantic basin also supposes that the source of this signal very likely originated in the
Southern Ocean as it is the only
region directly connecting the differ-
ent basins. According to this idea

APF SAF STF
Antarctic PFZ SAZ Latitude

Upward< )

transport/mixing

SAMW
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deglacial events caused the stratified
Southern Ocean to upwell poorly
ventilated water with a low isotopic
01C to the surface. The outcrop-

ping deep water was subsequently
converted to AAIW within the con-
vergence zone of the subantarctic
front thereby transporting the dis-
N\ tinct isotopic signature throughout
the intermediate depth of the South-
ern Hemisphere (see Fig. 7.10, de-
picting today’s water mass conver-
sion from deep (Circumpolar Deep
Water) to thermocline and interme-
diate water). Besides these §'3C
observations, several studies from
intermediate depths have reported
strong radiocarbon age anomalies
during the course of the last glacial
and deglacial period (eg. Marchitto
et al., 2007; Stott et al., 2009; Bryan et al., 2010; Mangini et al., 2010), suggesting a
similar mechanism must have been prevailed. To reconcile the §'3C measurements and the
strong depletions in *C an isolated deep water reservoir has been proposed within the
Southern Ocean (Spero and Lea, 2002; Marchitto et al., 2007). This hypothesis requires that
radiocarbon renewal from the upper ocean and the atmosphere was greatly suppressed and
lasted up to several thousand years. An increasing number of studies indicate the Southern
Ocean might indeed have played a key role in the sequestering and releasing of carbon on
a glacial-interglacial timescale (Francois et al., 1997; Sigman and Boyle, 2000). This is
founded in part on records showing a tight relationship between Antarctic temperature and

AATW

Fig. 7.10: Conceptual diagram modified from
(Sarmiento et al., 2004) depicting today’s water
mass conversion in the Southern Ocean. Upper
Circumpolar Deep Water (CDW) upwells to the
surface and is entrained into the different Antarc-
tic Frontal Zones where AAIW and SAMW is
formed, which spreads throughout the entire South-
ern Hemisphere (Sloyan and Rintoul, 2001).
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deglacial carbon cycle changes favoring a Southern Ocean control (Monnin et al., 2001;
Siegenthaler et al., 2005). COq sequestration during the last glacial period might have been
promoted during phases of extended sea-ice cover around the Antarctic continent, which
could have impeded physical exchange of COy between the air-sea interface (Gersonde et al.,
2003). In this regard, measured chloride concentrations reconstructed on sediment pore
fluids imply the Southern Ocean contained the saltiest water in the deep ocean during the
LGM as the result of sea ice formation and brine rejection at the locations of deep-water
formation (Adkins et al., 2002b). Such elevated salinities point to a highly stratified water
column, which could have “stabilized” a suppositious deep-water reservoir. Opal burial rates
obtained from sediment cores of this region revealed changes in ocean circulation causing
enhanced upwelling, which coincides with periods of rising atmospheric COy (Anderson
et al., 2009).

Fig. 7.11 summarizes some important deglacial records: measured atmospheric CO, stems
from an Antarctic ice core and reveals a stepwise rise in CO5 by as much as ~80 ppmv with
a plateau phase lasting the bigger part of the Antarctic Cold Reversal (ACR), deuterium
and 60 data from an Antarctic ice core show a similar stepwise rise in atmospheric
temperature, while atmospheric A*C declined by about 190%0 within the mystery interval
(~17.5—14.5 ka BP). Variations in cosmogenic *C-production have been reconstructed
and show no important changes during this time (e.g Laj et al., 2002; Muscheler et al.,
2004; Broecker and Barker, 2007) and during times of large AA™C depletions discussed in
this thesis. Rather, elevated opal burial rates hint to enhanced upwelling of nutrient rich
water in the Southern Ocean, which coincided with the end of HS1 and the beginning of
the YD. Proposing an “isolated” abyssal reservoir located in the Southern Ocean seems to
appear reasonable considering the similar deglacial records from this area. Such a reservoir
would not only have accumulated remineralized organic carbon during times of isolation,
which could have helped modulating atmospheric CO, variability, it also would allow *C
to decay significantly. If mixed back to the atmosphere, COy would have increased while
atmospheric AC declined. Former attempts to locate an old abyssal reservoir in the Pacific
Ocean to explain the ~190%0 drop in atmospheric and ocean surface A*C during the
mystery interval have not been met with success. Radiocarbon differences for glacial and
deglacial age benthic-planktic pairs covering various core sites in different depths yielded **C
depletions similar to or only slightly greater than in today’s Pacific (e.g. Shackleton et al.,
1988; Broecker et al., 2004a,b; Broecker et al., 2007; Galbraith et al., 2007; Broecker et al.,
2008; Broecker, 2009). Even though precautions have been taken to choose only suitable
cores, that is, cores with sufficiently high sedimentation rates to avoid effects of bioturbation,
interpretation of B-P-offsets are additionally marred by the fact that surface reservoir ages
could have substantially varied over time masking real changes in ocean ventilation and
associated water residence times. Apart from that, measuring the *C/12C composition on
benthic-planktic tests from the same Pacific sediment cores places a hypothesized abyssal
reservoir in depths lower than 4.4 km. Such a deep reservoir, however, appears to have
been too small to explain the ~190%0¢ drop during the mystery interval. Radiocarbon
evidence from corals and benthic-planktic foraminifera from the glacial North Atlantic,
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however, indicate strong depletions in **C by as much as ~200—300%0 compared to the
contemporaneous atmosphere (e.g. Keigwin and Schlegel, 2002; Keigwin, 2004; Skinner
and Shackleton, 2004; Robinson et al., 2005). But again, the C deficiencies are not large
enough to explain the 190%o¢ during the mystery interval. Until today, a large deep water
reservoir responsible for the observed deglacial anomalies has not been found.
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Fig. 7.11: Deglacial records showing a similar stepwise rise in CO»
and 6D from Antarctic ice cores favoring a Southern Ocean control.
The coeval drop in AC suggests that the released *CO, was quite
depleted pointing to poorly ventilated deep water. Enhanced opal
fluxes from the Southern Ocean indicate that deep water masses
have experienced enhanced upwelled during the same time periods.
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7.6.1 Reconciling the oxygen conundrum

Here I set forth the hypothesis wherein the recorded large drops in the radiocarbon activity
off Brazil are best explained with the assumption of one or more isolated deep-water
reservoirs, which existed in the South Atlantic/Southern Ocean region during the course of
the last glacial period especially during HS2, HS1, and the YD/mid-Holocene. As outlined
previously, the demise of such an abyssal reservoir, instigated by renewal of deep convection
or upwelling events in the Southern Ocean might have led to conversion of ageing deep
water to AAIW reaching the Santos and Campos Basin offshore Brazil. This explanation
attempt has the advantage of reconciling the oxygen conundrum described in section 7.5.3.
The isotopic equilibration time for *C at the ocean surface is much different from that of
gaseous oxygen (O). Atmospheric *C (A'C) requires about 10 years to equilibrate with
a 80 m thick surface mixed layer, whereas oxygen only needs several weeks to months for
equilibration, depending slightly on the used gas exchange model (Broecker and Peng, 1974;
Sarmiento and Gruber, 2004). Surface water in the present-day Southern Ocean region has
residence times much lower than needed for A*C to equilibrate, but are on the other hand
long enough for oxygen to be completely renewed. This decoupling process occurs up to a
certain point in today’s AAIW formation regions, where *C does not equilibrate with the
atmosphere but oxygen renews to saturation (Ostlund et al., 1987; Key et al., 2004). This
may provide an explanation why the Brazilian corals have been bathed in water, which was
quite depleted in *C, while on the other side had enough oxygen for the corals to thrive.

7.6.2 Distribution of hypothesized deep-water reservoirs

The blurry red circles in Fig. 7.12 illustrate how these deep-water reservoirs might have
distributed during the last glacial period and early Holocene. The green zone ringing the
Antarctic continent indicates the region where today’s AAIW production primarily takes
place (Orsi et al., 1995). It seems reasonable to suppose their locations in the vicinity of the
area of (past) AAIW production. The reader is cautioned that this picture is only an artistic
view and does not necessarily represent true circumstances. Also the number of shown
abyssal reservoirs is arbitrarily chosen. The red lines feature pathways (stable conduits)
the water could have used to reach the Brazilian core sites. The observed exponential
decline in AC of the intermediate-depth water off Brazil (Fig. 7.3, dashed lines) strongly
suggests that AAIW bathing the core locations must have stayed isolated for the whole time
span the deep water reservoir drained. It is conceivable that at times of low AC, AAIW
transport was enhanced to such an extent that mixing with the ambient water was quite
suppressed. This could have preserved the preformed '*C signature imprinted in the AATW
formation zone, hence the label ’stable conduit’ in Fig. 7.12. If the large “C depletion
between 0—14 ka BP (Fig. 7.6) was without interruption, the corresponding conduit must
have existed for over 5,000 years or might have existed for only several hundred years if
the spilling was occasionally disrupted, which might be possible due to the poor sample
coverage for this time span. The gaps between the 2°Th/U dated coral amount in part to
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Fig. 7.12: Postulated locations of isolated abyssal water masses, which formed
during the last glacial and deglaciation period. The green band marks the area where
today’s AAIW production takes place (Orsi et al., 1995). The Polar Frontal Zone
(PFZ) is stretched by the Subantarctic Front (SAF) and Antarctic Polar Front (APF).
After subduction inside the PFZ, portions of newly formed AAIW is transported
equatorwards within the subtropical gyres of the South Pacific and Atlantic, some
fraction of Pacific AAIW enters also the Atlantic via the Drake Passage. The red
lines indicate presumed spilling routes (stable conduits) the **C-depleted water from
the abyssal reservoirs could have taken to reach the Southwest Atlantic coral site.

more than 2,000 years. To clarify matters, the transition time of AAIW from its formation
region to the Brazilian continental slope area is almost instantaneous with respect to the
140 half-life and therefore much too short to account for the observed decline in A™C.
Horizontal water mass transport in the modern Antarctic Circumpolar Current (ACC) and
also AAIW is quite vigorous and in the range of several tens of centimeters per second,
reaching the coral location only a few decades after formation. Even if assuming a more
reduced velocity of say 1 mm/s it will last only several centuries for AAIW to overcome
a distance of several thousand kilometers. Proposing stable conduits as the main signal
carrier for the extremely radiocarbon-depleted water mass is a bold statement, which
poses the question of what may be the mechanisms behind driving their stability and
allowed the signal to propagate over such long time periods and distances. The leftmost
indicated abyssal reservoir in the Pacific Ocean is between 8,000—9,000 km apart from the
coral site off Brazil (Fig. 7.12). No matter how vigorous the spilling via stable conduits
might have been during certain time periods an initially low “C/!2C signature very likely
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would have dissipated away mainly through mixing processes in the Antarctic Circumpolar
Current. Modeling work from Hain et al. (2011) suggests that propagation of an extremely
radiocarbon-depleted water mass starting from the Southern Ocean to the North Pacific via
AAIW is unlikely. The initial 1*C signature would be rapidly diluted by mixing with carbon
from the ambient water masses. Besides those problems, it is in general not known how
these proposed deep water reservoirs came into existence in the first place. Reconstructed
chloride concentrations for the LGM on sediment pore fluids suggest the Southern Ocean
contained the saltiest water in the deep-glacial ocean, which could have facilitated the
formation and stabilization of an isolated abyssal reservoirs. But this kind of investigation
has been done only for one sediment core so far, which covers the relatively brief time
period around the LGM (Adkins et al., 2002b). Whether such conditions were present
during the deglaciation and early to mid-Holocene cannot be decided. There are evidences,
however, implying that the eastern South Pacific did not seem to host an isolated reservoir
during the late deglacial and Holocene period. This will be discussed in the next section.

7.7 Comparison to other AAC datasets

Intermediate-water depths between 0—14 ka BP

Fig. 7.13 depicts a compilation of A*C data available in the literature, here presented
as AAC. Today, all shown intermediate-depth sites are ventilated directly or indirectly
by AAIW but are thought to have been bathed by AAIW during glacial times. It is
evident that the different datasets do not show any resemblance compared to the data
from off Brazil. While Brazilian corals recorded a strong depletion in DI'*C beginning any
time during PB, studies from other core sites lack this distinctive pattern. To be more
precise, reconstructed radiocarbon from these sites remained relatively confined within
a —50%0 to —200%0 offset from the atmosphere during the most part of the Holocene.
Only the landmark study from Marchitto et al. (2007) steps out of line. This core stems
from an intermediate depth from the northern edge of the eastern tropical North Pacific
and registered marked drops in radiocarbon activity during the YD (AAMC ~—400%0)
followed by a sudden return to modern values during the PB and HS1 (AAMC ~—500%0).
To explain his data Marchitto et al. (2007) proposed the demise of a carbon reservoir long
isolated from the atmosphere located within the deep Southern Ocean. As the result of a
progressive resumption in ocean circulation the old water from this reservoir was mixed
back to or near the ocean surface and carried by AAIW or its glacial analogue to the lower
latitude core site off Baja California. One might expect to see at least parts of this strong
radiocarbon-depleted signal also at the different Atlantic locations and in particular at the
Chile margin, since Pacific AAIW is transported eastward within the ACC and northward
with the counterclockwise rotating subtropical gyre (Hartin et al., 2011). But the available
datasets suggest otherwise. During the YD the difference in AA"C between Brazil and
the North Pacific amounts to ~350—400%0 suggesting that no depleted water entered the
Atlantic via the Drake Passage. This is corroborated by “C data obtained on dredged
corals from depths between 318—1,750 m from the Drake Passage providing vital informa-
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Fig. 7.13: AA™C compilation from recent studies from intermediate-depth water
primarily covering the South Atlantic and Southern Ocean revealing the 4C water
mass histories. Gray dots are study sites from much deeper water and will be discussed
in the next section. Numbers denote water depths of the different core sites. All error
ellipses represent 20 uncertainties.

tion regarding a possible transport route of depleted AAIW, which entered the Atlantic
Ocean Burke and Robinson (2012). These corals do not only show any large depletions
during the YD but also exhibit relatively constant reservoir offsets of around —100%o0
throughout the course of the Holocene. AAMC are more negative during the Bolling-
Allergd period mainly due to changes in the atmospheric 4C reservoir. It may seem odd
that the core site of the Chile margin did not record evidence of a low *C signature during
the YD especially as the location is in proximity to modern-day AAIW/SAMW formation.
It was argued that water ventilating this site during the deglaciation was subducted north of
the subantarctic front, and was, hence, completely free of any Southern Ocean *C imprint
(de Pol-Holz et al., 2010). The datasets presented here give a clear indication that a Pacific
origin of the progressively ageing water mass recorded off Brazil can be ruled out. At
least the eastern part of the deep South Pacific Ocean quite likely did not host an isolated
carbon reservoir, whose water eventually flooded the intermediate-depths shorelines of the
Southwest Atlantic between ~10.8—5.6 ka BP. The study from Sortor and Lund (2011)
seems to conflict with this conclusion. The giant gravity core (KNR159—5—36) has been
retrieved from the immediate neighborhood to the coral sites from a depth of 1,268 m
(Fig. 7.13) only a few hundred kilometers farther south. Today, this core is located within
the lower limit of AAIW and inside the transition zone to the underlying deep-water masses
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of upper NADW (UNADW) and upper Circumpolar Deep Water (UCDW). UCDW is not
shown in Fig. 7.14. Thus, one would expect this location to be sensitive to changes in deep-
water mass geometry. Times of enhanced NADW production in the high North Atlantic in
the past and subsequent transport as deep western boundary current might have altered
the *C composition of the lower part of the intermediate water towards a more northerly
14C signature or a mixture involving UCDW. There are two leads supporting the idea of a
varying water mass geometry. The first comes from ?3!Pa/?°Th excess reconstructions of
three sediment cores from the western North Atlantic (Fig. 7.15), which are thought to be
in direct reach of NADW flow (McManus et al.
(2004) and Christner (2011)). The argument
runs as follows: after meridional overturning cir-
culation in the North Atlantic virtually ceased
at least during the coldest stages of the last

Salinity (psu)

- 38

" 37 deglaciation (during the YD, HS1 with rela-
. tively high values in 23'Pa/?3°Th, see Fig. 7.15),
g 1 231Pg /29T values became significantly smaller
= 3¢ during the first half of the Holocene propos-
*é s ing a vigorous export of deep water from the
A North Atlantic to the South Atlantic. The ad-

justments needed to switch from the glacial
circulation pattern, which prevailed until the
end of the deglaciation towards a modern circu-
lation state was apparently accompanied by
a transient oscillation of the Atlantic circu-
lation system manifesting as a “?3'Pa/?3Th-
Fig. 7.14: Modern hydrographic set- overshoot minimum”, which occurred roughly
ting along the shown transect, which at the middle of the Holocene (Fig. 7.15). After-
are bathing the core sites indicated by a  wards, ?*'Pa/?*°Th ratios returned to modern
black circle (inset). Holocene values. Similar phenomenons have
been observed in modeling approaches for the

AMOC during the last deglaciation. Barker et al. (2010) reported an AMOC overshoot in his
model run at the BA transition from a state of no NADW export at 30°S to ~27 Sv within
about 200 years while the glacial and modern control runs were characterized by NADW
exports of ~8.5 Sv and ~14 Sv, respectively. Moreover, a three-dimensional ocean general
circulation model has shown that during an overshoot the Atlantic Ocean is dominated by a
vertically expanded AMOC cell (Knorr and Lohmann, 2007). If this observation proves true,
significant changes in the relative water mass composition at the 1,268 m depth horizon
cannot be excluded. The water, which bathed this core site, today dominated by AAIW,
could have had a larger influence from upper NADW and/or upper CDW. The second hint
that the water-mass geometry could have changed comes from the *C measurements of the
foraminifera from Sortor and Lund (2011) itself. The foraminifera recorded more positive
AA"C during the first half of the Holocene, which reached nearly atmospheric AAM“C
values at ~5,200 a BP. This can be interpreted to the effect that this location was indeed
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Fig. 7.15: The apparent overshoot period is characterized by (**'Pa/?Th),
that are lower than found today, indicating a vigorous export of North Atlantic
deep water during this time period as suggested by several sediment cores. Errors

in Pa/Th are 20.

affected by water, which gradually became enriched in *C as a consequence of input
from younger water from upper NADW and/or upper CDW. This would imply strong
AC gradients existed in the water column between ~800—1,268 m, which needed to be
maintained over time periods of up to several thousand years! Another aspect I would like to
address briefly is about the almost vanishing reservoir offset for the corals (AAM™C ~ 0%o)
at the climate transition from the BA to YD. During this time the intermediate water off
Brazil was obviously highly ventilated, while other core locations just indicate expected
reservoir offsets owing to their different depths and core sites (except for Marchitto et al.
(2007))(Fig. 7.13). As delineated in section 7.5.2 authigenic neodymium isotope data from
Pahnke et al. (2008) from the western tropical Atlantic and the Brazilian margin suggest
a vigorous export of AAIW that apparently took place during the Heinrich event 1 and
the YD cold snap. To call on enhanced export of AAIW from the Southern Ocean up to
the Brazilian core site, however, involves a shortening of the residence time of the upwelled
water within the AAIW formation area. Hence, CO, isotopic exchange tends to be more
reduced than for a more sluggish AAIW flow strength increasing the chances of preservation
of the imprinted “C signal even further. A more vigorous AAIW flow during the YD
cannot be held responsible for the almost atmospheric 4C values recorded in depths of
~600—800 m. As shown in section 6.6.1 the continuously flowing BC in this oceanic region
is birthplace of relatively cold cyclonic mesoscale eddies which are a consequence of strong
instabilities of the meandering BC current in combination with the local bottom topography.
These eddies are able to stir up the water column up to depths of several hundred meters
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thereby acting like a large blender homogenizing the water column beyond the thermocline.
Moreover, seasonal upwelling of coastal water is known to occur in this area during austral
summers due to a shift of the ITCZ below the equator that might have been enhanced
during the YD as suggested by repeatedly increased accumulation of terrigenous sediments
in the coastal areas off northeast Brazil implying a pronounced southward migration of
the ITCZ during the YD (Rao et al., 1993; Arz, 1998). Both regionally very localized
mechanisms taken together may help to explain why intermediate *C activities are close
to atmospheric values at the beginning of the YD.

7.8 Comparison to other AA“C datasets

Deep water between 0—14 ka BP

In the attempt to reconcile the observations made off Brazil with the previously mentioned
11C datasets from the South Atlantic/Southern Ocean two further studies must not be
missing. In contrast to the already discussed datasets coming from intermediate depths
the two sediment cores from Skinner et al. (2010) and Barker et al. (2010) stem from
the deep East Atlantic region from 3,770 m and 4,981 m water depth, respectively. Both
sites recorded significant changes in the deep-water circulation during the course of the
last deglaciation. But for the last ~14 ka BP (including the Holocene) no unusual 4C
depletions in the marine sediment (foraminifera) were preserved (Fig. 7.16). Reconstructed
projection ages from the deeper core site decreased substantially from ~2,000 years during
HS1 to less than 500 years at the end of the BA suggesting an import of well ventilated
water masses as a result of an increased influence of NADW in the Southern Ocean during
this time period (see Fig. 1 in Barker et al. (2010)).

This is in accordance to several other studies showing a generally better ventilated deep
North Atlantic Ocean during the BA period (see Barker et al. (2010) and references therein).
Unfortunately, no data from this core are available for the Holocene. At the same time
the shallower core from Skinner et al. (2010) from the mid-Atlantic ridge exhibits nearly
constant AAMC values wiggling around —200%0, which is the expected present-day reser-
voir offset for this location. Both sites lack significant depletions compared to the coral
sites off Brazil. Admittedly, two investigated cores are barely enough to constrain the 4C
history for the whole deep eastern South Atlantic and caution is in order not to jump
to any conclusions. Nonetheless, there is no indication that the southeast Atlantic has
accommodated an isolated deep carbon pool that supplied the AATW with a steadily ageing
water mass. The deep southeast Atlantic might have hosted a putative deep-carbon reservoir
during the course of the last deglaciation, especially during HS1 as suggested by Skinner
et al. (2010). But there is currently no evidence that such a reservoir existed also during
the Holocene epoch. On the basis of the *C data on-hand between 0—14 ka BP (Fig. 7.16)
an isolated carbon reservoir is proposed to have been existed in the deep southwestern
Atlantic in order to explain the coral data off Brazil. Of course there is no direct evidence
so far to substantiate this contention. Given the properness of all presented *C data, the
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Fig. 7.16: Two benthic radiocarbon studies on foraminifera from the deep southeast
Atlantic Ocean reveal no similarities to the intermediate-depth 4C coral record off
Brazil between 0—14 ka BP. Though, both locations are situated in a much greater
depth the intermediate-depth record from the southwest Atlantic is by far more
depleted during the first half of the Holocene which is questioning the southeast
Atlantic as a source of a greatly depleted DI'*C pool.

Drake Passage as a possible gateway for the intrusion of a very old water mass coming
from the Pacific as formerly speculated by Mangini et al. (2010) needs to be reconsidered.
The deep southwestern Atlantic seems to be a promising location in pursuing an isolated
carbon reservoir. The Argentine Basin as a part of the southwestern Atlantic in particular,
spanning the floor off the east coast of Argentina between the mid-Atlantic ridge to the
east and the Scotia Basin to the west, shows an average depth of ~5,000 m hosting the
deepest parts of the ocean floor worldwide. The hypothesized location is already indicated
in Fig. 7.12.

7.9 AA"C during the glacial between 14—42 ka BP

In the next section encompassing the time span of the last deglaciation (for the most
part) and prior reaching back as far as ~42 ka BP, the coral *C data are presented for
comparative purposes simultaneously with the former deep and intermediate studies from
the previously discussed authors. If not stated otherwise all data are given as 20 error
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ellipses. The deglaciation we are now looking at is of special interest since during this
time period marked shifts within the atmosphere-ocean climate system occurred, which
ultimately paved the way for the transition from a glacial to a interglacial climate state.
The Brazilian corals recorded rapid AAMC changes between 14—21 ka BP (Fig. 7.17).
Starting with a coral from the LGM at ~21 ka BP having an offset of ~—370%¢ from
the atmosphere (corresponding 4C age ~2,500 years). AAMC returned to nearly modern
values at around 20 ka BP followed by a steadily decrease for the next ~ 1.4 ka. After
a local minimum at around 18.8 ka BP the intermediate water *C activity rebounds to
modern values again near the onset of HS1 (18 ka BP). During HS1 AAMC continuously
declined again until another local minimum at ~15 ka BP, comparable to the LGM value,
was attained near the end of HS1. This decline is interrupted by a short excursion at about
15.5 ka BP, indicated by two corals ~(—90%c and —115%0) implying the intrusion of *C
enriched water. With the start of the Bglling-Allergd reservoir offsets are getting smaller
until the onset of the Younger Dryas. Even if the magnitude of the depletions during the
this time span is not that spectacular as during the Holocene, the *C decline especially
during HS1 is apparent. With the onset of HS1 *C reservoir ages off Brazil did not exceed
450 years being similar to the modern reservoir offset found in this depth (~500 years; Key
et al. (2004)) but rose during the course of HS1 to over 2,300 *C years.

Some coral data, if plotted in the A'*C-calendar-age space (Fig. 7.3), apparently line
up on *C decay curves as it is the case for parts of the Holocene and between 23—27 ka
BP including Heinrich event 2. Some less obvious backtracks have been plotted during
the deglaciation as well to indicate that the “C recession could also be the result of an
ageing water mass flushing the region around the cores during that time. This might
have happened several times (Fig. 7.3), albeit it is not evident where to start precisely
the backtracks if only two or three corals are lining up on the decay curve. Thus, an
unambiguous identification whether the core sites experienced closed system decay cannot
be made. This conclusion is corroborated by data from the previously discussed authors
summarized in the Figs. 7.17A, B, C, D. As a reminder, when plotting reservoir offsets
against calendar age the *C decay is not showing up as exponential decay anymore as
the atmosphere’s *C varies over time. In contrast to the large AAMC deviations in the
Holocene compared to the other radiocarbon records from this period, the deglaciation
data is in good agreement with the other intermediate-water reconstructions (except for the
Marchitto et al. (2007) study). Radiocarbon measurements on the calcite shells of benthic
foraminifera from the North Pacific revealed a huge drop in the intermediate-depth *C
activity during HS1 of up to ~500%0 and over ~300%¢ relative to the modern seawater
activity, based on local seawater measurements (Marchitto et al., 2007). There is a certain
resemblance between the North Pacific and Brazilian dataset that cannot be questioned.
Both start to decline at the onset of HS1, though the decrease in *C is less steep at the
Brazilian slope and features a larger variability during the course of HS1 than the North
Pacific site. Mangini et al. (2010) argued that this similarity might be an indication that a
common water mass formerly located in the Pacific has fed both locations during this time
period. Coral data from Burke and Robinson (2012), however, are suggesting otherwise.
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Fig. 7.17: Overview of deglacial radiocarbon data from the Brazilian slope compared
to other studies. See picture in the middle for the different locations.
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As mentioned for the Holocene, if the core site of Marchitto et al. (2007) was actually
ventilated by a very old water mass originated from the Southern Ocean one would expect
to see at least parts of this signal had passed the Drake Passage. The corals from Burke and
Robinson (2012), thus, should have more or less preserved this C signature compared to
that recorded by the Brazilian corals several thousand kilometers farther north in the South
Atlantic. But this is seemingly not what one finds as depicted in Fig. 7.9A. Both coral sites
(Drake Passage and Brazil) have witnessed a similar AAMC history during HS1 implying
that no single coherent water mass with a low “C activity has ventilated the North Pacific
site and the intermediate-depth southwest Atlantic simultaneously. The radiocarbon data
from Sortor and Lund (2011) (Fig. 7.9B) are promoting this observation by featuring similar
depletions during HS1 as at the Brazilian margin. As elucidated earlier, this record failed
to trace the true AAIW signal during the “overshoot-period” of the NADW in the early to
mid-Holocene. Further Pa/Th overshoots during the last glacial termination do not seem
to have occurred (Fig. 7.15). It is therefore believed that both records have been bathed by
AAIW during this period, though the characteristic “sawtooth pattern” in AA™C found at
the Brazilian coral sites did not show up at the Sortor and Lund (2011) core site. *C data
from foraminifera of the equatorial eastern Atlantic indicate well ventilated water during
HS1 in ~600 m, which is devoid of a southern-sourced *C imprint (Fig. 7.9B). Cléroux et al.
(2011) speculated that depleted water from an alleged deep-water reservoir probably took
another purging route. Alternatively, strong 4C gradients in the water column prevented
mixing of the deeper and depleted water with the shallower water.

By comparing my dataset with the studies from Barker et al. (2010) and Skinner et al.
(2010) from the deep eastern South Atlantic, during most of the glacial termination both
sites exhibit much stronger depletions as the intermediate-depth location off Brazil. This is
in contrast with the observation I have discussed earlier during the Holocene where 4C
depletions were much stronger in intermediate depth (Fig. 7.16). Both deep-water sites
propose significant changes in the “C activity, which occurred during HS1 and the BA. The
radiocarbon study presented by Skinner et al. (2010) is of special interest as it is the first
one that presumably found direct evidence of a massively depleted deep-water reservoir
in the Southern Ocean. According to this, a deep-water reservoir enriched in dissolved
inorganic carbon formed during the LGM and subsequently decayed during the course of
the deglaciation thereby releasing its excess CO, depleted in “C into the upper ocean
and atmosphere. Though the extent of this abyssal reservoir is uncertain it might have
played a role in the pulsed rise of atmospheric CO, (Skinner et al., 2010). The “C ages
decreased significantly during HS1 from almost 4,000 years to roughly 2,000 years near
the beginning of the BA. Under the assumption that this depleted water mass extended
much farther to the west occupying also parts of the western basin of the South Atlantic
it might have provided the depleted water necessary to explain the moderate 4C decline
observed in the shallow depth off the Brazilian shoreline. From an oceanographic point of
view internal mixing of lower circumpolar deep water (LCDW) upward into UCDW and the
subsequent conversion of UCDW into sub-thermocline water (especially in the southwest
Atlantic- and southeast Pacific sectors of the Southern Ocean) allows water to find its
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way into Antarctic Intermediate Water via upwelling south of the Subantarctic Front and
subsequent subduction within the Polar Frontal Zone (see Fig. 7.12) (Iudicone et al., 2008;
Skinner et al., 2010). These mixing processes would have diluted the original C signature
of the aged LGM reservoir to the extent that only a fraction reached the Brazilian shoreline
during HS1. The postulated abyssal reservoir at best would have to have had a zonal
expansion reaching from the eastern flank of the mid-Atlantic ridge (the location of the
Skinner core) up to the southwest Atlantic region encompassing the Argentine Basin. If
such a large coherently connected isolated deep reservoir did really exist cannot for sure be
decided from the data at hand. Further investigations to come, conducted in the Southern
Ocean region and especially in the southwest Atlantic, will shed light on this issue.

Based on the reversed AAM™C data between the shallow North Pacific and the marine
site at the deep eastern flank of the mid-Atlantic ridge during HS1, (Skinner et al., 2010)
argued that the supposedly aged abyssal reservoir could have remained partially intact and
persisted until the end of the YD. The observed radiocarbon decline off Brazil during parts
of the Holocene could, thus, be caused by a remnant of this formerly “large” reservoir which
has substantially withdrawn from the Atlantic sector of the deep Southern Ocean towards
the western Atlantic basin. The characteristic sawtooth pattern repeatedly emerging in the
1C activity (between ~18.5—20 ka BP, and ~15.5 ka BP) in the coral record off Brazil
(cf. Fig. 7.9A) are presumably the result of enhanced mesoscale eddy activity in combination
with upwelling events occurring due to shifts of the I'TCZ below the equator as already
explained further above for the YD (see section 6.6.1). In the last time slice, encompassing
the glacial ages between ~23—42 ka BP, the coral data continue to unveil a vigorous *C
history in the intermediate depth off Brazil. Phases of well and significantly less ventilated
water are alternating ranging from zero per mille offsets up to depletions exceeding —600%o.

Radiocarbon dating of such old samples is often difficult because they could easily become
contaminated with modern or ancient *C during sample preparation (pretreatment, hydrol-
ysis, reduction to graphite or diagenetic effects), which can obscure *C ages. For example,
contamination with ancient and/or modern carbon making up 5%o of the initially present
14C atoms would render an actually 50 ka old sample ~10 ka younger! Both contaminations
(modern or ancient), however, make the radiocarbon age always younger (not older) thereby
increasing the corresponding AC and lower AA™C. But any processing contamination
associated with the coral samples presented are regarded unlikely. All sample sets are
followed by two calcite blanks, which returned appropriate ages of 253 ka BP, and one
FIRI-C turbidite standard and the IAEA-C2 standard (Tab. E.3). Samples and blanks
were processed together as one batch and graphitized on the same day using a vacuum
line that accommodates 12 targets in one go (G. Santos 2011, pers. comm.). In addition,
such relative old samples have a much lower *C content (= lower counting statistic),
which translates into relatively large uncertainties hampering interpretation of the data.
Nonetheless, the most striking feature in Fig. 7.9 is the continuous drop of the *C activity
during the timespan between ~23—27 ka BP. This decline coincide partly with HS2, the
period in which the second documented iceberg discharge (HE2) occurred in the North
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Atlantic. AAMC are depleted by as much as ~—500%0 during this time, corresponding to
an C reservoir age of ~3,200 years BP. Moreover, this decline apparently follows the 4C
decay curve as in the case of the huge drop in *C during the YD/Holocene (Fig. 7.3). In
both periods an underlying common mechanism seems to have prevailed. Unlike during the
deglaciation the number of samples available in the course of HS2 and prior is sufficing to
propose the existence of a deteriorating isolated water reservoir, which must have existed for
several thousand years in order to grasp this particular decline. There are only few datasets
covering the glacial time between ~23—42 ka BP. One coral from the Drake Passage exhibits
similar 1C depletions in dissolved inorganic carbon during the beginning of HS2 (Fig. 7.9).
As already discussed for the Holocene decline, transport via the Drake Passage is considered
highly improbable. The data from Skinner et al. (2010) suggest that a largely depleted
water mass existed already before the LGM in the eastern deep South Atlantic. During the
deglacial period an “extended” version of this old abyssal water occupying also the western
part of the South Atlantic is called on again to explain the varying *C data. But this time
the situation is different. It is tempting to use the findings of Skinner et al. (2010) again to
explain the “C drop in the coral data as it has been done for the deglaciation. But this
would imply very special circumstances to work, because the relatively old deep water mass,
assuming it has also occupied the western South Atlantic during this time, has to admix in
an elaborate way with the upper water layers to mimic the impression of **C decay along
the decay curve. Maintaining such an “exponential” admixture over thousand of years is
considered doubtful if not impossible.

Therefore, a large coherent and old reservoir filling the abyssal South Atlantic from east
to west pretty likely did not exist. Instead, as previously claimed for the Holocene, the
ageing intermediate water observed off Brazil during HS2 presumably stems from a deep
water reservoir located somewhere in the southwest Atlantic where deep to intermediate
water conversion took place. The data beyond 27 ka BP do not allow to draw any detailed
conclusions. There are moderate depletions during HS3 and also one at the end of H4
(~37 ka BP), but the considerably larger uncertainties and the limited number of measure-
ments in this time range do not permit to draw any reasonable conclusions. Taken together,
the picture that emerges on the ventilation of the intermediate-depth of the glacial South
Atlantic/Southern Ocean and adjacent regions during the early Holocene and glacial period
is considerably more complex than initially envisioned. Interpretation of the available *C
data from deep and intermediate depths are often not unequivocal, hampering the efforts
in giving a unified picture. The existence of multiple isolated deep water reservoirs in
the Atlantic Ocean/Southern Ocean cannot be ruled out and more importantly are not
a phenomenon limited to the late Pleistocene glacial-interglacial transition. Rather, they
seem to be a common feature of the glacial ocean. Isolated reservoirs probably formed
during major deep-water mass reorganizations in the Atlantic Ocean probably triggered
by Heinrich events and events, which lead to the Younger Dryas cold snap. However, the
precise circumstances of how these deep reservoirs came into existence and maintained their
“isolation” state while they are purged over centuries or several millennia remains elusive.
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7.10 AAMC versus deep North Atlantic **'Pa/?*'Th

At this point it is instructive to compare the radiocarbon data from off Brazil with the
excess 21Pa/?3Th (hereafter Pa/Th) measurements from the deep western North Atlantic
(Bermuda Rise) from McManus et al. (2004) and Lippold et al. (2009) comprising the last
35 ka BP. Over the course of the last glacial cycle AMOC strength, especially during HS1
and HS2 was strongly diminished if not completely ceased as indicated by high sedimentary
Pa/Th ratios during that time (Fig. 7.18), which is thought to be the result of massive
iceberg discharges in the North Atlantic region as explained in section 2.5. This assumption
is supported by sediment data from various locations in the Atlantic Ocean (e.g. Keig-
win et al., 1994; Keigwin and Lehman, 1994; Sarnthein et al., 1994; Elliot, 2002). The
resemblance between the Pa/Th and coral C data (Fig. 7.18) is striking considering their
different locations and depths (~700 m (Brazil) vs. ~4,500 m (Bermuda Rise)) suggesting
a tight coupling between these two oceanic regions at times of glacial stadials. Cessation of
deep-water formation in the North Atlantic is apparently accompanied by the advance of a
progressively ageing intermediate water in the South Atlantic off Brazil. Starting ~27 ka
BP the coral AAMC significantly declined before the onset of HS2 while Pa/Th increased
sharply to near production ratios (note the reversed axis of the Pa/Th plot!). The precise
timing of the onset of the *C depletion cannot be firmly established, though. Two corals
centered at ~27 ka BP and ~26 ka BP seem to indicate that the water’s *C activity
started to decline in between by the intrusion of water from the postulated deep-water
reservoir.

The steep rise in Pa/Th coincides with a cooling incident at ~26.5 ka BP recorded
off northeast Brazil (Fig. 6.12), which has been related to a precursor event that preceded
the sediment pulses of HE2 by 1.5 ka (Jaeschke et al., 2007). It is presumed that this
precursor event has its origin in enhanced iceberg calving from the Fennoscandian and
Icelandic ice sheet rather than the Laurentide ice sheet (Grousset et al., 2000) and might
have impacted the strength of the Atlantic MOC at this early point of time. Whether
the Pa/Th and “C observations are a direct consequence of major water mass changes in
the remote North Atlantic caused by enhanced iceberg discharge from a precursor event
before HS2 is a matter of debate. A recent study from Gutjahr and Lippold (2011) raises
doubts about the chronological sequence of the marine events that took place in the glacial
Atlantic around HE2. Bottom water neodymium isotope ratios (1*3Nd/*Nd) extracted
from sediment Fe-Mn oxyhydroxide coatings from Bermuda Rise covering the time period
of the early Marine Isotope Stage 2 (including HS2) suggest that major deep water mass
reorganizations predated Northwest European Ice Sheets derived IRD deposition by ~2 ka
Gutjahr and Lippold (2011). According to the authors ice rafting from the Northwest
European Ice Sheets might have been a consequence of advancing Southern Source Water
(SSW) partly replacing NADW at ~27 ka BP rather than being the cause of the circulation
changes of the AMOC at that time. There is indeed increasing evidence, which hints at the
possibility that intense ice rafting during Heinrich stadials may be the result of preceding
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Fig. 7.18: The striking resemblance between the coral AA™C and the sedi-
mentary excess 21Pa/?Th data for the most part of the last 35 ka BP suggest
a tight coupling among the large-scale changes in deep-ocean circulation of the
North Atlantic and the responding intermediate-depth water in the western
South Atlantic. At times NADW formation weakened or even collapsed (YD and
Heinrich events) progressively ageing AATW from the South Atlantic/Southern
Ocean flushed the intermediate-depth of the Brazilian slope. Deviations exist
for the first half of the Holocene when #*'Pa/?*Th attained modern values
while the radiocarbon activity went on to great depletions. *C observations
are reasonably explained through the existence of isolated deep-water reservoirs
forming during major deep-water reorganizations.
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water mass changes (see Gutjahr and Lippold (2011) and references therein). Combined
with an intensified inflow of AAIW, as suggested by more radiogenic Nd ratios (Fig 7.8)
at that time could have provided the necessary heat required to initiate accelerated basal
melting of marine-based continental ice sheets in the North Atlantic (Gutjahr and Lippold,
2011). Unfortunately, due to the scarcity of coral samples in his time range the data do not
allow to make a distinct decision for or against this hypothesis before the time period of HS2.

This intrusion of SSW lasted at least until the end of HS2 at both locations when in-
termediate water (AATW) AAMC reached a minimum of —500%0 at ~23.6 ka BP. Pa/Th,
however, exhibit values of around 0.06, which are only slightly higher than during the
Holocene and persisted throughout the LGM (Fig. 7.18). This discrepancy in the timing
between the coral and the Pa/Th data might be reconciled by the neodymium data from
Gutjahr and Lippold (2011). The Nd isotope measurements from Bermuda Rise at the end
of HS2 clearly indicate the presence of SSW (AABW) at this deep-water location (see Fig. 2
in Gutjahr and Lippold (2011)), while very old water was still swamping the intermediate
depth off Brazil. Both observations indicate a vigorous export of water with a southern
origin, which continued at least until the end of HS2. The low Pa/Th at the end of HS2,
however, seem to contradict with the relatively high radiogenic Nd ratios (eng of about
—11) compared to the present-day Atlantic NADW ranging between exg of —13.5 to —14.5
(Piepgras and Wasserburg, 1987). The NADW end-member composition of neodymium did
not change during the course of the last glacial cycle noteworthy (van de Flierdt et al., 2006).
This obvious mismatch in the Pa/Th and neodymium data can be explained with the very
recent Pa/Th study from Lippold et al. (2012) demonstrating that the flow strength of the
relatively shallow GNAIW (glacial counterpart to NADW) during the LGM might have
been increased rather than weakened as previously thought. This would imply that the
Pa/Th signal has been predominantly derived by the vigorously southward flowing GNATW
rather than being the uniformly integrated signal over the whole water column, whereas

the more radiogenic Nd ratios at that time reflect mainly the bottom water signature of
the intruded SSW.

HS1 was also preceded by a precursor event (~19.5 ka BP) Jaeschke et al. (2007) co-
inciding with a small increase in Pa/Th and an almost simultaneous decrease in the C
activity from nearly atmospheric values to values exceeding —200%o, which hint to a tight
connection and sensitivity between both locations capable of responding even to small
perturbations. But this time the situation is no that clear. The neodymium data suggest no
significant changes during the whole LGM and the precursor event. It seem therefore more
likely that during the precursor event of HS1 iceberg discharges from the non-Laurentide
ice sheet (Fennoscandian and Icelandic) as described by Grousset et al. (2000) have caused
a short-term weakening of the AMOC before it came to a halt during HE1. The formerly
made proposition that the observed AAMC drop during this precursor event could be the
result of enhanced mesoscale eddy activity is thereby called into question and cannot be
decided by means of the coral data. Paleo-AAMC at the end of HS1 indicate that the
intermediate water is still depleted (by around —220%0), while Pa/Th rebounded to approx-
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imate LGM values during the brief BA. Neodymium measurements at this time obtained
on benthic foraminifera from the Bermuda Rise indicate the presence of NADW water
with eng of about —13.5 (Roberts et al., 2010). This is the first time that the apparent
tight connection between the deeper component of the SSW, namely AABW, and AATW
(shallow component of SSW), which probably persisted the previous ~12 ka (encompassing
the larger part of the deglaciation and the beginning of HS2), finally decoupled at the end
of HS1. This becomes evident during the YD, when Pa/Th of the deep North Atlantic
increased once again but only with half the magnitude than observed during HS1. After
the ~1.2 ka lasting cold snap of the YD, Pa/Th decreased rapidly until near Holocene
values established as early as ~10 ka BP. The intermediate-depth *C activity in contrast
still decreased for another ~4,200 years showing great depletions of over —500%oin AAMC.
For the sake of completeness it is mentioned that also some Pa/Th measurements have
been performed in this thesis on the sediment of the cores C1 and C2 in an attempt to
reconstruct the Pa/Th history for the slope region off Brazil. Unfortunately, dominant
boundary scavenging processes, which are present in these shallow depths, render this tool
impractical as a proxy for circulation strength and are of no further interest here. The
reader is referred to the annex B.2 and Tab. G.3 for the results and some remarks.

7.11 The missing increase in atmospheric CO,

Isolation of a deep-water reservoir as described in section 7.6 over several thousand years
would have resulted in accumulation of excess metabolic CO, dissolved in the water. If
this water is brought back to the ocean surface via upwelling it would have released its
surplus COs to the atmosphere thereby raising the CO, concentration. There are a few
radiocarbon studies from intermediate depth so far documenting large negative excursions
in AMC at times of increasing atmospheric CO, and decreasing atmospheric AMC (e.g.
Marchitto et al., 2007; Stott et al., 2009; Bryan et al., 2010) indicating enhanced flux of
aged carbon to the upper ocean and atmosphere from below. The data presented in this
thesis do not allow to draw this conclusion. The increase in atmospheric CO5 does not
seem to correlate with the large negative AA™C excursions found offshore Brazil. While
the radiocarbon coral record declined continuously during the Holocene, atmospheric COq
concentrations have already reached a maximum of ~265 ppmv at the end of the Younger
Dryas and even declined slightly during the first half of the Holocene by about 5—10 ppmv
(Fig. 7.19). During the middle of the Holocene COy rose again by ~20 ppmv to reach
preindustrial values of ~280 ppmv.

This is peculiar since one would expect water this age is saturated with excess COs,
previously sequestered, which should have been partly liberated during the recoupling of
the alleged deep reservoir with the surface and the subsequent water mass conversion within
the Antarctic’s PFZ. It is hard to imagine why atmospheric COy has not changed and
even decreased slightly during the course of the Holocene. One possibility could be that
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Fig. 7.19: Development of atmospheric CO, and
coral AA™C over the course of the first half of the
Holocene, see text for information.

the proposed isolated reservoir was simply too small in size to had a noticeable affect of
atmospheric CO,. Estimates of the released amount of CO, require the precise knowledge of
the reservoir’s volume, which is not known. Concurrently, atmospheric AC exhibits only
a small decrease in this time period and cannot be used to constrain the amount of CO,
released. It seems reasonable that a multitude of processes in Earth’ carbon cycle operated
simultaneously to draw down atmospheric COy during the Holocene compensating the
COs release as suggested from the corals. The carbon reservoir size of the land biosphere,
for example, increased during the first half of the Holocene as indicated by increasing
atmospheric §'3C measurements on Antarctic ice cores from Dome C and Taylor Dome
(Ciais et al., 2012; Schmitt et al., 2012). Though, carbon was probably released concurrently
from the ocean in response to carbonate compensation of the terrestrial uptake during
the termination of the last glacial (Elsig et al., 2009) these processes combined could have
overcompensated the alleged CO, release from the purging deep reservoir during the early
Holocene. A similar phenomenon is observed during HS2 when intermediate water AAC
exhibit also large negative excursions, while atmospheric CO, reconstructions revealed no
significant changes (Indermiihle et al., 2000; Monnin et al., 2004) (Fig. 7.20). Changes in
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the terrestrial biosphere are unlikely to have happened during that time when full glacial
conditions prevailed, which favors the idea of a relatively small reservoir size. Depending on
the amount of dissolved CO, in the deep water, once the nutrient-rich water was brought
back to or near the euphotic zone, it could have boosted phytoplankton production largely
compensating the surplus of dissolved CO,. During the deglaciation depletions in AAM™C
are anticorrelated with the famous rise in atmospheric CO, during HS1. Whether the
proposed reservoir contributed to the observed rise in CO5 during the deglacial period,
however, is doubtful given the lack of an atmospheric rise in COy between the early to
mid-Holocene and during HS2. The circumstances behind this remain enigmatic. It is
important to note at the end of this chapter that obviously old isolated deep-water reservoirs
existed, which, at times, formed and decayed without contributing to the atmospheric COq
concentration.
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Fig. 7.20: History of atmospheric CO, and coral
AAMC during the glacial period between 14—28 ka
BP.
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Results and discussion: &,

8.1 3Nd/"Nd measurements

Thirty five measurements of 143Nd/4Nd have been performed on coral samples from the
four sediment cores. For three samples, neodymium was extracted from the wash solution
of the U-series anion exchange chemistry conducted earlier. For the remainder, neodymium
was directly purified from the dissolved aragonite samples using the chromatographical
method described in the following section 8.2. Most samples have been analyzed on a
MC-ICPMS and six of them on a TIMS at the Laboratoire des Sciences du Climat et de
I'Environnement (LSCE) in Gif-sur-Yvette, France. For the investigations on the TIMS
(Finnigan MAT 262) purified Nd samples were loaded onto single degassed rhenium filaments
by using the H3PO,/silica gel method. Neodymium was subsequently measured as metal-
oxide Nd'®O*, Nd'"O*, and Nd®*O7 using dynamic multiple collection on six Faraday
cups. Metal-oxide masses ranged between 157—163. The typical **Nd!O* signal was
larger than 500 mV during data acquisition for each sample. Since separation of Nd from
Pr is less efficient using the Ln-Spec resin than for Ce, La, and Sm possible PrO™ isobaric
interferences can be expected, which have been corrected line by line during off-line analysis
by means of Prl®OT (mass 157). Also Ce, Sm were continuously monitored during Nd
oxide measurements and were found to be negligible (Copard et al., 2010). All Nd isotope
ratios were corrected for mass fractionation relative to 1Nd/Nd = 0.7219 using a power
law. Concentrations of Nd blanks were negligible. ey, was calculated using a CHUR, of
0.512638 (Jacobsen and Wasserburg, 1980).

Replicates have been measured for different samples. Coral pieces for replication from a
single coral were not identical but from the adjacent coralline material integrating no more
than ~10 years of growth. Furthermore, €y, from the two leftmost samples in Fig. 8.1 stem
from the wash solution of the U-series anion exchange chemistry, which were stored for six
month in a PP-beaker before Nd chemistry. The reproducibility for the different samples
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Fig. 8.1: Coral pieces for replication from a single coral were
not identical. Reproducibility was relatively poor and only
agree for two samples within their respective 20 uncertainties.

from core C1 is relatively poor and only agree for two samples within their respective
20 uncertainties. The reason for the relatively large offsets is unclear. Nd concentration
analyses on samples from the shallower core sites revealed concentrations of < 10 ppbw,
which are low for fossil cold-water corals (see section 8.4). All samples chosen for replication
could have been easily influenced by residual contaminants or undetected small cavities
filled with sediment the cleaning procedure was not able to remove. However, the possibility
of a machine offset between the TIMS and ICPMS of any kind whatsoever is regarded
unlikely since many measurements of a Nd standard were run in between the samples of
each mass spec session and yielded reproducible results.

The Nd isotope procedure used for the MC-ICPMS data acquisition at LSCE has not
been published yet. In principle, a static multi-collection mode was used and sample
measurements were bracketed with various standards (La Jolla, JNdi-1, Rennes and Annie
Michard (AM)). Internally, an exponential fraction law was used, but ultimate data reduction
was performed using an average linear fractionation based on mass ratios 145/144 and
146/144. 142/144 could not be used given the samples variable 142/144 ratio due to minor
residues of “2Ce. However, the use of this mean fractionation avoided residual linear
mass dependence of the corrected isotope ratios and provided a perfect match between
the standard measurements performed on the TIMS and MC-ICPMS. In addition, daily
standard variability as observed using an exponential fractionation law was dramatically
reduced. Fig. 8.2 highlights absolute deviations of various neodymium standard MC runs
from their respective reference value at variable concentration (signal intensities) compared
to the previous TIMS analysis. Standard values are on average smaller than the respective
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8. Epsilon neodymium ey,

reference value. For low Nd concentrations (< 1 ppbw) statistical uncertainties increases
exponentially and Nd isotope ratio become useless. Therefore, the standard dilution
experiments clearly impose an analytical limit of at least 200 mV signal on mass 142 to
obtain reasonable standard reproducibility at +0.5 epsilon (20). Sample measurements
with signal height below this critical value were no longer considered (N. Frank 2013, pers.
comm.).
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Fig. 8.2: Deviation of various Nd standard measurements from their
respective reference values highlighting that the observed mean offset from
reference is independent of isotopic ranges (here —10 to —30 epsilon for
JNdi-1 and Annie Michard standards). TIMS NdO* and MC-ICPMS
Nd* measurements (using a desolvating system - here the Apex HF)
yielded approximately similar reproducibility of 0.3—0.5 epsilon unit. Data
provided by N. Frank.

8.2 Chemical purification of neodymium

All samples were subject to a rigorous physical and chemical cleaning to remove contami-
nants usually adhering at the inner and outer surface of each coral. The applied mechanical
cleaning procedure was the same as used for the 2*°Th/U and '*C preparations and can be
looked up in my diploma thesis (Ruckelshausen, 2009). Oxidative and reductive cleaning
steps as suggested by van de Flierdt et al. (2010) are regarded to have minor effects and
were omitted. In general, pretreatment of coral samples is essential in order to extract the
pristine neodymium signature present only in small traces within the coralline skeleton.
Smallest residues could alter the measured **Nd/*Nd isotopic ratios, which must be
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8.2. Chemical purification of neodymium

avoided. After mechanical cleaning, samples were leached in diluted HNOj3 for 20 seconds
to remove further potential residues like Fe-Mn coatings. Used carbonate masses varied
between 200-600 mg. The following Nd purification was conducted in the labs at the
Laboratoire des Sciences du Climat et de ’Environnement (LSCE) in Gif-sur-Yvette.

For that 83 mg of Eichrom TRU-Spec resin (transuranic-element specific resin, mesh
size 100—150 pm) was used to prepare the columns for the first step in the ion exchange
chemistry. This specific chromatographic resin allows selective sorption and extraction
of different (radio)elements among them are also the light rare earth elements (LREE).
After the columns were loaded with the resin by using 0.05 M HNOj3, they were rinsed a
further 2—4 times with 2 ml 0.05 M HNO3 and subsequently preconditioned with 2 ml 1 M
HNOj;. Before, samples were dissolved in 1 ml 1 M HNOj3 and transferred into (previously
HCl-cleaned and Mill-Q-rinsed) centrifuge tubes and centrifuged for ~5 min at 11,000 rpm
to segregate potentially insoluble contaminants within a sample from the soluble part.
The sample were loaded onto the preconditioned TRU-Spec columns in steps of 0.5 ml
without the residuum at the bottom of each centrifuge tube. Columns were subsequently
gently rinsed 5 times with 0.5 ml 1 M HNOj separating the bulk LREE from the carbonate
matrix and other major and trace elements within the samples. Before eluting the retained
LREE from the TRU-Spec columns a second set of columns, which were used to extract
the neodymium from the suite of other LREESs, was prepared in the meanwhile.

These columns were already loaded with the resin Ln-Spec and for preservation reasons
stored in a dilute HCI bath (0.5 M HCI). In order to use them they needed to be cleaned
with 1 ml 6 M HCI (a lower molarity is also possible) and were next rinsed with Milli-Q
water until pH 7 was reached! The next step was to change the resins’ molarity for both
column sets (TRU-Spec and Ln-Spec) with 0.25 ml 0.05 M HNOj for the TRU-Spec columns
and 1ml 0.05 M HNOj; for the Ln-Spec columns, respectively. Thereafter, the TRU-Spec
columns are placed over the Ln-Spec columns and the LREE were eluted from the upper
columns using 7 portions of 0.1 ml of 0.05 M HNOj3. After 700 pl 0.05 M HNOj3 passed
through the TRU-Spec columns they are no longer needed. The REE are now withhold in
the lower Ln-Spec columns. After decoupling from the TRU-Specs, the Ln-Spec columns
are rinsed with 3.1 ml 0.25 M HCI in steps of 2 x 100, 2 x 200, 500, 2 x 1,000 pl. This
will mostly flush out the individual LREE, namely La, Ce, and Pr. Labelled beakers were
placed under the columns and subsequently eluted with 2.5 ml 0.25 M HCI in steps of
500, 2 x 1,000 ul in order to catch the Nd fraction. It is crucial to use only the specified
quantities of acid. For example, eluting with more than 2.5 ml in the last step will cause
more Pr, Sm, and Eu to strip from the Ln-Spec columns leading to isobaric interferences
with the Nd isotopes during mass spectrometer analysis. Finally, a droplet of 10 ul H3PO,
was added to each Nd beaker to ensure the liquid narrows down at one point during the
subsequent evaporation. This Nd-purification scheme is a modified version of the original
method described by (Pin and Zalduegui, 1997).
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8.3 Coral ¢, from the continental slope off Brazil

A first overview of the neodymium data is provided in Fig. 8.3 featuring the ey, isotopic
composition of the samples against their respective core depths. For comparison a present-
day neodymium seawater profile from the nearest available station from Jeandel (1993) is
shown as well as a measurement of a modern L. pertusa from van de Flierdt et al. (2010)
from the Brazilian margin. The plot already reveals a large variability in ey, for the last
~37 ka BP comprising a range of ~11 ey, units! This is surprising as all four cores are
located today within the northward flowing AAIW, with the upper two cores bathing in the
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Fig. 8.3: Overview of all ey, plotted against core depth compared with two
present-day water sample ey, from Jeandel (1993) and a single coral specimen
from van de Flierdt et al. (2010). To avoid clutter, the errors of the coral data
have been omitted. The right figure shows the different locations discussed in
this chapter.

transition zone to SACW. Reported modern seawater ey, for AAIW range between —6 to
—9 (Jeandel, 1993; von Blanckenburg, 1999), whereas mature NADW in the North Atlantic
exhibits a range between —13.5 to —14.5 ey, (Piepgras and Wasserburg, 1987; Gutjahr
and Lippold, 2011) and is still traceable off Brazil (see Fig. 8.3 in a depth ~ 2.7 km).
Differentiating between the shallower and the deeper core sites it becomes apparent that
the deeper cores C2 and MXL (781 m and 808 m) recorded a significantly different coral
aragonite Nd isotopic ratio than at the shallower cores C1 and KGLC (621 m and 626 m),
which I am going to discuss in more detail in the following sections.
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8.3. Coral eyy from the continental slope off Brazil

8.3.1 &, from cores C2 and MXL

Fig. 8.4 depicts the coral Nd isotope record from the deeper cores sites from the Santos
Basin encompassing the last ~37 ka BP. Corals between ~37—23.4 ka BP show a relatively
constant ey, with values ranging between —10.2 and —8.5 with a mean of around —9.2.
The most radiogenic value is observed at ~16.3 ka BP with an epsilon Nd of —8.1, which is
similar to the nearby modern seawater measurement at 795 mbsl from Jeandel (1993). This
elevated epsilon Nd coincides with relatively higher authigenic Nd values reconstructed
from the sediment from Pahnke et al. (2008) during HS1 (Fig. 7.8 for a better resolved plot
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Fig. 8.4: Neodymium results for the deeper cores C2 and MXL
(Santos Basin) for the last ~37 ka BP. The data coverage is incom-
plete especially during the deglaciation. The red single coral from
Campos Basin (this study) is also shown together with the dataset
from Pahnke et al. (2008). All errors are 20.

of the neodymium sediment data) suggesting a larger contribution of deeper more radiogenic
AAIW as a result of an increase in AAIW flow strength during HS1. Future investigations
will substantiate this observation. After that, less radiogenic values were preserved between
~12.9-5.6 ka BP with an average of about —10.4. The single S. variabilis specimen with
a ?°Th/U age of ~3.1 ka BP from the Campos Basin (depth 1032 mbsl) recorded an
epsilon Nd which is in good agreement with the modern value found for the open ocean
AAIW (Sao Paulo Plateau) from Jeandel (1993). The sediment data from Pahnke et al.
(2008) from a depth of 1,268 m are additionally plotted. As indicated by the present-day
seawater profile in Fig. 8.3 ey, varies largely in between the transition zone from AAIW
to SACW amounting to ~2.6 £yy units considering the largest possible range of the 20
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uncertainties of the seawater measurements between 470—795 m. Under the assumption
that this present-day change in the Nd isotopic composition was valid also in the past,
coral ey, from the two deeper cores can be explained by varying contributions from the
shallower northward flowing SACW and the adjacent northward flowing AAIW alone.
Whether the Nd isotopic composition of AAIW for this depth has changed over the course
of the ~37 ka BP is thus difficult to assess. Even in the absence of any water mass
mixing the large uncertainties associated with the Nd measurements would prevent a
clear detection. Variations in ey, of AAIW for the last 25 ka BP have been reported
from a deeper sediment core from farther showing only small changes (< 1 epsilon unit)
occurred within the last ~25 ka BP (Pahnke et al., 2008) (see Fig. 8.4). Unfortunately,
no detrital ey, is available from
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(2007) and Wilson et al. (2013), and deeper cores show no correlation suggesting
therefore, cannot be ruled out, that both tracer are decoupled. This corroborates
but is regarded unlikely. Mixing the idea of a continuously adevecting and ageing
of AATW with the much deeper water mass of a southern origin.

flowing NADW (eng~—13.5) is

unlikely to have happened as well. This is not as clear as one might think, because
present-day AAIW enters the Brazil Basin between 20—28°S from the east bifurcating into
a northward and southward flowing AAIW branch as it meets the continental break off
Brazil (Miiller et al., 1998). As AATW and NADW are flowing in the opposite direction
at the coral locations (Fig. 5.7) one would expect diapycnal mixing between these water
masses more enhanced than for the southerly located core (30° S) from Pahnke et al. (2008),
where both flow directions are aligned to each other. Furthermore, the relatively constancy
of the ey, throughout the last ~37 ka BP at the deeper coral locations strengthen the
assumption that no notable changes occurred even during times when intermediate-water
AA™C dropped significantly. For instance, during HS2 intermediate-depth water “C
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declined by as much as 500%0 at the end of HS2 and by nearly 600%0 during the middle
of the Holocene. ey,, however, remained quasi constant during these periods suggesting
that the neodymium source composition of the ageing intermediate water has not changed.
The decoupled behavior of both tracers is illustrated in Fig. 8.5 for the two deeper cores
(blue) showing a Pearson’s correlation coefficient of ~—0.05. These results corroborate
the idea of a continuously advecting and simultaneously ageing water mass of a southern
ocean origin, which flushed the intermediate-depth core sites off Brazil. Furthermore, the
relatively stable ey, values are in accordance with the hypothesis of an isolated deep water
reservoir presumably located in the South Atlantic and/or Southern Ocean region and the
concept of stable conduits allowing 4C to decay significantly during the purging events.
The alternative option that during times of quite depleted AAC the epsilon Nd shows
pronounced negative values suggesting a northern provenance of the ageing water mass
could not be approved. The attempt of tracing back the advective paths or even pinpointing
the exact origin of the ageing AAIW by means of the neodymium measurements from the
corals, however, is not possible, simply, because the deep- and intermediate-depth waters
in the Southern Ocean have similar neodymium isotopic compositions rendering a clear
differentiation not feasible yet.

8.3.2 &4, from cores C1 and KGLC

The situation regarding Nd is quite different for the shallower two cores C1 and KLC
from the Campos Basin. The corals cover the last ~27 ka BP and recorded a much larger
variability in the past seawater £y, than the deeper cores. With just two samples the time
period between ~20—27 ka BP is poorly resolved. Both measurements feature the highest
radiogenic values found in all four cores with gy of ~—6.8 and ~—6.3, which is about
2 epsilon units more radiogenic than for the samples in cores C2 and MXL. Beginning
~20.2 ka BP the relatively high values dropped steeply to ~—13.2 at ~19.5 ka BP. During
the deglaciation neodymium isotopes exhibit a large scatter encompassing a range of ~ 6 eyq
units! Values drop to ~—16.2 at ~18.1 ka BP and subsequently rise sharply until a local
maximum is reached at ~16.9 ka BP with a relatively radiogenic value of ~—11.5. After
that, neodymium ratios significantly decline again showing a minimum at the beginning of
the Bolling-Allergd period (~—16.7). Ratios rebound with a further substantial increase
at ~10.5 ka BP to ~—11 and declined during the course of the Holocene. The modern
L. pertusa retrieved from the Campos Basin (606 mbsl) shows a ey, of —14.42 + 1. Coral
ena from cores C1 and KGLC recorded systematically lower values for the last ~20 ka BP
than the corals from the deeper cores. Additionally performed epsilon Nd measurements
on three sediment samples younger than 20 ka BP from core C1 seem to confirm this
observation of large negative values. The chemistry was done at the IUP. The authigenic
Nd isotope signal was extracted from the sediment coating by applying a sequential leaching
technique, followed by an in-house Nd-purification scheme based on the method from
Gutjahr et al. (2007). The neodymium data were provided from M. Gutjahr and J. Lippold
on a MC-ICPMS (Neptune) at the department of Earth Sciences at Bristol University. Due
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to an amplifier problem during data acquisition 20 uncertainties can vary by up to 1 eyq
unit (J. Lippold 2010, pers. comm.). All three radiogenic isotope ratios from authigenic
ferromanganese oxides must therefore be regarded with caution. Measurements exhibit quite
depleted neodymium isotopic compositions ranging between —14.26 for the core-top sample
and —17.16 (~16 ka BP), and —16.94 (~18 ka BP) for the glacial age samples (Fig. 8.6).
Sediment ages are rough estimates interpolated from Fig. 6.9. The authigenic neodymium
results from this core C1 confirm the coral findings that ey, have been systematically lower
for the shallower core site during the last 20 ka BP than found for the deeper cores. Epsilon
Nd for the modern L. pertusa and the sediment core top agree well supporting the validity

@ Shallow cores C1 & KGLC (621-626m)
@ Sediment coatings from C1 ! !

O L. pertusa, Campos Basin (606m)
@ . variabilis, Campos Basin (1032m)

6 o IZ;‘niZf!i?f_"f;S{ o %% //} """
_ ¢ Y IP 4 o
S —-10 8 ______________________ Lol // __________ // ________
$ i
< e i """"" TR R TST

—18 F

0 5 10 15 20 25 30
cal age (ka BP)

Fig. 8.6: The neodymium results for the shallower cores C1 and
KGLC from the Campos Basin exhibiting a large variability in ey,
comprising ~11 epsilon units pointing to local processes, which
were able to alter the 3Nd/"Nd composition of the ambient
water significantly. All given uncertainties are 2o.

of the coral data deviating significantly from the open ocean seawater profile of Jeandel
(1993). The mismatch between the seawater station and L. pertusa is all the greater
amounting to ~4.4 £y, units. The substantially deviating replicates performed on the coral
samples from core C1 (Fig. 8.1) are summarized and given as single 20 error following the
method of Birge (1932). The large gap in ey, occurring around 20 ka BP is spectacular
given the veracity of the data. Even though the uncertainty of each measurement from
cores C1 and KGLC would be de facto larger by a further epsilon unit, the large gap at
about 20 ka BP (~7 epsilon units) would still be visible. Largely depleted ey, for the
shallower core sites continue up to the present day. The single late Holocene aged S.
variabilis from 1032 mbsl, however, features values of around —8 for the Campos Basin,
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8.3. Coral eyy from the continental slope off Brazil

which is the expected modern-day value for this depth (Fig. 8.4 and Fig. 8.3) suggesting
that a tongue of water of relatively depleted Nd ratios was and still is flowing along the
shallower core sites wedged by relatively high radiogenic waters above and below. A
totally different water mass, which bathed this site can be precluded since the *C data
highly support the conclusion that the shallower as well as the deeper locations have been
flushed by the same ageing water mass. AAMC and ey, are nearly uncorrelated (r ~0.02)
substantiating the conclusion that no different water mass intruded this depth range. The
likelihood that AAIW emerged with this pronounced ey, layering from its source region
within the Southern Ocean is highly implausible considering the formation process in the
Southern Ocean. Besides, the Southern Ocean region is characterized by much more radio-
genic £y, derived from the Pacific Ocean, which cannot explain the observed depleted values.

An explanation would be that the initial neodymium isotopic composition of AAIW was
altered by boundary exchange processes with the continental margin after AAIW hit the
Brazilian slope between 20—28°S and was bifurcated into a northward and southward
flowing branch. Similar observations have been made by several authors proposing that
significant exchange fluxes of neodymium between the dissolved and particulate fraction
exist at ocean margins having the ability to alter the isotopic composition without essen-
tially affecting the Nd concentration of the seawater (e.g Tachikawa et al., 2003; Lacan and
Jeandel, 2004, 2005; Wilson et al., 2013). If boundary exchange processes at the continental-
ocean interface are a viable candidate to explain the coral data from the Campos Basin, the
question is raised, why only the shallower core sites are obviously affected. This observation
is probably related to the high hydrodynamic conditions occurring in this region as outlined
in section 6.6.1. Seasonal austral upwelling events in combination with cyclonic mesoscale
eddy activity within the Campos Basin influences the water column up to the depth of
the cores thereby favoring resuspension of formerly deposited sediments increasing the
chances of sediment remobilization and dissolution as described by Haley et al. (2004). The
upwelling events and eddy activities are localized phenomena confined predominantly to
the Campos Basin. This might explain why the single L. pertusa from van de Flierdt et al.
(2010) located much farther south lacks a depleted ey,. Furthermore, systematically low
Nd concentrations measured within the coral samples from cores C1 and KGLC suggest an
enhanced particle flux and associated elevated boundary scavenging as a consequence of
the high hydrodynamic conditions in this area. Thus, the Nd isotopic composition within
the water column is even more prone to input of neodymium from different sources with
different isotopic ratios. What finally caused the ey, to drop significantly starting around
20 ka BP cannot be answered within the scope of this thesis. Also, the nature of the
supposed boundary exchange processes ultimately influencing the ¢y, at the shallower core
sites remain elusive.
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8. Epsilon neodymium ey,

8.4 Nd, Mn, Ca measurements

50ul aliquots were taken from ten of the cleaned and dissolved coral samples to measure
Nd, Mn, and Ca concentrations as well. These element concentrations are routinely
monitored to check the efficiency of the cleaning procedure. A possible contamination
of exq from residual Fe-Mn oxyhydroxide surface coatings can thereby be assessed (Colin
et al., 2010). The trace element data were provided by E. Douville and C. Colin at LSCE
on a quadrupole ICPMS (Xseries IT CCT) by measuring the isotopes “°Ca, *Mn and
1M6Nd. Fig. 8.7 illustrates the results (see also Tab. G.5). Nd/Ca concentrations range
from 4.39—207.31 nmol/mol with eight samples exhibiting values smaller than 35nmol/mol.
Reported neodymium-calcium concentration ratios for modern corals have shown values
between ~2—35 nmol/mol (Copard et al., 2010; van de Flierdt et al., 2010). Mn/Ca
measurements lie between 0.1—7.54 pmol/mol and exhibit a neglectable correlation with
Nd/Ca of ~0.12. Reported Mn/Ca concentration ratios for modern corals range between
0.05—9.8 pmol/mol (Copard et al., 2010). The outcome underlines that physical cleaning
and applied weak leaching with HNOj afterwards was sufficient to obtain the pristine Nd
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Fig. 8.7: Investigated trace metal concentrations for ten samples
show no significant contaminants of incorporated Fe-Mn hydrox-
ides compromising Nd concentrations. The dashed cut-off line is
empirically justified from Nd/Ca concentrations on modern corals
from Copard et al. (2010). Corals above this line are regarded as
not reliable. 20 errors are smaller than the size of the dots.

not only

concentrations of the samples despite their relatively large calendar ages (~0—37 ka BP).
Only sample C2-94 exhibits a Nd/Ca of over 200 nmol/mol but coincidentally has an
insignificant small manganese content of 1.12 pumol/mol suggesting that the elevated Nd
concentration was probably derived from a residual contamination introduced from a source
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8.4. Nd, Mn, Ca measurements

other than Fe-Mn oxyhydroxides. The origin of this excess Nd, however, is unknown.
Another sample C1-163 features a higher Mn/Ca concentration (7.54 pmol/mol) but
concomitantly shows a relatively low and acceptable Nd/Ca concentration. Corals with a
Nd/Ca larger than 80 nmol/mol are considered to be not reliable. This cut-off is empirically
justified from Nd/Ca concentrations on modern corals (Copard et al., 2010). This truncation
effects only sample C2-94, the oldest coral in the whole Nd dataset. Since the ey, is similar
to the adjacent corals from core C2, this specific sample is shown in Fig. 8.4 anyway. The
presented results suggest that the incorporated neodymium concentrations of the corals
were derived from the ambient seawater rather than caused by contamination. Thus, ey,
reflect the isotopic composition of the past seawater.
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Summary and outlook

In this thesis I have presented a set of newly performed 23°Th /U measurements on cold-water
corals from the Brazilian slope. Corals exhibit large variations in 6***U, even though within
acceptable range, the short-term deviations of §***U from the present-day open ocean
seawater value of 146.8%¢ is noticeable and normally would point to diagenetic activity.
Other indications as concentration measurements of 2*2Th and U as well as some XRD
data from specific samples with conspicuously low or high §23*U have testified the coralline
skeletons an impeccable state of preservation questioning the applicability of 624U as a
strict means of quality control. The possibility is raised that observed variations are the
result of a local phenomenon and might be linked to fluid seepage activity especially as
the Brazilian continental slope in this area is rich in large deposits of petroleum. It is
conceivable that corals growing in such a region can directly incorporate §2*4U-enriched or
-depleted fluids diffusing out of the margins prior to complete mixing with the bulk ocean.

Furthermore, I have shown reconstructed ambient seawater AC extracted from the coral
skeletons for the last ~40 ka BP. The observed depletions are astonishing and exceed several
hundred per mille predominantly at times of documented climate changes, which seem to
have affected the mid-depth ocean circulation off Brazil. The resemblance between the
observed decline in radiocarbon activity and the *C-decay curve has lead to the idea of an
isolated water mass swamping the coral locations for up to several millennia. A hypothetical
isolated abyssal reservoir has been postulated to account for these observations boosting
the idea of the existence of an aged abyssal reservoir formerly called on to explain the
rise in atmospheric COy during the last deglaciation. To rule out any contributions from
14(C-dead methane to the “C dates from possible hydrocarbon seepage activities, stable
isotope measurements of 13C and 'O on the coral carbonate have been conducted revealing
no noteworthy influence from geological-old methane.

Last but not least, neodymium isotopic compositions on the corals have been measured to
gain insights about the provenance of the intermediate-depth water. It has become apparent
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that corals from the deeper core sites have 143Nd /M4Nd ratios suggesting a Southern Ocean
origin of the water for at least the last ~37 ka BP. This is much different for the corals
from the shallower-depth sites indicating a much larger variability of the neodymium
isotopic compositions. A reasonable explanation is that boundary exchange processes in
these shallower depths alter the original Nd composition. What is more, there exists no
correlation between the neodymium isotopes and the radiocarbon at times of significant *C
depletions corroborating the idea of just one water mass irrigating the Brazilian slope. The
existence of an isolated deep-ocean reservoir formerly located in the Southern Ocean/South
Atlantic region has been strongly recommended to reconcile the obtained results. The exact
location of this hypothesized reservoir, however, remains elusive.

Up to this date, the coverage of marine AC reconstructions in time and space is very
scarce especially for the glacial and deglacial ocean. Moreover, the few datasets available in
the literature give partially conflicting results clearly suggesting that the emerging picture
about the mid-depth ocean ventilation during the early Holocene and glacial period is
considerably more complex than initially envisioned. Tracing the aged water found off
Brazil back to its origin will be difficult. The present-day AAIW is entering the Brazil
Basin between 20—28°S from the east, bifurcating into a northward and southward flowing
branch, which irrigate the slope region afterwards (Miiller et al., 1998). Before that, AATW
flows only in open ocean regions where no deep-water corals can be expected. The only
possibility to map past A*C would be to pick foraminifera from sediment from open ocean
regions, which would represent a significant effort.

Mapping Holocene and glacial A*C in the southwest Atlantic slope region of Argentina
south of —40°S by means of cold-water corals would be a more promising area to look at in
pursuing the postulated reservoir presumably located in the Argentine Basin. Today’s PFZ
is stretching out as a tongue following the continental margin up to ~—40°S (Fig. 7.12). If
water mass conversion from an isolated deep reservoir within the Argentine Basin took place
in this part of the PFZ, cold-water corals probably would have recorded these events. Chiefly
due to the difficulties and costs of sampling this will probably not happen any time soon.
In the meanwhile, the next logical step must be to model these *C observations found in
the intermediate depth at different locations worldwide and to clarify the issue under what
circumstances transport of highly depleted water into northern latitudes several thousand
kilometers apart is possible. Not least because already conducted model calculations suggest
rapid dissipation of extremely “C-deplete water casting doubt on the reservoir idea and its
ability to explain the mid-depth AC anomalies (Hain et al., 2011).
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Alternative derivation of the
230Th /U age equation

4.468 Ga

. beta decay

alpha decay

> A

Fig. A.1: Outline of the uranium-radium decay series beginning
with 22U ending with 230Th.

In the following derivation of the so-called marine age equation the radionuclides ?*4Th and
234Pa, daughter and granddaughter products of the 23*U decay in the radium series, are
relatively short-lived nuclides and will therefore not be taken into account. In this manner
the 28U decays directly to 23*U and subsequently to 2*°Th. The equation A.l governing
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the decay from 2**U to 23*U is mathematically spoken a first-order ordinary differential
equation with constant coefficients. This kind of equation can easily be solved with well
proven methods which I am going to show for this particular equation. Being more common
all equations are denoted in terms of activities instead of number of atoms, N = A/\.

234
dtw
A234 _ 238772347y (A1)

dt

With 28U being equal to 233U, - e=*238t, Multiplication of equation A.1 with e*»** and
afterward separation of variables leads to

234
/6)‘234"561( U) — /238[]0 . e()‘234_)\238)‘tdt _ /234Ue/\234'tdt
)\234

Partial integration of this expression yields

Bt = M sy ety (A.2)
)\234 - )\238

The integration constant is determined by the initial condition and set to

BA, = By, BAY, refers to the initial activity at t = 0

This fixed value C is then put into equation A.2. This now complete term is than divided
by e*234t. The next step is to substitute 238U - e=*238* through 2**U in the whole equation.
Dividing the equation by 233U finally gives

234 234
N U s [P A ~(A23a—Aags)-t
238U )\234 - )\238 238U0 )\234 - )\238

(A.3)

This term now can be further simplified if one considers that the decay constant of 23U is
five orders of magnitudes smaller than 23*U, that is

A23a — Aazg = Aasa

- B
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A. Alternative derivation of the 2°Th/U age equation

(BIU/?80) is the activity ratio at the time of measurement, in comparison the ratio
(BAU /3380, refers to the activity ratio at t = 0, which could be the time when the system
became closed. To give a more realistic example it could be the time when a coral skeleton
was being formed in the seawater thereby incorporating some of the dissolved uranium in
the seawater into its skeleton. In the next step, I am going to focus on the equation that
governs the decay of 24U in 2°Th. Being the same equation with just different radionuclides
the solution follows the same scheme as described above.

230Th
()
)\230 _ 234U_230Th

dt

Substitute 23*U by the equation A.3 since we now know how the 23*U activity evolves with
time. Then multiply both sides of the equation with the factor e*?®* as already described
above. It is always the same trick to handle this kind of equation.

(Lw + 230Th) er230t — _Aogqa 238UO (6—/\238't_6—>\234't) €>\230~t+234U0.e—(A234—/\230)‘t
A230 dt A234—A238

Separation of variables and then integration by parts yields

230y, . pA2s0t — A230 - Aga 23877 . o~ (A23s—Aas0)t _ A230 * A234 )
(A231 — Aa3s)(A230 — Aass) (A231 — Aa3s) (A230 — A23a)
238UO . 6—(>\234—>\230)~t + )\)\230)\ 234U0 . 6—()\234—)\230)-7& +C (A5)
230 — A234

C again is an integration constant which needs to be fixed. The only reasonable choice for
the initial condition is

BOThy = 29T h, 280Thy is the initial activity at t = 0, the time of the system’s closure

Aaso * A A2z - A
(= 20y 230 * A234 WLy 230 * A234 23877
0 (A2za — Aazs)(Aazo — Aoss) ‘ (A234 — Aass)(A230 — A2ga) °




Insert the obtained integration constant in equation A.5 and multiply both sides with
e~?230t The second to last step is to factor out 23U and make use of the fact that it is
)\234 A )\230 > )\238- This y1€1dS

230 234 230
= 7235;Th =1 &eibm't —+ )\230 ( U) 67)\234'7& -+ ( Th) €7A230't—
U 0 0

X230 — 234 A2z — Aazq \ 2BU By

234
)\230 U 6—)\230‘?5 _ e—)\230‘t + &6_)‘230%
A2zo — Agza \PBU /| A230 — A234

One last substitution of the initial (*31U/?3®U), by equation A.4 and the derivation of the
marine age equation is complete.

230Th 230Th 5234U /\230
R — 1 . _ 1 —A230-t 1 _ ()\2347)\230)-15 A6
2387 + (( 2387 )0 ) € + 1000 </\230 ~ ot (1—e ) (A6)

with OB = ((234(]) — 1) - 1000
- 23877

23477 23477 s
and R = ((238(])0 — 1) e "Bt 41

In order to understand the single terms in equation A.6 better, let us rearrange them a
little

230 230 234
Th _ Th ) €—>\230~t + 1 . 6_)\23O.t _|_ 5 U )\230 (1 o e(,\234—)\230).t)
2y ) 280 ), 1000 \ Ag30 — A23a

1.term 2. term 3. term

The first term in this equation describes the initial, non-in situ produced component of the
measured (39Th/*380),, activity ratio, which was built in during the mineral’s precipitation.
The second term describes the ingrowth of 2°T'h independently of the sample’s §2*4U, that
is, regardless of whether the sample’s initial (***U/?*U), were one or uneven one. Since
precipitates, however, originating from natural waters like corals show a disequilibrium in
the 234U the third term accounts for this case as well.
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A. Alternative derivation of the 2°Th/U age equation

Replacing (39Th/*80)q by (32Th/*8U)(*%Th/**Th) is convenient since the sample’s
22T] /238U activity can precisely be measured. This reduces the problem to one estimating
the initial 22°T'h /232Th. The problems associated with assessing the initial thorium content
are discussed starting with section 4.2.3.1. Some of the derivations presented here can be
found in Ivanovich and Harmon (1992).

Marine 23°Th/U age equation:

232 230 234
230Th 1 + Th Th _1 e_>\230,t + (5 U < )\230 ) (1 _ e(>\234_>\230)'t)
2387 238U 232Th o 1000 \ A230 — A234
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Plots: “YTh/U blank, **'Pa/*'Th
results, 14C reservoir ages
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Fig. B.1: Procedural blank development over the course of this work. Though
all blank measurements were neglectable, an average blank correction was applied
for all the #°Th/U data presented in this thesis (see also Tab. D.3).
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Fig. B.2: Sedimentary ?*'Pa/?*°Th excess ratios of nine samples from cores
C1 and C2 were performed in this thesis following the procedure of Lippold
(2008) and Lippold et al. (2009). Sample C1-5cm is not shown due to its large
error. 23'Pa/*Th uncertainties are given in 20. All measurements exhibit
relatively high values near the production ratio between 8—18 ka BP indicating
other processes than circulation alone dominate *'Pa/?**Th deposition on the
Brazilian slope. Often continental margins “suffer” from a higher particle flux
and particle composition (e.g. higher biogenic opal production due to upwelling),
which quickly removes Pa from the water column rendering the ratio useless as
a circulation proxy. This phenomenon is known as boundary scavenging. As
described in 6.6.1 the continental slope and shelf region around the core location
off Brazil is indeed affected by seasonal upwelling events. Besides this problem
it was almost impossible to establish a reliable age model for the sediment cores,
which exhibit severe age reversals based on the ?*°Th/U age of the coral rubble
within the sediment. Roughly interpolated ages can vary by as much as 2 ka!
Taken together, no further investigations on the sedimentary ?3!Pa/?3°Th have
been made.
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B. Plots: #°Th/U blank, ?'Pa/?*Th results, *C reservoir ages
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Fig. B.3: For the sake of completeness calculated reservoir offsets between
coral samples and respective contemporaneous atmosphere are shown in *C
years between 3—42 ka BP. This quantity is sometimes also called apparent 4C
ventilation age. In this thesis, however, all radiocarbon intermediate-depth 4C
offsets are presented and discussed as AAMC.
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Python Script (ventilation ages),
230Th /U preparation flowchart
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#! /usr/bin/python
# —-*— coding: utf-8 —*-

from pylab import =

from matplotlib import rc

from matplotlib.patches import Ellipse

from scipy.interpolate import interpld

import matplotlib.font_manager as font_manager

#Comment out these lines if you do not have LaTeX installed
rc('font',xx{'family': ' 'serif', 'serif':['Times']})
rc('text', usetex=True)

#Creates the canvas on which the final results are plotted
#with Matplotlib (MPL) <- have to be installed too!

fig = plt.figure(l, figsize=(4.5, 4))

ax = fig.add_subplot (111)

ax.set_position(pos = [0.15, 0.14, 0.8, 0.8])

#Read in IntCal09 and sample data file

X, y, yerr = np.loadtxt ('intcal09.14c', usecols=[0,3,4], \
delimiter=', "', unpack=True)

mittelUTH_list, sigmaUTH_list, mittelld4C_list, sigmaldC_list = \
np.loadtxt ('samples', usecols=[0,1,2,3], unpack=True)

#Sort IntCal09 data file for interpolation

xInt_decr, yInt_decr = np.loadtxt ('intcal09.14c', usecols=[0,3] \
, delimiter=', ', unpack=True)

Idx = np.argsort (xInt_decr)

xInt = xInt_decr[Idx]

yInt = yInt_decr[Idx]

#Random numbers generated for every U/Th entry in sample list
anzahl = 1000.
for idx_mittelUTH, mittelUTH in enumerate (mittelUTH_list):

alpha = np.linspace (0.5, 0.8, len(mittelUTH_1list))
xUTHstart_list = mittelUTH + 1000. * \
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sigmaUTH_list[idx_mittelUTH] % np.random.randn (anzahl)
x14C_list = mittelld4C_list[idx mittelUTH] + 2. =* \
sigmald4C_list[idx_mittelUTH] % np.random.randn (anzahl)

xUTHschnitt_list = []

#Calculating backtrack curve starting from the MC generated points
for idx_xUTHstart, xUTHstart in enumerate (xUTHstart_list):

xUTH = np.arange (xUTHstart, 45000., 1.)

ydelta = (np.exp (xUTH/8267.) / \

exp (x14C_list[idx_xUTHstart]/8033.) - 1.) = 1000.

#IntCal09 interpolation for the xUTH grid
f = interpld(xInt, yInt)
yInt_interp = f (xUTH)

#Finding points of intercept between backtrack and IntCal09
#and throw away points which are above IntCal09

diffs = yInt_interp - ydelta

xschnitt = []

yschnitt = []

for Idx_Diff, Diff in enumerate(diffs[0:len(diffs)-1]):
if (diffs[Idx_Diff] > 0 and diffs[Idx_Diff+1] < 0) \
or (diffs[Idx_Diff] < 0 and diffs[Idx _Diff+1] > 0):
xschnitt.append (xUTH[Idx_Diff])
yschnitt.append (ydelta[Idx_Diff])

if len(xschnitt) == O0:
xschnitt = [0.]
yschnitt = [O0.]

xUTHschnitt_list.append(xschnitt[0])

venti = xXUTHschnitt_list - xUTHstart_list
a = len([item for item in venti if item < 0.])

#Percentages written out during run of the script illustrate how
#many MC points for an individual error ellipse lie above the
#IntCal09. If too large ventilation age calculation might not be
#fuseful. Such samples should be taken off from the sample list.
print 'negativ', a/anzahlx100., '%'
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venti_pos = []
xuthstart_pos = []
for idx, item in enumerate (venti) :
if item > 0.:
venti_pos.append (item)
xuthstart_pos.append (xUTHstart_list[idx])
venti = venti_pos
xUTHstart_list = xuthstart_pos

#Covariance ellipse calculation

Xx = np.cov (xUTHstart_list, venti, rowvar=0)
cov_delta = xx[0,1]

venti_mean = mean (venti)

venti_std = std(venti)

xUTHstart_list_mean = mean (xUTHstart_1list)
xUTHstart_list _std = std(xUTHstart_ list)

sigma_x_strich = sqgrt( (venti_std**2 + \
xUTHstart_list_std**2)/2 + sqgrt((venti_std**2 — \
xUTHstart_list_stdx*2)*x*2/4 + cov_deltaxx2) )
sigma_y_strich = sqrt( (venti_stdxx2 + \
xUTHstart_list_std**2)/2 — sqgrt((venti_std**2 — \
xUTHstart_list_stdx*2)**2/4 + cov_deltaxx2) )

theta = 0.5 * arctan( 2xcov_delta / (xUTHstart_list_stdx*x2 — \
venti stdx*2) )

if cov_delta < 0 and (xx[0,0] - xx[1,1]) < O:
theta = theta/pix180 - 90
if cov_delta < 0 and (xx[0,0] - xx[1,1]) > O:

theta = theta/pix180

#Printing the final ellipses with MPL
alpha = np.linspace (0.5, 0.9, len(xUTHstart_list))
e = Ellipse ((xUTHstart_list_mean, venti_mean ), \
2xsigma_x_strich, 2xsigma_y_strich, theta,
color = 'b', alpha = alphal[idx_mittelUTH] , zorder=2, 1lw=0.5)
e.set_edgecolor('k")
ax.add_artist (e)
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#Fake point for legend

C1,

= plt.plot([10000], 'ob', markersize=0.5, markeredgecolor='k', \

alpha=0.6, 1w=0.5)

#Legend upper right

11

= ax.legend([Cl], ['Whole dataset'],

loc=4, shadow=None, fancybox=True, numpoints=1, handletextpad=0.5, \
handlelength=0.8, markerscale=8, \
prop=font_manager.FontProperties(size=9), bbox_to_anchor=[0.95, 0.85])

11.

get_frame () .set_alpha (1)

plt.gca () .add_artist (11)

#Setting axes dimensions

ax

ax.
.set_ylabel (r'Projection age (ka)', fontsize=14, labelpad=8)

ax

ax.
ax.

.axis ([0, 45000, 0, 80001)

set_xlabel ('cal age (ka BP)', fontsize=14)

set_xticklabels([0,5,10,15,20,25,30,35,40,45])
set_yticklabels([0,1,2,3,4,5,6,7,8])

#savefig('final.pdf')
show ()
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(thoroughly mechanical cleaning of corals)

leaching the tests

(weighing in the test )

(dissolving the tests in 7N HNOD

adding H,BO, and H,0, dissolves silicate and organic
compounds

weighing again

(adding the **U-**U double spike to the solution )
(adding the **Th to the solution)

(weighing again )

(evaporate the sample) (prepare the columns)

v -
(dissolve residues with 3ml HC1) fill with DOWEX

(tinse with 10ml H,O once)

(loading the column with 10ml 8.5N HCI)
k2

(pour sample on column, rinse with 20 ml, in steps 1,2,3,4,10ml)

v
(one obtain the Th-Ca fraction )

2
(syringe with 10ml H,0 )
N7

(one obtain the Fe-Ca fraction)

(aftcr evaporation, dissolve dried Fe/Ca with 2-3ml 7N HNO:;)

(1.HNO, column )

(load with 10ml 7N HNO,)

2. HNO, column

(load with 10ml 7N HNO, )

(add Th/Ca fraction on the column )

(ﬂush with 20ml 7N HNO;, in steps 1,2,3,4,10m1)

—_—
(add Th/U eluate on column )

( also add the U/Fe fraction with a tweezer)

(syringe with 5.5ml 7N HN03)

(iinse with 5.5ml 7N HNOS3, in steps 1,2,2.5ml )

(elute again, same as left)

(elute each time with 10ml H,O MillQ, 1N HBr, 8.5N HCI )

(evaporate and dissolve with 7N HNO, )

(after evap, diss. in 0.5ml 7N HNO, )

evaporate

(add 50ul THNO; plus one drop HZOZ)
Y

(evaporate and dissolve again in 3ul 7N HNO;;)

\ 2
(loading the rhenium filament)
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lab# tag B8U 20 22Th 20 2°Th/®8U 20 22Th/?®U 20 0%U,, 20 calage, 20* calage 20" §1U; 20
HD (ppbw) (ppiw) (x10-4) (x10-) (%) (ka) (ka BP) (%0)

5250 M-24  3580.1 3.6 7748.0 51.1 1232.5 17.7 708.3 4.7 149.1 1.8 12.358 0.189 11.761 0.328 154.2 2.4
5466 M-39 3313.6 2.0 165.8 1.1 1255.4 16.2 16.4 0.1 139.7 1.3 12714  0.180 12.640 0.174 1448 1.5
5251 M-51  3464.5 3.5 1900.5 5.9 1225.4 6.7 179.5 0.6 148.0 1.6 12.296 0.072 12.100 0.100 153.2 1.7
5465 M-65 29785 3.0 192.0 1.9 1189.3 24.3 21.1 0.2 142.3 2.2 11.977 0.251 11.900 0.259 1472 2.6
5252  M-82 3746.6 1.9 7621 4.6 1530.9 16.6 66.6 0.4 136.7 1.3 15.749 0.188 15.638 0.185 1429 1.6
5464  M-86 38544 3.5 163.0 1.7 1512.2 20.6 13.8 0.1 138.4 2.1 15.518 0.238 15447 0.229 1446 2.4
5463  M-104 32674 6.9 3945 8.7 1540.9 o7.7 39.5 0.9 142.0 4.2 15.780 0.627 15.689 0.637 148.5 5.2
5462  M-119 26254 8.9 12784 147 2132 44.7 1593 19.1  151.1 6.6 22.267 0.520 20.999 0.808 160.3 8.0
5461  M-142 3231.1 11.3 7742.6 72.0 2785.6 68.7 784.2 7.8 138.3 5.7 30467 0911 29.809 0.929 1504 7.6
5460 M-151 3519.2 3.9 2467.8 15.5 2862.1 31.6 229.5 1.5 123.3 20 31931 0418 31.693 0.422 1349 2.9
5293  M-154 2946.0 24 420.5 2.5 3061.6 24.3 46.7 0.3 127.6 1.9 34373 0318 34.276 0.327 140.6 2.5
5459 M-155 3123.4 2.5 5924.6 29.6 2885.9 20.3 620.8 3.1 129.2 1.8  32.038 0.269 31.500 0.358 141.2 2.5
5458  M-157 3088.6 2.8 48655 2476 3553.0 291 5155 262 144.0 2.4 40.270 3.892 36.257 4.455 159.5 21
5457  M-178 2680.5 5.1 1806.7 19.9 3090.5 63.3 220.6 2.5 1279 53 34.741 0.851 34.511 0.860 141.0 7.0
5456 M-189 2694.9 6.2 634.8 32.9 3083.9 151.3 77.1 4.0 119.0 16.8 34.989 2122 34.869 2.112 1314 21
5453  M-193 2653.6 2.9 5664 3.4 3194.1 30.2 69.9 0.4 135.2 2.2 35.828 0.419 35.714 0408 149.5 3.1
5452 M-209 3630.8 2.2 9438.7 42.5 3619.9 24.0 850.8 3.9 124.2 1.4 42102 0.336 41.387 0.475 1396 2.7
5455 M-210 3343.2 3.3 5129.7 42.1 3627.3 38.3 502.2 4.1 128.4 2.1 42.006 0.534 41.562 0.578 1444 3.6
5451 M-215 2582.6 2.6 3330.7 16.7 4024.5 36.8 422.1 2.2 129.0 2.2 47.679  0.579  47.297 0.579 1475 3.7
5446 M-222 2543.0 3.1  205.7 1.0 4045.6 24.8 26.5 0.1 137.7 2.1 47512  0.392 47431 0.380 1574 3.0
5450  M-231 2420.0 1.7 13488 5.8 3970.3 24.0 182.4 0.8 1357 1.7 46.528 0.370 46.328 0.366 154.6 2.6
5448 M-245 2343.0 4.2 2401.9 16.8 3603.3 43.0 335.9 2.4 134.6 3.4 41.381 0.598 41.065 0.630 151.2 4.9
5447  M-259 31055 1.6 10489 44 4726.6 25.2 110.5 0.5 122.7 1.3 58.985 0.433 58.839 0425 1449 2.6
5449  M-267 3136.6 4.1 7721.0 494 4701.4 49.3 805.6 5.3 124.8 2.7 58.415 0.783 57.739 0.881 147.0 54
5445  M-270 2808.8 3.9 1268.4 10.3 4840.2 59.0 147.8 1.2 125.8 2.5 60.616 0.965 60.442 0.996 149.3 5.7
5294  M-296 3054.3 2.4 11370 84 5042.0 49.6 121.8 0.9 123.4 2.3 64.207 0.847 64.053 0.871 1479 5.2
5531  M-385 3304.9 2.3 9985.5 58.9 6340.8 65.5 988.8 5.9  110.2 1.7 90.747 1478 89.928 1.505 142.1 8.7
2473 M-142 3094.6 1.6 29864 2.6 2816.4 11.8 315.8 0.3 165.6  29.7 29.996 0.910 29.701 0.927 180.1 32
2475¢ M-189 27273 0.3 2723 0.6 3239.3 13.2 32.7 0.1 121.7 7.1  36.967 0.327 36.881 0.362 135.1 8.1

Tab. D.1: ?3°Th/U results for core MXL. 2¢* indicate uncertainty calculated by a Monte-Carlo approach, double
asterisk denote uncertainties obtained by first order Gaussian error propagation. Samples marked with G are
repetitions and were measured in Gif-sur-Yvette at LSCE; corresponding lab numbers are in-house at LSCE.
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lab# tag 28U 20 B2Th 20 BITh/?*U 20 2Th/?U 20 6%%1U,, 20 calage, 20* calage 20" 03'U; 20
HD (ppbw) (pptw) (x107%) (x1075) (%0) (ka) (ka BP) (%0)

5286 K-10 4111.2 4.1 11256 16.5 494.2 16.7 89.6 1.3 135.1 3.8 4.857 0.173 4.728 0.172 1369 3.9
5245 K-25 3443.1 3.4 100.1 0.6 1756.6 12.6 9.5 0.1 136.7 1.6 18.271 0.149 18.203 0.145 1439 1.8
5246  K-40 3981.3 4.0 184.6 0.5 1713.2 7.9 15.2 0.0 1349 19 17.812 0.100 17.741 0.095 141.8 2.0
5287  K-85 3109.5 2.2 341.9 3.7 1753.2 31.2 36.0 04 1326 1.7 18305 0.368 18.217 0.355 1396 2.4
5288 K-124 3419.7 1.7 451.4 1.5 1867.8 9.6 43.2 0.1 1329 1.3 19.605 0.110 19.512 0.114 1404 14
5469 K-130 2817.0 5.6 6067.8 47.3 1921.2 24.7 704.9 5.7 1385 3.6 20.106 0.281 19.507 0.397 146.4 4.2
5468 K-133 2748.9 2.7 62376 31.8 1965.7 15.5 742.6 39 1324 2.2 20743 0.182  20.111 0.340 140.1 2.8
5470 K-146 3210.5 3.5 455.4 3.5 1923.3 21.1 46.4 04 1271 24 20.360 0.254 20.263 0.250 134.5 2.8
5467 K-162 2962.4 3.9 222.7 2.1 1919.2 25.6 24.6 0.2 131.0 26 20.233 0.307 20.153 0.301 138.7 3.1
5289 K-180 3123.5 1.6 271.1 3.7 2459.7 38.9 28.4 0.4 1249 3.0 26.817 0.507 26.735 0.485 134.7 3.9
5530 K-208 2923.7 2.0 333.1 2.5 2442.2 27.2 37.3 0.3 126.8 1.6 26.550 0.343 26.460 0.336 136.7 2.3
5529  K-260 3154.0 3.2 1012.0 6.2 2496.2 19.1 105.0 0.6 1278 1.6 27.186 0.233 27.044 0.243 138.0 2.1
5290 K-286 3398.8 1.7 334.8 2.4 2537.0 23.6 32.2 0.2 1246 2.0 27.781 0.296  27.697 0.299 134.8 2.6
5291 K-322 3083.4 3.1 234.7 1.1 2501.3 18.4 24.9 0.1 131.0 22 27.159 0.232 27.080 0.235 1414 2.6
5248 K-358 3153.3 3.2 332.5 2.5 2523.8 28.9 34.5 0.3 1259 1.9 27580 0.354 27.493 0.362 136.1 2.7
5249 K-394 3233.1 3.2 407.2 1.8 2496.1 15.7 41.2 0.2 1305 1.6 27.108 0.201 27.017 0.198 1409 2.0
5136 C1-33 3860.9 5.4 494.1 8.9 886.3 27.8 41.9 0.7 1329 2.7 8.883 0.292 8791 0.291 136.2 3.1
5244 C1-33 3897.2 3.9 293.5 1.2 925.4 7.7 24.6 0.1 1401 1.6  9.229 0.078 9.150 0.082 143.7 1.7
5137 C1-42 3237.0 3.2 241.0 2.1 1064.6 15.6 24.4 0.2 1415 1.8 10.670 0.167 10.592 0.165 145.8 2.0
5182 Cl1-42a 3396.2 4.9 962.6 10.6 1061.5 28.2 92.8 1.0 139.1 2.7 10.661 0.302 10.530 0.300 143.3 3.1
4673 C1-295” 3172.3 3.2 13514 6.5 1808.2 18.2 139.4 0.7 1299 24 18.980 0.206 18.815 0.219 137.0 2.7
4679 C2-36”  6977.6 7.0 590.9 4.0 577.9 7.0 27.7 0.2 1324 19 5.715 0.070 5.635 0.072 1345 1.9
4502 C2-47” 38712 3.9 5103.1 24.0 15154 12.1 431.4 21 1374 2.1 15570  0.131 15.182 0.214 1434 24
5196 (C2-84 4611.0 4.7 11899.0 77.0 1875.2 26.9 844.5 5.0 1248 23 19.849 0.304 19.135 0.455 131.7 3.1
4504 C2-87 5982.1 6.0 10493.2 T77.6 1598.7 17.7 574.1 4.3 1294 2.1 16.619 0.2075 16.119 0.300 1354 2.6
5183 (C2-94 3807.6 10.3 10435.0 44.5 3313.1 22.5 896.9 4.5 1269 4.2 377751  0.342  37.003 0.492 1409 5.3
4872  L606 3439.4 34 53.5 0.5 3.8 0.3 5.1 0.1 1427 1.8 0.037 0.004  -0.026 0.004 142.7 1.8
4871  S612 31859 3.2 243.6 3.2 11.7 1.2 25.0 0.3 1443 23 0.112 0.011 0.034 0.015 144.3 2.3
5197 S1032 4647.7 4.6 1354.6 6.0 338.2 3.8 95.4 04 1436 1.6 3.276 0.038 3.143 0.052 1449 1.6

Tab. D.2: 23°Th/U results for core KGLC, C1, C2 and three single specimens of Lophelia pertusa and Solenosmilia variabilis.
20* indicate uncertainty calculated by a Monte-Carlo approach, double asterisk denote uncertainties obtained by first order

Gaussian error propagation. D: already measured 2°Th/U in my diploma thesis but C in this thesis, see Tab. E.2.



lab# 238U 20 Biy 20 232Th 20 BOTh 20
(ng) (fe) (ng) (fg)
4648 0.3017 0.0006 16.508 0.030 0.0385 0.0004 2.84 1.14
4680 0.1825 0.0004 9.984 0.020 0.0260 0.0005 4.02 2.61
4686 0.1823 0.0005 9.974 0.030 0.0342 0.0014 8.48 4.66
5253 0.0207 0.0001 1.131 0.007 0.0266 0.0004 3.51 1.55
5295 0.0432 0.0020 2.365 0.110 / / / /
5454 0.0467 0.0001 2.556 0.005 0.0360 0.0009 13.96 4.33
5471 0.0268 0.0002 1.470 0.010 0.0373 0.0006 9.04 2.08
0.1149 6.284 0.0331 6.97*

Tab. D.3: Measured ?*°Th/U blanks used for un-

derground correction. In red: used mean values.

160



Table: 4C

161



91

lab

lab
HD

tag

cal age
(ka BP)

lo

Fm

lo

DUC
(%60)

lo

1C age
(ka BP)

lo

AMC
(%0)

lo

90143
90144
90145
90146
14722
90147
90148
90149
14716
90150
90151
94254
94255
94256
94257
94258
90152
94259
94260
94261
94262
94263
94264
94265
94266

UCIAMS
UCIAMS
UCIAMS
UCIAMS
MAMS
UCIAMS
UCIAMS
UCIAMS
MAMS
UCIAMS
UCIAMS
UCIAMS
UCIAMS
UCIAMS
UCIAMS
UCIAMS
UCIAMS
UCIAMS
UCIAMS
UCIAMS
UCIAMS
UCIAMS
UCIAMS
UCIAMS
UCIAMS

5286
5245
5246
2288
2470
5290
5249
5250
2466
5251
5252
5464
5463
5462
5461
5460
9293
5459
2456
2453
2452
5451
5446
5450
5448

K-10
K-25
K-40
K-124
K-146
K-286
K-394
M-24
M-39
M-51
M-82
M-86
M-104
M-119
M-142
M-151
M-154
M-155
M-189
M-193
M-209
M-215
M-222
M-231
M-245

4.728
18.203
17.741
19.512
20.263
27.697
27.017
11.762
12.641
12.101
15.639
15.447
15.689
21.000
29.809
31.694
34.276
31.501
34.869
35.715
41.388
47.297
47.432
46.329
41.065

0.086
0.073
0.047
0.057
0.125
0.150
0.100
0.164
0.087
0.050
0.093
0.115
0.319
0.404
0.465
0.211
0.164
0.179
1.056
0.204
0.238
0.290
0.190
0.183
0.315

0.5447
0.1469
0.1421
0.1163
0.1143
0.0547
0.0528
0.2620
0.2534
0.2628
0.1833
0.1812
0.1814
0.0821
0.0371
0.0244
0.0249
0.0273
0.0194
0.0219
0.0082
0.0073
0.0086
0.0057
0.0093

0.0010
0.0007
0.0007
0.0007
0.0011
0.0006
0.0006
0.0008
0.0013
0.0008
0.0009
0.0009
0.0009
0.0009
0.0009
0.0009
0.0006
0.0009
0.0009
0.0009
0.0009
0.0009
0.0009
0.0009
0.0009

-455.3
-853.1
-857.9
-883.7
-885.7
-945.3
-947.2
-738.0
-746.6
-737.2
-816.7
-818.8
-818.6
-917.9
-962.9
-975.6
-975.1
-972.7
-980.6
-978.1
-991.8
-992.7
-991.4
-994.3
-990.7

1.0
0.7
0.7
0.7
1.1
0.6
0.6
0.8
1.3
0.8
0.9
0.9
0.9
0.9
0.9
0.9
0.6
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9

4.880
15.410
15.675
17.285
17.426
23.350
23.630
10.760
11.027
10.735
13.625
13.720
13.715
20.080
26.450
29.810
29.660
28.920
31.660
30.680
38.640
39.510
38.170
41.500
37.580

0.020
0.040
0.045
0.050
0.077
0.100
0.100
0.025
0.042
0.025
0.040
0.045
0.045
0.100
0.200
0.310
0.210
0.280
0.390
0.340
0.930
1.030
0.870
1.320
0.810

-34.9
328.2
215.2
232.1
325.9
558.8
386.6
87.0
169.4
136.0
216.3
174.5
210.1
41.7
368.3
131.2
575.3
234.6
319.3
651.0
217.5
1,233
1,681
950.5
336.1

10.2
13.7
9.7
114
23.8
34.3
24.0
21.8
13.5
7.7
14.5
17.2
46.7
53.9
85.8
52.1
51.4
50.6
1707
81.0
145.4
297
297
257.0
143.6

Tab. E.1:

14 results for cores KGLC and MXL
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# lab lab#  tag calage lo Fm lo DYC 10 MCage 1o AYMC 1o
HD (ka BP) (%o) (ka BP) (%o)
14721 MAMS 5136 C1-33 8.791 0.146 0.2554 0.0013 -744.6 1.3 10.965 0.042 -260.3 13.5
11673 MAMS 5244 (C1-33  9.150 0.041 0.2564 0.0015 -743.6 1.5 10.934 0.046 -224.5 6.0
11674 MAMS 4673 C1-295 18.814 0.110 0.1183 0.0012 -881.7 1.2 17.145 0.080 152.4 19.2
11671 MAMS 4679 (C2-36  5.635 0.036 0.2490 0.0014 -751.0 1.4 11.170 0.045 -507.8 3.5
14717 MAMS 4502 (C2-47 15.182 0.109 0.1521 0.0012 -847.9 1.2 15.130 0.061 -45.8 14.5
90153  UCIAMS 5183 (C2-94 37.003 0.246 0.0094 0.0006 -990.6 0.6 37.530 0.550 -177.6 62.0
14723 MAMS 5197 S1032  3.143 0.026 0.6027 0.0019 -397.3 1.9 4.068 0.025 -118.5 3.9
90154" UCIAMS 5197 S1032  3.143 0.026 0.6083 0.0014 -391.7 1.4 3.995 0.020 -110.5 3.6
35341 ETH 4872  L606  -0.026 0.019 0.9957 0.0024 -4.3 24 0.035 0.019 -7.5 2.4
15420%  MAMS 4872 L606 -0.026 0.019 1.0056 0.0027 5.6 2.7 -0.045 0.021 2.4 2.6
35342 ETH 4871  S612 0.034 0.008 0.9939 0.0024 -6.1 24 0.049 0.019 -2.1 2.5
154217 MAMS 4871 S612 0.034 0.008 0.9853 0.0026 -14.7 26 0.119 0.022 -10.8 2.8

Tab. E.2: “C results for cores C1, C2, and three single specimens of species L. pertusa and S. variabilis from Campos

Basin. R denote *C replicate measurements.
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material # lab Fm lo D“C 10 ™Cage 1o tag calage lo
(%o) (ka BP) (ka BP)
Calcite 94739 UCIAMS 0.0014 0.000047840 -998.6 0.0 52.910 0.280 / / /
Calcite 94740 UCIAMS 0.0011 0.000044512 -998.9 0.0 55.040 0.340 / / /
Calcite 94253 UCIAMS 0.0012 0.000035615 -998.8 0.0 53.910 0.240 / / /
Calcite 94267 UCIAMS 0.0010 0.000039756 -999.0 0.0 55.490 0.320 / / /
FIRI-C 94268 UCIAMS 0.1039 0.000527573 -896.1 0.5 18.190 0.045 / / /
IAEA C-2 94269 UCIAMS 0.4111 0.000908994 -588.9 0.9 7.140 0.020 / / /
Aragonite 94737 UCIAMS 0.0027 0.000073320 -997.3 0.1 47.620 0.230 M-385 89.928 0.773
Aragonite 94738 UCIAMS 0.0029 0.000082576 -997.1 0.1 46.970 0.230 M-385 89.928 0.773

Tab. E.3: Measured *C blanks used for background correction.
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lab#  tag cal age 20  M3Nd/Nd 20 ENd 20 mass
Gif (ka BP) (%00) spectrometer
2033  C1-33 8.791 0.291 0.511982 0.000015 -12.80 0.30 TIMS
3170  C1-42 10.592 0.165 0.512071 0.000031 -11.07 0.61 ICP-MS
2032 Cl1-54 11.687 0.111 0.511910 0.000051 -14.20 1.00 TIMS
3168 C1-54 11.687 0.111 0.511776 0.000051 -16.82 1.00 ICP-MS
3173 C1-113 14.385 0.311 0.511782 0.000025 -16.69 0.48 ICP-MS
31607 C1-163 16.513 0.156 0.511945 0.000028 -13.52 0.55 ICP-MS
n/a® (C1-163 16.513 0.156 0.511835 0.000018 -15.66 0.35 TIMS
20387 (C1-163 16.513 0.156 0.512014 0.000026 -12.18 0.50 ICP-MS
3166 C1-193 16.980 0.108 0.512026 0.000036 -11.94 0.69 ICP-MS
20397 C1-193 16.980 0.108 0.512121 0.000062 -10.08 1.20 ICP-MS
3163  C1-235 17.774  0.242 0.511923 0.000032 -13.95 0.62 ICP-MS
3161  C1-247 17.515 0.205 0.511895 0.000036 -14.50 0.71 ICP-MS
31657 C1-295 18.815 0.219 0.511923 0.000037 -13.94 0.72 ICP-MS
20347  C1-295 18.815 0.219 0.511946 0.000082 -13.50 1.60 TIMS
2045  C2-5 12.611 0.227 0.512125 0.000026 -10.00 0.50 ICP-MS
31717 C2-17 12.925 0.249 0.512096 0.000027 -10.57 0.52 ICP-MS
20407  C2-17 12.925 0.249 0.512100 0.000026 -10.49 0.50 ICP-MS
3175 (C2-36 5.635 0.072 0.512113 0.000025 -10.25 0.48 ICP-MS
2035  C2-44 old 16.348 0.273 0.512223 0.000041 -8.10 0.80 TIMS
2042  C2-44 new 10.520 0.127 0.512097 0.000031 -10.56 0.60 ICP-MS
2046  C2-58 27.868 0.465 0.512168 0.000026 -9.18 0.50 ICP-MS
2056  C2-59 27.068 0.298 0.512159 0.000026 -9.35 0.50 ICP-MS
2047  C2-63 25.950 0.285 0.512112 0.000026 -10.26 0.50 ICP-MS
n/a C2-68 new 23.515 0.250 0.512145 0.000015 -9.62 0.30 TIMS
3174  C2-94 37.003 0.492 0.512148 0.000051 -9.56 1.00 ICP-MS
3172 K-10 4.728 0.172 0.511964 0.000034 -13.15 0.66 ICP-MS
3154  K-25 18.203 0.145 0.511807 0.000025 -16.22 0.48 ICP-MS
3164 K-124 19.512 0.114 0.511961 0.000025 -13.20 0.48 ICP-MS
3162  K-146 20.263 0.250 0.512285 0.000038 -6.88 0.74 ICP-MS
3156  K-394 27.017 0.198 0.512312 0.000032 -6.37 0.62 ICP-MS
3159  M-51 12.100 0.100 0.512071 0.000028 -11.06 0.54 ICP-MS
3167  M-151 31.693 0.422 0.512161 0.000028 -9.30 0.54 ICP-MS
3157  M-154 34.276  0.327 0.512201 0.000046 -8.53 0.91 ICP-MS
3169  S1032 3.143  0.052 0.512219 0.000035 -8.17 0.69 ICP-MS
3155  L606 -0.026  0.004 0.511899 0.000051 -14.42 1.00 ICP-MS

Tab. F.1: Nd results from all four sediment cores and single specimens from the Campos
Basin. R denote Nd replicate measurements.
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Table: §°C, 6%0, XRD, ?3!Pa/?'Th,
trace elements (Mn, Nd)
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lab# tag lab# s3C lo* 5180 lo*
HD MARUM (%o, VPDB) <X (%o, VPDB) <

5136 C1-33 104555 -7.21 0.05 -1.07 0.07
5137  C1-42 104556 -5.18 0.05 0.49 0.07
4676 C1-54 104557 -8.37 0.05 -1.34 0.07
4674 C1-113 104558 -6.71 0.05 0.13 0.07
4647 C1-163 104559 -6.91 0.05 0.46 0.07
4645 (C1-193a 104560 -4.40 0.05 1.50 0.07
4645 C1-193b 104562 -4.79 0.05 1.33 0.07
4645 C1-193c 104563 -2.57 0.05 2.48 0.07
4646 C1-235 104564 -2.82 0.05 2.71 0.07
4699 C1-247 104565 -4.70 0.05 1.17 0.07
4673 C1-295 104566 -2.92 0.05 2.34 0.07
4499  C2-5 104567 -3.29 0.05 1.49 0.07
4413  C2-17 104569 -3.12 0.05 1.62 0.07
4681 (C2-44a 104571 -2.63 0.05 1.90 0.07
4501 C2-44b 104572 -3.77 0.05 2.30 0.07
4502  C2-47a 104573 -3.54 0.05 2.18 0.07
4502 C2-47b 104574 -0.73 0.05 3.26 0.07
4683 C2-55 104576 -5.42 0.05 0.83 0.07
4414 C2-58 104577 -6.40 0.05 1.57 0.07
4677 C2-59 104578 -4.31 0.05 2.13 0.07
4682 (C2-63 104579 -6.58 0.05 1.52 0.07
4684 (C2-65 104580 -5.07 0.05 1.92 0.07
4678  C2-68 104581 -6.75 0.05 1.24 0.07
4503 (C2-68a 104583 -6.41 0.05 1.48 0.07
4503 C2-68b 104584 -6.13 0.05 0.97 0.07
4685 (C2-74 104585 -6.80 0.05 0.78 0.07
4504  C2-87 104655 -7.28 0.05 0.03 0.07

Tab. G.1: Measured 6'3C and 630 isotopes on L. pertusa
corals from off Brazil. Asterisk denotes long term reproducibility
of the in-house carbonate standard.
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lab# tag recog. mass fraction 1o further mass fraction lo

HD minerals (wt%) candidates (wt%)

5136 C1-33 aragonite 100 1 / / /
4679 (C2-36  aragonite 100 1 / / /
4684 (C2-65 aragonite 100 1 / / /
4678 (C2-68 aragonite 100 1 / / /
5183 (C2-94 aragonite 100 1 / / /
5470 K-146 aragonite 100 1 / / /
5290 K-286 aragonite 100 1 / / /
5250 M-24  aragonite 100 1 / / /
5251 M-51  aragonite 100 1 / / /
5460 M-151 aragonite 98 1 anatase 1 1
5293 M-154 aragonite 97 1 monazite-(Ce) 3 1
5451 M-215 aragonite 100 1 / / /
5446 M-222 aragonite 96 1 quartz low, anatase 4 1

Tab. G.2: XRD measurements on thirteen coral samples of all four cores showing no signs
of calcite.

lab# tag material cal age (3'Pa/*Th),s, 20
HD (ka BP approx.)

620 C1-5 sediment 0 0.079 0.132
622 C1-47  sediment 10 0.078 0.003
624  C1-70  sediment 15 0.084 0.007
625  C1-150 sediment 16 0.079 0.006
626 C1-177 sediment 17 0.077 0.007
627  C1-230 sediment 18 0.094 0.028
628  C1-280 sediment 19 0.070 0.012
629 C2-7 sediment 8 0.088 0.006
621 C2-25  sediment 8.6 0.077 0.002
630 C2-35  sediment 11 0.080 0.009

Tab. G.3: Sedimentary (**'Pa/*%Th),s results from cores C1 and C2. All
calendar ages are rough estimates, interpolated from the coral’s age-depth-
relationships of cores C1 and C2 (see Fig. 6.9 and 6.10).
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material lab#  tag cal age M3Nd /M4Nd 20 ENd 20

HD (ka BP approx.) (%00)
sediment J191 C1-5 core top 0.511907 0.000010 -14.26 0.20
sediment J194 C1-150 16 0.511758 0.000011 -17.16 0.21
sediment J195 (C1-230 18 0.511769 0.000012 -16.94 0.24

Tab. G.4: Due to an amplifier problem during the data aquisition 20 uncertainties
can vary by up to one enq unit (J. Lippold 2010, pers. comm.). Results must be
regarded with caution.

lab# tag Mn/Ca  Nd/Ca Nd

Gif (pmol/mol)  (nmol/mol) (ppbw)

3160 C1-163 7.54 34.24 49.34
3160 C1-163 7.37 34.51 49.73
3166 C1-193 1.78 8.61 12.41
3166 C1-193 1.79 7.80 11.24
3175  C2-36 1.95 32.91 47.43
3174 C2-94 1.14 205.27  295.82
3174 C2-94 1.12 207.31  298.76

3159 M-51 0.54 76.92  110.85
3159 M-51 0.48 76.14  109.73
3157  M-154 2.66 5.23 7.54
3164 K-124 0.85 6.08 8.76
3164 K-124 0.78 5.99 8.63
3162 K-146 0.72 5.36 7.72
3156 K-394 1.86 6.86 9.89
3156 K-394 1.92 6.76 9.74
3155 L606 0.10 4.39 6.33

Tab. G.5: Trace element measurements on some coral
samples from all four cores. Note, many entries are repli-
cate measurements. Internal reproducibility for Nd on
the JCp-1 standard was five percent (20) for Nd and Mn
and one percent for Ca.
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