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Summary 
Metastatic melanoma is a severe disease with a high rate of lethality. It is known to be 

resistant to current therapies. Since melanoma is immunogenic the development of an 

immunotherapy can be a promising possibility to enhance an antitumor effect in vivo. 

Memory T cells (MTC) have abilities to respond quicker to antigens and to release a 

broader spectrum of cytokines than naïve T cells. The ret transgenic mouse melanoma 

model was used in this study since it resembles the pathological situation of human 

melanoma in contrast to transplantation models. It has been previously shown that the 

bone marrow (BM) is a major site for the persistence of tumor-specific MTC in cancer 

patients. In addition, melanoma-specific MTC were also found in the BM of ret 

transgenic mice without macroscopic tumors. Therefore, we isolated CD3+ cells from the 

BM of ret transgenic mice with and without tumors.  

Therefore, we isolated CD3+ T cells from the BM of ret transgenic mice with and 

without tumors. After a 40 h ex vivo stimulation of bone marrow-derived T cells with 

melanoma antigen-loaded DC, which were treated with anti-PD-L1 antibody overnight, 

T cells revealed a higher IFN-γ production and an increased T cell activation in vitro. 

Moreover, activated CD8+ T cells displayed mainly a central memory phenotype and an 

increased level of CD69 expression after 40 h of co-culture with DC.  

Labeled melanoma-specific, stimulated memory T cells from ret transgenic mice migrated 

to skin tumor lesions, metastatic lymph nodes (LN), BM and spleen after adoptive 

transfer into ret transgenic tumor-bearing mice. A similar migration pattern was 

detected using stimulated TRP-2 TCR transgenic effector T cells. Furthermore, migrated 

CD8+ T cells showed an increase in effector memory (TEM) and effector phenotype at day 

7 post injection and a decrease of central memory and naive CD8+ T cells within tumor 
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lesions, whereas at day 3, central memory, effector memory, naive and effector CD8+ T 

cells were equally distributed.  

To investigate the anti-tumor activity of melanoma-specific memory T cells in vivo we 

adoptively transferred MTC, which were prior activated with DC, into tumor-bearing 

mice by i.c. injections. Mice receiving memory T cells showed a significantly longer 

survival compared to the control group. Mice receiving the phosphodiesterase-5 inhibitor 

sildenafil and adoptive transfer of MTCs displayed a significantly higher survival rate 

than mice treated with sildenafil or PBS only.  

We suggest that an adoptive transfer of melanoma-specific memory T cells activated 

with antigen-loaded DC, which were pre-treated with anti-PD-L1 antibodies, can 

enhance an anti-tumor response and therapeutic efficacy in vivo. 
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Zusammenfassung 
Das maligne Melanom ist gekennzeichnet durch ausgeprägtes Metastisierungspotenzial 

und es besteht Resistenz gegenüber gängige Behandlungsmethoden wie Chemotherapie 

und Bestrahlung. Deshalb ist es von großer Wichtigkeit neue Behandlungsstrategien zu 

entwickeln. Da das Melanom sehr immunogen ist, dient die Entwicklung einer 

Immuntherapie als eine vielversprechende Option. Ein Werkzeug hierfür ist die 

Verwendung des Spontanmelanom-Tiermodells, welches hinsichtlich genetischer, 

histopathologischer und klinischer Situation, dem humanen Melanom sehr ähnlich ist. 

Dieses Mausmodell wurde auch für die vorliegende Arbeit herangezogen. Gedächtnis-T-

Zellen besitzen die Fähigkeit schnelleren auf ein Antigen zu antworten und sie 

sekretieren ein viel breiteres Cytokinspektrum als naive T-Zellen. Es wurde vor Kurzem 

gezeigt, dass das Knochenmark als der Hauptort für persistierende Tumor-spezifische 

Gedächtnis-T-Zellen in Krebspatienten ist. Außerdem wurden Melanom-spezifische 

Gedächtnis-T-Zellen im Knochenmark ret transgener Mäuse ohne makroskopische 

Tumore gefunden. Basierend darauf, haben wir für unsere Untersuchungen CD3+ T-

Zellen aus den Knochen ret transgener Mäuse mit und ohne Tumore isoliert. 

Nach einer 40-stündigen Kokultur frisch isolierter T-Zellen mit Melanom-Antigen 

geladenen Dendritischen Zellen, welcher über Nacht mit einem anti-PD-L1 Antikörper 

behandelt wurden, zeigten T–Zellen eine erhöhte IFN-γ-Produktion und somit eine 

verstärkte T-Zell-Aktivierung, wenn der anti-PD-L1 Antikörper eingesetzt wurde. 

Desweiteren zeigten stimulierte T-Zellen   eine erhöhte CD69 Expression und die Kultur 

stellte hauptsächlich den „central memory“ CD8+ T-Zell Phänotyp dar.  

Markierte Melanom-spezifische Gedächtnis-T-Zellen aus ret transgenen Mäusen 

migrierten in den Tumor, die metastasierten Lymphknoten, das Knochenmark und die 
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Milz nach einem Adoptiven Transfer. Ein ähnliches Migrationsverhalten zeigten TRP-2 

TCR transgene „effector“ T-Zellen. Zudem zeigten die migrierten Zellen an Tag 7 ein 

Ansteigen des „effector memory“ und „effector“ CD8+ T-Zell-Phänotyps, während die 

Menge an naiven und „central memory“ T-Zellen abnahm. An Tag 3 nach dem 

Adoptiven Transfer war das Verhältnis von effector memory, central memory, naive und 

effector T-Zellen fast gleich. 

Um die anti-Tumor Aktivität Melanom-spezifischer Gedächtnis-T-Zellen in vivo zu 

untersuchen, wurde 40 h nach Kokultur mit Tumor-Antigen beladenen DC, ein 

Adoptiver Transfer in Tumor-tragende ret transgene Mäuse durchgeführt. Mäuse, welche 

mit aktivierten Gedächtnis-T-Zellen behandelt wurden, zeigten eine signifikant höhere 

Überlebensrate im Vergleich zur Kontrollgruppe. In der Kombinationstherapie mit dem 

Phosphodiesterase-5 Inhibitor Sildenafil, zeigte die Kombinationsgruppe, Sildenafil und 

Adoptiver Transfer, ebenfalls eine höhere Überlebensrate als Gruppen, die nur mit 

Sildenafil oder PBS behandelt wurden. Im Überlebensversuch mit TRP-2 TCR 

transgenen T-Zellen konnte man nur die Tendenz einer höheren Überlebensrate sehen, 

verglichen mit der Kontrollgruppe. 

Eine effektive Melanom-Immuntherapie könnte auf einem adaptiven Transfer in vitro 

restimulierter Gedächtnis-T-Zellen aus dem Knochenmark von Melanompatienten, 

zusammen mit Melanom-Antigen beladenen DC in Kombination mit der Neutralisierung 

des Tumormikromilieus basieren. 
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1  Introduction 

1.1  The immune system 

The immune system is a very complex network of cells, tissues and molecules. The main 

task of the immune system is to defend the body against foreign invaders. To operate 

properly, an immune system must detect a large spectrum of agents, from viruses to 

parasitic worms, and distinguish them from the organism's own healthy tissue. As a 

respond to the immune system which detects and neutralizes intruders, pathogens can 

quickly evolve and adapt in order to escape the immune system. Therefore, the immune 

system has developed different defense mechanisms to identify and neutralize pathogens. 

All mechanisms are based on detecting structural features of the invaders that mark 

them as distinct from host cells (Chaplin, 2006; Hoffmann et al., 1999; Janeway, 2001a). 

The immune system is made of two arms, one is the innate immune system, specific for 

infectious non-self, and another one is the adaptive immunity which is specific for all 

non-self-antigens (Janeway, 2001a). 

 

1.1.1 INNATE IMMUNITY 

The first defense in the innate immunity occurs through the epithelial barrier and the 

mucociliary clearance. The recognition of the innate immune system is based on 

germline-encoded receptors. It includes the recognition of conserved repeating patterns 

from microorganisms, e.g. lipopolysaccharide (LPS) of Gram-negative bacteria, 

lipoteichoic acid (LTA) of Gram-positive bacteria, mannose and glycans, bacterial CpG 

DNA or double-stranded viral RNA. These molecules called pathogen-associated 

molecular patterns (PAMPs) can be found in the cell walls of Gram-negative bacteria, in 
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viruses, fungi and Gram-positive bacteria (Janeway, 1989). Receptors that can recognize 

them are known as pattern recognition receptors (PRRs) and they do not recognize self-

structures of the host (Janeway, 2001b). There are different types of PRRs such as the 

macrophage mannose receptor, scavenger receptor or toll-like receptors (TLRs).  

One very important event triggered by the activation of the innate immune system is the 

expression of co-stimulatory molecules, like CD80 (B7.1) and CD86 (B7.2) on the surface 

of antigen presenting cells (APCs), e.g. on dendritic cells (DC). Furthermore, the 

phagocytized molecules are either processed in the immunoproteasom of APCs and are 

presented on the major histocompatibility complex class I (MHC I) or they are degraded 

in endosomes and are presented on MHC class II (MHC II) which can be recognized as a 

complex by T lymphocytes (Hardardottir et al., 1995).  

Hence, APCs link the innate immunity with the adaptive immune system by presenting 

antigens which, are recognized by the T cell receptor (TCR) of T lymphocytes. 

 

Fig.1: Signaling pathway triggered by Toll-like receptors. Various PAMPs recognized by cognate 
PRRs expressed on APCs induce the expression of CD80 and CD86 molecules, which signal the presence of 
pathogens and allow activation of lymphocytes specific for antigens derived from the pathogens. Depicted are 
LPS recognition by TLR-4, proteoglycan recognition by TLR-2, and the recognition of CpG DNA by TLR-9 
(Janeway, 2001b).  
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1.1.2 APCS 

As mentioned above, APCs represent a link between the innate and adaptive immune 

system. T and B lymphocytes are known to be the major effector cells of the immune 

system. They can eliminate infected cells, neutralize and remove toxic substances. APCs 

are able to attain microbial and other antigens and display them on their surface in a 

sense that leads to the activation of T lymphocytes of the adaptive immune system.  

It can be distinguished between professional and non-professional APCs. There are 

different types of professional APCs, e.g. DC, macrophages and B lymphocytes. These 

kinds of cells are very efficient in internalizing foreign proteins and processing them to 

display fragments of the antigen bound to MHC class I or II molecules. After facing a 

pathogen or cytokines, APCs get activated and migrate into the T cell areas of local 

lymph nodes. On their way there, they pass different stages of maturation which leads to 

the expression of co-stimulatory molecules and a stable expression of peptide:MHC 

complexes on their surface (Germain, 1994). The internalization of foreign antigens can 

occur through phagocytosis, receptor-mediated endocytosis or macropinocytosis . TCRs 

and the CD8 co-receptor of cytotoxic T cells (CTL) recognize peptides originating in the 

cytosol delivered to the cell surface and bound to the MHC class I whereas CD4+ T cells 

recognize peptides arising in vesicular system and attached to MHC class II (Goldberg et 

al., 2002; Hiltbold and Roche, 2002).  

Peptides that bind to MHC class I are usually derived from intracellular bacteria or 

viruses, which are then degraded by the immunoproteasome. They are then transported 

from the cytosol by proteins called transporters associated with antigen processing-1 and 

-2 (TAP-1 and TAP-2) to the endoplasmatic reticulum (ER) membrane. In the ER 

lumen, they bind to the MHC class I molecules, which then can be exported as a 

complex to the cell surface. These molecules are expressed on every nucleated cell of the 

body (Schubert et al., 2000; Uebel and Tampe, 1999; Vigneron et al., 2004). 

MHC class II molecules are only found on APCs. They bind peptides for their 

presentation to CD4 T lymphocytes. Peptides binding to MHC class II molecules are 
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derived from extracellular pathogens or from pathogens, which have invaded the cell to 

replicate in intracellular vesicles. Vesicles containing MHC class II molecules fuse with 

endosomes containing processed peptides. Subsequently, peptides bind to the molecules 

and are transported to the cell surface (Hiltbold and Roche, 2002). 

In addition to the peptide presentation on MHC class I and II, professional APCs 

express co-stimulatory molecules, like CD80 and CD86, which are important for proper 

activation of T cells.  

 

1.1.3  DC 

DC are by far the most important APCs. They were characterized in 1973 by Ralph 

Steinman and Zanvil Cohn (Steinman and Cohn, 1973) since then they have gained a 

solid interest from immunologists. DC arise from hematopoietic progenitors of the BM 

and circulate through the blood, non-lymphoid and lymphoid tissues (Inaba et al., 1992) 

. A large part of the DC is constituted by myeloid derived DC, which evolve from CD34+ 

myeloid progenitors compared to the lesser amount of CD14+ lymphoid progenitors 

which differentiate into plasmacytoid DC (pDC) (Banchereau et al., 2000). pDC are a 

rare circulating population, which can produce large amounts of type I interferons in 

response to viruses or host-derived nucleic acid-containing complexes that bind to TLR7 

and TLR9 in their compartment (Liu, 2005). Myeloid DC express TLR2 and TLR4 on 

their surface and bind to different bacteria derived products, producing high amounts of 

IL-12 (Leenen et al., 1998). 

Immature DC have a high endocytic and phagocytic capacity important for antigen 

uptake, though, the expression of MHC class II and co-stimulatory molecules is very low 

which leads to a low stimulation of T cells. DC can recognize PAMPs of microbial 

products via PRRs, e.g. mannose-like receptors and the TLR family. (Iwasaki and 

Medzhitov, 2004; Reis e Sousa et al., 1993). During their maturation state, upon 

pathogen recognition, DC release high amounts of proinflammatory and anti-viral 

cytokines such as IFN-α and IL-12, which lead to the recruitment and activation of 

innate immune cells at the site of inflammation (Blander and Medzhitov, 2006; Reis e 
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Sousa, 2004). As soon as DC are mature, they lose their endocytic and phagocytic 

receptors, the expression of MHC II and co-stimulatory molecules like CD80, CD86 and 

CD40 on their surface increases to a high level. DC also change their morphology and 

activate the antigen-processing machinery (Allan et al., 2006). To activate T 

lymphocytes, DC express CCR7 receptors which respond to homeostatic chemokines 

CCL19 and CCL21 and guide DC through afferent lymphatics into the T cell areas of 

local draining lymph nodes. Here, DC select and activate antigen-specific T cells and 

induce their differentiation into effector cells, initiating thereby primary immune 

response (Banchereau et al., 2000; Rescigno, 2001).  

Utilizing DC as a tool to treat cancer, various clinical trials have been conducted using 

DC transducted with viral vectors, DC loaded with proteins or peptides and DC loaded 

with tumor lysates (Engell-Noerregaard et al., 2009). 

 

1.1.4 ADAPTIVE IMMUNE SYSTEM 

The adaptive immunity is also known as a specific or acquired immune system. It is 

classified in the cellular immunity and humoral immunity. The cellular immunity 

consists of T cells with their antigen-specific TCRs recognizing short antigen fragments 

bound to the MHC molecules and provides a basis of self-nonself discrimination 

(Blattman and Greenberg, 2004). The humoral immunity consists of B lymphocytes that 

express antigen-specific receptors and bind antigenic determinants present on soluble 

proteins, carbohydrates, or nucleic acids.  

After the initiation of the primary immune response by pathogens, a couple of days are 

necessary for the clonal expansion and differentiation from naïve into effector T 

lymphocytes and antibody-secreting B lymphocytes. Afterwards, antigen-specific immune 

cells are able to eliminate the pathogens or infected cells and neutralize pathogen-derived 

products (Medzhitov and Janeway, 1999). After the infection removal, most effector cells 

undergo apoptosis but some cells build the immunological memory that ensures a rapid 

reinduction of Ag-specific antibody and effector T cells after subsequent encounter with 
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the same pathogen (Sallusto et al., 2004). Immunological memory provides a long lasting 

and often lifelong protection and in use as a tool for immunotherapy establishment 

against melanoma (Murali-Krishna et al., 1999; Umansky et al., 2008). 

 

1.2  T cells 

Cellular immunity is based on two major T cell subsets, CD4+ and CD8+ T cells, which 

work together to mediate an effective immune response. These cells originate from the 

hematopoietic precursors in the bone marrow and mature in the thymus into naïve T 

cells (Borowski et al., 2002; Shortman and Wu, 1996). Each T cell expresses TCRs for a 

specific antigen which is formed during T cell maturation through somatic 

recombination. Thus, large amounts of T cells with a broad spectrum of receptors 

specific for a variety of peptide:MHC complexes emerges (Zerrahn et al., 1997). During 

positive selection in the thymus, T cells specific for endogenous MHC molecules are 

selected. The subsequent negative selection is important to eliminate T cells in the 

thymus stroma which bind with their TCR to self-antigens (Sprent and Webb, 1995).  

 CD4+ T helper T cells are able to provide cytokine-mediated help to form the B cell-

mediated humoral response as well as to improve the durability and quality of the CD8+ 

T cell-mediated cytotoxic response. They can be further divided into type 1 and type 2 

helper T cells (Mosmann et al., 1997). Type 1 helper T cells produce IL-2 and IFN-γ 

after activation triggered by binding to the peptide:MHC II complex on APCs and 

facilitate in this way the CTL activity. This phenotype is considered to contribute to the 

anti-tumor immunity. Type 2 helper T cells promote humoral immune response by 

secreting IL-4, IL-5 and IL-6 (Trombetta and Mellman, 2005).  

CTLs are able to induce death in infected cells. After activation, which occurs after 

binding to the peptide:MHC I complex on APCs, CTLs release cytokines and enzymes, 

e.g. perforin and granzymes, to lyse diseased cellular targets. Most of effector cells die 

after overcoming the infection (Barry and Bleackley, 2002). However, a few cells survive 

and remain as memory T cells. Here, the activation of memory T cells upon encounter 
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with the same antigen occurs after a very short time compared to the primary immune 

response, where the activation takes several days (Huang et al., 2004). Memory T cells 

are capable of quick differentiation into effector cells and secretion of a broad spectrum 

of cytokines.  

The utilization of T cells for immune-mediated therapy of cancer has gained a deep 

interest of immunologist. Opportunities of therapeutic manipulation of T cells to 

maximize anti-tumor immunity exist in different stages of T cell maturation and 

activation, e.g. monoclonal antibodies (mAb) blocking CTLA-4 on APCs to inhibit the 

interaction with CD28 on T cells that has been recently approved for the treatment of 

metastatic melanoma (Lipson and Drake, 2011). CD80 and CD86 interact with CD28 to 

promote T cell activation, and CD80/CD86 interact with the counter-regulatory 

molecule CTLA-4 to dampen it by feedback regulation (Ostrand-Rosenberg et al., 2002). 

 

1.2.1 MEMORY T CELLS 

Developing an immune memory, which enables to react quickly to antigens upon the re-

exposure with a higher potency and efficacy, is a hallmark of the adoptive immunity. 

This is characterized by 1) the response of memory T cells in the presence of lower 

antigen concentration, 2) the rapid clonal proliferation upon antigen stimulation (Barber 

et al., 2003; Wherry et al., 2003), 3) the potential to release a broader spectrum of 

cytokines, 4) the expression of peripheral tissue homing receptors and 5) a rapid display 

of effector functions (Dutton et al., 1998; Tanel et al., 2009). Moreover, memory T cells 

undergo antigen-independent self-renewal stimulated by cytokines such as IL-2, IL-7, IL-

15 and IL-21 to maintain the memory T cell pool (Kieper et al., 2002; Luckey et al., 

2006; Schluns et al., 2000). Memory T cells maintain in the body many years after 

antigen exposure, even though the pathogen was eliminated (Combadiere et al., 2004). 

Memory T cells differ from naïve T cells in their expression of surface molecules like 

CD45RB (mouse), CD45RA (human), CD45RO (human), CD44 (mouse), CD62L and 

CCR7 (human/mouse) (Sallusto et al., 1999). 
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1.2.2 MEMORY T CELLS SUBSETS 

Mouse as well as human memory T cells can be subdivided into different subgroups 

based on the expression of various cell surface molecules, e.g. homing markers, 

chemokines and cytokines (Masopust et al., 2001; Sallusto et al., 2004; Sallusto et al., 

1999). As shown in Table.1, both CD4+ and CD8+ T cells can be divided into naïve (TN), 

central memory (TCM) and effector memory T cells (TEM).  Naïve T cells express high 

levels of homing markers L-selectin (CD62L) and CCR7, binding the chemokines CCL19 

and CCL21, which are required for cell extravasation through high endothelial venules 

(HEV) into the secondary lymphoid organs (Forster et al., 1999).   

Surface marker 
(mouse) 

Naïve 
T cells 

Central memory 
T cells 

Effector memory 
 T cells 

CD45RB (CD4+) high low low 
CD44 (CD4+/CD8+) low high high 
CD62L (CD4+/CD8+) high high low 
CCR7 (CD4+/CD8+) high high low 

Table.1: Murine memory T cell surface markers. 

 

Murine central memory T cells do not differ much from naïve T cells regarding their 

phenotype except the expression of CD45RB. TCM reside in the lymph nodes, tonsils and 

the bone marrow (Campbell et al., 2001; Feuerer et al., 2001b; Sallusto et al., 1999). 

Upon exposure to antigens, long-lived TCM can rapidly differentiate into cells equipped 

with effector functions; they are more sensitive to antigenic stimulation and less 

dependent on costimulation (Sallusto et al., 2004; Sallusto et al., 1999). Furthermore, 

TCM have the ability of self-renewal and secrete high amounts of IL-2, which is necessary 

for the proliferation and differentiation of TN to become effector T cells. Compared to 

short-lived TEM, TCM have been shown to mediate a protective immunity because of their 

long-term persistence. This feature designates them as “stem cells” of the adoptive 

immune response (Bouneaud et al., 2005; Klebanoff et al., 2005; Zaph et al., 2004). 

Circulating CD4+ and CD8+ effector T cells are found in the peripheral blood, spleen and 

non-lymphoid tissue where they can respond quickly to foreign antigens by the 

production of effector molecules such as IFN-γ, IL-4 and IL-5 (Sallusto et al., 1999). In 
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addition, CD8+ TEM produce large amounts of perforin. In contrast to TCM, effector 

memory T cells do not express CCR7 and CD62L (Sallusto et al., 1999). However, the 

display characteristic sets of chemokines and adhesion molecules for homing into 

inflamed tissue. In addition, TEM respond with a higher potency to antigens than TCM 

(Sallusto et al., 2004). 

 

1.2.3 MODELS OF MEMORY T CELL DIFFERENTIATION 

Currently, there are three different models of memory T cell differentiation described in 

the literature (Fearon et al., 2006; Ganusov, 2007; Kalia et al., 2006; Lefrancois and 

Marzo, 2006). 

The first model is called stem cell-associated differentiation (SCAD). During the 

expansion phase of the immune response, terminally differentiated effector T cells are 

produced by sustained self-renewal of memory T lymphocytes. After antigen clearance, 

which is also known as the contraction phase, effector T cells undergo apoptosis and only 

a small amount of memory T cells remains in the system (Ahmed and Gray, 1996; 

Fearon et al., 2006; Wodarz et al., 2000) 

In the linear differentiation (LD) model, during the expansion phase activated T 

lymphocytes with an effector phenotype proliferate and die in the contraction phase after 

the antigen elimination and a few cells differentiate into long-lived memory T cells 

(Ahmed and Gray, 1996; Antia et al., 2005; Kaech et al., 2002; Lefrancois and Marzo, 

2006). 

The last model is called progressive differentiation (PD). Here, proliferating T cells 

progress through different stages of differentiation during the expansion phase. Cells 

receiving a weak signal will differentiate into memory T cells, those receiving a strong 

signal will transform into effector T lymphocytes (Fearon et al., 2006; Fearon et al., 

2001; Lefrancois and Marzo, 2006).  

However, there are some variations of these models. In the PD model three distinct 

stimulation patterns according to signal strength through antigens are described 

(Lanzavecchia and Sallusto, 2005).  Thus, the circulation of a low number of antigens in 
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the system leads to an incomplete activation of T lymphocytes through low stimulation. 

These T cells undergo apoptosis and the differentiation into memory T cells does not 

occur. In contrast, a circulation of high amounts of foreign antigen leads to an enhanced 

stimulation of T cells by the recruitment of additional APCs with upregulated MHC 

molecules on their surface and removal of the antigens. During this activation, some 

naïve T cells stop their transformation into effector cells and undergo differentiation into 

either TCM or TEM depending on the intensity of the antigen signal. TCM maintain in the 

body for a long time whereas TEM undergo apoptosis if they are not exposed to the same 

antigen. In case of constitutive strong antigen stimulation, naive T cells differentiate 

only into effector T cells Fig.2.   

 

 
Fig.2: Memory T cell differentiation. A model based on strength and quality of stimulatory signals. 
After T cell activation and during differentiation into memory T cells lose naïve properties and acquire 
effector properties. After elimination of the antigen, a few T cells remain as memory T cells (Sallusto and 
Lanzavecchia, 2011). 
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1.2.4 CD8+ MEMORY STEM CELLS 

Conventionally, memory T cells are divided into two subtypes based on their homing 

molecules CD62L and CCR7. However, a new subset of mouse memory T cells with stem 

cell like properties has been recently described (Gattinoni et al., 2009; Zhang et al., 

2005). These self-renewal T cells, so called memory stem T cells (TSCM), have a 

phenotype similar to naive T cells (CD44low and CD62Lhigh). Moreover, TSCM were found 

to express the stem cell antigen (Sca)-1 and high levels of the antiapoptotic molecule B 

cell lymphoma- 2 (Bcl-2), the β-chain of IL-2 and IL-15 receptor (IL-2Rβ), and the 

chemokine (C-X- C motif) receptor CXCR3 (Gattinoni et al., 2009). This memory 

subtype displayed an enhanced self-renewal capacity and the multipotency to generate 

all memory and effector T cell subsets in vitro (Gattinoni et al., 2009; Zhang et al., 

2005). Recently, TSCM were also found within a CD45RO−, CCR7+, CD45RA+, CD62L+, 

CD27+, CD28+ and IL-7Ra+ T cell compartment characteristic for naive T cells. 

Furthermore, they expressed high levels of CD95, IL-2Rβ, CXCR3 and LFA-1 and 

displayed various characteristics of memory T cells (Gattinoni et al., 2011).  

These recently identified memory T cells with stem cell properties have major 

implications for the design of new vaccination strategies and adoptive immunotherapy. 

 

1.2.5 BONE MARROW AS A NICHE FOR MEMORY T CELLS 

It has been demonstrated that the persistence of memory plasma cells occurs in the bone 

marrow in so-called survival niches. Therefore, the question was addressed whether T 

cells can also reside in the BM (Manz et al., 1997; Radbruch et al., 2006; Tokoyoda et 

al., 2009a). Recent studies have shown that both CD4+ and CD8+ T cells persist in the 

bone marrow stroma niches which serve as a reservoir for memory T cells (Beckhove et 

al., 2004; Duffy et al., 2012; Feuerer et al., 2001a; Feuerer et al., 2004; Feuerer et al., 

2001b; Mazo et al., 2005; Tokoyoda et al., 2009b). An essential role of IL-7 for memory 

CD4+ T cells and IL-15 for memory CD8+ T cells has been demonstrated (Snell et al., 

2012; Surh and Sprent, 2008). In the BM, CD4+ T helper memory cells persist in close 
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contact with VCAM-1+ stroma cells, which produce IL-7 to maintain these T 

lymphocytes (Tokoyoda et al., 2009b).   

The recruitment of memory T cells from the peripheral blood to the bone marrow follows 

by different mechanisms including the interaction of very late activation antigen (VLA)-

4 expressed on memory T cells and the vascular cell adhesion molecule (VCAM)-1, 

which is constitutively expressed in the bone marrow (Mazo et al., 2005). The binding of 

mucosal addressin cell adhesion molecule (MAdCAM)-1 to α4β7 integrin molecules, which 

is upregulated on memory T cells, is another mechanism of T cell recruitment into the 

bone marrow (Berlin et al., 1993; Erle et al., 1994; Mazo et al., 2005). 

 

1.2.6 TUMOR-SPECIFIC MEMORY T CELLS 

Tumor antigen specific memory T cells have been found close to dormant tumor cells in 

the bone marrow of mice previously vaccinated with tumor cells. It has been described 

that these memory T cells provide protection against further tumor challenge (Khazaie 

et al., 1994; Muller et al., 1998).  

Patients with breast cancer harbored tumor antigen-specific memory T cells in their 

bone marrow, which could be reactivated ex vivo with previously generated DC pulsed 

with the tumor lysate. After stimulation, they produced IFN-γ and attained cytotoxic 

activity against tumor antigens in vitro and in vivo (Beckhove et al., 2004; Feuerer et 

al., 2001b). The BM is considered to be the site of persistence for tumor specific memory 

T cell and low amounts of dormant tumor cells which are kept under control by the host 

immune control (Feuerer et al., 2001a). Tumor specific memory T cells were not only 

found in the BM of breast cancer patients but also in patients with pancreatic cancer 

and melanoma (Beckhove et al., 2004; Feuerer et al., 2001a; Muller-Berghaus et al., 

2006; Schmitz-Winnenthal et al., 2005). 

Utilizing the ret transgenic mouse melanoma model, it has been demonstrated that the 

bone marrow of mice with primary skin tumors contained high numbers of melanoma 

antigen-specific CD8+ T cells, with mainly effector memory phenotype (Umansky et al., 

2008). Furthermore, melanoma specific CD8+ effector memory T cells were detected in 

mice with disseminated melanoma cells in the LN and the BM but without macroscopic 
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tumors and no further tumor progression (Umansky et al., 2008).  Since tumor specific 

memory T cells from the BM of ret transgenic mice could be reactivated ex vivo, they 

were used for adoptive transfer in tumor-bearing mice (Umansky et al., 2008). 

Reactivated memory T cells from breast cancer patients were reported to recognize and 

reject xenotransplanted autologous tumors (Beckhove et al., 2004). 

 

1.3  Melanoma 

Malignant melanoma is an aggressive malignancy of transformed melanocytes. It is 

known to be resistant to standard therapy, i.e. chemo- and radiotherapy (Finn et al., 

2012). It is the most rapidly increasing malignancy in Western population in terms of 

incidence and is directly related to improving life standards such as travelling to sea 

resorts and getting tanned (Sapoznik et al., 2012). Although only approximately 5% of 

skin cancers account for melanoma, it is responsible for most skin cancer related deaths 

(Kanavy and Gerstenblith, 2011). Risk factors for melanoma development are solar UV 

radiation, fair skin, dysplastic nevi syndrome, and a family history of melanoma 

(Garibyan and Fisher, 2010; Ilkovitch and Lopez, 2008; Whiteman et al., 2006). 

Melanoma is more common in Caucasians than in African or Asian people. It is affecting 

generally young and middle-aged people, unlike other solid tumors and it is the most 

common malignancy in women aged 25-29 years (Brewer et al., 2011).     

Most commonly melanoma arises from the malignant transformation of melanin-

producing melanocytes in the skin, rarely in noncutaneous melanocytes such as the 

retina and uvea of the eyes, respiratory, gastrointestinal, and genitourinary mucosal 

surfaces, or the meninges (Tsao et al., 2012). Clinicians have traditionally divided the 

disease into different subgroups based on the TNM classification of malignant tumors. 

Stage I melanoma is described as an invasive melanoma where the tumor cell spread in 

situ. If the tumor reaches the size of 1.5 mm and more, it can be assigned to stage II, 

which is high risk melanoma with a 5-year survival rate of 45-79%. In stage III, the 

tumor begins to metastasize into regional lymph nodes and the skin. Stage IV has a 5-
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year survival rate of 7-19% and the tumor cells form distant metastases by spreading 

through the peripheral blood and lymphatic system into the brain, lung, liver skin and 

the bone marrow (Balch, 2002). In general, patients with thin lesions (>0.75 mm) have a 

5-year survival rate of greater than 99%, whereas patients with lesions >4 mm showed a 

5-year survival rate of less than 50% (Balch et al., 2003). 

According to the progression and invasion of melanoma, four subtypes can be described: 

superficial spreading melanoma, lentigo maligna melanoma, acral lentiginous melanoma, 

and nodular types (Reed and Martin, 1997). 

 

 
Fig.3: Different melanoma types.  (A) Patient with various melanoma lesions. (B) Superficial spreading 
and (C). nodular melanoma. (D) Acral lentiginous melanoma and (E) ocular melanoma. Tsao, H et al., 
Genes & Dev. 2012 

 

1.3.1 STANDARD THERAPIES OF MALIGNANT MELANOMA 

Surgical excision of the tumor with adequate margins and assessment for the presence of 

detectable metastatic disease along with short- and long-term follow-up belongs to the 

common standard procedure. However, surgery can be beneficial only for localized 

(primary) melanoma (Landthaler et al., 1989). 

Diverse chemotherapeutic agents have been used for treatment against melanoma but 

without a significant increase in the overall survival of patients (Bajetta et al., 2002). 

For instance, dacarbazine and temozolamide are used as a single therapy or in 
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combination as a polychemotherapy. Systemic therapy as a single-agent chemotherapy 

has not been successful until now. In contrast, polychemotherapy has increased the 

response rate but not the survival rate (Serrone et al., 2000). 

Patients with non-resectable distant metastases or with regionally and advanced 

melanoma are treated with radiotherapy. Although it is proven to be ineffective it is still 

commonly used after surgical resection to treat left tumor tissue (Mendenhall et al., 

2008). 

As adjuvant therapy interferon-α (IFN-α) is used after surgical removal since it has been 

shown an improvement in disease-free survival when applied in a high-dose manner 

(Kirkwood et al., 1996). IFN-α has an anti-proliferative effect on tumor cells by the 

downregulation of oncogenes and the induction of tumor suppressor genes. Therefore, it 

is associated with an enhancement of tumor immunogenicity through the upregulation of 

MHC class I on tumor cells (Bracci et al., 2007; Fang et al., 2008).  Therapy with IFN-α 

can increase the overall survival up to 15% (Mohr et al., 2003). 

 

1.3.2 MELANOMA IMMUNOTHERAPY  

Melanoma that is known as an immunogenic cancer has been considered as a prime 

target for immunotherapeutic approaches. Therefore, various immunological therapy 

strategies have been used in clinical trials as a promising treatment possibility compared 

to conventional therapies (Ortenberg et al., 2012). Ongoing efforts are made to find 

effective treatments of metastatic melanoma based on the immune system modulation 

(Sapoznik et al., 2012). Melanoma cells induce both innate and adaptive immune 

responses. Furthermore, immune cells are migrating to and infiltrate melanoma lesions 

(Thompson et al., 2010). Nevertheless, clinical studies are not very successful probably 

due insufficient immune cell number, their low cytotoxic potential and the inhibitory 

tumor microenvironment (Anichini et al., 2004; Harlin et al., 2006; Rosenberg et al., 

2005; Yuan et al., 2010). In the past 25 years, immunological research has led to the 

improvement of our knowledge about molecular mechanisms of the immune response. 
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Moreover, this better understanding has allowed the development of new methods to 

induce and manipulate the anti-tumor immune response ex vivo and in vivo (Lizee et al., 

2013). Recent studies have demonstrated that the regression of metastases after 

immunotherapy was linked to the activation of genes responsible for antigen presentation 

and interferon-mediated tumor rejection (Carretero et al., 2012). Several systemic 

treatment approaches include the administration of immune-stimulating cytokines, 

immunization with tumor cells or molecules, adoptive transfer of T cells, blocking 

antibodies against inhibitory molecules and inhibitors of mutated kinases (Klein et al., 

2011; Rosenberg et al., 2008; Shepherd et al., 2010; Weber, 2010).  

 

1.3.3 CYTOKINES 

Cytokines are small signaling proteins that are secreted by various immune cells. These 

signaling molecules function as regulators and immune-modulating agents. IL-2 is 

produced by T cells and enables the growth and expansion of T cells, expressing IL-2 

receptors on their surface (Morgan et al., 1976). In 1992, IL-2 was approved as the first 

immunotherapy for the treatment of metastatic renal cancer and in 1998 for the 

treatment of advanced melanoma (Rosenberg, 2012). Treatment with high-dose IL-2 can 

result in a complete regression, around 5-10% of patients, and additionally 10% in partial 

regression (Atkins et al., 1999; Rosenberg et al., 1998; Schwartzentruber et al., 2011; 

Smith et al., 2008). Furthermore, around 70% of complete responders to IL-2 therapy do 

not relapse which means that they are probably cured (Rosenberg et al., 1988).  

Other cytokines such as IL-21 were also studied in early-phase clinical trials. This 

cytokine can activate cytotoxic T cells promoting potent anti-tumor response in pre-

clinical studies and patients (Frederiksen et al., 2008; Hashmi and Van Veldhuizen, 2010; 

Rasmussen et al., 2010).  

Other cytokines involved in the activation (such as IL-7 and IL-15) have been 

investigated for a possible clinical application (Klebanoff et al., 2011b). Some 

immunotherapies aim the differentiation of CD8+ T cells at the tumor site toward 

effector and memory phenotypes since it is believed that these cells can elicit the most 

efficient anti-tumor response. In this respect, IL-7 and IL-15 used alone or in 
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combination may promote the maturation of anti-tumor CD8+ T cells and induce the 

regression of melanoma metastases (Le et al., 2009).  

 

1.3.4  CANCER VACCINES 

Another approach to elicit potent anti-tumor immune responses without side effects is 

the immunization with whole tumor cells, tumor specific peptides, recombinant viruses, 

DC, and naked DNA combined with different adjuvants (Allison, 1999; Banchereau and 

Palucka, 2005; Gorelik and Flavell, 2001; McGilvray et al., 2009; Nestle et al., 1998; 

Zaks and Rosenberg, 1998). The aim is to stimulate innate and adaptive immunity to 

recognize and eliminate tumor cells. Although therapeutic cancer vaccines showed an 

impressive anti-tumor activity in numerous animal models, their clinical benefit in cancer 

patients leaves much to be desired. Multiple clinical trials have achieved only low overall 

survival with rare complete responders (Klebanoff et al., 2011a; Rosenberg et al., 2004).   

 

1.3.5 ANTIBODIES 

Therapeutic antibodies have an advantage to circulate in the peripheral blood and lymph 

system where they can bind to targets. Monoclonal antibodies can be subdivided into 

either inhibitory or activating antibodies against co-inhibitory or co-stimulatory 

molecules respectively. Various approaches have been used in recent clinical trials 

(Ascierto et al., 2010; Robert et al., 2011; Sznol, 2010; Vonderheide et al., 2007).  

The lack of co-stimulation leads to peripheral T cell tolerance with no immune response 

or cell death through apoptosis (Croft, 2009). Pre-clinical studies in animal models have 

shown that sustaining co-stimulatory signaling will enhance T cell reactivity against 

tumor antigens (Croft, 2009). This facilitates an induction of cytotoxic CD8+ T cell 

response, leading to the tumor elimination by cell death (Croft, 2009). Some monoclonal 

antibodies utilized in the clinical trials are mentioned below.  
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Fig.4: Immunoinhibitoty pathways. Modified from Freeman et al. 2012 (Freeman and Sharpe, 2012).  

Ipilimumab, a monoclonal antibody, has been approved in March 2011 as an antibody-

based immune therapy for late-stage metastatic melanoma. This antibody increases the 

anti-tumor immunity by inhibiting CTLA-4, which acts as a negative regulator in the 

immune response (Korman et al., 2006). CTLA-4 is a homologue of T cell costimulatory 

CD28 but with higher binding affinity to its ligand (e.g. CD86). Once CTLA-4 is 

upregulated on the surface of activated cytotoxic T lymphocytes, it leads to cell cycle 

arrest and inhibition of proliferation of these cells, and as a consequence causes immune 

evasion (Korman et al., 2006; Peggs et al., 2006). In clinical trials, the treatment with 

ipilimumab of patients with inoperable stage III and IV melanoma achieved response 

rates range from 5-15%, with durable responses (Thumar and Kluger, 2010). Moreover, 

combination studies, including ipilimumab, to attain higher response rates in melanoma 

patients are in progress (Sondak et al., 2011).  

Another antagonistic antibody, blocking the negative T cell checkpoint, is directed 

against programmed death cell death (PD)-1 (MDX-1106; BMS-936558). PD-1 is 

expressed mainly on activated T cells and APCs (Weber, 2010). Its ligands are PD-L1 

(B7-H1) and PD-L2 (B7-H2). PD-L1 is expressed on macrophages, DC, B cells and T 

cells (Keir et al., 2008; Weber, 2010). High level of PD-L1 expression was also found on 

multiple tumor cells including melanoma (Dong et al., 2002; Kronig et al., 2012). It is 

believed that melanoma cells can induce durable PD-1 signaling which leads to T cell 

dysfunction and T cell exhaustion (Kronig et al., 2012). Therefore, since PD-1 is 
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expressed on tumors and stroma cells, PD-1 blockade might restore immune cell 

functions and induce anti-tumor response. Pre-clinical studies on PD-1 deficient mice 

showed an increased T cell response and cytokine production, leading thereby to the 

inhibition of the hematogenous spread of B16 melanoma cells (Iwai et al., 2002). The 

blockade of PD-L1 could enhance therapeutic efficiency of the combined immunotherapy 

in mice with B16 melanoma (Pilon-Thomas et al., 2010). Based on these findings, early 

phase clinical trials were initiated with anti-PD-1 antibodies as a single agent. Objective 

tumor response could be observed in 37.5% of patients (Brahmer et al., 2010). 

Furthermore, preliminary data suggest a relationship between PD-L1 expression on 

tumor cells and clinical response since patients with PD-L1-negative tumors had no 

objective response (Topalian et al., 2012).   

The combination of MDX-1106 with ipilimumab in patients with stage III or IV 

melanoma has been initiated in a phase I clinical trial (Davar et al., 2013).  

 

1.3.6  ADOPTIVE CELL THERAPY 

Based on the fact that host’s immune system is capable of producing anti-tumor 

response, various attempts have been performed to evoke an effective immune-mediated 

elimination of the tumor (Wu et al., 2012). As a highly promising approach, adoptive 

transfer of tumor-reactive autologous T cells into cancer patients is currently under 

intense investigation (Shapira-Frommer and Schachter, 2012). This strategy utilizes ex 

vivo cultured autologous T lymphocytes with specificity for tumor antigens. For an 

efficient treatment, these lymphocytes need to have the ability for the homing to tumor 

sites and the potential to destroy tumor cells in vivo (Shapira-Frommer and Schachter, 

2012; Zito and Kluger, 2012).  

 

Adoptive therapy of tumor infiltrating lymphocytes 

Since Steven Rosenberg first demonstrated that T lymphocytes infiltrated in melanoma 

metastasis could be grown in presence of IL-2 and are capable to recognize melanoma 

cells, adoptive cell therapy (ACT) protocols have developed (Dudley et al., 2008). In 
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1998, it was demonstrated that these autologous tumor infiltrating lymphocytes (TILs) 

have the ability to mediate tumor regression (Rosenberg et al., 1988). However, the 

durability rates were very low or absent. Therefore, lymphodepletion regimens were 

introduced prior to adoptive transfer. Lymphodepletion was performed to eliminate 

immune regulatory cells, to reduce the competition for growth factors and also to achieve 

an increase in serum concentrations of IL-7 and IL-15, which promote T cell growth 

(Dudley et al., 2008). 

After using cyclophosphamide to deplete immune suppressor cells and adding a high dose 

IL-2 administration to the adoptive transfer, an objective response of 34% among 86 

melanoma patients was detected (Rosenberg et al., 1994). Among different 

lymphodepletion protocols, such as fludarabine, cyclophosphamide and combination of 

both, the total body irradiation (TBI) was the most effective in maintaining transferred 

polyclonal TIL populations and expansion of cytotoxic CD8+ T cells in the blood 

circulation in vivo (Bernatchez et al., 2012; Dudley et al., 2008).  Lymphodepletion prior 

to adoptive transfer of TILs in combination with high dose bolus IL-2 has been shown to 

lead to around 50% of clinical response rates in patients with metastatic melanoma in 

nonrandomized phase II clinical trials (Dudley et al., 2005; Laurent et al., 2010). Those 

results remain to be validated in phase III clinical trials, although they are promising. 

 

1.3.7 TARGETED THERAPY 

Another therapy approach is targeting signaling pathway leading to the tumor 

progression (Inamdar et al., 2010). Several such drugs including BRAF and MEK 

inhibitors are now under evaluation (Spagnolo and Queirolo, 2012). Promising results 

have been recently achieved in phase I and II trials. A BRAF-inhibitor Vemurafenib has 

been approved in August 2011 for the treatment of patients with unresectable or 

metastatic melanoma with BRAF V600E mutation (Bernatchez et al., 2012; Ribas et al., 

2012). Phase I and II trial that combined a selective BRAF inhibitor and a selective 

MAPK kinase (MEK) inhibitor, showed a significant improvement of progressive-free 

survival in patients with metastatic melanoma (Flaherty et al., 2012). In addition, the 
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treatment with BRAF inhibitors has been shown to increase T cell infiltration of 

melanoma lesions (Boni et al., 2010; Comin-Anduix et al., 2010; Wilmott et al., 2012). 

In summary, tremendous efforts have been made for the development of new therapeutic 

strategies of metastatic melanoma. Multiple treatment options show promising results. 

However, to attain an efficient immune response against the tumor, a combination of 

different approaches, including adoptive immunotherapy seem to be the most auspicious 

way to go. 

 

1.3.8 TUMOR-INDUCED IMMUNOSUPPRESSION 

Although multiple therapeutic approaches show promising effects on the anti-tumor 

reactivity of T cells; such T cells activation does not always correlate in clinical trials 

with the therapeutic benefit. The immunosuppressive tumor microenvironment (TME) 

might play a role in the failure of these treatment approaches (Wu et al., 2012). Tumors 

have developed mechanisms to create an immunosuppressive network which can 

negatively influence immunotherapy. Although T cells are capable of infiltrating tumors, 

they fail to eliminate tumor cells due to their defected lytic machinery or the lack of 

active attack (Hanahan and Weinberg, 2011). This might be due to the presence of co-

inhibitory molecules or the downregulation of tumor specific antigens or MHC molecules 

on tumor cells (Vesely et al., 2011).  Since the downregulation of MHC class I favors 

tumor recognition by natural killer (NK) cells, tumor cells adjust their MHC I expression 

to minimize the recognition by either NK or T cells (Vivier et al., 2012). Furthermore, 

effector T cells are not capable to function properly due to the inhibition by 

CD4+CD25high, FoxP3+ regulatory T cells (Tregs), CD19+ CD25high regulatory B cells, IL-

13 producing NKT cells in the TME (Jacobs et al., 2009; Jacobs et al., 2012; Kiniwa et 

al., 2007; Olkhanud et al., 2011). Additionally, local myeloid cells are trimmed by TME 

to dconvert into myeloid-derived suppressor cells (MDSCs).  
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restore ζ-chain expression in T cells and significantly prolong survival of tumor-bearing 

mice (Meyer et al., 2011).  

Other approaches of T cell inhibition is the interaction of PD-1 expressed on T 

lymphocytes with PD-L1, which is expressed on tumor cells, MDSCs and Tregs (Jacobs 

et al., 2009; Ozao-Choy et al., 2009), Fig.5. PD-1 negatively regulates T cell responses 

through interaction of PD-1 with PD-L1, which leads to reduced proliferation and IFN-γ 

secretion (Freeman et al., 2000).  

 

1.4 Melanoma mouse model 

To develop new strategies of melanoma immunotherapy, it is essential to use a reliable 

animal melanoma model. Conventional transplantation mouse melanoma models (e.g., 

B16) are based on the transplantation of tumor cells, in which the natural history of the 

disease is not comparable with the clinical situation. Therefore, the ret transgenic mouse 

melanoma model, which closely resembles human melanoma with respect to tumor 

genetics, histopathology and clinical development is the better choice (Kato et al., 1998; 

Umansky et al., 2008). In this spontaneous transgenic melanoma model, the human ret 

receptor tyrosine kinase is overexpressed in melanocytes under the control of the mouse 

metallothionein-I (MT) promoter-enhancer. Activation of ret kinase overexpression 

during tumor progression is associated with the activation of other downstream signaling 

molecules such as mitogen-activated protein kinase (MAPK), Erk2 and c-Jun. During 

the malignant stage, tumors showed as well a high activity of matrix metalloproteinases 

(MMP)-2 and MMP-9 (Kato et al., 1998; Kato et al., 2001).  

The mechanism of spontaneous melanoma development in ret transgenic mice is still 

under investigation. So far is known that ret kinase overexpression during tumor 

progression is associated with the activation of other downstream signaling molecules 

such as mitogen-activated protein kinase (MAPK), Erk2 and c-Jun (Kato et al., 1999). 

During the malignant stage, tumors showed also a high activity of matrix 

metalloproteinases (MMP)-2 and MMP-9 (Kato et al., 1999; Kato et al., 2001; Kato et 

al., 2006; Phay and Shah, 2010).  
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Mice develop spontaneously malignant cutaneous melanoma, metastasizing to lymph 

nodes, lungs spleen, kidney, liver and brain (Kato et al., 1998; Kato et al., 2004). This 

metastatic profile resembled that of human malignant (Polsky et al., 2002).  

 

1.5 Aim of the study 

Melanoma is known to be very aggressive and associated with high lethality rates once it 

metastasized. It shows poor response to common treatments. Therefore, the investigation 

of novel therapeutic strategies is very important. Immunotherapeutic approaches are 

particularly promising because of the immunogenic properties of melanoma. 

The objective of this work is to determine whether melanoma-specific memory T cells, 

which have been previously shown to persist in the bone marrow of patients with 

different cancer types, can be utilized for an adoptive immunotherapy against melanoma 

in ret transgenic mice. Therefore, the phenotype and effector functions of in vitro 

activated melanoma-specific memory T cells from the bone marrow of ret transgenic 

mice were characterized in vitro. Furthermore, migration properties of these cells and 

their anti-tumor effect were examined in vivo. In addition, an adoptive transfer of 

melanoma-specific T cells with was performed after modulation of the tumor 

microenvironment with PDE-5 inhibitor sildenafil. 
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2 Materials 

2.1 Mice 

All mice were crossed and kept under specific pathogen-free conditions in the animal 

facility of the German Cancer Research Center (Heidelberg). Experiments were 

performed in accordance with government and institute guidelines and regulations.  

 

2.1.1 RET TRANSGENIC SPONTANEOUS MELANOMA MOUSE MODEL 

  Ret transgenic mice (C57BL/6 background) express the human Ret proto-oncogene in 

melanocytes under the control of mouse metallothionein-I promoter-enhancer. These 

mice were kindly provided by Dr. I. Nakashima (Japan) (Kato et al., 1998) and were 

kept under the guidelines of the animal facility of the German Cancer Research Center. 

 

2.1.2 TRP-2 TCR TRANSGENIC MOUSE MODEL 

Mice with T cell receptor transgene (TCR Tg) specific for the TRP-2(180-188) epitope were 

kindly provided by Dr. A. Hurwitz (USA), crossed and kept under the guidelines of the 

animal facility of the German Cancer Research Center. 

 

2.1.3 C57BL/6  

The C57BL/6 (BL/6) wild type mice were provided by Elevage Janvier, crossed and 

kept in the mouse facility of the German Cancer Research Center. 
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2.2 Reagents 

2.2.1 CHEMICALS 

3-Amino-9-ethyl-carbazol   Sigma, Cat.#A6926 

(AEC) tablets  

Ammonium chloride (NH4Cl)  Merck,Cat.#101141 

Bovine serum albumin (BSA)       Sigma, Cat.#7030-50G 

Concanavalin A                            Amersham Biosciences, 

Cat.  170450-01 

Dimethylsulfoxid (DMSO)        Merck, Cat.#109678 

0,5M EDTA (pH 8.0)          GIBCO, Cat. #15575-098 

100% Acetic acid (CH3COOH)    Merck, Cat.#100063 

Fatal bovine serum (FBS)              PAN Biotech GmbH, Cat.#3702-    

        P260718 

Isofluran    DeltaSelect 

Potassium hydrogen carbonate Roth, Cat. #P748 

(KHCO3)    

Sodium acetate (CH3COONa)    neoLab, Cat.#4720 

Sodium azide (NaN3)       Roth, Cat.#K305 

Sodium carbonate (Na2CO3)    AppliChem, Cat.#A3900 

N,N – Dimethylformamid  Sigma, Cat. D-4551 

0.4% Trypan blue solution  Sigma, Cat.#T8154 

Tween20       Sigma, Cat. #P-2287 
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2.2.2 BUFFERS AND MEDIA 

Enzyme-linked immunosorbent spot (ELISPOT) 

AEC buffer      1 AEC tablet (20mg) 
      Dimethylformamide   2,5 ml 
      0,2M Sodium acetate  8,4 ml 
      0,2M acetic acid 3,5 ml 
      H2O bidest.         35,6 ml 
      Hydrogen peroxide      25 μl 

An AEC tablet (20 mg) was dissolved in 2.5 ml of dimethylformamide in a 50 ml Falcon 

tube. Then, 8.4 ml of 0.2 M sodium acetate, 3.5 ml of 0.2 M acetate acid and 35.6 ml 

H2O were added. After mixing, the solution was filtered through 0.45 m filter and 25 l 

of H2O2 was added. The prepared AEC buffer should be kept in dark and used within 

one month after preparation.  

 

Working solution     1x PBS 
      BSA, 0,5% (w/v) 

Coating buffer   

Solution A:  1,59g Na2CO3 in 100 ml H2O 

Solution B:           2,93g NaH2CO3 in 100 ml H2O 

Working coating buffer    1 ml A + 1 ml B + 8 ml H2O  
pH 9.6 

Washing buffer    1x PBS, Tween 20, 0,25% (v/v) 

 

Flow cytometry (FACS) 

FACS buffer     1 x PBS   
2% FBS,  
0.2% NaN3  
2 mM EDTA 
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10x lysis buffer    8,29 g NH4Cl  
      1 g KHCO3  
      37,2 mg EDTA, disodium   
      ad 1 l H2O, pH (7.2-7.4) 
 

Dynal® mouse T cell negative isolation buffer 

Buffer 1     1xPBS  
0,1% BSA and  
2 mM EDTA, pH 7.4 

Buffer 2     RPMI-1640  
10% FCS 

 

2.2.3 MEDIA 

Complete RPMI-1640   w/L-glutamine, PAA Cat.# E15-840 

DC-Medium     445 ml RPMI-1640  
50 ml heat inactivated FCS   
(56°C; 45min) 

T cell medium RPMI-1640 w/L-glutamine, PAA Cat.# 
E15-840 

 5 ml P/S 
 5 ml Hepes 
 5 ml -Mercaptoethanol 
 50 ml FCS 

 

2.2.4 ANTIBODIES 
Antibodies for flow cytometry 

Antibody Format Reactivity Company/ cat.# 

anti-mouse CD8a PE rat IgG2a  BD 553033 

APC-Cy7 rat IgG2a  BD 557654 
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APC-H7 rat IgG2a  BD 560182 

Alexa Flour 

47

rat IgG2a  BioLegend  

anti-mouse CD3 PerCP-Cy5.5 rat IgG2a  BD 555276 

APC rat IgG2a  BD 553066 

FITC rat IgG2a  BD 553062 

V500 syrian hamster IgG2  BD Horizon  

Apacific blue syrian hamster IgG2  BD 558214 

anti-mouse CD45RB FITC rat IgG2a  BD 553100 

anti-mouse CD62L FITC rat IgG2a  BD 553150 

APC rat IgG2a  BD 553152 

anti-mouse I-A/I-E FITC rat IgG2a  BD 553623 

anti-mouse CD4 PE rat IgG2b  BD 553730 

pacific blue rat IgG2b
 

BioLegend 

anti-mouse CD40 PE rat IgG2a  BD 553791 

anti-mouse CD44 PE rat IgG2b  BD 553134 

FITC rat IgG2b  BD 561859 

PE-Cy7 rat IgG2b  eBioscience 

Anti-mouse CD69 Alexa Flour 

47

armenian hamster IgG BioLegend 

APC-Cy7 armenian hamster 

I G

BD 561240 

PE-Cy7 amenian hamster IgG BioLegend 

anti-mouse CD80 (B7.1) PE hamster IgG2 k BD 553769 

anti-mouse CD86 (B7.2) PE rat IgG2a  BD 553692 

Anti-mouse CD45.2 V500 rat IgG2a  BD Horizon 

PerCP-Cy5.5 IgG2a, κ BD 552950 

CD279 (PD-1) FITC armenian hamster IgG eBioscience 
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PE armenian hamster IgG eBioscience 

CD274 (B7-H1, PD-L1)  PE rat IgG2a λ BD 558091 

Table 2: Antibodies for flow cytometry 

 

ELISPOT 

 Name Reactivity Clone Company/cat. #

Primary 

antibody 

IFNγ rat anti-

mouse 

RMMG-1 Biosource Europe 

AMC 4834 

Secondary 

antibody 

IFNγ, 

biotinylated 

rat IgG1, κ XMG1.2 BD 554410 

Streptavidin-

HRP   

- - - BD 557630 

Table 3: Antibodies used for ELISPOT 

 

Other antibodies/ Dextramer/ peptides 

 

Antibody Format Reactivity Company/ cat.#

anti-mouse CD274 (B7-

H1) 

purified rat IgG2a, λ eBioscience 

14-5982-82 

  rat IgG2b, κ BD 553142 

Table 4: Other antibodies 

 

 Format Allele Peptide Company/ cat.#

MHC -Dextramer PE H-2 Kb SVYDFFVWL Immudex JD2199

TRP-2(180-188) 

peptide 

purified  SVYDFFVWL DKFZ Heidelberg

Table 5: TRP-2 Dextramer and peptide 
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2.3 Kits  

T cell enrichment Dynal® Mouse T Cell Negative Isolation Kit, 

Invitrogen, Cat. #114.13 

IFN-γ  secretion assay      Mouse IFN-γγ Secretion Assay – Cell 

Enrichment and Detection Kit, Miltenyi, 

Cat. # 130-090-517 

 

2.4 Routine laboratory materials 

2.4.1 DEVICES 

ELISPOT Reader           Bioreader 3000, Biosys 

FACS machine         FACS Canto II, 8 colors, BD 

Refrigerator (-80 °C)    HeraFreeze, Heraeus 

Incubator              HeraCell, Heraeus 

Refrigerator (-20 °C)            Premium, Liebherr 

Microscopes          DMIL, Leica 

pH meter                766, Calimatic 

Laminar flow              Hera Safe, Thermo Electron Cooperation 

Vortex                REAX top, Heidolph 

Vortex Genie 2, Scientific Industries 

Balance     BP 3100P, Sartorius 

Water bath               DC3, HAAKE / GFL 
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Centrifuges                  Labofuge 400R, Heraeu 

Biofuge primo R, Heraeus 

                Varifuge K, Heraeus 

 

2.4.2 ROUTINE LABORATORY MATERIALS 

ELIPOT plates Silent Screen Plate 96-well clear w/o Lid 

Biodyne B Membrane N/Str PS, Nunc, Cat. 

# 256154  

Needles                 0,4x19 mm Mikrolance, BD 

               0,3x13 mm Mikrolance, BD 

Pipets 2-20 μl, 20-200 μl, 200-1000μl, Rainin 

Object carrier           76x26 mm SuperFrostPlus, 

                   Menzel-Gläser, Cat. J1800AMNZ 

Cover glass                      24 x 24 mm , Roth 

Tubes 15 ml / 50 ml            Polypropylen, BD Falcon   

0.5 ml tubes, Eppendorf  

1.5 ml tubes, Eppendorf  

2 ml tubes, Eppendorf  

Syringes                 1 ml Plastipak, BD 

             

Cell culture plates       96-well-Platte, Greiner 

               24-well plate, TPP 

                   6-well plate, Greiner 
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Cell strainer       40 μm; 100 μm, BD Falcon 

Sterile filter  0,45 μm, sterile, Rotilabo, Roth  

 

2.4.3 SOFTWARE FOR DATA ANALYSIS 

FlowJo (Version 7.6.1)   Tree Star, Inc., Ashland, USA 

GraphPad PRISM (Version 5) GraphPad Software, Inc., San Diego, USA 
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3  Methods 

3.1 Preparation of single cell suspensions from mouse 
organs 

Mice were sacrificed by cervical dislocation. 

 

3.1.1 SPLEEN 

Mouse spleens were collected in 15 ml Falcon tube with 2 ml of ice-cold PBS. Single cell 

suspensions were prepared by smashing the spleen with the plunger of a 5 ml syringe 

through a 40 μm cell strainer. Then the cells were washed with cold PBS once at 1200 

rpm for 10 min. Red blood cells were lysed with 1 ml of lysis buffer on ice for 3 min 

followed by the addition of 9 ml PBS to stop the reaction. Cells were centrifuged (1200 

rpm, 10 min) and the cell pellets were resuspended in appropriate buffers for different 

assays. 

 

3.1.2 LYMPH NODES 

Isolated mouse lymph nodes were smashed through a 40 μm cell strainer using plunger of 

a 5 ml syringe. The cell strainer was washed with cold PBS to remove the remaining 

cells. The cells were washed with PBS once at 1200 rpm, 10 min and resuspended in 

FACS buffer for flow cytometry. 
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3.1.3 BONE MARROW 

Freshly isolated femurs and tibiae from the mouse were shortly treated with 70% ethanol 

to avoid contamination. Then the bones were cut at both ends and the BM was flushed 

with ice cold PBS using a 10 ml syringe with a 23G needle. The cells were collected in a 

10 cm Petri dish and dissociated by pipetting with a 1 ml pipette. Then, cells were 

washed once with PBS and red blood cells were lysed with 1 ml of lysis buffer for 3 min 

on ice. After washing with cold PBS Cold PBS (1200 rpm, 10 min), the pellet was 

resuspended in an appropriate buffer depending on the following assay. 

 

3.1.4 TUMOR 

The freshly isolated tumor mass was smashed through a 40 μm cell strainer by a 5 ml 

syringe plunger into a 50 ml Falcon tube. Cells were washed with cold PBS at 1200 rpm 

for 10 min. The cell pellet was resuspended in an appropriate buffer. 

 

3.1.5 ASSESSMENT OF CELL CONCENTRATION 

The cell number was determined using a Neubauer counting chamber. A sample of 10 μl 

was diluted with trypan blue in a ratio 1:100 and two quadrates were counted and 

divided by two to attain a precise number of cells. The following formula was used: 

n x 104 x dilution factor (10) = cell number / ml 

 

3.2 Generation of bone marrow derived dendritic cells  

3.2.1 DC CULTURE 

DC were generated from BM precursors of C57BL/6 mice. A single cell suspension from 

the BM was prepared as described and resuspended in RPMI-1640 medium 

supplemented with 10% FCS and 1% P/S (complete medium). To deplete all adherent 



Methods  36 
 

 

non-DC precursors, cells were incubated in a 75 cm2 flask overnight at 37°C, 5% CO2 

and 95% humidity. Then the supernatant containing precursor cells was removed, 

washed with RPMI-1640 + 10% FCS and 1% P/S. After centrifugation the pellet was 

washed with RPMI-1640 + 10% FCS and 1% P/S and resuspended in complete 

RPMI-1640 medium (1x106/ml). 1000 U/ml of recombinant murine GM-CSF (rmGM-

CSF) and 1000 U/ml of recombinant murine IL-4 (rmIL-4) were added. Three ml of the 

cell suspension was plated in each well of a 6-well plate followed by a 7 days culture at 

37°C, 5% CO2 and 95% humidity. On day 3 and 6, 1.5 ml of medium from each well 

were carefully removed, collected in a 50 ml Falcon tube and centrifuged (1300 rpm, 5 

min). Next the pellet was resuspended in the same volume of complete RPMI-1640 

medium. GM-CSF and IL-4 were added (each 1000 U/ml), and the wells were filled with 

freshly prepared medium. The day before DC harvesting, DC were activated with 3 

μg/ml of CpG1668 phosphorothioate (PTO)-modified. In addition, the PD-L1 on DC 

was blocked with 10 μg/ml of purified anti-PD-L1 antibody. DC were pulsed with 500 μg 

tumor lysate per well overnight. The pulsing of stimulated DC with TRP-2 derived 

peptide (TRP-2180-188) was performed for 2 hours. Then, DC were harvested by carefully 

pipetting and collected in a 50 ml Falcon flask for further procedures. 

 

3.2.2 PHENOTYPE ANALYSIS OF DC  

DC phenotype was detected by flow cytometry. In order to avoid unspecific binding of 

the antibodies to the Fc receptor, cells were incubated for 15 min with Fc block solution. 

After washing with FACS buffer samples were incubated with mAbs against MHC class 

II-PE, CD11c-APC, CD40-FITC, CD80-PerCP/Cy5.5 and CD86-PE-Cy7 for 30 min at 

4°C in the dark followed by two washing steps and resuspension in 200 μl of FACS 

buffer. 
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3.2.3 PREPARATION OF TUMOR LYSATES 

In order to make intracellular proteins accessible for DC pulsing with tumor antigens, 

tumor cells were lysed by mutual  freezing in liquid nitrogen and thawing at 37°C 

(Feuerer et al., 2001a).  

The tumors were squeezed through 45 μm cell strainers and collected in a petri dish with 

2 ml of ice cold PBS. The suspension was collected in a preferably small amount of PBS 

(1-2 ml/tumor) so that in the end a high concentration of the protein was attained. The 

suspension was transferred into a 15 ml flask and flash-frozen for 10 min in liquid 

nitrogen. Then the cells were thawed at 37°C in water bath for another 10 min. This 

procedure was repeated four times.  Afterwards the cell debris was centrifuged (2000 

rpm, 7 min, 4°C), the supernatant containing protein was transferred into 2 ml 

Eppendorf tubes and the tumor lysates (TL) were frozen at -80°C until use. The protein 

concentration was analyzed by Bradford Assay according to manufacturers’ instruction.   

 

3.3 Negative selection of T cells from the bone marrow 
of ret transgenic mice 

The negative T cell isolation kit is based on a monoclonal antibody cocktail which binds 

all non-T cells like B-and NK cells, monocytes, macrophages, granulocytes and DC. 

Magnetic beads are bound to these antibodies and the bead-bound cells can be 

subsequently separated on a magnet and discarded. The benefit of this method is that 

the untouched T cells in the remaining eluate are not stimulated and can be used for 

further experiments. 

The negative selection of T cells from the BM of at least 10 mice was performed using 

the Dynal® Mouse T Cell Negative Isolation kit according to manufacturer’s protocol. 

Then the cells were counted, washed with PBS and the pellet was resuspended in 

complete medium. Then, cells were adjusted to an appropriate concentration for the co-

culture with DC.  
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3.4 Co-culture of T cells with dendritic cells 

3.4.1 CO-CULTURE 

In order to stimulate melanoma antigen-specific T cells from the bone marrow of ret 

transgenic mice, they were co-cultured with tumor antigen loaded DC as described in 

6.2.1. Within 40 hours of co-culture, only T cells, which already encountered tumor-

specific antigens (memory T cells), can be stimulated. The co-culture was performed in 

96-well plates (round-bottom).  

For the stimulation of memory T cells 5x105 freshly isolated T cells (6.3) were cultured 

with 1x105 in vitro generated tumor antigen-loaded DC (6.2.1) in 150 μl of complete 

medium per well (T cell: DC ratio= 5:1) at 37°C, 5% CO2 and 95% humidity. DC were 

derived from the BM progenitors of C57BL/6 wild type mice. After 40 h of co-culture 

cells were harvested by carefully pipetting and used for flow cytometry or adoptive 

transfer experiments. 

 

3.4.2 T CELL EXPANSION 

To detect optimal conditions for in vitro activation and expansion of memory T cells, a 

cytokine cocktail containing IL-21 (25 ng/ml), IL-15 (50 ng/ml) and IL-7 (10 ng/ml) was 

added to the co-culture on day 2 and the medium was exchanged every 2-3 days with 

fresh cytokines. 

 

3.5  Generation of TRP-2-specific CD8+ effectors 

For generation of TRP-2-specific CD8+ T cells, pooled lymph node cells and splenocytes 

from TCR tg mice were cultured in T cell medium with 1 μM of TRP-2(180-188) peptide 

and human recombinant IL-2 (20 IU/ml, PeproTech)for 3 days. Then, cells were 

expanded with media containing 20 IU/ml IL-2 for another 2 days. On day 5, cells were 

centrifuged, adjusted to a number of 1x107 cells in 100 μl and injected into tumor-

bearing ret transgenic mice. In case of migration experiments, cells were stained with 5-
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(and 6)-carboxyfluorescein diacetate succinimidyl ester (CFSE) before the adoptive 

transfer as described by Parish CR, et al. (2009). Therefore, 1x107 cells were 

resuspended in 0.5 ml PBS supplemented with 10% FCS (PBS-10%FCS) and 0.5 ml 

CFSE solution (1 μM solution: 2 μl from 5 mM CFSE stock solution mixed with 10 ml 

PBS). Then, cells were incubated at 37°C for 10 min, gently shaken and 4 ml of pre-

warmed PBS-10% FCS was added to stop the reaction. Cells were washed in PBS (1400 

rpm, 8 min, 4°C) and resuspended in pre-warmed sterile PBS and counted.    

 

3.6  Flow cytometry 

Flow cytometry allows the simultaneous multiparametric analysis of single cells based on 

the emission of electronic light when a cell passes the electronic detection apparatus. The 

fluid containing cells which are labeled with fluorescent markers are sucked through a 

capillary and are focused in the center. Thereby, the cell aggregates are dissolved by the 

strong acceleration which allows the passage through a laser beam of a single cell. The 

cell that passes the laser beam emits scattered light, which is dependent on the size, 

structure of the cell membrane and the intracellular content of the cell. Two different 

scatterings exist, the forward scatter (FSC) which contains information about the size 

and the side scatter (SSC) that is a measure for granularity of the cell (Baumgarth,N. 

2000, Radbruch, 2000). Since the emitted fluorescence is proportional to the amount of 

antibody-bound epitopes, with the help of fluorescent markers phenotype of the cell can 

be determined. The more antigens are expressed on the cell bound to the antibody the 

stronger is their emission of the light. Different fluorescent dyes have different absorption 

and emission spectra which allows staining of different epitopes of a cell.   

 

3.6.1 STAINING OF CELL SURFACE MARKERS  

1x106 cells/well cells were transferred into a 96-well plate (round bottom). After 

centrifugation (1900 rpm, 1 min) the supernatant was discarded and the pellet was 

resuspended in 50 μl of FACS buffer containing Fc-block. After 15 min of incubation at 
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4°C cells were washed with 150 μl/well FACS buffer and centrifuged (1900 rpm, 1 min). 

Afterwards, the cell pellet was resuspended in 50 μl FACS buffer containing fluorescent-

conjugated antibodies (list of used antibodies see 2.2.4). The cells were incubated for at 

least 20 min at 4°C in the dark. Before measurement the cells were washed twice with 

FACS buffer and the pellet was resuspended in 10-200 μl FACS buffer. The 

measurement was performed with the FACSCanto II (BD) using the BD Diva Software 

V.6.1.1. FlowJo software 7.6.1 (Tree Star) was used to analyze at least 100,000 events. 

Data were expressed as dot plots.  

 

3.6.2 MHC DEXTRAMER STAINING OF TRP-2-SPECIFIC CD8 T CELLS 

The MHC Dextramer staining is based on the interaction of the TCR on T cells and 

MHC complex on antigen-presenting cell (APC). The multimer staining technique was 

developed by Altman et al. (1996). It enables the detection of antigen-specific T cells ex 

vivo. MHC multimers are reagents that carry multiple MHC-peptide complexes. They 

have the ability to bind simultaneously to multiple TCRs on a single T cell. The antigen 

which the MHC complexes contain is the TRP-2 derived peptide180-188 (SVYDFFVWL). 

 

 

Fig.6: Schematic drawing of the MHC Dextramer. Source: Immudex, Denmark 

After the Fc-block cells were incubated with 10 μl of PE-labeled MHC Dextramer for 10 

min at 4°C in the dark. Then antibodies for CD8 T cells were added followed by 

incubation for another 20 min. Then the cells were washed with FACS buffer twice and 
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the pellet was resuspended in 100-200 μl FACS buffer for the measurement using 

FACSCanto II. 

 

3.7 IFN-γ ELISPOT 

3.7.1 PRINCIPLE OF THE ASSAY 

ELISPOT assays have an unsurpassed sensitivity in detecting low frequency antigen-

specific T cells that secrete effector molecules, including granzyme and perforin 

(Lehmann et al. 2012). This assay provides an effective method of measuring antibody or 

cytokine production of immune cells on a single cell level (Janeway et al. 2002).  

Fig.7 shows the principle of ELISPOT. For the detection of cytokines released by 

stimulated T cells micro titer plates with a nitrocellulose bottom are coated with an 

antibody against the cytokine of interest. Then, cells are incubated in the coated wells. 

During incubation, the cells secrete cytokines which bind to the coating antibodies in the 

area of secretion. After incubation, the cells are removed and biotinylated secondary 

antibodies and streptavidin-bound enzyme conjugates are added. After incubation, a 

substrate is given. The spots, which appear during the development of the assay, 

represent a single cell secreting the cytokine of interest (Schmittel et al., 2000).  

 

Fig.7: Principle of ELISPOT.1. Coat membrane with antibodies. Add immune cells and 
incubate. 2.Responding cells produce cytokines. The cytokine of interest is then bound by the 
antibody.3 Wash to remove cells. Add biotinylated antibodies which bind to the cytokine-
antibody complex. 4 Add avidin-enzyme conjugate. 5 Add enzyme substrate and each 
responding cell will result in one spot. 
http://www.millipore.com/immunodetection/id3/elispot 
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3.7.2 IFN-γ PRODUCTION BY STIMULATING BM T CELLS 

In order to demonstrate the functionality of BM-derived memory T cells, a co-culture 

with antigen pulsed DC was performed (see 3.4). The co-culture was made in an 

ELISPOT plates that were equilibrated with 15 μl 70% ethanol for 1 min, washed twice 

with 200 μl/well PBS and coated with rat anti-mouse IFN-γ  primary antibody (10 μg/ 

ml in coating buffer; 100 μl/well). The plates were sealed with parafilm and incubated at 

4°C over night.   

At the same day, DC were stimulated, treated with anti-PD-L1 and pulsed with antigen 

(see 3.2.1). 

One day later, the unbound antibody was washed off twice with 200 μl/well of sterile 

water. The membrane was blocked with 150 μl/well RPMI-1640 supplemented with 10% 

heat inactivated FCS for at least 2 h at 37°C. The blocking medium was decanted and 

5x105 freshly separated T cells were cultured with 1x105 generated DC per well (T 

cell:DC ratio of 5:1) in 150 μl complete medium. For positive controls, BM-derived T 

cells and splenocytes were treated with concavalin A (ConA, 10 mg/ml). The plates were 

incubated for 40 h at 37°C, 5% CO2 and 95% humidity. 

Then cells were washed 6 times with PBS/0,05% Tween®20 (PBS-T), incubated with 50 

μl/well biotinylated IFN-γ  secondary antibody (rat anti-mouse, 1 μg/ml in sterile BSA 

buffer) for 2 h at 37°C, 5% CO2 and 95% humidity. Plates were washed again 6 times 

with PBS-T and incubated with diluted streptavidin-HRP (1:500 in PBS, 100 μl/well) 

for 2 h at 37°C followed by  washing three times with PBS-T and three times with PBS. 

For the spot development, AEC substrate was freshly prepared (see 2.2.2). Spot 

development was started after the addition of 50 μl/well AEC substrate and incubation 

for 3-10 min at RT in the dark. The reaction was stopped under running water and 

extensive washing. Plates were dried between paper towels overnight. The quantification 

of the spots was analyzed in the ELISPOT reader Bioreader®-3000 (BioSys).   
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3.8 IFN-γ  secretion assay  

3.8.1 PRINCIPLE OF THE METHOD 
In addition to ELISPOT, antigen-specific IFN-γ secretion by T cells can be detected with 

the Mouse IFN-γ Secretion Assay Detection Kit (Miltenyi Biotec). The cells are re-

stimulated either with APCs or with a peptide followed by attachment of the IFN-γ-

specific Catch Reagent to the cell surface. During the IFN-γ secretion phase, IFN-γ binds 

immediately to the Catch Reagent on the secreting lymphocytes. Then these cells are 

labeled with the IFN-γ Detection Antibody conjugated to a fluorescent dye. The IFN-

γ secretion can be detected in different T cell subsets. Analysis of IFN-γ secreting T cells 

is performed by flow cytometry. 

For the detection of IFN-γ secreting CD8 T cells in the T cell-DC co-culture the IFN-

Secretion Assay Detection Kit (APC*) was used according to manufacturer’s 

instructions. T cells were co-culture with DC for 40 h as described in 3.4 followed by a 

staining with anti-CD3 and anti-CD8 fluorescent labeled antibodies. T cells cultured 

without DC were taken as a negative control. Con A or staphylococcal enterotoxin B 

(SEB) was added to splenocytes for unspecific stimulation and IFN-γ secretion as a 

positive control. Propidium iodide (PI) was added directly before measurement to 

exclude dead cells.  
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3.10  Statistical analyses  

Statistical analyses were performed using Excel 2007 (Microsoft) and GraphPad Prism 5 

(GraphPad Software, Inc.). Results were expressed as mean±SD. To determine 

significant differences between two groups, P values were calculated by unpaired t-test. 
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Cells, which express CD11c, were considered as mature DC. Around 76% of the cells in 

culture expressed CD11c and 19% CD11c and MHC-II (double positive). Out of CD11c+ 

cells, 25% expressed CD40, 73% CD80 and 92% CD86. Hence, the majority of CD11c+ 

cells expressed co-stimulatory molecules, which is important for T cell activation. 

 

4.2  T cells from the bone marrow of ret transgenic mice  

4.2.1 T CELL FUNCTION OF MEMORY T CELLS EX VIVO 

Next, we determined the anti-tumor reactivity of memory T cells, which were isolated 

from the BM of ret transgenic mice with macroscopic tumors or without visible tumors. 

Bone marrow-derived T cells were co-cultured for 40 h with DC loaded with tumor 

lysate or TRP2(180-188) peptide (see 3.4). Such short-term co-culture is enough to activate 

tumor-specific memory T cells but is not sufficient to stimulate their naive counterparts.  

It is known that the interaction between PD-1 on T cells and PD-L1 on DC can 

negatively regulate the T cell immune response (Fourcade et al., 2010; Freeman et al., 

2000). Moreover, the blockade of PD-L1 leads to an enhanced therapeutic efficacy of the 

immunotherapy against melanoma (Pilon-Thomas et al., 2010). In order to block PD-

1/PD-L1 interaction during the co-culture of T cells with DC, the latter were pretreated 

with anti-PD-L1 antibodies prior to co-culture (6.4.1). IFN-γ secretion was measured 

using the ELISPOT assay.  
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Fig.10: ELISPOT. DC were generated in vitro from BM progenitors of non-transgenic 
C57BL/6 mice in complete RPMI-1640 medium supplemented with rmGM-CSF (PeproTech) 
and rmIL-4 (eBioscience) (1000 U/ml each). Immature DC were stimulated with CpG and 
treated with anti-PD-L1 antibodies (eBioscience), where indicated, followed by pulsing with 
whole tumor lysate for 20 h or with TRP-2 derived peptide (TRP-2180-188) for 2 h. DC were 
co-cultured with freshly isolated CD3+ T cells from the BM of ret transgenic tumor free (tg) 
or tumor-bearing (tb) mice (DC:T cell ratio, 1:5) for 40 h. The secretion of IFN-γ was 
measured by ELISPOT assay. The graph shows the results of two independent performed 
assays (each in triplicates).  

After co-culture with DC pulsed with tumor lysate or TRP-2(180-188) peptide, T cells were 

able to secrete IFN-γ (Fig.10). The amount of IFN-γ secreting T cells from mice without 

visible tumors (tg) was similar after DC pulsing with tumor lysate or TRP-2(180-188) 

peptide. In contrast, DC pulsed with TRP-2(180-188) peptide induced higher amounts of 

IFN-g producing T cells isolated from tumor-bearing (tb) mice than DC pulsed with 

tumor lysate. After PD-L1 blockade on DC, the number of IFN-γ secreting T cells from 

tg mice was significantly increased both upon the co-culture with DC loaded with the 

peptide or tumor lysate. On the other hand, the pretreatment of DC with anti-PD-L1 

antibodies did not lead to an enhancement of IFN-γ secreting T cells in tb mice if DC 

were pulsed with the TRP-2(180-188) peptide. Therefore, the pretreatment of DC with anti-
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PD-L1 antibodies leads to an increase of IFN-γ secretion in T cells upon stimulation with 

melanoma antigen-pulsed DC.  

To confirm our results with ELISPOT assay, we used the IFN-γ secretion assay. In this 

setup, IFN-γ secretion of T cells from mice without visible tumors was detected after in 

vitro stimulation with DC pretreated with anti-PD-L1 antibodies and pulsed with 

TRP2(180-188) peptide before co-culture (see 6.4.1).  

 

Fig.11: IFN-γ secretion assay. DC were generated in vitro from BM progenitors of non-transgenic 
C57BL/6 mice in complete medium supplemented with rmGM-CSF and rmIL-4 (1,000 U/ml each). 
Immature DC were stimulated with CpG and treated with anti-PD-L1 antibodies, followed by pulsing with 
TRP-2 derived peptide (TRP-2180-188) for 2 h. DC were co-cultured with freshly isolated CD3+ T cells 
from the BM of ret transgenic tumor free mice (DC:T cell, 1:5). After 40 h, the secretion of IFN-γ was 
measured using the IFN-γ secretion assay. As a negative control (C), T cells were cultured for 40 h in the 
absence of DC confirming that the secretion depended on the presence of DC.  

Fig.11 shows the proportion of IFN-γ secreting T cells after co-culture with TRP-2(180-188) 

peptide pulsed DC either pretreated with anti-PD-L1 antibodies or without the 

pretreatment. After PD-L1 blockade, we detected more IFN-γ secreting T cells as 

compared with the co-culture without anti-PD-L1 pretreatment (5,42% vs. 3,22%). 

These data confirms that the PD-L1 blockade on DC prior to co-culture leads to an 

increased stimulation of T cells. 
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4.2.2 T CELL EXPANSION 

Since for an adoptive transfer an efficient amount of melanoma-antigen-specific T cells is 

required, the T cell expansion was initiated (5x105 T cells and 1x105 DC). The absolute 

amount of cells decreased during the culture (data not shown). However, a relative 

enrichment of CD3+ and CD8+ T cells could be observed (Fig. 12A). The number of 

CD4+ T cells remained stable during the co-culture. At day 2, we observed no changes in 

the frequency of central and effector memory as well as naive subsets within total CD8+ 

T cells (Fig. 12B). Afterwards, the relative proportion of naive T cells within CD8+ T 

cells increased considerably, whereas the proportion of memory T cells diminished. CD4+ 

T cells showed a decrease in the memory phenotype and an increase of naive T cells 

already from the beginning of the co-culture (data not shown). 

The proportion of the early activation marker CD69 expressed on CD8+ T cells in the 

co-culture increased from 13,9% ± 1,8% at day 0 to 42,1% ± 5,4% at day 2 (Fig. 12C). 

Then, the percentage of CD69 expressing CD8+ T cells increased to 11,5% ± 7,2% at day 

8. In contrast, the proportion of CD4+ T cells with an activated phenotype was 

decreased.  



Results  51 
 

 

CD4+ and CD8+ T cells

day0 day2 day6 day8
0

20

40

60

80

100

CD3+ CD3+ CD4+ CD3+ CD8+

%
 o

f t
ot

al
 a

liv
e 

ce
lls

CD8+ T cell phenotype

day0 day2 day6 day8
0

20

40

60

80

100

CD8+ TCMCD8+ TEM CD8+ Tnaïve

%
 o

f t
ot

al
 C

D
8+  T

 c
el

ls

CD69 expression

day0 day2 day6 day8
0

10

20

30

40

50
CD8+ CD69+

CD4+ CD69+

%
 o

f t
ot

al
 C

D
3+  c

el
ls

PD-1 expression

day0 day2 day6 day8
0

2

4

6

8

CD8+ PD-1+

CD4+ PD-1+

%
 o

f t
ot

al
 C

D
3+  c

el
ls

A B

C D

 

Fig. 12: Phenotypical analysis of co-cultured T cells.CD3+ T cells were separated from the BM of ret 
transgenic mice with or without visible tumors, co-cultured with BM derived in vitro generated DC (T 
cell:DC-ratio, 5:1) and analyzed at the depicted time points. A) Relative amounts of CD3+, CD3+CD8+ and 
CD3+CD4+ cells during the co-culture. B) Proportions of MTC subpopulations within CD8+ T cells. C) 
Relative amounts of CD69 expressing CD4+ and CD8+ T cells during co-culture. D) Frequencies of 
exhausted (PD-1+) CD4+ and CD8+ T cells. 

Furthermore, no accumulation of exhausted (PD-1+) T cells occurred during the co-

culture (Fig. 12D). The amounts of PD1+ T cells was approximately the same for both T 

cell subsets at all measured time points remaining below 10% of total T cells.  

 

Fig.13: TRP-2-specificity of CD8+ T 
cells.Proportion of TRP-2 specific within 
total CD8+ T cells is shown. 
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CD8+ T cells before and after separation. B) represents the frequency of CD3+ T cells before and after 
separation as well as upon 40 h co-culture with melanoma-antigen pulsed DC.  

After co-culture with TL-loaded DC loaded with tumor lysate, we achieved around 

75,7% ± 6,1% CD3+ T cells within the total alive cells. Therefore, we could isolate from 

ret transgenic mice a sufficient amount of bone marrow CD3+ T cells that was increased 

after the stimulation with DC. 

 

Phenotype analysis of CD8+ T cells after coculture 

Fig.15A demonstrates different phenotype subsets within CD8+ T cells before and after 

co-culture with DC pulsed with tumor lysate.  
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Fig.15: Phenotype analysis after co-culture. CD3+ T cells were separated from the BM of ret 
transgenic mice with or without visible tumors, co-cultured with bone marrow-derived in vitro generated, 
tumor lysate-pulsed DC (T cell:DC-ratio, 5:1) followed by flow cytometry. A) T cell subsets within 
CD3+CD8+ T cells before and after co-culture. B) TRP-2 Dextramer staining. Different T cell subsets within 
TRP-2-specific CD8+ T cells are shown.  

Among freshly isolated T cells, CD8+ T cell subset shows a prevalence for naive 

phenotype. After stimulation with tumor lysate-loaded DC the relative amount of naïve 

T cells was decreased (from 38.4% ± 15.3% before co-culture to 0.2% ± 0.1% after 40 h 

of co-culture, Fig.15A). Furthermore, the relative amount of the central memory T cell 

subtype increased after stimulation (23.6% ± 4.6% vs. 75.2% ± 5.9% after co-culture). 

Comparing effector and effector memory phenotype before and after co-culture, we could 

not observe any significant difference within CD8+ T cells. However, we could detect an 
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increase in TRP-2-specific CM T cells (from 16.0% ± 10.0% to 64.9% ± 21.1%) after the 

stimulation with DC. Moreover, these cells dominated within the CD3+ CD8+ T cell 

subset.  

Summarizing, after the co-culture, mainly central memory T cells specific for the 

melanoma antigen TRP-2 were found.  

 

4.2.4 T CELL MIGRATION AFTER INTRAPERITONEAL INJECTIONS  

An adoptive immunotherapy against cancer can only be effective when the transferred T 

cells are able to migrate into tumor lesions, where they can display their cytotoxic 

activity. It is also important that T cells migrate into the secondary lymphoid organs 

where they can encounter a tumor-antigens presented by DC.  

We analyzed the migration properties of in vitro activated memory T cells in ret 

transgenic tumor-bearing mice after intraperitoneal (i.p.) injections. Before the transfer, 

one part of the cell culture, including DC, was analyzed by flow cytometry and the other 

part was labeled with CPD (see 3.9). At day 3, 5 and 7 after adoptive transfer of CPD-

labeled DC and T cells, the migration to tumor lesions, metastatic lymph nodes, BM and 

spleen was measured. One representative of 10 experiments is shown in Fig.1. 2x106 cells 

per mouse were injected i.p. (Fig.16) followed by the migration assessment. Some CPD-

labeled cells were found in tumor lesions at day 3 and 7 after injections (Fig.16A). 

However, at day 5, considerably less CPD+ cells could be detected in the tumor. This is 

one of two experiments, were CPD+ cells could be detected. In all other experiments, it 

was not possible to track any labeled cells (data not shown). In the lymph nodes (LN), 

some cells could be tracked only at day 7.  

The analysis of the cells in the peritoneal cavity (Fig.16B) revealed that most of the 

CPD-labeled cells were remaining at the injection site. About 95% of the CPD+ cells 

expressed CD3, out of which approximately 2.5% were CD8+. At day 5 after the 

injection, the relative amount of labeled cells in the peritoneal cavity was considerably 
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less. At day 7 after the inoculation, the proportion of CPD+ cells increased to 16.1% of 

alive cells in the peritoneum. 

Therefore, adoptively transferred cells showed migration properties but the main part of 

injected cells remained in the peritoneal cavity.  
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Fig.16: T cell migration after i.p. injections. CD3+ T cells were separated from the BM of ret 
transgenic mice with or without macroscopic tumors and co-cultured with BM derived in vitro generated DC 
(T cell:DC ratio, 5:1) for 40 h. The cells were labeled with CPD and injected i.p. into tumor-bearing mice. 
A) At day 3, day 5 and day 7 after the injection, the migration of the cells to primary skin tumors and to 
lymphoid organs (LN: lymph nodes, BM, spleen) was determined. The injection was performed with 2.0×106 
CPD-labeled cells/mouse (n=2). In B) non-migrating cells in the peritoneal cavity were assessed (graph right 
panel). 

4.2.5 T CELL MIGRATION AFTER INTRACARDIAC INJECTIONS 

Since the migration of adoptively transferred T cells was found to be non-efficient, we 

injected the cells intracardially (i.c.). Freshly isolated T cells from ret transgenic mice 

were co-cultured with tumor lysate-loaded DC for 40 h (see 3.4). Then, 3x106 CPD-

labeled cells in 100 μl of sterile PBS (sPBS) were prepared. I.c. injections were performed 

under the supervision of Dr. med. vet. Michaela Socher. At day 3, 5 and 7 the migration 

of CPD-labeled cells in tumor lesions, blood, lymph nodes, BM and the spleen was 

assessed (Fig.17).  

Fig.17A shows that the maximal migration of CPD+ cells into tumor lesions was 

achieved at day 5. As expected, we could detect a decrease of CPD+ cells in the 

peripheral blood (Fig.17B). Also in metastatic lymph nodes, labeled cells were present 
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(Fig.17C). In addition, we found migrated cells in lymphoid organs like the bone marrow 

and the spleen (Fig.17D-E).  
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Fig.17: T cell migration after i.c. injections. CD3+ T cells were separated from the BM of ret 
transgenic mice with or without macroscopic tumors and co-cultured with BM derived in vitro generated DC 
(T cell:DC ratio, 5:1) for 40 h. The cells were labeled with CPD and injected i.c. into tumor-bearing mice. 
At day 3, day 5 and day 7 after the injection, the cell accumulation in the primary skin tumors (A), blood 
(B), lymph nodes (C), bone marrow (D) and the spleen (E)) was determined. The injections were performed 
with 3.0×106 CPD-labeled cells in 100 μl/mouse (n=5). 

The absolute amount of migrated T cells in the tumor, LN, BM and the spleen was 

presented in Fig.18. We detected a significant increase of CPD-labeled cells, out of all 

leukocytes (CD45.2+), from day 3 (0.5x105 cells ± 0.04x105 cells) to day 7 (7.2x105 cells 

± 3.2x105 cells, Fig.18A) in the tumors of ret transgenic mice. In the lymphoid organs, 

the absolute amount of T cells remained more or less the same, except for the lymph 

nodes, where the absolute number decreased over time (33.7x105 cells ± 23.2x105 cells at 

day 3 vs. 4.2x105 cells ± 2.1x105 cells at day7, Fig.18C). 
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Fig.18: Absolute amount of CPD+ migrated cells.  (n=5 for each time point). Five mice per 
measured time point. CD3+ T cells were separated from the BM of ret transgenic mice with or without 
macroscopic tumors and co-cultured with BM derived in vitro generated DC (T cell:DC ratio, 5:1) for 40 h. 
The cells were labeled with CPD and injected i.c. into tumor-bearing mice. At day 3, day 5 and day 7 after 
the injection, the absolute amount of migrated cells into primary skin tumors (A) bone marrow (B), lymph 
nodes (C) and spleen (D) was determined. The injections were performed with 3.0×106 CPD-labeled cells in 
100 μl/mouse.  

These data indicate that the in vitro activated T cells can efficiently migrate into tumor 

lesions.  

 

4.2.6  PHENOTYPE ANALYSIS OF MIGRATED CELLS IN THE TUMOR 

To assess the phenotype of CPD-labeled CD8+ T cells in infiltrated tumors, cells were 

stained with antibodies against CD62L, CD44 and CD45RB.  
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Fig.19: T cell subsets within CD8+ T cells. CD3+ T cells were separated from the BM of ret transgenic 
mice with or without macroscopic tumors and co-cultured with BM derived in vitro generated DC (T 
cell:DC ratio, 5:1) for 40 h. The cells were labeled with CPD and injected i.c. into tumor-bearing mice. On 
day 3, day 5 and day 7 after the injection the migration of the cells into to primary skin tumors was 
determined. The injections were performed with 3.0×106 CPD-labeled cells in 100 μl/mouse (n=5). After 
single cell suspension, tumor cells were stained with fluorescence-labeled antibodies against CD45.2, CD3, 
CD8, CD44 and CD62L. The measurement was performed by flow cytometry. 

As displayed in Fig.19, at day 3 and 5 the distribution of different phenotypes within the 

CD8+ T cell subsets was not significantly different. However, at day 7 the relative 

amount of effector CD8+ T cells in the tumor increased from 14.1% ± 18.0% up to 68.3% 

± 13.5%.  

 

4.2.7  IMMUNOTHERAPY WITH ADOPTIVELY TRANSFERRED 

ACTIVATED TUMOR-SPECIFIC MEMORY T CELLS 

3x106 cells per mouse were i.c. into tumor-bearing ret transgenic mice. The control group 

was treated with PBS. After the transfer, melanoma development in mice was monitored 

every second day to assure that they were not paralyzed or the tumor exceeded a 

marginal size.  
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Fig.20: Survival of tumor-bearing mice after adoptive transfer. A) CD3+ T cells were separated 
from the BM of ret transgenic mice with or without macroscopic tumors and co-cultured with BM derived in 
vitro generated, tumor lysate-pulsed DC (T cell:DC ratio, 5:1) for 40 h. The cells were labeled with CPD and 
injected i.c. into tumor-bearing mice. The injections were performed i.c. with 3.0×106 cells/mouse in 100 μl. 
B) Seven days before AT mice were treated with sildenafil dissolved in drinking water (20 mg/d/kg).**:P < 
0.05. 

Fig.20 shows the effect of an adoptive cell therapy with in vitro activated T cells on the 

survival of tumor-bearing mice. Already at day 43 after the transfer, the survival of mice 

in the therapy group was significantly higher than in the control group (P < 0.005). In 

addition, the treated mice were more active than in the control group. Therefore, ret 

transgenic mice contained functionally active melanoma-specific memory T cells in their 

BM, which could be restimulated with melanoma antigen-loaded dendritic cells to exert 

anti-tumor effects in vivo. 

MDSCs are known to inhibit tumor-reactive T cells. Previously, it has been shown by 

our group that MDSCs were accumulated in melanoma lesions and lymphatic organs of 

ret transgenic tumor-bearing mice. Phosphodiesterase-5 inhibitor (PDE-5) sildenafil was 

shown to restore the T cell reactivity and to prolong the survival of tumor-bearing mice 

upon in vivo application (Meyer et al., 2011). Therefore, we performed an adoptive 

transfer of in vivo activated BM derived T cells in combination with sildenafil Fig.20B. 

One week prior to the cell therapy, sildenafil was given to mice with the drinking water 

until the end of the experiment. One of two representative experiments is shown.  

Fig.20 depicts the survival of tumor-bearing mice upon the adoptive transfer of activated 

T cells in combination with sildenafil. The overall survival was significantly increased in 
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the combinational therapy group compared to sildenafil treatment alone and mice 

treated with PBS (P < 0.05).  

Therefore, these results show an in vivo anti-tumor effect of bone marrow derived 

memory T cells from ret transgenic mice in combination with sildenafil treatment.  

 

4.3  TRP-2-specific effector T cells from TRP-2 TCR 
transgenic mice 

Tyrosinase-related protein 2 (TRP-2) is a melanogenic enzyme which is expressed by 

both melanocytes and melanomas (Wang et al., 1996). It is reported to be a candidate 

melanoma rejection antigen (Engelhard et al., 2002). 

Recently, mice bearing T cell receptor transgene (TCR Tg) specific for TRP-2(180-188) 

epitope have been developed to study the role of self-reactive CD8+ T cells in tumor 

immunity (Singh et al., 2009). Since the bone marrow of ret transgenic mice contains 5-

7% T cells and therefore about 40 mice are needed to inject 6 mice for one survival 

experiment, we decided to use the TRP-2 TCR transgenic mouse model as a source of 

TRP-2-specific T cells for adoptive immunotherapy.  

 

4.3.1 MIGRATION OF TRP-2-SPECIFIC EFFECTOR T CELLS 

We determined first the migration capability of in vitro activated TRP-2-specific effector 

T cells from lymph nodes and the spleen of TRP-2 TCR transgenic mice. Single cell 

suspensions from lymph nodes and spleens were prepared and cultured in presence of IL-

2 and TRP-2(180-188) peptide for three days followed by the expansion for another two days 

in presence of IL-2 (see 3.5). T cells were stained with CFSE and 1x107 cells were 

adoptively transferred into tumor-bearing ret transgenic mice i.c..  

As shown in Fig.21B, the accumulation of adoptively transferred cells could be observed 

in the tumor at all three investigated time points with a maximum at day 5 (0.97% ± 
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0.32% at day 3 vs. 4.38% ± 2.08% day 5 out of all CD45.2+ cells). Also in all other 

analyzed organs, migrated CFSE+ cells could be detected. However, there was no 

significant difference of the relative amount of tracked at different time points in all 

organs (Fig.21C-F).  
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Fig.21: Migration of TRP-2-specific effector T cells. Lymph node cells and splenocytes from TRP-2 
TCR transgenic mice were cultured in T cell medium with 1 μM of TRP-2(180-188) peptide and human 
recombinant IL-2 (20 IU/ml, PeproTech) for 3 days. Then, cells were expanded with media containing 20 
IU/ml IL-2 for another 2 days. At day 5, T cells were stained with 5-(and 6)-Carboxyfluorescein diacetate 
succinimidyl ester (CFSE) before adoptive transfer. Then, 1x107 CFSE-labeled T cells were injected into 
tumor-bearing ret transgenic mice. At the indicated time points mice were sacrificed and the migration was 
analyzed by flow cytometry. A) A representative dot plot of lymph node cells at day 5, gated on CD3+ CD8+ 

T cells. CD45.2+ CFSE+ cells in the tumor (B), peripheral blood (C), lymph nodes (D), bone marrow (E) 
and spleen (F) were determined by flow cytometry. 
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With respect to the absolute amount of migrated TRP-2-specific T cells, we could 

observe a significant increase of CFSE+ cells in the tumor. Comparing day 3 with day 5, 

there was an 2.9-fold increase in the migration into tumor lesions (5.45x105 cells ± 

5.78x105 cells vs. 15.75x105 cells ± 4.5x105 cells; Fig.22A) and comparing day 3 with day 

7 (33x105 cells ± 8.49x105 cells), we could observe a 6–fold increase. In contrast, the 

absolute amount of CFSE+ cells in lymph nodes, bone marrow and the spleen was 

consistent during the analyzed migration period (Fig.22B-C).  

These data demonstrate the migration capability of in vitro generated TRP-2-specific 

effector CD8+ T cells from of TRP-2 TCR transgenic mice into tumor lesions and 

lymphoid organs.  
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Fig.22: Absolute amount of migrated TRP-2 TCR effector cells. Lymph node cells and splenocytes 
from TCR tg mice were cultured in T cell medium with 1 μM of TRP-2(180-188) peptide and human 
recombinant IL-2 (20 IU/ml, PeproTech) for 3 days. Then, cells were expanded with media containing 20 
IU/ml IL-2 for another 2 days. At day 5, T cells were stained with 5-(and 6)-Carboxyfluorescein diacetate 
succinimidyl ester (CFSE) before AT. Then, 1x107 CFSE-labeled T cells were injected into tumor-bearing ret 
transgenic mice. At the indicated time points mice were sacrificed and the migration was analyzed by flow 
cytometry in tumors (A), bone marrow (B), lymph nodes (C) and spleens (D). Three measured experiments 
with duplicates per measured time points are shown. 
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4.3.2 PHENOTYPE ANALYSIS OF CELLS MIGRATED INTO THE TUMOR 

To define the phenotype of migrated CD8+ T cells, single cell suspensions were stained 

with antibodies against memory markers (CD44, CD62L).  

The frequency of the effector memory cells within migrated CD8+ T cells in the tumor 

increased from day 3 (12.7% ± 10.5%) to day 5 (53.6% ± 24.3%; Fig.18). In addition, we 

found a decrease in the relative amount of central memory, naive and the effector T cells 

at this period of time.  
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Fig.23: CD8+ T cell subsets in the tumor. Splenocytes and lymph node cells from TRP-2 TCR 
transgenic mice were cultured in T cell medium with 1 μM of TRP-2(180-188) peptide and human recombinant 
IL-2 (20 IU/ml, PeproTech) for 3 days. Then, cells were expanded with media containing 20 IU/ml IL-2 for 
another 2 days. At day 5, T cells were stained with 5-(and 6)-Carboxyfluorescein diacetate succinimidyl ester 
(CFSE) before adoptive transfer. Then, 1x107 CFSE-labeled T cells were injected into tumor-bearing ret 
transgenic mice. At day 3, 5 and 7 after AT the phenotype of migrated CFSE+ CD8+ T cells was analyzed. 
Data from three experiments with duplicates are shown. 

 

4.3.3 IMMUNOTHERAPY WITH ADOPTIVELY TRANSFERRED ACTIVATED 

TRP-2-SPECIFIC T CELLS FROM TRP-2 TCR TRANSGENIC MICE  

In the first experiment (Fig.24A), 1x107 in vitro activated TRP-2-specific effector CD8+ 

T cells were injected i.c. into tumor-bearing mice. We did not found statistically 

significant difference in survival as compared to the untreated group (PBS). However the 

median survival of the treated group was increased. 
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Fig.24: Effect of immunotherapy with TRP-2 TCR transgenic T cells on melanoma 
development in ret transgenic mice. 1x107 in vitro activated T cells were injected alone (A) or in 
combination with (B). In the control group, mice were injected with 100 μl of sterile PBS n=8 per group. 
Both experiments were performed twice. One of each experiment is shown.     

In the second experiment, tumor-bearing mice were additionally treated with the PDE-5 

inhibitor sildenafil, starting on day seven before the adoptive immunotherapy (Fig.24B). 

In the group that included sildenafil therapy and adoptive transfer of TRP-2-specific 

CD8+ T cells, we failed to observe statistically significant increase in mouse survival. 

However, we detected a tendency of increased survival in the group with combinational 

therapy.  

In summary, we could observe a migration of BM derived reactivated melanoma antigen-

specific memory T cells into tumor lesions. Moreover, a significantly prolonged survival 

of tumor-bearing mice upon the adoptive transfer of these cells could be detected.   
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5  Discussion 
Malignant melanoma is one of the most aggressive forms of human cancer. In its 

metastatic stage, the lethality rate is very high, and its incidence is on the rise. 

Melanoma is resistant to common treatments such as chemotherapy and radiotherapy. 

Another therapeutic option, like the immunotherapy with high dose IL-2 comes with 

harmful side effects. Therefore, it is of importance to develop new strategies against 

malignant melanoma. Since melanoma is notorious to be immunogenic, multiple studies 

paid attention on developing therapies based on the modulation of hosts’ immune 

system. 

In the present study, we focused on adoptive immunotherapy in the ret transgenic 

melanoma mouse model. As described above, this model resembles clinical situation in 

metastatic melanoma patients.  

 

5.1 Activated T cells secrete more IFN-γ after PD-L1 
blockade on DC prior to their coculture with T cells 
in vitro 

It has been previously shown that memory T cells were located in the BM of breast 

cancer patients and patients with other cancer types (Feuerer et al., 2001b; Muller-

Berghaus et al., 2006; Schirrmacher et al., 2002; Schmitz-Winnenthal et al., 2005). 

Moreover, the reactivation of isolated memory T cells from the BM of breast cancer 

patients with DC has been demonstrated (Beckhove et al., 2004; Feuerer et al., 2001a).  

The reactivation of memory T cells from the BM of ret transgenic tumor-free mice and 
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mice with microscopic tumors with DC pulsed with tumor lysate has been also shown 

(Umansky et al., 2008). It has been reported that mature DC express PD-L1 on their 

surface, which can lead to T cell exhaustion upon binding to PD-1 (Gu et al., 2008; 

Pilon-Thomas et al., 2010; Schreiner et al., 2004).  Therefore, we examined the T cell 

response after restimulation with DC upon PD-L1 blockade. T cells were isolated from 

the BM of ret transgenic mice and the response was measured using an IFN-γ release via 

ELISPOT or IFN-γ capture assay. As expected, there was a significantly increased 

secretion of IFN-γ after PD-L1 blockade with anti-PD-L1 antibodies on DC prior to 

coculture as compared to the stimulation with untreated DC. An enhanced T cell 

activity after PD-L1 blockade on monocyte-derived DC has been previously observed 

(Brown et al., 2003).  

In summary, the activity of T cells from the BM of ret transgenic tumor-free and tumor-

bearing mice was enhanced after reactivation in vitro with DC treated with anti-PD-L1 

antibodies prior to coculture with freshly isolated T cells. 

 

5.2 T cell expansion 

An effective expansion of melanoma specific T cells is required to obtain a sufficient 

number of cells for immunotherapy. After the isolation of T cells from the BM of ret 

transgenic and the 40 h coculture with DC we added IL-21, IL-15 and IL-7 to the T cell 

medium in order to provide stimuli for memory T cell maintenance and survival (Barker 

et al., 2010; Brincks and Woodland, 2010; Cha et al., 2010; Knutson and Disis, 2001; 

Schluns et al., 2000; Weng et al., 2002). It has been demonstrated that the transfer of 

memory T cells may mediate a strong an anti-tumor response (Klebanoff et al., 2005). 

However, after 40 h of coculture the relative amount of CD8+ TEM and CD8+ TCM cells 

decreased. This phenomenon has also been observed with tumor infiltrating lymphocytes 

from melanoma patients using the rapid expansion protocol (REP) for T cell expansion 

(Dudley et al., 2003; Zhou et al., 2011). Furthermore, the relative amount of TRP-2-

specific T cells did not increase but rather decrease during the culture. An ex vivo 
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expansion of tumor-specific T cells is not always feasible due to the low frequency of 

those cells (Fig.13; 3.1% ± 1.7% on day 0), resulting in loss of homing receptor, i.e. 

CD62L, and downregulation of CD44 (Zhou et al., 2011). An optimal memory T cell 

expansion could for instance be achieved with the recently published culture protocol for 

specific in vitro expansion of highly purified naïve CD8+ T cells using peptide-pulsed DC 

in combination with sequential supplement of IL-21, IL-7 and IL-15. An expansion of 

approximately 200-fold of the initial antigen-specific population was achieved, and the 

anti-tumor reactive T cells showed a TCM-like phenotype expressing CD62L (Wolfl et al., 

2011).  

The early activation marker CD69 is one of the earliest cell surface antigens expressed by 

T cells following their activation (Ziegler et al., 1994). The CD69 expression on freshly 

isolated T cells was around 14.0%, and after the stimulation with tumor lysate pulsed 

DC, it increased up to 36.1%. We also measured the PD-1 expression on T cells which is 

linked to T cell exhaustion and is expressed on activated T cells (Freeman et al., 2000). 

However, the relative amount of PD-1 expressing cells did not increase after T cell 

stimulation with DC. 

Since the TRP-2-specificity and the activation status of CD8+ T cells was the highest 

after 40 h of coculture, we decided to use the cells for adoptive transfer at this time 

point.  

 

5.3 Migration properties and phenotype of transferred T 
cells  

Since the T cells after coculture were active and exhibited TRP-2 specificity we 

determined their migration after an adoptive transfer into ret transgenic tumor-bearing 

mice. To achieve an effective adoptive immunotherapy, T cells, which are transferred, 

should have the ability to migrate to the tumor site. As it has been previously shown, ex 

vivo expanded and adoptively transferred T cells from melanoma patients persist in vivo 
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and preferentially localize to tumor sites (Yee et al., 2002). They mediate an antigen-

specific immune response characterized by, e.g. elimination of antigen-positive tumor 

cells and regression of metastases. In another study, transferred autologous, re-activated 

BM memory T cells were transferred together with DC into NOD/SCID mice harboring 

xenotransplanted human breast tumors (Beckhove et al., 2004). A co-localization CD4+ 

and CD8+ with DC was detected in the tumor transplants. Therefore, we transferred 

both T cells and DC, after 40 h of their co-culture into tumor-bearing mice. In the 

beginning of this study, an adoptive transfer was performed via i.p. injections since ret 

transgenic mice have hyperpigmented, dark tails, and the tail veins are difficult to reach. 

Very low numbers of injected T cells were able to migrate into tumor lesions at day 3, 5 

and 7. At day 7 after the transfer, CPD-labeled T cells could be detected also in 

metastatic lymph nodes. We found a relatively high amount of CPD+ cells in the 

peritoneal cavity. One reason could be that the concentration of chemokines responsible 

for T cell homing into the periphery was not enough, and the transferred T cells 

remained in the peritoneum. In addition, the amount of transferred cells was only 1.2-

2.0x106 per mouse due to the low yield of T cells from the BM. In former publications, 

the amount of transferred T cells was at least 4x106 per mouse (Beckhove et al., 2004; 

Feuerer et al., 2001a; Umansky et al., 2008).  

In further experiments we performed intracardiac injections of in vitro re-activated T 

cells and DC to avoid the persistence of transferred T cells in the peritoneal cavity. 

Adoptively transferred CPD-labeled cells were capable to migrate into tumor lesions. 

Furthermore, these cells could home to the BM and the secondary lymphoid organs such 

as spleen and metastatic lymph nodes. When we transferred in vitro activated CFSE-

labeled TRP-2 TCR transgenic activated T cells, we observed a similar migration 

pattern of labeled cells. After the calculation of absolute numbers of migrated cells in 

respected organs and tumor lesions, we found that at day 3 after adoptive transfer, 

highest amounts of CPD+ cells were detected in metastatic lymph nodes followed by 

spleen and the BM. In the tumor, the number of cells reached 1x106 cells, whereas in the 

BM it was 3x106, in the spleen -1.5x107 and in metastatic lymph nodes -3.5x107. 

Therefore, the number of detected cells was higher than initially injected (~3x106 
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cells/mouse) indicating their proliferation in vivo. Later, the absolute amount of 

migrated cells significantly increased in the tumor, by contrast in spleen, the cell number 

did not change and in the lymph nodes they even decreased. In the BM, the absolute 

amount of tracked cells slightly increased at day 7. Since the BM was shown to be a 

preferential site for the migration and selective retention of memory T cells and DC 

(Feuerer et al., 2001a; Feuerer et al., 2001b), it is not surprising that adoptively 

transferred cells migrate into the BM.  

It is feasible that migrated cells may proliferate in the BM, lymph nodes and the spleen 

and then migrate to the tumor site. It has been reported that in the BM, T cells are 

condensed in lymphoid follicles surrounding a blood vessel and the frequency of such 

follicles can be increased during infections, inflammation and autoimmunity (Bain, 2001; 

Custer, 1973). Moreover, BM can serve as a secondary lymphatic organ and it appears to 

be important for systemic T cell-mediated immune response as demonstrated earlier 

(Feuerer et al., 2003). Furthermore, T cells are homing to the BM and form multicellular 

clusters together with resident CD11c+ DC, which can take up blood-borne antigen and 

serve as APCs for naïve or memory T cells (Schirrmacher et al., 2003). As a result, 

interactions between BM derived-DC and antigen-specific T cells lead to the 

upregulation of CD69 on T cells and their subsequent clonal expansion (Schirrmacher et 

al., 2003).  

Next, we took a closer look at the phenotype of T cells migrated into the tumor. We 

found that at day 3 after adoptive transfer, there was no significant difference between 

effector, central memory and naive CD8+ T cells. The number of TEM cells was lower 

than that of the other CD8+ T cell subsets. However, at day 5 and 7 post injection, the 

relative amount of effector memory CD8+ T cells increased whereas the numbers of naive 

and central memory T cells significantly decreased. A significant increase of effector 

CD8+ T cells was found in the tumor at day 7 after i.c. injection. Our findings are 

similar to the data reported earlier (Pages et al., 2005).  Presence of high levels of 

infiltrating memory and effector CD8+ T cells was found in patients after examining 

local immune response within the tumor specimens of resected colorectal cancer (Pages 
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et al., 2005). Recently, Thompson et al. (2010) reported T cell infiltration into the tumor 

after an adoptive transfer of naïve T cells in B16 melanoma. OT-I T cells, which were 

found within the tumors, expressed effector functions. 

When we used stimulated TRP-2 TCR transgenic effector T cells for an adoptive 

transfer, we could detect similar migration properties as in adoptive transfer of T cells 

from the BM of ret tg mice. T cells were trafficking into secondary lymph nodes as well 

as into BM of ret transgenic tumor-bearing mice. Furthermore, we have observed a 

continuous accumulation of CFSE+ cells within the tumor. Here, we used 1x107 T 

cells/mouse, it is 5 times more than we used in the experiment with BM derived T cells, 

but we observed a four times lower absolute amount of labeled T cells migrated into the 

spleen. On the contrary, more infiltrating T cells were found at day 7 in the tumor 

compared to the previous experimental setup with restimulated memory T cells 

(22.6±18.9x105 cells vs. 7.2±3.2x105 cells). This can be due to the fact that these TRP-2 

TCR transgenic T cells displayed CD8+ effector T cell phenotype. It is known that once 

the antigen-specific effector T cells are activated they migrate through the endothelial 

cell wall to inflamed tissues or tumor sites where they exert their effector function by 

releasing cytotoxins such as perforin, granzymes and granulysin (Barry and Bleackley, 

2002). Since effector T cells have a decreased expression of homing receptors like L-

selectin (CD62L) and CC-chemokine receptor 7 (CCR7), they have a reduced potential 

for homing to secondary lymphoid organs (Finlay and Cantrell, 2011). However, with the 

increased expression of chemokine receptors CCR5 and CCR2 they have a greater 

capacity to migrate to inflamed tissues (Kaech et al., 2002). It is therefore reasonable 

that in our experiment with the adoptive transfer of TRP-2 TCR transgenic CD8+ 

effector T cells we detected less CFSE+ cells in the spleen and a greater absolute amount 

in the tumor compared to the adoptive transfer of restimulated memory T cells and DC. 

We found equal amounts of naive, effector, TCM and TEM CD8+ TRP-2 TCR transgenic T 

cells at day 3 and 5. On day 7, we measured a slightly decreased relative amount of Teff 

and Tnaive CD8+ cells but an increase in effector memory CD8+ T cell numbers. In 

contrast, the relative amount of Teff CD8+ cells increased when using activated BM-

derived T cells from ret transgenic mice. 
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We hypothesize that transferred T cells migrate to secondary lymphoid organs, the BM 

and only a small number does migrate into tumor lesions. They are activated by APCs, 

clonally expanded and change their phenotype. Thereafter, effector T cells migrate into 

tumor lesions and exert their effector functions.  

 

5.4 Melanoma-specific reactivity in vivo of in vitro 
activated T cells  

We have shown that restimulated BM derived T cells from ret transgenic mice with and 

without visible tumors are capable to migrate into metastatic lymph nodes and to tumor 

sites. Furthermore, these cells migrate to spleen and the BM, where they encounter 

antigens presented by APCs and are clonally expanded. In our next experiments, we 

examined the anti-tumor activity of adoptively transferred BM-derived T cells from ret 

transgenic mice after 40 h of restimulation with DC pulsed with tumor lysate. The 

therapy with melanoma-antigen specific cells leads to a significant increase of the overall 

survival of tumor-bearing mice compared to mice treated with PBS. Although the 

tumors did not disappear, the tumor growth was significantly delayed. Moreover, mice in 

the treated group appeared more active and their fur was shiny compared with the 

untreated group where mice were moving very slow, had a sickly appearance and their 

fur was dull.  

It has been recently reported that after the manipulation of the tumor microenvironment 

with PDE-5 inhibitor sildenafil, the amounts of MDSCs and their inhibitory functions 

were decreased (Meyer et al., 2011). Furthermore, a reduction of inflammatory mediators 

such as IL-6, IL-1ß, VEGF and S100A9 was observed which led to a partial restoration 

of the ζ-chain expression on T cells and a significantly increased survival. Therefore, we 

decided to treat tumor-bearing mice with sildenafil one week before the adoptive 

transfer. The survival of mice pretreated with sildenafil and AT of reactivated BM-

derived T cells was significantly increased compared to the PBS group and the group 

treated with sildenafil alone. Since the amount of animals per group was low due to the 
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humble numbers of T cells in the murine BM, experiments have to be repeated to 

confirm these results.  

When we used in vitro generated TRP-2-specific effector T cells from TRP-2 TCR 

transgenic mice for therapy, we were not able to observe the same effects as after the 

therapy with memory T cells even in the combination with sildenafil. Although TRP-2-

specific T cells were found to migrate into tumor lesions, they might be inhibited by the 

immunosuppressive cells and mediators of the tumor microenvironment. Once the T cells 

are inhibited, they either undergo apoptosis or remain in an anergic state (Dong et al., 

2002; Selenko-Gebauer et al., 2003).  

 

BM-derived reactivated memory T cells from ret transgenic mice could be a promising 

tool for adoptive immunotherapy against melanoma since they are capable to migrate 

into tumor lesions and lymphatic organs. Their differentiation from TCM into TEM and Teff 

cells within the tumor is implicated by the increase and decrease of the respective T cell 

subsets over time. Moreover, their anti-tumor reactivity could be determined by a 

significantly prolonged survival in tumor-bearing mice after adoptive transfer of these 

cells alone and in combination with the inhibition of the MDSC-induced 

immunosuppression. 
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