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Abstract 
 

Mercury (Hg) is a pollutant of global concern. Due to its high vapor pressure Hg is a very mobile 

element and therefore is evident in all environmental compartments and can be both, intra-

hemispherically and interhemispherically dispersed.  

In order to understand the global mercury cycle and the anthropogenic impact on it, a large 

number of research activities have been carried out in recent years. On the one hand mercury 

species in ambient air have been scope of various studies with the objective to characterize the 

contemporary mercury fate and behavior in the global atmosphere. On the other hand, historical 

records of mercury in a variety of archives have been used to estimate human impacts on the 

biogeochemical cycling of mercury. 

 

The first objective of this study was to contribute information on the worldwide distribution and 

trend of atmospheric mercury. For this the atmospheric species Total Gaseous Mercury (TGM), 

Reactive Gaseous Mercury (RGM), Total Particulate Mercury (TPM) and mercury in precipitation 

have been analyzed in remote areas in both, the Northern and the Southern Hemisphere. In order 

to ensure the determination of reliable data, the establishment of compliant and reliable sampling 

and analytical set-ups capable for remote sampling areas was the first milestone for this part of the 

study. 

One other intent of the study was to answer the question under which constraints mercury records 

in peat bogs and lacustrine sediments reflect atmospheric deposition rates and thus can be used 

to estimate human impacts on the biogeochemical cycling of mercury. With the atmospheric 

mercury data obtained, contemporary deposition rates were calculated and compared to existing 

historical mercury records in ombrothrophic peat bogs and lacustrine sediments to test the 

reliability of these geochemical archives. 

 

The atmospheric data show that there is a significant diurnal and spatial variability of the different 

species, mainly controlled by meteorological conditions and biogeochemical processes in soils. 

The new data contribute to the the existing small data set from remote areas, especially from the 

Southern Hemisphere, and are a helpful complementary approach to the few stationary sites 

established for long period observations. Particularly for the region of South America no baseline 

measurements in remote areas have been performed before. The results provide basic information 

about the worldwide distribution and trend in atmospheric mercury dynamics. 

The calculated mercury wet deposition of 1.3 – 3.5 µg m
−2

 a
−1

 found for the different sampling sites 

in Patagonia show a much better correlation to the Hg accumulation rate found in the lacustrine 

sediment and evidence that the uncorrected accumulation rates in the upper part of peat bogs and 

thus the assumed contemporary atmospheric flux might be overestimated. 
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Zusammenfassung 
 

Quecksilber (Hg) zählt zu den Umweltschadstoffen von globaler Bedeutung. Durch seinen hohen 

Dampfdruck ist Hg sehr mobil, dispergiert sowohl intra- als auch interhemisphärisch und ist daher 

in allen Umweltkompartimenten nachweisbar.  

In den letzten Jahrzehnten wurden zahlreichen Studien durchgeführt, die dazu beitragen sollen, 

den globalen Hg-Kreislauf zu erklären und den anthropogenen Einfluss zu quantifizieren. Dies sind 

einerseits Messungen der verschiedenen atmosphärischen Hg-Spezies mit dem Ziel den Verbleib 

und das Verhalten des globalen Hg besser zu verstehen. Andererseits wurden verschiedene 

hochauflösende Umweltarchive auf ihre Hg-Konzentrationen ausgewertet, um den anthropogenen 

Einfluss auf den Hg-Kreislauf besser einschätzen zu können. 

 

Veranlassung dieser Studie war daher einesteils einen Beitrag zur Aufklärung der globalen 

Verteilung und des Verhaltens von Quecksilber in der Atmosphäre zu leisten. Dafür wurden die 

atmosphärischen Quecksilberspezies TGM (Gesamtes Gasförmiges Hg), RGM (Reaktives 

Gasförmiges Hg), TPM (Gesamtes Partikuläres Hg) sowie Quecksilber im Niederschlag in 

anthropogen wenig beeinflussten Gebieten der Nord- und Südhemisphäre bestimmt.  

Dazu war vor allem die Entwicklung eines zuverlässigen, transportablen Beprobungs- und 

Analysevorgehens für die Untersuchungen in den schwer zugänglichen Regionen notwendig. 

Ein weiterer Schwerpunkt der Studie war die Frage unter welchen Umständen Quecksilberprofile 

in Torfen und Seesedimenten die atmosphärische Deposition von Quecksilber widerspiegeln und 

somit die Profile zur Abschätzung des anthropogenen Einflusses auf den Quecksilber-Kreislauf 

genutzt werden können. Auf der Grundlage der eigenen atmosphärischen Quecksilberdaten 

wurden aktuelle Depositionsraten berechnet. Diese wurden mit Quecksilberprofilen aus 

ombrothrophen Torfkernen und Seebohrkernen aus früheren Studien verglichen.  

 

Die atmosphärischen Daten zeigen eine erhebliche tageszyklische und räumliche Variabilität der 

einzelnen Spezies, maßgeblich beeinflusst durch die meteorologischen Bedingungen und 

biogeochemische Prozesse in Böden. 

Diese neuen Daten bauen die wenigen bisher vorliegenden Daten besonders von der 

Südhalbkugel aus. Sie sind ein wichtiger ergänzender Beitrag zu den Ergebnissen aus 

Langzeitstudien von den wenigen etablierten Forschungsstationen. Insbesondere für Südamerika 

stellen die Untersuchungen die ersten Grundlagenmessungen aus Reinluftgebieten dar. Die 

Ergebnisse liefern damit wichtige Informationen zur weltweiten Verbreitung und der Entwicklung 

von Quecksilber in der Atmosphäre. 

Die für unterschiedliche Bereiche aus Patagonien ermittelten Depositionsraten von 1.3 – 3.5 

µg m
−2

 a
−1

 zeigen eine sehr gute Korrelation mit den Hg-Akkumulationsraten in Seesedimenten. 

Sie weisen zudem nach, dass teilweise bisher angenommene Akkumulationsraten aus den oberen 

Teilen von Torfbohrkernen und somit der daraus abgeleitete atmosphärische Fluss deutlich 

überschätzt wurden 
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1 INTRODUCTION 

Mercury is a non-essential heavy metal. Particularly, because of its ability to form highly 

toxic metabolites, mercury has been subject of intensive scientific research since the 

middle of the 20th century. Today, mercury is classified to be a pollutant of global concern 

(e.g. Nriagu, 1989; Mason et al., 1994; Pleijel and Munthe, 1995; Pacyna and Keeler, 

1995; Pirrone et al., 1996 a,b,c; Pirrone et al., 1998; Petersen et al., 1998; Pirrone et al., 

2000; Wängberg et al., 2001; Munthe et al., 2001; Horvat, 2002; Pacyna et al., 2010). 

 

Mercury has been noted for being toxic for a long time. Regardless, consequences in 

terms of health and environmental policy have only been advanced after the first great 

catastrophe of toxication in the 20th century; the so called Minamata Disease. In the 50’s 

of the 20th century, a number of unknown diseases of the nervous system accumulated at 

the insulars of the island Kyushu, Japan. Nearly 100 deaths were registered at that time 

and considerable more insulars have been affected (Harada, 1995). It took until 1968 

until the source for these diseases was officially notified. The Chisso Corporation’s 

chemical factory, which used mercury compounds as catalysts for the production of 

acetaldehyde from 1932 until 1968 discharged the mercury containing waste in the sea 

water in Minamata Bay. In the sea water the mercury compounds were transformed to 

methylmercury by microorganisms. This highly toxic chemical bio-accumulated in fish in 

Minamata Bay and the Shiranui Sea, which when eaten by the local population resulted 

in mercury poisoning. As of March 2001, 2,265 victims had been officially recognized 

(1,784 had died) and over 10,000 had received financial compensation from Chisso. 

Lawsuits and claims for compensation continue to this day (Ministry of the Environment, 

Japan, 2002). A comparable severe tragedy occurred in 1971/1972 in Iraq. During the 

winter of 1971-1972, mercury poisoning occurred in rural areas of Iraq. Wheat seeds, 

intended for crop planting, which had been treated with methylmercury and 

phenylmercury acetate as fungicide, were distributed for free in rural areas. Some seeds 

were ground into flour, baked into bread and consumed. Of an estimated 50,000 people 

exposed to the contaminated bread, 459 died, and 6,530 were hospitalized (Cox et al., 

1989; Cox et al., 1995). 

 

Due to these tragedies, mercury became the subject of many environmental studies.  

However, these two cases are examples for only local pollutions with direct contact to the 

mercury sources.  



1 Introduction 

2 

 

Since the 70’s of the 20th century, a growing number of aquatic systems in Scandinavia 

and Northern America have been reported to bear high mercury burdens (Håkansson et 

al., 1988; McMurtry et al., 1989; Lindqvist, 1991; Meili, 1991a; Lathrop et al., 1991; Wren 

et al., 1991; Lucotte et al., 1995). In some cases, the presence of mercury may also be 

predominately a reflection of local anthropogenic sources (Iverfeldt, 1991a; Lathrop et al., 

1991; Johansson et al., 1991; Nater and Grigal, 1992). However, for some remote areas, 

only more global scale processes with a uniform distribution of mercury over large 

continental areas can be the explanation (Steinnes and Andersson, 1991; Slemr and 

Langer, 1992; Swain et al., 1992).  

 

These findings resulted in a number of studies concerning the global cycle of mercury. 

Following its release into the atmosphere, particulate Hg is deposited locally or regionally 

within a few weeks (Iverfeldt, 1991a; Slemr and Langer, 1992). In contrast, the residence 

time of gaseous Hg0 is estimated to be about 1-2 years, and may therefore be 

transported over thousands of kilometers from its source before being deposited 

(Lindqvist and Rhode, 1985; Slemr et al., 1985; Glass et al., 1986; Slemr and Langer, 

1992; Lindberg et al., 2007).  

 

The subsequent deposition of mercury in remote areas was investigated by many 

researcher groups (e.g. Lindqvist and Rodhe, 1985; Bloom et al., 1991; Lindqvist et al., 

1991; Sheppard et al., 1991; Lucotte et al., 1995; Fitzgerald and Mason, 1996; AMAP, 

1998; Boutron et al., 1998; Hermanson, 1998; Biester et al., 2002; Ribeiro Guevara et al., 

2010; Jiang et al., 2011). These investigations were based on the measurement of 

mercury in geochemical archives, such as sediments, soils, bogs, and ice. These 

historical records of mercury accumulation have often been used to estimate human 

impacts on the biogeochemical cycling of mercury. However, Biester et al. (Biester et al. 

2002; Franzen et al., 2003; Biester et al., 2003; Biester et al., 2007) have shown that 

modern mercury accumulation rates derived from peat bogs tend to overestimate 

deposition.  

 

Another approach to get a better understanding about the global mercury cycle and the 

anthropogenic impact to it is the direct measurement of atmospheric mercury species. 

The most commonly measured and monitored fractions are Gaseous Elemental Mercury 

(GEM), Total Gaseous Mercury (TGM), Reactive Gaseous Mercury (RGM), Total 

Particulate Mercury (TPM) and mercury in precipitation. Considering these species, TGM/ 

GEM is maybe the only component that is easily and accurately measured in the field, 
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nowadays. RGM and TPM are operationally defined and thus measurements from 

different sites may be quite complex to intercompare.  

Mercury concentrations in air and wet deposition have been monitored since 1995 (Slemr 

et al., 2011) at an increasing number of sites in the Northern Hemisphere (e.g. Slemr et 

al., 2003; Temme et al., 2007; Prestbo and Gay, 2009; Cole and Steffen, 2010) but only 

at one non-polar site in the Southern Hemisphere (Slemr et al., 2008).  

 

The aim of this work is to contribute information on the worldwide distribution and trend of 

atmospheric mercury and to contribute mercury baseline concentrations from remote 

areas. For this, the study provides short-term measurements of the species TGM, RGM, 

TPM and mercury in precipitation from different sampling sites from both the Northern 

and the Southern Hemisphere. The sampling sites were selected to be complementary to 

the various long-term monitoring sites and were therefore chosen in areas where no 

atmospheric mercury measurements had been performed before. In order to investigate 

natural processes influencing the mercury cycle and to obtain baseline concentrations, 

the sampling sites were chosen in remote areas with no mercury emission point source in 

the vicinity.  

The study comprises an examination of the following aspects: 

 

 Spatial variability of atmospheric Hg species from different climatic zones within one 

area in Patagonia, Chile. 

 Spatial variability of atmospheric Hg species from the Northern- and Southern 

Hemisphere. 

 Comparison of atmospheric Hg species from coastal sites with inland sites. 

 Factors influencing the diurnal variation of atmospheric Hg species. 

 Comparison between mercury wet deposition rates and mercury accumulation rates 

in peat bogs and sediments. 

 Mercury transfer from snow to atmosphere. 

 

 

 

  



1 Introduction 

4 

 

 

 



 

5 

 

2 MERCURY IN THE ENVIRONMENT 

Mercury is a natural element with seven stable isotopes. The existing radio-isotopes are 

very short-lived and no stable isotope can be synthesized. Hence, more or less the same 

amount of mercury has existed on the planet since the Earth was formed. Its fraction of 

the upper Earth’s crust is estimated to be approximately 5 x 10-5 %. According to the 

natural abundance of chemical elements, it is on 62nd position (Falbe and Regitz, 1995). 

Natural and anthropogenic activities can redistribute this element in the atmospheric, soil, 

and water ecosystems through a complex combination of transport and transformations. 

During the Industrial Age it has been employed in a wide array of applications and as a 

result the amount of mercury mobilized and released into the atmosphere has increased 

compared to pre-industrial levels.  

 

Due to its high vapor pressure of about 1.2 x 10−3 Torr at 20 °C, Hg is a very mobile 

element and therefore is evident in all environmental compartments. Typical recent 

background concentrations are listed below (Tab. 2-1). 

 

Tab. 2-1 Total mercury content in different environmental compartments (modified after Temme, 
2003). 

Environmental Compartment Total Mercury Content Source 

   
Air   

Atlantic Ocean 1 – 3 ng m
−3 

Slemr & Langer, 1992 

Rural Areas of North America 1.6 – 1.9 ng m
−3 

Burke et al., 1995 

Europe-West Coast, Ireland 1.4 – 2.4 ng m
−3 

Ebinghaus et al., 2002a 

   
Water   

Open Ocean 0.5 – 3.0 ng L
−1 

Schroeder, 1989 

Groundwater 2.0 – 4.0 ng L
−1 

Krabbenhoft & Barbiaz, 1992 

Great Lakes, USA 0.9 – 3.9 ng L
−1 

Driscoll et al., 1994 

   
Soil   

Mean value of different soils, 
Canada 

0.06 µg g
−1 

DM McKeague & Wollynetz, 1980 

Forest Soil, TN, USA 0.3 – 0.8 µg g
−1

 DM Kim & Lindberg, 1995 

Geogenically enriched Soil, 
Nevada, USA 

0.1 – 15 µg g
−1

 DM Gustin et al., 1999 
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Research on atmospheric emissions, transport and deposition mechanisms to terrestrial 

and aquatic receptors, chemical transformations of elemental mercury to more toxic 

species (i.e. methylmercury), studies on the bioaccumulation of mercury in the aquatic 

food chain as well as exposure and risk assessments has driven the scientific and 

political communities to consider this toxic element as a pollutant of global concern (i.e. 

Nriagu, 1989; Mason et al., 1994; Pleijel and Munthe, 1995; Pacyna and Keeler, 1995; 

Pirrone et al., 1996 a,b,c; Pirrone et al., 1998; Petersen et al., 1998; Pirrone et al., 2000; 

Wängberg et al., 2001; Munthe et al., 2001; Horvat, 2002; Pacyna et al., 2010). 

 

Fig. 2-1 shows a conceptualization of the global mercury cycle after Stein et al. (1996). 

As indicated, mercury is emitted to the atmosphere from a variety of point and diffuse 

sources, is dispersed and transported in the air, deposited to the earth and stored in or 

redistributed between water, soil, and atmospheric compartments. Therefore, mercury 

cycling and mercury partitioning between different environmental compartments are 

complex phenomena that depend on numerous environmental parameters.  

 

 

Fig. 2-1 Transformation and transport of mercury in the global mercury cycle (modified after Stein 
et al., 1996 and Temme, 2003). 

 

 

For a better understanding of the global cycle several properties of mercury and key 

factors that affect the fate and transport of mercury in the environment have to be taken 

into account. Some of the most important aspects are described in the following chapters.  
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2.1 Physical and Chemical Properties  

Mercury belongs to the group of heavy metals and is the only metal and besides bromine 

the only element being in liquid state at standard room temperature and pressure. 

Because of its high surface tension it does not wet the base but forms flat globules 

(cohesion). The liquid state of mercury is due to a unique electron configuration 

(4f145d106s2), which does not permit a stable binding between different atoms (Norrby, 

1991).  

 

The atoms of the other metals are held together electrostatically by the so called electron 

gas. This electron gas consists of delocalized electrons of the outer atom shells, which 

jump from the valence band to the conduction band of the atoms and back. Due to this 

interaction, the atoms are held together and a metallic bond exists.  

 

As an element of the 12th group of the PSE, mercury has completely filled s and d 

orbitals, which is a highly stable conformation. The conduction band is empty. Zinc and 

cadmium that are in the same group as mercury are solid at room temperature. That is 

because the energetic difference between valence band and conduction band is very 

small, so that the electrons are able to jump. A metallic bond is formed. The specialty with 

mercury is the additional f-orbital. While zinc and cadmium have 12 electrons in the outer 

shell, mercury has 26 electrons. In cause of the lanthanide contraction and the relativistic 

effect a mass build-up and a better shield of the nuclear charge occurs. Occupied orbitals 

like the valence band will be pulled to the nucleus while the empty orbitals like the 

conduction band won’t. As a result the energy difference between the valence band and 

the conduction band is so big that no electrons can build up the electron gas or the 

metallic bond. This also explains the high volatility and the poor conductivity of mercury.  

 

A mercury atom forms a stronger bond with other metal atoms with the exception of some 

metals like e.g. Fe, Co, Mn than it does with mercury atoms. When mercury unites with 

any of several different metals, the metallic bonds created result in unique metal alloys 

called amalgams, which, depending upon their mercury contents can either be solid or 

liquid (Hollemann and Wiberg, 1985). Due to the electron configuration mercury can exist 

in three oxidation states – as Hg0 (metallic), Hg(I) (Hg2
2+ - mercurous) and Hg(II) (Hg2+ - 

mercuric). 
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2.1.1 Elemental Mercury 

The most important physical and chemical characteristics of elemental mercury are listed 

in Tab. 2-2.  

Tab. 2-2 Physical and Chemical Properties of Elemental Mercury. Date marked with 
1) 

 are from 
Schroeder et al. 1991) 

   
General Name, Symbol, Number in PSE Mercury, Hg, 80 

 CAS-Number 7439-97-6 
 Chemical Series Transition metals 
 Group, period, block 12 (IIB), 6, d 
 Appearance Silvery white 

   
Atomic 

properties 
Atomic mass 200.59 g mol

−1 

Electron configuration [Xe]4f
14

5d
10

6s
2
 

Electrons per shell 2, 8, 18, 32, 18, 2 
1. Ionization energy

1)
 241 kcal mol

−1 

2. Ionization energy
1)

 432 kcal mol
−1 

3. Ionization energy 
1)
 789 kcal mol

−1 

   
Physical 

properties 
Phase Liquid 

Density
1)

 13.5 g cm
−3

 
Crystal Structure Rhombohedral 

Melting point
1)
 -38.8°C 

Boiling point
1)
 356.7°C 

Critical point 1750 K, 172.00 MPa 
Heat of fusion 2.29 kJ mol

−1 

Heat of vaporization 59.2 kJ mol
−1 

Vapor pressure
1)

 1.2 * 10
−3

 Torr at 20°C 
 Henry- constant 729 Pa m

3
 mol

-1
 

   
Chemical 
properties 

Oxidation states 2, 1 
Standard potential 0.851 V (Hg

2+
 + 2e

−
 -> Hg) 

Electronegativity 2.00 (Pauling scale) 
Saturated Air Concentration

1)
 13.18 µg L

−1
 

Water solubility at 20°C
1) 

45.0 µg L
−1 

 Water solubility at 25°C
1) 

63.9 µg L
−1 

   
Miscellaneous Magnetic ordering Diamagnetic 

 Electrical resistivity (25°C) 961 nΩ m 
 Thermal conductivity (300 K) 8.30 W m

−1
 K

-1 

 Thermal expansion (25°C) 60.4 µm m
−1

 K
−1 

 Speed of sound (293.15 K) 1407 m s
−1 

 

Under environmental conditions, the only reactions with elemental mercury are oxidation 

reactions. However, with most of the natural occurring oxidants, elemental mercury only 

reacts very slowly.  

 

It behaves mostly inert against ambient oxygen, water, and diluted non-oxidizing acids. It 

also reacts only very slowly with water-dissolved oxygen. Comprehensive reviews of Hg 

speciation and transport in hydrothermal systems are provided by Varekamp and Buseck 

(1984), Krupp (1988) and Barnes and Seward (1997). According to them, mercury may 

be transported in hydrothermal fluids as elemental Hg species in aqueous solution or in 

the gas phase.  
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Elemental Hg is also soluble in hydrocarbons (Varekamp and Buseck, 1984; Bloom, 

2000).  

With other non-metals like sulphur, halogens, phosphor, or selenium Hg reacts already at 

room temperature. With nearly all metals (with exception of Fe, Co, Mn, Mo, and W) it 

forms solid or liquid solutions, called amalgams (Hollemann and Wiberg, 1985).  

For mercury as a global pollutant, especially the poor water solubility and the high vapor 

pressure are of great importance.  

 

2.1.2 Hg2
2+ (Hg(I)) Compounds 

Hg+ does not have a stable electron configuration and only exists as a dimer Hg2
2+ with a 

covalent bond. This dimer underlies the disproportionation according to the following 

equation: 

 

Hg2
2+ ↔ Hg2+ + Hg0 (Eq. 2-1) 

 

Chemically, the equilibrium would be on the left side (Munthe and McElroy, 1992). In 

nature however, the equilibrium is far on the right side, because Hg0 volatizes out of the 

system and the Hg2+ ion forms stable complexes.  

Hg(I) compounds are with the exception of some hardly soluble compounds like e.g. 

halogenides only fairly stable. Hence, it is generally assumed, that in the environment 

only Hg0 and Hg(II) exist (Kaiser and Tölg, 1980). Up to now, its evidence could only be 

provided for Hg(I) compounds in Hg-ores (Wallschläger, 1996).  

In the laboratory, the existence of stable mercurous ions (Hg2
2+) in addition to mercuric 

ions (Hg2+) in the aqueous phase has been frequently demonstrated (Fujita et al., 1973; 

Wigfield and Perkins, 1985). Mercurous ions have been obtained by reduction of mercuric 

salts. Not many studies on stable Hg+ species as the result of gas-phase reactions exist. 

One study (Raofie and Ariya, 2004) has provided the first experimental product study of 

BrO-initiated oxidation of elemental mercury. The authors identified, in the course of the 

BrO + Hg0(g) reactions, stable Hg+ in the form of HgBr under tropospheric conditions.  

 

2.1.3 Hg2+ Hg(II) Compounds 

Most divalent mercury compounds have a covalent character, like oxides, hydroxides, 

halogenides and the sulphur compounds. They dissolve in water as complex compounds 

or they are poorly soluble like HgS.  



2 Mercury in the Environment 

10 

 

Compounds with strongly electronegative anions like fluoride, nitrate, or chlorate have a 

salt character. They disproportionate or hydrolyze in aqueous solution, if not stabilized by 

the addition of an acid. 

The Hg2+ cation as well as the MeHg+ cation shows a distinct tendency to form 

complexes. The Hg2+ cation normally forms twofold or fourfold coordinated complexes, 

which are linear or tetrahedral. Especially within the twofold coordinated complexes the 

bond between Hg and the ligand shows distinct covalent character (Cotton and 

Wilkinson, 1985). The complexes of Hg2+ with divalent ligands like S2- or O2- have a 

polymer structure and are comparatively fairly soluble and fairly volatile. The analogous 

complexes of the MeHg+ with their already existing C-Hg bond are monomer and 

therefore better soluble.  

 

2.2 Toxicology of Mercury  

The impact of mercury on human health and the environment depends upon several 

mechanisms primarily depending on the toxicokinetics of its major chemical forms 

present in different environmental media including elemental mercury (Hg0), inorganic 

mercury (i.e. HgCl2), and organic mercury (i.e. CH3Hg+). These toxicokinetic mechanisms 

include absorption, distribution, metabolism and excretion (EU Position Paper, 2001). 

Therefore, depending on the chemical form of mercury the combination on these 

mechanisms will determine the risk associated to the exposure of humans to mercury and 

its compounds.  

 

Since the catastrophes of Minamata, Japan in the 50ies and 60ies and of Iraq in 1972 it 

became obvious how tremendous the consequences of mercury contaminations are. 

Mercury compounds or elemental mercury emitted into the environment are accumulated 

in the pedosphere as well as in the biosphere. During the Minamata tragedy mercury 

contents in fish were around 10 to 30 mg kg−1. For comparison: The admissible maximum 

value for Hg in fish, crustaceans, mollusks, and their products in Germany is 0.5 mg kg−1 

(SHmV, 2006).  

 

2.2.1 Elemental Mercury 

Elemental Mercury in a liquid or vapor form is not well absorbed by the gastro-intestinal 

tract (possibly less than 0.01 %) (Bornmann et al., 1970) and is therefore only poorly toxic 

in the oral form.   

However, vapor of elemental mercury is rapidly absorbed via the lungs. In humans 75-

85 % of an inhaled dose is absorbed (Hursh et al., 1980; WHO, 1991). Elemental 
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mercury is lipid soluble and its diffusion into the lungs and dissolution in blood lipids is 

rapid (Berlin, 1986, WHO, 1991). It is distributed throughout the body, and readily crosses 

the placental barrier and the blood-brain barrier (Vimy et al., 1990; Drasch et al., 1994).  

 

Signs and symptoms observed in mercury vapor poisoning differ depending on the level 

and duration of exposure. Acute poisoning possibly leads to gingivitis, pulmonary 

inflammation, tremor, or degeneration of the kidney (Marquardt, 1994). Chronic 

intoxication is remediable if the function of the kidneys has not been affected and if the 

person is no longer within the field of contamination. Mercury concentrations in blood 

decrease rapidly with an initial half-life of approximately two to four days, and a slower 

phase of a few weeks (Cherian et al., 1978; Bårregard et al., 1992; Sällsten et al., 1993). 

In urine the half-life is 40-90 days (Roels et al., 1991; Bårregard et al., 1992; Sällsten et 

al., 1994). These results therefore reflect the existence of compartments with elimination 

half-lives of about 2 months, presumably in the kidney.  

 

2.2.2 Inorganic Mercury Compounds 

The toxicity of inorganic mercury compounds increases with increasing solubility of the 

substance. However, all inorganic mercury compounds are less toxic than organic 

compounds, particularly less toxic than methylmercury. Mercury (I) compounds are 

principally less toxic than the according divalent compounds. The reason for the different 

behavior is the high affinity of divalent compounds to sulfhydryl groups or disulphide 

groups of proteins. On this way the active center of these proteins can be blocked and 

the structure can be modified (Magos, 1988). 

 

The symptoms of inorganic mercury toxication are relatively easy diagnosable and can be 

treated with sulphur or selenium compounds (Hollemann and Wiberg, 1985). Both 

therapeutic agents prevent resorption of mercury on the proteins.  

 

2.2.3 Organic Mercury Compounds 

The (trans-) formations of organo-metallic compounds in nature are of great 

ecotoxicologic importance. Due to methylation of inorganic mercury compounds or 

elemental mercury different organic compounds can be created; for example 

methylmercury, dimethylmercury, or methylmercurychloride. These compounds are more 

lipophilic than inorganic mercury compounds. Hence, their up-take by biological cells is 

much higher. Methylmercury is formed in lake and sea sediments. Micro-organisms 
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reduce the mercury cation to elemental mercury or they transform it into methyl- or 

dimethylmercury (Hamdy and Noyes, 1975).  

As a lipophilic substance methylmercury easily passes biological membranes. About 

95 % of the methylmercury in fish ingested by humans was found to be absorbed from 

the gastrointestinal tract (Åberg et al., 1969; WHO, 1990). Although the oral exposure 

route is most important for humans, it should be noted that methylmercury is also readily 

absorbed through the skin and the lungs. Once absorbed into the blood stream, 

methylmercury enters the red blood cells bound to hemoglobin. A smaller fraction is 

found in the plasma (Åberg et al., 1969, Kershaw et al., 1980; WHO, 1990). 

 

2.3 History, Occurrence, and Extraction of Mercury 

Mercury was known to the ancient Chinese and Hindus and was found in Egyptian tombs 

that date from 1500 BC. In China, India, and Tibet, mercury use was thought to maintain 

generally good health and prolong life (Leicester, 1961). China’s first emperor, Qin 

Shihuang Di, is said to have been buried in a tomb that contained rivers of flowing 

mercury, representative of the rivers of China. The ancient Greeks used mercury in 

ointments and the Romans used it in cosmetics. By 500 BC mercury was used to make 

amalgams with other metals. Alchemists often thought of mercury as the first matter from 

which all metals were formed. Different metals could be produced by varying the quality 

and quantity of sulphur contained within the mercury. An ability to transform mercury into 

any metal resulted from the essentially mercurial quality of all metals. The purest of these 

was gold, and mercury was required for the transmutation of base (or impure) metals into 

gold. This was a primary goal of alchemy. The Indian word for alchemy is Rasavātam 

which means ‘the way of mercury’ (NGDTJ, Internet; Science24, Internet). 

 

In alchemical times the element was named after the Roman god Mercury, known for 

speed and mobility (Falbe and Regitz, 1995). It is associated with the planet Mercury. 

Mercury is the only metal for which the alchemical planetary name became the common 

name. The astrological symbol for the planet is also one of the alchemical symbols for the 

metal. Other symbols for mercury are shown in Fig. 2-2. The modern chemical symbol for 

mercury is Hg. It comes from hydrargyrum, a Latinized form of the Greek word 

`Υδραργυρος (hydragyros), which is a compound word meaning ‘water’ and ‘silver’ – 

since it is liquid, like water, and yet has a silvery metallic sheen. 



 2.3 History, Occurrence, and Extraction of Mercury 

13 

 

Fig. 2-2 Symbols for the element mercury at different times. 

 

More than 20 mercury minerals are known, of which the most important ones are 

cinnabar (HgS) and Levingstonite (Hg[Sb4S7]). Occasionally, mercury also occurs native 

as small droplets, enclosed in rocks.  

The most famous cinnabar deposit is in Almadén, Spain, which had been mined since 

Roman times. Other major cinnabar deposits are/were at Idria, Slovenia, and at 

Huancavelica, Peru. The ore of Almadén contained 3.5 % Hg in the upper layers and up 

to 14 % Hg in the deeper layers. In general, the mean content of Hg in ores lies between 

0.2 and 1 % (Falbe and Regitz, 1995). However both Idria and Almadén have been shut 

down due to the fall of the price of mercury.  

 

The process for extracting mercury from its ores has not changed much to the rules 

Aristotle first described over 2,300 years ago. Cinnabar ore is crushed and heated. The 

heated cinnabar (HgS) reacts with the oxygen (O2) in the air to produce sulphur dioxide 

(SO2), allowing the mercury to rise as a vapor (Eq. 2-2). This process is called roasting. 

The mercury vapor is then cooled, condensed, and collected. Almost 95 % of the mercury 

content of cinnabar ore can be recovered using this process. 

 

HgS + O2 → Hg + SO2  (Eq. 2-2) 

 

Worldwide mercury mining annually produces around 1000 tons of the metal. In 2004 it 

was around 2000 tons. The top producers are China, Kyrgyzstan, and Algeria (British 

Geological Survey, 2010). 
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2.4 Anthropogenic and Natural Mercury Sources 

Global mercury emissions have increased substantially at least during the past 100 to 

150 years (Fig. 2-4) and they have accumulated in various ecosystems (Hudson et al., 

1995; Fitzgerald et al., 1998). Evaluating the impact of anthropogenic emissions requires 

a precise knowledge about both natural and anthropogenic sources and emissions. In 

Fig. 2-3, a schematic description of the main source types is presented (modified after 

AMAP/UNEP, 2008). The primary anthropogenic sources are those where mercury of 

geological origin is mobilized. The two main source categories of this type are mining and 

extraction of fossil fuels. The secondary anthropogenic sources are those where 

emissions occur from the intentional use of mercury. Primary natural sources, are defined 

as those where mercury of geological origin is released via natural processes. In addition 

to these source types, the distribution of mercury is affected by its remobilization and re-

emission pathways. In the latter case, mercury released can be of either natural or 

anthropogenic origin and it is currently not possible to experimentally distinguish between 

the two.  

 

Fig. 2-3  Schematic description of emissions sources types and remobilization processes 
affecting mercury distribution in the environment. ASGM: Artisanal Gold Mining. Modified 
after AMAP/UNEP, 2008.  

 

A current estimate of global mercury emissions suggests that the contribution from 

natural sources (primary emissions + re-emissions) is around 5207 t a−1, and from 

primary and secondary anthropogenic sources is around 2320 t a−1, resulting in an overall 

contribution of 7527 t a−1 (Pirrone et al., 2010).  
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2.4.1 Anthropogenic Mercury Sources 

The anthropogenic use of Hg already began more than 2000 years ago with the onset of 

mercury mining in Spain (Hernández, 1999; Martínez-Cortizas, 1999; Higueras, 2006). A 

model of the historical anthropogenic Hg emission since 1500 A.D. is shown in Fig. 2-4. 

 

Fig. 2-4 Historical anthropogenic Hg emission since 1500 (after Hudson et al., 1995). 

 

Recent anthropogenic emissions were estimated to be around 1660 t a−1 for the year 

1990 (Pacyna and Pacyna, 1996) and 2200 t a−1 for the year 1992 (Pirrone et al., 1996b). 

In a most recent study, Pirrone et al. (2010) estimated anthropogenic sources to account 

for 2320 t a−1. The main types of anthropogenic emission sources may be categorized as 

shown in Tab. 2-3. 

Tab. 2-3 Categories of Anthropogenic Emission Sources (after Porcella et al., 1996). 

Category Type of Anthropogenic Emission 

Combustion fossil fuels (coal, oil, gas, wood), waste (municipal, 
medical, hazardous), sewage sludge, crematories  

High-Temperature-Processes Smelting, coking, ore roasting, cement and lime 
production 

Manufacturing/commercial chlor-alkali plants, metal processing, chemical and 
instruments industry (Hg containing chemicals, paints, 
batteries, thermometers, process reactants, and 
catalysts) 

Gold Extraction  

Other Sources fluorescent tube, hazardous and municipal waste sites, 
mine spoils, land disturbance (e.g. deforestation, 
reservoir construction) 
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A summary of atmospheric emissions of mercury from anthropogenic sources in different 

continents is presented in Fig. 2-5 (AMAP/UNEP, 2008).  

 

Fig. 2-5  Global anthropogenic emissions of mercury to air in 2005 from different continents by 
sector (AMAP/UNEP, 2008). 

 

 

2.4.2 Natural Mercury Sources 

The assessment of truly natural mercury sources and their relative importance compared 

to direct anthropogenic emissions and indirect (re)emissions is a fundamental problem in 

studying the global balance and cycling of mercury in the environment. There are 

numerous environmental pathways exchanging Hg with the atmosphere coming to mind 

when thinking of “natural” processes: 

 

 Hg degassing from Hg containing rock erosion 

 Volcanic eruptions and other geothermal activity 

 Evasion of Hg from the Earth’s subsurface crust 

 Hg degassing from soil erosion 

 Hg degassing from oceans and freshwater ecosystems 

 

Among these, however, only the first three are clearly and unambiguously natural and not 

influenced by anthropogenic activity. They could be classified as geological sources and 
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are also the only ones that are exclusively sources. The others are all to a certain extend 

influenced by human activities and are both sources and sinks of atmospheric mercury 

(Ebinghaus et al., 1999a). 

It seems to be the general opinion that whenever elevated mercury concentrations are 

encountered in any ecosystem compartment in the absence of obvious local or direct 

anthropogenic sources, this can be interpreted as proof of an anthropogenic influence via 

atmospheric long-range transport and deposition. While this may be true in many cases, 

some of these anomalies may be caused, at least partially, by natural local emissions due 

to underlying geologic anomalies. 

 

The magnitude of natural emissions is not as well-known as the anthropogenic 

emissions. Mason et al. (1994) estimate natural terrestrial emissions to be approx. 

5 Mmol per year.  

Other measurements and estimations about Hg emissions from different natural sources 

are given in Tab. 2-4. The great variation in estimations about natural Hg emissions 

shows that there is still a high demand for more profound knowledge on natural Hg 

sources and their emissions. 

 

Tab. 2-4 Measurements and Estimations of Hg Emissions from different geological sources. 

Source Hg Amount Reference 

   Hg-degassing from soils and rocks   

Mercuriferous belts  1–5 ng m-2 h-1 Lindqvist et al., 1991  

Temperate forest soils  10-50 ng m-2 h-1 Lindberg et al., 1992, Kim 
et al., 1995 

Over seismic zones 10-50 ng m-2 h-1 Varekamp & Buseck, 1986 

Cinnabar rich soils in Almadén, 
Spain 

330 ng m-2 h-1 Lindberg et al., 1979 

Over geothermal zones in Nevada 50-10000 ng m-2 h-1 Gustin & Lindberg, 1997 

Siberia (Area: 107 km2) 40 t a-1 Obolensky, 1996 

Total Earth’s continents 700 t a-1 Lindqvist et al., 1991 

Evasion from the earth’s crust   

Continental crust 3000-6000 t a-1 Rasmussen, 1994 

Mid-ocean ridge 1900-3800 t a-1 Rasmussen, 1994 

Oceanic crust 7300-14700 t a-1 Rasmussen, 1994 

Total geological sources 2500-30000 t a-1 Lindqvist et al., 1984 

Total geological sources 3000 t a-1 Nriagu & Pacyna, 1988 

Total geological sources 5 Mmol a-1  Mason et al., 1994 
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Tab. 2-4 continued. 

Source Hg Amount Reference 

Volcanic eruptions and other 
geothermal activities 

  

Volcanic eruptions (total) 830 t a-1 Varekamp & Buseck, 1986 

Volcanic eruptions (total) 20-90 t a-1 Fitzgerald, 1996 

Solfatara-Volcano, Italy 0.3-1.6 kg a-1 Ferrara et al., 1994 

Kilauea-Volcano, Hawaii 1.5 kg a-1 Varekamp & Buseck, 1986 

Kolima-Volcano, Mexico 440 kg a-1 Varekamp & Buseck, 1986 

Etna-Volcano, Italy 2700 kg a-1  Varekamp & Buseck, 1986 

Volcanic geyser on Iceland 8 kg a-1 Edner et al., 1991 

Above a geothermal area in the 
Western USA 

10-1000 ng m-2 h-1 Gustin & Lindberg, 1997 

Global emissions of geothermal 
sources 

60 t a-1 Varekamp & Buseck, 1986 

Total volcanoes and 
geothermal activities 

90 t a-1 Mason, 2009 

 

 

The current estimate of mercury emissions from natural processes, which comprises both 

primary mercury emissions and re-emissions is shown in Tab. 2-5 (Pirrone et al. 2010). 

 

Tab. 2-5 Global mercury emissions by natural sources estimated for 2008 (Pirrone et al. 2010). 

Source 
Mercury 

[t a-1] 

Contribution 

[%] 

   Oceans 2682 52 

Lakes 96 2 

Forests 342 7 

Tundra/Grassland/Savannah/Prairie/Chaparral 448 9 

Desert/Metalliferous/Non-vegetated Zones 546 10 

Agricultural areas 128 2 

Evasions after mercury depletion events 200 4 

Biomass burning 675 13 

Volcanoes and geothermal areas 90 2 

TOTAL 5207 100 
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2.5 Global Mercury Cycle 

Mercury is emitted into the atmosphere from a number of natural as well as 

anthropogenic sources. In contrast to most of the other heavy metals, mercury and many 

of its compounds behave exceptionally in the environment due to their high volatility. 

Hence, it is dispersed intra- as well as interhemispherically. This dispersion is mainly 

contributed by elemental mercury (Hg0) (Slemr et al., 1985; Nriagu & Pacyna, 1988; 

Mason et al., 1994), which has a high vapor pressure and a relatively low solubility in 

water. In this form mercury has an atmospheric residence time of at least a few months, 

maybe even one or two years, and is uniformly distributed throughout the troposphere 

(Lindqvist and Rohde, 1985). The global dispersion on Hg and its sources and sinks was 

modelled by Mason et al. (1994). Fig. 2-6 (after Mason et al., 1994) shows Hg contents in 

different environmental compartments and annual flux rates from present and pre-

industrial time. 

Due to the anthropogenic influence, 

the Hg amount in the atmosphere 

has been tripled. Mean concen 

trations in the atmosphere are now 

adays ca. 1.6 ng m−3. Preindustrial 

concentrations are estimated to be 

ca. 0.5 ng m−3 (Mason et al., 1994). 

The fraction from anthropogenic 

sources is estimated to be 70 – 

80 % (Mason et al., 1994). 

Nevertheless, due to the fact that 

approximately 50 % of anthropo 

genic emissions are deposited on a 

local or regional scale they do not 

contribute to the global cycle.  

 

Fig. 2-6 also shows that the 

deposition of Hg occurs to 60 % 

over continents and only to 40 % 

over oceans – even though the 

oceans cover 70 % of the earth’s 

surface. Mason et al. (1994) explain 

this by two different possible 

Fig. 2-6 Global mercury cycle to pre-industrial and 

recent times (after Mason et al., 1994). 
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mechanisms of the oxidation of Hg0 to the deposable Hg(II). Oxidation possibly occurs in 

clouds (Munthe, 1992; Munthe & McElroy, 1992) as well as with aerosols (Mason et al., 

1992). The aerosol bounded oxidation occurs almost exclusively over continents and thus 

generate the different deposition rates between oceans and continents.  

Slemr et al. (1985), Fitzgerald (1989), 

Slemr and Langer (1992), and 

Fitzgerald (1995) show a clear gradient 

of Hg concentration in the atmosphere 

between the Northern and the Southern 

Hemisphere (Fig. 2-7). Temme (2003) 

affirms the same gradient. 

This clear difference between the Hg 

concentrations of the two hemispheres 

are explained by two arguments. First it 

results from the arrangement of 

landmass being the main emission 

source covering ca. 43 % of the 

Northern Hemisphere, but only about. 

28 % of the Southern Hemisphere. 

Additionally, it represents the difference 

in anthropogenic activities between the Northern and Southern Hemisphere. 

 

Mason et al. (1994) show in their study the difference between exchange rates between 

the atmosphere and oceans on the one hand and between the atmosphere and 

continents on the other hand. While all into the oceans deposited Hg will be reemitted 

nearly completely, the terrestrial deposited Hg will be fixed within soils, which are the 

main sinks for Hg. It will be reemitted to the atmosphere or to waters very slowly (Fig. 

2-6). A reduction of anthropogenic Hg emission therefore does not lead to a direct decline 

of the global contamination.  

 

Fig. 2-7 Distribution of TGM over the Atlantic 
and Pacific Oceans. Data from Slemr 
and Langer, 1992 and Fitzgerald, 1989 in 

Fitzgerald, 1995. 
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2.6 Atmospheric Mercury and Transformation Processes 

Mercury is an atmospheric pollutant with a complex biogeochemical cycle. The 

atmospheric cycling includes chemical oxidation/reduction in both gaseous and aqueous 

phases, deposition and re-emission from natural surfaces in addition to emissions from 

both natural and anthropogenic sources (Schroeder and Munthe, 1998). In the 

atmosphere, mercury primarily exists as inorganic mercury in the two oxidation states Hg0 

and Hg(II). Only a small part exists as organic mercury; < 3 % of the total mercury; 

besides in the direct vicinity of emission sources; (Slemr et al., 1985; Fitzgerald et al., 

1991; Lee and Iverfeldt, 1991; Lamborg et al., 1995; St.Louis et al., 1995). Mercurous 

(Hg(I)) compounds are very instable (Schroeder et al., 1998).  

 

The three dominant forms of mercury in the atmosphere are: gaseous elemental mercury, 

gaseous divalent mercury (Hg(II)), and particulate phase mercury (Hg(p)). The three 

different species have different atmospheric behaviour and lifetimes. Hg0 is relatively inert 

to chemical reactions with other atmospheric constituents, and is only sparingly soluble in 

pure water. This gives elemental mercury an atmospheric residence time between 0.5 

and 2 years. (Slemr et al., 1985; Lindqvist and Rhode, 1985; Schroeder and Munthe, 

1998). Thus, once released to the atmosphere mercury can be dispersed and transported 

for long distances over hemispheric and global scales. Long-range transport has been 

shown to be an important source of mercury in many remote regions (Brosset, 1987; 

Iverfeldt, 1991a; Petersen et al., 1995). It is vertically well mixed in the troposphere 

(Banic et al., 1997; Ebinghaus and Slemr, 2000; Temme, 2003) and its typical 

concentration is ~1-4 ng m−3 at background sites (Slemr and Langer, 1992; Lin and 

Pehkonen, 1999).  

 

Hg(II) and Hg(p) are more readily deposited on local to regional scales via wet or dry 

deposition. Hg(II) has a residence time of only days to weeks (Slemr et al., 1981; 

Lindqvist and Rhode, 1985). Some of the gas-phase oxidized mercury such as HgCl2 or 

HgBr2 is highly water soluble, reactive, and less volatile than Hg0, so is often called 

reactive gaseous mercury (RGM). The amount of reactive gaseous mercury in the 

atmosphere is typically less than 5 % of the total mercury concentration, but RGM is very 

important with respect to mercury deposition (Lindberg and Stratton, 1998).  

Mercury deposition occurs either directly as Hg2+ and particulate mercury (Hg(p)) or 

indirectly as Hg0 after Hg0 is converted to Hg2+ through oxidant mediated reactions mainly 

in cloud droplets (Finlayson-Pitts and Pitts, 1986; Munthe, 1992; Lin and Pehkonen, 

1997). 
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Tab. 2-6 Comparison of Hg
0
 and Hg(II) behavior and reactions in the atmosphere. 

 Hg0 Hg(II) 

   
Fraction of atmospheric Hg >90 % 

<10 % of total Hg 

< 3 % of total gaseous Hg 

Atmospheric Form 
Dominant form of the gas 
phase 

Primarily in dissolved form 
or bond to particles  

Residence time 0.5 – 2 years Days – weeks 

Way of transport > 10000 km 10 – 1000 km 

Deposition Dry Wet and dry 

 

 

Due to the different residence times and depositional behaviour of the different species 

(Tab. 2-6), chemical transformations in the atmosphere are the key factor for the 

understanding of the global mercury cycle.  

The most important reactions that occur in the atmosphere are shown in Fig. 2-8 and are 

listed in Tab. 2-7.  

 

 

Fig. 2-8 Schematic diagram of the most important transformation processes of mercury in the 
atmosphere (after Lindqvist, 1991). 
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Tab. 2-7 Atmospheric reactions (modified after Temme, 2003) 

Type of Reaction Reaction Literature 

Oxidation in the 
gas phase 

Hg0(g) + O3(g) → HgO(g,s) + O2(g) 

 

Hall, 1995 

 Hg0(g) + NO3
•(g) → HgO(g,s) + NO2(g) Sommar et al., 1997 

 Hg0(g) + Cl2(g) → HgCl2(g) Stein et al., 1996 

 Hg0(g) + H2O2(g) → Hg(OH)2(g,s) Tokos et al., 1998 

 Hg0(aq) + •OH(g) → •HgOH(g) 
•HgOH(g) + O2(g) → HgO(g,s) + HO2

•(g) 

Sommar et al., 2001 

Oxidation in the 
liquid phase 

Hg0(aq) + O3(aq) + H2O → Hg2+(aq) + 
2OH−(aq) + O2(aq)  

Iverfeldt & Lindqvist, 
1986 

 Hg0(aq) + H2O2(aq) + 2H+ → Hg2+(aq) + 
2H2O 

Iverfeldt & Lindqvist, 
1986 

 Hg0(aq) + O3(aq) + H+(aq) → Hg2+(aq) + 
OH-(aq) + O2(aq) 

Munthe, 1992 

 Hg0(aq) + •OH(aq) →Hg+(aq) + OH−(aq) 

Hg+(aq) + •OH(aq) → Hg2+(aq) + OH−(aq) 

Lin & Pehkonen, 
1997 

 Hg0(aq) + HOCl(aq) → Hg2+(aq) + 
OH−(aq) + Cl-(aq) 

Lin & Pehkonen, 
1999 

Reduction in the 
liquid phase 

Hg2+(aq) + SO3
2−(aq) ↔ HgSO3(aq) 

HgSO3(aq) → Hg0(aq) + Products 

Pleijel and Munthe, 
1995 

 Hg2+(aq) + HO2
•(aq) →  Hg+(aq) + O2(aq) 
+ H+(aq) 

Hg+(aq) + HO2
•(aq) → Hg0(aq) + O2(aq) + 

H+(aq) 

Pehkonen & Lin, 
1998 

Photoreduction in 
the liquid phase 

Hg(OH)2(aq) → hν  Hg0(aq) + products Xiao et al., 1994 

Equilibrium Hg2+ + 2Cl- ↔ HgCl2 Lin & Pehkonen, 
1999 

 Hg2+ + 4Cl- ↔ [HgCl4]
2- 

Lin & Pehkonen, 
1999 

 Hg2+ + 2OH- ↔ Hg(OH)2 Lin & Pehkonen, 
1999 

 Hg2+ + SO3
2- ↔ HgSO3 Lin & Pehkonen, 

1999 

 Hg2
2+ ↔ Hg0 + Hg2+ 

Munthe and McElroy, 
1992 
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2.6.1 Reactions in the Gas Phase 

The dominant reaction of atmospheric mercury is the oxidation of Hg0 to Hg(II). This 

transformation allows a subsequent complexation of mercury with different anions, which 

leads to a better solubility. Increased concentrations of atmospheric oxidants accelerate 

these reactions (Iverfeldt and Lindqvist, 1986; Lindberg, 1986). The troposphere 

comprises many potential oxidants, which can react with Hg0, e.g. O2, O3, H2O2, and NO2, 

but as well radicals like NO•
3, 

•OH, HO•
2, and RO•

2. 

 

Many different reaction mechanisms for the oxidation of Hg0 to Hg(II) in the gas phase 

are studied in the last years. However, there are only a few studies about the kinetics of 

these reaction and many existing data are not verified yet.  

The most important gas phase oxidation pathways are the reactions with ozone (Hall, 

1995) and •OH radicals (Sommar et al., 2001).  

Hall (1995) examined the reaction with ozone (Tab. 2-7) under different conditions in 

laboratory.  

This reaction is slower than some other gas phase reactions, but the relatively high 

concentrations of ozone found in the troposphere with respect to other oxidant 

compounds makes it the most important. Only regarding this reaction, Hall calculated a 

mean residence time of Hg in the atmosphere to be ca. 1.4 years (Hall, 1995).  

New data by Sommar et al. (2001) show that it could be reasonable to include •OH as 

potential oxidant for the modeling of the global atmospheric Hg cycle (Tab. 2-7). Their 

results show a fast oxidation of gaseous Hg0 by •OH. The calculation with an averaged 

global •OH concentration (Krol et al., 1998) leads to a residence time of atmospheric 

mercury of 4 to 7 months (Sommar et al., 2001).  

However, as experimentally determined the reaction of Hg0 with ozone (Hall, 1995) is to 

slow to be the main mechanism for the removing of Hg from the atmosphere (Bergan and 

Rhode, 2001) and the simulated reaction with •OH and •HgOH (Sommar et al., 2001) is 

too fast. The residence time of Hg in the atmosphere is a result of a complex interaction 

between many compounds and reactions, which still have to be scope of prospective 

studies. Important atmospheric reactions of mercury are listed in Tab. 2-7. 

 

Oxidation of Hg0 leads to Hg(II) species which are notably less volatile than Hg0 and will 

tend to condense onto atmospheric particulate matter or be deposited to marine or 

terrestrial surfaces. Some of the listed oxidation reactions might have an important 

influence on the formation of particulate phase mercury. As mentioned, HgO is the 

primarily product of the gas phase reaction of Hg with O3, 
•OH, and other oxidants 
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(Schroeder et al., 1991; Hall, 1995; Sommar et al., 2001). The vapor pressure of HgO is 

very low (9.2 · 10−12 Pa at 25 °C; Schroeder and Munthe, 1998). Thus, HgO will probably 

transfer into a solid phase. Due to the low concentration of HgO in the atmosphere the 

condensation of pure HgO is impossible. Hence, an adsorption on aerosol particles is 

presumably (Schroeder et al., 1998).  

Many atmospheric pollutants can be directly transformed or abolished due to 

photochemical reaction. Schroeder et al. (1991) examined the absorption of wavelengths 

> 253.7 nm by elemental mercury by measuring the absorption cross-section (σ). They 

could not find any absorption and hence no proof for photochemical oxidation of Hg0. 

Sunlight of shorter wavelengths (<290 nm) is filtered out by a variety of ionisation 

reactions within the stratosphere (e.g. in the ozone layer). Hence, Hg0 cannot be oxidized 

directly via photochemical reaction in the troposphere. 

However, due to the depletion of the stratospheric ozone layer, the intensity of shorter 

wavelengths (e.g. UV-B) in the troposphere has risen during the last decades. To what 

extend this circumstance influences a possible photochemical reaction of Hg still has to 

be examined.  

 

2.6.2 Reactions in the Aqueous Phase 

Elemental mercury is present in atmospheric water, whether it occurs as fog or cloud 

water or the water associated with deliquesced aerosol particles. The Henry’s Law 

constant for mercury is low, so the elemental mercury concentration in atmospheric water 

should reach equilibrium with the gas phase concentration rapidly, if no particularly rapid 

reactions of elemental mercury occur in the aqueous phase. The possible Hg0 

concentration in water is calculated to be between 3 and 16 pg L−1 (Stein et al., 1996; Lin 

and Pehkonen, 1999). The measured Hg in precipitation, however, reaches 

concentrations up to 1000 ng L-1. This implies that mercury species exist in the 

atmosphere, that are much more soluble in water than Hg0. These species are products 

of various reactions in the aqueous phase. These reactions are generally faster by 

several magnitudes than the accordant reactions in the gas phase (Lin and Pekhonen, 

1999). 

 

Possible oxidants for the oxidation of Hg0 to Hg(II) in the aqueous phase are O3, H2O2 

(Iverfeldt and Lindqvist, 1986; Munthe, 1992), •OH radicals (Lin and Pehkonen, 1997), 

and HOCl (Lin and Pehkonen, 1999). The reaction between Hg0 and O3 is supposed to 

be the most important oxidation process in the aqueous phase (Seigneur et al., 1994).  
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Oxidised Hg in atmospheric water is usually found complexed with SO3
2−, OH−, or Cl− 

ions, the concentration of the various complexes depending on the origin of the aqueous 

phases. In most cases, apart from sea-salt aerosol, the concentration of Cl− ions is low 

and OH− and SO3
2− complexes are predominant. The greater solubility and lower volatility 

of Hg(II) with respect to Hg0 means that Hg(II) does not generally outgas from the 

aqueous phase in any significant fashion, although recent research suggests that HgCl2 

outgassing from the marine aerosol may be an important process in the marine boundary 

layer (Hedgecock and Pirrone, 2001). 

 

Hg(II) in fog and raindrops may adsorb to particulate matter scavenged by the droplets. 

This is particularly likely if the particulate matter is rich in elemental carbon (soot) as the 

adsorption coefficient for Hg on soot is high (Petersen et al., 1998; Pirrone et al., 2000).  

Reduction of Hg(II) in the aqueous phase may occur by the reaction with SO3
2− (Tab. 2-7; 

Pleijel and Munthe, 1995). SO3
2− exists in the atmosphere due to the elution of the 

emitted pollutant SO2. However, because of the short residence time of SO3
2− in clouds or 

fog, the contribution of SO3
2 to the Hg0 production is generally low.  

A possible photo reduction of Hg(OH)2 to Hg0 is shown in Tab. 2-7 (Xiao et al., 1994). 

However, this reaction is supposed to have only minor effects on the production of Hg0. 

 

 

2.7 Definition of the most important Hg Fractions 

A particular aspect of mercury is that it exists in the environment in a number of different 

chemical and physical forms with different behavior in terms of transport and 

environmental effects (Schroeder and Munthe, 1998). Large research efforts have been 

put into the identification and quantification of these species over the last decades (e.g. 

Braman and Johnson, 1974; Brosset, 1982, 1987; Brosset and Lord, 1995; Stratton and 

Lindberg, 1995). 

 

In the atmosphere, the main three forms of Hg are: elemental Hg vapor (Hg0), reactive 

gas phase Hg (RGM) and particulate phase mercury (TPM) (Tab. 2-8). Of these three 

fractions, only Hg0 has been tentatively identified with spectroscopic methods (Edner et 

al. 1989) while the other two are operationally defined species, i.e. their chemical and 

physical structure cannot be exactly identified by experimental methods but are instead 

characterized by their properties and capability to be collected by different sampling 

equipment. RGM is defined as water-soluble mercury species with sufficiently high vapor 

pressure to exist in the gas phase (Munthe et al., 2001). The reactive term refers to the 
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capability of stannous chloride to reduce these species in aqueous solutions without pre-

treatment. The speciation of RGM is not known in detail but based on laboratory studies 

and the methods of its collection, it is assumed to consist of gaseous neutral Hg(II) 

complexes, such as HgCl2, HgBr2, HgClBr, HgClO, HgBrO, and possibly other divalent 

mercury species (Ariya et al., 2002; Balabanov and Peterson, 2003). TPM consists of 

mercury bound or adsorbed to atmospheric particulate matter. Several different 

components are possible. Hg0 or RGM adsorbed to the particle surface, divalent mercury 

species chemically bound to the particle or integrated into the particle itself (Brosset, 

1987). 

 

Tab. 2-8 Different mainly operationally defined mercury species, their acronyms and definitions. 

Acronym Name Definition and Species 

 

TGM  

 

Total Gaseous Mercury  

 

GEM + RGM; Species 
passing through a 0.45 µm 

filter and which are 
collected on gold 

GEM Gaseous Elemental Mercury Hg0 

 

RGM 

 

DGM 

 

GOM 

 

 

Reactive Gaseous Mercury 

 

Divalent Gaseous Mercury 

 

Gaseous Oxidised Mercury 

 

Water-soluble, reactive 
Hg(II) compounds with a 

vapor pressure being high 
enough to allow the 

compounds to stay in the 
gas phase; 

e.g. HgX2, HgSO4, 
CH3HgCl, (CH3)2Hg, (HgO) 

etc. 

PHg 

TPM 

PPM 

HgP 

PM 

Particulate Mercury 

Total Particulate Mercury 

Particulate Phase Mercury 

Mercury, particular 

Particulate Mercury 

 

Mercury which is chemically 
bond with or adsorbed on 

particles 

 

 

2.8 Sampling and Analytical Methods 

In the last few years, new automated and manual methods have been developed to 

measure TGM (Tekran, Inc.; Urba et al., 1995), RGM (Tekran, Inc.; Stratton and 

Lindberg, 1995; Feng et al., 2000), and TPM (Keeler et al., 1995; Lu et al., 1998). These 

developments offer the possibility to determine both urban and background 

concentrations of TGM, RGM, and TPM (EU-Position Paper, 2001). 
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In order to compare different methods used to determine the level of mercury and its 

compounds in air a number of field intercomparisons have been performed (e.g. 

Ebinghaus et al., 1999b; Munthe et al., 2001). A major conclusion from these studies is 

that ambient levels of TGM can be measured with relatively high accuracy whereas TPM 

and especially RGM are more complex. Although the basic techniques available for 

measurements of TPM and RGM have proven to be reliable in research projects, further 

work on standardization is clearly warranted before they can be applied to routine 

measurements or monitoring.  

 

2.8.1 TGM Measurements 

TGM Measurements can either be performed by automated or by manual methods. 

The most common automated methods currently available are the Tekran Gas Phase 

Mercury Analyzer (Tekran, Inc.) and the Gardis Mercury Analyzer (Urba et al., 1995, 

1998). 

 

At the Tekran Analyzer (Model 2537A) pre-filtered sample air is passed through gold 

cartridges where the mercury is collected. The mercury is then thermally desorbed, 

transferred in an argon stream, and detected by means of atomic fluorescence 

spectrometry. The instrument utilizes two gold cartridges in parallel, with alternating 

operation modes (sampling and desorption/analyzing) on a predefined time between 5 

and 15 minutes. With a sampling flow between 1 and 1.5 L min−1 a detection limit of 

0.15 ng m−3 is achieved. The accuracy and the precision of the Tekran has been 

assessed in international intercomparisons (Schroeder et al., 1995a; Schroeder et al., 

1995b; Ebinghaus et al., 1999b; Munthe et al., 2001). 

 

The Gardis instrument is based on gold amalgamation and Atomic Absorption 

Spectrometry detection (Urba et al., 1995). The Gardis operates with ambient air as 

carrier gas and does not require Argon for detection. The sampling is run at about 

1 L min−1, with sampling times of 10 minutes. Under these conditions, a detection limit of 

about 1 ng m−3 is achieved. This instrument has been part of intercomparisons (Urba et 

al., 1998; Ebinghaus et al., 1999b, Munthe et al., 2001).  

 

The manual methods are based on gold (or silver) trap amalgamation. The samples are 

manually analyzed using thermal desorption and cold vapor atomic fluorescence 

spectrometry (Brosset, 1987; Bloom and Fitzgerald, 1988). Samples are collected on a 

trap consisting of a quartz glass tube containing a mixture of small pieces of gold wire 
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and quartz glass grains. Alternatively, the adsorbing material may consist of gold-coated 

quartz glass grains. The airflow is normally > 0.5 L min−1. With 24 h sampling time the 

detection limit is typically 0.01 ng m−3. 

 

2.8.2 RGM Measurements 

The transport and deposition of atmospheric mercury depends strongly on its speciation. 

Beside elemental (Hg0) gaseous oxidized Hg-species (defined as Reactive Gaseous 

Mercury (RGM) are of great importance due to their high water solubility and high 

deposition velocity. Furthermore models on mercury transport and deposition are highly 

sensitive to assumptions of the fraction of mercury present as RGM (Petersen et al., 

1989).  

 

Due to the fact that the fraction of RGM in the atmosphere is very small (<3 % of total 

gaseous mercury) and that no reference materials or adequate standards for the 

collection part of the RGM analytical systems are available, it is crucial to define precisely 

the methodology used. In the last time, there have been at least three collection methods 

used for RGM sampling: a multi-stage filter pack method (Bloom et al., 1996), a refluxing 

mist chamber method (Stratton and Lindberg, 1995; Lindberg and Stratton, 1998; Stratton 

et al., 2001), and a KCl-coated denuder method (Xiao et al., 1997; Feng et al., 2000; 

Landis et al., 2002a).  

 

None of these methods are considered standard, as each method has advantages and 

disadvantages. For the filter pack method, particulate mercury (Hgp) is removed from the 

air stream by the first two Teflon filters with the RGM collected by the cation-exchange 

membranes positioned behind. Therefore, both Hgp and RGM are collected 

simultaneously. The main disadvantage of this method is the long sampling time required, 

usually 24 h, to obtain sufficient RGM for analysis since the flow rate is relatively low. 

Volatilization of collected Hgp and its subsequent collection by the cation-exchange 

membrane is another concern, although it has been demonstrated not to be a problem for 

other volatile species, such as HNO3, HCl, and NH3 (Harisson and Kitto, 1990). If 

oxidation of Hg0 by heterogeneous reactions occurred on the filter surface, this would 

also cause a positive artifact. The extent of this problem is not clear. Adsoprtion of RGM 

onto the particle-removing filters at low flow rates is also possible. For example, 

adsorption of HgCl2 onto quartz fiber filters has been observed in the lab (Bloom et al., 

1996), but Stratton et al. (2001) found no bias in field measurements with or without filters 

in front of the refluxing mist chamber. While there is little field evidence to support 
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adsorption, if these types of artifact did happen in field they would jeopardize almost all 

filter pack RGM measurements.  

 

The refluxing mist chamber allows higher flow rates and thus shorter sampling time, 

usually between 30 and 300 min. However, the scrubbing solution (dilute HCl) not only 

removes RGM from the air stream but also other water-soluble gases, some of which 

may react with Hg0 or RGM and cause either positive or negative artifacts. The 

composition of the scrubbing solution, especially the concentration of chloride, does 

influence the amount of RGM collected (Stratton et al., 2001). A Teflon filter can be 

attached to the chamber inlet to remove particles. Again, this filter may cause artifacts 

that have been discussed above.  

 

The denuder method also allows higher flow rates and shorter sampling time. Two types 

of denuders have been developed: the tubular denuders (Xiao et al., 1997) and the 

annular denuders (Stevens et al., 1999; Landis et al., 2002a). For the annular denuders, 

particles larger than 2.5 µm are removed from the air stream by a cyclone before entering 

the denuder, and smaller particles pass through without deposition under the proper flow 

rate because of the laminar conditions inside the denuder. Adsorption of Hg0 is a potential 

positive artifact for the denuder method. Xiao et al (1997) determined the Hg0 

breakthrough efficiency by spiking gaseous Hg0 into the tubular denuder inlet and found 

that only 98.7 % of the spike was recovered downstream. This non-100 % breakthrough 

efficiency was interpreted as a result of system error and another experiment was 

conducted, which demonstrated that the denuder did not adsorb Hg0 to any degree in the 

laboratory. The quality of KCl coating is important to collection efficiency and it may 

change over time when operated in the field, which resultant changes in Hg0 adsorption. 

Just 1 % Hg0 adsorption would be enough to compromise the measured RGM 

concentration.  

In order to estimate whether these methods are directly comparable there have been 

various intercomparisons (e.g. Munthe et al., 2001, Sheu and Mason 2001).   

 

2.8.3 TPM Measurements 

TPM concentrations in ambient air are between less than 1 pg m−3 and some hundreds of 

pg m−3. The low concentrations make the measuring of TPM difficult. The traditional 

procedure is to sample particles on fiber or membrane filters (Keeler et al., 1995). About 

10 m3 of ambient air is sampled with a sampling rate of 10 L min−1. The filters are 
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analyzed via acid digestion where the mercury is dissolved as Hg(II). Afterwards the 

mercury is analyzed by reduction with SnCl2 and measuring with CVAFS or CVAAS. 

 

In recent years an alternative method has been developed by Lu et al. (1998). This mini 

trap is used both for sampling and for analyzing via pyrolysis. Therefore, the risk of 

contamination during transport and analysis is low. The trap consists of a small quartz 

glass fiber filter (Ø: 6 mm), which is held via a Teflon screen support within a quartz glass 

tube. The flow rate during the sampling is between 3.5 and 5.5 L min−1 and the sampling 

duration is between 12 and 48 hours (Lu et al., 1998). This technique has been tested in 

intercomparisons (Lu et al., 1998).  

 

2.8.4 Mercury in Precipitation 

Mercury in precipitation is determined by collection of precipitation in adequate samplers 

and subsequent analysis for total mercury concentration.  

A summary of sampling techniques used in different monitoring networks is presented in 

Tab. 2-9. Two alternative materials for funnels and collection bottles are adequate for 

sampling or precipitation; glass and fluoropolymer such as Teflon (US-EPA, 2002). 

 

Precipitation can be sampled using wide mouth jars or funnels and bottles. The sampling 

vessels can either be bulk samplers, which are open at all times, or wet-only samplers 

which are only open during precipitation events (see also Tab. 2-9). Wet-only samplers 

have the advantage that they avoid particle dry deposition, although the contribution of  

gaseous or particulate mercury species to the wet deposition fluxes in non-industrialized 

or non-urban areas is probably not large (Iverfeldt and Sjöberg, 1992; Iverfeldt and 

Munthe, 1993). 

 

For extended sampling periods it is also necessary to prevent the diffusion of Hg0 into the 

precipitation sample collected, since it could contribute to the mercury content of the 

sample via oxidation to water-soluble forms (EU-Position Paper, 2001). This can be done 

easily by using a capillary tube between the funnel and the bottle. It is also necessary to 

shield the sample bottles from light to avoid photo-induced reduction of the mercury in the 

precipitation sample. 

 

The most reliable technique for the analysis of mercury in precipitation is by oxidation, 

subsequent reduction, purge and trap, and cold vapor atomic fluorescence spectrometry. 
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Atomic absorption spectrometry may be used but requires larger sample volumes due to 

the lower detection limit. 

Detailed instructions for the accurate analysis can be found in the Method 1631 (US EPA, 

2002), in Munthe, 1996 and in OSPAR, 1997.  

Tab. 2-9 Sampling and analytical techniques used in different monitoring networks 

Mercury 
Species 

Sampling 
Techniques 

Analytical 

Techniques 

Literature 

TGM Tekran 2537 A 

 

 

Gardis Analyzer 

Atomic Fluorescence 
spectrometry (CVAFS) 

 

Atomic absorption spectrometry 
(CVAAS) 

Schroeder et al., 1995a,b 

Urba et al., 1995 

Urba et al., 1998 

Ebinghaus et al., 1999b 

Munthe et al., 2001 

 Manual Method 
with Gold Trap 

 

 

Manual Method 
with Silver Trap 

UV absorption 
spectrophotometry 

 

Atomic absorption 
spectrophotometry AAS 

 

Cold-Vapor techniques, AFS 

 

Atomic Emission Spectrometry 
(AES) 

Brosset, 1987 

Bloom & Fitzgerald, 1988 

Schroeder et al., 1995a,b 

Ebinghaus et al., 1999b 

Munthe et al., 2001 

Wängeberg et al., 2001 

 

RGM KCl-coated 
tubular 
denuders 

Thermal desorption/ 

AFS (AAS) 

Xiao et al., 1997 

Sommar et al., 1999 

 KCl-coated 
annular 
denuders 

Thermal desorption/ 

AFS (AAS) 

Sommar et al., 1999 

Landis et al., 2002a 

 Refluxing Mist-
Chamber 

SnCl2-reduction/ 

AAS or AFS 

Stratton & Lindberg, 1995 

Lindberg & Stratton, 1998 

Stratton et al., 2001 

TPM Filter (glass, 
polypropylene, 
cellulose, 
Teflon) 

AES-Mini-Traps 
with Quartz 
filters 

Thermal desorption/ Pyrolysis/ 
amalgamation/ CVAAS or 
CVAAS 

Schroeder et al., 1995a 

Keeler et al., 1995 

Ebinghaus et al., 1995 

Lu et al., 1998  

Lu & Schroeder, 1999 a,b 

Hg in 
Precipitation 

 

Bulk-Sampler: 
Glass or Teflon 
funnel with glass 
or Teflon bottle 

Oxidation, reduction, purge and 
trap, CVAFS or CVAAS 

Iverfeldt, 1991b 

Jensen & Iverfeldt, 1994 

Chazin et al., 1995 

Ebinghaus et al., 1995 

 Wet only 
Sampler: Glass 
or Teflon funnel 
with glass or 
Teflon bottle 

Oxidation, reduction, purge and 
trap, CVAFS or CVAAS 

Kreutzmann et al., 1995 

Bieber & Althoff, 1995 

Vermette et al., 1995 
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2.9 Worldwide Atmospheric Mercury Measurements  

In recent years, a great effort has been made to characterize the levels of mercury 

species in ambient air and precipitation in order to investigate both large-scale (spatial) 

and short/long-term (temporal) distribution characteristics of atmospheric Hg on a global 

scale (Sprovieri et al., 2010a). In this context, it was shown that in fast developing 

countries in Asia mercury emissions are rapidly increasing in a dramatic fashion (Pacyna 

et al., 2006; Pirrone et al, 2010). However, this development of Asian emissions is neither 

reflected in both the long-term measurements of TGM and Hg in precipitation in Europe 

and North America. Even though the reason for this is not yet clear, it was hypothesized 

that atmospheric Hg cycling is possibly faster than previously thought (Sprovieri, 2010a). 

The understanding of the way in which mercury is released into the atmosphere, 

transformed, and deposited is of crucial importance. However, it is extremely difficult to 

analyze the global long-term trends of mercury in the atmosphere due to the lack of a 

coordinated monitoring network, especially with regards to the Southern Hemisphere. 

Already in 1995 Fitzgerald proposed an international research program, AMNET, or 

Atmospheric Hg Network, to address the important question, "Is Hg increasing in the 

atmosphere?" (Fitzgerald, 1995). However, this initiative has only partly been 

accomplished on a regional scale. Indeed, different field intercomparisons (e.g. 

Ebinghaus et al., 1999b; Munthe et al., 2001) have shown that good agreement of the 

atmospheric mercury concentrations determined by different laboratories using different 

techniques (see also Chapter 2.8) makes a combination of datasets from different regions 

of the world feasible. Nevertheless, a worldwide monitoring network and the need for 

additional sites is necessary to provide a dataset which can give new insights into Hg 

cycling on different temporal and spatial scales (Sprovieri et al., 2010a). Keeler et al. 

(2009) also recommend the establishment of the Coordinated Global Mercury Monitoring 

Network (CGMMN). 

 

Monitoring networks on regional scales exist for example in Europe (see also 2.9.1) with 

the programs MAMCS (Mediterranean Atmospheric Mercury cycle System), MOE 

(Mercury Species Over Europe) and MERMYCS (Mercury Cycling in the Mediterranean 

Sea Basin); in Canada (see also 2.9.2) with the Network CAMNet (Canadian Atmospheric 

Mercury Network); and the USA (see also 2.9.2) with NADP-AMNet (National 

Atmospheric Deposition Program - Atmospheric Mercury Network) and NADP-MDN 

(National Atmospheric Deposition Program - Mercury Deposition Network). 
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In addition, there are single background locations, where long-term monitoring is 

conducted.  

 

In order to understand how the different species in ambient air and precipitation depend 

on meteorological conditions, many of these baseline monitoring sites are at Global 

Atmosphere Watch (GAW) stations which are operated by the World Meteorological 

Organization (WMO) (Fig. 2-9). 

 

Fig. 2-9  Global atmosphere watch stations (GAW) (yellow dots) and affiliated mercury monitoring 
sites (red circles). Original image taken from World Meteorological Organization 
(www.wmo.int). 

 

The datasets cover terrestrial sites in the Northern Hemisphere (NH) and the Southern 

Hemisphere (SH) as well as measurements performed over the oceans and seas. The 

higher spatiotemporal variability of Hg concentrations observed in the NH confirms that 

the majority of emissions and re-emissions are located in the NH (Sprovieri et al., 2010a). 

The inter-hemispherical gradient with higher TGM concentrations in the NH has remained 

nearly constant over the years.  

 

The following sections provide an overview of atmospheric measurements performed at 

several terrestrial sites in the Northern- and Southern Hemisphere and over the oceans. 
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2.9.1 Monitoring Networks in Europe  

For Europe, continuous monitoring datasets exist for the time period 1998 to 2004 for two 

coastal background sites, Mace Head, on the West coast of Ireland and Zingst peninsula 

on the southern shore of the Baltic Sea (Ebinghaus et al., 2002a; Kock et al., 2005). 

Between 1998 and 2004 the annually averaged TGM concentrations measured at Mace 

Head (1.72 ng m−3) and Zingst (1.66 ng m−3) remained fairly stable (Kock et al., 2005). At 

both stations higher concentrations were measured during the winter months and lower 

concentrations during summer months. They also observed an unexpected West to East 

gradient. Since Mace Head is located at the European inflow boundary and, therefore 

considered to be less influenced by continental emissions, these findings are suggesting 

the important role of enhanced emissions from the sea.  

 

Extensive evaluations of Hg measurements in air and precipitation have been carried out 

by Wängberg et al., 2007 at EMEP and OSPAR stations in Ireland, Netherlands, 

Germany, Norway, and Sweden. A decreasing trend in mercury wet deposition with a 

reduction of 10-30 % can be observed when comparing the two periods 1995-1998 and 

1999-2002; probably due to emission controls in Europe. In contrast, no decreasing trend 

in TGM could be observed during the same periods. The authors suggest that a plausible 

explanation is that the TGM concentration measured in the OSPAR area to a larger 

extent than before is dominated by the hemispherical background concentration of TGM. 

 

During the MOE and MAMCS project a comparison of TGM, TPM, and RGM 

measurements at 10 coastal sites (Fig. 2-10) distributed over Europe was obtained. Four 

synchronized seasonal field campaigns from 1998 to 1999 were operated at five sites in 

North Europe and five sites in the Mediterranean Region. It could be shown that TGM 

was slightly higher and also TPM and RGM were even significantly higher in the 

Mediterranean region than in Northwest Europe (Wängberg et al., 2001; Pirrone et al., 

2003; Munthe et al., 2003; Sprovieri et al., 2010a). 

 

The most probable interpretation is that enhanced reemission fluxes from warm sea 

surfaces coupled with chemical and physical transformation processes occurring in the 

Mediterranean MBL lead to local production of RGM and TPM (Sprovieri et al., 2003; 

Hedgecock et al., 2003, 2005; Ebinghaus et al., 2009; Sprovieri et al. 2010b). These 

enhanced re-emission fluxes are driven primarily by higher solar radiation, humidity and 

temperature in the Mediterranean basin when compared to more northern seas. 
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Tab. 2-10 TGM, RGM, and TPM average values observed at the selected coastal sites during the 
four seasonal campaigns of the MOE, MAMCS, and MERCYMS projects. NA: data not 
available; D: day; N: night. 

 Location Season 
 

TGM 
[ng m

−3
] 

RGM 
[pg m

−3
] 

TPM 
[pg m

−3
] 

References 

M
O

E
 

Neuglobsow, D 

N53°8’/E13°2’ 

Fall 

Winter 

Spring 

Summer 

2.22 

2.14 

1.98 

1.58 

NA 

19.86 

27.23 

27.98 

98.83 

21.00 

46.17 

30.93 

 

 

Wängberg et al., 2001 

Munthe et al., 2003 

Ebinghaus et al., 2009 

Sprovieri et al., 2010b 

Zingst, D 

N54°26‘/E12°43‘ 

Fall 

Winter 

Spring 

Summer 

1.60 

1.67 

1.47 

1.69 

NA 

37.48 

54.61 

9.15 

70.93 

21.65 

23.81 

22.48 

Rörvik, S 

N57°8‘/E11°56‘ 

Fall 

Winter 

Spring 

Summer 

2.69 

1.40 

1.54 

1.39 

15.30 

19.19 

18.24 

17.41 

18.58 

4.78 

7.94 

7.61 

Aspvreten, S 

N58°48‘/E17°23‘ 

Fall 

Winter 

Spring 

Summer 

1.68 

1.31 

1.46 

1.27 

NA 

11.13 

13.65 

9.25 

12.37 

9.99 

7.00 

7.48 

Mace Head, IRL 

N53°20‘/W9°54‘ 

Fall 

Winter 

Spring 

Summer 

2.03 

1.72 

1.62 

1.45 

28.59 

25.68 

31.01 

27.13 

3.99 

3.51 

10.18 

10.58 

M
A

M
C

S
 

Mallorca, E 

N39°40’/E2°41’ 

Fall 

Winter 

Spring 

Summer 

3.16 

3.08 

3.85 

4.15 

1.88 

99.59 

76.02 

NA 

34.40 

86.12 

44.11 

33.56 

 

 

Wängberg et al., 2001 

Pirrone et al.,2003 

Ebinghaus et al., 2009 

Sprovieri et al., 2010b 

Calabria, I 

N39°25’/E16°0’ 

Fall 

Winter 

Spring 

Summer 

1.30 

1.86 

1.42 

1.09 

40.18 

24.84 

46.74 

35.47 

26.32 

28.55 

22.71 

45.55 

Sicily, I 

N36°40’/E15°10’ 

Fall 

Winter 

Spring 

Summer 

1.34 

2.37 

1.89 

2.18 

90.14 

46.39 

77.49 

29.48 

5.57 

8.46 

11.02 

9.11 

Antalya, TR 

N36°28’/E30°20’ 

Fall 

Winter 

Spring 

Summer 

1.68 

8.71 

1.34 

NA 

NA 

10.44 

21.00 

NA 

14.66 

14.39 

25.25 

65.25 

Haifa, IL 

N32°40’/E34°56’ 

Fall 

Winter 

Spring 

Summer 

1.83 

0.90 

1.45 

NA 

NA 

36.14 

34.81 

NA 

115.39 

27.30 

97.89 

4.19 

M
E

R
C

Y
M

S
 

Cabo de Creus, 

E 

N42°19’/E3°19’ 

Fall 

Winter 

Spring 

Summer 

1.60 

1.50 

1.60 

2.10 

2.20 

0.24 

2.20 

1.20 

9.60 

9.10 

9.60 

11.20 

 

 

Wängberg et al., 2008 

Ebinghaus et al., 2009 

Sprovieri et al., 2010b 

 

Thau Lagoon, F 

N43°25’/E3°35’ 

Fall 

Winter 

Spring 

Summer 

1.60 

2.90 

1.60 

3.30 

8.60 

41.90 

8.60 

191.00 

3.00 

82.00 

3.00 

662.00 

Piran Marine, 

SLO 

N45°33’/E13°33’ 

Fall 

Winter 

Spring 

Summer 

NA 

0.80 

NA 

4.00 

4.50 

1.00 

4.50 

15.40 

NA 

18.70 

NA 

9.40 

Calabria, I 

N39°25’/E16°0’ 

Fall 

Winter 

Spring 

Summer 

1.30 

1.90 

1.30 

1.60 

1.60 

4.20 

1.60 

NA 

1.00 

6.10 

1.00 

NA 

Haifa, IL 

N32°40’/E34°56’ 

Fall 

Winter 

Spring 

Summer 

D1.19/N0.78 

D0.80/N0.50 

D1.19/N0.78 

D1.24/N1.21 

33.00 

2.20 

33.00 

8.30 

89.00 

3.90 

89.0 

22.7 
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Fig. 2-10  Sampling sites of the European projects MOE, MAMCS, and MERCYMS. 

 

 

2.9.2 Monitoring Networks in Northern America 

Long-term monitoring of atmospheric Hg with high time resolution started at Alert, 

Canada in January 1995. This was the first site in the development and set up of the 

Canadian Atmospheric Mercury Network (CAMNet), which was established in July 1994 

by environment Canada (www.ec.gc.ca). In this network 11 sites located between 43° 

and 82° N latitude and 62° and 123° W longitude have been operated continuously. Long-

term monitoring data of TGM concentrations were analyzed for the time period from 1995 

– 2005 by Temme et al., 2007 (Tab. 2-11). TGM concentrations at all sites were similar to 

or slightly lower than those observed at European background sites. Seasonal variations 

of TGM concentrations were observed for all sites. The study revealed statistically 

significant decreasing TGM concentrations from rural locations in Canada during the 

investigated time period, with largest declines close to the urban areas of Toronto and 

Montreal (17 % and 13 %). This is in good agreement with the overall trend in total 

mercury concentrations in precipitation observed at co-located or nearby sites, operated 

by the NADP-MDN, indicating that these changes are mostly driven by local and regional 

changes in mercury emissions. Other sites reflect hemispherical global background 

concentrations of airborne mercury, where slight decreases or no statistically significant 

trend in TGM concentrations exist over the same time period. 

 

More recently, at some sites within CAMNet atmospheric Hg-species concentrations in 

addition to TGM have been measured. Poissant et al. (2005) reported mean values of 

GEM, RGM and Hgp in St. Anicet, Québec for the year 2003 to be 1.65±0.42 ng m–3, 

3±11 pg m–3, 26±54 pg m–3, respectively.  

MAMCS

1 Mallorca, E; N39°40'/E2°41'

2 Calabria, I; N39°25'/E16°0'

3 Sicily, I; N36°40'/E15°10'

4 Antalya, TR; N36°28'/E30°20'

5 Haifa, IL; N32°40'/E34°56'

MOE

6 Neuglobsow, D; N53°8'/E13°2'

7 Zingst, D; N52°26'/E12°43'

8 Rörvik, S; N57°8'/E11°56'

9 Aspvreten, S; N58°48'/E17°23'

10 Mace Head, IRL; N53°20'/W9°54'

MERCYMS

A Cabo de Creus, E; N42°19'/E3°19'

B Thau Lagoon, F; N43°25'/E3°35'

C Piran Marine, SLO; N45°33'/E13°33'

D Calabria, I; N39°25'/E16°0'

E Haifa, IL; N32°40'/E34°56'

1
2

3 4

5

6

7

8

9

10

A

B

C

D

E
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And also within the NADP programs AMNet and MDN different species have been 

measured during various campaigns since the early 1990s. Dividing the sampling sites 

within these campaigns in the United States into remote, rural and urban location TGM 

concentrations vary between 1.4-1.8 ng m−3 for remote sites and 2.1-8.7 ng m−3 for urban 

sites (Tab. 2-12). RGM concentrations range from 3 pg m−3 at remote sites to over 

150 pg m−3 at urban sites, TPM from 0 to over 197 pg m−3 (Tab. 2-12). 

 

Tab. 2-11 Descriptive statistics for TGM data for the 11 CAMNet sites (after Temme et al., 2007)  

Site 
Mean 

[ng m–3] 

Min 

[ng m–3] 

Max 

[ng m–3] 

SD 

[ng m–3] 

Alert 1.55 0.03 3.12 0.37 

Kejimkujik 1.45 0.54 2.30 0.21 

St. Andrews 1.42 0.74 2.46 0.23 

St. Anicet 1.64 0.92 16.31 0.40 

Point Petre 1.78 0.80 4.26 0.34 

Egbert 1.67 0.95 6.90 0.27 

Burnt Island 1.58 0.99 2.48 0.21 

Bratt’s Lake 1.53 0.79 2.68 0.24 

Esther 1.65 1.19 2.14 0.15 

Fort Chipewyan 1.36 0.95 1.77 0.15 

Reifel Island 1.67 0.91 2.92 0.19 

 

Tab. 2-12 Summary of Hg
0
, RGM and HgP measurements made at remote, rural and urban locations 

in the United States (Sprovieri et al., 2010a and Refs. therein) 

 

Sites 

Hg0 

Range of Means 
[ng m

-3
] 

RGM 

Range of Means 

[pg m
-3

] 

HgP 

Range of Means 

[pg m
-3

] 

Precip.-HgT 

Mean 

[ng L
-1
] 

Remote Sites 1.4-1.8 2.7-60 0-9 4 

Rural Sites 1.3-3.2 1-92 3-50 6 

Urban, Industrial, 
Mining, or Fire 
Sites 

2.1-8.7 7-150 2-197 10 
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2.9.3 Measurements in the Southern Hemisphere 

Representative measurements of atmospheric mercury in the Southern Hemisphere are 

very scarce. The only long-term dataset of atmospheric TGM in the non-polar Southern 

Hemisphere is constituted by TGM monitoring at the Cape Point-GAW station, South 

Africa (Fig. 2-9). During the period form 1995 until June 1999 TGM concentrations were 

found to be fairly homogeneous over time ranging between 1.2 and 1.4 ng m−3 (Baker et 

al., 2002) (Tab. 2-13). Whilst no significant diurnal variation was observed, a slight 

seasonal variation was detectable, with minimum concentration during March and May 

hand highest concentrations between June and August. The most prominent feature of 

the highly resolved TGM measurements is the frequent occurrence of events with almost 

complete mercury depletion (Brunke et al., 2010). This has so far not been observed at 

non-polar stations.  

 

Tab. 2-13 Atmospheric mercury measurements performed at Cape Point, South Africa. NA: data not 
available; BDL: Below detection limit. 

Location Period Method Species Mean 
[ng m

–3
] 

Min.  
[ng m

–3
] 

Max.  
[ng m

–3
] 

Reference 

South Africa 

Cape Point 

S34°21’/E18°29’ 

1995-

1999 

 

10/1996-

11/1996 

 

03/2007-

06/2008 

 

Silver and 

gold coated 

quartz wool  

 

 

Tekran 

2537A 

TGM 

 

 

TGM 

 

 

GEM 

1.2-1.4 

 

 

1.258±0.119 

 

 

0.944±0.160 

NA 

 

 

NA 

 

 

BDL 

NA 

 

 

NA 

 

 

5.44 

Baker et al., 

2002 

 

Brunke et al., 

2010 

 

Slemr et al., 

2008 

 

Few long term measurements dedicated to atmospheric mercury have been performed in 

Antarctica compared to those performed in the Arctic. First TGM data from the Antarctica 

region were reported by De Mora et al. (1993), who conducted TGM measurements from 

1985 to 1989 at three different sampling sites (Tab. 2-14). They found mean TGM 

concentrations between 0.23 ng m−3 and 0.6 ng m−3 and therefore suggested TGM 

concentrations in Antarctica being substantially lower than those observed elsewhere. In 

recent years, monitoring of atmospheric mercury in Antarctica has been extended to 

several coastal locations - German Research Station Neumayer, Italian Antarctic Station 

in Terra Nova Bay and the US station McMurdo – and to two stations on the Antarctic 

Plateau – US South Pole Station and the French-Italian Concordia Base. Results and 

references of these studies can be found in Tab. 2-14. Due to these studies, there is a 

scientific consensus about the Hg0 annual mean concentrations in Antarctica which is 

around 1.0 ng m−3.  
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Tab. 2-14 Summary of atmospheric mercury measurements performed at different locations in 
Antarctica. NA: data not available; BDL: Below detection limit. Data are partly taken from 
Dommergue et al., 2010. 

Location Time Method Species Mean 
[ng m

–3
] 

Min.  
[ng m

–3
] 

Max.  
[ng m

–3
] 

Reference 

Antarctica 

Lake Vanda 

S77°33’/E161°37’ 

 

Scott Base 

S77°51’/E166°46’ 

 

Arrival Heights 

S77°11’/E166°40’ 

12/1985 

 

 

1987 

1988 

 

1989 

 

 

Manual-

silvered/ 

golded sand 

collectors 

TGM 

 

 

TGM 

 

 

TGM 

0.23 

 

 

0.52±0.14 

0.60±0.40 

 

0.52±0.16 

NA 

 

 

0.16 

0.02 

 

0.11 

NA 

 

 

0.83 

1.85 

 

0.78 

 

 

 

De Mora et 

al., 1993 

 

 

Neumayer 

S70°11’/W08°15’ 

2000- 

2001 

Tekran 

2537A; 

1130 and 

KCl-Coated 

Annular 

Denuders 

 

AESmini 

Trap 

TGM 

Hg(0) 

 

RGM 

 

 

 

TPM 

1.08±0.29 

0.99±0.27 

 

NA 

 

 

 

NA 

0.27 

0.16 

 

5*10
-3

 

 

 

 

15*10
-3

 

2.34 

1.89 

 

~300*10
-3 

 

 

 

120*10
-3

 

 

Ebinghaus et 

al., 2002b;  

Temme et al., 

2003a 

Terra Nova Bay 

S74°41’/E164°07’ 

1999-

2001 

Tekran 

2537A; 

1130 and 

KCl-Coated 

Annular 

Denuders 

Goldtraps 

Filter coll. 

TGM 

Hg(0) 

 

RGM 

 

 

TPM 

0.81±0.1 

0.9±0.3 

 

(116±78)*10
-3

 

 

 

(12±6)*10
-3

 

0.5 

0.29 

 

~11*10
-3 

 

 

4*10
-3

 

0.9 

2.3 

 

334*10
-3

 

 

 

20*10
-3

 

 

Sprovieri and 

Pirrone, 2000; 

Sprovieri et 

al., 2002 

South Pole 

S90°00‘ 

11-12/ 

2003 

 

11/2000

-01/ 

2001 

Tekran 

2537A; 

1130,  

1135 

 

Filter 

collection 

Hg(0) 

RGM 

TPM 

 

 

 

TPM 

0.54±0.19 

(344±151)*10
-3

 

(224±119)*10
-3 

 

 

 

(166±147)*10
-3

 

0.24 

95*10
-3

 

71*10
-3

 

 

 

 

11*10
-3

 

0.82 

705*10
-3

 

660*10
-3

 

 

 

 

827*10
-3

 

Brooks et al., 

2008a 

 

 

 

Arimoto et al., 

2004 

McMurdo 

S77°13’/E166°45’ 

01/2009 Tekran 

2537A 

1130 

1135 

Hg(0) 

RGM 

TPM 

1.20±1.08 

(116±45)*10
-3

 

(49±36)*10
-3

 

BDL 

29*10-3 

5*10-3 

11.16 

275*10
-3

 

182*10
-3

 

Brooks et al., 

2008b 

 

 

A complementary approach to measurements at a few stationary sites for long periods 

consists of campaign measurements from moving platforms, such as ships. Long-term 

measurements over the Atlantic Ocean have been performed by Slemr et al. since 1977 

(Slemr et al., 1981; Slemr et al., 1985; Slemr and Langer, 1992; Slemr et al., 1995). The 

TGM concentrations which were measured during these cruises over the southern 

Atlantic Ocean are summarized in Tab. 2-15. Further data were collected over the 

Atlantic Ocean by Lamborg et al. (1999) and Temme et al. (2003a,b) and over the Indian 

Ocean by Witt et al. (2010) and by Xia et al. (2010). The concentrations measured in the 

Southern Hemisphere are summarized in Tab. 2-15. For the Southern Hemisphere a 

rather homogeneous distribution of TGM was observed, compared to the data from the 

Northern Hemisphere. For further information on the cruise part concerning the Northern 
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Hemisphere, the reader is referred to the references listed in Tab. 2-15 and to Sprovieri 

et al. (2010a). 

 

Tab. 2-15 Summary of atmospheric mercury measurements performed during cruise campaigns 
over Oceans in the Southern Hemisphere. 

Location Period Method Species Mean 
[ng m

–3
] 

Min.  
[ng m

–3
] 

Max.  
[ng m

–3
] 

Reference 

Over Atlantic Ocean – Southern Hemisphere (South of ITCZ) 

S32°-N11° 

 

N18°-N3° 

 

S2°-N4° 

 

S34°-N11° 

 

S48°-N7° 

 

S46°-N6° 

 

10/1977 

 

11-12/ 

 1978 

01-02/ 

1979 

10-11/ 

1980 

10-11/ 

1990 

10-11/ 

1994 

 

 

 

 

Gold or 

silver coated 

quartz wool 

collectors 

AAS/AFS 

 

 

 

TGM 

 

TGM 

 

TGM 

 

TGM 

 

TGM 

 

TGM 

 

1.19±0.25 

 

1.35±0.2 

 

1.26±0.2 

 

1.5±0.2 

 

1.5±0.3 

 

1.2±0.2 

0.8 

 

0.86 

 

1.07 

 

1.1 

 

0.9 

 

0.8 

 

1.7 

 

1.85 

 

2.09 

 

1.9 

 

2.4 

 

2.1 

 

 

 

 

 

Slemr and 

Langer, 1992;  

 

 

 

 

Slemr et al., 

1995 

S33°-N8° 

 

05-06/ 

1996 

 

Gold coated 

quartz sand 

 

TGM 

 

TPM 

1.61 ±0.09 

 

(1.9±0.2)*10
-3

 

1.17 

 

1.3*10
-3

 

1.99 

 

4.8*10
-3

 

Lamborg et 

al., 1999 

 

S37°-N8° 

 

 

S71°-N3° 

 

 

S71°-S34° 

 

 

S71°-S54° 

 

10-11/ 

1996 

 

12/1999-

01/2000 

 

02-03/ 

2000 

 

02/2001 

 

Tekran 

2537A 

 

Tekran 

2537A 

 

Tekran 

2537A 

 

Tekran 

2537A 

TGM 

 

 

TGM 

 

 

TGM 

 

 

TGM 

1.4±0.1 

 

 

1.27±0.09 

 

 

1.00±0.12 

 

 

1.1±0.1 

1.0 

 

 

0.54 

 

 

0.24 

 

 

0.75 

2.3 

 

 

1.84 

 

 

1.30 

 

 

1.4 

Temme et al. 

2003b 

 

 

Temme et al. 

2003a/b 

Over Indian Ocean – Southern Hemisphere (South of ITCZ) 

S7°-S20° 

 

S0°-S69° 

11/2007 

 

11-12/ 

2007 

Tekran 

2537A 

Tekran 

2537B 

TGM 

 

TGM 

1.2 

 

1.471±0.8 

1.05 

 

0.30 

1.51 

 

4.5 

Witt et al., 

2010 

Xia et al., 

2010 

 

 

Relatively few observations of atmospheric mercury have been performed in Central and 

South America. Additionally, these few studies have been carried out near to, or 

downwind of major Hg emission sources or in urban areas (Hachiya et al., 1998; 

Amouroux et al., 1999; De La Rosa et al., 2004; Higueras et al., 2005; Fostier and 

Michelazzo, 2006; García-Sánchez et al., 2006).  

Hence, no reliable baseline mercury data can be used yet to establish long-term trends 

for the region of South America.  
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3 DEVELOPMENT OF THE EXPERIMENTAL SET-UP 

As lined out in previous chapters the sampling and analyzing of different atmospheric Hg 

species is a challenging task. While TGM can be measured with relatively high accuracy, 

the measuring of TPM, RGM and Hg in rainwater is more complex. A number of different 

sampling techniques were employed for these fractions, but they are not yet standardized 

(Chapter 2.8). On the market, only one fully automated system exists (Tekran Inc., 

System with the Models 2537A, 1130, and 1135), were the three components TGM, 

RGM, and TPM are measured concurrently. However, this system is not capable for the 

remote sampling areas of this study, because Argon is needed as carrier gas for the 

detector. Different aspects for choosing the optimal combination of sampling and 

analytical techniques have to be taken into account, especially with regard to 

determination of Hg in remote sampling areas: 

 The accuracy of the methods has to be warranted 

 The risk of contamination has to be low 

 Due to the low stability of the compounds, a direct analysis of the samples 

(especially RGM and Hg in precipitation) during the campaigns is indispensable 

 The electric power consumption has to be grantable 

 The material complexity has to be kept low 

 The material has to be safe against breakage 

 The material has to be easy to clean and does not have to have memory effects 

 

Taking all these aspects into account the following combination of sampling and 

analyzing the different species was chosen (Tab. 3-1). 

Tab. 3-1 Sampling and analytical techniques used in this study. 

Mercury 
Species 

Sampling 
Techniques 

Analytical 

Techniques 

More 
Information 

TGM Gardis Analyzer CV-AAS (Gardis−3)  Chapter 3.4 

RGM Mistchamber Reduction with SnCl2, Purge and Trap,  

CV-AAS (Gardis−3)  

Chapter 3.5 

 

TPM 

Minitrap with 

quartz glass fiber 
filters 

Thermal desorption/ CV-AAS (Gardis−3, 
AMA−254) 

Chapter 3.6 

Hg in 

Precipitation 

and Snow 

Teflon bags 

 

PP tubes 

Ox. with BrCl; Red. with NH2OH•HCl and 
SnCl2, Purge and Trap, CV-AAS (Gardis−3, 

AMA−254) CV-AFS (MercurPlus) 

Chapter 3.7 

 

Chapter 3.8 
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3.1 Materials and Chemicals 

Preventing samples from contamination during the sampling and the analysis process 

constitutes one of the greatest challenges encountered in trace metals determinations. 

Samples may become contaminated by different sources, e.g. by contaminated labware, 

containers, sampling equipment, reagents, reagent water, or laboratory air.  

Hence, an accurate pre-treatment of the materials and chemicals is extremely important. 

  

3.1.1 Sampling Equipment 

The construction material used for the sampling and the analytical train was either glass 

of fluoropolymer because mercury vapor can diffuse in or out of most other materials, 

leading to incorrect results. Only construction parts which did not get into direct contact to 

the samples were sometimes made of other materials, like e.g. silicone tubings. For the 

RGM measurements polypropylene centrifuge tubes were taken as sample containers. 

Studies of Stratton et al. (2001) showed them to be reliable.  

Sample collection bottles as well as all material which came in direct contact to the 

samples were cleaned prior to the campaigns according to the following procedure: The 

equipment was first rinsed in Milli-Q water for several times. The equipment was put into 

a polyethylene tub, which was filled with 3 M HCl, making sure that all of the surfaces 

were submersed in the HCl. The tub was closed and placed in a water bath at 60 °C for 

three hours in a fume hood. Afterwards, the material was allowed to soak in the HCl for 

another three days. After the soak in the HCl, the material was removed from the tub and 

rinsed with Milli-Q water for several times. The material was then soaked in a 2 M HNO3 

for seven days. At the end of the soak the material was rinsed with Milli-Q water for 

several times and air dried. Finally, the material was double heat-sealed into 

polypropylene foil, and stored until use.  

 

3.1.2 Chemicals, Reagents, and Standards 

Reagent water: Milli-Q water (18.2 MΩ cm-1; Millipore, Milford, MA, USA). This water was 

used for cleaning the material, for preparing the reagents and standards, and as blank.  

 

Hydrochloric acid: Merck, p.a.; Hg < 0.005 ppm. This acid was used for cleaning the 

material and for preparing the reagents. 

Merck, Ultrapur, 30 %. This acid was used for preparing Bromine monochloride. 

 

3 M hydrochloric acid: concentrated HCl was added to reagent water at a ratio 1 : 3. This 

acid was used for cleaning the material. 
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2 M nitric acid: concentrated HNO3 (Merck, reinst) was added to reagent water at a ratio 

1 : 7. This acid was used for cleaning the material.  

 

Stannous chloride: 20 g of stannous chloride -2- hydrate (SnCl2•2H2O; Riedel-de-Haën, 

purum; or Merck, p.a.) and 10 mL of concentrated HCl were brought to 100 mL with 

reagent water. The solution was purified by purging overnight with N2. The solution was 

stored in a tightly capped brown glass bottle. 

 

Hydoxylamine hydrochloride: 30 g of hydroxylammonium chloride (NH2OH•HCl; Merck, 

p.a) were dissolved in reagent water and brought to 100 mL. The solution was purified by 

adding 0.1 mL of SnCl2 solution and purging overnight with N2. The solution was stored in 

a brown glass bottle. 

 

Bromine monochloride (BrCl): 110 mg of Potassium bromide (KBr; Riedel-de-Haën, 

Spectranal ®; or Merck, p.a.) were dissolved in 100 mL HCl in a fume hood. For this, a 

clean magnetic stir bar was put in the bottle and stirred for approx. one hour. 150 mg of 

potassium bromate (KBrO3; Merck, p.a.) were added to the acid slowly while stirring. The 

running reaction can be seen by a change of the color from yellow to red to orange. The 

bottle was then capped loosely and the solution was stirred for another hour before the 

cap was tightened. 

 

Stock Hg standard: Standard solution Hg(NO3)2 in HNO3 with a mercury concentration of 

1000 mg L−1; Merck, CertiPUR. This standard is traceable to SRM and NIST. 

 

Secondary Hg standard A: Approximately 0.5 L of reagent water and 5 mL of BrCl were 

added to a 1.00 volumetric flask. 100 µL of the stock mercury standard were added to the 

flask and were diluted to 1 L with reagent water. That solution contained 100 µg L−1 Hg. 

The solution was transferred to a fluoropolymer bottle and capped tightly. The secondary 

Hg standard was considered stable until the Merck expiration date of the stock Hg 

standard.  

 

Secondary Hg standard B: 1 mL of the secondary Hg standard A was diluted to 1 L in a 

volumetric flask with reagent water containing 0.5 % by volume BrCl solution. That 

solution contained 100 ng L–1 Hg. The solution was transferred to a fluoropolymer bottle 

and capped tightly.  
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Working Hg standard A: 10 mL of reagent water containing 0.5 % by volume BrCl solution 

were pipetted directly into a 50 mL centrifuge tube.  

 

3.2 Energy Supply at the Sampling Sites 

For the sampling and analyzing within the field, a sufficient energy supply had to be 

warranted. Particularly, the Gardis−3 Analyzer needed much electric power (40 W during 

sampling and 90 W during analyzing), but also the computer for controlling the Gardis−3 

and the pumps for the RGM and for the TPM sampling had to be fed.  

 

Because of the low natural background Hg concentrations which ought to be measured, a 

“clean” electric power supply was necessary. Hence, the availability of “clean” energy 

was a criterion for the choice of a good sampling site. In Spain, wind energy was supplied 

by a wind-mill company (Acconia Group). In Austria, the research station, were the 

sampling was carried out, was supplied by a water power plant. In Patagonia, the logistic 

circumstances not always permitted an ideal energy supply. At Skyring, the sampling was 

carried out on the area of the Estancia Skyring. There, the power supply was kindly made 

available by the owners of the farm, who ran a hydroelectric generator for private use. 

However, at the other two sites no opportunity of a local power supply existed. Hence, the 

machines were run with car batteries and an electric generator based on fuel. Here, it 

was made sure, that the emission of the generator did not influence the measurements. 

This was achieved, by placing the generator far away from the sampling area, behind a 

knoll, in the downwind direction. 

 

3.3 Analyzers for the Atmospheric Mercury Measurements 

The analyzing of the different samples was generally carried out with a Gardis-3 

instrument. In addition, the AMA−254 (Advanced Mercury Analyzer; LECO) was used for 

comparing means for the measurements of TPM and Hg in precipitation. Both analyzers 

are based on gold amalgamation, thermal desorption, and subsequent atomic absorption 

spectrometry (AAS) detection.  

 

3.3.1 GARDIS−3 

The Gardis−3 is a field analyzer, which is similar to the earlier model Gardis−1A, which is 

described in literature (Urba et al., 1995; Urba et al., 1998). The Gardis−3 operates with 

ambient air as carrier gas. Due to the very remote and logistically difficult sampling sites 

of this study, this was a great advantage over most other AAS or AFS instruments, which 

require Argon or Helium for detection.  
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Technical Parameter of the Gardis−3: In this AAS analyzer a low pressure electrodeless 

discharge Hg lamp (EDL) with λ = 254 nm is used as a light source. As detector a 

phototube is used, which is sensitive to the spectral region from 220 nm to 330 nm. Due 

to a two-beam optical system and a mechanical chopper the light is enabled to pass 

through the sample and reference cells alternatively. The reference cell has the same 

dimension as the sample cell and is filled with argon to avoid generation of ozone by the 

UV light. 

The gas train consists of the concentration trap, the analytical trap, the sample optical cell 

and the gas pumping system, connected in series with Teflon tubings. The gas pumping 

system provides two flow rates: 1 L min−1 for sampling and 10 mL min−1 for analysis.  

 

Calibration of the Gardis−3: The Gardis−3 was calibrated with saturated Hg gas phase 

syringe injections prior to the campaign, using a method adopted from Dumarey et al. 

(1985). 

The source for the Hg saturated gas was a closed flask, containing 20-30 mL of mercury. 

Within the flask the Hg of the headspace is in equilibrium with the liquid. The vapor 

pressure of Hg is a function of the temperature and can be measured by equation 3-1 

(Landolt-Börnstein, 1969). The resulting vapor pressure curve is shown in Fig. 3-1.  

 

TCB
T

A
p loglog    (Eq. 3-1) 

 

 p = Hg vapor pressure [Torr] 

 T = Hg temperature [K] 

 A = 3332.7 K    

 B = 10.5457 Torr 

 C = -0.848 

 

According to the Ideal Gas Law (Equation 3-2) the amount of Hg within the air volume of 

the syringe can be calculated. The resulting calibration curve is shown in Fig. 3-1. 

 

.const
T

pV
  (Eq. 3-2) 
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Fig. 3-1 Hg-Vapor Pressure and Hg-Amount versus temperature for calibration of the Gardis.  

 

For the calibration of the Gardis−3, between 10 and 20 µL of Hg-saturated air was 

removed via a septum by using a gas-tight syringe (Hamilton, # 1700). The air was then 

injected into the inlet of the Gardis−3. For this, the sampling time was set to be 30 sec.  

 

This procedure was repeated several times (n) to get a reliable average value. If the 

measured value did not correspond to the calculated value, the calibration constant of the 

Gardis−3 had to be changed according to equation 3-3.  

 

m

c
on
x

X
CC   (Eq. 3-3) 

 

 Cn: new calibration constant 

 Co: old calibration constant 

 Xc: calculated amount of Hg 

 x̄m: average measured value 

 

The Gardis−3 was calibrated at regular intervals. Additionally, it was calibrated directly 

prior to each campaign.  

 

Ageing of the Gold Traps: The gold traps are the most sensitive parts of the Gardis−3 and 

have to be replaced in regular intervals. Due to the ageing their collection efficiency 

decreases. This loss in efficiency can be compensated by the calibration constant up to a 
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certain extend. However, after a certain degree the loss of collection efficiency goes very 

rapidly (Fig. 3-2). 

 

1 2 3 4 5 6 7 8 9 10 11 12 13

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

H
g

 [
n

g
 m

-3
]

Day of Sampling
 

Fig. 3-2 Decrease of the collection efficiency of an old gold trap. 

 

Hence, especially prior to a campaign, it is necessary to check the collection efficiency.  

One relatively meaningful method to estimate the reliability of the gold trap is the 

comparison between Hg concentrations depending on different sampling durations. In the 

ideal case the Hg concentration should be independent from the sampling time. However, 

the Hg concentration decreases with raising sampling duration. For new gold traps the 

effect is limited, but for old gold traps this effect is getting worse (Fig. 3-3). 

 

 

Fig. 3-3 Collection efficiency of a new (left) and an old (right) gold trap, tested with different 
sampling durations. 

  

3.3.2 AMA−254 for Solid Samples 

The AMA−254 is a single purpose atomic absorption spectrophotometer for direct 

mercury determination in solid and liquid samples without the need of sample chemical 

pre-treatment. It is fully compliant with the US-EPA method 7473. It is also possible to 
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measure gaseous mercury by using a gold trap for pre-concentration (see Chapter 3.3.3). 

The AMA−254 uses a direct atomic absorption cold vapor method with gold 

amalgamation. The sample is decomposed in a combustion/catalyst tube with oxygen as 

flue gas. A gold amalgamation trap collects all mercury from the evolved gases and a 

dual-path length cuvette/spectrophotometer specifically determines mercury over a wide 

dynamic range. 

 

Technical Parameter of the AMA−254: A low pressure Hg lamp is used (λ = 253.65 nm) 

as light source and a silicon UV diode as detector. The AMA−254 only provides a one-

beam optical system with a serial arrangement of the cuvettes. The gas train consists of 

the sample holder, the combustion/catalyst tube, the gold amalgamation trap, and the 

dual-path length cuvette/spectrophotometer. Oxygen is used as carrier gas. In order to 

avoid interferences a filter for a wavelengths of 254 nm and a half-width of 9 nm is used. 

The detection limit is at 0.01 ng Hg and the working range covers the range between 0.05 

– 600 ng Hg.  

 

Calibration of the AMA−254: The calibration was performed using a liquid standard of 

10 ng mL−1 prepared from Merck mercury standard solution with 1000 mg L−1. Different 

amounts of the prepared standard were dosed, getting a 4-point calibration from 0.00 to 

15 ng Hg. A typical calibration curve is shown in Fig. 3-4.  

 

Fig. 3-4 Characteristic calibration curve for the AMA-254. 

 

During a series of measurements three solid standards (NIST 1515, BCR 281, and the 

internal standard P4) were used to control the proper instrument conditions.  

 

3.3.3 AMA−254 Module for Analyzing Gaseous Mercury 

For the control of compartment air, LECO Corp. developed a module for the measuring of 

gaseous mercury. This module consists of gold traps, a clamp to fix the gold trap to the 
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analyzing location, a pump with tubes, and the support to mount the gold trap in the 

analyzer.  

The gold trap consists of an 11 cm long stainless steel tube with an outer diameter of 

4 mm and an inner diameter of 3 mm. Within this tube there are gold globes, which make 

up about 4 cm in length. In order to fix the gold globes inside the tube, one end of the 

tube tapers, leaving an opening of about 1 mm. This opening is packed with quartz wool. 

On the other side of the gold globes the tube is compressed, leaving only a small crack.  

 

For sampling, the gold trap can be e.g. attached via clamp to the worker’s cloths in order 

to check the exposure of the worker to gaseous mercury. The gold trap is connected via 

silicon tubes to a pump, whose maximum pump rate lays around 3 L min−1. The air is 

pulled through the trap at a constant and known flow rate. The gaseous mercury 

amalgamates on the gold globes and is trapped. For analysis, the gold trap is fixed in a 

stainless steel cylinder, which is mounted in series with the gas train.  

 

In the framework of this work, it was checked whether this module was probable for the 

measurement of TGM and mercury in precipitation. 

For this purpose, the following aspects considering the traps were examined: 

 

 Determination of the zero value of the traps 

 Required thermal purification cycles 

 Mercury accumulation on the traps during different types of storing 

 Efficiency of mercury accumulation with gaseous standards 

 Efficiency of mercury accumulation with liquid standards 

 Considerations about general composition stability of the traps 

 

Zero value of the traps and the required thermal purification cycles: First of all, the traps 

were cleaned due to thermal desorption by repeating the AMA−254 analysis cycle for 

several times. Through this, both the required purification steps as well as the zero value 

of the traps were determined. Each trap was measured seven times consecutively. The 

analysis program was set as recommended for air-dried peat samples by Roos-

Barraclough et al. (2002): drying time: 30 s, decomposition time: 125 s, waiting time: 45 s.  

 

Different important results were determined. The zero value of the traps were between -

0.018 and −0.025 ng Hg (Fig. 3-5). The absolute values are a result from the then-

calibration. The range of variation showed a good accuracy.  
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Fig. 3-5 Decrease in mercury during the cleaning of the traps (left) and the mercury amount of the 
seventh measurement (right).  

 

Furthermore, it was shown, that not all mercury was desorbed during the first run, but 

three or even four runs were necessary (Fig. 3-5).  

That also meant, that the Hg concentrations during a real analyses would have been too 

low, which is precarious particularly for low Hg concentrations. Hence, the desorption rate 

was increased to 300 s, in order to assure a total desorption of the Hg from the trap. 

 

Mercury accumulation on the traps during different types of storage: Often, it is not 

possible to clean or analyze the traps immediately prior to or after sampling. Hence, it 

was checked how much mercury was accumulated on the traps depending on different 

type and duration of storage.  

 

After cleaning, all traps were put together in a polyethylene bag with a wire closure. This 

bag was then put in a glass which was filled with activated carbon. The traps were 

analyzed after different duration of storage (between 22 and 69 hours). Absolute values 

varied between 0.2 and 1 ng, resulting in accumulation rates between 0.007 and 

0.015 ng h–1 or between 0.171 and 0.355 ng d–1 (Fig. 3-6). 

 

In a second test, each trap was sealed at both ends with Teflon film and put in a 

polyethylene bag. All bags were then put together in another polyethylene bag and stored 

in a glass which was filled with activated carbon. The traps were analyzed after up to 27 

days. Absolute values varied between 0.23 ng and 1.12 ng. This resulted in accumulation 

rates between 0.008 and 0.034 ng d–1, which is less than the accumulation rates in the 

first test by one order of magnitude. 
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Fig. 3-6 Mercury accumulation in the gold traps due to storage. All traps packed together (left); 
each trap packed separately (right).  

 

The tests show that it is very important to seal the traps carefully, in order to minimize the 

mercury accumulation from ambient air. Nevertheless, in both test the variation of 

mercury accumulation between the different traps was very high. Therefore, it is difficult 

to quantify the blank value after a long period of storage. 

 

Efficiency of mercury accumulation with gaseous standards: To examine the efficiency of 

mercury accumulation from gaseous samples, the traps were spiked with saturated Hg air 

(see chapter 3.3.1). Between 20 and 100 µl of Hg-saturated air was injected into the 

traps. To ensure, that all Hg-saturated air passes the gold trap, an air stream of 1 L min–1 

was applied.  

 

Fig. 3-7 Mercury accumulation efficiency of the gold traps for gaseous standards. 

 

The results show, that the accordance between the actual value and nominal value is 

very high with a correlation coefficient of R2 = 0.98. The largest source of error is probably 

the uncertainty in the gas volume and in temperature.  
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Efficiency of mercury accumulation with liquid standards: To examine the efficiency of 

mercury accumulation from liquid samples, a purge and trap method was developed. A 

precise amount of liquid Hg standard was poured in a gas washing bottle. 200 µL of 

SnCl2 solution was added to the liquid to reduce all mercury compounds. The reduced 

mercury was purged out of the liquid with zero-air and trapped on the AMA−254 gold trap 

(Fig. 3-8).  

 

Fig. 3-8 Set-up for the measurement of liquid samples with the AMA−254 gold traps. 

 

For this test, a 100 µL Hg L–1 standard was prepared. From this standard, 20, 50, or 

100 µL were added to pre-cleaned MilliQ-Water, giving an absolute amount of Hg of 2, 5, 

or 10 ng, respectively. Purging was done over 20 min. with an air flux of 2 L min−1.  

 

Fig. 3-9 Mercury accumulation efficiency of the gold traps for liquid standards.  

 

The results show, that the mercury accumulation efficiency of the traps is very high for 

liquid standards with a correlation coefficient of R2 = 0.94.  
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3.4 TGM Measurements 

TGM sampling was carried out using the field analyzer Gardis−3, which is similar to the 

earlier model Gardis−1A, which is described in literature (Urba et al., 1995; Urba et al., 

1998). The method is based on gold amalgamation, thermal desorption, and subsequent 

atomic absorption spectrometry (AAS) detection. The Gardis-3 operates with ambient air 

as carrier gas. Due to the remote and logistically difficult sampling sites of this study, this 

is a great advantage over most other AAS or AFS instruments, which require Argon or 

Helium for detection.  

 

3.4.1 Sampling Set-Up in the Field 

At the sampling sites in Chile as well as in Spain the Gardis−3 was built up inside a tent. 

In Austria the Gardis−3 was built up inside the research station of the Institute of 

Limnology of the University of Innsbruck. In each case a 2 to 5 m long Teflon tubing was 

used as sampling line to lead outside. The inlet of the tubing was protected against rain 

with a glass funnel and with a PTFE membrane (Sartorius, PTFE membrane filters type 

118, 1.2 µm pore size) and installed about 1.5 m above ground level. Aerosol particle 

filters were added in the sampling line close to the analyzer.   

 

Sampling time was set to 300 sec, which results in a sampling volume of 5 L.  

During the first campaign in Chile in October 2002, the Gardis−3 was controlled manually. 

This was due to the fact of a missing sufficient power supply to run a computer 

continuously. Hence, for the following campaigns, the power supply was enhanced (see 

chapter 3.2).  

 

3.5 RGM Measurements 

RGM sampling was carried out by using mist chambers. The general procedure of a mist 

chamber is as follows: Air, at flows of 8-20 L min−1, is aspirated through the chamber and 

water soluble gases are efficiently absorbed by the nebulized mist. Solution droplets 

containing scrubbed gases collect and coalesce on the surface of a hydrophobic 

membrane, then drain back into the chamber.  

 

For analysis the mercury was removed from the solution and made available for the 

analyzer by purge and trap and then analyzed with the GARDIS−3 or AMA−254.  
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3.5.1 General Information about the Mist Chamber 

RGM measurements were made using a mist chamber (MC) similar to that developed by 

the group of Stratton and Lindberg (Stratton and Lindberg 1995; Stratton et al. 2001).  

 

 

 

The chamber (Fig. 3-10) was made out of a PFA column with a maximum volume of 

150 mL, a height of 12.1 cm and an outer diameter of 47 mm (Savillex®). At the bottom 

the column was connected to a PFA closure with two ¼” ports (Savillex®). Refluxing was 

achieved by means of a hydrophobic PTFE-membrane (Sartorius, PTFE membrane 

filters type 118, 1.2 µm pore size, 50 mm diameter) mounted in a PFA filter holder 

(Savillex®) which was connected to the top of the column and had an outlet with an inner 

diameter of 6 mm.  

 

The air inlet was a glass tube with an inner diameter of 6 mm, which was pushed through 

a hole, which was drilled into the middle of the closure. In order to make sure that the 

junction between glass tube and closure is tight, the hole was first made a little bit smaller 

Filling Port

Scrubber Solution

(0.5% HCl)

Teflon

Hydrophobic Membrane

(Teflon filter)

Mist Droplets (3-10 µm)

Glass

Fig. 3-10 Design of the mist chamber for RGM sampling. 
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than the outer diameter of the tube and then the Teflon closure was heated and the tube 

was fitted into the ductile Teflon. 

The mist droplets were produced by a cross-flow nebulizer, which was made out of glass 

and was connected to the inlet tube.  

The mist chamber was filled and emptied through one of the ¼” ports. The other port was 

used to hold a Teflon impact bead which was supposed to protect the PTFE membrane. 

 

Fig. 3-11 Set-up for the sampling of RGM in the field. 

 

For the sampling (Fig. 3-11), the mist chamber was connected to a vacuum pump 

(FürGut, model DC12/90S). To save the pump from acidic gases, a soda lime trap was 

put in line prior to the pump. The flow was monitored by a flow meter (Analyt-MTC, model 

102-05C) connected to the pump outlet.  
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3.5.2 Scrubber Solution 

As scrubbing solution diluted HCl was used, prepared by dilution of a special Hg-cleaned 

HCl (Merck; 1.13386; with Hg < 0.005 ppm) in high quality deionized water.  

Stratton et al. (2001) observed that the collection efficiency of the solution was dependent 

on the concentration of HCl in the absorbing solution. On the other hand, the Hg blank of 

the diluted HCl was also dependent on the concentration of HCl. To find a good dilution, 

laboratory air was sampled for 30 min using varying concentrations of HCl.  

 

 

Fig. 3-12 Effect of HCl concentrations on collection of RGM: 30 min mist chamber samples of 
laboratory air. 

 

The results (Fig. 3-12) showed that the RGM concentration rose linear up to approx. 

0.25 M and then formed a slightly rising plateau. The blank rising steadily with HCl 

concentration, a scrubber solution of 0.25 M HCl was used. Hence, the blank was as 

small as possible without forfeiting collection efficiency.  

 

3.5.3 Sample Containers 

After sampling the scrubber solution was filled into 50 mL polypropylene centrifuge tubes 

with caps (Falcon, No. 2070). Preliminary tests showed that the blanks of those tubes 

were negligible. Hence, they were used as received in sealed packages.  

 

3.5.4 Sampling Protocol 

Prior to the start of each set of measurements, the mist chamber were rinsed repeatedly 

in the field using the scrubber solution. The mist chambers were then filled with 25 mL of 

the scrubber solution. Sample times were between 1 and 5 hours in duration, depending 
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on location and daytime, with an air flow of 6-10 L min-1. At the end of the sampling time, 

the solution was transferred to a sampler container. To rinse the mist chamber, 25 mL of 

scrubber solution were added and the mist chamber was slightly rotated. Afterwards the 

25 mL of scrubber solution were added to the sample container.  

Two or three additional rinses with DI water or scrubber solution were discarded before 

the next sample or blank was collected.  

 

3.5.5 Field Sampling Blank 

A blank correction was used for all samples. Ideally this should be a “dynamic blank” in 

which zero-RGM air is sampled for the same time intervals as the samples. Unfortunately, 

there was no way to devise any suitable method to produce zero-RGM air at a flow of 

10 L min−1. Hence, field blanks were obtained by filling the mist chamber with the 

scrubber solution and aspirating for ca. 30 s. The solution was then collected, stored, 

transported, and analyzed in the same fashion as the samples. The values for the blanks 

obtained in this fashion were a combination of the solution blank, the mist chamber blank, 

the container blank, and the analytical blank.  

 

3.5.6 Analysis of RGM 

The analysis of the samples was carried out directly in the field at the end of each 

campaign.  

RGM was measured by means of the purge and trap method (Fig. 3-13). For this, the 

mercury in solution (as mercuric ions) had to be reduced to elemental mercury (Hg0) and 

transferred into the gaseous phase.  

 

Fig. 3-13 Set-up of the purge and trap method for the RGM analysis. 
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Hence, the sample was put in a gas wash bottle. 50 µL of stannous chloride was added 

as a reductant. Mercury-free air passed into the bubbler through a gold trap. The air 

stream purged the dissolved elemental mercury from the solution and carried it through a 

soda lime trap, where acid vapor and moisture were removed, into the GARDIS 3. The 

mercury was absorbed on the gold trap of the GARDIS 3 and was subsequently 

measured.  

 

3.6 TPM Measurements 

TPM Sampling was carried out using a minitrap with a glass fiber filter. Many suggestions 

about the general built-up were taken from Lu et al. (Lu et al., 1998; Lu and Schroeder, 

1999a; Lu and Schroeder, 1999b).  

 

3.6.1 Particulate Trap 

The custom-built particulate trap consisted of a quartz fiber filter (6 mm Ø; cut out of a 

47 mm Ø filter, Schleicher and Schuell, QF20) held in an arrangement of three quartz 

glass tubes and a Ni screen support (Fig. 3-14). A 15 cm quartz glass tube (4 mm i.d.; 

6 mm o.d.) was put into a 25 cm quartz glass tube (6 mm i.d; 8 mm o.d.) with an 

overlapping of about 2 cm. At this intersection the two glass tubes were welded together. 

The quartz fiber filter and a perforated Ni screen as support were positioned at the end of 

the thick quartz glass tube, so that they got hold by the thin quartz glass tube. Then, 

another thin quartz glass tube (4 mm i.d.; 6 mm o.d.) was pushed inside the thick glass 

tube up against the filter. In that way, the filter got hold between the two thin quartz glass 

tubes and was surrounded by the thick quartz glass tube. The junction between the thick 

quartz glass tube and the loose thin quartz glass tube was sealed with Teflon band. 

 

Fig. 3-14 Built-Up of the particulate trap for TPM Sampling. 
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3.6.2 Pre-Treatment of the Traps 

First, the traps were mounted. Then, they were cleaned by heating them up to 

approximately 400-450 °C with zero-air flowing through. The zero-air was produced by 

placing a filter and a gold trap in front of the trap. After heating the trap twice for several 

minutes, they were allowed to cool and afterwards they were double heat-sealed into 

polypropylene foil, and stored until use.  

 

 

3.6.3 Sampling Procedure 

 

Fig. 3-15 Set-up during the sampling of TPM in the field. 

 

For sampling each trap was connected to pump via silicone tubes. The pumps (FürGut, 

DC12/18 NK)) had an air flow of approximately 3 L min−1, which however was attenuated 

due to different resistances like the filters. The exact air flow was measured by a flow 

meter. The inlet of the trap was about 1.50 m above ground level. In order to avoid the 

filter getting wet due to the rain, the trap was positioned with an incline of about 30° so 

that the inlet pointed down.  
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3.6.4 Dynamic and passive Blanks 

Different types of blanks were run parallel to the sampling and analytical procedure. The 

fashions of these blanks were adopted from Lu et al., 1998.  

 

Two types of blanks were examined; Type D being a dynamic blank and type P being a 

passive blank.  

The dynamic blanks were run parallel to the sampling with the same air flow.  

For blank D-1 two particulate traps were connected in series. The upstream trap served 

as the sampler for TPM, the downstream trap as the blank.  

For blank D-2 the inlet of a particulate trap was closed with a Teflon filter (Sartorius, 

PTFE membrane filters, 0.2 µm pore size).  

In both cases of the dynamic blank, it is reasonable to assume that most particles 

passing through the first trap would also pass through the second one. The signal of the 

blank is then mainly the sum of adsorbed gaseous mercury and the background signal of 

the analytical train. 

The passive blank traps P were set alongside the sampling line, but no air flow was 

applied.  

The dynamic blanks should mainly be the sum of adsorbed gaseous mercury plus the 

background signal of the analytical train, whereas the passive blank should be exclusively 

the background signal of the analytical train. 

 

3.6.5 Analysis of TPM 

The determination of TPM was carried out with two different methods; with the atomic 

absorption spectrophotometer AMA−254 and with the Gardis-3. 

 

Analysis with AMA−254: For analyzing TPM with the AMA−254, the filter was removed 

from the trap with the help of a Teflon stick and directly dropped into an analyzing boat of 

the spectrometer. The analytical program was set like described in Chapter 3.3.2. 

 

Analysis with GARDIS-3: The experimental setup for the determination of particulate 

mercury with the GARDIS-3 is shown if Fig. 3-16.  



 3.6 TPM Measurements 

63 

 

 

Fig. 3-16 Experimental set-up for the determination of particulate mercury with the Gardis-3. 

 

For the analysis of TPM with the GARDIS-3, the filter remained in the glass tube.  

Prior to analysis, a MgO converter was added to the glass housing of the trap. The 

converter consisted of granular MgO, which was directly put in the quartz glass tube of 

the trap housing, downstream of the TPM trap. The MgO granules, which finally made up 

2 cm of the tube, were held in position with the help of quartz wool. The purpose of the 

converter was to increase the turbulence and the total resistance time of the gaseous Hg 

species in the high temperature zone so as to achieve a more complete conversion of Hg 

compounds into the elemental form (Lu et al., 1998; Lu and Schroeder, 1999a,b). 

 

The whole trap was put in a horizontal Kanthal oven (with exception of the Teflon band, 

which was removed previously because of its low melting point) so that only the ends of 

the glass tube extended out of the oven. For a better temperature regulation within the 

oven both sides of the oven were sealed with quartz wool, only leaving an opening for the 

trap on each side. Downstream, the trap was directly connected via Teflon tube with the 

GARDIS-3. For analysis, the Kanthal oven was heated to 900 °C for about 5 minutes. 

The released Hg species were carried by a stream of Hg-free air at a flow rate of 

approximately 200 mL min−1 to the MgO-converter, to convert all Hg compounds to the 

elemental form. The resulting Hg0 was then pre-concentrated on the analytical Au-trap of 

the GARDIS-3 and then analyzed.  

 

The flow rate during the thermal desorption of Hg was archived by the regulation of the 

GARDIS-3 pump-rate during sampling. 
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3.7 Mercury Sampling in Precipitation 

The determination of mercury in precipitation was carried out by first obtaining 

precipitation with the help of custom-made samplers. The mercury was then determined 

by means of purge and trap and subsequent analysis with help of CV-AAS. Both the 

GARIDIS-3 and the AMA−254 were taken for analysis.  

 

3.7.1 Sampler Design and Materials 

Each custom-made sampler consisted of a collecting pan, which was connected via tube 

to a sampling bag.  

 

The sampling bag (Bohlender GmbH) was made of PVF (polyvinyl fluoride) which was 

declared to be non-porous, without plasticizer, absolutely inert, temperature-resistant 

between -200 and 250 °C, and suitable for the storage of gases and liquids (Bohlender, 

technical information). The bag was provided with a cylindrical port made of PTFE 

(OD: 6 mm). The rectangular collecting pan was made of polypropylene. Preliminary tests 

with a liquid standard showed the material to be suitable for this purpose. Due to the 

short durance of contact, there seemed to be no interactions between precipitation and 

pan. In one corner of the pan a cylindrical port like the one of the sampling bag was fitted 

into a boring.  

 

Both ports, the one of the collecting pan and the one of the sampling bag, were 

connected to each other via silicone tube. In order to avoid a contact between sample 

and silicone tube, the distance between the ports was kept against zero. The small inner 

diameter (ID: 3 mm) of the ports prevented the diffusion of Hg0 into the precipitation 

sample collected. This was important because Hg0 could contribute to the mercury 

content of the sample via oxidation to water-soluble forms (Munthe, 1996).  

 

The pan was mounted on four stands. During sampling these were plugged into the 

ground in a fashion to get an adequate inclination for the precipitation to run to the port an 

in the sampling bag. The inclination was modified regularly to suit the precipitation rate.  

 

To protect the sampling bags against breakaway they were fitted in an open PE can, 

which was embedded in a hollow in the ground. Additionally, the PE can was wrapped 

into aluminum foil, shielding it from light to avoid photo-induced reduction of mercury in 

the sample.  
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Fig. 3-17 Set-up of the precipitation sampler in the field. 

 

3.7.2 Pre-Treatment of the Samplers 

All materials were treated in laboratory as explained in chapter 3.1.1.  

Due to the complex assembling of the samplers in the field, the risk of contamination was 

relatively high. Hence, after the built-up of the sampler, the collecting pan was cleaned 

with Milli-Q water again. For this, the connection between pan and sampling bag was 

removed, and the cleaning water was sampled in a PE bottle.  

 

3.7.3 Sampling Procedure 

At each sampling site, two or three samplers were run parallel. Sampling periods lay 

between one and three weeks. Due to the partially heavy precipitation rate, the sample 

bags sometimes had to be replaced daily.  

Only, in Tyrol, Austria, the sampling periods sometimes lasted longer than one month. 

Hence, the samples were preserved by adding 5 mL HCl. 

 

3.7.4 Quality Control – Quality Assurance 

Prior to the sampling in the field, the general design of the samplers was verified being 

suitable for accurate sampling. This was done with liquid standards. One liter of water, 

containing 2, 5, or 10 ng Hg, respectively, was poured over the collecting pan and ran 

through the capillary into the sampling bag. In order to be sure that the total of the liquid 

standard reached the sampling bag, the collecting pan was rinsed afterwards with 0.5 L 

of reagent water. This rinsing water was also collected in the sampling bag.  
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This was done several times in different fashions. The water was poured fast or slowly; 

continuously or discontinuously with different intervals; inside the laboratory or outside; 

exposed to sunlight or in the shadow.  

The subsequent analysis of the standards showed the sampler to be suitable for this 

purpose.  

 

The most common causes of sample contamination during the sampling period were 

insects, bird droppings, or other material in the sampling vessels. The risks of 

contamination were controlled by using two or three samplers in parallel. Contaminated 

samples could be identified and discarded and the corresponding data excluded.  

 

Two types of field blank samples were taken at each site: transport blanks and sampling 

blanks. 

 

Transport blank: A duplicate sampling bag containing diluted HCl was left open at the 

sampling site during the regular sample exchange procedure. The duplicate bag was as 

far as possible handled in exactly the same manner as the sample bag. The blank was 

then analyzed in the same fashion as the samples. 

 

Sampling blank: Two extra sampling bags were brought to the site; one containing diluted 

HCl and one empty. After removing the regular sample bag the empty bag was installed 

and the diluted HCl poured in the collecting pan. The blank was then analyzed in the 

same fashion as the samples. 

 

3.7.5 Sample Storage and Handling 

The samples of Patagonia and Spain were mainly analyzed directly during the campaign 

with the GARDIS-3. Hence, the transportation and storage of those samples were 

eliminated. However, some samples were transported into the laboratory for comparative 

studies with the AMA−254. In addition, the samples of Tyrol were not always analyzed 

directly. Those samples, which had to be transported or stored, were preserved with 5 mL 

HCl per liter of sample. The sample bags were wrapped in double plastic bags and stored 

in a refrigerator until analysis. The storage time never exceeded four months. 

 

3.7.6 Analysis of Mercury in Precipitation 

The analysis of mercury in precipitation was mainly done using the GARDIS-3. 

Comparative studies were carried out using the AMA−254. 
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Sample pre-treatment: For the most common procedure for the analysis of mercury in 

precipitation a chemical oxidation step should be performed using BrCl. That reagent 

efficiently converts stable mercury forms to water-soluble species that can be easily 

reduced by SnCl2. Before analyzing the sample, excess BrCl should then be removed 

using the mild reducing agent NH2OH•HCl. NH2OH•HCl often contains high mercury 

concentrations. This is no problem using it in laboratory, because the mercury can be 

purged with Hg-free N2 (see Chapter 3.1.2).  

 

However, in this study it emerged that NH2OH•HCl also accumulated Hg during the 

transport by airplane; even if the solution bottle was triple wrapped in PE bags and stored 

in a plastic container. During the campaign, it was not possible to clean the solution 

again. Hence, the pre-treatment of the samples was only carried out for the samples, 

which were analyzed in the laboratory. For the samples, which were directly analyzed in 

the field, the pre-treatment step was skipped. 

 

Analysis with Gardis-3: Mercury in precipitation was measured by means of the purge 

and trap method (Fig. 3-13). For this, the mercury in solution (as mercuric ions) had to be 

reduced to elemental mercury (Hg0) and transferred into the gaseous phase.  

Hence, the sample was put in a gas wash bottle. 50 µL of stannous chloride was added 

as a reductant. Mercury-free air passed into the bubbler through a gold trap. The air 

stream purged the dissolved elemental mercury from the solution and carried it through a 

soda lime trap, where acid vapor and moisture were removed, into the GARDIS-3. The 

mercury was absorbed on the gold trap of the GARDIS-3 and was subsequently 

measured. 

 

Analysis with AMA−254: For the mercury determination by means of the AMA−254, the 

protocol was similar to the mercury determination by means of the Gardis-3. The only 

difference was that a gold-trap of the AMA−254 was mounted at the oulet of the gas wash 

bottle (Fig. 3-18). After the purge and trap step, the gold trap was removed and and 

analyzed with the AMA−254 as described in 3.3.3. 
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Fig. 3-18 Set-up for the measurement of liquid samples with the AMA−254 gold traps. 

 

3.8 Mercury Analyses in Seasonal Snow 

3.8.1 Sampling Procedure, Transportation and Storage 

Snow samples were taken at three different altitudes above sea level within the area of 

Kühtai. At all sites, samples from different depths were taken. The first sample was 

directly taken from the surface. One other sample was taken from a lower part of the 

surface stratum which was buried directly due to prolonged snowfall. A third sample was 

taken from an older stratum. Each sample was taken in triplicates. 

Additionally, two depth profiles were taken directly at Lake Gossenkölle. One profile 

(DP1) was taken on the surface of the lake, in a snow pit, which was excavated a couple 

of days ago by a research team of the University of Innsbruck. Samples were taken in 

triplicates at different snow heights. One other profile (DP2) was taken from a freshly 

excavated snow pit. For this, the pit was excavated using a snow shovel made of PP. 

 

The snow samples were collected into 50 mL polypropylene centrifuge tubes with caps 

(Falcon, No. 2070). Preliminary tests showed that the blanks of those tubes were 

negligible. Hence, they were used as received in sealed packages. The tubes were in 

aluminum foil and the samples were kept cool but not frozen. The samples, which had to 

be transported and stored, were preserved with 5 mL HCl per liter of sample. During 

transportation the samples were kept cool and wrapped in the aluminum foil.  

 

The snow strata were identified by characterizing snow cover profiles based on the 

“International Classification for Seasonal Snow on the Ground” (Colbeck et al., 1985).  
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3.8.2 Analysis of Snow Samples 

The analysis of HgT in snowpit samples was performed according to the US EPA Method 

1631(version E) (US-EPA, 2002). Due to the expected low mercury concentrations and 

due to the low amount of material for each sample, the mercury concentrations were 

analyzed by cold-vapor atomic fluorescence spectrometry using the “MercurPlus” from 

Analytic Jena at the University of Braunschweig. This instrument is compliant with the 

EPA norm 1631 and DIN EN 13506. 

24 hours before analysis, 5 mL L−1 BrCl2 were added to the samples This reagent 

efficiently converts stable mercury forms to water-soluble species that can be easily 

reduced by SnCl2. Before analyzing the sample, excess BrCl was then removed using the 

mild reducing agent NH2OH•HCl at a concentration of 2 mL L−1. The effective reduction 

was confirmed by the vanishing of the yellow color of the solution. The final reduction with 

SnCl2 was automatically done and controlled by the Mercur Plus analyzer. 
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4 CONCENTRATION AND SPECIATION OF ATMOSPHERIC 

MERCURY 

4.1 Sampling Sites 

4.1.1 Patagonia, Chile 

Regional variations of atmospheric mercury were analyzed along a west-to-east profile 

across the Southern Andes (S53°), one of the most pronounced climate-divides in the 

world.  

Climate in southwest Patagonia can be described as cool and windy with a fairly small 

daily and seasonal temperature cycle (e.g. Zamora and Santana 1979; Casassa, 1985; 

Endlicher, 1991a; Coronato and Bisigato, 1998). Mean annual air temperature at Punta 

Arenas on the Strait of Magellan is only 6.5°C (Endlicher and Santana, 1988). Strong 

westerly surface winds are dominant due to limited friction within the west wind zone of 

the Southern Hemisphere. Between 40°S and 60°S there are no large continents with 

high mountain barriers that could generate perturbations of the mean air flow besides the 

southernmost Andes of South America (Hobbs et al., 1998). The mountain range of the 

Andes, running north to south, form an orographic obstacle approximately perpendicular 

to the main air flow (Miller, 1976). The climate on the west side of the mountain range, 

within the mountains, and in the fjord zone differs significantly from the climate 

encountered on the lee side to the east. Rainfall shows a dramatic variation between the 

Pacific west coast and the leeward-side of the mountains (Endlicher, 1991b). Annual 

precipitation drops from between 6000 mm and 7000 mm at sea level along the main 

divide of the mountains to only about 1000 mm at the eastern slopes of the Andes and to 

as little as 430 mm at Punta Arenas (Schneider et al., 2003) (Fig. 4-1). 

 

Fig. 4-1 West-East cross section of the annual precipitation across the Andes at S53°. 
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Fig. 4-2 shows monthly precipitation rates and temperatures for the years 2002 and 2003 

at the locations Gran Campo Nevado, Seno Skyring, and Punta Arenas as representative 

locations for different climatic zones.  

 

Fig. 4-2 Mean temperatures (left) and monthly precipitation rates (right) for the years 2002 (top) 
and 2003 (bottom). Data from weather stations AWS Gran Campo NPB, AWS Skyring and 
WS Punta Arena JS (for more information see Schneider et al., 2003). 

 

During the campaigns the climatic conditions were temperate. The air temperatures and 

precipitation rates at Gran Campo Nevado for September and October of both years are 

shown in Fig. 4-3. 
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Fig. 4-3 Air temperature and precipitation rates at GC for September and October 2002 and 

2003. 

 

Samples for this study were collected from three sites (GC, Sky, and PBr; Fig. 4-4) 

located in different climatic zones of Patagonia, southernmost Chile. The data presented 

and discussed here are part of an interdisciplinary research. Thus the sampling sites refer 

to many other investigations of that area as well (e.g. Biester et al., 2002; Koch et al., 

2002; Biester et al., 2003; Schneider et al., 2003; Kilian et al., 2007.) 

 

The Gran Campo Nevado (GC) site (S52°48'24"/W72°56'24") is located in the transition 

zone between the Magellanic Moorlands and the Evergreen Forest on the Gran Campo 

Nevado Island. This site is characterized by high precipitation rates of more than 

6000 mm yr−1 (Schneider et al. 2003) and intense atmospheric deposition of sea-salt 

aerosols due to the strong yearly westerlies. The sampling site is mostly covered by peat 

(ombrotrophic and minerogenic) with the typical peat forming Carex species and the 

cushion plants Donatia fascicularis and Astelia pumilia. The surrounding area is 

furthermore characterized by the evergreen Nothofagus betuloides forests, glaciers and 

phyllite, argillaceous schist, granodiorite, rhyolite, and andesite as bedrock.  

The site at Seno Skyring (Sky) (S52°32'55"/W71°57'33") is located within the Evergreen 

Forest. Precipitation rates at the Sky location are much lower than at the GC location and 

vary between 1000 and 1500 mm yr−1. To some extent the area is covered by peatlands. 

However, most of the area is grassland and Nothofagus betuloides forest. 
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The site at the south-eastern region of the Peninsula Brunswick (PBr) 

(S53°37'47"/W70°55'08") is located within the national monument museum “Fuerte 

Bulnes” at the Strait of Magellan. The site is situated in the transition zone between the 

Evergreen Forest and the Deciduous Forest with Nothofagus pumilio and Nothofagus 

antartica. Bedrocks are metamorphic schists covered by Cambisols. Precipitation 

amounts to 650-800 mm yr−1 (Heusser et.al. 2000).  

 

 

Fig. 4-4 Map of the climatic zones of Southern South America with the sampling area in 
Patagonia, Chile and the sampling sites GC, Sky, and PBr.  

 

 

 

Fig. 4-5 Exemplary set-up of part of the sampling equipment. Here at the location Skyring (Sky).  

  



 4.1 Sampling Sites 

75 

 

4.1.2 Galicia, Spain 

Galicia, Spain was chosen as a comparative sampling site to Patagonia. Even if the 

climatic conditions like e.g. precipitation depths and wind speed in Galicia are not as 

extraordinary as in Patagonia, for European values they are still most closely to the ones 

in Patagonia. The climate of Galicia is dominated by the Atlantic with mild temperatures 

and rainfalls throughout the year. The mean annual temperature in the area ranges from 

10 to 7.5 °C, and annual precipitation from 1400 to 1800 mm (Martínez-Cortizas et al., 

2002). Snow is only occasional in the area, with most winters free of snow (Olid et al., 

2010). Sampling in Galicia was carried out at a station of a wind farm within the 

mountains of “O Xistral” at the mountainside of “Pico de Cuadramón” (1065 m a.s.l.) at a 

height of approx. 780 m a.s.l. (N43°28'09"/W07°32'04). The area is mainly covered with 

grassland and partly with peat. The basal lithology is composed of quartzite and 

paragneis. 

 

An important coal mining area (As Pontes) is situated 25 km west of the Serra do Xistral. 

Mining started at the beginning of the 19th century (Olid et al., 2010). Since 1976, a coal 

power plant has been running with a power capacity of 1,400 MW.  

 

 

Fig. 4-6 Sampling Site in Galicia, Spain (satellite photograph taken from Google Maps). 
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4.1.3 Lake Gossenkölle, Kühtai, Austria 

In order to determine the oceanic influence on mercury species in Patagonia and Galicia, 

an additional sampling area without any oceanic influence was chosen for comparative 

purposes. This inland site is located at the Biosphere Reserve “Gossenköllesee”. The 

Lake Gossenkölle (N47°13'47"/E11°00'50") is a high-alpine lake (2417 m a.s.l.) at the foot 

of the Pirchkogel (2828 m a.s.l.) (Kamenik et al., 2000). It is situated in the Stubaier Alps 

above the small village Kühtai (13 inhabitants) about 30 km west of Innsbruck, Austria. 

 

The Stubaier Alps belong to the Central Alps, which enjoy a predominately continental 

climate. The precipitation is with about 1200 mm yr−1 relatively low compared to the more 

humid Alpine fringes. Roughly half of the precipitation is in form of snow. Cold snowy 

winters alternate with warm and dry summers. The mean temperatures range between 0 

and 1 °C; with increasing trend. 

 

Eight months of the year Lake Gossenkölle is covered by ice and snow. 

Granites, gneisses, and crystalline slates make up the bedrock of the area. Only 10 % 

are covered with soil and vegetation (alpine grass, heather; Heisberger 1988). 

There is no land use directly within the reserve. Occasionally sheep graze within the 

surroundings. 

 

Fig. 4-7 Sampling Site Lake Gossenkölle, Kühtai, Austria (satellite photograph taken from Google 
Maps). 
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Fig. 4-8 Sampling of atmospheric mercury at the limnological station of the University of 
Innsbruck at Lake Gossenkölle. In front: Inlet for TGM; on the roof: measurement of 
meteorological data and precipitation sampling. 
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4.2 Results 

4.2.1 Total Gaseous Mercury in Patagonia, Chile 

TGM concentrations were measured at the three sites consecutively. In 2002, a 

screening was done with single measurements distributed throughout the day (Fig. 4-9). 

In 2003 a continuously measurement was performed over several days at each site (Fig. 

4-10). 

 

The statistical summaries of TGM measured in 2002 and 2003 are listed in Tab. 4-1 and 

Tab. 4-2, respectively. Average concentrations of TGM were in the same range at the 

three sites GC, Sky, and PBr with mean concentrations of 1.06 ng m−3, 1.26 ng m−3, and 

1.36 ng m−3, respectively for the sampling period in 2002 and 1.02 ng m−3, 0.87 ng m−3, 

and 1.29 ng m−3 for the sampling period in 2003.  

 

Tab. 4-1 Statistical summary of TGM measurements in 2002. 

TGM GC Sky PBr 

Minimum [ng m−3] 0.17 0.79 0.50 

Maximum [ng m−3] 2.56 1.71 4.57 

Mean [ng m−3] 1.06 1.26  1.36 

Median [ng m−3] 0.86 1.19 0.87 

SD 0.69 0.26 1.07 

Number of Samples 33 27 19 

 

Tab. 4-2 Statistical summary of TGM measurements in 2003. For the mean concentration at Sky 
two values were calculated. The first is the total mean value; the one in brackets is the 
mean value for the stable period (see chapter 4.3.9 for more information). 

TGM GC Sky PBr 

Minimum [ng m−3] 0.01 0.08 0.45 

Maximum [ng m−3] 2.40 3.49 2.57 

Mean [ng m−3] 1.02 0.87 (1.16) 1.29 

Median [ng m−3] 0.92 0.95 1.28 

SD 0.36 0.51 0.20 

Number of Samples 244 583 258 
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Fig. 4-9 TGM measurements at the three sites GC (top), Sky (middle) and PBr (bottom) in 2002.  
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Fig. 4-10 TGM measurements at the three sites GC (top), Sky (middle) and PBr (bottom) in 2003. 
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4.2.2 Reactive Gaseous Mercury in Patagonia, Chile 

RGM concentrations were measured at the three sites consecutively. In 2002, four 

samples were taken in duplicates at each site. In 2003 a continuously series of sample-

duplicates was taken over several days at each site. 

 

The RGM values ranged from 25 pg m−3 to 122 pg m−3. Mean concentrations were 

73 pg m−3, 80 pg m−3, and 83 pg m−3 at GC, Sky, and PBr, respectively. The statistical 

summary of RGM measured in 2002 and 2003 is listed in Tab. 4-3 and plotted in Fig. 

4-11. 

Tab. 4-3 Statistical summary of RGM measurements in 2002 and 2003. 

RGM GC Sky PBr 

Minimum [pg m−3] 25 28 29 

Maximum [pg m−3] 95 122 111 

Mean [pg m−3] 73 80 83 

Median [pg m−3] 78 85 88 

SD 20 26 25 

Number of Samples 21 (x2) 23 (x2) 20 (x2) 
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Fig. 4-11 Box Plots of RGM at the three locations GC, Sky, and PBr in 2002 and 2003. 
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4.2.3 Total Particulate Mercury in Patagonia, Chile 

TPM values were taken in duplicates at all three sites in 2002 and 2003. TPM 

concentrations varied between 52 pg m−3 and 367 pg m−3 with average concentrations for 

the three sites of around 63 pg m−3 (GC), 357 pg m−3 (Sky), and 97 pg m−3 (PBr) for the 

campaign in 2002 (Tab. 4-4 and Fig. 4-12) and 91 pg m−3 (GC), 283 pg m−3 (Sky), and 

187 pg m−3 (PBr) for the campaign in 2003 (Tab. 4-4 and Fig. 4-13).  

 

Tab. 4-4 TPM concentrations for the three sites in 2002 and 2003. 

TPM GC Sky PBr 

2002a [pg m−3] 52.3 366.9 76.7 

2002b [pg m−3] 73.4 346.1 117.6 

Average 2002 [pg m−3] 62.9 356.5 97.2 

2003a [pg m−3] 103.4 297.5 175.6 

2003b [pg m−3] 78.6 267.4 196.3 

Average 2003 [pg m−3] 91.0 282.5 187.0 
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Fig. 4-12 TPM concentrations at the three sites GC, Sky, and PBr in 2002. 
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Fig. 4-13 TPM concentrations at the three sites GC, Sky, and PBr in 2003 

 

4.2.4 Mercury in Precipitation in Patagonia, Chile 

The total Hg concentrations in precipitation at the three sites were in general very low 

with volume-weighted mean (VWM) concentrations of 0.48 ng L−1 and 0.39 ng L−1 for GC 

and Sky in 2002 and 0.77 ng L−1, 0.60 ng L−1, and 0.83 ng L−1 for GC, Sky and PBr in 

2003 (Tab. 4-5 and Fig. 4-14).  

 

Tab. 4-5 Summary of Hg concentrations in precipitation at GC and Sky in 2002 and 2003 (ND: no 
data).  

Hg in Precipitation 2002 GC Sky PBr 

Minimum [ng L−1] 0.40 0.27 ND 

Maximum [ng L−1] 0.61 0.59 ND 

Mean [ng L−1] 0.48 0.39 ND 

Number of Samples 7 7 ND 

Hg in Precipitation 2003 GC Sky PBr 

Minimum [ng L−1] 0.68 0.47 0.66 

Maximum [ng L−1] 0.89 0.68 1.09 

Mean [ng L−1] 0.78 0.60 0.83 

Number of Samples 5 5 5 

 



4 Concentration and Speciation of Atmospheric Mercury 

84 

 

0.0

0.2

0.4

0.6

0.8

1.0
H

g
R

a
in
 [
n

g
 L

-1
]

Sample

 GC 2002

 Sky 2002

 GC 2003

 Sky 2003

 PBr 2003

 

Fig. 4-14 Mercury concentrations in precipitation at GC, Sky and PBr in 2002 and 2003. 
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4.2.5 Total Gaseous Mercury in Galicia, Spain 

TGM concentrations were measured continuously for three days in February 2003 and for 

five days in July 2003. The statistical summaries of TGM are listed in Tab. 4-6. TGM 

concentrations varied from 0.289 ng m−3 to 4.811 ng m−3. Average concentrations of TGM 

were in the same range at both campaigns with mean concentrations of 1.003 ng m−3 in 

February and 1.066 ng m−3 in July 2003.  

Tab. 4-6 Statistical summary of TGM measurements in February and July 2003. 

TGM 02/2003 07/2003 

Minimum [ng m−3] 0.657 0.289 

Maximum [ng m−3] 2.869 4.811 

Mean [ng m−3] 1.003 1.066 

Median [ng m−3] 0.866 0.795 

SD 0.363 0.798 

Number of Samples 285 480 

 

 

4.2.6 Reactive Gaseous Mercury in Galicia, Spain 

 

RGM concentrations varied between 13 pg m−3 and 77 pg m−3. The mean concentrations 

were 55.56 pg m−3 and 38.51 pg m−3 for February and July, respectively. The statistical 

summaries of RGM are listed in Tab. 4-7. The individual samples and the deviation in 

RGM is shown in Fig. 4-15. 

 

Tab. 4-7 Summary of RGM measurements in February and July 2003. 

RGM 02/2003 07/2003 

Minimum [pg m−3] 33.45 12.94 

Maximum [pg m−3] 76.62 73.57 

Mean [pg m−3] 55.56 38.51 

Median [pg m−3] 56.59 38.00 
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Fig. 4-15 RGM measurements in Galicia in February and July, 2003.  

 

4.2.7 Total Particulate Mercury in Galicia, Spain 

TPM concentrations have been determined during the campaign in July, 2003. The 

concentrations varied between 38 pg m−3 and 74 pg m−3 and were all in a similar range 

(Fig. 4-16). 
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Fig. 4-16 TPM measurements in Galicia in July, 2003.  
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4.2.8 Mercury in Precipitation in Galicia, Spain 

The VWM Hg concentrations in precipitation varied between 1.30 ng L−1 and 2.27 ng L−1 

(Tab. 4-8 and Fig. 4-17).  

 

Tab. 4-8 Summary of Hg in Precipitation in February and July 2003. 

Hg in Precipitation 02/2003 07/2003 

Minimum [ng L−1] 1.18 1.39 

Maximum [ng L−1] 1.56 2.27 

Mean [ng L−1] 1.32 1.89 

Median [ng L−1] 1.30 2.02 

Number of Samples 7 5 
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Fig. 4-17 Hg in Precipitation in Galicia in February and July, 2003.  
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4.2.9 Total Gaseous Mercury at Lake Gossenkölle, Austria 

Atmospheric mercury species were measured in April and June 2003. In April 2003 the 

complete surroundings were covered by snow. In June 2003, the snow was melted 

completely and the underlying ground - bedrock and to a minor extent grassland - was in 

direct contact to the atmosphere. 

 

TGM concentrations were measured continuously for several days in April 2003 and in 

June 2003. The statistical summaries of TGM are listed in Tab. 4-9. Average 

concentrations of TGM were in the same range at both campaigns with mean 

concentrations of 1.83 ng m−3 in April and 2.03 ng m−3 in June 2003.  

 

Tab. 4-9 Statistical summary of TGM measurements in April and June 2003. 

TGM 04/2003 06/2003 

Minimum [ng m−3] 1.26 1.39 

Maximum [ng m−3] 3.83 5.98 

Mean [ng m−3] 1.83 2.03 

Median [ng m−3] 1.68 1.89 

SD 0.42 0.56 

Number of Samples 1276 643 
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4.2.10 Reactive Gaseous Mercury at Lake Gossenkölle, Austria 

RGM samples were taken in a continuously series of sample-duplicates in April as well as 

in June over several days. 

The RGM concentrations varied between 3 pg m−3 and 58 pg m−3 (Tab. 4-10). The mean 

concentrations were 22.37 pg m−3 and 27.84 pg m−3 for April and June, respectively. 

 

Tab. 4-10 Summary of RGM measurements in April and June 2003. 

RGM 04/2003 06/2003 

Minimum [pg m−3] 3 9 

Maximum [pg m−3] 49 57 

Mean [pg m−3] 22 27 

Median [pg m−3] 22 27 

SD 10 10 

Number of Samples 54 56 

 

 

The variation of the RGM concentrations was quite high in April as well as in June. 

However, no daily pattern could be observed (Fig. 4-18 and Fig. 4-19). 
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Fig. 4-18 RGM measurements at Lake Gossenkölle, Kühtai, Austria in April, 2003. 
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Fig. 4-19 RGM measurements at Lake Gossenkölle, Kühtai, Austria in June, 2003. 

 

4.2.11 Total Particulate Mercury at Lake Gossenkölle, Austria 

TPM concentrations have been determined during the campaigns in April and June, 2003 

at each with two duplicates. The concentrations varied between 20 pg m−3 and 66 pg m−3, 

whereby the duplicates always showed similar values (Fig. 4-20) 
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Fig. 4-20 TPM measurements at Lake Gossenkölle, Kühtai, Austria in April and June, 2003. 
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4.2.12 Mercury in Precipitation at Lake Gossenkölle, Austria 

Mercury in Precipitation was only sampled during the campaign in June. During the 

campaign in April only little precipitation occurred and this precipitation was in form of 

snow. However, due to the low density of snow the collection of enough material would 

have taken too long. Especially, when taking into account the fast photo-induced Hg(II) 

reduction in snow (Lalonde et al., 2003), the comparison of Hg in snow and Hg in rain 

would have been very challenging and defective. For more information about mercury 

concentration and Hg(II) reduction in snow the reader is referred to Chapter 6. 

 

The VWM Hg concentrations in precipitation varied between 3.65 ng L−1 and 6.15 ng L−1 

(Tab. 4-11 and Fig. 4-21).  

 

Tab. 4-11 Summary of Hg in Precipitation in April and June 2003. 

Hg in Precipitation 04/2003 06/2003 

Minimum [ng L−1] ND 3.65 

Maximum [ng L−1] ND 6.15 

Mean [ng L−1] ND 4.52 

Median [ng L−1] ND 4.38 

Number of Samples ND 10 
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Fig. 4-21 Mercury in Precipitation at Lake Gossenkölle, Kühtai, Austria in June, 2003. 

 

  



4 Concentration and Speciation of Atmospheric Mercury 

92 

 

4.3 Discussion 

4.3.1 Mercury Data from Patagonia in Comparison with other Locations 

The TGM concentrations (mean: 1.09 ng m−3) are in good agreement with average 

Southern Hemisphere background TGM concentrations (see also Chapter 2.9.3) from 

previous studies (Slemr et al., 1995; Baker et al., 2002; Ebinghaus et al., 2002b; Slemr et 

al., 2003; Temme et al., 2003a; Brunke et al., 2010; Slemr et al., 2011). Temme et al, 

(2003a) found a mean TGM concentration of 1.1 ng m−3 over the South Atlantic Ocean 

between the Neumayer Station and Punta Arenas. The mean TGM concentration at the 

Neumayer Station is given with 1.08 ng m−3 during Antarctic Summer between December 

2000 and February 2001 (Temme et al., 2003a). Between August and November 2000 

the arithmetic mean was calculated with 0.958 ± 0.278 ng m−3 (Ebinghaus et al., 2002b). 

Slemr et al. (2011) state that TGM concentrations in the Southern Hemisphere decreased 

from about 1.35 ng m−3 around 1996 to about 0.9 ng m−3 around 2008. 

 

The relatively high concentrations of RGM (mean: 79 pg m−3) are in good agreement with 

previous studies in the Southern Hemisphere. RGM concentrations at the Neumayer 

Station, Antarctica varied between 5 pg m−3 and maximum levels of more than 

300 pg m−3 during the summer period of 2000/2001 (Temme et al., 2003a). Similar values 

have been reported in the Antarctic at Terra Nova Bay where concentrations ranged from 

10.5 to 334 pg m−3, with an average of 116.2 pg m−3 (Sprovieri et al., 2002) and at 

McMurdo where concentrations ranged from 29 to 275 pg m−3 with an average of 

116 pg m−3 (Brooks et al. 2008b). Comparably high values were found at the South Pole 

with concentrations between 95 and 705 pg m−3 and an average of 344 pg m−3 (Brooks et 

al., 2008a). On the Northern Hemisphere similar values were found with e.g. RGM 

concentrations up to more than 900 pg m−3 in the Arctic (Lindberg et al., 2002) and RGM 

concentrations of 0−386 pg m−3 in southern Québec, Canada (Poissant et al., 2005). 

 

TPM data (mean: 180 pg m−3) are intermediate compared to other data from the Southern 

Hemisphere (compare with Tab. 2-14) were TPM concentrations ranged from 4 pg m−3 to 

827 pg m−3 (Sprovieri et al., 2002; Arimoto et al., 2004; Brooks et al., 2008a,b).  

 

Mercury concentrations in precipitation (mean: 0.64 ng L−1) are extremely low. Especially 

when compared to data obtained by NADP-MDN, the low mercury concentrations in 

Patagonian precipitation get obvious. Within the NADP-MDN mean annual concentrations 

in precipitation in 2002 were between 5 ng L−1 for Maine and 26 ng L−1 for New Mexico 

(NADP, 2003) and in 2003 between 3 ng L−1 for Oregon and 27 ng L−1 for New Mexico 
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(NADP, 2004). The extremely low mercury concentrations are a result of a diluting effect 

of the already very clean air in Patagonia due to the very high precipitation rates. 

 

4.3.2 Mercury Data from Galicia in Comparison with other Locations 

The TGM values in Galicia (mean: 1.03 ng m−3) are relatively low compared to other 

measured TGM values in the Northern Hemisphere (compare to Tab. 2-10, Tab. 2-11, 

and Tab. 2-12). Also TGM measurements over the Atlantic Ocean showed higher TGM 

values immediately west of Galicia (Temme, 2003). However, within the MAMCS and the 

MERCYMS programmes (compare to chapter 2.9.1) some other locations also showed 

such low or even lower mean values, namely Calabria, Italy; Haifa, Israel and Piran, 

Slovenia. The reason for these quite low TGM concentrations might be the precipitation 

rate in this region, which is with 1400 to 1800 mm (Martínez-Cortizas et al., 2002) quite 

high and leads to a Hg washout from the atmosphere. A second reason is probably a low 

reemission from the surface, due to the waterlogged surface (bog)(compare to section 

4.3.4). 

 

The dispersion of the RGM data (13 pg m−3 and 77 pg m−3) during the campaigns in 

Galicia (Fig. 4-15) are in a normal range and do not show any distinctive pattern. 

The RGM concentrations match with RGM data collected within other studies at different 

coastal European sites (compare to chapter 2.9.1) where mean RGM concentrations 

generally varied between 10 pg m−3 and 70 pg m−3 with only few outliers.  

 

Also the TPM data (mean: 59 pg m−3) match with TPM data collected within other studies 

at different European sites (compare to chapter 2.9.1) where mean TPM concentrations 

generally varied between 10 pg m−3 and 100 pg m−3 with only few outliers. 

 

Concerning Hg concentration in precipitation (mean: 1.56 ng L−1), unfortunately for 

discussion, no robust data from comparable regions in Europe could be found in 

literature. Thus, the data are compared to data obtained by NADP-MDN for the USA. The 

Hg concentrations in precipitation are quite low in Galicia, Spain. Within the NADP-MDN 

mean annual concentrations in precipitation in 2003 varied between 3 ng L−1 for Oregon 

and 27 ng L−1 for New Mexico (NADP, 2004). 

The low mercury concentrations are interpreted as a result of a diluting effect of the 

already very clean air in Galicia due to the very high precipitation rates.  
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4.3.3 Mercury data of Lake Gossenkölle in Comparison with other Locations 

TGM values at Lake Gossenkölle (mean: 1.93 ng m−3) are higher than those measured in 

Patagonia, Chile and Galicia, Spain. Compared to other measured TGM values at remote 

sites in the Northern Hemisphere (compare to Tab. 2-10, Tab. 2-11, and Tab. 2-12), 

these values are more or less intermediate ones. For the mean TGM values given in the 

MOE, MAMCS, and MERCYMS projects (Tab. 2-10), the average of the different mean 

concentrations is about 2.01 ng m−3. 

 

RGM concentrations at Lake Gossenkölle (mean: 25 pg m−3) are lower than in Patagonia 

(see Chapter 4.2.2) and Galicia (see Chapter 4.2.6). The concentrations were in general 

slightly lower in April than in June. The variation of RGM concentrations were in the same 

range for April (Fig. 4-18) and June (Fig. 4-19) with a slightly higher IQR in April. 

However, this difference is not significant enough to allow any conclusion about 

differences in transformation processes during the two campaigns.  

 

TPM concentrations (mean: 37 pg m−3) are much lower at Lake Gossenkölle than in 

Patagonia (see Chapter 4.2.3) and in Galicia (see Chapter 4.2.7). No significant 

differences between the measurements in April and June could be seen. 

 

Mercury concentrations in precipitation (mean: 4.52 ng L−1) are significantly higher than 

those in Patagonia, Chile and Galicia, Spain. However, compared to data obtained by 

NADP-MDN for the USA, the Hg concentration in precipitation are still at the lower range. 

Within the NADP-MDN mean annual concentrations in precipitation in 2003 varied 

between 3 ng L−1 for Oregon and 27 ng L−1 for New Mexico (NADP, 2004). 

 

4.3.4 Diurnal Variation of Total Gaseous Mercury 

An examination of time-resolved TGM concentrations reveals significant differences in 

diurnal variations between the different sites.  

In Patagonia, no clear diurnal trend is evidenced. Especially at the GC site, the up- and 

down-turns are very flat (Fig. 4-10). However, the own studies in Spain (Fig. 4-23, Fig. 

4-24) and Austria (Fig. 4-26, Fig. 4-27) and studies of others (e.g. Dommergue et al., 

2002; Feng et al., 2003, 2004; Stamenkovic et al., 2007) show a clear TGM dependency 

on diurnal variations. For the locations Sky and PBr, intraday variations in TGM 

concentrations can be observed (Fig. 4-10). However, they are not as significant and 

periodical as in Galicia or Kühtai (see chapters 4.3.6 and 4.3.7) or other studies 

(Dommergue et al., 2002; Feng et al. 2003, 2004, Stamenkovic et al., 2007).  
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4.3.5 Factors suppressing the Diurnal Variation of TGM in Patagonia 

Variations in TGM concentrations mainly result from Hg re-emission from soils. Factors 

supposed to be most important in controlling Hg emissions from soils are radiation  

(Gustin et al., 2002; Bahlmann et al., 2006), temperature (Poissant et al., 1999; Zhang 

and Lindberg, 1999; Schlüter, 2000), and soil moisture (Gustin and Stamenkovic, 2005; 

Poissant et al., 1999; Bahlmann, 2004), with short−term spikes in emissions after 

precipitation events (Lindberg et al., 1999; Poissant et al., 1999).  

 

Regarding those parameters it is explicable, that the diurnal variations of TGM 

concentrations are insignificant for GC. The range of both temperature and solar radiation 

is comparably small due to the mostly completely overcast sky during the sampling 

period. In the context of radiation it is important to mention that particularly the 

transmission of UV and especially of UV-B radiation is attenuated by clouds (López et al., 

2009). The light-induced mercury emission flux from soils shows a strong spectral 

response to UV-B radiation (Bahlmann et al., 2006). Moore and Carpi (2005) as well 

showed that soil fluxes under UV and under full spectrum radiation were significantly 

elevated over dark fluxes, whereas fluxes were not significantly different from dark fluxes 

when UV light was removed from incident radiation. 

 

In addition to the meteorological parameters the composition of the soil is responsible for 

the level of Hg emission. Bahlmann (2004) showed that the moisture of the soil influences 

the Hg release. Wet soils release more Hg than completely dry soils. However, above 

critical moisture, the Hg emission decreases again with increasing water content. The 

water content at which the maximum of Hg emission occurs is hereby dependent on the 

type of soils and varied in the study of Bahlmann (2004) between 10 % and 35 %.  

In the presented study the atmospheric measurements at GC were conducted above a 

minerogenic fen. The water content of this fen varies between 78 and 94 % (Hertel, 

2001). Hence, if the conjecture is accurate, that the findings of Bahlmann (2004) are also 

true for the peat in Patagonia, the re-emission should be very low. Additionally, it is well 

known, that Hg in soils mainly exists in the oxidized state and forms stable complexes 

with organic matter (OM) (e.g. Andersson 1979; Kerndorff and Schnitzer, 1980; Xu and 

Allard, 1991; Schuster, 1991; Johansson et al., 1991; Meili, 1991b). Several studies also 

show that the mercury flux from soils decreases with higher OM contents (Yang et al., 

2007; Edwards and Howard, 2012) and increases with increasing pH value of soils (Yang 

et al., 2007; pH range: 4.8-7.1). Thanabalasingam and Pickering (1980) showed that the 

maximum sorption of Hg(II) onto humic acid takes places in a pH range of pH 4 to pH 5. 
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The upper part of the minerogenic fen at GC above which the atmospheric 

measurements were conducted had a pH value of 4.6 and an OM content between 50 

and 90 % (Hertel, 2001; Franzen et al., 2004). 

 

Due to the fact that the entire area surrounding GC mainly consists of peatland and also 

the weather in the upwind direction is affected by mostly overcast sky, the Hg 

reemissions from surrounding soils should be very low, resulting in an overall low diurnal 

variation of TGM in this region. 

 

For the location Sky, intraday variations in TGM concentrations can be observed (Fig. 

4-10). However, they are not as significant and periodical as in Spain (Fig. 4-23, Fig. 

4-24) and Austria (Fig. 4-26, Fig. 4-27) or other studies (Dommergue et al., 2002; Feng et 

al. 2003, 2004, Stamenkovic et al., 2007). Concentration peaks can always be found in 

the afternoon. However, in addition there are several TGM peaks which are not evenly 

distributed throughout the day. An explanation for the trend being observed at Sky but not 

at GC is that first the underlying soil at Sky was not peat but rather organic rich soil and 

grassland, which in addition was not as wet as the GC peat. Here, the re-emission of Hg 

is expected to be generally higher. Secondly, the weather during sampling was different. 

In the time, where the TGM measurements were conducted, it only fairly rained and the 

sky was not as much overcast as at GC. Hence, the UV-radiation enhanced reduction of 

the divalent mercury in soil was higher. During the campaign it could be seen that the 

response time of the TGM concentrations to changes in radiation was very fast and that 

there are short−term spikes in emissions due to short breakthroughs of the sun.  

 

For PBr a very flat deviation with some single concentration peaks is observed (Fig. 

4-10). In this region, the underlying soil was similar to the one of the Sky, namely organic 

rich soil and grassland. However, in contrast to the Sky-campaign, in the period, in which 

the Hg-measurements were conducted at PBr, the sky was overcast all along and it 

rained most of the time. Hence, the changes in Hg reemissions from soils were very low. 

 



 4.3 Discussion 

97 

 

 

 

Fig. 4-22 TGM measurements at the three sites GC (top), Sky (middle) and PBr (bottom) in 2003. 
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4.3.6 Diurnal Variation of TGM as a Result of Insolation 

The diurnal variation of TGM is much more pronounced in Galicia and in Kühtai than in 

Patagonia. Highest TGM concentration in Galicia could be observed during the early 

afternoon (Fig. 4-23, Fig. 4-24). Lowest concentration could be observed during the night.  
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Fig. 4-23 Diurnal variation of TGM in Galicia in February, 2003.  
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Fig. 4-24 Diurnal variation of TGM in Galicia in July, 2003.  

 

The soil characteristics are similar for both locations, being water saturated bogs. Hence, 

higher Hg re-emissions are not a result of soil chemistry or water content. On the other 

hand, the weather and especially the duration and intensity of sunlight were substantially 

different than in Patagonia. Especially during the campaign in July, the influence of 

sunlight and associated therewith the influence of UV radiation on the TGM 
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concentrations could be observed. On the 16th of July the sky was completely overcasted 

and it rained the entire day. In contrast, on the 17 th of July the sky was cloudless for the 

entire day. On the other days, the weather was variable cloudy with occasional rain.  

This different weather conditions are reflected in the diurnal TGM trends, with the highest 

concentration peak on the sunny day and no distinctive peak on the rainy day.  

 

An evidence for radiation and temperature controlling the TGM concentration is obtained 

by comparing the TGM time course to the time course of temperature and UV radiation at 

Kühtai (Fig. 4-25). It can be seen, that the correlation between both temperature and UV 

radiation on the one hand and TGM concentrations on the other hand is very high on all 

days. Especially on the 23th of April, where the degree of cloud coverage was very 

changeable, the dependency of the TGM concentration on temperature and UV radiation 

gets obvious (Fig. 4-25, lower diagram). Most notably is the very fast response of TGM 

concentration on chances in temperature and UV-radiation. This implies a very fast 

reduction of Hg(II) to Hg0 and subsequent re-emission from the ground or, more explicity, 

in this case from snow.  
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Fig. 4-25 Diurnal progress of TGM, temperature, and UV radiation at Lake Gossenkölle, Kühtai, 
Austria in April, 2003. The upper diagram shows a 6 day interval; the lower diagram 
shows the time-resolved TGM concentrations, temperature and UV radiation of the 
23.04.2003.  
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4.3.7 Diurnal Variation of TGM above Soil and Snow 

The diurnal variation of TGM at Lake Gossenkölle, Kühtai, is much more pronounced 

than in Patagonia and generally similar to the ones in Galicia. Highest TGM concentration 

could be observed during midday or in the late morning (Fig. 4-26, Fig. 4-27). Lowest 

concentration could be observed during the night. While the night-time TGM 

concentrations in June (Fig. 4-27) were generally slightly higher than in April (Fig. 4-26), 

the midday peaks were in general slightly lower in June than in April.  

 

A significant difference between the diurnal progresses in TGM concentrations in April 

and June is the span of highest concentrations. In April, on most days, the time course of 

TGM concentrations showed a definite and narrow peak during the midday. This fits to 

different studies about Hg emission from snow packs where it was shown that emission 

maximizes near midday (Steffen et al., 2002; Ferrari et al., 2005, 2008; Faïn et al., 2007, 

2008), with 45 % of daily emission occurring during the 3 h midday interval (Johnson et 

al., 2008). In contrast, in June, the TGM concentrations rose already during the morning 

hours and first maximum values were achieved at 9:00 am. Additionally, no distinct 

concentration peak could be observed, but rather a longer time span in which the 

concentrations stayed high before they decreased again in the early afternoon. One 

reason for the earlier TGM increase in the morning was probably because of an earlier 

sunrise in July than in April. However, in Galicia no temporal differences in TGM increase 

were found between February and June. The differences in the TGM progress could 

therefore also be a result from the different underlying ground. While the mercury 

chemistry in snow packs is mainly isolated and the various mercury compounds do not 

have many different reaction partners, the chemistry of mercury and its reactions within 

the soil subsequent to deposition are more complex. Hence, the irradiation mediated 

reduction of Hg(II) phases is more variable within the soil and different reaction kinetics 

result in different response speeds of photo induced Hg emission. This finally results in a 

smearing of the TGM concentrations in time direction. 
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Fig. 4-26 Diurnal variation of TGM at Lake Gossenkölle, Kühtai, Austria in April, 2003.  
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Fig. 4-27 Diurnal variation of TGM at Lake Gossenkölle, Kühtai, Austria in June, 2003. 
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4.3.8 Contribution of RGM to the Total Gaseous Mercury 

The RGM concentrations show a much higher standard deviation than TGM, indicating 

faster reactivity and lower residence time of these mercury species compared to TGM 

(Junge, 1972). 

Under the assumption of a mean TGM concentration of approximately 1.02 ng m−3, 

1.16 ng m−3, and 1.29 ng m−3 for the locations GC, Sky, PBr, respectively, the percentage 

of RGM relative to TGM (Tab. 4-12) is somewhat high compared to the general statement 

that RGM does not exceed 5 % of TGM.  

 

Tab. 4-12 Statistical summary of percentaged RGM (relative to TGM) in 2002 and 2003. 

RGMrelative GC Sky PBr 

Minimum [%] 2.5 2.4 2.3 

Maximum [%] 9.4 10.5 8.6 

Mean [%] 7.2 6.9 6.5 

Median [%] 7.7 7.3 6.9 

SD 1.97 2.99 1.9 

Number of Samples 21 23 20 

 

These quite high relative RGM concentrations are a result of the oceanic influence with 

high Hg emission rates from the Sea and active photochemical processes in the Marine 

Boundary Layer (MBL). High Hg(II) concentrations have been observed in the MBL by 

various groups (Hedgecock et al., 2003; Laurier et al., 2003; Slemr et al., 2003; Temme 

et al., 2003b; Soerensen et al., 2010; Sprovieri, 2010c). In addition, the oxidation 

processes due to the halogen-containing sea salt aerosols play an important role. It is 

generally known, that the oxidation is promoted by halogen chemistry both above and 

below the water/air interface (Sheu and Mason, 2004; Lalonde et al., 2001). 
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Fig. 4-28 Box Plots of the contribution of RGM to TGM at the three locations GC, Sky, and PBr in 
2002 and 2003. 

 

Literature data suggests that the variation of relative RGM concentrations is generally 

very high. Several studies of atmospheric mercury in the Southern Hemisphere show 

similar or even higher relative RGM concentrations than in Patagonia. Taking the data 

shown in Tab. 2-14 the following relative RGM concentrations can be calculated: Terra 

Nova Bay (Sprovieri and Pirrone, 2000; Sprovieri et al., 2002) 14.32 %, McMurdo (Brooks 

et al., 2008b) 9.67 %, and South Pole (Brooks et al., 2008a) 63.7 %. In the Northern 

Hemisphere much lower relative RGM concentrations are found: in Southern Québec, 

Canada: 0.2 % (Poissant et al., 2005), in Halifax, Canada: 0.26 % (Ebinghaus et al., 

2009), in Cheeka Peak, Washington: up to 2 % (Weiss-Penzias et al., 2003), in ambient 

air of Tennessee and Indiana, USA: 3 % (Lindberg and Stratton, 1998). 

 

4.3.9 Spatial variation of atmospheric mercury in Patagonia 

In general, an increasing trend in TGM can be observed from West to East; with 

1.06 ng m−3 (GC), 1.26 ng m−3 (Sky), and 1.36 ng m−3 (PBr) in 2002 and 

1.02 ng m−3 (GC), 0.87 ng m−3 (Sky), and 1.29 ng m−3 (PBr) in 2003. Only in 2003, the 

mean TGM concentrations of Sky don’t fit into the trend. However, the TGM 

concentrations were exceptionally low at the beginning of the measurement series (Fig. 

4-10). During the first three days the daily average TGM concentration raised steadily 

before it got stable at the fourth day. If the mean TGM concentration is only determined 

for the stable time period, a value of 1.16 ng m−3 is calculated, which is in good 
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agreement to the general trend observed. As mentioned in chapter 4.3.4, the TGM 

concentrations are mainly a direct result of re-emission from soil. Therefore, the sources 

for the differences in the diurnal variations of TGM (chapter 4.3.4) contribute just as well 

to the increasing TGM concentrations from West to East. Namely, the differences in soil 

conditions and in meteorological parameters as already described in chapter 4.3.4. 

 

Comparing the RGM concentrations of the different sites, it can be seen that the mean 

concentrations are very similar with 73 pg m−3, 80 pg m−3, and 83 pg m−3 at GC, Sky, and 

PBr, respectively. However, an inspection of the interquartile range (IQR) reveals that this 

is quite higher for Sky than for the other two locations. This shows that at this location 

there is a faster transformation of the different mercury species. This is probably a result 

from the variable meteorological conditions mentioned in 4.3.4 

 

TPM concentrations in 2002 were in a similar range at GC and PBr with values of around 

63 pg m−3 and 97 pg m−3, respectively. The TPM concentrations at Sky were much higher 

with values around 357 pg m−3. A similar trend could be seen for 2003 where the 

concentrations at Sky were again the highest ones with values around 283 pg m−3. 

However, at this campaign the concentrations at Sky were lower than 2002, whereas the 

concentrations at GC and PBr were higher than in 2002, resulting in a difference in 2003 

which was not as big as in 2002. 

One reason for the higher TPM concentrations is that at Sky generally more particulate 

matter was present. This was due to the fact that first the aerosols were not washed out 

by the rain and second that the active husbandry at the Estancia Skyring yielded a 

significant amount of particulate matter. 
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4.4 Conclusion 

In this study, different mercury species were investigated in order to obtain a better 

understanding of the global mercury cycle. At three different sampling areas, namely 

Patagonia, Chile, Galicia, Spain and Kühtai, Austria the mercury species TGM, RGM, 

TPM and Mercury in Precipitation were analyzed during several field campaigns. Of these 

locations, one (Patagonia) was a remote area in the Southern Hemisphere, whereas the 

other two (Galicia and Kühtai) were remote areas in the Northern Hemisphere.  

 

Concerning the TGM concentrations, the values were in a similar range for Patagonia 

and Galicia, which is not in agreement with the generally stated significant difference 

between the Southern and Northern Hemisphere. Based on the existing data within the 

mercury community, there is a scientific consensus about the current global background 

concentration of airborne Hg which is considered to be in the range of 1.5 to 1.7 ng m−3 in 

the Northern Hemisphere and between 1.1 and 1.3 ng m−3 in the Southern Hemisphere 

(Lindberg et al., 2007). However, the reason for these low TGM concentrations in Galicia 

might be the precipitation rate in this region, which is with 1400 to 1800 mm (Martínez-

Cortizas et al., 2002) relatively high and leads to a Hg washout from the atmosphere. A 

second reason is probably a low reemission from the surface, due to the surface (bog) 

having a high water content (compare to 4.3.4). Nevertheless TGM concentrations in 

Galicia showed a pronounced diurnal variation, similar to the TGM trend in Austria. This 

was not observed for Patagonia. The reasons for this difference are on the one hand 

different underlying soils with water saturated bogs in Patagonia, slightly dryer bogs in 

Galicia and grassland and bedrock in Austria. On the other hand reasons are the 

meteorological parameters, first and foremost temperature and UV radiation, with much 

higher variations for Austria and Galicia than for Patagonia. Comparing the diurnal 

variations of TGM in Galicia and Kühtai, as most significant should be mentioned the 

different daytimes in which the TGM concentration peaks occurred. In Galicia highest 

concentrations were observed in the early afternoon for both campaigns in February and 

July. In Kühtai, in April TGM concentrations maximized near midday with a short interval 

of maximum concentrations. In June, TGM concentrations rose already in the morning 

hours and the concentrations peak was generally much broader than in April. 
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Tab. 4-13 Comparison of the Mercury Species TGM, RGM, TPM, and Hg in Precipitation between the 
different locations. For Patagonia, concentrations of all three sampling sites (GC, Sky, 
and PBr) were averaged. TGMAvD − TGMAvN: Difference between averaged daytime peaks 
and averaged nighttime concentrations. 

Location TGM 

[ng m−3] 

TGMAvD− 
TGMAvN 

RGM 

[pg m−3] 

RGMrel. 

[%] 

TPM 

[pg m−3] 

HgPrec. 

[ng L−1] 

Patagonia, Chile 1.09 0 79 7.24 180 0.64 

Galicia, Spain 1.03 1.22 43 4.17 59 1.56 

Kühtai, Austria 1.93 1.20 25 1.30 37 4.52 

 

Concerning RGM and TPM concentrations, the values were with 79 pg m−3 and 

180 pg m−3 highest for Patagonia, with 43 pg m−3 and 59 pg m−3 intermediate for Galicia 

and with 25 pg m−3 and 37 pg m−3 lowest for Austria. This is a result of the mutual 

interference between reduction and oxidation processes. In Patagonia higher emission 

rates from the Sea and more active photochemical processes in the Marine Boundary 

Layer (MBL) result in a generally more rapid Hg cycling. High Hg(II) concentrations have 

been observed in the MBL by various groups (Hedgecock et al., 2003; Laurier et al., 

2003; Slemr et al., 2003; Temme et al., 2003b; Soerensen et al., 2010; Sprovieri2010c) 

Additionally, the oxidation processes are the dominant ones, probably mainly due to the 

halogen-containing sea salt aerosols. It is generally known, that the oxidation is promoted 

by halogen chemistry both above and below the water/air interface (Sheu and Mason, 

2004; Lalonde et al., 2001). In Galicia the halogen promoted oxidation probably also 

plays an important role. However, due to the higher solar radiation, the photo-reduction of 

Hg(II) counteracts, resulting in intermediate RGM and TPM concentrations. In Kühtai no 

enhanced oxidation processes like the ones with sea salt aerosols exist, resulting in lower 

RGM and TPM values.  

 

Mercury concentrations in precipitation were generally quite low. However, a significant 

difference could be seen between the three sites. The lowest concentrations were found 

in Patagonia, with an average of 0.54 ng L−1. In Galicia the average concentrations 

(1.56 ng L−1) were higher by a factor of 2.5 and in Austria the concentrations (4.52 ng L−1) 

were higher compared to Patagonia by a factor of 7. The low concentrations in Patagonia 

are a result of the combination of generally low atmospheric mercury concentrations and 

the extremely high precipitation depths. 
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5 DO HG ACCUMULATION RATES IN ARCHIVES REFLECT 

ATMOSPHERIC DEPOSITION RATES? 

Mercury is removed from the atmosphere through both wet and dry processes acting on 

Hg0, Hg(II) and Hg(p) species (Schroeder and Munthe, 1998). However, a quantification 

of these processes to get a precise Hg deposition rate is very challenging. Additionally, 

only recent deposition rates can be calculated or modeled by knowing the processes and 

the atmospheric Hg chemistry. However, in order to estimate human impacts on the 

biogeochemical cycling of mercury, it is necessary to compare recent deposition rates 

with preindustrial deposition rates. For this, historical records of mercury accumulation in 

lake sediments (e.g. Aston et al., 1973; Swain et al., 1992; Gobeil et al., 1999; Bindler et 

al., 2001; Kamman and Engstrom, 2002) and peat bogs (e.g. Pheiffer-Madsen, 1981; 

Martínez-Cortizas et al., 1999; Biester et al., 2002; Bindler, 2003; Shotyk et al., 2003; 

Roos-Barraclough and Shotyk, 2003; Givelet et al., 2004) have often been used.  

 

However, many processes controlling time-resolved mercury accumulation in peat and 

sediments are still poorly understood. Hence, it still has to be specified under which 

postulates the accumulation rates in the archives are reliable for calculating the 

atmospheric deposition rates (Franzen and Biester, 2003; Biester et al., 2007).  

In this chapter the atmospheric mercury data obtained in this study and mercury 

accumulation rates in peat bogs and lacustrine sediments obtained in previous studies 

are collated.  

 

5.1 Sampling Sites of Mercury Records in Peat Bogs and Lake Sediments 

In previous studies the mercury accumulation rate in three peat cores (GC1, Sky1, PBr2) 

and one lacustrine sediment core (LMP1) were investigated (Biester et al., 2002; Biester 

et al., 2003; Franzen and Biester, 2003). All three bogs were raised bogs situated at the 

same sites, where the atmospheric mercury measurements presented in Chapter 4 were 

conducted (Fig. 5-1). The lacustrine sediment core LMP1 was taken from a tarn (Lago 

Muy Profundo, informal name), which has developed in a cirque excavated by a glacier. 

The surface area of the lake is approximately 0.5 km2 and the catchment-to-lake-ratio is 

approx. 10. It is situated 3 km west of Gran Campo Nevado ice field and hence in the 

same region as GC1. Therefore, recent atmospheric Hg deposition rates should be 

similar for GC1 and LMP1. More information on the sampling site and the lacustrine 
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sediment cores can be found in Baeza Urrea, 2005. More information on the peat bogs 

can be found in Biester et al., 2002 and Biester et al., 2003. 

 

 

Fig. 5-1 Map of the study area and locations of sampling sites of three peat cores PBr2, Sky1, and 
GC1 and of one lacustrine sediment core LMP1. 

 

5.2 Mercury Accumulation in the Raised Bog GC1 and the Sediment LMP1 

Using the generally accepted equation for mercury accumulation in peat (Eq. 5−1) pre-

industrial mercury accumulation rates in the bog GC1 ranged between 2.5 and 

3.9 µg m−2 a−1 (Biester et al., 2002).  

 

                           (Eq. 5−1) 

 

  ARHg = Accumulation Rate of Mercury [µg m
−2

 a
−1

] 

  CHg = Concentration of Mercury in Peat [µg kg
−1

] 

  P = Density of the Peat [g cm
−3

] 

  ARP = Accumulation Rate of Peat [cm a
−1

] 

 

In the past 100 years, mercury accumulation rates increased 18−fold from about 

3 µg m−2 a−1 to a maximum of 62.5 µg m−2 a−1. In the uppermost section of the bog, the 

accumulation rates were still around 20 µg m−2 a−1 (Fig. 5-2). 
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Fig. 5-2 Uncorrected net accumulation rates of Hg in selected sections of core GC1. Ages of the 
uppermost 20 cm were calculated based on 

210
Pb activity (CRS model); other ages were 

obtained by means of 
14

C AMS dating (Biester et al., 2002). 

 

However, since this area not being influenced by any recent local point source of mercury 

emission, this 18−fold increase is not consistent with the three-fold net increase in 

globally dispersed atmospheric Hg estimated for the same period (Mason et al., 1994). 

Also Selin et al. (2008) suggested an average increase in Hg deposition by a factor of 2 

to 3 for southernmost South America.  

 

This raises questions about the reliability of peat bogs to reflect true atmospheric mercury 

fluxes and the magnitude by which the fluxes have changed.  

 

In Biester et al. (2002; 2003) is shown already, that comparability of Hg accumulation 

rates form different peat sections within one core is not given, when calculated from 

density, peat accumulation rates, and Hg concentration (Eq. 5−1). Peat formation is a 

dynamic process accompanied by intense mass loss and alteration of the organic 

material. During this peat evolution differences in net mass accumulation rates are not 

compensated by linear changes in density, peat accumulation, or Hg concentrations. 

Therefore, in order to achieve comparability of Hg accumulation rates derived from 

differently altered peat sections, Hg accumulation rates have to be normalized to peat 

humification and subsequent mass loss. By this method, explained in Biester et al. (2002; 

2003) maximum Hg accumulation rates in the upper part of the GC1 core, representing 

industrial ages were downscaled from 60 µg m−2 a−1 to 7.9 µg m−2 a−1 which revealed only 

a 2.5−fold increase compared to the lower part of the core, representing preindustrial 

ages (Fig. 5-3). These corrected accumulation rates and the resulting enrichment factors 

are much more consistent with the net increase in globally dispersed atmospheric Hg.  
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Fig. 5-3 Uncorrected (left) and corrected (right) net accumulation rates of Hg in selected sections 
of core GC1. Ages of the uppermost 20 cm were calculated based on 

210
Pb (CRS model); 

other ages were obtained by means of 
14

C AMS dating. The correction is done for 
differences in peat accumulation rates in high and low decomposed peat sections. 
(Biester et al., 2002) 

 

One other evidence that recent Hg depositions determined with help of Hg accumulation 

rates in bogs probably are overestimated is the comparison with Hg accumulation rates in 

the lacustrine sediment LMP1. For the lake sediment LMP1, only the upper part of the 

sediment core was analyzed for mercury. Here, modern accumulation rates of Hg were 

found to be approximately 5 µg m−2 a−1 (Franzen and Biester, 2003). Even though there is 

no Hg enrichment factor compared to preindustrial times available, the very low modern 

Hg accumulation rate shows that there is no recent mercury source, which could explain 

the enormous enrichment factor calculated from the uncorrected Hg accumulation rates  

 

5.3 Mercury Accumulation Rates in the Raised Bogs GC1, Sky1, and PBr2 

The raised bogs Sky1 and PBr2 show more moderate industrial Hg enrichment factors. 

However, also for these bogs Hg accumulation rates were corrected in the same manner 

as for GC1 (Biester et al., 2003). After correction, the industrial Hg enrichment factors 

were 1.5 for both bogs.  
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Fig. 5-4 Mercury accumulation rates in three ombrotrophic peat cores before and after correction 
for mass losses occurring during peat decomposition (Biester et al., 2003).  
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5.4 Atmospheric Mercury Deposition 

Mercury is removed from the atmosphere through both wet and dry processes acting on 

Hg0, Hg(II) and Hg(p) species (Schroeder and Munthe, 1998). Which one of these two 

processes is the most important one is site specific since the actual deposition flux 

depends on the individual concentrations of the different mercury species, the presence 

of other atmospheric constituents, the type of surface, and meteorological parameters 

(Schroeder and Munthe, 1998). Wet Deposition requires precipitation. The rate of dry 

deposition varies with mercuric species, boundary layer stability and land surface cover 

(Lin et al., 2006). RGM and Hg(p) are generally considered to be uni-directional 

processes, whereas air-surface exchange of Hg0 can occur bi-directionally, with daytime 

emission and nighttime deposition (Schroeder and Munthe, 1998; Zhang et al., 2009) 

 

The measurement of Hg wet deposition is an accepted standardized method, which is 

used by national and regional networks (e.g. NADP-MDN) and merely needs the accurate 

measurement of mercury concentration in precipitation and the precipitation depths. In 

contrast, the accurate measurement and modeling of Hg dry deposition is difficult and 

remains the most challenging gap in the understanding of mercury fluxes. Dry deposition 

occurs via two processes. One is the direct deposition of the gas-phase compounds Hg0 

and RGM and, to a lesser extent, deposition of atmospheric particles containing Hg (HgP) 

(Lindberg et al., 2007). There are three general methodologies for the estimation of Hg 

dry deposition rates. The “direct” methodology that includes surrogate surfaces, dew fall, 

litterfall, and throughfall; the “inferential” methodology that uses Hg species air 

concentrations and meteorological measurements to model deposition rates and the 

“micrometeorological” approach that includes gradient, modified Bowen ratio and relaxed 

eddy accumulation methods (Lindberg et al., 2007).  

 

5.4.1 Mercury Wet Deposition at GC 

Due to the extremely high precipitation rates at Gran Campo Nevado, Patagonia, it can 

be expected that for this region the wet deposition is the predominant one and for most of 

the times, dry deposition can be neglected.  

 

Taking the VWM (volume-weighted mean) concentrations in precipitation (Tab. 4-5) for 

GC and the precipitation depth of the sampling period September to October (Fig. 4-3) 

the following wet deposition rates can be calculated for these periods in 2002 and 2003. 

In the two months-period September to October 2002 0.227 µg m−2 were deposited; in 

the two months-period September to October 2003 0.441 µg m−2. From this relatively 
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short period, the projection on the annual deposition rate can only be roughly estimated. 

This is done in two ways. First, the two months deposition was extrapolated to twelve 

months by just multiplying by 6. Second, the VWM mercury concentration in precipitation 

measured during the study period was multiplied by the annual precipitation depths 

(APD), measured for 2002 and 2003. In these ways, different annual Hg wet deposition 

rates were obtained. For 2002 the estimations were 1.36 µg m−2 a−1 and 1.26 µg m−2 a−1, 

respectively, for 2003 they were 2.65 µg m−2 a−1 and 3.52 µg m−2 a−1, respectively. 

Tab. 5-1 Mercury wet deposition rates calculated for the two months-sampling period
a)

 and the 

projection on the annual Hg wet deposition for 2002 and 2003; calculated with the two 
months precipitation depth and subsequent extrapolation on 12 months

b)
 and calculated 

with the annual precipitation depths
c)

, with APD 2002: 2633 mm and APD 2003: 4513 mm. 

Period Precipitation 
Depth  
[mm] 

VWM 
concentratio

n  
[ng L

−1
] 

Hg Wet De-
position in two 

months
a)

 [µg m
−2

]
 

Annual Hg Wet 
Deposition

b)
  

[µg m
−2

 a
−1

] 

Annual Hg Wet 
Deposition

c)
  

[µg m
−2

 a
−1

] 

09/10 2002 472 0.48 0.227 1.36 1.26 

09/10 2003 566 0.78 0.441 2.65 3.52 

 

In order to ascertain whether it is possible to project the annual Hg wet deposition from 

the short-term measurements it is necessary to clarify the following questions. To what 

extent do the Hg concentrations in precipitation diversify over the year due to variation in 

meteorology? Do higher precipitation depths result in higher Hg wet deposition or do they 

result in a diluting effect concerning the Hg concentrations. 

 

Even though several authors have shown that there is seasonality in Hg concentrations in 

precipitation (e.g. Guentzel et al., 1995; Hoyer et al., 1995; Burke et al., 1995; Landis et 

al., 2002b; Dvonch et al., 2005; Keeler et al., 2005), in all studies the higher Hg 

deposition rates, typically observed during the warmer months, was likely the result of a 

mix of meteorological, source emission, and atmospheric chemistry influences. However, 

for the study area Gran Camp Nevado, the variation in mean temperatures over the year 

(Fig. 4-2) is not as large as in other studies. Thus, these differences in temperature will 

probably lead only to a moderate change in Hg concentrations in precipitation over the 

year. Also, wind direction and wind speed do not change significantly over the year 

resulting in a consistent atmospheric catchment. 

 

Dvonch et al. (2005) showed that higher precipitation depths do not necessarily lead to 

lower VWM Hg concentrations in precipitation and that the concentrations are 

independent from precipitation depths. Similar results can be found in Gratz et al. (2009). 

Hence, for this study it can be assumed that differences in precipitation rates do not lead 

to different VWM Hg concentrations but to different deposition rates. Therefore, it is most 
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reasonable to calculate the annual Hg wet deposition with the annual precipitation depth 

(Tab. 5-1, c
)
). 

 

5.4.2 Mercury Wet Deposition at GC, Sky, and PBr 

The mercury wet deposition rates are much higher at the sampling area GC 

(1.26 µg m−2 a−1 for 2002 and 3.52 µg m−2 a−1 for 2003) compared to the sampling areas 

Sky (0.24 µg m−2 a−1 and 0.56 µg m−2 a−1) and PBr (0.39 µg m−2 a−1 for 2003) (Tab. 5-2).  

Tab. 5-2 Mercury wet deposition rates calculated for the two months-sampling period and the 
projection on the annual Hg wet deposition for 2002 and 2003; calculated with the two 
months precipitation depth and subsequent extrapolation on 12 months. 

 

Annual 
Precipitation Depth 

[mm] 

VWM Hg 
concentration 

[ng L
−1

] 

Annual Hg Wet 
Deposition 

[µg m
−2

 a
−1

] 

GC 2002 2633 0.48 1.26 

GC 2003 4513 0.78 3.52 

Sky 2002 608.2 0.39 0.24 

Sky 2003 937.2 0.60 0.56 

PBr 2002 361.4 ND ND 

PBr 2003 467.4 0.83 0.39 

 

Since the VWM Hg concentrations in precipitation being in the same range at the three 

sites the differences are predominantly a result of different precipitation depths. 

 

 

5.5 Conclusion 

The differences in Hg wet deposition rates with highest rates at GC intermediate rates at 

Sky and lowest rates PBr are consistent with the west to east trend in Hg accumulation 

rates calculated by Biester et al. (2003) for the three raised bogs GC1, Sky1, and PBr2 

(Fig. 5-4). 

 

The calculated mercury wet deposition rates of 1.3 – 3.5 µg m−2 a−1 found for the different 

sampling sites in Patagonia show a much better correlation to the estimates of deposition 

determined from the lake sediment LMP1 and from the mass-loss-corrected peat bogs 

and evidence that the uncorrected accumulation rates in the upper part of peat bogs and 

thus the assumed contemporary atmospheric flux might be overestimated. This is evident 

for the mass-loss-correction method of Biester et al. (2002, 2003, 2007) being reliable. 
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6 MERCURY TRANSFER FROM SNOW TO ATMOSPHERE 

6.1 Sampling Sites 

Snow samples were taken at three different altitudes above sea level within the area of 

Kühtai. The lowest samples (AP1) were taken at an altitude of 2070 m a.s.l. in the vicinity 

of the valley station of the ski lift “Hochalterbahn”. The intermediate samples (AP2) were 

taken at an altitude of 2280 m a.s.l. in the vicinity of the ski hut “Zum Kaiser Maximilian”. 

The uppermost samples (AP3) were taken directly above Lake Gossenkölle at an altitude 

of 2468 m a.s.l. At all sites, samples from different depths were taken. The first sample 

was directly taken from the surface. One other sample was taken from a lower part of the 

surface stratum which was buried directly due to prolonged snowfall. A third sample was 

taken from an older stratum. Each sample was taken in triplicates.  

Additionally, two depth profiles were taken directly at Lake Gossenkölle. One profile 

(DP1) was taken on the surface of the lake, in a snow pit, which was excavated a couple 

of days ago by a research team of the University of Innsbruck. One other profile (DP2) 

was taken from a freshly excavated snow pit.  

The snow strata were identified by characterizing snow cover profiles based on the 

“International Classification for Seasonal Snow on the Ground” (Colbeck et al., 1985). 

 

 

Fig. 6-1 Sampling Sites of mercury in snow packs at, Kühtai, Austria. Elevation map taken from 
Google Maps. 
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6.2 Results 

6.2.1 Mercury in Surface Snow  

The surface snow showed similar mercury concentrations at the different altitudes within 

the area of Kühtai with mean concentrations of the topmost samples of 0.780 ng L−1 for 

AP1, 0.771 ng L−1 for AP2, and 0.786 ng L−1 for AP3. The differences between the 

mercury concentrations at the lower part of the surface stratum (1.912 ng L−1 for AP1, 

2.006 ng L−1 for AP2, and 1.732 ng L−1 for AP3) and for the 2nd stratum (1.505 ng L−1 for 

AP1, 1.339 ng L−1 for AP2, and 1.213 ng L−1 for AP3) are slightly bigger.  

Within each profile, lowest mercury concentrations were found in the uppermost part with 

a concentration of 0.81 ng L−1, averaged over all three profiles. Highest concentrations 

were found at the lower part of the surface stratum with 1.88 ng L−1, averaged over all 

three profiles. In the second stratum intermediate concentrations were found with 

1.35 ng L−1, averaged over all three profiles. A summary of the concentrations is shown in 

Tab. 6-1.  

Tab. 6-1 Mercury concentration in seasonal snow samples. Given are mean values of three 
samples for each sampling point. Concentrations are given in ng L

−1
 and in pM.  

 AP1 
2070 m a.s.l. 

AP2 
2280 m a.s.l. 

AP3 
2468 m a.s.l. 

 [ng L−1] [pM] [ng L−1] [pM] [ng L−1] [pM] 

Surface Strat./ 
uppermost cm 0.780 3.890 0.771 3.842 0.886 4.417 

Surface Strat./ 
lower part 

1.912 9.534 2.006 10.003 1.732 8.636 

2nd Stratum 1.505 7.505 1.339 6.676 1.213 6.049 

 

 

6.2.2 Depth Profiles of Mercury in Seasonal Snow Pits 

Mercury concentrations in the depth profiles showed different values with higher values 

for the freshly excavated pit DP1 (Fig. 6-2, a) with mean concentration of 1.38 ng L−1 and 

lower values for the pit DP2, which had been excavated a couple of days before (Fig. 6-2, 

b) with mean concentrations of 0.59 ng L−1. Within each profile, the concentrations were 

relatively uniform with a range from 1.22 ng L−1 to 1.58 ng L−1 for DP1 and with a range 

from 0.45 ng L−1 to 0.68 ng L−1 for DP2. A summary of the concentrations is shown in 

Tab. 6-2. 
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Tab. 6-2 Mercury concentration in the snow pits DP1 and DP2. Given are mean values of two 
samples for each depth of DP1 and of three samples for each depth of DP2. 
Concentrations are given in ng L−1 and in pM.  

 DP1  DP2 

cm above 
ground  

[ng L−1] [pM] cm above 
ground 

[ng L−1] [pM] 

210 1.46 7.26 65 0.52 2.61 

160 1.40 6.98 35 0.58 2.87 

110 1.39 6.90 10 0.63 3.16 

60 1.36 6.76 3 0.65 3.22 

10 1.33 6.61    
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Fig. 6-2 Mercury in snow pits DP1 (a) and DP2 (b) at Lake Gossenkölle, Kühtai, Austria. 
Additionally, the characterization of each snow pit is shown on the right side of each 
profile.  
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6.3 Discussion 

6.3.1 Mercury Loss from Surface Snow 

An examination of the surface snow samples AP1, AP2, and AP3 yields a big distinction 

in HgT concentrations between different sections within the surface stratum. The snow of 

the lower part which was directly buried due to continuing snow fall contains much higher 

HgT (1.88 ng L−1) than the uppermost cm which were exposed to sunlight (0.81 ng L−1).  

These differences are a strong evidence for photo-induced Hg(II) reduction in snow and 

subsequent gas transfer of Hg0 to the atmosphere. The same inference can be drawn 

when the two different depth profiles are compared. The freshly excavated snow pit 

shows generally higher mercury concentrations (1.38 ng L−1) than the snow pit, where the 

intire strata have been exposed to sunlight for a couple of days (0.59 ng L−1).  

 

It is known that some of the mercury deposited onto the cryosphere is rapidly emitted 

back to the atmosphere (Lalonde et al., 2002). It seems likely that outside of melting 

periods, loss of mercury from snow is due primarily to the emission of GEM back to the 

atmosphere (Lalonde et al., 2002, 2003). Lalonde et al. (2003) showed a decrease of HgT 

in snow within 24 hours from 7.08 pM to 4.23 pM (averaged over all snow periods) which 

results in a loss of HgT of more than 40 %. Also literature data aggregated in Durnford et 

al. (2012) shows 24-h-losses between 30 and 51 %.  

These results are highly consistent with the mercury concentrations in the surface strata 

of the snow from Kühtai (Tab. 6-1). The higher concentrations in HgT in the lower part of 

the surface stratum and also in the second stratum are a result of limited sunlight 

penetration at depth. 

 

Although photoreduction of Hg(II) has been reported to be forced by both visible (Poulain 

et al., 2004; Johnson, 2008) and UV-A radiation (Poulain et al, 2004; Faïn et al., 2008), it 

is primarily forced by UV-B radiation (Lalonde et al., 2003; Poulain et al, 2004; 

Dommergue et al., 2007; Faïn et al, 2007). 

The HgT profiles within the surface snow of this study are a further evidence for the Hg(II) 

reduction mostly being mediated by UV-B-irradiation. A Hg(II) reduction induced by 

visible light would occur down to deeper depths than a UV mediated reduction of Hg(II) 

(King and Simpson, 2001). The authors reported an e-folding depth (the depth of snow 

that attenuates diffuse radiation to 1/e or ~37%) of ~5 cm for UV-B in a uniform Arctic 

snowpack. Also Durnford and Dastoor (2011) conclude that insufficient UV-B radiation is 

almost certainly the most important factor in limiting the reduction of mercury within snow 

packs. Field and laboratory studies suggest that Hg0 is revolatilized from the top ~2 cm of 
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snow packs (Dommergue et al., 2007; Faϊn et al., 2007; Brooks et al., 2008a; Johnson et 

al., 2008).  

 

Regarding the snow pit (DP2), which was exposed to radiation for a couple of days, it 

becomes obvious that even in the presence of sufficient insolation not all mercury is 

reduced and emitted. This underlines the results of Dommergue et al. (2007) who state 

that not all forms of oxidized mercury are reducible by photodissociation or 

photoreduction (Dommergue et al., 2007, 2010). Lindqvist and Rodhe (1985) reported 

that some fraction of both RGM and PHg is not easily reducible. If PHg is far less 

reducible than RGM, as is likely (Durnford and Dastoor, 2011), the presence of PHg will 

affect the photo-reactivity of the snow pack’s mercury content (Larose et al., 2010). 

Durnford and Dastoor (2011) consolidate various literature data to conclude that there is 

evidence that PHg in the snow pack is at most minimally reduced and emitted. If this 

conjecture is accurate, the wide range of mercury concentrations observed in surface 

snow and seasonal snow packs of different studies, aggregated in Durnford and Dastoor 

2011 and Durnford et al., 2012 may reflect the fact that PHg exhibits significant spatial 

variability.  

 

6.4 Conclusion 

In this study, more than the half of the mercury deposited via snow is rapidly reemitted to 

the atmosphere. It could be shown that this reemission is mediated by insolation which 

only penetrates the top few centimeters of the snow. A fraction that constitutes ~43°% of 

mercury is not reduced and revolatilized. This fraction probably represents PHg.  

The fast reemission of some of the Hg is an evident reason for the definite diurnal 

variation in TGM measured above snow, shown in Chapter 4.3.7.  
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7 SUMMARIZING CONCLUSIONS 

In this study, the atmospheric mercury compounds TGM, RGM, TPM and mercury in 

precipitation have been measured during several campaigns at remote terrestrial sites 

both, in the Southern- (three sites in Patagonia, Chile) and the Northern Hemisphere (one 

site in Galicia, Spain and one site in Kühtai, Austria). These short-term measurements 

are a complementary approach to the few stationary sites established for long term 

observations; especially for remote southernmost South America, where no baseline 

measurements have been performed before. The combination of this study and long-term 

measurements provides basic and important information about the worldwide distribution 

and trend of atmospheric mercury fluxes. 

 

In general, the atmospheric data show that there is a significant diurnal and spatial 

variability of the different Hg species, mainly controlled by meteorological conditions and 

the soil processes. 

It could be shown, that TGM values were significantly lower at the sampling sites in the 

Southern Hemisphere than those at sampling sites in the Northern Hemisphere, reflecting 

the general inter-hemispherical gradient.  

However, the divalent mercury species RGM and TPM were higher in Patagonia. The 

most probable interpretation is that higher emission rates from the Sea and more active 

photochemical and halogen promoted processes in the MBL result in a more rapid Hg 

cycling. One other evidence for MBL provoking higher RGM values is the comparison 

between RGM values from the coastal sampling site in Galicia, Spain and values from the 

inland sampling site Kühtai, Austria, with higher RGM and TPM values for the coastal 

site.Comparing the calculated mercury wet deposition rates of 1.3 – 3.5 µg m−2 a−1 in 

Patagonia with mercury accumulation rates in peat bogs and lacustrine sediments from 

previous studies show much better correlation to the estimates of catchment corrected 

Hg accumulation rates determined from the lake sediment LMP1 and from mass-loss-

corrected peat records. This evidences that the uncorrected accumulation rates in the 

upper part of peat bogs and thus the assumed contemporary atmospheric flux might be 

overestimated.  
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