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Zusammenfassung

Probleme im Kontext von Chaos und Relaxation haben eine fundamentale
Bedeutung fiir die Untersuchung von klassischen und quantenmechanischen Viel-
teilchensystemen. Wir untersuchen einige der mit diesen Problemen verbundenen
Fragen numerisch in klassischen und quantenmechanischen Spin-Systemen. Zu
den neuen Ergebnissen, die in dieser Arbeit présentiert werden, gehoren : (i) ein
bemerkenswert einfacher Algorithmus zur Unterscheidung von nicht-chaotischem
und chaotischem Verhalten in klassischen Systemen mit Hilfe der Zeitreihe einer
makroskopischen Observablen. Die Leistungsfahigkeit dieses Algorithmus beruht
auf den qualitativen Unterschieden in den Leistungsspektren der chaotischen und
nicht-chaotischen Systeme. (ii) Eine modifizierte Version der Onsager Regres-
sionsbeziehung fiir Quantenzustinde. (iii) Ein effizient Algorithmus zur Berech-
nung der Zeit-Korrelationsfunktionen bei unendlicher Temperatur in Systemen
mit grofen Hilbert-Rédumen. (iv) Abwesenheit der exponentiellen Empfindlichkeit
auf kleine Storungen in makroskopischen, nicht integrierbaren Systemen von Spins
1/2. Dieses Verhalten wird der exponentiellen Empfindlichkeit auf kleine Storun-
gen in chaotischen klassischen Spin-Systemen gegeniibergestellt. (v) Genaue nu-
merische Untersuchungen von Free Induction Decay und Spindiffusion in bes-
timmten Spin-Gittern. Die Folgen dieser Ergebnisse haben Auswirkungen auf
die Grundlagen der statistischen Mechanik und auf praktische Probleme wie die

Berechnung des Langzeitverhaltens des Free Induction Decay in Feststoffen.



Abstract

The problems of chaos and relaxation have a fundamental importance in the
study of many-body classical and quantum systems. We investigate some of the is-
sues related to these problems numerically in classical and quantum spin systems.
New results reported in this thesis include: (i) A remarkably simple algorithm for
discriminating chaotic from nonchaotic behavior in classical systems using a time
series of one macroscopic observable. The effectiveness of this algorithm stems
from the qualitative differences in the power spectra of chaotic and nonchaotic
systems. (ii) A modified version of the Onsager regression relation applicable
to pure quantum states. (iii) An efficient algorithm for computing the infinite-
temperature time correlation functions in systems with large Hilbert spaces. (iv)
Absence of exponential sensitivity to small perturbations in macroscopic noninte-
grable systems of spins 1/2 . Such a behavior is contrasted with the exponential
sensitivity to small perturbations in chaotic classical spin systems. (v) Accurate
numerical investigations of free induction decay and spin diffusion in certain spin
lattices. The consequences of these results have implications for the foundations
of statistical mechanics or practical problems such as computing the long-time

behavior of the free induction decay in solids.
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Introduction

Many of the topics covered in this dissertation are related to the notion of chaos
and integrability in classical and quantum many-body systems. Our investigations
of chaos are primarily focused on the signatures of chaos in the time evolution of
macroscopic observables in classical and quantum many-body systems. Several
diverse issues in the physics of many-body quantum dynamics have been investi-
gated in the course of this work. These issues include Onsager regression relation,
the spin diffusion problem, and free induction decay in solids.

The complexity and richness of the phenomena occurring in strongly interact-
ing many-body systems make them particularly interesting to investigate. How-
ever, the large number of degrees of freedom constituting these systems makes it
extremely difficult to simulate them on digital computers. Therefore, novel meth-
ods and approaches are always sought to gain new insights into these systems
with modest computer resources. In this work, we present some of these novel
methods which were developed along with our investigations of the time evolution
of macroscopic observables. The paradigmatic examples for strongly interacting
classical and quantum many-body systems investigated in this dissertation are
lattices of classical and quantum spin systems respectively. Lattices of classical

spins are excellent examples of chaotic many-body classical systems while quan-



2 Chapter 1. Introduction

tum spin systems have been successfully used as the prototypes of many strongly
interacting many-body systems in condensed matter physics since the advent of
quantum mechanics. In the following, we give an overview of the plan for the rest

of the dissertation.

In chapter 2, we summarize our efforts aiming at extracting reliable measures
of chaos in many-body systems based on the analysis of time series produced by
a single macroscopic observable. The advantage of this approach is that it can be
applied on time series produced by many-body quantum systems as well to test the
existence of quantum chaos. The success of this approach would have the potential
to shed more light on the role of chaos in many-body dynamics, a topic barely
understood today. However, it turned out that extracting such a measure of chaos
from a time series of finite length is a challenging task. We illustrate in chapter
2 the failure of conventional approaches to detect chaos in time series produced
by classical spin systems. In the same time, we present a new approach that
is based on taking time derivatives to discriminate between accurately measured
chaotic and nonchaotic time series [1]. This approach depends on the differences
between the power spectrum of both types of time series. We show in the same
chapter that the power spectra of many chaotic systems are characterized by long
exponential tails, unlike integrable systems. We give several examples of the power
spectra of chaotic and integrable systems, in addition to a detailed treatment of

an exceptional case, namely the Toda lattice [2].

An excellent example of a many-body quantum system that has been stud-
ied since long time is the nuclear magnetic dipoles in solids. The dynamics of
this system can be probed by Nuclear Magnetic Resonance (NMR) techniques, a
well established field of experimental physics. The universal long time behavior
of the correlation function of this system was conjectured to reflect analogies with
classically chaotic systems [3]. This observation, in addition to the practical im-
portance of finding a controllable algorithm to compute the correlation function of
the nuclear spin system, has encouraged us to look for unconventional approaches
to do this computation. The answer came quickly from the linear response the-
ory. One of the fundamental results in this theory states that the relaxation of
an observable in the linear response regime towards equilibrium follows the same
laws (resembles) the correlation function of that observable at equilibrium. This
is known as Onsager regression relation. In chapter 3, we verify the applicability

of this relation to quantum spin systems on the level of single pure states [].



In the same chapter, we introduce a new relation, the modified regression rela-
tion. This relation deals with another type of correlation functions that describes
the correlation in the time dependence of the expectation values at equilibrium.
We show that this correlation function obeys a similar regression relation to the
one dealt with in the original Onsager regression relation. The potential to use
the quantum regression relation as a resource for efficient computing of correlation
functions is emphasized. This method is used in subsequent chapters to compute
correlation functions for systems too large to be solved by exact diagonalization
methods.

In chapter 4, we revisit the problem of chaos in many-body systems from
another perspective, and ask the following important question: Can we find an
experimentally realizable technique that detects chaotic dynamics in many-body
spin systems from the behavior of macroscopic observables? We propose the an-
swer to this question in terms of Loschmidt echo experiments, and show that in-
deed for classical chaotic spin systems, one can extract reliable information on the
Lyapunov exponent from measurable macroscopic quantities [5]. We give analytic
and numerical arguments that this criterion indicates the absence of exponential
sensitivity in quantum spin 1/2 systems. This result is an important one since
it indicates that a quantum spin 1/2 system is a limiting case that exhibits no
macroscopic manifestation of chaotic dynamics in terms of sensitivity to small per-
turbations. In the same chapter, we search for signatures of exponential sensitivity
in quantum spin systems in terms of other measures such as quantum fidelity, with

negative outcomes .

Chapter 5 deals with two separate issues in the physics of classical and quan-
tum spin systems that evolved during the investigations reported in the previous
chapters. First, we consider the issue of spin transport in Heisenberg lattices, and

explore in detail the issue of spin diffusion from various perspectives.

The parallels between classical and quantum spin dynamics manifested in vari-
ous domains indicate that we can use classical spin simulation to compute approx-
imate solutions for the correlation functions of many-body quantum spin systems
that are not accessible to direct numerical simulation. We verify this assumption
in the second part of chapter 5 by comparing classical spin simulation with various

experimental data of quantum spin systems obtained in NMR experiments.

'Many of the analytical arguments and derivations given in chapter 3 and chapter 4 are due

to my advisor, Prof. Boris Fine.
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The research reported in this thesis appeared in the following publications:
(i) T. A. Elsayed, B. Hess, and B. V. Fine, “Detecting microscopic chaos in a time
series of a macroscopic observable,” arXiv:1105.4575, 2011.
(ii) T. A. Elsayed and B. V. Fine, “Regression relation for pure quantum states and
its implications for efficient computing,” Phys. Rev. Lett., vol. 110, p. 070404,
2013.
(iii) B. V. Fine, T. A. Elsayed, C. M. Kropf, and A. S. de Wijn, “Absence of expo-
nential sensitivity to small perturbations in nonintegrable systems of spins 1/2,”
arXiv: 1305.2817, 2013.

In this chapter, the primary focus will be on the concept of chaos in classical
and quantum systems. Additionally, the numerical methods utilized to simulate

classical and quantum spin systems are briefly discussed.

1.1 Chaos in classical dynamical systems

Explaining the statistical behavior of many-particle systems (e.g., diffusion, er-
godicity, equilibration,..etc.) on the basis of the dynamical laws of physics is one
of the big problems in physics today [0]. It has been long supposed that micro-
scopic chaos is responsible for the equilibrium and non-equilibrium properties of
gases, liquids and solids. This supposition has never been verified experimentally.
For example, chaos is often invoked to explain Brownian motion based on the
randomness generated by the underlying chaotic dynamics [7-9]. Experimental
evidence for this assumption has been considered inconclusive and controversial
[10, 11]. Therefore, nonlinearity and microscopic chaos are believed to be suf-
ficient to produce Brownian motion, but they may not be necessary conditions.
Another example closer to the scope of this dissertation is the long time behavior
of the correlation functions of classical and quantum spin systems which has been
shown to be generically similar to a damped harmonic oscillator |12, 13]. While
the notion of chaos is sufficient to produce the exponential decay of the correlation
functions, we do not know whether it is a necessary condition or not.

The most notable signatures that define the phenomena of chaos in classical
mechanics is deterministic randomness and exponential sensitivity to initial condi-
tions, both are related to the concept of unpredictability. Exponential sensitivity

to initial conditions means that the smallest perturbations to the initial state of
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the system grow up exponentially, due to intrinsic dynamical instability caused by
the nonlinearity of the equations of motion and hence inhibit the predictability of
the state of the system. Since initial conditions are never known with an arbitrary
accuracy, the evolution of the system will look effectively random, even though it
is deterministic. If one initializes a chaotic system with two initial states slightly
far from each other in phase space, then the trajectories of these states will even-
tually diverge exponentially from each other. Dynamical systems possessing this
property are called “chaotic”. In this dissertation, we use the terms, chaotic and
nonintegrable, synonymously in the classical domain. On the other hand, a clas-
sical system consisting of N degrees of freedom is completely integrable if it has
N independent integrals of motion which are mutually in involution with respect
to Poisson brackets [11].

An alternative definition of chaos that captures the idea of deterministic ran-
domness can be given in terms of Kolmogorov algorithmic complexity, which mea-
sures the complexity of a signal by the length of the shortest program running on
a universal computer that can generate this signal. A truly random signal would
require a never-ending program to generate it. A signal produced from a system
with exponential sensitivity to small errors of the initial conditions would also re-
quire an infinitely long program to store the information of the initial conditions.

Therefore, the two definitions are equivalent [15].

1.1.1 Lyapunov exponents

The quantities which measure the rate of divergence of a bunch of trajectories
along several directions in phase space, and hence characterize the sensitivity to
initial conditions, are called Lyapunov exponents. Positive and negative Lyapunov
exponents correspond to directions of expansions and contractions in phase space
respectively. A conservative system has an equal number of positive and negative
Lyapunov exponents. If the system is ergodic, then the Lyapunov spectrum does
not depend on where the trajectory is started from. The directions in phase space
corresponding to conservative quantities (integrals of motion) are associated with
zero Lyapunov exponents. A system is technically called chaotic if it has at least
one positive Lyapunov exponent.

Consider an initial probability density function, in an N-dimensional phase
space, which is uniform in an infinitesimal N-sphere and zero everywhere else. In

the course of time evolution, the sphere will deform in various directions into an
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N-ellipsoid. The i*' Lyapunov exponent, );, is defined in terms of the i*" ellipsoidal

principal axis p; as [10]

(1.1)

Figure 1.1: Divergence of a continuous set of initially close trajectories in a chaotic

phase space.

Out of the whole Lyapunov spectrum, the maximum Lyapunov exponent (A,q.)
has a particular importance since it defines the existence of chaos and dominates
the long-time properties of the dynamics. To obtain \,,,, numerically, we define
the distance vector between two nearby states in phase space to be D, and com-
pute the rate of exponential increase of |D(t)|. Computing this distance requires
access to all the coordinates in phase space (information about all the degrees of

freedom of the system). The maximum Lyapunov exponent is defined as [17]

Amax = lim 1 In |[_)(t)‘

' 1.2
t—o0,D(0)—0 ¢ |D(0)] -

For bounded systems (e.g., classical spin systems) the distance vector D(¢) can
not grow indefinitely. Therefore, we need to manually reset D(t) to the initial dis-
tance D(0) every 7, where 7 is a finite duration, in order to avoid |D(t)| becoming
of the order of the diameter of the phase space. Following ref. [18], we propagate
two trajectories starting from nearby initial conditions (usually called reference
orbit and test orbit) for N steps (corresponding to a duration of N7) and compute
the phase space distance vector D(7) between the two trajectories at the end of

each step. At the beginning of each step 7, the distance vector D is rescaled so



1.1. Chaos in classical dynamical systems 7

that it has the same length as D(0). For chaotic systems, \(¢y) defined as

_ 1 gy (D)l
Aew) =57 )1 (e (-3)

should converge to the maximum Lyapunov exponent for large N.

1.1.2 Classical spin lattices

The model system for our investigations of classical many-body dynamics is the
classical spin lattice. At each lattice site, there exists a classical spin represented by
a vector S; with constant norm [S;|? = 1 and spin components (S;;, Si,, Si.). Each

spin S; precesses around its local field h; produced by all other spins according to

-1,
Lo

Figure 1.2: (a) A lattice of classical spins. (b) A sample trajectory of a single classical

spin on the unit sphere.

The local field h; is defined by the Hamiltonian of the system, which specifies
the interaction between the spins. For example, a lattice with nearest neighbor

interactions has the Hamiltonian
NN
H = Z JzSszjz + JySz'ijy + JzSiszz7 (15)
i<j
where J,, J, and J, are coupling coefficients and the local field h; = Z;VN JuSjz€s+

JySjyey, + J.S;.e. where €,, €, and €, are unit vectors. To solve 1.4 numeri-
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Figure 1.3: A4 (tn) for a lattice of 20 x 20 x 20 classical spins with nearest neighbour
interaction. (a): Chaotic system with coupling coefficients J, = —0.65, J, = —0.3 and
J, = 0.7 (b): Integrable Ising system with coupling coefficients, J, = 0, J, = 0 and
J,=1.

cally, we use a fourth-order Runge Kutta algorithm. The distance vector D be-
tween the test orbit and the reference orbit include all the spin vector components
{6514,851y, 0512, 052, 8S52,, 5., ...}, where §5;, is the difference between the o™
component of the i*" spin of the reference and test orbits. We illustrate in Fig. 1.3-
a the calculation of A, (tx) for a 3D lattice consisting of 20 x 20 x 20 spins with
nearest neighbour interaction and coupling coefficients J, = —0.65, J, = —0.3 and
J, = 0.7. We took the value of the resetting time step 7 to be 15, and the initial
distance between the test and reference orbits to be 0.001. We noticed, however,
that there is very little dependence on the precise values of these parameters [l].
We show for comparison, in Fig. 1.3-b, A4 (ty) computed for the integrable Ising
model having J, =0, J, = 0 and J, = 1, where \,,,,(tx) decreases monotonically
to zero as expected for a nonchaotic system. An extensive survey of the maxi-
mum Lyapunov exponents in classical spin lattices was performed in [19]. One of
the main results reported in that work is that far from the integrable Ising limit,
the maximum Lyapunov exponent in classical spin lattices with nearest neighbor
interactions shows very little dependence on the precise choice of the coupling

coefficients, J;, J, and J, subject to the constraint J2 + J; +J2=1.

1.2 Quantum chaos

If deterministic chaos lies at the heart of statistical mechanical phenomena, where

the interactions between microscopic particles are fundamentally quantum, then
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the connection between chaos and quantum dynamics has to be thoroughly inves-
tigated. In this section, we give a short review of the quantum manifestations of

chaos and some of the recent results in that field.

Chaotic phenomena require intrinsic nonlinearity that renders the equations
of motion of the system nonintegrable. Quantum dynamics, on the other hand,
are fully described by Schrédinger equation which is fundamentally linear. A
bounded quantum system possesses a set of discrete energy levels and hence the
evolution is quasi-periodic. The occupancies of those levels are time-invariant
and play the role of the integrals of motion in an integrable classical system. In
classical chaotic systems, the exponential sensitivity is driven by the continuity
of the underlying phase space, which allows to specify the initial conditions up to
an arbitrary accuracy. On the other hand, the notion of a point in phase space
does not exist in quantum mechanics. How can one then speak about any relation

between quantum systems and chaos?

One possible resolution to this question is that the energy level spectrum
of many-body systems is extremely dense, and hence the time scale at which
the quantum dynamics exhibits apparent nonchaotic behavior becomes extremely
long. This point motivated researchers to think that the randomness generated by
macroscopic quantum systems  may resemble classically chaotic systems [20, 21].
On the other hand, even for systems having a few degrees of freedom, it has been
observed that quantum systems which have chaotic classical limits usually exhibit
distinctive features that set them apart from quantum systems which have non-
chaotic classical limit, in accordance with the correspondence principle [22]|. These

features define the scope of quantum chaos.

Finite quantum systems (described by finite Hilbert spaces) can always be
solved exactly by limited computer resources, and hence are fully predictable. On
the other hand, in the thermodynamic limit, we seek analytic solutions (i.e., ana-
lytic expressions for the energy levels, and in particular the ground state). How-
ever, not every quantum system can be solved analytically in the thermodynamic
limit. Only a few classes of quantum systems (e.g., Bethe ansatz systems) can be
fully integrated in that limit, and hence are called integrable systems (see [23] for
other commonly used definitions of integrability). Several examples of fully solv-

able quantum systems are given in [24]. One intriguing question here is whether

2 Randomness can quantified by information entropy rates, for example, which will be ex-

plained in the next chapter.
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the ability to analytically solve a quantum system in the thermodynamic limit is
a subjective matter or an objective matter. To avoid this philosophical issue, the
scope of solvability in the definition of integrability is sometimes narrowed down
to a particular method, e.g., Bethe ansatz or quantum inverse scattering methods.

Just as a completely integrable classical system possesses a complete set of
symmetries equal to the number of its degrees of freedom leading to a set of
integrals of motion, an integrable quantum system has a similar property. The
breaking of integrability in both cases is associated with the breaking of one or

more symimetries.

1.2.1 Quantum signatures of chaos

One might wonder how does the defining property of classical chaos, namely hy-
persensitivity to initial conditions, carries over to the quantum domain, given the
intrinsic linearity of the Schrodinger evolution. In fact, since the initial conditions
of a quantum system is not a point in phase space, but a vector representing the
wavefunction in Hilbert space, sensitivity to the initial conditions was investigated
in terms of the overlap between two slightly different initial states [25] and the
rate of spread of an initial wavepacket [26]. In both cases, positive evidences were
found for the dependence of the two quantities on whether the initial state of the
system belongs to a classically regular or chaotic regions in the phase space. Sen-
sitivity to initial conditions was also found in unbounded systems, where energy
is not quantized, such as scattering problems. For example, consider an electron
scattering from the complicated potential of a molecule. The time the electron
takes before it exits the molecule and the exit direction can depend sensitively on
the initial conditions [27]. It is the aim of chapter 4 to discuss the issue of the
absence or existence of exponential sensitivity in quantum spin systems in more
detail. Much of the research done in quantum chaos is motivated by numerical
experiments. We follow the same methodology in chapter 4, by doing numerical
experiments on quantum spin systems, searching for signatures of sensitivity to
weak perturbations.

The most prominent signature of quantum chaos of a bounded quantum sys-
tem resides in the distribution of its energy levels. It was conjectured by Bohigas,
Giannoni and Schmit [28] that some properties of the quantum systems that have
classically chaotic counterpart can be described by an ensemble of random matri-

ces. In particular, the energy levels of those quantum systems and the eigenvalues
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of random matrices, exhibit similar statistical properties, such as level repulsion.
The precise shape of the distribution function of the energy level spacings P(s),
where s is the spacing between two adjacent levels, depends on the universality
class to which this system belongs, which, in turn, depends on its underlying
symmetries. For example, systems exhibiting time reversal symmetry exhibit the
same statistics as the Gaussian Orthogonal Ensemble (GOE) of real symmetric
matrices. The spacings of their eigenvalues is characterized by the Wigner-Dyson
distribution P(s) = Zfe~™/40. Integrable systems, on the other hand, exhibit
level clustering. The statistics of their energy level spacings follow a Poisson dis-
tribution, P(s) = e~*. This property is sometimes used as a definition for quantum

integrability, especially in quantum systems lacking a corresponding classical limit.

For periodically driven quantum systems, the statistics of quasi-energies (eigen-
values of the time evolution operator) exhibit the same kind of behavior as the
eigen-energies of time-independent systems [29]. A related approach to seek differ-
ences of the energy level distributions between chaotic and and nonchaotic systems
treats the sequence of energy level as a time series. It was shown [30] that the
power spectrum of this time series behaves like a 1/f noise in the former case and
1/f? in the later. The eigenvectors of the Hamiltonian were found to exhibit qual-
itative differences between chaotic and nonchaotic systems as well. In particular,
chaotic eigenfunctions are characterized by decaying spatial correlations and are
delocalized through the whole system [31]. Consequently, they overlap and cause
the level repulsion that characterize the eigenvalues of chaotic systems. The level
of delocalization can be quantified by measures such as inverse participation ratio

[32] and Shannon entropy [33].

The spectral differences and the structure of the eigenvectors are static criteria;
but do they have any dynamical manifestation on the time-dependent behavior
of quantum systems? Pechukas suggested that the survival probability, defined
as |(¥(¢)[1(0))]?, behaves differently in integrable and nonintegrable quantum
systems due to their spectral differences [34]. We investigate this proposal for
quantum spin systems in chapter 4. Another feature which was suggested to
characterize quantum chaotic systems is the sensitivity of the eigenvalues to the
variations of Hamiltonian parameters [35, 36]. It was proposed [22| that under
variations of Hamiltonian parameters, the eigenvalues of quantum chaotic sys-
tems, which exhibit avoided crossings, should exhibit strong sensitivity to these

variations, qualitatively different from integrable systems. Similar features were
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suggested for the structure of the eigenfunctions [37].

1.2.2 Quantum chaos and the quantum-classical correspon-

dence

The study of quantum chaos is very important in investigating the correspondence
between classical and quantum motion. According to the Ehrenfest theorem, there
is a correspondence between the quantum motion (e.g., the evolution of a quan-
tum wavepacket) for sufficiently large quantum numbers and the motion of the
corresponding classical system. This correspondence breaks down at a time scale
of the order of Ehrenfest time, which depends on the typical action of the problem
(S) in units of Planck’s constant (k). If the system is chaotic, the correspondence
between the classical and quantum motion would break down much earlier at a
time scale of the order of log(S/h)/A, where A is the Lyapunov exponent [38]. For
a classical system which has a mixed phase space, a quantum wavepacket centred
in the chaotic region will spread very rapidly compared to the one centred in the
regular region.

The analogies between classical chaotic motion and the corresponding quan-
tum motion can be investigated in coordinate space [39] or phase space [10]. A
promising approach that avoids the problem of the absence of the notion of a
trajectory in quantum mechanics seeks to find analogies between the evolution
of classical density functions in phase space and quantum distribution functions
(i.e., Wigner’s function). Indeed, it was found that the complexity of the quantum
motion as quantified by the number of harmonics in the density function, depends
on whether the classical limit is chaotic or not. If the classical limit is chaotic,
the number of harmonics in the density function increases exponentially in the
classical system and only up to the Ehrenfest time in its quantum counterpart
[11].

The breakdown of the correspondence between classical and isolated quantum
motion makes it natural to consider the effect of an external agent, namely the
environment, that may explain this discrepancy |20]. This point brings us to the
field of quantum decoherence, which deals with the appearance of classical behav-
ior in a world described fundamentally by quantum laws. Normally, a quantum
system is coupled to many degrees of freedom in its environment. Theoretically,
the whole system plus environment composite evolves unitarily by Schrodinger

equation. Mathematically, decoherence can be viewed as the effect of tracing out
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the environmental degrees of freedom on the behavior of the quantum system.
This process destroys the coherence terms in the density matrix that describes
the system, and causes the appearance of classical-like effects. It was found that
coupling the system to one single degree of freedom which is chaotic can cause de-
coherence effects similar to an environment possessing many (integrable) degrees
of freedom [12]. This suggests that the complexity resulting from chaotic behavior
(in nonlinear systems) and the complexity of many degrees of freedom (of linear
environment) may be equivalent in effect. Moreover, it was found that in quantum
systems with chaotic classical analogue, decoherence occurs at a rate determined
by some generalized Lyapunov exponent [13]. Finally, decoherence may provide
an explanation for the origin of classical chaos, in a world dominated by the linear
quantum laws of motion, if it can be shown that the process of tracing out the

environment degrees of freedom brings chaos into linear quantum systems |44, 45].

1.3 Numerical simulations of quantum spin sys-

tems

A quantum spin system with nearest neighbour interaction is described by a Hamil-
tonian similar to 1.5, namely,
NN
H=>"JuoSiuSja + JySiySjy + J-5:: 5z, (1.6)
i<j
where S;;, S;y and S;, are the quantum spin operators at the ith lattice site. When
two of the coupling coefficients J,, J, and J, are equal, the system is called XXZ
model. If, additionally, the third coupling coefficient is zero, the system is called
XX model. Similarly, when the coupling coefficients are different, the system is an
anisotropic Heisenberg model, or in our nomenclature, XYZ model. We assume
periodic boundary conditions in all the models studied in this work. A spin chain
with the Hamiltonian 1.6 is known to be integrable by Bethe ansatz. In order
to break the integrability in our investigations in chapter 4, we add next nearest
neighbor interaction or disordered fields or deal with higher dimensional lattices.
When we speak about the nonintegrability of these systems, we, of course, mean
in the thermodynamic limit.
In order to numerically simulate a quantum spin system on a digital computer,
we need first to select a basis for the Hilbert space, and then represent the oper-

ators and wavefunctions constructed in this basis on the computer. The easiest
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choice to represent a Hamiltonian in the form 1.6 is to select the eigenbasis of the
projection of the total spin operator in any of the three directions as the basis
for the representation. We call this basis the Ising basis, since it represents the
eigenbasis of a Hamiltonian with Ising coupling coefficients. Each state in this
basis corresponds to a certain combination of the projection of all spins in that
direction. For a system consisting of N spins 1/2, the Hilbert space is composed
of 2V basis states, whose indices range from 0 to 2V — 1. The state of each spin
(whether up or down) is decoded in the binary representation of the index of each
state. For spin systems with spin quantum number S higher than 1/2, the projec-
tion of the i*" spin can be retrieved from the j*! state in a similar manner by the
formula: mod(integer(j/M?), M)) — S, where M = 25 + 1.

In the above basis, the matrix representation of a Hamiltonian 1.6 will be
sparse as shown in Fig.1.4-a and can be efficiently stored in a compressed form.
With nearest neighbour interaction, one can store the Hamiltonian matrix of a
system consisting of up to 25 spins in less than 22 GB of memory. For systems of
larger sizes, we can exploit the symmetries of the problem in order to decompose
the Hamiltonian into smaller blocks and process them in parallel on different
computers. These symmetries correspond to operators which commute with the
Hamiltonian. The above mentioned blocks correspond to particular sets of the
quantum numbers corresponding to those operators. The most frequently used

symmetries in the present work are [16]:

e Rotational symmetry: In this case, the total spin projection in one or more
directions for the entire lattice is conserved. For example, the total spin
polarization m, = va S;. is conserved in the XX7 Hamiltonian. Therefore,
the Hamiltonian can be decomposed into different blocks corresponding to

different eigenvalues of m,.

e Translation symmetry: In this case, the spatial translation operator T com-
mutes with the Hamiltonian, and different blocks correspond to different
eigenvalues of 7. The states used in this representation satisfy 70 (k)) =
¢’*|W(k)). For a 1D chain consisting of N spins, the value of k is given by

2nm
N

block diagonal form of the Hamiltonian 1.6 for a spin 1/2 chain consisting of

where n is an integer that ranges from 0 to N — 1. A schematic of the

8 spins in the eigenbasis of the translation operator T is shown in Fig.1.4-b.

Representing the Hamiltonian matrix in a block diagonal form as in Fig.1.4-b is
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Figure 1.4: (a) A schematic of the Hamiltonian matrix for a quantum spin-1/2 chain
consisting of 8 spins with nearest neighbour interaction, periodic boundary conditions
and coupling coefficients J, = —0.65, J, = —0.3 and J, = 0.7 in the Ising basis in the z
direction (b) A schematic of the same Hamiltonian matrix in (a) in the translationally

invariant basis |¥(k)).

particularly important when doing exact diagonalization by routines which accept
only dense matrix formats (e.g., LAPACK routines). Note that we can obtain
the level statistics that characterize the integrability or the lack thereof only for a
single block of the Hamiltonian matrix that can not be further decomposed into
block structure form, after considering all possible symmetries of the problem.
The eigenvalues of each block matrix have to be further unfolded, such that they
have the same average local spacing [29].

After the states and operators are represented on the computer, we need to
solve the time-dependent Schrodinger equation numerically. In this work, we
follow one of two methods: Exact diagonalization and fourth-order Runge Kutta
algorithm. In the first method, the eigenvalues and eigenvector of the Hamiltonian
matrix (usually in its block structure form) are obtained by one of LAPACK
routines and all the wavefunctions and operators are transformed into the new
basis states represented by the eigenvectors. In this basis, the evolution of pure
states is a straightforward phase rotation algorithm. We defer the discussion of

the second method to chapter 3.
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There is one thing even more vital to science than in-
telligent methods; and that is, the sincere desire to find

out the truth, whatever it may be.

Charles Pierce

Detecting chaotic behavior from a time

series of a macroscopic system

In this chapter, we will be concerned with detecting chaos in classical systems by
observing a single degree of freedom of those systems. We shall call the time evo-
lution of such an observable henceforth a time series. The conventional definition
of chaos in terms of the exponential divergence of nearby phase space trajecto-
ries requires access to all the degrees of freedom of the system in order to detect
chaotic behavior. In many cases, and, in particular, in systems consisting of many
degrees of freedom, gaining this access is not possible. Often, we are provided with
a single time series representing the evolution of a single macroscopic observable
over a period of time and asked to analyse this time series to determine whether
the underlying dynamics is integrable or chaotic. This time series can be the out-
put power of a laser system [17], the electrocardiography (ECG) recording of the
human heart |18], or the stock market prices [19]; just to mention a few examples.

To probe into the nature of the underlying dynamics of a many-body dynamical
system from observing one single degree of freedom is a challenging task. After
observing a time series produced by an unknown system, two questions need to be

answered: First, is the underlying system stochastic or deterministic? Second, if

17
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it is deterministic, is it regular or chaotic? Here, we are only concerned with the
second question. The ultimate goal of searching for a robust technique to detect
chaotic behavior from observed data in our agenda is to apply that technique to
time series observed from a macroscopic quantum system. A possible example is
the spin noise signal observed by monitoring the equilibrium fluctuations of the
total magnetization of nuclear spins in solids which has been already measured by

several groups [50, 51] (see chapter 3 for more details).

Several techniques were developed to analyse time series and extract measures
of chaotic behavior from it. Normally, these techniques require analysing very long
time series to reach reliable conclusions. Many techniques aim to detect chaos by
quantifying the randomness of the time series. The quantity which encapsulates
this randomness is called rate of entropy production. A notable experiment in this
direction was the measurement of the Brownian motion of a macroscopic particle
suspended in water [10]. The positive entropy rate evaluated from the coordinate
time series of the particle was initially considered an evidence for the existence of
microscopic chaos in the motion of the water molecules. This method, however,
was criticized as being inconclusive since similar entropy rates can be produced
by nonchaotic systems [11]. This example illustrates how difficult it is to reach
reliable conclusions about the nature of the underlying dynamics by analysing a
time series of finite length. The failure of standard time series analysis techniques

to distinguish chaotic from nonchaotic dynamics was reported in [52].

After we briefly review several techniques to detect chaos from a time series
and illustrate the failure of those techniques for realistic finite-length time series
for many-particle systems, we report on a new approach that can help improve
the effectiveness of these methods [I|. This approach relies on the fact that,
unlike integrable systems, power spectra of time series produced by chaotic systems
exhibit long exponential tails as a function of frequency. It turns out that this
exponential tail has important consequences on the time derivatives of the time

series and their intrinsic randomness, quantified by entropy production rates.

In this chapter, we consider a classical spin lattice as a model of dynamical
system consisting of many degrees of freedom. We apply the new approach on the
magnetization time series to discriminate integrable from nonintegrable dynamics.
The effects of the equilibrium temperature and the transition to integrability on the
exponential tail in the power spectra of the nonintegrable classical spin systems are

investigated. We present the power spectra of several integrable and nonintegrable
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systems other than classical spin lattices and comment briefly on the power spectra

of quantum spin systems.

2.1 Detecting chaos from time series analysis: A

short review

There are several algorithms that aim to extract the maximal Lyapunov exponent,
the primary indicator of chaos, from observed time series ! [54-57]. In particu-
lar, the algorithm proposed in [57] searches for similarly looking patterns in the
time series that can be considered emanating from nearby points in the complete
phase space describing the dynamical system. To measure the rate of divergence
between the trajectories originating from those points, the distance between time
series segments following those similar patterns is measured as a function of time.
This distance is considered to be a projection of the difference vector in the com-
plete phase space onto one dimension and hence is expected on average to grow
exponentially by a rate determined by the maximal Lyapunov exponent. This
process is averaged over the whole time series.

In quantitative terms, if we identify all possible patterns of length T in the time
series, we define the distance between two patterns z, and x; at a given instant of

time by the absolute difference between the two patterns at that instant,
dist[x,(t), z,(t)] = |x.(t) — z(2)], (2.1)

where t is measured from the beginning of the pattern. We consider a pair of
patterns z, and xz; to correspond to the same phase space point with respect to
a resolution ¢, if the maximum distance between any corresponding pair of points
belonging to these two patterns is smaller than e, i.e.,

g}i};{dis‘c[xr(t),xt(t)}} < e (2.2)

We call such pair of patterns x and x.. The asymptotic growth of the distance

between these patterns is expected to be controlled by the maximum Lyapunov

!Apart from section 2.4, we are mainly concerned with conservative systems. For chaotic
dissipative systems, several algorithms were developed to estimate the fractal dimension of the

chaotic attractor which characterize the phase space of those systems from time series analysis

(see, e.g., [53].)
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exponent \,,.,. Therefore, we can compute \,,,, as

h — hmllog<|x(t+7> —xe(t+r)|> , (2.3)

e—=0 T €

where the average (---) is taken over all pairs that satisfy 2.2.
Let us illustrate this algorithm by applying it to the two-body Henon-Heiles
problem defined by the Hamiltonian

1 1
H= g(p? 03+ 4+ 4) + GG — §q§’, (2.4)

where (q1,¢2) and (p1,p2) are the coordinates and momenta of the two particles
respectively. We show in Fig. 2.1 the growth of (|z(t + 7) — x(t + 7)|) for two
different sets of initial conditions {¢; = 0,¢q2 = —0.15,p; = 0.5542, p, = 0} and
{g1 = 0,90 = —0.15, p; = 0.45, p; = 0} corresponding to energies E; = 0.166 and
Ey = 0.1136 respectively, where z(t) is taken to be the coordinate of the second
particle ¢(t). The value of the maximum Lyapunov exponent A, in each case
is computed independently as in 1.3. The results for A4, (ty) shown in Fig. 2.1-c
indicate that M, converges to 0.13 st and 0.036 s respectively. The fitting
of {|z(t +7) — z(t + 7)|) with cetme=t in each case in Fig. 2.1-a illustrates the
accuracy of this method.

In many-dimensional systems, we expect that this procedure would require
very long time series to compensate for the effect that similar patterns can origi-
nate from phase space trajectories that are not close to each other in the many-
dimensional phase space. That would require taking longer patterns, and hence
the tremendous number of distinctive patterns would require considering an ex-
tremely long time series to have good statistics. For example, in Fig. 2.2, we
illustrate the same algorithm for an integrable chain of 10 classical spins with
Ising coupling coefficients (J, = 0,.J, = 0 and J, = 1.0 ). We have analyzed 9600
time series, each of length 10°. Taking the length of each pattern 7' = 25, and
the time interval between two adjacent patterns to be 10, the total number of
patterns analyzed = 9.6 x 10%. Within a resolution ¢ = 0.1, we found that only
1281 pairs of patterns satisfy the condition 2.2. On the other hand, implement-
ing the same procedure, with the same parameters for a nonintegrable classical
spin chain with the anisotropic coupling coefficients, J, = 0.873, J, = —0.436 and
J, = 0.218, the number of similar pattern pairs found within the same resolution
is zero! Taking the value of € larger than 0.1 to increase the probability of find-

ing similar patterns, would narrow the range of growth of (|z(t 4+ 7) — z(t + 7))
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Figure 2.1: (a) The average of |z(t + 7) — x.(t + 7)| for the Henon-Heiles problem,
where x represents the coordinate g2, and € = 0.005. The blue plot corresponds to initial
conditions {q; = 0,q2 = —0.15,p; = 0.45,p2 = 0} while the red plot corresponds to
initial conditions {g1 = 0,92 = —0.15, p; = 0.5542, p = 0}. The two plots were obtained
by analysing a time series of length 6.5 x 10%. The dashed line represents the function
cermast where Apmae = 0.13 and 0.036 is the maximum Lyapunov exponent for the two
initial conditions respectively. (b) A sample of the time series of g2(t), a single pattern
is highlighted in yellow. This figure illustrates the length of the pattern considered in
the calculation with respect to the time scale of the motion. (¢) Apaz(tn) as computed

in 1.3 for the two initial conditions.
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Figure 2.2: (a) The average of |z(t + 7) — z¢(t + 7)| for an Ising classical spin chain
consisting of 10 spins, where x represents the total magnetization M, and ¢ = 0.1. (b)

A sample of the time series of M,(t), a single pattern is highlighted in yellow.

before it saturates, and consequently make it difficult to detect any exponential
growth. On the other hand, we can consider the mere difference of the statistics of
similar patterns between integrable and chaotic systems to be a yes/no criterion
to diagnose chaotic behavior in many-body systems. This approach requires more

detailed investigation.

2.1.1 Information entropy quantifiers of the randomness of

chaotic systems

Another class of measures that can be extracted from a time series is the entropic
measures. These measures aim at characterizing the rate of entropy production
by the system, or more simply, the ability of the system to “produce information”.
The entropy production of the system is defined in terms of the description of
its evolution in phase space, involving all the degrees of freedom. However, it has
been shown that the rate of entropy production (as defined later) can be estimated
from time series analysis |58, 59].

So far, the rate of Kolmogorov-Sinai (KS) entropy production is the most
famous entropic measure used to distinguish between chaotic and nonchaotic dy-
namics. In order to define the KS entropy, let us consider a dynamical system
described by a phase space which is course-grained, i.e., divided into small cells
of dimension L, as in Fig. 2.3. Let us assume that we start with an ensemble of
initial conditions at time ¢; described by a probability distribution p(t;) over the
phase space. As the ensemble evolves in time, the probability distribution evolves

to a different shape with a different footprint on the cell structure of the phase
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Figure 2.3: The evolution of the probability density function p(t) in a course grained

phase space.

space. If we discretize the time flow in equal units 7 and consider the trajectories
emerging from a certain cell at t = ¢;, then we can define a distinct sequence of
cells £(n) traversed by each of these systems up to the n' unit of time. We can
assign each sequence £;(n) a probability p;(n) proportional to how many system
trajectories correspond to this sequence. The KS entropy S,, at time nr is defined
as [60]

Sp = <Z —pi(n)log pi(n)), (2.5)

(3

where the average is taken over all initial cells. The rate of KS entropy produc-
tion S is defined as the average rate of increase of S, in the limit of very long

trajectories, very small time step and very small cell size:

1
S = lim —(S, = 5). (2.6)

An alternative way to calculate S is to compute

Su = —pi(n)logp,(n)), (2.7)

.
where p,(n) is the probability that a trajectory starting from a certain initial cell

will pass through the rtt cell after n units of time. The average is taken aver all

initial cells. The rate of change of S,, is given by S”LT_S”

over N units of time is given by NLT Zg;ol(snﬂ — Sp) = NLT(SN — 80). The rate of

. The average of this rate
KS entropy production (S) is obtained after taking the same limits in 2.6, namely,

) 1
S = ]\}LH;O —T(SN — Sp). (2.8)
L—0
7—0
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The rate of KS entropy production was shown to be equal to the sum of positive
Lyapunov exponents of a bounded system (Pesin identity) [61]. A positive and
finite value of § indicates that the system is chaotic. In contrast, for integrable

systems, S = 0.

To achieve the goal of this chapter, we have to find a prescription to extract the
rate of KS entropy production from a time series, without access to the full phase
space dynamics. To deal with a continuous time series on a digital computer,
we need to discretize both the time axis and assume a minimum resolution € for
the quantity characterized by the time series (the vertical axis). The entropy
defined for such a discretized time series is called the (e, 7)-entropy. This coarse
grained entropy should be able to determine the timescale of the predictability of
the system [17]. A popular numerical implementation of an (e, 7) version of the
Kolmogorov-Sinai entropy from a time-series is the Grassberger-Procaccia method
[58] and its slightly modified Cohen-Procaccia (CP) (e, 7) entropy [60, 62].

In the following two sections, we consider the time series representing the
x-component of the total magnetization for a cubic classical spin lattice with
nearest neighbor interaction. As a prototype for a chaotic system, we consider an
anisotropic Heisenberg system, with coupling coefficients J, = —0.65, J, = —0.3
and J, = 0.7, while for the integrable system we consider the Ising limit (the only
integrable limit for this Hamiltonian [19]) with coupling coefficients J, = J, = 0
and J, = 1.

Let us first describe how we can apply the more popular Shannon entropy to
extract the rate of the (e, 7)-entropy production and then introduce the CP (¢, 7)-
entropy. To calculate the (e,7) Shannon entropy rate for a time series of length
T, we discretize the magnetization axis uniformly in steps of ¢ and the time axis
in steps of 7 to obtain a new discretized version of the time series (a stream of
symbols). We group each block of symbols of length N7 in the time series in one
pattern, and catalogue all patterns in the time series. The (¢, 7) Shannon entropy

associated with patterns of length N is given by

Hgy(e,7,N) ==Y P; Log P, (2.9)

where P; is the probability of occurrence of the it pattern and the sum runs over

all distinct patterns of length N. The Shannon (e, 7) entropy per unit time is
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Figure 2.4: (a) Comparison between the entropy rates hgy (e, 7, N) produced by the
chaotic system (solid lines) and by the integrable system (dashed lines) for N = 2
and different values of 7. (b) Comparison between the entropy rates hop(e, 7, N) for the
chaotic time series (solid lines) and the integrable time series (dashed lines), with 7 = 0.1
and various values of N. Curves reaching higher maximum values of hgop correspond to

the smaller values of N [1].

given by limy o hsp(€, 7, N), where

1

hsn(e, 7, N) = - [Hsp(e,7, N + 1) — Hgp(e, 7, N)]. (2.10)

For chaotic systems, the value of hgy (€, 7) approaches a constant nonzero value in
the limits 7" — oo, N — 00, € — 0 and 7 — 0. Taking N very large or taking
e very small is not practical because the finite length of the time series does not
allow all possible patterns to be fairly represented.

We illustrate the inefficiency of this approach to distinguish between finite
time series representing the total magnetization produced by the integrable and
chaotic spin systems in Fig. 2.4-a. We plot hgp (€, 7,2) for different values of 7
ranging from 0.1 to 0.6 and a range of € covering four orders of magnitude. It
is evident that the plots for both the integrable and chaotic systems are almost
indistinguishable.

Unlike Shannon entropy, the CP (e, 7) entropy does not require the discretiza-
tion of the magnetization axis. Instead, the distance d;; between two patterns z;
and z; of length NNV is defined as the maximum of the absolute differences between
corresponding data points appearing in each of the two patterns, i.e.,

d;; = max {dist[z;[n], z;[n]]}, (2.11)

n:1—-N

where dist[z;[n], z;[n]] = |[zi[n] — x;[n]]|. To calculate the CP (e, 7) entropy,
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Hep(e,7,N), a group of R reference patterns of length NV is selected randomly.
The probability P; of a certain reference pattern x; is obtained by counting the
number of all other patterns z; in the time series that are within distance e from

that reference pattern, i.e., satisfy d;; < e. The CP (e, ) entropy is defined as (0]

1
Hep(e,m,N) = —4 > logP. (2.12)
{R}
The rate of the CP (¢, 7)-entropy production is defined by limy . hep(€, 7, N),

where
1

hep(e, 7, N) = - [Hop(e, 7, N + 1) — Hep(e, 7, N). (2.13)

In Fig. 2.4-b, we plot hcp(e, 7, N) for discretization time step 7 = 10 and pat-
tern lengths ranging from 107 to 197 for both integrable and chaotic spin clusters.
Ideally, for a chaotic system, the plots of CP entropy rates should converge to a
single plateau as the pattern length increases, but due to the finite length effects
(T=1000), they do not. We notice in Fig. 2.4-b that the CP-(¢, 7) entropy, like the
Shannon entropy, is not capable either of distinguishing integrable from chaotic
many-particle dynamics due to the finite length of our time series.

The failure of the techniques discussed in this section to detect chaotic behavior
in many-particle systems has motivated us to look for other approaches to diagnose
chaos. Our efforts culminated in the time derivatives technique discussed later in
this chapter. This technique relies on the difference between the power spectra
of integrable and chaotic systems. We discuss these differences in the following

section.

2.2 Power spectra of integrable and nonintegrable

systems

2.2.1 Computing power spectra by means of the Discrete

Fourier Transform

First, let us explain how to compute the power spectrum for a discrete signal.
Let us assume that we have a time series consisting of the discrete sequence
x[0], z[1], ..., [N —1]. The Discrete Fourier Transform (DFT) of this sequence re-
sults in N complex components X [0], X[1],..., X[N —1] in the frequency domain,
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defined as
N-1
X[k] = x[n] - e~ 2mkn/N (2.14)
n=0
X|[k] represents the complex amplitude of the angular frequency wy = %T’r and

satisfies X[k] = X*[N — k|. The power spectrum of the discrete time series z[n]

at the frequency index k is given in terms of X [k] as
Plwi] = X[k X *[K]. (2.15)

We now describe how the DFT represents the frequency domain of a continuous
time series in order to understand the origin of the numerical errors associated
with it.

Suppose we have a continuous signal x(t) extending from ¢ — —o0 to t — o0
whose Fourier transform X (w) = [7_z(t)e™!. Now, let y(t) be a discretized
version of x(t), such that y(t) = > 6(t — nA)x(nA). Let us denote the z(nA)
simply by z[n]. It is easy to see that Y(w) = >0 z[n]e™"?, the Fourier
transform of y(¢), is a periodic function of w with periodicity 2. In fact, Y (w) is
the convolution of X (w) and the function Y, d(w — 22).

We can see here the first problem which appears in the frequency domain, due
to the discretization in the time domain. The original z(w) was extending from
w = —00 to w = 0o. When we “periodicize” z(w), which we assume decays to zero

for |w| — oo, the high frequency tails will overlap with each other at the edges

_T T
AT A

problem, the frequency window |

of the frequency window | ]. This problem is called aliasing. To avoid this

s s
TAYA
is very small and the sampling frequency in time domain is very large with respect

| should be very large, which means that A

to the frequency content of z(w). When this condition is not fulfilled, the aliasing
problem mentioned above will become significant.

If, for practical purposes, the signal z(t) (and consequently the sequence z[n])
is truncated to a finite length NA (N), then this sharp truncation will affect the
high frequency components of X (w) (Y (w)) and will introduce additional tails at
high frequencies even if z(t) originally represented a single sinusoidal wave. This
problem is called spectral leakage.

Finally, in order to have a discrete representation in the frequency domain,
we assume that the truncated sequence z[n| is repeated periodically, with period
N, such that z[n| = z[n + N]. We now show that this construction will have the

effect of making Y (w) discrete in frequency. Only the values of Y (w) at frequencies
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Figure 2.5: The time series is pre-processed by multiplying it by a window function

to mitigate spectral leakage effects before computing its power spectrum.

which are multiples % will remain, and all other components will average out.

2rk

To see this, let w = 7%,

where £ is a real number, and n = m + Ns where m is
an integer in the range [0, N — 1] and s is an integer from —oo to co. Y (w) can

be expressed as

N—-1 oo
Yw) =33 alm+ Nsje 8 e2miks (2.16)
m=0 s=—o0
N— %)
[ x[m me] [Z e%iksl . (2.17)
=0 $=00

For non-integer k, the second bracket in 2.17 will average out, and Y (w) will have
nonzero value only for integer k, which is equal to X[k] defined in 2.14.

The spectral leakage becomes particularly strong when there is mismatch be-
tween the end points of the time series. For example, the DFT representing a
sinusoidal time series terminated at the same phase as the starting point is differ-
ent than the DFT for a time series terminated at a different phase. To mitigate
the spectral leakage problem, the discrete time series is multiplied by a window
function that smoothly diminishes the values of z[n| at the boundaries as illus-
, 64],

trated in Fig. 2.5. The window we use is called the “Tukey window” |

sometimes also referred to as a ten percent window. It is defined as
[ =051 2T\ for i-0 to 0.05 N
wlt] = 0. cos | 01N or i=0 to 0. ,

w(i] = 1 for i=0.05N to 0.95 N, and

. 27(i — N) .
wli] = 0.5 (1 cos <OT)) for i=0.95 N to N, (2.18)

where N is the length of the time series.
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Figure 2.6: (a) Power spectrum P(w) for nonintegrable classical spin lattice consisting
of 6 X 6 x 6 spins with nearest neighbor coupling coefficients J, = —0.65,J, = —0.3
and J, = 0.7 computed for a time series representing the total magnetization in the
x-direction of length 7" = 1000. The initial conditions are selected randomly from the
infinite temperature ensemble. (b) A segment of the time series for which P(w) is shown
in (a). (c¢) The same as in (b) after applying a high-pass filter with a corner frequency
at 1.5 Hz.

2.2.2 Exponential tails of power spectra of chaotic systems

We now use the DFT procedure with the Tukey window to compute the power
spectrum of the nonintegrable classical spin system defined in section 2.1. We
have used a time series of length 7" = 1000 generated by selecting a random initial
condition picked from the infinite temperature ensemble. The result is shown in
Fig. 2.6-a on a semi-log scale. It is clear that P(w) exhibits a long exponential
tail at high frequencies. The level at which this tail stops is determined by the
spectral leakage of the discretized time series and the level of noise in the time
series.

Exponential tails were confirmed to exist in the power spectra of other chaotic
systems [05—08]. The existence of this exponential tail is considered to be a con-
sequence of the complex time singularities that exist when the solution of the

equations of motion is analytically continued to the complex time plane. The
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for f(t). (c¢) The function f(t) after being filtered with a high-pass filter with corner
frequency at 4.2 Hz.

close connection between real-time behavior of dynamical systems and the sin-
gularities of their solution in the complex time plane was investigated in Refs.
[69-71]. It was found that chaotic signals contain bursts of high frequency fluctu-
ations at the real parts of those complex time singularities. These bursts can be
revealed as an intermittent behavior when letting the chaotic signals pass through
a high-pass filter (a filter which passes only high frequencies) [70]. For more on
the connection between complex time singularities and the exponential tail in the
power spectrum, we refer the reader to [72]. In Fig. 2.6-b, we show the bursty
behavior of the time series of the chaotic spin system filtered with a high-pass

filter with corner frequency at 1.5 Hz.

We demonstrate numerically this connection by analysing the power spectrum

of the function f(t) = 1073e~(*+20)° 4 x4_lgg_25;8ﬁ0050.1 plotted in Fig. 2.7-a. This

function was chosen to have singularities at ¢t = 40.387;, ¢ = 10 4+ 0.5¢ and

t = —10 £ 0.57. These singularities give rise to the exponential tail in its power
spectrum as shown in Fig. 2.7-b. We further see in Fig. 2.7-c that after filtering
out the low frequency part of f(t), three bursts of high frequency appear around

the real parts of the complex time singularities. Since the exponential tail is
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mainly controlled by the singularities closest to the real-time axis, we notice that
the amplitude of the high frequency bursts at ¢t = 0 is larger than the bursts at
t = +10.

We have confirmed the existence of the exponential tail in the power spec-
trum in other nonintegrable dynamical systems and systems of nonlinear differ-
ential equations (e.g., Lorenz and Rossler systems). In some other systems (e.g.,
anisotropic Kepler problem [73]) the power spectrum will have a long tail, but
not necessarily decaying in a pure exponential manner as in the former cases. We

provide details of those systems and other systems in section 2.4.

2.2.3 Power spectra of integrable systems

Power spectra of integrable systems are typically terminated faster than expo-
nentially. An integrable system consisting of N degrees of freedom possesses by
definition N integrals of motion. In the language of the action-angle variables, the
motion of the system can be described as a precession on the surface of an N-
dimensional torus, with fixed frequencies. Therefore, while the power spectrum of
chaotic motion is continuous [71], the power spectrum of any time series produced
by an integrable system consisting of a finite number of degrees of freedom con-
sists of discrete frequencies. We confirm this statement by computing the power
spectrum for an Ising classical spin lattice consisting of 6 x 6 x 6 spins. As shown
in Fig. 2.8, the power spectrum is sharply terminated, and consists of discrete
frequencies.

Since the dynamics of the Ising system is trivially multi-periodic, we investi-
gated several non-trivial integrable few-body and many-body systems and noticed
the absence of the long exponential tail in their power spectra. The details of
those systems are given in section 2.4. One notable exception is the Toda lattice,

which is treated in more depth in the same section.
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Figure 2.8: Power spectra for an Ising classical spin system consisting of 6 x 6 x 6
spins, computed for a time series representing the total magnetization in the x-direction
of length T" = 1000.

2.2.4 Finite temperatures and the transition to integrability

Two interesting issues that are worth investigating here are:

1. How is the exponential tail in a chaotic many-particle system affected by

selecting initial conditions corresponding to lower temperature?

2. How is the exponential tail affected by changing the parameters of the system

gradually towards the integrability limit?

We investigate the first issue in Fig. 2.9. By selecting initial conditions corre-
sponding to gradually increasing absolute energy per spin, and hence approaching
the zero temperature limit?, we obtained power spectra whose exponential tails
exhibit humps and valleys at specific frequencies. The origin of this behavior is
not clear to us.

On the other hand, as we change the coupling coefficients, approaching the
integrable Ising limit, the exponential tail becomes attenuated, but keeps the same
slope, until it vanishes completely at the Ising limit. This behavior is shown in
Fig. 2.10. To obtain this plot, the maximum coupling constant, max||.J,|,|Jy|,| /.||,
is varied while keeping J? + .J7 4+ JZ = 1. For the parameters used in this plot,

the maximum Lyapunov exponent decreases by two orders of magnitude during

2At infinite temperature, each spin is randomly oriented and the average interaction energy
between any spin and its local field from the other spins is zero. The opposite occurs at low

temperatures.
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Figure 2.9: Power spectra for a 3D classical spin system with nearest neighbor coupling
coefficients J, = 0.873, J, = —0.436 and J, = 0.218 for various temperatures. The upper
curve corresponds to very low temperature (energy per spin = 2.3) while the lowest
curve corresponds to infinite temperature (energy per spin =0). The power spectra were

smoothed out to reduce the fluctuations that show up in Fig. 2.6.
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Figure 2.10: Power spectra at infinite temperature for 50 randomly selected real-
izations of J;, Jy, J. in the proximity of the Ising limit subject to the constraint
J2 + Jy2 + J2 = 1. The corresponding maximum Lyapunov exponent varies over two
orders of magnitude [19]. The Lyapunov exponents decrease monotonically from the
upper (light gray) plots to the lower (dark gray) plots [I|. The power spectra were

smoothed out to reduce the fluctuations that show up in Fig. 2.6.

the convergence to the Ising limit, while, as seen in Fig. 2.10, the slope of the

exponential tail remains nearly the same °.

3The maximum Lyapunov exponents were computed by Astrid de Wijn.
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2.2.5 Power spectra of quantum spin systems

After having discussed the power spectra of integrable and nonintegrable classical
spin systems, it is natural to investigate the power spectra of the analogous quan-
tum spin systems. Of course, for a finite quantum system, the spectrum is always
discrete in both cases, unlike the case of chaotic classical spin system. Therefore,
we are concerned here with the overall shape of the spectrum, namely whether
the existence of exponential tails at high frequencies distinguishes nonintegrable
systems from integrable ones.

Exponential tails were confirmed to exist in the wings of the NMR spectral
lines solids such as CaFy [75]. These lines represent the Fourier transform of the
free induction decay signal (see chapter 5).

We present in Fig. 2.11 the power spectra of four quantum spin lattices,
integrable and nonintegrable, computed from the time series of the expectation
value of the total magnetization operator in the x direction M, at equilibrium.
The results presented in Fig. 2.11 imply that both types of systems can have a
long tail of (discrete) frequencies in their spectra.

We present the power spectra of two nonintegrable models in Figs. 2.11-a and
2.11-b. The first case is an XYZ spin chain with both nearest neighbor and next-
nearest neighbor interaction and we see clearly the signature of an exponential
tail in its spectrum. The second case is a nonintegrable 2D quantum spin lattice
with XXZ coupling coefficients. We notice, however, that the tail of the power
spectrum is not purely exponential. This case may require further investigation
to exclude finite-size effects.

In Fig. 2.11-c, we show the power spectrum for an integrable XX spin chain.
We observe that the power spectrum of this model is a Gaussian function of fre-
quency. This result is expected since the correlation function (M, (t)M,) is Gaus-
sian [76]. In chapter 3, we show analytically and numerically that the correlation
function of the equilibrium noise of (¢ (t)| M, |1 (t)), whose Fourier transform yields
the power spectrum, approaches the quantum correlation function Tr{M,(t)M,}
in the thermodynamic limit. The second integrable model we consider is the Bethe
ansatz integrable XXZ spin chain, whose power spectrum is shown in Fig. 2.11-d.
We notice that its power spectrum has an exponential tail. However, for this par-
ticular case, it was found that the long-time behavior of its correlation function

exhibits an exponential tail, a phenomenon intimately related to chaotic dynamics

[13].
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Figure 2.11: Power spectra for different quantum spin 1/2 systems. The time series
represent <Mx), and have length T" > 2000. The initial state is selected randomly from an
infinite temperature ensemble. The systems are: (a) 16-spin chain, with nearest neighbor
coupling coefficients .J, = 1.0/1/14.0, J, = 2.0/1/14.0 and J, = —3.0//14.0 and next
nearest neighbor coupling of strength 30% of the nearest neighbor coupling. (b) a 2D
lattice consisting of 5 x 4 spins with XXZ coupling coefficients J, = \/m, Jp =
1/3.0/16.0 and J, = —/1.0/8.0 (c) a 1D lattice consisting of 16 spins with XX coupling
coefficients J, = 1/4/2.0, J, = 1/v/2.0 and J, = 0 (d) a 1D lattice consisting of 16 spins
with XXZ coupling coefficients J, = \/m, Jr = \/W and J, = —0.5. Models

(c) and (d) are integrable in the thermodynamic limit.
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2.3 Higher order derivatives: A new tool for dis-

criminating chaotic from nonchaotic behavior

We noticed in the previous section that the time series produced by finite inte-
grable spin systems have sharply terminated spectra, while those produced by
nonintegrable spin systems exhibit continuous frequency spectra with long expo-
nential tails. In this section, we exploit this observation in order to introduce
new methods to discriminate between integrable and nonintegrable systems from
time series analysis, or improve on existing methods. The basic idea is to take
the high-order time derivatives of the time series under investigation. For both
integrable and nonintegrable time series, taking derivatives will progressively sup-
press the low frequency parts of their spectra with respect to the high frequency
parts. For the integrable case, this suppression will have the effect of reducing the
entropy per unit time since the spectrum has a well-defined maximum frequency,
even in the thermodynamic limit. On the other hand, for the nonintegrable case,
the entropy generated by the time series will not decrease by differentiation since
its power spectrum extends to infinity and differentiation will shift the bulk of the
spectrum to higher frequencies. The high frequency bursts embedded in a chaotic
time series will become amplified upon taking derivatives, giving rise to a broader

spectrum (i.e., bigger full width at half maximum-FWHM).

In fact, the statistical properties of the time series and its power spectrum and
consequently the visual appearances become different for integrable and chaotic
systems upon taking higher order derivatives even though the original signals
might be indistinguishable. As a consequence, the distinction between the in-
tegrable and nonintegrable systems is better manifested in the behavior of their
respective numerically calculated entropy rates when their physical signals are
subjected to differentiation. This is particularly important when the finite length

of the time series is not long enough to extract the true values of the entropy rates.

When the length of the available time series is too short, visual comparison
between the original signal and its higher order derivative and their respective
power spectra may be a quick and handy way to determine whether the underlying
dynamical system is integrable or nonintegrable. Of course, this approach requires
the time series to be very accurately measured, i.e., the level of noise is very low.

We comment on this aspect later in this section.

In Fig. 2.12, we present segments of the time series of chaotic and integrable
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classical spin systems together with their 7 order derivatives. We see from this
figure that while both time series are almost indistinguishable, the integrable time
series becomes more regular after taking the 7 order derivative while the chaotic
time series becomes more erratic and bursty. In Appendix 2.6, we present all the
time derivatives of the two time series up to the 9% order derivative. The numerical
noise concealed within the data limits the order of the highest derivative we can
take. In our computer simulation, we are limited by the rounding errors of the
double precision numbers.

The exponential tail of the power spectrum of chaotic spin system that has
the form P(w) ~ e~ implies that the power spectrum of the n' derivative for

sufficiently large n has the form,
P™(w) = @?re (2.19)

We plot the fitting of P(M(w) for the chaotic time series with a function of the
form w'*e~ "1l in Fig. 2.12-e. In contrast, the power spectrum for the Ising spin
lattice is sharply terminated. Therefore, taking higher order derivative in time
domain makes the power spectrum peaked around a maximum frequency, which
represents the carrier frequency of the 7 order derivative in Fig. 2.12-d. The
modulation frequency of M7 is controlled by the width of the peak.

We propose two criteria to quantify the differences in time and frequency do-
mains between the chaotic and integrable time series. The first criterion is related
to the observation that the root mean square (RMS) value of the derivatives, de-
noted as Mr(?n)s, in the chaotic time series is larger than the integrable time series by
an order of magnitude. In Fig. 2.13(a), we plot the quantity R, = Mﬁ,’;BS/Mﬁzgl) as
a function of n. We see clearly that while R,, saturates for the integrable system,
it increases monotonically for the chaotic spin system.

The second criterion is related to the widths of the power spectra of the deriva-
tives. We quantify this width by the square root of the variance for the positive-w
part of P (w) denoted as v, (vy corresponds to P(w)). In Fig. 2.13(b), we plot
W,, = v, /v for the two systems considered. The distinction between the two sys-
tems is again apparent. The relative width of the power spectrum for the chaotic
system increases with the order of the derivative, while, for the integrable system,

it decreases monotonically.
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Figure 2.12: (a,b) Segments of the time series M, (t) for 6 x 6 x 6 spin lattices. (c¢,d) The
corresponding 7% order time derivatives M (t). (e, f) The power spectra P(w) (blue)
and P(M(w) (red) computed for a total length 7' = 1000. The figures in the left column
correspond to the chaotic system with coupling coefficients J, = —0.65, J, = —0.3, J, =
0.7 while the figures in the right column represent for the integrable system with coupling
coefficients J, = J, = 0 and J, = 1. The black dashed line in (e) represents the fitting of

Me=1w where « is a fitting parameter and ~ is the

P (w) to a function of the form o w
high-frequency exponential decay constant for P(w). The power spectra for the chaotic
system in (e) have been smoothed out. The tails of the power spectra at w/2m > 4 in

(e) and w/2m > 0.6 in (f) are affected by the spectral leakage problem.
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Figure 2.13: New discriminators that characterize the differences in the time deriva-
tives Mx(n) (t) and their power spectra of time series corresponding to integrable and
chaotic systems. (a) Ratios R,, of the RMS value of M (t) to the RMS value of
Ma(;n_l)(t); (b) Relative width W, of the power spectrum P (w) with respect to the
width of P(w) [!].

We now consider how to exploit the qualitative differences in time domain and
frequency domain to improve the negative results of the rate of the (e, 7)-entropy
production presented in section 2.1 in discriminating between the integrable and
chaotic time series. The observation that the integrable time series becomes more
regular upon taking the higher-order derivatives already gives a hint that its rate
of entropy production decreases as the order of the derivatives increases, unlike the
chaotic time series. We test this proposition in Fig. 2.14 where the rates of Cohen-
Proccacia entropy production hep(e, 0.1, 10) for both the 72 order derivative and
the original time series are plotted. We notice that while hop(e,0.1,10) for the
integrable system is reduced after taking the time derivative, that of the chaotic
system is not. In other words, it is the incremental behavior of the CP (e, 7) rate
of entropy production under taking the derivatives of the time series which makes
a recognizable difference when the length of the time series is finitely small rather

than the absolute value of the hep(e, 7, N).
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Figure 2.14: hcp(e,7,10) calculated for both M,(t) [blue| and M (t) [red] for both
chaotic and integrable systems. The values of € for hop(e, 7, 10) associated with the 7t
derivative were rescaled by dividing the true values by the following factors: 1.13 x 104
in the chaotic case and 1.31 x 102 in the integrable case. These factors were chosen such
as to make the spread between the maximum and the minimum values of Mg(;7) (t) equal
to that of the corresponding M, (t), thereby, compensating for the different dimensions
of M,(t) and M (t). The value of 7 is taken to be 0.1 in both figures [].

2.3.1 Very short time series

Let us illustrate the effectiveness of this method applied to very short segments
of data produced by the integrable and chaotic spin systems. In Fig. 2.15, we
show the results obtained for a 4 x 4 square spin lattice. Detecting chaos from
such a short time series using conventional techniques is an almost impossible
task. However, after taking the 72 time derivatives and comparing the time series
and power spectra of both the original signals and their derivatives, we observe
a significant difference between the chaotic and integrable systems. The power
spectrum becomes broader and the time series becomes more random for the
chaotic system. On the other hand, the power spectrum of the integrable system

does not become broader and the time series becomes more regular.
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Figure 2.15: Time series of the magnetization for a chaotic spin system (a) and an

integrable system (b) consisting of 4 x 4 spins and the 72

order derivative of both systems

(c) and (d) respectively. (e) and (f) illustrate the power spectra of the original signals
(blue) and their 72 order derivatives (red). The black dashed line depicts fitting the

power spectrum of the nonintegrable system with a e™7%

depicts B w'te™“ «a, B and v are fitting parameters.

while the purple dashed line
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2.3.2 Effects of noise and inaccurate measurements of the

time series

In general, the effect of noise poses a considerable limitation on one’s ability to
compute high-order time derivatives and, therefore, on the ability to distinguish
between integrable and chaotic systems. Here, we give estimates of the acceptable
level of noise in order for the technique described above to work properly and show
for one example how to deal with the white noise.

Consider a chaotic time series with a long exponential tail in its power spectrum
given by P(w) = Py e 1. Let us further assume that the measured time series
includes an additive white noise of power ()g. The cutoff frequency at which the
noise spectrum will interfere with the exponential tail is given by w, = %log %.
The frequency at which the power spectrum of the n*! derivative has a maximum
is given by Wpae = 2?" The effect of noise in our method will be tolerable as long
as Wazr < We, 1.€., log(%g) < %

The visual distinction between chaotic and integrable systems in Figs. 2.15-c,
2.15-d and Figs. 2.12-c, 2.12-d can be preserved in the presence of noise by filtering,
as illustrated in Fig. 2.16. In Fig. 2.16 (a) and (b), we depict a noisy version of
the time series in Fig. 2.12 using an additive Gaussian white noise having root
mean square equal to unity, i.e., the power of the noise is approximately 60 times
smaller than the power of the signal. In Fig. 2.16 (c¢) and (d), we illustrate the
same time series after filtering out all frequencies higher than 1 Hz, compared to
the noise-free time series. After taking the fourth-order derivatives of the filtered
time series, we see in Fig. 2.16 (e) and (f) that the visual distinction between the
chaotic and the integrable time series is better. Therefore, we propose that simply
filtering the noisy time series before taking the time derivatives may remedy the

effect of the noise.
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Figure 2.16: (a) and (b) represent noisy time series of M, (t) for 6 x 6 x 6 spin lattices.
The notations and system parameters are the same as in Fig. 2.12. (c¢) and (d) illustrate
the same time series after being filtered at 1 Hz as compared to the noise-free time series
in dashed gray. (e) and (f) illustrate the fourth-order derivatives of the filtered time

series as compared to the noise-free derivatives of the time series in dashed gray [!].
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2.4 Beyond spin systems: Power spectra for other

chaotic and integrable systems

In this part, we illustrate the power spectra of several chaotic and integrable
systems, other than classical spin lattices, to verify the claim that an exponential
tail in the power spectrum is a hallmark of nonintegrable systems.

In tables 2.1 and 2.2, we list several dynamical systems and chaotic attractors
for which we compute the power spectra and present sample time series for one
of their variables in Figs. 2.17 and 2.18 respectively. For all of these systems,
except for model (F)?, pronounced exponential tails appear at high frequencies of
the power spectra.

On the other hand, we present in Table 2.3 a list of completely integrable
models for which the power spectra are shown in Fig. 2.19. We notice the absence
of the exponential tail in all of the cases except for the periodic Toda lattice [2],

which we will investigate in more details in rest of this section.

4We do not have an explanation for this case.
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System Equations of motion/Hamiltonian/Lagrangian Amaz
1, c2 o ;2
L= i[ll(ml +ma)o1 4 lamady 4 201lymyx
A- Double | cos(¢; — ¢2)¢1gﬁg] + gly(my + ma) cos ¢1 + glams cos Py 0.179
pendulum | =3 =1, [, =2, lhb=1, g=1, 6,(0) =0
7] 05(0) = arccos(—7.99/8.0)
Lo, 2, 2 2 L g
B- Hénon- | H = 5(])1 Pt @+ @)+ g — §Q2 0.148
Heiles sys- p1 = 0.5542, ps =0, ¢t =0 and ¢ = —0.15
tem [78]
C- Driven
vander Pol | 4 [ 21 _ 22
oscillator dt \ 2z, —d(1 — 232y — 21 + b coswt 0.0985
[73] d= -5 b=5, w=247,2(0) = —1 and 2,(0) =1
D-  Cou- 2 3
pled i 2| 4
3 2
quartic di| 2 — (427 + 2a2123) 0.1892
oscillators 24 — (423 + 2a2923)
[73] a =38, 2(0) =0.8, 25(0) =0.5, 23(0) =1, and
(xzapz) = (l‘;,p;) i = 1727"' 7N
E- Cou- N
, K :
pled map | P; =Pi + P > sin2n(w; — ;) 0.65
lattice [79] 7=
r;=x;+p,, N=16and K =0.1
x; initially random, |p;| <1
F. 2 z+ (- 1)z —Ezggljg;i
. 2123—2224
Anisotropic a | z - At (7( , 1>fj (thzg) o
252125+202324(2%—25)—2521%
Kepler dt | 2, 2E2 — (v — 1)( z z (Zfzrzlg) z) z z) 0.138
2y 2221 +212324(27 —25 ) —27 222
problem “4 2Bz — (v - 1)+ ?Z%ng) —

[73]

v =061, E=—0.275 #(0) =1, 2(0) =2, z(0) = 1,
and z4(0) = 0.5

Table 2.1: The list of chaotic systems, other than classical spin clusters, considered in

this chapter in order to verify the existence of an exponential tail in their power spectra.
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Chaotic At- Equations of motion Parameter Initial Conditions A,z

tractor Values
=0y —x) o=16 z(0)=0
I-  Lorenz ( ) 15.09 0)=1 1.497
=x(p—2)— = 45. =
Attractor Y P Y P Y
Z=uxy— Bz f=4 2(0) =1
T=—(y+2) a=0.15 z(0)=0
II- Rossler N b 0.9 (0) 678 0.09
Attractor yorTa e =
Z=b+z(x —c) c=10 2(0) = 0.02
T=—(y+2) a=0.25 z(0) = =20
III- Rossler y=x+ay+w b=3 y(0)=0 0.11
hyper-chaos 2z = b+ 2z c=0.05 2(0) =0
Attractor ;) — oy — 2 d=05  w(0)=15

Table 2.2: The list of chaotic attractors considered in order to verify the existence of

exponential tail in their power spectra. The values of Lyapunov exponents are from [54]
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Integrable System

Hamiltonian, Parameter Values

and Initial Conditions

a- Double pendulum

Same as system (A)
61(0) = 0 and 02(0) = arccos(0.99)

b- Coupled quartic oscillators

Same as system (D), a =6

c- Yoshida 3-particle system [30]

H = 5 (p} + 03+ p3) + 5 (¢i23 + x7af + a3a3)

d- 6 particles interacting pair-

wise via potential V(g;, ¢;) [31]

V(qu qj) = g2a2 sinth a(q'L - QJ)7
a=05 g=—-4

e- 3 Coupled quartic oscillators
in 2D [582]

3 3 3 2
H = % (Zpiz—i_zp?ﬂ) + (Zﬁ)
i=1 i=1 i=1
3 3 3 2
+12) "a?) gyl +16 (Zgﬁ)
i=1 =1 i=1

f- 32 particles interacting via
nearest  neighbor  potentials
V' (¢, qiv1) with periodic bound-
ary conditions |2] (Toda lattice)

V(qi, qir1) = e~ @01

random initial conditions.

Table 2.3: List of completely integrable systems considered, in order to verify the

absence of an exponential tail in their power spectra.
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Figure 2.19: Power spectra for completely integrable systems listed in Table 2.3 (left)

and the corresponding sample time series (right).
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2.4.1 Toda lattice

The Toda lattice consists of N particles in one dimension interacting with the
nearest neighbor’ interaction potential V (g, gir1) = ¢ e~ *@~%+1)  We consider
periodic boundary conditions and take ¢ = o = 1. The equations of motion have

the form

G = p; (2.20)
pi = % %i-1 — e%i+179i (2.21)

We illustrate the integrability of the Toda lattice numerically by two methods.
First, we compute the maximum Lyapunov exponent, as described in chapter 1.
We show in Fig. 2.20 that A,..(tn) decays steadily at large N as a power law,
indicating a vanishing Lyapunov exponent.

The second method is to explicitly compute the integrals of motion as a func-
tion of time. If we define the set of variables a;, b; as

di+1—9

a,=e 2z , by=np, (2-22)

then we can construct the Lax pair of matrices (L, M) [33] defined as

by a1 0 a, 0 ap 0 —a,
b 0 — 0
L=|" ™ M= " 2 . (2.23)
0 0 —ay O
a, 0 b, an

The equations of motion cast in terms of L and M have the form

%Et) = [M(t), L(t)] = M($)L(t) — L{)M(2). (2.24)

The eigenvalues of L are constants of motion and can be considered as the integrals
of motion {I,,} for this problem [31]. We plot in Fig. 2.20-a the 32 eigenvalues of
L as a function of time for a 32-particle Toda lattice, with initial positions and
momenta randomly selected. The invariance of I,,(¢) confirms that the system is
integrable and illustrates the accuracy of our numerical simulation, excluding the
possibility that the exponential tail in Fig. 2.19-f is an artifact of some numerical

error (e.g. rounding error), which adds a stochastic noise to the time series.

5We use the term “neighbor” here in a symbolic way, since the positions of all the particles

are steadily changing. 7 and ¢ + 1 label the same particles during the time evolution.
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1.0}
(a) (b) 001}
05
S 00 ;107
~ £
~
_0_5,
10—6,
-1.0
0 200 400 600 800 1000 1 100 10* 10°
t Nt

Figure 2.20: (a) The integrals of motion I,, as a function of time for a Toda lattice
consisting of 32 particles, with random initial coordinates and momenta. (b) Az (tn)

as defined in 1.3 computed for the same system.

We note, however, that Toda lattice is exceptional in two important aspects.
First, a potential in the form of a truncated Taylor series expansion of the expo-
nential function for any order higher than two yields a nonintegrable system [35].
We illustrate this theorem numerically by computing I,, for a truncated potential
up to the third order as shown in Fig. 2.21-a, where we notice the wiggling of
I,, at long times. We have also computed \,q.(ty) for the third- order and fifth-
order truncated exponential potential and confirmed that both approach nonzero
asymptotic limits as shown in Fig. 2.21-b. Second, although Toda lattice is com-
pletely integrable, it is not separable [33]. (A separable problem has constants of
motion which are at most quadratic in momenta, and the equations are solved by
quadratures).

We finally note that the values of the integrals of motion [, in Fig. 2.20 are
randomly distributed, since the initial conditions are themselves random. We
noticed that if we start with a more regular set of initial conditions, the integrals
of motion are more uniformly distributed. We show in Fig. 2.22 I, for the case

when the initial coordinates of the particles are given by

¢:(0) = Asin (%) . i=1,...N (2.25)

and p;(0) = 0. We notice in this case that the tail of the power spectrum is not

purely exponential.
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Figure 2.21: (a) Eigenvalues for the matrix L(t) for a Toda lattice with a truncated
potential up to third order. (b) ez (tn) for a Toda lattice with a truncated potential
up to third order (blue) and fifth order (purple).
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Figure 2.22: (a) Integrals of motion of the Toda lattice consisting of 32 particles. The
initial coordinates of particles are chosen according to 2.25. (b) The power spectrum of

the time series of the coordinate of a single particle for the same Toda lattice.

2.5 Summary

In this chapter, we illustrated the failure of conventional techniques to discrimi-
nate between integrable and chaotic dynamics in many dimensional systems from a
finite-length time series. We then presented a new technique that can discriminate
chaotic from integrable deterministic dynamics from a finite, but very accurately
measured set of data. We applied this technique to time series produced by in-

tegrable and nonintegrable classical spin lattices. This techniques relies on the
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distinction between integrable and chaotic time series in the frequency domain.
While the power spectra of integrable systems are normally sharply terminated,
chaotic systems exhibit long exponential tails in their power spectra. This dis-
tinction leads to easily identifiable differences between chaotic and integrable time
series (c.f. Figs. 2.12 and 2.13). The integrable time series becomes more regular,
while the chaotic time series becomes bursty and irregular after taking the time
derivatives. This difference makes the rates of entropy production behave differ-
ently in both cases as we take the time derivatives. We introduced quantitative
measures to capture the differences in time domain and frequency domain between
the two types of dynamics. We also showed that the decay constant of the expo-
nential tail of the power spectrum in the chaotic classical spin system is not related
to the value of the maximum Lyapunov exponent (c.f. Fig. 2.10). We illustrated
the differences between the power spectra of integrable and nonintegrable systems
by including several examples of both types of systems. With the exception of
Toda lattice, all integrable systems considered exhibit a spectrum that consists of
well-separated discrete frequencies or terminates in a non-exponential way. The
difference between the power spectra of integrable and nonintegrable systems in

the quantum domain requires further investigations.

2.6 Appendix: Examples of numerically computed
higher-order time derivatives for integrable and

chaotic classical spin systems

In Fig. 2.12, we presented the fragments of two time series representing the total
spin polarization M,(t) for the chaotic and the integrable 6 x 6 x 6 spin clusters
together with their respective 7% derivatives, Mg)(t). In Fig. 2.23 below, we
show the plots for all the derivatives M (t) of the same time series up to the 9
order. We used the standard finite-difference numerical procedure for computing

these derivatives. Namely, if the discretized time series in a given order was
{..., (ti, Mi?) , (ti—i-l; M;:ZLl) , <ti+2, M:S?—&-Q) ,...}, then the next-order derivative

(n) (n) (n) (n)
. MM MM M
was obtained as {, (ti, M) , <ti+1, M) ,}

tir1—t; tit2—ti+1
The numerical derivatives beginning with the 9t in the integrable case and 102
in the chaotic case show signs of numerical noise associated with the accumulated

rounding errors. In order to exclude this concern, the presentation in Fig. 2.12
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Figure 2.23: Plots of M,(t) and its nine derivatives for the chaotic and integrable
classical spin systems considered in Fig. 2.12. Note: the 9t derivative for the integrable
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was limited to the 7t derivative.
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Quantum phenomena do not occur in a Hilbert space,

they occur in a laboratory!

Asher Peres

Regression relations for pure quantum
states and their implications for efficient

computing

The purpose of this chapter is two-fold. First, to provide evidence for the validity
of the Onsager regression relation (ORR) applied to pure states of isolated many-
body quantum systems at high temperature. We, additionally, derive a modified
regression relation for pure states of many-body quantum systems that relates the
relaxation for an observable quantity for a system in a pure quantum state to the
correlation of the expectation value of the same observable at equilibrium. Second,
we introduce remarkably simple and fast numerical methods to calculate correla-
tion functions of a many-body quantum system at high temperature [1]. This
approach requires only direct simulation of the time evolution of pure quantum
states. The validity of these methods is justified by the recently proved quantum
dynamical typicality theorem [36]. This theorem states that computing many
quantum observables that require averaging over the whole Hilbert space can be

achieved with decent accuracy by considering only one properly chosen pure state.

57
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In chapters 4 and 5, we exploit the methods described in this chapter to compute

important quantities in the context of quantum chaos and spin diffusion.

3.1 Linear response theorem and Onsager regres-

sion relation

In 1931, Onsager had the profound insight that “the average regression of fluc-
tuations will obey the same laws as the corresponding macroscopic irreversible

process” [87]. For a classical observable A(t), the Onsager regression relation
(ORR) states that

A(t) — Ao (SA(t) % 6A(0))eq
A(0)—Ap  {(0A(0))%)eq

where A(t) represents the average relaxation of A(t) from a close-to-equilibrium

(3.1)

state, Ay represents the mean value of A(t) at equilibrium, 0 A(t) represents the
equilibrium fluctuations of A(t) and (- - - )., represents the average over an equilib-
rium ensemble. The LHS of Eq. 3.1 represents the average evolution of A(t) from
a nonequilibrium state to its equilibrium value Aq in the linear response regime,
while the RHS represents the correlation of the fluctuations of A(t) at equilibrium.

To introduce the quantum version of ORR, let us consider a quantum system
described by a Hilbert space of dimension N, where N > 1 and a quantum

observable, described by operator A, that has zero average at equilibrium, i.e.,
Tr{A} = 0. (32)

Let pneq represent the nonequilibrium initial density matrix given by

1 .

Preq = N eXp(OéA), (33)

with a being a small constant. ORR for such a system is
~ e% ~ ~
T {A®)paea f = T { ADA©) } (3.4

where A(t) = et Ae~i"* The RHS of Eq. 3.4 represents the infinite temperature
correlation function of A(t) at equilibrium.

While it is clear that in the limit of very small «, ppeq = %fl and Eq. 3.4 will
be fulfilled, we provide a formal derivation of this relation in the context of linear

response theorem in the rest of this section. In the next section, we investigate the
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validity of Eq. 3.4 on the level of single pure state evolution based on the results
of quantum dynamical typicality.

A particular example of ORR relevant for the content of this dissertation is
the free induction decay (FID) in solids introduced in chapter 5. In this case, the
FID signal defined as the relaxation function of the magnetization of a lattice of
interacting magnetic dipoles towards an equilibrium state is proportional to the
infinite temperature correlation function of the magnetization.

Quantum regression theorem has been used successfully in quantum optics
since the work of M. Lax in the sixties in the context of quantum systems weakly
coupled to a Markovian reservoir (see 35| for a recent review). In that setting, the
regression relation is used to compute two-time correlation functions in terms of
single-time correlation functions, since according to Lax theorem both quantities
follow the same equations of motion. In the present work, we apply the regression

theorem to closed systems, self-equilibrating under their own dynamics.

3.1.1 Omnsager relation as the high-temperature limit of the

fluctuation-dissipation theorem

The general framework which connects the macroscopic behavior of a thermo-
dynamic system and its microscopic properties is provided by the fluctuation-
dissipation theorem (FDT) [89]. FDT is considered today to be one of the
most important results in nonequilibrium statistical mechanics. ORR is the high-
temperature limit of FDT. The remarkable success of FDT lies in its ability to
express transport coefficients in terms of correlation functions at equilibrium [90].
In what follows, we present a derivation of the quantum version of the Onsager
regression relation at infinite temperature, i.e., Eq. (3.4), based on the fluctuation-
dissipation Theorem.

Let us consider an observable quantity Ain a system driven by a force F
that couples to another observable B, such that it adds a term —f (t)f? to the
Hamiltonian of the system, where f(¢) is a weak time-dependent field. According
to the Kubo formula [01], the average causal response of A to the force F in the
linear response regime (near-equilibrium regime) is given by

t
AWy = (e + [ xanlt =)0t 35)

~ ~

where (A)., is the average of (A) at equilibrium (i.e., before the perturbation term

is applied) while (A(t))ne, is the evolution of (A) in response to the applied field.
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X(t — t') is the quantum response function, or simply the susceptibility, and is

expressed as

A

Xap(t —t') = %<[A(t)> B(t)])eg©O(t = 1'). (3.6)

The theta function in 3.6 represents the causality property of the response. The
expectation values are calculated at equilibrium, i.e., without applying the force
F.

Now, let us define the equilibrium correlation function Saz(t—t') as (A(t) B(t'))eq
and the symmetrized correlation function ¢ap(t) = 5(Sap(t) + Spa(—t)). For the
purpose of the present work, we take B = A and assume that the driving field
is applied at a constant strength in the distant past and switched off at ¢t = 0.
We are interested in the response of A at ¢ > 0. The subscripts AA’ and ’eq’
are dropped in the rest of this discussion. Since we are dealing with a traceless

operator, the equilibrium value of A at infinite temperature is zero. Therefore,

Eq. 3.5 reads

0

(A() ey = / Wt — )t (3.7)

—0o0

We define the anti-symmetric version of the x(7) as

X(7) = x(=7)]. (3.8)

The relaxation function R(t) = (A(t))neq defined for t > 0 can be extended to the
whole time axis in the symmetrized form Rs(t) = R(t)+ R(—t) — R(0) as shown in
Fig. 3.1. Since the relaxation function R(t) can be written as R(t) = [, x(7)dr,

we can express Rg(t) in terms of y,(t) as

R.(t) =2 / T (), (3.9)

where we used the fact that x(¢) = 0 for t < 0 as depicted in Fig. 3.1.

Let us now switch to the frequency domain by taking the Fourier transform of
all the quantities defined so far. According to FDT [92], the spectral density of
equilibrium fluctuations of an observable A at temperature T, ¢(w) = (A?%(w)) =
1= <A(O)A(t)>s e™!dt , is related to the imaginary part of the susceptibility x”(w)

by the relation

d(w) = h coth(hw/2kpT)x" (w). (3.10)
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(a) R(t) (b) ()

— t Xa(T)

Figure 3.1: (a) Sketches of the relaxation function R(t) and the symmetrized relaxation
function Rs(t). (b) Sketches of the susceptibility function x(7) and its antisymmetric
part xq(7). The figure is from [1].

The high temperature limit of this relation is

2kgT

» X' (w). (3.11)

P(w) =

Using the symmetry properties of Fourier Transforms of real functions, we can

easily see that
X' (w) = —ixe(w). (3.12)
Therefore, we can rewrite Eq. 3.11 as

P(w) = —i%ija(w). (3.13)

Taking the inverse Fourier Transform of Eq. 3.13, using the fact that the Fourier
Transform of ffoo Xa(T)dT i EXa(w) + TXa(w)d(w) and keeping in mind that
Xa(W)|w=o0 = 0, we arrive at

t

o(t) = 2kBT/ Xo(T)dT. (3.14)

—0o0

Since xo(7) is anti-symmetric, i.e., [ xa(7)dT = 0, we rewrite ¢(t) as

o(t) = —2kgT /too Xa(T)dT. (3.15)

From Eq. 3.9 and 3.15, we conclude that ¢(t) and R4(t) are proportional
to each other and subsequently (A(t))neq, < (A(t)A)e,. At infinite temperature,
(A(t)A),, = Tr{A(t)A}. Thus, we finally obtain the quantum regression relation
at infinite temperature

(A(t))neq o Tr{A(t)A}. (3.16)
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3.1.2 Onsager regression relation at finite temperature

While ORR declares that the relaxation function of some observable is propor-
tional to the correlation of its fluctuations at equilibrium, FDT implies that quan-
tum systems respect this relation in the classical limit only, i.e., at sufficiently
high temperatures, due to the non-trivial dependence on frequency in the prefac-
tor in Eq. 3.10. This fact led to some confusion regarding the applicability of the
regression theorem in quantum systems, which has been settled [93] by showing
that FDT is the proper generalization of the Onsager regression relation at any
temperature. In this part, we explore the conditions under which the regression
relation holds in this case at finite temperatures.
We start by writing the equilibrium density matrix at temperature 7', assuming
kg =1,
Peq = % e T (3.17)

where Z = Tr{e "/T}. The condition of zero equilibrium value of A becomes
Tr{A e M/} = 0. The equilibrium fluctuation of A can be characterized by

different correlation functions. The first one is
o o 1 ~ . ~ .
<A(0)A(t)> = Tr {A e/ fe=iHt/h e_H/T} . (3.18)

The symmetrized version of 3.18 is

A 1

<A(0)A(t)> = (<A<0)A<t)> + <A<0)A(_t)>) , (3.19)

S

while the anti-symmetrized version is

(AA@) = % ((A0A®) - (A)A(-0)). (3.20)

A

Unlike the infinite temperature case, the first two versions are distinct and carry
different information. To arrive at a regression relation that relates the relaxation
function with any of these correlation functions, we start with the symmetrized

relaxation function

R.(t) = R(t) + R(—t) — R(0) = Tt {em\tl/h A e*mltl/hpo} , (3.21)

where py = e=(H=1oA)/T We can expand e~ =4 as a power series of fy [01]

) 1T .
e~ (H=foA)/T  ~H/T (]l + fO/ M Ae Moy + > . (3.22)
0
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The zeroth order contribution in Eq. 3.22 vanishes due to the traceless nature of

A and the first order contribution can be expanded as a power series of %

1 )
s ML AL+ (3.23)

1/T . 1 . 1 .
/ eMAemMda = — A+ — [H,A] +
0

Now, it is clear that when [H, 121] is sufficiently small, we can truncate the expansion
in Eq. 3.23 to the first order in % Then after substituting in Eqs. 3.22 and 3.21,

we recover the symmterized correlation function <A(O)A(t)> . The condition of
S

small [H, /Al] is satisfied for example due to some conservation law that makes A a

slow variable, or when T'/h is much larger than the typical one-particle frequency

[95].

3.2 Quantum dynamical typicality

The formal structure of ORR as expressed by Eq. 3.4, implies that Onsager
relation is applicable on average to an ensemble of pure many-body quantum
states, or a mixed quantum state, described initially by the density matrix ppeq.
One might ask, however, how far does ORR apply at the level of a single pure state.
We give the answer to this question based on the notion of ‘typicality’ [96-95].
Typicality, in general, aims to relate quantum phenomena, normally described by
density matrix language, with individual realizations described by pure quantum
states. For example, the term canonical typicality describes the observation that
a single typical pure state describing a system coupled to a bath at a certain
temperature will yield the correct canonical density matrix for the system after
tracing out the degrees of freedom of the bath.

Quantum dynamical typicality states that the time-dependent expectation
value for an observable quantity computed for a single pure state randomly se-
lected from an ensemble of nonequilibrium initial states will be very close to the
ensemble-averaged expectation value with an overwhelming probability [96]. To
introduce the concept of dynamical typicality, consider a Hilbert space H of di-
mension N and spanned by the orthonormal basis {|n)}. For any distribution p
over all pure, normalized states {|1))} which is invariant under unitary transfor-
mations, the average of an observable D with respect to this distribution is called
Hilbert Space Average HA[(¢|D]¢)] and is given by [07]

_ (D}
_ID}

HA[(¢|Dy)] (3.24)
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while the Hilbert space variance HV [(1)|D|i))] = HA {((WDW) — HA[W\Z?W)])T
is given by

HV[(¥|DJ)] = Nil Tr{]\l/.) - (TYJ{VD}> : (3.25)

From (3.24) and (3.25), we can write

. 1
DIy, =Te{Dp} [1+0 [ —=], 3.26
wible), = 1e(D} [1+0 ()] (3.:26)
where <w|]5|w) , represents the average of D computed with one typical pure state

that “samples” p. The generalization of (3.26) to the nonequilibrium ensemble

Preq = & exp(aA) is:

W Ae) = T { g} [140 ()], (327

where |W,.,) is a wave function that samples pneq. Now comes the dynamical
part in “dynamical typicality” and the validity of (3.27) is extended to the time

evolution generated by the Hamiltonian ‘H

(W peq|A(8)| W peq) = Tr {A(t)pneq} [1 +0 (a 1N>} , (3.28)

where A(t) = e™tAe~*  The message of this equation, as expressed in [07],
is “individual dynamics of expectation values are typically well described by the

ensemble average ”. From 3.28 and 3.4, we conclude that

(W eq|A ()| W neq) = %Tr {A@)A(())} [1 +0 <@ 1N>] : (3.29)

which is ORR on the level of a single pure state.

3.3 Modified regression relation

Equation 3.29 implies that Onsager regression relation can be used as a rigorous
method to compute infinite temperature correlation functions from the time evo-
lution of a single nonequilibrium pure state. Now, we go one step further and ask
the following conceptual question: Can we compute the infinite temperature cor-

relation function Tr {A(t)A(O)} by monitoring the equilibrium noise of (A(t)) for

sufficiently long time? Can we extract the information contained in Tr {A(t)fl(())}
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~

from one single time series of (A(t)) generated by a macroscopic quantum system
at equilibrium, i.e., in the limit N — oo and Ty — 0o, where Tj is the time during
which A is monitored? The answer to this question is provided through the obser-
vation that the correlation function C(t,Tp) for the time series of the expectation
value (Weq| A(t')|¥eq) in the time interval [T, Ty + t] defined as,

1 o / A / A4
ct1) =5 | W A+ OB T A V), (330

provides a good approximation for the infinite temperature correlation function
Tr {A(t)A(O)} in the limit of large Ty and N. In particular, we will show below
that

Ct,Ty) = %Tr {A(t)A(O)} + Ay, (3.31)

where

=N

A2 ~ —2\/§1TON4 /jid@( [Tr{A(t2)A(o)}]2
4 Tr { i(t - tg)fl(O)} Tr {A(t + @)A(O)} ) .
(3.32)

The two terms in the integral (3.32) are of equal orders of magnitude. The

order of magnitude of the correction term A; depends on how fast Tr {A(tg)A(O)}

N 2
decays to zero. If the timescale for the decay of [Tr {A(tg)A(O)H is 7, then
Ay = O(y/7/To)Tr {A2} /N2,

Based on the results of (3.31) and (3.29), we introduce the modified regression

relation

Hm (Weq|A()[Wheq) = lim  NC(t, Tp). (3.33)

N—oo Tp—00, N—00

The message of this relation is that the correlation of the time series of the ex-
pectation value of an observable A for a system in a pure state selected from the
equilibrium ensemble is proportional to the relaxation of (Wpeq|A(t)|[¥peq) from a
slightly perturbed state towards equilibrium, in the limit of large N and Ty. The
difference between C'(t,Ty) and the trace formula Tr {fl(t)fl(O)} is the difference
between a classical correlation function that involves the correlation of a time se-
ries and a quantum correlation function that involves the correlation of quantum
operators. Eq. 3.31 implies that that both correlation functions contain the same

information in the macroscopic limit.
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To derive Egs. 3.31 and 3.32, we write C(t,Tp) in terms of the matrix elements
{Ann} of A and the expansion coefficients {a} of |Wey), represented in terms of

the energy basis {|¢x)}, as follows

C(t TO) QTO/ dt’ Z a apamquAnmei(€q—€p)t/ﬁei(6q_€p+€n_€m)t//h7 (334)

m,n,p,q

where {e;} are the eigen-energies. We let i = 1 in the rest of this chapter. The
Hilbert space average of C(t, 1) expressed as m is obtained by averaging
over all the expansion coefficients {a;}. Due to the randomness of the complex
phases of a, the Hilbert-space average a}aya,a,, will be nonzero only when two
of the four coefficients are the complex conjugates of the other two coefficients. In
this case, a}a;,aya,, reduces to (Jag|?)? = 1/N?. The number of the terms where
the four coefficients coincide is smaller by a factor 1/N. Therefore, we neglect

these terms and we are left with

g ak ayly, = 1/N2(6qp5nm + SgmOnyp)- (3.35)

After substituting in the the Hilbert space average of 3.34, we obtain

i(€m—e 1 1 1
Clt,Ty) = Z N A A = 25T {A(t)A(O)} , (3.36)

m,n

which is the principal part of 3.31.

_ —__ 2

Now, we compute the variance A} = [C’ (t,To) — C(t, TO)} , which defines the
deviation of C(t,Ty) computed by a single realization from the Hilbert space av-
erage. The explicit form of A_% can be obtained using Eq. 3.36 as

A =

4T2

ik Tt S _ VY . "
f 0 dt/f 0 dt//quAnmAklAuv el i(eqg—epter—er)t ez(eq epten—em)t el(ek €1teu—en)t

X qumnk L [a @k ak apmaa, — m(5qp5nm + SgmOnp) (Ok16up + 5kv5ul)} . (3.37)

By following similar arguments to the case of a}a;apa,, we can see that

Qs Qg Ay A Ay will be nonzero only when the coefficients are arranged into

conjugate pairs. In this case, we will have a}aq,a}anajarala, = (|ag?)* = 1/N*.

The terms containing two or more identical pairs will be exponentially smaller

than when all the four pairs are distinct. Therefore, we have
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§qm5np5kv§ul + 5ql(5m)5kp5um + 6qv(5nl(5km5up (338)
+ 5qm5nl5kv5up + 6qv5np5km5ul + 5qm6m}5kp5ul

A O 0 Oy Uy Oy ey = ﬁ[
+ 5ql6np5kv5um + 5q15nv6km6up + 5qv5nl(5kp5um
+ {omitted terms} |.

The first term in 3.39 cancels with part of the second term in 3.37. After
substituting the second and third terms of 3.39 into 3.37, the result will contain

4T2/ / dt'dt” e e (3.39)

where 7 is a combination of the energies ¢,. For the sake of approximation, we
change the integration variables to #; = (' + t")/v2 and t| = (" — t')/V/2,

and simultaneously rotate the integration region as shown in Fig. 3.2. This

an integral of the form

manipulation has the effect of reducing the double integral in 3.39 to the single
integral over t,, defined as t, = t; /2,

Tov2

2T0\/_ —Tov2

The values of the two integrals are not exactly the same, but we are only interested

dty e, (3.40)

in the order of magnitude of A;. The second term in 3.39 yields the integral
ToV2

dt2 —i(eq—€pten— €m)t2A A A Am?’w (341)
2T0\/_ —Tov2

N 2
which can be expressed as \f T I Tf};(f dts [Tr {A(tQ)A(O)}] , while the third
term in 3.39 yields the integral

Tov2
QTO\/_ ~Tov2
which can be expressed as 2\[ R fTO\[ dty'Tr {fl(t - tg)fl(())} Tr {fl(t + tg)A(O)}.

To estimate the order of magnitude of the remaining terms, let us examine

the fourth term in 3.39. After substituting that term in 3.37, it will contain the

dtg ei(eqfep+em7en)t€7i(eq76p+en76m)t2quAnmquAmn’ (342)

summation:

Z [ei(eq—ep-‘rﬁk_El)te_i(ep_el)tQquAlqulApk] ) (3.43)

q,p;k,l
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Ty Ty

7, T

=Ty Ty
_TO'

Figure 3.2: (a) The original integration region of the integral in 3.39. (b) The rotated

integration region in 3.40 and the new axes tll and tlll. The figure is taken from [1].

The terms in this summation can be rearranged as:

Z [ei(ﬁq—ﬁp)t2quei(fk—fp)(—t)ApkAklei(el—Eq)(t2—t)Alq} , (344)

q,p;k;l

which is equivalent to Tr {A(tg)A(O)A<—t)A(t2 - t)} For very large to ~ Ty > t,
the operators separated by t, are uncorrelated and the trace has the order of
magnitude of + [Tr {/Al(t)fl(())}r This term is smaller than the previous two
terms (3.41 and 3.42) by factor 1/N and can be neglected. The same arguments
apply for the remaining terms in 3.39 and 3.37. We can, therefore, write the

approximate value of A_% as

d

~ —2\/§1TON4 /jid@( Tr {A(tQ)A(O)}]z
+Tr { it — t2)A(0)} Tr {A(t + tQ)A(O)} > .
(3.45)

The integrals considered in this derivation converge to small values as long as
the limits of the integrals are not too large to encounter the recurrences that occur
due to the discreteness of the energy levels. In other words, T should be smaller
than the average inverse level spacing of the spectrum. To avoid this problem, we

take limy_,o first and then take limp, o in Eq. 3.33.
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3.4 Efficient computation of correlation functions
based on Onsager regression relation and quan-

tum dynamical typicality

Understanding strongly correlated many-body quantum systems has been the driv-
ing force behind many of the exciting discoveries in condensed matter in the last
few decades. Along with the unexpected and fascinating phenomena which emerge
from the interaction between the components of a many-body quantum system,
the level of complexity and resources required to analyse such a system increases
tremendously with its size. In this regard, any improvement or addition to the
arsenal of numerical techniques devised to overcome this problem would be a valu-
able resource for condensed matter community.

The last two decades have already witnessed the discovery of many useful
numerical techniques that proved to be invaluable tools to probe into the prop-
erties of strongly interacting systems with limited computer resources. The most
pronounced of those algorithms is the Density Matrix Renormalization Group
(DMRG) technique [99] that has been used successfully to gain useful information
about the static properties of 1D quantum systems. Further algorithms have been

developed to deal with time-dependent properties (i.e., time-dependent DMRG -

tDMRG [100, 101] and time-evolving block decimation TEBD[102]) and systems
in more than one dimension (e.g., projected entangled pair state PEPS[103]).
These methods are more efficient at low temperature [102], while at infinite

temperature, they can be practical only for short time evolutions. In general,
the cost of numerical simulation using methods dependent on Matrix Product
States (like DMRG) increases with the amount of entanglement. Moreover, some
improvements have to be incorporated into these methods in order to deal with
systems with long-range interactions [104].

In this section, we introduce new methods based on quantum dynamical typ-
icality in conjunction with ORR to efficiently compute correlation functions of
strongly interacting many-body quantum systems at infinite temperature. At the
same time, we illustrate numerically the applicability of Onsager regression re-
lation at high temperatures on pure state evolution, and test the validity of the
modified Onsager regression relation. In order to integrate the time-dependent
Schrodinger equation, we use either exact diagonalization or a fourth-order Runge-

Kutta algorithm. We first, introduce the Runge-Kutta algorithm, and then pro-
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ceed with showing numerically the validity of ORR on pure quantum states (Eq.
3.29). Afterwards, we introduce an even more efficient method to compute the in-
finite temperature correlation function based on the spirit of quantum dynamical

typicality.

3.4.1 Numerical integration of Schrodinger equation

The evolution of pure quantum states is governed by the time-dependent Schrodinger
equation, % = —iH |1b). Numerical evolution of the initial state can be imple-
mented through a power series expansion of the time evolution operator exp(—z’I:I dt)
during a single time step dt. While expansions based on Chebychev polynomials
[105] are often used for evolving the Schrédinger equation, we found that a simple
fourth-order Runge Kutta algorithm (RK4), which, for time-independent Hamil-

tonians, is equivalent to the fourth-order Taylor expansion

H24t2  H3dt?  HAdt
+ +

exp(—iHdt) ~ 1 —iHdt — 51 T i

(3.46)

is stable and accurate for the purpose for dealing with quantum spin systems.
This is one of the new results in this work. Higher powers of H applied on the
state vector |¢), |¢") = H"|¢), are obtained progressively through |¢') = H|¢i™1).
Clearly, this procedure requires only direct matrix-vector multiplications to evolve
the wave function. Other methods which are frequently used include the Suzuki
Trotter formalism [106] and the short iterative Lancoz algorithm [107].

We verify the accuracy of the Runge-Kutta method in two ways. For a small
spin cluster, we evolve the same initial state using exact diagonalization and
Runge-Kutta method. At each time step, we verify that the overlap between
the two states is equal to unity. For large systems, we evolve the same initial state
with two different time steps and verify that the state evolved with the smaller
time step, |11(t)), is almost identical to the other one, [¢)5(t)), by confirming that
they completely overlap at each respective instant, (11(t)[12(t)) = 1. This routine
is optimal when the system is too big to be diagonalized in a reasonable time, but
not extremely big so that its full Hamiltonian can be stored as a large sparse ma-
trix. Our approach can be combined with other numerical techniques, i.e., Krylov
space methods [105], to deal with larger systems where memory is not sufficient
for storing the Hamiltonian.

We show in Fig. 3.3 the results of both tests for a Heisenberg spin 1/2 chain

consisting of 20 and 29 spins, with nearest neighbor interaction Hamiltonian H =
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Figure 3.3: Tests of numerical accuracy of the direct integration of the Schrodinger
equation using the fourth-order Runge Kutta method. (a) The overlap between two
initially identical wave functions for a Heisenberg spin 1/2 chain consisting of 20 spins,
|Wex(t)) and |Ygrka(t)), computed using the complete diagonalization and the Runge
Kutta method respectively. (b) Overlap between two initially identical wave functions
for the Heisenberg chain of 29 spins 1/2, |¥;(¢)) and |Ua(¢)), both computed using the
Runge Kutta method with discretization time steps At; = 0.01/J and Aty = 0.02/J

respectively [1].

J Y. Si - Siy1. For the 20-spin system, we evolve two identical initial states by
the RK4 routine and by exact diagonalization of the Hamiltonian, and compute
|Wgx(t)) and |Wrka(t)) at each time step. For the 29-spin system, we evolve two
identical initial states by the RK4 routine with different time steps, At; = 0.01/J
and Aty = 0.02/J, and compute |¥;(t)) and |¥y(t)). The closeness of both overlap
functions to unity confirms the accuracy of the RK4 routine. In all the quantum
simulations that use this method in the rest of this thesis, we use a time step in

the order of 0.01J~!, where J is the typical coupling constant of the Hamiltonian.

3.4.2 Numerical verification of Onsager regression relation

applied on pure quantum states

In this section, we show numerically that ORR is applicable on the level of pure
state evolution of an isolated quantum system, as described by Eq. 3.29. In par-
ticular, we demonstrate the coincidence between the relaxation of the expectation
value of a certain observable calculated from a single pure state picked randomly
from slightly out-of-equilibrium conditions and its temporal correlation function
at infinite temperature.

This coincidence can be the basis for a new algorithm to compute the correla-



72 Chapter 3.

tion function for systems for which we can not compute Tr {A(t)fl(())} directly.
The core of the proposed algorithm to evaluate Tr {A(t)fl(())} for an observ-

able A is to pick a random pure state representative of pne,, corresponding to
a small deviation from equilibrium, and simply evolve it in time to evaluate the
time dependence of <121) This noticeably simple method would only require evolv-
ing the time-dependent Schrodinger equation with any numerical technique (i.e.,
Runge Kutta method) for the same time interval during which we want to eval-
uate Tr {fl(t)fl(())}, that would otherwise require exact diagonalization of the
whole system. Since an accurate numerical evolution of the Schrédinger equation
requires storing the Hamiltonian matrix as a sparse matrix (i.e., not necessarily
a dense matrix) the memory required to compute a correlation function with this
algorithm is roughly the memory required to store the nonzero elements of the
Hamiltonian, i.e., the number of rows multiplied by the number of nonzero el-
ements per row. This number scales as N(log N)? for systems with long range
interaction and N (log V) for systems with short range interaction. Although we
apply our algorithm solely to quantum spin systems, the method is applicable to
a generic strongly interacting many-body system.

A typical relaxation experiment for an observable A would involve switching
on a perturbation proportional to A in the infinite past and switching it off at time
t = 0 letting the system relax to equilibrium. This process corresponds to letting
the system equilibrate under the Hamiltonian H =H+ efl, where € is a small
coupling parameter, leading to an initial density matrix p(0) = ef(ﬁ“‘i)a, with
a = 1/kT. Assuming that €A > H, as in NMR experiments, the initial density
matrix is given by p (0) = e,

We consider a 1D chain consisting of Ny spins 1/2 interacting by the near-
est neighbor Heisenberg interaction, H = J ), S; - Sijy1 with periodic boundary
condition. Here J is the coupling constant, and S; is the spin operator on the
ith chain site. Such a chain admits periodic spin modulations with wave numbers
q = 2mn/N,, where n is an integer number taking values 0,1,..., Ny — 1. For a
given wave number ¢, the intermediate dynamic structure factor I,(¢) at infinite

temperature is defined as

1,(0) = T { Ay (t) Ay (0) (3.47)

where fl{q} = \/iﬁ > €xp(igm)SE . Since we have translation symmetry combined

with periodic boundary conditions, we can show that [,(¢) is also equivalent to
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Tr {fl{q} (1) fl{q}(())}, where A{q} is now defined as Ay, = J%Tv >, cos(qm)SE.
In general, to generate an initial state |W,.,) for a generic operator A, we
can implement an imaginary-time Runge-Kutta algorithm to evaluate |V,e,) =
exp (—/Aloz / 2) |W,,), where |U),, is picked from an infinite temperature ensemble
[L09]. In our case, we select the basis to represent wavefunctions and operators

such that A and consequently exp (—Aa / 2) are diagonal matrices, making the
evaluation of exp (—Aa / 2) |W,,) trivial.

We demonstrate in Fig. 3.4 the comparison between I,(¢) evaluated by exact di-
agonalization for a 20 spin-1/2 chain and the relaxation function (Wneq\fl(t)\\lfneq>
for single pure states of Heisenberg chains consisting of 20 spins and 28 spins re-
spectively. We see in this figure the excellent agreement between (Wyeq| A(f)|Wyeq)
and I,(t) that covers two orders of magnitude in the first case and three orders of
magnitude in the second case. This excellent agreement demonstrates simultane-
ously the validity of Onsager regression relation (3.4) on the level of single pure
states and the dynamical typicality relation (3.28). The difference between the
accuracies of the two spin chains is consistent with the order of magnitude of the
error in (3.28). The accuracy of the short spin chain can of course be improved

by averaging over many pure states.

1
0.1,
0.01}
0.001+
1074+
1073}

|1:(6)/1:(0)]

0o 5 - ‘1‘0‘ - ‘1‘5‘ - ‘2‘0
Jt
Figure 3.4: Intermediate dynamic structure factor I (¢) of the Heisenberg chain con-
sisting of 20 spins 1/2, based on the exact trace formula (3.47) (dotted blue). The solid
lines represent the relaxation of a single pure state (¥peq| A(t)|¥peq) picked initially from
a nonequilibrium ensemble towards equilibrium for a Heisenberg chain consisting of 20
spins (red) and 28 spins (black). The initial nonequilibrium ensemble is p (0) = %e_a/‘
with @ = 1/12 in the first case and o = 1/4 in the second case. The good agreement
between (Wyeq| A(t)|¥heq) and the exact trace formula demonstrates both the validity
of the Onsager regression relation (3.4) on the level of single pure states and also the

validity of the dynamical typicality relation (3.28).
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3.4.3 Classical versus quantum: Numerical efficiency of com-
puting correlation functions based on Onsager rela-
tion

Computing the correlation function in quantum systems using ORR has a clear
numerical advantage over doing the same thing in classical systems. The mean
square value of the equilibrium fluctuations in quantum systems is inversely pro-
portional to the size of its Hilbert space. This is an essential quantum mechanical
feature due to the fact that quantum evolution incorporates an evolution of a par-
allel superposition of all basis states of the Hilbert space. This severely suppresses
the level of statistical fluctuations at equilibrium, leaving an ample range for the
observable to relax from a relatively large nonequilibrium value, which still belongs
to the linear response regime, to equilibrium. The idea of exploiting quantum par-
allelism and its self-averaging property has proved useful in other contexts [110].
In what follows, we give concrete arguments for the above statement.

From the central limit theorem, if we have N independent random variables,
x;, described by the same probability distribution having mean g and standard
deviation o, then the average quantity z = %Zixi is described by a probability dis-
tribution having mean = p and standard deviation \/LN The variable X = ¥;x; is
described by a probability distribution having mean = Nu and standard deviation
v/ No. Applying this result to the fluctuations of the total magnetization of a clas-
sical spin system consisting of N spins at equilibrium, we find that the standard
deviation of the fluctuations of the total magnetization at equilibrium is of order
v/N.(S2). For a quantum spin 1/2 system of the same size, the fluctuations of the
total magnetization of a quantum state which is a weighted average of a superposi-
tion of 2¢ eigenstates of M, have an RMS of order \/QN;S</S;Z> o~ \/T]I;,{p}, where A

represents the total magnetization operator. This result could have been reached

directly from the correlation function C(¢,T) of the equilibrium fluctuations de-
fined in 3.30. The RMS value of the amplitude fluctuations of (Weq|A(t)|Weq)
equals \/C(0,T) (see: (3.30) and (3.31)).

We illustrate in Fig. 3.5 a comparison between the fluctuation noise of the
total magnetization for a classical and quantum spin 1/2 systems consisting of 8
spins, where the previous estimates can be verified.

In actual experiments, the time series resulting from monitoring of the total
magnetization at equilibrium ( known as spin noise ) is different than (Weq| A(t)|Weq).

Monitoring a small quantum system continuously would interfere severely with its
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A(t)

Classical Quantum

Figure 3.5: A comparison between the fluctuation noise of the total magnetization for
a classical and quantum spin 1/2 systems consisting of 8 spins.

free evolution, and the measured signal of (A(t)) would be far from the true equi-
librium fluctuations of the perfectly isolated quantum system. It is legitimate
to ask, how far does this apply to a macroscopic system that consists of a huge
number of degrees of freedom? Does a monitoring of a single degree of freedom
damage the information on the correlation function from the monitored signal?
We have already seen that the RMS value of the fluctuations of an isolated system
is expected to be of order gv—</522> On the other hand, the RMS value of spin
noise in a monitored system consisting of Ny spins, as shown by F. Bloch [111]), is
of order v/Nj i.e., exponentially larger than the former case. ! Despite this differ-
ence, we expect that continuous monitoring of one single degree of freedom of the

macroscopic system should not alter the dynamics that much and the information
about Tr {Aﬂ(t) AW(O)} can still be retrieved from the monitored observable.

3.4.4 A more efficient method to compute correlation func-

tions based on quantum dynamical typicality

Although the regression relation as implemented by (3.29) provides an accurate
method to evaluate infinite temperature correlation functions, we provide an even
more accurate method to evaluate Tr {fl(t)fl(()) }, based on the dynamical typical-
ity argument as well. The essence of this method is to pick an initial normalized
state |W.,) from an equilibrium ensemble at infinite temperature and evaluate

(Wey| A(t) A(0)|Weq). This amounts to approximating the Hilbert space average of

I The reason is that the system exists in a narrow range of the eigenstates of ]\me, according
to the value of the measurement. Therefore, the RMS of the spin noise behaves like a classical

spin system of the same size.
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~

A(t)A(0) by a single realization of |U,). From (3.24) and (3.25), we conclude that

(Wog | A(t) A(0)[Wog) = %Tr [anAm} +a, (3.48)

where

(3.49)

e U [ AMAOADAQ) (Tr{A(t)Am)})z
N +1 N N

Noticing that the two terms in the RHS of (3.49) are of same order of magnitude,
we can write

(Teo| A1) A(0)|Weg) = %Tr {A(t)A(O)} [1 + O\/—lﬁ} . (3.50)

By comparing (3.50) and (3.29), we observe that the statistical accuracy of this
method is better than the one based on the regression relation by a factor 1/a.
To generate an initial state |W.,) that samples an equilibrium infinite tem-

perature ensemble, we consider an orthonormal eigenbasis {|¢x)} and generate

N

[Weq) = Zak|¢k>7 (3.51)

k=1
where a;, are quantum amplitudes whose magnitudes are drawn from the expo-

nential probability distribution [112]
P(layf?) = N exp(—Nla), (3.52)

and phases are chosen completely randomly. To draw random numbers {a;} that
samples P(|ax|?), we follow the inverse transform sampling method [113] as follows:
We first draw a set of random numbers {7} from a uniform probability distribution
in the interval [0, 1], and equate each of them with the cumulative distribution
function C(|ax?) = 1 — exp(—N|ag|*) corresponding to P(|a|?). Letting 7, =
1 — ry, we find the values of |ax|* from |ax|> = —log(r})/N. The statistical
fluctuations associated with |ax|? cause the norm of W, to slightly deviate from
unity, |Wey?2 = 1+ O(1/+/N). This deviation makes the statistical uncertainty in
evaluating Tr {A(t)/l(O)} to slightly differ from (3.49) according to

(W AN AD) Wg) = T {ADAO)} + (3.53)
where
Al = %Tr {A(t)A(O)A(t)A(O)} . (3.54)
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To show this, let A(t)A(0) = X, and consider the evaluation of (V.| X|¥e,) in
the eigenbasis of X, which evolve with time. The variance of (Weq| X|Weq) is given
by

N ~ —\ 2
B3 = ((Weql X |Weq) = (Wea| X [Wer)) (3.55)

/N

where (U X|¥.) = > o 1@m |*Xinm.  According to the probability distribution

(3.52), |am|? = + and |am|* = 5, therefore we have

283 =3 (anl = ) Xomm D (|anf? = ) Xon. (3.56)

12

Since {|an,|*} are uncorrelated, we find that for m # n, (Jam|? — %)(|a.|> — %)

0, and we are left with

_ 1\2
=3 (lanl - ) X

" 1 1 (3.57)
- Z (’am|4 - m) X72nm ~ WTT{th

which is identical to (3.54). Imposing the normalization of |V.,) will introduce

correlations between {|a,,|?} and {|a,|*}. In this case, we have

1 1 — 1
Z (lam[* — N)(’anP - N)Xmann = ((’am|2|an|2) N m) Z Xinm Xnn
(3.58)
For a normalized state, we know from Ref. [111] that (|a,|?|a,]?) = m By

letting >, ., XimXnn = Tr{X 212 we see that the term which remains amounts
to the difference between A2 in (3.54) and A? as defined in (3.49).

On the numerical side, the procedure to generate an evolution of (Weq| A(t) A(0)|¥eq)
for a single pure state proceeds as follows: First, we select |V.,) from the equi-
librium ensemble p., as explained earlier. We then define another state |®(0)) =
A|Weq(0)) (ie. |®(0)) is not normalized). The quantity of interest (Weq| A(£)A(0)|Weq)
is then evaluated as (W (t)| A|®(t)), where |B(t)) = exp(—iHt)|®(0)), and | ¥4 (1)) =
exp(—iHt)|Weq(0)). In Fig. 3.6, we show the result of such a computation for
a Heisenberg chain consisting of 20 spins, compared with the trace formula for
I.(t), both computed via exact diagonalization. This plot demonstrates clearly
the improved performance of using (Weq| A(t)A(0)|¥.,) over the relaxation function

(\I/neq|fl(t)|\lfneq> in Fig. 3.4 for the same system size.
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|1:()/1(0)]

Figure 3.6: Intermediate dynamic structure factor I () of a Heisenberg chain consisting
of 20 spins 1/2, based on the exact trace formula (3.47) (dotted blue). The solid line
represents the evolution of a single realization of (Weq|A(t)A(0)|Weq) computed for the
same system by exact diagonalization. |Weq) is picked from the equilibrium ensemble
defined by (3.52). The agreement between (Weq| A(t)A(0)[Weq) and I, (t) is better than
the relaxation function (Weq| A(t)|¥heq) for the same system size by a factor 1/« that
defines the initial nonequilibrium ensemble, ppeq = % exp(—ad), from which |W,e,) is

selected.

3.4.5 Comparison between three numerical methods to com-

pute correlation functions

In Fig. 3.7, we present a comparison between the three methods presented so far
to approximate the exact trace formula for the infinite temperature correlation

functions, namely:

1. The relaxation function (¥,eq|A(t)|¥,eq) from a nonequilibrium to an equi-

librium state (Eq. 3.29).

2. The expectation value of A(t)A(0) evaluated from a single pure state picked
from an infinite temperature ensemble, (Woq| A(t)A(0)|Weq) (Eq. 3.53).

3. The correlation function C(t,T}) defined in (3.30).

All of the computations were done by exact diagonalization based on single pure

states (i.e., no averaging). In case of C(t,Tp), the value of Tj is 4200/J. It is evi-
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Figure 3.7: Intermediate dynamic structure factor I (¢) of the Heisenberg chain of
20 spins 1/2. The calculation based on the exact trace formula Tr {flﬂ(t) AW(O)} is
compared with the relaxation function (Wpeq|A(t)|Wpeq) from a nonequilibrium to an
equilibrium state (Eq. 3.29), the correlation function C(t,Tp) defined in (3.30) and
(Weq| A(1)A(0)|Weq) (Eq. 3.53). All calculations are based on the complete diagonal-
ization of the Hamiltonian H. Each of the three approximate calculations is done with
a single pure state. In the case of Eq. (3.29), a = 0.083, corresponding to an initial
polarization equal to approximately 4 percent of the maximum polarization. In the case
of Eq. (3.30), Ty = 4200/J. As expected theoretically, the approximation based on
Eq.(3.53) gives the most accurate agreement with the exact result. The accuracy of all

three approximations can be improved by averaging over more pure states |1].

dent that (U.,|A(t)A(0)|¥.,) gives the most accurate prediction for Tr {Aﬁ(t) AL (0) },

in agreement with our theoretical expectation.

3.5 Summary

We investigated the Onsager regression relation on the level of pure quantum
states close to equilibrium at high temperatures. We showed that the relaxation
of pure states can serve as a simple and powerful technique to compute infinite
temperature correlation functions in many-body quantum systems (Eq. 3.29).
The validity of that technique is justified using the notion of quantum dynamical

typicality, which states that the evolution of the expectation value of operators
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computed by random pure states serve as a good approximation for the average
over Hilbert space.

Our investigations of pure state relaxations and correlations of equilibrium
fluctuations of observables led us to introduce a modified regression relation (Eq.
3.33). This relation connects the relaxation to equilibrium with the correlation of
the equilibrium fluctuations treated as a classical time series.

The above results indicate that the quantum correlation function of some ob-
servable can be extracted from the time series of the expectation value of that
observable generated by a single pure state.

Qantum dynamical typicality was employed in section 3.4.3 to introduce an
even more efficient technique to compute correlation functions (Eq. 3.48) than the
one based on ORR. A comparison between the efficiency of the two approaches is
given in Fig. 3.7.

We anticipate that the recent progress in nonequilibrium dynamics of closed
interacting quantum systems [115] will make use of the relaxation approach de-
scribed in this chapter in quantum simulation experiments to evaluate correlation

functions of complex many-body systems.



Most investigators accept the lack of chaos in finite,
bounded, undriven, quantum systems with the same
ease they accept the statement that a simple closed
curve divides the plane into an inside and an outside.
Yet the proof of both these results contains many sub-
tleties [110].

Joseph Ford and Matthias Ilg

Sensitivity of quantum spin systems to

small perturbations

As discussed in the first chapter, many criteria for chaotic behavior in nonin-
tegrable quantum systems have been devised to discriminate it from integrable
systems. Nevertheless, there is no consensus about how the basic indicator of
chaos, that is exponential sensitivity to small perturbations, carries over to quan-
tum systems (e.g., quantum spin systems).

A popular indicator of sensitivity to small perturbations in quantum systems
is the quantum fidelity, defined as the overlap between the wavefunctions of per-
turbed and unperturbed systems. In this chapter, we first describe our investi-
gations of the fidelity of quantum spin systems, from which we were not capable
to discriminate integrable from nonintegrable dynamics. Afterwards, we follow a
pedagogical approach and present initial trials to generalize the concept of dis-
tance between perturbed and unperturbed states in phase space to the quantum
domain. Finally, we investigate manifestations of chaos under imperfect time re-
versal of spin dynamics, known as Loschmidt echo, in the behavior of the total
magnetization. We show that for classical spin clusters, Loschmidt echo exhibits

the exponential sensitivity to small perturbations characterized by the largest Lya-

81
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punov exponent of the system. On the other hand, we show that quantum spin 1/2
systems do not exhibit exponential sensitivity to small perturbations in imperfect
Loschmidt echo experiments.

Some of the indicators for quantum chaos proposed in this chapter are also
applied to quantum spin systems with spin quantum number S > 1/2. The objec-
tive of investigating these systems is two-fold. First, to investigate the quantum
to classical transition in quantum spin systems with regard to the onset of chaos.
Second, to investigate whether the chaotic signatures of such a transition can be
detected in NMR experiments on nuclear isotopes whose values of S are of the
order of S = 3.

It is commonly believed that the classical behavior is reproduced by increasing
the relevant quantum number of the problem. In the case of a quantum spin
system, the classical limit is obtained by increasing the quantum spin number [117,

|, with the proper normalization of the spin operators, such that the energy
spectrum approaches a continuum in the classical limit. Some of the questions
relevant to chaos in the quantum-classical transition are: Do Lyapunov exponents
exhibit a smooth transition towards their limiting values in the classical limit
or a sharp transition? Can the exponential sensitivity to small perturbations
be detected in numerical simulations performed on small clusters of large spins,
without the need for taking the limit of large system sizes?

The main result of this chapter is that quantum spin 1/2 systems exhibit no

exponential sensitivity to small perturbations.

4.1 Quantum fidelity

The defining property of chaos in classical dynamical systems is the instability
of classical trajectories in phase space under small perturbations to the initial
conditions. A possible generalization of this property to quantum systems can
be given in terms of the stability of the wavefunction of the system |[¢(¢)) un-
der perturbations to the Hamiltonian itself. The standard way to measure the
closeness between |)(t)) evolved by the Hamiltonian H and [¢)'(t)) evolved by the
Hamiltonian H +dH (t), i.e., the fidelity of the evolution, is to measure the overlap
between [¢(t)) and [¢'(t))

O(t) = [(L ()" (1)) (4.1)

'Fidelity is normally defined as the square of this quantity.
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In 1984, Asher Peres proposed that the fidelity function has the promise to
distinguish integrable from nonintegrable systems [25]. Peres suggested that O(t)
decays more substantially for a nonintegrable system than an integrable one, i.e.,
nonintegrable systems are less stable to perturbations. In the more general case
where the initial state is a mixed state represented by the density matrix p(0),
the overlap between the perturbed and unperturbed systems is given by O(t) =
Te{o/ (1) (D)}2.

The concept of fidelity is closely connected with the Loschmidt echo experi-
ments [119] which measure the reversibility of the dynamics subject to perturba-
tions [120]. When the system is propagated for a time ¢ with the unperturbed
Hamiltonian H and then propagated backward for time t with the perturbed
Hamiltonian Hs, the fidelity of the evolution is defined in terms of the overlap

between the initial and final state,
O(t) = |{(0) [T/ Me= M4 (0))]. (4.2)

When the initial state is a Gaussian wavepacket, the overlap between the per-
turbed and unperturbed evolutions was indeed shown to decay exponentially in
quantum systems whose classical counterpart is chaotic (more precisely when the
initial state of the wavepackets correspond to chaotic region in the mixed phase
space of the classical system) [121] and the rate of exponential decay was even
connected with the Lyapunov exponent in the classical limit [122].

In the following, we acquaint ourselves with the behavior of O(t) for different
types of perturbations to quantum spin systems and in the next subsection we
compare the behavior of O(t) for integrable and nonintegrable systems.

First, let us consider a time-independent perturbation 0H(t) = 0 H. The time

evolution operator of the perturbed Hamiltonian is given by:
U(t) = e~ wHHML (4.3)

According to the Baker-Campbell-Hausdorff theorem|[123], U(t) is equivalent to
e~ iHte=5OM only when [H,5H] = 0. In this case, O(t) = (1(0)|e~#H|4)(0)).
Consider a quantum spin chain with the nearest neighbor interaction Hamil-

tonian

H = Z J2Si"Sip1” + J,Si¥Sita? + J.Si"Si1”,

and a perturbation field that couples to the total spin polarization, 0H =), S;*.
We let & = 1 in the rest of this chapter. We show in Fig. 4.1 that O(t) can ex-
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hibit both oscillatory behavior and monotonic decay, depending on the interaction

coefficients of the system, J,, J, and J..

IOY “““““““““““ 7
0.8
S 06l
> |
% 0.4*:“\
0.271\
0.0 Sl A — \_—
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Figure 4.1: The overlap function O(t) for the wave functions of the perturbed and
unperturbed quantum spin chains consisting of 16 spins whose Hamiltonian is H =
> i J2SiSit1” 4+ JySi¥Siy1Y + J.8iSi1” and perturbation Hamiltonian 6H = 6) , S;*.
The vlaues of the coupling coefficients are J, = J, = v/3,J, = 0 (blue), J, = J, =
V3, Jp =0 (red) and J, = /2, J, = \/6/5J, = 1/14/5 (green). In all cases, § = 1.0 and

the initial state |¢(0)) is a completely random state.

We notice from the blue curve in Fig. 4.1 that O(t) exhibits complete recur-
rences in the case when [H,dH| = 0. We may anticipate that the more accurately
the time evolution operator of the perturbed system can be approximated by the
product e #Me~ 50Nt the stronger the recurrences in O(t). We illustrate this
expectation by computing the difference between the exact evolution operator and
the product e~ #Mte=w @Mt for ¢ = b = 1 and § = 0.1 for both the anisotropic
XYZ model, which exhibits recurrences, and the YY model, which does not exhibit

recurrences in the case of a 2-spin system

0.00021e%%™ 0 0 0.0079¢0-85m
e_i(HXYZ'HsH)t — e iHxvyzt —i0Ht _ 0 0 0 0 ’
0 0 0 0
0.0079¢>127 0 0 0.00021¢ 035
0.0061e%3™ (0 0 0.042¢~ 013
e~ i(Hyy+oH)t _ —iHyyt —idHt _ 0 00 0 (4.4)
0 0 0 0

0.042¢%%m 0 0 0.0061e~0-65™

We note that the elements of the difference matrix in the first case are one order of

magnitude smaller than in the second case, which confirms the claim made above.
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As for the rate of decay of O(t), the higher the strength of H (i.e., stronger

perturbation), the faster the overlap decays to zero.

On the dynamic side, when the perturbation is time-dependent, dH(t) =
dH f(t), the slower the variation of f(t) (i.e., adiabatic perturbation) the faster the
decay of O(t). In Fig. 4.2 , we illustrate the overlap for a generic nonintegrable
quantum spin chain with next nearest neighbor interaction, for constant pertur-
bation compared with the same perturbation modulated sinusoidally at different

frequencies.
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Figure 4.2: The overlap function O(t) for the wave functions of the perturbed and
unperturbed nonintegrable quantum spin chains consisting of 16 spins 1/2 with Hamil-
tonian H = ), JpSi"Si11” + JySi¥Sit1Y + J2S8i°Si11° + 0.3(J2Si"Siy2” + JySi¥Sii2¥ +
J>Si*Sit2%) + >, hiSi® where h; is a random field in the range [—0.1,0.1]. The pertur-
bations to the Hamiltonian are §H(t) = 6H = 0.1, S;* (blue), 6H(t) = §H sin(ZFt)
(red), 6H (t) = 6H sin(%t) (green) and §H(t) = 6H sin(3Zt) (brown).

We now pose an important question: Can we find for a certain Hamiltonian
H and perturbation 6H a resonance frequency at which O(t) decays faster
than lower frequencies as well as higher frequencies? From a simple scan over
frequencies, the answer to this question seems negative; i.e., there is no quantum
2

resonance in the sense defined above No further investigations of the above

questions is presented in this thesis.

2This definition of resonance should be distinguished from quantum resonances in NMR
experiments where the total magnetic polarization, not the wave function, is the quantity of

interest and also from the nonlinear quantum resonances discussed in [124].
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4.1.1 Fidelity decay for integrable and nonintegrable quan-

tum spin systems

We examine in this part the decay of O(t) for both integrable and nonintegrable
quantum spin lattices. The strength of the perturbation Hamiltonian has to be
sufficiently weak so that it does not change the character of the dynamics (e.g.,
break the integrability), and in the same time not extremely weak so that we can
observe a considerable decay of O(t) in a finite time.

We consider for the integrable system an XXZ spin chain consisting of 24 spins
and for the nonintegrable system a 2D XXZ spin lattice consisting of 4 x 6 spins.
The coupling constants are J, = J, = \/m, J, = —\/% while the perturbation
is taken to be a longitudinal magnetic field in the z direction of strength =0.1. It
is evident that the perturbation does not change the type of integrability in both
cases since it commutes with the Hamiltonian.

In Fig. 4.3, we show the level spacing distribution P(s) for a single matrix block
of the later system in the translation-invariant basis corresponding to wavevectors
k, = 2m/4, k, = 21 /6 (see chapter 1) and total magnetization in the z-direction

> S7 = 8.5. This figure shows that P(s) follows closely the Wigner-Dyson dis-
—782 /4.0

s

tribution of the Gaussian orthogonal ensemble, P(s) = e . This implies
an underlying nonintegrable dynamics according to the Bohigas-Giannoni-Schmit
conjecture [28].

We found out, as depicted in Fig. 4.4, that the decay of O(t) is almost indis-
tinguishable for the integrable and nonintegrable cases. That confirms the belief
that fidelity is not in general a good measure for quantum chaos or the complexity
of quantum motion [125].

To investigate whether this quantity shows better distinction between inte-
grable and nonintegrable systems in the classical limit (i.e., large values of the
spin quantum number S), we considered two chains of spin-10. The first one is
an Ising chain, which is guaranteed to be integrable for an arbitrary S, and the
second one has an XXZ7 Hamiltonian, which is known to have a nonzero Lyapunov
exponent in the classical limit [19]. The comparison of O(t) depicted in Fig. 4.4-
b for the two systems illustrates again that O(t) is incapable of distinguishing
between them.

We point out that this observation contradicts the conclusion of J. Emerson
et. al. in [126] from studying kicked tops that “exponential (nonexponential)

fidelity decay can be correlated with the presence (absence) of characteristic RMT
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Figure 4.3: The probability of the level spacing s of the energy levels for the Hamil-
tonian matrix block corresponding to K, = 2n/4, K, = 27/6 and ST = 8.5 of an XXZ
spin 1/2 lattice consisting of 6x4 spins. The solid curve is the Wigner-Dyson distribution

ms ,—ms? /4.0

function %e The energy levels have been renormalized ( unfolded) such that

the mean level spacing =1.
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Figure 4.4: (a): The overlap function O(t) for an integrable XXZ spin chain consisting
of 24 spins with coupling constants J, = J, = \/%, J, = —\/%, (blue) compared to a
nonintegrable 6 x 4 XXZ spin lattice on logarithmic scale(red). (b): O(t) for a 5 spin-10
chain with Ising coupling coefficients (blue) and XXZ coupling coefficients (red). The
perturbation is taken to be a longitudinal magnetic field (in the z direction) of strength

=0.1.

(random matrix theory) spectral fluctuations in the unperturbed system provided
that the applied perturbation commutes with a system coordinate”.

We finally investigate whether the survival probability P(t) , defined as |{t(t)[1(0))|?,
behaves differently for integrable and nonintegrable quantum spin systems. The
quantity P(t) vaguely defines the memory that the system retains of its initial

conditions. We observe in Fig. 4.5 that P(t) behaves qualitatively the same in
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the integrable 1D XXZ and nonintegrable 2D XXZ systems.

Figure 4.5: The survival probability P(t¢) for an integrable XXZ spin chain, with
coupling coefficients J, = J, = 0.612 and J, = —0.5 (blue) compared to a nonintegrable
5 x 4 XXZ spin lattice with coupling coefficients J, = J, = 0.433 and J, = —0.353
(brown) on logarithmic scale. In both cases, P(t) is computed by averaging over 10

initial conditions.

4.2 Elementary attempts to define a quantum Lya-

punov exponent

Do quantum systems exhibit an exponential sensitivity to perturbations or initial
conditions analogous in any form to the exponential sensitivity that characterizes
classical chaotic systems? This is an unsettled issue. Let us discuss the various
points of view.

The primary argument for those who support the absence of exponential sen-
sitivity in quantum systems is that quantum mechanics is intrinsically linear, and
therefore the quantum amplitudes, which define all measurable properties, do not
suffer from the nonlinearity which dominates the behavior of chaotic classical sys-
tems and leads to exponential sensitivity. Therefore, exponential sensitivity should
not appear even in quantum systems which have chaotic classical limits, as another
quantum chaos signature. Moreover, the very nature of quantum mechanics and
the Heisenberg uncertainty principle makes the notion of arbitrarily close points
in a phase space meaningless [127]. In addition, the discreteness of energy spec-
trum of bound quantum systems makes the evolution of any observable periodic

or quasi-periodic, and this opposes the randomness generated by the Lyapunov
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instability.

On the other hand, it is widely believed that at the proper limits of large
quantum numbers or small Planck’s constant, the classical behavior should be
restored from the quantum laws of motion. If a quantum system that has a
chaotic classical counterpart is initialized with a very narrow wavepacket, the
evolution of the wavepacket will follow the classical trajectory for a finite time
interval (and hence exhibits hypersensitivity to initial conditions) as outlined in
chapter 1. Moreover, the force that govern all of the classical effects observable on
everyday scale is the electromagnetic force, which is fundamentally described by
quantum electrodynamics. Even when decoherence effects through the interaction
with some environment are invoked in order to reproduce classical behavior *, one
might argue that the environment itself is inherently described by the quantum

laws.

Bliimel and Esser [128] have introduced an important classification of quan-
tum systems with respect to their ability to incur exponential sensitivity. Type
I includes quantum systems which are chaotic in the classical limit, and exhibits
quasi-periodic behavior and no exponential sensitivity (at least in the long time
limit), despite showing some or all of the quantum chaology hallmarks. Type II
are quantum systems which are coupled to classical degrees of freedom and show
exponential sensitivity. Type III are quantum systems that intrinsically exhibit ex-
ponential sensitivity as a pure quantum effect. At the time of writing their paper,
Blumel and Esser admitted that type III was an empty set, in their words “fully
quantized systems exhibiting all the ear-marks of classical chaos are presently not
known”. It is the aim of this section to investigate whether nonintegrable quantum

spin systems belong to type III.

The basic idea of our investigation is to try to compensate for the lack of
the notion of a phase space in macroscopic quantum spin systems by exploiting
the huge number of degrees of freedom to define new quantities that behave in
a classical manner. This agenda is similar to the vision of Mendes [129] who
declares that “non-trivial statements (about the sensitivity of quantum systems
to perturbations) have necessarily to involve expectation values of operators”. It
is for these considerations that many researchers [122, 129-132] over the last two
decades have not given up on defining Lyapunov exponents for quantum systems.

We admit that any time-independent quantum spin system consisting of a finite

3M. Berry phrases it as "‘decoherence’ suppresses the quantum suppression of chaos" [14].
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number of spins is integrable [133], and true chaotic behavior can only appear in
the limit of infinite number of spins or infinite quantum spin number. However,
the hope is to detect any precursors of this chaotic behavior during the transition
to either of these limits.

The aim of this section is to try to define an intrinsic quantum quantity that
exhibits exponential growth, exclusive for nonintegrable systems, analogous to
the exponential growth of distance between orbits in the classical phase space for
chaotic classical systems. Previous trials to define quantal Lyapunov exponents in
this spirit made use of Bohmian trajectories to introduce a meaningful distance
measure |132]. It is clear that for small enough perturbations that does not resolve
the spacings between the energy levels of the quantum system, there is no big
chance to find exponential sensitivity. However, the hope is to find some regime
of perturbations where this sensitivity will show up. The ultimate goal is to find
some macroscopic quantity that depends sensitively on small perturbations of the
quantum system and can be measured in NMR experiments.

We consider two types of perturbations:

(i) Perturbations in the initial state [1(0)).

(ii) Perturbations in the Hamiltonian H.

We concentrate mainly on spin 1/2 systems, but show also simulation results for
spin higher than 1/2 in order to investigate the transition to the classical spin
limit.

Let us suppose that a random wavefunction [¢) is subjected to a small pertur-
bation. A possible way to implement perturbation in quantum spin systems is to
rotate each spin slightly around some random axis. We take the rotation axis for
each spin to be either ¥, ¢ or Z. Therefore, we can write the perturbed state |¢)

W) = RI[Y), (4.5)

where R = IL e—ieisf‘ i, ¢ is an index running over all spins, q; is either x, y, or z and
0; is a small random angle. When a classical system is perturbed, the new state of
the system is completely distinguishable from the old state. To approximate this
condition in quantum systems, we let one of the rotation angles 6; be /2.

If we consider a nonintegrable classical spin system and denote a trajectory by
the coordinates of all spins, X = {512+ S1ys S1z, S2z, S2y, Sa2z, ...}, and the distance

vector between two trajectories by D(t), where

D(t) = X (£, X + Do) — X (£, Xo) | (4.6)
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then |D(t)|? would grow exponentially by a rate determined by twice the maximum
Lyapunov exponent, as shown in Fig. 4.6-d.
The naive attempt to define a distance d(t) for a quantum system between
perturbed and unperturbed evolution in the Euclidean sense leads to
. . 2
P(0) = 3 (WIS 0) — OIS e))

7,00

(4.7)

which can be rewritten in terms of the time evolution operator as

P(1) = 3 ((0) RS HR(0)) — (o(0)| ST P4 pi(0))) . (48)
A proper measure of any exponential growth of d(¢) should take into account
averaging over many initial states |¢(0)). It is clear that, in experiments, we
do not have access to the measurement of all the components ;¥ and a more
realistic situation would be to consider one macroscopic operator such as ) . S,
We will adopt this approach in the next section.

We show in Fig. 4.6-a a comparison of d*(t) for an XXZ system of 4 x 3

spins with coupling coefficients J, = J, = ,/13—6 and J, = —% and an integrable

XXZ spin chain consisting of 12 spins with coupling coefficients J, = J, = \/g
and J, = —0.5. Each plot represents averaging over 100 different initial states.
The figure indicates a difference in d?(t) between the two systems. However,
trying with another nonintegrable system which is an XYZ chain with coupling
coefficients J, = \/g, Jy = \/g and J, = —\/125 and next nearest neighbor of
strength 30% of the nearest neighbor coefficients, we notice, as in Fig. 4.6-b, that
it almost coincides with the integrable XXZ chain. Therefore, we attribute the
difference in Fig. 4.6-a to the dimensionality rather than the integrability. In Fig.
4.6-c, we show the level spacings statistics for the eigenvalues of the XYZ chain,

to demonstrate its nonintegrability.
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Figure 4.6: (a) d?(t) computed for a 2D spin 1/2 XXZ lattice consisting of 4 x 3 spins
with coupling coefficients J, = J, = \/% and J, = —%, (blue) and a spin 1/2 XXZ chain
consisting of 12 spins, with coupling coefficients J, = J, = \/g and J, = —0.5, (red). (b)
Same as (a), for a nonintegrable XYZ chain with coupling coefficients J, = \/I , Jy = \/g

and J, = —\/% and next nearest neighbor (NNN) interaction of strength 30% of the
nearest neighbor coefficients (green) and an XXZ chain (red). (c) Level spacing statistics
for the XYZ with NNN coupling Hamiltonian computed for a single Hamiltonian matrix
block corresponding to k, = % of an 18-spin chain. (d) The phase space distance
|D(t)|? between a perturbed and unperturbed trajectory for a nonintegrable classical
spin chain consisting of 100 spins, averaged over 10000 trajectories. The perturbation

is done by rotating each spin randomly around a random direction by an angle in the

range [—m/100, 7/100].

4.2.1 Novel quantifiers of sensitivity in quantum systems

As a first improvement, we define a new quantity, p(t), which captures the essence

of d?(t) and implements the averaging as a trace operation over the whole Hilbert
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space as
p(t) ="Tr Z (R*emtS?ie_mtR — ethS?ie_th>2 . (4.9)

1,00
In this step, we have replaced the classical variables in the phase space distance
by quantum operators rather than quantum expectation values as in Eq. 4.7. To
compute this quantity, we work in the eigenbasis of the Hamiltonian in order to

+iHt  Therefore, we are limited

be able to evaluate the time evolution operators e
to a small number of spins.

In the rest of this section, we choose as a benchmark for an integrable system
3

the Bethe integrable XXZ spin % chain with coupling coefficients J, = J, = \/;

and J, = —0.5. We choose two types of nonintegrable systems. The first is an
XYZ chain with coupling coefficients J, = \/Lﬁ, Jy = \/Lﬁ and J, = —\/iﬁ and
next nearest neighbor of strength 30% of the nearest neighbor coefficients. The
second nonintegrable system is a 2D XX7Z lattice with coupling coefficients equal
to \/Li of the coefficients of the integrable system. When comparing quantum
spin systems with different spin quantum number, the coupling constants of the
Hamiltonians should be scaled such that the time scale of different systems is the
same. This is achieved by dividing the coupling constants by \/m , Where
S is the quantum spin number.

We show in Fig. 4.7 p(t) computed for the three spin 1/2 systems. We notice
that @(t) exhibits a very similar behavior for the integrable and nonintegrable spin
1/2 chains. On the other hand, there is a noticeable difference in p(t) between 1D
and 2D systems.

In Fig. 4.8, we present the results for o(t) computed for XXZ chains with
spin quantum numbers: 1/2,1 and 3/2. Note that in this case, all rotations are
implemented around the z-direction. The reason is that the elementary basis

in which the eigenbasis of the Hamiltonian is represented is the Ising basis in
the z-direction, and in this case R is diagonal. While for spin-1/2, the operator
Rq(n) = exp(—i§7-n) has a simple form: R,(n) = cos (%) —z'c?-nsin(%), there
is no such simple form for rotation operators of higher spins. We notice a clear
contrast between spin 1/2 and higher spins. This difference may not be associated
with the breaking of integrability, as we noticed in Fig. 4.7-b. The limited range
available for the growth of p(¢) in the higher spin case, which depends on the
number of spins in the system, makes it difficult to detect any sign of extended
exponential growth.

In order to compute @(t) for bigger spin clusters, we resort to the quantum
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Figure 4.7: (a) p(t) computed for a 2D spin 1/2 XXZ lattice consisting of 4 x 3
spins (blue) and a spin 1/2 XXZ chain composed of 13 spins (red). (b) Same as (a),
for a nonintegrable XYZ chain consisting of 13 spins 1/2 with next nearest neighbor
interaction (green) and an XXZ spin 1/2 chain (red). See the text for the parameters of

the Hamiltonians.

Figure 4.8: p(t) computed for an XXZ 13-spin chain, spin quantum number 1/2 (blue),
7-spin chain, spin quantum number 1 (red) and 6-spin chain, spin quantum number 3/2

(green).

typicality approach described in chapter 3. Instead of computing the trace over
the whole Hilbert space, we consider one single wavefunction, [¢)) and use it to
compute the expectation value of the ‘traced’ operator in Eq. 4.9. Let us define

the new quantity x(¢) that computes p(t) based on a single pure state calculation.
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After expanding the square bracket in 4.9, we arrive at

p(t) m x(1) = 3 (e e M ) 4 (IR MG e MR y)

2,00
. <,¢ |R* ethS;OéiefthRethSgliefth|w>
_ <w’ei’HtS;aief’thR*ethS?iefthR‘qﬂ)‘

(4.10)

By noticing that for spin 1/2, Sf"g = 1, which makes the first two terms constants,

and that the last two terms are the complex conjugate of each other, we can write

X(t) as
X(t) = Z <O.5 -2 Rew]emtS;-aie_thR*ethS?ie_thR\w)) : (4.11)
To compute one single term from the sum in Eq. 4.11, we generate a random state
|¢) and define |#) = R|y). Afterwards, we propagate the two states simultaneously
~iHt At the instant of time when we
desire to compute the value of that term, we compute |¢'(0)) = S%[6(t)) and
|4'(0)) = Sf"w(t)) Subsequently, we propagate each of |#') and [¢)') backward in
time for an interval of time equal to the current time instant and the value of that
term would be 0.5 — 2 Re(y/'(—t)|R*|0'(—1)).
We show in Fig. 4.9 x(t) computed for the same Hamiltonians of Fig. 4.7

in time with the time evolution operator e

for systems consisting of 18 spins. One difference between the calculations is
that we have restricted the rotations directions to be along the z-direction. This
figure confirms the findings of Fig. 4.7 that the quantities defined so far are more
sensitive to the dimensionality of the system rather than the integrability.

Next, we consider evaluating x(t) for XXZ spin chains with spin quantum
number > % Note that in this case, we can not use Eq. 4.11 since 52 is not
proportional to a unity operator, therefore, we should use x(t) as defined in Eq.
4.10. The results are illustrated in Fig. 4.10 for different values of S. We make
several observations from this figure. First, we notice again that the level at which
X (t) saturates depends exclusively on the number of spins in the system. That in
mind, we recognize from Fig. 4.10 that a system with S = 1 faithfully represents
all higher S, and there is no systematic tendency towards an exponential growth
in y(t) as S is increased. We notice again, as in Fig. 4.8, the clear distinction
between S = 1/2 and larger S.

In Fig. 4.11-b, we plot x(¢) for two nonintegrable systems of spin 1/2 and

3/2, where we see the same distinction between the two cases. Therefore, we
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Figure 4.9: x(t) computed for a 2D XXZ lattice consisting of 6 x 3 spins (blue), a 1D
XXZ system composed of 18 spins (red) and a nonintegrable 1D XYZ system consisting
of 15 spins with next nearest neighbor interaction (green). The Hamiltonian parameters

are the same for figure 4.7.
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Figure 4.10: x(t) computed for XXZ spin chains consisting of 5 spins 5 (blue), 6
spins 3 (brown), 7 spins 5/2 (gray), 8 spins 2 (magenta), 9 spins 3/2 (red), 11 spins
1 (green). The dashed line represents a spin 1/2 system consisting of 18 spins. The

. . . . 1 .
coupling coefficients of the Hamiltonian are scaled by J5ED where S is the quantum

spin number.

conclude that this distinction is not related to the breaking of the integrability.
This situation reminds us of the investigations of Gade and Lowe of the free
induction decay of spin lattices of different spin quantum numbers S [131]. It was
found that the free induction decay (FID) exhibits a change between S = 1/2 and

S =1, and no change as S is further increased.
Further investigation of x(t) for other types of systems confirms that it is not
related to Lyapunov sensitivity in the classical limit. In Fig. 4.11-a, we plot x(t)

for different 1D and 2D spin systems of different quantum spin numbers. The
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Figure 4.11: (a) x(t) computed for a 1D lattice consisting of 18 spins 1/2 (brown), 1D
lattice consisting of 11 spins 1 (blue), 2D lattice consisting of 3 x 3 spins 1 (red), and 2D
lattice consisting of 3 x 3 spins 3/2 (dashed), all with XXZ7 Hamiltonians. The coupling
coefficients are chosen such that the 1D and 2D systems have the same maximum Lya-
punov exponent in the classical limit. (b) x(¢) computed for a 1D lattice consisting of 15

spins 1/2 (blue) and a 1D lattice consisting of 8 spins 3/2 (red) both with an anisotropic

1.0 _ 20 _ =30
V14.0° Jy = V14.0° Jz = V14.0
and next nearest neighbor coupling with strength 30% of the nearest neighbor coupling.

Heisenberg Hamiltonian with coupling coefficients J, =

The figures confirm two things: (i) The distinction in the behavior of x(¢) between the
spin 1/2 and higher spin systems and between systems of different dimensionality. (ii)

This distinction is probably not related to the breaking of integrability.

coupling coefficients of the 2D system are scaled such that in the classical limit it
yields the same value of the maximum Lyapunov exponent as the 1D systems. We
notice again that x(¢) exhibits distinct behaviors for the systems with different

dimensions.

The distinction between spin 1/2 and higher spin systems in the quantities
defined in this section is very interesting. The explanation of this distinction is
not clear to us. We saw already that it is not generally associated with the breaking
of integrability neither with the Lyapunov exponent in the classical limit. If both
X (t) and p(t) are not related to the Lyapunov instability in the classical limit, then
which property controls their behavior? Can we define a new quantum quantity
that do represent the Lyapunov instability in the classical limit? While the first
question is left open, we attempt to answer the second question in the following

section.
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4.3 Sensitivity of Loschmidt echoes to small per-

turbations

In this section we set out to investigate any possible signature of exponential sen-
sitivity in macroscopic observables of quantum systems. The intuition behind this
investigation is that macroscopic variables of quantum systems should have prop-
erties similar to classical macroscopic observables. Therefore, we first investigate
how to detect chaotic behavior from a measurable macroscopic behavior in spin
echo experiments performed on fictitious classical spin systems. In other words,
we wish to judge whether a macroscopic system is chaotic or not without having
access to the coordinates of its individual microscopic degrees of freedom, but only
to macroscopic quantities like total magnetization. We require that such a scheme
can be implemented in a manner applicable to spin echo experiments, so that we
can do the same test on macroscopic quantum systems.

The stimulating factor that has encouraged us to look into this direction is the
overwhelming similarity between the long time behavior of classical and quantum
spin lattices |12, |. The main finding of this section is that despite this sim-
ilarity, macroscopic systems of spin 1/2 do not exhibit exponential sensitivity to
small perturbation [5]. Systems having spin higher than 1/2, do show tendency

towards an exponential sensitivity very similar to the classical behavior *.

4.3.1 Computing the maximum Lyapunov exponent from
the behavior of macroscopic observables of classical

spin systems

The standard method to compute Lyapunov exponents is to measure the rate of
divergence of the distance between phase space trajectories as in Eq. 1.2. We
noticed, however, that by measuring the projection of the vector D(t) (defined in
section 1.1.2) on the direction of some observables such as the total magnetization
or even the polarization of one single spin, we can compute the value of A\,
very accurately. The explanation for this behavior is simple: Since the absolute

value of D(t) grows exponentially in the Lyapunov regime, its projection on some

4Many of the investigations of classical spin systems in this section were performed by Chahan
Kropf, and reproduced here with my own simulation, see [5]. The Lyapunov exponents were
computed by Astrid de Wijn.
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directions in phase space grows exponentially as well. The Lyapunov regime is
valid when both quantities are small with respect to the dimensions of the phase
space of the system.

Consider the macroscopic variable to be the total magnetization M,. In this
case, the projection of D(t) on dj;,, a unit vector in the direction of M,, is
equivalent to the absolute difference between M, of two different trajectories.
We illustrate in Fig. 4.12 two samples of the magnetization noises |M,o(t)| and
|M,1(t)| of an XXZ classical spin system consisting of 16 x 16 x 16 spins and
defined by the Hamiltonian

NN
Mo = JoSiwSja + JySiySiy + J-5:2S | (4.12)
i<j
where (Siz, Siy, Siz) = S; is a normalized classical spin vector, with coupling co-
efficients J, = —0.41, J, = —0.41, J, = 0.82. One of the samples is obtained
from a completely random state, and the other is obtained from the same state
after being slightly perturbed. The perturbation is implemented by rotating each
spin around a random axis by a small angle in the range [-107% 107%]. Such a
small perturbation makes D(0) sufficiently small so that the growth of [D(#)] is
controlled by Ajax.

In the same figure, the difference between the two magnetization noises |A M, ()]
is plotted together with an exponential function of the estimated maximum Lya-
punov exponent of this system. The good agreement between the two plots already
from a single noise sample indicates that this method can accurately predict the
value of A\.x by averaging over a sufficiently large number of independent samples.

We show in Fig. 4.13 the result for averaging over 1000 independent samples
with the same perturbation mechanism described above for the same XX7Z system
and an XYZ system with coupling coefficients J, = 0.873, J, = —0.436, J, = 0.218
together with a function of the form ¢ e*maxt, The very accurate agreement between
the three plots establishes the robustness of this method and confirms the findings
in [19] that away from the integrable Ising limit, Ay« is insensitive to the coupling
coefficients in lattices with nearest neighbor coupling.

In accordance with the expectation that chaotic classical systems exhibit Lya-
punov instability associated with perturbations to the Hamiltonian as well as to
the initial conditions [136]|, we verified that the same behavior can be obtained
when the test trajectory is evolved starting from the same state, but with a slightly

perturbed Hamiltonian as shown in Fig. 4.14.
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Figure 4.12: The magnetization noise |Myo(t)| for a classical spin system consisting
of 16 x 16 x 16 with coupling coefficients J, = —0.41, J, = —0.41, J, = 0.82 (red),
the magnetization noise |M,(t)| for the same system started with a slightly perturbed
state (green) and the absolute difference between the two signals |[AM,(t)| (blue). The
dashed line represents constant x ermaxt where A\ . = 0.63 is the maximum Lyapunov

exponent.
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Figure 4.13: |AM,(t)| averaged over 1000 independent runs for the same system in
Fig. 4.12 (blue) and for classical spin system consisting of 16 x 16 x 16 with anisotropic
coupling constants J, = 0.873, J, = —0.436, J, = 0.218 (red) shifted vertically for
the sake of clarity. The dashed line represents the function constant x e’maxt with

Amax = 0.63.
4.3.2 Extracting the maximum Lyapunov exponent from
Loschmidt echo experiments

Now, comes the question of how to apply this procedure experimentally to macro-

scopic systems of quantum spins to detect whether they exhibit exponential sen-
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Figure 4.14: |AM,(t)| averaged over 80 independent runs for a classical spin lattice
consisting of 16 x 16 x 16 spins with the coupling coefficients J, = 0.873, J, = —0.436,
J, = 0.218. |AM,(t)| represents the difference between total magnetizations of two
systems starting from the same initial condition, with the Hamiltonian of one of them
perturbed by the term >, hySy., where each hy, is randomly selected from the interval
[-21074,2 107]. The dashed line represents the function constant x e*maxt with Ay =

0.63.

sitivity or not. The answer to this question is readily provided by the magic
echo technique in NMR experiments pioneered by Rhim, A. Pines and Waugh
[137, |. In this technique, the decay of the macroscopic polarization of spins
can be reversed by applying a specific sequence of radio frequency (RF) pulses
that effectively reverses the sign of the Hamiltonian of the dipole-dipole interac-
tion. The motivation to use this platform to detect chaotic behavior came from the
proposal of Pastawski et. al. [139] to make use of the polarization echo in NMR
experiments as a probe to the fidelity decay defined earlier in this chapter. He
suggested that the inability to completely recover magnetization in polarization

echo experiments is explained by an underlying chaotic dynamics.

Although the previous treatment on the exponential growth of the projection
of |D(t)| on dy;, was carried in an equilibrium ensemble while NMR experiments
normally probe nonequilibrium dynamics of macroscopic spin systems, we can
still make use of NMR experiments to detect \,.x when it is nonzero. In a typical
NMR experiment, the system starts with a slightly polarized state and evolves
under the dipole-dipole interaction Hamiltonian for a certain time 7. At this
point in time, let us call it ¢y, the RF pulse sequence is applied and the sign of the
Hamiltonian is effectively reversed and after the same interval 7, the value of M,

is registered. Therefore, the previous technique of detecting Lyapunov exponent
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in classical spin lattices can be mapped to quantum spin lattices as the difference
between the perfectly reversed signal, M, (to — 7) (the original FID signal), and
the imperfectly reversed signal, M, (to + 7).

Normally, the reversal of the sign of the Hamiltonian is not perfect in realistic
setups [140]. The imperfections can be modelled by two factors:

(i) A perturbation to the state of the system, by some operator R, before the
backward propagation starts.

(ii) A perturbation to the Hamiltonian during the backward time evolution, mod-
elled by a term A added to the Hamiltonian.

For a classical spin system, each of these factors leads to the emergence of
Lyapunov instability as illustrated above when the initial state is picked from
equilibrium ensemble. In this case, the growth of |M,(tg — 7) — M,(to + 7)| as
~ e*maxT implies that ([M,(ty — 7) — M,(to + 7)]?) grows as ~ e?max7_ After
expanding the square bracket and noticing that in equilibrium, (M2(ty — 7)) =
(M2%(to + 7)) = (M?), we can write

(M, (tg — 7) M, (to + 7))
(M3)

=1 — CePmaxT (4.13)

where C'is a constant. The LHS of Eq. 4.13 represents an equilibrium correlation
function that can be approximated based on the linear response theory of the
previous chapter by a detectable NMR signal.

If we start with an initial state selected from the nonequilibrium density matrix
po = e~ Mo where « is a small parameter, then in the linear response regime, the

function

(M)
<Mx>0 ’

where ()¢ represents an average computed with respect to the density matrix

F(r) = (4.14)

po while () represents an average computed with respect to the density matrix
pr = U_34,(7) Ur Uy, (7) po, is equivalent to the LHS of Eq. 4.13. In this notation,
ps represents the density matrix of the system after evolving forward in time by
an interval 7, then perturbed by an operator R and propagating backward by the
same interval 7. We call the quantity 1 — F(7) the imperfect Loschmidt echo and

PmaxT when Lyapunov

from Eq. 4.13 we expect that it grows exponentially as Ce
instability exists.
In Fig. 4.15, we show the free induction decay (FID) of a classical spin system,

where the initial state is polarized at 15% of the maximum polarization. In Fig.
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4.16, we illustrate that 1 — F'(7) grows exponentially by the correct Lyapunov

exponent for a classical spin system consisting of 16 x 16 x 16 spins.
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Figure 4.15: The free induction decay (FID) for a classical spin lattice consisting of
16 x 16 x 16 spins with nearest neighbor interactions and coupling constants J, = —0.41,
Jy = —0.41, J, = 0.82 and initial polarization 15% of maximum polarization plotted

with a linear scale (a) and semi-log scale (b).
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Figure 4.16: (a) Imperfect Loschmidt echo 1 — F'(7) for the same classical spin lattice
in Fig. 4.15 (blue) where the state is perturbed by rotating all spins slightly around a
random direction by an angle in the interval [—0.01,0.01] before reversing the sign of
the Hamiltonian, averaged over 10* runs. (b) Same as (a) except for the perturbation,
which is done by perturbing the Hamiltonian during the backward evolution, by the term
> i MieSkz, where each hy, is randomly selected from the interval [—2 x 1074,2 x 1074].

The dashed line represents constant x e2Amaxt wwith \ .. = 0.63.
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4.3.3 Are Loschmidt echoes of quantum spin systems sen-

sitive to small perturbations?

We are now in a good position to examine the above findings applied on quantum
spin systems. In general, we are interested in the regime where the effect of
the perturbation on the total magnetization is small, and still causes the overlap
between the perturbed and unperturbed wave functions to vanish in macroscopic
systems. The quantum expression for the echo function F(7) is
Tr {62'7-[07' R e=iHor N[ eiHor R —iHor Mx}
Tr{M?2} ’

F(r) (4.15)

where

R =[] e ™% ~ ] (2 — id6)Sk) - (4.16)
k k

We notice the apparent similarity between 1 — F(7) and individual terms in the
sum in Eq. 4.11 when written as trace formulae, except for the nature of the
magnetization operator involved in the trace formulae.

In the following, we give qualitative and analytical arguments that, contrary
to the classical case, the effect of the perturbation R on the quantum system is
equivalent to the effect of flipping a few spins randomly located in the lattice. In
the next subsection, we will show numerically that the flipping of only one spin
is already a large disturbance, even for a chaotic classical spin system, that falls
outside the Lyapunov regime. Therefore, we expect not to get any exponential
growth in the behavior of 1— F'(7) in quantum systems subject to the perturbation
R.

Let us express the operator R as

Ns
R=) An, (4.17)
m=0

where A,,, as illustrated below, is a generic term of order (06;)™ and consists of
m spin operators Si,. The effect of this term on the wavefunction is to flip the x-
components of m spins, sparsely located in the lattice. This is a large perturbation
that falls outside the Lyapunov regime, if it exists. If we consider only a single spin
flip, the perturbation caused by this action will spread throughout the entire lattice
as a “perturbation bubble” whose size grows in a power law manner rather than
exponentially (the number of spins within this bubble, is proportional to |D(¢)] in
the classical case). Therefore, the net disturbance on the total magnetization is

not expected to grow exponentially.
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Let the wavefunction before and after the effect of the perturbation be denoted
by W_ and W, respectively, where ¥, = RW¥_. For all practical purposes, ¥_ and
W, have no overlap with each other in macroscopic systems. Based on Eq. 4.17,

we can write WU, as

V=) v, (4.18)

where VU, is obtained from W_ by flipping the x-components of a certain configura-
tion of spins. We call the set of states {U, } the perturbation basis. The above ar-
gument is valid when the main contribution to (M, ) comes from the “diagonal” el-
ements (U, |e =07 M,e"07 | ¥, ) while the interference components (¥, |e =07 M eo7 P )

do not contribute. We shall now show this explicitly.

By using the exact expression for R, R = [[,[1 cos(06y/2) —ioy, sin(06;/2)] =
SN A, we find that A, is given by

L(m)
A, = )" Z c08(00a1/2) cos(60a2/2)... cos(00a,n,—m/2)]

X [ 8in(0041/2)0 012 SIN(0002/2)0 025 SIN(0On0im /2) T m]

1 m L(m) 1 Ns—m
(—y) ; exp {—g ; 5012“3} (00010015 000mOamz),  (4.19)

Q

which represents a sum over all the combinations of m spin operators. The number

of these combinations, L(m) is given by the binomial formula

N, N, e~ mlinm=1)=(Ne=m)(in(Ny=m)-1)

T ml(N, —m)! 2m\/m(N, — m)

=

g
|
.

(4.20)

In Eq. 4.19, a represents a certain configuration of the spins whose indices are
{ay,0q,...a;,} while & = {ay, as,...an,_,} represents the complementary set of
indices. We have approximated the product of cosines by a product of Gaussian

functions, since we are working in the small angle limit, 66, < 1.

To illustrate the decomposition 4.17, we give explicit expression for R in the

case of three spin-1/2:
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R = H[]l cos(00/2) — ioy. sin(00/2)] =
k=1

SOS<591/2) cos(662/2) cos(065/2) 1

Ao

— 1 [cos(062/2) cos(065/2) sin(d6,/2) o1, + cos(061/2) cos(065/2) sin(d62/2) o2,
+ cos(061/2) cos(66,/2) sin(6603/2) o3.]

[\

Ay

+(—1)? [cos (665 /2) sin(00, /2) o1 sin(86/2) o,

+ cos(062/2) sin(661/2) o1, sin(063/2) o3, + cos(d01/2) sin(6605/2) o9, sin(06s5/2) o3, ]

A
+ (—i)*sin(66,/2) o1, sin(66,/2) oo, sin(663/2) os. . (4.21)
As

A state ¥, that belongs to the perturbation basis, corresponding to a certain

configuration a consisting of m spins, is expressed as

|\Ilz/(m,a)> = O'lalzala2z...0-lamz‘\lf,>, (422)

while its amplitude is given by

m Ns—m
1 1
Cu(m,a) = (—52) exp {—g E 5912017} 5‘91a1691a2...56[&m. (423)
p

The average of ¢, over many perturbations is given by

Ng—m

1 1'%

(evima ) = ()™ exp {—z ) <5ei,7>} (507 602 ). = e Ve o,
p

(4.24)

where

| =

(667). (4.25)

KR =

4
This quantity does not depend on the particular configuration a, but only on the
number of spins m. The overall probability to find the x-components of m spins
flipped is given by

Ns! m(ln k—Inm+1)—(Ns—m)[In(Ns—m)—1+k]
Pm ~ L(m)ef(stm)nHm ~ (&
21/m(Ng — m)

We now show that this quantity is dominated by the probabilities corresponding

(4.26)

to a small number m, i.e., only a small fraction of spins is effectively flipped.
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Neglecting the pre-exponential factor and maximising the power of the exponent
with respect to m, we find that the exponential factor is maximum when m is

given by N
m=2C kN, (4.27)
ker 4+ 1

That means that, on average, only a fraction &~ 1(067) of the whole lattice is
flipped, in the S,-basis, by the action of the perturbation operator. In other
words, the probability of each spin to be flipped is given by %(592), an expected
result.

Coming back to the main quantity of interest,

<Mx>f = Z C;ICV<\IIV/ |e—i'HOT M, €iHOT|\I},/>7
we show that it is primarily controlled by the diagonal elements, (¥, |e=0™ M, 07| ),
while the off-diagonal elements are orders of magnitude smaller. To begin with,
the average of ¢,¢, will vanish for v/ # v when the angles of rotations {06} are

uncorrelated. Moreover, if we represent |V, ) and |¥,/) as

U, = 042005-0p 20pz-| V), (4.28)

Uy = 04,2000 -0p 20p . [ U ), (4.29)

where {0, -, 04,2, ... } is the set of common spin indices between |V, ) and |V,/) while
{0p12:Opyzy .} and {0y, 0py ., ...} are the distinct indices, we see that at 7 = 0,
(U,/| M, |¥,) will be vanishingly small due to the unpaired spin operators in the
last two sets. We illustrate in Fig. 4.17 a typical evolution for (U, (¢)| M, |¥,(t))
and (¥, (¢)| M, |V,(t)) for a spin 1/2 chain consisting of 24 spins where each of the
states |¥,) and |W,/) is obtained from |¥_) by applying a set of three operators
{0i.} located randomly in the lattice.

To recapitulate, we have demonstrated that the effect of applying the pertur-
bation operator defined in Eq. 4.16 is equivalent to the action of flipping the
x-components of a small number of spins that represents a fraction = %(60@ of
the entire lattice. There are several configurations of spins a having the same
order of magnitude in their contributions which renders |W) a superposition of
all of them. Nevertheless, the net effect on (M) is dominated by the average

contribution of each of them, and their interferences are negligible.
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Figure 4.17: This figure demonstrates the order of magnitude of the terms
(U, (1) My |W,(t)) and (¥, (t)| M, |¥,(t)) for a spin chain consisting of 24 spins 1/2.
|W,) is obtained from |¥_) by applying a sequence of three randomly selected o;, oper-

ators.

4.3.4 Numerical simulations of Loschmidt echoes in quan-

tum spin systems

We now present the numerical simulations that show that support the previous
arguments. We take as a nonintegrable quantum spin-1/2 system a 2D lattice
consisting of 5 x 5 spins with XXZ coupling coefficients J, = —0.47, J, = —0.47,
J, = 0.94. This Hamiltonian corresponds to the Hamiltonian considered for clas-
sical spins after rescaling the coupling coefficients to account for the fact that
|S|? = 2 for a quantum spin while |S|> = 1 for a classical spin. We illustrate
in Fig. 4.18 the FID for this lattice, where the initial state is selected from the
ensemble py = e " with 8 = 0.1 corresponding to an initial polarization = 5%
of the maximum polarization. Numerically, we generate an infinite temperature
state [t), and obtain |¥,) by applying the operatore /2" on |1). The last step
is implemented through an imaginary time version of the Runge-Kutta routine

described in chapter 3.
We compute the quantity 1 — F(7), where F(7) is defined in 4.14, for the same

system by the same procedure described for the classical spin system. Namely,
we propagate the nonequilibrium state |Wy) for a certain time 7, perturb the
state, propagate it backwards for 7 and compute (M,);. However, now we can
take advantage of the quantum typicality results |1, | of the previous chapter

and the better averaging properties associated with the quantum simulation and
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Figure 4.18: The free induction decay FID computed for a 5 x 5 quantum spin 1/2
lattice, with XXZ coupling coefficients J, = —0.47, J, = —0.47, J, = 0.94, plotted on a
linear scale (a) and a semi-log scale (b). The initial state is selected from the ensemble
po = e P with B = 0.1 corresponding to an initial polarization = 5% of the maximum

polarization.

compute 1 — F'(7) based on one single initial state, |¥y).

In Fig. 4.19, we show 1 — F(7) computed for the quantum system where
the perturbation is implemented by rotating each spin around the z-axis by an
angle randomly selected from the interval [—0.01,0.01]. We observe that 1 — F(7)
exhibits no exponential growth in the limited range available by the finite system
size. We test the validity of the previous argument stating that the effect of
such a perturbation is equivalent to the flipping of a small fraction of spins by
computing 1 — F'(7) when the perturbation R causes a single spin flip (rotating a
single spin by an angle 7 around the z-axis). As depicted in Fig. 4.19, 1 — F(1)
computed by this perturbation is very close to the original echo function, and does
not exhibit exponential growth either. While the overlap between the perturbed
and unperturbed evolution is large in the first case, it is almost zero in the second
case. This implies that the vanishing of the overlap between |U;) and |Uy) in a

macroscopic system should not change this result.

To illustrate that one spin flip is a large perturbation that falls outside the
Lyapunov regime, we compute the echo function for a classical system, when the
perturbation is caused by completely flipping one spin (s, — —s,,s, — —s, and
s, — —s,). The results shown for an average over 8 x 10* runs is very similar to the
quantum case and confirm our previous explanation. To exclude the possibility

that the absence of exponential sensitivity in a 5 x 5 lattice is a finite size effect,
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we compute 1 — F/(7) and ([M,(ty — 7) — M,(to + 7)]*) for a classical system of
the same size when the perturbation is caused by a small rotation of each spin
and the initial state is selected from an equilibrium ensemble in the second case.
We show the results in Fig. 4.20 and they clearly exhibit an exponential growth

Of ~ el‘ﬁAmaxT‘

The second possibility for the disturbance of the echo by a perturbation to the
Hamiltonian, instead of perturbing the state itself, is illustrated in Fig. 4.19-b.
We disturb the echo function of the spin 1/2 system by adding a disordered field
in the z direction of the form ), hySy., where each hy, is randomly selected from
the interval [0.05, —0.05]. The growth of 1 — F'(7) does not show any exponential
dependence in this case either. We note, however, that the overall shape of the echo
function is determined by the overlap between |¥,) and |V ), which is initially very
close to one, and then decays to zero due to the perturbed dynamics. A perturbed
Hamiltonian continuously perturbs the state during the reversed evolution and
therefore makes the discussion on the absence of exponential sensitivity due to the

first type of perturbation relevant to this case too.

For the sake of completeness, we illustrate that a single spin flip is a large
perturbation even for a macroscopic system. We show in Fig. 4.21 ([M,(ty —
7) — M,(to + 7)]*) computed for classical 100 x 100 spin lattice when the echo is
disturbed by a complete flip of a single spin and by flipping only the x-component

of a single spin separately. The exponential sensitivity is absent in both cases.

Since the validity of our argument for the absence of exponential sensitivity to
perturbations in spin 1/2 systems relies on the fact that the projection of individual
spins 1/2 can not be perturbed by a small value, then we should expect to see first
signs of exponential growth in spin > 1/2 systems. This is indeed the case, as we
show in Fig. 4.22, where 1 — F(7) is computed for a classical spin chain consisting
of 1000 spins and a quantum spin-12 chain consisting of 5 spins. We see clearly
that a small region of exponential growth appears in the quantum case that has

the same slope on the logarithmic scale as the classical case.

Finally, we note that the Loschmidt echo produced by a spin-flip perturbation
in a classical spin system can be used to probe whether the perturbation caused
by the flipping of a classical spin propagates through the lattice in a ballistic or
diffusive way. Since 1 — F'(7) measures the square of the phase space distance
between the perturbed and unperturbed systems (|D(7)|)2, it can be used as an

indicator for the size of the perturbation bubble. If the perturbation propagates
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Figure 4.19: (a) Solid line: Imperfect Loschmidt echo 1 — F(7) for a 5 x 5 quantum
spin 1/2 lattice, with XXZ coupling coefficients J, = —0.47, J, = —0.47, J, = 0.94.
The perturbation is implemented by rotating each spin around the z-axis by an angle
selected randomly from the interval [—7/100, 7/100]. Dashed line: Imperfect Loschmidt
echo 1 — F(7) for the same quantum spin lattice, with the perturbation implemented by
rotating a single spin around the z-axis by an angle=m. Dotted line: imperfect Loschmidt
echo 1 — F(7) for a 5 x 5 classical spin lattice, with the perturbation implemented by
rotating a single spin around the z-axis by an angle equal to 7. (b) Solid line: Imperfect
Loschmidt echo 1 — F(7) for a 5 x 5 quantum spin 1/2 lattice, with XXZ coupling
coefficients J, = —0.47, J, = —047, J, = 0.94. The echo is disturbed by adding
a perturbation to the Hamiltonian of the form ), hySk., where each hy is randomly
selected from the interval [0.05, —0.05]. The dashed line represents 1 — [(¥ f|¥)|2.

through the lattice diffusively, the size of the bubble, and consequently (|D(7)])
grows as a power law ~ (1/7)% where d is the number of dimensions. On the other
hand, if the perturbation spreads ballistically, (|[D(7)|) grows as ~ 7¢. We show
in Fig. 4.23 the echo function for 1D, 2D and 3D classical spin systems perturbed

with a single spin flip on a log-log scale fitted with the functions c;71?%, cy728

38 respectively. The deviations from the prediction of the diffusion model

and c37
are 20%, 40% and 26% respectively. We present further investigations of the spin

diffusion problem in classical and quantum spin lattices in the next chapter.
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Figure 4.20: (a) Imperfect Loschmidt echo 1 — F(7) for a 5 x 5 classical spin lattice
averaged over 32 x 10 time evolutions. The echo is disturbed by rotating each spin
around the z-axis by an angle selected randomly from the interval [—7/100,7/100]. (b)
([My(to — 7) — My(to + 7)]%) for a 5 x 5 classical lattice (dashed black) where the state
is perturbed by rotating all spins slightly around a random direction before reversing
the sign of the Hamiltonian. In Fig. (b), the initial state is selected from an equilib-

rium ensemble. The dashed lines in the two plots represent the exponential function
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Figure 4.21: ([M,(tg — 7) — My(top + 7)]?) computed for a 2D classical spin lattice
consisting of 100 x 100 spins. The the disturbance to the echo is caused by completely
flipping a single spin (blue) or by flipping only the x-component of a single spin (red).
In both cases, the growth of ([M,(tg —7) — M (to +7)]?) is not exponential. The initial

state is selected from an equilibrium ensemble.
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Figure 4.22: The imperfect Loschmidt echo 1— F(7) for a classical spin chain consisting
of 1000 spins (dashed brown) averaged over 36 x 10* runs compared with 1 — F(7) for a

quantum spin chain consisting of 5 spins-12, with XXZ coupling coefficients (blue).

Figure 4.23: The imperfect Loschmidt echo 1— F(7) for a classical spin chain consisting
of 100 spins (a), 2D classical spin lattice consisting of 100 x 100 spins (b) and a 3D
classical spin cube consisting of 40 x 40 x 40 spins (c) plotted on a log-log scale, all with
XXZ coupling coefficients. The echo is disturbed at the moment of time reversal by the
flipping of a single spin. The three plots are fitted with power law fits, with exponents
1.22, 2.8 and 3.8 respectively.
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4.4 Summary

In this chapter, we tried to look for any signature of exponential sensitivity in
nonintegrable quantum spin systems. We started with the most popular measure
to quantify sensitivity to perturbations in quantum systems, namely quantum
fidelity. The negative results obtained in quantum spin 1/2 systems indicated
that either exponential sensitivity does not exist at all in these systems, or that
we have to look for another measure. We introduced several elementary attempts
that aimed to conceive analogous measures to Lyapunov exponents in quantum
spin systems. However, all of them failed to discriminate between integrable and
nonintegrable quantum spin systems. We noticed, however, a clear distinction
between spin 1/2 and higher spin systems.

The following endeavor sought to find out the footprint of exponential sensi-
tivity in the behavior of macroscopic observables. We developed a technique 5]
that could extract the value of the maximum Lyapunov exponent from imperfect
Loschmidt echo experiments performed on classical spin systems. Once again,
the same technique applied to quantum spin 1/2 systems implied the absence of
exponential sensitivity. The analytical argument justifying this behavior hinges
on the fact that a perturbation to a spin 1/2 will flip it completely. The effect
of the perturbation will propagate to the neighboring spins in a power law time-
dependent fashion. Therefore, the total effect on the magnetization does not grow
exponentially. For spins higher than 1/2; on the other hand, there is room for
small growth of the perturbation effect on the total magnetization locally in each
spin. Therefore, we can observe initial signs of exponential sensitivity in terms of

the Loschmidt echo in those systems.



Anything you can do in classical physics, we can do bet-
ter in quantum physics.

Daniel Kleppner

Spin diffusion and free induction decay in

solids

This chapter is devoted to two separate issues in the physics of quantum spin
systems: Spin diffusion and free induction decay in solids.

Spin diffusion is a scheme of spin transport which has practical implications in
information technologies [112]. An extensive number of studies have been pursued
to prove or disprove the existence of this regime (the spin diffusion hypothesis) in
quantum spin systems. In section 5.1, we apply the methods developed in chapter
3 to shed more light on this problem and compare the results of our simulation
with several results obtained in the past using other approaches.

One of these approaches used classical spin simulation to gain insights into the
analogous quantum problem. The idea of using classical spin dynamics to study
the properties of quantum spin systems is not new. In fact, it was exploited by
Fisher [113] to compute correlation functions and thermodynamic properties for
quantum spin 1/2 chains by simulating the classical limit of the quantum spin
chain. In the context of spin transport, Waugh et. al. in [135, | used classical
spin simulation to study spin diffusion in NMR systems. Recently, Steinigeweg

compared the spin transport at infinite temperature of classical and quantum spins

115
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and found also close similarity between the two regimes [115]. In section 5.2, we
use the same method to compute the free induction decay in solids and compare

our results with experimental data.

5.1 Spin diffusion in quantum and classical spin

systems

Consider a quantum spin system, where the projection of the total magnetization
in a certain direction is conserved, and the initial state of the system is such
that one spin is completely polarized while the rest is not polarized. How should
the polarization of that spin spread throughout the entire system? Will the spin
polarization be transported to the neighboring spins in a diffusive manner or a
ballistic manner? The answer to this question was first proposed in the context of
nuclear magnetic resonance (NMR) [116-115] to explain the long decay time of the
magnetization (75) by assuming that the energy (and magnetization) is spatially
transported in solids via a diffusion process.

The concept of diffusion in solids is a phenomenological concept to describe
the transport of conserved quantities in a hydrodynamic way following a diffusion
equation similar to the heat diffusion equation. Consider a quantum spin system

having the conserved quantity,
1
SH = — exp(igm)St , 5.1

where S* represents the '™ component of the spin operator at lattice site m. Ac-
cording to the spin diffusion hypothesis, the intermediate structure factor C* (g, t),
defined as

C* (q,t) = (S1 () 5", (0)). (5.2
follows the diffusion equation

0C* (q,t)

~ —Dg’C* (¢, t .
5 ¢ C"(q,1), (5.3)

at very small values of momentum ¢, long times and high temperatures. D is the
diffusion coefficient. This relation is applicable only for ¢ > 0, since at ¢ = 0,
C" (q,t) exhibits a time-reversible behavior, and can not be described by such
—Dg?t

an irreversible process. The solution of 5.3 yields C* (q,t) ~ e Noticing

that C* (q,t) is the spatial Fourier transform of the correlation function C,, (t) =
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(SE (t) Sy (0)), 1e., CF (g, t) = ), exp(—ign) (S¥ (t) Sk, (0)), we find that a
diffusive behavior in 1D leads to C,, (t) ~ t=V/ 2~ it [149]. In general, a diffusive
behavior in d dimensions leads to a decay of the long-time behavior of the auto-
correlation function (S¥ (t) S (0)) that behaves as t=%/2 [150].

It is generally accepted that the spin-1/2 XXZ Heisenberg model,

N
Hxxz =2J ) {S7Sf1+ S!S, + AS;S;.}, (5.4)

i=1
exhibits diffusive behavior for A > 1 and ballistic behavior for A < 1 (see [115, 151]
and references therein). In this section, we treat both the anisotropic Heisenberg
model (A > 1) and the more subtle isotropic model (A =1). We let & =1 in the

rest of this section.

5.1.1 Spin diffusion in isotropic Heisenberg systems

In this part, we will be concerned with testing the spin diffusion hypothesis at
infinite temperature for isotropic Heisenberg 1D systems with periodic boundary
conditions. In this case, we can show that C* (q,t) is equivalent to I}/(t) defined
in (3.47). Due to the isotropy of the system, we drop the p index from the
intermediate structure factor in this section and denote it simply as I,(¢). We will
use the quantum dynamical typicality approach developed in chapter 3 to compute
I,(t) for Heisenberg spin 1/2 chains for different values of ¢ and test directly
whether 1,(t) obeys a diffusion equation, i.e., test the validity of I,(t) ~ e~ Dt

We have computed I,(t) based on Eq. 3.48 for Heisenberg chains consisting
of 17, 20, 24, 26 and 29 spin 1/2 with nearest neighbor interaction Hamiltonian,
H = Jzi Si - Sit1. The value of ¢ is taken to be the smallest ¢ allowed for the
system, i.e., ¢ = ]2\,—72, where Ny is the number of spins. The normalized intermediate
structure factor, 1,(t)/1,(0) is shown in plots (a) in Fig. 5.1. We notice that after
the initial reversible behavior, a region of extended exponential decay appears,
before an oscillatory behavior dominates at large times.

To test whether the exponential parts of plots (a) in Fig. 5.1 obey the diffusion
behavior, 1,(t) ~ e~ Pa*t we plot the same data with the horizontal axis scaled as
a ¢*t in (b). If I,(t) was described as e=P9°t| the extended exponential regions for
different values of ¢ would be parallel to each other. It is not so obvious whether
this is the case or not in (b). In part (c) of Fig. 5.1, we plot the same data
with the time scaled as ¢ (1 4 0.1ln|g|) tIn(¢). The motivation behind this choice
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Figure 5.1: Intermediate structure factor I, (t) computed at infinite temperature using
(3.48) for Heisenberg chains consisting of 17 (blue), 20 (Red), 24(Gray), 26 (Green)
and 29 (Black ) spins with nearest neighbor interaction Hamiltonian H = J ). S; -
Sit1. q = 2mw/Ng, where Ny is the number of spins. The dashed plot is computed by
exact diagonalization for comparison. The horizontal axis is Jt for (a), ag?t for (b),
Bq? (1 +0.1In(q)) t In(¢) for (c) and yg*t*> for (d) where a, 3 and ~ are arbitrary scaling
parameters. The vertical axes for the upper three sets of plots are arbitrarily scaled.
Plots (b) test spin diffusion hypothesis. Plots (c) test scaling reported for classical spins

in [153].

comes from the work of Bonfin and Reiter [152] who found from numerical ex-
periments on the classical Heisenberg spin system that [,(t) fits equally well with
exp (—0.543 ¢*'%¢ In(t)) and exp (—0.537 ¢*(1+ 0.1 In|q|) ¢ In(¢)). The remark-
able coincidence between the four plots in (c¢), before the oscillatory regime domi-
nates, gives more credit to the proposal that I,(t) is described by e ~? 0¢”(1+0.11n|g|)¢ In(t)

as in the classical regime.

Before we go on and describe plots (d) in Fig. 5.1, we discuss the issue
of anomalous diffusion in quantum spin systems. It is clear that the function
exp (—Dy ¢*(1+ 0.1 In|q|) ¢ In(¢)) can not be the result of a normal diffusion pro-
cess. Let us first emphasize that what controls whether the spin transport is
ballistic or diffusive is the behavior of the current-current correlation function,
(TH(t)TH), where J* is the spin current operator corresponding to the magne-
tization in the p-direction. The current operator for J~* is ) jZ where J7 is

determined from the continuity equation % + VJ?: = 0. The time derivative
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term in this equation is computed using the Heisenberg equation of motion and
the gradient term is represented in a discretized form. After solving for jZ, we
find j2 = SZSY. | — SYSE. .. According to the Green-Kubo formula [91, 154], the

diffusion coefficient D is the integral of (J#(t)J"),
D- / At (T () T, (5.5)
0

A finite value of D occurs when (J#(¢)J") decays sufficiently fast. For ex-
ample, in the context of the Brownian motion problem, it is assumed that the
velocity auto-correlation function of the Brownian particle decays very fast, with
respect to the time scale of the large-scale motion of the Brownian particle, giv-
ing rise to the diffusive behavior. This turns out not to be the case in the spin
transport problem. It was found in the isotropic quantum Heisenberg system, by
means of tDMRG calculation in [151], that the diffusion coefficient anomalously
diverges with the square root of the number of spins, D o y/n. However, from our
numerical simulation, we found that I,(¢) is the same for the same ¢ and different
system sizes. Therefore, we suggest that the divergence of the diffusion coefficient
observed in [151] is an effective behavior due to the slow decay of the spin current
correlation function (J(t)J) at long times. If the current correlation function
decays as 1/+/t, then, according to Green-Kubo formula, D will diverge with the
square root of time. In this case, when the Green-Kubo integral is restricted to
times proportional to the system size, the effective proportionality D o y/n will
emerge [155, 150].

This line of thought gives rise to the possibility that I,(¢) can also be described
by exp (—DO q%ﬁ). We show in Fig. 5.1 (d), the scaling corresponding to this
behavior where horizontal axis is y¢*tv/t. The good agreement between different
values of ¢ supports this prediction as well. On the other hand, the better agree-
ment between I,(t) and exp (—Dy ¢* (1 + 0.1 In|q]) ¢ In(¢)) in Fig. 5.1 (c) implies
that (7 (t)J) decays as 1/t.

In what follows, we investigate the two possibilities for the behavior of the
current autocorrelation function using direct calculation of (7 (¢)J) based on the
Onsager regression relation (ORR) expressed by Eq. 3.29. In Fig. 5.2, we show
(J(t)J) computed for a 28-spin system. The correlation function is computed
using ORR with an initial state e=#7/2| (0)), where | (0)) is an infinite temper-
ature state and § = 0.25'. Although I, (¢) fits very well with both e=0-35 ¢ V1

!Compare the computation of (7(¢)J) with the computation based on tDMRG (Fig. 3-a in

[150]).
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Figure 5.2: Main frame: The spin current autocorrelation function (7 (¢)J) (solid)
computed using ORR (3.28) for a Heisenberg chain composed of 28 spins fitted with
with 0.105 4 0.55/¢ (dashed) and 0.065 + 0.35/+v/t (dotted). Inset: The intermediate
structure factor (I, (t)) computed using ORR (3.28) for the same system (solid) fitted
with e0-55 ¢* ¢ () (dashed) and plotted versus ot In(t) (a). Plot (b) represents the
same quantity plotted versus St'® and fitted with e=0-3% ¢ Vi (dashed). « and S are
arbitrary constants chosen such that the first zero crossing in the two plots coincide with

its location in the Jt axis. The vertical axis in (a) and (b) is arbitrarily scaled.

—0.55 ¢ t In(t) 45 shown in the inset of Fig. 5.2 , we show in the main frame of

and e

Fig. 5.2 that (J(t)J) fits better with 0.105 + 0.55/¢ than 0.065 + 0.35/+/t, which

gives more merit to the second form.

The results in Figs. 5.1 and 5.2 confirm the recent investigations suggesting
that the isotropic Heisenberg model is an intermediate case between ballistic and
diffusive behaviors [150, , 158]. A non-vanishing Drude weight, defined by the
limiting value of the spin current correlation function at very long times, gives
rise to an infinite DC conductivity and consequently indicates ballistic transport.
This is the case we have here as shown in Fig. 5.2. However, a non-vanishing
Drude weight is a not a necessary condition for ballistic transport. The diffusion
coefficient would also diverge with time if the current correlation function decays
to zero sufficiently slow. Our findings are consistent with the investigations in
[150], where the the transport in the Heisenberg chain with periodic boundary
conditions is attributed to the existence of both ballistic and diffusive channels

simultaneously.

Another way to deal with the spin diffusion problem is to compute the spa-

tial correlation function C,, (t). A diffusive behavior in 1D makes Cj (t) behaves
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Figure 5.3: The relaxation of (S§(¢)) for a initial state with one spin completely po-
larized. The systems is an isotropic Heisenberg chain consisting of 25 spin 1/2 with
periodic boundary conditions (blue) compared with At=079 (green) and B (¢ In(t)) "
(red), where A and B are fitting parameters. The horizontal and vertical axes are in log-
arithmic scales. In the linear response regime, (S§(t)) gives a good representation of the

spatial correlation function (SZ, (¢) S?, (0)) according to Onsager regression hypothesis

as t795. An earlier study by Fabricius and McCoy [159] on infinite temperature
correlation functions of 16-spin chains suggested the absence of spin diffusion in
anisotropic Heisenberg systems with small anisotropy. For the particular case of
isotropic Heisenberg system, they found that Cj (t) ~ ¢=0-70

ment between I,(t) and exp (—Dp ¢? t In(t)) suggests that Cp (t) ~ [t In(¢)]

. However, the agree-
—0.5
We illustrate in Fig.5.3 that the two predictions are very close to each other at

large times.

The infinite temperature spin-spin correlation function for a 25-spin chain is
computed in the spirit of Onsager relaxation relation by letting one spin be ini-
tially completely polarized in a completely unpolarized environment and follow-
ing the evolution of its polarization as it decays with time. During its relax-
ation to zero polarization (equilibrium state), the polarization of the spin will
pass through the linear response regime where its polarization is proportional to
Co(t) = (S§(t)S§(0)). In Fig. 5.3, the long time tail in the linear response regime
is compared with At=979 and B[t In(t)]"*° and shows a good agreement with the
two functions. The true behavior of Cy(¢) in the thermodynamic and long time
limits can not however be described by both functions since they diverge at very

large times.
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Figure 5.4: (a) The relaxation of (S§(t)) for an initial state with one spin completely
polarized. The systems is an anisotropic Heisenberg system with coupling coefficients
Jy = —0.5,J, = —0.5 and J, = 1 for a 1D system consisting of 25 spins (blue) and
2D lattice consisting of 5 x 5 spins (brown). (b) Same as (a) in logarithmic scale. The
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dashed black lines represent the fitting functions ¢; in the 1D case and co

in the 2D case.

5.1.2 Spin diffusion in anisotropic Heisenberg systems

After treating the controversial case of the isotropic Heisenberg system, let us now
consider the more established case of anisotropic Heisenberg, namely the XXZ
model. We have computed Cy(t) = (SE(t)S5(0)) for 1D and 2D XXZ systems
consisting of 25 x 1 and 5 x 5 spins respectively with coupling coefficients J, =
—0.5,J, = —0.5 and J, = 1. We used the same relaxation technique in Fig.
5.3 by letting one spin be completely polarized, while the rest of the system is
unpolarized. We show in Fig. 5.4 the relaxation of (S§(t)) for both systems
in linear and logarithmic scales. This figure confirms the existence of power law
decay regions in both cases. We show the fitting of these regions with the functions
c1 179%™ in the 1D case and ¢y t71%? in the 2D case. These functions are close to
the predictions of the spin diffusion hypothesis.

Let us now consider an interesting issue in the dynamical process of the re-
laxation of (S§(t)). In order to study the diffusion of a single spin polarization
(say the zeroth spin Sp), we have initialized that spin to a completely polarized
state. That means that its state is initially disentangled with rest of the system
(the environment). As the polarization of that spin diffuses away to the surround-
ing, the spin gets more and more entangled with its environment. How does the
growth of the entanglement between the spin and its environment correlate with

the diffusion of the spin polarization?
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Figure 5.5: (a) 1 —S(t)/log(2), where S is the entanglement entropy of pg, the reduced
density matrix of the O*" spin as its polarization diffuses to its environment. The two
plots represent the 1D (blue) ad 2D (brown) systems in Fig. 5.4. (b) Same as (a) in
logarithmic scale. The dashed black lines represent the fitting functions ¢; t~%'7 in the

1D case and ¢z =217 in the 2D case.

We have investigated this issue by computing the von Neumann entanglement
entropy (S = —Tr{poInpg}) of the reduced density matrix py of the zeroth spin as
a function of time. Initially, the O*" spin is in a pure state, therefore the entropy
of po is zero. At equilibrium, the spin is fully entangled and & = log(2). In Fig.
5.5, we plot 1 —S8(t)/log(2) for the two cases in Fig. 5.4 on logarithmic and linear
scales. We notice that the function 1 — S(t)/log(2) decays as a power law with
almost twice the exponent of the power law decay of (S§(t)Sg(0)).

Of course, entanglement entropy is not a conserved quantity so as to speak
about a model of its transport. However, the correlation between the diffusion
of the spin polarization (a measurable quantity) and the development of its en-
tanglement entropy implies that S can be probed in experiments by measuring a

physical quantity.

5.1.3 Spin diffusion in classical spin systems

For the sake of completeness, we include the results of investigating the spin diffu-
sion hypothesis in classical spin lattices. We consider XXZ models, with coupling
coefficients J, = —0.5,J, = —0.5 and J, =1 as in the previous part for quantum
spin 1/2 systems. The correlation function (S§(¢)S5(0)) is computed in the spirit
of Onsager regression relation, as before, by letting one spin be completely polar-
ized, and monitoring the relaxation of (SZ(¢)) in the linear response regime (near

equilibrium). We include the results in 1D, 2D and 3D in Fig. 5.6 in logarithmic
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Figure 5.6: The relaxation of (S§(¢)) from a completely polarized state for a classical
anisotropic Heisenberg system with coupling coefficients J, = —0.5,J, = —0.5 and
J, = 1 for a 1D system consisting of 1000 spins (a), 2D lattice consisting of 30 x 30 spins
(b) and 3D lattice consisting of 10 x 10 x 10 spins (c). The dashed black line represent
the fitting functions ¢; t7%6 in the 1D case, ¢ t~197 in the 2D case, and c3 t~8 in the
3D case. The results shown in the three figures correspond to averaging over 2 x 10°,

4 % 10% and 1.2 x 10° runs respectively.

scales, fitted with polynomial functions of the form ¢ t7. The values of v obtained
from the fitting polynomials differ from the predictions of the diffusion hypothesis
by at most 20%.

5.2 Free induction decay in solids

In this section, we consider one of the most outstanding problems in solid state
physics, namely computing the free induction decay (FID) in solids. The problem
is to find a controllable method to compute the FID signal for a given material,
in terms of the its microscopic parameters. The setting of an FID experiment, is
similar to the relaxation scheme described in chapter 3 in the context of Onsager
regression relation. A typical experiment can be abstracted as follows: A lattice
of interacting magnetic dipoles is polarized by an external magnetic field, and
then the field is switched off, letting the lattice relax to equilibrium under the
effect of mutual interactions between the dipoles, which do not conserve the total
polarization.

The problem lies in computing the shape of the magnetization signal as it
decays to zero, approaching the equilibrium state. This signal is proportional to
the RF signal detected in the RF coils in NMR experiments. In frequency domain,
this signal controls the shape of the NMR spectral lines which is used to identify
unknown materials or tissues in magnetic resonance experiments.

Computing this signal accurately is a long standing problem in solid state

physics due to its non-perturbative nature (absence of small parameter that can
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be used in perturbation expansions to obtain approximate solutions). Moreover,
the time scale for the decay of the FID signal is the fastest time scale of the
problem, namely the time scale of the dipole-dipole interaction [13]. Therefore
this problem can not be dealt with like a Markovian problem, where a separation
of time scales between a slow process and a fast environment exists.

In NMR problems, the lattice of interacting dipoles is initially in thermal equi-
librium in an external magnetic field in the z-direction at a certain temperature.
This temperature determines the value of the overall polarization of the lattice in

the z-direction. The Hamiltonian of this lattice is given by

H=Y TSL {um-un B 3(un-rmn)(um-rmn)} | (5.6)

2
mn Tn

m<n

where the magnetic dipole moment p is given in terms of the gyromagnetic ratio
~ and the spin operator S by pu = vhS and r,,, is the distance vector connecting
the lattice locations m and n.

In order to excite the lattice in the nonequilibrium state, that has a nonzero
magnetic polarization in x-direction, a 7/2 RF pulse is applied that effectively
rotates the polarization vector by 90 degrees around the y-axis. Under the mutual
interactions between the nuclear dipoles, the transverse polarization in the xy-
plane decays to its equilibrium value during a time interval known as spin-spin
relaxation time (T5).

It is more convenient to work in the rotating reference frame, defined by the

frequency of the exciting RF field. In this frame, the effective Hamiltonian is a

truncated version of 5.6, that reads [160)]
1

= Tonn |SES% — = (SE Sy 4+ S¥.S) |, 5.7
W 3 o |50 5 (357 + 5050 (5.7

where - )

h*(1-3 O

J = L7 = 3005 On) (5.8)

|rm_rn|3

The angle 6,,, represents the angle between the lattice vector r,,, and the exter-
nal magnetic field By. According to the linear response theorem, the relaxation
function (FID signal) of the transverse magnetization is determined by the infinite

temperature correlation function
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Computing C(t) for realistic materials is by no means a trivial task. Many
approximations for C'(¢) over the past half century have been devised. We have
performed many numerical experiments with small quantum spin clusters that
aimed to reproduce C(t) for real materials using the techniques of chapter 3.
The main limitation comes from the finite number of quantum spin 1/2 (in the
order of 20) that can be included in the simulation. The long-range nature of
the interaction makes the memory required to store the Hamiltonian matrix much
larger than the nearest neighbor interaction Hamiltonian for the same system size.
In the next part, we report on another method that uses classical spins to compute

the correlation function C(t) for a fundamentally quantum problem!

5.2.1 Computing free induction decay using classical spin

simulation

We have seen in the previous section how the magnetization is transported in XXZ
classical and quantum spin lattices following similar diffusion laws. This obser-
vation was exploited to study spin and energy diffusion in quantum spin systems
based on computational studies on classical spin lattices by J. S. Waugh and his
collaborators [135, |. They have shown, using coherent state representation of
quantum spins, that at high temperature and large number of interacting spins,
the quantum spin diffusion problem reduces to the classical limit [135]. Addition-
ally, the long time behavior of classical spin lattices was found to exhibit decaying
oscillatory behavior as in the long time behavior of the free induction decay in
solids [12]. An early attempt to derive a theoretical formula for the FID for a
quantum system of a general spin S found also similar behavior for all S > 1/2
and in some cases for S > 1 [134]. We have also observed in chapter 4 that the
imperfect Loschmidt echo for spin S much bigger than 1/2 behave similarly to
classical spin systems. Do not all these observations indicate that the long stand-
ing challenge of controllably computing FID can be solved at least for S > 1/2
using simulations of large clusters of spins in the classical limit?

C. Tang and J. S. Waugh have already performed classical spin simulations
in the early 90s with the modest computing resources available at that time to
reconstruct the FID signal for simple cubic lattices [144]. They have also shown
that the moments of FID functions for quantum and classical spin lattices are
close to each other. In this part, we exploit the tremendous leap in computational

power over the last two decades to do a more extensive simulation of classical
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spin lattices to investigate how far this method can reproduce accurately the free
induction decay signal for real materials having both S =1/2 and S > 1/2.

We start by CaFy, the benchmark material for NMR experiments. In this
material, the Flourine nuclei have spin quantum number 1/2, gyromagnetic ratio
v = 25166.2 s1G!, abundance 100% and are arranged in a simple cubic lattice,
with lattice constant ag = 2.72 A. We show in Fig. 5.7, the experimental data
for FID corresponding to directions [100], [110] and [111] of the external magnetic
field compared with the results of computing C(t) for a classical spin lattice. The
experimental data for [100] and [111] directions are taken from [161] while the data
for [110] direction is taken from [162]. The Hamiltonian of the classical spin lattice
is defined by 5.7 with the spin operators replaced by classical spin vectors and with
imposed periodic boundary conditions. The coupling coefficients for the classical
Hamiltonian J,,, equal the coupling coefficients for the quantum Hamiltonian 5.8
divided by h. In all cases, we considered a lattice consisting of 11 x 11 x 11 sites.

To compute C(t), we initialize the system at an infinite temperature state,

evolve it for a time 7', and evaluate
Tt

C(t) = M, (T)M,(T + t)dr (5.10)

0
where M, =) S¥. This procedure is repeated over many random initial states,

and the resultant C(t) is averaged over all of them and properly normalized such
that C(0) = 1. The results shown in Fig. 5.7 correspond to T = 200J !, time
step dt = 0.1~ where J = vh/a} and averaging over 32 x 10* independent runs
in [100] and [110] directions and 64 x 10* in [111] direction. The time axis for the
classical simulation has to be rescaled by a factor \/m to account for the
quantum spin number S = 1/2.

The good agreement between C'(t) computed for classical spin lattices and the
experimental data in the three directions for three orders of magnitude indicates
the validity and robustness of this method to reproduce FID. The ability to com-
pute the quantum correlation function from measuring the classical spin noise may
give some credit to Eq. 3.31 in the context of the modified regression relation in-
troduced in chapter 3. The two separate findings imply that in the macroscopic
limit, the classical and quantum spin noise at equilibrium behave similarly and
both can be employed to reproduce the quantum correlation function at infinite
temperature.

In fact, the method followed in [111] to reproduce C(t) depends on the On-

sager regression relation described in chapter 3, applied on classical spin systems.
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An initial state corresponding to a nonequilibrium ensemble is selected, and the
evolution of M,(t) in the linear response regime averaged over many runs was
compared with the FID. Let us repeat this procedure for the CaFy with external
magnetic field in [110] direction. We have selected an initial state from an ensem-
ble corresponding to M, (0) = 0.35% of the maximum polarization, and computed
the average evolution of M,(t) over 64 x 10° runs. We see in Fig. 5.8 that the
relaxation of M, (t) reproduces accurately C(t) for the first two peaks, but the
level of statistical noise is higher than using (5.10), although the same computing
resources were used in both calculations. Therefore, we conclude that Eq. 5.10 is

a more efficient method to compute FID with classical spin systems. 2
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Figure 5.7: The correlation function C(t) (blue) computed as described by (5.10) for
the total magnetization of classical spin lattices consisting of 11 x 11 x 11 spins at infinite
temperature compared with the experimental FID for CaFs (red). The external magnetic
field is directed towards the lattice directions [100], [111] and [110]. The numerical

simulations are obtained by averaging over 32 x 10 independent runs.

2From Fig. 5.8, we see that the linear response theory and Onsager regression relation are
applicable to nonintegrable (chaotic) systems, whose underlying dynamics is nonlinear. This

falsifies the objections of van Kampen [163] against the validity of ORR in nonlinear systems.
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Figure 5.8: The experimental FID for CaFy (red) compared with the correlation
function computed by the relaxation function of M, (¢) from a nonequilibrium state
corresponding to a total polarization ~ 0.35% of the maximum polarization towards
equilibrium averaged over 64 x 10 runs (blue). The external magnetic field is directed

towards the lattice directions [110].

Finally, we consider the free induction decay of Aluminium powder based on the
experimental data of Jirgen Haase group in Leipzig [164], and investigate whether
the present method can reproduce accurately C(¢). The nuclei of Aluminium are
characterized by quantum spin number S = 5/2 and gyromagnetic ratio v =
6972.04 s71G~! and are arranged in an FCC lattice structure with lattice constant
ap = 4.0495 A. The result of computing C () using classical spin simulation, with
the same simulation parameters for the CakFs is depicted in Fig. 5.9. The only
difference in this case, is that we let the magnetic field have a random direction
for each run, to simulate a powder material. We notice that the frequency of
the oscillations in the FID signal is accurately reproduced by the classical spin
correlation function, while the exponential decay constant is not. We tried to
increase the size of the lattice, but that did not help improve the matching of the

decay constant.

Based on the findings of this chapter and chapter 3, we propose the following
hybrid classical-quantum algorithm to obtain more accurate results for the FID
problem. The algorithm is based on replacing the core of the classical spin lattice
by a lattice of quantum spins, interacting fully quantum mechanically. The mutual

effects of the quantum core and the outside classical lattice can be modeled in a
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Figure 5.9: The correlation function C(t) (blue) computed as described by (5.10) for
the total magnetization of classical spin lattices consisting of 11 x 11 x 11 spins at infinite
temperature averaged over 64 x 10 random orientations of the magnetic field compared
with the experimental FID [164] for metallic Aluminium powder measured at 11.7 Tesla

(green).

mean field manner, by adding a dynamic classical field at the location of each spin
that sums up the effects of all spins of the other type. This algorithm is likely to
be severely limited by the memory requirements which will limit the number of

spins that can be used in the quantum core.



Each problem that I solved became a rule, which served

afterwards to solve other problems.

Rene Descartes

Summary and outlook

Motivated by the long-anticipated relevance of chaos to the foundations of statis-
tical mechanics, we attempted to identify chaos in many-body systems through a
universal approach valid for both macroscopic many-body classical and quantum
system. The essence of this approach is to quantify the randomness of macroscopic
observables instead of dealing with phase space techniques (e.g., Lyapunov expo-
nents and Kolmogorov-Sinai entropy). However, the finite-length limitation of the
measured data in realistic situations was not easy to overcome. We exploited our
observation of the qualitative differences in the frequency domain between chaotic
and integrable time series to introduce new measures that demand very accurately
measured data, but not necessarily very long time series. We believe that other
information-theoretic approaches (e.g., [165, 166]) can still give useful insights into
the problem of quantum chaos.

In chapter 2, we emphasized the overall differences in the shapes of the power
spectra between several chaotic and integrable systems. We anticipate that de-
tailed analysis of the fluctuations of the power spectrum may lead to new indicators
of chaos in both classical and quantum systems.

Most of the work presented in the rest of the dissertation dealt with various

aspects of quantum and classical spin systems. In chapter 3, we combined several
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results and concepts in the dynamics of many-particle quantum systems. These
results are:

(i) Quantum dynamical typicality: The expectation value of an observable com-
puted from a single pure state is a good representative of the dynamics of that
observable averaged over the whole Hilbert space.

(ii) Onsager regression relation: The relaxation of an observable to equilibrium is
similar to the quantum correlation function at equilibrium.

(iii) Runge Kutta algorithm: Simple fourth-order expansion of the Taylor series
of the time evolution operator is an effective method to solve the time-dependent

Schrodinger equation.

We used these results to arrive at two new important results:
(i) The modified regression relation: The relaxation of an observable computed
from a single pure state approaches the correlation of the equilibrium fluctuations
at equilibrium in the thermodynamic limit.
(ii) Infinite temperature correlation functions can be efficiently computed by prop-

agating single pure states.

We were mainly concerned in chapter 3 with the infinite temperature limit
of the fluctuation-dissipation theorem. It would be interesting, though, in future
studies to study the more general case of finite temperature and verify equation

3.10 numerically in various types of systems.

The crucial property of chaos in classical systems is hypersensitivity to ini-
tial conditions and perturbations. Hypersensitivity to perturbations was already
shown to exist in several quantum systems |[127, ]. On the other hand, several
studies, e.g., [168], maintained the absence of sensitivity of quantum dynamics, in
particular in bounded systems, to initial conditions and perturbations. In chapter
4, we set out to investigate this issue in quantum spin systems, equipped with
the toolbox of numerical techniques developed in chapter 3. We developed several
intrinsically quantum quantities that had the potential to discriminate integrable
from nonintegrable quantum spin lattices. None of these quantities fulfilled this
aim. We noticed, however, that these quantities behave differently for spin 1/2

systems and systems with higher spin quantum number.

The most experimentally relevant approach to detect chaos in chapter 4 is
based on the concept of Loschmidt echo. We showed that the maximum Lyapunov
exponent can be extracted from this type of experiments performed on classical

spin lattices. Nonintegrable quantum spin 1/2 systems, however, were shown to
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exhibit no sensitive dependence on small perturbations based on this approach.

This result may sound a bit surprising given some of the signatures of chaos
existing in the free induction decay of real spin 1/2 materials (e.g., exponential
decay of correlation functions and exponential tails in NMR spectral lines). It
implies that nonintegrable quantum systems can exhibit these features without
possessing the essential property of chaos, which is exponential sensitivity to small
perturbations.

In chapter 5, we concentrated on two issues. The first is the spin transport in
Heisenberg spin chains. We showed that the anomalous diffusion in the isotropic
Heisenberg chain can be attributed to the signatures of ballistic transport in that
model. On the other hand, we verified the predictions of the spin diffusion hy-
pothesis in the anisotropic case for both classical and quantum spin systems.

In the second part of this chapter, we showed the close agreement between
the free induction decay of real materials and the simulation results from the
analogous classical spin lattices (at least as far as the frequency of the oscillatory
behavior of the free induction decay is concerned). This agreement is a good news
for NMR community, where a controllable method to predict FID and the spectral
line shapes accurately is still missing.

Finally, we believe that the methods developed in this work can be used to
analyze many interesting phenomena in the physics of many-body systems that
have not been discussed here. These topics include:

e Decoherence, and how it is affected by the integrability of the system, the bath,
or both of them.

e Quenched dynamics and periodically driven spin systems [169].

e Localization in disordered spin systems.

e Spin glasses.

e Thermalization and the role of integrability in the approach to equilibrium.

e Quantum phase transitions.
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