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1. Introduction The concept of dynamic decision making was developed

by Dorner (1980, 1986) who proposed that situations in

General intelligence is one of the most successful psycho-
logical constructs. Since Spearman's (1904) early investiga-
tions, there is a wealth of evidence for the reliability, stability,
and validity of intelligence measures (Carroll, 1993). Further-
more, general intelligence is a powerful predictor of success in
many domains of real life (Ng, Eby, Sorensen, & Feldman, 2005;
Salgado et al, 2003; Schmidt & Hunter, 2004). Beside its
undisputed usefulness, some researchers have suggested to use
additional constructs for characterizing individuals' cognitive
ability such as dynamic decision making and implicit learning
(Dorner, 1980; Mackintosh, 1998).
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real life are complex and solving problems in real life
requires managing complex information. He criticized that
standard measures of general intelligence only assess
whether individuals perform accurately and quickly in
rather simple tasks but not whether they show intelligent
behavior in complex tasks. Therefore, he suggested to
measure performance in computer based scenarios that
simulate complex, connected, dynamic, and non-transparent
environments. Further on, he hypothesized that individual
differences in dynamic decision making are unrelated to
general intelligence but are substantially related to profes-
sional success.

Mackintosh (1998) suggested to consider another con-
struct. He proposed that there are two independent mental
systems: an explicit, hypothesis generating and testing
system and an implicit, associative learning system. In
particular, the explicit learning system is necessary for
discovering regularities with intention and awareness (like
in a numerical series task). The implicit learning system, on
the other hand, detects contingencies without awareness or
intention (like judging whether a sentence is grammatically
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right or wrong without being able to report the respective
grammatical rule). Mackintosh suggested that standard
intelligence tests capture individual differences in the explicit
system but not individual differences in the implicit learning
system. Therefore, he suggested to take individual differences
in implicit learning into account. He hypothesized that these
differences are independent from general intelligence mea-
sures but are nevertheless important predictors of educa-
tional and professional success.

Dorner and Mackintosh's proposals raise two interesting
questions. Are there reliable individual differences in dynam-
ic decision making and implicit learning which are indepen-
dent from general intelligence? Can these differences predict
real life performance beyond 1Q? Investigating these issues
will be the aim of the present study.

1.1. Previous findings

1.1.1. Dynamic decision making

Dorner's (1980, 1986) critique of standard intelligence
tests laid the foundation for a field of research, which has been
called dynamic decision making (Gonzalez, Vanyukov, & Martin,
2005) or complex problem solving (Funke, 2010). Over the years,
several dynamic decision making tasks have been developed.
For example, the Tailorshop scenario (Funke, 1983) simulates a
fictional company where the participants have to control many
variables like the number of workers or the costs for advertising
to maximize their company value. Other tasks simulate a
forestry (Wagener, 2001), a power plant (Wallach, 1998), or a
space flight (Wirth & Funke, 2005) where the participants have
to control several variables to reach a given goal state. Recently,
dynamic decision making tasks have also been included in the
Programme for International Student Assessment (PISA; Wirth
& Klieme, 2003).

Over the years, there have been many studies investigat-
ing the relation between dynamic decision making and
general intelligence. Whereas several studies found non-
significant or only small correlations (for an overview see
Kluwe, Misiak, & Haider, 1991), other studies reported
significant standardized path coefficients between 3=0.38
and p=0.54 from latent intelligence to latent dynamic
decision making variables (Kroner, Plass, & Leutner, 2005;
Rigas, Carling, & Brehmer, 2002; Wittmann & Hattrup, 2004).
One study even found a correlation between a latent
intelligence and a latent dynamic decision making variable
of r=0.84 (Wirth & Klieme, 2003).

There are only two studies that investigated the predictive
validity of dynamic decision making measures. Wagener and
Wittmann (2002) assessed a sample of N=235 trainees and
reported correlations between r=0.16 and r=0.40 between
the performance in a dynamic decision making task and the
performance in different assessment center tasks. However,
the study did not report whether these relationships were
incremental or due to an overlap between dynamic decision
making and general intelligence. Kersting (2001) reported a
correlation of r=0.37 between the performance in a dynamic
decision making task and supervisor ratings in a sample of
N=73 policemen. He further reported that this correlation
remained significant after controlling for individual differ-
ences in general intelligence, r = 0.29, which points towards

the incremental predictive validity of this dynamic decision
making measure.

Taken together, these findings draw a rather heteroge-
neous picture of the relation between dynamic decision
making and general intelligence and there is only preliminary
evidence for the predictive validity of dynamic decision
making variables.

1.1.2. Implicit learning

Mackintosh (1998) suggested to use artificial grammar
learning tasks (Reber, 1967) to measure performance
differences in implicit learning. In such a task, the participants
are asked to learn a list of apparently arbitrary letter strings
(like WNSNXS). Afterwards, they are told that these strings
were constructed according to a complex rule system (a
grammar) and they are asked to judge newly presented
strings as grammatical or non-grammatical. Typically, the
participants show above chance performance but are not able
to report the grammar rules. Therefore, Reber (1967)
suggested that the participants learned the grammar implic-
itly. Although Reber's interpretation released a long and
fertile discussion about implicit learning processes, there
have been only a few studies investigating the relation
between performance in artificial grammar learning tasks
and general intelligence.

Reber, Walkenfeld, and Hernstadt (1991) reported a
correlation of r=0.25 between the performance in an
artificial grammar learning task and IQ, and Gebauer and
Mackintosh (2007) reported respective correlations between
r=—0.03 and r=0.17 depending on the task and the
instruction. To our knowledge, there is no published study
investigating the relation between educational or profession-
al success and the performance in an artificial grammar
learning task. Thus, there is a paucity of evidence on the
relation between implicit learning and general intelligence as
well as on the relation between implicit learning and success
in real life.

1.2. Some psychometric considerations

Previous studies that investigated the relation between
general intelligence, dynamic decision making, and implicit
learning treated the performance measures as trait-like
variables. A trait may be defined as a variable that is stable
over several measurement occasions, consistent across
different situations, and consistent across different
methods. However, the variance of a performance measure
may capture additional factors beyond individual differ-
ences in a trait.

First, a performance measure may also be influenced by
the specific measurement situation even in standardized
experiments. For example, one person may be well rested
whereas another person may already have worked several
hours before testing. One person may be motivated to show
maximum performance whereas another person may have
gotten a stinging rebuke by his or her supervisor that day and
may not be motivated to show performance at all. Because
these effects may contribute unwanted variance, it may be
beneficial to take this occasion specificity of performance
variables into account.
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Second, a performance measure may be influenced by
the specific method that is used for the assessment. Hence,
there may be individual differences in a performance
measurement which are triggered by the method. For
example, a verbal intelligence test may capture individual
differences in general intelligence as well as individual
differences in speech comprehension whereas a figural
intelligence test may capture individual differences in
general intelligence and visual thinking. Thus, individual
differences in speech comprehension or visual thinking are
method specific because they can only be assessed with
verbal or figural test material. Similarly, a particular
dynamic decision making task may measure performance
differences, which are specific for this particular task but not
for dynamic decision making in general.

Third, a performance measure may be influenced by
unsystematic measurement error. For example, instructions
may be ambiguous or persons may accidently make mistakes,
which may result in a low reliability of performance
measures. Because these effects may contribute unwanted
variance, it seems worthwhile to investigate these factors
with respect to dynamic decision making and implicit
learning variables in greater detail.

These considerations have been formalized in Steyer et
al.'s latent state-trait theory (Steyer, Schmitt, & Eid, 1999). In
a nutshell, latent state-trait theory proposes that the
measurement i of a variable Y can be decomposed into a
trait §;, a state residual ¢; a method residual ;, and an
unsystematic error residual g; thus Y;=¢§;4+ ¢ +m;+¢;
Given the independence of these factors (Steyer et al.,
1999), the variance of this measurement can be decomposed
as 02(Y;) = 02(&;) + 02(&;) + 02(m;) + 0%(¢;), and the factor
variances may be estimated with a structural equation
model as shown in Fig. 1. As can be seen in this figure, the
latent trait factor is defined as a variable that is consistent
across several measurement occasions and methods, where-
as the latent state residual and the method factor are specific
for the individual measurement occasion and the assess-

Fig. 1. Latent state-trait structural equation model. Y;; = variable at
measurement occasion 1 with method 1, Y;, = variable at measurement
occasion 1 with method 2, Y,; = variable at measurement occasion 2 with
method 1, Y5, = variable at measurement occasion 2 with method 2, § = trait
variable, §; = state residual 1, §, = state residual 2, 1); = method residual 1,1, =
method residual 2, &; = error 1, &, = error 2, €; = error 3, & = error 4.

ment method, respectively. Hence, these models allow to
separate the different contributions of the trait, the mea-
surement occasion, and the measurement method to the
manifest variables.

There have been many applications of latent state-trait
models in different domains of personality research, which
demonstrated substantial effects of the measurement
occasion or the method on behavioral variables (e.g., Eid,
Notz, Steyer, & Schwenkmezger, 1994; Schmitt & Steyer,
1993; Steyer, Schwenkmezger, & Auer, 1990; Yasuda,
Lawrenz, Whitlock, Lubin, & Lei, 2004; Ziegler, Ehrlenspiel,
& Brand, 2009) and physiological variables (e.g., Hagemann,
Hewig, Seifert, Naumann, & Bartussek, 2005; Hermes et al.,
2009). However, there have been no applications of latent
state-trait models on performance variables yet, even if
some findings suggest that it may be instructive to consider
the occasion specificity and method specificity of these
variables.

For example, in some studies the participants completed
the same dynamic decision making task for several times
(Siif3, Kersting, & Oberauer, 1993; Wittmann & Hattrup, 2004)
and the performance between subsequent task correlated
only moderately (between r=0.37 and r=0.62). This points
either towards a low reliability or towards a substantial
occasion specificity of the variables. Moreover, Wirth and
Klieme (2003) reported structural equation models, which
implied a correlation of r=0.33 between two dynamic
decision making tasks (r=0.47 when corrected for attenu-
ation) and Gebauer and Mackintosh (2007) reported a
correlation of r=0.15 between two artificial grammar
learning task (r=0.21 when corrected for attenuation).
These findings suggest a substantial method specificity of
performance measures. Therefore, a further aim of the
present study was to investigate the occasion specificity and
the method specificity of dynamic decision making and
implicit learning variables.

1.3. The present study

The present study investigated the psychometric proper-
ties of general intelligence, dynamic decision making, and
implicit learning measures within the framework of latent
state-trait theory. Therefore, each construct was measured
with two methods at two measurement occasions. A further
scope of this study was the relation between the respective
trait variables and real life performance. We expected that
general intelligence is a powerful predictor of professional
success and we further expected that there are individual
differences beyond IQ that are also able to predict profes-
sional success.

2. Method
2.1. Participants

There were N =173 employees (113 females, 47 males, 13
not reported) completing the first measurement occasion and
N=151 completing the second measurement occasion. The
participants were recruited via newspaper announcement
from different branches and different companies around
Heidelberg. The participants' jobs were rated according to the
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International Standard Classification of Occupations (ISCO-88
COM). 6% rated themselves as legislators, senior officials, and
managers, 25% as professionals, 11% as technical and
associate professionals, 14% as clerks, 40% as service workers
and shop and market sales workers, 1% as craft and related
trade workers, 1% as plant and machine operators and
assemblers, and 1% as elementary occupations. The partici-
pants' mean age was M=43.34 (SD=11.22).

2.2. Measures

2.2.1. Advanced progressive matrices (APM)

The APM (Raven, Court, & Raven, 1994) were used as
an indicator for participants' general intelligence. A
computer adapted version of the test was administered.
According to the test manual, the number of solved items
of the second set was taken as a performance indicator.
These raw scores were transformed to z-scores for further
analysis, because the APM and the Berlin Intelligence
Structure Test were scaled differently.

2.2.2. Berlin intelligence structure test (BIS)

The short version of the BIS (Jdger, Siif3, & Beauducel,
1997) was used as a second indicator of general intelli-
gence. The BIS consists of a variety of tasks like an
analogical reasoning task, a visual memory task, and a
numerical series task (for an English description, see Siif3,
Oberauer, Wittmann, Wilhelm, & Schulze, 2002). The test
was administered and the raw scores were computed
according to the test manual. We did not compute IQ
scores because there is no adult normative sample for the
BIS. For further analysis the raw scores were transformed
to z-scores.

2.2.3. Artificial grammar learning tasks

Implicit learning was measured with two artificial
grammar learning tasks (Reber, 1967). The procedure and
the stimuli were adopted from Gebauer and Mackintosh
(2007). The artificial grammar learning tasks consisted of a
learning phase and a testing phase. In the learning phase, 30
letter strings were presented and the participants were
instructed to memorize them. Each string was presented
individually for 3 s on a 17 in. screen of a personal computer
(e.g., WNSNXS). The participants were asked to repeat the
strings correctly by pressing the respective letters on the
keyboard. When a string was repeated correctly, the feedback
“correct” was given and the next string occurred. When a
string was repeated incorrectly, the feedback “false” was
given and the string was displayed again until repeated
correctly. After a participant repeated ten strings correctly,
these ten strings were simultaneously displayed for 90 s on
the screen and the participant was asked to repeat them
silently. After a participant repeated all 30 strings correctly
the learning phase was finished and the participant was
informed that all strings in the learning phase were
constructed according to a complex rule system. In the testing
phase, 80 new strings were presented (see Appendix A).
There were 40 grammatical strings that were constructed
according to the same rule system as the strings in the
learning phase (e.g., WNSWWW). In addition, there were 40
non-grammatical strings that contained one letter at a

position that violated the rule system (e.g., NTSWWN). The
participants were instructed to judge the letter strings as
grammatical or non-grammatical. To judge a string as
grammatical, the participants had to press the A-key of the
keyboard, to judge a string as non-grammatical, the L-key.
The order of presentation of the strings was fixed across the
participants in a random order. The percentage of correct
judgments in the testing phase was taken as the performance
indicator. The stimuli for the first artificial grammar learning
task were constructed according to Fig. 2. The stimuli for the
second artificial grammar learning task were constructed
according to Fig. 3.

2.2.4. Tailorshop

The Tailorshop simulation (Funke, 1983) was used as a
dynamic decision making task. The Tailorshop is a computer
based scenario and requests the participants to lead a fictional
company which produces and sells shirts for twelve simulat-
ed months. Several variables can be manipulated like the
number of workers, the expenses for advertising etc. (see
Fig. 4). The state of a variable in a given month influences the
state of the same and other variables in the following month
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Fig. 2. Grammar 1 that was used in the first artificial grammar learning task.

Fig. 3. Grammar 2 that was used in the second artificial grammar learning
task.
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but the participants do not know how the variables are
connected (for a more detailed description see Funke, 1983,
2010). The participants completed a training phase, a
knowledge test, and a control phase. In the training phase
the participants controlled the system for six simulated
months and were instructed to find out as much as possible
about the scenario. The knowledge test consisted of twelve
questions that measured how much the participants learned
about the Tailorshop so far. In the control phase the
participants were instructed to maximize their company
value during twelve simulated months. For the purpose of the
present study only data from the control phase were
analyzed. The percentage of months with an increase in the
company value between the second and the twelfth month
was taken as the performance indicator, because Danner et al.
(2011) have shown that this is a reliable and valid
performance indicator.

2.2.5. Heidelberg finite state automaton (HFA)

The HFA (Wirth & Funke, 2005) was taken as a second
indicator for dynamic decision making. The scenario is
computer based and simulates a space flight where the
participants can control a space ship and a vehicle with a user
interface (see Fig. 5). The scenario consists of a training phase,
a knowledge test, and a control phase. During the 15 minute
training phase the participants were instructed to find out
how to control the space ship and the vehicle. The knowledge
test consists of 16 items and measures how much the
participants have learned about the system so far. The control
phase consists of 22 items where a target state is given which
the participants have to reach by controlling the system (e.g.,
landing the space ship on a specified planet). For the purpose
of the present study, only data from the control phase were
analyzed. The percentage of correctly solved items was taken
as the performance indicator.

2.2.6. Professional success
The participants’ professional success was measured
with two instruments. Objective professional success was

Variable Value Planning
Account status 165775

Number of shirts sold 407

Raw material price 399

Shirts in stock 81

Workers 50 s [ ]
Workers 100 o [ ]

snops N —

Worker satisfaction % 57.7

SlSiSiSISISISISISISIS

Loss of production % 00

measured by the participants' income (thirteen categories),
self-rated social status (seven categories), and the partici-
pants' highest educational attainment (nine categories).
To adjust for different scaling, the three variables were
z-transformed (M =0, SD=1) for further analysis. In
addition, professional success was measured by supervisor
ratings with five items (e.g., “The employee demonstrates
competence in all job-related tasks”) on a six-point Likert
scale.

2.3. Procedure

There were two measurement occasions. The first mea-
surement occasion started in July 2009 (till September 2009)
and consisted of session 1 and session 2. Both sessions took
place within one week for each participant. The second
measurement occasion started in December 2009 (till
February 2010) and consisted of session 3 and session 4,
which also took place within one week. The participants were
assessed in small groups of not more than four persons. Each
session took approximately 2.5 h.

The participants completed the same tasks at both
measurement occasions. During session 1 (and session 3)
the participants completed an artificial grammar learning
task with grammar 1, the APM, and the Heidelberg Finite
State Automaton. During session 2 (and session 4), the
participants completed an artificial grammar learning task
with grammar 2, the short version of the BIS, and the
Tailorshop simulation. After the first session, each partici-
pant received an envelope with a questionnaire for his or
her supervisor. During the third session, the participants
additionally completed a questionnaire about their profes-
sional success.

2.4. Statistical analysis
To investigate the relations between the variables, we

used structural equation models. The parameters of the
models were estimated using the maximum likelihood

Round 1 of 12

Variable Value Planning
Company value 250685
Demand 767

Raw material in stock w [ ]
Machines 50 w [ ]
Machines 100 o [ 1]
Repair & service costs 1200 [
Social costs per worker so [ ]
Advertising costs 2800 |:|
Business location suburb | subwb v
Machine damage % 589

S SISISISISISISISIS)

Fig. 4. Screenshot of the graphical user interface of the Tailorshop (labels translated).
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Fig. 5. Screenshot of the graphical user interface of the Heidelberg Finite State Automaton (labels translated).

algorithm implemented in Amos 18 (Arbuckle, 2006). In
a first step, we investigated latent state-trait measurement
models separately for intelligence, dynamic decision
making, and implicit learning. In a second step, we
investigated the correlation between the latent trait vari-
ables. In a third step, we performed a latent regression
analysis to investigate relations between the constructs in
greater detail.

3. Results
3.1. Raw scores

The raw scores of the measurements are reported in
Table 1. The number of solved items in the Advanced
Progressive Matrices at the first measurement occasion was
M=21.64 (SD=5.80), which corresponds to an IQ of
M=100.62 (SD=22.55). There are no normative samples
for the Berlin Intelligence Structure Test, the Tailorshop, the
Heidelberg Finite State Automaton, or the artificial grammar
learning tasks. However, the present scores are similar to
previous results. The mean score of the BIS was M =96.30
(SD=6.21) at the first measurement occasion and
M=99.21 (SD=6.38) at the second measurement occasion.
According to Jager et al. (1997), a mean score of M=100
corresponds to an average performance. In the present
study, the participants solved M=10.79 (SD=5.80) HFA
items at the first measurement occasion and M=13.44
(SD=15.95) HFA items at the second measurement occasion.
This result is similar to Wirth and Klieme (2003), who
reported that their participants solved M =11 HFA items on
average. The judgment accuracy in the artificial grammar
learning tasks varied between M=61.58 (SD=7.11) and
M=63.90 (SD=7.24), which corresponds to the findings of
Gebauer and Mackintosh, who reported mean accuracies
between M=59.16 (SD=28.59) and M=69.93 (SD=7.52)

for the same artificial grammar learning tasks that were used
in the present study.

3.2. Measurement models

We used a basic latent state-trait model (Steyer et al.,
1999) with a state residual ¢ for each measurement occasion
and a method factor m for each instrument to control for
effects of the measurement occasion and method effects (see
Fig. 1). All path coefficients were fixed to one and the
variances of all latent variables were estimated. If a first
estimation revealed negative or non-significant variances,
then these variances were fixed to zero and the model was
estimated again.

3.2.1. Intelligence
A first analysis of the basic model revealed a good model fit,
¥2(1)=0.30, p=0.569, RMSEA=0.00, CFI=1.00. However,

Table 1
Mean and standard deviation of raw scores.
Measurement Measurement
occasion 1 occasion 2
Task M N M SD
APM 21.64 5.80 22,94 7.02
BIS 96.30 6.21 99.21 6.38
Tailorshop 2.68 3.21 3.15 3.77
HFA 10.79 5.80 13.44 5.95
AGL1 61.58 7.11 62.83 6.87
AGL2 63.90 7.24 62.20 7.70

Note. APM = number of solved items in the Advanced Progressive Matrices,
BIS = scores in Berlin Intelligence Structure Test, Tailorshop = number of
months with an increase in the company value, HFA = number of items
solved in the Heidelberg Finite State Automaton, AGL1 = percent of correct
judgments in the artificial grammar learning task with grammar 1, AGL2 =
percent of correct judgments in the artificial grammar learning task with
grammar 2.
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the estimated variance for {; was negative (§;=—14.14,
p=0.016), and the estimated variance for {, was not significant
(£, =9.60, p=0.125). Therefore, these parameters were set to
zero and the model was estimated again. The modified model
fitted the data well, 2(3)=5.59, p=0.133, RMSEA=0.07,
CFI=1.00, and the difference in the fit of the models was not
significant, Ay2(2)=4.29, p=0.117. Therefore, this model
could be accepted. The estimated model parameters are
reported in Table 2.

3.2.2. Dynamic decision making

The basic latent state-trait model fitted well with the data,
¥2(1)=0.9, p=0.335, RMSEA=0.00, CFI=1.00. However,
the latent state residuals were negative ({;= —49.20,
p=0.183) or non-significant ({; =48.30, p=0.257). The
modified model without latent state residuals also fitted
well with the data, ¥2(3)=3.25, p=0.355, RMSEA=0.02,
CFI=1.00; Ay2(2)=2.35, p=0.309. Thus, this model could
be accepted. The estimated model parameters are presented
in Table 2.

3.2.3. Implicit learning

The basic latent state-trait model fitted well with the data,
x2(1)=0.13, p=0.719, RMSEA = 0.00, CFI=1.00. However,
the variances of the latent state residual and the latent
method variables were non-significant ({; =6.57, p=0.128;
=235, p=0.585; 1m;=—0.06, p=0.988; 1, =—4.96,
p=0.250). Therefore, these variances were set to zero. This
modified model fitted the data well, y2(5)=3.19, p=0.671,
RMSEA =0.00, CFI=1.00; Ay2(4) =3.06, p=0.548, and this
model was accepted. The estimated model parameters are
presented in Table 2.

3.2.4. LST parameters

Based on these estimates, several latent state-trait
parameters may be computed such as coefficients of
reliability, trait-specificity (also referred to as consisten-
cy), occasion-specificity, and method-specificity. These
parameters have a range between zero and one, and a
greater value indicates a greater specificity. The reliability
coefficient of a measurement i reveals how great the
proportion of systematic variance in this measurement is.
It is computed as [02(&;) + 02(g;) +02(m;)]/02(Y;). The

Table 2
Estimated variances for measurement models (p-values in brackets).

Intelligence Dynamic decision making Implicit learning
€ 0.73 (<0.001) 317.12 (<0.001) 14.87 (<0.001)
&1 0 (fixed) 0 (fixed) 0 (fixed)

[ 0 (fixed) 0 (fixed) 0 (fixed)
M 0.14 (0.015) 144.66 (0.046) 0 (fixed)
n,  0.24 (<0.001) 257.37 (<0.001) 0 (fixed)
€ 0.14 (<0.001)  425.17 (<0.001) 35.92 (<0.001)
€ 0.18 (<0.001) 637.27 (<0.001) 33.38 (<0.001)
€3 0.11 (<0.001) 146.00 (<0.001) 35.29 (<0.001)
€4 0.06 (0.014) 145.21 (<0.001) 43.83 (<0.001)

trait-specificity coefficient of a measurement i reveals
how great the proportion of trait differences in a mea-
surement is. It may be computed as 02%(§;)/0?(Y;). The
occasion-specificity coefficient of a measurement i indi-
cates the effects of the situation and the interaction
between the situation and the person on the measure-
ment. It may be computed as 02(¢;)/02(Y;). The method-
specificity coefficient of a measurement i reveals how
great the proportion of individual differences is due to the
method (e.g., task) used. This coefficient is computed as
o2(n;)/02(Yy).

These parameters are presented in Table 3. As can
be seen, the general intelligence measurements revealed
great reliabilities, great trait-specificities, and low method-
specificities. The Heidelberg Finite State Automaton mea-
surements also showed great reliabilities, but smaller
trait-specificities and greater method-specificities. The
Tailorshop measurements revealed small reliabilities and
small trait-specificities. All implicit learning measurements
revealed very small reliabilities and trait-specificities.
Since all measurement models fitted well without state
residuals, the estimated occasion-specificity was zero for
all measurements.

3.2.4. Professional success

Objective professional success was measured with three
indicators at session 3. A measurement model with one
latent success variable, equal path coefficients (B =1), and
a latent error variable for each manifest variable was
specified. The model fitted the data well, ¥2(2)=2.46,
p=0.293, RMSEA = 0.04, CFI=0.98. Therefore, this model
was accepted. The composite reliability (Raykov, 1997) of
the items' mean score was 0.71. The participants' supervisor
ratings were measured with a five item questionnaire. A
measurement model with one latent success variable, equal
path coefficients (3=1), and a latent error variable for
each manifest variable fitted the data well, ¥2(9)=11.93,
p=0.217, RMSEA = 0.04, CFI=0.99. Thus, this model was
accepted. The composite reliability of the items' mean score
was 0.95.

Table 3
Reliability, trait- and method-specificity of measurements.

Task Measurement  Reliability ~ Trait- Method-
occasion specificity specificity
APM 1 0.86 0.72 0.14
APM 2 0.83 0.70 0.13
BIS 1 0.90 0.67 0.22
BIS 2 0.95 0.71 0.24
Tailorshop 1 0.52 0.36 0.16
Tailorshop 2 0.42 0.29 0.13
HFA 1 0.80 0.44 0.36
HFA 2 0.80 044 0.36
AGL1 1 0.29 0.29 0.00
AGL1 2 0.31 0.31 0.00
AGL2 1 0.30 0.30 0.00
AGL2 2 0.25 0.25 0.00

Note. € = trait variable, §; = state residual 1, {; = state residual 2, n; =
method residual 1, n, = method residual 2, &; = error 1, &, = error 2, &3 =
error 3, ¢4 = error 4. The different scaling of the variables affects the
magnitude of the variances estimates.

Note. APM = Advances Progressive Matrices, BIS = Berlin Intelligence
Structure Test, HFA = Heidelberg Finite State Automaton, AGL1 = artificial
grammar learning task with grammar 1, AGL2 = artificial grammar learning
task with grammar 2.
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3.3. Relations between intelligence, dynamic decision making,
implicit learning, and professional success

We specified an omnibus model, which simultaneously
tested all measurement models described above and allowed
free correlations between the latent trait variables and the
latent professional success variables. The specified model
revealed a good model fit, ¥2(174)=197.74, p=0.105,
RMSEA =0.03, CFI=0.98 and thus was accepted. The
correlations between the latent variables are shown in
Table 4. As can be seen, there were significant and substantial
correlations between all performance variables. The greatest
correlation was between intelligence and dynamic decision
making, r=0.86, p<0.001. There was also a correlation of
r=0.78, p<0.001 between objective professional success and
general intelligence. There were further substantial correla-
tions between objective professional success and dynamic
decision making, r=0.52, p<0.001, and between objective
professional success and implicit learning, r=0.31, p =0.030.
The only significant correlation with supervisor ratings was
the correlation with dynamic decision making, r=0.25,
p=0.021.

3.4. Prediction of objective professional success

To investigate the relation between performance variables
and objective professional success in greater detail, we
specified a latent regression model according to Fig. 6. As
can be seen, dynamic decision making, implicit learning, and
professional success were regressed on intelligence. The
residuals of this regression are the proportions of trait
variances which are independent from general intelligence.
The dynamic decision making and implicit learning residuals
were used to predict the proportion of construct variance in
objective professional success that could not be explained by
general intelligence.

The specified model revealed a good model fit, y2(95) =
114.44, p=0.085, RMSEA =0.03, CFI=0.98. The standard-
ized path coefficients are shown in Fig. 6. As can be seen,
dynamic decision making as well as implicit learning
revealed trait variances, which were independent from
general intelligence. In addition, general intelligence was
the only significant predictor of objective professional
success. Neither the path coefficient from the residual
dynamic decision variable to the residual professional
success variable, nor the path coefficient from the residual
implicit learning variable to the residual professional success
variable was significant. Therefore, these path coefficients
were set to zero and the model was estimated again. The
modified model also revealed a good model fit, ¥2(97) =

Table 4

Correlation between latent success and latent trait variables (p-values in brackets).

052 (0.014)

0,30 (0143)

086
(<0001)

0.54

@.14)
078 (<0.001)
OPS

032
(0.002)
0.07 (0.583)

095 (<0.001)

Fig. 6. Latent Regression Analysis with standardized path coefficients (p-values
in brackets). IQ = latent general intelligence variable, DDM = latent dynamic
decision making variable, IL = latent implicit learning variable, OPS = latent
objective professional success variable, DDM,.s = latent residual for dynamic
decision making, IL..s = latent residual for implicit learning, OPS,.s = latent
residual for professional success.

117.62, p=0.076, RMSEA = 0.04, CFI=0.98; Ay2(2) =3.18,
p=0.204. Thus, this model was accepted.

3.5. Prediction of supervisor ratings

The relations between general intelligence, dynamic
decision making, implicit learning, and supervisor ratings
were investigated analogously to the analysis described
above. The specified model fitted the data well, y2(126) =
125.86, p=0.487, RMSEA=0.00, CFI=1.00. The stan-
dardized path coefficients are shown in Fig. 7. As can be
seen, dynamic decision making was the only significant
predictor of participants' supervisor ratings. Neither the
path coefficient from the general intelligence variable, nor
the path coefficient from the residual implicit learning
variable was significant. A modified model, which fixed
these parameters to zero, revealed an adequate model fit,
¥2(128)=126.00, p=0.533, RMSEA=0.00, CFI=1.00;
Ax2(2)=0.14, p=0.932. Therefore, this model was
accepted.

Intelligence

Dynamic decision making

Implicit learning Objective professional success

Dynamic decision making 0.86 (<0.001)

Implicit learning 0.32 (0.005) 0.26 (0.033)
Objective professional success 0.78 (<0.001) 0.52 (<0.001)
Supervisor ratings 0.03 (0.760) 0.25 (0.021)

0.31 (0.030)

—0.02 (0.871) —0.07 (0.559)
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Fig. 7. Latent Regression Analysis with standardized path coefficients (p-values
in brackets). IQ = latent general intelligence variable, DDM = latent dynamic
decision making variable, IL = latent implicit learning variable, SR = latent
supervisor rating variable, DDM,s = latent residual for dynamic decision
making, ILes = latent residual for implicit learning, SR;es = latent residual for
supervisor ratings.

4. Discussion

The present study investigated Dorner's (1980) and
Mackintosh's (1998) hypotheses that dynamic decision
making and implicit learning are cognitive abilities that are
independent from general intelligence.

In a first step, we analyzed the psychometric proper-
ties of intelligence variables, dynamic decision making
variables, and implicit learning variables within the
framework of latent state-trait theory. All measurement
models fitted well without latent state residuals. This
indicates that the performance measures were not
affected by situational factors such as individual differ-
ences in fatigue or individual differences in the form of
the day. Furthermore, the general intelligence variables
revealed high trait specificities and low method specific-
ities, which indicate a high proportion of trait differences
in these performance measures. The dynamic decision
making and implicit learning variables, on the other hand,
revealed lower trait specificities and greater method
specificities, which suggests that these variables capture
task specific performance differences as well. However,
even if the trait specificities were small, the variances of
the latent trait variables were still significant. This
indicates that there are true individual trait differences
in dynamic decision making and implicit learning.

In a second step, we analyzed the relations between
these latent trait variables. The present results suggest that
there are substantial relations between general intelligence,
dynamic decision making, and implicit learning. In partic-
ular, there was a great correlation (r=0.86) between the

latent general intelligence variable and the latent dynamic
decision making variable. This result goes in line with
previous findings of Wirth and Klieme (2003), Wittmann
and Hattrup (2004), and Kroner et al. (2005) who also
reported great relations between measures of dynamic
decision making and measures of general intelligence.
Taken together, these findings contradict Dorner's hypoth-
esis that dynamic decision making and general intelligence
are independent variables.

The correlation between the latent implicit learning
variable and the latent general intelligence variable was of
medium size (r=0.32). This goes in line with the findings of
Reber et al. (1991) and Gebauer and Mackintosh (2007) who
also reported low to medium correlations between mea-
sures of implicit learning and general intelligence. This
finding does not support Mackintosh's hypothesis that
implicit learning and general intelligence are independent
constructs. However, general intelligence could only explain
10.24% of the implicit learning trait variance, which suggests
that there are substantial individual differences in implicit
learning beyond IQ.

Taken together, this pattern of result suggests that
there are substantial relations between cognitive perfor-
mance measures, which have been developed within very
different domains. Measures of general intelligence have a
long research tradition and were developed to measure
persons' general mental ability. Measures of dynamic
decision making arose in the domain of complex problem
solving and were designed to explore persons' ability to
deal with realistic problems. And measures of implicit
learning were developed in the domain of cognitive
psychology in order to study persons' ability in making
intuitive decisions. The present findings suggests that
these performance measures share a substantial propor-
tion of common variance but also reveal variance pro-
portions that are independent from each other. This fits
well with hierarchical intelligence models like Carroll's
(1993) three-stratum theory of cognitive abilities. In
particular, Carroll suggested that the structure of human
cognitive abilities may be explained by a hierarchical
structure with three levels (three strata). On the lowest
level (stratum 1) there are 64 different specific ability
factors like reading comprehension, memory span, or
general sound discrimination. According to Carroll, these
specific abilities are not independent and therefore may
be grouped together to eight more general ability factors
(stratum 2), which are fluid intelligence, crystallized
intelligence, general memory and learning, broad visual
perception, broad auditory perception, broad retrieval
ability, broad cognitive speediness, and processing speed.
On the top of the hierarchy (stratum 3) there is a single
general ability factor that explains the correlation be-
tween the stratum 2 factors. In Carroll's model there are
no ability factors such as dynamic decision making or
implicit learning. Accordingly, these constructs may be
seen as supplementary aspects of human cognitive ability.
However, the present results fit well with the concept of a
hierarchical structure of human cognitive ability. In
particular, the results of the structural equation models
revealed that the overlap between the performance in the
Tailorshop and the Heidelberg Finite Automaton may be
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explained by a more general dynamic decision making
ability factor. In the same vein, the overlap between the
different artificial grammar learning tasks could be
explained by an implicit learning ability factor. Further-
more, there were substantial correlations between gen-
eral intelligence, dynamic decision making and implicit
learning that could be explained by one single general
ability factor. Taken together, these results suggest that
dynamic decision making and implicit learning may be
supplementary abilities that fit well into a hierarchical
concept of human cognitive ability. However, the present
findings do not sufficiently allow to draw a conclusion on
which stratum these ability factors may be located.
Investigating this may be an interesting issue for future
research.

In a third step, we analyzed whether dynamic decision
making and implicit learning are powerful predictors of
professional success beyond IQ. The zero correlation between
objective professional success and supervisor ratings
(r=0.07) suggests that both variables capture different
aspects of professional success. One reason for this may be
that income, social status, and education attainment are
rather profit-based indicators, whereas supervisor ratings
may also capture social aspects. According to this, both
aspects were analyzed separately.

There were substantial correlations between objective
professional success and dynamic decision making
(r=0.52) as well as between objective professional success
and implicit learning (r=0.31). This suggests that both
performance measures are able to predict objective pro-
fessional success. However, when general intelligence
was included as a predictor, then general intelligence
remained the only significant predictor (3=0.78). This
finding is consistent with the literature and emphasizes the
meaningfulness and usefulness of IQ measures (e.g.,
Schmidt & Hunter, 2004).

There was a substantial relation between the participants'
supervisor ratings and dynamic decision making even when
general intelligence was simultaneously considered
(=0.43). This replicates findings of Kersting (2001) who
also reported an incremental predictive value of dynamic
decision making measures on participants' supervisor ratings.
Furthermore, this result points towards the practical value of
dynamic decision making measures and suggests that
dynamic decision making measures may provide insights
into aspects of professional success, which cannot be
predicted by general intelligence. Therefore, Dorner's hy-
pothesis that dynamic decision making has an incremental
predictive value is partially supported. The relation between
supervisor ratings and implicit learning was close to zero
(r=-0.02) and not significant. Thus, this result may be seen
as preliminary evidence against Mackintosh's hypothesis that
implicit learning is a useful predictor of professional success.
There was no significant correlation between supervisor
ratings and general intelligence. At first sight, this finding is
astonishing because there is a wealth of evidence for the
relation between general intelligence and supervisor rating
(e.g., Ng et al., 2005; Salgado et al., 2003; Schmidt & Hunter,
2004). However, the samples in these studies typically consist
of employees within a single department or company
whereas the sample in the present study consisted of

employees of different companies and occupational groups.
In particular, there may be a relation between general
intelligence and supervisor ratings within single companies
or occupational groups but not between. For example, a
broker with an IQ of 130 may be rated as more successful than
a broker with an IQ of 100 but a journalist with an IQ of 130
may still be rated as less successful than the broker with the
1Q of 100.

4.1. Implications for assessment

The present results show that the APM as well as the
Berlin Intelligence Structure Test yield measures with good
trait specificities (0.67 to 0.72). Furthermore, there was a
strong relation (r=0.78) between general intelligence and
objective professional success. Therefore, general intelli-
gence tests seem to be a good choice for measuring cognitive
ability.

There was also a relation between the dynamic decision
making trait variable and objective professional success
(r=0.52) and between the dynamic decision making trait
variable and supervisor ratings (r=0.25). However, the
performance measures of the Tailorshop simulation and the
Heidelberger Finite State Automaton showed trait specific-
ities between 0.29 and 0.44. This suggests that less than half
of the variance in these performance measures is due to trait
differences in dynamic decision making. Therefore, the trait-
specificity of both tasks should be improved before they are
used for an individual assessment. A more theory-orientated
development of dynamic decision making tasks may help to
reach this goal.

There was a relation of medium size between the implicit
learning trait variable and objective professional success
(r=0.31). However, the latent regression analysis revealed
that this relation was due to an overlap with general
intelligence. This suggests that there is no incremental
predictive value of implicit learning measures. The trait
specificities of the artificial grammar learning measures
were between 0.25 and 0.31. There was no method
specificity of these variables, which suggests that the low
trait specificity was due to unsystematic measurement error.
Therefore, lengthening the test may help to enhance the
trait-specificity. However, whether such an approach in-
creases the reliability or rather causes fatigue effects is an
open issue.

5. Conclusion

The present findings acknowledge the overall approval
and usefulness of general intelligence measures. In
addition, the results demonstrated that there are signifi-
cant individual trait differences in cognitive performance
beyond IQ. In particular, there was a large proportion of
trait variance in implicit learning, which was independent
from general intelligence and in addition, dynamic deci-
sion making revealed an incremental predictive validity.
These findings make dynamic decision making as well as
implicit learning attractive for the research of individual
differences.
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Letter strings for grammar 1 sorted for different parts of the assessment.

Phase

Strings

Learning phase

Testing phase (correct items)

Testing phase (incorrect items)

WNSNXS NXSTWXT WNSTTWXT WXWSNXT NWXTS NXSNWXS WNTSSS NXSWXTX WXWSNWSN WNSNWXS NXSWXT
NXSWWWW NWSWN WNSNWXTX NXSWNTX NXS WNSWWWW WXWSWN NXSTNWS WNSTWNSW WNSWXTX
WNTSSX WNSNWSW WNTX NXSWNSW WNSNXTS NXTSSS NXSNWSN WNSNWSN NXSWNTSS

WNSN NWSW NWSN NXSWW NWXSW NXTSX WNSWNS NXSWNT NWXTSS WNSWWW WNSWNT NXTSSX WXWTSX
WNSNXT NWSWWN NXSNWS NXSNWXT NXTSSSX WNSTWNS NXSTNXS WNTSSSX WNSWXWT NXSNXTX WXWSWXT
NWXSWNS NWXSNWS NXSTXWNT WNSTNWXT WXWSNWXS NXSTWNTX WXWSTWXT WXWSNWSW WXWSWXTX
NXSTNWSN NWXSWXWS WXWTSSSS WNSTNXTX WXWSWNSW NWXSWXTX NXSNXSWN

TXSWNT TWXTSX NTSWWN WWSWNS WNWWNT NWSXWN NWXSSW WXWTST TXWTSSX SWXSWNS WSSWWWN
WSSWXTS NWWSWXT NXNTNXS WNTTSSX NWXWSSX NWXSNTS WNSNXXX WXWSWST WNSWXWN WXWSWNW

XNSTWNTS TWXSWXWS TWSWWWWN NNXSWXWT WSSTTNXT WNNWNSWW WNNNWXSW NWXWWXTX
WXWXWXTX WXWSXWXT WXWSNWSW NXSWWXWN WXWSWNWW WXWSNWNS

Table A2

Letter strings for grammar 2 sorted for different parts of the assessment.

Phase

Strings

Learning phase

Testing phase (correct items)

Testing phase (incorrect items)

LRHMMLM LRPHLLMM RHPHR RHPHMMLM LRHL LPMHLLMM LPPHLM RHPRLMMM LRHMRP RHPHMMRP LPPPLL
RPHHHLLM RHPHL LPPRLMMM LPR LRHRPMMM LPPRL LPMMRPMM RHPHRP LPMHHLLM LPMMRP RHMHLLMM LPLM
RPHHHHLL LRR LRRLMMM RHMHHL LPPRLMM RPLLMMM RHPHLMM
LRPHHHL RHMHHHL LRHMLMMM LPRP LPRPMM LPRPMMM LPLMMMM RHPHMMML LPMR LPMRPM RPHHHLL
LPPHMLM LPPHMMRP RPHL LRHLMM RHPHMML RHPHLMMM LPMLLMMM LPLMM LRHMML RPHLLMM LPMHHHLL
LPPHLMMM RHPHLM LPPHMML RHMLLMM RPLLMMMM LPPPHLLM LPMMML LPMLLMM RHMHLLM RHPHMLMM
LPRPMMMM LPLMMM RHPHMLM RHPRLMM LRPHHHLL RHPPHLLM
RPRL LLRPMM RHHPHHL RHMHHPL LRPHMHLL LPLR LPPMRP LPHMMR RHPRLMH LPMHHPLL HHMLL LPLRMM RPPLLMM
PPLLMMMM LRHMMHPM LPHHL LPMMHM LPPLRPM PHPHMMML LPPHLMHM LPPLL RPHHPL RPHHRLL MPPHMMRP
LPPPHLRM LPLMP LPMMMP LPPHPML LPHMMMRP RHMHHLLP HRHLMM MHPPHLL LPPHPRP LPPMMRPM LPMLLMMP
LLMHHL RMPPLLM LPPHMHM LPPLHHHL RHPPHLLL

Table A3

Correlations between the manifest variables.

APM1 APM2 BIS1 BIS2 Tailorl Tailor2 HFA1 HFA2 AGL1 AGL2 AGL3  AGL4 Income Status Education
APM2 0.83***
BIS1 0.66**  0.65***
BIS2 0.70"* 0.69*** 0.91***
Tailor1 0.32*** 029" 025" 0.28"*
Tailor2 0.33** 025" 030" 0.30™* 048"
HFA1 0.57** 0.54*** 0.55*** 0.54™* 032" 0.41"*
HFA2 0.60***  0.59*** 0.52*** 0.56™* 0.39"* 043" 0.79"**
AGL1 0.24* 029" 0.16* 027" 0.11 0.04 0.19* 013
AGL2 0.05 0.11 0.12 0.12 0.04 0.03 0.03 0.03 036
AGL3 0.05 0.08 0.13 0.10 0.10 0.07 020*  0.16* 0.27** 0.27**
AGL4 0.12 0.16 0.16*  0.14 0.06 0.08 0.11 0.09 023* 0.32***  0.29***
Income 0.23**  0.11 0.21**  0.22** 0.09 0.14 0.17* 021" 0.01 017* 013 —0.04
Status 031" 023" 021 029" 0.14 0.12 024" 023" 0.12 0.05 0.08 0.04 0.29***
Education 043" 042" 047" 048" 0.11 0.05 0.18* 014 0.19* 0.16*  0.09 0.02 0.15 0.28*
Supervisor 0.02 0.00 0.03 0.00 0.20*  0.12 0.14 0.18* 0.00 —0.08 0.04 0.03 0.01 —0.07 —0.07

Note. *p<0.050, **p<0.010, **p<0.001, APM1 = Advances Progressive Matrices at measurement occasion 1, APM2 = Advances Progressive Matrices at
measurement occasion 2, BIS1 = Berlin Intelligence Structure Test at measurement occasion 1, BIS2 = Berlin Intelligence Structure Test at measurement occasion
2, Tailor1 = Tailorshop at measurement occasion 1, Tailor2 = Tailorshop at measurement occasion 2, HFA1 = Heidelberg Finite State Automaton at measurement
occasion 1, HFA2 = Heidelberg Finite State Automaton at measurement occasion 2, AGL1 = artificial grammar learning task with grammar 1 at measurement
occasion 1, AGL2 = artificial grammar learning task with grammar 2 at measurement occasion 1, AGL3 = artificial grammar learning task with grammar 1 at
measurement occasion 2, AGL4 = artificial grammar learning task with grammar 2 at measurement occasion 2, Income = participants' yearly income, Status =
participants' self rated social status, Education = participants' educational level, Supervisor = participants' supervisor ratings, N varied between N=173 and
N=151 due to dropouts between the first and the second measurement occasion.
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