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ABSTRACT

The content of this work is two-fold. In the first part we present a study on
the contamination of the intrinsic alignments to weak lensing measurements
in the future survey Euclid. On the grounds of the tidal torque theory, we have
adopted from the literature two related prescriptions for modeling the intrinsic
alignment signal and computed for both the resulting biases in the cosmologi-
cal parameters. We find a slight discrepancy among the two models, which both
significantly (up to > 3æ) contaminate the estimates for ≠m and æ8. The other
parameters h, ns and w appear less affected. In the second part we present re-
sults based on an innovative statistical approach, the extreme value statistics.
We investigate up to which level the primordial non-Gaussianities parameters
fNL and gNL inherited by the bi- and trispectra of the weak lensing convergence
can be constrained by the most extreme values of the convergence field. We find
constraints of the order of 102 for fNL and 105 for gNL if individual extreme val-
ues are considered, therefore sadly showing only a relatively weak constraining
power.

Meine Dissertation beschäftigt sich mit zwei Themen. In dem ersten Teil un-
tersuche ich die Kontamination von Daten des schwachen Linseneffekts durch
intrinsische Formkorrelationen von Galaxien für die Euclid-Mission. Die Beschrei-
bung der intrinsischen Korrelationen basiert auf Modellen, bei denen die Galax-
ien ihren Drehimpuls durch Gezeitenwechselwirkungen mit der kosmischen groß-
skaligen Struktur. Ich schätze den Fehler ab, der bei der Bestimmung kosmol-
ogischer Parameter auftritt. Obwohl es eine kleine Diskrepanz zwischen den
Modellvorhersagen gibt, sind bei beiden Modellen die Messungen von ≠m und
æ8 auf dem Niveau von > 3æ beeinflusst, während andere Parameter wie h, ns

und w schwächer beeinflusst werden. Im zweiten Teil untersuche ich eine in-
novative Technik, mittels der Extremwertstatistik des schwachen Linseneffekts
Einschränkungen auf die inflationären Nicht-Gaussianitätsparameter fNL und
gNL zu gewinnen. Die Sensitivität ist von der Größenordnung 102 für fNL und
105 für gNL, wenn individuelle Extremwerte herangezogen werden, was leider
hinter anderen Methoden zurückbleibt.
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MOTIVATION

Our current knowledge about cosmology is the sum of the work and motivation
prompted by the curiosity and commitment of thousands of scientists through-
out almost one century (one century if we consider just cosmology!). This sum
can be summarised in the current paradigm for the Universe, the§CDM model,
for which the Universe started from a Big Bang, cooled and diluted due to its ex-
pansion, slowly having the chance to build itself up from the most basic building
blocks: particles and atoms. After a long way lasted almost 14 billion years, today
we can admire the result of such an intricate and complex development under
the guise of very diverse objects ranging from planets, stars, galaxies, and large
scale structure in general to the CMB. The Universe is thus a unique and sin-
gle laboratory, in which we find combined all the physics from microscopical to
macroscopical scales.

This work, which is two-fold, straddles the very early history and the present
of the Universe, aiming to give a contribution in answering questions such as:
What gave start to the inflationary early epoch of the Universe which created
the seed fluctuations that we believe have grown up to becom the galaxies, clus-
ters of galaxies and large scale structure we see today? And furthermore: how
did galaxies form? Are we able to give a picture of this formation consistent with
the §CDM? Are ellipticals and spirals completely different and unrelated fami-
lies of galaxies? What are the physical processes intervening in the formation of
a galaxy and its angular momentum?

In Chapter 1 we review the fundamental observations and theoretical tools lead-
ing to the current §CDM paradigm describing the Universe. We summarise the
fundamental epochs the Universe is believed to have undergone and we finally
describe in more detail the formation of the structure. This gives us a back-
ground to study the formation of the galaxies, topic upon which we dwell in
Chapter 2. There, we address in more detail different possible scenarios, con-
sistent with§CDM paradigm, of formation of both elliptical and spiral galaxies,
particularly focussing on one aspect of galaxy formation: the source of their ro-
tation. We discuss how ellipticals and spiral galaxies intrinsically differ in how
their rotation is supported. The deep understanding of these processes has no-
ticeable consequences also concerning the question of whether spiral and ellip-
tical galaxies simply represent different stages of the life of a galaxy which, by

ix



x MOTIVATION

evolving and interacting with the surroundings and with other galaxies, experi-
ences processes (such as mergers) able to drastically modify its morphological
and physical features. Stress is put specifically on the Lagrangian description
of the tidal torque theory which, being characterised by the interplay between
short and long-ranged processes driven respectively by inertia and tidal shear
tensors, reveals the double nature - local and non-local - intervening in the ulti-
mate determination of the spin, and currently offers a very good understanding
of the reasons for the induced rotation in spiral galaxies.

The key role played by the tidal shear tensor is even more far-reaching, since
its long-ranged nature leads to its ability to mould not only one galaxy at a cer-
tain position, but also other galaxies in the close surroundings. Acting as a par-
ent, the tidal shear imprints its features in its off-spring: the "sibling" neigh-
bouring galaxies, whose similarities encode this common origin and show up
in a correlation among their shapes. This correlation goes by the name of intrin-
sic alignments, and is thoroughly discussed in Chapter 3. We discuss the lead-
ing role of tidal correlation lengths in shaping both early- and late-type galaxies
alignments and we present the current models used for linking the ellipticity to
the second derivatives of the potential: the quadratic model for spiral galaxies,
in which the ellipticity is proportional to the square of the tidal shear, and the
linear model for elliptical galaxies, whose ellipticity is considered to scale lin-
early with the tidal tensor. In the framework of the quadratic model, we describe
more in detail two prescriptions used in literature (which we will refer to as the
CNPT and MWK models Crittenden et al., 2001; Mackey et al., 2002).

We furthermore discuss in both Chapters 2 and 3 the prominent role of nu-
merical simulations in confirming and validating the tidal torque theory, by re-
producing the typical scaling relations with mass and time it predicts for the an-
gular momentum, and by investigating its efficacy in producing intrinsic align-
ments able to be tracked back to the gravitational tidal tensor. In this direction
N -body simulations appear to be essential to investigate the difficult grounds of
non-linearities which evolution of galaxies certainly introduces and which are
expected to play an important role in the determination of the final spin of a
galaxy and hence also the intrinsic alignments signal. The reason for deepening
numerical simulations is even more reinforced by the fact that non-linearities
constitute a complicated task to be achieved analytically, although studies have
also been made in this direction.

Weak lensing represents the essential node between the two parts in which
this thesis is developed, and constitutes the grounds of this work. On the one
hand, cosmic shear produces a distortion in the images of background sources,
therefore inducing a statistical correlation among the observed images which
can be easily mimicked by intrinsic correlations, which are also capable to pro-
duce such correlations but upon a physically different process, as already men-
tioned. Intrinsic correlations, accounting for ª 10% of the cosmic shear signal,
therefore constitute a severe contaminant to weak lensing. Mostly in this era of
high-precision surveys, such as Euclid, which aim to measure the weak lensing
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signal up to 1% accuracy, intrinsic alignments can jeopardise our ability of pin-
pointing cosmological parameters from weak cosmic shear. On the other hand,
since the weak lensing essentially provides a measurement of the density field of
the visible Universe, the convergences measured therefrom are expected to be
distributed according to a probability distribution which reflects the probability
distribution of the density. Both non-linear evolution on large scales and pri-
mordial non-Gaussianities are thought to be possible sources of any departure
from the original Gaussian shape of this distribution, and to yield to a weakly
non-Gaussian distribution of the convergence, which would then be asymmet-
ric and thus able to enhance the probability of extreme events or, equivalently,
the tails of the distribution. This statistical feature of the convergence distribu-
tion can be conveniently exploited by analysing the occurrence of such extreme
values with the Extreme Value Statistics. These are the grounds for our investiga-
tions, whose core is contained in Chapters 5 and 8, which reproduce the articles
Capranico et al. (2012) and Capranico et al. (2013) respectively.

A description of the physical processes inducing weak lensing and the rea-
sons why intrinsic alignments constitute a contamination to this signal are dis-
cussed in Chapter 4, where we address the basics of gravitational lensing. We in-
clude a description of tomographic weak lensing, technique nowadays broadly
used due to the enhancement in the amplitude of the signal it produces. In this
context we show the results we have obtained by applying the tomography tech-
nique to intrinsic ellipticities modelled with the CNPT prescription, confirming
how and quantifying how much the tomographic approach can lead to signifi-
cant improvement in results.

In Chapter 5 we show how, by means of a Fisher matrix analysis, we can
give an estimation of the biases on the cosmological parameters which would
be caused by not including the intrinsic alignments contribution to theoretical
weak lensing signal used to model the data. We consider only late-type galaxies
and therefore restrict ourselves on the framework given by the quadratic mod-
elling of intrinsic alignments, thereby comparing the effectiveness of CNPT and
MWK models in describing the physics intervening in the formation of intrin-
sic ellipticities. We compare these results with some of the other analyses con-
ducted in literature.

The description of the methods and physics used for the second part of this
thesis starts in Chapter 6, which provides a basic toolkit for an appropriate un-
derstanding of the statistics of extremes. Extreme Value Statistics is a relatively
new tool to cosmology, and appears to be very powerful mostly when applied
to distributions which enhance the probability of the tails of the ditributions,
such as asymmetric distributions and, very generically speaking, distributions
deviating from Gaussianity. In order to describe why we would expect physically
to encounter in cosmology such statistical distributions, we put emphasis, in
Chapter 7, on the primordial type of non-Gaussianities (which, we repeat, pro-
vide just one of the possible ways of recovering non-Gaussianity), which we ad-
dress in our work concerning extreme values. We begin with an initial discussion
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about inflation, and then continue by incorporating a general description about
different models for primordial non-Gaussianties. Chapter 8 shows our results
on extreme values and concludes all our analyses. By modelling the distribution
of the convergences with a Gram-Charlier distribution, we sample from this dis-
tribution obtaining the distributions of maxima and minima both numerically
and analytically. We show how the latter tend to a specific distribution, the Gum-
bel distribution, for larger and larger values of the number of samples, and we
study the dependence of the position and shape of the extreme distributions for
the case of inflationary non-Gaussianities on the number of available samples.
Finally, we attempt to find the constraints on the non-Gaussianity amplitudes
fNL and gNL which would be set by the single values for the extremes measured
in the Euclid weak lensing survey. We end this thesis with a discussion about the
results and conlcusions.



Chapter 1

THE COSMOLOGY BEHIND

1.1 Introduction

This chapter is meant to provide a basic cosmological background and tools to
understand the history and the physics of the Universe according to the current
paradigm of its formation and evolution, the §CDM model. The §CDM model
is based on Einstein’s theory of General Relativity, it postulates a Universe with
a flat geometry, expanding with a cosmological constant §, and constituted by
Cold Dark Matter (CDM) apart from the visible baryonic matter. Science man-
aged to attain this current state of knowledge in a remarkably short time, mainly
due to technological improvements which allowed for more detailed measure-
ments, therefore shedding the light on new problems and creating a favourable
ground for proliferation of new models and theories. We will start by discussing
first the observational and then the theoretical pillars of modern cosmology
(Sec. 1.2 and 1.3), thereby trying to provide a chronological picture. We will then
focus on the parameters used to describe the Universe and its evolution (Sec.
1.4), the definitions of distances and scaling relations (Sec. 1.5 and 1.6) and fi-
nally, after having given a very brief summary of the main steps of the evolu-
tion of the Universe in Sec. 1.7, we deepen the theory of large scale structure
formation in the last section, which constitutes the framework of this research
project. The compilation of this chapter has been carried out by consulting one
of the many available books on cosmology, Dodelson (2003). The notes on the
cosmology lectures of Prof. Dr. M. Bartelmann were also used. 1

1.2 Observational pillars

Modern cosmology, as all other sciences, finds its roots both in theoretical devel-
opments and observational evidences. We will start with the observational evi-
dences, since these provided throughout time important evidences and prompted

1
http://www.ita.uni-heidelberg.de/research/bartelmann/Lectures/cosmology/

cosmology.pdf

1

http://www.ita.uni-heidelberg.de/research/bartelmann/Lectures/cosmology/cosmology.pdf
http://www.ita.uni-heidelberg.de/research/bartelmann/Lectures/cosmology/cosmology.pdf
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Figure 1.1: Original Hubble diagram from (Hubble, 1929).

deeper studies on the origin and structure of the Universe.

Hubble law and the expansion of the Universe. Although carrying today the
name of Edwin Hubble, the idea of an expanding Universe had been already
proposed by Georges Lemaître in 1927 (Lemaître, 1927). Two years later Edwin
Hubble (Hubble, 1929), by measuring the distances and redshifts (part of the
latter observations had already been carried out by V. Slipher in 1917 (Slipher,
1917) ) of a sample twenty-four "nebulae", showed that the recession velocity of
the nebulae was in linear relation to their distance at any distance. All objects
appeared to recede from the Earth and from each other with a recession velocity
higher at higher distances, fact which confirmed Lemaître’s idea of an expanding
Universe, and yielded to the very well know Hubble law:

vr = H0d , (1.1)

where vr is the recessional velocity, d is the distance of the object, and H0 is the
value of the Hubble parameter today, measured in (km/s)Mpc°1 and account-
ing for the rate at which the Universe is expanding today.

For measuring distances Hubble used first Cepheids and, much later, also
Press-Schechter’s luminosity function (Press & Schechter, 1974), whereas he used
the shift of spectral lines of the objects, interpreted as Doppler redshift, to mea-
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sure velocities through the relations:

z = ∏obs °∏em

∏em
(1.2)

1+ z =
sµ

1+Ø
1°Ø

∂
Øø1°! z ªØ= v

c
. (1.3)

Cosmic Microwave Background: homogeneity and isotropy. In 1964, at the Bell
Laboratories and working at a horn antenna, A. Penzias and R. Wilson acciden-
tally discovered the Cosmic Microwave Background (CMB), the relic radiation
of photons emitted at a time in which the Universe was only 3£105 years old:
the last scattering surface, when photons decoupled from electrons and started
to free stream (cfr. Sec.1.7). The CMB has two properties: The spectrum of the
photons from the last scattering surface is an extraordinarily perfect blackbody
spectrum, showing that the photons were in equilibrium due to interactions
with the electrons before decoupling. The second is that this picture of the youngest
Universe we can possibly see shows the remarkable feature of homogeneity and
isotropy on large scales, giving very solid observational grounds to the Cosmo-
logical Principle (see the next Section for more detailed discussion).

Light element abundances: dark matter. If the Universe expanded it implies
it was hotter and denser at early times, up to a point where the temperature,
being even higher than the typical binding energy of nuclei, would not allow
them to be stable. Due to the expansion the temperature cooled, eventually al-
lowing first the nuclei of light elements, and later atoms to form. Therefore any
model for the Universe has to describe these early times, from which the abun-
dances of the light elements can be predicted. Usually, for the Big Bang theory,
we talk about Big Bang Nucleosynthesis (BBN), precisely meaning the synthesis
of the baryonic matter. Burles et al. (1999) predicted the abundances for light
elements in the Big Bang theory. Their main result is depicted in Fig. (1.2) and
indeed represents one of the major successes of the Big Bang theory. The obser-
vations (boxes) very well fit the predictions for every light element. Since from
the density of protons and neutrons it is possible to extract the density of the
baryons, the BBN provides us with a measurement of the total density of baryon
in the Universe at the time of the nucleosynthesis, which can be turned into the
value today with scaling arguments (cfr. Sec.1.6). If this quantity is calculated it
can be seen that the ordinary matter just accounts for a very small percentage of
total matter density, which today is larger than this, thus making it necessary to
invoke the presence of another form of matter: the dark matter (DM). An impor-
tant remark is that, although being one of the arguments in favour of the dark
matter, the BBN is not the only one. Kinematic velocity curves of galaxies and
mass-to-light ratios of clusters of galaxies provide same predictions. Further-
more, also the amplitudes of fluctuations we observe in the CMB show indica-
tion of dark matter, since they would be incompatible with the presence of the
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Figure 1.2: Big Bang Nucleosynthesis predictions for four elements: 4He, deu-
terium, 3He and lithium, taken from Burles et al. (1999).The observations are
shown as boxes, whereas the vertical stripe represents the limits for primordial
deuterium measurements.
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amount of the already-formed structures we also observe, unless dark matter is
accounted for.

Matter density distribution: inhomogeneity. The CMB represents a striking ev-
idence for homogeneity and isotropy of the Universe on large scales (& 100 Mpc
h°1). On smaller scales, as certainly is noticeable just by looking to the surround-
ings of the Milky Way, we find a matter distribution which is not at all homo-
geneous: this is the Large Scale Structure (LSS). The Two Degree Filed Galaxy
Redshift Survey (2dF) (Colless et al., 2001) catalogued redshifts and positions of
2.5£ 105 galaxies, reaching redshifts of z = 0.3, and showing the aspect of the
close-by Universe in terms of its inhomogeneities.

Figure 1.3: Distribution of galaxies from the 2dF survey. Image taken from http:
//www2.aao.gov.au/~TDFgg/

Supernovae Ia: accelerated expansion. Between 1998 and 1999 two groups, the
Supernova Cosmology Project and the High-z Supernova Search Team (Riess
et al., 1998; Perlmutter et al., 1999), were engaged with measurements of Super-
novae Ia (SNIa) at high redshift to analyse the relation between their apparent
luminosity and redshift. Based on their observation that distant supernovae ap-
pear to be dimmer than in an empty Universe with no cosmological constant,
they find evidence for an accelerated expansion of the Universe due to the pres-
ence of dark energy, which in its simplest form is the cosmological constant §.
Their results are shown in Fig. (1.4) and Fig. (1.5).

Any good explanation of the Universe’s evolution has to account for these obser-

http://www2.aao.gov.au/~TDFgg/
http://www2.aao.gov.au/~TDFgg/
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Figure 1.4: Measurements of SNIa between redshifts 0.16 ∑ z ∑ 0.97 as measured
by Riess et al. (1998), from which this figure is taken. The distance modulus is
plotted against redshift. The curves represent theoretical estimations of the dis-
tance modulus for different models. The bottom plot is a comparison of the data
with the Einstein-de Sitter model with≠m = 0.2 and≠§ = 0.
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FIG. 1.— Hubble diagram for 42 high-redshift Type Ia supernovae from the Supernova Cosmology Project, and 18 low-redshift Type Ia supernovae from the
Calán/Tololo Supernova Survey, after correcting both sets for the SN Ia lightcurve width-luminosity relation. The inner error bars show the uncertainty due to
measurement errors, while the outer error bars show the total uncertainty when the intrinsic luminosity dispersion, 0.17 mag, of lightcurve-width-corrected Type Ia
supernovae is added in quadrature. The unfilled circles indicate supernovae not included in Fit C. The horizontal error bars represent the assigned peculiar velocity
uncertainty of 300 km s−1. The solid curves are the theoretical meffective

B (z) for a range of cosmological models with zero cosmological constant: (�M,��) = (0,0)
on top, (1,0) in middle and (2,0) on bottom. The dashed curves are for a range of flat cosmological models: (�M,��) = (0,1) on top, (0.5,0.5) second from top,
(1,0) third from top, and (1.5,-0.5) on bottom.

Figure 1.5: Measurements of SNIa between redshifts 0.18 ∑ z ∑ 0.83 as measured
by Perlmutter et al. (1999), from which this figure is taken. The effective magni-
tude is plotted versus redshift: The dashed and solid curves are the theoretical
effective magnitudes expected for different cosmological models.

vations and their interpretation, i.e. that the Universe appears to expand in an
accelerated fashion driven by dark energy or the cosmological constant, shows
evidence for dark matter, is homogeneous and isotropic on large scales, but in-
homogeneous on small scales.

1.3 Theoretical pillars

Cosmology lays its groundwork essentially on two theoretical milestones: The
validity of Einstein’s theory of General Relativity, and the validity of the Cosmo-
logical Principle.

General Relativity and Einstein’s equations: Of the four forces we know, gravity
is outstanding in the implications it has for the Universe, in how it shaped it up
to now, and in how it will drive it in the future. Therefore it is unquestionable
that any cosmological theory starts from the theory for gravity: Einstein’s theory
of General Relativity (GR) (Einstein, 1916). GR essentially gives a geometric in-
terpretation of gravity by describing the space-time as a manifold with a metric
gµ∫:

d s2 = gµ∫dxµdx∫, (1.4)
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whose dynamics is determined by Einstein’s field equations, which relate the
mass-energy content to the geometry of the manifold:

Gµ∫ =
8ºG

c2 Tµ∫+§gµ∫, (1.5)

where G is the Newtonian constant, and § is the cosmological constant, a term
which was originally put in the equations from Einstein to construct a static Uni-
verse. The structure of the space-time, described by the Einstein tensor Gµ∫,
is determined by Tµ∫ , the energy-momentum tensor for ideal (isotropic and
dissipation-free) fluids with pressure p and density Ω (which are functions only
of time because of homogeneity), but determines at the same time the motion
of the matter.

Cosmological Principle: The Cosmological Principle makes two assumptions:

• The Universe is homogeneous : were we to sit, in a comoving frame, on an-
other galaxy or in any other position in the Universe, we would observe, on
sufficiently large scales, the same features of the Universe. The philosophical
implication of this is that the portion of the Universe we see is a fair sample,
and that our position in the Universe is not preferred to another.

• The Universe is isotropic : in any direction we look, the properties of the Uni-
verse viewed on large scales are the same.

The second assumption binds the first to also be valid: If the Universe is isotropic,
then it must also be homogeneous. Note that the homogeneity is meant to be in
space but not in time. In fact, the properties of the Universe at high redshift are
very different from the properties of the Universe today.

It must be noted that the cosmological principle was an assumption made
long earlier than any observational evidence for it was found. It constituted,
though, a theoretically necessary assumption for simplifying Einstein’s equa-
tions and to be thus able to find an analytical solution describing the evolution
of the Universe.

Lemaître-Friedmann-Robertson-Walker metric and Friedmann’s equations:
The metric fulfilling the requirements of the Cosmological Principle is the Lamaître-
Friedmann-Robertson-Walker (FLRW or simply FRW) metric, which enters the
line element:

d s2 = c2dt 2 °a2(t )
£
d¬2 + f 2

K (¬)
°
d¡2 + sin2µdµ2¢§ , (1.6)

where (t ,¬,µ,¡) are the comoving coordinates, a(t ) is the scale factor, which
accounts for the expansion of the Universe in time and, as a consequence of ho-
mogeneity, fK (¬) is a function which can be trigonometric, hyperbolic or linear:

fK (¬) =

8
<

:

K °1/2 sin(K 1/2¬) K > 0
¬ K = 0
|K |°1/2 sinh(K 1/2¬) K < 0,

(1.7)
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and describes the geometry of the spacetime. If we use the FRW metric, then the
Einstein’s equations simplify to the Friedmann’s equations :

µ
ȧ
a

∂2

= 8ºG
3

Ω° K c2

a2 + §
3

(1.8)

ä
a
=°4ºG

3
Ω

µ
Ω+ 3p

c2

∂
+ §

3
, (1.9)

where § is the cosmological constant, G the constant of Newtonian gravity, Ω is
the density, p the pressure and a(t ) the scale factor. Freidmann’s equations tell
how the scale factor a(t ) evolves with time. By definition, the scale factor is set
today to be a0 ¥ 1.

1.4 Cosmological Parameters

In order to characterise the content of the Universe and its evolution it is useful
to define some parameters. A table of the values of these parameters according
to the latest results of the Planck mission (Planck Collaboration et al., 2013a) can
be found in Table (1.1).

Hubble parameter: it is defined as the logarithmic change in the expansion rate,
and is a function of time:

H(t ) ¥ ȧ
a

. (1.10)

Critical density: it is defined as:

Ωcr(t ) ¥ 3H 2(t )
8ºG

, (1.11)

and it is the density the Universe would need to have to be geometrically flat. It
is also a function of time, and its value today is:

Ωcr0 ¥
3H 2

0

8ºG
= 1.86£10°29h2g cm°3. (1.12)

Density parameter: It is natural to associate to the density a parameter which
is the dimensionless ratio between the matter density (baryonic and dark) of
the Universe and the critical density, and therefore roughly tells how the matter
content is related to the geometry of the space-time:

≠m(t ) ¥ Ωm(t )
Ωcr(t )

. (1.13)
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It is usually also customary to distinguish the contributions of ordinary matter
and dark matter, and split this parameter into two:≠b(t ) and≠CDM(t ).

Radiation density parameter: The matter (dark and baryonic) is not the only
constituent of the Universe: Radiation is an important part of the cosmic inven-
tory, and the dimensionless density parameter associated to radiation is

≠r (t ) ¥ Ωr (t )
Ωcr(t )

. (1.14)

Note that the radiation and matter density parameters have same opera-
tional definitions, but they differ by their equation of states. This results in a
different scaling of Ωm(t ) and Ωr (t ) with a (cfr. Sec. 1.6)

Cosmological constant density: A density parameter can also be associated to
the cosmological constant:

≠§(t ) ¥ §

3H 2(t )
. (1.15)

Curvature parameter: The last important parametrisation to be made concerns
the curvature of the space-time. The curvature parameter is therefore defined
as:

≠K (t ) ¥° K c2

H 2(t )
. (1.16)

Planck Planck + lensing Planck + WP
H0 67.4±1.4 67.9±1.5 67.3±1.2
≠§ 0.686±0.02 0.693±0.019 0.6850.018

°0.016
≠m 0.314±0.02 0.307±0.019 0.3150.016

°0.018
æ8 0.834±0.0027 0.823±0.018 0.829±0.012
ns 0.9616±0.0094 0.9635±0.0094 0.9603±0.0073

Table 1.1: Set of cosmological parameters as measured by the Planck mission
(Planck Collaboration et al., 2013a). Best fits for the parameters are shown when
only Planck temperature power spectrum data are used (first column), Planck
temperature data and Planck lensing, and Planck data and WMAP polarisation
at low multipoles.

Rewritten in terms of these parameters, Friedmann’s equation can be expressed
as:

H 2(a) = H 2
0 E 2(a) = H 2

0
£
≠r 0a°4 +≠m0a°3 +≠§0 +≠K a°2§ (1.17)
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Since the Friedmann’s equations are valid at any time, they must be valid also
today. By taking a(t ) = a0 = 1, we find a link between all the cosmological pa-
rameters:

≠K = 1°≠r 0 °≠m0 °≠§0. (1.18)

Redshift and scale factor: Finally, the redshift we have introduced in Eqn.(1.2)
can be related to the scale factor:

a(t ) = 1
1+ z

(1.19)

1.5 Distances in Cosmology

A consequence of the fact that the Universe can have curvatures different from
the flat one is that the distance between two events is no longer uniquely de-
fined. The distance can depend on the quantity we are measuring (as in the case
of luminosity and angular diameter distances) or on the "system of reference"
we imagine to use (comoving and proper distance):

Proper distance: This is the distance that the light covers to go from a source at
z2 to the observer at z1 < z2:

Dprop(z1, z2) = c
Za(z2)

a(z1)

da
ȧ

= c
H0

Za(z1)

a(z2)

da
a E(a)

. (1.20)

Comoving distance: This is the distance measured by an observer which is co-
moving with the cosmic flow:

Dcom(z1, z2) = c
Za(z2)

a(z1)

da
aȧ

= c
H0

Za(z2)

a(z1)

da
a2E(a)

=¬(z1, z2). (1.21)

Angular diameter distance: It represents the distance related to the solid an-
gle ±! subtended to the physical dimension of the object on the sky, ±A. This
definition is analogous to the same definition in Euclidian space, in which case
we have ±!D2

ang = ±A. The object is at redshift z2 and the observer at z1. For a
generic space we then have:

±A

4ºa2(z2) f 2
K (¬(z1, z2))

= ±!

4º
, (1.22)

and therefore:

Dang(z1, z2) =
µ
±A
±!

∂1/2

= a(z2)
a(z1)

fK [¬(z1, z2)]. (1.23)
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Luminosity distance: This distance is also inherited by a definition in Euclidian
space, specifically the relation between the luminosity L of a source at redshift
z2 and the flux F received by an observer at z1:

DL =

s
L

4ºF
. (1.24)

The Etherington relation puts into connection the angular and luminosity dis-
tances:

DL(z1, z2) =
∑

a(z1)
a(z2)

∏2

Dang(z1, z2). (1.25)

In the limit of low redshift all the distances are the same, and one recovers Hub-
ble’s expansion law:

D = cz
H0

+O (z2). (1.26)

1.6 Important scalings

In this section we summarise the most important scalings of various quantities
in the cases of a matter- and radiation-dominated Universes. These scalings rep-
resent a fundamental tool in cosmology.

Scaling of density From the conservation of the energy-momentum tensor for
a perfect fluid and with a FLRW metric, we obtain the so-called adiabatic equa-
tion, which describes how the energy density changes if pressure changes:

d
dt

(a3Ωc2)+p
d

dt
(a3) = 0 (1.27)

If we write the equation of state as:

p = wΩc2, (1.28)

then we obtain the scaling of the density with a:

Ω/ a°3(w+1), (1.29)

which leads to the cases:

w = 0 Ω/ a°3 Matter
w = 1

3 Ω/ a°4 Radiation
w =°1

3 Ω/ a°2 Curvature
w =°1 Ω = const Cosmological Constant

(1.30)
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Scalings for an Einstein-de Sitter Universe: In an Einstein-de Sitter Universe,
for which≠§ = 0 and≠m = 1 we have that, for a fluid with w = 0, i.e. for matter:

a / t 2/3

H / t°1 / (1+ z)3/2

Ω / t°2 / (1+ z)3. (1.31)

Instead, for a relativistic degenerate fluid with w = 1/3, i.e. for radiation, we
have:

a / t 1/2

H / t°1 / (1+ z)2

Ω / t°2 / (1+ z)4 / a°4. (1.32)

It is important to notice that the case of an Einstein-de Sitter Universe does not
correspond to the model of the Universe we measure today (which has indeed a
§, 0 and≠0 , 1), but yet represents a good approximation to the Universe as it
was in its history.

Scaling of temperature: Knowing that for an adiabatic transformation from the
first law of thermodynamics we have:

T V ∞°1 = const , (1.33)

and that the volume scales as V / a3, we find that the scaling of the tempera-
ture with a depends on the adiabatic indexes for non-relativistic and relativistic
particles, which are resepctively ∞= 5/3 and ∞= 4/3 and follows:

T / a°1 Radiation
T / a°2 Matter

(1.34)

1.7 Tracing the history of the Universe

We can trace the history of the Universe very coarsely in the following steps and
eras:

• Big Bang (t = 0): The Big Bang constitutes in Friedmann’s equations a singu-
larity, which basically tells that the laws we are using do not hold anymore
at this time. In fact the Planck time tPL = 10°43s sets a threshold to what we
can observe, due to the Indetermination Principle, and at the same time sets
the time at which General Relativity breaks down and some other, unknown,
physics linking Quantum Field Theory to General Relativity must hold. The
Big Bang and the expansion imply that at earlier times the Universe must have
been much denser and hotter.
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• Inflation: the earliest time of the Universe is characterised by an exponential
expansion which cooled and rarefied very much the Universe. The subsequent
period of reheating re-established the temperature to higher values. We will
talk more extensively about the Inflation in Chap. 7

• Adronic (t ª 10°5s) and leptonic era (t ª 10s): These eras see the formation
of all the elementary particles as we know them from the Standard Model. The
synthesis of light elements (BBN) also starts and the neutrino ∫ decouples (i.e.
stops interacting) from the other species (t ª 1s). We refer to a "decoupling",
or a "freeze-out" when the rate of interactions ° between the species is lower
than the rate of expansion of the Universe, which is given by the Hubble pa-
rameter H .

• Radiation dominated era: It is the longest lasting era we know, and it starts
when the electrons e° and positrons e+ annihilate, which takes place shortly
after the neutrino freeze-out. The radiation era also sees the end of the BBN,
at t ª 100s. The so-called time of equivalence, or just equivalence also falls
within the radiation dominated era. It refers to the time the radiation den-
sity equals the matter density. Given the different scaling of the radiation and
matter densities with the scale factor, Ωr / a°4 and Ωm / a°3, there must be a
time in which the two are equal. This time corresponds to t ª 1012sª 3£104yrs
after the Big Bang.

• Matter dominated era: Starting with the recombination, i.e. the formation of
the first atoms from the binding of electrons and protons, the beginning of
the matter domination era coincides with the decoupling of the photons and
the formation of the CMB. The matter dominated era is characterised by the
formation of all the structure we can see today: stars, galaxies form due to the
clumping of the matter driven by gravitational attraction. The most accredited
scenario today is the so-called bottom!up scenario, for which first the small
objects formed, aggregating in time into larger and larger objects.

• Cosmological constant era: This is the epoch of the Universe in which we live,
dominated by dark energy, which drives the accelerated expansion. In it sim-
plest, constant form, the dark energy coincides with the cosmological con-
stant. The beginning of this era can be traced back as the time at which ≠§
and≠m coincide, which is t = 11£109yrs.

1.8 Large Scale Structure: the evolution of perturbations

The main quantity which is always addressed in Large Scale Structure (LSS here-
after) studies is the density contrast, defined as the difference between the den-
sity at a certain coordinate and the mean density, normalised by the mean den-
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sity:

±(x, t ) = Ω(x, t )° Ω̄(t )
Ω̄(t )

= ±Ω

Ω0
(1.35)

When observed on scales . 100 Mpc h°1 the Universe appears far from ho-
mogeneous, whereas it actually reveals structures such as filaments and voids
(ª 50 Mpch°1), clusters and superclusters of galaxies (ª 1÷10 Mpc h°1), down
to galaxies (ª 10 Kpc h°1). When considering the Universe as a fluid it obeys the
following equations, which determine and specify the evolution of the system:

• continuity equation, standing for the mass conservation:

@Ω

@t
+r · (Ωv) = 0; (1.36)

• Euler’s equation, describing how the velocity field v evolves due to forces in-
duced by pressure and gravitational potential, and standing for momentum
conservation:

@v
@t

+ (r ·v)v =° 1
Ω
rP °r© (1.37)

• Poisson’s equation, linking the mass density to the gravitational potential:

r2©= 4ºGΩ (1.38)

• equation of state, determining the relation between pressure and density Eqn.
(1.28):

p = p(Ω) (1.39)

The evolution of the perturbations can be described in two regimes: the linear
and nonlinear regimes.

1.8.1 Linear evolution

For ±ø 1 one can rewrite the density and the velocity fields as a perturbation
(±Ω and ±v) to their background values Ω0 and v0:

Ω(x, t ) = Ω0(t )+±Ω(x, t )

v(x, t ) = v0(t )+±v(x, t ). (1.40)

By inserting these in Eqns. (1.36) and (1.37), and by making use also of the other
Eqns.(1.38) and (1.39) we find an equation for the evolution of the density con-
trast:

±̈+2H ±̇=
c2

s

a2 r
2±+4ºGΩ0±, (1.41)
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where cs is the speed of sound and comes from the equation of state (1.39). By
passing to Fourier space and decomposing the density contrast:

±(x, t ) =
Z

d3k
(2º)3 ±̂(k, t )e°i k·x (1.42)

we find that real oscillations occur for values of k > kJ , value corresponding to
the Jeans length ∏J :

kJ ¥
2

p
ºGΩ0

cs
∏J := 2º

kJ
. (1.43)

For an Einstein-de Sitter Universe, during radiation- and matter-dominated
eras we have, respectively, a / t 1/2 and a / t 2/3 (see Sec. 1.6), which substi-
tuted in Eqn.(1.41) yield to an equation written in terms of the time variable,
and whose sought solution is of the type ±̂/ t n . This yields to an equation for n:

n2 + n
3
° 2

3
= 0, (1.44)

which translates into the growing solutions for the radiation and matter domi-
nated Universe:

±̂+ / a2 radiation domination

±̂+ / a matter domination (1.45)

In the case of Universes with≠m0 , 1,≠§0 , 0 we have, for the matter domi-
nation era:

±(a) = ±0D+(a), (1.46)

where D+(a) is the growth factor (Carroll et al., 1992):

D+(a) = 5a
2
≠m

∑
≠4/7

m °≠§+
µ
1+ 1

2
≠m

∂µ
1+ 1

70
≠§

∂∏°1

(1.47)

1.8.2 The evolution of the velocity field

Also the velocity field can be explored in its evolution which, if pressure gradi-
ents are neglected, reads:

u̇+2Hu = r±©
a2 , (1.48)

where we have decomposed the potential field in analogy to Eqn.(1.40):©=©0+
±©, and ±© is the perturbation term, and u is the peculiar velocity given from
the derivative of the space coordinate r: ṙ = v = ȧx+aẋ = ȧx+u. We can further
decompose the velocity in two components: one perpendicular and the other
parallel to the gradient r±©, u? and u//, for which we find:

u? / a°1

u// = ±̇

k
= Ḋ+±0

a
kc

= a(t )H(t )
kc

±(t )
dlnD+(a)

dln a
, (1.49)
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where we have defined k = kc /a and where:

dlnD+(a)
dln a

º≠0.6 (1.50)

It is important to note that turbulent motion u? gets smoothed out quite rapidly
with the evolution of the Universe, resolving any doubt that rotation of galaxies
might have originated by the original turbulence in the velocity field. This will
be useful when we study the origin of galactic rotation, in Chap. 2

1.8.3 Non-linear evolution

When the condition ± ø 1 is not verified anymore, the assumptions of small
perturbations of the background fields are no longer valid, and we enter the non-
linear regime of perturbations, in which the equations are very complicated to
solve analytically. It is though still possible to give an analytical treatment of the
mildly non-linear regime (corresponding to ± ª 1) by means of the Zel’dovich
approximation, which we will extensively discuss in Chap. 2 in the framework
of how galaxies acquire their angular momentum. Another possible way is to
consider the so-called spherical collapse model which describes the evolution of
an homogeneous overdensity with spherical symmetry . When also the mildly
non-linear regime drops and ± ∏ 1 there is no longer chance treat analytically
the equations, and hence a numerical approach is required. N -body simulations
have in fact become the standard tool adopted for studying the evolution of the
density field at later times. A very famous example for such techniques is given
by the Millennium Simulations 2, of which we show a series of images in Fig.
(1.6).

1.9 Statistical properties: the power spectrum

A very useful tool to study the large scale structure and the inhomogeneities of
the Universe (in the temperature for the CMB and in the density field for the LSS)
is to study the statistical properties of these fields. The first quantity we would
investigate is the average of the observable we are interested in, e.g. the density
contrast. By definition this quantity is zero:

h±i= hΩ°Ω0

Ω0
i= hΩi

Ω0
°1 = 0. (1.51)

The further step to take is to measure the variance of the density field, to quantify
how much, on average, the density field moves away from its mean value. This
implicitly measures the degree of clumpiness of the field, since for a perfectly
homogeneous field the variance would be zero, whereas for a field with more

2For more details see http://www.mpa-garching.mpg.de/millennium/ and the list of ref-
erences therein.

http://www.mpa-garching.mpg.de/millennium/


18 THE COSMOLOGY BEHIND

(a) (b) (c)

(d) (e) (f)

Figure 1.6: Millennium simulation snapshots taken from http://www.

mpa-garching.mpg.de/galform/virgo/millennium/. The three top panels
represent the simulation box at z = 0, i.e. today, at different resolutions. The
three bottom panels are snapshots taken when the simulated Universe is much
younger, at z = 5.7

over- and under-dense regions the variance increases. The variance in real space
is related to the correlation function, defined as:

ª(y) ¥ h±(x)±(x+y)i, (1.52)

where the h·i represents the average over the all realisations. Notice that for isotropy
arguments the correlation function does not depend on the direction of y but
only on its magnitude y . The variance of ± is then the correlation function at
y = 0:

æ2 = h±(x)2i, (1.53)

which is the correct expression if the mean is zero, as it is in our case.
The Fourier pair of the correlation function is the power spectrum 3, which

defines the variance in Fourier space:

h±̂(k)±̂§(k0)i ¥ (2º)3P (k)±D (k+k0), (1.54)

where ±D is the Dirac distribution and is there to guarantee that the different
modes are uncorrelated, and where we have used the the Fourier transform ±̂ of
the density contrast:

±(x) =
Z

d3k
(2º)3 ±̂(k)e°i k·x; ±̂(k) =

Z
d3k

(2º)3±(x)ei k·x. (1.55)

3This is also known as Wiener-Khintchine theorem

http://www.mpa-garching.mpg.de/galform/virgo/millennium/
http://www.mpa-garching.mpg.de/galform/virgo/millennium/
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The power spectrum therefore has dimensions of k°3, or equivalently, of
[L]3. It is therefore customary to plot the dimensionless quantity¢2(k) = k3P (k)/(2º)3

as a function of k. Usually one identifies the infinitesimal quantity d3kP (k)/(2º)3

with the excess power in a bin of width k centred at k.
In principle if the field we are describing is a Gaussian field, it will be com-

pletely described by its first two moments, the mean and the variance. If the field
is non-Gaussian, which is a situation often encountered in Nature, then higher-
order moments are necessary (i.e. skewness, kurtosis, etc.). These quantities can
be investigated by means of higher-order correlators: the three-, four-, N -point
correlation function, defined as:

ªN (x1, ...,xN ) = h±(x1)...±(xN )i, (1.56)

(for a more detailed description of higher-order statistics see Bernardeau et al.,
2002a). For the case of the three- and four-point correlator functions the corre-
spondent Fourier functions are the bi- and trispectra B(k) and T (k).

1.10 Philosophical considerations

Some considerations based on basic philosophical grounds can be made in cos-
mology. Here we report the ergodic theorem and the anthropic principle.

Ergodic theorem: What really distinguishes cosmology from other sciences
and other fields within physics stems from a particularly simple consideration
about the Universe: it is just one, i.e., we have just one realisation of the Uni-
verse. Since the natural grounds for developing science are both theory and ob-
servations, and even more precisely the repeatability of the measurements, we
must make sure that this can be granted when observing the single realisation
of the Universe. Since we inspect, as we have seen, the statistical properties of
the Universe, then the cosmological statements are essentially statistical in na-
ture. This implies, as we have seen, the need for statistical tools, such as the mo-
ments of a distribution, i.e. mean and the variance if the distribution is purely
Gaussian. When computing these quantities, an operation of averaging is al-
ways made, denoted by the symbol h·i. This average is meant to be an ensemble
average, which means that the average is made over many realisations of the dis-
tribution. Since, as said before, we do not have this possibility to calculate this
average for the Universe, we need to resort to another definition of the average,
the sample average, which takes different samples within one single realisation.
If the samples are uncorrelated, then the two averages coincide. This is what the
ergodic theorem states, and what we assume for our Universe.

Anthropic Principle: The cosmological principle is an extension of the Coper-
nican Principle in the sense that it also asserts that our position in the Universe
is not privileged, i.e. all positions are equivalent. A variation of this, the An-
thropic Cosmological Principle, aims to find a connection between the structure
of the Universe and the development of forms of intelligent life within it (Coles
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& Lucchin, 2002). Specifically, there are two anthropic principles. The Weak An-
thropic Principle remarks that our existence cannot be a privileged condition,
since it is only due to how the Universe is shaped and how it has evolved. In
equivalence, we could not have possibly evolved in another time and in other
conditions, and we must be aware of this when we interpret cosmological data.
The Strong Anthropic Principle is teleological in its foundation and is related
to the fine tuning of natural constants. In fact, were the constants be be even
slightly different from what we know them to be, we could not exist. This consti-
tutes for some reason to believe that there must be some sort of purpose, even
though, speculatively, one can construct models of the Universe such that only
the weak explanation suffices. The strong anthropic principle is still very con-
troversial and debated.



Chapter 2

THE PHYSICS OF GALACTIC

ANGULAR MOMENTA

2.1 Introduction

Due to its generality, the very wide context of structure formation somehow im-
posed us, in the last chapter, to gloss over the details of the formation processes
of galaxies themselves, which constitutes itself a deep and large matter of study.
It is indeed striking to see that in all we have understood about the Universe,
its formation and its evolution, the topic of galaxy formation still constitutes an
open question mark involving a wide range of physical aspects, from the bary-
onic dissipation processes and feedbacks to the dark matter dissipationless pro-
cesses. Galaxies not only formed through highly non-linear physical processes,
but very likely interacted during their long lives, such that today it is an even
harder work for us, gazing at the sky, to establish their formation history.

In particular a deeper aspect of galaxy formation concerns the fact that they
rotate, and that they therefore have a net angular momentum. The mechanism
through which this angular momentum is acquired is yet to be understood in
detail, also given the fact that different prescriptions for galaxy assembly seem
to be needed for different morphologies. Late-type and early-type galaxies are
assumed to acquire angular momentum in different ways, spiral galaxies being
supported by their angular momentum, ellipticals having it instead dissipated
in mergers and being supported by random motion of stars. This appears obvi-
ous when considering observational properties of early- and late-type galaxies
concerning not only their luminosity, velocity dispersion profiles and rotation
curves, but also the quantification of their rotational support. The latter can in
fact be defined by the dimensionless spin parameter ∏, first introduced by Pee-
bles (1969), and defined as:

∏= L|E |1/2

GM 5/2
, (2.1)

where L,E , M are respectively the angular momentum, the energy and the mass

21
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of the system, and G is the Newtonian gravitational constant. The spin param-
eter can be interpreted as a measure of the degree of rotational support of the
system, being the ratio between the observed angular velocity ! of a galaxy and
the angular velocity needed for the rotational support !0 (Mo et al., 1998):

∏= !

!0
= L/(MR2)

p
GM/R3

. (2.2)

Throughout time, there have been several measurements of the statistical
properties of the spin parameter (which appears to be distributed as a lognor-
mal Warren et al., 1992), and its typical values from N -body simulations, which
was found to be ∏ = 0.05÷ 0.08 (Peebles, 1969, 1971a; Bullock et al., 2001; Efs-
tathiou & Jones, 1979; Barnes & Efstathiou, 1987; Warren et al., 1992). Observa-
tions showed that spiral galaxies, which rotate very fast and whose rotation is
supported by angular momentum, had a typical value of ∏ª 0.5, whereas ellip-
ticals were shown to have ∏ < 0.1 (Davies et al., 1983). This result showed two
mismatches at the same time and on different levels: in general, ellipticals ap-
peared to behave very differently compared to spirals in terms of their rotational
support and, on the other hand, observations of spiral galaxies were in contrast
with N -body simulations (this problem is called angular momentum problem,
or angular momentum catastrophe, and will be discussed in more detail in Sec.
2.5).

This paved the way to many possible scenarios of formation of early- and
late-type galaxies, which will be quickly reviewed respectively in Sec. 2.2 and
Sec. 2.3. Sec. 2.4 will focus respectively on the theory of tidal torques, which is
currently the most accredited theory at the basis of spiral disk formation and an-
gular momentum acquisition. This theory also constitutes a basilar tool we will
need in the next chapter to revisit the intrinsic alignments models for late-type
galaxies. We will dedicate a special section, Sec. 2.5, to numerical simulations
carried out to test the theory of tidal torques and the analytical models for disk
formation, and finally we will summarise the content of this chapter in Sec. 2.6.
1

2.2 Early-type galaxies

As mentioned above, elliptical galaxies showed to have much smaller spin pa-
rameter than spirals, and this suggested that they could not be rotationally sup-
ported as spirals, and that the flattening of their halos due to their slow rotation

1Some of the content of this chapter was assembled by consulting the following webpages:
http://ned.ipac.caltech.edu/level5/Sept11/Benson/Benson_contents.html

http://ned.ipac.caltech.edu/level5/March02/Efstathiou/Efst_contents.html

and the online material of Prof. Dr. Trager and Prof. Dr. Mo:
http://www.astro.rug.nl/~sctrager/teaching/formation_and_evolution/2003/

lecture1.pdf

http://www.astro.umass.edu/~hjmo/astro850/lecture9_3.pdf

http://www.astro.umass.edu/~hjmo/astro850/lecture9_1.pdf

http://ned.ipac.caltech.edu/level5/Sept11/Benson/Benson_contents.html
http://ned.ipac.caltech.edu/level5/March02/Efstathiou/Efst_contents.html
http://www.astro.rug.nl/~sctrager/teaching/formation_and_evolution/2003/lecture1.pdf
http://www.astro.rug.nl/~sctrager/teaching/formation_and_evolution/2003/lecture1.pdf
http://www.astro.umass.edu/~hjmo/astro850/lecture9_3.pdf
http://www.astro.umass.edu/~hjmo/astro850/lecture9_1.pdf
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could be ascribable to velocity dispersions (see also Binney, 1978). In some way
dissipation and loss of angular momentum seem to have had a major role in
the rotational properties that ellipticals show today. In order to explain loss of
angular momentum the simplest way would be to assume that elliptical galax-
ies formed from mergers. This, though, is not the only possible speculated sce-
nario. Nowadays there are in fact mainly three models for the formation of ellip-
ticals, which we are going to briefly describe in what follows (see also Binney &
Tremaine, 2008).

Merging scenario: This umbrella term actually includes two kind of models: the
major merger model, for which the main characters of the merging are two disk
galaxies of comparable mass, and the minor mergers model, for which an ellip-
tical might form from several mergers between individual galaxies with much
lower mass than the remnant.
Mergers were first studied in N -body simulations by Toomre & Toomre (1972),
and then proposed as possible viable ways to describe early-type galaxies’ for-
mation by Toomre (1977), given the fact that mergers between disk galaxies ap-
peared to be able to produce galaxies with similar properties to ellipticals. In or-
der to recover ellipticals’ properties, it was also found that dissipationless dark
matter halo mergers (also called gas-free mergers) alone were not enough. In-
stead, disks (i.e. the baryonic component) needed to be accounted for in sim-
ulations and needed to have a pre-existing bulge with stars. This prescription
is in fact able to recover both the observation of old stellar populations in el-
lipticals and their low angular momentum. To sketch the picture we could say
that the halos would initially interact, followed only in a second moment by the
disks with their bulges. During this latter interaction the luminous components
would transfer lot of their angular momentum to their dark halos, conserving
therefore angular momentum, but redistributing it to the dark, unobservable,
component. The remaining angular momentum in the luminous and visible
component is therefore much lower. Among others, Steinmetz & Navarro (2002);
Meza et al. (2003) carried out cosmological numerical simulations showing the
merging scenario to be consistent with observed or expected properties of el-
lipticals, such as mass accretion and star formation history, structure and kine-
matics. Within framework of galaxy mergers Lynden-Bell (1967), trying to find an
explanation for the observed light distributions of elliptical galaxies, suggested
that, during mergers, the orbits of the stars are so heavily affected by the change
in the potential due to the merging process that they lose memory of their previ-
ous ordered motion, becoming random. In other words, the change in potential
is much more rapid than the dynamical timescale of the stars producing a vio-
lent relaxation.

Monolithic model: This latter model prescribes the easiest way to form an ellip-
tical galaxy, i.e. by mean of a collapse of a big gas cloud. It was proposed by (Lar-
son, 1969; Larson & Tinsley, 1974; Larson, 1974, 1975), and mostly motivated by



24 THE PHYSICS OF GALACTIC ANGULAR MOMENTA

the fact that it could plainly explain some features of the ellipticals, i.e. that they
appear to be very stabilised stellar systems with an old stellar population. In the
monolithic scenario, in fact, the gas cloud collapses yielding to star formation in
short timescales. The problem with this model is that the initial conditions are
not well motivated, and that other models, such as the merging scenario, can
recover the same observational features by invoking other mechanisms (i.e. the
old star population can be easily explained by the fact that stars could be already
present in galaxies that merged in a second moment). In addition to this, such
a model would be in contradiction with the hierarchical CDM model providing
the "bottom!up" scenario, for which structures rather formed by the cluster-
ing of smaller objects than from collapse of bigger structures which then frag-
mented into their constituents.

2.3 Late-type galaxies

It was already in the time interval spanning between the end of 40s and be-
ginning of 50s that first Hoyle (1949) and then Sciama (1955) suggested that
the mechanism enabling rotation in galaxies had to be inherent to the way the
galaxies themselves formed. Hoyle and Sciama were pioneers in realising that,
during the formation of a protogalaxy, the tidal torques created by the neigh-
bouring structures could produce a velocity shear in the protogalactic object, in-
ducing its rotation. This original idea, then further developed by Peebles (1969);
Doroshkevich (1970) and White (1984) well suits the hierarchical CDM structure
formation scenario (in this case, in fact, galaxies are a first product of structure
formation), setting the grounds for explanations both concerning the spin-up of
the galaxies and the development of their disk-like structures and morphology.

Although the theory of tidal torques is nowadays widely accepted and ac-
credited, it has not been the only proposed mechanism for angular momen-
tum build-up. Vitvitska et al. (2002) proposed a satellite accretion model, which
believes that dark halos gain angular momentum cumulatively via accretion of
small satellite halos, yielding to an angular momentum associated with the as-
sembly history of the halo’s major progenitor. Vitvitska et al. (2002) and D’Onghia
& Navarro (2007) find in N -body simulations that the accretion of satellites is
enough to provide the galaxy with angular momentum, and are able to repro-
duce the lognormal distribution for the spin parameter ∏ (D’Onghia & Navarro,
2007). We will give further details on these numerical results compared to tidal
torques simulation results in Sec. 2.5.

Note that the possibility of rotation due to some primeval vorticity field (von
Weizsäcker, 1951; Gamow, 1952) was ruled out (Peebles, 1967; Efstathiou & Silk,
1983) as the vortical component of the velocity field in linear regime scales with
the inverse of the scale factor a, and would have either needed galaxies to form
too soon (Peebles, 1967) or it would have been damped too soon, leaving for
no possible vorticity today. Also other possible argumentations, such as the in-
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fluence of primordial magnetic fields on angular momentum acquisition, have
been ruled out (Peebles, 1969), as the contribution of gravity to angular momen-
tum formation is several orders of magnitude larger than the one due to mag-
netic fields.

It is worth stressing that one fundamental aspect to explain the spin param-
eter of spirals and the sizes of the disks has been to assume that galaxies formed
within dark halos (Fall & Efstathiou, 1980). Models for disk formation within a
dark halo have been proposed by Dalcanton et al. (1997) and Mo et al. (1998),
who both try to find a solution fitting observations by including the interplay
between the halo to the disk, disk stability and the cosmological evolution of
the disk parameters. They both predict a Tully-Fisher relation with its scatter,
and manage to track the evolution of the disks, and substantially find that the
properties of the halo and how these properties vary with the environment de-
termine the properties of the galaxy forming at its centre. So the density profile,
its shape and the distribution of angular momentum determine structure, size
and rotation curve of the galaxy (Lemson & Kauffmann, 1999).

2.4 Tidal Torque Theory

The mechanism proposed by Hoyle, the Tidal Torque Theory (TTT hereafter), is
a rather simple and elegant way to describe the process of angular momentum
formation for late-type galaxies compared to the very complex suite of overlap-
ping physical aspects which are expected to go into such a theory, as we have
seen in the last section, but yet it yields to a strikingly good description of this
process. The plain idea is that, during the galaxy formation phase, when the
regime of structure formation is still linear and mildly linear, the protogalax-
ies undergo the gravitational potential of the surrounding large scale structure,
which exerts torques on the protogalactic object eventually setting it into rota-
tion. When self gravitation starts dominating over the tidal torques the proto-
galaxy collapses, and its size diminishes. This reduces the lever arms and conse-
quently the tidal torquing efficiency. This is when the galaxy decouples from the
tidal field and binds into a defined object (this corresponds to the so-called turn-
around, which occurs in the weakly non-linear regime Sugerman et al., 2000)
which conserves the net angular momentum accumulated up to that point. A
deeper consequence of the last mentioned feature is the scaling of the angu-
lar momentum with the mass L / M 5/3, already shown by Peebles (1969) in an
SCDM cosmology. In fact the turn-around, which ultimately defines the angular
momentum of an object, depends on the halo mass, in such a way that higher
masses will acquire larger angular momenta.

TTT is a perturbative process described in the framework of Lagrangian co-
ordinates based on the following ideas (see Porciani et al., 2002a,b):

• most of the angular momentum L is gained in linear or mildly non linear
regime by tidal torques;
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• only a small amount of angular momentum is exchanged between halos in the
non-linear regime;

• baryonic material gains an angular momentum similar to the one gained by
the dark matter halo.

In order to obtain an expression for the angular momentum we will make use of
four assumptions nicely summarised by Porciani et al. (2002a,b):

• the flow is laminar, with a one to one correspondence between Eulerian and
Lagrangian description;

• the velocities obey the so-called Zel’dovich approximation;

• the potential can be approximated by its second order Taylor expansion about
the centre of mass of the protogalactic object;

• there is only a little contribution to the halo’s angular momentum by nonlinear
effects.

2.4.1 Lagrangian Perturbation Theory

Lagrangian and Eulerian perturbation theories (LPT and EPT hereafter) have
been widely discussed in the framework of structure formation (see Bouchet
(1996); Buchert (1996) and Bernardeau et al. (2002a) for extensive reviews). In
fluid dynamics, the Eulerian frame of reference corresponds to the laboratory
frame, and describes each field as a function of position and time (x, t ), whereas
the Lagrangian frame of reference follows an individual fluid parcel throughout
time. Consistently, while the Eulerian description follows the perturbations of
the entire fields (density field ±(x, t ), or velocity field v(x, t )), the Lagrangian de-
scription follows the perturbations in the particle trajectories (Bouchet, 1996).

The reason to choose the Lagrangian framework over the Eulerian is in syn-
thesis due to the regime of validity of the approximations used to guarantee lin-
earity. In fact in the Eulerian framework the assumption is ±ø 1 (note this is an
assumption about the field), which ceases very rapidly to be true, whereas La-
grangian perturbation theory, as we will see, relies on the assumption of small
Lagrangian displacements and gradients, which turns out to be a weaker re-
quirement (Bouchet, 1996; Buchert, 1996). Moreover, calculations in Lagrangian
framework are less cumbersome, so that also enhancements of the theory up to
non-linear regimes become affordable (Catelan, 1995; Catelan & Theuns, 1996b,
1997). We will therefore focus on Lagrangian coordinates, with the aim of find-
ing a description of the angular momentum and its evolution in time within this
framework, although the same calculations in Eulerian coordinates were carried
out by Heavens & Peacock (1988).

Considering a collisionless fluid under Newtonian gravity (as has been done
by Catelan, 1995), the key quantities in the Lagrangian description are therefore
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the trajectories of the particles or, equivalently, individual fluid parcels (whereas
in the Eulerian coordinate system it is the entire field as a function of position
and time), which put into relation their initial (Lagrangian) coordinate q with
their final (Eulerian) comoving coordinate x at a certain time t by means of a
displacement field S:

x(q, t ) = q+S(q, t ) = q+r™(q, t ). (2.3)

A Jacobian J (q, t ) is associated to this mapping q 7! x(q, t ), and it represents the
change in volume between Eulerian and Lagrangian coordinates. Given that the
Eulerian and Lagrangian coordinates are the same at t = 0, the Jacobian at that
time is J (t = 0) = 1, and Ω/Ω0 = J (0)/J (t ). By considering the mass conservation
condition:

d 3q = (1+±)d 3x (2.4)

we immediately find a link between the Jacobian J (q, t ) and the density field
±[x, t ]:

1+±[x(q, t ), t ] = J°1(q, t ) (2.5)

where the Jacobian is the following:

J (q, t ) ¥ dx
dq

=
°
det

£
±i j +@i@ j™

§¢
. (2.6)

One can notice that when J vanishes the density field ± diverges, which is the
typical condition of caustic formation process, and corresponds in this case to
the occurrence of shell crossing.

The perturbation approach consists in expanding the displacement poten-
tial S in a perturbative series: S = S1 +S2 +S3 + ..., where Sn = O(™n

1 ) is the n-th
order approximation (Catelan, 1995; Catelan & Theuns, 1996b), whose first term
gives the linear Lagrangian perturbation, and corresponds to the Zel’dovich ap-
proximation, strictly valid for ±ø 1:

S(q, t ) ª S(1)(q, t ) = D+(t )r™1(q), (2.7)

where D+(t ) is the growth function which describes the cosmic evolution of the
displacement field S, and™1(q) is the linear gravitational potential. Notice that
the approximation made is two-fold: not only we consider a linear gravitational
potential, but we consider it to be also constant in time, so that the temporal
dependency present in Eqn. (2.3) is dropped in the latter expression.

Linear Lagrangian perturbation theory and angular momentum

The first one to apply LPT to obtain a formula for the angular momentum has
been Peebles (1969). He considered the case of a spherical volume and found
that such an object would gain angular momentum from tidal torques just in
the case of second order perturbative description. One year later Doroshkevich
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(Doroshkevich, 1970) showed that only the special symmetry given by a spheri-
cal volume would require a second order perturbative approach, but instead, in
the more general case of a non-spherical volume, the angular momentum arises
already in linear approximation (examples of why this holds will be given). We
are interested in an expression for the angular momentum as a function of time,
so by following the notation of Catelan & Theuns (1996a) we write first the an-
gular momentum L of the matter contained in the volume V in Eulerian coordi-
nates:

L(t ) =
Z

a3V
d 3rΩ(r, t )(r° r̄)£v(r, t ) = Ωb a4

Z

V
dx(1+±)(x° x̄)£u, (2.8)

where r is the position around the centre of gravity r̄, Ω = Ωb(1+±) is the mat-
ter density field, Ωb the background mean density, ± is the density contrast, and
v = dr/d t = ȧx+u is the velocity field composed by the sum of the Universe ex-
pansion and the peculiar velocity u = aẋ. It is important to notice that we do not
know the volume V on which we are integrating but yet we can refer to the centre
of mass of the object to define an angular momentum relative to the object.

Given the one-to-one relation between Eulerian and Lagrangian coordinates
given in Eqn. (2.3) we rewrite the expression (2.8) in these coordinates:

L(t ) = Ω0a5
Z

VL

d 3q(q° q̄+S(q, t ))£ Ṡ(q, t ) (2.9)

where the Lagrangian volume VL is in comoving coordinates and is a fixed initial
region, which can be identified with a density peak region (from which a halo
will eventually form from collapse). An important note to this expression is that
it is still an exact expression for the angular momentum of a protogalactic object,
since no approximation has been done yet.

Now, by applying the Zel’dovich approximation in Eqn. (2.7) the equation for
the angular momentum simplifies to:

L(t ) ª L(1)(t ) = Ω0a5
Z

VL

d 3q(q°q̄+S(1))£Ṡ(1)d t = Ω0a5Ḋ+(t )
Z

VL

d 3q(q°q̄)£r™1(q)

(2.10)
where we have used the relation:

ẋ(q, t ) = ™̇(q, t ) ª Ḋ+(t )r™1(q) (2.11)

obtained by the temporal derivation of Eqn. (2.3) and Eqn. (2.7) and the fact that
the fact that r™1 £r™1 = 0.

The second approximation we make is to consider that the gradient of the
displacement field ™1(q), where we will drop the subscript and which we will
write™(q) for simplicity, does not vary too much across the Lagrangian volume
VL , in which case we are free to Taylor-expand it about the centre of mass q̄:

@Æ™(q) ' @Æ™(q̄)+
X

Ø

(q° q̄)Ø™ÆØ, (2.12)
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where™ÆØ is the tidal shear at the point q̄:

™ÆØ(q̄) = @Æ@Ø™ÆØ(q̄), (2.13)

and is the only part really contributing to rotation build-up of the protogalaxy,
since the gradient of the displacement field @Æ™(q̄) only displaces it. The dis-
placement field ™ is related to the gravitational potential ©, and can be com-
puted as the solution of Poisson’s equation 4™= ± from the cosmological den-
sity field ±. By now recognising now the quadrupole of the mass distribution, or
the inertia tensor IØæ, as:

IØæ = Ω0a3
Z

VL

d 3q(q° q̄)Ø(q° q̄)æ (2.14)

one obtains the final expression for the angular momentum components:

LÆ(t ) = a2(t )Ḋ+(t )
X

Ø

X

∞
≤ÆØ∞

X

æ
IØæ™æ∞, (2.15)

which basically states that the tidal field of an inhomogeneous distribution of
matter couples to the inertia tensor of the protogalactic object therefore induc-
ing a rotation or, otherwise said, a net angular momentum relative to its centre
of gravity. ≤ÆØ∞ is the Levi-Civita antisymmetric tensor. We dropped the super-
script indicating that this expression for the angular momentum is a first order
approximation.

It is very useful to consider the case in which we write the angular momen-
tum in the eigenframe of the tidal shear (Dubinski, 1992; Porciani et al., 2002a;
Schäfer, 2009). The components are then:

LÆ/ IØ∞(™ØØ°™∞∞). (2.16)

The largest component of L will be the one with the largest value if |™ØØ°™∞∞|.
Given ™1 ∑ ™2 ∑ ™3, the largest component ought to be L2 / |™3 °™1|. This
means that we expect the angular momentum to align itself parallel to the in-
termediate axis of the tidal shear. We will see in Sec 2.5 that this very important
feature has been checked in numerical simulations.

It is insightful to rewrite the expression in Eqn. (2.10) (Bouchet, 1996):

L(t ) = Ω0a5Ḋ+(t )
Z

VL

d 3q(q° q̄)£r™1(q) =

= Ω0a5Ḋ+(t )
Z

°
™1(q° q̄)£d°, (2.17)

where we have used Gauss’ divergence theorem transforming the volume inte-
gral into an integral over the boundary surface ° of the Lagrangian volume con-
taining the protogalaxy. It is thus immediately clear that when the protogalactic
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object is spherical the integral vanishes, therefore leading to a zero angular mo-
mentum at first order. The same can be seen by calculating the inertia tensor of
a spherical volume, which is (Catelan & Theuns, 1996a):

IØæ = 4º
15

Ω0a3(q ° q̄)5±Øæ (2.18)

and therefore the angular momentum LÆ/ ≤ÆØ∞™Ø∞ = 0.
The general condition under which the angular momentum vanishes can

be shown by following the notation of Schäfer (2009). By rewriting the tensorial
product of the inertia and shear tensors as the tensor X = I™, one can divide the
latter in two components, a symmetric and an antisymmetric one:

X = X++X°, (2.19)

defined by means of the commutator and the anticommutator as follows:

X+ ¥ 1
2

{I,™}

X° ¥ 1
2

[I,™] , (2.20)

and whose components are:

X +
Ø∞ = 1

2

X

æ
(IØæ™æ∞+™ØæIæ∞)

X °
Ø∞ = 1

2

X

æ
(IØæ™æ∞°™ØæIæ∞). (2.21)

The symmetry properties of these components are:

(X+)t = 1
2

(I™+™I)t = 1
2

(™I+ I™) =+X+

(X°)t = 1
2

(I™°™I)t = 1
2

(™I° I™) =°X°. (2.22)

When inserting these components in the relation for the angular momentum
(Eqn. 2.15) we obtain:

LÆ = a2Ḋ+≤ÆØ∞(X +
Ø∞+X °

Ø∞) = a2Ḋ+≤ÆØ∞X °
Ø∞, (2.23)

since the multiplication of an antisymmetric tensor by a symmetric one is al-
ways zero. Eqn. (2.23) very nicely shows that the condition of having a perfect
alignment between the principal axes of the inertia and shear tensors, i.e. the
two tensors sharing common eigensystems and being simultaneously diagons-
able, yields to a vanishing commutator and therefore to no angular momentum.
In order to have a non-zero angular momentum, the commutator between in-
ertia and deformation tensor must not vanish, meaning that the eigensystems
of the tensors must be skewed relative to each other. As discussed in Catelan &



2.4 Tidal Torque Theory 31

Theuns (1996a), this situation is usually fulfilled since the principal axes of the
inertia tensor depend on a very irregular shape of the initial volume VL of the
protogalaxy, whereas the principal axes of the shear tensor depend on the lo-
cation of neighbour matter fluctuations (White, 1984). We are going to go back
to this "sine qua non" condition for angular momentum build-up when talking
about angular momentum correlations between close-by galaxies, as this fea-
ture has been parametrized as an average effect in N -body simulations within
this context.

The symmetric component X+, even though not being responsible for the
galaxy spin-up, contributes in anisotropically deforming the protogalactic re-
gion prior to collapse, when the assumption of linear structure formation holds.

The time evolution of the angular momentum is completely described by the
term a(t )Ḋ(t ) containing the scale factor and the time derivative of the growth
factor. In an Einstein-de-Sitter model this equals 2(t/t 2

0 )/3, which makes L(t ) /
t in linear theory, as shown by Doroshkevich (1970).

As already mentioned, during its lifetime a galaxy undergoes several pro-
cesses such as dynamical friction of infalling gas clumps, major mergers, star
formation and feedback many of which introduce strong non-linearities in the
game able to dissipate the previously generated angular momentum. Further-
more, non-linearities in the density field itself would lead to results departing
from the standard ones obtained in linear approximation.

Non-linear Lagrangian perturbation theory

A step further was taken by Catelan & Theuns (1996b) and Catelan & Theuns
(1997) who considered two possible ways of departing from linearity. Based on
the previous work of Bouchet et al. (1992); Buchert (1994); Catelan (1995), in
the first paper the authors applied further perturbative corrections to the dis-
placement potential while still considering the matter density perturbations to
be Gaussian distributed, and in the second they considered instead the case of
a non-Gaussian initial density field.

With the aim of studying the non-linear spin dynamics in the mildly non-
linear regime, Catelan & Theuns (1996b) rewrite the angular momentum as:

L(t ) = ¥0

Z

VL

dq

"
1X

i=0
™i (q, t )

#

£ d
d t

"
1X

j=0
™ j (q, t )

#

¥
1X

h=0
L(h)(t ), (2.24)

where
1X

h=0
L(h)(t ) ¥

hX

j=0
¥0

Z

VL

dq™ j (q, t )£
d™h° j (q, t )

d t
(2.25)

with ™0 ¥ q and hence L(0) = 0. In order to calculate the second order correc-
tions to the ensemble average hL2i they need corrections to L up to the third
order. They recover the growth of the perturbative corrections to hL(1)2i1/2 to
be proportional to t 5/3 in an Einstein-de-Sitter Universe, as previously shown
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by Peebles (1969). Furthermore, given the proportionality of these corrections
to the invariant of the inertia tensor µ2

1 ° 3µ2, where µ1 ¥ ∂1 + ∂2 + ∂3 and µ2 ¥
∂1∂2+∂1∂3+∂2∂3 are the first and second invariant of the inertia tensor 2, they man-
age to express the order of magnitude of the nonlinear correction to the linear
one: In fact they find that the variance hL(1)2i increases by a factor of 1.6 in their
third order calculations compared the first order ones. This result, in addition
to the linear (and therefore mild) growth of the angular momentum with time,
yields to the conclusion that the initial torque is a good estimate for the tidal
torque in mildly non-linear regimes, i.e. until turn-around.

Catelan & Theuns (1997) instead considered another possible source of non-
linearities, aiming to answer to the question whether initial non-Gaussian con-
ditions might make the analytical linear calculation of the angular momentum
deviate strongly during mildly non-linear regime. For this purpose they consider
multiplicative models, i.e. non-Gaussian models obtained by the non-linear trans-
formation of an underlying Gaussian random field (examples of these are the ¬2

and lognormal distributions, which are used by the authors). They find a lower
growth of the perturbative corrections with time, / t 4/3 instead of / t 5/3 of the
Gaussian case for an Einstein-de-Sitter model. They furthermore find that for
¬2 and linearised lognormal distributions the deviation is of the order of the
first linear term, i.e. these statistics induce O(1) corrections to the linear angu-
lar momentum, and deduct that higher order contributions might well likely be
non-negligible.

2.5 Numerical simulations

A great deal of effort has been put into numerical studies of TTT, angular mo-
mentum acquisition and disk formation, mostly aimed to confirm the validity
of analytical results and approximations, and to shed light on other possible im-
portant missing tiles. In this section we will skim through the numerical simu-
lations which have been carried out throughout time. The investigations con-
cerning TTT have in common the attempt of recovering features such as the
relation between angular momentum and mass, specifically the proportionality
L / M 5/3, growth of the spin in time, recovery of the spin parameter lognormal
distribution, and in general tests on the approximations made by the TTT theory
involving the hypothesis of linearity and Zel’dovich approximation (shell cross-
ing), direction and magnitude of spin, and importance of nonlinear effects. We
also quickly review other numerical investigations about spin and local environ-
ment and simulations including baryonic physics separately.

2We remind that the n-th invariant of a symmetric matrix (in this case the inertia I), can be
found by calculating the trace tr(I n )
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2.5.1 TTT simulations

The very first simulations applied to TTT were carried out by Peebles (1971b),
with a series of small numerical experiments (where the number of particles
used was N = 100) which confirmed his previous calculations. Soon after Ef-
stathiou & Jones (1979) increased the number of particles used for the simu-
lation, recovering the fact that most of the angular momentum of the galaxy
was acquired during early stages, and confirming that deviations at later stages
were due to nonlinear effects. They also recovered the expected L / M 5/3 and
L / t 5/3 scaling relations. The same was found by White (1984) too, who also
added that the total final spin can be correctly estimated only to order of mag-
nitude due to final non-linear effects.

Barnes & Efstathiou (1987) confirm the low values of the spin parameter for
ellipticals (∏ª 0.05), the linear growth with time of the spin, and reproduce the
scaling relation L / M 5/3. They furthermore find a tendency of spins to be per-
pendicular to major axes of the object, while finding that tidal torque produces
no significant spin orientation effect (lack of spin alignment). Dubinski (1992)
study the effects of tidal shear on dark halos, since tidal shear could in principle
determine both the shape of the final object (i.e. its structure) and change the
kinematics of dark halos. They find no relationship between the initial shape
of the density peak and the final dark halo one, whereas they do find the im-
portance of tidal torques in establishing the kinematics of dark halos. They also
find a strong tendency of the spin to align with the dark halo’s intrinsic minor
axis. Sugerman et al. (2000) find that the angular momentum grows linearly un-
til turn-around, turns over during shell crossing (i.e. when the inner mass shells
pass throughout the centre) and remains constant after, when virialization and
relaxation occur. The linear tidal torquing therefore overestimates the magni-
tude of the spin and the true turn-around. The scaling relation between mass
and spin is also retrieved. Porciani et al. (2002a,b) argue that TTT is good for the
estimation of the spin amplitude in terms of its order of magnitude, and that
non-linearities induce significant (up to 50±) changes in the spin direction and
weaken spin correlations too. This general trend is better at high redshift be-
cause nonlinearities are not yet present at high redshifts.

An important finding, to be stressed here, concerns the fact that the stan-
dard approximations of TTT (second order expansion of potential, Zel’dovich
approximation and smoothing of the shear tensor on the protohalo scale) are
good and cannot really be improved. They therefore deduce that the emergence
of non-linearities constitute the only problem for which final spins deviate from
the linear ones.

Concerning non-linearities, Lee & Pen (2008) parametrise the degree of de-
pendence of the orientations of the halo spins on the linear and non-linear tidal
field such that any deviation from linearity involves a nonzero value of the de-
fined parameter. By using halo catalogues from the Millennium Run Simulation
for a §CDM cosmology, they find an increase of linearity with redshift, such
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that linear tidal fields are more representative of the high redshift population,
whereas the non-linear parameter strongly deviates from zero today (z = 0),
which implies that the non-linear tidal effects are dominant today, inducing cor-
relations on larger scales (ª 10h°1Mpc) than predicted by linear TTT (ª 1h°1Mpc,
see Schäfer & Merkel, 2012). Furthermore the non-linear parameter grows with
the specific angular momentum.

Libeskind et al. (2013) focus their attention on non-linearities induced by the
vorticity flow. In fact they argue that halos find themselves embedded in vortic-
ity flows after the linear and mildly non-linear regimes (i.e. after the regime of
validity of TTT), and they expect therefore the angular momentum growth to
be affected by this vorticity. They actually find that the curl of the velocity field
is very important in the determination of the spin of the halo, and find a sig-
nificant alignment signal: the vorticity tends to be perpendicular to the axis of
the fastest collapse of the velocity shear tensor, independent of the mass of the
halo and its environment. They therefore propose that the angular momentum
growth can be divided in two steps: one well described by TTT, and the second
(close to virialization time) in which the spin partially aligns with the vorticity.

This has been observationally supported by Lee (2013), who actually finds
a very strong alignment between galaxy spins and the local vorticity field, and
study how the alignment strength depends on the environment. Different be-
haviours appear between knot and filament regions (vorticity vectors are found
to be anti-aligned with the directions of maximal volume compression) and sheets
and voids (the anti-alignment is found here with the direction of the minimal
volume compression).

2.5.2 Angular momentum and cosmic web

Another filed of research developed on the basics of TTT has been devoted to
possible alignments between angular momenta and the ambient large scale struc-
ture in terms of the sheets, voids and filaments forming the cosmic web as we
know it from simulations and observations. The alignments of the dark halo axes
with the large scale structure and the orientation of the galactic disks constitute
main subject of these studies conducted by means of numerical simulations.

Navarro et al. (2004), other than recovering the alignment of the spin with the
intermediate principal axis of the inertia tensor, numerically study the orienta-
tions of galactic disks relative to the surrounding large scale structure, finding
that there is a tendency of the rotation axis of the disk to be aligned perpendicu-
larly to the minor axis of the surrounding structure, as a consequence of angular
momentum acquisition at early stages by TTT. A trend in the alignment of galac-
tic spin with the minor axes of the neighbouring structure was found by Bailin &
Steinmetz (2005), who find it to lie perpendicular to the filaments.

A very organic study in this sense was carried out by Aragón-Calvo et al.
(2007), who separate the cosmic structure in wall-like and filament-like struc-
tures and study the correlations between spins and shapes of dark halos and the
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orientation of their host structure. Again the perpendicular alignment is strongly
found in both cases of walls and filaments and, furthermore, it is found that the
orientation of the spin depends on the mass, such that low mass halos are more
likely to be oriented with the parent substructure. A categorisation of the po-
sition of halos, i.e. whether in clusters, filaments, sheets or voids is carried out
by Hahn et al. (2007), who also try to grasp the relation between halo masses
in clusters, and properties such as the degree of sphericity or the magnitude of
the spin, finding that low mass halos are more prolate and have higher median
spin in clusters than in filaments. Moreover, they find that halo spins tend to lie
within the plane of symmetry of the mass distribution in sheets. Specific atten-
tion to voids was given by Patiri et al. (2006) and Brunino et al. (2007), who study
the alignment of halo spins with voids, finding that the minor axis of the halos
point preferentially in the direction of the centres of the voids.

Sousbie et al. (2008) find perpendicular spins to filaments, whileSousbie et al.
(2009) show that the Zel’dovich approximation is able to well reproduce the time
evolution of the cosmic web, regardless of the non-linearities induced today.

Another comprehensive description is given by Libeskind et al. (2012). They
assign to each halo a "web-type": knot, filament, sheet or void, and analyse the
orientation of the halos spin with the velocity shear field eigenvectors, finding
that there is an alignment of subhalos’ spins with the intermediate eigenvector
in knots, filaments and sheets, which is interpreted as the role played by the tidal
velocity shear on the infall kinematics of substructures within virialised objects.
They also find the halo spin axis to point along filaments and to lie in the plane
of cosmic walls for low mass halos.

Lastly, Codis et al. (2012) investigate correlations between spin of dark halos
and their large-scale environment. They find a significant signal for filaments
over a smoothing scale of 5h°1 Mpc: they deduce therefore that the orientation
of the spin is sensitive to the environment. The signal is also mass-dependent:
low masses are usually found to be aligned with large-scale filaments, more mas-
sive objects tend to be perpendicular to these. In general the mass transition is
redshift dependent.

2.5.3 Dependency of the spin on local environment

Lemson & Kauffmann (1999), based on the fact that the structure and history
of a galaxy can be fully determined by the history of its surrounding halo, study
the properties of DM halos as a function of local density and environment. They
specifically look at correlations between some halo properties (mass, formation
redshift, concentration, shape and spins ) and both their environment and the
surrounding tidal field, finding that the mass is the only property depending on
the environment. The hight of a peak is found to be anticorrelated with its angu-
lar momentum (because high peaks collapse early, so there is no time for tidal
torques to act). On the other hand, though, it is expected to be correlated, since
high peaks experience higher tidal fields. These two behaviours are expected to
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cancel out in order to Heavens & Peacock (1988), and as is confirmed by Stein-
metz & Bartelmann (1995), so that there is a very weak dependence of the spin
on the environment. This weak correlation was confirmed by N -body simula-
tions of Dubinski (1992), who find no correlation between the shape of the initial
density peak and the shape of the final collapsed halo.

2.5.4 Simulations on dark halos and gas: angular momentum catas-
trophe

There have been also attempts to study the formation of disks in N -body simula-
tions accounting for the baryonic component within a§CDM cosmology, as for
instance Steinmetz & Navarro (2002). Although an exhaustive compilation of all
the work carried out in this direction is impossible and out of track in this con-
text, it is interesting to focus the attention on one of the major problems encoun-
tered by these numerical simulations, i.e. the angular momentum catastrophe.
As also Mayer et al. (2008) very well summarised, the predictions of the analyt-
ical disk models within the framework of the §CDM model match the real size
of galaxies disks, but it was found that simulations consistently underproduced
the scalelengths of real observed galaxies. This mismatch lead people to ques-
tion the validity of the §CDM paradigm. Further simulations and studies (Gov-
ernato et al., 2004; D’Onghia, 2008; Governato et al., 2007, 2008; Zavala et al.,
2008; Scannapieco et al., 2008; Burkert, 2009) showed the root of this mismatch
to be found in the fact that, in numerical simulations, baryons collapse too early
and cool too much. Consequently the disks collapse too much and, while still
allowing for later mergers, they also allow for angular momentum redistribution
(or transfer) from baryons to dark halos.

2.6 Summary

This chapter summarises the physical mechanisms which enabled galaxies to
acquire their current morphology and their angular momentum. We therefore
review the differences between elliptical and spiral galaxies mainly in what con-
cerns their rotation, trying to create a link between this observational property
and possible formation scenarios. Other observational features discriminating
between the two galaxy types are not further discussed here, so we stress that
this chapter does not represent a full and thorough description of elliptical and
spiral galaxies.

Great attention is devoted to the theory of tidal torques both in terms of an-
alytical analysis and numerical simulations. The main points of the chapter can
be summarised as follows:

• the rotational support of a galaxy can be well described by the spin parameter
∏, which assumes typical values of ∏ ª 0.5 for late-type galaxies and ∏ ª 0.05
for early-type galaxies.
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• in the attempt of explaining such difference among galaxy types in terms of ro-
tation, several possible scenarios arise: ellipticals seem to have formed in the
so-called merging scenario, and appear to be remnants of mergers of disk-like
galaxies, whereas spirals seem to be spun up by tidal fields from the large scale
structure acting at the very early stages of their formation, i.e. at the stage of
protogalaxies. The latter model goes by the name of tidal torque theory (TTT).

• TTT is a perturbative process which applies in the linear and mildly non-linear
regime of density fluctuations. It assumes no substantial difference in the spin
acquired by the baryonic and non-baryonic component, and that non-linear
effects leading to exchange of angular momentum to be negligible.

• Given that the description of spin acquisition is equivalent in Lagrangian and
Eulerian coordinates, Lagrangian coordinates appear to be a preferable frame-
work to work in, mostly due to the much easier calculus level offered. Also,
the key assumption of linear regime, phrased as ±ø 1 in an Eulerian context,
becomes a weaker and longer lasting requirement in Lagrangian coordinates
(displacements of the particles are required to be small and the gradients of
the gravitational potential to be smooth).

• Tidal torques act on the protogalactic object setting it in rotation until the
gravitational collapse decouples the object from its background (turn-around
time). This reduces the lever arm of the torques, reducing its efficiency, and
leaves the object with a spin acquired up to that point.

• The angular momentum, as developed in linear Lagrangian perturbation the-
ory, is proportional to the tensorial product of inertia I and the tidal shear
T tensors, which need to have misaligned eigensystems in order not to pro-
duce a vanishing spin. Furthermore, the spin is found to grow linearly in time
(L / t ) in an SCDM cosmology, and have a specific scaling relation with mass
(L / M 5/3).

• Numerical simulations widely agree in the finding that TTT gives a fairly good
description of the spins of galaxies up to turnaround (Dubinski, 1992; Sug-
erman et al., 2000; Porciani et al., 2002a,b), when non-linear effects due to
mergers (angular momentum exchange), feedbacks and baryonic dissipation
processes are found to become more important and non-negligible. Lately it
has been found that vortices arising very close to the virialization time and
embedding the halos show a significant correlation with the spins of the ob-
jects (Libeskind et al., 2013; Lee, 2013).

• In all TTT simulations the spin axis has been found to be parallel to the inter-
mediate principal axis of the tidal shear tensor (as an example see Dubinski,
1992), due to the fact that the largest component of the angular momentum is
proportional to the largest discrepancy between the tidal field eigenvalues.
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• Numerical investigations of the alignment of the spins with the cosmic web
in non-linear structure formation have also been carried out throughout the
years, leading to the the results that: spins tend to lie perpendicular to fil-
aments and sheets if the halo mass is high, but aligned to these for lower
masses, and point preferentially radially to voids.



Chapter 3

THE PHYSICS OF INTRINSIC

ALIGNMENTS

3.1 Introduction

As much as the offspring contains imprints of the parents in terms of its ge-
netic makeup, galaxies born close by share information about the initial con-
ditions they underwent during the very beginning of their formation process.
These initial conditions - the "parents" of sibling galaxies - plainly are the grav-
itational potentials around them at the moment of their birth. Following this
analogy this means that, as much as we would expect to find correlations among
brothers and sisters (at least) in terms of their appearance, we will indeed expect
to find correlations between neighbouring galaxies once again in terms of their
appearance, although, in this case, their appearance is not constituted by their
luminosity, but rather their shape. These correlations go by the name of Intrin-
sic Alignments (IA hereafter), shape alignments, or intrinsic correlations. In fact,
whatever the galaxy type, luminosity and colour is, we expect that galaxies which
formed in spatially close locations were moulded in similar ways or underwent
similar conditions once formed, and therefore still bear, at least partly, this in-
formation codified in their shape.

In the case of late-type galaxies, correlations among the shapes indicate cor-
relations among their angular momenta, provided that, for each galaxy, the spin
is perpendicular to the galactic disk (Dalcanton et al., 1997; Mo et al., 1998;
Buchalter et al., 2001) and that the spin of the baryonic disk corresponds to the
spin of the dark matter halo in which the galaxy is embedded. In other words,
the galaxies experienced similar tidal torques, which led to angular momenta
similar in direction.

In the case of early-type galaxies, the orientation of the galaxy image can be
determined by the shape of the halo in which the galaxy formed (Catelan et al.,
2001). In fact, as already said, the angular momentum in elliptical galaxies is not
dominant and the rotation is mainly supported by the dispersion of the stellar

39
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velocities, so that the shape cannot be determined by the spin as is the case for
spiral galaxies. As will be discussed in Sec. (3.6), the idea behind this picture is
that the tidal fields acting on the galaxies can either stretch or compress them
producing respectively prolate or oblate halos and will, on average, lead to a net
elongation of the halos.

We can therefore see that there is a common denominator for the origin of
IA, in both the cases of late-type and early-type galaxies: Specifically, whatever
the origin for the spins of the galaxies, the correlations of the underlying tidal
field (Catelan & Porciani, 2001; Catelan et al., 2001; Crittenden et al., 2001) will
contribute to the IA.

Intrinsic correlations thus have to do with the correlation length of the tidal
field, as will be discussed in Sec. 3.2. Sec. 3.4 and 3.6 will deal with the modelling
of, respectively, the late-type and the early-type IA, which differ in the assump-
tions they make, as already mentioned above. In Sec. 3.7 we will provide a round
up of N-body simulations applied to IA, while Sec. ?? offers an overview on IA
detections. Finally we summarise the basic ideas of this chapter in Sec. 3.8.

3.2 Tidal correlation lengths

Any attempt to evaluate the correlations between the spins of galaxies at a given
separation µ on the sky must rely on considerations about the range of "in-
fluence" of what contributes in the first place to the formation of the spins,
namely the inertia of the object and the external tidal field. In particular the
latter has been shown to correlate over distances much larger than the mass-
density (or inertia) correlation length (Catelan & Porciani, 2001), and appears to
be a salient feature in explaining not only spins and IA, but more in general also
galaxy formation. In other words the feature of spatial locality of such processes
and their apparent independency one from another actually mask a correlation
at a deeper level which eventually shows up in the IA.

From the Fourier space perspective, one could say that in the process of for-
mation of a galaxy (or a protogalaxy) all the modes in the initial density field
contribute: the short wavelengths contributing to the shape of the object, and
the long wavelengths contributing to the tidal field. Notice that tidal shear field
has the same correlation length of the density field (due to Poisson’s equation
the trace of the tidal field gives the density field), whereas the inertia has the
correlation length of the curvature of the density field, that is its second deriva-
tive (Schäfer, 2009).

Catelan & Porciani (2001) measured the correlation length for tidal shear
fields without any assumption given about whether the distribution of the grav-
itational potential is Gaussian or not. Quantitatively they achieve a study of the
correlations of the tidal field by carrying out a decomposition of the tidal ten-
sor, and by calculating the correlator among the different components at two
different points in space. Furthermore they also define a scalar quantity, dimen-
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sionally the square of the correlation function, which is meant to carry the in-
formation about the size of the tidally correlated sphere about any given point.
All these correlation functions give rise to correlation lengths roughly between
1 and 30 Mpch°1 on cluster scales. The mass correlations appear instead to be
much weaker, up to only 15 Mpch°1.

These scales appear therefore to be fundamental for the study of IA. We will
see in the following sections how this interplay between the different correlation
lengths of inertia and tidal shear can be used to simplify otherwise very cumber-
some calculations.

3.3 Intrinsic ellipticity correlations

The aim of this chapter is to study correlations between galaxy shapes, which
equivalently means that we would like to study the statistics of a field of images
of galaxies. In order to achieve this the first goal is to define the ellipticity of a
galaxy, which must be a two-dimensional quantity derived by the projection of
a three-dimensional ellipsoid onto the celestial sphere. This projected shape of
the galaxy on the sky is an ellipse with semi-axes a,b, (a > b). Once the coordi-
nate system is chosen, the orientation of the ellipse will depend on the angle ¡
between the major axis of the ellipse and the coordinate system, and the magni-
tude instead is:

|≤| = a2 °b2

a2 +b2 . (3.1)

The ellipticity can be well and synthetically quantified by the relation (Critten-
den et al., 2001):

≤= ≤++ i≤£ = |≤|e2i¡, (3.2)

where i is the imaginary unit: The ellipticity is thus a complex quantity able to
reproduce the symmetry property that, if an ellipse is rotated by 180±, its shape
will not be affected.

The two point correlation function of the shapes of two galaxies positioned
at angular positions µ0 and µ00, separated by a distance µ = µ0 ° µ00 on the sky,
will be denoted as h≤(µ0)≤§(µ00)i, and is defined as the average over all possible
realisations of the product between the ellipticity of a galaxy at a position µ0 and
the ellipticity of another galaxy at position µ00:

h≤(µ0)≤§(µ00)i= h≤0≤00§i=C (µ) (3.3)

Due to the fact that the ellipticity has two components, the intrinsic correla-
tion will be a four-point correlator which can be though simplified to the sum of
two two-point correlation contributions (Wick’s theorem, Wick, 1950):

h≤0≤00§i= h≤0+≤00§+ ≤0£≤
00§
£ i= h≤0+≤00§+ i+ h≤0£≤00§£ i. (3.4)



42 THE PHYSICS OF INTRINSIC ALIGNMENTS

Note the fact that the cross-correlations h≤0+≤00§£ i= h≤0£≤00§+ i= 0 by definition if sta-
tistical parity invariance holds. Being the components of the complex ellipticity,
they are independent one from another.

These correlations between the two ellipticity components ≤+ and ≤£ can be
described using two correlation functions C++(µ) = h≤+(µ0)≤+(µ00)i and C££(µ) =
h≤£(µ0)≤£(µ00)i, which are conveniently combined into two correlation functions
C±(µ):

C+(µ) = C++(µ)+C££(µ) (3.5)

C°(µ) = C++(µ)°C££(µ) (3.6)

Finally, ellipticity correlation functions can be transformed to the spectra C ≤
E (`)

and C ≤
B (`) of the gradient and vorticity modes of the ellipticity field,

C ≤
E (`) = º

Z
µdµ [C+(µ)J0(`µ)+C°(µ)J4(`µ)] , (3.7)

C ≤
B (`) = º

Z
µdµ [C+(µ)J0(`µ)°C°(µ)J4(`µ)] , (3.8)

by Fourier transform (Kaiser, 1992; Schneider et al., 2002; Schneider & Kilbinger,
2007; Fu & Kilbinger, 2010). CE and CB , the so-called E° and B°modes, will
mostly be used when we will talk about IA and weak lensing in Chap. 4.

In this section we have presented the basis for any model of IA. In the next
sections we are going to talk about the two basilar models for IA, the so-called
"quadratic" and "linear" models.

3.4 Late-type galaxies: the quadratic model

The fundamental idea of the quadratic model is that the orientation of the galaxy
image is determined by the angular momentum of the three-dimensional halo
in which the galaxy is formed. Another hypothesis at the basis of this model is
the fact that the angular momentum is perpendicular to the disk of the galaxy,
and that the angular momentum of the baryonic disk and that of the dark mat-
ter halo correspond. Note that already these assumptions are quite strong, but
given the degree of complexity of the problem, and our little knowledge about
galaxy formation, these assumptions seem reasonable. Within the framework of
the quadratic model there are different possible ways of modelling the IA sig-
nal. We are are going to discuss in detail two quadratic models, upon which the
results in Chap. 5 have been obtained. A first analysis of the quadratic model
for intrinsic correlations has been carried out by (Crittenden et al., 2001), whose
notation will be broadly used in this section.

3.4.1 Ellipticity of a spiral galaxy

In the previous section we have given a definition of the ellipticity as a spin-
2 quantity coming from the projection of the three-dimensional ellipsoid onto
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the two-dimensional sky. In the case of spiral galaxies the three-dimensional el-
lipsoid can be approximated to a thin disk, with the angular momentum per-
pendicular to the disk plane. If we think of projecting such a galaxy on the sky
the shape of the galaxy will certainly depend on the angle under which it is ob-
served. This situation is described in Fig. (3.1). In fact, if we consider a disk-like
galaxy as a circle of radius R with a certain thicknessÆ, and we define µ to be the
angle between the angular momentum of the galaxy and the line of sight (which
corresponds to the z-axis), by defining a,b to be respectively the major and the
minor axis of the projected ellipse, we have:

a = R

b = R cos(µ) (3.9)

and the magnitude of the ellipticity is given by:

|≤| =Æ
a2 °b2

a2 +b2 =Æ
1°cos2(µ)
1+cos2(µ)

=Æ
1°L2

z

1+L2
z

, (3.10)

where 0 <Æ< 1. There are two possible extreme situations:

• µ = 0±, i.e. the z-axis coincides with the angular momentum, therefore a = b =
R, and by definition the magnitude of the ellipticity is |≤| = 0: The galaxy is
face-on and seen as circular;

• µ = 90±, i.e. the z-axis is perpendicular to the angular momentum, and in this
case a = R and b ª 0 (because of the thickness Æ b will never be absolutely
0), so that the magnitude |≤|ª 1: The galaxy is edge-on, and appears as highly
elliptical.

3.4.2 Intrinsic Alignments

The assumption is that the intrinsic ellipticity of a galaxy arises from its angular
momentum, its shape and orientation, i.e. ≤= ≤(S, L̂), where S denotes both the
shape and the orientation of the ellipsoid, and L̂ is its angular momentum.

If we calculate now the correlation between ellipticities of galaxies at differ-
ent positions we obtain:

h≤≤0§i=
Z

dSdS0 dL̂dL̂0 ≤(S, L̂)≤(S0, L̂0)P (S, L̂,S0, L̂0), (3.11)

where P (S, L̂,S0, L̂0) denotes the joint probability distribution of finding the shapes
and angular momenta of the first galaxy, (S, L̂), and the second galaxy, (S0, L̂0).
There are a few simplifications to this expression which can be made before we
turn to talk about the different treatments of the two quadratic models we are
going to consider. The following assumptions are valid for both these models.
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Figure 3.1: Sketch of ellipticities as viewed from an observer positioned at differ-
ent angles.

Independent three dimensional shapes: We can assume that there is no correla-
tion between the shapes of the two distinct galaxies, and this is justified by the
fact that the shapes of the ellipsoids are determined by local processes (e.g. the
dissipation processes during the collapse of the dark matter halo). Therefore the
shapes of the two galaxies are independent, and the joint probability distribu-
tion simplifies to P (S, L̂,S0, L̂0) = P (L̂, L̂0)P (S)P (S0), so that Eqn. (3.11) becomes:

h≤≤0§i=
Z

dSdS0 dL̂dL̂0 ≤(S, L̂)≤(S0, L̂0)P (S)P (S0)P (L̂, L̂0). (3.12)

Average shape for each galaxy: Since the determination of a certain shape given
the angular momentum’s direction is difficult to obtain or to assume, it appears
convenient to obtain an average ellipticity for a given direction of the spin for
each galaxy. This is achieved by integrating over all possible shapes and orienta-
tions: ≤̄(L̂0) =

R
dS≤(S, L̂)P (S) and results in the relation:

h≤≤0§i=
Z

dL̂dL̂0 ≤̄(L̂)≤̄(L̂0)P (L̂, L̂0), (3.13)

which contains the joint probability distribution P (L̂, L̂0), key point of the quadratic
model study. P (L̂, L̂0) can be investigated by considering the definition of angu-
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lar momentum in Eqn. (2.15), which shows the proportionality to the inertia and
tidal shear tensors and allows a rewriting of the probability itself as P (L̂, L̂0) =
P (I,T,I0,T), I being the inertia tensor and T ¥©,ÆØ the tidal shear tensor.

Quite generally speaking, the treatment of this joint probability distribution
P (I,T,I0,T) is at the same time the starting point and the discriminator between
the two quadratic models we are going to talk about in the next sections, respec-
tively ascribable to (Crittenden et al., 2002, CNPT hereafter) and (Mackey et al.,
2002, MWK hereafter).

It is worth stressing that locality is a key concept in providing any kind of
description of IA. In both models, in fact, we are considering local processes (the
formation of a galaxy with a certain inertia tensor, or a certain shape and angular
momentum) which end up to be correlated due to the long-range correlation
lengths of the tidal shear.

3.4.3 Modelling of intrinsic alignments I: CNPT model

As was just mentioned in the previous section, if we are interested in the full joint
probability distribution of finding the angular momenta L̂, L̂0 of two galaxies at
a certain distance one from another, we need to consider the full joint probabil-
ity distribution P (I,T,I0,T0). Again some considerations can be made in order to
lighten this expression:

Indipendent inertia tensors: CNPT assume that the moment of inertia of a given
galaxy is only correlated to the shear tensor of the galaxy, such that P (I,T,I0,T0) =
P (I|T)P (I0|T0)P (T,T0). Equivalently, this translates into omitting the conditional
probability P (I|I0) by considering I,I0 independent. This assumption derives from
considerations about the different correlation lengths of the quantities involved:
Since the correlation length of the inertia tensor is significantly smaller than the
correlation length of the shear tensor, we expect the inertia of one galaxy not to
be correlated with the inertia of the second galaxy.

Definition of protogalaxy boundaries: The conditional probability distribution
P (I|T), namely the probability of finding an inertia tensor I given the tidal shear
tensor T, is very difficult to retrieve, since it contains one of the major unsolved
problems of the TTT, which is the fact that the inertia tensor of a protogalac-
tic object, which is caused by the tidal shear of the surrounding regions, can be
defined only by defining the boundaries of the object itself, but these bound-
aries in turn depend on the evolution of the gravitational potential and on the
mass distribution outside the collapsed object as well. In other words it appears
very intricate to encode all the information about inertia and tidal shear tensors
and their interdependencies. A possible way out was suggested by Lee & Pen
(2000, 2001) who considered the conditional probability P (L̂|T) (the probabil-
ity of finding the spin L̂ given the tidal shear tensor T) instead of P (I|T) (since
P (L̂|T) / P (I|T)). This actually appears as a viable way if one considers the def-
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inition of angular momentum and the fact that the probability of finding a cer-
tain angular momentum given a tidal field builds in the information contained
in P (I|T) by construction. The reader may be convinced by the fact that, once
again, we are talking about local, spatially separated processes taking place "on
top" of an underlying common tidal field, which is able to affect in a similar way
the above mentioned processes. If one allows for this rewriting, i.e. P (L̂|T) in-
stead of P (I|T), then it is also possible to express the average ellipticity in terms
of the tidal tensor rather than the angular momentum: ≤̄(T) =

R
dL̂≤(L̂)P (L̂|T),

which is the expected average ellipticity given a tidal shear tensor.
In this way the ellipticity correlation becomes:

h≤≤0§i=
Z

dTdT0 ≤̄(T)≤̄(T0)P (T,T0). (3.14)

Finally, in order to be able to calculate this expression, the only ingredient needed
is the tidal field and the correlation among the tidal field at different locations.

Notice that this ellipticity correlation is quadratic in the tidal shear, and asks for
the computation of both the linear and the quadratic two point functions of the
tidal shear hTT0i and hTTT0T0i. Notice once again also that CNPT did not discard
the information contained in P (I|T) and P (I0|T0), but have rather encoded this
information inside P (L̂|T).

In order to solve the integral in the last expression, one needs to find the de-
pendency of the ellipticity on the tidal shear, and to assume some relation for
P (L̂|T). We address the first point by recalling the relation between the ellipticity
and the angular momentum in Eqn. (3.10):

≤̄+ = |≤̄|cos(2¡) =Æ
1° L̂2

z

1+ L̂2
z

L̂2
y ° L̂2

x

L̂2
y + L̂2

x
=Æ

L̂2
y ° L̂2

x

1+ L̂2
z

≤̄£ = |≤̄|sin(2¡) = 2Æ
1° L̂2

z

1+ L̂2
z

L̂y L̂x

L̂2
y + L̂2

x
= 2Æ

L̂2
y ° L̂2

x

1+ L̂2
z

(3.15)

such that |≤|2 = |≤+ + i≤£|2 and L̂2
x + L̂2

y + L̂2
z = 1. It is interesting to notice that

when the observer’s frame of reference corresponds to the frame in which the
shear tensor is diagonal, then the cross-correlations hLx Ly i = 0, and ≤£ = 0, so
that the distortions in the ellipticity are only real.

The probability distribution of finding the angular momentum L̂ given the
shear field T was given by (Lee & Pen, 2000), who assumed this conditional prob-
ability to be a Gaussian, and since this probability distribution implicitly con-
tains the probability distribution of the inertia tensor components P (I|T), this
assumption corresponds to assuming that also the latter probability distribu-
tion is a Gaussian. So we have:

P (L̂|T) = 1

(2º)3/2|C |1/2
exp

µ
°1

2
L̂T C°1L̂

∂
, (3.16)
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where C ¥ hLÆLØi is the covariance matrix. Always (Lee & Pen, 2000) and (Crit-
tenden et al., 2001) adopt a parametrisation for the degree of alignment between
the inertia and shear tensors:

C = hL̂ÆL̂Øi=
ø

L2

3

¿µ
1+a

3
±ÆØ°aT̂Æ∞T̂∞Ø

∂
(3.17)

where a is the so-called misalignment parameter, which encodes the informa-
tion of P (I|T) as well as the information we lack about all the non linear pro-
cesses, due both to baryonic dissipative processes going into the formation of
the galaxy and to the natural transit to nonlinear regime (in which case the ap-
proximations used to recover the angular momentum are no longer valid and
must be dropped). There term T̂ is instead the unit-normalised (T̂ÆØT̂ÆØ = 1)
and traceless (trT̂ = 0) tidal shear tensor which can be derived by using:

T̄ÆØ = TÆØ°
trT

3
±ÆØ, (3.18)

and the rescaling T̂ = T̄ /|T̄ |. There are two extreme cases for the misalignment
parameter, i.e. 0 ∑ a ∑ 3/5:

• a = 0: In this case the inertia and tidal shear tensors are correlated, or equiva-
lently, their eigensystems are perfectly aligned. This causes the covariance to
be equal to hLÆLØi= hL2

3 i
°1

3±ÆØ
¢
, which is the case for completely random an-

gular momenta directions. If the angular momenta of neighbouring galaxies
are completely uncorrelated one to another, then the signal, the correlation
function, is zero.

• a = 3/5: This is the case in which the inertia and shear tensors are completely
uncorrelated, otherwise said their eigensystems are maximally misaligned, in
which case the angular momenta trace the underlying tensor field, and are
therefore maximally correlated, meaning that the signal obtained, the corre-
lation function, is maximum.

The maximum value 3/5 for a can be bound by the requirement that the covari-
ance matrix C is positive definite, which turns into the two requirement s that
detC > 0 and LT C°1L > 0 for any L. In order to quantify the signal in these two
extreme cases, it is useful to consider (Schäfer, 2009), who showed that the signal
is maximised in the case of eigensystems completely unaligned:

hLÆ(x)LÆ0(x0)i= a4Ḋ2
+≤ÆØ∞≤Æ0Ø0∞0 hXØ∞(x)X 0

Ø0∞0(x0)i, (3.19)

where X is the tensorial product we defined in eqn. (2.19). The correlation func-
tion can be written as:

CL(r ) = trhL(x)Lt (x0) = a4Ḋ2
+tr

£
hX(x0)X(x)i°hX(x)Xt (x0)i

§
. (3.20)

What was the property of the angular momentum to be proportional just to the
antisymmetric part of the X tensor, X°, becomes in the correlation function of
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the angular momenta an asymmetric quadratic form hX(x0)X(x)i° hX(x)Xt (x0)i,
where the second term is carrying the signal. If the inertia and tidal shear have
common eigensystems, then X = X+ = Xt, where the last equivalence comes from
the fact that the shear and inertia matrices are symmetric. In this case the cor-
relation function would vanish. In the opposite case, case in which inertia and
shear tensors are misaligned, X = X° and Xt = (X°)t = °X and the correlation
function, i.e. the signal, is maximised:

CL(r ) = 2a4Ḋ2
+tr

£
hX(x0)X(x)i

§
(3.21)

Of course reality lies between these two extreme cases.
The conditional probability density can be used for establishing a direct re-

lation between ellipticity ≤ and tidal shear T̂ by integrating out angular momen-
tum direction and magnitude:

≤(T̂ ) =
Z

dL̂≤(L̂)
Z

L2dL p(L|T ) (3.22)

With this relation, one can write down the two correlation functions h≤+(µ0)≤+(µ00)i
and h≤£(µ0)≤£(µ00)i of the three-dimensional ellipticity field in terms of moments
≥n(r ) (see Crittenden et al., 2001) of the tidal shear field.

The correlation function of the three dimensional ellipticity field can then
be projected onto the angular correlation function of the ellipticity components
by using the configuration-space Limber-equation (Limber, 1954):

C++(µ) =
Z

d¬1W≤(¬1)
Z

d¬2W≤(¬2) h≤+(µ0)≤+(µ00)i (3.23)

C££(µ) =
Z

d¬1W≤(¬1)
Z

d¬2W≤(¬2) h≤£(µ0)≤£(µ00)i (3.24)

with the distance distribution W≤(¬) = n(z(¬))dz/d¬ resulting for a given cos-
mology from the observed redshift distribution n(z)dz of background galaxies,
and where we have neglected the clustering of galaxies.

3.4.4 Modelling of intrinsic alignments II: MWK model

In the case of MWK the full joint probability distribution P (I,T,I0,T0) encoun-
tered in Sec. 3.4.2 is treated in slightly a different way. As much as CNPT do,
MWK also consider the inertia tensors I,I0 of the two galaxies to be uncorrelated,
therefore omitting the term P (I|I0).

But differently from CNPT, MWK also omit the conditional probabilities P (I|T),
P (I0|T0), meaning that they consider the inertia and the tidal shear tensor to
be completely uncorrelated. This approach, previously used by Catelan & The-
uns (1996a), basically corresponds to the so called peak-background split, and
is based once again on considerations on the interplay between the long-range
correlations in the tidal field as opposed to the short-range correlations of the in-
ertia tensors. In this perspective MWK argue that the large wavelengths Fourier
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modes must be statistically independent of the smaller wavelength Fourier modes
responsible for the inertia tensors.

Furthermore, they argue that this assumption would lead to an upper limit
in the IA signal. Even though apparently counterintuitive, this fact can easily
be understood by considering the following fact: We have seen that in order to
have a non vanishing angular momentum the inertia and tidal tensors must not
be aligned. We are therefore requiring that the eigensystems of the two tensors
are not perfectly correlated (i.e. they must not be perfectly aligned), because
in this picture we would have actually no angular momenta, and consequently
the correlation function would also vanish. This constitutes, in a way, the lower
(although unrealistic) limit of our calculations. But we do know, since we ob-
serve spins of galaxies, that the eigensystems of the two tensors must have a
certain degree of misalignment, which equivalently means that they must be
uncorrelated at a certain level. In this case the angular momenta of the galax-
ies are allowed to arise, and it is possible to calculate the correlation function
among these (as discussed in Eqn.(3.20)), which is higher the more the angular
momentum is able to trace the underlying tidal field. So the extreme situation,
which then constitutes an upper limit to our predictions, is the case in which
the eigensystems of inertia and tidal shear tensors are maximally uncorrelated,
or equivalently maximally misaligned. In this case this maximum (and also un-
realistic, as shown in N -body simulations, see Sec. 3.7) degree of misalignment
leads the signal to be maximised.

They therefore proceed by performing, in Fourier space (differently from
CNPT, who perform all the integrals in real space), an average over orientations
of the inertia tensors first, and then separately an average over realisations of the
tidal field (this last step is equivalent to considering the correlation function for
the tidal shear), which corresponds to:

h≤≤0§i= ≤̄≤̄0hTT0i= ≤̄≤̄0
Z

dTdT0P (T,T0). (3.25)

Working therefore completely in harmonic space they aim at the power spec-
tra of the intrinsic ellipticity, for which it is convenient to introduce the parity
conserving (E-mode) and parity violating (B-mode) part (see Chap. 4 for further
details on E- and B-modes) of the intrinsic ellipticity field:

E(k)k2 =
≥
k2

x °k2
y

¥
≤+(k)+2kx ky≤£(k)

B(k)k2 = °2kx ky≤+(k)+
≥
k2

x °k2
y

¥
≤£(k). (3.26)

Focusing on modes perpendicular to the line of sight one can derive the follow-
ing dimensionless ellipticity power spectra for the E- and B-mode, respectively

¢2
X (k) = C

225

µ
3
2
≠m H 2

0

∂4 Z1

0

dÆ
Æ
¢2(Æk)

£
Z1

°1
dµ
¢2(k

p
1+Æ2 °2Æµ)

(1+Æ2 °2Æµ)7/2
gX (Æ,µ). (3.27)
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Here X 2 {E ,B} and gX is a polynomial given in eqn. (17) of Mackey et al. (2002)
together with a detailed derivation of the expressions given above.

Finally, in order to get the corresponding angular power spectra the Fourier-
space variant of Limber’s projection (Limber, 1954) is used:

`(2`+1)
4º

C ≤
X (`) = º

`

Z1

0
¬d¬W 2

≤ (¬)¢2
X (`/¬) (3.28)

with the weighting function W≤(¬)d¬= n(z)dz.
MWK determine the constant C by computing the expectation value of the

squared angular momentum modulus and adjusting C to match the mean-square
source ellipticity typically observed in galaxy surveys.

3.5 Drawing inertia tidal-shear tensors misalignments

In order to visually grasp the meaning of having a certain amount of misalign-
ment between inertia and tidal shear tensor we computed the tidal shear tensors
and galactic orientations of 2000 galaxies in a box of size 128 Mpc h°1 following
the prescription of CNPT. We show here two plots. The first, in Fig. (3.2), shows
the +1æ and °1æ contours of the three dimensional density field respectively in
blue and green. Disks represent galaxies and are meant to show exclusively the
orientation of the galaxy rather than its shape. The smoothing scale used for the
density field is of 8 Mpc h°1.

The plot was obtained by using a structure formation code able to generate
3D random Gaussian density and potential fields. Galaxies are then positioned
randomly on the density field, and the tidal shear components are computed
from the potential field at each galaxy position. Angular momenta components
are instead first generated randomly, being thus at first completely uncorrelated.
We then modelled the covariance matrix by using Eqn. (3.17), and then ren-
dered the angular momentum components correlated by means of a Cholesky
decomposition. The ellipticity field is then easily obtained by using Eqn. (4.33),
which relates the ellipticity components to the angular momenta components.
We stress once more that only the direction of the galactic spin is important for
the parametrisation in Eqn. (3.17) (Lee & Pen, 2000), and thus the spins are all
normalised to 1.

In Fig. (3.3) we superimpose to the disks the tidal shear tensors. Although
not being directly a measure of the shape of the galaxies, the disks represent the
orientations of the galaxies, which are related to the observed shapes. One of
the hypotheses made is that the spin is perpendicular to the disk of the galaxy,
and is parallel to the spin of the dark halo in which the galaxy is embedded.
Thus, effectively, Fig. (3.3) shows the misalignment between tidal shear and in-
ertia tensors. It is very interesting to see how, in order to have non-vanishing
angular momenta, and thus correlated disk images, it is necessary to have a cer-
tain degree of misalignment. In this case the misalignment parameter was set to
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(a) Disk orientations of the galaxies on top of the density field

(b) Zoom in on the density field

Figure 3.2: 3D visualisation of the density field for a box of size 128Mpc h°1. Blue
and green contours correspond to +1æ and °1æ contours of the density field.
The smoothing scale is set to 8Mpc h°1. The red disks show the orientations of
the galaxies, not their 3D shapes. 2000 galaxies are shown.
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a = 0.25, which is the value found in N -body simulations (Lee & Pen, 2000). We
remind that a value of a = 0 would correspond to situation in which inertia and
tidal shear eigensystems are completely correlated, and thus the resulting angu-
lar momenta are totally uncorrelated to the tidal shear and among each other.
Equivalently, they are maximally randomised.

In order to study how the misalignment parameter affects the intrinsic align-
ments and the spin correlation we computed ellipticity and angular momentum
correlation functions. We show the results for the ellipticity correlation functions
in Fig. (3.4) and for the spin correlation function in Fig. (3.5). Ellipticity correla-
tions increase with increasing value of a, except for the cross-term, which re-
mains consistent with zero as expected in the case of statistical parity invari-
ance. Values of a ranging between 0.0 ∑ a ∑ 0.8 were considered, although val-
ues of a ª 0.8 are unrealistic, as we will also discuss in Sec. 3.7 on the basis of
N -body simulations. We strongly remark that there is no theoretical prediction
for the misalignment parameter, which has only been investigated numerically,
and represents a pure paramterisation.

3.6 Early-type galaxies: the linear model

For the elliptical galaxies the description is quite different. First of all, in what
follows there is the assumption that the elliptical galaxy is already a bound object
in equilibrium, which is not the case in TTT, where the focus is on the trajectories
of the particles which will eventually form an object. So the image to bear in
mind is that of an object with its own gravity exposed to external tidal fields,
which deform its shape.

The original suggestion, proposed by Catelan et al. (2001) (hereafter CKB),
and first applied by Hirata & Seljak (2004) (whose notation we are going to fol-
low), is that the orientation of the galaxy image is determined by the shape of
the halo in which the galaxy forms.

Thus, the very basic idea is that the elliptical galaxies trace the ellipticity of
the dark matter halo in which they are embedded. But the dark matter, in turn,
clumps in halos whose shape is ellipsoidal, and usually the major axis of this tri-
axial halo is aligned with the maximum curvature of the large scale gravitational
potential. Roughly said, if the dark matter halo shape traces the curvature of the
underlying gravitational potential, and the ellipticity of the galaxy traces in turn
the shape of the dark matter halo, then the relation between ellipticity and cur-
vature of the gravitational potential (tidal shear) must be a linear one (Kirk et al.,
2012). From these purely qualitative considerations we can write:

≤+ = C (@2
y °@2

z )©

≤£ = 2C@y@z©. (3.29)

CKB report the example of a sphere moving in a uniform (or spatially slowly
varying) gravitational field, which can be therefore Taylor expanded about the
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(a) Tidal shear tensors

(b) Zoom in and detailed image of misalignments among tidal shear and galaxy shapes.

Figure 3.3: 3D visualisation of the misalignment between the disks (in red)
and the tidal shear tensors (in white) over the density field for a box of size
128Mpc h°1. Blue and green contours correspond to +1æ and °1æ contours of
the density field. The smoothing scale is set to 8Mpc h°1. Disks show the orien-
tations of the galaxies, not their 3D shapes. 2000 galaxies are shown.
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Figure 3.4: Ellipticity correlation functions C ≤
++,C ≤

££ and cross-correlation C ≤
+£.

While the cross-correlation remains consistent with zero, as expected if statisti-
cal parity invariance holds, the other components increase in amplitude as the
misalignment parameter increases.

origin. The sphere will be deformed only by the action of the quadratic term
of the Taylor expansion, i.e. the tidal field. In fact both the zeroth and the first
order are ineffective in terms of shape deformation, since the zeroth term has
no physical effect, and the first term (the linear term) only acts by shifting the
sphere (this is the case of a constant gravitational field), not inducing any kind of
change in its shape. The tidal field, instead, constitutes variations in the gravita-
tional field, which cause different accelerations at different points of the sphere.

The constant C in Eqn. (3.29) is a normalisation factor to be defined, and it
can be considered to contain all the information we lack about the relation be-
tween the luminous, baryonic galaxy shape and the dark matter halo containing
it, other that all the baryonic physics involved in galaxy formation. Therefore
Catelan et al. (2001) give an empirical estimate of the constant C by computing
the expected rms ellitpicity of individual galaxies and comparing this quantity
to the typical source ellipticity in order to fix it.

Specifically, one can imagine that the galactic halo is perturbed by the local
tidal field of the LSS and can be either "stretched" or "compressed", respectively
ending in an prolate or an oblate halo, whose preferential elongation is along
the direction of the tidal field. This is particularly easy to see in the very sim-
ple case of a spherical halo in a constant tidal field, i.e. in a constantly varying
gravitational field. In such a case the acceleration on a side of the halo is dif-
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Figure 3.5: Angular momentum correlation function for varying value of the mis-
alignment parameter a. Increasing values of a lead to higher correlations be-
tween galactic spins, i.e. the spins keep memory of the underlying tidal shear
field.
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ferent (stronger or weaker) from the acceleration on the other side, causing the
object to be compressed or stretched. This is an ideal and unrealistic situation
but still it represents a trend in elongation of halos which could be visible in the
population on average.

This model has become the standard model to be used when including in-
trinsic alignments as a contamination to weak lensing, which we will address in
Chap. 4.

3.7 IA and N-body simulations

Throughout the years, due to the higher and higher interest in IA arose in the
scientific community, there have been many N-body studies primarily on TTT
and its efficacy, as discussed in Chap. 2, and later on also on intrinsic correla-
tions. In fact not only N-body simulations constitute a way to check analytical
results, but they constitute themselves an alternative to analytical models. Here
we report several studies conducted by means of N-body simulations and their
results, many of which also involve a quantitative description of the contamina-
tion of IA on weak lensing, which will be discussed in the next chapter.

One of the first simulations carried out to study the effects of tidal torquing
on the galactic shape has been (Dubinski, 1992), who also calculated the angular
momentum correlation function according to theories based on tidal torquing.
It is found that tidal fields are very important for establishing structure and kine-
matics of dark halos, and they retrieve the tendency of the the angular momen-
tum to lie parallel to the intermediate axis of the tidal shear.

Most notably Lee & Pen (2000), having proposed, within the quadratic model,
the parametrisation through the misalignment parameter, find the most suit-
able value to be a = 0.24, which consequently yields to a significant correlation
of the shear intermediate principal axis with the direction of angular momen-
tum of the halos, and means at the same time that the shear and inertia eigen-
systems are misaligned, but still quite strongly correlated. The same result has
been obtained by Porciani et al. (2002b), who find that only small deviations of
about 10% from perfect alignment of inertia and tidal shear tensors allow the
angular momentum to form. Because of this result they argue that any approx-
imation used for calculations of angular momenta or IA which is based on the
assumption of complete misalignment between inertia and tidal field leads to
wrong estimates. Upon this they also argue that mostly estimations of the angu-
lar momentum magnitude may be affected by this wrong assumption (cfr. Cate-
lan & Theuns, 1996a; Lemson & Kauffmann, 1999), and therefore they focus just
on the directions of the spins.

At the same time also Croft & Metzler (2000) carried out high resolution N-
body simulations to find three-dimensional correlations among the projected
ellipticities of DM halos, and find correlations on scales 0.5÷30 Mpch°1, which
they then project these both by using Limber’s equation (Limber, 1954) and by



3.7 IA and N-body simulations 57

projecting the simulation boxes. They compare this result to typical shear sig-
nals, finding that the intrinsic signal strongly depends on the redshift width of
the galaxy distribution, and that IA could account for 10°20% of the shear sig-
nal. Heavens et al. (2000) used N-body simulations in order to find the corre-
lation functions of ellipticities of both elliptical and spiral galaxies, but giving
a special attention to spirals for technical reasons (it appeared difficult to nu-
merically resolve the ellipticals due to the small number of particles defining
a halo). For spiral galaxies they made the usual assumption of their disk being
perpendicular to the angular momentum of the DM halo. They extracted three
dimensional correlation functions, and projected them through Limber’s equa-
tion. Results for these correlations give an order of ª 10°4 at small separations
and ª 10°5 on scales of the order of 100. Moreover it is found that the signal dom-
inates over weak lensing for shallow surveys, but the contrary appears to be the
case for deep surveys (see also Crittenden et al. (2002) for this)

Jing (2002) finally shows that IA can significantly contaminate weak lensing
not only on shallow surveys but also in deep surveys. The interest is anyhow
specified to study how the simulation resolution affects the determination of
the correlation function. This appears to have influence on the final result, by
underestimating it of a factor of 2 when the halos contain only 20 particle. More
stable results are obtained for halos containing a number larger to 160 particles.
The size of the box is instead less relevant.

Finally, Porciani et al. (2002a) find TTT poorly predicts the galaxy spin di-
rection due to nonlinear effects (the mean error being ª 50±) and therefore ex-
pect and find poor results also for two point correlation function among spin
directions. They also find the correlation function to change with redshift: The
signal appears to be much weaker on the same scales at lower redshift (z = 0)
as compared to higher redshift (z = 50). This result is interpreted as a conse-
quence of nonlinear effects diluting the original angular momentum. In fact at
high redshift predictions match well the simulation data since TTT still holds
and non linearities still did not kick in. These nonlinear effects weakened the
linear spin spin correlation on scales ∏ 1 Mpch°1 by a factor of a few, making
therefore the TTT signal an overestimation of the true signal. The nonlinear ef-
fects, by structure not included in TTT, are two-fold in nature: Either the mem-
bers of galaxy paris get closer, so they correlate at later redshifts at lower separa-
tion distances (in which case correlations should shift to smaller scales) or spin
directions themselves evolve away from TTT predictions. In the latter case the
IA should be weakened at all scales, but non linear halo-halo interactions might
occur, such as angular momentum exchange or in falling of material, and they
would build up a new correlation signal.
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3.8 Summary

In this chapter we have reviewed the theory of intrinsic alignments, how they
form, and how they are modelled both for late-type and early-type galaxies. The
fundamental steps can be summarised as follows:

• IA’s theory is dual in its nature, due to the fact that it aims to describe local
processes starting from the quantity of the tidal shear tensor, which has long
correlation length and is thus not local in nature. Other than the tidal shear
tensor, another quantity plays a key role in any description of the IA: the in-
ertia tensor which, quite differently from the tidal tensor, has a rather shorter
correlation length. The study of intrinsic alignments thus translates into the
analysis of how these two tensors intercorrelate among galaxies at different
points.

• In this sense, an essential point to make is that, for a same galaxy, the inertia
and tidal shear tensors appear to be quite strongly correlated, as shown in
numerical simulations (Lee & Pen, 2000; Porciani et al., 2002b).

• spirals’ and ellipticals’ IA are described via different models, respectively the
quadratic and linear models. Equivalently, late-type ellipticities are propor-
tional to the square of the tidal shear (i.e. second derivatives of the poten-
tial), whereas the ellipticals are assumed to be linearly proportional to the tidal
shear.

• within the framework of the quadratic model, we have analysed two similar
models, ascribable to Crittenden et al. (2002) and Mackey et al. (2002), which
we call the CNPT and the MWK models. The models agree in considering the
inertia tensors of different galaxies independent one from another (i.e. P (I|I0)
is omitted), but diverge in considering the inertia tensor completely indepen-
dent of the tidal tensor at the same point (i.e. P (I|T) is considered for CNPT,
but omitted by MWK). Both the models agree in considering the correlations
in the tidal field at two different locations the cause of IA, and therefore con-
sider P (T|T0).

• Specifically, CNPT encode the information contained in P (I|T) by making use
of a parametrisation suggested by Lee & Pen (2000), which introduces an ap-
propriate parameter, the misalignment parameter a, able to establish the de-
gree of alignment between inertia and tidal shear tensors, and therefore to
track how much the angular momenta keep memory of the tidal shear origi-
nating them. A more intuitive and visual way of seeing this property of the mis-
alignment parameter is given in Fig. (3.3), where we used a value of a = 0.25;

• IA have been investigated also in numerical simulations throughout the years.
The first important confirmation has been that tidal fields are indeed impor-
tant in the establishment of the structure of the dark halo, and find as a prop-
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erty the tendency of the spin to lie parallel to the intermediate axis of the tidal
shear.

• Lee & Pen (2000) measure the most suitable value for the misalignment pa-
rameter and find it to be a = 0.24, indicating that the inertia and tidal shear
eigensystems are misaligned, but still quite correlated.

• Non-linear effects on spins and IA were also investigated in numerical simu-
lations. Porciani et al. (2002a) find that non-linearities tend to dilute the ini-
tial correlation of the spins at later times, making the correlation function be
significantly weaker at low redshift than at high redshift, where instead the
predictions of the TTT are much better matched. This yields the correlation
function to depend on redshift, and the TTT to over predict spin-spin correla-
tions at low redshift.





Chapter 4

WEAK LENSING

The first observational test of General Relativity was conducted by A. Edding-
ton and F. Dyson in 1919 who, during the solar eclipse in that same year, mea-
sured the deflection of the light coming from stars in the region around the Sun
due to the gravitational field of the Sun. This provided one of the earliest confir-
mation of the theory of General Relativity. First proposed by Kaiser (1992) and
first measured by (Bacon et al., 2000; Kaiser et al., 2000; Wittman et al., 2000;
Van Waerbeke et al., 2000), gravitational lensing has become an extremely use-
ful tool for pinning down cosmological parameters, mostly due to the fact that it
is able to probe directly the mass distribution therefore bypassing intermediate
steps which would require detailed knowledge about the relation between visi-
ble and dark matter or between luminosity and matter. We start by a description
of the theory of gravitational lensing in Sec. 4.1, followed by the interplay be-
tween weak lensing and IA in Sec. 4.2. We focus on the technique of tomography
applied to weak lensing in Sec. 4.3, since all the latest surveys are based on this
approach, given the enhancement in signal which can be gained from it. In Sec.
4.4 we give a round up of the measurements on IA applied to cosmic shear and
we summarise this chapter in Sec. 4.5. This chapter broadly uses the notation
and follows the logic of Bartelmann & Schneider (2001).

4.1 Gravitational lens theory

In the most simple picture, a light ray departing from a background source S at
angular diameter distance Ds from us (the observers) gets deflected by an angle
Æ̂ due to the presence of a mass M (thus called lens) distant from us Dd. This
situation is sketched in Fig.(4.1).

General Relativity quantifies this angle which is, in the case of an impact
parameter much larger than the Schwarzschild radius of the lens:

Æ̂= 4GM
c2ª

, (4.1)

61
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3 Gravitational Light Deflection

In this section, we summarise the theoretical basis for the description of light de-
flection by gravitational fields. Granted the validity of Einstein’s Theory of General
Relativity, light propagates on the null geodesics of the space-time metric. How-
ever, most astrophysically relevant situations permit a much simpler approximate
description of light rays, which is called gravitational lens theory; we first describe
this theory in Sect. 3.1. It is sufficient for the treatment of lensing by galaxy clus-
ters in Sect. 5, where the deflecting mass is localised in a region small compared
to the distance between source and deflector, and between deflector and observer.
In contrast, mass distributions on a cosmic scale cause small light deflections all
along the path from the source to the observer. The magnification and shear effects
resulting therefrom require a more general description, which we shall develop in
Sect. 3.2. In particular, we outline how the gravitational lens approximation derives
from this more general description.

3.1 Gravitational Lens Theory

Observer 

Lens plane 

Source plane 

θ 

β 

ξ 

α̂ 

η 

Dds 

Dd 

Ds 

Fig. 11. Sketch of a typical gravitational lens system.

45

Figure 4.1: This figure is taken by Bartelmann & Schneider (2001) and sketches
the typical situation we encounter with gravitational lensing.
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This angle is twice the value it would have in Newtonian gravity, and depends
on the mass distribution of the lens and the impact parameter ª.

The theory of gravitational lensing is based on two assumptions:

• Thin lens approximation : It is assumed that the extension in redshift¢z of the
lens is much smaller compared to the distances Dds and Dd (see Fig. (4.1)), i.e.
the lens is thin compared to the total extent of the light path;

• Born approximation : Given that the deflection angle is very small, the de-
flected light ray is approximated to a straight line instead of a curved path in
proximity to the lens.

This allows us to rewrite the two-dimensional vector Æ as:

Æ̂(ª) = 4G
c2

Z
d2ª0 ßª0

ª°ª0

|ª°ª0|2
, (4.2)

where we have defined the surface mass density :

ß(ª) ¥ dr3Ω(ª1,ª2,r3) (4.3)

as the mass density projected onto the lens plane, perpendicularly to the light
ray, and where r3 is the coordinate along the line of sight, and ª1, ª2 the other
two perpendicular coordinates.

Lens equation: The lens equation puts into relation the true position Ø and ob-
served position µ of the source on the sky by simple geometrical considerations:

Ø= µ° Dds

Ds
Æ̂(Ddµ) ¥ µ°Æ(µ), (4.4)

where we have redefined the deflection angle as the reduced quantityÆ= DdsÆ̂/Ds

from definition (4.1). It is convenient to define the critical surface mass density:

ßcr =
c2

4ºG
Ds

DdDds
, (4.5)

which depends on the combination of the distances Dd and Dds, and defines the
limiting case in which the deflection angle Æ = µ and Ø = 0. The dimensionless
form of the surface mass density is defined as the convergence :

∑(µ) = ß(Ddµ)
ßcr

, (4.6)

and allows to define the threshold between strong and weak lenses: a mass dis-
tribution with ∑ > 1 constitutes a strong lens, i.e. the lens has a surface mass
density larger than the critical one, and produces multiple images (note that the
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condition ∑ ∏ 1 is necessary but not suffiecient). The weak lensing regime, in-
stead, is characterised by ∑ø 1.

Deflection potential: The reduced deflection angle, rewritten in terms of the
convergence, becomes:

Æ(µ) = 1
º

Z
d2µ0 ∑(µ0)

µ°µ0

|µ°µ0|2
, (4.7)

in which we can recognise the last term to be µ°µ0/|µ°µ0|2 = r(ln |µ°µ0|) in
two dimensions. The deflection angle can be expressed therefore in terms of the
deflection potential :

√(µ) = 1
º

Z
d2µ0 ∑(µ0) ln |µ°µ0| (4.8)

as:
Æ=r√. (4.9)

The deflection potential is the scaled and projected Newtonian potential © of
the lens:

√(µ) = Dds

DdDs

2
c2

Z
dz ©(Ddµ, z), (4.10)

and its Laplacian is related to the convergence by means of the Poisson equa-
tion:

¢√= 2
c2

DdDds

Ds

Z
dz ¢©= 2

c2

DdDds

Ds
4ºGß= 2

ß(µ)
ßcr

¥ 2∑(µ). (4.11)

Magnification and distortion: Since the deflection angle is a function of the im-
pact parameter ª, different light bundles coming from the same source will be
differentially deflected, and consequently the image of the source will also be
affected by lensing. Hence we are interested in quantifying the effect of gravita-
tional lensing on the shape of the source object, and in relating the latter to the
its observed shape.

The feature that lensing conserves the surface brightness of the source can
be efficiently used for this purpose. So the surface brightness distribution in the
source plane, I (s)(Ø), must be equal to the observed surface brightness in the
lens plane:

I (µ) = I (s)[Ø(µ)]. (4.12)

The lens equation can be locally linearised such that for any point µ0 in the ob-
served image the corresponding point Ø0 = Ø(µ0) in the source image can be
written by means of the linear mapping:

Ø=Ø0 +A (µ0)(µ°µ0). (4.13)
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this linearisation can be done if the condition that the size of the source is much
smaller than the size of variation of the lens is fulfilled. In this case the distortion
of the image is the Jacobian of this mapping:

A (µ) = @Ø

@µ
=

µ
±i j °

@2√(µ)
@µi@µ j

∂
=

µ
1°∑°∞1 °∞2

°∞2 1°∑+∞1

∂
, (4.14)

where we have introduced the complex shear :

∞¥ ∞1 + i∞2 = |∞|e2i¡, (4.15)

whose components are also related to the deflection potential by means of com-
binations of its second derivatives √,i j :

∞1 = 1
2

(√,11 °√,22) ¥ ∞(µ)sin(2¡(µ))

∞2 = √,12 =√,21 ¥ ∞(µ)cos(2¡(µ)). (4.16)

Notice that the presence of a factor 2 in front of the angle ¡ stands for the sym-
metry property of the shear, which is a spin-2 field. The term ∑ is instead the
convergence, related to the deflection potential by Eqn. (4.11). Note that this
implies that the convergence can be written:

∑= 1
2

(√,11 +√,22) = 1
2

tr√,i j . (4.17)

The great advantage of weak lensing, therefore, is the fact that its observables are
directly linked to the matter density by means of Poisson’s equation, making the
this technique a great way to directly probe the mass distribution. The Jacobian
in Eqn.(4.14) can be rewritten as:

A = (1°∑)
µ

1 0
0 1

∂
°∞

µ
cos(2¡) sin(2¡)
sin(2¡) °cos(2¡)

∂
, (4.18)

from which one can extrapolate the meaning of convergence and shear. The
convergence is associated with an isotropic focusing of the light rays, and hence
the source image is mapped onto an image with the same shape, but larger
size. The shear instead introduces anisotropy of magnitude ∞ and direction ¡ in
this mapping. Therefore the total magnification is given by both isotropic and
anisotropic focusing:

µ= 1
detA

= 1
(1°∑)2 ° |∞|2 (4.19)

In presence of both convergence and shear a circular source gets mapped onto
an ellipse whose major and minor axes are respectively:

a = (1°∑°∞)°1

b = (1°∑+∞)°1. (4.20)



66 WEAK LENSING

It is worth noticing that when a linearisation of the mapping in Eqn. (4.13) is
not possible, then higher order derivatives of the deflection potential enter the
analysis and the first and second flexions F and G must be considered (Bartel-
mann, 2010a).

Ellipticities and reduced shear: If I (µ) is the surface brightness of the galaxy
at the position µ, then the centre of the image µ̄ can be calculated as the nor-
malised average:

µ̄ ¥
R

d2µqI [I (µ)]µR
d2µqI [I (µ)]

, (4.21)

where qI [I ] is a suitable weighting function. The tensor of second brightness
moments can be then defined as the symmetric tensor:

Qi j =
R

d2µ qI [I (µ)] (µ° µ̄i )(µ° µ̄ j )
R

d2µ qI [I (µ)]
, i , j 2 1,2 (4.22)

Upon this definition one can define:

• the size of the image ! by means of two invariants of the tensor Q:

!= (Q11Q22 °Q2
12)1/2; (4.23)

• the shape of the image by means of the complex ellipticity (Bonnet & Mellier,
1995):

≤¥ Q11 °Q22 +2iQ12

Q11 +Q22 +2(Q11Q22 °Q2
12)1/2

, (4.24)

whose components (cfr. Eqn. (3.2)) are:

≤+ = Q11 °Q22

Q11 +Q22 +2(Q11Q22 °Q2
12)1/2

(4.25)

and

≤£ = 2Q12

Q11 +Q22 +2(Q11Q22 °Q2
12)1/2

(4.26)

One can write the tensor of second brightness moments also for the source
image, Q(s)

i j and use both the property that the surface brightness must be con-
served and the linearised lens equation. The relation between the source and
observed images is then:

Q(s) =A QA T =A QA , (4.27)

where the Jacobian A is considered at the position µ̄ and we used the property
that A =A T in the Born approximation.
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In general the ellipticity of the source depends on a combination of conver-
gence and shear, the so-called reduced shear :

g (µ) ¥ ∞(µ)
1°∑(µ)

(4.28)

in terms of which the Jacobian can be written:

A = (1°∑)
µ

1° g1 °g2

°g2 1+ g1

∂
(4.29)

Also from this formulation it is clear that the factor 1°∑ affects the size of the
image, but not its shape. The sizes of source and observed image is:

!=µ(µ)!(s). (4.30)

The ellipticity of the source can be related to the observed one by means of
(Seitz & Schneider, 1997):

≤(s) =
( ≤°g

1°g§≤ for |g |∑ 1
1°g≤§

≤§°g§ for |g | > 1
(4.31)

This formulation becomes much simpler in the case of weak lensing, defined
by the following conditions:

∑ø 1
|∞|ø 1

æ
) |g |ø 1, (4.32)

which then lead to the following expression for the ellipticity in the limit of weak
lensing:

≤º ≤(s) + g º ≤(s) +∞. (4.33)

This equation practically states that the observed ellipticity is given by the orig-
inal source ellipticity plus a contribution of deformation due to weak lensing,
which amounts to about 1% for cosmic shear (which we are going to discuss
now), making it a statistical effect which leads to a significant signal to noise ra-
tion only if enough sources are considered.

Cosmic shear: The treatment of weak lensing carried out up to now considered
the presence of one lens mass only, whereas a natural assumption would be that
light paths covering the entire space between the source from where they depart
up to us encounter the large scale structure along their way and undergo lens-
ing several times, as shown in Fig. (4.2). Therefore the expression for the conver-
gence as defined in Eqn. (4.6) must be substituted by another accounting for the
distribution of mass between the sources and us: The effective convergence :

∑eff(µ) =
Z¬H

0
d¬W∑(¬)±(¬µ), (4.34)
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2 Refregier

Figure 1: Illustration of the e�ect of weak lensing by large-scale structure. The
photon trajectories from distant galaxies (right) to the observer (left) are deflected
by intervening large-scale structure (center). This results in coherent distortions
in the observed shapes of the galaxies. These distortions, or shears, are on the
order of a few percent in amplitude and can be measured to yield a direct map
of the distribution of mass in the universe.

1997; Kaiser 1998).
In the present review, we describe the theoretical and observational status of

cosmic shear. Earlier reviews of this fast-evolving field can be found in Hoekstra
et al. (2002b), Mellier et al. (2001), van Waerbeke et al. (2002), Wittman
(2002). Here, we first describe the principles of weak lensing (Section 2). We then
summarize the di�erent statistics used to measure cosmic shear and describe how
they are used to constrain cosmological parameters (Section 3). In Section 4, we
survey the di�erent methods used to derive the lensing shear from the shapes
of background galaxies. We present, in Section 5, the current observations and
their cosmological significance. Future cosmic-shear surveys and the prospects
they o�er for cosmology are described in Section 6. In Section 7, we outline how
systematic e�ects present challenges that must be met for the potential of these
future surveys to be fully realized. We summarize our conclusions in Section 8.

2 THEORY

The idea of cosmic shear can be traced back to a lecture given by Richard Feyn-
man at Caltech in 1964 (J.E. Gunn, personal communication). Several theo-
rists (e.g., Gunn 1967, Jaroszyńsky et al. 1990, Kristian & Sachs 1966, Lee &
Paczyńsky 1990, Schneider & Weiss 1988) then studied the propagation of light
in an inhomogeneous universe. Predictions for the statistics of the weak-lensing
distortions were then computed in a modern cosmological context by several
groups (Babul & Lee 1991, Blandford et al. 1991, Kaiser 1992, Miralda-Escudé
1991, Villumsen 1996). More recently, the power of cosmic shear to measure
cosmological parameters was the object of many theoretical studies (Bernardeau,
van Waerbeke & Mellier 1997; Jain & Seljak 1997; Hu & Tegmark 1999; Kaiser
1998; Kamionkowski et al. 1997; van Waerbeke, Bernardeau & Mellier 1999). In
this section, we briefly describe the principles of weak lensing and show how this
technique can be used to map the dark matter in the universe.

As they travel from a background galaxy to the observer, photons get deflected

Figure 4.2: Weak lensing operated by the LSS. Figure taken by Refregier (2003).

which contains an integration over the density contrast ± along the line of sight
and a weighting function W∑(¬) which accounts for the fact that the sources are
distributed in redshift:

W∑(¬) =
3H 2

0≠m0

2c2

D+(a(¬))
a(¬)

G(¬)¬, with G(¬) =
Z¬H

¬
d¬0 n(z)

dz
d¬0

¬0 °¬
¬0 ,

(4.35)
where n(z) is the redshift distribution of the sources:

n(z)dz = Ø

z3
0°(3/Ø)

z2 exp

"

°
µ

z
z0

∂Ø#

dz. (4.36)

Also note that Poisson’s equation was used in Eqn. (4.34):

¢©= 3

2a¬2
H

≠0±. (4.37)

The effective convergence is thus proportional to the matter density parameter.
Throughout the rest of the thesis we will drop the subscript from ∑eff and mean
by ∑ the effective convergence.

In order to study the statistical properties of the convergence, we define its
power spectrum:

C∑(`) =
Z¬H

0

d¬
¬2 W 2

∑ (¬)P±

µ
`

¬
,¬

∂
, (4.38)

where P± is the density power spectrum, and where the projection due to Lim-
ber’s equation (Limber, 1954) has been used.

A last important remark is the fact that the statistical properties of conver-
gence and shear, i.e. their power spectra, are the same. If we in fact use the flat
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sky approximation, and consider the Fourier transform of the shear, ∞̂, the cor-
relator will be (Bartelmann, 2010b):

h∞̂∞̂§i= h|∞̂|21i+ h|∞̂|22i=
∑

1
4

(`2
1 °`2

2)2 +`2
1`

2
2

∏
√̂√̂§ =

∑
`4

4

∏
√̂√̂§ = h∑̂∑̂§i, (4.39)

where `2 = `2
1 +`2

2. Therefore C∞(`) = h∞̂∞̂§i=C∑(`).

Shear and mass in aperture: Very useful quantities to measure are the so-called
variance in apertures. According to this formulation, which was suggested by
Schneider et al. (1992), the variances of quantities such as the shear and the
mass could be calculated in apertures of size µ:

h∑2i(µ) = 2
º

Z
`d`W 2

1 (`µ)C∑(`), (4.40)

and

hM 2
∑i(µ) = 2

º

Z
`d`W 2

4 (`µ)C∑(`), (4.41)

so to give an idea of how the fluctuations scale with varying aperture size. The
weighting functions W0(x), and W4(x), x = `µ, are defined as:

W1(x) = J1(x)
x

and W4(x) = 12J4(x)
x2 , (4.42)

respectively, for the shear variance averaged in an aperture of size µ and the
aperture mass variance. The usefulness of the mass in aperture is also that it
can be calculated directly from the convergence without any need for mass re-
construction.

4.2 Weak lensing and intrinsic alignments 1

When the convergence power spectrum is measured, usually a shot noise is
added to account for the fact that source galaxies have intrinsic ellipticity varia-
tion and are not simply round in shape. The observed ellipticity is not only due
to the shear acting along the line of sight. This contribution is assumed to be
random, and adds a white noise to the convergence signal (Kaiser, 1992, 1998):

C obs
∑ (`) =C∑(`)+

æ2
≤

n̄
, (4.43)

where æ2
≤ is the rms intrinsic shear and n̄ is the mean number density of the

galaxies in the survey. This approximation, though, reveals itself to be crude. In

1Part of this section was inspired by the online tutorial http://gravitationallensing.
pbworks.com/w/page/15553247/FrontPage

http://gravitationallensing.pbworks.com/w/page/15553247/FrontPage
http://gravitationallensing.pbworks.com/w/page/15553247/FrontPage
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fact, if we consider the definition of the observed ellipticity in Eqn.(4.33) and
then also consider the ensemble average, or correlator between two observed
ellipticities at positions µi and µ j on the sky, we obtain and expression contain-
ing four terms:

h≤(µi )≤(µ j )i= h∞i∞ j i+ h≤(s)
i ≤(s)

j i+ h∞i ≤
(s)
j i+ h∞ j ≤

(s)
i i. (4.44)

The first term is the precisely the shear-shear component, also dubbed GG (grav-
itation -gravitation) component, i.e. the power spectrum of the shear (or, equiv-
alently, of the convergence). The second term is the intrinsic-intrinsic compo-
nent (or II component), and is due to the fact that close galaxies tend to be
aligned (see Chap. 3). The third and fourth components are the shear-intrinsic
components (or GI components), noted for the first time by Hirata & Seljak (2004).
They physically represent the same phenomenon, namely the correlation that
might arise between the lensed image of a background source and the image of
a foreground galaxy which is physically aligned from the tidal filed of the lens.
In other words the lens contributes both the the physical alignment of the fore-
ground galaxy and to the lensing of the background one. This contribution ac-
tually produces an anticorrelation due to the different kind of shearing of the
image (gravitational lensing produces a tangential shear, whereas the intrinsic
alignment produces preferentially a radial alignment). So we can write in gen-
eral for the power spectrum:

C obs
∑ (`) =C∑(`)+C≤(`)+C∑≤(`) (4.45)

4.2.1 E- and B-modes

The lensing usually produces in the galaxy shapes a pattern. Kaiser (1992); Steb-
bins (1996) show how a tangential distortion pattern is created by lensing of a
point mass. Such pattern is curl-free and is referred to as of E-type pattern, or
E-mode. We have seen that the ellipticity is intimately related to the shear field,
and this can be written, in the flat sky approximation, as (Kamionkowski et al.,
1998):

∞i j =
µ
≤+ ≤£
≤£ °≤+

∂
, (4.46)

where ≤+ = |≤|cos(2¡) and ≤£ = |≤|sin(2¡) are the components of the complex
ellipticity (cfr. Eqn.(3.2)). The shear field as a function of space x can be written
in terms of a gradient and a curl component, called the E- and B-modes (Crit-
tenden et al., 2002):

∞i j (x) =
µ
@i@ j °

1
2
±i jr2

∂
©E (x)+

°
≤k j@i@k +≤ki@k@ j

¢
©B (x), (4.47)

where ≤i j is the anti-symmetric tensor. To extract the E- and B-components it
is sufficient to apply the r4 to the shear field, and obtain:

r4©E (x) = 2@i@ j∞i j =r2∞E

r4©B (x) = 2≤i j@i@k∞ j k =r2∞B , (4.48)
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where we have defined ∞E ¥ r2©E (x)/2 and ∞B ¥ r2©B (x)/2 (Kamionkowski
et al., 1998), and we can see that these are combinations of the derivatives of
the ellipticity components:

r2∞E = (@x@x °@y@y )≤++2@x@y≤£

r2∞B = (@x@x °@y@y )≤£°2@x@y≤+. (4.49)

For this very reason ∞E (x) and ∞B (x) are degenerate functions which may differ
by a constant and a linear gradient term, yet producing the same ellipticity field.
In the case of gravitational lensing the shear field is given by:

∞i j (x) =
µ
@i@ j °

1
2
±i jr2

∂
√(x), (4.50)

where √ is the deflection potential. This immediately shows that for weak lens-
ing ©E (x) = √(x), and ©B (x) = 0 (Kamionkowski et al., 1998), and the only pat-
terns expected are the tangential ones. The patterns for both modes are repre-
sented in Fig.(4.3)

Beyond IA, other sources of systematics in shear measurements are consti-
tuted by incomplete correction for seeing and optical distortions, selection ef-
fects, noise-rectification biases (for technical details, see Hoekstra & Jain, 2008).

4.3 Tomographic Weak Lensing

A new available information from weak lensing surveys is the photometric red-
shift of the sources, which therefore gives us information on their effective dis-
tribution. This information can "sharpen the statistical tools" (power spectrum,
bispectrum, etc) we use for extracting the cosmological parameters, increasing
the signal to noise ratio for the convergence. The possibility of being able to
recover the redshift information up to high redshifts (z & 1) and therefore the
information of the lensing field along the line of sight, provides us with the ad-
ditional knowledge about the growth of the structure, which can therefore be
a means of more tightly constraining cosmological parameters, especially the
ones affecting the growth of the structure, such as the dark energy parameter.
This also represents a way to cross-check measurements of the dark energy pa-
rameter with the other important measurements of SNIa and the CMB.

The idea is to divide the sample of galaxies in redshift bins, and define a
redshift distribution within each bin. The convergence will then be (Takada &
Jain, 2004):

∑i (µ) =
Z¬H

0
d¬W (i )

∑ (¬)¬±(¬µ), (4.51)

where this time the window function is:

W (i )
∑ (¬) =

(
3H 2

0≠0

2c2 D+(a(¬))¬Gi (¬) for ¬∑¬i+1

0 for ¬>¬i+1
(4.52)



72 WEAK LENSING

(a) (b)

(c) (d)

Figure 4.3: Typical patterns expected for the E-modes are shown in (a) and (b)
panels, whereas B-modes are shown in panels (c) and (d). The figure was kindly
provided by B. M. Schäfer.
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Fig. 1.— Subdividing the source population. Partitioning the
galaxies by the median redshift (or distance D) yields lensing e�-
ciencies with strong overlap.

assumes that the redshift distributions are su�ciently wide
to encompass many wavelengths of the relevant fluctua-
tions (2�/k�) along the line of sight so that the Limber
equation holds even tomographically (see Kaiser 1998).

These power spectra define the cosmic signal. Shot noise
in the measurement from the intrinsic ellipticity of the
galaxies adds white noise to the cosmic signal making the
observed power spectra

Cij(�) = P�
ij(�) +

�
�2
int

�
�ij/n̄i , (4)

where
�
�2
int

�1/2
is the rms intrinsic shear in each compo-

nent, and n̄i is the number density of the galaxies per
steradian on the sky in the whole distribution ni(z).

The distributions ni(z) need not be physically distinct
galaxy populations. Consider a total distribution n(z)
with �

n
dz

dD

�
(D) � D� exp[�(D/D�)

� ] , (5)

which roughly approximates that of a magnitude-limited
survey, and take � = 1, � = 4 for definiteness (assumed
throughout unless otherwise stated). One can subdivide
the sample into redshift bins to define the distributions
ni(z). The power spectra for cruder partitions can always
be constructed out of finer ones: if the j and k bins are
combined, then

n̄2
j+kP

�
(j+k)(j+k) = n̄2

jP
�
jj + 2n̄jn̄kP

�
jk + n̄2

kP
�
kk ,

n̄j+kP
�
i(j+k) = n̄jP

�
ij + n̄kP

�
ik . (6)

In Fig. 1, we show an example where the galaxies with
z < zmedian are binned into n1 and the rest into n2. Here
and throughout we will take our fiducial cosmology as an
adiabatic CDM model with matter density �m = 0.35,
dimensionless Hubble constant h = 0.65, baryon density
�b = 0.05, cosmological constant �� = 0.65, neutrino
mass m� = 0.7 eV, the initial potential power spectrum
amplitude A, and tilt nS = 1.

We also plot in Fig. 1 the lensing e�ciency func-
tion gi(D). Notice that despite having non-overlapping
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Fig. 2.— Power spectra and cross correlation for a subdivision in
two across the median redshift zmedian = 1 and errors for a survey

of 5� on the side,
�
�2
int

�1/2
= 0.4, and n̄ = 2 � 105 deg�2. Note

the strong correlation Rij between the two power spectra make the
combination of the power spectra less constraining than a naive
interpretation of the individual errors would imply.

source distributions (upper panel), the lensing e�ciencies
strongly overlap (bottom panel) implying that the result-
ing convergence maps will have a correspondingly large
cross correlation. This is of course because the high and
low redshift galaxies alike are lensed by low-redshift struc-
tures. Also for this reason, there will be always be a
stronger signal in the high redshift bins. This fact will
be important for signal-to-noise considerations in choos-
ing the bins.

All of these properties can be seen in Fig. 2, where we
plot the resultant power spectra and their cross correlation
for the equal binning of Fig. 1.

3. REDSHIFT BINNING AND PARAMETER ESTIMATION

While subdividing the sample into finer bins always in-
creases the amount of information, there are two consid-
erations that limit the e�ectiveness of redshift divisions.
The first is set by the shot noise from the intrinsic ellip-
ticities of the galaxies. Once the number density n̄i per
bin is so small that shot noise surpasses the signal in equa-
tion (4), further subdivision no longer helps. The point at
which this occurs depends on the angular scale of inter-
est. The greater number of galaxies encompassed by the
larger angular scales boosts the signal to noise (see Fig. 2
and Kaiser 1992). Based on this criterion, one should sep-
arately subdivide the data to extract the maximal large
and small angle information.

However there is a second consideration. If the lens-
ing signal does not change significantly across the red-
shift range of the whole distribution, then subdivision will
not add information. These considerations can be quanti-
fied by considering the correlation coe�cient between the
power spectra of the subdivisions: Rij = P�

ij/(P�
iiP

�
jj)

1/2.
For the model of Fig. 2, the power spectra are highly cor-
related (R12 � 0.8) even with only two subdivisions. Thus
even though there is enough signal to noise to subdivide
the sample further, one gains little information by doing
so.

Figure 4.4: Subdivision of the source population taken from Hu (1999). The im-
age shows a division of the galaxy sample in two redshift bins (top panel), and
the relative lensing efficiency functions gi (D) (bottom panel). These correspond
to our W (i )

∑ .The clear overlapping of the lensing efficiency is due to the fact that
both high and low redshift galaxies undergo the lensing of the same foreground
low redshift structures.
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where the possible errors for the photometric redshifts are not considered.

In Fig.(4.4) we show an example of partition of the galaxy redshift distribu-
tion with zmed = 1 and the corresponding lensing efficiencies taken from (Hu,
1999). The plots clearly show how a net and clean division of the galaxy redshift
sample leads to overlapping lensing efficiencies. This is indicative of the fact that
both high and low redshift bins are subject to the lensing of the same foreground
structure at low redshift. One furthermore expects the higher redshift bins to
yield to a stronger signal, since the structure in-between the source and the ob-
server is larger and provides more lensing (Hu, 1999). Due to the overlapping
lensing efficiencies we also expect to have cross-correlation signals between dif-
ferent bins.

Once the convergence of each bin is defined, the power spectrum between
two bins i , j becomes (Takada & Jain, 2004):

Ci j (`) =
Z¬H

0
d¬W (i )

∑ (¬)W ( j )
∑ (¬)¬°2P±(∑= `

¬
,¬) (4.53)

We applied tomography to both the convergence power spectrum C∑(`) and
the ellipticity spectra C ≤

E (`) and C ≤
B (`) modelled by means of the CNPT model.

Our results are shown in Fig. (4.5) and (4.6). In the first series of plots we show
how both the linear and non-linear auto- and cross-power spectra vary with
number of bins. We also plot the shape noise typical for the EUCLID survey.
As can be evinced from the case of n = 2 bins (top right panel) the amplitude
of the signal is higher for the auto-spectra relative to the largest bin which, cor-
responding to a deeper distribution in redshift, collects more weak lensing sig-
nal. The gain in amplitude is clearly visible throughout the increasing number
of bins. Same considerations apply for the ellipticity spectra C ≤

E (`) and C ≤
B (`),

where the latter spectrum is always lower in amplitude compared to the former.
It is clear that a subdivision into a number of bins n larger than ª 3 would essen-
tially not add much amplitude to the spectra. A practical way of quantifying the
amount of information would be to consider the function Ri j =Ci j /(Ci i C j j )1/2,
which is the correlation coefficient between the power spectra of the different
bins. In analogy to correlation coefficient in statistical analyses, the function Ri j

can vary in the range [0,1]. Low values of the correlation coefficient indicate that
the number of subdivisions are actually adding new information and that, there-
fore, the subdivision id profitable. Higher values of Ri j tending to 1, instead, cor-
respond to a little gain in power of the spectra, therefore meaning that further
subdivisions in redshift bins are not useful anymore.

Finally, in Fig. (4.7) we plot how the signal-to-noise ratio of both the linear
and non-linear spectra C∑(`) vary for an increasing number of bins. We can see
also from here how the gain in information basically saturates for n = 3.
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Figure 4.5: Tomographic spectra C∑
i j (`) for an increasing number n of bins for

both linear (dashed curve) and non-linear (solid curve) power spectra. The
shape noise is also shown. The amplitudes of the power spectra grow as the
number of bins increases, but this effect saturates for n ª 3.
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Figure 4.6: Tomographic spectra for the E- and B-modes for an increasing num-
ber n of bins. It can be easily seen how the increase in bins leads to less and less
gain in information. The essential gap of signal is obtained for a subdivision up
to n = 3 bins.
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Figure 4.7: Signal-to-noise ratio for the linear and non-linear power spectra
C∑(`). It is clear that n = 3 bins are enough for already obtaining a considerable
gain in amplitude.
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4.4 Measurements of WL with IA

In the last two decades a tremendous amount of efforts has been put in the nu-
merical and observational investigation of the impact of IA in weak lensing sur-
veys. The IA signal is expected to contaminate the shear signal of about 10%
(Bacon et al., 2000; Wittman et al., 2000; Kaiser et al., 2000; Van Waerbeke et al.,
2000; Heavens et al., 2000), hampering today the measurements of the weak
lensing signal in percent-accuracy surveys and extraction of cosmological pa-
rameters therefrom, being though at the same time a precious wealth of infor-
mation about structure formation and galaxy evolution.

IA and GI alignments The first attempts to study IA of spiral galaxies can be
traced back to Croft & Metzler (2000), who investigate IA via numerical simu-
lations and find positive detection of correlations up to scales of 20 Mpch°1,
thereby confirming the 10% level of contamination. Heavens et al. (2000); Hey-
mans & Heavens (2003) also used N -body simulations to show how the inter-
play between weak lensing signal and intrinsic ellipticity signal depends on the
redshift depth of the survey: as expected from Crittenden et al. (2001) the weak
lensing appears to dominate over the ellipticity correlation if the survey is deep,
but the opposite happens for shallow surveys, where the IA effectively dominate.
This domination has been repetitively inspected, among others, by analyses of
Lee & Pen (2000) and Brown et al. (2002). This claim, though, was later chal-
lenged by Hirata & Seljak (2004), who speculated for the first time that not only
II correlations could affect weak lensing measurements, but also and more sig-
nificantly the GI alignments. Hirata & Seljak (2004) therefore estimate the mag-
nitude of the GI alignment for both linear and quadratic models of intrinsic el-
lipticities (see Sec. 3.6 and Sec. 3.4), finding that while GI alignments dominate
significantly over the II in the linear alignment model for a broad redshift dis-
tribution, the quadratic model does not produce any GI signal by construction,
since if a Gaussian distribution is adopted for the distribution of angular mo-
menta as in Eqn. (3.16), the GI corresponds to an odd moment, and therefore
vanishes. In the linear model that the difference between GI and II can be of
more than one order of magnitude.

In this direction thus Mandelbaum et al. (2006) perform measurement of
both II and GI correlations on a sample of 2.6£105 spectroscopic galaxies from
SDSS at low redshift (z . 0.12), finding no indication of II alignments (because
of the weakness of the signal), but a significant negative signal for the GI align-
ment which would underestimate the shear signal by 20%. This initial analysis
is enhanced by Hirata et al. (2007), who analysed luminous red galaxies from
the SDSS and 2SLAQ and focused particularly on GI alignments, finding a > 3æ
detections affecting scales > 60 Mpch°1. Furthermore they study the scaling of
the IA signal with redshift, galaxy luminosity and transverse separation, finding
a bias in the parameter æ8 of ¢æ8 =°0.02.
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IA and tomography: Bridle & King (2007) make use of a tomographic analysis to
try to pinpoint the bias in the dark energy parameter (since dark enery is very
likely to be strongly constrained by tomography) when II and GI alignments are
not included. The linear alignment model is adopted. Their analysis leads to a
dramatic bias of 50% on the dark energy equation of state. They also study how
the photometric redshift scatter affects the results, and stress that great accu-
racy is needed. Furthermore, if IA are considered then this increases of twice the
number of tomographic bins required for obtaining the same results as when
only shear correlations are present. Recently a similar analysis has been carried
out by Kirk et al. (2012), who also study the effect of IA on dark energy con-
straints, but adopt the so called non-linear alignment model (NLA), proposed
by Hirata & Seljak (2004) for a description of IA. The situation appears to be even
more dramatic, with a bias up to tens ofæ level on w0 and wa if IA are neglected.
In order to correct of this they use a flexible grid of nuisance parameters which
are the marginalised over. The grid parameters are allowed to vary in scale and
redshift. this clearly decreases the constraining power but removes the bias. A
similar study, based on flexible grid of parameters, was use by Joachimi & Bri-
dle (2010). They use tomography and perform a joint analysis of ellipticity and
galaxy number density correlations, and cross-correlations between them. The
attempt is to use the statistical power of the galaxy number density in order to
make up for possible biases due to both the galaxy bias and the IA, which con-
stitute the nuisance parameters of their grid. They therefore constrain cosmo-
logical parameters while providing a simultaneous self-calibration for IA and
galaxy bias contributions. They find that, to this aim, a quality of the redshifts
similar to that required in absence of IA must be achieved. The usage of such
grids ultimately degrades part of the information of the original signal, as is to
be expected.

Heymans et al. (2013) also apply a tomographic weak lensing analysis to the
CHFTLenS survey, and attempt to reduce the effect of IA on the constraining
power of weak lensing by simultaneously fitting the cosmological model and
the intrinsic alignment model. They also increase the constraining power by us-
ing as priors other cosmological probes such as CMB constraints from WMAP7,
the baryon acoustic oscillations from BOSS and a prior on the Hubble constant
from HST. Concerning the IA, they find that the IA contamination depends on
the galaxy type, being the IA signal different from zero just for early-type galax-
ies, but consistent with zero for late-type galaxies.

IA scalings and physical properties of the galaxies: In the last years more at-
tention has been put on the physics contained in the IA and on the attempt of
modelling the IAs’ dependence on morphology, redshift and luminosity.

Studies of whether and how the IA evolve with redshift have been carried
out by Mandelbaum et al. (2011), who increase the redshift depth of the anal-
ysis by performing for the first time measurements of IA at intermediate red-
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shifts z ª 0.6 for blue (spiral) galaxies by using galaxy images from SDSS and
spectroscopic redshifts fro the WiggleZ Dark Energy Survey. They find no sig-
nificant detection of IA signal for blue galaxies, and perform the analysis by us-
ing the linear alignment model for IA. Since in general the linear model is not
very suitable for spiral galaxies, they counterbalance this choice by allowing for
a power-law redshift evolution of the IA , which should account for effects such
as mergers and interactions, i.e. non-linearities able to change the image of the
galaxy. They find that constraints on cosmic shear contamination are not signif-
icantly weakened by this evolution with redshift. In a similar fashion, Joachimi
et al. (2011) studied the IA correlations in the MegaZLRG galaxy sample of more
than 8£ 105 luminous red galaxies at intermediate redshift up to z ª 0.6 with
photometric redshift information. By adding to this the previous information
from SDSS samples they get to redshifts z . 0.7. In their analysis they find that
correlations between the galaxy number density and galaxy shapes can improve
cosmological parameters constraints, yielding to a bias < 1æ. The photometric
redshift scatter is accounted for, as much as effects of galaxy-galaxy lensing and
lensing magnification-shear cross correlations, introduced by photo-z uncer-
tainty. They also assumed zero intrinsic alignments for blue galaxies. The fact
that blue galaxies are often not considered in these measurements was ques-
tioned by the analysis of Lee & Pen (2007), who instead find that the IA signals
of spiral and elliptical galaxies are both detected in the SDSS survey for redshifts
z . 0.4. As a further step in the analysis for late-type galaxies, Lee (2010) focuses
on the II signal from a spectroscopic late-type galaxy sample of the SDSS DR7
at very low redhsifts: 0 ∑ z ∑ 0.02. The signal is detected up to 3.4æ and 2.4æ
for spatial separation of º 1 Mpch°1 and º 2 Mpch°1. In a different perspec-
tive compared to all the aforementioned analyses, the question they address is
whether it would be possible to reconstruct the tidal field and thus the density
field starting from the ellipticity one, problem they already addressed in a previ-
ous work (Lee & Pen, 2000), and whether the assumption often made of null IA
signal for spiral galaxies is justifiable.

Joachimi et al. (2012) are interested in which physical ingredients contributes
to the observable shapes of the galaxies. They are mainly interested in finding
the distribution of galaxy shapes among various galaxy populations, and in find-
ing constraints on the evolution of the dispersion of intrinsic ellipticities with
redshift, which both shape the term of white noise, æ≤/n̄, usually included in
weak lensing analysis. The first aim is interesting since certain galaxy samples,
even though being less in density (i.e. having lower n̄), could be appropriately
selected if they have low ellipticity dispersion æ≤. So they calculate the intrinsic
ellipticity dispersions and distributions of ellipticities of 1.5£105 galaxies from
HST COSMOS Survey and compare these measurements with simulated-based
models for the galaxy morphology obtained by exploiting the halo properties
of halos in the Millennium Simulation. They consider both spirals and ellipti-
cals and use linear and quadratic model, finding that early-type galaxies have a
æ≤ ª 25% lower than early-type galaxies. The COSMOS Survey also covers four
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decades in luminosity and redshifts out to z ª 2, so they can investigate the red-
shift evolution of the intrinsic ellipticity dispersion, for which they find no evi-
dence.

Suppression of IA: In general there have been attempts for suppressing the IA
signal. Concerning II alignments, if photo-z are known, then these can be re-
moved (King & Schneider (2003, 2002); Heymans & Heavens (2003); Takada &
White (2004)) since one simply down weights galaxy pairs which have small sep-
aration. Crittenden et al. (2002) underline the fact that weak lensing can produce
only E-modes, whereas IA can produce both E- and B-modes, and suggest this
as a way of disentangling the two, although the B-mode signal is low and diffi-
cult to measure. Nevertheless, it appears an important tool for investigating the
systematics of weak lensing. Finally, nulling and boosting techniques, adapt for
GI alignments too, have been put forward by Joachimi & Schneider (2009) who,
with a tomographic analysis, change the weighing functions in such a way that
the contribution of the large scale structure inside a tomographic bin is nulled.
These techniques have the disadvantage that there is a loss of accuracy in the
constraints of the cosmological parameters.

4.5 Summary

• Key quantity in the theory of gravitational lensing is the deflection angle, which
typically amounts to ª 1 arcmin in weak lensing applications.

• The theory of gravitational lensing is based on two approximations, the thin
lens and the Born approximation;

• The true and observed positions of the source on the sky are related by means
of the lens equation: Ø= µ°Æ(µ);

• The deflection angle can be written in terms of a deflection potential:Æ=r√,
which is the scaled and projected Newtonian potential © of the lens, and can
thus also be related to the dimensionless surface mass density, or conver-
gence: r2√(µ) = 2∑(µ);

• A source image undergoes magnification and distortion, information which is
contained in the Jacobian A of the mapping µ 7! Ø(µ): The Jacobian in turn
contains the convergence ∑ and the shear ∞.

• Only a combination of convergence and shear, the reduced shear g = ∞/(1°∑),
can actually be measured;

• The statistical properties of convergence and shear, i.e. their power spectra,
are the same;
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• The weak lensing regime is defined by the conditions: ∑ø 1, ∞ø 1 and there-
fore g ø 1 and g ' ∞;

• Cosmic shear, i.e. the weak lensing from large scale structure, produces a dis-
tortion of the images of about 1%;

• IA constitute an severe contaminant to weak lensing measurements, account-
ing for ª 10% of the shear signal, but contain at the same time a wealth of
information about galaxy and structure formation;

• While the shear due to gravitation produces as typical patterns tangential pat-
terns, IA are able to produce also curl patterns. These are called respectively
the E- and B-modes, as shown in Fig. (4.3), and could be used to disentangle
the shear and IA signals.

• Improvements on the amplitude of the weak lensing signal can be obtained by
tomography, i.e. by splitting the galaxy sample in different bins. Results we ob-
tained by applying tomography to both weak lensing and intrinsic ellipticities
are shown in Figs. (4.5) and (4.6), respectively for linear and non-linear weak
lensing, and E- and B-modes. Fig. (4.7) shows the signal-to-noise ratio for the
weak lensing tomographic spectra, from which it appears clear that a number
of subdivisions of the galaxy redshift distribution higher than ª 3 leads to no
significant gain in amplitude.

• IA signal can be decomposed in two parts: the II (intrinsic intrinsic) align-
ments, and the GI (gravity-intrinsic) alignments. The latter, suggested by Hi-
rata & Seljak (2004), are actually expected to dominate over the II alignment
(as is also found in observations);

• IA have been widely studied throughout the years, both in the attempt of com-
pletely removing them from the shear signal (King & Schneider, 2003, 2002;
Heymans & Heavens, 2003; Takada & White, 2004; Joachimi & Schneider, 2009)
and recovering from them as much information as possible about the struc-
ture and galaxy formation conditions (Lee & Pen, 2000, 2007). Latest stud-
ies try to model the IA signal and its dependence on several features such
as morphology, luminosity and redshift (Lee, 2010; Mandelbaum et al., 2011;
Joachimi et al., 2012)



Chapter 5

INTRINSIC ALIGNMENTS AND WEAK

LENSING

The content of this chapter entirely reproduces the article Capranico et al. (2012).
After a brief introduction about weak lensing and intrinsic alignments, the core
of this work can be found in Sections 5.4.2, 5.5 and 5.6. A summary of our results
is presented in Sec. 5.7.

5.1 Abstract

Subject of this paper are the statistical properties of ellipticity alignments be-
tween galaxies evoked by their coupled angular momenta. Starting from phys-
ical angular momentum models, we bridge the gap towards ellipticity correla-
tions, ellipticity spectra and derived quantities such as aperture moments, com-
paring the intrinsic signals with those generated by gravitational lensing, with
the projected galaxy sample of EUCLID in mind. We investigate the dependence
of intrinsic ellipticity correlations on cosmological parameters and show that
intrinsic ellipticity correlations give rise to non-Gaussian likelihoods as a result
of nonlinear functional dependencies. Comparing intrinsic ellipticity spectra to
weak lensing spectra we quantify the magnitude of their contaminating effect on
the estimation of cosmological parameters and find that biases on dark energy
parameters are very small in an angular-momentum based model in contrast to
the linear alignment model commonly used. Finally, we quantify whether intrin-
sic ellipticities can be measured in the presence of the much stronger weak lens-
ing induced ellipticity correlations, if prior knowledge on a cosmological model
is assumed.

5.2 Introduction

Weak cosmic shear, i.e. lensing by the gravitational field of the cosmic matter
distribution (Blandford et al., 1991; Seitz et al., 1994; Seitz & Schneider, 1994;

83
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Kamionkowski et al., 1998), is considered to be an excellent probe of structure
formation processes, precision measurements of cosmological parameters (Hu,
1999, 2002a,b; Takada & White, 2004; Hannestad et al., 2006) and the influence
of dark energy on cosmic structure formation (Huterer & Turner, 2001; Huterer,
2002, 2010; Amara & Kitching, 2011; Kunz, 2012). The primary observable are el-
lipticity correlation functions or their Fourier counterparts (Jain & Seljak, 1997;
Hu & Tegmark, 1999; Hu & White, 2001; Hu & Jain, 2004). These shape corre-
lations have been first detected by a number of research groups more than 10
years ago (Van Waerbeke et al., 2000; Kaiser et al., 2000; Bacon et al., 2000; Wittman
et al., 2000) and are now routinely used for parameter estimation. Correlations in
shapes of galaxies are introduced because light rays from neighbouring galaxies
experience correlation distortions due to correlations in the tidal fields through
which the respective rays propagate. A common assumption is the absence of
intrinsic correlations such that any positive shape correlation can be attributed
to the gravitational lensing effect. This hypothesis, however, might be flawed as
there are physical mechanisms by which galaxies are intrinsically shape corre-
lated: Due to the fact that neighbouring galaxies form from correlated initial
conditions, their respective angular momenta are correlated (Croft & Metzler,
2000; Heavens et al., 2000; Crittenden et al., 2001; Mackey et al., 2002). Assum-
ing that the galactic disks are established with their symmetry axes colinear with
the host haloes’ angular momentum directions one would observe galaxies at
correlated angles of inclination and therefore with correlated ellipticities.

A possible consequence of this new source of ellipticity correlation is its in-
terference with the determination of cosmological parameters from weak lens-
ing data, in particular the properties of dark energy. This issue has been the tar-
get of a number of investigations: Commonly, the description of intrinsic ellip-
ticity correlations was based on the linear alignment model (Catelan et al., 2001;
Hirata & Seljak, 2004),

≤+ =C
≥
@2

x °@2
y

¥
© and ≤£ = 2C @x@y©. (5.1)

which provides a direct modelling of the ellipticity field on the tidal shears @Æ@Ø©
(here, the z-axis of the coordinate system is aligned with the line-of-sight) and
is able to give a consistent description of gradient and vorticity modes of the
ellipticity field. The constant of proportionality was fixed by comparison with
observations (Bridle & King, 2007; Joachimi et al., 2012).

If galaxy ellipticities are in fact described by an alignment model linear in the
tidal fields, cosmological parameters, in particular the dark energy equation of
state parameters would be severly biased (Bridle & King, 2007; Joachimi & Bri-
dle, 2010; Kirk et al., 2010, 2011). Apart from ellipticity correlations themselves,
ellipticity position-correlations were affected and ellipticity data would exhibit
cross-correlations between intrinsic ellipticities and weak lensing (see, in par-
ticular, Hirata & Seljak, 2004).

There are basically four ways of dealing with intrinsic aligments. Firstly, they
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can be removed from data by using the fact that they are a small scale phe-
nomenon (Heymans & Heavens, 2003; King, 2005; King & Schneider, 2002, 2003)
which takes place at the cost of increasing statistical uncertainties. Secondly, one
can take advantage of the fact that intrinsic alignments have different statisti-
cal properties in comparison to weak lensing ellipticity correlations (Crittenden
et al., 2002; King & Schneider, 2003), most notably it is possible to use the statis-
tics of vortical excitations in the ellipticity field which are exclusively sourced by
intrinsic alignments. Thirdly, one can design line-of-sight weightings that null
out contributions due to intrinsic alignments (King, 2005; Joachimi & Schneider,
2009, 2008) which marginally increase statistical uncertainties on cosmological
parameters. Parameter inference from spectra that result from data in this way
still yields unbiased estimates. Finally, one can parameterise the intrinsic align-
ment contribution to weak lensing data and have those model parameters be de-
termined by data alongside the cosmological parameters under consideration.
Maginalisation over the parameters entering the intrinsic alignment model then
propagates the statistical errors of the alignment model on to the cosmological
model. With a physically correct alignment model the estimates of cosmological
parameters will remain unbiased. The feasibility of this approach under the as-
sumption of Gaussian likelihoods has been demonstrated (Bridle & King, 2007;
Bernstein, 2009; Joachimi & Bridle, 2010; Kirk et al., 2010; Laszlo et al., 2012).

The motivation of this work was to explore intrinsic alignment effects and
their observable properties in angular momentum-based alignment models. In
these models, the ellipticity is quadratic in the tidal shear field and because they
use in principle a mechanical model of angular momentum generation and el-
lipticity alignment, the model parameters can be constrained from information
other than ellipticity data. We will need two physically meaningful variables: a
parameter which is related to the angular momentum model and whose value
can be measured in structure formation simulations and a disk morphology pa-
rameter which is accessible in galaxy surveys. Clearly, quadratic alignment mod-
els will differ in their prediction of ellipticity correlations compared to linear
alignment models. Together with the above results employing linear alignment
models we hope to complete the view on intrinsic alignments and their rele-
vance for future weak lensing surveys.

The aim of this paper is threefold: (i) We investigate and compare two angular-
momentum based alignment models in their predictions for ellipticity corre-
lations and formulate these predictions in terms of ellipticity correlation func-
tions, ellipticity spectra and the scale-dependence of the variance of the elliptic-
ity fields and compare these predictions with the equivalent quantities sourced
by weak gravitational lensing (Sects. 5.3 and 5.4). (ii) The dependence of the two
ellipticity models in consideration on cosmological parameters is investigated
and their likelihoods are derived. With this knowledge, we quantify the contam-
ination of weak lensing data with an intrinsic alignment contribution and quan-
tify how this contaminations impacts on the estimation of cosmological param-
eters (Sect. 5.5). (iii) We investigate if there is a possibility of observing intrinsic
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correlations in the presence of much stronger lensing-induced ellipticity corre-
lations and develop statistical methods for answering these questions (Sect. 5.6).
Throughout we will focus on intrinsic ellipticity correlations caused by corre-
lated angular momenta, which is an applicable model for spiral galaxies. Those
intrinsic alignments are proportional to the squared tidal field, in contrast to the
linear alignment model valid for elliptical galaxies. In this limit, we neglect cross-
correlations between intrinsic ellipticity alignments with the tidal field and grav-
itational lensing, as those correlations are proportional to the expectation value
of the tidal field cubed, which vanishes in the case of Gaussian statistics. Specif-
ically, we consider the case of EUCLID’s weak lensing survey (Amendola et al.,
2012).

The reference cosmological model used is a spatially flat wCDM cosmol-
ogy with Gaussian adiabatic initial perturbations in the cold dark matter den-
sity field. The parameter choice is motivated by the WMAP7 results (Komatsu
et al., 2011; Larson et al., 2011): ≠m = 0.25, ns = 1, æ8 = 0.8, ≠b = 0.04 and
H0 = 100 h km/s/Mpc, with h = 0.72. The dark energy equation of state is set
to w =°0.95.

5.3 Cosmology

Dark energy cosmologies

In spatially flat Friedmann-Lemaître Robertson-Walker cosmologies with the
matter density parameter ≠m and a dark energy component with equation of
state w(a), the Hubble function H(a) = dln a/dt is given by

H 2(a)

H 2
0

= ≠m

a3 + (1°≠m)exp
µ
3
Z1

a
dln a (1+w(a))

∂
. (5.2)

The value w ¥ °1 corresponds to the cosmological constant §. The Hubble
function describes the time evolution of the metric and can be used for relat-
ing comoving distance ¬ and scale factor a:

¬= c
Z1

a
da

1
a2H(a)

, (5.3)

in units of the Hubble distance¬H = c/H0. The Hubble function also determines
the critical density, Ωcrit ¥ 3H 2/(8ºG).

5.3.1 CDM power spectrum

The linear CDM density power spectrum P (k) describes the fluctuation ampli-
tude of the Gaussian homogeneous density field ±,

h±(k)±(k0)i= (2º)3±D (k+k0)P (k), (5.4)
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and is given by the ansatz P (k) / kns T 2(k) with the transfer function T (k). In
cosmologies with low≠m , T (k) is fitted by (Bardeen et al., 1986; Sugiyama, 1995):

T (q) = ln(1+2.34q)
2.34q

°
1+3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4¢° 1

4 . (5.5)

The wave number k is rescaled with the shape parameter °'≠mh, q = k/°. The
spectrum P (k) is normalised to the variance æ8 of the density field on scales of
R = 8 Mpc/h,

æ2
R = 1

2º2

Z
dk k2P (k)W 2(kR) =

Z
dlnk¢2(k)W 2(kR). (5.6)

W (x) = 3 j1(x)/x is the Fourier-transformed spherical top hat filter function.
j`(x) refers to the spherical Bessel function of the first kind of order` (Abramowitz
& Stegun, 1972a; Arfken & Weber, 2005) and the dimensionless variance per log-
arithmic wavenumber ¢2(k) = k3P (k)/(2º2) can be used instead of the CDM
spectrum P (k). In computing ellipticity correlation functions and ellipticity spec-
tra we will employ a smoothed CDM spectrum P (k) ! P (k)exp(°(kR)2) with a
smooothing scale R that corresponds to a mass cutoff at a halo mass M . Those
two quantities are related by M = 4º/3≠mΩcrit R3.

5.3.2 Linear structure growth

As long as the amplitudes in the cosmic density field are small, ±ø 1, the density
field grows in a homogenous way,±(x, a) = D+(a)±(x, a = 1). The growth function
D+(a) results from solving the growth equation (Turner & White, 1997; Wang &
Steinhardt, 1998; Linder & Jenkins, 2003),

d2

da2 D+(a)+ 1
a

µ
3+ dln H

dln a

∂
d

da
D+(a) = 3

2a2≠m(a)D+(a). (5.7)

Nonlinear structure formation enhances the CDM-spectrum P (k, a) on small
scales by one and a half order of magnitude, which is described by the fit sug-
gested by Smith et al. (2003).

5.3.3 Angular momenta from tidal shearing

Angular momenta of dark matter haloes embedded in potential flows in the
large-scale structure are generated by a mechanism refered to as tidal shear-
ing, where the differential motion of mass elements inside a protohalo gives rise
to a torquing moment (Hoyle, 1949; Sciama, 1955; Peebles, 1969; Doroshkevich,
1970; White, 1984):

LÆ = a3H(a)
dD+
da

≤ÆØ∞IØ±©±∞, (5.8)

i.e. it is the variation @Æ¿Ø of the velocities ¿Ø ª @Ø© across the protohalo and
hence the tidal field©ÆØ

©ÆØ = @Æ@Ø© (5.9)
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which is responsible for angular momentum generation. The mass distribution
inside the protohalo itself is described by its inertia tensor IÆØ,

IÆØ =≠mΩcrit a3
Z

VL

d3q (q° q̄)Æ(q° q̄)Ø (5.10)

i.e. the second moments of the matter distribution, with the centre of mass at the
position q̄ and the integration comprising the Lagrangian volume of the proto-
halo. Throughout, we use Einstein’s summation convention.

The Levi-Civita-symbol in Eqn. (5.8) generates the interesting misalignment
property between the shear and inertia eigensystems which is required for gen-
erating angular momentum: Only the antisymmetric contribution X °

Ø∞
, derived

from the commutator X °
Ø∞

= [IØ∞,©Ø∞], to the product between the tensors IØ∞
and©Ø∞ is non-vanishing in contraction with the antisymmetric ≤ÆØ∞ and there-
fore relevant for angular momentum generation. The symmetric contribution
X +
Ø∞

, which can be isolated using the anticommutator X +
Ø∞

= {IØ∞,©Ø∞} cancels
in the contraction. This means that for angular momentum build-up, the tidal
shear and the inertia tensors are not allowed to have a common eigensystem
and be skewed relative to each other (Schäfer, 2009; Schäfer & Merkel, 2012).
Likewise, degeneracies in this relation evoked by spatial symmetries in the two
tensors can prohibit the generation of angular momentum. Alternative models
of galaxy angular momenta assume that the haloes are spun up by non-central,
anisotropic infall in filaments (see, for instance, Pichon et al., 2010; Kimm et al.,
2011; Codis et al., 2012).

5.3.4 Galaxy ellipticities

Ellipticity correlations between galaxies are traced back to correlated angular
momenta of their host haloes. CDM haloes acquire their angular momentum
by tidal shearing and due to the fact that neighbouring galaxies experience cor-
related tidal fields, their angular momenta are correlated in consequence. The
direction of the angular momentum L in turn determines the angle of inclina-
tion under which the galactic disk is viewed, and ultimately the ellipticity which
is attributed to the galactic disk (Heavens et al., 2000; Crittenden et al., 2001,
2002; Mackey et al., 2002; Heymans & Heavens, 2003): Linking the angular mo-
mentum direction L̂ = L/L to the components of the complex ellipticity ≤ using
the above argument yields

≤= ≤++ i≤£ with ≤+ =Æ
L̂2

x ° L̂2
y

1+ L̂2
z

, ≤£ = 2Æ
L̂x L̂y

1+ L̂2
z

, (5.11)

if the coordinate system is aligned with its z-axis being parallel to the line of
sight. A rotation of the coordinate frame by ' causes the complex ellipticity to
rotate twice as fast, ≤! exp(2i')≤. Æ is a free parameter weakening the depen-
dence between inclination angle and ellipticity for thick galactic disks and has
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been determined to be Æ' 0.75 in the APM sample (Crittenden et al., 2001) with
a large uncertainty.

It should be emphasised that the assumption of a galactic disk forming per-
pendicularly to the host halo angular momentum direction is a very strong one,
which seems suggestive but has only little support from structure formation
simulations. In fact, a number of studies point at possibly large misalignments
and underline the complexity of the baryonic physics on galactic scales (van den
Bosch et al., 2002; Navarro et al., 2004; Bailin et al., 2005; Bailin & Steinmetz,
2005; Mayer et al., 2008; Kimm et al., 2011).The disk thickness and the degree
of misalignment between the symmetry axis of the galactic disk and the angular
momentum axis of the host halo therefore have a decisive role in the descrip-
tion of galaxy formation, and appear to be degenerate physical quantities. In
our analysis, misalignments could be incorporated in choosing a smaller value
for the disk thickness parameter Æ, which will play the role of normalising the
ellipticity spectra. The angular momentum-based alignment model is only able
to capture the physics of tidal alignment of spiral galaxies. In the case of elliptical
galaxies, a model which is linear in the tidal shear is more appropriate.

5.3.5 Weak gravitational lensing

The weak lensing convergence∑provides a weighted line-of-sight measurement
of the matter density ± (for reviews, see Mellier, 1999; Bartelmann & Schneider,
2001; Huterer, 2002; Hoekstra & Jain, 2008; Bartelmann, 2010b)

∑=
Z¬H

0
d¬W∑(¬)±, (5.12)

with the weak lensing efficiency W∑(¬) as the weighting function,

W∑(¬) = 3≠m

2¬2
H

D+
a

G(¬)¬, with G(¬) =
Z¬H

¬
d¬0 n(z)

dz
d¬0

¬0 °¬
¬0 . (5.13)

n(z) denotes the redshift distribution of the lensed background galaxies (with
the parameterisation introduced by Smail et al., 1995),

n(z) = n0

µ
z
z0

∂2

exp

√

°
µ

z
z0

∂Ø!

dz with
1

n0
= z0

Ø
°

µ
3
Ø

∂
. (5.14)

z0 has been chosen to be ' 0.64 such that the median of the redshift distribution
is 0.9, which is anticipated for the EUCLID galaxy sample (Amara & Réfrégier,
2007; Amendola et al., 2012). With these definitions, one can carry out a Limber-
projection (Limber, 1954) of the weak lensing convergence for obtaining the an-
gular convergence spectrum C∑(`),

C∑(`) =
Z¬H

0

d¬
¬2 W 2

∑ (¬)P (k = `/¬), (5.15)
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which describes the fluctuation statistics of the convergence field. We will al-
ways work in the weak lensing regime, ∑,∞ø 1, and approximate the reduced
shear g ¥ ∞/(1°∑) with the lensing shear ∞, which has the same statistical prop-
erties as the weak lensing convergence ∑.

5.4 Ellipticity correlations

5.4.1 Angular momentum induced ellipticity correlations

The idea behind intrinsic correlations is that neighbouring galaxies build up
their angular momenta with correlated tidal shears because the galaxy separa-
tion is typically smaller than the correlation length of the tidal shear field. Under
the assumption that the galactic disk orients itself perpendicular to the angu-
lar momentum direction of the host halo (for a review on angular momenta of
galactic disks, see Romanowsky & Fall, 2012; Bryan et al., 2012), one perceives
neighbouring galactic disks under correlated angles of inclination, and there-
fore the apparent shapes are correlated, which is measured in terms of elliptici-
ties. We use two ellipticity correlation models in this paper, which are both con-
structed on the idea of correlated angular momenta, but which differ in their
particular ansatz. The first model, proposed by Crittenden et al. (2001) estab-
lishes the link between the angular momentum direction to the tidal shear field
in a random process in real space, whereas the second model, which is due to
Mackey et al. (2002), directly formulates the ellipticity field in Fourier space,
which makes it easier to quantify ellipticity spectra, but whose parameterisation
is not as clear as in the first case.

Ellipticity correlations

Correlations of the two ellipticity components ≤+ and ≤£ between two points µ1

and µ2 separated by an angular distance µ can be described using two correla-
tion functions C++(µ) = h≤+(µ1)≤+(µ2)i and C££(µ) = h≤£(µ1)≤£(µ2)i, which are
conveniently combined into two correlation functions C±(µ),

C+(µ) = C++(µ)+C££(µ) (5.16)

C°(µ) = C++(µ)°C££(µ) (5.17)

using C+£(µ) = h≤+(µ1)≤£(µ2)i= 0. Finally, ellipticity correlation functions can be
transformed to the spectra C ≤

E (`) and C ≤
B (`) of the gradient and vorticity modes

of the ellipticity field,

C ≤
E (`) = º

Z
µdµ [C+(µ)J0(`µ)+C°(µ)J4(`µ)] , (5.18)

C ≤
B (`) = º

Z
µdµ [C+(µ)J0(`µ)°C°(µ)J4(`µ)] , (5.19)
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by Fourier transform (Kaiser, 1992; Schneider et al., 2002; Schneider & Kilbinger,
2007; Fu & Kilbinger, 2010). Gravitational lensing in the lowest approximation is
only able to excite E-modes in the ellipticity field.

Configuration space approach

In this work we use the angular momentum-based ellipticity correlation model
proposed by Crittenden et al. (2001) (referred to as the CNPT-model), who trace
ellipticity correlations back to tidal shear correlations using the conditional prob-
ability distribution p(L|©ÆØ)dL introduced by Lee & Pen (2001): In this model,
the distribution p(L|©ÆØ)dL is assumed as being Gaussian which is then be-
ing marginalised over the magnitude of the angular momentum vector, retain-
ing only its directional dependence. Writing down the ellipticity components as
a function of the angular momentum direction and employing the covariance
hLÆLØi as a function of the squared tidal shear tensor, as advocated by Lee and
Pen, it is possible to relate the tidal shear correlations to the spectrum of the
density field.

Angular momenta L are described as being coupled to the tidal shear by
means of a Gaussian random process p(L|©ÆØ)dL involving tidal fields©ÆØ shap-
ing the covariance cov(L)ÆØ of the Gaussian distribution (Lee & Pen, 2001),

cov(L)ÆØ = hLÆLØi=
hL2i

3

µ
1+a

3
±ÆØ°a (©̂2)ÆØ

∂
, (5.20)

with the misalignment parameter a, which describes the average orientation of
the protohalo’s inertia to the tidal shear eigensystem. a has been measured in
numerical simulation to be close to 0.25 which we will assume in this work. ©̂
is the unit normalised traceless tidal shear with the properties tr(©̂) = 0 and
tr(©̂2) = 1. This description is valid on scales where the correlations between
inertia tensors are negligible.

The conditional probability density can be used for establishing a direct re-
lation between ellipticity ≤ and tidal shear ©̂ÆØ by integrating out angular mo-
mentum direction and magnitude:

≤(©̂ÆØ) =
Z

dL̂≤(L̂)
Z

L2dL p(L|©ÆØ) (5.21)

With this relation, one can write down the two correlation functions h≤+(x1)≤+(x2)i
and h≤£(x1)≤£(x2)i of the three-dimensional ellipticity field in terms of moments
≥n(r ) (see Crittenden et al., 2001) of the tidal shear field. Those moments, in turn,
are expressed as weighted integrals over the CDM-spectrum, where we impose
a Gaussian smoothing on a scale of 1011MØ/h, which is typical for galaxies.

The correlation function of the 3-dimensional ellipticity field can then be
projected onto the angular correlation function of the ellipticity components by
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using the configuration-space Limber-equation (Limber, 1954):

C++(µ) =
Z

d¬1W≤(¬1)
Z

d¬2W≤(¬2) h≤+(x1)≤+(x2)i (5.22)

C££(µ) =
Z

d¬1W≤(¬1)
Z

d¬2W≤(¬2) h≤£(x1)≤£(x2)i (5.23)

with the distance distribution W≤(¬) = n(z(¬))dz/d¬ resulting for a given cos-
mology from the observed redshift distribution n(z)dz of background galaxies
(see Eqn. 5.14). The separation distance entering the three dimensional corre-
lation functions is completely determined by the two line-of-sight distances ¬1,
¬2 and the angle of separation µ. Giahi-Saravani & Schäfer (2012) have shown
that distorsions of the intrinsic ellipticity pattern due to the peculiar motion of
galaxies is very small for multipoles up to `= 1000.

Fourier-approach

We extend our analysis by the approach of Mackey et al. (2002) (abbreviated as
MWK). Similar to Crittenden et al. (2001) they also work in the framework of
tidal torque theory and relate intrinsic ellipticity to angular momentum assum-
ing that the disk of a galaxy forms perpendicular to its spin axis. However, when
computing the angular momentum the MWK-model entirely neglects any cor-
relation between the tidal field and the tensor of inertia. They argue that due to
the different correlation lengths involved (while the correlations for the inertia
tensor primarily arise from smaller scales the correlations in the tidal field are
long-ranged) a successive averaging-process is permissible. First, they perform
an average over inertia tensors then over the tidal field expecting the ellipticity
correlation arising from long-range correlations of the latter. In contrast to this,
the CNPT-model takes explicitly the correlations of the inertia tensor and the
tidal field via the misalignment parameter a into account.

One more simplification made by MWK is to drop the dependence of the ob-
served ellipticity on the z-component of the angular momentum of the galaxy,
i.e.

≤+ =C
≥
L2

x °L2
y

¥
and ≤£ = 2C Lx Ly . (5.24)

with a constant C . Accordingly, the intrinsic ellipticity scales quadratically with
the modulus of the angular momentum, leaving faster spinning galaxies more
flattened. Note that by the basic structure of this relation the symmetry proper-
ties of the ellipticity field are the same ones as in Eqn. (5.1).

Assuming shear and inertia being statistically independent allows to work
completely in harmonic space, which greatly facilitates the computation. Since
we aim at the power spectra of the intrinsic ellipticity it is convenient to intro-
duce the parity conserving (E-mode) and parity violating (B-mode) part of the
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intrinsic ellipticity field

E(k)k2 =
≥
k2

x °k2
y

¥
≤+(k)+2kx ky≤£(k)

B(k)k2 = °2kx ky≤+(k)+
≥
k2

x °k2
y

¥
≤£(k). (5.25)

Focusing on modes perpendicular to the line of sight one can derive the follow-
ing dimensionless ellipticity power spectra for the E- and B-mode, respectively

¢2
X (k) = C

225

µ
3
2
≠m H 2

0

∂4 Z1

0

dÆ
Æ
¢2(Æk)

£
Z1

°1
dµ
¢2(k

p
1+Æ2 °2Æµ)

(1+Æ2 °2Æµ)7/2
gX (Æ,µ). (5.26)

Here X 2 {E ,B} and gX is a polynomial given in Eqn. (17) of Mackey et al. (2002)
together with a detailed derivation of the expressions given above. As before, we
smooth the linear power spectrum on an appropriate length scale with a Gaus-
sian filter function.

Finally, in order to get the corresponding angular power spectra we have
to again make use of the Fourier-space variant of Limber’s projection (Limber,
1954)

`(2`+1)
4º

C ≤
X (`) = º

`

Z1

0
¬d¬W 2

≤ (¬)¢2
X (`/¬) (5.27)

with the weighting function W≤(¬)d¬= n(z)dz already introduced in Eqn. (5.14).
Mackey et al. (2002) determine the constant C by computing the expectation

value of the squared angular momentum modulus and adjusting C to match the
mean-square source ellipticity typically observed in galaxy surveys. For our pur-
pose, however, it makes more sense to choose C in such a way that the angular
power spectra obtained with the two different approaches coincide on largest
scales. This is justified by the expectation that the large-scale power will be least
effected by the differences in the two approaches under consideration. Hence,
we first compute the spectra using formulae (5.18) and (5.19) for appropriately
chosen misalignment parameter a and galaxy thickness parameter Æ and sub-
sequently determine C , so that the two models yield identical predictions for the
variance of the intrinsic ellipticity field on large scales.

Comparison of the two ellipticity-models

The ellipticity correlation functions C++(µ) and C££(µ) resulting from both mod-
els are plotted in Fig. 8.2 as a function of angle of separation µ, where the projec-
tion was carried out for the EUCLID galaxy redshift distribution. The plot sug-
gests correlation lengths of ª 10 arcminutes for the ellipticity field and shows
that under the normalisations chosen, the correlation functions resulting from
the CNPT-model achieves 50% higher amplitudes in comparison to those pre-
dicted by the MWK-model, but otherwise the general shape is in very good agree-
ment.
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Figure 5.1: Angular ellipticity correlation functions C++(µ) (green and magenta
lines) and C££(µ) (red and cyan lines), for a smoothing scale of M = 1011MØ/h,
a misalignment parameter a = 0.25 and a disk thickness ofÆ= 0.75. The correla-
tion functions were derived using the CNPT- and MWK-models with the relative
normalisation as discussed in the text.
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Computing the spectra C ≤
E (`) and C ≤

B (`) yields Fig. 10, where for compar-
ison the linear and nonlinear spectra C∑(`) for the weak lensing convergence
and the EUCLID shape noise levels æ2

≤/n are plotted. The shape of the elliptic-
ity spectra shows constant amplitudes up to scales of `ª 300, where individual
ellipticities are uncorrelated, and correlations between ellipticities are present
on smaller angular scales. The spectra exhibit a wide maximum on multipoles
of `ª 103 before dropping in amplitude, which is caused by imposing the mass
cutoff. For comparison and motivating our analysis we plot predictions for the
weak lensing spectrum C∑(`) for linear and nonlinear CDM spectra, as well as
the anticipated shot-noise for EUCLID. Clearly, intrinsic ellipticity correlations
are subdominant compared to weak lensing induced ellipticity correlations, but
can in amplitude amount to up to 30% of the lensing signal on multipoles of
` ' 103 before the shape noise makes measurements difficult. Comparing the
two ellipticity models show that, if the normalisation is chosen as explained, the
MWK-model predicts lower spectra than the model by CNPT by about 50% on
high multipoles as in the case of the correlation function at small separations,
but both models predict similar ratios between C ≤

E (`) and C ≤
B (`) amounting to

about a factor of 5 at high multipoles. Interestingly, intrinsic ellipticity corre-
lations would dominate over the weak lensing signal if the lensing prediction
was derived using linear structure growth only. Comparing the spectra C ≤

E (`) and
C∑(`) with the shape noise levels of EUCLID clearly demonstrate the importance
of intrinsic ellipticity correlations in weak lensing data.

The B-mode spectrum C ≤
B (`), which is sourced by intrinsic alignments, is

smaller by more than one order of magnitude compared to the E-mode spec-
trum C ≤

E (`) at high multipoles but might dominate over other higher-order lens-
ing effects which are able to excite parity-violating modes in the ellipticity field
such as source-lens clustering (Schneider et al., 2002), multiple lensing along
the line-of-sight or violations of the Born-approximation (Cooray & Hu, 2002;
Shapiro & Cooray, 2006; Schäfer et al., 2012).

5.4.2 Variance in apertures

Quantities derived from the weak lensing spectrum C∑(`) are weighted vari-
ances of the convergence inside apertures of varying size µ, introduced by Schnei-
der (1996):

h∑2i(µ) = 2
º

Z
`d`W 2

1 (`µ)C∑(`), (5.28)

and

hM 2
∑i(µ) = 2

º

Z
`d`W 2

4 (`µ)C∑(`), (5.29)

which measure the scale-dependence of fluctuations’ variance in the respective
field. The weighting functions W0(x), and W4(x), x = `µ, are defined as:

W1(x) = J1(x)
x

and W4(x) = 12J4(x)
x2 , (5.30)
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Figure 5.2: Ellipticity spectra C ≤
E (`) (green and magenta lines) and C ≤

B (`) (red and
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respectively, for the shear variance averaged in an aperture of size µ and the
aperture mass variance. The weak lensing power spectrum is substituted in the
previous definitions with C ≤

E (`), and C ≤
B (`) in order to obtain:

h≤2
+i(µ) = 2

º

Z
`d`W 2

1 (`µ)C ≤
E (`), (5.31)

hM 2
api(µ) = 2

º

Z
`d`W 2

4 (`µ)C ≤
E (`), (5.32)

h≤2
£i(µ) = 2

º

Z
`d`W 2

1 (`µ)C ≤
B (`), (5.33)

hM 2
?i(µ) = 2

º

Z
`d`W 2

4 (`µ)C ≤
B (`), (5.34)

which are analogous quanitites if the origin of ellipticity correlations would be
purely intrinsic and generated by correlated angular momenta.

In Fig. 5.3 we show, how the aperture-weighted variances of the intrinsic el-
lipticity field should behave in the EUCLID galaxy sample as a function of an-
gular scale in comparison to that of the weak lensing field. We consider both
tangential and radial shears and compare the results between the two different
intrinsic ellipiticity models.

The aperture-weighted variances derived from intrinsic ellipticities decrease
in magnitude which of course is a generally expected behaviour caused by the
weighting functions Wn(`µ), and exhibit lower amplitudes compared to the lens-
ing ones, as can be expected from the relative magnitudes of the spectra. From
angular scales of 100 arcminutes on intrinsic alignments have dropped to zero,
which is compatible with them being a small-scale phenomenon, while weak
lensing still has a considerable signal. As expected, the differnece in magnitude
of the variances sourced by E-modes and B-modes is smaller than the differ-
ence in spectra on small scales because of the averaging in multipole `, and an
analogous argument applies to the predictions by the two models under consid-
eration.

5.5 Parameter likelihood

In this section, the dependence of the intrinsic ellipticity spectrum on the cos-
mological parameter set is investigated. This is of particular relevance because
of their contaminating effect in weak lensing data by introducing spurious el-
lipticity correlations, and because they depend on the cosmological model in
a very nonlinear way, much stronger than e.g. the weak lensing convergence:
We point out that in our models, the angular momentum L reflects the squared
tidal shears @i@ j©, and the ellipticity field ≤ in turn has a very complex depen-
dence on the angular momentum direction, which can be approximated to be
quadratic for small line of sight-components of the angular momentum direc-
tion. In the following, we keep the parameterÆ in our ellipticity model constant,
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because it can in principle be determined by analysing morphological data, as
Crittenden et al. (2001) demonstrated. The misalignment parameter a replaces
æ8 because it fixes the normalisation of the spectra, and is completely degener-
ate with Æ.

5.5.1 Parameter dependences of intrinsic alignments

When considering the angular spectra describing the ellipticity field, the param-
eter sensitivity of intrinsic alignments can be nicely illustrated by considering
derivatives of the spectra with respect to cosmological parameters, weighted by
the inverse noise. For illustration, we assume that weak lensing-induced ellip-
ticity alignments were absent from the data, and that the ellipticity shape noise
would be that of EUCLID. Therefore the sensitivities, i.e. the derivative of the
observables with respect to the parameters to be estimated in units of the noise,

1
p

covX (`)

@C ≤
X

@xµ
, X 2 {E ,B} , (5.35)

correspond to the contributions
q

dFµµ/d` to the diagonal entries of a Fisher-

matrix Fµ∫, which describes the parameter dependence of the spectra C ≤
E (`) and

C ≤
B (`) on a cosmological model. It is worth to mention that derivatives respect

to the parameter or respect to the logarithm of the parameter are substantially
equal in our case, given the fact that the parameters themselves are of the order
of unity. The covariances of acquire a cosmic variance error and a Poissonian
shape measurement error,

covX (`) = 2
2`+1

1
fsky

µ
C ≤

X (`)+
æ2
≤

n

∂2

(5.36)

withæ≤ = 0.3, n = 30/arcmin2 as the number density of galaxies per square stera-
dian and the sky fraction fsky = 1/2.

We depict these quantities in Fig. 5.4 for the basic set of cosmological pa-
rameters considered here: xµ 2 {≠m , a,h, w}, where ns has been omitted due to
its very weak influence on the spectra. Clearly, the E-mode and B-mode spec-
tra exhibit an identical behaviour on large, cosmic variance dominated scales,
where they reflect identical dependence on the physical processes of angular
momentum generation and disk orientation, before differening on multipoles
` >ª 300, where weaker B-modes start being influenced by the noise level. The
effectively non-existent dependence of the ellipticity spectra on the dark energy
equation of state parameter w is particularly interesting and suggests that in-
trinsic alignments contaminations in weak lensing can be investigated almost
independently from the dark energy model assumed. Conversely, the depen-
dences on ≠m and a are particularly strong, because a determines the ampli-
tude of the spectra in much the same way as æ8 fixes the normalisation of the
weak lensing spectra.
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5.5.2 Non-Gaussian likelihoods

This section is intended to check whether our assumption of Gaussianity for the
parameters likelihood is well-grounded. In order to achieve this we compare the
Gaussian likelihoods derived by using the Fisher-formalism,

L / exp

√

°
(xµ°xfid

µ )2

2æ2
µ

!

with æ2
µ =

1
Fµµ

(5.37)

where the Fisher-matrix is determined from the curvature of the logarithmic
likelihood,

Fµ∫ =
`maxX

`=`min

@C ≤
E (`)

@xµ

1
covE (`)

@C ≤
E (`)

@x∫
(5.38)

with a direct evaluation of the respective likelihood function, derived using the
relation:

L / exp
°
°¬2(xµ)/2

¢
(5.39)

where the ¬2-functional is given by

¬2(xµ) =
`maxX

`=`min

1
covE (`)

h
C ≤

E (`|xµ)°C ≤
E (`|xfid

µ )
i2

, (5.40)

and quantifies the goodness-of-fit of a parameter choice xµ in the space spanned
by the set of cosmological parameters {≠m , a,h, w,ns}. It is important to specify
that due to the weakness of the intrinsic ellipticity correlations we consider only
conditional errors, i.e. we let one parameter vary at a time, keeping the remain-
ing fixed and focus only on the stronger E-mode spectrum C ≤

E (`). The reduced
dimensionality allows us to compute the likelihood directly on a grid without
having to make use of Monte-Carlo sampling techniques for evaluating the like-
lihood.

Any deviation from a Gaussian shape of the likelihood L is caused by a
nonlinear dependence of the spectrum C ≤

E (`) on a model parameter xµ, which
is due to the fact that the ¬2-functional deviates from a parabolic shape if the
model parameter is varied. The likelihood assumes an approximately Gaussian
shape if it is sufficiently peaked such that a Taylor-expansion of the nonlinear
parameter dependences is applicable in the region around the fiducial parame-
ter choice. In our case, non-Gaussian shapes have been observed if the summa-
tion in Eqn. (5.40) was restricted to the multipole range 10 ∑ `∑ 100 and quickly
became Gaussian if the summation was carried out to higher multipoles.

The non-Gaussian likelihoods L (≠m) and L (w) for the matter density and
the dark energy equation of state can be seen in Fig. 5.5 in comparison to their
Gaussian approximation. All likelihoods are centered on the fiducial model value
xfid
µ and scaled with the width æµ derived with the Fisher formalism. This new

normalized variable allows the curves to range in the same interval and to be
comparable. Likelihoods have also been normalized to unity. Most notably, the
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Figure 5.5: Conditional likelihoods L (≠m) (solid blue line) and L (w) (solid
red line), along with their Gaussian approximations derived with the Fisher-
formalism (æµ = 1/

p
Fµµ, dashed green line), for an observation of ellipticity

spectrum C ≤
E (`) with the EUCLID survey characteristics with all other parame-

ters fixed to their fiducial values. The multipole range was set to 10 ∑ ` ∑ 100
and the spectrum C ≤

E (`) entering the likelihood-calculation resulted from the
CNPT-model.

likelihoods are more strongly peaked than their Gaussian counterparts, with
slight asymmetries of L (≠m) towards large values and of L (w) towards small
parameter values. It should be noted, that the misalignment parameter a (to-
gether with the disk thicknessÆ) is a linear parameter in our models and its like-
lihood L (a) is always of Gaussian shape. We conclude that the amount of devi-
ation from the ideal shape is not a serious impediment for applying the Fisher-
formalism for investigating intrinsic alignments, keeping in mind that in reality
one observes alignments over a much wider multipole range such that the like-
lihoods are closer to Gaussianity.

5.6 Interference with weak lensing

In this section we show how the intrinsic alignments can affect measurements
of the convergence spectrum by quantifying the parameter biases arising when
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Figure 5.6: Parameter estimation biases in≠m , æ8, h, ns and w obtained respec-
tively with the CNPT-model (in red) and with the MWK-model (in yellow) for
EUCLID’s observation of the weak lensing spectrum C∑(`), which is contami-
nated by intrinsic alignments C ≤

E (`) on small scales. The misalignment parame-
ter is set to a = 0.25; the disk thickness parameter is set toÆ= 0.75, the multipole
range was 10 ∑ `∑ 3000 and as a noise amplitude we consideredæ≤ = 0.3. The el-
lipses give 1,2,3æ statistical uncertainties on the cosmological parameters from
the weak lensing spectrum C∑(`) from the same multipole range.
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trying to explain the data consisting of both weak lensing-induced ellipticity cor-
relations and intrinsic alignments by a model that only accounts for weak lens-
ing and neglects intrinsic alignments. We consider the case of EUCLID’s weak
lensing survey in a non-tomographic setup and give an estimation of the biases,
if intrinfsic alignments are not removed from data (as proposed by King, 2005;
Joachimi & Schneider, 2009, 2008) or not properly modelled (King & Schneider,
2003, 2002). We aim to supplement previous analysis of intrinsic alignment con-
taminations such as Hirata & Seljak (2004), Bridle & King (2007) and Kitching
et al. (2008) by using a physically motivated and well described alignment model
for spiral galaxies with a small number of parameters which can be accessed by
morphological galaxy samples (the disk thickness parameter Æ) and cosmologi-
cal simulations (the misalignment parameter a).

5.6.1 Parameter constraints

Statistical errors on constraints on the cosmological parameters from the pro-
jected weak lensing power spectrum C∑(l ) when ignoring the intrinsic ellipticity
spectrum can be easily obtained by using the Fisher matrix formalism, where
the Fisher-matrix Fµ∫ measures the curvature of the logarithmic likelihood lnL

in all parameter directions (Tegmark et al., 1997):

Fµ∫ =
`maxX

`=`min

@C∑(`)
@xµ

1
cov∑(`)

@C∑(`)
@x∫

(5.41)

where the covariance is given by:

cov∑(`) = 2
2`+1

1
fsky

µ
C∑(`)+

æ2
≤

n

∂2

. (5.42)

In the latter expression EUCLID’s noise æ2
≤/n was used as well as fsky = 1/2 for

the sky fraction, and the parameter space is spanned by the cosmological pa-
rameters xµ 2 {≠m ,æ8,h,ns , w}. We will use the covariance cov∑(`) throughout
this chapter and neglect small contributions due to intrinsic alignments to the
covariance of the ellipticity field, as the covariance and therefore the sampling
noise is dominated by weak lensing.

The statistical næ-ellipses obtained as cross-sections through the Gaussian-
approximated likelihood for all pairs of parameters are shown in Fig. 5.6 together
with the systematical errors in parameter estimation if intrinsic alignments are
not taken care of. The extend to which weak lensing parameter likelihoods are
Gaussian is investigated in detail by Wolz et al. (2012).

5.6.2 Parameter estimation biases

Ultimately our analysis aims to quantify how biased the parameter estimation
with EUCLID-data will be if intrinsic alignments as predicted from angular mo-
mentum models were present in the data but if we were to interpret the data
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with a model which does not take intrinsic ellipticities into account. We there-
fore identify a true model which includes intrinsic alignments

Ct (`) =C∑(`)+C ≤
E (`)+

æ2
≤

n
(5.43)

and a false model, which omits intrinsic alignments and considers the elliptici-
ties as random,

C f (`) =C∑(`)+
æ2
≤

n
. (5.44)

For both models, one can specify a goodness-of-fit parameter which in the case
of Gaussian errors is the ¬2-functional. If the data, which follows the model
Ct (`), is interpreted with the wrong model C f (`), the corresponding¬2-functional
will exhibit its minimum at a position in parameter space shifted from the true
parameter choice, because the incomplete model is forced to provide a fit to the
data by detuning the parameter set away from the fiducial values. The way to
achieve this goal was proposed by a number of authors (Cabré et al., 2007; Amara
& Réfrégier, 2008; Taburet et al., 2009; March et al., 2011; Schäfer & Heisen-
berg, 2012) in different contexts: Taking the second-order Taylor expansion of
the wrong ¬2

f -functional around the best-fit point xt of the true model one re-
trieves an expression involving the vector ±:

¬2
f (x f ) =¬2

f (xt )+
X

µ

@

@xµ
¬2

f (xt )±µ+
1
2

X

µ,∫

@2

@xµ@x∫
¬2

f (xt )±µ±∫, (5.45)

being ±¥ x f °xt . For weak systematics, this approach has been demonstrated to
yield very accurate results for the estimation biases by comparison with the shift
of the likelihood peak evaluated by MCMC-techniques (Taburet et al., 2010).

Now, by extremising the ensamble-averaged h¬2
f (x f )i one gets the best-fit

position x f . This operation yields a linear system of equations:
X

∫
Gµ∫±∫ = aµ ! ±µ =

X

∫
(G°1)µ∫a∫ (5.46)

and can be inverted directly leading to the estimation bias ±. Substitution gives
expressions for the quantities Gµ∫ and aµ which involve derivatives of the spec-
tra,

Gµ∫ ¥
`maxX

`=`min

1
cov∑

∑
@C∑(`)
@xµ

@C∑(`)
@x∫

°C ≤
E (`)

@2C∑(`)
@xµ@x∫

∏
,

aµ ¥
`maxX

`=`min

1
cov∑

∑
C ≤

E (`)
@C∑(`)
@xµ

∏
. (5.47)

It is worth to notice that the espression for Gµ∫ simplifies to Fµ∫ when the correct
model is used, and the bias vector is therefore zero. A consequence of this argu-
ment is that the inclusion of a Gaussian prior F prior

µ∫ would reduce the parameter
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estimation bias due to the transformation Gµ∫!Gµ∫+F prior
µ∫ , leading to smaller

values for ±µ in the inversion of the linear system Eqn. (5.46).
Fig. 5.6 shows the biases in the estimation of the cosmological parameters

induced by considering the intrinsic ellipticities. We computed the 1,2, and 3æ
ellipses by means of the Fisher matrix, as explained in Sect. 5.6.1, and we con-
sidered the full range of multipoles going from `min = 10 to `max = 3000 well into
the noise-dominated regime. We calculated the biases for both the CNPT and
the MWK models of the intrinsic alignments: In what concerns the CNPT-model
we considered the value of the misalignment parameter found in n-body sim-
ulations (Lee & Pen, 2000) a = 0.25, and Æ = 0.75 for the thickness of the disk.
The biases are shown respectively in red for the CNPT-model, and in yellow for
the MWK-model. All parameters apart from the dark energy equation of state w
and the slope ns are significantly biased, and in almost all cases the shift is not
along the primary statistical degeneracy. The differences in the biases between
the CNPT- and MWK-models reflect the difference in amplitude they predict,
which is in our case due to the choice of normalisation.

The first thing to notice is how the biases depend on the parameters. Evi-
dently≠m andæ8, parameters on which the convergence spectrum C∑(`) highly
depends, seem to be mostly affected. This is in line with the fact that the pres-
ence of C ≤

E (`) increases the normalisation and adds power to the high-` part of
the spectrum, therefore requiring larger values of æ8, but also causes a tilting of
the spectrum which instead asks for lower≠m-values. The other parameters are
instead very weakly affected by the presence of intrinsic alignments.

5.6.3 Scaling of the estimation bias

It is necessary to investigate how the estimation bias scales with the normalisa-
tion of the intrinsic alignment spectra, as the parameters a and Æ in the CNPT-
model and the resulting normalisation C in the MWK-model have a large un-
certainty. It is worth recalling that the misalignment parameter a is measured
in n-body simulations of structure formation, and the galaxy disk thickness Æ is
taken from data on galaxy morphologies.

In Fig. 5.7 we focus on the CNPT-model, by plotting the biases in units of
the conditional error æ2

µ = 1/Fµµ as a function of the misalignment parameter
a while keeping Æ fixed at 0.75. An increasing value of a means a higher mis-
alignment between shear and inertia tensors (Lee & Pen, 2000; Crittenden et al.,
2001; Schäfer, 2009), and hence a higher correlation between angular momenta,
or, differently phrased, less randomness in their directions. This means that,
within the model, the angular momenta trace the underlying tidal shear field
in a tighter way. The lower limit a = 0 indicates therefore complete randomness
and absence of any link of the angular momenta to the gravitational potential,
as described in Lee & Pen (2000). It is visible how the biases grow fast for greater
values of the parameter a, simply meaning that stronger intrinsic correlations
would represent a stronger contamination to the covergence spectrum, but that
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Figure 5.7: Biases bµ in units of the statistical error æµ for the cosmological pa-
rameters ≠m (black line), æ8 (green line), h (red line), ns (magenta line) and w
(blue line), as a function of the misalignment parameter a of the CNPT-model.

for very large values of a the dependence of the parameter estimation bias with
a is saturated and it evolves weaker with increasing a, and even decreases in the
case of the parameter ns . Given the fact that the estimation biases ±µ/æµ change
by almost two decades as a is varied, it is vitally important to determine a be-
forehand, either from independent observations or from simulations of struc-
ture formation.

5.6.4 Observations of intrinsic alignments

Another approach to gain infomation about the intrinsic alignments relies on
the subtraction of the weak lensing signal from the overall signal that is mea-
sured. This is, roughly speaking, the inverse of what is usually done with nulling
techniques (for details see Joachimi & Schneider, 2008, 2009, 2010), whose aim
is to clear up the weak lensing signal from intrinsic alignments. The idea behind
this is that if we know with high accuracy the model describing the cosmology,
we can then predict how, according to this model, the weak lensing spectrum
must be. By subtracting the latter from the measured spectrum, the remaining
part is ascribable to intrinsic ellipticities. More precisely, if the uncertainty on
the convergence power spectrum is small enough to still allow for the extrac-
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tion of the intrinsic ellipticity signal, then it means that we will be able, in future
surveys, to notice this weak signal in the presence of the much stronger weak
lensing spectrum.

It is worth to remark, at this point, that the intrinsic alignments we con-
sider in this work, also known as II (intrinsic-intrinsic) alignments, are not the
only contaminant to the weak lensing spectrum, usually referred to as the GG
(gravitational shear-gravitational shear) signal. For instance, another source of
contamination are the GI (gravitational shear-intrinsic ellipticity) correlations,
which might occur when the alignment produced by a dark matter halo on a
closeby galaxy correlates with the shear signal that the same halo induces on a
background galaxy. This effect, first suggested by Hirata & Seljak (2004), is dif-
ficult to remove, and is not considered in our treatment. Likewise, we do not
consider complications arising from the statistical uncertainty in estimating the
combined spectrum C∑(`)+C ≤

E (`).
The problem is therefore now to understand whether the uncertainty at which

the lensing spectrum can be predicted for a given cosmology is enough to at-
tribute a high-` excess in the ellipticity spectrum to intrinsic alignments. In or-
der to quantify the uncertainty on the covergence spectrum¢C∑(`), we consider
a multivariate Gaussian likelihood for the cosmological parameters, draw from
this distribution simultaneously a sample of five parameters, and compute for
those the weak lensing spectrum. This gives us a bundle of spectra around the
fiducial spectrum C∑(`|xfid

µ ), and allows us to define the uncertainty as the stan-
dard deviation:

¢C∑(`)2 = 1
n

nX

i=1

h
C∑(`|x(i )

µ )°hC∑(`|xfid
µ )i

i2
, (5.48)

at each multipole ` where the index i runs over the samples x(i )
µ of parame-

ter sets drawn from the multivariate Gaussian likelihood. In short, this sam-
pling of a parameter set and measuring the variance of the resulting spectra is
a method of propagating the statistical parameter uncertainty described by the
likelihood to an error-tube around C∑(`) reflecting the prediction uncertainty
in the spectrum. This allows now to compare the magnitude of the intrinsic el-
lipticity spectrum C ≤

E (`) to this uncertainty and to quantify the significance. We
have considered here, as throughout the whole paper, the semi-analytical ex-
pression for the non-linear power spectrum derived by (Smith et al., 2003) with-
out taking into account possible uncertainties in this expression, but only un-
certainties on the parameters, since our goal is primarily to give a qualitative
description of how the intrinsic alignment signal could be extracted from the
convergence signal. Nonetheless, the Cosmic Emulators have found a discrep-
ancy of 5°10% between the semi-analytical fit and the simulations (Heitmann
et al., 2010, 2009; Lawrence et al., 2010). This would increase the uncertainty on
C∑(`) by an amount considerably smaller than the order of magnitude which
separates CE ,B (`) from ¢C∑(`), therefore not affecting the robustness of our re-
sult.
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Fig. 5.8 shows the uncertainties n £¢C∑(`) with n = 1. . .5 obtained by using
this technique. The likelihood from which samples on the wCDM-parameter set
including ≠m , æ8, h, ns and w were drawn is the one describing the knowledge
on the cosmological parameters if EUCLID’s measurement of baryon acoustic
oscillations, EUCLID’s weak lensing data (both in a 10-bin tomographic mea-
surement) and PLANCK’s CMB data were present, with a theoretical prior on
spatial flatness. The PLANCK-likelihood was marginalised over the baryon den-
sity≠b . The error tube¢C∑(`) can be clearly separated into two multipole ranges,
the first region where the linear CDM-spectrum is dominating in the generation
of the weak lensing spectrum, and the second region where the nonlinear en-
hancement of P (k) is important and where the error tube is much wider.

With such small uncertainties and with the choice of a cosmological model
with low complexity the predictive uncertainty on C∑(`) is much smaller than
the amplitude of the intrinsic alignments from multipoles of`' 30 on,¢C∑(`) ø
C ≤

E (`). We verified that the PLANCK CMB likelihood alone would not be suffi-
cient for extracting the intrinsic ellipticity spectrum. Likewise, a more complex
model with a larger number of parameters would have much larger uncertain-
ties, ¢C∑(`) ¿C ≤

E (`) for most of the multipole range.

5.7 Summary

Subject of this paper are the statistical properties of intrinsic, angular momen-
tum induced ellipticity alignments, and their dependence on the cosmological
parameter set, in comparison to ellipticity correlations induced by weak gravita-
tional lensing. We carry out our computations with the EUCLID ellipticity data
sample in mind, and use the projected EUCLID galaxy redshift distribution and
shape noise for making forecasts.

1. We base our predictions for the spectra C ≤
E (`) and C ≤

B (`) describing fluc-
tuations in the ellipticity field on physical models for angular momentum
correlations in the large-scale structure (Crittenden et al., 2001; Mackey
et al., 2002). The two models under consideration link the angular mo-
mentum field to the tidal shear field, and model the ellipticity of a galaxy
by assuming that the galactic disk is formed perpendicular to the host
halo’s angular momentum direction. The two models differ in describ-
ing these physical processes in configuration space versus Fourier space,
and use different normalisations. For comparability, we have normalised
the MWK-model such that it displays the same amplitudes as the CNPT-
model on large angular scales. The CNPT-model in turn uses 3 parameters,
which are the mass-scale of the galaxies, imposed by an Gaussian filter
acting on the CDM-spectrum P (k), a misalignment parameter a, which
is determined to have the numerical value a ' 0.25 in numerical simula-
tions (Lee & Pen, 2001) and finally the disk thickness parameter Æ, which
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Figure 5.8: Uncertainties ¢C∑(`) (shaded area) in the prediction of the nonlin-
ear weak lensing spectra C∑(`) from drawing samples for ≠m , æ8, h, ns and w
from a Gaussian parameter likelihood, for which we use a prior on the wCDM-
model combining baryon acoustic oscillations, lensing and the CMB (EUCLID
10-bin BAO spectra, EUCLID 10-bin weak lensing spectra and PLANCK CMB
temperature and polarisation spectra). The uncertainty is compared to the ellip-
ticity spectra C ≤

E (`) (green line) and C ≤
B (`) (red line) determined with the CNPT-

model.
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has been measured to be Æ ' 0.75 in the APM-galaxy sample (Crittenden
et al., 2001).

2. Computing the ellipticity spectra C ≤
E (`) and C ≤

B (`) for the galaxy sample of
EUCLID from both models yields spectra which are constant on large an-
gular scales and drop off exponentially on small scales, while the E-mode
spectrum is larger by about an order of magnitude compared to the B-
mode spectrum on multipoles of ` ' 1000. By themselves, the spectrum
C ≤

E (`) would be significantly larger than the linear weak lensing conver-
gence spectrum C∑(`), which is comparable in amplitude to the spectrum
C ≤

B (`) on these multipoles. Nonlinear structure formation, however, in-
creases the variance of the cosmic density field strongly, such that intrin-
sic ellipticities contribute only ª 20% to the total variance of the ellipticity
field at ` = 1000. Aperture weighted variances give a similar impression:
The averaged shear and the aperture mass of the nonlinear weak lensing
convergence dominate the variance on all relevant scales, and intrinsic
alignments are smaller by at least a factor of two in this observable.

3. Investigating the dependence of the ellipticity spectra on cosmological
parameters gives a result very different compared to other cosmological
probes. Due to the dependence of the angular momentum field on the an-
gular momentum direction and not the magnitude,æ8 is entirely replaced
by the misalignment parameter a. ns ,≠m and h determine the CDM spec-
trum P (k) (the latter two by fixing the shape parameter °) and ≠m is of
course appearing in the conversion between comoving distance and red-
shift at the stage of applying the Limber equation. Computing the deriva-
tives @C ≤

E (`)/@xµ and @C ≤
B (`)/@xµ of the spectra with respect to the cosmo-

logical parameters and expressed in units of their covariance suggests that
the parameters a and≠m are the ones most important for intrinsic align-
ments, with only minor dependences on the dark energy equation of state
w and the Hubble-parameter h. At the same time≠m and æ8 are the ones
best constrained by lensing, so that it is suggestive to expect the largest
estimation biases in those two parameters, if the intrinsic alignments are
not properly removed or modelled.

4. In the next step we quantified the likelihood L (≠m , a, w) of the intrin-
sic alignment spectrum C ≤

E (`) if lensing was not present. One could ex-
pect this likelihood to have non-Gaussian contributions because of the
nonlinearities present in an angular momentum-based alignment model:
firstly, the angular momentum depends on the quadratic tidal shear and
the ellipticity depends on the squared angular momentum direction. For
a restricted multipole `max

<ª 100 range one can see clear deviations from
Gaussianity, which quickly vanish if the multipole range is extended. The
misalignment parameter a, which describes the normalisation of the spec-
tra, is described by a Gaussian likelihood and enters as a prefactor.
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5. We compute estimation biases on the wCDM parameter set if intrinsic
alignments are not removed from the ellipticity spectrum, i.e. if the data
is in reality described by C∑(`)+C ≤

E (`) and wrongly fitted by C∑(`) only.
The strongest biases are present in≠m , which is measured to low and æ8,
which is estimated too high, both at the level of ª 2æ, making the estima-
tion biases significant. Interestingly, the dark energy equation of state is al-
most unbiased, indicating that dark energy investigations are not directly
affected by intrinsic alignments. Changing the magnitude of the intrin-
sic alignment contamination by increasing the misalignment parameter
a shows an monotonic increase of the estimation biases for all parame-
ters except ns where the estimation bias saturates at a ' 0.5 and drops
for higher amplitudes. Clearly, these results demand a good external prior
on a, either from independent measurements or from numerical simula-
tions.

6. Finally we investigate if the weak lensing convergence spectrum C∑(`) can
be predicted precisely enough such that a deviation can be attributed to
a contribution C ≤

E (`). For this purpose, we develop a technique for prop-
agating the uncertainty in the set of cosmological parameters to the vari-
ance¢C∑(`)2 around C∑(`) for the fiducial cosmology. Comparing this un-
certainty with the amplitudes C ≤

E (`) suggests that it should be measurable
at high multipoles. In this process we used a Gaussian likelihood L on a
standard wCDM-cosmology reflecting the knowledge on the cosmologi-
cal parameters from EUCLID’s BAO- and weak lensing spectra and from
the temperature and polarisation spectra of the cosmic microwave back-
ground measured by PLANCK.

We plan to extend our research to the intrinsic alignment contamination of
tomographic weak lensing data, and to include cross-correlations between the
weak lensing shear and the intrinsic ellipticity field, the so-called GI-alignments,
which we aim to derive from angular momentum-based alignment models and
which enter the ellipticity spectra at higher order. These GI-alignments are chal-
lenging to describe as they introduce ellipticity correlations across tomogra-
phy bins. Additionally, we aim to include a linear alignment model for elliptical
galaxies and to work with a proper morphological mix of ellipticities, working to-
wards a more complete physical description of alignments in tomographic weak
lensing data.



Chapter 6

EXTREME VALUE STATISTICS:
THE TOOLKIT

6.1 Extreme values: why?

The first investigations on the statistics of the extreme values (EVS hereafter)
were conducted in1709 by N. Bernoulli who was interested in the extreme con-
stituted by the the mean duration of life of the last survivor of a group of n men
of equal age who die after t years. In the following century tests and criterions
for the acceptance or rejection of outlying values were studied B. Peirce (1852),
W. Chauvenet (1878), and systematically established by P. Rider in 1933. In 1923
studied extreme values for normal distributions. L. H. C.Tippett conducted stud-
ies in this direction in 1925 too. But the normal distribution is not the natural
environment of extreme values, which occur in higher rates actually in prob-
ability distributions parting from the Gaussian one. Studies on other distribu-
tions were carried out by E. L. Dodd in 1923, and most notably by M. Fréchet
in 1927 (Fréchet, 1927), who not only found one of the asymptotic distributions
of the largest value, but introduced the stability postulate (see Sec. 6.4.1). The
basic work for extreme values is rooted in the work of R. Fisher and L. Tippett
(Fisher & Tippett, 1928), who found the other two asymptotic distributions, and
E. Gumbel who, together with Fisher and Tippett, pioneered the field of extreme
value statistics.

There are many fields where the statistics of extremes can be implemented:
from meteorology, finance, risk management, engineering and hydrology to as-
tronomy.

To bring the problem to something more tangible, we can consider the ex-
ample of floods. Considering a river and having available the annual data {x1...x365}
of the daily flow for N years, we can consider the set of the maxima throughout
the N years {X1...XN }, and ask ourselves some basic questions:

• what is the probability that a flood will exceed a certain value x the next year?

113
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• what is the probability that a future flood exceeds all the previous ones?

• what is the expectance time before the occurrence of a specific value of an
extreme?

These are the typical questions addressed by EVS (Embrechts, 1994, 1997). In
particular, the second question corresponds to the so-called exceedance prob-
lem. One could therefore grasp the important difference between EVS and the
usual statistics (e.g. the study of the moments of a distribution): EVS focuses on
the asymptotic behaviour of a random process at the tails of the distribution,
where events are rare but extreme, instead of considering the central part of the
distribution. This appears to be particularly interesting when non-linear pro-
cesses, which usually enhance the probability of extreme events (and therefore
the tails of the distribution), are involved. In the next section we are going to re-
visit some key concepts which are very useful when working with EVS. In Sec.
6.3 we give the exact distribution for the extreme values, while we discuss the
approximate distributions for increasing number of samples in Sec. 6.4. Sec. 6.5
describes the exceedance theory and introduces the Pareto distribution. We give
a round up of the usage of EVS in cosmology in Sec. 6.6, and we summarise the
main points of this chapter in Sec. 6.7.

6.2 Key concepts and definitions

In this section we provide the statistical concepts which are used in the con-
struction of the EVS. Given a generic probability density function (PDF) p(x)dx
of a continuous random variable x, we can define a series if quantities:

Moments of the distribution : The moments of a distribution completely define
and characterise the distribution. Different definitions of the moments are pos-
sible: The n-th raw moment of the PDF p(x)dx is calculated about zero, and is
defined as the expectation value of xn ; The n-th central moment, which is the
moment calculated about the mean µ; The n-th standardised moment, defined
as the n-th central moment divided by the n-th power of the standard deviation
æ: µn/æn .

∞(r )
n = E [xn] =

Z+1

°1
xn p(x)dx,

∞n = E [(x °E [x])n] =
Z+1

°1
(x °µ)n p(x)dx,

∞(s)
n = E

∑µ
(x °E [x])

E [(x °E [x])2]

∂n∏
=

Z+1

°1

µ
(x °µ)
æ

∂n

p(x)dx, (6.1)

The zero-th moment of any PDF is equal to 1, since it corresponds to the nor-
malisation of the PDF, while the first raw moment of a distribution corresponds
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to the mean, and the second central moment corresponds to the standard devi-
ation. In the case of standardised moments we find that the first moment is zero,
the second is 1, and we can define the third and fourth moments, the skewness
∞(s)

3 and the kurtosis ∞(s)
4 :

∞(s)
3 = ∞3

æ3

∞(s)
4 = ∞4

æ4 , (6.2)

the skewness ∞(s)
3 arising as soon as the PDF is asymmetric. The skewness can

take positive or negative values respectively if the mode is smaller than the me-
dian or vice versa (this is only valid if multimodal distributions are not consid-
ered, but gives a good rule of thumb). The fourth standardised moment is in-
stead a measure of how much peaked a distribution is. A positive kurtosis leads
to more acute peak around the mean, and fatter tails; a negative kurtosis flattens
the peak, making it wider, and makes the tails thin.

The moments of a distribution can be extracted by the moment generating
function :

Mx (t ) = E [ext ] =
Z+1

°1
et x p(x) dx, t 2R. (6.3)

If this function, which is the Laplace transform of p(x), exists, the moments of
order n are the n-th derivative at t = 0.

Cumulative distribution function : Finally, a key concept used for approaching
the study of EVS is the cumulative probability distribution P(x), defined as the
probability that the random variable x distributed as p(x) is to be found at a
value less or equal than a certain value x 0, Pr (x ∑ x 0):

P (x 0) =
Zx 0

°1
p(x)dx. (6.4)

6.3 Extreme values: the exact distribution

If we consider a random variable x with the PDF p(x)dx, and we sample N times
from this distribution, which we can call the parent distribution, the probability
that one value xi is less than certain value x is the cumulative distribution F (x).
Following Gumbel (2004) and his notation, the probability that all the n obser-
vations are less than x is just P N (x) = Pr (x1, ..., xN ∑ x) = Pr (x1 ∑ x)Pr (x2 ∑
x)...Pr (xN ∑ x). The probability that just one value is found to be larger than x
(which corresponds to the probability of the complementary event) is therefore:

P+(x) = 1°P N (x). (6.5)
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This is still a cumulative function, and the related probability distribution of the
maxima is:

p+(x) = dP n(x)
dx

. (6.6)

Following the same logical path, we can find that the probability of the n values
xi to be systematically larger than or equal to the value x is given by [1°P (x)]N ,
being [1°P (x)] the probability of just one value xi to be larger than x. Therefore,
if we are interested in the probability of the minima, we seek the probability that
just one value is found to be lower than the value x, and this is the cumulative
distribution for the minima:

P°(x) = 1° [1°P (x)]N , (6.7)

Once more the probability distribution of the minima can be computed by dif-
ferentiation:

p°(x) = d[1°P (x)]N

dx
. (6.8)

Some properties and consequences of this distribution are:

• the probability that a given x is the largest one decreases with increasing num-
ber of the sample size N ;

• the different curves P N (x) for a set of curves which do not intersect and shift to
the right with increasing N , which means that modes and means of the largest
values also shift towards larger values;

• even if the initial distribution is symmetric, the distribution of largest value
is no longer symmetric. This can be seen if we consider the case of a parent
distribution about median zero, for which we would have:

1°P N (x), P N (°x). (6.9)

An asymmetry is therefore introduced by the fact that we are picking extreme
values of a single type, either maxima or minima.

6.4 Asymptotic distributions and the General Extreme Val-
ues distribution

We are now interested in knowing to which distribution the distribution of ex-
treme values tends as a function of the sample size. Gumbel (1954, 2004) shows
that it is possible to find the exact distributions of the extremes for certain initial
distributions, e.g. the so-called exponential and Cauchy distributions. In gen-
eral, though, it is very complicated to extract an analytical exact formulation for
the distribution of the extremes, but it can be shown that the latter can tend
to three possible asymptotic distributions for large values of N (being N the



6.4 Asymptotic distributions and the General Extreme Values distribution 117

number of samples we are considering). Each asymptote assumes a specific be-
haviour for absolute large values of the initial distributions. In this section we
will therefore dwell upon the asymptotic distributions and try to give an expla-
nation

6.4.1 The Stability Postulate

At the heart of this derivation, carried out by Fisher & Tippett (1928) and finally
reformulated by Gnedenko (1943), there is the so called Stability Postulate. We
consider to sample from an initial distribution N times, each sample being of
size M . We will have, for each sample, a maximum value (the maximum of the
M values we have), and we will have a maximum of all these N maximum values.
The latter is the largest value of all the N M samplings (or observations) we have
done. Now we can consider that the distribution of the largest values as obtained
by having N M samplings and the one obtained by having N samples will both
tend to the same asymptotic expression. This is basically equal to saying that the
samples are statistically equivalent.

What can be further used is the invariance of a the shape of a distribution
under a linear transformation. So if the cumulative distribution for the largest
value is P N (x), then it must be:

P N (x) = P (aN x +bN ), (6.10)

where an ,bn are two parameters functions of n. This equation is the Stability
Postulate. Note that cumulative distribution P N (x) corresponds to the probabil-
ity Pr {MN ∑ x} that the maximum value of all the samples MN = Max{x1, ..., xN }
is lower than x. Using now a linear transformation for x equals to requiring:

Pr
Ω

MN °bN

aN
∑ x

æ
, (6.11)

and corresponds to a renormalisation of MN , where we also find that aN ∏ 0.
Basically, in analogy to the Central Limit Theorem which finds the asymp-

totic limit to the mean of a sufficient large number n of independent and iden-
tically distributed (i.i.d.) variables {xi } with specific mean µ and finite variance
æ2 to be a normal distribution:

x̄ = 1
n

nX

i=1
xi °! N (µ,æ2/n), (6.12)

we find a similar theorem for Mn , where the asymptote is one of the three func-
tions constituting the family of the General Extreme Value distribution (Colombi
et al., 2011).

6.4.2 General Extreme Value Distribution

The three asymptotic distributions can mathematically be obtained from eqn.
(6.10) by considering the cases an = 1, an , 1, or P (0) = 1. We are not going to
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show the detailed calculations, for which we refer to Gumbel (2004), but the in-
teresting feature is that these three cases can be grouped in one synthetic form,
the General Extreme Value Distribution (Fisher & Tippett, 1928; Gnedenko, 1943):

PGEV (x) = exp
h
°x°∞ x°Æ

Ø

i
, (6.13)

whereÆ,Ø and ∞ are the location, scale and shape parameters. Once can recover
the Gumbel distribution (or Type I distribution) when ∞ = 0, the Fréchet distri-
bution (or Type II distribution) for ∞ > 0 and the Weibull distribution (or Type
III distribution) for ∞< 0.

It is rather interesting to note that one recovers these asymptotes according
to the ranges of definition of the random variable of the original distribution.
In the first case, the variate is unbounded (°1∑ x ∑ +1), whereas in the sec-
ond and third cases the variate is respectively lower bounded (x ∏ x 0) and upper
bounded (x ∑ x 0). In addition to this it is interesting to note that, in the case of
unbounded variates, the distribution of the maxima (and minima) will naturally
tend to the Gumbel distribution for very large N . In fact, starting from the exact
expression P N (x), we can rewrite this as:

P N (x) = exp
£
lnP N (x)

§
= exp[N lnP (x)] = exp[ln(1° (1°P (x)))]

ª exp
£
N [°(1°P (x))° (1°P (x))2 ° ...]

§
ª

ª exp[°N [1°P (x)]]. (6.14)

(1 ° P (x)) is then approximated with a gaussian distribution, and P N (x) can
therefore be expressed as an exponential function, which can be shown (Gum-
bel, 2004) to always tend to a Gumbel distribution for an unlimited variate x.

It is very easy to show that, given the cumulative Gumbel distribution:

PGum(x) = exp
£
°exp[°z]

§
, (6.15)

where z = (x °Æ)/Ø, and the probability function is:

pGum(x) = 1
Ø

exp[°z °exp[°z]], (6.16)

The mode is Æ, the median is Æ°Ø ln(ln2) and the mean is Æ+∞0Ø, where ∞0 is
the Euler-Mascheroni constant (∞0 ª 0.5772 Abramowitz & Stegun, 1972a).

6.5 Exceedance theory and the Pareto Distribution

Another way to approach the study of extreme values is to deal with their fre-
quencies. In other words, instead of requiring an initial distribution function
from which to derive the distribution of minima and maxima, one might want
to forecast the number of cases surpassing the current extreme value. Mathe-
matically we require the variate x considered just to be continuous, and not to
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be distributed as a certain initial PDF (in the flood example, this means that if
there is an inundation, it is uninteresting to know by how much water the soil
has been covered, but it is more interesting to know what are the chances of get-
ting an even more severe inundation Gumbel, 2004). This way of investgating the
extreme values is called exceedance theory. Waizmann et al. (2012b) provide a
very insightful description for calculating the probability associated to this ques-
tion, and we therefore follow their notation. Given an event x coming from an
underlying distribution F , and set a threshold t , we want to know the probabil-
ity that x exceeds t by the amount y . This equals to considering the conditional
probability distribution:

Pr {x > t + y |x > t } = 1°F (t + y)
1°F (t )

, fory > 0. (6.17)

For very high thresholds and if the extremes are distributed as the GEV, then
the distribution of the exceedances i given by the generalised Pareto distribution
(GDP):

PGPD (y) =
(

1°
h

1+∑y/Ø̃
i°1/∑

for ∑, 0,

1°exp[°y/Ø̃] for ∑= 0.

The GPD parameters are related to the GEV ones by means of the following rela-
tions:

∑= ∞

Ø̃=Ø+∞(t °Æ). (6.18)

6.6 Extreme Value Statistics in cosmology

Attempts to study extreme values and quantify their distributions by consider-
ing an underlying Gaussian field were made by Colombi et al. (2011), who find an
analytical probability distribution of the maximum of the density field in a patch
of a certain size in the case of a smoothed Gaussian random field. By using the
cell-in-counts formalism they find good fitting with the type III distribution of
the Generalised Extreme Value distributions (GEV), the Weibull distribution. A
similar analysis was conducted by Davis et al. (2011) who also calculate an ana-
lytic formulation for the complete probability distribution of the most massive
dark matter halos (or galaxy clusters) in a specific region of the universe, starting
from Gaussian initial conditions. They find an expression for the three parame-
ters characterising the GEV distributions by assuming as limit condition that the
distribution of halos for very large sizes of the patches has to tend to a Poisson
distribution (due to the homogeneity on large scales). Bias effects due to cluster-
ing are also considered and lead to no significant change in the extreme values
distribution for the Gaussian case. Results are compared to N -body simulations
and find strong agreement.
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A great deal of effort has been put to study extremely massive galaxy clusters
and the possibility that their existence at high redshifts could rule out the cur-
rent§CDM paradigm or alternative models. To summarise the work carried out
in the last years, we could say that there are different possible ways to investigate
extremes, which respectively try to find answers to two questions.

The first question is: What is the expected mass of the most massive clus-
ters given a cosmological model? Holz & Perlmutter (2012) went in this direc-
tion by focusing on the highest mass tail of the mass function as a probe for
the validity of the§CDM model. They quantified the expected mass of the most
massive clusters in §CDM model and then compared this result with observa-
tions. They find disagreement with just one cluster, but remark, in this respect,
that the power of this method precisely relies on the fact that even a single ob-
ject (found to have too large or too small mass) could be enough to disprove
a cosmological model. They furthermore find the expected range of masses to
strongly depend on redshift, making the analysis a good test also for the evo-
lution according to §CDM. Their results were questioned by Hotchkiss (2011)
who finds a strong bias on the studies on the rareness of high mass clusters at
high redshift. This bias is basically due to an ill-defined probability of finding
such rare clusters which makes these clusters appear less likely than they actu-
ally are. In proposing new suitable methods which also keep into account bias-
ing on non-Gaussian initial conditions, he finds less tension with §CDM than
the previous authors. The same is confirmed by the analysis of Waizmann et al.
(2011) and Waizmann et al. (2012b). In the first paper a measure of the cumula-
tive distribution function of the most massive objects is extracted from a sample
of volumes of same size and redshift depth by using GEV. By considering the case
of an hypothetical survey compatible with surveys such as EUCLID, they then fit
the observational results to the GEV calculated for a set of different cosmologies
in order to study which of the three parameters of the GEV is more adequate to
distinguish between different models, and in which ranges of masse. They find
that the shift parameter, i.e. the parameter of the GEV closely related to the peak
of the distribution for the most massive clusters, is the best suited to test the va-
lidity of §CDM in the case of a large-area surveys with Mlim ª 1014.5MØh°1 and
redshifts above z = 1 or Mlim ª 1014MØh°1 and z = 1.5, and that in general the
real impact of errors in mass estimations must be evaluated. In the second pa-
per they apply these theoretical results to the four most massive clusters at high
redshift and the four most massive low redshift clusters, finding no tension with
§CDM.

The other possible way to tackle the problem is to ask for a quantification
of the excess of galaxy clusters over a certain high-mass threshold. This kind of
analysis, which is also called statistics of exceedances, was carried out by Waiz-
mann et al. (2012a). Motivated by the fact that surveys like the ones based on
the Sunyaev-Zel’dovich effect are mass-limited with constant limit up to high
redshift, they make use of a new tool: The Generalised Pareto distribution (GPD)
which is precisely the distribution of exceedances. They investigate the depen-
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dence of the distributions on different thresholds and on redshift ranges, and
study how much the survey area affects the mean excess above a given mass
threshold. They recover their previous results that §CDM is proven to be in
agreement with observations. They furthermore compare the results obtained
via GPD and GEV statistics for a given value of the threshold, finding strong con-
cordance if the galaxy cluster is very rare, but strong deviation for less rare clus-
ters. They conclude by commenting on the possibility of using the GPD as a cos-
mological probe, which seems disfavoured compared to the GEV.

Beyond tests on the cosmological constant model alone, other possible sce-
narios have been investigated through the statistics of extremes. We report here
the studies of Baldi & Pettorino (2011) and Mortonson et al. (2011), who tested
respectively coupled dark energy models and quintessence models. The first au-
thors considered the case of a very massive cluster at high redshift detected by
Jee et al. (2009) and shown by the latter to have a discrepancy of 3æ with the
assumed model (§CDM with Gaussian initial conditions). Hence this requires
revisiting the model either in terms of the initial Gaussian conditions, or of al-
ternatives to the cosmological constant. In this direction they investigate cou-
pled dark energy models, finding that these enhance the cumulative halo mass
function at any epoch compared to models for the cosmological constant, and
thus giving a possible interpretation of the detection of Jee et al. (2009). Mor-
tonson et al. (2011) instead analyse predictions on abundance of clusters of a
given mass and redshift using quintessence models. They point out that any ob-
servations falsifying§CDM would automatically falsify also quintessence, since
quintessence models generate a suppression in the abundance of rare clusters
similar to §CDM. They also include in the analysis possible sources of bias and
variance, stressing the importance of high accuracy on the estimation of the
mass, given the fact that even just one single event could rule out a model.
Therefore they argue the necessity of including the Eddington bias in any anal-
ysis. Other possible sources of variance are the parameter variance (i.e. that fact
that values of the parameters lie within a range which is bounded by current
data) and the sample variance (i.e. the fact that counting rare objects in a finite
volume introduces a Poissonian noise). When including all of these sources of
bias they also find no tension with §CDM. Their analysis is further broadened
by calling attention to the fact that solutions invoking dark energy would also
have difficulties if high mass clusters appear only at high redshift: In fact phan-
tom or clustered dark energy mostly affects structure growth, because the accel-
eration of the Universe is a rather recent event. So the behaviour of extremely
large mass clusters must be investigated also at low redshift. The same would
apply for modified gravity or interacting dark energy models.

Concerning lensing, extreme values statistics analyses were motivated by
considerations about the largest Einstein radius measured. Zitrin et al. (2009)
calculate a probability distribution function for Einstein radii to try to explain
this rare event. This probability was then used to calculate the number of clus-
ters expected above a certain redshift able to produce such Einstein radii in the
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standard§CDM, finding that this number is extremely low, of the order of 10°7.
Waizmann et al. (2012) pick up this study and analyse the same largest observed
Einstein radius as the previous authors. They question the feasibility of ruling
out the §CDM model by means of just one single extreme galaxy cluster. By us-
ing Monte Carlo simulations they create the distribution of triaxial halo popula-
tion, from which they sample. They then fit the result of the sampling with GEV
distribution finding the best fit to be the Fréchet (or type II) distribution. These
distributions are used to find the probability of occurrence of the observed ex-
tremes, which shows agreement with the §CDM model. They also investigate
how the extremes are affected by the choice of the mass function and the tri-
axiality. They find the first not to affect the results much, but the latter to affect
the distribution of the largest Einstein radii strongly, in the way that the more
elongated objects are present, the higher the tail of the extreme value distribu-
tions. A step further in this field was taken by Redlich et al. (2012), who study the
impact of mergers on the distribution of the largest Einstein radii, which have
been found able to significantly increase the strong lensing efficiency of individ-
ual clusters. They conclude that semi-analytic studies must include the effect of
mergers in order to be realistic and to make statements about the validity of the
standard cosmological model based on the statistics of extremely giant gravita-
tional arcs.

The CMB has also been field of investigation through extreme value statis-
tics. Martinez-Gonzalez & Sanz (1989) study the statistics of the hot and cold
spots (i.e. found above a certain temperature threshold) starting from two pri-
mordial power spectra: the white noise and the Zel’dovich spectrum. They find
a probability of 10% for the hottest or coldest spot. Studies on spot-spot and
temperature-weighted correlation functions of hot and cold spots were carried
out by Larson & Wandelt (2005) who use a frequentist hypothesis test to the
study non-Gaussianities in the CMB on WMAP data. Hou et al. (2009) study the
one- and two-point statistics of local extremes in the five year WMAP release and
compare these to Gaussian simulations to check for the differences. They find
compatibility with the Gaussian model usually used, but find extremely low vari-
ance for the local extremes and a north-south asymmetry (for more details about
the statistics and discriminators between Gaussian and non-Gaussian random
fields we refer to Coles, 1988).

Mikelsons et al. (2009) study the statistics of extremes within patches of a
fixed area. They use Gumbel statistics and fit the extreme distributions to CMB
data and then to simulated Gaussian maps, comparing these results to inves-
tigate possible differences. Finally, they devote part of the study to the possi-
bility of detection of non-Gaussianities with the CMB, finding that the Gum-
bel statistics would not be able to detect fNL lower than ª 1000. Concerning
non-Gaussianities, also Mortonson et al. (2011) studied the feasibility of future
measurements to detect primordial non-Gaussianities, but in the context of the
statistics of the largest mass clusters. In fact they expect that if fNL is larger than
zero this would increase the abundance of high redshift massive clusters. They
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find, though, that a very high value for fNL would be required (ª 400). Chong-
chitnan & Silk (2012) also studied how the presence of local non-Gaussianities,
parametrised by fNL, could affect the distribution of objects of extreme mass.
In doing this they investigate uncertainties in the mass function by consider-
ing Press-Schechter, Sheth-Tormen and Tinker mass functions, which give sim-
ilar extreme value distributions at low redshift, but largely depart one from an-
other for high redshifts and high values of fNL. They include in the analysis non-
Gaussian corrections of mass function and bias, Eddington corrections, sky cov-
erage and redshift. They find that fNL induces a shift in the extreme mass cluster
to higher values but is degenerate with an increase inæ8. Cayón et al. (2011) refer
to the detection of the highest mass cluster XMM2235 of Jee et al. (2009) and ex-
tend the previous work of Holz & Perlmutter (2012) to study how the probability
of finding XMM2235 to be most massive cluster within the survey is affected by
non-Gaussianity. They use the parametrisation through the fNL parameter for
which they find constraints of fNL = 529±194.

6.7 Summary

In this chapter we provided an overview over the basic properties of EVS, which
can be summarised as follows:

• EVS allows to draw statistical conclusions from rare and extreme events de-
scribed by the tails of a distribution.

• Given an initial cumulative distribution P (x) for a variate x, the exact formula-
tions for the distributions of maxima and minima are mathematically defined
as 1°P N (x) and 1° [1°P (x)]N , (where N is the number of samples) but are
often quite difficult to analytically calculate.

• In any case, for large value of the number of samples N , these distributions
can tend to one of the three asymptotic distributions of the family of GED,
depending on whether the variate considered is bounded or unbounded.

• For unbounded variates, the distribution always tends to the Gumbel distri-
bution.

• As much as one can tackle the problem of extreme values by asking which is
the probability distribution function for maxima and minima, one can also
consider the exceedance, and ask what is the probability that a certain event
surpasses a threshold (which might be the current extreme value). This is of
particular relevance in hydrology, where, given an inundation, one is inter-
ested in knowing what is the chance that an even more severe inundation
might occur.

• EVS has been used recently in literature in the context of cosmology. Fields
of application are the study of extremely massive galaxy clusters, dark energy
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models, strong lensing, non-Gaussianities and the CMB. In general, the meth-
ods employed are similar in all the cases: The attempt is to study the extremes
in order to either check the validity of a certain model, e.g. the §CDM, or
rule out possible categories of models, as is the case for dark energy or non-
Gaussainity models. The other possible way to carry out this analysis is instead
to use the statistics of exceedances. The §CDM paradigm has so far passed
these tests.



Chapter 7

PRIMORDIAL NON-GAUSSIANITIES

7.1 Introduction

The Cosmological Principle, on which we base cosmology, asserts that the Uni-
verse is homogeneous and isotropic on large scales. This property of the Uni-
verse, firstly assumed by Einstein at the beginning of the twentieth century with-
out any empirical prove but for simplicity in the calculations, was observation-
ally confirmed at the end of the same century.

This fact is translated in the statistical statement that observables such as
the temperature of the CMB, or the density field, are assumed to be distributed
as a Gaussian (concerning the CMB, this is the EhlersÐGerenÐSachs theorem).
At the same time, though, the Universe’s pool of information appears as a good
balance between a large scale homogeneity and a small scale inhomogeneity. As
we have seen in Chap. 6, the latter yields to departures from Gaussianity. There-
fore the study of non-Gaussianities has become of paramount importance and
interest.

When considering possible mechanisms able to generate deviations from a
Gaussian behaviour of an observable, there are essentially two processes to ac-
count for: the quantum fluctuations, which are believed to grow due to gravi-
tational instability, and therefore provide the seeds of the inhomogeneities, and
the large scale structure (LSS) non-linearities, whose contribution becomes dom-
inant when ±¿ 1. In this chapter we focus on the first type of non-Gaussianity,
which is built upon the theory of inflation. Inflation, in fact, is able to explain at
the same time homogeneity and isotropy of the Universe, but also its level of in-
homogeneity, by creating a link between the microscopical features of this Uni-
verse (quantum fluctuations) and its macroscopical features (large amount of
symmetry on large scales). Inflation furthermore operates in a regime in which
the energies are extremely high, and could not be reproduced in the accelera-
tors and thus constitutes a necessary and unique test for high energy physics
as well. We will start by introducing the horizon and flatness problems in Sec.
7.2, to which inflation (Sec. 7.3) finds a solution. In this section we also talk
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about the slow-roll and slow-roll conditions. Sec. 7.4 dwells upon primordial
non-Gaussianities, describing the so-called "shapes" of non-Gaussianities, and
Sec. 7.5 summaries the chapter. 1.

7.2 The two problems

Despite the successes of the Big Bang theory, and the fact that it offers a very
consistent picture of the evolution of the Universe (see Chap. 1), it was known
already in the 50s that the Big Bang would lead to some problems (Rindler, 1956;
Weinberg, 1972; Misner et al., 1973). Essentially the reason for this lies in the fact
that the Big Bang theory is not able to give a description of what happened be-
fore the Planck time tPL ª 10°43s, simply because at that time, when quantum
field theory is expected to become as important as general relativity and the two
theories should merge, our treatment of the equations (which is based purely on
general relativity) breaks down. The problems aforementioned are the horizon
and the flatness (or entropy) problems, and will be examined in the following.

The horizon problem : As we saw in Chap. 1, the concept of horizons is a key
concept in cosmology. In particular, we stress once more that there is a differ-
ence between the particle horizon and Hubble radius, for which we repeat the
definitions:

RPH(t ) = a(t )
Zt

0

cdt 0

a(t 0)
(7.1)

RH(t ) = c
H(t )

= ca
ȧ

. (7.2)

The particle horizon defines the region within objects (particles) are in causal
contact, i.e. it is the distance light can have traveled from t = 0 to a certain time
t . The Hubble radius, which is not an horizon, is instead defined as the distance
at which objects appear receding from us at the speed of light. If two objects
(or particles) are separated by a distance larger than RPH then they were never
causally connected, and therefore they could have never communicated. If two
particles are separated by distances larger than the Hubble radius, they could
not communicate to each other at time t (Dodelson, 2003) but, in principle, they
can be causally connected at another time.

Of course the causal connection is crucial for the assumption we make that
the Universe is homogeneous since, roughly speaking, we need particles to have
had the chance to interact at some point of their history in order to justify the ho-
mogeneity of their properties we see today. One of the best support we have for

1The content of this chapter is based on the lectures notes of Prof. Dr. M. Bartelmann:
http://www.ita.uni-heidelberg.de/research/bartelmann/Lectures/cosmology/

cosmology.pdf,
and of Prof. Dr. Riotto:
http://www.cbpf.br/~iijtsc/lectures/A_Riotto_Notes.pdf

http://www.ita.uni-heidelberg.de/research/bartelmann/Lectures/cosmology/cosmology.pdf
http://www.ita.uni-heidelberg.de/research/bartelmann/Lectures/cosmology/cosmology.pdf
http://www.cbpf.br/~iijtsc/lectures/A_Riotto_Notes.pdf
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homogeneity is the CMB, or the surface of last scattering, when atoms formed
and when photons could travel through optically thin space, only 3·105 years af-
ter the Big Bang (cfr. Sec. 1.7). As we have seen, the CMB is homogeneous in tem-
perature up to fluctuations of order 10°5. We can measure the angular size of the
particle horizon at the time of recombination as µrec = arecrPH(arec)/D A(arec),
with rPH(arec) being the comoving particle horizon at recombination:

rPH(arec) = 2c
H0

p
≠m ar ec º 175

p
≠0 Mpch°1, (7.3)

where we used the fact that the Universe is matter-dominated at recombination,
and D A is the angular diameter distance:

D A(arec) º 2c
H0

arec(1° p
arec) º 2c

H0
arec º 5 Mpch°1. (7.4)

Be obtain thus an angular size of

µrec º 1.7± p
≠m , (7.5)

which is very small compared to the size of the microwave sky. The question
arises of how is it possible that the CMB temperature is so similar everywhere
on the sky, also between angular sizes greater than µrec, if the photons had the
chance of interact and "communicate" within patches of only roughly 2±.

Another useful way to picture this problem (Wang, 2013) is to imagine that
there are two competing processes in determining what portion of information
we will access as observers at a certain time tobs: on the one hand, as the time
passes (t > tobs), the particle horizon increases and our past light cone gets larger
enabling us to access more information, but on the other hand the expansion of
the Universe will make the constituents of the Universe drift apart, therefore de-
creasing our chances to access to more information. This basically results into
the competition between two length scales: the one associated with the particle
horizon, ∏, and the other associated with the Hubble radius ª (H)°1. If ∏< H°1

then the scale ∏ is within the Hubble radius. Otherwise, the scale is outside the
horizon.

The flatness problem : The second problem can be expressed by the statement
that the condition≠ª 1 is an unstable one. In fact, if we consider the Friedmann
equation without cosmological constant but with curvature≠K :

H 2(a) = 8ºG
3

Ω° K c2

a2 , (7.6)

we can rewrite it as:

H 2(a) = H 2(a)
∑
≠(a)° K c2

a2H 2

∏
. (7.7)
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Therefore:

≠(a)°1 = K c2

a2H 2 , (7.8)

which means that if the Universe is perfectly flat (K = 0), then the condition
≠= 1 must hold throughout all cosmic history. We know today that the geome-
try of the Universe is almost flat, i.e. ≠ ª 1 (Planck has shown consistency with
spacial flatness to percent level precision Planck Collaboration et al., 2013a), and
it is legitimate to ask what should have been the value of≠ in the past such that
today we can observe an almost flat Universe. We can choose the very early Uni-
verse, and compare the deviation of ≠ from unity at the Planck time tPL and
compare it to the deviation today:

|≠°1|t=tPL

|≠°1|t=t0

º
√

a2
PL

a2
0

!

º
√

T 2
0

T 2
PL

!

, (7.9)

where we have used the relation T / a°1 and assumed that the Universe was
always radiation dominated, and therefore H 2 / Ωr / a°4 and:

≠°1 / 1
a2a°4 / a2. (7.10)

If we do so, we find that:

|≠°1|T=TPL

|≠°1|T=T0

ºO(10°64), (7.11)

where we have used the fact that TPL ª 1019 GeV and T0 ª 10°13 GeV today. This
means that the deviation from unity must have been fine-tuned to values ex-
tremely close to zero but yet not zero at times as early as the Planck time.

The horizon problem would be solved if the Hubble radius could have shrank
in the past for a certain amount of time, so to bring closer to each other (and
hence accessible to each other, and causally connected) portions of the Universe
which would have not been causally connected otherwise. This phase needs to
end at some point, so that the Universe starts expanding again as we observe to-
day. Specifically, we require the comoving Hubble radius c/(aH) to shrink. This
would in principle also solve the second problem: In fact the right-hand side of
Eqn. (7.8) is precisely K Rcom

H , which would tend to zero for a shrinking comoving
Hubble radius. Then one would naturally recover≠ °! 1.

Requiring that the the comoving Hubble radius shrinks equals to require:

d
dt

≥ c
aH

¥
= d

dt

≥ c
ȧ

¥
=°cä

ȧ2 < 0, (7.12)

We therefore require that ä > 0, i.e. that the Universe expands accelerating for
a certain lapse of time. Note that this equals to requiring that the physical scale
length ∏ grows faster than the Hubble radius, such that:

d
dt

µ
∏

H°1

∂
> 0. (7.13)
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If this expansion is adiabatic, we can use the Friedmann equations. By looking
at the second Friedmann equation (Riotto, 2002) we see that, in absence of any
cosmological constant, an accelerated expansion is only possible if:

Ωc2 +3p < 0, (7.14)

which means that we need a fluid with negative pressure following the relation:

p <°Ωc2

3
. (7.15)

If we consider the simplest case of a cosmological constant p =°Ωc2 we find the
de Sitter universe. In such a UniverseΩ = const and H = const and the expansion
is therefore exponential:

a / eH t . (7.16)

7.3 Inflation

A possible solution to the problems explained above was proposed by Guth (1981a)
and further developed by (Starobinsky, 1982a; Linde, 1982; Albrecht & Stein-
hardt, 1982; Starobinskǐı, 1979), and goes under the name of inflation. The fluid
needed, characterised by a negative pressure such that it enables expansion, can
be given by a self-interacting scalar field ©, the inflaton, with potential V (©).
Its form is not known exactly but its Lagrangian density comes from the ansatz
(Mukhanov & Winitzki, 2007):

L = 1
2
@µ©@

µ©°V (©), (7.17)

and consequently its action is:

S =
Z

d4x
p°gL =

Z
d4x

p°g
∑

1
2
@µ©@

µ©°V (©)
∏

. (7.18)

The equations of motion can now be obtained by Euler-Lagrange equations:

@µ
±(

p°gL )

±@µ©
°
±(

p°gL )

±©
= 0, (7.19)

where
p°g = a3 is a volume which, multiplied by the Lagrangian density, gives

us back the Lagrangian. By solving we find the equation of motion of the infla-
ton:

©̈+3H©̇° r2©

a2 + dV (©)
d©

= 0. (7.20)

An interesting feature in this equation is the presence of a friction term, 3H©̇,
known as the Hubble friction, and due to the expansion of the Universe, which
affects the scalar field rolling down its potential.
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In order to quantify the requirement given by Eqn. (7.15) in the case of the
inflation, we consider the energy-momentum tensor:

Tµ∫ = @µ©@∫©° gµ∫L (7.21)

whose time-time component is the energy density and whose space-space com-
ponents give the pressure density:

Ωc2 = 1
2
©̇2 +V (©)+ (r©)2

2a2 (7.22)

p = 1
2
©̇2 °V (©)+ (r©)2

6a2 . (7.23)

The terms r© vanish due to homogeneity, and Eqn. (7.15) becomes:

1
2
©̇2 °V (©) <°1

3

µ
1
2
©̇2 °V (©)

∂
, (7.24)

which corresponds to the condition:

©̇2

2
øV (©). (7.25)

In order to have a negative pressure and thus an accelerated expansion of the
Universe, the scalar field’s kinetic energy has to be lower than its potential en-
ergy, meaning that the field © needs to slowly roll down its potential. This also
names this period of the Universe the slow-roll.

7.3.1 Slow-roll conditions

It is useful to use some parameters to describe the slow-roll conditions. In order
to do this we insert the energy density in the Friedmann equation, considering
that in this epoch the inflation energy density dominates over all the other com-
ponents, which will be therefore neglected:

H 2 ' 8ºG
3

∑
1
2
©̇2 +V (©)

∏
' 8ºG

3
V (©). (7.26)

This leads to a new equation of motion:

3H©̇=°dV (©)
d©

. (7.27)

The slow-roll condition in Eqn. (7.25), in addition to the latter equation, lead to
the requirements:

©̇2 øV (©) =) (V 0)2

V
ø H 2, (7.28)

where V 0 = dV (©)/dt , and

©̈ø 3H©̇=)V 00 ø H 2. (7.29)
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We can define the slow-roll parameters, ≤ and ¥, as:

≤=° Ḣ
H 2 = 4ºG

©̇

H 2 = 1
16ºG

µ
V 0

V

∂2

, (7.30)

¥= 1
8ºG

µ
V 00

V

∂
= 1

3
V 00

H 2 , (7.31)

and their combination (Riotto, 2002):

±= ¥°≤=° ©̈

H©̇
. (7.32)

The parameter ≤ is a quantification of the variation of the Hubble parameter over
the period of inflation. Given that:

ȧ
a
= Ḣ +H 2 = (1°≤)H 2, (7.33)

inflation is only possible if ≤ < 1. More in general, slow-roll inflation imposes
the conditions that ≤ ø 1 and ¥ ø 1. Physically, the two slow-roll parameters
¥ and ≤ guarantee respectively that the duration of the inflation is long enough
(i.e. that the the roll is slow enough), and that the pressure is negative enough
(remember that the condition w < 1/3 must hold). During inflation, since the
potential is flat, these parameters remain almost constant, but inflation ends
when the condition ≤< 1 ceases to be true, i.e. when the potential energy of the
inflation is lower than its kinetically energy. When inflation ends, it leaves the
Universe extremely cool and with a very low entropy, which is not what we see.
In order to reconcile the conditions of the Universe just after inflation with a
Universe radiation-dominated, an intermediate process must have taken place.
In this period, dubbed reheating, the energy in© is used for producing particles
at high temperatures.

7.3.2 Solution of the horizon and flatness problems

In order to give a more quantitative reasoning of why the inflation theory solves
the two problems, we consider the inflation as a de-Sitter epoch whose Hubble
size, c/HI , is constant, and whose scale factor increases as:

a = aI eHI (t°tI ), (7.34)

where aI , HI , tI are the scale factor, the Hubble parameter and the time at infla-
tion.

The particle horizon therefore exponentially grows during inflation:

RPH(t ) = a(t )
Zt

tI

cdt 0

a(t 0)
=°caI eHI (t°tI )

HI

£
e°HI (t°tI )§t

tI
' ca(t )

HI
, (7.35)
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and the comoving Hubble radius

RH = c
aHI

= c
HI

e°HI (t°tI ) (7.36)

exponentially shrinks. In order to understand how much the inflation must have
lasted to solve the horizon problem we consider tI and tF to be the time of the
beginning and the end of the inflation epoch. Then it is possible to define the
number of e-foldings N as:

N = ln[HI (tF ° tI )]. (7.37)

By imposing the condition that the present Hubble radius c/H0 must have been
reduced to a value smaller than the Hubble radius at time of inflation:

c
H0

µ
a(tF )
a(0)

∂µ
a(tI )
a(tF )

∂
= c

H0

µ
T0

TF

∂
e°N . c

HI
(7.38)

we obtain:

N & ln
µ

T0

H0

∂
° ln

µ
TF

HI

∂
º 67+ ln

µ
TF

HI

∂
, (7.39)

which gives N & 70.
This automatically solves also the flatness problem, since during inflation:

|≠°1|t=tF

|≠°1|t=tI

=
µ

aI

aF

∂2

= e°2N , (7.40)

since ≠°1 / a°2 given that the Hubble rate is constant during inflation. If we
require |≠° 1|t=tI to be of the order of unity, we see that a period of inflation
lasting longer than N º 70 e-foldings is enough to guarantee that the present
day value of≠0 is unity with a great precision, thus solving the flatness problem.

We have considered here the first and simplest of the so-called single-field
models, which have in common the assumption that only one quantum field
drives the inflation. There is a very wide plethora of other models, including
multi-field models, non-canonical kinetic term models, non-adiabatic vacuum
models which we will not discuss here(for more details see Bartolo et al., 2004).

7.4 Primordial non-Gaussianities

Inflation has received such a wide consensus because not only it solves the prob-
lems of flatness and horizon, but it remarkably solves also the problem of ex-
plaining what generated the inhomogeneities of the Universe in the way we ob-
serve them today. The idea is in fact that the inflaton field underwent vacuum
fluctuations before the inflation. During the inflation time these microscopic
fluctuations were stretched up to the point of exiting the horizon, when they
froze. When the inflation stopped these fluctuations entered again the horizon,
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and hence had the chance to grow once again due to gravitational instability,
yielding to the temperature anisotropies we see in the CMB and forming the
large scale structure we see today (for reviews see Riotto, 2002; Bartolo et al.,
2004; Chen, 2010; Langlois, 2011; Wang, 2013). If we therefore want to learn
about these early fluctuations we must certainly look in the imprints they left
both on CMB and in the large scale structure. In this section what we are inter-
ested in are the statistical properties of these underlying primordial fluctuations.
Most of the inflationary scenarios predict for them small deviations from Gaus-
sianity due to the violation of slow-roll conditions (Allen et al., 1987; Falk et al.,
1992; Gangui et al., 1994; Lesgourgues et al., 1997; Gangui et al., 2002). Other sce-
narios ( for example isocurvature fluctuations or the curvaton mechanism), in-
stead, predict very high departures from Gaussianity (Mollerach, 1990; Linde &
Mukhanov, 1997; Lyth & Wands, 2002). Any kind of non-Gaussianity could have
left signatures in the distributions of CMB anisotropies and of the large scale
structure which could shed light on the physics and the processes characteris-
ing the early Universe and, even more importantly, could help to discriminate
among different inflation scenarios. Primordial non-Gaussian imprints in the
CMB have been extensively studied (as an example, see Komatsu, 2010), whereas
studies on the non-Gaussian signal in the large scale structure have been carried
out, for example, by Desjacques & Seljak (2010a).

Other than the CMB and the LSS, weak lensing as well can be used to probe
and study primordial non-Gaussianities, but with smaller sensitivities (Fedeli
et al., 2011; Jeong et al., 2011a; Marian et al., 2011; Schäfer et al., 2012a).

The core difference between any Gaussian and non-Gaussian distribution
is the fact that a Gaussian distribution is fully described just by its first and
second moments. When dealing with fields such as the temperature field in
the case of the CMB and the density field for the LSS, this corresponds to say-
ing that the second-order correlator, i.e. the correlation function, or its Fourier
pair, the power spectrum are enough to fully describe the statistics of the ob-
servable. In the more general case of a non-Gaussian distribution this property
does not apply, and one must study higher-order correlators of the distribu-
tion of primeval curvature perturbations ≥. The primordial perturbations ≥ can
be related to the Bardeen potential curvature perturbations © (Bardeen, 1980;
Bardeen et al., 1983a) and to the temperature of the CMB by means of:

≥= 5
3
© (7.41)

¢T
T

=°©
3

(7.42)

(see Sachs & Wolfe, 1967). By making the following local ansatz for the potential
(Komatsu & Spergel, 2001a; Okamoto & Hu, 2002):

©(x) = ©L(x)+ fNL
£
©2

L(x)°h©2
L(x)i

§

+ gNL
£
©3

L(x)°3h©2
L(x)i©L(x)

§
+O (©4

L), (7.43)
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where ©L represents Gaussian linear perturbations, we have two parameters
quantifying the amplitudes of the primordial non-Gaussianity: fNL and gNL. By
using this ansatz we can obtain the higher order correlators in Fourier space, i.e.
the three-point function, or bispectrum :

h©(k1)©(k2)©(k3)i= (2º)3±D (k1 +k2 +k3) B©(k1,k2,k3), (7.44)

and the four-point function, or trispectrum :

h©(k1)©(k2)©(k3)©(k4)i= (2º)3±D (k1 +k2 +k3 +k4) T©(k1,k2,k3,k4), (7.45)

where ±D is the Dirac delta function and imposes the condition that the sum of
the wavevectors is zero in order to have non-vanishing bi- and trispectra. This
means that the wavevectors have to form, respectively, a triangle for the bispec-
trum, and a tetrahedron for the trispectrum. Creminelli (2003) and Babich et al.
(2004) showed how different shapes of the triangles can be used to discriminate
between different models for inflation, and paved the way to many analyses of
the shapes of the non-Gaussianities.

Before analysing in more detail the shapes of non-Gaussianities it is worth
quantifying at least by orders of magnitude the expected amplitudes for fNL in
different scenarios: while the case of non-linearity in the inflation or single field
models lead to fNL ªO(10°1) and second order gravity leads to fNL &O (1), cases
such as isocurvature fluctuations, features or curvatons can lead to fNL ¿ 1 (Ko-
matsu et al., 2005). This automatically implies that any measurement of fNL ¿ 1
would disfavour certain models. This statement was made even stronger by Mal-
dacena (2003); Acquaviva et al. (2003) and Creminelli & Zaldarriaga (2004), who
proved that the entire family of inflation models based on a single scalar field
would be ruled out in the case of fNL ¿ 1.

7.4.1 The shape of the non-Gaussianities

The most general classification of the various shapes of the non-Gaussianities
for the bispectrum is the following: squeezed (k1 ' k2 ¿ k3), elongated (k1 =
k2 + k3), folded (k1 = 2k2 = 2k3), isosceles (k2 = k3), equilateral (k1 = k2 = k3).
As mentioned above, different physical models for producing non-Gaussianities
produce signals which peak at specific triangle shapes:

• the squeezed triangles are usually representative for models with multiple light
fields during inflation;

• the equilateral triangles are typical at the peak f bispectra coming from models
with high-derivative interactions;

• the folded triangles are typical for models with non-standard initial condi-
tions.
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The elongated and isosceles triangles represent intermediate cases.
The bispectrum B©(k1,k2,k3) depends on these different shapes of the tri-

angles, and it is convenient to picture the contribution of each shape by plot-
ting the magnitude of the quantity B©(k1,k2,k3)(k2/k1)2(k3/k1)2 as a function
of (k2/k1) and (k3/k1) for a value of k1, given the condition k1 ∏ k2 ∏ k3 (Ko-
matsu, 2010). In this section we are going to focus on the three shapes which are
mostly analysed in the literature: The local, the equilateral and the orthogonal
shapes.

Local form : The local form bispectrum takes its name from the fact that it can
arise from the curvature perturbation ©(x) = ©L(x) + fNL

£
©2

L(x)°h©2
L(x)i

§
, al-

though this is not the only way of producing such a bispectrum. It is given by the
following relation (Gangui et al., 1994; Komatsu & Spergel, 2001a; Verde et al.,
2000a):

B local
© (k1,k2,k3) = 2 f local

NL [P©(k1)P©(k1)+P©(k1)P©(k1)+P©(k1)P©(k1)]

= 2A2 f local
NL

h
kns°4

1 kns°4
2 + (2 perm)

i
, (7.46)

where P© = A/k4°ns is the power spectrum of the potential© and A its normali-
sation factor. If we consider the normalised amplitude B local

© (k2/k1)2(k3/k1)2 we
see that has a peak at the squeezed triangle, i.e. for wavevector magnitudes ar-
ranged as k1 ' k2 ¿ k3.

Equilateral form : The equilateral form, given by Creminelli et al. (2006) is :

B equil
© (k1,k2,k3) = 6A2 f equil

NL

£
£
°2(k1k2k3)2(ns°4)/3

° [(k1k2)ns°4 + (2 perm)]

+ [kns°4
1 k2(ns°4)/3

2 k(ns°4)
3 + (5 perm)] ], (7.47)

This form is an approximation for the bispectrum forms which arise from the
class of scalar fields with non-canonical kinetic terms, and peaks at the equi-
lateral configuration. Local and equilateral forms are almost orthogonal to each
other, allowing for almost independent measurements.

Orthogonal form : The orthogonal form is constructed in such a way to be almost
orthogonal to both the local and equilateral forms (Senatore et al., 2010) and is
given by:

B ortho
© (k1,k2,k3) = 6A2 f ortho

NL

£
£
°8(k1k2k3)2(ns°4)/3

° 3[(k1k2)ns°4 + (2perm)]

+ 3[kns°4
1 k2(ns°4)/3

2 k(ns°4)
3 + (5 perm)] ], (7.48)
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This form arises when specific linear combinations of equilateral shapes are
considered. This would in fact lead to this particular shape, orthogonal to both
local and equilateral shapes. The orthogonal shape has a peak at the equilateral
configuration, and a negative valley along the elongated configurations.

In order to quantitatively complete this picture we also give the relation for
the trispectrum in the case of local non-Gaussianitites:

T©(k1,k2,k3,k4) = 6gNL
£
(k1k2k3)ns°4 + (3 perm)

§

+ 25
18
øNL

£
(k1k2)ns°4[P©(k13)P©(k14)]+ (11 perm)

§
,(7.49)

where ki j ¥ |ki +k j |, which is the term giving rise to another parameter com-
pared to Eqn.(7.43) quantifying the amplitude of the spectrum in Fourier space,
øNL.

The current measures from the Planck mission (Planck Collaboration et al.,
2013b) are:

f local
NL = 2.7±5.8

f equil
NL =°42±75

f ortho
NL =°25±39 (7.50)

at 68% CL. These values therefore appear to be compatible with the absence
of any primordial non-Gaussianity for these shapes. Further constrains on the
trispectrum are also given, although it is specified that the signal of the recon-
structed trispectrum is consistent with zero apart from one large term, which is
anyhow thought not to be of primordial origin. The constraint øNL < 2800 (95%
CL) is therefore given by allowing the signal to be primordial. The amplitude gNL,
instead, has not been constrained by Planck.

7.5 Summary

In this chapter we have reviewed the basics of the theory of inflation and we have
introduced primordial non-Gaussianities. The main content of this chapter can
be summarised as follows:

• Inflation is a theory able to explain at the same time both the level of homo-
geneity and of inhomogeneity of the Universe. In fact, on the one hand t gives a
theoretical framework (an exponential expansion of the Universe at very early
times), able to account for the facts that large portions of the Universe must
have come into causal contact during the early times in order to appreciate
the homogeneity today (horizon problem), and that the departure from unity
of the geometry parameter ≠ must have been finely tuned in the early Uni-
verse to make this parameter be roughly unity today (flatness problem). On
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the other hand, it provides a theory for quantum fluctuations, which would
be the seeds, grown via gravitational instability, of the structures we observe
today.

• Statistically, most inflation scenarios predict a nearly Gaussian distribution
for these primordial fluctuations. Any primordial departure from Gaussainity,
therefore, could have a key role in discriminating between different inflation
scenarios. Primordial non-Gaussianities can be studied by means the higher-
order correlators of the underlying distribution of the fluctuations. In Fourier
space the three- and four-point correlators are the bispectrum and the trispec-
trum. The amplitude of these spectra are parametrized by means of the pa-
rameters fNL, gNL and øNL.

• Concerning the bispectrum, it has been shown that specific shapes of non-
Gaussianities are able to discriminate very well among inflation scenarios.
Different bispectrum forms, in fact, peak at different shape configurations,
each one of which is in turn are suitable for describing certain scenarios. The
shapes described in this chapter are the three types usually studied in the lit-
erature.

• The latter constraints given on the parameters for different shapes come from
the Planck mission, and are reported in Eqn.(7.50). Although appearing com-
patible with absence of non-Gaussianity, these constraints only apply to the
three shapes analysed, which are not the only existing ones.





Chapter 8

EVS: AN APPLICATION TO WEAK

LENSING AND PRIMORDIAL

NON-GAUSSIANITIES

The content of this chapter entirely reproduces the article Capranico et al. (2013).
While the introduction focusses on the theory of EVS and gives the cosmological
background, the analysis we have carried out can be found in Sec. 8.3. A sum-
mary of our results is presented in Sec. 8.4.

8.1 Abstract

Cosmic inflation is a mechanism by which the early Universe underwent a pe-
riod of exponential accelerated expansion and has been invoked in order to
solve the flatness and horizon problems (Guth, 1981b). In addition, it provides a
natural explanation for the seed fluctuations from which the cosmic large-scale
structure grew by gravitational instability (for reviews, see Bartolo et al., 2004;
Wang, 2013; Martin et al., 2013; Lesgourgues, 2013). A very important signature
of inflationary theories are the statistical properties of the perturbations they
cause in the cosmic distribution of matter (Bardeen et al., 1983b; Starobinsky,
1982b). These fluctuations are expected to be almost Gaussian, with small devi-
ations from Gaussianity due to violated slow-roll conditions. The most general
observable of a certain inflationary model is the sequence of polyspectra which
describe the fluctuations in the density field (or in the gravitational potential) in
Fourier-space. Their amplitudes are given by the non-Gaussianity parameters,
and we focus in this work on the lowest order parameters: fNL which charac-
terises the bispectrum and gNL which determine the magnitude of the inflation-
ary trispectrum. In observations of the cosmic microwave background or of the
cosmic large-scale structure one aims at constraining the non-Gaussianity pa-
rameters as well as at measuring the variation of the polyspectra in their depen-
dence on the wave vector configuration. In this way it is possible to distinguish
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different inflationary scenarios.
Currently, the tightest constraints on the lowest order non-Gaussianity pa-

rameters in a non-Gaussianity model of the local type come from the analysis of
the cosmic microwave background by the PLANCK surveyor, who report fNL =
2.7±5.8 for the bispectrum amplitude (Planck Collaboration et al., 2013c,d). Pre-
vious studies with WMAP have found bounds on these parameters to be °7.4£
105 < gNL < 8.2£ 105 and °0.6£ 104 < øNL < 3.3£ 104 (Smidt et al., 2010) and
°5.6£105 < gNL < 6.4£105 (Vielva & Sanz, 2010). Data from the large-scale struc-
ture put bounds on the non-Gaussianity parameters at similar orders of magni-
tude: Desjacques & Seljak (2010b) quote the range °2.5£105 < gNL < 8.2£105.

In this paper we focus on constraining the non-Gaussianity parameters fNL

and gNL in a local model with extreme value statistics, i.e. where the measure-
ment consists in determining the largest (or smallest) weak lensing shear in
apertures of varying size. Because fNL describes the skewness of the distribution
of the weak lensing convergences and gNL the kurtosis, one would expect that
those parameters influence the occurrence of extreme values of the weak lens-
ing convergence. In contrast to the direct estimation of polyspectra our mea-
surement averages over the configuration dependence of the non-Gaussianity
model and is primarily targeted at measuring the non-Gaussianity parameters
themselves rather than at distinguishing configuration dependences. The spe-
cific observable we consider is the weak lensing convergence which has the ad-
vantage of being proportional to the density field. All statistical properties of the
observable, including polyspectra, will be proportional to those of the field to
be investigated. We use the characteristics of the EUCLID weak lensing survey,
which will reach out to redshifts of unity and cover half of the sky.

Extreme value statistics (for the mathematical foundation, please refer to
Gumbel, 1954; Beirlant et al., 2004; Gumbel, 2004) has been applied to a range of
problems in cosmology, most notably in the "pink-elephant"-argument of mas-
sive high-redshift clusters that should not have formed in§CDM cosmologies at
the redshifts they have been observed, and to extreme features in the cosmic mi-
crowave background such as the cold spot (Cruz et al., 2005, 2007; Vielva, 2010).
The common motivation is a reliable description of rare events: Of course with a
sufficient high number of trials one would be able to observe even very unlikely
events in a Gaussian random process, but it is necessary to draw conclusions on
the fundamental random process from the observation of single, unlikely events
(Coles, 2002; Colombi et al., 2011). Extreme value statistics aims to provide such
a description and differs from the measurement of e.g. moments of the random
process in the important respect that it focuses on the asyptotic behaviour of the
random process at large amplitudes instead of the core of the distribution.

In this spirit, clusters of galaxies reflecting extreme values of the underly-
ing density field have been investigated in their power to probe the cosmologi-
cal model (Enqvist et al., 2011; Hotchkiss, 2011; Waizmann et al., 2011, 2012b,a;
Davis et al., 2011), where the samples are mostly resulting from X -ray surveys.
With these samples, statistical tests of §CDM or of non-Gaussian initial condi-
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tions have been carried out (Cayón et al., 2011; Holz & Perlmutter, 2012; Baldi &
Pettorino, 2011; Chongchitnan & Silk, 2012; Mortonson et al., 2011). Apart from
the primary application in cluster catalogues, extreme value statistics has been
used in statistical analysis of the temperature pattern of the cosmic microwave
background (Coles, 1988; Martinez-Gonzalez & Sanz, 1989; Larson & Wandelt,
2005; Hou et al., 2009; Mikelsons et al., 2009) and finally to the strong lensing
signal of galaxy clusters (Waizmann et al., 2012; Redlich et al., 2012; Zitrin et al.,
2009)

The motivation of this paper is the question if it was possible to derive con-
straints on inflationary non-Gaussianities from a very simple lensing experi-
ment: If one averages the lensing signal in patches of size angular size µ and
if one derives the distribution of averaged weak lensing convergences, there will
be a patch with the smallest lensing convergence and one with the largest con-
vergence. If the underlying statistics of the convergence field exhibits non-Gaussianities
from inflation, the occurrence of these extreme values of the lensing conver-
gence will be different from those expected for a Gaussian random field. In this
way, we aim to constrain non-Gaussianities not from the central part of the dis-
tribution by estimating moments but rather from the wings of the distribution
by quantifying the occurence of extreme values. Because the proposed measure-
ment is a one-point statistic, it suffers from averaging over all bi- and trispec-
trum configurations where sensitivity is lost, but we would like to investigate
if the focus on the asymptotic behaviour of the distribution far away from the
mean makes up for this loss. As the non-Gaussianity model we assume the most
basic local non-Gaussianity shape, but it can in principle extended to other types
of inflationary non-Gaussianity or structure formation non-Gaussianity.

After summarising the necessary cosmology background including the lo-
cal model for non-Gaussianities in Sect. 8.2, we introduce the distribution of
weak lensing convergence by means of a Gram-Charlier distribution in Sect. 8.3
and investigate the distribution of extreme values and quantify their sensitivity
on the non-Gaussianity parameters. We summarise and discuss our results in
Sect. 8.4.

We present all computations for a spatially flat wCDM cosmology, with the
specific parameter choices motivated by the recent PLANCK-results (Planck Col-
laboration et al., 2013e):≠m = 0.3, ns = 1,æ8 = 0.8,≠b = 0.04 and H0 = 100hkm/s/Mpc,
with h = 0.7. The dark energy equation of state was set to be w =°0.95. The non-
Gaussianities due to inflation are taken to be of local type and described by the
two non-Gaussianity parameters fNL and gNL. We derive extreme value distribu-
tions for the case of the EUCLID weak lensing survey with a median redshift of
0.9 and a solid angle of ¢≠= 2º (Amara & Réfrégier, 2007; Refregier, 2009).
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8.2 Cosmology

8.2.1 Dark energy cosmologies

In Friedmann-Lemaître cosmologies with zero curvature and the matter density
parameter≠m , the Hubble function H(a) is given by

H 2(a)

H 2
0

= ≠m

a3 + (1°≠m)exp
µ
3
Z1

a
dln a (1+w(a))

∂
, (8.1)

where w(a) is the dark energy equation of state describing the ratio between
pressure and density of the dark energy fluid. Comoving distances¬ can be com-
puted from the scale factor a by integration,

¬=
Z1

a
da

c
a2H(a)

, (8.2)

where the Hubble distance ¬H = c/H0 can be identified as the natural cosmo-
logical distance scale.

8.2.2 CDM power spectrum

The linear CDM density power spectrum P (k) describes Gaussian fluctuations
of the CDM-density field ± in Fourier space, h±(k1)±(k2)i= (2º)3±D (k1+k2)P (k1)
and this variance is diagonal if the fluctuation properties are homogeneous. In-
flationary models suggest

P (k) / kns T 2(k), (8.3)

with the transfer function T (k) and the spectral index ns close to unity. T (k)
describes the passage of modes through horizon re-entry and is approximately
given by Bardeen et al. (1986),

T (q) = ln(1+2.34q)
2.34q

°
1+3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4¢° 1

4 , (8.4)

if the matter density is low. In Eqn. (8.4), the wave vector q = k/° is substituted
in units of the shape parameter ° = ≠mh. A nonzero baryon density causes a
small correction to ° (Sugiyama, 1995),

°=≠mh exp

√

°≠b

√

1+
p

2h
≠m

!!

. (8.5)

The normalisation of the spectrum P (k) is taken to be the varianceæ2
8 on the

scale R = 8 Mpc/h,

æ2
R =

Z
dk
2º2 k2P (k)W 2(kR) (8.6)

with a Fourier transformed spherical top hat filter function, W (x) = 3 j1(x)/x.
j`(x) is the spherical Bessel function of the first kind of order ` (Abramowitz &
Stegun, 1972b).
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Because the focus of this paper is on large-scale, inflationary non-Gaussianities,
the time-evolution of all polyspectra can be predicted from linear structure for-
mation, where ±(x, a) = D+(a)±(x, a = 1). The linear growth function D+(a) is the
growing-mode solution to the growth equation (Turner & White, 1997; Wang &
Steinhardt, 1998; Linder & Jenkins, 2003),

d2D+(a)
da2 + 1

a

µ
3+ dln H

dln a

∂
dD+(a)

da
= 3

2a2≠m(a)D+(a). (8.7)

which is applicable as long as non-linearities in the structure formation equa-
tions are weak. From the spectrum of the CDM density fluctuations one can
construction the spectrum P©(k) of the gravitational potential, h©(k1)©(k2)i =
(2º)3±D (k1 +k2) P©(k1),

P©(k) =
√

3≠m

2¬2
H

!2

kns°4 T (k)2 (8.8)

by application of the comoving Poisson equation ¢© = 3≠m/(2¬2
H )±. We focus

on large angular scales, where most of the lensing signal is generated by linear
structures, and extend the CDM-spectrum to nonlinear scales in some cases, by
employing a nonlinear transfer function derived by Smith et al. (2003).

8.2.3 Primordial non-Gaussianities

Non-Gaussianities of the local type are introduced as quadratic and cubic per-
turbations of the potential at a given point x (Gangui, 1994; Verde et al., 2000b;
Komatsu & Spergel, 2001b),

©(x) !©(x)+ fNL
°
©2(x)°h©2i

¢
+ gNL

°
©3(x)°3h©2i©(x)

¢
, (8.9)

with two parameters fNL and gNL, which lead in Fourier-space to a bispectrum:

h©(k1)©(k2)©(k3)i= (2º)3±D (k1 +k2 +k3) B©(k1,k2,k3), (8.10)

B©(k1,k2,k3) = 2 fNL

√
3≠m

2¬2
H

!3 °
(k1k2)ns°4 + (k2k3)ns°4 + (k1k3)ns°4¢£

£ T (k1)T (k2)T (k3), (8.11)

and a corresponding trispectrum

h©(k1)©(k2)©(k3)©(k4)i= (2º)3±D (k1 +k2 +k3 +k4) T©(k1,k2,k3,k4), (8.12)

T©(k1,k2,k3,k4) = 6gNL

√
3≠m

2¬2
H

!4

£

£
°
(k1k2k3)ns°4 + (k1k2k4)ns°4 + (k1k3k4)ns°4 + (k2k3k4)ns°4¢£

£ T (k1)T (k2)T (k3)T (k4). (8.13)

The normalisation of each mode©(k) is set to be consistent with the normalisa-
tion æ8 of the CDM-spectrum P (k).
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8.2.4 Weak gravitational lensing

Weak gravitational lensing refers to the shape distortions of light bundles in
their propagation through the tidal fields of the cosmic large-scale structure (see
Bartelmann & Schneider, 2001, as a review). The lensing potential √ is a projec-
tion of the gravitational potential © along the line of sight, √ = 2

R
d¬W√(¬)©

with the weighting function W√(¬),

W√(¬) = D+(a)
a

G(¬)
¬

. (8.14)

G(¬) is the lensing-efficiency weighted galaxy redshift distribution,

G(¬) =
Z¬H

¬
d¬0 p(¬0)

dz
d¬0

µ
1° ¬

¬0

∂
(8.15)

with dz/d¬0 = H(¬0)/c. For the redshift distribution p(z)dz we choose a standard
parameterisation,

p(z)dz = p0

µ
z
z0

∂2

exp

√

°
µ

z
z0

∂Ø!

dz with
1

p0
= z0

Ø
°

µ
3
Ø

∂
, . (8.16)

The lensing observables follow from the lensing potential √ by taking second
derivatives √0 = @2√/@µi@µ j and contracting this tensor with the Pauli-matrices
æÆ (Abramowitz & Stegun, 1972b). Specifically, the weak lensing convergence ∑
is given by∑= tr(√0æ0)/2 =¢√/2 and the two shear components∞+ = tr(√0æ1)/2,
∞£ = tr(√0æ3)/2. Although the shear is the primary observable in weak lensing,
we carry out our statistical investigations with the convergence as it has identical
statistical properties and, being scalar, is easier to handle. For EUCLID, z0 ' 0.64
such that the median redshift is 0.9.

8.2.5 Polyspectra of the weak lensing convergence

With the relation¢√= 2∑ is is straightforward to compute the angular spectrum
C∑(`) of the weak lensing convergence from the spectrum P©(k) of the gravita-
tional potential,

C∑(`) = `4
Z¬H

0

d¬
¬2 W 2

√(¬)P©(k) (8.17)

by application of the Limber-equation (Limber, 1954). Generalisation of the Limber-
projection and repeated substitution of ∑ = `2√/2 yields for the convergence
bispectrum B∑(L1,L2,L3),

B∑(L1,L2,L3) = (`1`2`3)2
Z¬H

0

d¬
¬4 W 3

√(¬)B©(k1,k2,k3) (8.18)

and finally for the convergence trispectrum T∑(L1,L2,L3,L4),

T∑(L1,L2,L3,L4) = (`1`2`3`4)2
Z¬H

0

d¬
¬6 W 4

√(¬)T©(k1,k2,k3,k4). (8.19)
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With these polyspectra it is then possible to derive cumulants of the conver-
gence density field which can be smoothed on the angular scale µ by a function
W (`µ), which we take to be Gaussian,

W (`µ) = exp
µ
° (`µ)2

2

∂
. (8.20)

Consequently, the variance æ2 of the smoothed convergence field reads

∑2 =æ2 =
Z
`d`
2º

W (`µ)2 C∑(`), (8.21)

which is equal to the second cumulant ∑2 of the distribution p(∑)d∑. The third
cumulant∑3 then follows from integration of the smoothed bispectrum (Bernardeau
et al., 2002b),

∑3 =
Z

d2`1

(2º)2 W (`1µ)
Z

d2`2

(2º)2 W (`2µ)
Z

d2`3

(2º)2 W (`3µ) B∑(L1,L2,L3), (8.22)

and lastly, the fourth cumulant ∑4 can be obtained in complete analogy with

∑4 =
Z

d2`1

(2º)2 W (`1µ)
Z

d2`2

(2º)2 W (`2µ)
Z

d2`3

(2º)2 W (`3µ)
Z

d2`4

(2º)2 W (`4µ)T∑(L1,L2,L3,L4).

(8.23)
The Gaussian cumulant ∑2 = æ2, and the two non-Gaussian contributions

∑3/ fNL and ∑4/gNL are depicted in Fig. 8.1 as a function of angular scale µ. Quite
generally, the two non-Gaussian cumulants will be proportional to the non-Gaussianity
parameters fNL and gNL, and all cumulants are decreasing with smoothing scale,
because the fluctuations are wiped out and the cumulants as an integrated mea-
sure of the fluctuation amplitude decrease. As emphasised by Jeong et al. (2011b),
the non-Gaussianity in the observable is weakened due to the central limit the-
orem because in the line of sight integration many non-Gaussian values for the
gravitaitonal potential are added that yield an approximately Gaussian result.

The cumulant ∑4 is very small for øNL-type non-Gaussianity, about three or-
ders of magnitude less relative to that generated by gNL, which is the reason why
we do not include it in the subsequent calculations. The reason of this behaviour
derives from the fact that the weigthing functions W (`iµ) downweight contribu-
tions from large multipoles `i . The integrations in Eqns. (8.22) and (8.23) needed
for the cumulants ∑3 and ∑4 are carried out in polar coordinates with a Monte-
Carlo scheme (specifically, with the CUBA-library by Hahn, 2005, who provides a
range of adaptive Monte-Carlo integration algorithms), which reduces the com-
putational complexity considerably.

8.3 Extreme value statistics

8.3.1 Gram-Charlier series

If a Gaussian distribution with zero mean and variance æ2 = ∑2 is weakly per-
turbed by the presence of a non-vanishing third and fourth cumulant ∑3 and
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Figure 8.1: Cumulants ∑2, ∑3/ fNL and ∑4/gNL as a function of angular scale µ for
a Gaussian smoothing function W (`µ).
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∑4, respectively, the distribution p(∑)d∑ can be approximated with the Gram-
Charlier-series (see Wallace, 1958; Greenwood & Durand, 1955; Durand & Green-
wood, 1957; Colombi, 1994; Juszkiewicz et al., 1995; Bernardeau et al., 2002b,
who in addition quantify the limits of applicability of the expansion),

p(∑)d∑= 1
p

2ºæ2
exp

µ
° ∑2

2æ2

∂
£

h
1+ ∑3

3!æ3 H3

≥∑
æ

¥
+ ∑4

4!æ4 H4

≥∑
æ

¥i
d∑ (8.24)

with the argument x = ∑/æ of the Hermite polynomials Hn(x), which can be
computed by n-fold differentiation of a Gaussian,

Hn

≥∑
æ

¥
= (°æ)n exp

µ
∑2

2æ2

∂
dn

d∑n exp
µ
° ∑2

2æ2

∂
. (8.25)

It is worth noting that the perturbation of p(∑)d∑ with H3 and H4 do not change
the mean and the variance. Specifically, the Hermite-polynomials needed read
(Abramowitz & Stegun, 1972b):

H1(x) = x, H2(x) = x2 °1,

H3(x) = x3 °3x, H4(x) = x4 °6x2 +3,

H5(x) = x5 °10x3 +15x. (8.26)

By substituting Eqn. (8.25) and integrating by parts the cumulative function P (∑)
of the Gram-Charlier-distribution p(∑)d∑ can be written down analytically,
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(8.27)
where the cumulative function©(∑/æ) of the Gaussian distribution is expressed
in terms of the error function erf(∑/æ),
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, (8.28)

as defined by Abramowitz & Stegun (1972b). By using the derivative relation

d
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æ

¥
(8.29)

of the Hermite polynomials Hn(x), the derivative of the Gram-Charlier distribu-
tion takes the compact analytical form,
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The moment generating function M(k) can be computed analytically as well,

M(k) =
Z

d∑ exp(k∑)p(∑) = exp
µ
æ2k2

2

∂
£

h
1+ ∑3

3!
k3 + ∑4

4!
k4

i
, (8.31)
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from which the moments of order n can be obtained by n-fold differentiation
and setting k to zero. We would like to add that the Gram-Charlier expansion in
Eqn. (8.24) is only applicable for weak non-Gaussianities in which ∑3 ø æ3 and
∑4 øæ4, because otherwise the Hermite-polynomials could cause negative val-
ues for p(∑)d∑. The regime of weak non-Gaussianity in the weak lensing signal
would be left if fNL

>ª 104 and gNL
>ª 108, depending on angular scale.

8.3.2 Number of samples

We compute an estimate of the number N of samples from the correlation func-
tion C∑(Ø) of the convergence field ∑ that has been smoothed on the scale µ,

C∑(Ø) =
Z
`d`
2º

W (`µ)2C∑(`) J0(`Ø), (8.32)

which is depicted in Fig. 8.2 for a range of smoothing scales and for a Gaussian
window function W (`µ) = exp(°(`µ)/2). The correlation function allows us to
define a correlation length Ø at which the value of C∑(Ø) has dropped to a frac-
tion exp(°1) of its value at zero lag, C∑(Ø= 0) =æ2 = ∑2. The number of samples
N can then be estimated with the relation N £ºØ2 = 4º fsky, i.e. the number
of patches of area ºØ2 that could be fitted in the survey solid angle. In this ap-
proximated picture, the smoothed random field is taken to assume independent
values ∑ in patches of sizeØ. The number of available samples N as a function of
smoothing scale µ is given in Fig. 8.3, where we consider the case of the EUCLID
mission with the sky fraction fsky = 1/2: N drops from ' 4£104 if there is hardly
any smoothing at µ = 1 arcmin to a few hundred if a strong smoothing on the
scale µ = 100 arcmin is applied.

We choose the smoothing scale µ = 10 arcmin for the subsequent analysis
in order to have sufficiently interesting sample sizes while avoiding a possible
strong contamination from non-Gaussianities that evolve in nonlinear structure
formation. Fig. 10 contained in Appendix A compares smoothed convergence
spectra resulting from linear and nonlinear CDM-spectra and we found a con-
tamination of the variance æ2 amounting to ' 7% at µ = 10 arcmin, compared
to ' 1% at µ = 30 arcmin and ' 18% at µ = 3 arcmin.

We would like to point out that in drawing extreme values it would be incor-
rect to generate a vector of N random deviates for ∑ and identify in this vector
the largest and smallest sample. Instead, one needs to carry out the numerical
experiment for finding the largest and the smallest sample separately. The rea-
son for this is the fact that samples for extreme values are compared to each
other for finding the extrema, and for this process N samples are needed, which
must not be reused as would be the case in the first approach: Each time a new
value is drawn, it must be given the chance (and hence probability) of being
larger than the current maximum but at the same time smaller than the current
minimum. Therefore, every time a new value is drawn, the comparison with the
current largest value and the comparison with the smallest one must be separate
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processes. The importance of this separation can be clearly seen when consid-
ering the very first value which is drawn, since this value is at the same time the
largest and the smallest one. This actually also reduces the effective number of
samples by 1.
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Figure 8.2: The angular correlation function C∑(Ø) is shown as a function of
separation angle Ø (black solid line) and for a range of smoothing scales, µ =
1,3,10,30,100 arcmin, for a Gaussian filter.

8.3.3 Sampling from the Gram-Charlier distribution

With the analytical form Eqn. (8.27) of the cumulative distribution P (∑) it is pos-
sible to sample from the Gram-Charlier-distribution p(∑)d∑ by using its invert-
ibility: From a sample y of the uniform distribution from the unit interval one
can obtain a sample of ∑ by setting ∑ = P°1(y). This inverse always exists be-
cause P (∑) as an integral of a positive function is monotonically increasing and
therefore invertible. Likewise, samples from the extreme value distributions can
be generated by drawing N random numbers from the uniform distribution, and
by mapping the largest (and the smallest) of those samples onto ∑. Because the
cumulative distribution P (∑) is monotonic, the largest sample of y will be con-
verted to the largest value in ∑, and likewise the smallest sample of y will be
the smallest ∑-value. This approach has advantages over direct sampling from
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the Gram-Charlier distribution and finding the extrema, because the inversion
y ! ∑ has to be carried out only once.

8.3.4 Extreme value distributions

The reasoning behind extreme value distributions is very instructive (Gumbel,
1954, 2004): The cumulative distribution P (∑) gives the probability that a sam-
ple is drawn with a value < ∑, and consequently P (∑)N indicates the probability
that N independent samples are all smaller than ∑. The probability of the com-
plementary event, i.e. that at least a single one of the samples is larger than ∑

would then be given by P+(∑) = 1°P (∑)N . Differentiation yields the distribution
p+(∑)d∑ of the maximum values drawn from p(∑)d∑ in N trials:

p+(∑) = d
d∑

P+(∑) = N P (∑)N°1p(∑), (8.33)

which can be computed analytically with Eqns. (8.24) and (8.27). The argumen-
tation for the smallest samples proceeds in complete analogy: Again, the cumu-
lative distribution 1°P (∑) states the probability that a sample is > ∑, and the
probability that N independent samples are all larger than ∑ would be given by
(1°P (∑))N . The complementary case of a single sample being smaller than ∑ is
computed with P°(∑) = 1° (1°P (∑))N , which can be differentiated to get the
extreme value distribution p°(∑)d∑ of the minimum obtained in N draws,

p°(∑) = d
d∑

P°(∑) = N (1°P (∑))N°1p(∑) (8.34)

By the derivation of the extreme value distribution p±(∑)d∑ as the N -fold expo-
nentiation of the cumulative function P (∑) the distribution acquires naturally a
strong sensitivity on the asymptotic behaviour of the distribution p(∑)d∑. In our
case, the distribution will be influenced by the presence of a non-vanishing third
and fourth cumulant are sourced by the three lowest-order inflationary non-
Gaussianity parameters fNL and gNL. Local non-Gaussianity from the øNL-term
influences ∑4 only weakly and will be neglected in the analysis.

The Gram-Charlier distribution p(∑)d∑ along with the two extreme value
distributions p±(∑)d∑ are shown for fNL = 30 and for µ = 10 arcmin (correspond-
ing to N = 10597 on EUCLID’s survey cone) in Fig. 8.4. While there is a very
small asymmetry in the distribution p(∑)d∑ of the convergences themselves,
the skewness introduced by fNL gives rise to a much larger asymmetry in the
extreme value distributions p±(∑)d∑. Positive fNL skew the distribution in the
direction of positive values, making large maxima more likely and large minima
less likely. The samples for the Gram-Charlier distribution and the direct sam-
pling of the extreme value distributions corresponds very well to the analytical
expressions. Even without the influence of non-Gaussianities one sees that val-
ues as large as ∑ = 0.012 are the most likely to be expected for the sample size,
corresponding to random events at a distance of ' 3.4æ away from the mean
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at zero. Extreme value of that magnitude are consistent with the fact that with
N ' 104 samples it is possible to probe the wings of the Gaussian distribution at
probabilities of erfc(3.4/

p
2) ' 6£10°4.

Fig. 8.5 shows the Gram-Charlier distribution p(∑)d∑ with the two corre-
sponding extreme value distributions p±(∑)d∑ with gNL = 3£105 and on an an-
gular scale µ = 10 arcmin. Introducing a positive kurtosis into the distribution
is difficult to see in the distribution itself, but makes large extremes much more
likely. Overall, the sensitivity of the extreme values to a non-Gaussian kurtosis is
much weaker compared to that of a non-Gaussian skewness, and there is a very
good correspondence between the sampled distributions and the analytical ex-
pressions.

8.3.5 Posterior statistics of the Gram-Charlier distribution

In this section we investigate the properties of the extreme value distributions
p±(∑)d∑ in more detail by deriving its average, its most likely value and its me-
dian and by relating its first moments to the standard parameters of the Gumbel
distribution. We focus on particular on the position of the extreme value distri-
bution as a function of smoothing µ which influences both the magnitudes of
the cumulants ∑n as well as the number of samples N , which is the dominating
quantity. As seen in the two previous plots, the extreme value statistics gener-
ates a much stronger difference between extreme values from small differences
in the parent distributions.

The average ∑̄± of the extreme value distribution p±(∑)d∑ is given by

∑̄± =
Z

d∑∑p±(∑). (8.35)

The most likely value ∑̂± follows from solving:

d
d∑

p±(∑) = 0, (8.36)

where the analytical form eqn. (8.30) of the derivative dp(∑)/d∑ is particularly
useful. Likewise, the median ∑̃± can be computed by solving

P±(∑) = 1
2

. (8.37)

Figs. 8.6 and 8.7 give an impression of how fast the extreme value distribu-
tion shifts away from the parent distribution if the smoothing scale µ is varied,
due to changes in the cumulants ∑n and the number of available samples N ,
the latter being the driving factor, as mentioned previously. As already apparent
from Figs. 8.4 and 8.5, a nonzero positive fNL skews the distribution and shifts
the maximum distribution p+(∑)d∑ towards larger values and the minimum dis-
tribution p°(∑d∑) towards less negative values. Non-zero gNL causes larger ab-
solute values for both p+(∑)d∑ and p°(∑)d∑. As expected for a unimodal distri-
bution, the means ∑̄±, the most likely values ∑̂± and the median values ∑̃± show
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Figure 8.4: Gram-Charlier distribution p(∑)d∑ and the two extreme value distri-
butions p±(∑)d∑ with the non-Gaussianity parameters fNL = 30 and gNL = 0 on
the angular scale µ = 10 arcmin, with a yield of N = 10597 samples. Addition-
ally, we show show samples from the Gram-Charlier distribution p(∑)d∑ includ-
ing Poissonian errors and the two extreme value distributions p±(∑)d∑ for the
Gaussian reference model. The inset figure shows the ratio of the extreme value
distributions p+(∑)d∑ between the Gaussian and the non-Gaussian model, with
varying ∑ along with lines marking the ratios exp(±1/2) indicating an equivalent
1æ change in likelihood.
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Figure 8.5: Gram-Charlier distribution p(∑)d∑ and the two extreme value distri-
butions p±(∑)d∑ with the non-Gaussianity parameters gNL = 3£105 and fNL = 0
on the angular scale µ = 10 arcmin, yielding N = 10597 samples. Additionally,
we show show samples from the Gram-Charlier distribution p(∑)d∑ including
Poissonian errors and the two extreme value distributions p±(∑)d∑ for the Gaus-
sian reference model. The inset gives the ratio between the extreme value dis-
tributions p+(∑)d∑ for the Gaussian and the non-Gaussian parent distribution
p(∑)d∑, with lines indicating the ratios exp(±1/2), which corresponds to a 1æ
change in likelihood.
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Figure 8.6: The mean value ∑̄±, the most likely value ∑̂± and the median ∑̃± of
the extreme value distribution p±(∑)d∑ for a non-Gaussian model with fNL = 30
and gNL = 0 in comparison to a Gaussian model, as a function of angular scale
µ.
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Figure 8.7: The median value ∑̄±, the most likely value ∑̂± and the median ∑̃±
of the extreme value distribution p±(∑)d∑ for a non-Gaussian model with gNL =
3£105 and fNL = 0 in comparison to a Gaussian model, as a function of angular
smoothing scale µ.
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a very similar behaviour. In both cases, the position of the extreme value distri-
bution tends towards zero with increasing smoothing scale µ, which reduces the
sample number N as well as the numerical value of all cumulants.

8.3.6 Relation to the Gumbel-distribution

The parameters µ and Ø of the standard Gumbel distribution can be derived
from the mean and the variance of p±(∑)d∑,

Ø2º2

6
=

Z
d∑∑2p±(∑) and µ+∞Ø=

Z
d∑∑p±(∑). (8.38)

with the Euler-Mascheroni-constant,∞' 0.57721 (Abramowitz & Stegun, 1972b).
One naturally recovers the shape of the Gumbel distribution in the limit of large
N which can be seen from the cumulative distribution P+(∑) = P N (∑) = exp(N lnP (∑)) =
exp(N ln(1° (1°P (∑)))) ' exp(°N (1°P (∑))) applying a Taylor expansion of the
logarithm in the last step. Substituting the Gaussian distribution p(∑)/∑ as a ap-
proximation for 1°P (∑) for large ∑ one obtains the Gumbel distribution P+(∑) '
exp(°N /∑ exp(°∑2/(2æ2))) (Gumbel, 2004).

Fig. 8.8 illustrates the variation of the two parameters µ and Ø with angular
scale if the Gaussian distribution is approximated with an extreme value distri-
bution of the Gumbel-shape. Clearly, the position of the mean value distribution
described by µ decreases if the sample number and the variance of the parent
distribution decrease, and the same argument applies to the width of the ex-
treme value distribution. Because the perturbation with Hermite polynomials
in the Gram-Charlier distribution does not introduce a different asymptotic be-
haviour than that of a Gaussian distribution, the extreme value distribution is of
approximate Gumbel-shape and weak non-Gaussianities do not affect the gen-
eral shape of the extreme value distribution.

8.3.7 Inference from extreme values

Although extreme value statistics seems to be applicable in situations where
models are excluded because they might be implausible in generating a certain
observed extreme value, they can in fact it can be used for parameter inference,
e.g. for the non-Gaussianity parameters fNL and gNL: When observing a certain
extreme value ∑, one can consider the distribution p±(∑| fNL) with its depen-
dence on the parameter set fNL as a likelihood, and compare different likeli-
hoods by their ratio r ,

r (∑, fNL) = p±(∑| fNL)
p±(∑| fNL = 0)

or r (∑, gNL) = p±(∑|gNL)
p±(∑|gNL = 0)

, (8.39)

which, according to the Neyman-Pearson lemma, is the most effective test for
distinguishing the likelihoods that certain parameter choices provide an expla-
nation of the data, i.e. the observed extreme value ∑ in our case. The likelihood
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Figure 8.8: Gumbel parameters µ and Ø for the extreme value distributions
p±(∑)d∑ resulting from a Gaussian parent distribution p(∑)d∑, as a function of
angular scale µ.
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Figure 8.9: Likelihood ratios r for varying fNL (green line) and gNL (blue line)
evaluated at the most likely maximum value obtained in the Gaussian reference
model with fNL = gNL = 0. The angular smoothing scale is set to 10 arcmin, re-
sulting in N = 10597 samples. The horizontal lines indicate confidence levels
corresponding to næ, n = 1,2,3.

ratios r ( fNL) and r (gNL) in our example would quantify the plausibility of a cos-
mological model with nonzero non-Gaussianities fNL or gNL relative to a purely
Gaussian fiducial model in providing an explanation to an observed extreme
value.

The insets in Figs. 8.4 and 8.5 show the likelihood ratios r as a function of ∑
between the extreme value distributions from the non-Gaussian and the Gaus-
sian model. For weak non-Gaussianities, the likelihood ratio r as a function of
∑ assumes values close to unity if the extreme sample is close to the most likely
sample for a particular Gram-Charlier-distribution but would assumes values
differing significantly from one if the sample is much larger or smaller than the
most likely value.

Fig. 8.9 shows the likelihood ratios r as a function of either fNL or gNL if the
reference model is Gaussian with fNL = gNL = 0. We choose to evaluate the likeli-
hood ratio for a value of∑ that occurs in the random experiment with the highest
probability, i.e. the most likely value ∑̂ derived with Eqn. (8.36) for p+(∑)d∑. We



160 EVS: WEAK LENSING AND PRIMORDIAL NON-GAUSSIANITIES

focus on the maximum value of the convergence ∑̂+ which can be computed an-
alytically for the Gram-Charlier-distribution. The choice of ∑̂± for estimating the
width of the likelihood corresponds to the average h¬2i of the ¬2-functional in
conventional fits for unbiased models. In this sense, we are attempting to carry
out a fit with a single measurement and estimate the precision of the parameter
inference from that single measurement. Fig. 8.9 suggests constraints of the or-
der ¢ fNL ' 102 and ¢gNL ' 105 from extreme value statistics, i.e. an observation
of the single extreme value for such a non-Gaussianity would be incompatible
with a Gaussian parent distribution.

We conclude similarly to Mikelsons et al. (2009); Chongchitnan & Silk (2012)
that the extreme values are not competitive in their sensitivity to weak non-
Gaussianities, at least for typical extrema, even though the simplicity of the mea-
surement could be attractive. While extreme values of the lensing convergence
might provide a consistency check for constraints on fNL, their very weak sensi-
tivity on gNL makes it doubtful if meaningful constraints on primordial trispec-
tra can be derived from extreme value statistics, even less so for øNL-type non-
Gaussianity. By running a direct estimate of the primordial bispectrum in a non-
tomographic setup very similar constraints on fNL of ª 102 are within reach with
EUCLID (Schäfer et al., 2012b), and corresponding constraints on gNL are of the
order of ª 105, while these values can be improved substantially by lensing to-
mography. In comparison, large-scale structure probes other than lensing are
able to provide constraints close to order unity on fNL, likewise the cosmic mi-
crowave background.

8.4 Summary

Subject of this paper is the extreme value statistics of the weak lensing conver-
gence in the presence of primordial inflationary non-Gaussianities. We would
like to answer the question if the most extreme values of the weak lensing con-
vergence averaged in apertures of a certain angular size is indicative of the non-
Gaussianity parameters fNL and gNL in a basic local non-Gaussianity model.

1. For this purpose, we perturb a Gaussian distribution for the lensing con-
vergence with Hermite polynomials whose amplitudes are the cumulants
of third and fourth order, i.e. with a Gram-Charlier series. These two cu-
mulants are proportional to the parameters fNL and gNL and are com-
puted from the local non-Gaussianity bi- and trispectra in a configuration
space integration for which we use a very efficient adaptive Monte-Carlo
integration. For investigating the dependence on angular scale, we intro-
duce a Gaussian smoothing into the polyspectra and we find all cumulants
to be decreasing functions with smoothign scale. We made sure that the
smoothing is sufficiently strong such that small-scale structure formation
non-Gaussianities have a small impact on the cumulants. The øNL-term
provides a much smaller contribution to the weak lensing trispectrum in
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comparison to the gNL-part and for that reason we neglect it in our inves-
tigation.

2. The Gram-Charlier distribution has the convenient property of analytical
expressions for the cumulative distribution, the derivative of the distribu-
tion and the moment-generating function. We provide analytical expres-
sions for the extreme value distributions for drawing N samples, which
alleviates the usage of the generic Gumbel-distribution which would be
recovered in the limit of large N . In EUCLID’s weak lensing survey one
can expect individual extreme values of the weak lensing convergence of
a percent on the scale µ = 10 arcmin. If Gaussian statistics is assumed, the
most likely extreme value differs from the mean by ' 3.4æ.

3. We propose an efficient sampling scheme for drawing Gram-Charlier dis-
tributed random numbers based on drawing uniformly distributed num-
bers from the unit interval and determining the extremes of this distri-
bution before mapping it onto the weak lensing convergence with the in-
verse of the cumulative distribution P (∑). We verified the correspondence
between analytical results and samples from the extreme value distribu-
tion and found excellent agreement. The number of samples is estimated
from the correlation length of the random field, where we make estimate
the correlation length of the field by requiring that the correlation func-
tion has dropped to a fraction of exp(°1) from its value at zero lag and by
tiling the survey area with circular patches of this size.

4. We investigated the sensitivity of extreme value distributions on constrain-
ing inflationary non-Gaussianity parameters. While non-Gaussianities change
the parent distribution only weakly, the difference between a non-Gaussian
and a Gaussian model is amplified in the extreme value distribution.

5. We characterised the extreme value distribution and related it to the generic
shape of the Gumbel-distribution, which is always recovered in the case
of large sample numbers for a unrestricted random process. The mean
value, the most likely value and the median of the extreme value distribu-
tion reflect the non-Gaussianity in the parent distribution and decrease
with stronger smoothing because of two reasons: firstly, the cumulants
decrease in value of a stronger smoothing is applied, and secondly, the
number of available samples decreases because the correlation length of
the convergence field increases.

6. By considering the likelihood ratio between the hypothesis that a non-
Gaussian distribution provides and explanation of an extreme value com-
pared to the null-hypothesis of a Gaussian parent distribution we show
that individual extreme values can provide constraints on fNL of the order
102 and on gNL of the order 105. One can expect a significant improvement
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in these constraints if the sequence of the nth largest extrema is consid-
ered, similarly to Waizmann et al. (2012b) for the observation of massive
clusters of galaxies. Due to the smallness of the contribution of the øNL-
term to the fourth cumulant ∑4 we did not derive a limit on øNL.

In summary we would like to point out the simplicity of the statistical infer-
ence from weak lensing extreme values. We are in the process of extending our
studies for the related case of structure formation non-Gaussianities, where an
effective description of the convergence field with the lognormal distribution is
applicable, and to the case of non-zero covariances between individual samples
(as an application of the formalism by Bertin & Clusel, 2006).



Conclusions

Cornerstone of this thesis is the weak lensing, a statistical tool which has be-
come, in the last two decades, of paramount importance, mostly due to its abil-
ity of providing a direct measurement of the mass distribution without any need
of invoking secondary intermediate assumptions such as the link between bary-
onic and dark matter nor between brightness and mass.

Objects of this thesis are two analyses departing from the different consider-
ations on the weak lensing. On one side measurements of weak lensing are ham-
pered by the contamination induced by intrinsic alignments (IA), physical phe-
nomenon able to mimic the weak lensing signal by producing correlations be-
tween shapes of close-by galaxies due to similar conditions intervening in their
formation processes. On the other weak lensing is expected to inherit the statis-
tical properties of the density field to it associated, and therefore any departure
from the initial Gaussian distribution of the primordial fluctuations throughout
the history of the Universe must also be imprinted in the consequent weak lens-
ing convergence distribution.

Intrinsic Alignments: The study of intrinsic alignments appears nowadays to stand
on two complementary aspects, and to be necessary and compelling at the same
time. On the one hand, in fact, it appears fundamental to approach to a better
understanding of IA in the context of weak lensing, because we face an epoch
of extraordinary increasingly detailed measurements, which are able to provide
stringent constraints on parameters and hence ask for more precise modelling
from the theoretical side. On the other, intrinsic alignments contain a wealth of
encoded information that could possibly lead us to a better understanding of
the physics of galaxy and structure formation. In this direction possibilities of
retrieving the potential field and hence reconstructing the matter distribution
appear to be interesting and important goals which must be supported, again,
by a thorough theoretical framework.

A great deal of effort is being put right now by the scientific community in
studying possible and viable ways to suppress of intrinsic alignments regardless
of the information they might encode in order to cleanse the spurious signal for
weak lensing. This effort is mostly concentrated on decontaminating the shear
signal from the GI alignments, whereas the II contribution to the ellipticity cor-
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relation seems to be more easy to discriminate in general, and even more in
upcoming surveys, where photometric redshifts allow to recognise neighbour-
ing pairs of galaxies, which can then be simply discarded from the analysis. Of
course this procedure increases the shot noise by decreasing the average num-
ber of galaxies.

Our analysis, in this sense, stands in the crossroads between the two basic
approaches used in literature. It is, in fact, subordinated to weak lensing, but at
the same time it preserves a rigorous physical approach, which is often moved
to the background in other studies of IA applied to weak lensing, in favour of
simpler descriptions.

In this work we have focused on intrinsic alignments of II type for late-type
galaxies applied to upcoming surveys such as EUCLID. We have modelled the
IA by means of the ellipticity spectra C ≤

E (`) and C ≤
B (`) by using two forms of the

quadratic model proposed in literature: the CNPT and the MWK models, which
are both based on the TTT but differ in the hypotheses they make. The CNPT
model is more precise in the description of the intercorrelations between iner-
tia and tidal shear tensor eigensystems, parametrizing it by means of the mis-
alignment parameter a. MWK, instead, assume that inertia and shear tensor are
completely independent. For both the basic assumption is made that the angu-
lar momentum is perpendicular to the disk of the galaxy, and thus correlations
between angular momenta moulded by the tidal shear are reflected in the corre-
lations between shapes of galaxies. Furthermore, only the direction of the spin
is important for the goal of studying intrinsic correlations. We forecasted how
the cosmological parameters can be affected by a modelling of the shear signal
which neglects the contribution of IA for a wCDM cosmology. It is important to
notice that GI alignments in quadratic models automatically vanish, justifying
our restriction to II alignments. We used a Fisher matrix approach to compute
the biases on the cosmological parameters. Our findings can be summarised as
follows:

• we computed the ellipticity spectra C ≤
E (`) and C ≤

B (`) for multipoles in the range
10 ∑ ` ∑ 3000. As expected, the ellipticity spectra show a peak at large values
of `, i.e. small scales, where the intrinsic correlations among close galaxies are
present.

• we calculated the biases as the difference, in parameter space, between the
best fit values associated with the ¬2-functionals for the true and false models
(corresponding respectively to the cases of including and not including IA): A
link between these values can be made by Taylor-expanding the ¬2

f -functional
for the false model around the best fit parameters xt of the true model;

• the most affected parameters appear to be ≠m and æ8, by an amount & 3æ:
This can be explained by considering the fact that the convergence spectrum
mostly depends on these parameters, and thus any difference in how the con-
vergence signal is modelled will tend to compensate by shifting the values of
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these parameters.

• Differently from other analyses we found that the dark energy equation of
state parameter w is not affected at all by the inclusion of IA. This can most
certainly be explained by the fact that the other analyses use tomographic
weak lensing, which is very sensible to the parameter w since it influences
the growth function only weakly.

• In the spirit of physically modelling as best as possible the IA signal in order
to maximise the inference of physical information therefrom, we investigated
the chance of retrieving, in the future, the intrinsic ellipticity spectrum C ≤

E (`)
in the case in which the weak lensing convergence spectrum C∑(`) can be pre-
dicted precisely enough. This basically corresponds to comparing the uncer-
tainty of the convergence spectrum with the amplitudes of the ellipticity spec-
trum. This uncertainty is a propagation of the uncertainty on the cosmological
parameters to the convergence power spectrum. Thus it can be made small
when multiple independent priors for the parameters are used. We find that,
by using EUCLID’s BAO- and weak lensing spectra and from the temperature
and polarisation spectra of the cosmic microwave background measured by
PLANCK, it is possible to measure the intrinsic signal at high multipoles.

Important further steps can be made to improve this analysis. The first is to in-
clude tomography to check whether this, together with such a detailed physics
description of the IA, would lead to significant biases also on the parameter w ,
thus recovering previous results. Another important consideration concerns the
morphologies of the galaxies. It seems in fact essential to try to model the dis-
tribution of morphologies of the galaxies with redshift, in order to provide a
weighted IA signal based on both linear and quadratic models accounting for
late- and early type-galaxies. This must be considered mostly with tomographic
surveys, since if there is a dependence of the morphology on redshift, then the
intrinsic alignment signal must be weighted according to the redshift. A great
improvement would also be obtained in shaping the GI alignments, which are
the largest contamination to weak lensing. GI alignments arise in tomography
when computing the cross-correlations between different redshift bins, and are
non-vanishing just for the linear model. Thus knowing how to weight the contri-
bution of linear and quadratic models to IA has a great influence on the resulting
GI alignments.

Extreme Values: The study of extreme values represents a new and valuable tool
offering many possible applications in cosmology. It appears to be preferable to
common statistical analyses focusing on the central part of the distribution be-
cause its specific object of study are the tails of the distributions involved. In this
sense Extreme Value Statistics (EVS) proves to be more appropriate when deal-
ing with asymmetric and non-Gaussian distributions which derive from non-



166 Conclusions

linear processes. Our analysis aims to investigate the possibility that, by sub-
dividing the sky in N patches of certain aperture, the extreme values of each
patch collect into the two extreme values distributions which could be indica-
tive of primordial non-Gaussianities amplitudes fNL and gNL. This analysis can
be summarised in the following basic points:

• Weak non-Gaussianities induced in the simplest case of local primordial non-
Gaussianties are described via the Gram-Charlier distribution, which gives a
perturbation to a Gaussian in terms of the Hermite polynomials. The ampli-
tude of these perturbations are the third and fourth order cumulants, which
are, in the case of primordial non-Gaussianities, the amplitudes fNL and gNL.
These can be calculated by means of integrations over the bi- and tri-spectra
of the local primordial non-Gaussianty.

• We find a very precise agreement between the analytical expressions we calcu-
late for the distributions of the extremes in the case of a Gram-Charlier distri-
bution and the data we find by numerically sampling the maxima and minima
from this parent distribution.

• We aimed to study the features of the distributions of the extreme values we
obtain when we sample the sky in N independent patches of different aper-
tures. Of course we expect these features, namely the mean, median and the
most likely value to depend on this subdivision in the sky, and thus on the
number of patches, or interchangeably the size of the patch. The number of
independent samples was estimated by evaluating when the correlation func-
tion related to the convergence power spectrum would drop to a fraction of
exp(°1) from its value at zero lag. We found that mean, median and the most
likely value decrease with increasing smoothing scale.

• We found that the weak non-Gaussianity present in the parent distribution
is reflected very well in the extreme distributions, which significantly depart
from the ones one would obtain in the Gaussian case. We also recover the fact
that, for a large number N of samplings, the extreme distributions tend to the
Gumbel distribution.

• At last, we speculated over the possibility of setting constraints on the primor-
dial non-Gaussianities amplitudes fNL and gNL by studying the single extreme
values of the observed convergence in a weak lensing survey. Basically this
corresponds to answering to the question of what is the probability that the
single largest and lowest values of a data set are ascribable to a non-Gaussian
parent distribution due to inflationary primordial non-Gaussianities rather
than to a model with a Gaussian parent distribution. We find that the con-
straints set on the two parameters fNL and gNL are not as stringent as hoped,
being of the order of 102 for the fNL and of 105 for gNL.

Concluding, we emphasise once more the key role of weak lensing in of-
fering a unique tool for extracting information on the mass distribution, but
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also in offering a wide range of other possible applications aimed to investigate
and deepen the still considerable (fortunately) amount of unanswered ques-
tions permeating our current understanding of the Universe.





APPENDIX A

.1 Smoothed convergence spectra

For completeness we show the angular spectrum C∑(`) of the weak lensing con-
vergence in Fig. 10 with a Gaussian smoothing W (`µ) applied on a range of
scales µ which cuts off contributions on smaller multipoles ` with increasing
µ. From the smoothed spectrum we compute the smoothed convergence corre-
lation functions C∑(Ø) by Fourier transform, and estimate in this way the corre-
lation length of the convergence field ∑. Furthermore, it gives the largest mul-
tipole ` for the numerical computation of the cumulants ∑3 and ∑4 needed at
a given smoothing scale. Differences between spectra computed for linear and
nonlinear CDM-spectra are small if µ is chosen large enough.

169



170 Appendix A

10 30 100 300 1000 3000 10000
10

−7

10
−6

10
−5

 

 

C
κ
(l, 0 arcmin)

C
κ
(l, 1 arcmin)

C
κ
(l, 3 arcmin)

C
κ
(l, 10 arcmin)

C
κ
(l, 30 arcmin)

C
κ
(l, 100 arcmin)

multipole `

c
o

n
v
e
r
g

e
n

c
e

s
p

e
c
t
r
u

m
`(
`
+

1
)
/(

2
⇡

)
C

(
`)

Figure 10: Angular convergence spectrum C∑(`) (black solid line) and with a
Gaussian smoothing W (`µ) applied on a range of scales, µ = 1,3,10,30,100 ar-
cmin. The faint lines for µ = 10,30,100 arcmin are derived with a nonlinear CDM
spectrum, whereas the thick lines are computed with a linear CDM-spectrum.
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