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Abstract

Several hundred extrasolar planets have been discovered until today. The most commonly applied

detection methods are indirect and therefore typically limited in determining the whole set of the

orbital parameters and in characterizing the specific planets. Among these, astrometry serves as an

important complementary technique, as the orbital inclination and the planet’s true mass can be

derived from the two-dimensional measurements of the host star’s reflex motion due to the presence

of a companion. The VLTI’s dual-feed interferometer PRIMA has been developed to provide high

precision differential astrometry at the level of tens of microarcseconds, by which Saturn-like planets

around nearby stars would become detectable. This is accomplished by simultaneous phase-referenced

fringe tracking on two sources within the isoplanatic angle. Within this thesis the instrument’s overall

performance during commissioning is examined. Stable fringe tracking on both sources is generally

achieved, and the effect of phase referencing is evident. However, phase jumps during the observations

are reported, which might be due to phase shift offsets between the spatially modulated reference

signals, from which the phases are recovered. These are investigated. An analysis of the discrepancy

between the achieved astrometric precisions on short and long time scales reveals hidden but evident

systematic errors.

Zusammenfassung

Einige hundert extrasolare Planeten wurden bis heute bereits entdeckt. Die am häufigsten angewen-

deten Nachweismethoden sind indirekter Natur und deswegen für gewöhnlich darin begrenzt, den

kompletten Satz an Bahnelementen zu bestimmen und die vermeintlichen Planeten vollkommen zu

charakterisieren. Astrometrie eignet sich insbesondere als eine ergänzende Technik, da aus der zwei-

dimensionalen Vermessung der Reflexbewegung des Sterns, aufgrund der Anwesenheit eines Begleit-

ers, die Bahnneigung und die wahre Planetenmasse abgeleitet werden können. Das doppeltgespeiste

VLTI-Interferometer PRIMA wurde entwickelt, um präzise differentielle Astrometrie im Bereich deut-

lich unter 100 Mikrobogensekunden zu ermöglichen, wodurch saturnähnliche Planeten um nahe Sterne

nachweisbar würden. Dies wird durch simultanes und phasenreferenziertes
”
Fringe-Tracking“ an zwei

individuellen Quellen innerhalb des isoplanaren Winkels ermöglicht. In der vorliegenden Arbeit wird

allgemein die Leistung des Instruments während der Testphase untersucht. Stabile Nachführung

des Interferenzmusters von beiden Quellen wird üblicherweise erzielt, und die Auswirkungen der

Phasenreferenz sind ersichtlich. Dennoch werden Phasensprünge während der Messungen beobachtet.

Diese könnten durch die hier untersuchten Phasenverschiebungen der modulierten Referenzsignale her-

vorgerufen werden, aus welchen die Phasen letztlich bestimmt werden. Eine Analyse der Diskrepanz

zwischen der erreichten astrometrischen Präzision auf kurzen und langen Zeitskalen legt verborgene

systematische Fehler nahe.
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Our imagination is stretched to
the utmost, not, as in fiction, to
imagine things which are not
really there, but just to
comprehend those things which
are there.

Richard P. Feynman





Contents

Conventions, Units and Acronyms xiii

1. Motivation and Thesis Outline 1

2. Introduction to the Topic 5
2.1. Planets, Extrasolar Planets and Planetary Systems . . . . . . . . . . . . . . . . 5

2.1.1. Planet Properties and Orbit Parametrization . . . . . . . . . . . . . . . . 7
2.2. Formation of Planets and Planetary Systems . . . . . . . . . . . . . . . . . . . . 12

2.2.1. The Solar System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2. From Cold Clouds to Planetary Systems . . . . . . . . . . . . . . . . . . 18

2.3. Extrasolar Planet Hunting Techniques . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.1. Pulsar Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.2. Doppler Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3.3. Photometry and Transits . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3.4. Gravitational Microlensing . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.5. Direct Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.3.6. Astrometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.7. Review and Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3. Interferometry in Theoretical Context 69
3.1. Principles of Interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.1.1. Concept of Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.1.2. Temporal and Spatial Coherence . . . . . . . . . . . . . . . . . . . . . . 77

3.2. Dual Star Interferometry and Astrometry . . . . . . . . . . . . . . . . . . . . . . 86
3.2.1. Realization of Dual Star Observations . . . . . . . . . . . . . . . . . . . . 89
3.2.2. Atmospheric Disturbances and Phase Referencing . . . . . . . . . . . . . 91

4. Astrometry with PRIMA 97
4.1. PRIMA and its Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1.1. Star Separators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.1.2. Differential Delay Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.1.3. Fringe Sensor Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.1.4. Metrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2. Astrometric Data Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.2.1. Pipeline Processing and Data Flow . . . . . . . . . . . . . . . . . . . . . 117
4.2.2. Differential Delay Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.2.3. Astrometric Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

v



4.3. Analysis of Commissioning Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.3.1. Fringe Tracking Performance . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.3.2. Baseline Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.3.3. Astrometry from Commissioning Data . . . . . . . . . . . . . . . . . . . 165

5. ESPRI: Exoplanet Search with PRIMA 181
5.1. Preparatory Observations and Target Selection . . . . . . . . . . . . . . . . . . . 182
5.2. Program Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6. Summary 193

A. The Three-Body Problem 197

B. Transport of Energy in Electromagnetic Fields 201

C. PRIMA Commissioning Files 203

D. Plots to the Astrometric Fits 209

Bibliography 257

vi



List of Figures

1.1. Milky Way chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Sun’s reflex motion at 10 parsecs . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1. Geocentrism vs. Heliocentrism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. Historical view of planet formation . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3. Elliptic orbits and Kepler’s second law . . . . . . . . . . . . . . . . . . . . . . . 9
2.4. Elliptical orbit in space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5. Density profile in solar nebula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6. Stages of star formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7. Young stars and disks in Taurus . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8. Solutions to accreting disk evolution due to molecular viscosity . . . . . . . . . . 26
2.9. MRI-induced turbulences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.10. Classification of laboratory collision experiments . . . . . . . . . . . . . . . . . . 31
2.11. Full solution to coagulation problem . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.12. Giant planet formation by core accretion . . . . . . . . . . . . . . . . . . . . . . 39
2.13. Gap opening in Type II migration . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.14. Type I vs. Type II migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.15. Cumulative number of exoplanets versus year of discovery . . . . . . . . . . . . 49
2.16. Pulse time-of-arrival measurements for PSR B1257+12 . . . . . . . . . . . . . . 51
2.17. RV semi-amplitude K vs. semi-major axis . . . . . . . . . . . . . . . . . . . . . 53
2.18. Photometric lightcurve during transit observations . . . . . . . . . . . . . . . . . 56
2.19. Lightcurve of microlensing event OGLE-2005-BLG-390 . . . . . . . . . . . . . . 58
2.20. Multi epoch image of the multiple system around HR 8799 . . . . . . . . . . . . 60
2.21. The astrometric signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.22. Exoplanetary masses against semi-major axis . . . . . . . . . . . . . . . . . . . . 67

3.1. Short vs. long baselines in narrow-angle astrometry . . . . . . . . . . . . . . . . 70
3.2. Propagation of wave fronts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3. Interferometry by division of wave front and division of amplitude respectively . 78
3.4. From the source plane to the plane of observation . . . . . . . . . . . . . . . . . 82
3.5. Impact of polychromatism and source size on fringe patterns . . . . . . . . . . . 85
3.6. Dual star interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1. Beam path in PRIMA facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2. Optical layout of the AT star separators . . . . . . . . . . . . . . . . . . . . . . 101
4.3. Design of the DDLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.4. First fringes with PRIMA’s FSU . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.5. Group delay and dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

vii



4.6. Optical design of the FSUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.7. FSU spectral responses in laboratory . . . . . . . . . . . . . . . . . . . . . . . . 112
4.8. Sequence of data processing in the ADRS . . . . . . . . . . . . . . . . . . . . . . 125
4.9. Lock ratio, variations of phase, real-time offsets and coherence time . . . . . . . 141
4.10. Relation between phase and real-time offset variations . . . . . . . . . . . . . . . 143
4.11. Lock ratio, variations of phase, real-time offsets and seeing . . . . . . . . . . . . 144
4.12. Group and phase delay during tracking . . . . . . . . . . . . . . . . . . . . . . . 146
4.13. TRACK vs. SEARCH SNR distributions . . . . . . . . . . . . . . . . . . . . . . 147
4.14. On-sky fringe scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.15. Phase offset distributions for comm. 11–13 . . . . . . . . . . . . . . . . . . . . . 153
4.16. Spectral dispersion of phase offsets between the ABCD quadratures . . . . . . . 154
4.17. Temporal power spectra of real-time offsets from OPDC and dOPDC . . . . . . 157
4.18. VLTI station map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.19. Baseline calibration: star and residual distribution . . . . . . . . . . . . . . . . . 163
4.20. Residuals of the baseline calibration . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.21. Correction of PRIMET metrology counter overflows . . . . . . . . . . . . . . . . 166
4.22. Separation vector on the sky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.23. Measured and corrected differential delays . . . . . . . . . . . . . . . . . . . . . 169
4.24. Astrometric fit to HD202730 C16 ep2 . . . . . . . . . . . . . . . . . . . . . . . . 170
4.25. Astrometric fit to HD202730 C16 ep3 . . . . . . . . . . . . . . . . . . . . . . . . 174
4.26. Discrepancy between single epoch observations . . . . . . . . . . . . . . . . . . . 175
4.27. Astrometric fit to HD10360 C17 ep5 . . . . . . . . . . . . . . . . . . . . . . . . 176
4.28. Astrometric fit to HD10268 C16 ep1 . . . . . . . . . . . . . . . . . . . . . . . . 177
4.29. Astrometric fit to HD66598 C17 ep2 . . . . . . . . . . . . . . . . . . . . . . . . 178
4.30. Astrometric multi epoch fit to HD66598 m2 . . . . . . . . . . . . . . . . . . . . 179

5.1. SOFI K-band images of target candidates and potential reference stars . . . . . 185
5.2. Statistics on detected reference star candidates . . . . . . . . . . . . . . . . . . . 186
5.3. Cumulative histograms of target star candidates as a function of the fringe track-

ing brightness limit on PS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
5.4. Cumulative histograms of target star candidates as a function of the fringe track-

ing brightness limit on PS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
5.5. Cumulative histograms of target star candidates and star groups as a function

of the fringe tracking brightness limit . . . . . . . . . . . . . . . . . . . . . . . . 189

A.1. Jacobi’s Constant and Zero-Velocity Curves . . . . . . . . . . . . . . . . . . . . 198

D.1. Astrometric fit to HD100286 C14 ep2 . . . . . . . . . . . . . . . . . . . . . . . . 209
D.2. Astrometric fit to HD10268 C16 ep1 . . . . . . . . . . . . . . . . . . . . . . . . 210
D.3. Astrometric fit to HD10360 C16 ep1 . . . . . . . . . . . . . . . . . . . . . . . . 211
D.4. Astrometric fit to HD10360 C17 ep1 . . . . . . . . . . . . . . . . . . . . . . . . 212
D.5. Astrometric fit to HD10360 C17 ep2 . . . . . . . . . . . . . . . . . . . . . . . . 213
D.6. Astrometric fit to HD10360 C17 ep4 . . . . . . . . . . . . . . . . . . . . . . . . 214
D.7. Astrometric fit to HD10360 C17 ep5 . . . . . . . . . . . . . . . . . . . . . . . . 215
D.8. Astrometric fit to HD10360 C17 ep6 . . . . . . . . . . . . . . . . . . . . . . . . 216

viii



D.9. Astrometric fit to HD10360 C17 ep7 . . . . . . . . . . . . . . . . . . . . . . . . 217
D.10.Astrometric fit to HD108248J C14 ep1 . . . . . . . . . . . . . . . . . . . . . . . 218
D.11.Astrometric fit to HD108248J C14 ep2 . . . . . . . . . . . . . . . . . . . . . . . 219
D.12.Astrometric fit to HD108248J C14 ep3 . . . . . . . . . . . . . . . . . . . . . . . 220
D.13.Astrometric fit to HD131977 C14 ep1 . . . . . . . . . . . . . . . . . . . . . . . . 221
D.14.Astrometric fit to HD156274 C15 ep3 . . . . . . . . . . . . . . . . . . . . . . . . 222
D.15.Astrometric fit to HD156274 C15 ep4 . . . . . . . . . . . . . . . . . . . . . . . . 223
D.16.Astrometric fit to HD18622 C15 ep2 . . . . . . . . . . . . . . . . . . . . . . . . 224
D.17.Astrometric fit to HD202730 C15 ep1 . . . . . . . . . . . . . . . . . . . . . . . . 225
D.18.Astrometric fit to HD202730 C16 ep1 . . . . . . . . . . . . . . . . . . . . . . . . 226
D.19.Astrometric fit to HD202730 C16 ep2 . . . . . . . . . . . . . . . . . . . . . . . . 227
D.20.Astrometric fit to HD202730 C16 ep3 . . . . . . . . . . . . . . . . . . . . . . . . 228
D.21.Astrometric fit to HD66598 C14 ep1 . . . . . . . . . . . . . . . . . . . . . . . . 229
D.22.Astrometric fit to HD66598 C14 ep2 . . . . . . . . . . . . . . . . . . . . . . . . 230
D.23.Astrometric fit to HD66598 C14 ep3 . . . . . . . . . . . . . . . . . . . . . . . . 231
D.24.Astrometric fit to HD66598 C14 ep4 . . . . . . . . . . . . . . . . . . . . . . . . 232
D.25.Astrometric fit to HD66598 C14 ep6v2 . . . . . . . . . . . . . . . . . . . . . . . 233
D.26.Astrometric fit to HD66598 C14 ep9 . . . . . . . . . . . . . . . . . . . . . . . . 234
D.27.Astrometric fit to HD66598 C14 ep10 . . . . . . . . . . . . . . . . . . . . . . . . 235
D.28.Astrometric fit to HD66598 C14 ep11 . . . . . . . . . . . . . . . . . . . . . . . . 236
D.29.Astrometric fit to HD66598 C14 ep12 . . . . . . . . . . . . . . . . . . . . . . . . 237
D.30.Astrometric fit to HD66598 C17 ep1 . . . . . . . . . . . . . . . . . . . . . . . . 238
D.31.Astrometric fit to HD66598 C17 ep2 . . . . . . . . . . . . . . . . . . . . . . . . 239
D.32.Astrometric fit to HD66598 C17 ep3 . . . . . . . . . . . . . . . . . . . . . . . . 240
D.33.Astrometric fit to HD10360 C17 s ep1v2 . . . . . . . . . . . . . . . . . . . . . . 241
D.34.Astrometric fit to HD10360 C17 s ep2 . . . . . . . . . . . . . . . . . . . . . . . 242
D.35.Astrometric fit to HD10360 C17 s ep3 . . . . . . . . . . . . . . . . . . . . . . . 243
D.36.Astrometric fit to HD202730 C16 s ep1 . . . . . . . . . . . . . . . . . . . . . . . 244
D.37.Astrometric fit to HD66598 C17 s ep1 . . . . . . . . . . . . . . . . . . . . . . . 245
D.38.Astrometric fit to HD10360 m1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
D.39.Astrometric fit to HD10360 m2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
D.40.Astrometric fit to HD108248J m1 . . . . . . . . . . . . . . . . . . . . . . . . . . 248
D.41.Astrometric fit to HD108248J m2 . . . . . . . . . . . . . . . . . . . . . . . . . . 249
D.42.Astrometric fit to HD156274 m1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
D.43.Astrometric fit to HD202730 m1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
D.44.Astrometric fit to HD202730 m2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
D.45.Astrometric fit to HD66598 m1v2 . . . . . . . . . . . . . . . . . . . . . . . . . . 253
D.46.Astrometric fit to HD66598 m2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
D.47.Astrometric fit to HD66598 m3v2 . . . . . . . . . . . . . . . . . . . . . . . . . . 255

ix





List of Tables

0.1. Frequently used non-SI units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
0.2. Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

2.1. Properties of solar system planets . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1. FSU effective wavelengths in laboratory . . . . . . . . . . . . . . . . . . . . . . . 110
4.2. Corrections by the ADRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.3. Limiting angles for the correction of the relativistic light deflection . . . . . . . . 136
4.4. Fringe tracking sequences from comm. 13–17 . . . . . . . . . . . . . . . . . . . . 139
4.5. Results of phase offset analysis for comm. 11–13 . . . . . . . . . . . . . . . . . . 151
4.6. FK6 stars for baseline calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.7. Results from baseline calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.8. Properties of observed binary systems . . . . . . . . . . . . . . . . . . . . . . . . 172
4.9. Results of single epoch astrometric fits . . . . . . . . . . . . . . . . . . . . . . . 173
4.10. Results of multi epoch astrometric fits . . . . . . . . . . . . . . . . . . . . . . . 180

xi





Conventions, Units and Acronyms

• Vectors are denoted by bold characters. If a defined vector quantity appears as not bold
in the subsequent context, then this is referring to its magnitude.

• The complex conjugate of a complex quantity is denoted by the superscript ∗.

• Some frequently used non-SI units are listed in Tab. 0.1.

• Important acronyms that can be found commonly throughout the document are given in
Tab. 0.2.

Table 0.1. – Frequently used non-SI units

Symbol Name Equivalent SI unit

as Arcsecond 1 as = 4.8481× 10−6 rad
AU Astronomical unit 1 AU = 149.598× 109 m
ly Light year 1 ly = 9.46073× 1015 m
M⊕ Earth mass 1 M⊕ = 5.9722× 1024 kg
MJup Jupiter mass 1 MJup = 1.8986× 1027 kg
MSat Saturn mass 1 MSat = 5.6846× 1026 kg
M� Solar mass 1 M� = 1.9884× 1030 kg
pc Parsec 1 pc = 30.856776× 1015 m

Table 0.2. – Frequently used and important Acronyms.

Acronym Meaning

2MASS Two Micron All-Sky Survey
ADI Angular Differential Imaging
ADRS Astrometric Data Reduction Software
AMBER Astronomical Multi-BEam combineR
ASTRID AStrometric Target & Reference stars Interactive Database
AT Auxiliary Telescope
AO Adaptive Optics
BC Beam splitter Cube
BL BaseLine
CCD Charge-Coupled Device
CCF Cross-Correlation Function
CMB Cosmic Microwave Background
CoCo Correction Collection
CTTS Classical T-Tauri Star
DFT Discrete Fourier Transform
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Acronym Meaning

DL Delay Line
DDL Differential Delay Line
dOPD Differential Optical Path Difference
dOPDC Differential Optical Path Delay Controller
ESA European Space Agency
ESO European Southern Observatory
ESPRI Exoplanet Search with Prima
FOV Field Of View
FSM Field Selection Mirror
FSU Fringe Sensor Unit
FWHM Full Width at Half Maximum
GD Group Delay
GI Gravitational Instability
GMC Giant Molecular Cloud
GTO Guaranteed Observation Time
HST Hubble Space Telescope
IAU International Astronomical Union
ICRF International Celestial Reference Frame
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Chapter 1

Motivation and Thesis Outline

Approaching questions concerning the universe and its understanding is an ancient tradition
among mankind. Its bilateral characteristic of being elusive on the one hand, but coevally being
one of the most prominent features of the human’s environment during nighttime is the source
not only for curiosity and motivation to scientists since the Renaissance, but also has been for
natural philosophers of the Antiquity.
What has begun quite naively with pure descriptions of the celestial bodies’ motions and shapes
centuries ago evolved to a branch of science, which in order to cope with the universe’s diversity
and complexity today incorporates different fields of physics and not only makes use of diverse
mathematical concepts, but was also a trigger for the elaboration of some of those in the past.
The achievements in modern astronomy and astrophysics establish our conception of the uni-
verse and its nature. Its formation (around 13.7 billion years ago) and expansion are widely
accepted and well-founded cosmological concepts. Within this framework measurements of the
fluctuations of the cosmic microwave background (CMB) allow determinations of its density
and composition. As far as can be concluded, only 4–5 % of the energy density in the uni-
verse is assigned to baryonic matter that in principle can be observed directly. Since the first
telescopes in the beginning of the 17th century instrumentation technology has evolved so that
today a wide range of the electromagnetic spectrum (from radio frequencies to X-rays) can be
covered by observation.
By that we have learned a lot about the observable structures and their hierarchy. Starting in
the nearby neighborhood of our own solar system, the nearest star system is identified as Alpha
Centauri in a distance of about 4.3 light years. The center of our galaxy the Milky Way , a
disk-shaped structure harboring 100–300 billion stars and ca. 30 kpc in diameter, is determined
to lie in a distance of about 7.6 kpc.
Galaxies in turn, which usually can be classified as elliptical, spiral, dwarf or irregular, form
associations called clusters and even superclusters arranged in gravitationally bound filaments,
the largest known cosmic structures. All in all the number of galaxies forming within the cur-
rently observable universe1 can be estimated to the order of about 170 billion [Gott05].

Research on those various objects procure an insight into physical processes in nature and
certainly in many cases can be regarded as fundamental, but they are also of philosophical im-
portance regarding the self-conception of mankind. A significant issue is and always has been
the question “How is it that we are here?” This consequently leads to the question of life in
the universe and how it forms itself. In order to study this question one needs to agree on how
life can be defined. It is justifiable to limit the problem to life basing upon carbon chemistry

1This term denotes the radius of 14× 109 pc out to the CMB-photons originating at the recombination epoch.
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Figure 1.1. – Artistic chart of the Milky way showing the galactic center, the position of
the sun (yellow dot) and the most prominent arms. (Credit: NASA/JPL-Caltech/R.Hurt
(SSC/Caltech) [NASA08])

as it has evolved on the only place known, namely the earth. Investigations must still clarify
which conditions need to be satisfied within an environment where life is to be supported, but
also how such an environment itself develops.
Therefore, it is essential to understand, how planetary systems around stars form and how
representative the solar system is. Unfortunately, especially this field is hardly accessible in
observational astronomy. Comparing to the bright stars, evident to anyone on the night sky,
planets are relatively small, cold and dim. This makes the detection and analysis of planets
quite challenging and indirect methods, predicated on the understanding of physical interac-
tions within such systems, become inevitable.
Gravitational forces between massive objects for example act as indicator for their existence.
Isaac Newton’s formulation of classical mechanics and the law of gravitation (published 1687
in Philosophiae Naturalis Principia Mathematica) provided a tool to understand and to predict
the motion of objects interacting gravitationally. The history of the exploration of our own
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solar system has shown the power of this concept. Although observed and recorded before,
Neptune was not discovered and classified as a planet of the solar system until September 1846.
This was achieved only since irregularities between Uranus’2 observed and expected orbit have
been interpreted as a possible reaction to another object farther away. Precise predictions by
astronomers of this time (i.a. U. Le Verrier (1811–1877) and J. C. Adams (1819–1892)) al-
lowed Johann G. Galle (1812–1910) to search for it at the correct positions and were crucial
for the planet’s detection and confirmation.
In this case the mathematical predictions were ’only’ a hint leading to the right interpretations,
but when looking for extrasolar planets indirect methods become absolutely essential. The spa-
tial proximity of possible planets to their host stars and the enormous contrast in luminosity
so far prevented direct observations of such objects. Due to those difficulties, detections of
extrasolar planetary systems could not be provided until the 1990s. Precise timing measure-
ments on the millisecond radio pulsar PSR1257 + 12, performed at the 305 m Arecibo radio
telescope, revealed the existence of two planet-sized bodies revolving around the neutron star
in almost circular orbits [Wol1992]. This discovery in 1992 was the first one of that kind and
can be regarded as the begin of a new era within this field in astronomy.
During the subsequent years, many detections followed. Especially radial velocity surveys
proved to be effective at finding extrasolar planets. From periodic variations in the star’s radial
velocity, resulting from reflex motions to a companion in that system, the orbit parameters and
a minimum mass of the orbiting object were derived and published in 1995 as the first detection
of an exoplanet around a solar-type star [May1995].
The characteristics of the early discovered exoplanetary systems with high masses on short and
eccentric orbits certainly have been highly biased by the detection technique, but still provided
the first empirical data on the evolution of planetary systems besides the solar system. There-
fore, understanding planet formation mechanisms is an origin for the motivation to search for
extrasolar planets.
Since then, several hundreds planets and also multiplanetary systems around host stars have
been detected. Most of them have been discovered by radial velocity measurements but other
methods become more and more successful recently. Especially the photometric technique of
measuring transits of companions in front of their host stars (with the most prominent space
based transit surveys COROT and Kepler) has proven its capability in this field.

The oldest of the methods, and one of the more challenging at the same time, is Astrometry,
which so far lacks in confirmed detections. In order to find a companion, the host star’s position
over time needs to be monitored at a high precision level so that its motion, with respect to
the system’s barycenter, can be measured. The magnitude of the astrometric signature of such
a reflex motion naturally depends on the system’s distance to the observer, as well as on the
properties of the orbit and of the objects themselves. Figure 1.2 illustrates the astrometric
signature of our sun due to all solar system objects as it would be measured by an observer
at 10 pc distance. This indicates which accuracies are needed to be obtained so that systems
similar to our own can be detected by astrometric methods.

2Discovered by William Herschel in 1781 already.
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Figure 1.2. – Sun’s reflex motion to all solar system planets as astrometric signature in time
that would be measured at a distance of 10 pc. The axes lie in the observer’s sky plane and
span an area of 2 × 2 milliarcseconds. As a reference, at this distance the sun’s diameter
would cover an angle of around 1 masec. This at the same time is roughly the magnitude of
the astrometric signature as induced by the dominating solar system body Jupiter. (Credit:
[vBelle08])

This thesis is devoted to the discussion of one particular technique for performing high precision
astrometry, namely double star interferometry, and tries to cover both, the requirements for
designing an appropriate instrument and the prospects for its functionality and efficiency.
The new interferometric facility PRIMA (Phase Referenced Imaging and Microarcsecond As-
trometry), installed as part of the VLTI (Very Large Telescope Interferometer) infrastructure
and currently being commissioned, serves as an exemplification in this context. Its techni-
cal components, as well as its conceptional layout, are described in chapter 4, where also the
results from the performed analysis of commissioning data regarding the instrument’s function-
ality and preliminarily achievable astrometric accuracies are presented. Chapter 2 shall give an
introduction to the whole topic in general. Formation models of planets and planetary systems
are summarized and the different detection techniques for the search for exoplanets, with an
emphasis on astrometry, are described in more detail.
Chapter 3 provides the therotecial background for the understanding of interferometry in gen-
eral and in particular the concept of double star interferometry as a technique for obtaining
astrometric measurements.
As already mentioned, the design of PRIMA is motivated by the aim of finding exoplanets by
the means of astrometry. Consequently, the ESPRI (Exoplanet Search with PRIMA) survey is
being prepared under collaboration of the consortium members and will be presented in chapter
5, after which the thesis is concluded by a short summary in chapter 6.
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Chapter 2

Introduction to the Topic

2.1. Planets, Extrasolar Planets and Planetary Systems

As outlined already, the search for planets outside the solar system is a new field in astronomy.
However, the research on planetary systems in general is not. It is no surprise that the promi-
nence of our system’s planets as relatively bright light sources on the sky made them inherent
elements in human history of science back from Antiquity through the Middle Ages and Renais-
sance until now. They played a role in mysticism and religion, but moreover revolutions of the
human view of the world, as the foundation of the heliocentric system by Nicolaus Copernicus
in his De revolutionibus orbium coelestium in 1543, have been triggered by the study of celes-
tial mechanics. Long time has passed since the beginning of the transition from the geocentric

Figure 2.1. – Left: Schematic illustration of the geocentric model as depicted in Peter Apian’s
Cosmographia, 1539 (credit: [Gra1987]) showing the earth in the center surrounded by outer
shells harboring stars as well as the solar system bodies. Right: Illustration of the heliocentric
system from N. Copernicus’ De revolutionibus orbium coelestium.

to the heliocentric model in the 16th century until today, and although modern astronomy
achieved a lot since then, the origin of our solar system still is not satisfactorily understood.
The process of planetary systems’ formation exposes itself as a complex combination of various

5



Chapter 2. Introduction to the Topic

physical mechanisms on different spatial scales. The rough basic concept, known as the nebular
hypothesis , has been established already by Emanuel Swedenborg (1688–1772), Immanuel Kant
(1724–1804) and Pierre-Simon Laplace (1749–1827). It describes the development of the solar
system, stating that at an early stage a dense and slowly rotating molecular gas cloud collapsed
and while cooling down formed the sun, surrounded and orbited by a disk of gas and dust
particles (see also Fig. 2.2). Consequently, the planets formed from the disk material.

Figure 2.2. – A historical picture of planet formation. The idea of a collapsing molecular
cloud cooling down and forming a flat disk is illustrated by the steps A, B and as a basic
concept is still considered to be correct. On the other hand, the simplistic portrayal of the
disk breaking up into rings and subsequently forming planets (C–E) is outdated. (Credit:
[Joh11])

This rather pragmatic and result-oriented model explains by simplistic reasoning the prograde
planet orbits and the existence of the ecliptic plane. Modern theories on planet formation
expand the fundamental hypothesis. Physical processes are studied in detail in order to model
each formation step on the way from star formation itself to a stable planetary system. The
goal is to comprehend thoroughly each stage of the whole planetary system evolution and to
combine them to a fully coherent theory. As will be outlined here, the main mechanisms are
fairly understood, but some open questions still need to be answered. Until then, the whole
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picture remains incomplete.
As common in astronomy, one of the major difficulties for the research in this field is the absence
of an appropriate testbed. Typically, observations of the objects in question provide a basis for
verification or falsification of any modelled theories. In the case of planet formation, for a long
time only one instance of a system served as a sample, namely our solar system. Any model
can be checked against the properties of planets found in our neighborhood, but it is still not
clear, if our solar system is to be regarded as ordinary, or as rare of its kind due to exceptional
initial conditions and evolution.
Actually, the discovery of the first exoplanets in the 90’s seemed to indicate the latter. Massive
bodies with relatively high eccentricities on short orbits have not been expected to be found
in such an amount, but it should be realized that the properties of detected bodies are highly
influenced by the technique used to look for them. Consequently, since most of the early dis-
covered extrasolar planets have been found by Doppler spectroscopy (see Sec. 2.3.2), which is
mostly sensitive to high masses with short semi-major axes, it is clear that those were the first
to find. Nevertheless, by the early findings the diversity of planetary systems became evident
and justified the study of exoplanetary systems.

2.1.1. Planet Properties and Orbit Parametrization

Before discussing the properties and formation of planets, it is useful to clarify which bodies fall
into that category. In 2006, the International Astronomical Union (IAU) resolved and published
a nomenclature for bodies in our solar system. Such a definition became necessary due to recent
discoveries of exoplanetary systems on the one hand, but also due to the exploration of our own
solar system. In the 1990’s, objects, other than Pluto, on transneptunian1 orbits have been
discovered. During the years since then, our knowledge of these bodies increased, and with
successive spottings of such, the region populated by them turned out more and more crowded
and is now known as the Kuiper belt. Comparing Pluto’s low mass and rather untypical orbital
properties2 to those objects of the new class, a definite nomenclature got inevitable.
The following excerpt from the IAU resolution B5 classifies all solar system bodies, other than
the natural satellites, into three categories and can also be regarded as a guideline for extrasolar
planetary systems:

1. A planet is a celestial body that

a) is in orbit around the Sun,

b) has sufficient mass for its self-gravity to overcome rigid body forces so that
it assumes a hydrostatic equilibrium (nearly round) shape, and

c) has cleared the neighborhood around its orbit.

2. A “dwarf planet” is a celestial body that

a) is in orbit around the Sun,

1Bodies on orbits with semi-major axes greater than Neptune’s (≈ 30AU) are usually called Trans-Neptunian
objects (TNOs).

2Untypical compared to the other solar system’s planets. Especially its high inclination of about i ≈ 17◦ to
the ecliptic plane emphasizes Pluto’s differentness.
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b) has sufficient mass for its self-gravity to overcome rigid body forces so that
it assumes a hydrostatic equilibrium (nearly round) shape,

c) has not cleared the neighborhood around its orbit, and

d) is not a satellite.

3. All other objects, except satellites, orbiting the Sun shall be referred to collec-
tively as “Small Solar System Bodies”.

The main consequence of this reclassification was that Pluto is now categorized as a dwarf
planet.

With regard to modelling planet formation, the knowledge of specific characteristics of so-
lar system objects is crucial. These have the power to constrain certain aspects of theories
and can give clues to the right answers. Generally, planet properties can be divided into two
categories. On the one hand, there are intrinsic properties describing the body itself, such as its
mass, size and surface structure as the most prominent ones, but also others, which are affected
by the planet’s evolution at a higher level, need to be taken into account: The existence of a
magnetic field is coupled to the composition of the body’s interior. The rotation rate, direction
and the orientation of the rotation axis are not only results of the initial conditions during the
formation stage, but definitely are determined by gravitational or even physical interactions
between bodies in the system, as well.
On the other hand, characteristics of the planet’s orbit are important. In particular, when
trying to characterize extrasolar planets, indirect detection techniques (see Sec. 2.3) mainly
aim at, besides the mass, determining the orbital parameters.
The motion of planets is described by the solution of the two-body problem. Johannes Kepler
(1571–1630) deduced three fundamental laws of planetary motion from observations. In prin-
ciple those are also derivable from Newton’s laws of motion and his universal law of gravity,
defining the attractive gravitational force by F g = −Gm1m2

r2 r between two bodies with masses
m1 and m2 resp., the connection vector r and the gravitational constant G. Consequently, the
equation to be solved for the relative motion of the two bodies becomes:

µr
d2r

dt2
= −GµrM

r2

(r
r

)
, (2.1)

where µr = m1m2

(m1+m2)
is the reduced mass and M = m1 + m2 the total mass. In principle,

the behavior of the system’s motion, defined by the relative orbit of the two bodies, is purely
determined by its constant total energy:

E =
1

2
µrv

2 − GMµr
r

, (2.2)

with the kinetic energy expressed by the first term and the potential by the second. As solu-
tions to the problem, the resulting curves of relative motion can be described by conic sections,
depending on the sign of the total energy. For E > 0 the system is unbound and the relative
orbit mathematically would be a hyperbola. Motion on a parabola results from the kinetic and
potential energy being equal in magnitude expressed by E = 0. Bound orbits are consequences
to the case E < 0 and are described by elliptical orbits, as stated by the first of the following

8



2.1. Planets, Extrasolar Planets and Planetary Systems

three Kepler’s laws on planetary motion:

1. Two gravitationally bound bodies move along elliptical paths, where one focal point of
each ellipse is located at the center of mass.
Since the description of the relative motion is completely equivalent to that of a particle
with the reduced mass µr in orbit around a fixed central mass M (compare Eq. (2.1)), the
historic statement of Kepler that planets move on elliptical paths with their host stars at
one of the focii becomes also equivalent.3 In polar coordinates the curve describing the
planet’s motion in time can be parametrized by its distance to the star:

r(t) =
a(1− e2)

1 + e cos ν(t)
. (2.3)

The shape of the ellipse (and therefore the orbit) is fully described by the semi-major axis
a = rmax−rmin

2
(the mean of the maximum and minimum distance) and its eccentricity e.

The time-dependent true anomaly ν gives the angle between the planet’s periapsis4 to its
instantaneous position (see Fig. 2.3 a)).
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Figure 2.3. – a): Geometry of elliptic orbits. The point of reference is located at one focus
of the ellipse, which is defined by its semi-major axis a, semi-minor axis b and eccentricity
e. The instantaneous position of the body in orbit is characterized by the magnitude of
the position vector r and the true anomaly ν. b): Sketch depicting Kepler’s second law of
planetary motion. Within an infinitesimal unit time dt the joining line from the center of
reference to the body in orbit sweeps out the area dA = 1

2
rv sinα.

2. Kepler’s second law follows directly from the conservation of angular momentum L =
r ×mv = r × p. Looking at its derivative with respect to time, we see that

dL

dt
=

(
dr

dt
× p

)
+

(
r × dp

dt

)
= 0 + r × F = 0 . (2.4)

3In practice the choice of reference, either the center of mass or one of the bodies (usually but not necessarily
that of higher mass), is determined by the choice of what is to be studied, the absolute or the relative orbit.
In the gravitational two-body system it is common to call the heavier object the primary and the other in
orbit the secondary.

4Point of minimum distance to the point of reference.
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The first term on the right hand side vanishes trivially due to dr
dt

= v = p
m

. The second
term remains and describes the resulting torque exerted by the force F . Since gravitation
is a central force and r ‖ F , it vanishes also, and we see that L is constant in time.
Consequently, the motion stays within the orbital plane.
As can be seen in Fig. 2.3 b), the area dA that it swept out by the vector r per unit time
dt can be written as:

dA

dt
=

1

2
r · v sinα =

1

2
|r × v| = L

2m
. (2.5)

Therefore, the line connecting two bodies (lines from each body to the center of mass
respectively) sweeps out area at a constant rate.

3. The last of Kepler’s laws gives a relation that allows mass determinations from orbit obser-
vations and is valid for any systems, which are dominated by the gravitational two-body
interaction. It states that for a relative orbit the square of the period P is proportional
to the cube of the semi-major axis. In its generalized form the expression reads:

P 2 =
4π2a3

G(m1 +m2)
. (2.6)

Especially in the limit of m1/m2 → 0, when one of the two bodies’ masses is negligible,
knowledge of a and P directly yields the mass of the host object. This for example can
be exploited for the determination of planetary masses, if they are orbited by moons
(satellites in general), or the masses of host stars within planetary systems.

In order to entirely characterize the Keplerian orbit in space, one needs to determine the intrinsic
geometric properties of the elliptical motion (2 parameters) and the orbit’s orientation in space
(3 parameters). In addition to that, by the specification of an initial condition of motion, which
could be one measurement of the body’s time-dependent position and the orbit’s period, the
trajectory of the body can be determined. Therefore, the following seven orbital elements5

(comp. Fig. 2.4 and Fig. 2.3 a)) are sufficient to solve for an unperturbed fixed orbit and to
predict the body’s position for any arbitrary time:

• Semi-major axis a as the average of the minimum and maximum distances to the point
of reference. For circular orbits the distance r(t) becomes constant and a = r.

• Eccentricity e as a measurement for the departure from circular geometry is given by

e =

√
1−

(
b

a

)2

, (2.7)

where b is the semi-minor axis. A circular orbit is defined by e = 0.

• The angular distance between the orbital plane and the plane of reference is given by
the inclination i. When dealing with exoplanets, the plane of reference usually is con-
sidered the tangential plane to the celestial sphere at the observed object’s coordinates

5In literature the given number of orbital elements often varies between five and eight. This is due to different
conventions as of what should be counted as an orbital element and depends also on, if the masses of the
two bodies are known.
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and accordingly perpendicular to the line of sight to the object. The range from 0◦ to
180◦ covers each possible orientation. Secondaries on prograde orbits are conventionally
defined to have inclinations between 0◦ to 90◦, whereas those, which orbit in the opposite
direction to as the primary rotates (retrograde), are assigned to inclinations in the range
90◦ < i ≤ 180◦.

• Longitude of ascending node Ω describes the angle between a fixed direction in the
plane of reference and the direction to the orbit’s ascending node. The ascending node is
the location, where the body in orbit passes through the reference plane, in the opposite
direction to the observer.6

• Argument of periapsis ω gives the angle between the line to the ascending node and
the line to the periapsis.

• True anomaly ν is a time-dependent entity and specifies the angle between the sec-
ondary’s position to a given time and the periapsis in the plane of orbit.

• Period P defines the time for the completion of one full orbit. Furthermore, as stated
by Eq. (2.6), it serves as a proportionality factor between the size of the ellipse and the
masses involved.

Plane of reference

Zero point
of longitude

Body
in orbit

-

Rel. Orbit��+

i
Ascending node �

Ω

ω

ν

Periapsis

Figure 2.4. – Keplerian orbit in space. The orbital plane intersects the plane of reference
along the line of nodes, whereas the ascending node is the location where the body passes
the reference plane, away from the observer. Its direction in reference to a specified direction
of zero longitude is called the longitude of ascending node Ω. Together with the inclination
i, the argument of periapsis ω and the true anomaly ν, the fixed orbit and the position of
the object at a given time are uniquely specified.

6For orbits in the solar system, the ascending node defines the location of the object passing northwards
through the plane of reference.
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2.2. Formation of Planets and Planetary Systems

2.2.1. The Solar System

For a long time the solar system was the only one of its kind that could have been studied
and, although exoplanetary systems have been discovered by now, it still serves as the best
known probe to support theories about the evolution of planetary systems. Therefore, in order
to derive assumptions and first ideas on such theories, it is crucial to take a closer look and to
summarize the main solar system’s components and their properties.
The solar system consists of the sun, as its central star, and various bodies, which are grav-
itationally bound to it. Despite the high number of bodies in orbit, nearly the whole mass
(about 99.8 %) is concentrated in the center, namely in the sun itself with a mass of M� =
1.9884× 1030 kg, which corresponds to about 333,000 times the mass of the earth.
So, in a first approximation, the system can be regarded as a massive central object surrounded
by debris material in orbit. In contrast to the mass distribution, the angular momentum in the
system is dominated by the contributions from the planets. In particular the orbital angular
momentum of the giant planets Jupiter, Saturn, Neptune and Uranus alone makes up 98 % of
the total. Such a distribution is not necessarily typical for gravitationally bound systems. In
the planet-moons systems for example the angular momentum is mostly covered by the rotation
of the planets. Consequently, there must be an efficient mechanism that allowed mass accretion
towards the central body during early formation stages of the system, but on the other hand
led to transport of angular momentum outwards in the opposite direction.
The eight planets, which of some properties are listed in table 2.1, are the next most prominent
constituents in the system. Their collective mass lies at about 447 M⊕ and they can be divided
into two or even rather three classes. The four terrestrial planets, to which Mercury, Venus,
Earth and Mars are counted to, are bodies with relatively high densities. Mostly, they can be
characterized by a shell structure with a metallic central core surrounded by a thick mantle and
a solid crust that essentially consist of silicates. This kind of differentiation, development into
compositionally distinct layers, implies high temperatures and a melted state of the material at
some point of time during the formation process. These four rocky planets of the solar system
possess atmospheres, whose composition and densities vary widely.
The major fraction of the mass in the debris around the sun is contributed by the four gi-
ant planets. Jupiter’s and Saturn’s main components are hydrogen and helium. Their inner
structure can be derived from the analysis of their gravitational field, as determined from flyby
space missions Pioneer, and Voyager and their rotation rate. Both are believed to have a heavy
element core of &10 M⊕ enclosed by two outer layers, an outer hydrogen-helium molecular at-
mosphere layer and an inner envelope of liquid metallic hydrogen ([Gui05],[Mil08]). Due to
their composition, these two are also called gas giants, whereas Uranus and Neptune are often
referred to as ice giants . Besides a hydrogen-rich atmosphere, covering about one-fifth of the
outer planetary radius, the latter two are mainly composed of fluids like water (H2O), ammonia
(NH3), methane (CH4) and high temperature condensates of silicates and metals ([dePat01]).
It is worth mentioning that the giants and rocky planets not only differ in their composition
and structure, but also can be distinguished by their spatial positions.
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The four terrestrial planets are distributed within an inner region of the solar system at distances
below 2 AU, while the giants’ semi major axes span a region of roughly 2 AU . a . 30 AU.
Obviously, there seems to be a boundary separating regions of terrestrial planet formations
from those where giants can form. The term snow line (or ice line) is often found in literature
and describes the point in the protoplanetary disk, by which those two spatial domains are sep-
arated. Outside the snow line, whose position depends on the radial temperature profile within
the disk and also on the type of the host star (or rather protostar), the disk surface density
is increased due to the condensation of hydrogen compound. This situation favors faster and
more efficient growth of protoplanetary bodies and provides an explanation for the difference
in composition between the terrestrial planets and the outer giants ([Ken08]).

Table 2.1. – Overview of some important orbital and physical properties of the solar system
planets. Inclination is given with respect to the ecliptic, the geometric plane of the earth’s
orbit around the sun. (Data from [dePat01] and [Uns1999]).

Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune

Semi-major axis a
[AU]

0.387 0.723 1.000 1.524 5.203 9.543 19.192 30.069

Sidereal orbit
period P [ yr]

0.241 0.615 1.000 1.881 11.857 29.424 83.747 163.723

Eccentricity e 0.206 0.007 0.017 0.093 0.049 0.056 0.046 0.009

Inclination i [deg] 7.005 3.394 0.0 1.850 1.303 2.489 0.773 1.770

Equatorial radius
R [R⊕]

0.38 0.95 1.00 0.53 11.2 9.41 4.01 3.81

Mass M [M⊕] 0.055 0.82 1.00 0.11 317.8 95.2 14.6 17.1

Mean density ρ
[kg m−1]

5430 5240 5520 3930 1330 690 1260 1640

Obliquity to orbit
[deg]

2.0 3.0 23.5 23.9 3.1 26.7 97.9 28.8

Leaving the planets’ natural satellites (moons) aside, the next group down the object hierarchy
in the solar system are the Asteroids.7 There are two regions that harbor numerous irregularly
shaped small Solar System bodies (SSSBs). The asteroid belt is the region between the orbits
of Mars and Jupiter. According to statistical models and IR observations, it is occupied by
an estimated number of around 1.2 × 106 objects with diameters greater than 1 km ([Ted02])
and a vast number of bodies down to the size of dust particles. Most of them are carbona-

7Although terminologically distinct from asteroids, dwarf planets are not depicted here separately. So far only
five objects (Ceres, Pluto, Haumea, Makemake and Eris) have been categorized as members of this class and
basically just due to their sufficient mass to be in hydrostatic equilibrium they set themselves apart from
asteroids or TNOs.
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ceous but a non-vanishing fraction of about 25 % is counted to silicate and metal-rich. Despite
their high numerical number the cumulative mass of the asteroid belt objects lies below 1h of
the earth’s mass. In average, the orbits are nearly circular and show only small inclinations.
Due to interactions with other bodies within the solar system, gaps within the distribution of
the semi-major axes can be found. Those can be explained by orbital resonances, periodically
recurring orbital perturbances, which occur when the orbital period is an integer fraction of
the disturbing body’s orbital period. Within the asteroid belt, the main gaps of this kind are
caused by the presence of Jupiter.
Apart from that, regions of stabilized orbits are also found. Many objects gather in groups and
populate certain regions of motion, as the co-orbital Trojan asteroids (see App. A), located
at the gravitationally stable Lagrangian points L4,L5 of Jupiter, or the Hilda group in a 2 : 3
resonance with Jupiter.
Beyond the orbit of Neptune, at distances in the regime of 30–50 AU, another reservoir of
SSSBs, the so called Kuiper belt can be found. The Kuiper Belt Objects (KBOs) may be di-
vided into two major dynamical classes, namely those in interaction with Neptune (in orbital
resonance with) and those decoupled from the motion of the planet. The second population
is often referred to as the classical objects. Within this group there are subsets of KBOs on
nearly circular orbits at low inclinations (dynamically cold) on the one hand, but also objects
with a wider spread distribution of eccentricities and orbits stronger inclined against the ecliptic
([Daw12]). Compared to the inner asteroid belt, the Kuiper belt is larger, more massive and
the composition is dominated by volatile ices. Still, even counting in the objects that have
been classified as dwarf planets, the total mass of the material within the Kuiper belt does not
exceed 0.1 M⊕ ([Wei09]).
The region beyond that point in the solar system is relatively unknown. Comets, entering the
inner parts of the solar system, spend most of their time during an orbital period in those outer
regions. The analysis of short period comets’ 8 orbital characteristics imply that their origin is
a place also called the scattered disk . That region overlaps with the Kuiper belt but harbors
mostly objects on orbits strongly perturbed by Neptune.
Long period comets exhibit a fairly isotropic distribution of orbit orientations, which agrees
well with the hypothesis of a quasi-spherical reservoir of icy bodies at long distances up to
10,000 AU or even 100,000 AU. That is known as the Oort cloud ([Mor05]).

Collecting the information on the solar system, the aspects constraining the picture of planet
formation can be summarized as follows:

• Distribution of mass and angular momentum imply transport of both in opposite direc-
tions during early evolution stages.

• Mostly circular, prograde orbits and concentration of objects in the ecliptic plane as a
result to a flattened circumsolar disk.

• Spacings in the distribution of the semi-major axes of bodies in orbit as evidence to
gravitational interactions (system stability).

• Radially depending properties within the primordial disk may manifest themselves in

8The distinction between short and long is rather arbitrary here at about 200 yr.
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present regimes of planet composition (terrestrial vs. giants).

• The age of the system may be constrained by radioscope dating of chondritic meteorites
with dating of the oldest up to ca. 4.56 Gyr. Comparison to the age of terrestrial rocks
may indicate time scales of formation processes. The duration for the final assembly of
the earth is believed to be of the order of ∼100 Myr ([Bak05], [Arm07]).

• Differentiation of planet material.

• Analyses of the isotopic composition of solar system material reveals, to a first approxima-
tion, a well-mixed environment over large distant scales within the protoplanetary disk,
although deviations to this homogeneity have been detected and can be used to estimate
the age of the system and provide indications to the origin of the material ([dePat01]).

• . . .

Without claiming this list to be exhaustive, explaining these listed features is a necessary condi-
tion for a complete theory of planet formation. Therefore, those should be kept in mind during
the following subsections, where mechanisms and processes, most important in scenarios of
planetary system evolution, are outlined.

2.2.1.1. Minimum Mass Solar Nebula

As to the origin of the system, it might be noticed that the comparison of elemental abun-
dances between carbonaceous chondrites to that of the sun’s photosphere reveals a remarkable
similarity. Mainly, only the most volatile elements show lower concentrations in the meteorites’
material ([dePat01], [And1982]), whereas lithium is depleted in the solar photosphere, which
might be due to nuclear burning enhanced by diffusion processes under solar-type stars’ surface
convection layers.9 Hence, it appears convincing that the sun and also the planets formed from
the same primordial material. Following this assumption, the concept of the Minimum Mass
Solar Nebula (MMSN), as elaborated by [Wei1977], is widely accepted. This protoplanetary
disk serves as a starting point to planet formation in the solar system. The original mass distri-
bution of the MMSN in principle is reconstructed by smearing out the planets. To get an idea of
the initial total mass, it is assumed that the dust component of the disk has been incorporated
efficiently into planets, while on the contrary a huge amount of gas got lost due to the solar
wind, photoevaporation or accretion onto the sun. Therefore, typically solar abundances are
used to estimate the quantity of this missing ingredient associated with each planet.
In a simple approach, these resulting planet masses are redistributed onto annuli centered on
each planet’s current orbital distances so that the surface densities can then be found by di-
viding by the surface areas of the individual annuli. With assumptions on, at what distances
different solids, with main focus on water ice, would condense [Hay1981b], the following surface

9For interested readers it might be worth mentioning that the surface depletion of lithium in solar-type stars
might also be related to the presence of orbiting planets as indicated by ([Isr09]). Still, how mixing and
deepening the stars’ convective zones could be affected by present planetary systems in detail, is still to be
answered.
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densities are derived, considering the snow line at the solar distance of r = 2.7 AU:

Σrock(r) = 7
( r

1AU

)−3/2

g/cm2 for: 0.35 < r/AU < 2.7

Σrock+ice(r) = 30
( r

1AU

)−3/2

g/cm2 for: 2.7 < r/AU < 36

Σgas(r) = 1700
( r

1AU

)−3/2

g/cm2 for: 0.35 < r/AU < 36 . (2.8)

Evaluating the sum of the integrals over the whole range between 0.35 AU and 36 AU yields
the disk’s total mass of Mtot ≈ 0.013 M�.
Given the radial density profile and assuming axial symmetry for the disk composed from
matter on nearly Keplerian orbits so that vK = (GM�/r)

1/2, the vertical structure needs to
be elaborated in order to get a scheme of the entire disk geometry. This can be achieved by
consulting the equation of motion in vertical direction of a mass element dm at height z over
the disk’s mid-plane:

dm
d2z

dt2
= dmgz − dm

1

ρ

dP

dz
, (2.9)

where gz is the vertical component of the acceleration due to gravity and the second term
represents the opposite force resulting from the pressure within the disk.
Postulating a thin disk so that the distance of the mass element to the sun is of the same order
and can be approximated by its radial distance, the first term can be expressed in terms of the
Keplerian orbital frequency ΩK =

√
GM�/r3.

Further presuming a temperature dependence only in radial direction (T (z) = const), the
isothermal equation of state P = c2

sρ, with a constant sound speed cs, can be exploited to
formulate the equation for hydrostatic equilibrium in direction perpendicular to the mid-plane:

0 = −Ω2
Kz − c2

s

1

ρ

dρ

dz
. (2.10)

Consequently, the vertical density profile can be derived solving Eq. (2.10).
The temperature profile within the solar nebula is also of high significance as an input feature
towards modelling the disk’s evolution, but unfortunately is not simple to evaluate, since general
various heat sources may play an important role.
However, relying on the simplest case, only considering solar irradiation of an optically thin
nebula and leaving aside other processes as viscous heating or secondary irradiation by nearby
stars, a radial dependence of the temperature can be derived.
Summing up, the following set of equations can be utilized in order to define a model of the
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initial MMSN ([Hay1981b]):

Σ(r) ≈ 1700
( r

1AU

)−3/2

g/cm2 (2.11)

T (r) = 280
( r

1AU

)−1/2

K (2.12)

ρ(r, z) = ρ0(r) exp

[
− z2

2H(r)2

]
=

Σ(r)√
2πH(r)

exp

[
− z2

2H(r)2

]
(2.13)

H(r)

r
=

cs

ΩK

1

r
=

cs

vK

= 0.033
( r

1AU

)1/4

(2.14)

cs = 9.9× 104

(
2.34

µ

T

280K

)1/2

cm/s , (2.15)

with the radially dependent mid-plane density ρ0, the scale height H(r) and the average molec-
ular mass µ. The density profile, as indicated here, is shown in Fig. 2.5.
Due to the density power law in the radial component, the mid-plane density varies over several
orders of magnitude between the terrestrial planet regime and the outer regions. This might be
important when modelling planet formation in those different regimes and constraining time
scales on growth of planetisimals, before the disk becomes depleted in its gaseous component.
The ratio of the disk thickness to the radial distance is described by H(r)/r (Eq. (2.14)).
An increase with r is a characteristic to flaring disks and results in the fact that any point on
the disk surface receives a substantial amount of stellar radiation. One part of the intercepted
energy is radiated away, but another part is re-radiated down into the disk’s deeper layers and
provides additional heating to the material in the disk interior.

z
[A

U
]

r[AU]

Figure 2.5. – Cross-sectional view of the density profile within the solar nebula as described
by Eq. (2.13). Contour lines are denoted by their exponents so that the shown contour line
of lowest density equals ρ = 10−17g/cm3. The blue line highlights the locations where the
vertical coordinate z equals the radially depending scale height H. Today’s radial solar
distances of the eight planets are indicated by the cross symbols. (Credit: [Joh11])
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Although the MMSN model seems a reasonable approach to the characterization of typical
protoplanetary disks, it should be clear that its simplistic foundation is limited.
As [Des07] argues, the total mass is derived by the assumption that the planets have accreted
all the solid material in their neighborhood and that if they did not manage to do so within the
disk lifetime, the total mass would be considerably underestimated. Besides, possible migration
scenarios of planetisimals during their growing phase are not taken into account.
Nevertheless, with those limitations in mind, the model can be used as a first starting point in
studying the properties of protoplanetary disks.

2.2.2. From Cold Clouds to Planetary Systems

2.2.2.1. Star Formation and T-Tauri Phase

Considering all implications from our understanding of the present solar system, a complete
model describing planet formation needs to cover the origin of the system as a whole, as well as
its development in time. Fig. 2.6 depicts a comprehensive scheme for the formation of low mass
stars, as commonly found in literature, e.g. in [Hay1981a] or [Shu1987]. The entire process
can be divided into subsequent evolutionary stages. During the first period, the progenitor of
the system emerges from the gravitational collapse of accumulated matter. Such star forming
regions can be found in Giant Molecular Clouds (GMCs) within the galactic plane. With
typical masses of 104− 106M� and sizes up to 100 pc those structures mainly consist of cold H2

molecules with a low mass fraction (about 1 %) of embedded micrometer-sized interstellar dust
particles, which also can serve as condensation nuclei for the accumulation of more complex
molecules. Prominent regions of star formation are the Orion Molecular Cloud (OMC), the
Rho Ophiuchi cloud complex or the Taurus Molecular Cloud (TMC).

Centrally condensed and slowly rotating cores build within molecular clouds ([Liz1987]). As
pointed out by [Cha1939], the density distribution of such a core can be approximated by a
state of a singular isothermal sphere, in which the self-gravity is compensated by a thermal
pressure gradient

ρ =
c2

s

2πGr2
, (2.16)

with the isothermal sound speed cs = (kT/m)1/2, where m is the mean molecular weight of the
gas and T the constant temperature.
This configuration is unstable to gravitational contraction and has a self-similar10 collapse
solution ([Shu1977]). Various trigger factors could brake the marginal stability of the core.
Local deviations in temperature, shock waves due to supernovae or strong stellar activity in
the neighborhood are able to result in local density fluctuations which would lead to a self-
energizing collapse. The critical state of a mass distribution, unstable to its own gravity, has

10In this context self-similarity describes the feature that solutions to any instant of time differ only in a scaling
factor.
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(a)

1 pc

Cloud cores

(b)

10,000 AU

t = 0

Gravitational
collapse

(c) t ∼ 104 − 105 yr

Protostar;
envelope and disk;
inflow and outflow

(d) t ∼ 105 − 106 yr

100 AU

T Tauri star

(e) t ∼ 106 − 107 yr

100 AU

Pre-main-
sequence star;
remnant disk

(f) t > 107 yr

50 AU

Main-sequence star;
planetary system

Figure 2.6. – The sequence describes the process of star formation and divides it into con-
secutive stages. (a): Cores of increased density within molecular clouds eventually collapse
due to gravitational instability (b). A protostar forms in the central region, embedded in an
envelope of gas and dust (c), evolving into an axisymmetric structure due to initial angular
momentum of the contracting material. During further evolution, which is affected by an
active phase of matter accretion and outflows, the system develops into a young stellar object
with a circumstellar disk. The SEDs of such T-Tauri stars (d) show characteristic features
resulting from an approximated black body spectrum from the stellar source overimposed
by dust emission at longer wavelengths and observed in the IR. Following this scheme, the
system’s gas content is being dissipated, leaving behind a star evolving to the main-sequence
and a planar remnant protoplanetary disk (e), within which companions can form, if dust
material is accumulated efficiently enough (f). (Original illustrations by M. Hogerheijde
from [Joh11])

been investigated by J. Jeans ([Jea1902]). Assuming a spherical, isothermal and homogeneous
gas configuration with a total mass M , criteria, under which the equilibrium between gas
pressure and gravitation breaks, can be formulated. For this purpose the virial theorem for

19



Chapter 2. Introduction to the Topic

systems under gravitational attraction, stating that the time average of the system’s kinetic
energy equals half of the average negative potential energy, is applied:

〈Ekin〉 = −1

2
〈Epot〉 . (2.17)

The kinetic energy is expressed by the total thermal energy of the ideal gas ET and the potential
energy by the gravitaional energy EG of a homogeneous sphere:

ET =
3

2
nkT =

3

2

kT

µmu

M (2.18)

EG = −3

5

GM2

R
. (2.19)

The situation, where thermal pressure cannot compensate self-gravity, is correlated to the
condition 2ET/ − EG < 1. With Eq. (2.18) and (2.19) this yields limiting stability criteria for
the properties of the mass distribution ([Uns1999]):

RJ =
1

5
GM

µmu

kT
(2.20)

MJ = 5.46

(
kT

µmuG

)3/2

ρ−1/2 . (2.21)

When the Jeans-mass MJ is exceeded or the spatial extension falls below the Jans-radius RJ,
the collapse is initiated. The infall of the matter is triggered by an expansion wave propagating
at sound speed from inside out. Within around 0.4 rh, where rh is the radius of the expansion
wave at a given time, matter inflow happens at a supersonic level, and the density in this region
can be described by the free-fall form ([Shu1987])

ρ(r) =
Ṁ

4π
√

2GM
r−3/2 , (2.22)

where Ṁ is the rate, at which matter is accumulated by the central object.
Hence, the time scale of the molecular cloud cores collapse is relatively short. For typical cloud
densities the duration of the free-fall phase is estimated to some 104 − 105 yr, which makes it
difficult to find and observe objects in this stadium.
The simple approach to the situation does not take rotation and conservation of angular mo-
mentum into account. Rotation can be included as a small perturbational effect and leads
to the formation of a rotating nebular disk around the central object ([Ter1984]). The initial
specific angular momentum is stored in the disk, while the core in the inner region can maintain
contraction. The flatness of the disk and the outcome of the axisymmetric structure is a direct
consequence to the non-vanishing angular momentum. Centrifugal forces damp matter infall in
directions perpendicular to the system’s rotation axis, while vertical collapse is not influenced.
The free-fall contraction can be sustained, inasmuch as heat is dissipated effectively, so that
the process remains predominantly isothermal. Dust particles, observed in infrared, but also
carbon monoxide, water or molecular oxygen can absorb the increasing thermal energy during
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the contraction and re-radiate it. These cooling mechanisms work sufficiently well, and energy
is depleted from the system, as long as the surrounding material is optically thin. At some
point the density in the bulk region becomes critical, and due to the increasing opacity gas
pressure stabilizes the collapse of the inner core region. During the following adiabatic phase,
further contraction can only proceed, if any other cooling mechanisms become effective.
When temperatures of several 1,000 K are reached, endothermic dissociation of H2-molecules
begins and drives the next phase of contraction until the entire hydrogen of the central region
is dissociated and even ionized. By the end of this stage, the system consists of a compact pro-
tostar, nearly in hydrostatic equilibrium, embedded in a surrounding envelope of gas and dust
showing axially symmetric features due to the initial rotation. The masses of those protostars
lie at about 0.001 M� and the core temperature around 10,000 K.
In order to start nuclear burning the temperatures within the center of the protostar must
increase at least beyond around 106 K, which is a condition to deuterium burning. The central
temperature for a convective protostar depends on its mass and radius and is estimated to
TC = 0.54GM∗µH/kR∗ ([Cha1939]). To reach this condition more matter needs to be accreted.
At this point the progression past this stage becomes more difficult.
The protostellar disk features differential rotation and is dynamically stable with a radially
increasing angular momentum profile dL/ dr > 0. In other words, disk material can only be
transported inwards towards the center when losing angular momentum. Accordingly, the evo-
lution of the system and its Young Stellar Object (YSO) in this era is highly influenced and
regulated by the efficiency of transferring angular momentum away from the accreted matter.
This problem is not solved in theory and various mechanisms have been suggested. In the
following subsection (see p. 22) the problem and one of the approaches towards understanding
will be outlined. In principle, angular momentum must be redistributed within the disk itself
or be drained from the system at all. This might be related to observed energetic outflows from
YSOs. Observations strongly imply that simultaneous matter infall (accretion) and outflow
are linked together and mark a typical intermediate state during YSO evolution. Outflows
usually appear as well collimated and bipolar structures, breaking through at the regions of
the rotational poles of the accreting protostar. There the total column of infalling matter is at
its minimum, and therefore these regions provide outflow channels of least resistance. Bipolar
outflow is encountered in two most prominent manifestations. Molecular high velocity CO out-
flows (e.g. [Bal1983]) have been detected at YSOs of different masses and luminosities and are
believed to consist of ambient gas swept up by underlying wind. Narrow jets of ionized material,
often referred to as Herbig-Haro objects , are observed in optical and centimeter-wavelengths
(e.g. [Mun1983]), and are sometimes associated with molecular outflow. An overview of out-
flows around young protostars can be found in [Bac1996].
During the phase of deuterium burning, which is highly sensitive to temperature, the proto-
star is largely convective so that the generated heat can be carried away into outer shells or
even the surface, while the core is supplied with unconsumed, newly accreted material so that
a continuous energy production is ensured. In this way, the process acts as a thermostat to
the system so that hydrogen burning is delayed ([Sta1988]). Once deuterium is exhausted, or
radiative energy transport establishes a boundary layer so that the core is cut off from the
outer regions, the nuclear fusion process ceases and the last phase of contraction is initiated.
This lasts until temperatures sufficient for hydrogen burning are reached and the star, finally
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reestablishing hydrostatic equilibrium again, appears at the Zero Age Main Sequence (ZAMS)
in the Hertzsprung-Russell diagram.

It is reasonable to argue that after the ignition of deuterium burning and with an established
matter outflow the outflow opening angle will widen with time and the protostar becomes
optically visible. This marks the beginning of the star’s T-Tauri phase. YSOs that fall into
this class, firstly defined by [Joy1945] and later revised (e.g. [Bas1983]), show quite a broad
spectral energy distribution with excesses in UV and particularly in the infrared. Irregular and
quasi-periodic variations at various wavelengths and the spectral properties in general support
the picture of a recently (< 107 yr) formed, usually active low mass (<3 M�) stellar object with
strong indications for the presence of circumstellar matter and complex accretion and outflow
features ([App1989]). Modelled star, respectively disk spectra, which imply that an optically
thick disk intercepts and re-radiates fractions of the original star luminosity, agree with ob-
served T-Tauri spectra, and the disk’s equilibrium temperature profile can be approximated by
T ∝ r−3/4, which corresponds to a power law form of νLν ∝ ν−4/3 at long wavelengths of the
SEDs. The latter component arises from the emission of dust within the disk.
The dust contingent makes around 1% of the disks’ total masses, which typically lie in the
range of 10−4 − 10−1 M�. Spectral profiles, flatter or even constant in the long wavelength
regime, are believed to be outcomes from more extended, massive disks of 0.1− 1.03 M�. Such
circumstellar matter distributions, with intrinsic disk luminosities of the order of the stellar
luminosity, possess flatter rotation curves than that of a classical Keplerian accretion disk and
a disk temperature profile less steep than T ∝ r−3/4.
During the active T-Tauri phase, with a lifetime of the order of 105 − 106 yr and thereafter,
while the stellar object accretes material at variable rates and traverses its pre-main-sequence
phase before reaching the main-sequence, the surroundings are steadily cleared. Altogether,
due to accretion processes onto the protostar, stellar winds and photoevaporation of stellar flux
from stars in the neighbourhood, the gas component of the disk dissipates on timescales of up
to 106 yr. This is an important temporal constraint on mechanisms driving planet formation,
especially when regarding the gas giants, which need to have accumulated their material during
this ’short’ period of time.

2.2.2.2. Circumstellar Disks

When studying the physics of circumstellar disks around young stars it is substantial to consider
the accretion rate onto the central object. Disks, mainly powered by the release of gravitational
potential energy of inflowing matter, are usually called active, whereas the term passive marks
disks, whose luminosities are primarily driven by reprocessed starlight. The different energy
sources need to be considered when modelling temperature profiles or SEDs from those objects.
The estimation of accretion rates from observations is a complicated task. Irradiation from the
central star is a larger heat source than the disk’s self-luminosity for the most T-Tauri ob-
jects. Consequently, the accretion rates are usually determined from the hot continuum excess
radiation that is produced when matter reaches the stellar surface. In order to measure that
fraction of radiation, one needs to distinguish between stellar photospheric emission and the
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(a) (b) (c)

(d) (e) (f)

Figure 2.7. – Young stars at distances of around 140 pc in the constellation Taurus taken
by NASA Hubble Space Telescope’s Near-Infrared Camera and Multi-Object Spectrometer
(NICMOS). The central YSOs (binary stars in (a) and (d)) are surrounded by nebulae
of gas and dust. Dense parts of the disk reveal themselves as dark bands in the edge-on
images of the systems, and surrounding dust particles are partially illuminated by the host
star. (Credit: D. Padgett (IPAC/Caltech), W. Brandner (IPAC), K. Stapelfeldt (JPL) and
NASA; [Hub1999])

emission induced by accretion, which can be a source of systematic errors. Accretion rates,
spectrophotometrically derived from measurements of strong emission classical T-Tauri stars
(CTTSs) vary between 10−9 M� yr−1 and 10−7 M� yr−1 ([Gul1998]). Critical accretion rates,
defining the limiting boundary between passive and active disks, are of the same order, which
makes pure distinctions complicated.
The intrinsic properties of circumstellar disks, as consequences of the kind of the dominant
energy source, are rather expected to be depending on time and spatial distance to the center.
At small orbits and at early epochs internal heating should dominate, while for more evolved
systems and/or at large radii reprocession might be more significant ([Arm07]).

Actively Accreting Disks

As already stated before, accretion within protoplanetary disks is an important mechanism,
but also demands for transport of angular momentum. Following the summary of [Arm07], an
overview of standard considerations regarding this problem is outlined here.
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In the context of accretion disks it is often stated and assumed that the matter’s orbital velocity
can be approached as Keplarian to the first order and that the specific angular momentum
l = L/m can analogously be described by the increasing function of radius:

l(r) = rv = r2Ω =
√
GM∗r . (2.23)

This simplification is justified by considering the radial force balance for the gas given by

v2
φ

r
=
GM∗
r2

+
1

ρ

dP

dr
. (2.24)

With the orbital velocity vφ, the centrifugal force (left-hand side) is compensated by gravity and
the radial pressure gradients of the gas. The pressure gradient term can be further estimated
by:

1

ρ

dP
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∼ −1

ρ

P

r

∼ −1

ρ

ρc2
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∼ −GM∗
r2

(
H

r

)2

, (2.25)

where the relation H = cs/Ω between the scale height and the sound speed, as was given
by Eq. (2.14), is used. Now, the velocity can be expressed by the Keplerian velocity vK and a
contribution from the pressure gradients, which can be considered as negligible for geometrically
thin disks with h� r:

v2
φ = v2

K

[
1−O

(
H

r

)2
]

. (2.26)

Based on the Keplerian differential rotation profile, one can think of mechanisms that would lead
to a redistribution of the angular momentum within the disk. Molecular viscosity between fluid
elements on slightly different orbit distances r and r + δr might be a first guess mechanism to
accomplish this. While rubbing against each other, the outer particles, slower at first according
to the velocity profile, are accelerated in their moving direction, while on the contrary the inner
are decelerated. In result, the outer ring particles are raised to a higher orbit, by which they
are slowed down again, where the inner ring speeds up by falling to a lower orbital distance.
This process obviously supports transport of mass as well as angular momentum and is a source
to heating in the disk. Depending on the opacity of the disk material, the released energy can
either be radiated away efficiently so that the disk becomes cool and thins out, or if the heat
is stored, then it rather puffs up into a thick torus.
The temporal evolution of the disk, being subject to viscous forces, has been studied as a
possible model, driving accretion onto the central objects. Utilizing the continuity equation
for axisymmetric flows and the conservation of angular momentum under the effect of torques
acting on the fluid due to viscous stresses, [Pri1981] derived an evolution equation for the
surface density Σ(r, t) of a thin Keplerian accretion disk:

∂Σ

∂t
=

3

r

∂

∂r

[
r1/2 ∂

∂r

(
νΣr1/2

)]
, (2.27)
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where ν stands for the kinematic viscosity.
By changing the variables to X ≡ 2r1/2 and f ≡ 3/2 ΣX and presuming ν to be constant,
Eq. (2.27) takes the standard form of a diffusion equation:

∂f

∂t
= D

∂2f

∂X2
, (2.28)

where D = 12ν/X2 is the diffusion coefficient.
From Eq. (2.28) the characteristic diffusion time scale can be estimated to τ = X2/D and
becomes

τvics '
r2

ν
, (2.29)

when expressed by the original physical variables.
In order to solve Eq. (2.27) the viscosity needs to be defined. Although it is expected to be
somehow dependent on local disk properties, such as temperature, surface density or other,
analytical solutions, which already give indications to the system’s evolution, can be found
when the viscosity is approximated by a power-law in the orbital distance ν ∝ rγ ([Lyn1974]).
Fig. (2.8) shows solutions for two simplifications of this problem. On the left, the viscosity is
fixed to be constant and the graph shows the evolution of the surface density to an initially
thin ring of gas situated at radius r0 at t = 0. The different curves describe the evolved density
distributions for subsequent instants of time, defined by the dimensionless variable τ = 12νr−2

0 t
and given by the solution:

Σ(r, τ) =
m

r2
0

1

τ

(
r

r0

)−1/4

exp

[
−1 + (r/r0)2

τ

]
I1/4

(
2(r/r0)

τ

)
, (2.30)

where I1/4 is a modified Bessel function of the first kind and m is the mass of the gas in the
ring. One can see that with increasing time the matter spreads and the curves’ barycenters
move towards smaller radii. In fact, as t approaches infinity, most of the mass flows towards
r = 0, while the angular momentum, coupled to an negligible fraction of the matter, flows
towards r =∞.

The second set of curves (on the right) depicts the situation, where the viscosity is set to be
linear in radius (ν ∝ r). As an initial condition, the surface density profile is defined by a
steady-state solution with Σ ∝ r−1 out to the radius r1 and an exponential cut-off for larger
distances:

Σ(t = 0) =
C

3πν1

(r1

r

)
e−r/r1 , (2.31)

with ν1 the viscosity at radius r1 and a normalization constant C. The distribution’s progress
is illustrated by the initial profile at T (t = 0) = 1 and successive curves for T = 2, T = 4 and
T = 8, where T ≡ 1+3(r2

1/ν1)−1t is a variable of scaled time. The corresponding solution reads
as:

Σ(r, T ) =
C

3πν1T−5

(
r

r1

)−1

exp

[
−(r/r1)

T

]
. (2.32)
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τ = 0.004
τ = 0.008
τ = 0.016
τ = 0.032
τ = 0.064
τ = 0.128
τ = 0.256

T = 1
T = 2
T = 4
T = 8

Figure 2.8. – Analytical solutions to the evolution of the surface density profile of a thin
accretion disk due to molecular viscosity. Net mass transport towards the center and transfer
of angular momentum to larger radii is implied. Left: The curves (from up to bottom)
represent the temporal redistribution of mass, initially placed in a thin ring structure at
radius r = r0 for ν = const, as described by the solution in Eq. (2.30). Right: Self-similar
evolutionary profiles in surface density (from up to bottom), as given by Eq.(2.32). Here the
viscosity was defined as linear in radial distance and the initial distribution follows Σ ∝ r−1

to a characteristic scale radius r1 and is exponentially cut-off at larger distances. (Credit:
[Arm07])

The most important features to note here are that, while temporally evolving, the disk’s mass
decreases and the angular momentum is conserved as the characteristic distribution scale in-
creases.
These analytical considerations can be beneficial for deriving disk properties, such as masses or
the viscosity from observations (e. g. [Har1998]), but more importantly suggest that molecular
viscosity processes in principle are able to drive accretion and the required transport of angular
momentum within circumstellar disks.
Unfortunately, considering the time scale for molecular viscous processes, as implied by Eq.(2.29),
the prospect that this mechanism could play a key role in this matter is less likely. The viscosity
for a gas with the mean free path λ = 1/nσ is of the order ν ∼ λcs. With appropriate estimates
([Arm07], [Joh11]) on a typical protoplanetary disk’s scale, density, sound speed and collision
cross-sections of the molecules within, the viscosity can be approximated to the magnitude of
the order of ν ∼ 103 m2 s−1, implying a time scale for the disk evolution of about 1014 yr, which
definitely is out of observational indications or even realistic considerations.
Hence, molecular viscosity is regarded negligible in protostellar disks.

Seeking for alternative mechanisms, [Sha1973] proposed turbulences within the disk as a source
to providing sufficient viscosity.
Within this framework of the so called α-disks , the expression for the turbulent viscosity takes
the parametrized form:

νt = αcsH = αΩKH
2 , (2.33)
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and the typical evolution time scale due to turbulent viscosity consequently becomes:

τt '
r2

νt

=
1

αΩK

(
H

r

)−2

. (2.34)

The parametrization in Eq. (2.33) is founded by the assumptions that the dimension of any
isotropic turbulence cells would be similar to the scale height H and that the velocity of tur-
bulent flows would not exceed the sound speed, since supersonic motions would evoke shocks
and dissipation of the kinetic energy into heat.
When α is treated as a constant, which is rather an illustrative and probably oversimplified
academic approach, an expression for the viscosity as a function of the disk parameters r, Σ
and α can be derived, and, together with the evolution equation (2.27), a complete system for
the time dependence of the disk can be established, where α is the only unknown parameter.
Although this method delivers a simple way of modelling, the underlying physics are completely
hidden within the parameter α, which in general could also be a more complicated function.
Nevertheless, taking that into account and treating the whole approach with caution, values
for α can be estimated. With similar disk characteristics as assumed above for the estimation
of the viscous time scale, and by constraining the turbulent evolution time to a realistic limit
of about 106 yr, the order of magnitude α ' 0.01 is obtained. Those estimations are passably
confirmed by attempts to constrain α from observations ([Har1998]).

With these arguments in mind, mechanisms leading to turbulences need to be found and have
been studied analytically and in experiments during the recent decade (e.g. [Bal06], [Afs05],
[Ji2006]). Substantially to note is the fact that Keplerian disks fulfill the condition for hydro-
dynamical stability of differentially rotating fluids, the Rayleigh criterion:

d

dr
(r2Ω) > 0 . (2.35)

Hence, when the specific angular momentum increases with radius, axisymmetric waves are
linearly stable and fluid displacements in the disk plane exhibit oscillations around their equi-
librium circular orbits at a characteristic frequency. Analysis of hydrodynamic perturbances
that could lead to nonlinear instabilities imply that those would eventually decrease rather than
drive steady turbulent viscosity.
Frequently also discussed, as another possible source to turbulent motions within the circum-
stellar matter, is the disk’s self-gravity ([Too1964]). Non-axially symmetric modes, such as
trailing spiral arms, permit accretion flow by providing sufficient dissipation of work performed
by produced torques and drive redistribution of angular momentum ([Cla09]). The major con-
clusion is that self-gravity might be important during the early stages, when the disk is still
massive enough, but not in more evolved systems.
The most promising candidates for providing an efficient way of producing turbulences and
transport of angular momentum respectively result from interactions between the disk matter
and magnetic fields.
As shown by [Bal1991], in presence of an magnetic field the stability criterion (compare to
Eq. (2.35)) becomes stricter:

d

dr
(Ω2) > 0 . (2.36)
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In a magnetohydrodynamic (MHD) flow the angular velocity must increase with radial distance,
a condition not fulfilled by a Keplerian velocity profile. Initially small perturbations amplify
and generate self-sustaining turbulent motions. The underlying mechanism, known as magne-
torotational instability (MRI) due to matter-field coupling can be understood by the following
simplified picture ([Bal1998]). Given a magnetic field infiltrating the disk, two mass elements
at the same orbital radius r and joined by a vertical field line are considered. The illustration in
Fig. 2.9 shows the outcome from an initial perturbation, displacing one of the elements slightly
inwards (min) and the other (mout) in the opposite direction. When the coupling is sufficient
enough, a magnetic tension between those two is induced. Consequently, due to vK ∝ r−1/2,
angular momentum is continuously transferred from the inner element to the outer one. This
leads to min dropping to an even lower orbit, whereas mout is excited to higher r. Following
that scenario, the separation between the particles increases as well as the tension and the effect
is magnified. This growing nature of the weak-field instability assures sufficient coupling and

min

mout

ΩK

Figure 2.9. – The schematic picture of the mechanism inducing turbulent viscosity by the
magnetorotational instability depicts the face-on view of a Keplerian accretion disk with
two mass elements, initially at same orbital distances, shortly after a small displacement
in radial direction. The particles are connected by magnetic field lines coupling to the gas.
Shearing occurs due to differential rotation (vin > vout) so that tension is induced by the field
lines dragged along with the fluid elements. Consequently, angular momentum is transferred
from min to mout, raising the outer element to a higher orbit and making the inner one move
inwards. The tension increases and the effect is amplified.

its effectivity, even for low ionization fractions and a non-vanishing resistivity, which in general
would damp the MRI. Neverthelss, with indications of magnetic activity in YSOs (e.g. [Gla00]),
non-thermal ionization processes are required to drive this mechanism.
Stellar X-ray radiation from the host star (e.g. [Hay1981b], [Fei07]), or even cosmic rays pen-

28



2.2. Formation of Planets and Planetary Systems

etrating the disk ([Ume1981]), could contribute to that.
While the MRI is potentially successful in redistributing angular momentum within the accre-
tion disk, magnetically induced outflows ([Pud07], [Sal11]) from the disk surface could cause
its depletion from the system itself. All in all, magnetic fields and their interaction with the
circumstellar matter are most probably critical to the evolution of protoplanetary disks and
other systems, in which accretion is conveyed.

2.2.2.3. Formation of Planetisimals

With the development of a circumstellar disk around protostars, as described above in the con-
text of star formation, the main ingredients for the formation of planets are provided. Still the
whole remaining process is only partially understood to a satisfying level. This results from its
complexity and diversity. In order to obtain planetary companions, they must successfully grow
over many orders of magnitude, at which different types of interactions with the environment
take place. Furthermore, the evolution is bound to timing constraints. Planetary embryos and
especially gas giants need to form considerably before the host star enters its active T-Tauri
phase and a vast amount of disk material is depleted.

Condensation, Sedimentation and Coagulation

As a starting point for building solid bodies within the environment of the protostar, one usually
considers the disk material to consist mainly of gas (hydrogen and helium) with a small fraction
of dust around mdust/mgas ≈ 0.01. The µm-sized dust particles partly originate from the initial
molecular cloud itself, but also from condensations within the disk. Although the disk material
is well-mixed primarily, differentiation processes in radial direction should occur due to the
radius dependent temperature profile. Whereas mineral aggregates can form down to short
central distances, more volatile molecules such as water, ammonia or methane condense only
at outer regions, where the temperatures are moderate.
At this level the dust is tightly coupled to the gas due to drag forces FD in opposing direction
to its relative motion velocity v ([Wei1977b]):

FD = −1

2
CD · πs2 · ρsv2 , (2.37)

where CD is a dimensionless drag coefficient and s, ρs are the solid particles’ size and density.
For particle sizes within the Epstein regime, where those are small compared to the mean free
path of the gas molecules, the drag coefficient can be expressed as a function of the mean
thermal velocity v̄ in the gas CD = 8

3
v̄
v
. Using this, the settling speed and time scale of dust in

vertical direction can be estimated, which yields that at µm scale the dust is able to sediment
to a thin mid-plane layer in the disk ([Arm07]).
The efficiency of this sedimentation in presence of turbulences, providing diffusion and dust
trapping in turbulent cells, are still a matter of discussion and analysis (e.g. [Joh05], [Car06]).
However, as a consequence from sedimentation or any other processes that lead to relative
motions (turbulences, Brownian motion etc.), collisions between particles are inevitable and
provide the basic principle for growth.
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At this point, van der Waals forces allow dust to agglomerate after colliding. Unfortunately,
estimating growth rates is not that trivial. Basic approaches (see [Dull05]), neglecting any
turbulences and assuming ideal particle adhesion following encounters, show that, while settling
towards the mid-plane, coagulation is largely effective and can generate small particles of up
to even mm-sizes quickly enough. In fact, this simple ansatz presents itself as too ideal, since
the rapid runaway growth occurs at the expense of digesting small grains and leads to a lack of
those in the distribution of particle sizes, inconsistent with the observed IR-excess in the SEDs
of young T-Tauri objects. This is of no surprise, as in general the outcome of collisions is highly
sensitive to input parameters and can lead to fragmentation rather than sticking. An extensive
review on experimental results from collisions under various conditions regarding particle sizes,
porosities and velocities can be found in [Gütt10]. A schematic overview of possible outcomes
of collision experiments is given by Fig. 2.10. In principle, sticking of particles is expected for
moderate velocities below ∼1 m/s and for high speeds only, if the collision partners considerably
differ in size and the larger one is not porose.
This introduces a difficulty in the coagulation models. While particles of small sizes grow after
low-velocity encounters, high speeds tend to disrupt the building bodies. When considering
possible relative velocities of even above 30 m/s ([Wei1977b]) for bigger (meter-sized) bodies
in protostellar disks, this is a hard constraint, commonly referred to as the meter-barrier of
planetisimal growth.

Another complication to successfully modelling the planetisimal formation arises from the in-
teraction between the dust (bodies at posterior stages) and the gas flow. The effect, known as
radial drift, describes the spiralling down of solids towards shorter radii and is examined in two
different regimes ([Wei1977b]). To both mechanisms the radial pressure gradients in the disk is
decisive. The resulting forces on the gas act radially outwards and lead to a reduced net force,
compared to, if only gravitation would be considered. Consequently, the orbital frequency Ω of
the gas is slightly reduced to that of a Keplerian orbit at the same radius ([Joh11]):

Ω2r − Ω2
Kr =

1

ρ

∂P

∂r
. (2.38)

Small solids, still coupled to the gas, orbit at the same sub-Keplerian velocity but do not
experience the same radial pressure so that they drift towards smaller orbital distances due to
a net inward force.
While bodies coagulate and grow in size, they also slowly, but continuously, decouple from
the gas. These objects orbit at Keplerian frequencies and accordingly encounter a transverse
gaseous headwind forcing them to decay in orbit at the radial drift speed vdrift ([Joh11]):

vdrift = − ∆v

ΩKtfric + (ΩKtfric)−1
, (2.39)

where ∆v resembles the difference between the velocity on a Keplerian orbit and that of the
gas, and tfric = mv/|FD| (compare to Eq. (2.37)) is the friction time scale, on which drag forces
on the particle would change the relative velocity by the order of unity.
The determination of maximum radial drift speeds yields that bodies of sizes in the range of
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Figure 2.10. – Classification of collisional outcomes to laboratory experiments. Depicted are
three kinds of results: sticking (S), bouncing (B) and fragmentation (F). (Credit: [Gütt10])

0.1–1 m are mostly affected by this mechanism and reach drift velocities up to 100 m/s, resulting
in drift time scales much smaller than the disk lifetime. Hence, if the growth does not advance
rapidly enough beyond those most vulnerable size scales, a critical mass loss, due to inward drift
and evaporation in zones of higher temperature, would be the consequence. These indications
are assured by full numeric solutions to the coagulation problem, as performed by [Bra08]. The
analysis confirms the meter-barrier and shows that, when particle fragmentation and radial
drift is ignored, objects can grow due to coagulation enhanced by Brownian motion, differential
settling and turbulent motions up to km-sizes, whereas, if the loss mechanisms are taken into
account, only particle sizes of not more than 1 cm in scale are generated (see Fig. 2.11).

Hence, destructive high-speed collisions and radial drift somehow need to be bypassed in order
to grow planetary embryos. One possible way to accomplish this would be the gravitational
collapse within a local region of enhanced particle densities. The development of regions, in
which the matter concentrations would be high enough to allow such a scenario, is the matter of
ongoing studies, and turbulences seem to be the most promising factors in such considerations.
Numerical simulations ([You05], [Joh09]) show that hydrodynamical streaming instabilities,
arising in the coupled movement of particles and gas, are capable of initiating spontaneous
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Figure 2.11. – Particle size distribution in the disk as result to numerical analysis of coagula-
tion. Brownian motion, differential settling and turbulent coagulation lead to object growth,
whereas collisional fragmentation combined with inward radial drift result in material loss
and limit the resulting particle sizes intensely. Different times during the evolution are or-
dered vertically. Left panel: Surface density as a function of particle radius at three different
radial distances (1 AU, 10 AU, 100 AU). Right panel: Corresponding contour plots of surface
density as function of radial distance and particle radius. (Credit: [Bra08])
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clumping. Within those zones of increased solid to gas ratio the headwind from the gas com-
ponent, locally accelerated by the particles towards Keplerian speeds, is reduced, which slows
down the radial drift so that further particles approaching from higher orbits can pile up and
in turn increase the local density. The efficiency of this mechanism benefits from higher metal-
licities so that this could also be a contribution to understanding the strong dependency of the
actual indicated exoplanet probability increasing with the host star’s metallicity.
In addition to producing particle densities high enough to allow gravitational contractions in
these regions, the relative velocities between particles within those clumps, created by the
streaming instabilities, are derived to be quite moderate. The typical collision speeds lie in
the range of 2–5 m/s and only a small fraction (5 %) of encounters happen at velocities above
10 m/s.
In spite of being analyzed only recently, turbulences as induced by the streaming instabilities,
offer a promising concept for solving the problems in coagulation modelling and could provide
a mechanism for a successful creation of planetisimals of 10–100 km in radius.

2.2.2.4. Progress beyond Planetisimals

Although the processes are not completely understood, considering the solar system, where
planets clearly have formed at a broad range of orbital distances, it is obvious that nature has
found a way to leave the difficulties of initial growth behind.
Given 10–100 km-sized solid bodies, the underlying mechanisms of further growth slightly
change. At this scale the aerodynamic interaction between the objects and the gas are neg-
ligible. Stronger coupling is expected to be restored not until gravitational coupling becomes
effective at object sizes & 103 km.
Therefore, for further considerations, the formed planetisimals are regarded as a N-body system
with constituents on definite orbits.11

Gravitational focusing

Growth of solids beyond the planetisimal stage is supposed to be mainly an outcome of col-
lisional contacts. In contrast to coagulation on small scales, at this point gravitational inter-
actions become increasingly important. The collisional cross section is enhanced by an effect
called gravitational focusing, and hence collisional and consequently growth rates are increased.
From basic treatments of physical encounters, including gravitational forces between two solid
bodies with masses m, a limiting value for the impact parameter can be derived by conserving
energy and angular momentum between the time of the collision and before ([Arm07]):

b2
max = R2

s +
4GmRs

v2
rel

, (2.40)

11This starting point approximation does not exclude further orbital evolution. In fact, modelling planet
migration (see Sec. 2.2.2.6) is substantial for consistency with properties of detected exoplanets.
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where Rs is the sum of the objects’ radii and vrel the initial relative velocity. Encounters with
impact parameters below bmax will result in a collision, and the resulting cross section becomes:

Γ = πR2
s

(
1 +

4Gm

Rsv2
rel

)
. (2.41)

The second term inside the bracket gives the deviation to the pure geometrical cross section.
This effect influences the growth rate of massive bodies significantly, but obviously relative
velocities prior to collisions and consequently the velocity dispersion of objects within the disk
are not only essential for the focusing but in fact determine the collisional outcome.
As for collisionally induced coagulation of small particles, an encounter does not inevitably
lead to mass accretion, but can also result in fragmentation, studies are performed to derive
the parameter spaces, regarding impact speeds, masses, sizes and composition of the collision
partners, at which the encounters are not disruptive. In this framework it has become con-
venient to parameterize the collisions by their specific impact energy, which is defined by the
collision speed and the mass ratio between the two colliding partners. In this manner [Ben1999]
investigated the outcomes from simulated collisions of bodies with sizes in the range of 1–105 m
and for different impact energies. An evident distinction between two regimes, regarding the
objects’ sizes, is one of their main results. The strength dominated regime includes events be-
tween small bodies and is characterized by the feature that the specific energy threshold for
catastrophic collisions is decreasing with increasing size of the target object. This resembles
the decrease in material strength for growing bodies in that regime. Objects in sizes between
100 m and 10,000 m show to be the weakest compositions, whereas for larger bodies the thresh-
old again increases with size. For those, located in the gravity dominated regime, self-gravity
becomes more and more effective and prevents them from disruption. While disruptive im-
pacts in the strength regime lead to fragmentation of the target and usually to mass dispersal,
catastrophic disruptions become more difficult in the gravity dominated regime. High energy
collisions might result in shattering, but the fragmented pieces tend to remain gravitationally
bound.

All in all, it should be kept in mind that growth rates of planetisimals depends strongly on
the gravitational enhancement and on the velocity distribution. The latter evolves in time and
is mainly modified by gravitational interactions and physical collisions. During early growing
stages, when gas drag is still effective, eccentricities and inclinations should be damped due to
the coupling. While gravitational scattering conserves the kinetic energy of the bodies, colli-
sions usually lead to dissipation and consequently reduce the relative velocities of larger objects
compared to smaller bodies within zones, where mass concentration occurs.
Estimations of growing rates of planets due to planetisimal accretions show that the magni-
tude of gravitational focusing makes the difference between slow initial growing rates at linear
time scales and a runaway growth when the gravitational effect increases with growing masses
([Lis1993]).
Although not surprising, but still worth to be stressed out, is the fact that the rate scales
linearly with the local planetisimal surface density. This conveys faster growth in disks of more
mass in general or in those with a higher solids to gas ratio. Furthermore, with increasing
radial distances, growth becomes slower due to the initial disk’s radial density profile and lower
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orbital frequencies, which correlate with the action time scale, at which accretion takes place.
This conclusion becomes particularly relevant for the formation of giant planets in outer regions
within a reasonable time.
Numerical approaches to the question about growth rates involve the analysis of the evolution
of the mass spectrum of an initial particle distribution and often base on the solution of the
coagulation equation (e.g. [Lee2000]):

dnk
dt

=
1

2

∑
i+j=k

Aijninj − nk
∞∑

i+j=k

Akini . (2.42)

In this discrete formulation masses of particles are assumed as integral multiples of some small
mass m1 and so nk gives the number density of bodies with masses mk = km1 at a specific time.
By that Eq. (2.42) is an expression for the temporal evolution of the number of objects with a
specific mass due to successive merging events. The first term on the right-hand side accounts
for the gain of particles with the mass mk, while the second term defines the loss due to merging
to higher masses. The coefficients Aij stand for the rate of mergers between bodies of masses,
implied by the indices, and hence cover all physical mechanisms, such as gravitational focusing
that might be incorporated. If disruptive collisions are to be accounted for, this can be done
by adding another terms to the coagulation equation.
Solutions to Eq. (2.42), as well as similar approaches, imply that protoplanets are formed by
accretion of planetisimals at first in the regime of an orderly growth, with the mass distribution
evolving moderately, followed by an epoch of gravitationally enhanced runaway growth, when
a finite number of larger bodies grows even bigger at the expense of smaller ones, which is
characterized by a power-law tail of the evolved mass distribution.
At some point the interaction of the large bodies results in increasing the velocity dispersion
of planetisimals in their vicinity due to scattering processes, and therefore, in combination
with the depletion of smaller objects through accretion, the growth rates decrease. This post-
runaway epoch is widely referred to as oligarchic growth (e.g. [Kok1998]).
The mass, reached by the protoplanet by accretion of planetisimals at the time when growth
slows down, is called the isolation mass. Its value can be estimated by relying on the assumption
that only planetisimals within a limited orbital distance to the orbital radius of the protoplanet
can be efficiently accreted. This is justifiable insofar, as rapid growth requires low relative
velocities of the collision partners, which is most probably provided by planetisimals on not
excessively disturbed Keplerian orbits. Since the distance, at which the gravitational influence
by the protoplanet is able to perturb the particles’ trajectories and to induce collisions, is
limited, so is the supply of objects that can be incorporated. Hence, commonly the isolation
mass is estimated by the summation of all planetisimal material within the so called feeding
zone of the planet at orbital radius r0 ([Lis1993]):

Miso =

r0+∆r∫
r0−∆r

2πrΣp(r) dr ≈ 4πr0∆rΣp(r0) . (2.43)

With a given surface density of the planetisimal material in the disk Σp(r) and the radius of the
feeding zone ∆r, commonly approximated by the planet’s Hill radius (see App. A), the isolation
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mass can be derived and can be used to constrain density profiles and masses of protoplanetary
disks. For the typical MMSN the estimation gives masses of Miso ' 0.07 M⊕, Miso ' 1.36 M⊕
at orbital distances of 1 AU and 5 AU respectively.
However, this derivation is quite strict, since it does not take any diffusion of additional mass
into the feeding zones into account. Scattering events, perturbations by protoplanets in neigh-
boring accretion zones, gas drag of small objects, but also migration of planets (see Sec. 2.2.2.6)
violate the simple concept of the isolation mass and should drive protoplanets eventually to-
wards higher resultant masses.

2.2.2.5. Formation of Giant Planets

The discussion so far outlined the processes leading to formation of protoplanets, but also
pointed out some difficulties and strict time constraints. This becomes particularly severe
when concerning the formation of giant planets at larger radial distances. Obviously, gaseous
giants have managed to incorporate a large amount of gas from the protoplanetary nebula, so
in order to account for those compositions these planets need to form before the gas component
is expelled from the disk, limiting models to formation time scales below 107 yr.
Two fundamentally competing models have been developed to describe the successful formation
of giant planets. The formation by direct collapse, which bases on gravitational instabilities
within the disk and the core accretion model, describing the process by successive growth and
gas accretion.
Both models are subjects to ongoing controverse discussions, whether they can generate giants
within the time limits and whether they are consistent with indications from observations
and our knowledge about giant planets. This is why, here at this point, only the underlying
principles are presented, while more detailed and critical reviews can be found in e.g. [Dur07],
[Mos10], etc.

Direct Collapse by Disk Instabilities

Instabilities within a matter distribution can result in a gravitational collapse, as it happens
prior to star formation. For a similar scenario in an accretion disk local perturbations from
the smooth and regular disk model are required to trigger destabilizing processes. Matter
infall onto the disk, irregular cooling, mass accretion and accumulation or perturbations from
neighboring systems all are expected to induce instabilities and turbulences on different spatial
scales. Whether those can lead to mass fragmentation and contraction into cores of posterior
planets is another question.
Commonly, the occurrence of a gravitational instability (GI) is described by a condition for the
Toomre parameter Q ([Too1964]):

Q ≡ csκ

πGΣ
< 1 , (2.44)

with the local surface density Σ, the sound speed cs and the epicyclic frequency κ, at which
fluid elements, disturbed from circular motion, oscillate. For nearly Keplarian disks this can
be approximated by the rotational angular frequency κ ≈ Ω.
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Pressure and rotation tend to stabilize the system, whereas for low values of Q the local region
becomes unstable. Estimations show that, in order to introduce GIs in a thin disk, relatively
high surface densities, as compared to the MMSN models, are required ([Arm07]).
Nevertheless, with decreasing sound speed for increasing radii, the disk, when large enough,
should provide regions of sufficiently low stability. Due to such considerations GIs are most
probable at early stages when the disk mass is still high.
Still, there is another control parameter decisive for the outcome of an instability scenario.
As supported by numerical simulations, non-axisymmetric instabilities, like spiral waves, can
be triggered due to decreased values of Q, which do not necessarily drive fragmentation, but
rather transport of angular momentum and dissipation. Within those zones gas is adiabatically
compressed by self-gravity and leads to heating. This energy needs to be depleted in order for
a gravitational collapse to occur, which results in a criterion for the cooling time. Since gas
compression acts on time scales of the order of an orbital period, cooling must be effective on
similar times or shorter. A criterion for the cooling time is given by [Gam01] to:

tcool ≤ 3Ω−1 . (2.45)

If the cooling time is too large, the generated heat prevents contraction and the instability leads
to a steady state, in which cooling is balanced by dissipation of the gravitational turbulences.
Energy transport in vertical direction and the opacity determine the cooling time in the disk.
In general, disk models imply that gravitationally induced fragmentation and self gravity can
generate giant planets, but preferably at outer orbital distances and early epochs, where and
when enough mass and sufficiently high densities are provided. With a tempting rapidness
of this mechanism it should result in a considerable reservoir of exoplanetary giants with high
semi-major axes. Until today the most successful methods for exoplanet detection (see Sec. 2.3)
are mostly sensitive to short orbits, so future progress in observational techniques towards the
parameter space of high radial distances will definitely be more meaningful for answering the
question, whether the disk instability model is realistic ([Arm07]).

Core Accretion

Modelling the formation of gas giants by core accretion in principle is conservative in the sense
that it is founded on growing the planet from accumulating planetisimals under interaction
with the gaseous component of the disk. The formation process can be divided into several
stages and is depicted in the scheme in Fig. 2.12. During the first and longest epoch a solid
protoplanet, later called the core of the giant, is formed by planetisimal accretion. Once the
growing core is massive enough to hold a gaseous envelope, gas accretion from the disk com-
mences slowly. For some time growing of both, the solid core and the gaseous envelope, takes
place at moderate rates, while the envelope is expected to sustain quasi-hydrostatic equilibrium.
The growth of the core will be supported until the isolation mass is reached and the supply of
planetisimals ceases, although this might be delayed since the growing envelope should simul-
taneously increase the feeding zone of the protoplanet.
However, considering the release of potential energy from the accretion of incoming planetisi-
mals as the main source of support for the envelope in maintaining hydrostatic equilibrium and
taking energy transport, such as radiative diffusion and convection in the envelope into account,
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one finds that at a critical core mass the hydrostatic equilibrium cannot be sustained. When
this M crit

core is reached, the outer envelope itself releases energy by contraction, which results in
a rapid runaway gas accretion at the boundary between the gas bound to the planet and the
gas in the protoplanetary disk. Computations (e.g. [Iko2000]) imply a power law dependency
of the critical core mass on the core accretion rate Ṁcore and the opacity κ, induced by gas and
grains within the envelope and governing its thermal response to energy transport:

M crit
core ∼ 7

(
Ṁcore

1× 10−7 M⊕ yr−1

)q′(
κ

1 cm2 g−1

)s
M⊕ , (2.46)

where both exponents q′ and s can be approximated by 0.2–0.3.

This runaway growth process occurs at rates as fast as the released gravitational potential
energy can be radiated away until the gas supply ceases either due to gap opening in the feed-
ing zone of the planet or due to overall clearing of the disk.
Whether the stage of runaway gas accretion is reached within the lifetime of the disk, is again
mainly determined by the growth rate during core accretion. Higher accretion rates are sup-
ported by increased surface densities and therefore also by higher metallicities, which not only
results in longer times for the core growth process at larger distances to the star, but also to
larger final core masses in general. Hence, increasing the accretion rates to stay within the time
window for giant formation may lead to final core masses significantly higher than such, which
are implied by derived core masses, as e.g. for Jupiter.
Still, the dependency on the opacity in Eq.(2.46) is capable to speed up the process without the
expense of high core masses by reducing the critical core mass itself. Models to grain opacities
in protoplanetary envelopes (e.g. [Mos10]) derive sufficiently low values, which enhance heat
loss from the envelope and in turn lead to an earlier contraction. The calculations show that
time scales of the order 1 Myr together with final core masses around 10 M⊕, at radii compared
to Jupiter’s position, are reasonable, although the surface density in the disk needs to be in-
creased, compared to the MMSN approximations.
It should be noted that even if core accretion ceases before the critical mass is reached, the en-
velope will contract due to the lack of energy support and the break of hydrostatic equilibrium.
The contraction triggers gas accretion, during which the envelope increases mass at moderate
rates.

With the main mechanism outlined, there are still certain uncertainties that need to be tack-
led, before the core accretion model can be regarded as well established. As simulations show,
the magnitude of the opacity can be of great importance for triggering runaway growth, when
its values are highly reduced, compared to the interstellar opacity, but at the same time the
magnitude is highly uncertain.
Furthermore, it is obvious from the findings of giant companions at short orbits (hot Jupiters)
in exoplanetary systems that radial migration processes occur. In which extent those might
influence the outcome and timing constraints for the core accretion scenario, remains to be
studied.
Regarding the distribution of giants in the solar system, the change in composition towards
higher radii, with Jupiter as the innermost with the largest gas envelope, could mirror the
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(1)

(2)(3)

(4)

Figure 2.12. – The sequence of giant planet formation, following the core accretion model,
is depicted counter-clockwise starting at upper-right. A solid core is formed by planetisimal
accretion (1). When it becomes sufficiently massive, slow accretion of nebular gas onto the
growing core is triggered (2). The core reaches its final mass, either the isolation mass Miso

due to gap opening, or the critical core mass M crit
core, while gas is still accreted (3). After core

growth ceases, the gas envelope contracts and leads to further rapid runaway accretion if
Mcore ≥M crit

core, or else at moderate rates (4). (Original image from [Ben11])

increasing time scales for core formation and runaway gas accretion with increasing distances
to the sun.
On the other hand, time scales for the building of Uranus and especially Neptune seem to be
too long to be realistic for formations in situ at those long orbits, again demanding for radial
motion during the planet’s evolution.

So, at this point it is not possible to exclude one of these approaches towards giant planet
formation, as discussions between supporters of both are ongoing.
In principle, a hybrid scenario, in which core accretion is triggered and accelerated by gravita-
tionally induced instabilities, is also imaginable.

2.2.2.6. Orbital Evolution in Young Planetary Systems

In the previous sections the main focus was laid on the formation of solid bodies growing to
planets. However, during this process interactions between the constituents of the young and
still evolving system might influence the orbital parameters of the planets.
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In the following, mechanisms affecting the dynamical evolution of the planetary system, with
an emphasis on radial migration of massive solid bodies, are summarized.

Radial Migration

When solid bodies grow, they eventually decouple from the gas and become less vulnerable to
gas drag. Nevertheless, theoretical studies of the interaction between planets and protoplanets
with the gaseous component of the disk result in the conclusion that orbital migration takes
place in young planetary systems. This is not only consistent by implications from detections of
hot Jupiters, massive giant exoplanets at short radial distances, but would also yield a possible
explanation for giants at outer orbits like Neptune in the solar system.

The basic idea behind migration mechanisms is founded on the fact that an orbiting planet
breaks symmetry and induces a non-axisymmetric and time dependent gravitational potential
into the system. The gas reacts to that by configuring in density waves, which in turn are per-
turbations to the potential. This results in a feedback on the planet and in radial migration,
as its angular momentum can be changed due to torques exerted by the perturbations.

This response of the disk and the transport of angular momentum due to the excitation of
density waves can be analyzed by approaching the resulting torques by summing over partial
torques at certain resonant locations within the disk ([Gol1979]).
Two kinds of resonances are to be distinguished. Corotational resonances exist in the disk in
the vicinity of radii with angular frequencies Ω = Ωp, equal to that of the planet at radius rp,
whereas the Lindblad resonances occur when

m(Ω = Ωp) = ±κ , (2.47)

whith the integer m and the epicyclic frequency κ = Ω in a Keplerian potential. When the gas
is approximately considered in keplerian motion, the radial locations of the Lindblad resonances
are given by:

rLR ≈
(

1± 1

m

)2/3

rp . (2.48)

The positive sign resembles outer Lindblad resonances, where gas rotates slower than the planet,
and the negative sign the inner, faster rotating resonances.
The planet induces positive torques on the gas at radii corresponding to outer resonances and
respectively negative torques on gas at inner resonances. This leads to the planet gaining
angular momentum from the inner gas and in turn transporting angular momentum to the
outer disk. Consequently, gas tends to be repelled in both directions from the vicinity of the
planet’s orbit.
In order to derive the total effect on the planet, the torques exerted at all resonances need
to be summed up. In fact, [War1997] states that on contrary to implications from Eq. (2.48)
the positions of the outer resonances lie slightly closer to the planet’s radius than the inner
resonances of the same order m, and due to further asymmetries the outer torques result to be
of higher magnitudes, which leads to a differential net torque that drives the planet towards
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orbital decay.
For the quantification of these considerations, [Tan02] studied the collective effect from disk
material librating on horseshoe orbits (see App. A) in the planet’s corotational region, as well
as from gas at the Lindblad resonances. Their three-dimensional, linearized calculations of the
interaction within an isothermal disk yield the total torque exerted on the planet:

Γ = −(1.364 + 0.541α)

(
Mp

M∗

rpΩp

cs

)2

Σpr
4
pΩ

4
p , (2.49)

and the corresponding timescale for inward migration:

τmig = (2.7 + 1.1α)−1M∗
Mp

M∗
Σpr2

p

(
cs

rpΩp

)2

Ω−1
p , (2.50)

where α is given by the assumed power law disk’s surface density Σp = Σ0(r/r0)−α and M∗ is
the stellar mass.
The inward motion, as described by these considerations, is referred to as the Type I migration.
It is particularly important to notice that the efficiency of this mechanism is increasing with
the planet’s mass.
Furthermore, the time scale results to be critically short. Considering reasonable masses of a
growing planet of a few M⊕, placed in a typical low-mass protoplanetary disk at distances of a
few AUs, yields migration times below 1 Myr and due to the mass dependency the time scale
lies even below 105 yr for planets approaching Jupiter sizes.
This high migration rate implies that growing planets are strongly affected by radial inward
migration and particularly the formation of giant planets within the given time becomes dif-
ficult, since at such a time scale those would probably fall into the star before reaching the
critical core mass.

On the other hand, it must be stressed that the above derivation of the total torques and
the time scales relies on linear approximations to the perturbations and on smoothly behaving
surface density profiles within presumably isothermal disks. In reality, thermodynamics of the
disk appear to be of great importance. Models of Type I migration in evolving, radiative disks
with adiabatic regions ([Par06], [Lyr10], [Mor11]) indicate that migration is highly affected by
disk properties, such as the opacity, the temperature or the gradient of the surface density so
that sub-regimes of migration in opposite directions might develop within the disk.
As a consequence, planetary bodies tend to be pushed into convergence zones of zero-torque,
rather than experience the catastrophic infall onto the central star.

As stated above, the torques, which are induced by the planet on the gas within its orbital
radius, act in opposite direction to those that affect the gas at larger radii. This results in
a repulsion of the gaseous component away from the planetary orbit. If this effect is strong
enough, the disk’s surface density is disturbed and is not able to relax quickly enough so that
the planet is able to clear its vicinity and the torques diminish.
At this point, the planet will be locked to the disk and follows the motion of the gas. Radial
migration occurs with the disk’s viscous evolution at timescales, as given by Eq. (2.34).
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Figure 2.13. – The picture illustrates a model to the mechanism of gap formation leading
to radial migration of Type II. A planet is able to open a gap in its vicinity, if the exerted
torques, which result in gas repulsion, are more effective than the counteracting viscous
diffusion in the disk. Positions of the Lindblad resonances are indicated by the arrows,
labeled by the resonance order m. (Credit: [Tak1996])

Consequently, the migration rate in this case of the so called Type II migration is independent
of the planet mass and is only affected by the disk characteristics and the mass of the central
star. In order for the protoplanet to be able to open a gap within the gas distribution, generally
two conditions need to be fulfilled. Since the planet’s Hill sphere defines the region and scale
length, at which the body’s gravitational effect considerably influences its environment, the Hill
radius must be comparable to the scale height H of the disk. This implies a condition on the
mass ratio q between the planet and the star:

q ≡ Mp

M∗
& 3

(
Hp

rp

)3

p

, (2.51)

where the index p means that the scale height ratio is evaluated at the planet’s orbital radius.
For typically thin protoplanetary disks (H/r ≈ 0.05) and a solar type star Eq.(2.51) is satisfied
for masses above ∼MJup or equivalently for q & 1.25× 10−4.
Still, while the torques exerted by the planet tend to gap opening, viscous diffusion of the disk
matter acts on filling the gap. This situation is depicted in Fig. 2.13 and results in a second
condition for gap formation, which can be derived by postulating that the time scale for viscous
gap closing must be longer than the time scale, at which the gap opening mechanism is effective
([Tak1996]):

q &

(
Hp

rp

)2

p

α1/2 , (2.52)

with the viscosity characteristics covered by the disk parameter α (comp. Eq. (2.33)). In a
typical disk, as defined before, and with α = 10−2 this viscous condition is fulfilled for values
of q & 2.5× 10−4.
Regarding both conditions altogether, it seems convincing that small protoplanets are affected
by orbital evolution of Type I, and while growing beyond a critical threshold mass, which
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depends on the disk parameters, Type II migration eventually takes over, involving a charac-
teristic decrease in drift velocity of one or two orders of magnitude ([War1997]).
The planet’s lock-in to the gas within the disk will indeed lead to inward directed migration
at small radii, but, as [Ver04] have shown, at larger orbital distances, and within disks that
experience a significant mass loss during the system’s evolution, even outward migration might
occur.
Therefore, the combination of both mechanism under the right conditions can result in differen-
tial and oppositely directed orbital motions within protoplanetary disks, and so this theoretical
treatment not only provides means to comprehend the presence of giants at outer radii, but
simultaneously provides an explanation to the numerous detections of hot Jupiters in exoplan-
etary systems.
Those most probably represent planets, whose formation has started at orbital distances that
provided suitable conditions for giant formation and which experienced inward migration there-
after, until the orbital decay ceased due to disk dispersion or truncation or due to tidal inter-
actions with the central star.

Figure 2.14. – Illustrative comparison of the planet-disk interaction in both migration regimes.
Left: A low-mass planet undergoes Type I migration. A density wave excited within the
disk is noticeable, but the surface density profile (azimuthally averaged and depicted by the
graphs in the left corners) is not significantly disturbed. Right: In the regime of Type II
migration an annular gap is cleared by the massive planet, which then is locked to the gas
and follows its orbital evolution on a viscous timescale. (Credit: [Arm05])
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Gravitational Scattering

In the previous discussions, orbits of the developing planets were assumed to be nearly circular
and in plane with the initial protoplanetary disk. Although these simplifications seem nec-
essary and justifiable for the early epoch during planet formation, dynamical evolution must
be taken into account at later stages. The diversity in excentricities and inclinations among
detected exoplanets (see 2.3.7) are non-deniable indicators for gravitational interaction during
the evolution of young planetary systems.
Analytical studies towards system stability can be a first approach to this problem. In the frame-
work of the three body problem, it can be shown (e.g. [Gla1993]) that a system of two bodies
with masses m1,2 at initial circular orbits around a central stellar mass M with m1 +m2 �M
remains stable if the initial relative separation ∆ = (a2 − a1)/a1 between the planets’ radial
distances does not fall below a critical value of:

∆c ' 2.40

(
m1 +m2

M

)1/3

, (2.53)

also known as the Hill stability criterion.
When considering complex systems of more than two co-orbiting planets, one might extend
this stability condition to any pair of objects, but in reality no absolute statements about the
system stability can be made for N > 3, and so N-body simulations must be performed to
initial configurations.
In principle, gravitational scattering of two planets can result in different outcomes. Particularly
interesting are those scenarios, which might lead to evolved distributions of orbital parameters,
such as the semi-major axis, the eccentricity, or the inclination.
While collisions tend to result in rather small eccentricities, it has been found that in the case,
when close encounters lead to ejections of one body out of the system or to weakly bound states
characterized by high semi-major axes, the remainings’ radial distances are typically decreased
and their eccentricities become significant ([For03]).
Planets, deflected towards their central stars with either a further catastrophic impact or enter-
ing an orbit of short period, on which tidal effects might lead to synchronization and circular-
ization, as well as systems with objects at resonant orbital configurations are also imaginable
and suggested from analyses.
Recent numerical studies have been performed with the aim to simulate orbital parameter
distributions that would be comparable to the actual ones, as extrapolated from the samples
of known exoplanetary systems. Regarding the eccentricity, results from integrations of over
3,000 ensembles of randomly constructed initial planetary systems [Jur08] imply a noticeably
common final equilibrium distribution that the systems relax to, and which, except for an un-
dersampling at e . 0.2, fits relatively well to the data derived from observations.
Furthermore, they find a general broadening in the distribution of inclinations along the result-
ing planets, but no significant correlations between the parameters concerned (masses, semi-
major axes, inclinations and eccentricities).

All in all, it seems persuasive that, besides migration mechanisms induced by interactions
with the gas disk, gravitational scattering between growing planets plays a major role in the
planets’ orbital evolution and in the dynamical development of the system as a whole.
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It might also be the leading candidate for explanations of eccentricity and inclination distribu-
tions of the exoplanets, detected until today.

2.3. Extrasolar Planet Hunting Techniques

Although speculations about planets beyond the solar system prevailed amongst philosophers
and natural scientists, at least since the times of ancient Greece, significant progress in this
field was not achieved before the 1990’s. By the end of the 17th century, Christiaan Huygens
(1629–1695) estimated stellar distances and is the first one documented to have performed
investigations towards exoplanet detection ([Huy1698]), but was destined to fail due to the lack
of appropriate means. The first claim for the existence of an unseen companion to a star was
made by W. S. Jacob in 1855 ([Jac1855]). He has investigated the orbit of the binary star
70 Ophiuchi and came to the conclusion that a dark planetary companion might be bound to
the system. In spite of having been revisited as erroneous (lately by [Hei1988]), this approach
resembles the first attempt to the indirect detection of extrasolar planets.
The inevitability of indirect techniques, when searching for exoplanets, is mainly provoked by
two aspects related to the subject:

Brightness ratio
According to the Stefan-Boltzmann law L ∝ R2 ·T 4

eff , the luminosity L of an object,
treated like a black-body, is highly regulated by its effective temperature Teff and radius
R. This gives approximately L�/L⊕ ∼ 1.6 × 109 for the contrast in luminosity when
considering the sun and the earth and L�/LJup ∼ 6×108 for sun and Jupiter respectively.
Consequently, at least in visible wavelengths, direct light from the planet can be neglected
and only the reflected component needs to be considered. Imagining an observer at a given
distance D to the planetary system, where the spatial separation a between the planet
and the host star is negligible comparing to D, the flux ratio from the two objects, as
acquired by the observer, can be estimated. Approximating the planet‘s surface by a
plane disk of radius Rp, the incident energy per time reaching the planet is given by

Lin =
L∗

4πa2
·
(
πR2

p

)
, (2.54)

with the stellar luminosity L∗. Taking into account that the planet reflects light only
into a half sphere, and not considering its intrinsic thermal emission, the flux ratio at the
observer’s position, when the whole reflecting area is visible, can be estimated to:

sp
s∗

=
srfl

s∗
≈ Lrfl

L∗
=
Lin/ (2πD2) p

L∗/ (4πD2)
=
p

2
·
(
Rp

a

)2

. (2.55)

Here the planet’s reflective characteristics are defined by the planetary albedo p.
Now, considering the system’s inclination angle i and the orbital phase, the contrast in
brightness becomes

sp
s∗
≈ p

4
·
(
Rp

a

)2

· [1− sin i (cosφ(t))] , (2.56)
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where the phase is defined by the orbital period P to φ(t) = (2πt)/P and covers the full
orbit with φ = 0 at the time of the conjunction, when the planet lies between the observer
and the host. So, for an edge-on view (i = 90◦) the flux ratio oscillates between 0 and the

maximum value of p
2
·
(
Rp
a

)2

, while for face-on observers it remains constant at p
4
·
(
Rp
a

)2

.

However, the dominating term is given by the ratio between the planet’s radius and its
orbital distance. In the case of the earth-sun system this ratio between the reflected and
primarily emitted light is around ∼10−10.
Those high contrast values become more moderate when moving from the visible to in-
frared wavelengths. In this regime the star appears dimmer and the planet’s thermal
emission gains significance. Nevertheless, with a ratio of ∼10−6 for the earth-sun config-
uration carrying out observations at longer wavelengths improves the situation, but the
contrast still remains highly demanding to cope with.

Angular separation
For an observer the apparent separation between two distinct objects on the sky decreases
with the distance D to the system. Typically, the spatial separations within a planetary
system are very low compared to the astronomical distances, at which those systems are
to be found, and the angular distance on sky is given by:

θ [as] ≈ a [AU]

D [pc]
. (2.57)

At a distance of 1 pc, which is of the order of the nearest stars, the earth-sun system
appears at an angular distance of 1 as (arcseconds), but scales reciprocally with the dis-
tance. The angular resolution of an optical system determines, if objects can be identified
as distinct sources in the telescope image. Due to the wave character of light, any point
source on sky is rendered as an diffraction pattern, the Point-Spread-Function (PSF), in
the telescope’s image plane. For ideal circular apertures of diameter D the extent of the
main maximum is called Airy-disk and its angular diameter is:

θ = 1.22
λ

D
, (2.58)

or in convenient units:

θ [as] = 0.25
λ [µm]

D [m]
. (2.59)

Consequently, θ gives the angle between the incoming light and the direction, at which
the first minimum occurs. Here it is assumed that the aperture scales are negligible to
the emitting source’s distance and the incoming light is treated as plane waves.
When observing two sources, each will generate an intensity pattern in the image and in
principle these can only be resolved, if the maximum of the one pattern does not fall into
the main maximum of the second’s PSF. Consequently, Eq. (2.58) gives the ideal diffrac-
tion limited minimum angle of objects on the sky, under which they can be recognized
as separate sources and is known as the Rayleigh criterion. Larger telescope aperture
sizes increase the resolution (decrease in θ), while with longer wavelengths the Airy disk
increases, which results in a decrease in resolution.
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Unfortunately, in reality the situation is not as simple as implied by the diffraction limit.
Turbulences within the atmosphere along the lightpath cause deformations to the wave-
front and generate multiple images, the speckles, of which the PSFs are diffraction limited.
When the exposure time is chosen longer than the time scale, at which the disturbances in
the atmosphere change (around 0.02 s), the randomly moving speckles superpose, which
results in smearing out the image of the point source to the extent of the so called see-
ing disk. Therefore, the resolution of optical ground-based telescopes with aperture sizes
above ∼0.5 m is not diffraction limited, but rather defined by the angular diameter of the
seeing disk. Depending on the location and weather conditions, the Full Width at Half
Maximum of the seeing disk is a varying property of the telescope site and in best cases
limits the resolution to 0.5–1 arcseconds.

However, there are ways to avoid or to compensate the atmospheric limitations. Space-
based telescopes are mainly diffraction limited and also allow to observe in wavelength
regimes not accessible from the earth due to the opaqueness of the atmosphere. Accord-
ing to the Rayleigh criterion, the angular resolution at λ = 500 nm for the Hubble Space
Telescope (HST), with an aperture of 2.4 m in diameter, is about 0.05 as.
On the ground, adaptive optics (AO) can be used to handle atmospheric disturbances.
Such systems identify the wavefront distortions in real-time and correct for them. In prac-
tice, one part of the incoming light is typically sent by a beam splitter to the wavefront
sensor, which measures the deviations from the ideal plane wave, and for compensation
controls a deformable mirror that is incorporated into the system. The frequencies, which
the control loop needs to operate at, are determined by the time scale of considerable
changes to the wavefront. This coherence time increases with wavelength and demands
for working frequencies in the range of 0.5 kHz–2 kHz.
In order to measure the wavefront distortions, one needs a point source as reference.
This can be the observation target itself, if bright enough, or a reference star close to
the target. The angular separation of these two objects must lie within the isoplanatic
angle, which is considered as the angular distance, for which, when not exceeded, the
atmospheric distortions to the two light beams can be approximated as the same. In
the near infrared the isoplanatic angle is about 20′′–30′′, but in the visible decreases to
∼ 2′′, which in some cases is a challenging constraint for observation planning (see also
Sec. 3.2.2 for the isoplanatic angle in interferometry and its influence on target selection
for ESPRI in Sec. 5.1).
If no suitable reference is found, some systems provide the possibility of projecting a laser
guide star onto the sky. This artificial source then acts as the reference for wavefront
measurements.

The difficulties, arising from the combination of these two effects and technical limitations natu-
rally, bias the sample of target stars, which are usually investigated when looking for exoplanets.
Although strongly dependent on the sensitivity and method of each individual detection tech-
nique, the challenges can be tackled by the proper choice of host star candidates.
Obviously, favorizing nearby stars moderates the demands on resolution, as the apparent spa-
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tial separation scales reciprocally with distance. Furthermore, the high contrast problem can
be tackled by choosing target stars of low luminosity or young stars in general, under the as-
sumption that planets, also young in those systems, exhibit higher temperatures.
Still, given our technical limitations, it is of no surprise that efforts on indirect detection meth-
ods have been taken and that those led to the first successful results.
The most obvious indication for the existence of a substellar companion to look for, is the host
star’s reflex motion relative to the system’s common center of gravity.
During the last century, first surveys to investigate irregularities in stars’ proper motions due
to companions have been undertaken. In the 1960’s, Peter van de Kamp published results from
his astrometric study of the nearby high proper motion Barnard’s Star.
In [vdKam63] he proclaims indications for a companion of 1.5 times the mass of Jupiter. Dur-
ing the following decades van de Kamp partially revised his conclusions from the data, now
claiming for a multiple system with two planetary companions. Still, his analysis was never
confirmed, but questioned, mainly because of contrary results and concerns about systematics
within the telescope (e.g. [Gat1973], [Her1973]).
Despite that, this survey remains a kind of a pioneering work in this field.
Eventually, today commonly accepted as the first discovery of a planetary mass object, is a
publication from 1992 by A. Wolszczan and D. A. Frail. In [Wol1992] the authors present
their study of timing measurements of varying pulses from the pulsar PSR B1257+12, from
which they conclude the existence of at least two planetary bodies with masses of ∼ 2.8 M⊕
and ∼3.4 M⊕ in orbit around the neutron star. This detection strongly attracted the attention
of the scientific community, not only as being the first detection at all, but also due to the
system’s exotic character. Within the framework of planet formation, the existence of planets
around supernova remnants were not even notably considered until then.
For this reason the first discovery of a substellar companion to a main sequence star in 1995
was indisputably a breakthrough in the field of exoplanetary research. In [May1995] M. Mayor
and D. Queloz derive a minimum mass of the planetary body to 0.47 ± 0.02 Jupiter masses.
With its short orbit of ∼4.23 days and a semi-major axis of around 0.052 AU, the companion
51 Peg b also became the first known hot Jupiter. Mayor and Queloz came to those results
by analyzing host star’s dynamics by the means of spectroscopic Doppler shift measurements.
Searching for periodical variations in the star’s radial velocity was about to become the most
promising and successful technique in the search for exoplanets. With increasing precision,
hundreds of exoplanets have been found during the following years by this method, and even
though alternative approaches, as surveys to find hints for planetary occultations (transits)
in the stars’ lightcurves, became also significantly effective, the radial velocity (RV) method
remains the standard practice for following-up confirmations.

The extraordinarily quick progress in the search for exoplanets is depicted in Fig. 2.15 and
declares the last two decades an era of immense relevance.
Within the following sections the different methods are described, with emphasis on their sen-
sitivity range concerning the planet’s intrinsic orbital parameter space and the derived masses.
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Figure 2.15. – Cumulative number of exoplanetary candidates (see [Sch11] as reference) versus
time. The data has been exported from the exoplanet.eu database in April 2012 and includes
763 planets altogether, discovered by radial velocity, transit detection, microlensing, timing
variations and imaging. Note that the candidate HD 114762 b, included in the catalog,
is considered as having been discovered as a confirmed companion in 1989, but its nature,
whether it is a high mass gas giant or a dwarf star, is still unclear.

2.3.1. Pulsar Timing

Pulsars are fast rotating neutron stars, whose rotational and magnetic field axes are misaligned.
Since radio emission from the supernova remnant mostly occurs from its magnetic poles into
a narrow light-cone, observers at certain directions do not experience a continuous beam, but
rather a pulsed signal. Those signals, with periodicities between milliseconds and seconds for
individual objects, are extremely stable in time so that variations, apart from this regularity,
mirror irregularities in the system, such as those that would be induced by the presence of a
companion in orbit around the neutron star.
If such one exists, both components perform a periodical motion relative to the system’s mutual
gravitational barycenter, and that of the pulsar results in a periodic variation of the distance
to the observer and respectively light travel time. This can be detected by deviations of the by
the observer measured signal’s periodicity from the pulsar’s emitting frequency and becomes
evident in a periodic variability of the measured pulse frequency on the time scale of the orbital
period. When moving away, the distance and the light travel time increase, leading to higher

49



Chapter 2. Introduction to the Topic

spacing between individual pulses and contrarily, when approaching the observer, the time
between the measured pulses becomes shorter.
In order to exploit the timing stability of pulsars, one typically folds the pulse data of the
observation at the instantaneous pulse period to obtain a pulse profile. This profile, related to
the epoch of data recording, is then cross-correlated to an averaged standard pulse profile for
this source so that a time dependent phase offset can be derived. This procedure, also called
phase connection, is based on the assumption that the average pulsar profiles remain stable and
that any profile, observed at a certain time, is only a scaled and phase-shifted version of the
intrinsic undisturbed profile ([Bai10]).
This allows precise tracking of the rotational phase of the object. From the phase offset at
the time of observation to the averaged template profile and the pulse frequency precise pulse
times-of-arrival (TOAs) are obtained. When these are compared to predicted TOAs, delays in
light travel time, if existent, can be determied. Those can be directly converted to light travel
distances, which would occur when the pulsar is in motion in presence of a companion.
The maximum amplitude of the pulses’ delay in time for circular Keplerian orbits can be easily
derived from the center of mass relation, and with the speed of light c and the inclination of
the planet’s orbit i is given by:

τ = sin i
(a∗
c

)
= sin i

(ap
c

)(Mp

M∗

)
, (2.60)

with mass and semi-major axis of the planet represented by Mp, ap and respectively the pul-
sar’s by M∗ and a∗. From the measured variations in the pulses’ time of arrival one can obtain
the planet’s orbital period directly and its eccentricity from the deviation of the signal from
a pure sine/cosine function. Furthermore, only the system’s projected mass ratio can be de-
rived, because only displacements of the star projected onto the radial direction to the observer
contribute to the time delay. Consequently, even if the pulsar’s mass can be estimated inde-
pendently, the planet’s mass is still masked by its orbital inclination and only the minimum
value (Mp · sin i) can be determined.
The method’s efficiency increases with the planet’s mass on the one hand, but its sensitivity is
also highly dependent on the amount of recorded data over the time span in question, which
strongly affects the accuracy of the averaged pulse profile template and by that determines the
level of uncertainty regarding the predicted TOAs and consequently the delay measurements.
Fig. 2.16 shows TOA data from the 6.2 ms pulsar PSR B1257+12 taken by the 305 m Arecibo
radio telescope at a frequency of 430 MHz over a time span of around 12 years. The data
points resemble residuals to the TOAs after the fit of a standard timing model without plan-
ets has been performed ([Kon03]). The deviations are dominated by two signals in an orbital
resonance of 3:2 with periodicities of 66.5 and 98.2 days. With the pulsar mass estimated to
1.4 M�, the corresponding planet masses have been derived to 4.3 ± 0.2 M⊕ and 3.9 ± 0.2 M⊕
at nearly coplanar orbits with i ≈ 50◦ and semi major axes of 0.36 AU and 0.46 AU respectively.

The relatively low masses derived for this system within the mass regime of terrestrial planets
show the efficiency and strength of this method, which unfortunately, due to its unique require-
ment concerning the host star being a pulsar, is not helpful when studying planetary systems
around regular main sequence stars.
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As for today, over 15 planet candidates within more than ten planetary systems have been
discovered by this technique.

Figure 2.16. – Best fit daily averaged pulse time-of-arrival (TOA) measurements for the pulsar
PSR B1257+12, taken by the Arecibo radio telescope at a frequency of 430 MHz. Depicted
are the residuals in µm for different epochs after a standard timing model without planets
has been fitted to the data. TOA measurements performed with two different instrument
back ends are distinguished by different symbols, and the predicted TOA variations by the
three planet model, as described in Sec. 2.3.1, is marked by the solid line (Credit: [Kon03]).

2.3.2. Doppler Spectroscopy

The Doppler spectroscopy, or also radial velocity (RV) method, is so far the most successful
technique in the search and confirmation of exoplanet candidates. It also exploits the system’s
dynamics, the star’s wobbling due to the gravitational pull of a planet in orbit. The emitted
light of a monitored star, in motion around its system’s mutual center of mass, exhibits standard
Doppler shifts of ∆λ/λ = Vr(t)/c due to its varying radial velocity Vr in direction towards the
observer.
This component of the host star’s velocity, projected onto the line of sight, can be derived from
the Kepler laws, and the observed Doppler curve can be described by ([Udr11]):

Vr = Vγ +K∗ [cos(ν + ω) + e cosω] . (2.61)

Here Vγ is the radial velocity of the system’s center of mass, ν the true anomaly, ω the argument
of periapsis (see Sec. 2.1.1) and K∗ is the semi-amplitude of the star’s radial velocity oscillations.
Directly from the shape of the velocity curve one can obtain the orbital parameters P , e, ω
and Tp, the time of periapsis. Alternatively, the orbital period can be converted to the planet’s
semi-major axis.
Combining the relation between K∗ and a∗, the semi-major axis of the star’s orbit relative to
the barycenter

a∗ sin i =
P

2π

√
1− e2K∗ , (2.62)
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together with Kepler’ third law (Eq. (2.6)), a relation, referred to as the mass function f(m),
can be derived to:

f(m) =
(Mp sin i)3

(M∗ +Mp)
2 =

P

2πG
K3
∗
(
1− e2

)3/2
, (2.63)

where M∗a∗ = Mpap has been used.

In those cases, where the mass of the planet can be neglected compared to the star, the situa-
tion is simplified, and the projected planetary mass, or the minimum mass, can be determined
from the semi-amplitude K∗ of the velocity curve:12

Mp sin i =

(
P

2πG

)1/3

K∗M
2/3
∗
√

1− e2 . (2.64)

Consequently, if the mass of the star is estimated from models and its spectral characteristics,
only the value of the planet’s minimum mass can be derived due to the lack of information on
the system’s orientation.
For all the detection methods that share this ambiguity concerning the inclination, confidence
levels for the real companion mass can be constructed from the probability distribution of the
inclination angle for random orbit orientations. The probability for the inclination to exceed
some angle θ can be expressed by p(i > θ) = cos θ ([Kür1999]), and eventually i = 60◦ can be
considered the median inclination within an unbiased sample.
However, although from a statistical point of view the minimum mass is a passable estimation
for the companions’ masses, the uncertainty is preserved for individual systems.

The strength of the RV technique is that in principle it is independent of the distance to
the analyzed system, provided that the stellar spectra can be obtained with a sufficient signal-
to-noise ratio.
Solving Eq. (2.64) for the semi-amplitude, one can see that this method is more sensitive to
high planet masses on short orbits and for lower masses of the host star.
The radial velocities, as induced by different planet masses on circular orbits around a solar
type star, are plotted for varying semi-major axes in Fig. 2.17 and illustrate the sensitivity
regime.

The precision, or accordingly the resolution in radial velocity measurements, determines the
minimum of the detectable projected masses. It depends on the involved instruments and on
the technique that is used to derive the radial velocities. Two prominent methods are commonly
implemented to obtain the radial velocity measurements:

• The iodine absorption cell technique makes use of an iodine cell placed at the en-
trance of the spectrograph, so that the iodine spectrum is superimposed onto the probed
stellar spectrum and by that provides a series of absorption lines as reference for the

12Clearly, the measured plain Doppler curves need to be related to a common reference frame, such as the
solar system’s barycenter, and need to be corrected for superimposed velocity components, as induced by
the earth’s rotation and orbital motion.
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Figure 2.17. – Radial velocity semi-amplitude K∗ of the host star against semi-major axis
of planets on circular orbits. The four solid lines represent different mass regimes, whereas
for the plot the inclination was disregarded (i = 90◦). In the solar system configuration
Jupiter induces a motion of the sun at semi-amplitudes of around 12.5 m s−1, and the Earth
at ∼ 9 cm s−1. This clearly illustrates the high degree of requirements on the precision for
detections of earth-like planets.

determination of the Doppler shifts. This design is suitable for slit spectrographs and its
incorporation into the system is relatively uncomplicated. The precisions reached by this
method lie about 2–3 m s−1, but the application of the iodine cell limits the spectral range
to 500–630 nm, and the determination of the radial velocities from the combined spectra
requires a very high signal-to-noise ratio of the stellar source.

• Simultaneous wavelength calibration within the science exposure is achieved by the si-
multaneous thorium technique, where the emission spectrum from a ThAr-lamp is fed
into the spectrograph by one fiber and the stellar spectrum by another. The emission
spectrum acts as a separate wavelength reference frame, and the radial velocities are de-
termined by cross-correlating the stellar spectrum with a template mask. The response
cross-correlation function (CCF) to that peaks at those shifts in the mask’s position,
where the correlation to the probe is highest and this position can be translated into the
corresponding radial velocity. The exploit of all absorption lines’ contribution to the CCF
results in high efficiency. In order to reach comparable precisions this method requires
about 10–20 times less photons than the iodine cell technique. Resolutions below 1 m s−1

are achievable today and the spectral range of usage is about 380–680 nm.

Both described techniques require that the observed target star offers a sufficient number of
narrow absorption lines. This constraints the choice of host star candidates to main-sequence
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stars in the spectral range of roughly F to M. Hotter stars of earlier type exhibit lines, signifi-
cantly broadened due to rotation, and on the other side of the range, one is mostly limited by
the faintness of the stars. Furthermore, at those precisions (∼ 1 m s−1) intrinsic stellar turbu-
lences limit the resolution in the measurements. Gas motion within the stellar atmosphere, but
also magnetic cycles, can obscure or mimic motions due to exoplanets so that stable, non-active
stars are highly favorized. K-giants are particularly suitable for this method.
Besides 51 Peg b, the first confirmed exoplanet discovery around a regular type star, the most
popular RV surveys e.g. ELODIE, CORALIE, HARPS, SOPHIE and others have discovered
altogether more than 450 confirmed extrasolar planets.

2.3.3. Photometry and Transits

Despite the fact that high contrast at low angular separations typically prevents us from ob-
serving exoplanets directly, although progress has been made in the field of direct imaging (see
Sec.2.3.5), precise photometry, at certain conditions, allows indirect detections of sub-stellar
companions.
If an exoplanetary system is observed under proper alignment so that for some time during
the orbit the planet moves in front of the stellar disk, a characteristic decrease in brightness is
measured by the observer (see Fig. 2.18). In order to detect this kind of obscurations, the star
and its planet need to be sufficiently aligned along the line of sight of the observer. This limits
inclinations of the observed systems to nearly edge-on views.
For specific spatial extents of the bodies and the planet’s semi-major axis a relation between the
system’s inclination and the latitude of the observed transit on the stellar disk can be derived
from geometry ([Dee1998]):

cos i =
(R∗ +Rp) sin δ

ap
, (2.65)

with R∗ and Rp denoting the radii of the star and the planet.
From the limiting case, the planet grazing at the stellar disk at latitudes δ = ±90◦, the minimum
inclination for observable transits is derived to:

cos imin =
(R∗ +Rp)

ap
. (2.66)

When this condition is met and the star is observed during the occultation, whose duration to
first order is given by

τ =
P

π

(
R∗ cos δ +Rp

ap

)
≈ 13

(
M∗
M⊕

)−1/2(
1

1 AU

)1/2(
R∗
R⊕

)
h , (2.67)

with P the orbital period, a dip in the lightcurve can be measured.
When assuming a uniform brightness of the star, the depth D of the decrease in the detected
flux can be approximated by:

D =
∆L

L∗
≈
(
Rp

R∗

)2

. (2.68)
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Typically, the system is observed over a time interval of multiple transits. This repeatability,
on the one hand, is essential for determining the event’s period and, on the other hand, for
ruling out false-positives, which would occur in cases of background binaries, grazing eclipsing
binaries, but also could result from intrinsic stellar variabilities, such as rotationally modulated
influences of starspots. Furthermore, data from multiple consecutive transits can be folded at
the determined frequency, at which they occur, to increase the sampling of the transit and
consequently the precision of the derived parameters.
With sufficient sampling of transit events at high photometric sensitivities one is capable of
estimating many characteristics of the exoplanetary system. The orbital period follows trivially
from the observations and with knowledge of the stellar mass, the planet’s semi-major axis can
be estimated by Kepler’s third law. In reality, proper modelling of the shape of the transit
dip within the lightcurve takes also the star’s limb-darkening into account and provides an
estimation on the transit latitude δ. In fact, which procedure is actually pursued, also depends
on, which information concerning the host star is given from independent sources, such as its
spectroscopic classification.
In principle, the stellar radius can also be estimated from the relation ([Udr11]):

R∗ ≈
apπW√(

1 +
√
D
)2

− sin2 δ

, (2.69)

where the transit’s dimensionless width is parametrized by W = τ/P . Combining the transit
depth with Eq. (2.65) then yields the system’s inclination and the planetary radius. This is
particularly profitable, if transit detections can be combined with radial velocity observations
of the systems. In those cases, the mass uncertainty, due to the inclination, vanishes and not
only the planet’s true mass, but also its density can be determined.
In addition to the access of those primary planet parameters, the analysis of transit lightcurves
offers further unique opportunities. If alignment allows transit detections, then, provided suf-
ficient sensitivity, secondary eclipses are also observable. This significantly smaller dip in the
measured flux profile results from the planet moving behind the star and yields the star’s true
brightness. When this is subtracted from the combined flux of the star and the planet, the sole
planet contribution can be estimated. Consequently, its effective temperature can be derived
under the assumption of a blackbody spectrum.

Apart from this, non-transiting companions in multiple systems can become evident in transit
timing variations (TTVs), and direct signatures from the planets’ atmospheres can be derived
from transmission spectra, obtained from combining spectral observations at high signal-to-
noise levels during and outside of transits, as was firstly demonstrated by [Bro2000] on the
exoplanet HD 209458b, which is also the object, on which the first photometric transit detec-
tions have been achieved.

The requirements on the photometric precision can be estimated by the intensity variations, as
they would occur to a distant observer of the solar system and its components. For the inner
terrestrial planets the transit depth would be in the range between 10−5 and 10−4, whereas
for Jupiter it lies around 1.1× 10−2. For ground-based observations the variability of and the
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scintillations in the earth’s atmosphere limit the photometric precision to about 1h so that
moving to space is inevitable to detect earth-sized planets.
COROT and Kepler are two prominent and successful space survey missions, specifically de-
signed for the search of exoplanets by the transit method. The Kepler spacecraft was launched
in 2009 and on a heliocentric orbit is presumed to monitor a large amount (about 100,000) stars
by continuous pointing at a single star field in the Cygnus-Lyra region. Those high numbers
are necessary for transit surveys in order to compensate the low detection probability due to
strict constraints regarding the inclination, which is given by p = R∗/ap for an arbitrary system
within a sample of randomly oriented systems ([Dee1998]). Consequently, the method is biased
towards large planets on short orbits, although with longer survey duration the detectability
of companions on wider orbits also increases.
Apart from the most prominent low mass planets as CoRoT-7 b, the planets around Kepler-20
and Kepler-22 b, a ∼2.4 earth-radius planet in the habitable zone of a solar-type star ([Bor12]),
more than 200 exoplanets and nearly 30 multiple systems have been detected by the transit
technique so far, while more than 1,000 unconfirmed candidates, from the Kepler mission alone,
could follow in future.

W

D

δ

Figure 2.18. – A decrease in brightness is measured when an exoplanetary system is observed
at high inclinations so that the planet moves in front of the stellar disk. The shape of the dip
in the lightcurve, its depth D = ∆L/L∗ and width W = τ/P , where τ denotes the transit
duration and P is the orbital period, are determined by the stellar and planetary masses and
sizes, the orbital parameters and by the orientation of the system. The transit’s latitude δ
is defined within the interval [−90◦,+90◦], where δ = 0◦ characterizes a transit through the
center of the host star.

When photometric data with such a precision, as the COROT and Kepler surveys provide,
is analyzed, in addition to the primary and secondary eclipses, more subtle phase modulated
variations in brightness can be detected. Three effects are expected to be responsible for this
variability and can be modelled in order to exploit the data even further. The gravitation based

56



2.3. Extrasolar Planet Hunting Techniques

ellipsoidal effect leads to tidal distortions of the stellar surface and consequently to a phase
dependent flux variation when observing the star. Secondly, due to a varying radial velocity of
the host star, the received flux is expected to vary also as a consequence of relativistic beaming,
an effect resulting from the Lorentz transformation of the energy, which is radiated away, so
that photons are concentrated in forward direction of the source’s motion. Eventually, thermal
emission from the companion’s dayside and brightness modulations, due to reflection of the
starlight, are expected to be measured at some level of sensitivity.
Although the magnitude of flux variations due to those effects depends on several system
parameters and for realistic assumptions can be estimated to be of the order of tens or hundreds
parts-per-million (ppm), [Maz10] have modelled the phase dependencies of the modulations and
successfully demonstrated an algorithm capable to measure the modulations of this order and
to identify the effects within lightcurves provided by the COROT data. The same approach
has been taken by [Fai12] on Kepler data to discover non-eclipsing binary systems with low-
mass companions, which have been confirmed by follow-up RV observations. This indicates
the potential of high precision photometry to detect massive exoplanets in even non-transiting
systems.

2.3.4. Gravitational Microlensing

Among today’s detection methods this unique technique is outstanding in several aspects.
Although it depends on random events that require strictly prescribed and generally improbable
configurations, it is capable to probe stars at large distances of several kiloparsecs and to detect
planets within the terrestrial mass range.
It is based on the behavior of light when passing mass distributions, which is described and
quantified by General Relativity. The propagating light beam follows its geodesis in the curved
spacetime and bends towards the mass source, which acts like a lens. In the case of a perfect
alignment of the background light source and the lens, the light appears symmetrically spread
around the foreground object, and its image takes the form of the so called Einstein-Ring, with
its angular radius in the lens plane given by ([Wam1997]):

θE =

√
4GM∗
c2

(DS −DL)

DLDS

, (2.70)

where M∗ is the mass of the source and DS, DL are the distances to the source and the lens
respectively.
In reality, the alignment typically is not perfect, and in those cases several single images of
the source are created. When microlensing is used for planet detection, both, the lens and the
background object, are stellar sources, and on those scales the Einstein-Ring and consequently
the multiple images cannot be resolved. In fact, what can be measured is the total magnification,
which is a function of u(t), the angular separation between the source and lens in units of the
Einstein radius:

µ(t) =
u2(t) + 2

u(t)
√
u2(t) + 4

. (2.71)
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Here the time dependency originates from the objects’ proper motions, as well as from any
relative motions of the observer, and is essential to this method.
Furthermore, depending on the relative distances within the given configuration, as well as
on the lensing mass, such random alignments and microlensing events typically last on time
scales between hours and weeks and generate a characteristic lightcurve, which samples any
asymmetries of the mass distribution within the lens plane. If the star is accompanied by a
dim companion at an angular separation of the scale of the Einstein-Ring (lensing zone), then
for adequate alignments the secondary object can act as an additive lens, and this secondary
magnification is superimposed over the primary event, resulting in a significant blip in the
measured lightcurve (see Fig. 2.19).

Figure 2.19. – Observed lightcurve of the microlensing event, which had lead to the discovery
of the 5.5 earth-mass planet OGLE-2005-BLG-390Lb on an orbit with a projected semi-
major axis of 2.1 AU around a M-type star. The data consists of 650 data points from
different microlensing programs, as depicted by different colors. The best fit lens model,
determining the mass ratio and projected separation, is illustrated by the solid curve. The
secondary microlensing event due to the planetary companion is pointed out in the upper
right inset, covering a time span of 1.5 days. There, the dashed orange line shows the best
single lens model, which the magnification by the planet is superimposed on, and a rejected
binary source model is represented by the grey dashed curve. The photometric stability of
the source and the significance of the event is pointed out in the top left inset, showing the
lightcurve for the source during 4 years, previous to the event. (Credit: [Bea06]).
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The projected distance of the companion to its host can in principle be derived from the tem-
poral offset of the secondary peak to the center of the main event, and from the magnification
pattern the mass ratio between them can be determined.
Several exoplanet candidates have been discovered by microlensing up to date with estimated
masses down to 3–5 M⊕, on orbital separations comparable to those of terrestrial planets in the
solar system.
This capability of probing lower mass regimes at high distances is in some way compensated
by the random character of this technique. In order to detect a microlensing event the stellar
source and the lens need to be well aligned within the magnitude of the Einstein radius. The
occurrence of such configurations is relatively improbable, only about one in 106 for observa-
tions in directions towards the galactic center, and in addition to that those events usually
remain single and unreproducible due to vanishing chances of reoccuring proper alignments.
Also, although this method is able to analyze stars at high distances of several kiloparsecs, in
those cases it is more difficult to obtain a sufficiently precise mass estimation on the star from
its spectrum than for nearby systems. Currently, the difficulties are successfully approached by
several collaborating survey programs, such as OGLE, MOA, Robonet and others, monitoring
a high number of stars and by informing each other in cases of event detections so that inde-
pendent and complement measurements are gathered and good sampling in time is achieved.

Besides the findings concerning regular exoplanetary systems, surprising results have been ob-
tained from a two year microlensing survey towards the Galactic Bulge, regarding a completely
different class of objects.
Evidences for the discovery of Jupiter-mass planetary objects, which, after cross-checking with
results from direct imaging, appear to be not bound gravitationally to any host star, have been
reported by [Sum11]. Those could be some of the first detections of free-floating planets, which
have been scattered into wide or unbound orbits during the evolution of their protoplanetary
disks.

2.3.5. Direct Imaging

Although being successful in detecting extrasolar planetary candidates and determining several
orbital parameters of those, the indirect methods altogether suffer from limitations regarding
the characterization of the discovered objects, concerning their intrinsic physical properties,
such as their chemical composition, temperature, characteristics of atmospheres and others.
Analysis of direct radiation received from the planets, either from their thermal emission or the
reflected starlight, is required in order to tackle those questions.
Unfortunately, as already discussed above in this section, the high contrast in luminosity and
the typically small angular separations between the host star and the exoplanets are hardly
solvable problems for today’s instrumentations.
On the other hand, with its natural constraints concerning small separations, direct imaging
can in turn serve as a suitable and complementary technique towards companions on wide and
long orbits, which are hardly detectable by RV measurements or the transit method.
Several imaging techniques are exploited to enhance the images’ dynamic range and to cope
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with atmospheric seeing. Apart from moving the observatory to space, or the usage of adaptive
optics, speckle and spectral, as well as angular differential imaging, have proven to be promis-
ing approaches in this field. Also, full or semi-transparent coronography, by which the star’s
contribution to the image is suppressed, contribute to increase sensitivity in high-contrast ob-
servations.
When moving to mid-IR wavelengths, the contrast is decreasing due to thermal brightness of
the usually cool exoplanets with temperatures in the range of a few 100 K, but angular resolu-
tion decreases also. Still, for observations in this wavelength regime interferometric techniques,
such as masking or nulling interferometry, as an analog to standard coronography, are appli-
cable. A more comprehensive review about the progress in this area can be found in [Opp09].

Considering those limitations, recent results and discoveries of exoplanet candidates by di-
rect imaging are impressive. Despite uncertainties concerning the true nature of some of those
objects, with masses in the range from a few Jupiter masses up to the brown dwarf limit and
on wide orbits of several hundred AUs, which mirror the natural bias of this method, future
developments and projects will definately provide a complementary tool for exoplanet charac-
terization.
Prominent planetary candidates that have been discovered by imaging are the companion
2M1207 b around a young brown dwarf ([Cha04]), the < 3 MJup candidate Formalhaut b
([Kal08]), the components of the multiple system around HR 8799 ([Mar08]), which is de-
picted in Fig. 2.20, but also several isolated planetary mass objects in the σ Orionis star cluster
([Zap2000]).

Figure 2.20. – Combined J-, H-, Ks-band multi epoch image composition of three companions
(denoted by b, c, d) around the star HR 8799. Angular differential imaging (ADI) has been
applied onto the Keck telescope images to remove the light of the host star and to picture
the companions at projected separations of about 68, 43 and 27 AU. The orbital motion
of component d during the time between the image epochs has been compensated for by a
rotation of 1◦ of the earliest image taken (Credit: [Mar08]).
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2.3.6. Astrometry

Among the detection techniques astrometry is the one that is based on the oldest observational
method and, leaving imaging aside, is probably the most naive of all the indirect approaches.
Classically, astrometry means measuring the positions of celestial objects over time. In the
past, celestial object positioning and tracking with increasing precision lead to the discovery
and verification of various phenomenons, such as proper motions of stars, aberrational effects,
the motion of the earth’s rotational axis (precession, nutation), but also to the detection of
outer planets within the solar system.
Despite the long history and the conceptional triviality of this method, high precision astrom-
etry is by no means simple.

One complication results from the fact that in principle no static reference points can be found
on the sky. Stars move approximately linear due to their proper motions that arise from the
relative velocities between them and the solar system. Still, additional periodic variations in
their apparent positions due to the earth’s orbit and consequently the motion of the observer
complicate the situation and need to be considered, when positions on the sky are about to be
modelled for any purposes. On the other hand, measuring those effects can yield information
about the systems observed, as is done by parallax measurements, from which distances in
space can be determined.
However, it should be noted that in this context the angles, at which those motions occur, are
typically small. The star with the largest known proper motion of around 10 as/yr is a nearby
object at a distance of about ∼ 1.8 pc, but for distant stars within the Milky Way proper
motions of the order of only several milliarcseconds (mas) per year are recorded. For objects
outside our galaxy the values are even smaller.
Those considerations should demonstrate the demand on accuracies in astrometric studies. To
achieve such on a large scale, a precise reference system is required. For this purpose several
catalogs have been established in the past. Before the International Celestial Reference Frame
(ICRF) that defines a quasi-inertial reference frame by the positions of over 200 quasars, which
due to their enormous distances can be considered as static, was established in 1998, the catalog
of fundamental stars, version FK5 in those days, provided a standard coordinate system. In
1989 the European Space Agency (ESA) launched the instrument Hipparcos, which was about
to perform space-based high precision astrometry for the following three and a half years. As a
result from this survey a catalog of more than 100,000 stars with accuracies around 1 mas has
been published ([ESA1997], [vLee07]).
Using subsets of this data the fundamental catalog has been updated (FK6), and the Interna-
tional Celestial Reference System (ICRS), with its origin at the solar system barycenter and
fixed axes, has been introduced.

Given the implied difficulties of applying an absolute and fixed reference system to astrometric
studies, it has become a common procedure to relate the measurements to a local reference
frame that can be composed of objects within the field of view (FOV). Usually, higher preci-
sions can be achieved by this approach.
Astrometric measurements have been used to derive orbits and system masses of visual binaries,

61



Chapter 2. Introduction to the Topic

but in principle can also be applied to a system, in which only the main component is visible.
Exoplanetary systems are typical representatives of such ones, and in those cases the projection
of the host star’s orbit around the system’s center of mass onto the tangential plane at the star’s
coordinates is observable. With the condition Mp �M∗, and utilizing M∗a∗ = Mpap, the host
star’s angular motion on the sky can be estimated by Kepler’s third law, and considering the
distance D to the observer, which as usual is assumed here to be much larger than the scales
within the exoplanetary system, the semi-amplitude of that stellar reflex motion reads as:

θ[rad] =
Mp

D

(
G

4π2

)1/3(
P

M∗

)2/3

. (2.72)

The orientation of the system was not considered here, while in reality the magnitude of the
astrometric signal that really can be measured is determined by the semi-major axis and natu-
rally by the orientation angles of the star’s orbit. Regarding the fact that the observed apparent
orbit can be measured in two dimensions, the minimum astrometric signal, which is observed
at the most unfavorable orientation, when the system is seen edge on and the line of apsides is
aligned with the line of sight, will be defined by the semi-minor axis of the true orbit.

In general, the observed projection of the path, which the star follows during its orbit around
the system’s barycenter, will appear as an apparent elliptical orbit on the sky with the semi-
amplitude astrometric signature in radians:

α[rad] ≈ a′∗
D

=
Mp

M∗

a′p
D

, (2.73)

where a′∗, a
′
p are the semi-major axes of the two components’ apparent orbits. In more intuitive

units this relation can be written as:

α[µas] ≈ 3

(
Mp

1M⊕

)(
D

1 pc

)−1 ( ap
1 AU

)( M∗
1M⊕

)−1

. (2.74)

Here one can see, which parameters the astrometric detection method is sensitive to. The dis-
placement of the host star increases with the planetary mass and semi-major axis, whereas in
turn the stellar mass and the distance to the observed system damp the signal. Furthermore,
the relation (2.74) implies the order of magnitude, at which such astrometric signals, as vari-
ations in the star’s angular position, are expected and indicates the precision requirements of
measurements, when detection of those exoplanets is intended.
In Fig. 2.21 astrometric signals are plotted against companion masses for different distances to
a virtual exoplanetary system, where the planet is in orbit at ap = 3 AU around a solar-type
star. Even in order to detect Jupiter sized planets around fairly low distant stars at between
10 and 100pc, accuracies of around 30–300µas need to be achieved.
Consequently, this method is mostly efficient for nearby and low-mass stars and is biased to-
wards high planetary masses on wide orbits.
Moreover interesting is the fact that, as long as the photocenter does not shift by the same
order as the star itself, astrometry is applicable also to hot or rapidly rotating, as well as young
and active stellar sources, which this method particularly complementary to the RV technique
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and allows to study a different regime in the systems’ parameter space.

In the past, astrometry has been successfully used for determining system masses of visual
binaries. When it comes to exoplanetary systems, the situation is a bit different, since only
the main component is visible. In order to monitor any variations in the star’s position, it
is necessary to establish a local frame, which commonly is done by proper choice of reference
targets. Given such a reference frame, to which the observations can be related, the star’s
apparent orbit around the center of mass can be modelled, and in principle each of the seven
orbital parameters can be determined, if the orbit is sufficiently sampled.
The measurements consist of two-dimensional positions, assigned to the time of observation.
Eventually, the apparent orbit is observed and needs to be converted to the star’s true orbit,
in order to derive the true semi-major axis. The knowledge of the three orientation parameters
i, ω and Ω (see Sec. 2.1.1) is sufficient for transformations between the true coordinates within
the orbital plane and the rectangular coordinates within the tangential plane on the sky, and
the other way around. With the two coordinate systems’ point of origin O, at the focal point
of the true orbit, the true orbital coordinates, expressed in seconds of arc, are defined by:

X = $r cos ν ,

Y = $r sin ν , (2.75)

where $ is the parallax, r is the body’s in orbit distance to O in astronomical units and ν is
the true anomaly. The coordinates in the tangential plane, also in arcseconds, are given by:

x = ρ sin θ ,

y = ρ cos θ , (2.76)

where in this case the body’s position is defined by its separation to the system’s point of origin
ρ and the position angle θ, evaluated eastward from the northern direction of the local celestial
meridian. The transformation is then performed by:

x = BX +GY ,

y = AX + FY , (2.77)

where the orientation parameters are incorporated into the Thiele-Innes constants ([Kov04]):

A = cosω cos Ω− sinω sin Ω cos i ,

B = cosω sin Ω + sinω cos Ω cos i ,

F = − sinω cos Ω− cosω sin Ω cos i ,

G = − sinω sin Ω + cosω cos Ω cos i . (2.78)

It is not crucial, in which of these individual coordinate systems the actual orbit fit is performed,
but although the period P is independent of the choice of the system, the other dynamical ele-
ments, in this case the eccentricity and especially the semi-major axis, are not. Therefore, the
distinction of these two representations should be treated carefully.
After the determining parameters are obtained with respect to the true orbit, the real mass
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ratio between the planet and the host star can be estimated so that when the stellar mass is
somehow determined separately, this method gives the true planetary mass, without the incli-
nation ambiguity.

Although the principle of this kind of observations seems simple, the demands on accuracy
are a great challenge. In order to model the star’s orbital motion it is not sufficient to dis-
entangle it from the stellar proper motion and the displacement due to the parallax, but also
corrections concerning earth rotation and even relativistic effects, affecting the light on its
complete path from the source to the observer, need to be taken into account with increasing
demand on precision (see section 4.2.3 on Astrometric Corrections).

Summing up the previous discussion, the strengths of astrometry considering the search of
extrasolar planets are:

• The complete set of orbital elements, in particular the inclination, under which the
system is observed can be derived. With an estimation of the host star’s mass this
technique yields the true planetary mass.

• The studied parameter space can be expanded towards wide orbits and consequently
long-period planets.

• In contrast to Doppler spectroscopy, astrometry is not bound to a certain kind of stars. Al-
though sensitivity increases with decreasing stellar masses, young pre-main-sequence
stars can be probed, so that hypotheses regarding early stages in the evolution of exo-
planetary systems can be tested.

• Multiple systems, in which the signal from different companions can be disentangled,
can be examined regarding the planets’ coplanarity, since the orbital inclination can be
determined.

To date, regarding successful discoveries, astrometry cannot compete with the other detection
methods, but signals from companions have been derived from HST (Hubble Space Telescope)
observations (e.g. [Ben10]) and confirmed earlier RV measurements around several stellar ob-
jects. Also, from Hipparcos data mass constraints on substellar companion candidates can be
determined and used for confirmation as was done by [Ref11].

In future, the next generation ESA space mission Gaia will provide high accuracy astrometric
measurements at the level of several tens of microarcseconds, whereas from ground the actually
being commissioned instrument PRIMA at the VLTI (see following chapters), will hopefully be
able to perform at astrometric accuracies of the same order.
The ability of achieving such accuracies by phase-referenced interferometry has been already
demonstrated by reports of the discovery of a ∼ 1.5 Jupiter mass companion in the binary
system HR 7162 using the Palomar Testbed Interferometer (PTI) ([Mut11]).
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Figure 2.21. – The astrometric semi-amplitude of a solar-like star plotted against the mass of
the companion that is placed at an orbital distance of ap = 3 AU. The angular magnitude
of the measurable stellar reflex motion depends strongly on the distance to the system and
is represented by four different lines with distances between 10 and 10,000 pc, as denoted
at the right. Vertical lines of one Earth and one Saturn mass are inserted as references. If
astrometric accuracies of the order between 10 and 100µas can be achieved, then detections
of Saturn-like planets around nearby stars should become possible.

2.3.7. Review and Prospects

During the last 20 years our understanding regarding exoplanetary systems changed substan-
tially. Although the existence of exoplanets was never really implausible, discussions about
their occurrences could become profound only after the era of exoplanet discovery has begun.
From then on, properties of the new detected objects could have been studied and in principle
implications on planet formation theories could have been finally derived from observations of
systems other than the solar system.
Today, each detected exoplanet serves as a probe within the whole sample and significance
is obtained statistically. We have learned that formation of exoplanetary systems is not an
unusual process, and analyses of orbital and intrinsic planet parameters demonstrate high di-
versity among those found and studied.
In contrast to the configuration of the solar system, which appears quite regular, with planets
on relative coplanar, nearly circular orbits and correlations between the orbital distances and
the companions’ masses, the whole sample of today’s known exoplanets shows a higher diver-
sity, with planets in different mass regimes between several Earth masses and multiple Jupiter
masses up to the Brown dwarf limit.
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The derived orbital parameters appear also well distributed, with quite extreme cases of short
orbits, very close to the stellar source, but also those of high eccentricities.
These findings during the last years not only convey the progress of our understanding in this
scientific field, but also arise public interest so that reports on newly classified objects like Hot
Jupiters or super-Earths find their way into the media on a regular base.

While it is typically difficult to derive universal conclusion from individual systems, statistical
analyses of a larger sample can constrain planet formation theories. Usually, this is performed
by the comparison of synthetic exoplanet populations, modelled under certain assumptions on
initial conditions regarding the stellar sources and the protoplanetary disks, to the results of
real exoplanet search surveys (e.g. [Mor09]). In this context it is important to take the biases
into account, which are introduced by the different sensitivity regimes of the various detection
techniques.
As is shown in Fig. 2.22, the distribution of the known exoplanets within the plane of semi-
major axis and mass is not uniform, which directly mirrors detection probabilities of different
methods in different parameter space regimes. Therefore, when survey outcomes are compared
to modelled populations, the results need to be corrected for completeness.

Although statements about the significance and validity of conclusions from such studies should
be handled carefully, some derived qualitative implications seem convincing (e.g. [May11]).
Concerning the studied characteristics, there seems to be a clear distinction of planet pop-
ulations, regarding their masses, divided by a gap at around 30 M⊕, which is only hardly
explainable by detection biases. The population of gaseous giant planets (& 30 M⊕) covers a
large range of orbital radii, although the occurrence frequency seems to increase weakly with
the orbital period.
The eccentricities within this sub-sample feature significant scatter, and high values of up to
e = 0.97 have been found. A strong and well established correlation, which suggested itself
quite early, is the increasing occurrence of those giant planets with the host star metallicity,
in literature also known as the metallicity effect. This seems to be a clear indicator on giant
planet formation dependency on the initial conditions concerning the composition (gas to solid
ratio) of the protoplanetary disk.
As significant as this correlation reveals itself for planets in the high mass regime, it is inter-
esting that no clear analog indications can be found within the second population of planets of
masses below 30–40 M⊕. More than this, even an inverse metallicity effect among the objects
within the terrestrial mass regime cannot be excluded from the data on the gathered collection.
Also, whereas the occurrence rate for giant planets lies around 14 %, about one half of solar-
type stars seem to harbor a planet of the lower mass population.
However, those rates are highly influenced by the selection of stellar targets for different surveys
and also by the observing limitations towards long period orbits.
Further notable are the increase of the mass distribution towards lower masses, analyses of
the semi-major axes indicating higher occurrences for periods between 40 and 80 days, and
the distribution of eccentricities among the super-Earth and Neptune population, which also
exhibit some scatter, but only below a maximum value of around e = 0.45.
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Discussions about constraints on physics of planet formation from the population of detected
exoplanets is ongoing and fruitful. Still, it is clear that future improvements of the detection
techniques towards higher accuracies will provide possibilities to explore exoplanetary systems
in parameter domains not accessible today and that those will further expand our understand-
ing of the underlying physical mechanisms.
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Figure 2.22. – Exoplanetary masses against corresponding semi-major axis. It should be
noted that for some companions, such as those detected by the RV technique, only the
projected mass Mp sin i is known and was considered here, whereas the true mass can be
significantly larger. The data on these more than 700 exoplanet candidates has been obtained
from the exoplanet.eu database. It is clearly visible that the distribution is not uniform all
over the plane, which not necessarily reflects the true exoplanet occurrences, but is strongly
biased by the different detection methods being sensitive within distinct parameter regimes.
Conclusions from the specific characteristics of the detected exoplanets on planet formation
processes are typically drawn from statistical comparison to synthetically modelled planet
populations.
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Chapter 3

Interferometry in Theoretical Context

In the last chapter the importance of high precision astrometry, in the context of the search
for exoplanetary systems, has been stressed out. Due to technical improvements, such as the
replacement of photographic plates by CCDs, the accuracy for astrometric measurements has
improved to that point that now the precision achieved is mainly limited by atmospheric re-
fraction and turbulences.
Relocating the instruments into space, just above the source of errors, is one way to overcome
the difficulties, as was demonstrated by the success of the spaced-based mission Hipparcos.
Another, conceptually different, approach becomes possible by the means of interferometry.
Astrometric measurements are usually performed on a target object and one or several refer-
ence objects within the field of view. How long baselines can be used to improve the accuracies
has been shown by [Sha1992]. Differential positional errors due to the atmosphere are induced
since the light from the objects follows different paths in the atmosphere, and consequently the
fictitious surfaces of the same phase of the propagating wave, the wave fronts, are disturbed
separately. In principle, these are governed by the combination of the objects’ angular separa-
tion θ, their beams’ spatial separation in the atmosphere θh and the amount of the overlap of
the two beams, as compared to the diameter of the telescope or respectively the length of the
interferometric baseline ([Col09]).
Usually, the diameters of single dish telescopes, as used for conventional narrow-angle astrome-
try, are significantly smaller than the spatial separation of the two objects of interest, projected
to the height above the turbulent layers of the atmosphere at about ∼ 10 km (see Fig. 3.1).
In the regime, where the instrument sizes extent the objects’ projected separation d = θh at
height h, the mean square error, in arcseconds, for an astrometric measurement can be given
by ([Sha1992]):

σ2
δ ' 5.25B−4/3θ2

∫
h2C2

n(h)(V t)−1 dh . (3.1)

Here B is the telescope diameter, or the length of the interferometric baseline, V (h) is the
height-dependent wind speed in the atmosphere, t the time of integration, and C2

n(h) the ver-
tical profile of the atmosphere’s refractivity power spectrum as induced through temperature
fluctuations. As one can see, the accuracy now depends not only on the objects’ angular sep-
aration, but also on the length of the baseline. By the means of simultaneous interferometric
measurements on two objects in the narrow-angle regime with sufficiently long integration times
and baselines of the order of 100 m astrometric accuracies in the range of tens of microarcsec-
onds are in principle achievable ([Sha1992]).

This strategy is pursued by the instrument PRIMA, incorporated at the VLTI at the Cerro
Paranal in Chile and described in detail in chapter 4.
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In preparation for the understanding of the principles, which the implementation of the in-
strument is based on, this chapter shall provide the theoretical background of interferometric
concepts in general and lay out, in which way dual star interferometry can be utilized for
astrometric measurements.

Figure 3.1. – This sketch depicts the difference between narrow-angle astrometry performed
in a traditional way with single long-focus telescopes and the situation when a long baseline
dual-star interferometer is used for the measurement. On the left, representing the single-
dish measurement with an instrument of diameter D, the astrometric error induced by the
turbulent atmosphere is only weakly dependent on θ, the angular separation of the two
objects, and mostly independent on the instrument’s extent. On the contrary, when the
instrument extent increases to the regime so that the condition θh � B is met, which
can be achieved by long interferometric baselines, the error’s dependency on the separation
becomes linear and decreases with increasing B (comp. Eq. (3.1)). (Credit: [Sha1992])

3.1. Principles of Interferometry

Historically, observed phenomenons of interference have been indications to the wave character
of light, which formally can be derived from the Maxwell’s equations. Deduced from these,
visible light and generally electromagnetic waves of any frequency are manifestations of the
propagation of a coupled vector field, namely the self-inducing electromagnetic field. Hence,
in order to cover the major properties of electromagnetic waves, it is convenient to reduce the
matter to the description of a plane parallel monochromatic field of frequency ν, propagating
in free space in direction n̂:

E(r, t) = E0 cos(kr − ωt+ ϕ0) . (3.2)
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This wave equation describes the electric field vector at any time t and location r in space,
with the angular frequency ω and the wave vector k defined by

ω = 2πν = 2πc/λ , (3.3)

k = kn̂ = 2π/λ , (3.4)

k = ω/c = 2πν/c , (3.5)

where λ is the wavelength and c = λν stands for the wave’s phase velocity.
An additional phase shift due to any reasons can be incorporated by the quantity ϕ0.
Especially when dealing with interference phenomena, it is mathematically very handy, when
the wave is described by a complex function of the form

E(r, t) = E0 e
i(kr−ωt+ϕ0)

= E0e
iϕ0 ei(kr−ωt)

= Ẽ0 e
i(kr−ωt) , (3.6)

where Ẽ0 generally is a complex entity. However, it should be clear that only the real part of
this representation is of physical significance.
The electromagnetic field propagates as an transverse wave with the oscillating and one an-
other inducing electric and magnetic fields E, H being perpendicular to each other and to the
direction of propagation. Generally, the direction of the field vectors, as denoted by the vector
character of E0, is not static, but is described by the superposition of two orthogonal compo-
nents with different phases. The phase difference δ between them determines the polarization
state of the wave. In the cases when δ = 0 or δ = ±π, the field vectors oscillate in a fixed direc-
tion and the electromagnetic wave is called linearly polarized. As far as not stated differently,
these waves are considered throughout of the chapter, as this property does not contribute to
the principle discussion.

Although in Eq. (3.6) the electric field is used for the description of the wave, this is just
an arbitrary choice of convention, since the wave is entirely defined by any of the two field
vectors. In fact, as long as electromagnetic field propagation is considered in isotropic media
only, the magnetic field could be used instead as well.
As characteristic for waves, the electromagnetic wave is naturally described by an oscillating
amplitude and a phase φ. In interferometry, which deals with the superposition of electromag-
netic waves, it is indeed the phase relation between the two beams that determines the result.
Before dealing with that it should be clarified, how the power of incident radiation, detected by
optical detectors, can be described. Clearly, it is related to the energy that is transported by
the electromagnetic wave. The energy flow density of an electromagnetic wave is usually given
by the Poynting vector S ‖ n̂:

S = E ×H . (3.7)
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For linearly polarized waves in vacuum the Poynting vector has only a component in the direc-
tion n̂ of propagation and its absolute value is ([Gli11])

Sn̂ = |S| = E0 cos(kr − ωt) ·H0 cos(kr − ωt)

= E0
B0

µ0

cos2(kr − ωt)

=
1

µ0c
E2

0 cos2(kr − ωt)

= cε0E
2
0 cos2(kr − ωt) , (3.8)

where for the vacuum values of the permittivity and permeability µ0 and ε0 the relation c2 =
1/(ε0µ0) has been exploited.
As one can see, at a defined and fixed location the value of the energy flow density oscillates
with twice the frequency of the electromagnetic field. The temporal resolution of the optical
detectors is far too low to resolve this oscillatory behavior so that usually only a time average
is measured. This temporal mean of a time-dependent signal f(t) can be defined by:

< f(t) >= lim
T→∞

1

2T

∫ T

−T
f(t) dt . (3.9)

Using this definition, the detected time average of the Poynting vector, usually referred to as
flux or irradiance, can be derived to (see App. B):

F =< Sn̂ >=< E ×H > =
1

2
Re
[
Ẽ0H̃

∗
0

]
=

cε0
2

Re
[
Ẽ0Ẽ

∗
0

]
=

cε0
2
Ẽ2

0 . (3.10)

Here it is important to note that the observed quantity is proportional to the square of the
modulus of the wave’s amplitude.1

Furthermore, since the flux gives the received energy per unit time and cross-sectional area,
the overall detected power depends on the effective area of the instrument. This is typically
affected by collecting and also limiting apertures and the illuminated area on the detector.
Naturally, the spectrum of the source, as well as the detector’s usually wavelength dependent
efficiency need to be taken into account.
If two light beams are superposed and combined directly at the detector, interference of the
fields takes place at the location of the detection, and the phase difference between the beams
is decisive for the outcome. Such two monochromatic signals of the same frequency, as given
by Eq. (3.6), but with a well-defined and stable phase shift of ∆ϕ read then as:

E1(r, t) = A1 e
i(k1r−ωt)

E2(r, t) = A2 e
i(k2r−ωt+∆φ) . (3.11)

1The superscript ∗ denotes the complex conjugate of the complex quantity.
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Here the vector nature of the fields has been neglected for simplicity.
If optical path differences for the two waves are ruled out, and k1r0 = k2r0 so that at the
location r0 of the detector the overall phase difference is determined solely by the initial phase
shift ∆φ, the resulting measurable field is given by the superposition:

EΣ(r0, t) = ei(kr0−ωt)
(
A1 + A2 e

i∆φ
)

. (3.12)

Following the derivation above for the resulting flux we get:

FΣ ∝ Re
[(
A1 + A2 e

i∆φ
) (
A1 + A2 e

i∆φ
)∗]

∝ A2
1 + A2

2 + 2A1A2 cos ∆φ

= F1 + F2 + 2
√
F1F2 cos ∆φ . (3.13)

Due to the interference term
√
F1F2 cos ∆φ, the measured flux depends also on the ratio of the

power from the individual waves. In the special case when F1 = F2, the relation reduces to:

FΣ = 2F1(1 + cos ∆φ)

= 4F1 cos2 ∆φ

2
. (3.14)

The outcome is described by a periodic function, where the flux oscillates between its maximum
values Fmax = 4F1 at phase differences of zero and even multiples of π and its minima Fmin = 0
respectively at uneven multiples.
Recalling that the flux measurement is a time average, it should be realized that this location
dependent total flux pattern can only be detected if the phase relation between the two beams
is stable for at least over the time of the integration on the detector. This condition is referred
to by the term temporal coherence (see Sec. 3.1.1 and 3.1.2).

If by any means the intensity can be measured for different phase differences, either by ap-
pending optical path differences (OPDs) to one of the two light paths, or simply by measuring
at different locations at a screen or a plane detector, such a fringe pattern can be registered.
The ratio between the extreme values in these intensity patterns provides a measure for the
fringe contrast. For this purpose the entity

V =
Fmax − Fmin

Fmax + Fmin

, (3.15)

called the fringe visibility, is introduced. The interference pattern from above yields perfect
visibility of V = 1, but, as one can see from Eq. (3.13), already unequal flux values from the
two overlapping beams reduce the fringe visibility. In general, with a linear relation between
the intensities, as F2 = xF1, the total flux becomes FΣ = F1(1 + x + 2

√
(x) cos ∆φ), and the

visibility reads as:

V =
2
√
x

1 + x
. (3.16)

With this in mind it is clear that, especially when beams from two different apertures following
different light paths, where several distinct optical elements are involved, parallelization in the
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instrument’s design should be pursued in order to keep the decrease in visibility due to the
mismatch in intensities as low as possible.
Another reason for keeping the instrument symmetric for the two light paths are polarization
effects. Usually, when light is being reflected at a mirror, then phase shifts are induced between
the electric vector components that are perpendicular and parallel to the plane of incidence,
namely the s and p components. Within a perfect symmetric layout, where the sequence of
reflections is the same for the two beams and equivalent mirrors are used, identical phase shifts
φpol between the two polarization components can be reached for the two beams.
Consequently, at the location of the beam combination, the s and p components combine
independently and generate identical fringe packets. In reality such ideal conditions are not
met and the visibility is lowered by the factor Vpol ([Tra1999]):

Vpol = |cos
φpol

2
| . (3.17)

3.1.1. Concept of Coherence

Although interference is a natural result from the superposition of electric wave fields, in order
to measure fringe patterns by using optical detectors, the interfering light beams need to be at
least partially coherent. This means that the phase relation between the beams is well-defined
and stable over time intervals compared to the detector integration times. To understand the
concept of optical coherency, a formalism, as introduced by e.g. [Gli11], turns out useful and
will be followed here.
For this purpose a complex quantity, the optical disturbance v(r, t) is introduced by a linear
relation to one component of the electrical field vector v = CE, where C is a constant to make
the optical disturbance dimensionless.2 It is convenient to separate the time dependency of the
optical disturbance when describing propagating waves by introducing an, consequently also
dimensionless, amplitude V (r) by:

v(r, t) = V (r) e−i2πνt . (3.18)

The dimensionless intensity I(r), proportional to and analogously introduced as the flux, as
evaluated by Eq. (3.9) and (3.10), the dimensionless intensity is defined by the time average
< v(r, t)v∗(r, t) > to:

I(r) ..= < v(r, t)v∗(r, t) >

= lim
T→∞

1

2T

∫ T

−T
v(r, t)v∗(r, t) dt = |V (r)|2 . (3.19)

When polychromatic light is considered, the optical disturbance can be represented by the
linear superposition of individual monochromatic waves. This is done by the not time but
frequency dependent spectral amplitude V (r, ν) so that:

v(r, t) =

∫ ∞
0

V (r, ν) e−i2πνt dν . (3.20)

2Note that here only one arbitrary component E, perpendicular to the direction of propagation, of the field
vector E was implicitely chosen.
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With this given, also a frequency dependent spectral intensity I(r, ν) can be introduced so that
an integration over all frequencies in turn gives the intensity I(r) from above:

I(r) =

∫ ∞
0

I(r, ν) dν . (3.21)

This approach proves convenient when propagation of light from real, not idealized sources is
regarded. In general these sources are thermal radiators and emit electromagnetic waves in a
broad spectrum. Moreover, although extended sources, such as stars, can be treated approx-
imately point-like at sufficiently large distances so that the wave fronts are often regarded as
plane waves, their light is composed of contributions from many individual and independently
radiating points on the source’s surface. Consequently, at any time and location on the wave
fronts, the optical disturbance (or analog the amplitude of the electric field) must be considered
as a quantity of unpredictable values, fluctuating at timescales 1/ν0, where ν0 is the average
frequency. As in reality detector integration times exceed these time scales, the fluctuations
average out and a well-defined value of the flux or intensity can be measured.

Hence, the concept of coherence describes the statistics of light propagation, based on the
electromagnetic theory. In particular, one is interested in the correlations of the fluctuating
amplitude v(r, t) at different points in space and time. It is helpful to depict the propagating
waves, as it is done in Fig. 3.2. It shows a sample of wave fronts at a given moment in time
t = t0. The fronts are defined here by their values of the optical disturbance along the solid
lines. The emission is supposed to have taken place at different moments in time from an ex-
tended source at a large distance, whereas after that the illustrated fronts propagated along the
z-axis. Consequently, the random fluctuations regarding the shape of and the spacings between
the fronts represent the random character of the emission processes and are decisive for the
temporal and spatial coherency of the wave field. The temporal coherency describes the phase
correlations at a given location x0 for a time interval τ , whereas the correlation at a fixed time
t0 between an ensemble of optical disturbance values is referred to by spatial coherency. In
order to analyze the statistics of the wave fronts, ergodicity is assumed for the random process.
Two conditions need to be fulfilled to justify this:

• Statistical stationarity of the radiation process in time results in the statistical properties
being the same over any chosen ensemble. In particular this means that the time averages
are independent of the absolute value of t, and the correlations depend only on time
differences τ = ti − tj.

• Equivalence of time and space concerning the optical disturbance as the random variable.
If this is satisfied, statistical quantities, as the time averages at a given location in space
can be replaced by the corresponding and equal ensemble averages over a defined wave
front at a fixed moment in time. This property can also be expressed by the relation

E{v0(x, t0)v∗0(x, t0)} =< vz0(x01, t)v
∗
z0

(x01, t) > , (3.22)

where E{v0(x, t0)v∗0(x, t0)} stands for the ensemble average over a wave front at time
t = t0 and a defined distance z = z0 (comp. Fig. 3.2), and the right hand side of the
equation represents the time average of wave fronts passing through the fixed location
x01.
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Figure 3.2. – The propagation of an electromagnetic wave field along the z-axis is depicted
here as a snapshot at a given moment in time t0. The illustrated individual wave fronts are
defined by their values of the optical disturbance vi(x, t0), where the subscript i distincts
the individual fronts and indicates their position on the z-axis. The light was emitted by
an extended source at a large distance and at different times so that their position at t0 is
determined by the light travel time. Since the emission as a whole is composed of independent
and random emission processes on the source’s surface, the fronts themselves resemble the
random character, where the optical disturbance can be regarded as the random variable.
Due to ergodicity of the process the ensemble averages E{vi, v∗i } of the fluctuating variable v
over the wave fronts at the fixed moment in time equal the corresponding time averages at a
fixed location in space, where subsequent wave fronts are passing through, if the integration
time is significantly longer than the oscillation frequency of the wave field (see Eq. (3.22)).
(Credit: [Gli11])

Now, for the exploration of the wave field’s coherency the mutual coherence function (MCF) is
introduced by [Gli11]:

Γ (r1, r2, τ) = lim
T→∞

1

2T

∫ T

−T
v(r1, t+ τ)v∗(r2, t) dt

= < v(r1, t+ τ)v∗(r2, t) > . (3.23)

It describes the correlation of the optical disturbances and respectively the electrical fields at
positions r1, r2 and different times t+ τ and t.
If one compares this definition to Eq. (3.19), one can see that the evaluation of the MCF at the
same moment and two identical locations gives the dimensionless intensity I(r) = Γ (r, r, 0).
As the fringe visibility defined above, the MCF can provide a measure for the degree of co-
herence. The correlation coefficient γ(r1, r2, τ), in general a complex quantity, yields the
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correlation of the fields at different location and times in space:

γ(r1, r2, τ) =
Γ (r1, r2, τ)√

Γ (r1, r1, 0)Γ (r2, r2, 0)
. (3.24)

A normalization has been performed here by the help of the intensities I(r1) and I(r2) so that
the value of the modulus of the coefficient γ lies in the range between 0 and 1.

A similar approach is followed when the spectral distribution of light is taken into account.
As before the spectral amplitude was introduced in Eq. (3.20), now the mutual spectral density
function (MSDF) is defined by

Γ̂ (r1, r2, ν) ..= lim
T→∞

1

2T
E{VT (r1, ν)V ∗T (r2, ν)} , (3.25)

where the quantity is evaluated for a period of time 2T , which as usual is assumed to be long
compared to the oscillation time scale of the electromagnetic wave (T � 1/ν).
Given this definition, by the evaluation of the correlation of the spectral amplitudes between
two distinct locations r1 and r2, the MSDF describes the spatial coherence at the frequency ν,
and consequently forms a Fourier pair together with the MCF:

Γ (r1, r2, τ) =

∫
Γ̂ (r1, r2, ν) e−i2πντ dν . (3.26)

Just as the MCF at two identical points and the same moment yields the intensity I(r), the
spectral intensity I(r, ν) can be defined by the evaluation of the MSDF at r1 = r2:

I(r, ν) ..= Γ̂ (r, r, ν) = lim
T→∞

1

2T
E{V (r, ν)V ∗(r, ν)} . (3.27)

Now the relation (3.21) between the spectral intensity I(r, ν) and the white-light or polychro-
matic intensity I(r) can be expanded to

I(r) = Γ (r, r, 0) =

∫
Γ̂ (r, r, ν) dν =

∫
I(r, ν) dν , (3.28)

where the integral is taken over the whole frequency band.

3.1.2. Temporal and Spatial Coherence

Although at a first glance the introduction of the coherence functions appears academic and
abstract, they build a solid and convenient framework for the understanding of basic concepts
and observations in interferometry. When it comes to practical realizations of interferometric
instruments, there are in principle only two general methods, by which two beams can be
extracted from a single light source and thereafter be brought to superposition. These are
depicted in the two set-ups in Fig. 3.3.
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a) b)

r1 r2

Figure 3.3. – The picture illustrates two general concepts, by which interferometric measure-
ments can be accomplished. In order to measure the interference pattern of light emitted by
one single source, the light needs to be divided into two (or even multiple) individual beams,
which then again can be superposed in order to probe the resulting interference pattern,
which is determined by the beams’ relative phase relations. a): A wave field, emitted by a
source at a large distance so that in the vicinity of the instrument the waves are assumed
to be approximately plane, is extracted and probed by two apertures at different locations
separated by the baseline vector B = r1 − r2. This method is often referred to by the term
division of wave front. At these locations the two beams are fed into the system. Within
the instrument they follow different paths, before they are recombined again, and the in-
terference pattern is observed at the detector. Generally, the distinct paths are different in
length, and additional delay lines can be introduced in order to compensate for any phase
differences or also to introduce some on purpose. The measured intensity of the interference
depends on the one hand on the coherence between the two beams, but on the other hand
on the effective phase difference between the beams at the location of the detector. This
phase shift is given by ∆φ = OPD · 2π/λ, where OPD is the optical path difference of the
two beams and λ the wavelength. Typically, one distinguishes between an internal OPD,
which arises within the interferometer itself and an external path difference that results from
e.g. unequal distances between the source and the two apertures. In these cases the delay
lines can be used to compensate for this initial phase shift at the entrance of the apertures
and the interference pattern can then be measured at ∆φ = 0, also called the zero OPD.
b): In this set up one beam from the source is divided by a half reflecting mirror (the beam
splitter) and, before recombined again, the two individual beams travel along different paths
inside the instrument. This method is called division of amplitude and the effective OPD is
determined solely by the internal delays. The fringe contrast in the measured interference
pattern of both methods is determined by the degree of coherence between the two beams.
Set up a) picks up the concept of spatial coherence, while temporal coherence only is picked
up by instruments that are designed, as shown in b).
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The scheme of the arrangement in Fig. 3.3 a) follows the principle of Young’s double-slit inter-
ferometer, where two apertures are used to collect light from the same source separately. Since
parts of the incoming wave are extracted at different locations r1, r2 of the incoming wave
front, this procedure is also called division of wave front and the distance vector between the
apertures is usually called the baseline B = r1 − r2. In order to investigate the interference
pattern, the inputs at the two different points in space need to be combined again, so that ef-
fects, deriving from the superposition of the two beams, can be observed. As described above,
the measured intensity of the combined light depends on the phase differences between the two
beams at the point of the measurement. Generally, the phase differences arise from and are
determined by any path length differences ∆d between the two beams through the relation:

∆φ = ∆d · 2π/λ . (3.29)

Here in the illustration, the path length difference is defined by the optical path distance (OPD).
It is schematically depicted as resulting from two distinct delays DL1, DL2 to the beams in
the two interferometer arms, and is directly evaluated from their values to OPD = DL2−DL1.
In practice, the delay lines inside of the instrument are used to compensate any external OPDs
that are already present at the entrance pupil, the telescope apertures, as naturally would arise
at observations of off-zenith sources.
Another method is adopted in the cases when light from a source that is about to be observed
by an interferometer is divided into two distinct beams, which follow paths of different length in
the system, before being superposed again. This procedure is referred to by the term division
of amplitude. For the purpose of the light division, a beam splitter is used and in this case
the resulting phase differences are solely determined by the internal delays, as illustrated by
Fig. 3.3 b).
The beam combination itself again can be achieved by two fundamentally different techniques.
In the image-plane interferometry each of the two beams is focused separately. The two formed
images are then superposed and combined so that a fringe pattern can be observed within the
image-plane. In such an interferometer implementation the telescope apertures with diameter
D and their distribution are reimaged by the optical system into the exit pupil inside the in-
strument. Consequently, the distance between the telecopes, the modulus B of the baseline,
is also reimaged inside the beam combining instrument. This downscaled entity is sometimes
called the beam-combination baseline Bi. Now, in the focus plane the intensity distribution
on one hand depends on the beams’ phase differences, but on the other hand is affected by
the finiteness of the used apertures, so basically by their shape and diffraction pattern, which
are described by the aperture’s PSF function. In the case of circular telescope apertures (see
Eq. (2.58)) point-like sources are imaged as Airy disks of a given width. The position of the
center of an Airy disk, belonging to the corresponding object in the sky plane, is determined
by the angular magnification factor mp = θA/∆s = D/D′, where ∆s is the object’s angular
distance to the telescope pointing direction ŝ0 on sky, θA the corresponding angular position
of the center of the Airy disk in the image and D′ the diameter of the downscaled image of
the telescope aperture, the exit pupil. If internal delays in the instrument are adjusted in
such a manner that the external OPD is compensated for objects in the pointing direction,
then a fringe pattern shows within the extent of the corresponding Airy disk, which acts as
an envelope to the intensity distribution. For the source that the telescopes are pointed at
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the point in the interference pattern, where the OPD between the two beams equals zero, also
called the zero OPD position or the central fringe, is well aligned with the center of the Airy
disk. The telescope pointing direction acts as a phase reference on the sky, as for objects, apart
from these reference coordinates by the angle3 ∆s, the external OPD changes by the amount
of ∆OPDext = B · ∆s. Therefore, the position of the central fringe of such objects will shift
also in the image plane. Unfortunately, this shift is not equal to the amount of shift of the
position of the Airy disk, with regard to the source’s position on the sky. While the second is
determined by the ratio of the diameters of the entrance and exit pupil, the angular position
θ0 of the zero OPD in the image plane is determined by the baseline demagnification factor
mb = θ0/∆s = B/Bi. Consequently, in general realizations of such instruments, also referred to
as Michelson configurations, the center of the Airy disk and the central fringe will only coincide
for objects in pointing direction, whereas shearing will show for off-axis sources. This becomes
an issue particularly when spectral bandwidth (temporal coherence) comes into play. As will
be discussed below, interference patterns of sources radiating in a finite spectral band, show
maximum contrast only at the central fringe position, while they blur out with increasing dis-
tance to the zero OPD. Hence, for polychromatic off-axis sources the fringe pattern shifts under
the Airy disk so that fringes can only be detected with decreased contrast, and if the angular
distance from the pointing becomes too large, then no interference pattern can be observed at
all. For this reasons Michelson interferometers suffer from a highly limited field of view.
Only in the special case, when the system’s set-up fulfills the condition mp = mb, the PSF is
shift-invariant and the field of view is not limited. Instruments designed this way are called to
be in Fizeau configuration.

In contrast to the beam combination in the image-plane, a half-silvered mirror or equivalent
can be used as a beam combiner. As indicated in the combination process of the set-up in
Fig. 3.3 b), the output is a direct superposition of two parallel and completely overlapping
beams before reaching the detector. In this way, the telescope apertures are imaged on top of
each other and the resulting Airy disk shows no fringes, but its overall intensity is regulated
only by the phase difference of the beams and is fed typically into single detector pixels. In
order to investigate the interference pattern in such a set-up, one must scan the OPD space
by changing the internal delays DL1 and DL2. This beam combination and fringe detection
method is called pupil-plane interferometry, or co-axial combination.

Based on the two described and conceptionally different methods of interferometric measure-
ments, division of wave front and division of amplitude, the two distinct aspects of coherence,
namely the temporal and spatial coherence, can be introduced. The dependency of the fringe
contrast, or to be more precise, the coherence function on the spectral bandwidth of the incom-
ing light can be analyzed when the MCF is applied to the situation, where the beam is split at
one single point r. This construct of the MCF Γ (r, r, τ), where τ is arbitrary and stands for the
measurement/combination at two different times, which is achieved by the delays introduced
to the light paths, is a measure for the temporal coherence of the light source and is called
the self-coherence function. Applying Eq. (3.26) and Eq. (3.27) to this definition, one can see

3The vector character of this angular entity emphasizes the importance of the direction of the displacement in
relation to the baseline direction.
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that the self-coherence function can be constructed by the Fourier transform of the spectral
intensity:

Γ (r, r, τ) =

∫
Γ̂ (r, r, ν) e−i2πντ dν =

∫
I(r, ν) e−i2πντ dν . (3.30)

The fact that the self-coherence function and consequently the temporal coherence depends
on the light’s spectral intensity distribution is not that surprising. Given a finite source spec-
tral bandwidth ∆ν, it is clear that at the position of zero OPD, or analogous τ = 0, the
wave interferes constructively with itself throughout the whole spectrum and the coherence is
at its maximum. However, when an OPD is introduced, it resembles the interference of the
wave at the moment t with itself, but at the time t + τ . The phase relations between the
wave’s contributions of different wavelengths change with the OPD and τ respectively due to
OPD = cτ . When these are increased, the crests and troughs of the individual wavelengths
fail to overlap more and more. This results in the Fourier transform of the spectral intensity
distribution acting as an envelope to the fringe pattern. The narrower the spectral bandwidth
of the source, the wider the self-coherence function will be. In order to measure this effect, the
quantity coherence time τc is introduced as the value of τ , at which the self-coherence function
is significantly reduced.
In interferometry, when working with delays in the instrument, one is also interested in the
limitations of the overall OPDs that can be introduced, before the visibility decreases that
much so that fringes cannot be detected any more. For these reasons the term coherence length
is defined by lc = cτc.
It is important to note that the coherence time, as introduced at this point, is a natural char-
acteristic of light and mainly determined by the source’s spectral width. Therefore, it defines
the light’s temporal coherence and acts as a natural limitation on permitted path differences
within interferometric instruments. Furthermore, it must not be confused with effective coher-
ence times, which can be even shorter, when additional sources of systematics along the light
paths are taken into account, as it is done in the context of atmospheric turbulences (see also
Sec. 3.2.2).
The relation (3.30) between the coherence function and the spectral intensity distribution of
the observed light can also be exploited for instrument characterization. As will be shown in
Sec. 4.1.3, by scanning the fringe pattern, which is achieved by continuously sweeping through
the OPD space, the coherence function, with respect to τ , is probed, and from that the intensity
spectrum, as arriving and detected by the detector, can be obtained so that the bandpass of
the system can be analyzed.

Just as the temporal coherence is affected by the source’s spectral distribution, it is inter-
esting to investigate the dependency of the spatial coherence on any source’s features. For this
purpose the propagation of the MSDF from the source plane to the plane of observation is
derived to

Γ̂ (ξ1, ξ2, ν) =
1

(λz0)2

∫∫
Σ

Γ̂ (x′1,x
′
2, ν) eik(r1−r2) dx′1 dx′2 , (3.31)

where ξ1, ξ2 stand for coordinate vectors within the plane of observation and respectively x1,
x2 for vectors in the source plane Σ (compare with Fig. 3.4).
It has also been assumed here that all angles of interest are small, which in general is justifiable
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Figure 3.4. – Here the source lies within the source plane Σ, and at a distance of z0 the
instrument’s apertures define the plane of observation. The corresponding coordinate vectors
are given by x′ and ξ respectively. The typically incoherent source is small in comparison to
z0 so that the small angle approximation for the angle of observation α′ = x′/z0 is justified,
and when this is interpreted as a source coordinate, the source brightness distribution can
be described by Ib(α

′). (Credit: [Gli11])

if the distance z0 to the source is much larger than the extent of the source, as well as any
considered distances within the plane of observation. Given this and applying the Fresnel
approximation, where the modulus of the distance vector r is described by a power series with
higher orders neglected, the relation (3.31) can be simplified to the approximation:

Γ̂ (ξ1, ξ2, ν) = G(ν)

∫
Ib(α

′) e−ik(ξ1−ξ2) ·α′ dα′ . (3.32)

Here the angle of observation α′ = x′/z0 is used as a source coordinate, and the source is
assumed to be spatially incoherent, which is the case for all real celestial bodies of finite size,
as the thermal radiation from each point on their surfaces is independent of radiation from
adjacent points. In addition to that, Eq. (3.32) holds only for the simplification that over the
observed spectrum the source shape is independent of the wavelength. In this situation the
expression of the spectral intensity can be split into two independent parts, namely the source
spectrum G(ν) and the source brightness distribution Ib(α

′):

Ib(α
′, ν) = Ib(α

′)G(ν) , (3.33)

with the source spectrum usually calibrated to unity so that
∫
G(ν) dν = 1.

The most interesting result from this is that the MSDF in the plane of observation and con-
sequently the spatial coherence do not depend on the absolute coordinates ξi, but only on
their difference (ξ1 − ξ2) = B, and that the MSDF is described by the product of the source
spectrum and the Fourier transform of the source’s brightness distribution.
Evaluating it at ξ1 = ξ2 gives by definition (Eq. (3.27)) the spectral intensity at frequency
ν, which by using Eq. (3.32) yields the constant spectral intensity in the plane of observation
I(ξ, ν) = Γ̂ (0, ν) = G(ν)

∫
Ib(α

′) dα′ = G(ν)I0.
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The integration of the spectral intensity over the spectral band gives the constant value I0 for
the polychromatic intensity.

The propagation of the MCF must be looked upon, as it gives the propagation of the coherence
function in the general polychromatic case. In order to do that, it is a common procedure to
evaluate this problem in the quasi-monochromatic approximation. Doing so, the MCF in the
plane of observation, which is given by

Γ (ξ1 − ξ2, τ) =

∫
Γ̂ (ξ1 − ξ2, ν) e−i2πντ dν

=

∫
G(ν)

∫
Ib(α

′) e−ik(ξ1−ξ2) ·α′ dα′ e−i2πντ dν , (3.34)

can be decomposed in a purely spatial and a purely temporal part, which is accomplished by
the assumption that not only the source brightness distribution itself is independent of λ, but
that also its Fourier transform is invariant over the regarded spectrum. This in general does not
need to be the case, due to the appearance of the wavenumber k ∝ 1/λ within the exponent of
Eq. (3.34). By restricting G(ν) to a narrow spectrum, where its width is much smaller than the
average frequency (∆ν � ν0), the Fourier transform of Ib(α

′) can be represented by its value
at the average positions. Additionally, when only short time differences, with τ � 1/∆ν ≈ τc
are assumed,4 also the integration over the frequency in Eq. (3.34) can be replaced by its value
at the average frequency, and by that, the term for the MCF simplifies to

Γqm(ξ1 − ξ2, τ) =

∫
Ib(α

′) e−ik0(ξ1−ξ2) ·α′ dα′ e−i2πν0τ

= Γqm(ξ1 − ξ2, 0) e−i2πν0τ , (3.35)

where the subscript denotes the quasi-monochromatic approximation performed.
Being interested in the correlations at different points, separated by the baseline B, but for a
measurement at the same time, the MCF is evaluated for τ = 0, simply yielding:

Γqm(ξ1 − ξ2, 0) =

∫
Ib(α

′) e−ik0(ξ1−ξ2) ·α′ dα′ . (3.36)

This relation is known as the van Cittert-Zernike theorem, stating that the spatial coherence in
the plane of observation, described by the MCF at τ = 0, can be derived by a Fourier transform
of the source’s brightness distribution.
An expression for the degree of coherence, as defined by the correlation coefficient in Eq.(3.24),
can be formulated for τ = 0 by normalizing the MCF by the geometric means of the intensities
I(ξi) = Γqm(ξi − ξi, 0) at the positions of the measurements, which leads to the definition of
the complex visibility function:

µν0(ξ1 − ξ2) =
Γqm(ξ1 − ξ2, 0)√

I(ξ1)I(ξ2)

=

∫
Ib(α

′) e−ik0(ξ1−ξ2) ·α′ dα′∫
Ib(α′) dα′

=

∫
Ib(α

′) e−ik0(ξ1−ξ2) ·α′ dα′

I0

. (3.37)

4In particular when the spectral intensity distribution is described by a rectangular function of width ∆ν, the
Fourier transform is given by a sinc-function and the correlation time is often chosen to be τc = 1/∆ν.
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Again, the modulus of this expression lies in the range between 0 and 1 and acts as a mea-
surement for the spatial coherence, where full coherence is expressed by the maximum value,
as e.g. by µν0 = 1 for ξ1 = ξ2. However, it should be taken caution with the replacement of
the integral over the brightness distribution by the constant I0, as this simplification cannot
be done in cases, when the values at the different positions ξi differ from each other, as it is
generally the case when observing through an atmosphere, where turbulences result in random
fluctuations. Still, this approach allows the conceptional separation of the effects of temporal
and spatial coherence, which again manifests itself when the MSDF in the plane of observation,
as given by Eq. (3.32), is rewritten by the help of the complex visibility:

Γ̂ (ξ1, ξ2, ν) = G(ν)I0µν(ξ1 − ξ2) , (3.38)

where the temporal coherence is determined by the spectrumG(ν) and the spatial by µν(ξ1−ξ2).
In analogy to the introduction of the coherence time, now the coherence width ωc can be defined
by the coordinate difference, or respectively baseline B = ξ1−ξ2, at which the value of the vis-
ibility, and so the fringe contrast, is significantly lowered. Just as the coherence time is affected
by the spectral bandwidth, the coherence width is inversely proportional to the angular size of
the observed source. Due to the two dimensional Fourier transform relation between µν and
the source’s brightness distribution, the visibility depends on the wavelength, and generally
decreases with increasing size of the source and also with longer baselines. This intuitively
can be understood, when the complex visibility function (normalized MCF) is interpreted as
the portion of coherent radiation within the entire detected radiation power. Then, the size
of the baseline determines its ability of resolving source structures along its orientation, where
an idealized point source can never be resolved and therefore would provide full coherence.
Depending on the intentions of interferometric measurements, this visibility dependence on the
baseline can be exploited. By using variable baseline lengths, the visibility measurements, or
in particular its decrease, can be directly used to estimate stellar diameters, as it was shown
firstly by the means of the star interferometer designed by A. A. Michelson (e.g. [Mich1921]).
More than that, by testing different baseline sizes and orientations, image synthesis can be
performed and through the derived brightness distribution, the source’s shape can be probed
and determined, as e.g. is done in studies concerning circumstellar disk structures.

The described effects of polychromatism and extended sources on the coherence of interfer-
encing beams, and consequently on the contrast of the fringe pattern, are summarized by the
images in Fig. 3.5. The illustrations show the measured intensity by the detector after beam
recombination in OPD space, thus as a function of the overall optical path distance, which
can be converted to the phase difference between the beams at a given wavelength through the
relation:

OPD = ∆φ
λ

2π
. (3.39)

In the idealized case, when the source is point-like and monochromatic, the visibility and the
fringe contrast are at a maximum, and the fringes show perfect constructive and destructive
interference (Fig. 3.5 a)). The situation changes when the radiation exhibits a finite bandwidth,
which is indicated by the colored curves, featuring slightly different wavelengths in Fig. 3.5 b).
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a) b)

c) d)

I(OPD) I(OPD)

I(OPD) I(OPD)

point source, monochromatic point source, polychromatic

extended source, monochromatic extended source, polychromatic

OPD OPD

OPD OPD

Figure 3.5. – The effects of temporal and spatial coherence on the visibility, and consequently
fringe patterns, are illustrated by the detected intensity of the superposed beams as func-
tion the OPD. a): An idealized monochromatic point source implies a maximum degree of
coherence and perfect fringe contrast throughout the whole OPD space. b): The influence
of a finite source spectrum is characterized by the Fourier transform of the source’s spec-
tral intensity acting as an envelope to the fringe pattern, since the positions of the maxima
and minima from contributions of different wavelengths (color coded) fail to overlap when
moving away from the zero OPD. c): An extended source is partly resolved by the interfer-
ometer depending on the baseline length. The resulting shifts in positions of the extrema,
corresponding to distinct positions on the source’s surface (color coded), smear out the in-
terference pattern and decrease the fringe contrast. d) The effects of polychromatism and
extended sources are combined. (Original image from [Gli11])

Here, the Fourier transform of the source’s spectrum acts as an envelope to the fringe pattern
and shows decreased visibility for increasing beam phase differences, while the point of zero
OPD, the central fringe, shows the full visibility. Therefore, finite spectral bandwidths result in
limitations to observations with interferometers, by limiting the OPDs to a critical coherence
length, at which sufficient coherence is still present so that the fringes can be detected.
The effect of partly resolved extended sources can be seen in Fig. 3.5 c), where fringes, arising
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from points on the source’s surface with distinct angles of observation, are shown. The shift in
position on the sky results in a shift of the fringe pattern in the OPD space and the consequence
is that any maxima and minima smear out, which is a direct result to the loss of visibility
throughout the whole OPD or phase space. This loss of fringe contrast is also triggered by
the length of the baseline, as longer aperture separations implicate higher spatial resolution of
the source’s brightness distribution. The combination of both effects, the temporal and spatial
coherence, are illustrated in Fig. 3.5 d), where even at the zero OPD full coherence cannot be
achieved.

3.2. Dual Star Interferometry and Astrometry

In the previous chapter the challenges and difficulties, regarding the search for extrasolar plan-
ets, have been discussed, and several techniques, some of which were proven to be highly
successful in handling those, have been presented. The motivation behind this thesis is an
insight into the design of the interferometric instrument PRIMA and the demonstration of,
how the task of performing high precision astrometry by the means of dual star interferometry
can be approached. For this reason the considerations throughout the following section will be
closely tied to the actual design and implementation of PRIMA, which is presented in detail
within chapter 4.

The accuracy of astrometric measurements that is needed for the detection of exoplanets has
been estimated by Eq. (2.74) and is visualized in Fig. 2.21 in Sec. 2.3.6. It is obvious that the
measurable astrometric signature is highly affected by parameters that are determined by the
system’s properties, such as masses of the planet and the host star and the dimension of the
orbit, and also by its orientation and distance in relation to the observer. However, it can be
safely stated that in order for the astrometric method to become a substantial and comple-
mentary method in this field of interest, precisions of the on sky position measurements of the
order of tens of microarcseconds need to be achieved. In order to reach this goal the design
of PRIMA exploits the dependence of the external OPD on the observed star’s coordinates.
When an appropriate internal delay is applied by the interferometer’s delay lines, then the
external OPD is compensated and the fringes are detectable. Still, the position of the fringes’
center must be determined with high accuracy, wherefore the system operates in pupil-plane,
and by which the position on sky is mapped onto the length of the applied delay, which in this
manner becomes the measurable observable. Unfortunately, at the desired accuracy level it is
impossible to relate this measurement to an absolute coordinate system on sky, which, besides
of problems arising from turbulences in the atmosphere (see below), is the main reason why
the astrometric measurement is performed in a differential way. In this concept a near star in
the field of view is chosen to act as a reference and the angular separation between these two is
determined by the difference of the applied compensating OPDs, the differential OPD (dOPD
or ∆d). For such a simultaneous observation, in principle two interferometric systems, using
the same two telescope apertures, need to be implemented. The principle of the measurement
is visualized in Fig. 3.6.
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Figure 3.6. – Two stellar sources with coordinates defined by the unit vectors ŝ1 and ŝ2,
separated by only a small angular distance so that both lie within the instrument’s field of
view, are observed simultaneously by two telescopes. Star separators (STS) are installed in
order to select the light from the two distinct sources and to feed them on different paths
into the system. On this way the interference patterns from both stars can be analyzed
separately. Due to the sources’ different positions on sky, their external OPDs, with regard
to the two apertures, differ also. Here in this two dimensional illustration they are given
by OPDext = B cos θ, and so depend on the distance between the apertures (modulus of
the baseline B) and the angle θ between the baseline vector and the direction towards
the given source. In general, the projection B · ŝ = OPDext determines the external path
difference. Consequently, the differential external OPD for the two sources is given by
∆OPDext = (B · ŝ2)−(B · ŝ1) = B · ∆s. This differential OPD reveals itself again within the
interferometer. A delay line is used to compensate the external OPD, and if the same internal
path difference, OPDint between the two interferometer arms, is applied to the beams of both
stars, the fringes appear at different positions in the OPD space. The distance between the
zero OPDs (center of the fringes) of the two distinct sources is called differential OPD
(dOPD) and is directly given by the difference of the external OPDs: dOPD = ∆OPDext =
B · ∆s. Therefore, determining the dOPD inside of the system gives a direct measurement
of the angular separation between the two stars, projected onto the baseline.
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The two telescopes are pointed towards two distinct but close stars on the sky, whose coordinates
(right ascension α and declination δ) are related to the unit vectors ŝ1, ŝ2 in their direction by

ŝ =

 cosα cos δ
sinα cos δ

sin δ

 , (3.40)

and which consequently are separated by the angular distance ∆s = ŝ2 − ŝ1.
The external optical path difference to each of these stars is determined by the unequal distances
from the source to the apertures and therefore by the orientation of the incoming plane waves
in reference to the interferometer’s baseline B:

OPDext = B · ŝ . (3.41)

Consequently, during a simultaneous observation the star coordinates are the only variables,
and the differential OPD, as determined within the interferometer from the delay line lengths
and so by the positions of the fringes in the OPD space, acts as an indirect measurement of
the stars’ angular separation:

∆d = (B · ŝ2)− (B · ŝ1) = B · ∆s . (3.42)

The vector character of this equation’s right hand side is crucial and indicates that two aperture
interferometers are sensitive only to features of the source brightness distribution along the
direction parallel to the baseline. Therefore, such a dual-feed interferometer probes the angular
separation of the stars only in one dimension. However, when observing from earth, the baseline
vector is not static during the time of the observation. Due to earth rotation its orientation
changes and so does the measured dOPD. In order to illustrate this relation, it is often more
convenient to consider only the non-vanishing and time dependent baseline components in the
same plane as the observed stellar sources. This vector Bp is usually called the projected
baseline, as it is determined from the projection of the baseline vector B, which is typically
given in the equatorial coordinate system or the ICRS, onto a local tangential plane, defined
at the celestial sphere at the coordinates α0, δ0 of the star pair’s midpoint and spanned by the
orthonormal unit vectors

p0 =

 − sinα0

cosα0

0

 and q0 =

 − sin δ0 cosα0

− sin δ0 sinα0

cos δ0

 , (3.43)

where p0 lies in the east-west direction and points to increasing right ascension and q0 accord-
ingly points to increasing declination in the north-south direction.
Consequently, the projected baseline and its components Bξ and Bη along the basis vectors of
this local plane are given by:

Bp =

(
Bξ

Bη

)
=

(
p0 ·B
q0 ·B

)
. (3.44)

The projected baseline can also be expressed in polar coordinates of the tangential plane, where

Bp =
√
B2
ξ +B2

η and tan θBL =
Bξ

Bη

(3.45)
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give the length and the projected baseline angle (PBA) that is specifying the angular offset of
the baseline vector relative to the celestial north pole when counting over the east direction.
Naturally, the separation vector ∆s on the sky between the two stars is given by its compo-
nents ∆sα = ∆s · sin θs along the right ascension and ∆sδ = ∆s · cos θs along the declination
respectively, where these are measured in angular distances so that the resulting and detected
differential OPD can be expressed by

∆d = Bp · ∆s =

(
Bξ

Bη

)
·
(

∆sα
∆sδ

)
, (3.46)

or in polar coordinates by
∆d = Bp · ∆s · cos(θBL − θs) . (3.47)

Here θs denotes the position angle (PA), which is the angular offset of the secondary star to
the primary, counted in the same manner relative to the north pole, as described above for the
baseline angle (see also Fig. 4.22).
The time dependence of the earth bound baseline and the measurable dOPD is covered by the
phase difference θBL − θs = ∆θ and can be explicitly expressed by ∆θ = ωt + ϕ0, where ϕ0

is an arbitrary but fixed phase offset, and ω = (2π/T ), the circular frequency of the baseline
rotation, is determined by the time period T of one revolution, namely 24 h.
By combining dOPD measurements for varying baseline orientations, different moments in
time respectively, one can disentangle the ambiguity regarding the measured observable and
the baseline orientation, relative to the separation on the sky, and the real angular distance
between the stars can be obtained (see Sec. 4.2.2 and 4.3.3).

3.2.1. Realization of Dual Star Observations

By applying the method, which is characterized by Eq. (3.46)-(3.47), the astrometric measure-
ment on the sky is translated into the measurement of the optical path lengths in the system. In
order to be able to perform these kind of simultaneous interferometric observations, the instru-
ment’s implementation generally needs to be equipped with specific components that feature
the following functionalities:

Light collection:
In stellar interferometry the two partly coherent light beams that are superposed are usu-
ally obtained by two apertures, which extract light from the incoming waves at distinct
positions defined by the telescope positions. The distance between them and their orien-
tation, the baseline of the interferometer, heavily affect the resolution of the separation
measurement. According to Eq. (3.42), the objects’ separation on sky is linearly mapped
onto the dOPD so that with a given accuracy of the delay measurements the resolution in-
creases with longer baseline lengths. However, the increase of the baseline length must be
treated with care, as in principle the source itself will be resolved progressively, which in
turn can lead to a loss of spatial coherence and consequently to a reduced fringe contrast.

Object selection from field of view:
In addition to the naturally limited field of view of interferometers in Michelson config-
uration, for an astrometric measurement it must be ensured that the detected fringes
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originate from the sources of interest and not from objects in their vicinity. Besides this,
fringe patterns of each of the two stars are detected separately and simultaneously, which
means that although entering through the same telescopes, the light paths of the distinct
sources must be separated and injected into different channels somewhere within the in-
strument. This is usually achieved by a special periscope layout, as a whole device called
the star separator (STS).

Fringe detection:
When recombining the beams co-axially, the intensity measurement of the detector probes
the interference pattern only at one defined position, compared to the fringe center, also
called the white-light fringe. In order to determine the dOPD between the two observed
objects, the exact position of the fringe centers needs to be known. This information in
principle can be obtained from a fast scan within the coherence time, during which the
fringe patterns are not smeared out. Alternatively, this information can also be derived
from an estimation of the phase and modulus of the visibility function at the OPD applied
at the moment of the measurement. The fringe sensor untis (FSUs) of PRIMA perform
this estimation by a four channel, spatially modulated, intensity measurement, called the
ABCD method, as will be described below in Sec. 4.1.3.1.

Fringe tracking:
Generally, the accuracy of the astrometric measurement is increased and the limiting
brightness of the observed stars is decreased by higher integration times, which in turn are
limited by fringe motions, thus the coherence time. Due to this, the integration times can
only be increased by stabilizing the fringe pattern. This can be achieved, if the position
of the central fringe is not only determined, but if this information is fed back in real-
time into a controlling mechanism that drives the delay lines and consequently controls
the OPD, which continuously can be adjusted to reduce the residual fringe motions. By
reducing motions at lower frequencies, such a fringe tracking algorithm consequently acts
as a filter to the power spectrum of the fringe center position variations, and to OPD
fluctuations.

Path length compensation:
The delay lines in an interferometer are supposed to compensate the external path dif-
ferences in order to detect fringes at all. When the zero OPD positions of two sources
are about to be determined at the same time in order to derive the dOPD, it is clear
that also the internal delays for both objects need to be controlled separately. This in
principle demands for two sets of delay lines, which can be applied appropriately onto the
the different light paths.

Monitoring the light path:
With the realization of long baseline interferometers the light paths of the beams inside
of the instrument become considerably long (up to several hundreds of meters). When it
comes to the measurement, particularly with the goal of precise astrometry, each varia-
tions limit the effective accuracy that can be reached by the instrument. Aiming at an
astrometric accuracy of δs = 10µas, with a baseline length of 100 m, the limiting uncer-
tainty δd in the determination of the dOPD can be estimated to δd ≈ δs ·B ≈ 4.8 nm.
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Usually, laser metrology systems are incorporated for sensing path length variations at
these levels. Ideally, a laser beam follows the same path in the instrument as the light of
the stellar sources, and, by measuring occurring phase fluctuations of the laser interference
signal, any beam path variations can be detected and corrected for.

3.2.2. Atmospheric Disturbances and Phase Referencing

In order to achieve accuracies of the order of 10–100µas it has been shown that the light path
needs to be controlled down to variations of around ∼ 5 nm. Although full stability of the
whole interferometer to this precision is rather illusory, in principle a laser metrology system
provides the means to monitor intrinsic motions and to correct for them. Unfortunately, any
disturbances to the propagating waves, occurring outside of the system, before the beams arrive
at the telescopes, are not registered. In particular turbulences in the atmosphere result in wave
front distortions on short time scales, which manifest themselves in form of phase shifts and
which lead to a decrease of fringe contrast and coherence time.
The basic approach to understand the structure of waves propagating through the atmosphere
relies on the description of the statistics of the random motions as described by the Kolmogorov
turbulence model. Well structured derivation of the principles can be found in the literature
(e.g. [Qui99], [Gli11]), whereas here the main results and consequences to the project are sum-
marized.
Following the underlying concept, the atmosphere, with typical wind speeds of several m/s, is
considered a turbulent fluid, where the largest scale turbulences build at the outer scale L0,
and kinetic energy is transferred successively down to smaller eddies. This breaks down at the
inner scale l0, where viscous dissipation processes become significant. The range between these
two entities, called the inertial range, is still a matter of ongoing discussions. While the inner
range is assumed to be of the order of a few millimeters, the estimation of the outer scale,
somewhere between a few tens of meters and a kilometer, is quite vague. Although attempts
to determine L0 have been performed (e.g. [Bus95]), uncertainties in the models’ parameters
and their interaction during the observations prevent definite interpretations and precise esti-
mations.
For the analytic examination it is assumed that the turbulences are statistically stationary and
isotropic. Given that, the kinetic energy spectrum, as a function of the spatial wave number
k ∝ 2π/l, can be derived from the energy transfer between eddies of different sizes l. As in the
context of this discussion, one is mainly interested in the perturbations, as induced on plane
waves passing through the turbulent cells of the atmosphere, and therefore the fluctuations
regarding the refractive index n must be considered. The turbulent eddies can be regarded
as mixing structures of varying temperature in pressure equilibrium and hence with different
densities and consequently different indices of refraction. The spatial distribution of the fluc-
tuations of the refractive index obey the same statistics as the energy spectrum and is usually
expressed by the power spectral density (power per volume element dk):

Φn(k) = 0.033C2
n k
−11/3 . (3.48)

91



Chapter 3. Interferometry in Theoretical Context

This Kolmogorov spectrum is homogenous and isotropic, where the structure constant C2
n de-

scribes the strength of the refractive index fluctuations. The Kolmogorov power law with the
∝ k−11/3 dependency is valid only within the inertial range, as beyond the outer scale, respec-
tively at low spactial frequencies, the spectrum is assumed to saturate, since the turbulences
become more and more uncorrelated. The so called von Kármán spectrum (see [Gli11]) serves
as an adjustment to the Kolmogorov spectrum in order to account for this and exhibits reduced
power outside the inertial range.

With the statistics of the refractive index at hand, the consequences for initially plane wave
fronts, travelling through the rapidly fluctuating regions within the atmosphere, can be derived.
Due to the distribution of the refractive index n(x, z), where x is the horizontal coordinate
vector and the altitude is given by z, a phase shift of

ϕh(x) =
2π

λ

∫ h+δh

h

n(x, z) dz (3.49)

is introduced to a wave that propagates through a thin layer of δh at the height h.
As usual, the consequences on the coherence of the wave are evaluated by the computation
of a correlation function and in this case are determined by the statistics of the turbulences
themselves, which through Eq. (3.49) directly translate onto the phase distribution of the wave,
after passing the turbulent thin layer. This correlation function is described by

Γϕ,h(x) = e−
1
2
Dϕ,h(x) , (3.50)

where the variance of the phase shifts Dϕ,h(x) =< [ϕh(x
′)− ϕh(x′ −x)]2 > defines the spatial

phase structure function of the turbulences of the layer in question.
Temporal correlations have not been taken into account here, since it is assumed that the
lifetime of the turbulent cells is generally significantly longer than the time scales, on which the
whole structure is blown away by the wind, so that it can be regarded as not evolving. This
concept is referred to as Taylor’s frozen turbulence hypothesis, which justifies the simplification

Dϕ,h(x, τ) = < [ϕh(x
′, t)− ϕh(x′ − x, t+ τ)]2 >

= Dϕ,h(x− vτ, 0) , (3.51)

of the full, temporal and spatial, phase structure function to its spatial characteristics. There-
fore, the specification of the instantaneous Dϕ,h(x) and the wind velocity v, at which the eddies
are moving across the line of sight, describe the statistics completely.
Finally, when the correlation scale of the fluctuations is smaller than δh, the phase structure
function for a horizontal plane wave passing through the particular layer i at an altitude h is
dependent only on the magnitude x = |x| of the distance between two points and is given by
([Gli11]):

Dϕ,hi(x) = 2.91

(
2π

λ

)2

δhiC
2
ni
x5/3 . (3.52)

Applying this to the correlation function Eq. (3.50) of the wave, one can see that the perturba-
tions by the turbulent layer correspond to a finite width of the correlation width and therefore
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result in a decrease of coherence.

In order to arrive at meaningful results, one needs to take the whole atmosphere into ac-
count, which can be regarded as a composition of many, statistically independent turbulent,
layers, passed through by the optical waves before reaching the ground. When a continuous
distribution of such is applied, the phase structure function, giving the mean-square difference
of the phases at two points, separated by x, can be derived to:

Dϕ,h(x) = 6.88

(
x

r0

)5/3

. (3.53)

The correlation length r0, also called the Fried parameter, is defined by the integral over the
turbulence profile

r0
..=

(
0.423

(
2π

λ

)2

(cos ζ)−1

∫
C2
n(h) dh

)−3/5

, (3.54)

and specifies the diameter of the circle, over which the phase variance is about 1 rad2 and can-
not be neglected, where ζ is the angular zenith distance of the observed source.
Consequently by definition, the resolution that can be achieved by seeing-limited observations,
when the atmospheric turbulences are characterized by r0, is equal to the diffraction-limited
resolution of apertures with diameters of the same size. Therefore, the Fried parameter is often
referred to as the size of the turbulence cells itself, although strictly speaking the Kolmogorov
spectrum resembles a continuous spatial distribution within the inertial range.

As atmospheric seeing is site and weather dependent, it can significantly change between differ-
ent times of observations. Still, an approximation of r0 at sites with generally good conditions
can be estimated to ([Lan03]):

r0 ' 0.1

(
λ

0.5µm

)6/5

m . (3.55)

The dependency on the wavelength plays an important role on the instrument design as waves
of longer wavelength are less disturbed by the atmosphere. For the infrared K-band (' 2.2µm)
one gets Fried parameters of around 0.6 m.

In differential astrometry, or also when using adaptive optics systems, two sources, which are
separated by small angles θ, are observed simultaneously. Since one of those targets is used as a
reference to correct for the atmospheric disturbances, the correlations of the phase fluctuations
between the two objects become important. Due to the slight displacement on the sky, the
light from the two objects travels through different turbulence cells and hence the waves are
also perturbed differently.
The isoplanatic angle θ0 is introduced as a limitation to on sky separations, for which the
variance of the relative phases becomes significant (1 rad2).
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It can be derived by simplifying the model so that the turbulence profile is replaced by a single
layer at a mean effective height H, which is defined by:

H ..=

(∫
C2
n(h)h5/3 dh∫
C2
n(h) dh

)3/5

. (3.56)

When the spatial displacement is parametrized by the separation angle by the means of the
x = θH, the phase variance 〈σ2

θ〉 between the two positions can be estimated from the phase
structure function (Eq. (3.53)).
One can use

θ0 = 0.314 (cos ζ) r0/H (3.57)

in order to relate the isoplanatic angle to the Fried parameter, and by this one finally obtains
the result

〈σ2
θ〉 =

(
θ

θ0

)5/3

, (3.58)

where the formal definition of the isoplanatic angle is given by:

θ0
..= 6.88−3/5

(
0.423

(
2π

λ

)2

(sec ζ)8/3

∫
C2
n(h)h5/3 dh

)−3/5

. (3.59)

As indicated by Eq.(3.57), the isoplanatic angle increases with wavelength (∝ λ6/5) and strongly
depends on the turbulence profile, as substituted by the effective altitude H. When observing
in K-band and H within the range of 1–7 km, the isoplanatic angle can be estimated to values
between 6 and 40 microarcseconds.

The magnitude of θ0 is a stern constraint on target selection, if real-time controlling mech-
anisms are used to correct for atmospheric perturbations. One of the two observed objects,
typically the brighter source, serves as a reference for the measurement of the phase fluctuations.
If the separation between the two targets lies within the isoplanatic patch, the disturbances
of the incoming waves can be regarded as sufficiently correlated and therefore, after detecting
them on the reference object, corrections can be instantaneously applied to the second target.

During the interferometric observations, which PRIMA is designed for, the phase of the in-
coming waves, and hence its fluctuations, are directly measured by the determination of the
fringe position in the OPD space. Consequently, if the phase shifts of the two observed stars
are correlated, the absolute fringe positions respond to the variations, but the influence on the
measurement of the differential OPD is highly minimized.
Furthermore, since phase referencing reduces the fringe motion of the second target, it permits
longer integration times at the used detector, which in turn provides higher sensitivity and
allows fringe detection on fainter targets.
The integration time, and therefore the sensitivity, of an interferometric measurement are lim-
ited by the coherence time. This is why the temporal evolution of the atmospheric turbulences
needs to be considered. Following the basic assumption of Taylor’s frozen turbulence hypothesis
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that while being blown in front of the light paths the evolution of the turbulences is negligible,
the structure of the turbulences can be regarded as a static screen, moving with the wind veloc-
ity v. Therefore, the phase at a given point x and time t+ τ is equivalently given by the phase
at point x− vτ at time t (compare to Eq. (3.51)). In this way the results from the analysis of
the spatial characteristics can be translated directly to conclusions on temporal statistics.
In this manner, the atmospheric coherence time τatm, in analogy to the Fried parameter, gives
the time interval, during which the root-mean-square difference of the measured phases reaches
1 rad. It is related to r0 by

τatm = 0.314
r0

V
, (3.60)

where V stands for the effective wind speed, to which variable wind velocities in the different
layers contribute, and which is given by:

V ..=

(∫
C2
n(h)v5/3 dh∫
C2
n(h) dh

)3/5

. (3.61)

Both characteristic quantities, the coherence time and the Fried parameter impose constraints
on the sensitivity during a measurement, which naturally scales with the number of detected
photons. Since only photons, detected within the coherence time and within a circle of diameter
r0 can contribute to a sufficiently coherent measurement so that the fringe contrast is high
enough, the sensitivity generally follows r2

0 · τatm ∝ λ18/5. With increasing wavelength both
limiting quantities are increased also, and respectively the measurement is less affected by
atmospheric perturbations. In addition to that, phase referencing in combination with fringe
tracking in dual-feed interferometers drives the sensitivity limit to fainter objects.
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Chapter 4

Astrometry with PRIMA

This main chapter of the thesis is completely devoted to PRIMA, its implementation and its
functionality regarding astrometry. It is divided into three sections.
Within the first the instrument’s hardware and technical layout will be described.
In order to achieve the anticipated level of accuracy, the raw data gathered during the obser-
vations needs to be thoroughly processed into the final scientific products. This usually will be
accomplished by the partially automated data reduction software, which has been developed
by our exoplanetary group at the Landessternwarte Königstuhl in Heidelberg, Germany, and
which will be described within the second part.
Following that, the last section engages the current state of the instrument. In this context the
emphasis is laid on the description of the procedure, by which the astrometric observables can
be derived from the dual-feed interferometric measurements, and at which point of the chain
of the complex measurement systematic errors might be introduced.
For this purpose, in the course of this work, the instrument’s commissioning data, which has
been collected from test observations during the commissioning runs over the last years, has
been analyzed.
The results from that shall on one hand demonstrate the system’s principle functionality re-
garding fringe tracking and phase referencing, and on the other hand provide first estimations
on the momentarily achievable astrometric accuracies, also in terms of stability and systematic
uncertainties.

4.1. PRIMA and its Components

Since the year 2000, in collaboration between ESO, the European Southern Observatory, and
the ESPRI consortium, consisting of participators from the Observatoire de Genève, the Max
Planck Institute for Astronomy and the Landessternwarte Königstuhl (LSW), both in Heidel-
berg, a lot of devotion and time has been put into the development and construction of PRIMA,
the facility for Phase-Referenced Imaging and Microarcsecond Astrometry.
Using this instrument, which to a given level compensates atmospheric disturbances during
interferometric observations, limitations to the brightness of the sources are decreased, and
moreover its implementation also provides phase-referenced aperture synthesis imaging.
However, its dual-feed design was highly motivated by the prospect of conducting a search for
extrasolar planets by the means of an astrometric instrument that would be capable of achiev-
ing precisions at the level of tens of microarcseconds.
In 2010, all subsystems, which have been developed particularly for the dual-feed mode, even-
tually have been incorporated into, but also considerably upgraded the VLTI infrastructure at
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the Cerro Paranal in Chile.
The astrometric method with PRIMA relies on differential measurements, during which fringes
of two targets are detected simultaneously, and the difference between the internal delays that
need to be applied to the light paths of these two, the differential delay, is being determined.
Since atmospheric turbulences induce motions of the fringes’ centers on short time scales of
several up to tens milliseconds in the infrared, these need to be monitored at sufficiently high
frequencies and corrected for by the delay lines.
As long as both of the observed objects are positioned on the sky within the isoplanatic patch,
the atmospheric effects can be appropriately considered the same, and the control signals from
the bright source can be equally applied to the second target. Consequently, this method results
in an extended synthetic coherence time so that fainter sources can be observed.
The four additional components, which provide dual-star interferometry at the VLTI, are in-
troduced in the following, while their position in the PRIMA facility and their influence on the
beam paths is depicted in Fig. 4.1.
The dual-feed mode provided by PRIMA can be utilized by both kind of telescopes, operated
at the site on Paranal, namely by the stationary 8.2 m Unit telescopes (UT) and by the mov-
able 1.8 m Auxiliary telescopes (AT), which can be repositioned on different stations. Thus, in
general the employment of the ATs gives access to measurements with variable baselines and
expands the parameter space during observations, which is propitious not only for astrometry,
but for phase-referenced imaging as well.

4.1.1. Star Separators

Due to the limited interferometric field of view of the Michelson configuration, the system is
equipped with star separators (STSs), which are capable of selecting objects from the telescopes’
FOV and to feed them separately into different injection ports of the VLTI system. TNO Sci-
ence & Industry has developed and built such devices for both types of telescopes, the UTs
and the ATs. As triggered by the predefined requirements to meet the scientific goals, these
opto-mechanical mirror systems are mounted underneath the telescopes and were designed to
allow to pick up two subfields from the initial 2 arcminute wide field of view and thereon to
lead the two channels into the delay lines. Furthermore, the implementation of the STSs, as
depicted in Fig. 4.2, provides means of compensating field rotations, as well as beam tip-tilt
stabilization and pupil alignment, both with actuation frequencies of 50 Hz ([Del08]).
The field segmentation is obtained by the placement of a rooftop mirror (M10)1 at the Coudè
focus of the telescope. When observing with the ATs, a reflective K-prism assembly acts as a
field de-rotator device, which is installed directly above the STS and compensates mainly for
diurnal field motions, as those due to earth rotation.
This unit ensures that the two objects of interest are re-imaged at either opposite sides of the
rooftop edge.2

Also, switching between the NORMAL and SWAPPED states of observation, during which the

1The numbering of the mirrors starts with the telescope’s primary mirror M1 and incrementally follows the
beam path down to the detector.

2Within the star separators for the UTs, the de-rotating mechanism is directly incorporated on the M10 mirror.
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Figure 4.1. – Simplified depiction of light paths within the PRIMA system during a dual-feed
observation with the ATs in NORMAL mode. Light from both stars, the usually brighter
primary (PS) and the secondary star (SS), is selected from the telescope’s field of view by the
star separators (STS), situated in the Coudè focii and is injected into distinct entry ports
of the delay lines in the VLTI tunnel. The main delay lines are used to compensate the
external OPD for the PS, while the differential delay lines (DDLs) provide the additional
differential delay to one part of the beam of the SS so that fringes of both stars are centered
and can be detected after beam recombination in the fringe sensor units. For symmetry
reasons each of the four beams are sent to the DDLs, although usually three of them are
kept at fixed positions and only one is used for OPD compensation during the fringe tracking
process. In this configuration light from the PS is combined in FSUB, and accordingly FSUA
is fed by the beams from the secondary. By the means of the STSs, this situation can be
reversed. Consequently, in the so called SWAPPED mode the light paths of the stars are
exchanged in the system, which not only reduces differential effects to the light beams due
to air dispersion effects in the light ducts and tunnels, but is a necessary step during an
astrometric observation in order to determine the metrology zero point, since it monitors
the beam paths not in an absolute, but only in a differential manner (see Sec. 4.1.4). Four
laser metrology beams are injected into the systems at the fringe sensor units and follow
the star’s light paths up to the star separators, where they are reflected. Operating in the
H-band, the guiding camera IRIS, which is placed near the fringe sensor units and is fed by
a dichroic mirror, extracting the H-band portion from the star beams, provides a fast tip-tilt
sensing in order to stabilize the beams in the entrance to the FSUs.

injection of the light beams of the two observed stellar sources is swapped, is carried out by a
field rotation of 180◦ of the de-rotators.
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As the pupil coincides with the piezo-actuated M11, rotation of it around two orthogonal axes
allows pointing on any of the objects in the Coudè focus on M10. Therefore, M11 acts as a
field selection mirror (FSM) and is operated in a closed loop with the tip-tilt sensor IRIS for
the purpose of fast beam stabilization, which is inevitable for keeping the photon leakage at
the fringe sensor units at a low level in order to maintain an acceptable sensitivity.
Moreover, the STSs mark the PRIMET metrology end points in the system. The laser beams
at the wavelength of 1319 nm, injected at the fringe sensor units and travelling the beam path
in opposite direction to the star light, are being transmitted at the dichroic mirror M9 and by
that reach their retroreflectors (see also Sec. 4.1.4).
As M12 re-images the focus on the M14 mirrors, which are actuated by a tip-tilt stage, they,
together with the PRIMET pupil tracking system, provide a mean of monitoring and correct-
ing the lateral and axial alignment of the output with the input pupil in order to minimize
vignetting effects and to assure a proper overlap for the metrology system ([Nij08]).
Since the M14 mirror’s curvature directly affects the pupil’s longitudinal position, it is planned
to control it at real-time by mirrors of variable curvature (VCM), but is not implemented at
present ([Sah13]).

By this described set-up, the STSs ensure a proper pointing and tracking of the science ob-
jects and represent the first of the key components that provide PRIMA’s dual-feed mode of
simultaneous interferometric observations.

4.1.2. Differential Delay Lines

As during ordinary PRIMA operation the main delay lines of the VLTI are adjusted to com-
pensate for the optical path delay of the usually brighter primary source, which is used as the
phase reference, the fringes of the secondary star can only be observed at the second detector,
if an additional delay, the differential delay, accounting for the objects’ separation on the sky,
is applied. Compared to the main delay lines that can provide common path delays to both
stars with nanometer accuracy at lengths over 200 meters, the differential delay needs to intro-
duce only a short delay. A rough estimate of the maximum dOPD assuming a 200 m baseline
and a star separation of 120 as gives the requirement for the additional delay device to about
∆dmax ≈ 116 mm. For this purpose the differential delay lines have been designed and built by
the ESPRI consortium in collaboration with ESO and have been installed on Paranal in 2008.
The design of the DDL units, along with results from tests in the laboratory, are presented
in [Pep08]. From the operational point of view, the DDLs require to be able to perform fast
OPD scans for fringe finding or sampling the fringe envelope within the full range of applied
optical delays. They also need to provide means for tracking blind trajectories up to velocities
of 200µm/s in order to compensate for the changing of the delay due to field rotation and
to provide an active tracking mode, during which perturbations due to atmospheric piston or
vibrations in the system are corrected for in a controlled closed loop with the detectors, at a
bandwidth above 200 Hz.
The implementation of the DDLs, as illustrated in Fig. 4.3, approaches these challenges by the
help of a Cassegrain-type retroreflector telescope (cat’s eye), consisting of three mirrors so that
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Figure 4.2. – The light collected by the telescopes enters the star separator (STS) devices at
the dichroic mirror M9 and the initial field of view is divided into two subsections at the
rooftop mirror M10, which is situated in the telescope’s Coudè focus. Any object, re-imaged
onto the rooftop, can be pointed to by the mirrors M11, which act as the field selectors and
provide tip-tilt corrections. The output channels of the STSs are two separated beams of
80 mm in diameter, which are injected then into the main delay lines in the VLTI tunnel.
(Credit: [Nij08])

after five reflections (M1→M2→M3→M2→M1)3 the output beam is perfectly opposed and sep-
arated by 120 mm from the input. The cat’s eye optical system is mounted on an adjustment
plate, which acts as the interface to the stiff main linear translation stage. This conceptionally
first stage of actuation, driven by a DC motor, provides a long stroke of 69 mm and allows to
follow OPD variations with a velocity of up to 1 mm/s. The fine motion at a high bandwidth of
nearly 400 Hz, sufficient for effective fringe tracking, is achieved by a three-axis piezo actuator,
connected to the spherical mirror M3. It allows fast stroke adjustments over around 10µm and
provides a tool for corrections of pupil displacement in both, longitudinal and lateral directions.
In this manner flatness errors of the translation stage can be accounted for, and the input and
output beams are kept co-linear within an uncertainty below 1.5 as in tip-tilt angle.
In order to keep the longitudinal position of the stellar pupils in the beam combination envi-
ronment at the same position, as at which it would reside without the installation of the DDLs,
the input pupil’s re-imagination by the DDLs is adjusted by the choice of the M3 curvatures,
which consequently is the only varying characteristic between the four different DDL devices,
which are installed for symmetry reasons so that each of the four science beams passes through
a DDL device.

3The mirror numbering inside of the DDL is out of sequence from the numeration, referring to the full system,
and must not be confused with the telescope’s mirrors.
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Translation stage

Cat’s eye layout

Input beam

Output beam

M2

M1

M3

Magnets

Alignment tools
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Metrology windows

Figure 4.3. – The illustration shows the implementation of the DDLs. Placed within vacuum
vessesls, the cat’s eye mirror assembly is mounted on a translation stage, which provides a
rough displacement of the whole reflecting device over the full stroke of more than 60 mm.
The cat’s eye itself consists of three mirrors, the parabolic M1, the hyperbolic M2, and the
spherical M3 so that after five reflections of the input beam, entering through one of the four
windows, the output beam is perfectly directed in the opposite direction and horizontally
shifted by 120 mm. The fine and fast motion control of the DDLs is provided by a three-axis
piezoelectric actuator, located at the M3. (Original image from [MPIA10])

During typical observations, three of the DDL units will be kept at a fixed position, while only
one is used to adjust the applied dOPD.
For the purpose of precisely determining the position of the retroreflector, an internal laser
metrology system has been implemented. The laser beams, which for phase measurement feed
a mach-Zender type interferometer, are launched and collected outside of the cat’s eye and,
just as the science beams, enter and exit the retroreflector via the four entrance windows at
the front of the tube. The windows, aligned with the horizontal plane are designated for the
stellar beam, while the windows in the vertical plane are reserved for the metrology.
Consequently, the laser beams pass the DDLs perpendicular to the science beams, but for sym-
metry reasons experience the same optical delay, which then is determined with an accuracy of
2.47 nm at up to 1 kHz, and can be measured for each DDL independently, as each of these is
equipped with its own metrology receiver.
In order to minimize the effects of differential dispersion on the OPD, the DDLs are placed and
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operated in non-cryogenic vacuum vessels. The vessels’ entrance and exit windows are aligned
with the cat’s eye windows so that the science beams can pass after having been downsized in
diameter from 80 mm to 18 mm by beam compressors along the lightpaths (comp. Fig. 4.1).
Each vessel can harbor up to two DDL devices and together they are mounted on the optical
table.

Altogether, by the means of the DDLs, the obervational requirements are met in the sense
that differential optical path delays to one interferometric arm of one of the observed sources
can be applied up to a maximum of at about 2 · 69 mm = 138 mm and controlled with a reso-
lution of ≈2.5 nm, which is sufficient for the astrometric purpose.
Furthermore, the fine actuator allows fast corrections to pupil displacements in three directions
(tip, tilt, longitudinal) and, operated in a closed loop with the fringe sensor units, allows effec-
tive fringe tracking. Due to the implementation of the DDLs, the light beams experience five
additional reflections within the retroreflector and two transmissions at the entrance and exit
of the vacuum vessels, but as tests in laboratory environment and after implementation at the
VLTI suggest, additional wavefront errors are limited to the RMS value of 16 ± 2 nm and the
throughput of the optical system is estimated a total transmittance of 0.86 in the K-band and
0.89 for the PRIMET laser wavelength of 1.319µm ([Pep08], [Sah13]).

4.1.3. Fringe Sensor Units

The key component of the PRIMA system are the detectors, by which after beam combination
the fringes are detected, and beyond that, when operated in a closed loop with the delay lines,
their position can be locked so that fringe tracking becomes possible.
After their design and fabrication by Thales Alenia Space Italy, the fringe sensor units (FSUs)
have been tested in a laboratory environment since 2006 ([Abu06]). Eventually, during sum-
mer 2008 the FSUs have been successfully integrated into the infrastructure of the VLTI. The
requirements on the FSU design arise from the desired modes of operation, by which the sci-
entific goals are approached. In order to provide the access to differential astrometry, which
demands for simultaneous interferometric observations of two sources within a narrow angle
on the sky, two identical FSU devices have been installed. Fast fluctuating OPD variations
due to atmospheric fluctuations and disturbances along the beam paths within the instrument
require a quick response of the control system and a solid phase measurement. For these rea-
sons it has been decided to operate the FSU at fairly long wavelengths in the near infrared
K-band between 1.95µm and 2.45µm, and for the fringe sensing a spatial filtering scheme (see
Sec. 4.1.3.1) has been implemented along with the beam combination so that the units deliver
real-time estimates of the fringe phase and the group delay at sampling rates of the detector
up to 2 kHz. This is achieved by the unique opto-mechanical design, which will be outlined in
the following, and which is thoroughly described by [Sah09].

With the high bandwidth and throughput of the PRIMA FSUs, the VLTI is finally equipped
with its second generation fringe tracking system, which, besides offering the dual-feed mode
for astrometry, also can be combined with other VLTI instruments, such as MIDI and AM-
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BER. In this mode, one of the FSUs serves as the tracker, stabilizing the fringes, whereas the
visibility measurement is performed by the secondary instrument. As [Mül10] have shown for
the combination of MIDI with the PRIMA FSU, the limitations in the source brightness for
phase referenced imaging observations can be improved significantly.

The first successful fringe detection by these subsystems has been achieved on September 3rd,
2008 ([vBelle08]). During an observation with two of the AT telescopes, separated by a baseline
of 32 m, fringes of the source HD 19349, a star with the brightness of K = 0.44 and V = 5.27 in
the visible, have been recovered from a delay scan through the zero OPD position. The signal,
as recorded by FSUA during this event, is presented in Fig. 4.4.

Figure 4.4. – The time modulated signal of the first fringe detection by FSUA on September
3rd, 2008. The fringe center at t ≈ 0.07 s and its envelope are clearly visible from the data
recorded during an OPD scan, where the delay lines moved through the zero OPD position,
at which the external path difference is compensated by the equal internal in the beam train
of the VLTI. (Credit: [vBelle08])

4.1.3.1. Fringe Sensing

As discussed before, fringe stabilizing and phase referencing can significantly increase the coher-
ence time during an observation. In order to achieve this, the fringe tracking system needs to
control the internal delay, imposed by the instrument’s delay lines, so that during the measure-
ment the integration over time is performed at a definite position on the fringe. Low-frequency
drifts, mainly due to earth rotation, as well as the more challenging high-frequency fluctuations
due to variations within the atmospheric layers, manifest themselves as variations in the posi-
tion of the fringe center, the white light fringe, and tend to smear out the visibility function
during the measurement if not compensated. In order to approach this difficulty the fringe
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tracking mechanism relies on a fringe sensor that is able to estimate the fringe position by de-
termining the phase of the complex visibility from the fringe pattern at sampling rates higher
than the rates, at which the most concerning perturbations occur.

Phases and the ABCD Method

A standard method to measure the phase of the signal, which describes the position, at which
the fringe is sampled with regard to its center, is called the ABCD-method and was suggested
by [Wya1975] and [Sha1977]. This procedure basically is founded on intensity measurements
of the combined beams at two or more different points, with a known separation in phase, on
the fringe pattern around the white light fringe.
If the measurements are obtained at four distinct points, separated by λ/4 in the OPD space,
or respectively by π/2 in phase space, which are usually denoted as A, B, C and D, and to be
more precise the phase relations between them, omitting any noise contributions for the sake
of simplicity, are described by

IA = Itot
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then the modulus of the complex visibility µλ, as introduced in Sec. 3.1.1, and its phase ϕλ can
be estimated from:

|µλ| = C

√
(IA − IC)2 + (IB − ID)2

Itot

, (4.2)

ϕλ =
2π

λ
D = tan−1 Im [µλ]

Re [µλ]
= tan−1

(
IB − ID
IA − IC

)
. (4.3)

Here the subscripts indicate the corresponding points (A, B, C and D) on the fringe pattern,
whereas the sum of the individual intensity measurements is denoted by Itot, and the sine and
cosine terms depict the phase relations between the four bins.
The value of the constant C depends on the specific implementation of this detection method,
while the offset of the OPD at the instant of the measurement in reference to the center of the
fringe, or the zero OPD, is given by D, which shall stress the relationship between the measured
fringe phase and the position in the OPD space, at which the measurement is taken.
In accordance with these relations, the complex visibility itself comes along by

µλ =
C

Itot

[(IA − IC) + i (IB − ID)] = X + i Y , (4.4)

with the quadratures X, Y defining its real and imaginary parts.
However, the estimation of the visibility, as indicated by Eq. (4.2) is strongly affected by the
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temporal coherence of the signal. With increased OPD distance to the white light fringe, the
contrast of the measurement decreases and the estimation of the visibility tends to be underes-
timated, if not calibrated properly. This is why alternatively the Fourier spectrum of the whole
pattern is widely used to derive a proper estimation of the complex visibility.
A similar difficulty is encountered concerning the phase determination, as the result is confined
to the range of [0, 2π[ (or respectively [−π, π[), resulting in phase wrapping, if those limits are
exceeded. This strengthens the importance of a secondary indicator that the measurement is
taken at the center of the fringe pattern.

There are two common ways, by which this kind of measurement can be implemented into
the interferometric observation. In the case of the temporal phase modulation, the path length
in one of the interferometer arms, and by this the OPD, is modulated so that the whole phase
shift range of 2π is covered. In doing so, the optical path distance and consequently the phase
become time dependent entities. In order to make usage of the ABCD method, each scan is
subdivided into four equal sections, which ideally are swept through at the same time intervals
of T/4, when T is the time it takes to sweep the whole range. Since the number of the detected
photons during the subintervals is proportional to the integrated intensities IA,...,D over the time
of the subscans, the equations (4.1)–(4.3) can be utilized for the desired estimations, when the
value π/

√
2 is applied to the constant C.

Fast OPD oscillations at rates of comparable order to the modulation frequency can severely
affect the quality of the phase measurement by this technique, as phase relations between the
four bins (A,B,C,D) are not stable and vary in an unpredictable way during the time of single
scans. Consequently, in order to freeze these variabilities the scans need to be performed at
high frequencies, which limits the integration time per single bin and demands for fast detectors.

In contrast to this approach, higher measurement bandwidths can typically be achieved by
fringe sensors with an implemented spatial phase modulation scheme. In this case the OPD is
not modulated to cover the whole phase shift range along one fringe, but static optical elements
are used to provide instantaneous and simultaneous intensity measurements at several points
with a known phase shift. This can be achieved, as is the case for the PRIMA FSUs, by the
implementation of polarization dependent intensity measurements (see details below) so that
the four measurements are performed, while for each of them the phase differences between
the combined beams are different. If the values of these phase differences have the values
0, π/2, π and 3π/2, the phase separations between the four signals (A,B,C,D) equal π/2, and
so the provided formulas, in this approach with C = 2, yield the estimations for the phase and
the visibility.
Unfortunately, although the principle of implementing this scheme is fairly simple, it is difficult
to obtain stable phase shifts precisely at the desired nominal values.
As the extraction of the four signals depends on the separation of the beam’s polarization
states, any polarizing effects along the light path introduce errors to the phase shifts, which
eventually affect the phase recovery. Consequently, these sources of error need to be taken into
account (see Sec. 4.3.1.1).
Furthermore, calibration routines also need to cover any differential influences between the four
signals. Such might be due to differences and instabilities of the injection into the four chan-
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nels, detector typical characteristics as pixel responses, but also result from unequal effective
wavelengths and differential transmission in the system.

The Group Delay

Due to phase wrapping, OPDs, exceeding the length of the wave, cannot be determined unam-
biguously, which is problematic as the tracker should stabilize the measurement at the central
fringe position. By quantifying the increasing divergence of the wavelength dependent phase
estimates, which are equal at the zero OPD, but disperse when moving away, the group delay
(GD) is an entity, which qualifies perfectly as a complementary indicator for the position, at
which the measurement is taken. It can be defined by

GD =
c

2π

dϕ(ν)

dν
, (4.5)

where ϕ(ν) are the frequency dependent wrapped phases, or equivalently phases with respect
to the position of the measurement, as determined by the ABCD method for different spectral
channels. This relation is illustrated in Fig. 4.5 a). The fringe envelope is centered at the
position of zero OPD, at which also the group delay vanishes. The group delay is linear and
nonambiguous for OPDs up to the beam’s coherence length λ2/∆λ ([Gli11]) and will be kept
by the tracker’s control system at its zero position to ensure phase referencing at the central
fringe. In principle, once the measurement is centered, sole phase estimates should provide
accurate tracking, but additional control of the GD allows the detection of and the correction
for any sudden phase jumps exceeding the value of 2π.

Just as the beam’s intensity spectrum can be derived by the Fourier transform of the sam-
pled fringe signal, the fringe pattern can be deduced reversely from a channeled spectrum, if
the signal is sampled at different wavelengths. As the zero GD position marks the position of
the white light fringe, where the fringe contrast is at its maximum, it can be determined from
the center of the envelope of the fringe pattern.

Longitudinal Dispersion

The main delay lines of the VLTI are situated in the tunnel and are not evacuated. This becomes
a problem when considering the situation that the internal path difference is introduced by
the delays in order to compensate the external, also called geometric, OPD that is a result
to a path difference above the atmosphere with the refractive index n = 1. The first effect
becomes apparent when the path length L, within a delay line in vacuum, is compared to the
corresponding air-filled situation, where the optical path is then given by n(ν)L, as due to the
decrease in wavelength a higher number of phase cycles fits into the spatial length along the
path of beam propagation. Due to that, the position of the zero OPD for all off-zenith sources
(OPDext = L 6= 0), for a given wavelength, shifts by the amount of:

∆OPD0(λ) = L (n(ν)− 1) . (4.6)

The situation is complicated, as variations of the refractive index n(ν) along the detector’s
bandpass result in the wavelength dependency of the zero OPD, which now does not define the
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position of the white fringe any more. If the central wavelength of the bandpass is considered
as the reference for the OPD0 position, then its distance to the center of the fringe envelope,
and equivalently to zero group delay, can be derived from Eq.(4.5) when substituting the phase
by its corresponding wavelength dependent OPD position and is given by:

OPDGD = Lν
dn(ν)

dν
. (4.7)

This offset needs to be corrected for in the context of astrometric measurements when tracking
at GD = 0. As the position of zero group delay depends on the path length through the
delay line, which compensates the external OPD (OPDext = B · ŝ), its offset position becomes
naturally a dynamical quantity in the course of an observation due to earth rotation.

a) b)

GD GD

OPD OPD

Figure 4.5. – The images illustrate the relations in OPD space between the position of the zero
OPD, the group delay and the phases of the ABCD signals at five different wavelengths λi
over the detector’s bandpass for both situations, with delay lines in vacuum (left) and affected
by longitudinal dispersion (right). The grey areas define two positions of measurements, at
OPD = 0 and OPD = 5λ3, whereas the ABCD signals are separated by π/2 in phase.
According to Eq. (4.5), the value of the group delay is determined by the change in phase

over the spectral channels ( dϕ(ν)
dν

) and gives the distance GD between the location of the
measurement and the position OPDGD of zero GD. In the case of dispersion, the zero OPD
becomes wavelength dependent due to dn(ν)/ dν 6= 0, and the center of the fringe envelope
is shifted along with zero group delay. (Credit: [Gli11])

108



4.1. PRIMA and its Components

4.1.3.2. Implementation of the FSU

In order to track the position of the fringe pattern during observations, a fast fringe sensor
is indispensable. The design of the PRIMA FSUs, thoroughly laid out in [Sah09] and shortly
summarized here, makes use of spatial phase modulation for real-time phase measurements,
which makes it unique among fringe sensors in stellar interferometry.
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Figure 4.6. – The optical layout, which is identical for both FSUs and which provides the
spatial filtering for the ABCD method. The goal is to provide four signals, for which the
phase shifts between the two combined beams equal the desired values of 0, π/2, π and 3π/2.
This is achieved by a polarization dependent encoding design. After the beams from the two
telescopes (T1, T2) enter the device, an achromatic λ/4 retarder introduces an initial phase
difference of π/2 between the p and s polarization states of one of the beams, while the other
travels through a silica block to compensate the OPD introduced by the phase shifter. The
beam combination process at the 50/50 beam splitter cube (BC) results in a further phase
shift of π/2 between the transmitted and the reflected beams so that after this process the
resulting phase shift is polarization dependent. After extraction by polarizing beam splitters
(PBS), the four signals, separated in phase by the indicated values (∆ϕA,...,D), are injected
into monomode fibers and then imaged onto the four different quadrants of the detector
array. The beams are spectrally dispersed over 5 spectral channels. (Image of detector
originally from [Sah09])

As depicted in Fig. 4.6, the spatial filtering is performed after beam combination by polarizing
beam combiners, at which the two orthogonal polarizaton states (p, s) are separated, conse-
quently providing four signals with different phase shifts between the combined beams, namely
the values ∆ϕA,...,D = 0, π/2, π, 3π/2, from which at any time of the measurement the phase
of the fringe and the offset from the fringe center in OPD space can be derived. Integrated in
a closed servo loop with a real-time control system, those estimations serve as a feedback, and
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the delay lines positions are adjusted to keep the measurement as close as possible to the fringe
center. In dual-feed mode one of the identical FSUs provides fringe sensing on the primary
source, feeding the optical path delay controller (OPDC), which drives the main delay line,
whereas the second FSU measures the fringes on the secondary, and the differential delay line
is actuated by the differential optical path delay controller (dOPDC). The control signals are
obtained at the detector’s sampling rate up to 2 kHz.

In order to keep the background noise at a low level, the four beams, hereafter denoted as
A, B, C, and D are focused onto the cores of single-mode fibers for spatial filtering, which
conduct the light to a cryostat, evacuated and cooled with liquid nitrogen, and where the
cold optics, featuring a low resolution spectrograph, of both FSUs are situated. After passing a
prism assembly for dispersion, the initial K-band signals are finally focused by a camera doublet
lens onto the four quadrants of the infrared detector arrays, where the beams are chromatically
dispersed over five spectral channels.4

An example of the spectral pixel response for each quadrant and pixel is depicted in Fig. 4.7,
and the corresponding effective wavelengths, as derived from the same calibration, are given
in Tab. 4.1. The five spectral channels are spread over the entire detector bandpass and are
used to derive the group delay. Slight chromatic dispersion is also observed between the four
quadrants, which is mostly problematic for calibration purposes when determining the actual
phase shifts between them (see also Sec. 4.3.1.1).

Table 4.1. – The effective wavelengths, given here in µm for each FSU, channel and quadrant,
as well as averages over ABCD, have been derived as weighted averages from the FSU
responses (comp. Fig. 4.7 and see app. C for file reference) in laboratory conditions.

λeff.[µm] for FSUA λeff.[µm] for FSUB

A B C D av. A B C D av.

ch. 1 2.0084 2.0224 2.0076 2.0123 2.0127 1.9983 2.0205 2.0009 2.0122 2.0079

ch. 2 2.1244 2.1309 2.1252 2.1175 2.1245 2.1192 2.1342 2.1231 2.1227 2.1248

ch. 3 2.2441 2.2519 2.2494 2.2452 2.2476 2.2410 2.2551 2.2540 2.2537 2.2510

ch. 4 2.3623 2.3656 2.3748 2.3654 2.3670 2.3629 2.3743 2.3731 2.3645 2.3688

ch. 5 2.4428 2.4462 2.4677 2.4541 2.4527 2.4566 2.4676 2.4535 2.4537 2.4578

The polarization dependent phase shifts themselves are obtained by the design of the beam
combination process. The 50/50 beam splitter cube, as the central element, superimposes the
telescope beams and naturally introduces a phase difference of π/2 between the reflected and

4Initially, it was foreseen by the design that by adjustment of the prism assembly some fraction of the light
would be dispersed only over one single pixel to provide the white-light signal. This concept has been
dismissed after post installation test evaluations have shown an eminent loss of light due to difficulties of
the prism assembly alignment and degrading coatings.
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transmitted beams. As now an achromatic polarization retarder, realized by a K-shaped silica
prism leading to three internal total reflections, is placed into the light path of one of the tele-
scope beams, an additional phase shift is introduced between the p and s polarization states.
In order to equalize the OPD induced within the achromatic λ/4 retarder, the beam from the
other telescope travels through a compensating silica block.
This layout as a whole provides the desired phase differences for the ABCD signals.
The beam injection, monitored by the guiding camera IRIS, is controlled and stabilized by the
device’s alignment system. The active FSU M2 mirrors allow piezo-driven tip-tilt corrections
and are mounted on a motorized linear stage for OPD attunement, when the FSUs are used
with the laboratory calibration source MARCEL (Multi-beam Alignment, Reference and Cal-
ibration Emitter for the VLTI Laboratory). This artificial light source provides a black-body
spectrum at a default temperature of 700 ℃ as a reference for the VLTI instruments ([ESO09]).
The calibration unit additionally provides integrated corner-cube retroreflectors for the metrol-
ogy beams so that also during calibration procedures in the laboratory PRIMET can be used
for the monitoring of the OPD.
The PRIMA laser metrology beams (see Sec. 4.1.4) for both FSUs are injected and extracted
by the means of circular dichroic patches of � = 2.5 mm on the FSU M4 mirrors. From the
point of injection, the laser beams, 1 mm in diameter, pass the beam combiner and travel in
direction to the telescopes until reflected back at their endpoints within the star separators.
Since the main delay lines at the VLTI are filled with air, as discussed above, longitudinal
dispersion along the detector bandpass affect the fringe detection by shifting the zero group
delay position and the center of the visibility envelope away from the zero OPD and the fringe
contrast is reduced ([Tang1990]). Clearly this limits the capability of observations towards
fainter targets and the overall reduction of the visibility can be partly compensated by intro-
ducing correcting dispersive glass plates into the beam paths ([Lev1996]). For this purpose,
motorized stages at the entrances of the FSUs are placed so that plates of various thickness
can be introduced into the beam paths.
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(a) FSUB raw white-light signals during OPD scan

(b) Response of FSUB in laboratory

Figure 4.7. – Sample of spectral responses as obtained during a laboratory calibration pro-
cedure in November 2011. For this purpose, the OPD was temporally modulated around
the central fringe. The synthetic white-light signals, the sum of the counts over the spectral
channels, are shown in (a). As indicated by Eq. (3.30), the Fourier transform of the sam-
pled fringe pattern yields the spectral intensity distribution. Here the moduli of the Fourier
transforms of each of the 20 spectral pixel channels have been corrected for the spectrum
of the calibration source, have been normalized to their maximum values and are plotted
against the wavelength (b). The distribution of the five spectral channels over the whole
band is clearly visible. The four quadrants (ABCD) are color coded and also show a slight
chromatic dispersion, particularly at both ends of the overall FSU bandpass.
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4.1.3.3. FSU On-Line Operation

The fringe tracking units are designed to provide information on the OPD position with regard
to the fringe center and to feed the OPD controller in a closed loop so that the delay line
positions can be adjusted in order to keep the observation at the fringe. The delay offsets, pro-
cessed by the controller, and the controlling algorithms depend on real-time determinations of
the fringe phase, the group delay, more precisely the distance to the zero GD, and an estimate
on the signal-to-noise ratio (SNR). As a proper estimation of these quantities is crucial for the
fringe tracking performance of the system, a careful calibration routine is applied prior to the
actual measurements, during which several parameters for correction are derived and stored in
the FSU database, from where they can be accessed by the real-time machines. This procedure,
as well as the actually implemented methods, described in detail in [Sah09], are summarized in
the following.
A typical observation with PRIMA can generally be divided into three stages, namely the cali-
bration in the laboratory, the night calibration on the sky, and the actual science measurements.

• During the laboratory calibration, which can be carried out at day time, the artifi-
cial light source MARCEL is used to feed both FSUs. The procedure derives standard
photometric correction parameters (dark and flat) for each of the 20 FSU pixels (five
spectral channels per individual quadrants ABCD). For the estimation of the dark-values
time averages are determined from detector signals during measurements with off-pointed
beams, while flat-corrections are acquired from averages of uncorrelated integrated sig-
nals, obtained by consecutively pointing off one of the two individual beams. These
parameters given and stored, further raw detector pixel read-outs Ii,Γ(t) are processed to
the flat-normalized and corrected signals

Si,Γ(t) =
Ii,Γ(t)−Di,Γ(t)

Fi,Γ(t)− 2Di,Γ(t)
, (4.8)

where Di,Γ and Fi,Γ stand for the dark and flat values respectively, while the individual
pixels are denoted by the subscripts i = 1, 2, 3, 4, 5 and Γ = A,B,C,D.
As the real-time estimates of phase and GD rely on the signal’s wavelength and phase
shifts between the four quadrant bins, those parameters are determined from the Fourier
transforms of data recorded during several fringe scans, with the metrology for OPD refer-
ence. The effective wavelengths λi,Γ in each pixel are then computed from the barycenter
of the transform modulus (see Fig. 4.7 b) and Tab. 4.1), and the resolution of the compu-
tation naturally depends on the sampling, in this case on the combination of the sampling
frequency and the delay velocity during the scan. The relative phase shifts between the
ABCD signals, in particular their deviations ψi,Γ from the nominal values, are derived
from cross-correlations of the fringes.
Furthermore, for a posterior SNR estimation, a value for the visibility noise v0 is derived
by applying the standard formula (Eq.(4.2)) to the synthesized and incoherent white light
signals.

• The calibration parameters, which are obtained and stored during the day calibration,
can serve as primary auxiliary quantities for the real-time estimates during fringe sensing
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on sky, but do not represent the system’s characteristics in science mode, when the light
is collected by the telescopes instead of being injected in the lab. For this reason, a night
calibration procedure is executed, at its best on each new source that is observed.
In the course of this operation, the dark and flat values from the calibration in the lab-
oratory are replaced by the corresponding sky-dark and sky-flat values, obtained during
the calibration on the sky. Whenever possible, also the fringe-based parameters (wave-
lengths, phase shift errors, visibility noise) are substituted by the corresponding ones that
are determined from the VLTI response during OPD scans over the fringes of the stellar
sources in question, where one of the FSUs serves as a fringe stabilizer, while the other
records the signals during the OPD modulation.
By these routines the FSU database is provided with calibration data that accounts for
the instrument’s spectral transmission, as well as the individual sources’ spectral features.

• During the science observation itself, the raw pixel counts can now be corrected in
terms of photometry for dark and sky background, and the fringe sensing is driven by
the real-time estimates of the phase, the group delay and the SNR. The, during the ob-
servations time dependent, fringe phases ϕi(t) are computed by the use of the standard
approach, as given by Eq. 4.3, after a correction due to the phase shift errors ψi,Γ has
been applied (see Sec. 4.3.1.1).
The group delay, in reference to the OPD of the zero GD, is computed from the esti-
mation of the OPD position of the maximum of the complex visibility modulus, which
is equivalent to the center of the fringe envelope. Consequently, the offset to the fringe
center is estimated from a parabolic fit to the maximum value of the modulus of the
discrete Fourier transform of the visibility quadratures

F(x, t) =
5∑

k=1

[Xk(t) + i Yk(t)] e
−i2πx/λk , (4.9)

where the sum is taken over the spectral channels k = 1, 2, 3, 4, 5, and the x samples an
evenly spaced range of ±12µm in OPD space with reference to the OPD(t) position at
the time of the measurement.
While real-time phases and GD estimates serve to provide offset signals for the delay lines,
the controlling routine needs an indicator on the signal coherence. The signal-to-noise
ratio is estimated for this purpose by normalizing the modulus of the visibility estimate
by the visibility noise:

SNR(t) =

√
X2

0 (t) + Y 2
0 (t)

v0

. (4.10)

The subscript indicates that the values are determined from the synthesized white light
signal, which is the sum over the spectral pixels.
Depending on the estimated SNR, the OPD controller operates in three different states,
where transitions between them are determined by three predefined SNR threshold values
(det, close and open). A signal-to-noise value lower than det indicates that the FSU is
recording aside of the fringe envelope and the OPD controller is in SEARCH mode,
performing a triangular OPD modulation around the fringe position, as predicted by the
applied OPD model. Fringes are regarded as detected, whenever during the searching

114



4.1. PRIMA and its Components

procedure the SNR value increases above det. In these cases, the OPD controller switches
to the TRACK mode, in which the fringe tracking loop is closed and OPD offsets are sent
to the delay lines to keep the observation stabilized. The controller responds at a higher
rate (≈ 10 Hz) to the phase estimates, in order to compensate atmospheric variabilities,
and at a significantly slower rate to the GD estimates for the detection of phase jumps
exceeding 2π, in order to sustain tracking on the central fringe.
This state is maintained until the SNR decreases below the threshold open, whereupon the
controller again switches to IDLE. The system stays in this mode with an open tracking
loop and the delay line following the predicted trajectory, for either a user-defined limiting
interval of time (20 ms by default), after which a fringe search is performed again, or until
SNR > close is detected and the loop is closed again.
It should be clear that the fringe tracking performance strongly depends on the predefined
threshold values and therefore benefits significantly by the instrument user’s experience
with the system.

4.1.4. Metrology

The PRIMA laser metrology system PRIMET has been developed under collaboration of ESO
and the Institute of Microtechnology of Neuchâtel (IMT). It has been designed to provide the
differential optical path distance between the two PRIMA beam paths, as introduced by the
DDLs, with a required accuracy of at least ∼ 5 nm, and is based on super-heterodyne laser
interferometry phase measurements ([Lev03]). To obtain the desired information, the beat
signals of two heterodyne laser interferometers, shifted in frequency, are mixed, where the
individual phases of each of these beat signals are proportional to the corresponding OPD.
When the two signals are combined and a bandpass filter around the difference of the two
heterodyne frequencies ∆ν = ∆ν2 −∆ν1 is applied, one gets a resulting beat signal

S(t) ≈ cos(2π∆νt+ φ) , (4.11)

where the phase is the difference of the initial beating signals’ phases and carries the OPD
information ([Schu06]):

φ = φ2 − φ1

= 2π

[
∆OPD

λ1

− (∆ν · OPD2)

]
. (4.12)

Assuming that both, the phase of the combined signal and the OPD, or equivalently phase of
one of the interferometers, are measured, and the wavelengths λ1 are known, the dOPD can be
determined.
For PRIMET an intrinsically frequency stable NPRO (Non Planar Ring Oscillator) Nd:YAG
laser, with λ = 1319 nm, has been chosen to provide the required power and linewidth for a
coherence length of the maximum OPD at the VLTI (∼ 250 m). Within the heterodyne as-
sembly, the generated single-mode wave is split into four linearly polarized beams, shifted in
frequency by fiber coupled acousto-optics modulators so that the heterodyne frequencies of the
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two interferometers become 650 kHz and 450 kHz respectively. By the means of polarizing beam
splitters (PBS), each two beams are then superimposed and injected into the system at the FSU
M4 mirrors, resulting in each of the FSUs being fed by two beams with orthogonal polarization
states, which in the following are separated at the beam combining cube splitters and sent on
different optical paths to the telescopes (see Fig. 4.6). A small amount of light, leaking at the
PBSs due to imperfect polarization, is used as the reference signal at the phasemeter. There,
the phase shift between the science beams, after having been retroreflected at the telescope’s
STSs and recombined within, as well as extracted at the FSUs, and the reference is precisely
measured by a zero-crossing analyzer in order to deduce the dOPD.
In the course of these measurements, a fringe counter is used to provide an unwrapped phase,
not limited to the range of one wavelength.
Before the phasemeter is reached, again some fraction of the light is extracted in order to mon-
itor the beams’ lateral displacements, which within a controlling loop can be corrected by the
field selecting mirrors M11 at the star separators (see Fig. 4.2).

Eventually, two estimates are provided by PRIMET and stored into the raw data files during
data recording, namely the dOPD and OPDB, as seen by FSUB. Still, as these measurements,
due to the fringe counter, are recorded only in an incremental way and do not convey absolute
measurements, the metrology zero point needs to be calibrated. For this purpose, within each
observation procedure, the two science beams are swapped at the STSs, while the injection of
the PRIMET beams is maintained. Consequently, the sign of the dOPD changes formally and
the zero point can be derived when fitting the delay (see description on par scired2 on p. 123
and the diff. delay model in Sec. 4.2.2 ).

4.2. Astrometric Data Reduction

Recalling the complexity of the instrument and all the so far described effects that need to be
considered regarding fringe sensing in interferometry, it is not surprising that the goal of stellar
astrometry at the precision level of tens of microseconds can be only achieved, if the data is
carefully and deliberately processed to correct for any possible error sources. At this level of
accuracy the ordinary instrument users of the scientific community are not expected to know
the system’s error sources by the same amount as the instrument’s developers and maintain-
ers, wherefore an automated data processing pipeline is required to provide the user with fully
calibrated scientific data. For this reason the Astrometric Data Reduction Software (ADRS)
for the PRIMA astrometric mode has been designed and implemented by the exoplanet group
of the ESPRI consortium participant Landessternwarte Königstuhl, Heidelberg.
The raw observation data, taken with regard to astrometry, is recorded usually while fringes of
both stars, the target star and the reference, are tracked by the instrument. Consequently, in
this dual-feed mode it primarily contains the FSU signals of all detector pixels and the delay in-
formation from the laser metrology. In the course of data processing, the ADRS, designed upon
the results from the error analysis by [Tubb08], combines this observation data with calibration
frames and environmental data and delivers the main observable of interest, the differential
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delays, which are completely corrected for instrumental and principal astrometric errors (see
Tab. 4.2) and which are converted to star separations on the sky through the knowledge of the
projected baseline. The data interpretation, as orbit fitting of possible companions, is not part
of the astrometric pipeline and lies in the responsibility of the individual users.

Table 4.2. – Generally, the interferometric raw data recorded by PRIMA needs to be calibrated
for effects of several sources. The ADRS pipeline corrects for errors of three different kinds.
Instrument specific calibration comprises FSU characteristics, the entire system’s spectral
response, as well as corrections to the delay controller’s mechanism and the calibration of
the arbitrary PRIMET constant term. Furthermore, environmental data in the delay line
tunnel is collected and corrected for, as well as effects related to the specific observation.

instrument environment observation

• relative gains between FSU
pixels
• relative phase errors
between ABCD signals
• spectral response of the
VLTI system
• tracking errors (offset from
fringe center)
• metrology zero point

• dispersion effects for main
delays (temperature,
pressure, humidity)
• (environmental trends)

• sky background
• source spectrum
• earth orientation
• astrometric corrections

4.2.1. Pipeline Processing and Data Flow

The raw instrument data recorded and delivered by PRIMA is stored within files of the standard
FITS format. Observation templates trigger the system’s operation, and predefined template
keywords, stored to the file headers, define the identity of the recorded file, which might have
been created for calibration purposes or contain standard tracking data from an ordinary ob-
servation, and drive the ADRS operations. In order to distinguish between the raw data and
intermediate products along the data reduction process, an increasing level number is assigned
to the data. It directly represents the amount of processing that has been performed by the
ADRS. In this manner, the raw data, most importantly including the recordings of all FSU
detector pixels and the metrology information about the main delays and the differential delay,
is labelled as “Level 0”, whereas the final product is called “Level 3” data.
The software is subdivided into two principal modules, the on-line and off-line part. The prin-
ciple behind this approach is the strive for a compromise, namely to provide the on the site user
with a fundamental collection of procedures, performing already the basic data reduction on
the one hand, but on the other to have a reduction tool, which not only delivers completely cal-
ibrated scientifically relevant data, but also one that can be updated when knowledge regarding
the instrument and the science objects has been gathered so that the data can be reprocessed
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and the results improved.
For this reason the on-line part processes files that have been recorded for calibration, either
within the laboratory, or during the night on the sky, but in particular performs data “averag-
ing”, by which the highly sampled tracking data is compressed to a product of reduced file size,
which can be more quickly processed further and which provides all the important information,
referred to a single well-defined and fixed time grid.
The recipes of this module are listed and sketched in the following, while the background
mathematical concepts are given in [Eli08]:

• pacma labdark:
Processes dark frame files, recorded with the FSU entrances covered up, in order to
calculate the bias and dark current for each of the 20 pixels of both FSUs. The results
are later used as detector health checks and for FSU data calibration.

• pacma labflat:
As part of the calibration process this recipe retrieves relative gains between the FSU
detector pixels. For this purpose the signals are recorded, while the fringe sensor units
are fed by coherent beams of the artificial light source MARCEL with a known and
adjustable black-body spectrum.

• pacma fsuresponse: This recipe analyzes the fringe package, which is obtained from FSU
signal recordings during multiple delay scans over the fringes. By using the calibration
light source MARCEL, pure spectral response of the fringe sensor unit pixels can be
derived (see Fig. 4.7(b)). After removing the dark current and correcting for relative
gains between the several scans, the delay dependent fringe package p(D) in general is
described by the oscillating fringe function and its envelope, which carries the information
about the system’s bandpass’ shape. The spectral response p̃(κ), as a function of the
wavenumber, is then obtained for each pixel and scan individually by applying a DFT to
the scan data:

p̃(κ) =
1

N

N−1∑
n=0

p(Dn) e−i2πκDn , (4.13)

where n = 0, 1, 2, . . . , N − 1 indicates the individual data samples within one scan. The
resulting responses are corrected for (divided by) the source’s spectrum and, for each
of the 20 pixels averaged over the individual scans. From this final result the effective
wavenumbers κeff. are derived as weighted averages, and the relative phases between the
ABCD signals are calculated from the corresponding cross spectral density spectra (see
Sec. 4.3.1.1).

• pacma skybackground:
As part of the on sky calibration the telescopes are pointed at a dark region near the
observation targets to measure the response of the detector pixels to the flux from the
sky background. This recipe processes the corresponding recorded data and calculates
the background from the means of the signals of the provided frames for each pixel inde-
pendently.
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• pacma starflat:
To correct for uncorrelated gain errors between the FSU pixels, which are also affected
by the source’s spectral distribution, since the effective wavenumbers vary from pixel
to pixel (by principle for the spectral channels and only slightly between the different
detector quadrants), the telescopes are pointed at the stars of interest. After the sky
background is removed, the relative gains are obtained from the means of several frames
and a normalization to the highest value.

• pacma vltiresponse:
This recipe behaves in principle just like pacma fsuresponse, different only in the sense
that the input data is obtained not with the calibration light source, but on sky with the
target stars. Consequently, the resulting spectral responses are corrected by the stellar
spectra of the observed stars, instead of the MARCEL spectrum. The sampling of the
fringes is achieved by tracking one star and using it as the phase reference, whereas the
differential delay line scans over the fringe package by modulating the dOPD. From these
scans the spectral responses of the FSUs, as well as the effective wavenumbers and relative
phases, respectively their deviations from the nominal values of π/2 are measured on sky,
while the light beams pass through the entire PRIMA system.

• pacma starspectrum:
In order to calculate the effective wavenumbers and relative phases as precisely as possible,
the observed star’s spectral photon distribution (SPD) needs to be known and provided
to the recipe pacma vltiresponse. Usually, these will be provided by the user, but
in principle PRIMA can also be used to measure them on the sky directly. For this
purpose the same procedure is carried out as for the VLTI response frames, tracking the
fringes of one star and scanning over those of the secondary. Consequently, the SPD in
question can be derived from the scans by correcting the spectral responses, calculated
by Fourier transform spectroscopy as in the case of pacma vltiresponse, but corrected
for the system’s bandpass (divided by the output of the VLTI response).

• pacma sciave:
The main purpose of this recipe is the scientific averaging of relevant data and to prepare
the output for further processing, which basically means to interpolate all entities onto
the same fixed time grid. If the desired sampling ratio is not provided by the user, the
recipe will create by default a time grid of timestamps ti with intervals in time of ∆t = 1 s.
The averaging process itself depends on the type of the regarded data. Since main delay
and PRIMET delay data are determined by the orientation of the projected baseline on
the sky, earth rotation contributes significantly even on the time scales of seconds. For
this reason the delays are estimated from a linear fit over ∆t around each time stamp
ti, where the change of the baseline orientation ∂θ/∂t is regarded to be constant on this
time scale.
From the FSU data, which is corrected for relative gains and the sky background, the
squared visibilities and phases for all spectral channels are derived by the ABCD method,
and an average photon number is estimated from the average of the sum of the ABCD
signals.
Furthermore, for later processing in the chain of data reduction, two additional estimates
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are calculated from the signal averages. The cross visibility between the primary and
secondary signals (at FSUB and FSUA) is derived from

µ×(κm) =
F×(κm)

N1(κm)N2(κm)
, (4.14)

where the index m stands for the distinct spectral channels and N1,2 for the averaged
photon numbers in the FSUs, distinguished by the indices 1, 2 (primary and secondary).
The here underlying complex cross flux is given by

F×(κm) = F ∗1 (κm)F2(κm)

= X1(κm)X2(κm) + Y1(κm)Y2(κm)

+i [X1(κm)Y2(κm)−X2(κm)Y1(κm)] , (4.15)

with the quadratures X1,2 = (A1,2 − C1,2) and Y1,2 = (B1,2 −D1,2).

From the phase angles ϕ×(κm) = tan−1 Im [F×(κm)]
Re [F×(κm)]

, also called the differential phases, the
differential tracking offset from the fringe center will be estimated during data processing
in the following recipes.

Since the most important scientific processing is postponed within this part of data reduction,
the on-line module usually needs to be executed only once.

Within the off-line part the delays are corrected for environmental, instrumental and astro-
metric effects to yield the desired star separations on the sky. For this purpose, additional
external information, such as any stellar properties, generally need to be provided as input to
the ADRS recipes. This is achieved by a collection of catalogs of relevant data, in this context
called the Correction Collection (CoCo). The CoCo contains catalogs, which are in some cases
compiled by the user and in others created by the ADRS recipes themselves. However, the
correct FITS format (preliminary given in [Eli08] but will be updated and provided with the
final release and delivery of the ADRS to ESO) must be guaranteed so that it can be exploited
during the off-line data processing:

Astrometric catalogs:
These catalogs contain basic information about the observed stellar sources, as positions,
reference epochs, proper motions, distances (parallaxes), radial velocities and more. The
instrument user himself is responsible for this data collection. As it will be the case
usually, the information about the primary source will be of higher precision than of the
secondary, in general more distant, sources. With time evolving during a science program,
the PRIMA measurements themselves can be used to gather more precise differential
information regarding specific pairs of stars, which in turn can be exploited to improve the
astrometric data of the secondary objects. The differential catalog, created or, if already
present, updated by the recipe pacma scired3, serves as input to previous recipes of the
off-line part so that with improved astrometric information the whole module execution
can be iterated to reprocess the pipeline results.
A public star catalog, containing stellar sources that have been certified by ESO and the
consortium to be used as baseline calibrators within the pacma baseline, will also be
provided.
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IERS data:
The International Earth and Reference Systems Service (IERS) provides data predictions
and precise measurements regarding earth orientation, which needs to be collected and
converted to a suitable FITS file format that can be processed by the ADRS. This infor-
mation is needed in the context of baseline calibration itself, as well as when the baseline
is converted from the geocentric International Terrestrial Reference System (ITRS) to the
ICRS to correct for any effects related to the earth orientation, such as precession, nuta-
tion or polar motion. Besides that, some of the IERS data is necessary for the calculations
of the astrometric corrections (see Sec. 4.2.3).

Ephemerides of Solar System Bodies:
Within the pacma scired2 recipe the software estimates the influence of relativistic light
deflection on the measured differential delay. For this reason, it needs to be provided with
accurate positions of the most prominent solar system bodies, which are estimated from
the high-precision ephemerides, made available by the Jet Propulsion Laboratory.

Baseline catalog:
In this catalog the baseline vectors for all used VLTI configurations will be stored and
updated by the solutions of the baseline recipe.

VLTI responses:
This collection contains the spectral responses of the VLTI system, which are derived
from calibration observations on the sky and processed by the recipe pacma vltirespose.
Although the results are stored in the CoCo, this routine should probably be considered
as part of a standard night, or even object calibration.

SPD collection:
For the calculation of the effective wavenumbers and relative phases, the recorded re-
sponses are corrected for the individual stellar spectral photon distributions. Those,
which are usually gathered by external means, but also in principle could be created by
the on-line recipe pacma starspectrum, are also part of the CoCo.

Environmental trends:
This catalog, whose format still needs to be specified, is conceptionally incorporated as
an opportunity to keep track of and store any manifestations of data trends as functions
of environmental parameters, such as atmospheric seeing, telescope pointing or others.
The idea is that some correlations, of which there is no knowledge of in the beginning,
might be found in the data on a long term. These could be investigated and characterized
afterwards, yielding the possibility of further data detrending.

With this colletion provided, the “Level 1” data can be processed by the off-line part of the
pipeline, which the following recipes belong to:

• pacma environment:
Within this recipe the environmental sensor data that has been compiled from the ESO
database and that provides information on temperature, pressure, etc., measured by the
sensors at different positions of the instrument infrastructure, is verified and interpolated
onto the same time grid as the observational “Level 1” files, as the sensor readings are
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sparsely spaced in comparison to the PRIMET and FSU data. This interpolation is per-
formed by a linear fit after a low-pass filter is applied to the data to suppress occurrences
of noise in the otherwise smooth and slow variations.

• pacma scired1:
This second main scientific reduction recipe performs instrumental and environmental
corrections onto the measured delays. The main delay (MDL), as well as the PRIMET
FSUB and derived FSUA delay data is corrected for longitudinal dispersion (see p. 107).
Two major effects are taken into account, which both result from the circumstance that
the main delay lines, supposed to compensate the external OPD, are not evacuated.
Consequently, on the one hand the applied and measured delays within the interferometer
need to be stretched due to the ratio of the stellar beams’ wavelength in vacuum and air
(λs,vac/λs,air = ns), and on the other hand a correction needs to be applied as the vacuum
wavelength of the metrology is used to recover the delays, which leads to overestimated
delays by the ratio λmet,vac/λmet,air = nmet.
Altogether the corrected delays are determined from the measured delays d by

dcorr =
ns,G(T, P,H, κs)

nmet(T, P,H, κmet)
· d , (4.16)

where the group refractive index ns,G(T, P,H, κs) = ns(T, P,H, κs) + κ∂n/∂κ is used to
account for the fringe control system tracking at zero group delay that shifts in an non-
evacuated environment due to chromatic dispersion.
The appropriate refractive indices, which depend on temperature, pressure, humidity and
wavenumber, are derived from models, valid for infrared (FSU bandpass and PRIMET)
and visible (main delay line metrology) wavelengths, to be found in [Bir1993] and [Mat06].
The PRIMET differential delays are corrected for tracking errors only (offsets from the
fringe center), as with the DDLs situated in vacuum any differential longitudinal disper-
sion should be negligible. The tracking offset correction is important due to imperfect
fringe tracking, resulting in some delay jitter around the fringe center positions.
The offsets are not derived and corrected for each FSU individually, but the differential
offset term ∆doff is estimated from the cross visibility µ×(κm), already calculated before-
hand in pacma sciave. In the case of precise on-fringe tracking, the differential phases
of µ×(κm) vanish and ∆doff becomes zero.
Typically, this is not the case, and the offset is estimated from the position of the peak of
a synthesized differential fringe-packet function, the differential group delay, defined by
([Eli08])

Q(∆d) =
1

M

5∑
m=1

µ×(κm) e−i2πκm∆d , (4.17)

with m indicating the five FSU spectral channels.

This is also the point in the data reduction process, where environmental trend cor-
rections, if any are provided by the CoCo, are applied to the data. Due to that, in the
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case of finding new trends, the data processing needs to be repeated upwards from this
recipe on.

• pacma baseline:
Main delay data is compiled here to solve for the wide-angle baseline (see also Sec. 4.3.2).
Although in principle it is foreseen to use only single-feed observations of stars with
extraordinary accurate astrometric solutions, as such listed in the FK6 catalog and con-
sequently certified as good baseline calibrators, in general each tracking data can be
exploited for this purpose.
The recipe gathers the required information from the “Level 2” observation frames and,
provided with the corresponding star catalog, feeds the data into the Interferometer
Optical-Path-Length Analysis System (IPHASE ([Wall08])) software to fit for the inter-
ferometric baseline and the internal delay constant term following the standard delay
equation:

d(t) = ŝ(t) ·B + C . (4.18)

Here C denotes the constant term, which defines the delay’s zero OPD position in the case
of no external OPD. The baseline is assumed to be constant in the carthesian geocentric
reference system and the time dependence is covered by the star unit vectors, depending
on the observation site’s local sidereal time tLST:

ŝ = cos δ cos(α− tLST)x̂+ cos δ sin(α− tLST)ŷ + sin δẑ . (4.19)

Naturally, the physical baseline is bound to the individual telescope positions so that
individual solutions to distinct VLTI configurations need to be acquired, which are thereon
stored in the CoCo baseline catalog.

• pacma scired2:
This recipe is principally the last chain in the data reduction procedure and delivers the
final scientific results in sense of fully corrected differential delays ∆d and star separations
∆s for each time stamp of acquired observations.
As the system’s delay lines, both the MDLs and the DDLs, are adjusted so that the
internal delays compensate the path differences for the two stars inside of the instrument,
following Eq.(4.18) the individual measured delays for the primary (1) and the secondary
(2) source are given by

d1,2(t) = ŝ1,2(t) ·B + C1,2 , (4.20)

and the pure differential delays that should manifest in the measurement are determined
by

∆d(t) = d2(t)− d1(t)

= ∆s(t) ·B + ∆C + z0 , (4.21)

where ∆C is the difference between the internal constant terms and z0 is the PRIMET
zero point, since, as stated before, the laser metrology follows the varying OPD only
in an incremental way and needs to be calibrated. This is done by the combination of
observations in the NORMAL and the SWAPPED modes respectively.
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Switching the light paths in the instrument by the field rotation by 180◦, flips the orien-
tation of the baseline in reference to the star separation vector, and the equation for the
measured differential delays becomes (see Sec. 4.2.2 for derivation)

∆d(t) = ±∆s(t) ·B + (∆C + z0)

= ±a0 ± a1 cos(ωt)± a2 sin(ωt) + Z0 , (4.22)

where the upper signs refer to the NORMAL state and the bottom to the SWAPPED
state, ai denote the astrometric fit parameters, Z0 = (∆C + z0) the instrumental zero
point, and the circular frequency ω = (2π/24 h) accounts for the earth rotation.
Due to the sign switching, the astrometric and instrumental fit constants decouple from
each other and the zero point can be determined and corrected for if observation data
from both modes is available. Consequently, this recipe must be provided with at least
one “Level 2” frame from both set ups, where in-between the metrology is not reset, which
would change the value of the metrology zero point.
Within the recipe the fit is not performed on the differential delays directly, but on resid-
ual values after the harmonic OPD model, based on the baseline and the estimates from
the differential catalog, is removed first. When more and more data on individual star
pairs is gathered, the updated OPD model, used during the iterative reprocessing of the
data, should improve and converge towards the actual star separations, which would be
indicated by the fit coefficients ai approaching zero.
Also, before the fit is performed, the differential delays are corrected for astrometric ef-
fects, such as aberration, light deflection, etc. (see Sec. 4.2.3), which themselves are
estimated from the knowledge of the observed sources.
After the instrumental zero point is recovered, the fully calibrated delays ideally represent
the star separations on the sky and are converted to those scientifically meaningful quan-
tities by the time dependent projected baseline, whereby the data reduction is completed.

• pacma scired3:
Although the “Level 3” files already contain the scientific results, which are completely
corrected for instrument- and sky-based effects, a further refinement is expected when the
data is reprocessed with improved input parameters. For this reason this recipe processes
the “Level 3” differential delays in order to fit for differential positions, proper motions
and parallaxes for individual given star pairs of interest. The results are stored to the
differential catalog of CoCo and can serve in turn as input to the recipes earlier in the
chain of data reduction, whenever an iteration in form of data reprocessing is performed.
In particular, the knowledge about the positions and astrometric quantities of the sec-
ondary targets should improve with time, as the collection of PRIMA observations in-
creases.

The full sequence of data reduction is sketched in Fig. 4.8, accentuating the ADRS data prod-
ucts at the distinct levels and the division of the routines to the on-line and off-line parts
respectively, allowing a quick and basic data reduction on the site of observation together with
a postponed but independent reduction to scientific quantities, which can be iterated with in-
creasing knowledge about the system and the observation targets.
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Figure 4.8. – The simplified scheme illustrates the sequence of data processing within the
ADRS pipeline. The upper part of the illustration shows the software recipes that act
on the recorded data in a well-defined order (interactions illustrated by vertical dashed
arrows). Naturally, the data reduction process starts with the raw “Level 0” observation
data, recorded by the instrument. At given points in the processing sequence (black knots)
the main reduction recipes pacma sciave, pacma scired1 and pacma scired2 process the
information and create preliminary (“Level 1”, “Level 2”) and final products (“Level 3”).
The data flow is represented by the continuous arrows, and the pale blue boxes in the
lower part list the products, as created by the pipeline on the different levels and which
are accessible by the user. The software package’s procedures and actions on the data are
conceptionally subdivided into two segments. The on-line part of the software includes
recipes for processing calibration frames, as well as the data averaging process, during which
the highly sampled raw data is reduced to a less storage space consuming product with all
sensor recordings interpolated to a common time grid. At the next level, with the execution
of pacma scired1, the data is being corrected for instrumental and environmental effects,
whereas the last recipe creates the final differential delays and star separations on the sky.
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4.2.2. Differential Delay Model

For the derivation of the model to the measured differential delays, it is convenient to consider
the entities in an equatorial reference frame, in which the star’s coordinates RA (right ascension)
and DEC (declination) do not change over time. Therefore, ∆sα, ∆sδ (separations along
the directions of right ascension and declination), as well as the coordinates of the midpoint
between the primary and secondary star α0, δ0, are constant entities, and the baseline vector,
in particular its orientation, becomes a dynamic quantity due to earth rotation.
The physical baselineB = T 2−T 1 in the ideal case is defined by the connecting vector between
the positions of the two telescopes’ pivot points at T 1 and T 2 and in carthesian coordinates
can be denoted by

B =

 BL cosφ cosλ
BL cosφ sinλ
BL sinφ

 , (4.23)

where BL is the baseline length, φ is the constant baseline latitude and λ is its time dependent
longitude.
When the baseline vector is projected onto the local tangential plane, with its origin placed at
the celestial sphere at the star pair’s midpoint coordinates and spanned by the orthonormal
vectors p0, q0, as defined by Eq. (3.43), its components with reference to this basis become:

Bξ = p0 ·B = BL

 − sinα0

cosα0

0

 BL cosφ cosλ
BL cosφ sinλ
BL sinφ ,


= BL [cosφ (cosα0 sinλ− sinα0 cosλ)]

= BL cosφ sin(λ− α0) (4.24)

and

Bη = q0 ·B = BL

 − sin δ0 cosα0

− sin δ0 sinα0

cos δ0

 BL cosφ cosλ
BL cosφ sinλ
BL sinφ


= BL [− sin δ0 cosφ (cosα0 cosλ+ sinα0 sinλ) + cos δ0 sinφ]

= BL [− sin δ0 cosφ cos(λ− α0) + cos δ0 sinφ] , (4.25)

where the standard relations

cos(x+ y) = cosx cos y − sinx sin y (4.26)

sin(x+ y) = sinx cos y + cosx sin y (4.27)

have been utilized.

According to Eq. (3.47), the OPD and consequently the measured differential delay ∆d, when
tracking on the fringe center and neglecting instrumental and environmental offsets, are de-
termined by the geometric OPD, the dot product of the projected baseline BP and the star
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separation on sky ∆s. Plugging in equations (4.24) and (4.25) into this relation yields:

∆d

BL

= cosφ sin(λ− α0) · ∆sα

− sin δ0 cosφ cos(λ− α0) · ∆sδ

+ cos δ0 sinφ · ∆sδ︸ ︷︷ ︸
Ca

= Ca + cosφ [sin(λ− α0)∆sα − cos(λ− α0) sin δ0∆sδ]

= Ca + ∆sα cosφ︸ ︷︷ ︸
Cs

sin(λ− α0)− cosφ sin δ0∆sδ︸ ︷︷ ︸
Cc

cos(λ− α0)

= Ca + Cs · sin(λ− α0) + Cc · cos(λ− α0) , (4.28)

where Ca, Cs and Cc are constants.

When the term (λ − α0), which represents the time dependency of the problem, is substi-
tuted by (ωt + ϕ), with the circular frequency of the earth rotation ω = (2π/24 h) and an
unknown phase ϕ, and the relations (4.26), (4.27) are applied repeatedly, one arrives at the
following final expression for the differential delays:

∆d

BL

= +Ca

+Cs sin(ωt) cosϕ+ Cs cos(ωt) sinϕ

+Cc cos(ωt) cosϕ− Cc sin(ωt) sinϕ

= Ca + cos(ωt) [Cs sinϕ+ Cc cosϕ]︸ ︷︷ ︸
A1

+ sin(ωt) [Cs cosϕ− Cc sinϕ]︸ ︷︷ ︸
A2

∆d

BL

= Ca + A1 · cos(ωt) + A2 · sin(ωt) . (4.29)

If now the instrumental zero point and the sign dependence on the modes of observation (NOR-
MAL vs. SWAPPED) are incorporated, one obtains:

∆d = ±BL ·Ca ±BL ·A1 · cos(ωt)±BL ·A2 · sin(ωt) + Z0 . (4.30)

This is the same expression as given by Eq. (4.22), when the fit parameters described before
and the constants here are linked by:

a0 = BL ·Ca (4.31)

a1 = BL ·A1 (4.32)

a2 = BL ·A2 . (4.33)

The so called astrometric constant a0 gives the portion of the delay due to the projection onto
the z-axis, pointing to the northern celestial pole, and the constants a1 and a2 describe the rest,
originating from the projection onto the xy-plane (

√
(BL ·A1)2 + (BL ·A2)2).
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It is worth mentioning that the two fit parameters a0 and Z0 decouple only due to their behav-
ior in course of beam swapping and that the instrumental zero point can be determined and
corrected for by fitting the differential delays to the model given by Eq. (4.30).

Also interesting is that in principle, in order to determine the zero point, a fit to the delays can
be performed without the knowledge of the baseline. However, meaningful star separations can
only be recovered when the baseline is estimated beforehand.

4.2.3. Astrometric Corrections

As described in the previous subsection, the fit to the measured differential delays that deter-
mines the instrumental zero point is performed by the ADRS recipe pacma scired2 on delay
residuals δd, after the OPD model has been removed. In addition to that, at this point also sky
related corrections are applied. These astrometric effects are consequences to the relative mo-
tions between the observer, following the observation site’s trajectory through the solar system
instead of being fixed in the barycentric coordinate system, and the observed objects moving
in space, described by their proper motions, as well as to any other disturbances along the light
paths, as is the case for light deflection by massive bodies.
The influences from these effects ultimately should be known to a precision that is approxi-
mately one order above the instrument’s desired and pursued level of accuracy, thus to the µas
level in the case of PRIMA.
In the usual case, one would measure an apparent angular separation, or equivalently the stars’
apparent positions, as seen by the observer on earth and correct these for the astrometric ef-
fects afterwards to obtain the real geometric star coordinates that could be further investigated.
Since the effects corrected for can be considered being sources of disturbances at certain points
along the path of the information transporting photons travelling from the star to the observer,
also the corrections should be applied sequentially and in a certain order and not arbitrarily.
[Kli03] suggests the following order of sequence, starting with effects due to the motion of the
observer:

1. Aberration

2. Relativistic light deflection

3. Parallax

4. Proper motion

In the case of PRIMA’s data reduction with the pipeline, the situation is a little different. The
astrometric effects need to be estimated before the fit to the delays is performed and therefore
also before the measurement, which gives the apparent separation, is available. For this reason
the astrometric effects are estimated based on the knowledge of the star pair, which is provided
by the catalogs in the CoCo and is updated with time when the star pair of concern is observed
and the differential catalog is updated. However, in principle the actual star separation vector
∆s is the starting point, from which the apparent angular separation vector, as would be
observed, in this context called ∆s′ from here on, is calculated.
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The astrometric corrections can be then considered small perturbations to the actual star
positions and are defined by and can be recovered from:

∆φ = ∆s−∆s′ = ∆s− g(∆s) , (4.34)

where the function g(∆s, ŝ1, ŝ2, . . .) describes the transformation from the actual to the appar-
ent separation vector

g(∆s, ŝ1, ŝ2, . . .) : ∆s 7→ ∆s′ , (4.35)

and the contribution of the corrections to the differential delays are generally given by the
projection onto the baseline B:

δdastro = ∆s ·B −∆s′ ·B = ∆φ ·B . (4.36)

Based upon this principle of procedure, it is clear that the order, at which the corrections are
calculated and applied, needs to be reversed in comparison to the one stated above, as the
effects are taken into account sequentially while following the light path from the stellar source
to the observer.
The corrections are applied to the one second averages with time stamps tj of the “Level 2”
differential data by removing their overall contributions, as evaluated by Eq. (4.36), so that the
residuals, to which the delay fit is applied, are eventually given by

δd(tj) = ∆d(tj)−∆dmod(tj)− δdastro(tj) , (4.37)

with ∆dmod(tj) the geometric delays obtained from the used OPD model.

In the following, the astrometric corrections, which have been derived in the course of this
thesis, based on the descriptions found in [Kov04], are presented individually in the order of
appliance.

4.2.3.1. Proper Motions and Epoch Transformations

The transformations of star properties, in particular the stars’ coordinates, between distinct
moments in time are crucial, as usually they are given in reference to a certain epoch Tref .
Consequently, in the ADRS they need to be converted to the time of the observation Tobs, or
even to each time stamp, as they are used as inputs for the calculations of the astrometric
corrections, as well as for the estimation of the differential delays, based on the OPD model.
It is trivial that the star positions change in the course of time due to their proper motions,
but it should be noted that the proper motion itself, although describing a constant motion in
space, is not a constant quantity, which is also the case for other stellar properties describing
the object’s position in space, such as the parallax and the radial velocity.
This effect is of pure geometrical nature, as the proper motion vector, defined by the time
derivatives of the objects’ coordinates α and δ at a certain point of time t0

µ =

(
dα

dt

)
t0

cos δp0 +

(
dδ

dt

)
t0

q0

= µα cos δ p0 + µδ q0

= µ∗α p0 + µδ q0 , (4.38)
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describes only the object’s motion along the local tangential plane, whereas the radial compo-
nent is usually separately defined by the radial velocity Vrad along the line of sight.
Together, these two quantities specify the object’s entire motion in space, which generally can
be considered constant and is given in kilometers per second by:

V =
A

$
µ∗α p0 +

A

$
µδ q0 + Vradŝ , (4.39)

with the annual parallax $ = 1/ρ, determined by the reciprocal of the distance ρ in units
of parsec, the unit vector ŝ towards the object’s coordinates on the celestial sphere and the
constant A = 4.74047 km yr/s.
Considering now the modulus of the proper motion µ = (V sin θ)/ρ, where θ is the angle
between the direction of the space velocity and ŝ, then its derivative with time is non-vanishing
as long as Vrad 6= 0 ([Kov04]):

dµ

dt
= −2µ

ρ
Vrad . (4.40)

This results in a perspective acceleration of the celestial objects with respect to motions within
their locally defined tangential plane.

The correct transformations to epochs t = Tobs − Tref can be recovered when the entire motion
in space is taken into account. The time dependent radius vector r(t) of the star, also called
the barycentric vector when regarded in the ICRS, is completely determined by its properties
at the reference epoch, denoted by the subscript “0”

r0 = ŝ0
A

$0

, (4.41)

and the space velocity V through the relation

r(t) = r0 + V t . (4.42)

Given this, the temporal evolution of the unit vector towards the star reads as:

ŝ(t) =
r(t)

|r(t)|
= [ŝ0(1 + ζ0t) + r0t] f , (4.43)

where the radial velocity has been parametrized by ζ0 = $0

A
Vrad,0, and f is introduced as a

normalization factor describing the ratio between distances to the star at different epochs:

f =
|r0|
|r(t)|

=
[
1 + 2ζ0t+ (µ2

0 + ζ2
0 )t2

]−1/2
. (4.44)

From the time dependent unit vector, which incorporates all perspective effects due to the com-
plete star’s motion, the object’s coordinates can be recovered by the standard relation given
by Eq. (3.40) and can be fed into the program recipes, whenever needed.
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The propagated proper motion vector is calculated using µ(t) = dŝ(t)/ dt so that after differ-
entiation of Eq. (4.43) and simplification of the result one finally obtains:

µ(t) = [µ0(1 + ζ0t)− ŝ0µ
2
0t]f

3 . (4.45)

The transformation of the parallax is recovered simply from the definition of the scale factor f
and the initial distance at the reference epoch

$(t) =
1

|r(t)|
=

f

|r0|
= $0f , (4.46)

and the value of the parametrized radial velocity is calculated from:

ζ(t) =
$(t)

A
Vrad(t)

$(t)

A
=
$(t)

A
·

d|r(t)|
dt

=
[
ζ0 + (µ2

0 + ζ2
0 )t
]
f 2 . (4.47)

These time dependent quantities are recovered within the pacma scired2 recipe by transforma-
tions to the epoch of observation and are used for the estimation of the astrometric corrections.

4.2.3.2. Light Time Delay

This correction is applied to the measured delays due to varying light travel times between the
stars and the observer. It is less a problem due to the fact that the information, which arrives
simultaneously at the observer, was emitted at different moments in time due to the differential
stellar distances, but rather that radial velocities change light travel times in the course of time.
For the astrometric search for exoplanets, as is planned to be performed by PRIMA, astrometric
signals resulting from host stars’ reflex motions due to the presence of a companion can only
be detected and characterized if sufficient measurements of relative star positions are obtained
over a long period of time. If these measured star separations are not synchronized adequately,
the change in light travel times, together with the objects’ proper motions, could have an effect
and result in spurious accelerations and false signals.
The effect would be of an order of ≈20µas due to a change in light travel time of about 1.8 h
over an observation period of two years, if typical values for the radial velocity (20 km/s) and
proper motions (100 ms/ yr) are presumed.
In order to achieve the correct synchronization, one could incorporate the light time delays
to the time stamps of the observations, by incorporating offsets to those, which would result
to adjusted times of observations, different for the two stars. To avoid the complications of
introducing many of such new distinct epochs, for the ADRS it has been decided to correct
the separation measurements by transforming them along the timeline to a global epoch of
reference tref .
This reference epoch, which all observations of the same star pair will consequently be referred
to, will be stored in and provided by the CoCo.
In order to minimize errors due to uncertainties in the applied proper motions, it might be a
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reasonable choice to place tref in the middle of the period of all observations. However, if the
reference should be repositioned at any time, the “Level 3” data must be reprocessed.

For the correction of the angular separation forward or back to the reference epoch, at first the
difference in light travel time ∆T between the current observation epoch and the light travel
time to the observer at the reference time, needs to be estimated.
According to equation (4.46), the difference in the distance to a star at time tobs and another
time tref is

ρ(tobs)− ρ(tref) =

(
ρ(tcat)

fcat→obs

− ρ(tcat)

fcat→ref

)
, (4.48)

where ρ(tcat) is the distance at the epoch provided by the provided catalog, and the scale
factors f are functions of proper motion and radial velocity, introduced in Eq. (4.44), when
transforming, as indicated by the subscripts, from tcat to tobs and respectively to tref .
Thus, the difference in light travel time between the current epoch tobs and the reference epoch
tref for a given star is

∆T =
ρ(tcat)

c
·
(

1

fcat→obs

− 1

fcat→ref

)
. (4.49)

A positive sign of ∆T means that the light at the current epoch tobs needs more time to reach
the observer than it would at the reference epoch tref , and equivalently the other way around,
when the value is negative.
Consequently, at tobs the observation can be interpreted as delayed by the amount of the light
time delay, and the observer sees the scene as it was at the epoch ∆T earlier.
In order to obtain the corresponding apparent unit vector of the primary star 1

ŝ′1 = ŝ1 −∆s1 , (4.50)

as it would be observed at tobs, an epoch transformation from the current epoch tobs to an epoch
tobs −∆T needs to be performed. This is achieved by applying Eq. (4.43) so that one obtains

ŝ′1 = f1,obs→obs−∆T1 [ŝ1(1− ζ1(tobs)∆T1)− µ1(tobs)∆T1] , (4.51)

where ζ(tobs) and µ(tobs) represent the star’s radial velocity and proper motion at the epoch of
the observation,5 and the scale factor for this particular epoch transformation f1,obs→obs−∆T1 is
again evaluated from Eq. (4.44).
Subtracting this from ŝ1, the vector form of the star’s displacement is recovered:

∆s1 = (1− f1)ŝ1 + f1ζ1(tobs)∆T1ŝ1 + f1µ1(tobs)∆T1 , (4.52)

where the subscript of the scale factor has been shortened for simplicity.

5As these quantities are needed here with reference to the time of observation, they need to be evaluated by
the corresponding epoch transformation from tcat to tobs.
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The same procedure is applied to the secondary star 2, and consequently the star separations,
corrected for the light time delay, become:

∆s′ = ŝ′2 − ŝ′1
= ŝ2 −∆s2 − ŝ1 + ∆s1

= ∆s−∆s2 + ∆s1

= ∆s+ (f2 − 1)ŝ2 − f2ζ2(tobs)∆T2ŝ2 − f2µ2(tobs)∆T2

−(f1 − 1)ŝ1 + f1ζ1(tobs)∆T1ŝ1 + f1µ1(tobs)∆T1 . (4.53)

4.2.3.3. Annual and Diurnal Parallax

If the stars’ motion in space is left aside, their equatorial coordinates, which are given in the
ICRS with reference to the solar system barycenter, are constant. However, due to their finite
distances, any variation of the observer’s position translates to an apparent displacement of the
observed source on the sky. The earth’s orbital motion around the sun is the reason for the
most prominent parallactic displacement. The stars’ apparent positions over a year reflect the
earth’s motion and follow elliptical paths on the celestial sphere, whose semi-major axes are
the quantities, which are usually referred to by the term (annual) parallax.
The offsets to this effect can be derived from the relative positions of the solar system barycenter,
the observer and the star in question. For an object with the barycentric coordinates (α, δ) and
the distance ρ, the barycentric three-dimensional position vector r is described by the sum of
the vector to the observatory robs = (xobs, yobs, zobs) and the geocentric position vector to the
star robs = r′, which can be denoted as:

 ρ cosα cos δ
ρ sinα cos δ
ρ sin δ

 =

 xobs

yobs

zobs

+

 ρ′ cosα′ cos δ′

ρ′ sinα′ cos δ′

ρ′ sin δ′

 . (4.54)

The primed quantities stand for the (apparent) geocentric coordinates and the actual distance
from the observer to the star. As the vector to the observatory is constructed from the vector
to the earth, together with its second contribution, the observer’s offset from the earth center,
also diurnal effects due to earth rotation are considered.
Expressing the barycentric quantities by their corresponding geocentric counterparts and a
small offset

α = α′ + ∆αpar

δ = δ′ + ∆δpar

ρ = ρ′ + ∆ρpar , (4.55)
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these offsets can be approximated under the suppression of second-order effects, which limits
the accuracy to about a microarcsecond for the closest stars, by ([Kov04]):6

∆αpar cos δ = −xobs

ρ
sinα +

yobs

ρ
cosα

∆δpar =

(
−xobs

ρ
cosα− yobs

ρ
sinα

)
sin δ +

zobs

ρ
cos δ (4.56)

∆ρpar = xobs cosα cos δ + yobs sinα cos δ + zobs sin δ . (4.57)

Provided by the exact position of the observer at the time of the observation, these equations
can be applied to estimate the geocentric and time dependent unit vectors ŝ′ for both, the
primary and the secondary star:

ŝ′(t) =

 cos(α−∆αpar) cos(δ −∆δpar)
sin(α−∆αpar) cos(δ −∆δpar)

sin(δ −∆δpar)

 . (4.58)

Although the apparent angular separation vector ∆s′ can be constructed from this, for the
ADRS another approach has been implemented, where the result is expressed by differential
quantities between the two stars, of which the accuracy should improve in the matter of time
with increasing number of observations.
For this purpose the rephrased equation (4.54) for the position vector, evaluated for both stars

ρ1ŝ1 = robs + ρ1ŝ
′
1 , (4.59)

ρ2ŝ2 = robs + ρ2ŝ
′
2 , (4.60)

are subtracted from each other so that with the substitutions ŝ2 − ŝ1 = ∆s and respectively
ŝ′2 − ŝ′1 = ∆s′ one arrives at the final expression

∆s′ =
ρ2

ρ′2
· ∆s+

ρ2 − ρ1

ρ′2
· ŝ1 −

ρ2 − ρ1

ρ′2
· ŝ1

=
ρ2

ρ′2
· ∆s+

(
ρ2

ρ′2
− ρ1

ρ′1

)
ŝ1 +

(
1

ρ′1
− 1

ρ′2

)
robs , (4.61)

where the relation (4.57) is then applied to replace the geocentric quantities by exploiting

ρ′1 = ρ1 −∆ρpar (4.62)

ρ2 = ρ2 −∆ρpar , (4.63)

and the absolute distance of star 2 is substituted by ρ2 = ρ1 + ∆ρ, the sum of the distance to
the primary star and the differential distance

∆ρ =
1

$2

− 1

$1

=
1

$1 + ∆$
− 1

$1

. (4.64)

6The interested reader should notice the sign errors in the formula given within the reference.
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4.2.3.4. Relativistic Light Deflection

As we have learned from observations and the theory of general relativity, photons follow null
geodesics in the spacetime, which is being curved by masses. Consequently, since the light
paths are influenced by the mass distribution along the way of the travelling bodies, apparent
displacements of the observed background sources need to be considered. If only the light
deflection due to the spherically symmetric mass distribution of a body is taken into account,
then the total deflection angle φdef , where both, the light source and the observer are considered
to be situated at infinite distances in opposite directions, is determined only by the mass of
the disturbing body and the distance R between its center of mass and the point of the light’s
nearest approach:

φdef =
4GM

Rc2
. (4.65)

Calculating the situation in the extreme situation of a sun grazing light path, the deflection
angle becomes ≈ 1.75′′. However, although this kind of observation is not realistic, the same
calculation for Jupiter gives a value of ≈0.16µas.
Clearly, this is still an extreme case, and in reality the disturbing object will usually not be
situated between the two observed stars so that the differential effect will be even smaller, but
still needs to be considered when it comes to accuracies at the microarcsecond level.
In order to get a feeling for the magnitude of the involved effect, the limiting separation angles
between the observed star pair and all potentially deflecting objects within the solar system,
for which the magnitude of the differential effect would lie below 0.1µas, has been roughly
estimated, arriving at results between the highest limit of about 4◦ in the case of Jupiter and
≈3.5′′ for Pluto (see Tab. 4.3).
Based on this analysis, it has been also decided that the ADRS would always apply the cor-
rection for the deflection by the Sun, whereas for the other considered objects, as Pluto, the
Earth’s moon and the solar system planets, the corrections would only be calculated if the
angular distance between them and the observed stars’ midpoint would fall below the limiting
angle of the corresponding object.

The general expression for the deflection angle can be derived to ([Kov04]):

φ =
2GM◦
c2R◦

(
sinλ

1 + cosλ

)
=

2GM◦
c2R◦

tanλ/2

=
2GM◦
c2R◦

cotψ/2 , (4.66)

where M◦ denotes the object’s mass and R◦ its distance with reference to the observer, and λ
is the measured angular separation between the light emitting source and the observer, as seen
from the deflecting body. This entity can be translated to the angular separation ψ between
the star and the disturbing body, as seen by the observer, approximately by ψ = π − λ.
As the deflection usually occurs in slightly different directions for both stars, in the extreme case
in the opposite directions, when the deflecting body is positioned between them, it is important
to evaluate also the orientation of the deflection, before the differential effect is estimated.
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Table 4.3. – Estimated limiting angles of angular separation between the disturbing bodies
and the observed star pair, below which the differential effect could impose displacements
above 0.1µas and for which the ADRS is correcting.

deflecting body limiting angle [deg]
Mercury 0.138
Venus 0.821
Mars 0.211

Jupiter 4.196
Saturn 1.601
Uranus 0.424
Neptun 0.362
Pluto 0.001
Moon 1.076

The direction of the deflection, which is perpendicular to the position vector of the star, is
given by the unit vector:

d̂ =
ŝ◦

sinλ
+ ŝ cotλ , (4.67)

with the unit vectors ŝ, ŝ◦ towards the light source and respectively the deflecting body.
As the massive body always bends the light towards itself, the star appears at a higher angular
separation ψ than it actually is. Consequently, in order to estimate the apparent star position
ŝ′, the deflection is applied on the star unit vector by:

ŝ′ = ŝ− φ · d̂

= ŝ− 2GM◦
c2R◦

sinλ

1 + cosλ

(
ŝ◦

sinλ
+ ŝ cotλ

)
= ŝ− 2GM◦

c2R◦

(
ŝ◦ + ŝ cosλ

1 + cosλ

)
= ŝ− 2GM◦

c2R◦

(
ŝ◦ − ŝ cosψ

1− cosψ

)
= ŝ− 2GM◦

c2R◦

[
ŝ◦ − ŝ · (ŝ◦ŝ)

1− ŝ◦ŝ

]
. (4.68)

The apparent separation vector is then constructed to:

∆s′ = ŝ′2 − ŝ′1

= ∆s+
2GM◦
c2R◦

[
ŝ◦ − ŝ1 cosψ1

1− cosψ1

− ŝ◦ − ŝ2 cosψ2

1− cosψ2

]
= ∆s+

2GM◦
c2R◦

[
ŝ◦ − ŝ1 · (ŝ◦ŝ1)

1− ŝ◦ŝ1

− ŝ◦ − ŝ2 · (ŝ◦ŝ2)

1− ŝ◦ŝ2

]
. (4.69)

Alternatively, the apparent coordinates (α′, δ′) of a star due to light deflection can also be
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calculated from the real coordinates and some offsets ∆α,∆δ, which take the form:

∆α =
2GM◦
c2R◦

·
cos δ◦ sin(α− α◦)
(1− cosψ) cos δ

∆δ =
2GM◦
c2R◦

·
sin δ cos δ◦ cos(α− α◦)− cos δ sin δ◦

1− cosψ
, (4.70)

where α◦, δ◦ are the coordinates of the deflecting object and ψ, the elongation between the star
from the body, can also be recovered from the coordinates:

cosψ = sin δ sin δ◦ + cos δ cos δ◦ cos(α− α◦) . (4.71)

4.2.3.5. Aberration

Due to the combination of the finiteness of the speed of light and any transversal component of
the observer’s velocity, with reference to the incoming beam, the direction, in which the source
is observed, is tilted towards the direction of motion. The resulting displacement of observed
stars is called stellar aberration and classically can be subdivided into three components: the
annual aberration due to the earth’s orbital motion, the diurnal aberration as a result from
its rotation, and the secular aberration as a consequence from the stars’ motion with reference
to the solar system barycenter. Leaving the latter aside, which reflects itself in the measured
proper motions and is corrected for by the consideration of the light travel time (see Sec. 4.2.3.2),
the remaining aberrational effect is calculated considering the relations between the source’s
real geometric position ŝ, the light’s velocity vector −cŝ and the observer’s velocity vector v.
In the classical approach the apparent direction towards the source is derived from the addition
of the velocity vectors and is given by:

ŝ′ =
ŝ+ v/c

|ŝ+ v/c|
. (4.72)

The angle of the displacement ∆θ can then be estimated from the scalar part of the cross
product ŝ× ŝ′, yielding ([Kov04]):

sin ∆θ =
(v/c) sin θ√

(1 + 2(v/c) cos θ) + (v/c)2

=
v

c
sin θ − 1

2

(v
c

)2

sin 2θ + . . . , (4.73)

where θ is the angle between the direction of the observer’s velocity and the star’s geometric
position so that |ŝ× v/c| = v

c
sin θ.

The expansion in terms of v/c is interesting, as we will see that this classical ansatz already
deviates from the relativistic treatment at the level of the second order term.

Within the framework of special relativity, where the correct Lorentz transformations are ap-
plied for the addition of the velocities, the corresponding expression for the apparent direction
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takes the form:

ŝ′ =
γ−1ŝ+ (v/c) + (ŝ ·v/c)(v/c)/(1 + γ−1)

1 + ŝ ·v/c

=
γ−1ŝ+ (v/c)

1 + a
+

av/c)

(1 + a)(1 + γ−1)
=
ŝ (γ−1 + γ−2) + v/c (1 + a+ γ−1)

(1 + a)(1 + γ−1)

=
ŝ (γ−1 + γ−2) + γ−1v/c

(1 + a)(1 + γ−1)
+

v/c

1 + γ−1
, (4.74)

where γ = 1√
1−v2/c2

is the corresponding Lorentz factor to the magnitude of the observer’s

velocity and the substitution a = ŝ ·v/c has been employed.
Again, the angle of displacement can be estimated from the cross product of the apparent
position vector with the true position vector, from which the expansion

sin ∆θ =
v

c
sin θ − 1

4

(v
c

)2

sin 2θ +
1

4

(v
c

)3

sin 2θ cos θ + . . . , (4.75)

can be derived ([Kov04]).

Comparing this result to equation (4.73), one can see that there is a difference of 1
4

(
v
c

)2
in

the second order. As this difference yields around 500µas of displacement in the extreme case
of θ = 45◦ and the earth’s mean orbital velocity of v ≈ 30 km/s, the relativistic formula is
implemented into the ADRS pipeline.

The apparent separation vector, which naturally is time dependent and will be evaluated for
the time stamps of the “Level 1” data, is finally calculated by applying Eq.(4.74) to both stars,
which gives:

∆s′ =
(1 + γ−1)−1

(1 + a2)(1 + a1)

[
(γ−1 + γ−2) [∆s(1 + a1) + ŝ1(a1 − a2)] +

v

c
γ−1(a1 − a2)

]
=

(1 + γ−1)−1

(1 + a2)(1 + a1)

[
(γ−1 + γ−2)

[
∆s(1 + a1)− ŝ1(∆s ·

v

c
)
]
− v
c
γ−1(∆s ·

v

c
)
]

(4.76)

with a1 = ŝ1 ·v/c and respectively a2 = ŝ2 ·v/c.

Just as the positions of the earth and the other solar system bodies is recovered from the
JPL ephemerides, so is the precise velocity of the earth that, together with the observatory’s
position on the earth’s surface, is necessary to assemble the final observer velocity v(t).

138



4.3. Analysis of Commissioning Data

4.3. Analysis of Commissioning Data

4.3.1. Fringe Tracking Performance

During the PRIMA commissioning phase, the system’s particular modules have been sequen-
tially integrated and tested on the site. Besides the fundamental functionality of the individual
components and their cooperation and communication among each other, the instrument’s
overall performance is defined by two major aspects: firstly and obviously by the resulting
overall precision of the astrometric measurements, but more elementary by the fringe tracking
capability, regarding on the one hand its efficiency, which directly affects the brightness space of
possible science targets, and on the other hand the accuracy of the tracking algorithms, which
are limited by systematic variances of the estimated quantities and consequently can limit the
astrometric accuracy, if not calibrated or corrected for.
In order to face some aspects of these questions, fringe tracking sequences from commissioning
runs 13 until 17, spanning a time period of 13 months between November 2010 and November
2011, have been examined in the course of this work. The emphasis was laid on the tracking
performance with respect to environmental parameters, such as the coherence time and the
seeing, but also on the dependence on the targets’ brightness.
The exact numbers of the analyzed sequences are summarized in Tab. 4.4. Altogether, 934 files
have been taken into account, where a limiting lock ratio of 0.01 % on the main delay tracking
controller has been used for the preselection from all available data. From these files 451 dual-
feed fringe tracking recordings could have been extracted so that summed up 1,385 tracking
sequences, from either main delay or differential delay tracking, could have been collected.

Table 4.4. – 1,385 fringe tracking sequences from the commissionings 13 until 17 have been
analyzed, of which 934 represent the data from the FSU connected to the main delay tracking
controller and 451 represent fringe data from the diff. optical path delay controller, tracking
the secondary object. The K magnitude of the observed objects could not be recovered and
is not available for 16 tracking sequences.

Controller Tracking Unit K magnitude

OPDC dOPDC FSU A FSU B 1–2 2–3 3–4 4–5 5–6 NA

Comm. 13 (Nov. 2010) 343 59 104 298 4 12 337 35 14 -

Comm. 14 (Jan./Feb. 2011) 113 77 93 97 11 - 92 76 - 11

Comm. 15 (Jul. 2011) 143 83 98 128 - 19 118 57 27 5

Comm. 16 (Aug. 2011) 83 54 63 74 - 2 40 14 81 -

Comm. 17 (Nov. 2011) 252 178 210 220 - 11 348 71 - -

Comm. 13–17 934 451 568 817 15 44 935 253 122 16

= 1385 = 1385 = 1385

The targets’ brightness, in units of K magnitudes, has been extracted from the fits files headers,
whenever provided, and otherwise taken from the corresponding entries of the 2MASS point
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source catalog ([Skr06]). Brightness information on the secondary component of the observed
binary could not be recovered for 16 sequences in dual-feed mode.

The results of this analysis are displayed in figures 4.9–4.11 and show relations between quan-
tities estimated by the FSUs and the environmental conditions.
Both, the coherence time and the FWHM of the seeing disk are taken from the information of
the files themselves, which provide two values for each of them, one for the point in time at the
beginning of data recording and respectively one for the end. The means of those have been
used here for each sequence.
The lock ratio was derived from the status data of the tracking controller in question and gives
the fraction of time, during which the controller is in either of the two states TRACK or IDLE,
meaning that the tracking loop is closed or only shortly interrupted (comp. to Sec. 4.1.3.3),
compared to the entire time of the observation.
Since by principle the secondary source is tracked only when the phase reference is given by
the closed loop on the primary, for the lock ratio of the dOPDC this aspect was accounted for
by relating the time of tracking not to the full time of data recording, but only to the time
intervals of tracking OPDC.
The variations of the phase measurements, as discussed here, describe the stability of the es-
timates on short time scales. Therefore, the phase data from the fits files was averaged onto
a one second time grid and the standard deviations over these averages have been computed.
In turn, the average value of these deviations represents then the mean one second standard
deviation σ of the phase estimates for each tracking sequence.
The same routine is applied for the mean 1-second standard deviation of the tracking con-
troller’s real-time offsets.
Driven by the according FSU, the real-time offset (RTO) is computed by the tracking control
routine and gives the corrections that are sent to the delay line to account for atmospheric tur-
bulences or fringe motions of any kind. As it does not include the blind trajectory computed
from the used OPD model, it serves as the setpoint of the correcting delay line in relation to
the actual position. The RTO variations consequently illustrate the amount of correction that
has been applied during the observation to compensate the atmospheric piston.
In Fig. 4.9 the lock ratio, as well as the variations of the measured phases and the RTOs, are
plotted against the coherence time, where distinctions have been made for the two distinct
FSUs, but also targets of different brightness.
Although fringe tracking with the PRIMA FSUs has been already demonstrated for dimmer
sources, the targets of the sequences in this analysis span only the interval in K magnitude
between Kmin = 1.329 and Kmax = 5.751.
High lock ratios are clearly achieved over the whole interval of recorded coherence times, al-
though it seems that there is a tendency towards higher values, as would be expected with
improved conditions and consequently increased τc.
Obviously, there is a threshold value (τc≈3 ms), under which good tracking seems to be achieved
only with difficulties and cannot be guaranteed.
There is no clear evidence of different behavior towards various source brightness, at least not
within this magnitude interval.
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Figure 4.9. – Distribution of 1,385 tracking sequence samples regarding the lock ratio (top),
the standard deviation (over 1 second) of the estimated phases (middle) and the standard
deviation (over 1 sec.) of the real-time offsets (bottom) against the coherence time. Within
the left column a distinction regarding the two FSUs is color coded, whereas the colors in
the right hand side plots represent different intervals in the targets’ K magnitude.
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This is different when investigating the variations of the phases and the RTOs. Although both
show also low values at bad conditions, implied by low coherence times, a clear scatter up to
maxima of σϕ ≈ 2π and σRTO ≈ 8µm is visible but decreasing with higher τc in the interval up
to τc ≈ 5 ms, where the quantities seem to settle.
This is particularly evident for the RTOs, which for higher coherence times seem to settle
around 0.7–0.8µm, with no more obvious dependency on the sources’ brightness, which on
contrary is clear at low coherence times.

In bad conditions the star’s brightness seems to play an important role for the RTOs, as well
as for the estimated phases. In fact, the phase estimates seem to be particularly sensitive to
this parameter throughout the whole coherence time spectrum with standard deviations below
σϕ = 0.2π for sources brighter than K = 4 and above for dimmer targets.
No clear difference is observed between the different FSUs. While a slight hint of different
behavior could be suspected from the plot of the phase variations against the coherence times,
with lower values for FSUB and increasing τc, a comparison with the brightness dependent plot
uncovers the correlation there between the FSUA and dimmer sources.
This is understandable, as in the NORMAL operation mode the brighter source is tracked by
FSUB and the secondary source by FSUA, and within this sample 295 of the 451 dOPDC
sequences are performed with FSUA, which is nearly double as much as with FSUB.

An interesting feature arises, when the same quantities are plotted with a distinction, whether
the source was tracked by the OPDC on the main delay or on the differential delay line by the
dOPDC (see Fig. 4.10).
While for the phase variations, which happen to be lower at the OPDC, it is not clear, if
this again only mimics the brightness dependency, as a correlation seems plausible from the
comparison, the RTO standard deviations seem to be decreased for the dOPDC sequences,
especially at rather bad conditions with low coherence times below 5 ms. This is also suggested
by the graphs showing the RTO variations against the lock ratio and in particular when plotted
against the phase variations.
Besides the obvious correlation between these two quantities, a bimodal structure is clearly
apparent and features lower RTO variations when tracking with the differential delay line.
This finding is supported by the plot depicting the different brightness intervals, as the lower
RTO variations correlate with dimmer targets, as more often tracked by the dOPDC.
This reflects the principle of the phase reference, provided by the tracking on the primary tar-
get, and shows the damping of the corrections that need to be sent to the tracking differential
delay line, in this case within time intervals of one second.
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Figure 4.10. – The upper two rows show the relationship between the standard deviations
over 1 second of the real-time offsets, the phases and the lock ratio, where the target bright-
ness (top) and the corresponding tracking controller (middle) are color coded. The same
distinction between main delay line tracking and observations of the secondary source, dur-
ing which the diff. delay line tracking is controlled by the dOPDC, is made for the plots of
the variations against the coherence time (bottom).
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The sample was also explored for clear correlations of the quantities of interest to the observa-
tory seeing during the observation, which is depicted in the plots in Fig. 4.11.

Figure 4.11. – The plots depict the relations between the seeing during the observation and the
lock ratio, as well as the 1-second standard deviations of the estimated phases and the real-
time offsets as derived from the sample of 1,385 tracking sequences. The correlation between
seeing and the coherence time is also illustrated (bottom right). Color coding accounts for
the distinct fringe sensor units.

The real-time offsets variations, as well as the phase deviations over one second, show a ten-
dency towards higher values for increased seeing, which is more evident for the latter.
At good seeing, down to the seeing disk FWHM of around 0.5 as, phase variations over the
whole spectrum between 0.06π and 1.6π are found. With degrading conditions, this scatter is
more and more confined to the high end of the initial spread. A similar structure, although
not that clear, is observed regarding the RTO variations. An explanation for, why the depen-
dency on the seeing is not as evident, as one might suspect, can be found in the correlation
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of the recorded coherence times against the seeing. Although τc principally decreases with the
seeing increasing, and extraordinary long coherence times are found only in good conditions,
it is also evident that quite low values, even below the previously discussed critical threshold
of τc ≈ 3 ms are recorded throughout the entire band of obtained seeing disk diameters from
0.5 as to 2.0 as. This scatter in coherence times is then again reflected in the RTO and phase
variations, as those show a clear dependency on τc.

The same is supported by the plot of the lock ratios versus seeing. The scatter makes it
difficult to give a secure statement, but the graph seems to indicate that observations with
maximum or nearly optimal tracking ratios of around 100 % become less frequent above some
values of around ∼1.1 as, and none is observed above FWHM = 1.5 as.
However, since a major fraction of the sequences have been recorded at better conditions than
such that might be implied by these limiting values, these features might also be some artifact
due to the sample bias.

Overall, the results on the variations of the estimated phases seem promising, regarding the
tracking availability, especially in good conditions and for long coherence times. Within the
sample of 1,385 tracking sequences the lowest value obtained is σϕ,MIN = 0.06π and the median
is given by σϕ,MED = 0.48π, which translates to less than 1/4 of the observation wavelength
and to ∼0.53µm in the K-band, in which PRIMA is operated.

Still, as will be shown in the following, this is no implication on the ultimate accuracy of
the fringe tracker. Two fringe tracking sequences, controlled by the OPDC and measured by
FSUB, with nearly optimal lock ratios above 0.99 are depicted in Fig. 4.12.
Naturally, as the tracking algorithm tries to keep the delay at the zero group delay position,
the plotted low-pass filtered GD still shows some fluctuations, but essentially maintains the
zero level, and the OPDC state is mostly at 7, which corresponds to the state TRACK.
Contrarily, the estimated phases, also low-passed filtered here for the clarity of the plot, do not
keep the same level, but exhibit phase jumps with a phase difference of ∆ϕ = π.
More than this, when the phase estimates, as provided by the fringe sensor data only within
the interval [−π, π], are unwrapped, which has been performed here in a standard procedure
of tracking and correcting phase jumps of more than 1.2π in any two consecutive readings, one
can see that even bigger phase jumps can occur and that the phases settle on different levels,
which are all separated by ∆ϕ = π from each other.
These features seem suspicious, especially since they are observed within sequences of good
tracking. In those situations the tracking state itself should be sufficiently reliable in the sense
that the controlling loop is in fact closed, while the delay follows the fringe position.
This conclusion can be drawn when the signal-to-noise ratio distribution is inspected.
Fig. 4.13 shows normalized distributions of recorded SNR estimates (see Eq. (4.10)) during
observation sequences for points in time when the OPDC was tracking, as well as when the
loop was open and the system performed a fringe search.
Typically, in good and stable situations, when enough light reaches the FSU, the finding of a
fringe can be reliably identified by the SNR measurement.
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Figure 4.12. – Two tracking sequences with nearly optimal lock ratio illustrate the low-pass
filtered real-time estimates of the GD in the OPD space and the phases. Whereas the GD
is tracked to zero, the phases and particularly the unwrapped phases exhibit several levels,
separated by ∆ϕ = π. Also plotted is the state of the OPD controller, where the value 7
represents the closed tracking control loop.
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If the thresholds for the OPD controller are chosen so that a high lock ratio is achieved, the
estimates during the tracking are normally distributed.
Furthermore, although the distribution can be wide, it is still well distinguishable from the
noise dominated readings, when the fringes are lost by the tracker. This situation changes
dramatically for observations, during which mostly just low SNR values are obtained.
In those cases the fringes become less identifiable and consequently high lock ratios cannot be
achieved. This is also apparent in the relatively high overlap between the distributions of SNR
recordings while tracking and while searching, which is the zone, in which the fringes are lost
by the instrument.

a) b)
HD 90853; K=2.91; τc = 6.66 ms; lock ratio ≈ 1; FSUB HD 10257; K=4.61; τc = 3.09 ms; lock ratio = 0.52; FSUA

Figure 4.13. – Typical normalized SNR distributions during fringe tracking sequences with
nearly optimal lock ratio (left) and in conditions, which resulted in significantly lower track-
ing efficiency (right). Colors distinguish estimates while the tracking loop was closed from
those while the OPDC was in the SEARCH state. In good observing conditions the fringes
are identified by SNR readings that are clearly distinguishable from the noise.

However, although the tracking state of the controller can be trusted, particularly for high lock
ratio sequences, the phase jumps described above put the position of the tracker in OPD space
in question, and it cannot be guaranteed that the tracking is performed on the central fringe.
This problem has been identified and studied also by [Sah10].
In that analysis the nonlinearities of the estimated OPDs, as derived from the measured phases,
and of the determined GD have been investigated and found to be significant, periodical and
increasing when moving away from the zero OPD. In particular, the nonlinear behavior of the
group delay estimation is problematic, as the fringe tracking algorithm, underlying the OPDC,
tries to keep the fringes at zero GD.

In theory, the group delay exhibits only one well-defined zero-crossing in the OPD space, but if
disturbed strongly enough, several local extrema can arise, and in the worst case, multiple zero
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points at distinct OPD positions, which thereby would act as stable attractors to the tracker,
could emerge.
The reasons for those cyclic nonlinearity errors can be multifarious, as the real-time estimates
are derived from the ABCD signals, and therefore anything that influences those also affects
and disturbs the tracking control.
However, two major error sources, namely differential photometric effects and non-nominal
phase offsets between the ABCD signals have been identified to be most likely responsible for
the observed nonlinearities. Uncalibrated inequalities in the detected intensities between the
channels of the different detector quadrants lead to cyclic phase errors with a periodicity in the
OPD space that equals that of the light’s effective wavelength. Although calibration routines
are performed beforehand, any flux variabilities during the observation itself, which could be
consequences of changes in the instrument’s overall transmission or high-frequency injection
fluctuations due to the beams’ tip-tilt jitter in combination with non ideal alignment or wave-
front perturbations in general, will degrade the measurement and the functionality of the fringe
tracker, as no real-time photometric monitoring is implemented.
On the other hand, phase offsets of the ABCD signals from their nominal values lead to pe-
riodic phase errors in delay space, which are characterized by half of the effective wavelength,
at which the measurement is made. These offsets can be calibrated if known (see 4.3.1.1),
but any deviations from those calibrated values, which for example can occur due to polariza-
tion variabilities in the course of the observation, during which, amongst others, the telescope
pointing and the angle of the star separators vary, will again have an impact on the linearity
of the OPD and GD determinations.

4.3.1.1. Phase Offset Deviations

While the applied spatial phase modulation technique and the ABCD method serve particularly
well for the fringe tracking efficiency, regarding the rate, at which the fringes and consequently
the fringe position can be sampled, the fringe encoding depends on the estimated phases and
accordingly is affected by the phase relations between the ABCD signals.
Consequently, any deviations from their nominal values of π/2 disturb the measurement and
result in errors in the phase estimation itself, but also in the determination of the OPD and the
group delay, which can also lead to such nonlinear effects, as described in the previous section.
In order to stress the importance of a proper calibration of such phase offset deviations, an
initial analysis has been carried out to investigate their occurrences especially during observa-
tions on the sky. Just as the effective wavenumber and the relative phases between the ABCD
signal of the different detector quadrants can be obtained in laboratory by the means of Fourier
spectroscopy when an OPD scan is performed over the entire fringe package from the labora-
tory source, fringe package scans on the sky offer the opportunity to derive the offsets in more
realistic conditions.
For this purpose, the tracked primary source serves as usual as the phase reference, and fringe
data is recorded while the differential delay line performs consecutive scans around the fringe
center of the secondary source.
Such a signal is shown by Fig. 4.14, where the measured SNR is color coded and depicted with
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HD 10361 on 21.11.2011; K=3.51; τc = 1.59 ms; lock ratio = 0.92; FSUB

Figure 4.14. – The SNR estimates during an observation in SWAPPED mode with FSUB
recording fringe data on the secondary source HD 10361 (K=3.51), while the DDL was
performing 400 consecutive scans over a time period of around 243 seconds. A lock ratio of
about 90 % on the primary source was achieved and the loss of the fringes is clearly visible,
approximately between scans 30 and 60, where the fringe center location is varying or even
wiped out. The visible drift in the OPD space is caused by the earth (baseline) rotation over
the four minutes of observation.

reference to the individual scans and the applied differential OPD, as given by the differential
PRIMET metrology.
In this case data has been recorded over a time span of ∼243 s, during which 400 dOPD scans
have been carried out. With the achieved sampling intervals a clear distinction between the
fringe signal and the uncorrelated noise can be made by the signal-to-noise ratio estimates.
Also apparent is the fringe center’s drift over time in the OPD space due to the rotation of
the baseline and the accordingly varying projection of the baseline vector onto the separation
vector of the two observed sources on the sky, as well as an incidence of a fringe loss on the
primary source, approximately during scans 30 to 60.
During this period of time, the fringe tracking loop was open and the main OPD controller
performed its fringe search, which resulted in variations of the fringe positions on the secondary
source and even partial smearing out of the fringe location.
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Data from files, which have been recorded in this manner during the commissionings 11–13,
has been processed for the here presented analysis of the phase offsets between the A, B, C and
D quadratures. For this purpose the relative phases have been determined for each available
scan, wherefore the cross spectral density

SUV (κ) = U∗(κ) ·V (κ) , (4.77)

is computed first, where U(κ), V (κ) denote the Fourier transforms in OPD space of the two
signals, for which the correlation is performed.
From this the relative phase is then obtained by applying

φ = tan−1

∑
i Im [SUV (κi)]∑
i Re [SUV (κi)]

, (4.78)

which in principle is the standard formula, but with the real and imaginary parts of the spec-
trum summed over all wavenumbers κ.

Naturally, the conditions during the measurements, as well as the scanning routine in terms
of the number of scans, the sampling rate, the scanning velocity, etc., can differ from obser-
vation to observation, particularly in the course of those commissioning runs, during which
this procedure was rather experimental and still to be optimized. Due to that, the quality of
the scan data varies significantly not only between the individual scans, but also between the
different observations, which makes an up-front distinction in terms of quality difficult. For
this reason, all scanning files have been processed, and all available scans have been taken into
consideration. A quality control driven first inspection has been performed before the offset
computation in order to discard presumably bad data.
This was achieved by considering the SNR as the first indicator. A gaussian fit to the SNR
recordings over each scan has been performed, followed by the exclusion of scans, for which the
peak signal-to-noise ratio was less than 0.6 times the maximum peak SNR of all scans within
one file.
Furthermore, the scan velocities were determined from the timestamps and the metrology data,
and those scans, for which the velocity departed from the average value of the corresponding
file by more than 0.1 times the mean velocity, have been discarded.
The relative phases for all combinations of the four quadratures and in each spectral channel
have been then evaluated from the remaining scans.
As experience has shown that this approach still leads to quite unexpected results in some
cases, those have been compared to the raw signals themselves, as well as to their Fourier
transforms, which has revealed that in some cases bad signal sampling undesirably affects the
computation of the Fourier transforms. In order to account for this, at least rudimentarily, the
effective wavenumbers have been estimated from the spectra of the synthetic white channels
for further rejection of scans, for which those wavenumber estimations yielded results outside
of the interval in wavenumber between 250,000 m−1 and 600,000 m−1.
Although this is a rather loose condition, when compared to the operating waveband of the
instrument, it turned out to serve sufficiently well as a control parameter for intercepting scans
with obviously misleading products.
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The distributions of the results of the ultimately remaining scans have eventually been ana-
lyzed, as they might indicate the variability of phase relations during on-sky observations.
The corresponding histograms for phase offsets between the A and B, B and C, as well as
respectively the C and D signals, together with the gaussian fits to the distributions for the
entire sample (comm. 11–13) are depicted in Fig. 4.15 for the white channel, whereas the com-
plete results, distinguished by the individual commissioning runs and spectral channels, are
summarized in Tab. 4.5.

Table 4.5. – The table summarizes the results from the phase offset analysis of scanning data
on secondary sources during the commissioning runs 11–13. For each commissioning the
number of scans and the peak position (in degrees) of the gaussian fits to the phase offset
distributions are listed for all channels and both FSUs separately, as well as combined. The
effective wavelength of the spectral channels increases with the channel number.

FSUA FSUB FSUA + FSUB

A-B B-C C-D A-B B-C C-D A-B B-C C-D

Comm. 11 (Jul. 2010) N = 216 N = 3807 N = 4023

white ch. 99.04 71.36 87.70 111.87 74.10 112.61 111.33 74.01 112.48

ch.1 87.69 92.81 64.94 81.47 113.85 58.48 81.83 113.26 58.56

ch.2 99.93 90.75 94.52 107.83 84.60 101.25 107.31 84.82 101.06

ch.3 109.17 80.62 106.27 119.45 74.12 115.50 118.98 74.33 115.34

ch.4 121.56 68.13 121.70 130.05 66.00 128.21 129.63 66.12 128.06

ch.5 117.09 43.04 76.25 132.75 60.69 137.88 132.48 60.55 137.86

Comm. 12 (Sep. 2010) N = 43 N = 1626 N = 1669

white ch. 98.93 81.62 121.51 111.84 69.93 111.35 111.21 70.40 111.68

ch.1 80.65 108.89 79.73 85.18 106.80 57.43 84.91 106.86 57.84

ch.2 96.32 89.26 114.84 111.57 82.40 102.29 111.04 82.71 102.59

ch.3 103.18 84.00 121.35 122.00 73.48 113.88 121.55 73.87 114.11

ch.4 116.70 73.62 133.42 135.22 63.20 127.96 134.88 63.52 128.16

ch.5 122.84 64.88 142.19 136.54 58.17 139.16 135.83 58.41 139.35

Comm. 13 (Nov. 2010) N = 1063 N = 599 N = 1662

white ch. 99.50 102.43 96.33 108.49 80.01 112.77 100.71 93.54 100.17

ch.1 110.80 92.12 104.67 81.10 123.91 61.60 110.04 103.12 104.58

ch.2 106.46 100.05 104.39 104.98 92.02 102.26 106.18 96.24 103.79

ch.3 100.71 108.47 97.52 116.32 80.22 116.00 103.32 99.41 101.52

ch.4 97.66 111.70 95.90 128.20 67.48 129.01 97.77 111.64 95.92

ch.5 88.01 115.14 90.62 131.09 59.69 136.84 88.02 115.04 90.64

Comm. 11–13 N = 1322 N = 6032 N = 7354

white ch. 99.43 100.26 95.92 111.65 74.06 112.45 108.47 74.49 110.53

ch.1 110.19 92.78 104.22 82.08 113.96 58.67 85.71 110.18 58.86

ch.2 105.60 98.28 103.99 108.22 85.09 101.54 107.19 86.81 102.01

ch.3 101.78 106.36 98.25 119.63 74.75 115.25 117.32 75.60 114.39

ch.4 97.74 111.56 96.02 130.88 65.52 128.24 130.45 65.77 128.17

ch.5 88.11 114.98 90.57 133.18 60.01 138.02 132.79 60.01 138.05
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Altogether, 7,354 scans (1,322 on FSUA and 6,032 on FSUB) have been taken into account.
However, while the results point out some implicating trends, they should also be treated with
a proper amount of caution, due to their statistical character on the one hand, but also due to
their hardly predictable dependence on some known issues that are not accounted for by the
applied way of computation.
For instance, as has been shown before in Sec. 4.1.3.2 (comp. Tab. 4.1 and Fig. 4.7), some
chromatic dispersion is apparent between the responses of the detector pixels of different quad-
rants but same spectral channels, which is not accounted for here, and in principle makes even
the definition of a phase relation difficult, as the carrying signals slightly differ in wavelengths.
Furthermore, overall effects and biases from varying signal coverage by the data sampling, dif-
ferent sampling rates or not excluded grid irregularities, are difficult to retrace.
For those reasons, statistical perspective onto the data has been chosen here as a proper method,
although some features, as for example the widths of the obtained phase offset distributions,
probably do not reflect the pure variance of the instrument’s measurements, but are also af-
fected by the response of the computational method to the imperfect data sets.
With these constraints in mind, some implicative results can be pointed out. Considerable de-
viations from the nominal values of 90◦ in phase shifts between A/B, B/C and C/D throughout
the white channel are evident up to in general around ±20◦, but also an offset of more than
30◦ is found for C/D on FSUA in the commissioning 12 data, although the sample might be
less reliable due to the low scan number (N=43).
Also significant is the dispersive character of the obtained phase shifts, as is indicated by the
data and plotted for both FSUs in Fig. 4.16.

The spectral dependence is more evident on FSUB, with a drift of the mean offsets up to
even 80◦ over the whole waveband, but is also clearly identifiable within the FSUA data.
With increasing channel number, respectively wavelength, the phase offsets between the two
quadratures, whose beams differ in their polarization states, as they are separated by design by
the polarizing beam splitter (A/B, C/D), increase also for FSUB, whereas a decrease is visible
on FSUA.
This might be a clue to the source of these phase offset errors, in particular when compared to
the offsets between A, C and B, D, which in principle should not be affected by polarization
effects, as their phase relation should be the consequence of the 50/50 beam cube splitter only.
Although those also feature significant deviations from their nominal values of 180◦, they are
stable over the spectral channels.
This is a strong indication that polarization effects somewhere along the beam train, down to
the polarizing beam splitters, might be one major reason for the undesirable phase shifts. The
validity of this conclusion is also strengthened by the results of a prior offset analysis on fringe
scans in the laboratory, which also has shown spectral dispersion, but at a clearly weaker level
([Kam10]).
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Figure 4.15. – Phase offset distributions on the white channel and the corresponding gaussian
fits to the entire sample of 1,322 scans on FSUA and 6,032 on FSUB from the analysis of
the scanning data from commissioning runs 11–13. The results have been distributed onto
a grid with a binning width of 2.5◦. For both fringe sensor units the gaussian fits to the
data show considerable variability and not negligible overall deviations from the by design
encoded nominal 90◦(equiv. π/2) values.
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As a matter of fact, this result is not notably astonishing, as the beams pass many optical
elements before recombination within the fringe sensor units.
Changing observational parameters, in particular the source direction on the sky, require
changes to the configurations of the entire system, such as the pointing of the telescopes,
the position angles of the star separators, the choice of the main delay and differential delay
lines and others so that variations of the beams’ polarization states cannot only be not ruled
out, but on the contrary appear rather probable.

Figure 4.16. – The graphs depict the mean phase offsets between the four quadratures ABCD,
as obtained from the gaussian fits to the distributions over the whole sample of data from
comm. 11–13. Spectral dispersion is evident for the beams, which differ in their polarization
states, but not between those, whose phase offsets result from the separation by the 50/50
beam splitter cube only (A/C, B/D).

Nonetheless, the actual but non-ideal phase relations between the ABCD signals affect phase
and group delay estimations and can lead to nonlinear behavior.
As apparently they cannot be prevented, they must be measured and the depending estimates
need to be calibrated, either in real-time to increase the tracking efficiency, or at least during
post-processing.
This can be achieved by the following routine, suggested by [Sah09]. While in the ideal case,
with nominal phase relations between the ABCD signals, the fringe phase can be derived from
the correct fringe quadratures X = (IA − IC) and Y = (IB − ID) by applying Eq. (4.3), this
approach needs to be expanded in reality, when phase offset errors are present and described
by ψB, ψC and ψD, as the deviations of the corresponding signals’ phase difference from their
ideal values (π/2, π, and 3π/2) to the reference signal A.
The corrected quadratures can be constructed then by a linear combination of the non-ideal
signals and are given by the expressions

X(t) = [(I ′A(t)− I ′C(t))γ − (I ′B(t)− I ′D(t))α] csc ,

Y (t) = [(I ′B(t)− I ′D(t))β − (I ′A(t)− I ′C(t))δ] csc , (4.79)
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where the primed quantities denote the disturbed signals, csc = (βγ −αδ)−1 is a normalization
factor and the phase shift errors are hidden in the coefficients:

α = sinψC

β = 1 + cosψC

γ = cosψB + cosψD

δ = − sinψB − sinψD . (4.80)

With these corrected quadratures the desired quantities can be estimated by the standard equa-
tions of the ABCD method, as introduced in Sec. 4.1.3.1.

However, it should be noted that even though the phase shift errors can be in principle calibrated
in this manner, they still need to be known. So far, as their occurrences are not understood
sufficiently well, the most secure approach would be to determine those from a calibration scan
on the source, prior to the actual scientific observation.
Still, it is unclear, how stable the phase offsets are and how frequent such calibration data
should be recorded. Nevertheless, further effort should be put into the analysis of the phase
shift errors so that eventually some trends, with reference to the system’s configuration during
observations, may become evident, which could provide the means for proper modelling of the
effects.

4.3.1.2. Fringe Motion and Phase Referencing

The concept of fringe tracking in presence of a phase reference extends the coherence time dur-
ing the measurement and allows observations of dimmer sources. For PRIMA this is achieved
by the simultaneous interferometric measurement on two sources with an angular separation
within the isoplanatic patch.
As the atmospherically induced phase variations of those two targets are presumed to be suf-
ficiently equal, any corrections to these, as derived from the phase monitoring of the brighter
primary source, are applied to both objects equivalently by the adjustment of the main delay
line, which affects the delay of both targets. Consequently, this approach damps phase fluctu-
ations on the secondary target, which need to be compensated by the differential delay lines.
As results from the analysis in Sec. 4.3.1 of the RTO variations, which can be regarded as a
response to the atmospheric disturbances, already reflect this effect, it might be interesting to
take a deeper look into the temporal properties.
This can be done by investigating the power spectra of the fringe motion, as has been for ex-
ample performed in the past at the Mark III stellar interferometer and discussed in [Col1987]
or [Bus95].
According to theory (see [Gli11] for details), the temporal power spectra can be computed by
integrating the spatial power spectra, which describe the statistics of the disturbances, as the
Kolmogorov spectrum (Eq. (3.48)), introduced in Sec. 3.2.2, over all spatial frequencies.
As the Kolmogorov spectrum statistically specifies the pure phase fluctuations without account-
ing for the technique of measurement, this approach yields a temporal power spectrum with a
f−8/3 dependency over the whole frequency band. This situation changes, when in context of

155



Chapter 4. Astrometry with PRIMA

an interferometric observation not the general phase fluctuations on the wave front, but rather
the variations of the fringe positions in the instrument are considered.
Since the instrument’s configuration is not isotropic, due to a designated direction of the base-
line, the symmetry is also broken for the spatial and respectively temporal power spectra.
When the wind velocity, at which the turbulence cells are moving across the atmospheric layer,
is also taken into account, the temporal power spectrum of the fringe motion becomes depen-
dent on the wind direction with regard to the baseline orientation. However, a consistent overall
expression can be derived by averaging over all possible wind orientations ([Lin1980]).
Doing so, the resulting power spectrum exhibits two ranges of different dependencies on the
frequency with a transient frequency ft1 ≈ 0.2V/B, where V is the effective wind speed of the
single layer approximation (Eq. (3.61)) and B is the baseline length.
At the high frequency part of the spectrum, equivalently at low time scales, the phase fluctu-
ations at the two apertures are mostly independent from each other, and the power spectrum
of the fringe motion follows the power law ∝ f−8/3 dependency, just as the statistics of phase
fluctuations at a single telescope do.
At lower frequencies, which correspond to spatial scales that are comparable to the baseline,
the phase variations at the instrument’s inputs become more and more correlated, which trans-
lates internally to a suppression of the fringe motion at those frequencies and consequently to
a shallower asymptote in the power spectrum with ∝ f−2/3.
When this approach is extended to frequencies that represent spatial extents of the order of
the sizes of the single sub-apertures, the phase averaging over the telescope diameter d acts
as a high-pass filter and causes a drop in the power spectrum for frequencies above a second
transient value ft2 ≈ 0.3V/d, and the power law is described by ∝ f−17/3.
While the behavior within the two regimes below ft2 has been found and verified with several
instruments already, such as with the Sydney University Stellar Interferometer ([Dav1995]), the
Mark III interferometer ([Bus95]), the Palomar testbed interferometer ([Lan03]), or with the
VLTI Commissionning Instrument VINCI ([DiF03]), the steep relation at the very high end
has not been confirmed so far.
Furthermore, it should also be noted that the bare ∝ f−2/3 dependency, which has been derived
from the Kolmogorov infinite outer-scale model, exhibits a pole at f = 0. This issue is avoided
when a finite outer scale L0 of the turbulent eddies is considered within this context. This leads
to a saturation in power on large scales and results in a rather flat asymptote at frequencies
below fL ≈ V/L0.
As the transition frequencies in the power spectra depend on the used baselines, as well as on
the atmospheric conditions, the transition from the ∝ f−8/3 region to the flat regime can be
fuzzy. However, if a break is observed within the spectrum, the frequency, at which it is ob-
served, can be regarded as an upper limit to ft1 and fL, whichever is greater, and consequently
as a lower boundary to the outer scale L0.
The tracker’s responses to the fringe motions in OPD space, due to atmospheric turbulences,
have been investigated here on the basis of the RT offsets, recorded by the two OPD controllers,
and are illustrated in Fig. 4.17.
It shows processed data of a tracking sequence, acquired with a 91 m baseline on a pair of stars
(HD 10360, HD 10361), which are similar in brightness (both around 3.5 in K magnitude), and
separated by ρ ≈ 11.5 as.
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HD 10360, HD 10361 on 26.11.2011; ρ ≈ 11.5 as; τc = 2.76 ms

Figure 4.17. – Left: Linearly detrended and centered real-time offsets as recorded by both
fringe tracking controllers (OPDC on the pimary and dOPDC on the secondary source)
during a tracking sequence on a star pair, separated by ≈ 11.5 as on the sky and with
magnitudes in the K-band around 3.5. Right: Temporal power spectra of the same signals,
overplotted with the two major asymptotes of the Kolmogorov infinite outer-scale model.
Model and data correspond well for mid frequencies, where the power law exponent is fitted
to −2.89 on the OPDC data. A damp in the power of the atmospheric turbulences that
are corrected for by the differential delay lines is evident at frequencies below ∼1 Hz in the
dOPDC spectrum.

During the 300 s sequence full tracking was achieved on both targets, when the controller state
IDLE state is counted in as well, which for the main tracker contributes to about 2.6 % of the
time. The RTO signals over time reveal different behavior of the differential OPD controller,
compared to the offsets on the main target. High amplitude but low-frequency disturbances
are measured and already applied to the main delay, hence to both targets, so that they do not
reappear within the RTO recordings on the dOPDC.
This clear manifestation of the phase reference benefit becomes even more obvious within the
temporal power spectra, which have been derived from both RTO sequences after linear de-
trending and centering around zero.
While for frequencies above ∼1 Hz the spectra of both trackers are fairly comparable, though
a slight suppression in amplitude seems apparent at the dOPDC for frequencies greater than
∼10 Hz, an evident divergence between the two curves is found at the low-frequency part of the
spectra. In this temporal regime the atmospheric piston is compensated for by the main delay
tracker and results in the observed and expected damp in the power of the dOPDC signal.
A fit to the power law within the range of 1–50 Hz to the main delay data yields an exponent
of around −2.89, which is a little bit steeper than reported values from PRIMA fringe tracking
by [Sah09] or [Sah11], but still can be regarded as a proper affirmation of the theoretical pre-
diction, with a deviation of less than 10 % from the Kolmogorov value of −8/3.
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The flattening of the spectrum at lower frequencies is also apparent, with a fitted exponent of
about −0.7 for frequencies below 1 Hz, but a clear distinction between the two regimes cannot
be made, as the region of transition appears rather broad.

Common to the spectra of both controllers are noise peaks at several well-defined frequen-
cies above 1 Hz and a clear bump in the range between ∼ 60 Hz and ∼ 100 Hz. These peaks,
located above the closed loop fringe tracker bandwidth of about ∼ 15 Hz ([DiL08]), can result
from any high-frequency vibrations on any optical elements along the path of the travelling
light beams through the system. They are regularly encountered within the tracking data and
have been previously reported and partially discussed in [Sah09], where at least some of them
could have been attributed to originate from differential injection of the ABCD signals into the
fibers, which can result in erroneous phase and delay estimates, which, misinterpreted by the
tracking controller as actual fringe motions, are then falsely corrected for.

Furthermore, the predicted steep decay in the spectrum above the discussed transient ft2 is
not confirmed within this tracking sequence, although it should be noted that an obvious
change in the power law exponent towards increased values in magnitude is visible for frequen-
cies beyond ∼ 150 Hz. This feature is encountered also within spectra of other data sets and
might be interesting to be investigated further.

However, in summary it can be stated that the advantages of phase referenced fringe tracking,
achieved by PRIMA’s dual-feed mode implementation, are clearly evident in the flatness of the
power spectrum of the dOPDC real-time offsets beneath f≈1 Hz and that the secondary fringe
tracker mostly compensates for the remaining low amplitude perturbations at high frequencies.

4.3.2. Baseline Calibration

PRIMA has been designed to measure differential delays regarding fringe envelope centers of
two simultaneously observed sources, from which the desired astrometric quantities, the star
separations on the sky, can be principally derived, when the basic relation Eq. (4.21) is applied.
To achieve this, the baseline, so far roughly defined as the vector connecting the two telescopes,
needs to be known beforehand.
As will be outlined in the following two sections, in reality and in particular when regarding
PRIMA’s dual-feed character, the baseline concept becomes complex and the determination of
this astrometrically essential quantity is anything but a trivial task.
In ideal situations the static entity, in reference to the observatory, which together with the
coordinates of the observed source determines the measured delays (Eq. (4.18)) that need to be
applied to compensate the external OPD, is called the wide-angle baseline and can be defined
as the joining vector of the fixed telescopes’ pivot points, positions of the intersections of the
azimuth and altitude axes, as these determine the effective path lengths of the stellar beams in
the system.
Still, when it comes to real instruments in uncontrolled environments, the positions of the
telescopes’ pivot points will not remain locally fixed, but can be smeared out due to optical
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misalignments or any slight material deformations. This applies also to the the wide-angle
baseline, which consequently becomes unstable and subject to time dependent variabilities.
In addition to that, conceptional difficulties arise due to the implementation of the laser metrol-
ogy system, which does not stringently cover the entire actually applied delays, but only the
path lengths between the laser beams’ locations of injection (extraction) and their endpoints.
Although in the case of PRIMA the metrology covers the point of beam combination, its cover-
age of the beam train is limited by the retroreflectors within the star separators, which do not
coincide with the pivot points. This generally results in offsets between the effective baseline
and that one, which is detected by the system and can be calibrated.
Furthermore, as the metrology reaches only up to the STSs M9 mirrors, a longitudinal offset
is present due to the unmonitored path length between the metrology endpoint and the instru-
ment’s entrance pupils at the M2s.
In order to incorporate these uncertainties, the delay equation can be extended by error terms,
as introduced in [Sah13]:

DL2−DL1︸ ︷︷ ︸
d

+εtr + ε = ŝ · (BW − µ1 + µ2︸ ︷︷ ︸
Beff

) + C . (4.81)

Here the effective instrument baseline Beff = T 2 + µ2 − (T 1 + µ1) is composed of the ideal
wide-angle baseline BW = T 2 − T 1 and the terms µ1,2, which describe the metrology end-
point offsets from the telescopes’ pivot points. The left hand side of the equation specifies the
effectively applied delay that needs to be adjusted to compensate for the external geometric
delay and the instrument’s constant term C. Besides the measured delay d, it accounts for
contributions from any tracking errors εtr and path discrepancies ε due to not monitored stellar
beam path segments.

The instrument’s effective baseline can be obtained from delay measurements during obser-
vations of stellar sources with known coordinates, as widely and uniformly as possible spread
across the accessible celestial sphere.
For this reason, during the night of November, 21th/22th 2011 several stars have been observed
by PRIMA in both modes (NORMAL/SWAPPED).
The stars have been chosen to be single stars from the FK6 catalog, and the catalog’s long-term
prediction mode (LTP) has been incorporated into the given star positions and proper motions
([Wie02]). The parallax values have been extracted from the new reduction of the Hipparcos
data ([vLee07]). The nine stars that have been observed during this night and which have been
used eventually to calibrate the baseline are listed in Tab. 4.6.

The observations have been performed with the two telescopes being mounted on the VLTI
stations G2 and J2 (see Fig. 4.18), which results in an approximate baseline lenght of ≈ 91.2
meters. As PRIMA is by principle constructed to perform measurements on two stars at the
same time, but for this calibration only single objects have been observed, the system’s set-up
had to be adapted. This was achieved by introducing a fake secondary source at a distance of
8 microarcseconds in right ascension to the actual star. In this manner, the telescopes were
pointing to the position between those two objects, and the stellar beams were picked up as
usual by the field selectors.

159



Chapter 4. Astrometry with PRIMA

Table 4.6. – Stars and properties that have been used for the baseline calibration in Nov.
2011. The coordinates have been derived from the long-term prediction mode of the FK6
catalog and are given here in the form as have been provided to IPHASE (equinox and epoch
J2000.0). The parallax entries are taken from re-reduced Hipparcos data ([vLee07]).

RA DEC µα µδ parallax radial vel.

[h : m : s] [d : m : s] [s/yr] [as/yr] [as] [km/s]

HIP 14146 03 02 23.49941 -23 37 28.0799 -0.01073429 -0.0552 0.0368 -9.8

HIP 22449 04 49 50.41257 +06 57 40.6112 +0.03123425 +0.01217 0.12394 +24.3

HIP 36795 07 34 03.18071 -22 17 45.8509 -0.0028749429 +0.04759 0.03953 +61.4

HIP 34088 07 04 06.53089 +20 34 13.0768 -0.0004970226 -0.00014 0.00237 +6.7

HIP 24659 05 17 29.08546 -34 53 42.7336 +0.0072145027 -0.33495 0.03082 +21.1

HIP 50799 10 22 19.58617 -41 38 59.8705 -0.0023500477 +0.06020 0.016 +20.9

HIP 20384 04 21 53.32834 -63 23 11.0090 +0.01285945 +0.17426 0.00848 +45.0

HIP 50954 10 24 23.70642 -74 01 53.7970 -0.0037246118 -0.02687 0.06164 -4.8

HIP 56647 11 36 56.93254 -00 49 25.5012 +0.0001873527 +0.04339 0.01797 +1.0

During the NORMAL mode observations the fringes have been tracked by FSUB and, after
swapping the input channels, the fringes have been locked in SWAPPED mode by FSUA.
As this field rotation is performed by the de-rotator, its changing position can also influence
the effective baseline. In particular an internal longitudinal offset ∆AB is expected, which,
when solving the baseline for the individual modes separately, is covered by the corresponding
constant term, but which needs to be accounted for when the baseline solution is obtained from
the combined data of both modes.
For this baseline calibration the main delay measurements, obtained from the main delay line
metrology (not PRIMET), have been used, and the system has been assumed to be stable over
the night so that a time dependency was considered to be solely introduced by effects from
longitudinal dispersion.
The delay data has been reduced by the ADRS pipeline up to “Level 2”, after which the
delays, averaged onto a 1-second time grid, have been corrected for dispersion manually by the
approach described by Eq. (4.16) so that the final equations to be solved for by the calibration
routine becomes:

ncorr
ns,G(T, P,H, κs)

nmet(T, P,H, κmet)
· d = ŝ ·Beff + C ±∆AB . (4.82)

In order to retrieve the refractive indices for the stellar bandpass (2.25µm) and respectively
the metrolology wavelength (λvac = 632.991354 nm), the models, as provided by [Mat06] and
[Bir1993], have been applied, wherefore the temperature and the air pressure in the tunnels
have been extracted from the individual observation raw file headers, and an average site hu-
midity of 12.5 % has been assumed.
The resulting group refractive indices have been determined to lie between ns,G−1 = 1.995×10−4

and ns,G − 1 = 1.999 × 10−4, while the refractive indices regarding the metrology fluctuated
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between nmet − 1 = 2.016× 10−4 and nmet − 1 = 2.020× 10−4.
An additional correction term (ncorr = λvac/λmod) has been applied, as, according to [Sah13],
the controller that converts the metrology measurement to the delays does not use the vacuum
wavelength but a modified wavelength λmod = 632.863 nm, which seemingly has been imple-
mented as an average refraction correction.

Figure 4.18. – The VLTI station map depicts the site platform with the UT positions (UT1,
. . . , UT4) and the stations (A0, . . . , M0), which the ATs can be positioned onto. Due
to those flexible system configurations, various interferometric baselines, distinguished by
length and orientation, become accessible. (Image from [ESO03])

In order to solve the delay equation, the corrected delays and the star catalog (Tab. 4.6)
have then been fed manually into IPHASE. In the case of only one mode data (NORMAL or
SWAPPED), a four parameter fit has been performed to determine the global constant term
C and the three baseline components: Bx, the component in west direction on the ground, By,
the component along the south direction and Bz, the difference in altitude above ground.
The fifth parameter ∆AB, also assumed constant over the night, has been applied only, when
combined data has been considered. According to Eq. (4.82), this offset is applied with op-
posite sign to the measured delays of the two concurring modes. While it is arbitrary and a
pure question of definition, in this analysis here the positive sign has been attributed to the
NORMAL observations and respectively the negative to the SWAPPED.
Besides the delay data to the given times (UTC) of the measurements and the star properties,
the IPHASE software needs also to be provided with the observing site’s geographic coordinates.
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As the station positions of the two AT stations can be retrieved from [ESO03] with respect to a
well-defined coordinate center of the VLTI array with longitude ϕVLTI = −70.40498688◦ (east
positive) and latitude λVLTI = −24.62743941◦, the precise position of the midpoint between the
two telescopes can be determined.
With the coordinates E = 38.063 m (offset in east direction) and N = −12.289 m (offset in
north direction) of the G2 station and E = 114.46 m, N = −62.151 m of the AT station J2,
the geographic position of the midpoint (E = 76.2615 m, N = 37.22 m) has been determined
to ϕG2−J2 = −70.404233◦ and λG2−J2 = −24.627774◦, wherefore a site elevation of 2681 m has
been adopted.7

Furthermore, if provided with the necessary information, IPHASE is capable of correcting for
earth orientation at the time of observation. For this reason, parameters on polar motion and
UT1-UTC have been applied after being retrieved from the [IERS13] long term earth orienta-
tion data.

Table 4.7. – Results of the baseline calibration, where the fit to the delay equation has been
performed within IPHASE. The best fit values, their formal errors and the residual RMS are
listed for the four parameter models of the individual datasets of observations in NORMAL
and SWAPPED mode, as well as the results of the five parameter fit to the data combined
from those two set-ups. The number of data points (1-second averages of the main delay
readings) is 1,413 during NORMAL and 1,790 during SWAPPED observations.

NORMALB SWAPPEDA combined

9 stars; N = 1413 8 stars; N = 1790 9 stars; N = 3203

value [µm] σ [µm] value [µm] σ [µm] value [µm] σ [µm]

Bx 76387563.9 4.8 76387584.2 5.0 76387577.3 3.5

By -49878178.2 2.5 -49878172.2 3.1 -49878174.2 2.1

Bz -16679.1 9.8 -16676.2 10.9 -16681.5 7.5

C -60920915.0 8.7 -60920731.2 9.1 -60920827.3 6.4

∆AB - - - - -94.7 0.9

RMS [µm] 38.1 54.1 47.8

The results of the final IPHASE baseline calibration are summarized in Tab. 4.7.
The first noticeable outcome is that the fits to the individual observational mode data differ
mainly in the determination of the constant zero term, while the three baseline components
agree down to the maximum difference of 20.3µm in the x-component ((∆Bx,∆Bx,∆Bz,∆C) =
(20.3, 6.0, 2.9, 183.8)µm). This was expected due to the difference in the de-rotator posi-
tion between the two set-ups and is successfully modelled by the fit to the combined data
by ∆AB = −94.7µm, which is approximately half the constant term difference ∆C.
The RMS of the combined data fit residuals is about ≈ 48µm (lower for NORMAL data only,
but higher for the SWAPPED fit) and the formal errors of the fit parameters appear rather

7The coordinate center coordinates and the site elevation are retrieved from header keywords of the fits files.
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small, with a relative error of about 4.5×10−8 for the x- and y-components of the baseline, and
approximately 4.3 × 10−4 for the z-component, which naturally is due to its magnitude being
several orders smaller than the absolute values of the two other components.
Furthermore, it should be noted that the Bz component is generally difficult to determine as
it correlates strongly with the constant term C.
Nevertheless, taking a deeper look into the residuals and their distributions against several pa-
rameters seems to reveal hidden systematics within the delay measurements and questions the
confidence on the accuracy of the calibration. Although no clear dependency of the residuals
regarding the azimuth angle of the observation or the elevation can be derived from the graphs
in Fig. 4.20, some structure seems to be indicated with varying applied delay and becomes
rather obvious, when studying the residuals against the time of observation during the span of
about nine hours, during which the frames for this calibration have been acquired.
As one can see, some systematic change in either the instrument’s environment or varying in-
fluences from the atmosphere excited a clear trend in the delay measurements, mirrored by the
monotonic behavior of the residuals against time with a drift of about 170µm between the first
observation of the star HIP 14146 and the last in the night HIP 56647. Applying a stochastic
error of this order of magnitude onto the delay measurements, naturally increases the formal
errors of the fit parameters by a factor of ∼3.5.
Also, as indicated by the accelerated increase over time, either those systematics became in-
creasingly effective during the last hour of the observation sequence due to any hidden reasons,
or the time scale of the variation of their underlying mechanisms changed. However, this has a
clear impact on the distribution of the residuals, resulting in a deviation from a natural gaus-
sian shape (see Fig. 4.19).

a) b)

Figure 4.19. – a): Star distribution in azimuth angle and elevation. As one can see the
northwest part of the sky is empty, which is mainly due to observing restrictions from the
used telescope stations and the applicable delays. b): Distribution of the residuals of the fit
to the combined data of both observational modes. The bin size is 5µm and the FWHM
was determined by a gaussian fit.
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c) d)

a) b)

Figure 4.20. – Residuals of the combined baseline fit against the azimuth angle and elevation
of the observed calibrator stars, the time of observation, in reference to the first data set,
and against the applied delay.

Although these features are alarming and must be investigated further to definitely pinpoint
the sources of the variations, the analysis also suggests that the system’s precision allows to
calibrate the instrument’s wide-angle baseline with an accuracy, as is demanded by the science
goals of the PRIMA program.
One should remember that the relative precision of the baseline directly scales the uncertainty
of the obtained astrometric measurements of star separations and that a relative accuracy of
10−6 (100µm on a 100 m baseline) should suffice to obtain astrometric uncertainties below
50µas for absolute star separations on the sky up to 30 as, which is the limit on target selection
for the exoplanet search program (see chapter 5).

The results of the baseline calibration, which have been presented here and have been fur-
ther used for the astrometric analysis in Sec. 4.3.3, qualitatively resemble those acquired by
[Sah13] on the same dataset, although the absolute values of the baseline components differ
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up to the maximum of ≈ 860µm on the less accurate z-component and ≈ 570µm on the y-
component. These deviations have been verified to mainly originate from a difference between
the applied geographic coordinates of the observation site and the polar motion correction.
An agreement of the results to about 100µm has been obtained when those differences have
been left aside for the modelling.

4.3.3. Astrometry from Commissioning Data

During the PRIMA commisioning runs several bright binary targets have been observed in
dual-feed mode in order to ensure the instrument’s functionality and to test the modelling of
the recorded data with respect to the desired observable, namely the astrometric separation
vector between the two sources on the sky.
Within this section the derivation of the star separation from the raw PRIMA tracking (and
scanning) data will be outlined and the results from the performed analysis on different observa-
tions will be presented regarding the question towards the instrument’s precision and accuracy.

4.3.3.1. Data Reduction

For the purpose of this analysis, the raw fits files, as recorded by the instrument during the
observations, have been processed. All the essential information can be obtained from three
different file table categories. The measured differential delay is retrieved from the fits file
extension METROLOGY DATA, sampled at 4 kHz, the group delay measurements of the two
FSUs are given within the IMAGING DATA FSUA (resp. IMAGING DATA FSUB) tables,
which are recorded at 1 kHz, and the OPD controllers’ states are acquired from the correspond-
ing file extensions OPDC/DOPDC, with the data sampled at 4 kHz.
Before the astrometric fit is performed, some basic data reduction is performed to the raw files,
at one hand in order to ease the data handling, as the high sampling entails large file sizes, and
on the other hand also to correct for instrumental and conceptional effects.
Consequently, the following procedure is applied to all dual-feed raw data files, which have been
recorded while simultaneously fringe tracking on two targets:

1. The raw differential delay data depends on the PRIMET laser metrology, which detects
each passing fringe. Those are internally stored in fringe counters with a size of 32
bits. Therefore, the absolute count is limited, and a counter overflow occurs, when the
maximum value is reached. Whenever this happens, it results in two jumps of the raw ∆d
measurements, the first by −∆FC, followed by +∆FC shortly after the first occurrence,
where ∆FC ≈ 486.783µm ([Sah13]).
Such metrology counter overflows, illustrated in Fig. 4.21, are stored in corresponding
keywords within the file headers and need to be corrected for by shifting the data in-
between by ∆FC.
In those cases, where the fringe counter oveflows occur at the beginning or the end of
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a data frame, only one of the jumps is recorded and the differential metrology data is
adapted appropriately.

Figure 4.21. – Raw PRIMET ∆d recordings (top) and the corresponding recordings corrected
for the occurring jumps by the amount of ∆FC ≈ 486.783µm due to fringe counter overflows
(botttom).

2. The OPD and dOPD controller states are investigated regarding the tracking state, and
all metrology data that has been recorded, while one of the controllers was not fringe
tracking (state 7), is discarded.

3. The group delay data of both fringe sensor units is smoothed due to its noisy nature and
interpolated onto the time grid of the metrology readings in order to apply the following
group delay correction onto the differential delays:

∆dcorr = ∆d−GDB + GDA . (4.83)

4. Although at this point of the reduction one is in principle left with only differential delay
data, while, according to the path delay controllers, both stars were tracked, experience
has shown that, especially at the points of transitions between different controller states,
thus at the beginning and the end of individual tracking sequences, the differential metrol-
ogy data can be quite unstable and shows considerable variations.
Sigma clipping is applied in order to get rid of these recordings. For this reason a 2nd
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order polynomial fit is performed and all data points, for which the residuals happen to
be greater than three times the residual standard deviation, are being rejected.

5. The remaining delay data is averaged onto a 1-second binned time grid, which after the
reduction procedure is finished, and the data is considered clean and ready for further
analysis.

It should be noted that no dispersion correction is applied, as the differential delay is introduced
by the differential delay lines in vacuum conditions, and any differential dispersive effects from
the light paths outside of the DDLs are neglected.
Also, any tracking errors that do not reveal themselves within the group delay measurements
might still be persistent if not discarded by the sigma clipping method.

4.3.3.2. Astrometric Fit and Separation Vector

As implied by Eq. (3.47), the differential delay measurements can be used to fit for the sep-
aration vector ∆s = ŝ2 − ŝ1 between the two observed sources on the sky. The vector is
defined either by its components ∆sα = ∆α∗ = (α2 − α2) cos δ along right ascension and
∆sδ = ∆δ = δ2 − δ1 in direction of declination in the tangential plane at the objects’ midpoint
coordinates, or equivalently by the magnitude of the separation ∆s and θs, the position angle
(PA) (see Fig. 4.22).

The model, which is applied to the measured differential delay data, reads as

∆d(t) = ±Bp · ∆s · cos(θBL(t)− θs) + Z0

= ±Bp · [∆s · cos θs︸ ︷︷ ︸
∆sδ=∆δ

cos θBL(t) + ∆s · sin θs︸ ︷︷ ︸
∆sα=∆α∗

sin θBL(t)] + Z0 , (4.84)

with the positive sign applied to the data points recorded in NORMAL mode and the negative
in SWAPPED.
Therefore, at least one observation frame from each of the two modes needs to be supplied to
disentangle the measured delay along the baseline orientation from the instrumental contribu-
tions and to solve for the PRIMET zero term Z0.
As the time dependence of the measurements due to earth rotation is accounted for by the
changing baseline angle θBL(t), the observatory bound wide-angle baseline, which was solved
for in the previous section (4.3.2), is projected onto the sky by applying Eq. (3.44). The mid-
point coordinates, at which the tangential plane is defined, are recovered from the two target
coordinates provided within the file headers.
For the entire analysis presented here the wide-angle baseline solution, with its components
solved for by the combined data set (given in Tab. 4.7), has been used, and the error terms,
involving any metrology endpoint offsets from the telescopes’ pivot points and uncertainties
due to unmonitored light path segments (see Eq. (4.81)) have been neglected.

From here on, any data set, composed of at least one observation frame from each mode,
during which the PRIMET metrology was not reset, and no substantial glitches occurred so
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that the zero term can be assumed stable and constant and can be solved for, will be denoted as
a single epoch observation. In order to distinguish the various data sets, unique run identifiers
will be attributed to these observations.

E

N

PS

SS

θs ∆s ∆δ

∆α∗

Figure 4.22. – The separation vector ∆s defines the relative position of the two stellar targets
on the sky. It can be expressed by either its orthogonal components (∆α∗, ∆δ) along the
directions of the right ascension and declination respectively or by its absolute value and the
position angle θs, which gives the angular offset of the secondary source (SS) to the primary
(PS), counted from the celestial north pole over the east direction.

The astrometric multiple linear regression fit to the data was performed by a standard weighted
least squares routine written in IDL (Interactive Data Language) and is based on standard pro-
cedures summarized in [Pre1992].
The corresponding weightings are obtained frame-wise from the standard deviations σd of the
residuals of a 2nd order polynomial fit to the reduced and averaged differential delays, which
then gives their dispersion in delay space.

The applied astrometric fit solves for the constant zero term and the remaining two astrometric
parameters, namely the separations along the directions of right ascension and declination, from
which the desired observables are computed by the standard formulae ∆s =

√
(∆sα)2 + (∆sδ)2

and θs = tan−1 ∆sα
∆sδ

.

An example of the averaged delay data of such an observation run is plotted in Fig. 4.23,
where the original but reduced NORMAL and SWAPPED measurements from an observation
over nearly 3 hours of the binary HD 202730, separated by ≈ 7 as, is illustrated, as well as the
differential delays after having been corrected for the zero term.

For the estimation of the 1-sigma errors of the three fit parameters (δ∆sα, δ∆sδ, δZ0), the
frame dependent statistical delay dispersions σd, which as mentioned above are exploited for
the file dependent weightings, are scaled linearly by a factor cd to the point, where the re-
duced chi-squared χ2

red of the fit becomes 1. As a matter of course, these adapted errors

σc = σd · cd =
√
σ2
d + σ2

sys no longer describe the pure statistical uncertainty in the delay mea-
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Figure 4.23. – Top: Reduced and averaged PRIMET differential delay data with, according
to Eq. (4.84), the sign inverted measurements in SWAPPED mode and an overall offset due
to the metrology zero term. Bottom: The corrected delays, where the constant term has
been subtracted and the SWAPPED data has been multiplied by -1.

surement itself, but contain a systematic contribution σsys, which potentially displaces the
measurement from the applied model.
From those uncertainties the errors of the observables are derived by the means of standard
gaussian error propagation, with the entities regarded being independent:

δ∆s =

√
(∆sα)2(δ∆sα)2 + (∆sδ)2(δ∆sδ)2

∆s
(4.85)

δθs =

√
(∆sδ)2(δ∆sα)2 + (∆sα)2(δ∆sδ)2

∆s2
. (4.86)

In order to verify this approach of the error estimation, an alternative bootstrap method has
been implemented and conducted for each processed observation run. For this purpose the
astrometric fit is performed N times (2,000 times in the course of this analysis), but with re-
sampled data sets.
While the sample size remains the same for all of those sets, where the number of values in the
different modes is maintained, the varying samples are randomly drawn from the original data
collection with the elements being returned after each individual draw.
Consequently, this method provides N fit solutions, from which mean values for ∆sα and ∆sδ
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are derived, and the errors are estimated from their corresponding standard deviations.
The separation and position angle with errors are then again determined by the same formulae
and methods, as described above for the simple astrometric fit.
Furthermore, a principal component analysis of the N fit parameter distribution in the sky
plane gives the orientations of the highest and respectively lowest obtained precision.
Inherently, the orientation with the lowest dispersion is determined by the distribution of the
projected baseline angles during the observation and can therefore be considered the average
baseline orientation 〈θBL〉 for the particular run.

HD202730 C16 ep2 on 26-08-11

Figure 4.24. – Corrected differential delays ∆d and residuals of the astrometric fit to an
observation sequence of the binary HD 202730 on 26-08-11. Also depicted is the distribution
of the 2,000 fits to the resampled data sets from the bootstrap analysis.
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Figure 4.24 shows the results of this entire astrometric modelling to the same observation run
of the system HD 202730 as from which the differential delays, illustrated in Fig. 4.23, have
been extracted. It depicts the differential delays, corrected for the zero term, as well as the fit
residuals in delay space against the target system’s hour angle, the azimuth and the altitude
during the observations. The residuals in SWAPPED mode are sign inverted for this illustra-
tion.
The astrometric fit to the 1,387 data points from altogether 8 frames (4 in NORMAL, 4 in
SWAPPED) yields as results a separation of ∆s = (7181.58 ± 0.53) mas and a position angle
of (270.4354± 0.0082)◦.
The residual structure is flat and does not show any significant systematics, which is why the
overall residual standard deviation, at about ≈ 1.6µm, is governed by the delay dispersions
from the individual files, varying within the range between ≈1.0µm and ≈2.5µm.
Also shown is the bootstrap fit parameter distribution, together with the results from the
resampling analysis. The precision along the average baseline angle 〈θBL〉 = 117.09◦ was de-
termined to σ‖ = 96µas, whereas the dispersion along its orthogonal, and consequently least
precise direction, is more than 10 times higher and quantified by σ⊥ = 1.18 mas.
The uncertainties in separation δ∆s = 0.54 mas and position angle δθs = 0.0082◦, derived by
bootstrapping, agree very well with the corresponding ones from the simple fit.

However, although in this case at first inspection the model seems to describe the data quite
precisely, it will become obvious in the following that this is not the usual case and that the
indicated precision of the measurement does not reflect the instrument’s accuracy.

4.3.3.3. Results and Implications

Within this section some results from astrometric fits to PRIMA dual-feed data, obtained be-
tween Jan. and Nov. 2011, is being presented and discussed. During this period of time, several
visual binary targets have been observed as part of the system’s characterization.
Table 4.8 lists the main properties of the systems, which have been obtained from The Wash-
ington Visual Double Star Catalog ([Mas01]), while all results from analyzed single epoch ob-
servation sequences are compiled in Tab. 4.9.
The individual sequences are distinguished by an unique run identifier, and the corresponding
plots to the fits, if not presented here, can be found in App. D.
Lists of the individual fits files, belonging to the analyzed sequences are given in App. C.

It should also be mentioned that, although only astrometric results to tracking data is discussed
here, the fringe scanning observations can also be used to fit for the desired star separations,
as long as the fringe tracker on one of the targets provides the phase reference and the position
of the fringe envelopes can be acquired from the measurements of the second FSU.
For the sake of completeness, several results, obtained by this approach, are also listed in
Tab. 4.9. The procedure of data reduction was similar to the one described in 4.3.3.1, with
the difference that the single data points were obtained by a gaussian fit to the SNR within
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Table 4.8. – Properties of the observed binary systems between commissionings 14 and 17.
The entries are taken from the WDS catalog ([Mas01]), and the separation and position angle
values are referred to the catalog specific date of the last satisfactory observation, called the
observation date here.

system WDS Obs. date θs ∆s ∆µ∗
α ∆µδ

[yr] [deg] [as] [mas/yr] [mas/yr]

HD100286 11323-2916 2007 210 9.4 3 -4

HD10268 01397-3728 1998 277 19.8 0 -14

HD10360 01398-5612 2009 188 11.6 -116 -204

HD108248J 12266-6306 (AB) 2012 111 3.6 -8 7

HD131977 14575-2125 (AB) 2011 305 25.6 -93 156

HD156274 17191-4638 (AB) 2009 256 10.2 -8 0

HD18622 02583-4018 2009 91 8.4 51 -22

HD202730 21199-5327 2010 268 7.3 -13 -9

HD66598 08031-3228 2000 135 35.7 13 -7

each scan over the fringe package in delay space. Also, the correction for the group delay was
performed only with reference to the tracking FSU.

Precision versus Accuracy

The fit to the tracking sequence HD202730 C16 ep2 (see Fig. 4.24) of the rather short separation
target HD 202730 appears to be quite representative for the PRIMA data obtained from this
system. An observation sequence three days later (HD202730 C16 ep3) is shown in Fig. 4.25.

Both of these runs are comparable in qualitative results, as the residuals appear flat and of
similar magnitude. The uncertainties regarding the derived separations of both fits are of the
same order of about ≈0.5 mas.
This appears promising at the first inspection, but a deviation of around ≈ 10 mas of the
absolute separation values arises suspicion.
Inspecting the results from all analyzed sequences of this system’s observations, one sees that
the scatter in separation is even bigger (compare also with Fig. 4.26), although it must be said
that the fit of the run HD202730 C16 ep1 seems to be strongly affected by some systematics
from the last three observation frames (see Fig. D.18 on p. 226).

Still, this dispersion, which is by around one or even two orders of magnitude higher than the
implicated precision of the measurements, is alarming and cannot be explained by the stars’
proper motions and an actual change of separation, but must be the result of unrecognized
systematics.

172



4.3. Analysis of Commissioning Data

Table 4.9. – Results from the single epoch analysis. For each processed observation sequence
(epoch) the number of valid 1-second averaged data points and the astrometric observables
with errors from the astrometric fit, defined by Eq. (4.84), are listed. Also tabulated are the
corresponding 1-sigma uncertainties from the bootstrap approach and the dispersions σ‖ and
σ⊥ along the directions of the axes of maximum and minimum precision from the principal
component analysis. The entries for the fits to pure tracking data (above) and to scanning
data (below) are separated by the dashed line.

Astrometric fit Bootstrap

sequence ID date N ∆s θs δ∆s δθs 〈θBL〉 σ‖ σ⊥

[dd-mm-yy] [mas] [deg] [mas] [deg] [deg] [mas] [mas]

HD100286 C14 ep2 31-01-11 941 9369.6 ± 2.8 210.1057 ±0.0134 2.5 0.0120 121.64 0.080 3.13

HD10268 C16 ep1 29-08-11 939 19486.91 ±0.72 278.7361 ±0.0034 0.72 0.0034 120.81 0.125 1.37

HD10360 C16 ep1 26-08-11 1167 11429.34 ±0.45 188.1107 ±0.0020 0.45 0.0020 130.98 0.063 0.60

HD10360 C17 ep1 20-11-11 366 11398.3 ±13.5 187.9759 ±0.0398 15.0 0.0448 119.86 0.071 17.41

HD10360 C17 ep2 21-11-11 1225 11433.79 ±0.22 188.0723 ±0.0018 0.22 0.0014 144.06 0.099 0.35

HD10360 C17 ep4 24-11-11 3545 11423.18 ±0.12 188.0270 ±0.0008 0.14 0.0009 144.51 0.034 0.23

HD10360 C17 ep5 25-11-11 3065 11408.98 ±0.21 187.9906 ±0.0008 0.22 0.0008 127.03 0.031 0.27

HD10360 C17 ep6 26-11-11 3376 11420.48 ±0.37 188.0264 ±0.0015 0.36 0.0014 128.12 0.039 0.46

HD10360 C17 ep7 26-11-11 5285 11432.48 ±0.06 188.0723 ±0.0006 0.05 0.0005 156.99 0.023 0.12

HD108248J C14 ep1 27-01-11 341 3897.4 ±10.8 113.9064 ±0.2130 9.9 0.1947 122.40 0.062 16.51

HD108248J C14 ep2 29-01-11 309 3866.1 ±19.4 116.0821 ±0.3557 19.8 0.3638 125.09 0.573 31.58

HD108248J C14 ep3 01-02-11 359 3917.3 ± 2.5 112.7284 ±0.0465 3.0 0.0570 123.30 0.648 4.85

HD131977 C14 ep1 02-02-11 249 25789.0 ±61.9 310.3967 ±0.1534 65.1 0.1613 113.65 0.239 97.54

HD156274 C15 ep3 20-07-11 2978 10019.8 ± 1.3 257.2951 ±0.0132 1.2 0.0127 116.30 0.179 2.52

HD156274 C15 ep4 20-07-11 402 10078.2 ±19.8 257.2105 ±0.1113 19.2 0.1075 135.42 0.280 26.93

HD18622 C15 ep2 21-07-11 167 8303.4 ± 7.0 90.5292 ±0.2242 7.3 0.2328 102.02 1.095 34.50

HD202730 C15 ep1 20-07-11 603 7187.8 ± 2.3 270.1519 ±0.0382 2.6 0.0459 114.43 0.380 6.32

HD202730 C16 ep1 24-08-11 581 7142.9 ± 1.6 270.7321 ±0.0135 1.5 0.0126 133.76 0.437 2.14

HD202730 C16 ep2 26-08-11 1387 7181.58 ±0.53 270.4354 ±0.0082 0.54 0.0084 117.09 0.096 1.18

HD202730 C16 ep3 29-08-11 1088 7192.27 ±0.45 270.3241 ±0.0048 0.46 0.0049 126.83 0.061 0.77

HD66598 C14 ep1 27-01-11 189 35969.4 ±49.9 136.2926 ±0.0783 50.8 0.0797 125.28 0.134 71.30

HD66598 C14 ep2 27-01-11 325 35883.7 ±28.2 135.2607 ±0.0451 27.3 0.0436 139.00 0.122 38.59

HD66598 C14 ep3 28-01-11 928 35885.4 ± 1.8 135.5776 ±0.0029 1.5 0.0024 127.34 0.129 2.10

HD66598 C14 ep4 29-01-11 438 35865.7 ± 3.3 135.5377 ±0.0052 3.5 0.0056 123.53 0.207 4.95

HD66598 C14 ep6v2 30-01-11 2140 35891.6 ± 2.1 135.5810 ±0.0034 2.3 0.0037 121.14 0.452 3.26

HD66598 C14 ep9 02-02-11 750 36113.5 ± 3.8 133.6556 ±0.0063 4.0 0.0065 109.32 0.389 5.70

HD66598 C14 ep10 02-02-11 1087 35851.3 ± 2.0 135.4276 ±0.0032 2.1 0.0033 118.73 0.151 2.90

HD66598 C14 ep11 02-02-11 680 35933.7 ± 8.6 135.8939 ±0.0136 6.5 0.0103 132.96 2.090 8.89

HD66598 C14 ep12 04-02-11 1468 35914.61 ±0.82 135.6074 ±0.0013 0.70 0.0011 117.00 0.089 0.98

HD66598 C17 ep1 24-11-11 3975 35841.3 ± 1.2 135.2511 ±0.0019 1.4 0.0022 111.74 0.106 1.96

HD66598 C17 ep2 25-11-11 6007 35826.28 ±0.51 135.1908 ±0.0008 0.51 0.0008 113.09 0.083 0.73

HD66598 C17 ep3 26-11-11 1769 35873.0 ± 4.1 135.4654 ±0.0065 3.9 0.0061 118.90 0.303 5.45

HD10360 C17 s ep1v2 20-11-11 67 11477.4 ±90.8 184.2621 ±0.3071 85.2 0.2272 117.87 0.618 96.61

HD10360 C17 s ep2 21-11-11 780 11438.5 ±10.5 188.1159 ±0.0513 10.3 0.0667 142.58 0.837 16.82

HD10360 C17 s ep3 24-11-11 84 11425.0 ± 4.9 188.0478 ±0.0200 4.4 0.0224 135.34 1.424 6.11

HD202730 C16 s ep1 24-08-11 187 7138.5 ±11.5 270.7808 ±0.0768 2.9 0.0242 132.75 1.892 3.71

HD66598 C17 s ep1 26-11-11 1062 35889.8 ± 9.0 135.5513 ±0.0143 8.4 0.0132 120.48 0.238 11.76
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HD202730 C16 ep3 on 29-08-11

Figure 4.25. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD202730 C16 ep3 on 29-08-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.

Some of those are already implied, when observation sequences of some wider separated targets
are examined. Figures 4.27–4.29, belonging to runs HD10360 C17 ep5 (∆s ≈11.5 as),
HD10268 C16 ep1 (∆s ≈20 as) and HD66598 C17 ep2 (∆s ≈36 as), show all significant resid-
ual structures, which seem to become more and more apparent with increasing star separations.
In particular for the systems HD 10268 and HD 66598 the structure, with respect to the hour
angle of observation and the azimuth angle, are clear and even appear to be smoothly shaped
and repeating.
Consequently, the standard deviations of the residuals exceed the dispersion in delay measure-
ments of the individual files. For HD10268 C16 ep1 they are determined to about ≈ 1.9µm
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Figure 4.26. – Results in terms of star separations in right ascension and declination from
several single epoch observations, where the timeline is indicated by the dotted line and the
earliest observation sequence is marked with a blue dot and the latest by a red one. The
scatter within the sky plane, together with the non-overlapping error bars, clearly depict a
discrepancy between the instrument’s alleged precision and its actual achieved accuracy.

and for HD66598 C17 ep2 to σ ≈2.8µm, which, with the applied baseline, translate to about
≈4.5 mas and respectively to ≈7.5 mas on the sky.

The implication of the systematics being correlated with the azimuth or the hour angle of
observation is even strengthened, when observations of several epochs are combined as one
astrometric measurement.
This is accomplished by expanding the model given by Eq. (4.84) to a multi epoch fit with
Nep + 2 parameters, where Nep is the number of epochs and as a matter of course the number
of constant terms that need to be derived and corrected for:

∆d = ±Bp · (∆sδ cos θBL + ∆sα sin θBL) +

Nep∑
i=1

UiZ0,i . (4.87)

As before, the sign swapping is performed with respect to the mode the data is taken with, and
the unit step function

Ui =

{
1 for data within epoch , i
0 for data not within epoch , i

(4.88)

determines, which of the individual zero terms is appplied to which measurement during the fit.

The combination of HD 66598 observations over three nights in Nov. 2011, with a result-
ing time span of ∆T = 2.14 d between the first and last data point, is shown in Fig. 4.30 and
convincingly illustrates the reproducibility of the residual structures.

The clearly shaped dependence on the hour angle, with a residual standard deviation of more
than 5µm and about ≈ 12.4 mas on the sky, already suggests that the source of these sys-
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HD10360 C17 ep5 on 25-11-11

Figure 4.27. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD10360 C17 ep5 on 25-11-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis. Systematics, correlated with
azimuth and hour angle are visible.

tematics might be correlated to the system’s field rotation procedure that is performed by the
de-rotator devices within the star separators of the telescopes.

In fact, the reason for this behavior is discussed in [Sah13]. It appears that misalignments
of the instrument’s optics, which have been detected in form of occurrences of obscurances of
the stellar pupils, have been the major source for these large field rotation dependent system-
atics. After a following instrument intervention in March 2012, during which the system, in
particular the ATs, has undergone some realignment, the situation improved, and the magni-
tude of the systematics was reduced by a factor of 5 in residual standard deviation.
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HD10268 C16 ep1 on 29-08-11

Figure 4.28. – Corrected differential delays ∆d and residuals of the astrometric fit to the ob-
servation sequence HD10268 C16 ep1 on 29-08-11, as well as the distribution of the 2,000 fits
to the resampled data sets from the bootstrap analysis. Well shaped systematics, correlated
with azimuth and hour angle are visible.

All in all, it can be said that the instrument’s precision, which is suggested by the 1-σ un-
certainties of the fits and from the bootstrap analysis, as well as by the dispersions along the
axis of highest precision during an observation (average baseline orientation), is promising with
regard to the goal of having an astrometric instrument at the level of tens of microarcseconds.
The best precision achieved, according to this analysis presented here, was obtained from an
observation sequence on the system HD 10360 in Nov. 2011 (HD10360 C17 ep7), with an error
of δ∆s = 60µas and even σ‖ = 23µas along the best axis.
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HD66598 C17 ep2 on 25-11-11

Figure 4.29. – Corrected differential delays ∆d and residuals of the astrometric fit to the ob-
servation sequence HD66598 C17 ep2 on 25-11-11, as well as the distribution of the 2,000 fits
to the resampled data sets from the bootstrap analysis. Well shaped systematics, correlated
with azimuth and hour angle are visible.

Still, these values explore only the level of precision, at which the differential delay measure-
ments can be performed and which are valid only on short time scales.
If it comes to the accuracy of the instrument, the situation is different, as several observations
of the same targets feature large scatters up to tens of milliarcseconds, which are too high to
be explainable by the intrinsically changing system separations over time.
Although the realignment of the system seems to have decreased the amplitude of the system-
atics ([Sah13]), the science requirements are not fulfilled.
Several sources of remaining errors and possible improvements can be thought of. Besides the
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HD66598 m2; ∆T = 2.14 d

Figure 4.30. – Corrected differential delays ∆d and residuals of the multi epoch astrometric
fit (see Eq. (4.87)) to the observation sequence HD66598 m2, as well as the distribution of
the 2,000 fits to the resampled data sets from the bootstrap analysis. The three different
epochs are color-coded, and as before a well shaped correlation with azimuth and hour angle
is clearly visible.

fact that the astrometric analysis itself could be improved in terms of data reduction, as well as
by modelling the systematics, if their structure can be correlated to some defined parameters,
it must be taken into account that for this analysis the calibrated baseline was assumed stable
and constant over the time span of all processed observation epochs.
This clearly is not the case, because any motions of the telescopes and their components, as well
as any system’s realignments, actions that are usually carried out between the commissioning
runs, will in general introduce systematics of unknown magnitude, and therefore the system in
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principle would need to be recalibrated.
Beyond that, one of the key factors, neglected up to this point, is presumed to be highly re-
sponsible for the remaining systematics and therefore for the lack of accuracy.
Recalling equation (4.81), and in particular the error terms introduced there, one sees that for
the modelling of the differential delay one ends up with:

d2 + ε2 − (d1 + ε1) = ∆d+ ∆ε = ∆s · (BW − µ1 + µ2︸ ︷︷ ︸
BNAB

) + C2 − C1︸ ︷︷ ︸
∆C

, (4.89)

where the tracking errors have been neglected, and the metrology endpoints for the two in-
dividual interferometers, one tracking the primary at one FSU and the second the secondary
target on the other, are assumed to be identical at the two telescopes.

The baseline, effective for the astrometric measurement, in this context also called narrow-
angle baseline (NAB), is affected by the offsets of the metrology endpoints from the telescopes’
pivot points, while the measured differential delay is influenced by any time dependent differ-
ential path discrepancies due to the unmonitored beam path above the metrology endpoint at
M9 up to the entrance pupils at the M2s.
After the accomplished realignment of the instrument, the latter source of error is suspected to
be the main remaining uncertainty.
In order to achieve the aspired accuracy in the astrometric measurements on the level of 10-
50µas, these systematics need to be further examined, quantified and calibrated.
Furthermore, an expansion of the PRIMA metrology beyond its actual endpoints is under
consideration.

Table 4.10. – Results from the multi epoch analysis. For each processed multi epoch obser-
vation, for which the included individual epochs are specified in App. C, the overall time
span of observation, the number of valid 1-second averaged data points and the astromet-
ric observables with errors from the astrometric fit, defined by Eq. (4.87), are listed. Also
tabulated are the corresponding 1-sigma uncertainties from the bootstrap approach and the
dispersions σ‖ and σ⊥, along the directions of the axes of maximum and minimum precision
from the principal component analysis.

Astrometric fit Bootstrap

sequence ID ∆T N ∆s θs δ∆s δθs 〈θBL〉 σ‖ σ⊥

[days] [mas] [deg] [mas] [deg] [deg] [mas] [mas]

HD10360 m1 6.19 16862 11429.049 ±0.047 188.04785 ±0.00028 0.053 0.00034 143.79 0.020 0.084

HD10360 m2 91.92 18029 11429.393 ±0.057 188.05189 ±0.00034 0.055 0.00042 148.87 0.023 0.10

HD108248J m1 5.03 1009 3909.76 ± 1.94 112.7736 ± 0.0387 2.73 0.0544 122.42 0.063 4.61

HD108248J m2 5.03 700 3909.78 ± 2.10 112.7734 ± 0.0418 2.92 0.0583 122.39 0.063 4.93

HD156274 m1 0.15 3380 10000.88 ± 0.94 257.4250 ± 0.0092 0.85 0.0084 117.96 0.171 1.69

HD202730 m1 5.05 3056 7183.71 ± 0.30 270.4123 ± 0.0035 0.30 0.0035 123.56 0.055 0.53

HD202730 m2 40.02 3659 7181.74 ± 0.33 270.4313 ± 0.0038 0.31 0.0037 123.34 0.058 0.56

HD66598 m1v2 8.06 7255 35886.82 ± 1.10 135.5540 ± 0.0017 1.54 0.0024 123.16 0.272 2.15

HD66598 m2 2.14 11751 35831.93 ± 0.72 135.2189 ± 0.0011 0.90 0.0014 113.66 0.074 1.26

HD66598 m3v2 303.20 19004 35867.78 ± 0.77 135.3960 ± 0.0012 1.37 0.0022 117.70 0.133 1.93
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ESPRI: Exoplanet Search with PRIMA

As pointed out broadly within the precedent chapters, the design and actual implementation
of the instrument PRIMA was mainly motivated by the prospect of a dual-feed interferometer
with the capability of performing high-precision astrometry on the level of tens of microarcsec-
onds, by which extrasolar planets could be detected.
With this application in mind, ESO was supported by an international consortium, consisting
of working groups from the Observatoire de Genève, the Max Planck Institute for Astronomy
and the Landessternwarte Königstuhl (Heidelberg), in the development of the key components,
both on the hardware and software side, for which in turn the consortium has been awarded
guaranteed observation time (GTO) for the years after, once the instrument is successfully
commissioned.
Based on this perspective, the consortium members have mutually found a program for the
astrometric search of extrasolar planets, ESPRI (Exoplanet Search with PRIMA), which has
been planned and prepared during the recent years.

As radial velocity surveys and transit based search programs have proven to be highly ef-
fective and successful within this branch of research, ESPRI, based on the astrometric method,
should be regarded as an complementary approach to the key questions in this field.
The potential of the applied technique lies in filling up the gaps in the exoplanetary detection
space, which result from restrictions involved in the other methods. The orbits, determined
by the transit method, are conceptionally limited to usually high inclinations, and the Doppler
spectroscopy of radial velocity measurements relies on sufficiently narrow and well-defined lines
in the stellar spectrum, as well as on the star’s stability, which significantly limits the type of
stars, whose signals can be examined at all.
Considering the capability of exploring these, otherwise hardly accessible, objects and possible
exoplanetary systems and the advantage of determining the detected systems’ inclinations, as
the true orbits can be deduced from the two dimensional measurements of the stellar reflex
motion, some certain key questions and aspects have been focused on during the planning and
design phase of the program.
Based on those, it has been initially decided to concentrate the efforts and observation time on
three groups of possible science targets ([Ref06]):

1. RV stars:
Stars, around which companions have been already found by the radial velocity method,
are not only suitable for the system’s ultimate science verification, but the information
about the systems can be significantly increased by follow-up astrometry, as the ambiguity
between the companion’s mass and inclination can be solved and the true mass can be
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derived from the time resolved observations.
Furthermore, since, in contrast to RV detections, the astrometric method is more sensitive
to wider and consequently longer orbits, so far undetected additional companions could
not only be found, but the multiple systems could be investigated regarding their degree
of coplanarity.

2. Nearby stars:
As the astrometric signature of planet harboring stars, in terms of the measured angular
amplitude on the sky, is reciprocally proportional to the distance between the examined
system and the observer, the most nearby stars, with distances below ∼ 15 pc, are the
most promising target candidates and therefore serve best for this kind of a survey.
With given astrometric accuracies at the level of tens to hundred microarcseconds, Saturn
like planets at reasonable orbit extents around these kind of stars can be detected (see
Fig. 2.21), which is why a blind search throughout a sufficiently large sample has been
foreseen.

3. Young stars:
In particular with respect to the question of planet formation and the evolution of plan-
etary systems it is substantially interesting to investigate the occurrences of detected
companions around stars of various stages of evolution. In this context the astrometric
method might prove itself superior to the RV technique, by which young stars are usually
omitted due to their activity that can spoil the Doppler signal.
In order to study the early stages of planetary systems, young stars, with ages in the
range of 5–300 Myr and distances up to ∼140 pc, have been considered.
However, depending on its amplitude and time scales, stellar activity could also affect the
astrometric measurements, if a displacement of the photocenter in the observing K-band
is introduced. Although the time scales of the possibly most problematic effects, such
as non-radial pulsations or astrometric modulations, rotationally induced by asymmetric
distributions of starspots, can be considered distinctly shorter than the periods of the
companions’ orbits, their signatures, which in unfavorable cases and nearby stars could
reach up to about 10µas ([Set07]), would contribute to some astrometric noise if accura-
cies at this level are achieved in the long term.
Therefore, the stellar activity of the young science target stars needs to be studied inde-
pendently in order to minimize the number of false positive detections.

5.1. Preparatory Observations and Target Selection

After defining the types of stars that would be observed during the systematic astrometric
exoplanet search with PRIMA, in order to approach the key questions, such as the general
investigation of the planetary mass distribution, the analysis of formation processes of multiple
planetary systems and also the study of the systems’ evolution depending on the stellar age, the
next task, fundamental to the success of the survey, was to preselect suitable science targets.
Due to the specific method of observation and search conception, the objects in question need
to fulfill several requirements in order to meet with the technical constraints imposed by the
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instrument.
A substantial set of aspects must have been considered during this phase of preparation. Besides
the elemental restriction of the targets’ position on the sky, which results from the observing
site’s location at Paranal, limiting the observing angles of declinations to the range between
around +27◦ and −83◦ over the year, and in addition to the fact that the angular extent of the
star, depending on the combination between its diameter and distance, must not be resolved,
which would cause a drop in the visibility, the objects’ brightness is the most critical property
regarding the effectiveness of fringe tracking.
Since at this point of time the brightness limits of the system could not have been predicted
with certainty, the limiting magnitudes for the possible primary science targets have been set
to the initial science goal of 13 mag in K-band and for the secondary reference stars, at which
due to the benefit from the phase referencing longer coherence times would be achieved, to the
most optimistic limit of K = 16 mag.

The second and most critical factor, with regard to the search technique, is the availability
and distribution of adequate reference objects in the vicinity of the target science star.
Assuming that the reference star, to which the separation on the sky is being determined, is
bright enough for fringe tracking, according to Eq. (3.1), its angular distance to the primary
source is linearly correlated with the theoretical astrometric error. Therefore, one is interested
in secondary stars within the isoplanatic patch around the primary targets, and for the search
of suitable references a limit of 30 arcseconds has been agreed on, while separations below 10 as
are pursued in order to achieve the highest possible accuracies.
However, at the other side of the range the sources’ angular distance must not fall below a crit-
ical limit, at which cross-talk between the input channels might occur, as the star separators
fail to properly isolate the light from the distinct sources, which must be fed into the system
on different light paths. In order to avoid this, objects with apparent separations below 2 as
have been decided to be refused.
The number of the possible reference stars that could be used for the differential astrometric
measurements and their distribution within the field are also matters of considerable impor-
tance.
Although in the typical case, where the science targets are situated relatively near to the ob-
server, especially when compared to the references that are supposed to be bright enough but
distant background stars, any astrometric signal, which in fact is distance depending, would
most probably be resulting from relative motions of the primary sources, distinct measurements
against multiple references are beneficial, as these would allow to validate the occurrences and
eliminate false detections due to motions of the secondary objects.
Also, as the separation measurements are one-dimensional along the orientation of the pro-
jected baseline, well distributed secondary objects, in terms of position angles with reference
to the primary target, are helpful to reduce the uncertainty in the determination of the motion
directions on the sky and improve the real orbit determinations, when the measurements are
combined, as it results in less redundancy regarding the relationship between the position an-
gles and the direction of the time dependent projected baselines.
Apart from these main criteria for the search of suitable targets, the observed stellar objects
need to be characterized for calibration reasons, since for example color differences could induce
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differential dispersion effects, and in the sense of astrometric stability, which could be affected
by stellar activity or any photocenter shifting mechanisms.

The available standard catalogs, as the 2MASS Point Source Catalog ([Skr06]) and others,
have been studied with the aim of defining a first and preliminary preselection of suitable sci-
ence targets, based on the main selection criteria regarding the observability, the brightness
and the availability of reference targets within the preferred angular range.
Unfortunately, those archives have turned out as not satisfactorily adequate for this purpose
due to several reasons. At the one hand, their sensitivity in K-band is usually considerably
below the K = 16 mag limit for the secondary stars, and on the other hand it has been found
that saturation of bright objects often results in bright halos around them so that reference
stars within the preferable zone of 10 as could not be found.
Mainly for these reasons a preparatory observation program has been planned and carried out
by the ESPRI team, whose main purpose was to observe possible science targets and to look
for suitable reference targets in their surroundings.

The program was started in 2004 and lasted for several years, during which photometric obser-
vations in J- and K-band of nearly 1,000 stars have been carried out with SOFI, ESO’s infrared
imaging camera on the 3.6 m telescope NTT at La Silla in Chile and with Omega-Cass, the
MPIA’s infrared camera installed at the 3.5 m telescope on Calar Alto, Spain.
The results of this survey have been used to set up the database ASTRID (AStrometic Target
& Reference stars Interactive Database), in which information about the possible target stars
and, if detected, also about their associated reference stars are stored.
Depending on the instrument’s final performance and the resulting criteria, mainly in terms of
brightness and availability of reference stars, the suitable science targets can be then recovered.
In order to obtain the required data from the observations, the obtained images have been
processed by the standard means of astronomical data reduction, during which they have been
corrected for typical sensitivity variations over the detector pixels (flat fielding, bad pixels, etc.).

A jitter imaging technique (see [Dev1999] for principles) has been applied to enhance the sen-
sitivity of the observations. It is effective in separating any sky background variations from the
real astronomic signals, which is achieved by taking multiple exposures of the same source, with
the telescope pointing varying from exposure to exposure by some defined small offsets. From
those initial images sky background variations are estimated and filtered so that the resulting
recombined products’ photometric sensitivity is significantly improved due to the subtraction
of the background signal.

The final reduced images, of which four examples are presented in Fig. 5.1, have then been
analyzed for any occurrences of suitable secondary stars.
This has been achieved by the usage of the Source-Extractor ([Ber1996]) software, which is
designed to automatically detect stellar sources within astronomical images. It recovers the
amount of flux that is associated with the corresponding detected objects and determines the
positions of their photometric barycenters.
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(a) Target young star candidate (K ≈ 5 mag)
with potential reference stars at separa-
tions 3.4 as (K ≈ 8.3 mag), 25.5 as (K ≈
12 mag) and 29.7 as (K ≈ 7.9 mag).

(b) Target young star candidate (K ≈
6.5 mag) with two potential reference
stars at separations below 10 as, namely
at 3.2 as (K ≈ 9.2 mag) and at 6.1 as
(K ≈ 13.8 mag). Three more references
with K ≈ 13.5 mag, K ≈ 15.9 mag and
K ≈ 15.7 mag are situated at separations
of around 25 as.

(c) Nearby star candidate (K ≈ 5 mag) with
several potential reference sources, the
brightest and closest with K ≈ 10.7 mag
at 17.7 as. However, the field is pretty
crowded, which might disturb fringe track-
ing at the dim secondaries.

(d) Observed radial velocity target (K ≈
6.4 mag) with no suitable, bright enough
reference stars.

Figure 5.1. – Four reduced sample SOFI K-band images as obtained from the preparatory
observations. The science targets are centered, while the dashed circles indicate angular
distances at 10, 20 and respectively 30 as. (The images have been created by R. Launhardt
for the database ASTRID.)

185



Chapter 5. ESPRI: Exoplanet Search with PRIMA

The resulting fluxes have been then converted into K- and J-band magnitudes by a calibration
onto the scale of the 2MASS catalog, wherefore for each night and filter several stars have been
compared to their catalog’s brightness entries to recover the scale zero point.
Any findings of potential secondary stars with K<16 mag and angular distances, with reference
to their primary stars, below 30 as have been stored for further consideration into the database.

Figure 5.2. – 1,877 potential reference stars around 572 science target candidates, which
have been detected by the analysis of the preparatory observations, are plotted here against
their positions on the sky with reference to the galactic plane (left) and their distributions,
regarding the angular distances to the primary sources and their K-band brightness (right).

Based on this gathered information from the preliminary photometry and astrometry, possible
science targets can be selected from the pool of target candidates.
Fig. 5.2 summarizes the findings from the preparatory observations, where 572 primary targets,
with at least one reference star candidate, have been taken into account. All in all, 1,877
potential secondaries are being considered. As expected, one can see that the probability to
find suitable secondary stars is highly increased towards low galactic latitudes, hence towards
the galactic plane, where the density of observable stars is naturally higher.
However, some of the observed fields are considerably crowded, which could lead to disturbing
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noise signals and impose problems during fringe tracking on some references (see Fig. 5.1 (c)).

Looking at the distribution of the potentially suitable secondary targets, one can see that their
occurrences accumulate with increasing separations and decreasing brightness. Ultimately, the
decision, which of these can be used for the ESPRI survey, will be highly affected by PRIMA’s
performance, particularly considering the brightness limit for fringe tracking of both, the pri-
mary and the secondary sources.

5.2. Program Prospects

Based on the analysis of the preparatory observations and also spectroscopic characterizations
in several cases, the ESPRI team is sufficiently endowed with a collection of many suitable
target stars at hand, and is in principle prepared to begin the science program observations,
whenever the instrument will be ready for science operation.
Unfortunately, the delays due to unexpected problems during the at present incomplete progress
from the system installation at the VLTI infrastructure to a fully commissioned instrument in
terms of astrometry, but also efficiency, involve not solely certain uncertainties regarding the
question, what will be achievable compared to the initially defined goals, but also entail rather
economic considerations, regarding the planned survey’s expected outcome, in particular with
reference to concurring projects as for example ESA’s space mission Gaia.

Facing the already apparent but initially unexpected limitations in terms of brightness lim-
its for fringe tracking with PRIMA, it is highly important to have estimations on the number
of science targets, which can be observed in the end and to be flexible at adapting the survey
to any instrument based restrictions.
The gathered information in ASTRID is essential in this context. In order to get a feeling, in
which cases the program might encounter a lack of appropriate targets, the 572 primarily con-
sidered target star candidates (see Sec. 5.1) have been downselected by applying more stringent
constraints of qualification.
Figures 5.3–5.5 illustrate different distributions of 255 primary stars candidates that remain
under consideration after employing stricter constraints. The fringe tracking limits for this
subsample have been relocated to K = 8 mag for primary and respectively to K = 14 mag for
secondary targets. Furthermore, besides limiting the range of preferred target positions on the
sky to allowed objects’ declinations between +20◦ and −70◦, star group dependent distance
limits have been refined to d < 100 pc for the young stars and d < 15 pc for the stars falling
into the nearby star category.
In addition to that, known spectroscopic binaries and targets within crowded fields have been
also removed, although it should be noted that the minimum angle between an object, on which
fringe tracking is being performed, and its nearest neighbor, before the effect of wavefronts over-
lapping becomes noticeably disturbing, is also a question of brightness difference and is still to
be investigated for PRIMA.
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Figure 5.3. – Cumulative histograms of the 255 target star candidates (see text for subsample
restrictions) as a function of the fringe tracking brightness limit on the primary sources. Left:
The cumulative numbers are subdivided into color coded subclasses of different brightness
ranges of the brightest secondary source linked to the corresponding primary target. Right:
The cumulative numbers are subdivided into color coded subclasses of different angular
separation ranges to the brightest secondary source linked to the corresponding primary
target.

Figure 5.4. – Cumulative histograms of the 255 target star candidates (see text for sub-
sample restrictions) as a function of the fringe tracking brightness limit on the secondary
sources. Left: The cumulative numbers are subdivided into color coded subclasses of differ-
ent brightness ranges of the primary targets. Right: The cumulative numbers are subdivided
into color coded subclasses of different angular brightness ranges to the brightest secondary
source linked to the corresponding primary target.

Again, the importance of the final fringe tracking limits, depending on the brightness of the
primary, as well as of the secondary sources, are stressed out by the evaluated histograms.
Assuming that the system will be able to track primary stars at a sufficient signal to noise
ratio down to KPS,lim = 8 mag, the number of the possible science target candidates is mainly
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Figure 5.5. – Cumulative histograms of the 255 target star candidates (see text for subsample
restrictions) as a function of the fringe tracking brightness limit on the primary sources (left)
and the secondary stars respectively (right). The cumulative numbers are subdivided into
ESPRI’s three different star group categories (RV=Radial Velocity stars, YS=Young stars,
NS=Nearby stars).

determined by the secondary targets’ brightness limitations.
While at a limit of KSS,lim =12 mag one would be still left with around 160 targets, only around
100 targets would remain observable, if the limit would be found to be decreased by two mag-
nitudes down to KSS,lim =10 mag.
The situation becomes more complicated, when the separations to the secondary targets, which
affect the achievable astrometric accuracies, are taken into account. Among the discussed sub-
sample, less than 70 out of the 255 target candidates offer potential secondaries within the
mostly favorized range of separations below 10 as, and 141 feature their brightest references at
angular distances up to 20 as.
In this context it should also be considered that some of the candidate primary-secondary
pairs, in particular those with both components being relatively bright, might still be physi-
cally bound systems. Although this number should not be too high, a closer look at the systems
might disqualify them for science operations.

The cumulative distributions as a function of the fringe tracking limits, displayed in Fig. 5.5,
give an additional overview of the numbers with respect to the star categories involved in the
ESPRI program.
In particular, the number of suitable target RV stars candidates is strongly affected by the
fringe tracking limit of the secondary stars. While 68 out of the 255 stars are radial velocity
stars with known companions, which makes them quite valuable targets for the program, as the
study of those guarantees positive results, provided that the expected astrometric signature lies
within the instrument’s level of accuracy, so that they can be used as save sources for science
verification, not more than 18 of them could be observed with KSS,lim =10 mag.
The other 187 among the 255 stars subsample are subjects to the blind exoplanet survey. Their
number is particularly important, as the number of positive results, in the sense that an as-
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trometric signal due to an unseen companion is obtained, solely depends on the statistical
probability, determined by the occurrence rate of detectable planets around them.
As these numbers are only vaguely known, an estimation of the occurrence frequency of giant
planets with masses above 0.47 MJup around solar type stars at orbits up to ∼ 5 AU has been
derived by [Nae05] to be about 7.3 ± 1.5 %, it is probably reasonable to state that less than
10 % of the observed stars will exhibit a detectable signature.
These numbers naturally depend on the ultimate detection limits of PRIMA, which at this mo-
ment can only hardly be estimated, supporting the importance of having a flexible and strong
in number star candidate collection.

The temporal delay of the ESPRI program also becomes an issue, as concurring programs
are carried out. In particular ESA’s space mission Gaia, which according to [ESA13] is ex-
pected to be launched in October 2013, will acquire data that will also allow astrometry in the
microarcsecond regime. This entails a huge overlap not only on ESPRI’s science goals but also
specifically on the individual science objects themselves.
After its launch and after Gaia has reached its final destination, a Lissajous orbit around the
second Lagrange point (L2), the spacecraft will begin its 5-years lasting science operations,
during which the whole sky will be observed in a scanning mode. At this time, its astrometric
instrument, operating in a broad white-light Gaia (G) band, defined by the wavelength coverage
of around 330–1050 nm, will be able to measure the relative separations of any objects within
the field of view within the brightness range between G = 6 mag and G = 20 mag.
It is expected that by this method about 70 sets of measurements will be gathered on each
observable star and that a final accuracy down to 25µas can be achieved for all sources brighter
than 15 mag, and even less than 10 mag for objects at .12 mag. This astrometric survey will
thus be able to sample about 150,000 FGK stars up to a distance of around 200 pc and opti-
mistic estimations implicate that about 2,000 exoplanets in single systems can be expected to
be found, with distance depending detection limitations on the companions’ mass.

In the context of this perspective and with ESPRI’s given strict time budget, it is being dis-
cussed to expand the sample of possible science targets, in particular the candidate list for the
blind survey, with a degraded emphasis on the sources’ distances, but more with the objective
to find targets complementary to those observed by Gaia. The most promising approach in this
sense is to examine stars, which might be too bright for Gaia due to its saturation limit around
G = 6 mag. As the so far gathered ESPRI sample is presumed to be rather complete for such
bright stars at spectral types between G0 and M2 ([Lau12]), objects at the tails of this range
are being considered, and the available catalogs are searched for possible target candidates in
the spectral range of A0–F5, but not earlier, as the occurrence rate of giant planets around
more massive stars is decreasing significantly. On the opposite end of the spectrum, M dwarfs
with M1.5–M5 are being investigated.

The next step towards PRIMA’s scientific operation and the beginning of the ESPRI program is
the understanding and minimization, or a sufficient modelling of the instrument’s systematics,
which at present manifest themselves within the astrometric measurements (see Sec. 4.3.3).
As the astrometric method is increasingly sensitive to wide exoplanetary orbits, results from
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the blind search cannot be expected before one or two years after the start of the observations.
However, several classes of objects could serve as early science objects or also provide means
for the instrument’s science verification. Besides low motion visual binaries, which naturally
offer a way to probe the measurements’ stability and reproducibility, radial velocity stars with
high anticipated astrometric amplitudes could be the first objects, at which the reflex motions
could be detected and verified. Additionally, stellar hierarchical triple systems, consisting of
two visual components on long orbits, bright enough for fringe tracking, and where one of these
in addition is a short-period spectroscopic binary, could be used for the first and quickest orbit
determinations.

Once it is verified that astrometry can be performed at the 50µas level, and beyond this
the operation of the system becomes sufficiently reliable and stable in terms of repeatabil-
ity, but also regarding the fringe tracking sensitivity so that the brightness limitations remain
sustainable, the ESPRI survey can be initiated.

191





Chapter 6

Summary

This thesis has been designed to provide a framework for the presentation of the development
and implementation of the dual-feed interferometer PRIMA, one of the next generation VLTI
instruments at the Cerro Paranal in Chile.
After the system’s installation and commissioning it will allow simultaneous fringe tracking on
two separate sources, by which highly precise differerential astrometric measurements at the
level of tens of microarcseconds will become realizable.
The instrument’s set-up and its characteristics are mainly motivated by the search for and
exploration of extrasolar planetary systems.
This fairly young field in observational astronomy is crucial to our understanding of the forma-
tion and evolution of planetary systems and the physical mechanisms behind it, as the findings
of more and more systems and the characterization of their properties serve as the ultimate
testing environments for theoretical elaborations.

Since the beginning of this new scientific era, when exoplanet detection became possible and
reliable during the 1990s, hundreds of extrasolar systems have been discovered and examined.
However, the nature of the systems in question is rather challenging in the context of direct
observation. The immense contrast in brightness between the host stars and their companions,
as well as the relation between the distances to the observed systems and the corresponding
orbits’ spatial extents require high instrumental sensitivity and extraordinary observing strate-
gies.
For these reasons, mostly indirect techniques have been developed and have proven to be par-
ticularly successful in this field.
Doppler spectroscopy, by which the stars’ radial velocity profile is searched for any periodic
signals due to invisible companions, was the detection method of first choice for a very long
time. Meanwhile, photometric surveys became sufficiently sensitive to detect dips in recorded
lightcurves, which are induced by occultations of the stellar disk by companions on orbits with
high orbital inclinations. Nowadays, this transit method became also very powerful, and in
particular the space based survey Kepler alone has already identified several hundreds of exo-
planet candidates.
Still, although the techniques are continuously improved, the indirect approaches suffer from
conceptional limitations, as the methods’ sensitivity is dependent on certain system parameters
and configurations, so that exoplanet surveys are usually subjects to biases and can be consid-
ered as complete only within their characteristic ranges of detectability.
This is why it is desirable to have different complementary strategies to overcome those diffi-
culties.
The astrometric detection method could serve as such one. Although, just as the RV technique,
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it is based on the detection of the stars’ reflex motions, those are derived not from velocity mea-
surements along the direction of the line of sight, but from precise determinations of the stellar
positions over time on the sky. Consequently and contrarily, it is more sensitive to companions
on wide and long orbits and additionally is not affected that much by the orbital inclination.
While only a minimum mass of the companion can be deduced from RV measurements, by the
means of astrometry the real orientation of the orbit with reference to the observer and also
the true planetary mass can be deduced.
On the other hand, since in reality the projection of the reflex motion on the sky is measured,
the detectability regimes are strictly limited by the combination of the individual instrument’s
precision and the observed system’s absolute distance.

Aiming at reaching the capability for the detection of astrometric signals from Saturn-like
planets around nearby stars, reliable positioning needs to be performed at accuracies below
100µas. This can be achieved by differential measurements, where the science target’s position
over time is compared to that of one or several reference sources. PRIMA has been primarily
designed with this objective in mind and allows simultaneous fringe tracking on two separate
sources. The astrometric quantity, the sources’ angular displacement on the sky, is then de-
rived from the measured difference in delay that needs to be applied in order to compensate
the external path differences to the two apertures and to detect the individual fringes of each
of the targets.
In addition to that, the simultaneous observation provides the means to extend the coherence
time on one of the sources, as the other can be used as a phase reference so that sensed fringe
motions, which are introduced by atmospheric turbulences, can be compensated for both at
the same time.
Consequently, the brightness limitations on the secondary source are loosened and dimmer tar-
gets can be observed. In order to achieve this, it must be ensured that the light from the two
stars is affected by the atmosphere in a sufficiently equal manner, which is the case if they are
not separated by angular distances greater than the isoplanatic angle.
In theory, the instrument, which is operated in the infrared K-band, should be capable to
achieve the aspired accuracy level, when interferometric baselines of the order of 100 m are
used and stars with separations below 30 as are observed.

In order to perform these kind of measurements, PRIMA has been equipped with components,
which are particularly necessary for double star interferometry. Together, the star separators,
the differential delay lines, the laser metrology system and the fringe sensor units provide the
possibility to select two particular sources from the field, to feed them into the system, and to
monitor and control the applied differential delay in principle at precisions below 5 nm and at
frequencies above 200 Hz, which allows stable fringe tracking on both sources.
The real-time fringe phase measurements are achieved within the fringe sensor units by the
means of spatial phase modulation, where the fringes are sampled at four different positions in
phase space, with preferably equal phase differences of 90◦, and the group delay, which is the
trigger for the tracking algorithm, is determined from five spectral channels.
The data reduction, which as final products delivers the star separation vectors on the sky,
will be usually performed by an automated data reduction software, which when provided with
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the necessary calibration sequences, corrects for instrumental, environmental and observational
error sources. This procedure includes corrections to detector recordings due to unequal pixel
sensitivities and relative phase errors, the determination of the metrology zero point, the correc-
tion for dispersion effects and measurement corrections due to the sky background, the sources’
spectrum, the earth orientation, and also differential astrometric corrections, such as proper
motions, light time delay, parallax, relativistic light deflection and aberration.

In the course of this work, the instrument’s performance has been investigated, based on the
observations that have been gathered during the system’s commissioning runs.
It has been shown that stable fringe tracking is achieved for sufficient bright sources and various
conditions, although the performance seems to decrease at coherence times below 3 ms. Also, in
agreement with the theory, the delay variations power spectra resemble the Kolmogorov model
throughout the moderate range between 1 and 50 Hz and the damping of high amplitude but
low-frequency fringe motions (below ∼1 Hz) due to atmospheric disturbances on the secondary
sources, which is the imminent effect of the phase referencing method, is apparent within the
recorded data.
However, although the recorded tracking sequences in good conditions imply stable fringe track-
ing with mean phase variations below 1/4 of the wavelength of observation, a more detailed
study reveals phase jumps, which are not noticed by the tracking controllers and which can be
interpreted as undetected glitches, which after the fringe is not tracked at its center any more.
The reason for those occurrences is supposed to be a nonlinear behavior of the group delay es-
timation, which might be resulting from differential photometric effects between the two source
input channels and from non-nominal phase offsets between the four ABCD signals.
Their separation in phase is achieved by a polarization dependent encoding set-up, and natu-
rally any polarization effects along the beam train affect its functionality.
As a matter of fact, overall general phase offset deviations up to ±20◦ and dispersion effects
over the different spectral channels have been measured during the past observations and need
to be studied in more detail so that in future for science operation they could be calibrated or
even properly modelled and corrected for.

Apart from these technical issues, the analysis of the commissioning data, with regard to the
astrometric performance, has uncovered grave uncertainties within the determination of the
star separations.
Main delay measurements of observations of nine different stars during one single night have
been used to solve for the instrument’s wide-angle baseline, which was then applied to several
single and multi epoch observations in order to perform the corresponding astrometric multiple
linear regression fits, which deliver the amount and the orientation of the separations of the
two observed stars on the sky.
This investigation has shown that the corresponding fits’ 1-σ uncertainties, and likewise boot-
strap analyses regarding the determination of the separations, imply achievable measurement
precisions down to ∼ 60µas, and even lower for the separation along the projected baseline
orientation.
Unfortunately, this seems to apply only to measurements on short time scales, whereas ob-
servations of the same target pairs at different points in time show a large and only partially
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comprehensible scatter of up to even tens of milliarcseconds, which cannot be explained by
the observed systems’ temporal evolution but obviously originates from systematics during the
measurements and which limits the instrument’s ultimate accuracy.
Although the situation seems to have improved after a recent system intervention, in the course
of which some alignment issues have been removed, the systematic errors have not disappeared
entirely. The until now persisting residuals are believed on one hand to result from unstable
offsets of the metrology endpoints from the telescopes’ pivot points, which affect the length and
stability of the effective interferometric baseline, and on the other to be a consequence of the
fact that the metrology endpoints are situated at the level of the star separators’ M9 mirrors
and that the sections of the beam paths between those and the instrument’s entrance pupils at
the M2 mirrors remain unmonitored.
For the sake of reaching a final and reliable astrometric accuracy between 10 and 50µas, the
remaining errors need to be understood and modelled or even eliminated, as would be the case
if the metrology paths could be expanded, which is under consideration by ESO and the ESPRI
consortium.

The decisions regarding further instrument improvements are expected before the beginning
of 2014 and will be ultimately decisive for the future of the planned exoplanet survey ESPRI.
Since the program’s acceptance, it has been prepared so that science operations can start when-
ever the instrument would be successfully commissioned and open to the scientific community.
Preparatory observations of about 1,000 target star candidates of different types, as stars with
known companions that have been found by the RV method, young stars and generally nearby
stars, which might be suitable for a blind search, have been performed during the recent years
to search for adequate reference targets.
From the analysis of those observations, where emphasis has been laid on the stars’ brightness
and separation to the possible references, a database of well qualified targets has been compiled
in order to facilitate the ultimate target selection and to be flexible regarding the limitations
that will be imposed by the instrument’s performance.
Besides the astrometric accuracy, the most critical factor in this context is the brightness limit
for both, the primary and secondary stars, at which stable fringe tracking can be performed.
It is difficult to foresee, when PRIMA will be ready, so that the ESPRI program might com-
mence, but it is clear already that in consequence of the delays of the instrument’s final com-
missioning, due to all encountered unexpected difficulties, it will have to compete against
concurring surveys as Gaia, ESA’s space mission, which will be launched probably before the
end of this year and which is also designed to perform astrometry at the microarcsecond level.
As a response to that, and in order to maintain a justifiable status within the community, the
ESPRI team is currently expanding its set of possible science candidates to stars that cannot
be observed by Gaia so that complementarity of the two projects is ensured.
With its final target collection at hand, ESPRI will hopefully be able to begin with early science
observations next year, which simultaneously could provide an appropriate opportunity for the
instrument’s science verification.
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Appendix A

The Three-Body Problem

Following the discussion of the topic as it can be found in [dePat01], the principles of the ap-
proach to the three-body problem are summarized here.
While the motion of two gravitationally interacting bodies is completely integrable, and analyt-
ical solutions to the problem are easily derived, the treatment of three massive objects becomes
complicated enough so that in practice numerical integrations to the system are usually in-
evitable.
However, certain approximations can be adopted in order to simplify the general problem and
to derive some principle results. If the mass of one of the bodies is assumed negligible in com-
parison to the other two, then this particular body can be considered as a test particle that
does not affect the others, and the problem is simplified to the restricted three-body problem.
In the case when additionally the relative orbit of the two massive objects is approximated by
a circle, the system is simplified further to the so called circular restricted three-body problem,
which will be considered here in the following.

Lagrangian Points and Co-Orbital Motion

Treating the circular restricted three-body problem in a non-inertial, synodic frame with its
origin at the center of mass of the two massive bodies m1, m2, located at the fixed positions
x1, x2, and which is rotating at the same rate as the two bodies’ orbital frequency about its
z-axis, perpendicular to the orbital plane, the two-body system becomes stationary, and the
motion of the third (test) body can be described by the Jacobi’s constant of motion:

CJ =
(
x2 + y2

)
+

(
2m1

|r − r1|
+

2m2

|r − r2|

)
− v2 , (A.1)

where v denotes the test particle’s velocity with reference to the rotating frame, and |r − ri|
give its distance to the corresponding two massive bodies.
With units chosen so that the gravitational constant, the sum of the masses m1 + m2, the
distance |r2 − r1| and eventually the rotating frame’s angular frequency equal one, the Jacobi
constant equals twice the magnitude of the test body’s energy (per unit mass), to which its
kinetic energy and the effective potential contribute.
The particle’s velocity for fixed values of CJ is now determined by its position within the orbital
plane. Consequently, as v2 ≥ 0, zero-velocity curves, which are determined for different values
of the Jacobi’s constant by setting the velocity to zero, pose spatial boundaries to the test
bodies’ motion.
Several of such zero-velocity curves are illustrated in Fig. A.1, where the illustrated enclosed
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areas restrict the orbits of the bodies with the corresponding CJ .

L1 L2L3

L4

L5

P
P

H

H

T

T

Figure A.1. – The graphic illustrates several zero-velocity curves for varying values of the
Jacobi constant CJ (see Eq. (A.1)) within the frame co-rotating with the two bodies m1

and m2, which are depicted by the two filled black circles. The mass ratio between the
primary body and the secondary body is chosen to be m1/m2 = 100. The locations of
the five Lagrangian points are indicated by blue dots and the shadiness of the enclosed
regions increases with decreasing CJ . The zero-velocity curves that are boundaries to the
test particles’ motion with the corresponding CJ and that define the shape of the passing,
horseshoe and tadpole orbits are denoted by the letters P, H and T respectively.

However, several types of orbits are associated with the boundaries, as their shape is imposed
onto the corresponding particles’ paths of motion with reference to the co-rotational frame.
Approximately circular passing orbits are only allowed above a critical value of CJ .
At lower values particles can move along the zero-velocity curve linked to the so called horseshoe
orbits. Those occur when particles, with the adequate CJ values move at the near side to the
system’s center of mass, where its distance to the primary body is lower than that between the
primary and secondary. The angular frequency of its orbit then exceeds that of the two-mass
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system, and it catches up with the secondary body. At some point, when approaching the
secondary, it is accelerated into a higher orbit, where its angular frequency drops below that
of the reference two-body system. Consequently, it falls behind again and appears to move
backwards until it is caught up by the secondary, at which point it is pulled into a lower orbit,
and the cycle begins again.
Bodies with even lower values of CJ do not perform the whole horseshoe cycle, and their motion
along the corresponding zero-velocity curves is referred to as tadpole or Trojan orbits.

At five points within the system, the net force onto the test particles becomes zero. Three
of these Lagrangian points (L1, L2 and L3) are saddle points of the effective potential and
therefore unstable, while the triangular points L4 and L5 mark stable extrema.

The Hill Sphere

The region around the smaller secondary object within a two-body system, where the force onto
a test particle is dominated by the secondary’s gravitation, is usually called the Hill sphere,
and its radius is approximated by ([dePat01])

RH =

(
m2

3(m1 +m2)

)1/3

a , (A.2)

where a denotes the radius of the secondary’s circular orbit about the system’s primary mass
m1. Consequently, stable (planetocentric) orbits around the secondary body are confined to
the region within the Hill sphere, while stable (heliocentric) orbits around the primary mass
are only possible if the corresponding bodies’ trajectories do not intersect with each other’s Hill
spheres.
Naturally, when entering the Hill spheres of more massive bodies, smaller objects can become
gravitationally bound to those and stay in temporary orbits around them.
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Appendix B

Transport of Energy in
Electromagnetic Fields

Due to mathematical convenience electromagnetic fields are often described by complex func-
tions. Although only the real parts are of physical significance, this handy approach is justified
as long as mathematical operations on them do not mix the real and imaginary parts, which
could alter the result, when the imaginary parts are ignored in the end. This needs to be
considered particularly, when handling with cross or dot products of complex vectors.

The Poynting vector S = E×H , which represents the energy flow density of electromag-
netic waves, is one example, where the operation must be treated with care, when the fields
are given as complex quantities.
Since optical detectors usually are not able to resolve the temporal oscillation of the energy
flow, it is interesting to consider the time average of a time-dependent signal < f(t) >, which
can be defined by:

< f(t) >= lim
T→∞

1

2T

∫ T

−T
f(t) dt . (B.1)

Now let us consider two complex vector fields with a periodic time-dependency:

a(r, t) = â0(r) e−iωt ,

b(r, t) = b̂0(r) e−iωt , (B.2)

and their complex conjugates a∗, b∗.
Since one is interested in the entity < a × b >, but only the real parts are considered of
significance, the term

< (Rea)× (Re b) >= lim
T→∞

1

2T

∫ T

−T
(Rea)× (Re b) dt , (B.3)

needs to be evaluated.
Using the relation

(Rea)× (Re b) =
1

2
(a+ a∗)× 1

2
(b+ b∗) =

1

4
[(a× b) + (a× b∗) + (a∗ × b) + (a∗ × b∗)] ,

(B.4)
one sees that four summands contribute to the result:

< (Rea)× (Re b) >=
1

4
< a× b > + < a× b∗ > + < a∗ × b > + < a∗ × b∗ > . (B.5)
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Evaluating the integrals of the time average, one sees that

< a× b > = lim
T→∞

1

2T
â0 × b̂0

∫ T

−T
e−2iωt dt

=
â0 × b̂0

2T

e−2iωt

−2iω

∣∣∣∣T
−T

=
â0 × b̂0

2ωT

(
e2iωT − e−2iωT

2i

)
=

â0 × b̂0

2ωT
sin(2ωT ) = 0 , (B.6)

for limT →∞.
In analogy to this, it becomes clear that

< a∗ × b∗ >= 0 , (B.7)

whereas non-vanishing contributions are left over from:

< a× b∗ >= â0 × b̂
∗
0 , (B.8)

< a∗ × b >= â∗0 × b̂0 . (B.9)

Given these results,

< (Rea)× (Re b) > =
1

4

[(
â0 × b̂

∗
0

)
+
(
â∗0 × b̂0

)]
=

1

2
Re
(
â0 × b̂

∗
0

)
=

1

2
Re
(
â∗0 × b̂0

)
, (B.10)

can be concluded.

Now, if the electric and magnetic fields are given by complex vector fields as in Eq. (B.2),
then this result can be directly applied on the time average of the Poynting vector, yielding:

< S >=
1

2
Re
(
Ê0 × Ĥ

∗
0

)
. (B.11)

In the particular case of plane waves, where E ⊥H , it follow that:

< S > =
cε0
2

Re
(
Ê0Ê

∗
0

)
=

cε0
2
Ê2

0 . (B.12)

This or similar derivations can be found in various textbooks on electrodynamics, such as
[Nol04].
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Appendix C

PRIMA Commissioning Files

In the following, the names of the PRIMA commissioning files that have been used for the
analyses throughout the thesis are listed for reasons of reference.

In Sec. 4.1.3.2:

PACMA.2011−11−19T19 : 0 8 : 1 8 . 9 2 8 . f i t s

In Sec. 4.3.1, Fig. 4.13:

PACMA.2010−11−06T08 : 1 1 : 1 1 . 1 7 2 . f i t s
PACMA.2011−08−29T07 : 1 7 : 4 6 . 6 1 1 . f i t s

Fig. 4.12:

PACMA.2010−11−08T04 : 2 1 : 0 6 . 3 6 5 . f i t s
PACMA.2010−11−06T08 : 1 1 : 1 1 . 1 7 2 . f i t s

In Sec. 4.3.1.1, Fig. 4.14:

PACMA.2011−11−21T04 : 4 6 : 5 0 . 7 1 9 . f i t s

In Sec. 4.3.1.2, Fig. 4.17:

PACMA.2011−11−26T02 : 5 0 : 2 0 . 9 8 1 . f i t s

In Sec. 4.3.2:

PACMA.2011−11−21T23 : 5 7 : 3 3 . 2 1 9 . f i t s
PACMA.2011−11−22T04 : 0 3 : 2 1 . 9 8 5 . f i t s
PACMA.2011−11−22T04 : 1 5 : 4 9 . 6 4 5 . f i t s
PACMA.2011−11−22T04 : 5 3 : 0 8 . 3 2 5 . f i t s
PACMA.2011−11−22T05 : 0 4 : 5 4 . 9 3 5 . f i t s
PACMA.2011−11−22T05 : 2 2 : 0 7 . 5 8 5 . f i t s
PACMA.2011−11−22T05 : 3 5 : 2 5 . 2 3 5 . f i t s
PACMA.2011−11−22T05 : 5 4 : 4 6 . 6 2 5 . f i t s
PACMA.2011−11−22T06 : 0 4 : 5 6 . 5 4 5 . f i t s
PACMA.2011−11−22T06 : 1 6 : 3 8 . 3 3 6 . f i t s
PACMA.2011−11−22T06 : 3 7 : 4 2 . 9 3 5 . f i t s
PACMA.2011−11−22T06 : 4 9 : 3 4 . 1 4 5 . f i t s
PACMA.2011−11−22T07 : 5 6 : 4 7 . 1 6 4 . f i t s
PACMA.2011−11−22T08 : 1 1 : 5 3 . 9 9 4 . f i t s
PACMA.2011−11−22T08 : 2 9 : 3 7 . 7 8 4 . f i t s
PACMA.2011−11−22T08 : 4 1 : 3 0 . 3 9 4 . f i t s
PACMA.2011−11−22T09 : 0 0 : 1 8 . 8 2 4 . f i t s
PACMA.2011−11−22T09 : 1 2 : 2 2 . 6 1 4 . f i t s

Single epoch astrometric fits in
Sec. 4.3.3 and App. C:

HD100286 C14 ep2:
PACMA.2011−01−31T05 : 5 2 : 2 8 . 0 9 3 . f i t s
PACMA.2011−01−31T06 : 0 9 : 2 9 . 9 1 2 . f i t s
PACMA.2011−01−31T06 : 5 9 : 5 3 . 2 4 9 . f i t s
PACMA.2011−01−31T07 : 2 2 : 3 6 . 2 7 8 . f i t s

HD10268 C16 ep1:
PACMA.2011−08−29T06 : 2 3 : 1 4 . 5 5 4 . f i t s
PACMA.2011−08−29T06 : 4 9 : 3 5 . 2 7 1 . f i t s
PACMA.2011−08−29T07 : 0 4 : 5 6 . 1 1 0 . f i t s
PACMA.2011−08−29T07 : 1 7 : 4 6 . 6 1 1 . f i t s
PACMA.2011−08−29T07 : 3 3 : 0 8 . 6 4 9 . f i t s
PACMA.2011−08−29T08 : 0 5 : 4 6 . 0 7 7 . f i t s
PACMA.2011−08−29T08 : 2 0 : 0 6 . 0 3 7 . f i t s
PACMA.2011−08−29T08 : 3 8 : 1 0 . 5 9 5 . f i t s

HD10360 C16 ep1:
PACMA.2011−08−26T08 : 3 8 : 2 4 . 2 0 6 . f i t s
PACMA.2011−08−26T09 : 0 0 : 0 3 . 6 3 6 . f i t s
PACMA.2011−08−26T09 : 1 3 : 0 5 . 2 0 6 . f i t s
PACMA.2011−08−26T09 : 2 6 : 1 2 . 0 3 5 . f i t s
PACMA.2011−08−26T09 : 4 1 : 1 3 . 8 6 5 . f i t s
PACMA.2011−08−26T09 : 5 3 : 4 0 . 4 9 5 . f i t s

HD10360 C17 ep1:
PACMA.2011−11−20T02 : 0 8 : 5 8 . 0 5 7 . f i t s
PACMA.2011−11−20T02 : 4 4 : 1 6 . 8 8 7 . f i t s

HD10360 C17 ep2:
PACMA.2011−11−21T04 : 2 2 : 3 4 . 9 3 9 . f i t s
PACMA.2011−11−21T04 : 5 1 : 5 1 . 4 2 9 . f i t s
PACMA.2011−11−21T05 : 1 6 : 3 9 . 2 8 0 . f i t s
PACMA.2011−11−21T05 : 3 6 : 1 8 . 0 5 0 . f i t s
PACMA.2011−11−21T05 : 4 1 : 5 8 . 7 7 1 . f i t s
PACMA.2011−11−21T06 : 1 0 : 4 8 . 0 7 1 . f i t s
PACMA.2011−11−21T06 : 2 9 : 3 2 . 9 8 2 . f i t s
PACMA.2011−11−21T06 : 3 5 : 3 1 . 8 8 1 . f i t s
PACMA.2011−11−21T06 : 5 1 : 2 6 . 4 4 1 . f i t s
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HD10360 C17 ep4:

PACMA.2011−11−24T01 : 3 9 : 1 1 . 4 1 8 . f i t s
PACMA.2011−11−24T02 : 0 3 : 5 4 . 0 1 7 . f i t s
PACMA.2011−11−24T02 : 1 2 : 3 7 . 3 2 7 . f i t s
PACMA.2011−11−24T02 : 1 9 : 1 0 . 4 7 7 . f i t s
PACMA.2011−11−24T02 : 2 4 : 4 8 . 9 6 7 . f i t s
PACMA.2011−11−24T02 : 4 2 : 5 3 . 0 5 8 . f i t s
PACMA.2011−11−24T02 : 4 8 : 3 4 . 3 3 7 . f i t s
PACMA.2011−11−24T02 : 5 4 : 0 5 . 8 3 9 . f i t s
PACMA.2011−11−24T02 : 5 9 : 3 2 . 1 2 8 . f i t s
PACMA.2011−11−24T03 : 0 5 : 0 3 . 6 2 9 . f i t s
PACMA.2011−11−24T03 : 1 0 : 3 1 . 3 4 8 . f i t s
PACMA.2011−11−24T03 : 2 8 : 2 6 . 9 7 9 . f i t s
PACMA.2011−11−24T03 : 3 4 : 0 0 . 0 8 9 . f i t s
PACMA.2011−11−24T03 : 4 4 : 5 6 . 3 1 0 . f i t s
PACMA.2011−11−24T03 : 5 1 : 5 4 . 4 2 0 . f i t s
PACMA.2011−11−24T03 : 5 7 : 2 2 . 5 2 0 . f i t s
PACMA.2011−11−24T04 : 0 2 : 5 1 . 0 1 0 . f i t s
PACMA.2011−11−24T04 : 0 8 : 2 4 . 5 1 1 . f i t s
PACMA.2011−11−24T04 : 1 3 : 5 2 . 2 3 1 . f i t s
PACMA.2011−11−24T04 : 1 9 : 5 0 . 7 3 1 . f i t s
PACMA.2011−11−24T04 : 2 6 : 1 2 . 7 2 1 . f i t s
PACMA.2011−11−24T04 : 5 2 : 3 5 . 7 4 1 . f i t s
PACMA.2011−11−24T05 : 0 3 : 3 2 . 3 6 2 . f i t s
PACMA.2011−11−24T05 : 0 9 : 0 0 . 4 7 2 . f i t s
PACMA.2011−11−24T05 : 1 4 : 3 8 . 9 6 2 . f i t s

HD10360 C17 ep5:

PACMA.2011−11−25T00 : 3 4 : 0 9 . 7 8 6 . f i t s
PACMA.2011−11−25T01 : 2 0 : 5 9 . 6 7 7 . f i t s
PACMA.2011−11−25T01 : 3 8 : 0 6 . 9 2 6 . f i t s
PACMA.2011−11−25T01 : 4 3 : 3 8 . 2 3 7 . f i t s
PACMA.2011−11−25T02 : 0 5 : 4 4 . 9 7 7 . f i t s
PACMA.2011−11−25T02 : 1 1 : 2 7 . 6 9 7 . f i t s
PACMA.2011−11−25T02 : 2 7 : 3 1 . 0 9 8 . f i t s
PACMA.2011−11−25T02 : 3 3 : 0 2 . 4 0 8 . f i t s
PACMA.2011−11−25T02 : 3 8 : 4 3 . 7 0 8 . f i t s
PACMA.2011−11−25T02 : 5 2 : 2 7 . 5 2 8 . f i t s
PACMA.2011−11−25T02 : 5 7 : 5 6 . 0 3 8 . f i t s
PACMA.2011−11−25T03 : 0 3 : 3 4 . 5 2 9 . f i t s
PACMA.2011−11−25T03 : 2 7 : 1 6 . 0 9 9 . f i t s
PACMA.2011−11−25T03 : 3 2 : 4 4 . 6 0 9 . f i t s
PACMA.2011−11−25T03 : 3 8 : 1 2 . 7 2 9 . f i t s

HD10360 C17 ep6:

PACMA.2011−11−26T02 : 0 0 : 1 6 . 8 4 9 . f i t s
PACMA.2011−11−26T02 : 0 5 : 4 5 . 3 3 9 . f i t s
PACMA.2011−11−26T02 : 1 1 : 2 6 . 4 4 9 . f i t s
PACMA.2011−11−26T02 : 1 4 : 5 4 . 7 4 9 . f i t s
PACMA.2011−11−26T02 : 2 1 : 2 8 . 2 5 0 . f i t s
PACMA.2011−11−26T02 : 2 7 : 0 1 . 3 4 9 . f i t s
PACMA.2011−11−26T02 : 3 2 : 3 7 . 4 8 0 . f i t s
PACMA.2011−11−26T02 : 3 8 : 4 1 . 3 8 0 . f i t s
PACMA.2011−11−26T02 : 5 0 : 2 0 . 9 8 1 . f i t s
PACMA.2011−11−26T02 : 5 5 : 4 7 . 2 4 0 . f i t s
PACMA.2011−11−26T03 : 0 1 : 1 5 . 7 4 1 . f i t s
PACMA.2011−11−26T03 : 0 6 : 4 8 . 8 6 1 . f i t s
PACMA.2011−11−26T03 : 1 2 : 5 7 . 1 5 1 . f i t s
PACMA.2011−11−26T03 : 1 8 : 2 8 . 6 4 2 . f i t s
PACMA.2011−11−26T03 : 2 4 : 0 9 . 5 1 1 . f i t s
PACMA.2011−11−26T03 : 3 0 : 2 2 . 8 1 2 . f i t s

HD10360 C17 ep7:
PACMA.2011−11−26T03 : 5 4 : 4 0 . 4 3 2 . f i t s
PACMA.2011−11−26T04 : 0 0 : 0 6 . 7 2 1 . f i t s
PACMA.2011−11−26T04 : 0 5 : 3 5 . 0 2 1 . f i t s
PACMA.2011−11−26T04 : 1 1 : 4 8 . 5 0 2 . f i t s
PACMA.2011−11−26T04 : 2 6 : 1 2 . 2 9 2 . f i t s
PACMA.2011−11−26T04 : 3 1 : 4 0 . 4 0 2 . f i t s
PACMA.2011−11−26T04 : 3 7 : 0 8 . 5 1 2 . f i t s
PACMA.2011−11−26T04 : 4 2 : 4 6 . 6 2 3 . f i t s
PACMA.2011−11−26T04 : 5 4 : 1 8 . 0 5 3 . f i t s
PACMA.2011−11−26T04 : 5 9 : 5 3 . 9 7 3 . f i t s
PACMA.2011−11−26T05 : 0 5 : 2 7 . 0 9 3 . f i t s
PACMA.2011−11−26T05 : 1 2 : 0 5 . 4 0 3 . f i t s
PACMA.2011−11−26T05 : 2 8 : 4 9 . 4 9 4 . f i t s
PACMA.2011−11−26T05 : 3 4 : 1 7 . 6 1 3 . f i t s
PACMA.2011−11−26T05 : 3 9 : 4 5 . 7 1 4 . f i t s
PACMA.2011−11−26T05 : 4 5 : 1 8 . 8 3 4 . f i t s
PACMA.2011−11−26T05 : 5 6 : 4 0 . 2 5 4 . f i t s
PACMA.2011−11−26T06 : 0 2 : 1 4 . 1 6 5 . f i t s
PACMA.2011−11−26T06 : 0 7 : 4 0 . 0 7 5 . f i t s
PACMA.2011−11−26T06 : 1 3 : 2 3 . 5 5 5 . f i t s
PACMA.2011−11−26T06 : 1 4 : 1 2 . 2 4 4 . f i t s
PACMA.2011−11−26T06 : 2 5 : 5 2 . 8 9 5 . f i t s
PACMA.2011−11−26T06 : 3 1 : 1 9 . 1 8 5 . f i t s
PACMA.2011−11−26T06 : 3 6 : 5 0 . 7 0 6 . f i t s
PACMA.2011−11−26T06 : 4 2 : 2 8 . 4 2 5 . f i t s

HD108248J C14 ep1:
PACMA.2011−01−27T08 : 5 2 : 5 0 . 4 8 6 . f i t s
PACMA.2011−01−27T09 : 2 0 : 4 8 . 6 0 4 . f i t s

HD108248J C14 ep2:
PACMA.2011−01−29T08 : 4 9 : 0 0 . 4 6 2 . f i t s
PACMA.2011−01−29T09 : 0 9 : 0 7 . 1 3 1 . f i t s
PACMA.2011−01−29T09 : 2 6 : 4 2 . 5 0 0 . f i t s

HD108248J C14 ep3:
PACMA.2011−02−01T08 : 3 0 : 4 6 . 5 5 2 . f i t s
PACMA.2011−02−01T08 : 5 2 : 0 9 . 7 2 0 . f i t s
PACMA.2011−02−01T09 : 0 1 : 1 2 . 3 9 0 . f i t s
PACMA.2011−02−01T09 : 1 7 : 5 7 . 0 5 9 . f i t s
PACMA.2011−02−01T09 : 2 3 : 4 2 . 7 2 9 . f i t s
PACMA.2011−02−01T09 : 3 6 : 2 2 . 0 2 9 . f i t s

HD131977 C14 ep1:
PACMA.2011−02−02T08 : 2 2 : 0 6 . 9 6 9 . f i t s
PACMA.2011−02−02T08 : 4 5 : 0 9 . 7 7 8 . f i t s

HD156274 C15 ep3:
PACMA.2011−07−20T00 : 2 2 : 0 0 . 3 4 8 . f i t s
PACMA.2011−07−20T00 : 2 7 : 4 6 . 2 0 8 . f i t s
PACMA.2011−07−20T00 : 3 3 : 5 3 . 9 2 9 . f i t s
PACMA.2011−07−20T00 : 4 4 : 0 6 . 6 6 8 . f i t s
PACMA.2011−07−20T00 : 4 9 : 4 9 . 5 5 8 . f i t s
PACMA.2011−07−20T00 : 5 8 : 1 2 . 6 6 8 . f i t s
PACMA.2011−07−20T01 : 0 5 : 5 2 . 1 5 8 . f i t s
PACMA.2011−07−20T01 : 1 4 : 0 7 . 2 7 8 . f i t s
PACMA.2011−07−20T01 : 2 2 : 0 7 . 7 7 7 . f i t s
PACMA.2011−07−20T01 : 3 0 : 2 1 . 1 0 8 . f i t s
PACMA.2011−07−20T01 : 4 9 : 5 2 . 2 2 8 . f i t s
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PACMA.2011−07−20T01 : 5 5 : 5 0 . 7 1 8 . f i t s
PACMA.2011−07−20T02 : 0 4 : 0 8 . 4 4 7 . f i t s
PACMA.2011−07−20T02 : 0 9 : 5 1 . 5 5 8 . f i t s
PACMA.2011−07−20T02 : 1 9 : 5 0 . 0 6 7 . f i t s
PACMA.2011−07−20T02 : 2 8 : 0 9 . 7 5 7 . f i t s
PACMA.2011−07−20T02 : 3 3 : 4 8 . 2 5 8 . f i t s
PACMA.2011−07−20T02 : 4 8 : 0 0 . 4 6 8 . f i t s

HD156274 C15 ep4:

PACMA.2011−07−20T03 : 1 2 : 3 9 . 0 2 7 . f i t s
PACMA.2011−07−20T03 : 1 9 : 0 7 . 1 3 7 . f i t s
PACMA.2011−07−20T03 : 3 8 : 4 9 . 7 8 6 . f i t s
PACMA.2011−07−20T03 : 4 7 : 1 2 . 9 0 7 . f i t s

HD18622 C15 ep2:

PACMA.2011−07−21T08 : 5 4 : 0 2 . 2 0 3 . f i t s
PACMA.2011−07−21T09 : 0 8 : 0 4 . 8 0 3 . f i t s
PACMA.2011−07−21T09 : 2 6 : 1 7 . 8 3 2 . f i t s

HD202730 C15 ep1:

PACMA.2011−07−20T05 : 0 5 : 2 2 . 8 8 3 . f i t s
PACMA.2011−07−20T05 : 1 1 : 1 3 . 9 8 4 . f i t s
PACMA.2011−07−20T05 : 3 7 : 0 8 . 1 6 3 . f i t s
PACMA.2011−07−20T05 : 5 4 : 1 2 . 7 2 3 . f i t s
PACMA.2011−07−20T06 : 0 2 : 3 0 . 4 6 3 . f i t s
PACMA.2011−07−20T06 : 3 5 : 5 5 . 7 7 3 . f i t s
PACMA.2011−07−20T07 : 3 6 : 4 8 . 2 6 1 . f i t s

HD202730 C16 ep1:

PACMA.2011−08−24T04 : 2 1 : 1 2 . 0 6 2 . f i t s
PACMA.2011−08−24T04 : 3 5 : 1 3 . 8 8 3 . f i t s
PACMA.2011−08−24T04 : 5 6 : 1 2 . 7 1 2 . f i t s
PACMA.2011−08−24T05 : 0 9 : 3 4 . 3 6 2 . f i t s
PACMA.2011−08−24T05 : 2 7 : 5 1 . 2 4 1 . f i t s
PACMA.2011−08−24T05 : 3 9 : 4 1 . 3 9 1 . f i t s
PACMA.2011−08−24T05 : 5 3 : 2 7 . 2 1 0 . f i t s
PACMA.2011−08−24T06 : 0 8 : 1 9 . 8 9 1 . f i t s
PACMA.2011−08−24T06 : 2 2 : 2 5 . 6 8 0 . f i t s
PACMA.2011−08−24T06 : 2 8 : 2 0 . 7 8 0 . f i t s

HD202730 C16 ep2:

PACMA.2011−08−26T02 : 3 3 : 5 9 . 1 8 8 . f i t s
PACMA.2011−08−26T02 : 4 8 : 4 3 . 0 2 8 . f i t s
PACMA.2011−08−26T03 : 0 5 : 0 7 . 6 2 7 . f i t s
PACMA.2011−08−26T03 : 1 8 : 1 3 . 1 4 8 . f i t s
PACMA.2011−08−26T03 : 3 3 : 1 4 . 7 6 8 . f i t s
PACMA.2011−08−26T03 : 4 6 : 2 1 . 5 9 8 . f i t s
PACMA.2011−08−26T03 : 5 9 : 0 8 . 2 0 7 . f i t s
PACMA.2011−08−26T04 : 1 1 : 3 7 . 0 0 6 . f i t s

HD202730 C16 ep3:

PACMA.2011−08−29T03 : 4 3 : 0 8 . 3 5 5 . f i t s
PACMA.2011−08−29T04 : 0 2 : 1 0 . 7 1 3 . f i t s
PACMA.2011−08−29T04 : 1 5 : 4 6 . 0 0 3 . f i t s
PACMA.2011−08−29T04 : 2 8 : 4 5 . 2 4 2 . f i t s
PACMA.2011−08−29T04 : 4 3 : 4 4 . 8 2 1 . f i t s
PACMA.2011−08−29T05 : 0 3 : 2 4 . 9 0 9 . f i t s
PACMA.2011−08−29T05 : 2 8 : 3 7 . 7 7 8 . f i t s

HD66598 C14 ep1:

PACMA.2011−01−27T04 : 2 4 : 0 8 . 8 4 3 . f i t s
PACMA.2011−01−27T04 : 5 1 : 4 6 . 6 2 0 . f i t s

HD66598 C14 ep2:

PACMA.2011−01−27T05 : 5 9 : 4 8 . 9 5 6 . f i t s
PACMA.2011−01−27T06 : 1 5 : 4 4 . 1 2 6 . f i t s

HD66598 C14 ep3:

PACMA.2011−01−28T04 : 2 5 : 5 0 . 3 2 6 . f i t s
PACMA.2011−01−28T04 : 5 7 : 1 5 . 6 3 4 . f i t s
PACMA.2011−01−28T05 : 1 3 : 4 5 . 9 0 3 . f i t s
PACMA.2011−01−28T05 : 3 2 : 3 1 . 1 7 2 . f i t s
PACMA.2011−01−28T05 : 5 2 : 4 1 . 8 8 1 . f i t s

HD66598 C14 ep4:

PACMA.2011−01−29T03 : 5 0 : 5 7 . 5 7 5 . f i t s
PACMA.2011−01−29T04 : 0 8 : 3 3 . 3 8 4 . f i t s
PACMA.2011−01−29T04 : 5 4 : 1 2 . 1 4 0 . f i t s

HD66598 C14 ep6v2:

PACMA.2011−01−30T02 : 3 7 : 5 4 . 2 5 2 . f i t s
PACMA.2011−01−30T02 : 5 8 : 0 0 . 3 7 1 . f i t s
PACMA.2011−01−30T03 : 1 6 : 5 2 . 7 1 9 . f i t s
PACMA.2011−01−30T03 : 3 8 : 0 0 . 0 8 9 . f i t s
PACMA.2011−01−30T03 : 5 8 : 0 0 . 5 4 8 . f i t s
PACMA.2011−01−30T04 : 1 7 : 4 7 . 7 1 8 . f i t s
PACMA.2011−01−30T04 : 3 6 : 3 6 . 6 6 7 . f i t s
PACMA.2011−01−30T04 : 5 6 : 3 9 . 1 5 6 . f i t s
PACMA.2011−01−30T05 : 1 6 : 0 6 . 7 2 5 . f i t s

HD66598 C14 ep9:

PACMA.2011−02−02T01 : 2 9 : 4 1 . 2 7 1 . f i t s
PACMA.2011−02−02T01 : 5 9 : 1 9 . 8 0 0 . f i t s
PACMA.2011−02−02T02 : 0 9 : 1 4 . 4 6 9 . f i t s
PACMA.2011−02−02T02 : 1 7 : 4 4 . 1 3 8 . f i t s

HD66598 C14 ep10:

PACMA.2011−02−02T02 : 5 8 : 0 3 . 8 9 7 . f i t s
PACMA.2011−02−02T03 : 0 8 : 2 4 . 5 6 6 . f i t s
PACMA.2011−02−02T03 : 2 3 : 5 3 . 4 3 5 . f i t s
PACMA.2011−02−02T03 : 3 3 : 5 4 . 1 0 5 . f i t s
PACMA.2011−02−02T03 : 4 4 : 1 4 . 7 7 5 . f i t s

HD66598 C14 ep11:

PACMA.2011−02−02T04 : 3 7 : 1 5 . 5 3 1 . f i t s
PACMA.2011−02−02T04 : 5 9 : 4 0 . 0 9 0 . f i t s
PACMA.2011−02−02T05 : 2 7 : 1 0 . 6 1 8 . f i t s
PACMA.2011−02−02T06 : 0 6 : 5 5 . 6 7 6 . f i t s

HD66598 C14 ep12:

PACMA.2011−02−04T02 : 3 4 : 3 7 . 0 2 9 . f i t s
PACMA.2011−02−04T02 : 5 4 : 5 5 . 8 4 8 . f i t s
PACMA.2011−02−04T03 : 1 4 : 3 1 . 3 8 7 . f i t s
PACMA.2011−02−04T03 : 3 4 : 1 9 . 9 2 6 . f i t s
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PACMA.2011−02−04T04 : 3 5 : 2 6 . 0 1 3 . f i t s
PACMA.2011−02−04T05 : 3 8 : 5 7 . 1 9 0 . f i t s
PACMA.2011−02−04T05 : 4 4 : 3 4 . 8 6 0 . f i t s
PACMA.2011−02−04T05 : 5 0 : 0 8 . 5 3 0 . f i t s
PACMA.2011−02−04T06 : 0 1 : 0 6 . 8 6 9 . f i t s

HD66598 C17 ep1:

PACMA.2011−11−24T05 : 4 3 : 3 4 . 1 0 2 . f i t s
PACMA.2011−11−24T05 : 4 9 : 0 5 . 6 1 2 . f i t s
PACMA.2011−11−24T05 : 5 4 : 5 6 . 8 8 2 . f i t s
PACMA.2011−11−24T06 : 1 6 : 3 2 . 6 3 2 . f i t s
PACMA.2011−11−24T06 : 2 2 : 0 0 . 7 3 2 . f i t s
PACMA.2011−11−24T06 : 2 7 : 4 1 . 8 5 3 . f i t s
PACMA.2011−11−24T06 : 4 8 : 4 9 . 4 6 2 . f i t s
PACMA.2011−11−24T06 : 5 4 : 2 0 . 7 6 3 . f i t s
PACMA.2011−11−24T06 : 5 9 : 4 7 . 0 5 2 . f i t s
PACMA.2011−11−24T07 : 0 5 : 1 5 . 1 6 2 . f i t s
PACMA.2011−11−24T07 : 1 0 : 4 3 . 4 7 3 . f i t s
PACMA.2011−11−24T07 : 1 6 : 4 9 . 5 9 3 . f i t s
PACMA.2011−11−24T07 : 2 2 : 1 5 . 4 9 3 . f i t s
PACMA.2011−11−24T07 : 2 7 : 4 3 . 6 0 4 . f i t s
PACMA.2011−11−24T07 : 3 3 : 1 2 . 1 0 3 . f i t s
PACMA.2011−11−24T07 : 3 8 : 4 0 . 2 1 4 . f i t s
PACMA.2011−11−24T07 : 5 0 : 3 1 . 0 0 4 . f i t s
PACMA.2011−11−24T08 : 1 0 : 1 2 . 4 9 4 . f i t s
PACMA.2011−11−24T08 : 1 5 : 4 3 . 9 9 5 . f i t s
PACMA.2011−11−24T08 : 2 1 : 1 0 . 2 8 4 . f i t s
PACMA.2011−11−24T08 : 2 6 : 4 1 . 7 6 5 . f i t s
PACMA.2011−11−24T08 : 3 7 : 5 0 . 2 9 5 . f i t s
PACMA.2011−11−24T08 : 4 3 : 1 6 . 5 8 5 . f i t s
PACMA.2011−11−24T08 : 4 8 : 4 4 . 8 9 5 . f i t s
PACMA.2011−11−24T08 : 5 4 : 2 3 . 3 7 5 . f i t s
PACMA.2011−11−24T08 : 5 9 : 5 1 . 8 7 6 . f i t s
PACMA.2011−11−24T09 : 0 5 : 2 3 . 3 8 7 . f i t s

HD66598 C17 ep2

PACMA.2011−11−25T05 : 0 4 : 2 8 . 6 1 8 . f i t s
PACMA.2011−11−25T05 : 0 9 : 5 6 . 9 2 8 . f i t s
PACMA.2011−11−25T05 : 1 5 : 2 5 . 0 4 8 . f i t s
PACMA.2011−11−25T05 : 2 1 : 2 6 . 5 4 9 . f i t s
PACMA.2011−11−25T05 : 2 6 : 5 2 . 4 6 9 . f i t s
PACMA.2011−11−25T05 : 3 2 : 2 0 . 5 8 9 . f i t s
PACMA.2011−11−25T05 : 3 8 : 1 1 . 7 1 0 . f i t s
PACMA.2011−11−25T05 : 5 2 : 0 7 . 9 3 9 . f i t s
PACMA.2011−11−25T05 : 5 7 : 3 9 . 4 5 0 . f i t s
PACMA.2011−11−25T06 : 0 3 : 0 5 . 3 3 0 . f i t s
PACMA.2011−11−25T06 : 0 8 : 3 3 . 4 4 9 . f i t s
PACMA.2011−11−25T06 : 1 4 : 0 1 . 5 7 0 . f i t s
PACMA.2011−11−25T06 : 1 9 : 2 9 . 2 9 0 . f i t s
PACMA.2011−11−25T06 : 2 5 : 1 2 . 6 2 0 . f i t s
PACMA.2011−11−25T06 : 4 9 : 4 4 . 8 0 0 . f i t s
PACMA.2011−11−25T06 : 5 5 : 1 1 . 1 0 0 . f i t s
PACMA.2011−11−25T07 : 0 0 : 3 9 . 2 1 0 . f i t s
PACMA.2011−11−25T07 : 0 6 : 0 7 . 7 2 0 . f i t s
PACMA.2011−11−25T07 : 1 1 : 3 8 . 4 4 1 . f i t s
PACMA.2011−11−25T07 : 1 7 : 1 7 . 3 1 1 . f i t s
PACMA.2011−11−25T07 : 3 4 : 1 9 . 1 6 0 . f i t s
PACMA.2011−11−25T07 : 3 9 : 4 7 . 6 6 1 . f i t s
PACMA.2011−11−25T07 : 4 5 : 1 5 . 7 8 1 . f i t s
PACMA.2011−11−25T07 : 5 0 : 4 7 . 2 8 2 . f i t s
PACMA.2011−11−25T07 : 5 6 : 1 3 . 5 3 1 . f i t s
PACMA.2011−11−25T08 : 0 1 : 5 1 . 6 4 1 . f i t s
PACMA.2011−11−25T08 : 2 1 : 0 0 . 5 3 2 . f i t s
PACMA.2011−11−25T08 : 2 6 : 2 8 . 6 5 1 . f i t s

PACMA.2011−11−25T08 : 3 1 : 5 6 . 9 6 2 . f i t s
PACMA.2011−11−25T08 : 3 7 : 2 7 . 6 8 2 . f i t s

HD66598 C17 ep3:
PACMA.2011−11−26T07 : 2 1 : 3 1 . 7 6 6 . f i t s
PACMA.2011−11−26T07 : 3 9 : 2 7 . 8 4 6 . f i t s
PACMA.2011−11−26T07 : 5 7 : 3 4 . 7 9 6 . f i t s
PACMA.2011−11−26T08 : 1 4 : 5 7 . 1 2 7 . f i t s
PACMA.2011−11−26T08 : 3 5 : 0 0 . 4 3 7 . f i t s
PACMA.2011−11−26T08 : 5 8 : 3 6 . 9 1 7 . f i t s
PACMA.2011−11−26T09 : 0 4 : 0 5 . 0 3 7 . f i t s

HD10360 C17 s ep1v2:
PACMA.2011−11−20T01 : 5 5 : 2 0 . 1 8 7 . f i t s
PACMA.2011−11−20T01 : 5 8 : 0 2 . 8 7 7 . f i t s
PACMA.2011−11−20T02 : 3 8 : 1 6 . 1 7 7 . f i t s

HD10360 C17 s ep2:
PACMA.2011−11−21T04 : 1 6 : 1 5 . 6 5 9 . f i t s
PACMA.2011−11−21T04 : 4 6 : 5 0 . 7 1 9 . f i t s
PACMA.2011−11−21T05 : 1 0 : 3 7 . 7 9 9 . f i t s
PACMA.2011−11−21T05 : 3 1 : 2 6 . 3 7 0 . f i t s
PACMA.2011−11−21T05 : 5 9 : 2 8 . 1 1 0 . f i t s
PACMA.2011−11−21T06 : 2 3 : 5 8 . 1 1 1 . f i t s

HD10360 C17 s ep3:
PACMA.2011−11−24T01 : 5 7 : 4 3 . 2 9 7 . f i t s
PACMA.2011−11−24T02 : 3 7 : 5 5 . 7 6 8 . f i t s
PACMA.2011−11−24T03 : 1 6 : 3 9 . 0 6 8 . f i t s
PACMA.2011−11−24T04 : 4 1 : 4 5 . 3 6 1 . f i t s
PACMA.2011−11−24T01 : 3 3 : 0 1 . 9 2 7 . f i t s
PACMA.2011−11−24T03 : 1 6 : 3 9 . 0 6 8 . f i t s

HD202730 C16 s ep1:
PACMA.2011−08−24T04 : 3 0 : 5 9 . 2 5 2 . f i t s
PACMA.2011−08−24T05 : 0 5 : 0 9 . 7 2 1 . f i t s
PACMA.2011−08−24T05 : 3 5 : 2 2 . 1 2 1 . f i t s

HD66598 C17 s ep1:
PACMA.2011−11−26T07 : 3 4 : 2 8 . 3 4 5 . f i t s
PACMA.2011−11−26T07 : 5 2 : 4 4 . 0 7 6 . f i t s
PACMA.2011−11−26T08 : 1 0 : 0 8 . 4 1 6 . f i t s
PACMA.2011−11−26T08 : 5 3 : 2 1 . 1 9 7 . f i t s

Epoch identifiers of the individual epochs
included within the multi epoch astromet-
ric fits in Sec. 4.3.3 and App. C:

HD10360 m1:
HD10360 C17 ep1
HD10360 C17 ep2
HD10360 C17 ep4
HD10360 C17 ep5
HD10360 C17 ep6
HD10360 C17 ep7
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HD10360 m2:

HD10360 C16 ep1
HD10360 C17 ep1
HD10360 C17 ep2
HD10360 C17 ep4
HD10360 C17 ep5
HD10360 C17 ep6
HD10360 C17 ep7

HD108248J m1:

HD108248J C14 ep1
HD108248J C14 ep2
HD108248J C14 ep3

HD108248J m2:

HD108248J C14 ep1
HD108248J C14 ep3

HD156274 m1:

HD156274 C15 ep3
HD156274 C15 ep4

HD202730 m1:

HD202730 C16 ep1
HD202730 C16 ep2
HD202730 C16 ep3

HD202730 m2:

HD202730 C15 ep1

HD202730 C16 ep1
HD202730 C16 ep2
HD202730 C16 ep3

HD66598 m1v2:

HD66598 C14 ep1
HD66598 C14 ep2
HD66598 C14 ep3
HD66598 C14 ep4
HD66598 C14 ep6v2
HD66598 C14 ep10
HD66598 C14 ep11
HD66598 C14 ep12

HD66598 m2:

HD66598 C17 ep1
HD66598 C17 ep2
HD66598 C17 ep3

HD66598 m3v2:

HD66598 C14 ep1
HD66598 C14 ep2
HD66598 C14 ep3
HD66598 C14 ep4
HD66598 C14 ep6v2
HD66598 C14 ep10
HD66598 C14 ep11
HD66598 C14 ep12
HD66598 C17 ep1
HD66598 C17 ep2
HD66598 C17 ep3

207





Appendix D

Plots to the Astrometric Fits

For the sake of commpleteness, the plots to all performed astrometric fits of single and multi
epoch sequences are included here.

HD100286 C14 ep2 on 31-01-11

Figure D.1. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD100286 C14 ep2 on 31-01-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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Appendix D. Plots to the Astrometric Fits

HD10268 C16 ep1 on 29-08-11

Figure D.2. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD10268 C16 ep1 on 29-08-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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HD10360 C16 ep1 on 26-08-11

Figure D.3. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD10360 C16 ep1 on 26-08-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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Appendix D. Plots to the Astrometric Fits

HD10360 C17 ep1 on 20-11-11

Figure D.4. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD10360 C17 ep1 on 20-11-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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HD10360 C17 ep2 on 21-11-11

Figure D.5. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD10360 C17 ep2 on 21-11-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.

213



Appendix D. Plots to the Astrometric Fits

HD10360 C17 ep4 on 24-11-11

Figure D.6. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD10360 C17 ep4 on 24-11-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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HD10360 C17 ep5 on 25-11-11

Figure D.7. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD10360 C17 ep5 on 25-11-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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Appendix D. Plots to the Astrometric Fits

HD10360 C17 ep6 on 26-11-11

Figure D.8. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD10360 C17 ep6 on 26-11-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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HD10360 C17 ep7 on 26-11-11

Figure D.9. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD10360 C17 ep7 on 26-11-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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Appendix D. Plots to the Astrometric Fits

HD108248J C14 ep1 on 27-01-11

Figure D.10. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD108248J C14 ep1 on 27-01-11, as well as the distribution of the
2,000 fits to the resampled data sets from the bootstrap analysis.
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HD108248J C14 ep2 on 29-01-11

Figure D.11. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD108248J C14 ep2 on 29-01-11, as well as the distribution of the
2,000 fits to the resampled data sets from the bootstrap analysis.
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Appendix D. Plots to the Astrometric Fits

HD108248J C14 ep3 on 01-02-11

Figure D.12. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD108248J C14 ep3 on 01-02-11, as well as the distribution of the
2,000 fits to the resampled data sets from the bootstrap analysis.
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HD131977 C14 ep1 on 02-02-11

Figure D.13. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD131977 C14 ep1 on 02-02-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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Appendix D. Plots to the Astrometric Fits

HD156274 C15 ep3 on 20-07-11

Figure D.14. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD156274 C15 ep3 on 20-07-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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HD156274 C15 ep4 on 20-07-11

Figure D.15. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD156274 C15 ep4 on 20-07-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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Appendix D. Plots to the Astrometric Fits

HD18622 C15 ep2 on 21-07-11

Figure D.16. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD18622 C15 ep2 on 21-07-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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HD202730 C15 ep1 on 20-07-11

Figure D.17. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD202730 C15 ep1 on 20-07-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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Appendix D. Plots to the Astrometric Fits

HD202730 C16 ep1 on 24-08-11

Figure D.18. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD202730 C16 ep1 on 24-08-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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HD202730 C16 ep2 on 26-08-11

Figure D.19. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD202730 C16 ep2 on 26-08-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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Appendix D. Plots to the Astrometric Fits

HD202730 C16 ep3 on 29-08-11

Figure D.20. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD202730 C16 ep3 on 29-08-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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HD66598 C14 ep1 on 27-01-11

Figure D.21. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD66598 C14 ep1 on 27-01-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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Appendix D. Plots to the Astrometric Fits

HD66598 C14 ep2 on 27-01-11

Figure D.22. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD66598 C14 ep2 on 27-01-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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HD66598 C14 ep3 on 28-01-11

Figure D.23. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD66598 C14 ep3 on 28-01-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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Appendix D. Plots to the Astrometric Fits

HD66598 C14 ep4 on 29-01-11

Figure D.24. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD66598 C14 ep4 on 29-01-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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HD66598 C14 ep6v2 on 30-01-11

Figure D.25. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD66598 C14 ep6v2 on 30-01-11, as well as the distribution of the
2,000 fits to the resampled data sets from the bootstrap analysis.
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Appendix D. Plots to the Astrometric Fits

HD66598 C14 ep9 on 02-02-11

Figure D.26. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD66598 C14 ep9 on 02-02-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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HD66598 C14 ep10 on 02-02-11

Figure D.27. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD66598 C14 ep10 on 02-02-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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Appendix D. Plots to the Astrometric Fits

HD66598 C14 ep11 on 02-02-11

Figure D.28. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD66598 C14 ep11 on 02-02-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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HD66598 C14 ep12 on 04-02-11

Figure D.29. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD66598 C14 ep12 on 04-02-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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Appendix D. Plots to the Astrometric Fits

HD66598 C17 ep1 on 24-11-11

Figure D.30. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD66598 C17 ep1 on 24-11-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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HD66598 C17 ep2 on 25-11-11

Figure D.31. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD66598 C17 ep2 on 25-11-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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Appendix D. Plots to the Astrometric Fits

HD66598 C17 ep3 on 26-11-11

Figure D.32. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD66598 C17 ep3 on 26-11-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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HD10360 C17 s ep1v2 on 20-11-11

Figure D.33. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD10360 C17 s ep1v2 on 20-11-11, as well as the distribution of the
2,000 fits to the resampled data sets from the bootstrap analysis.
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Appendix D. Plots to the Astrometric Fits

HD10360 C17 s ep2 on 21-11-11

Figure D.34. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD10360 C17 s ep2 on 21-11-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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HD10360 C17 s ep3 on 24-11-11

Figure D.35. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD10360 C17 s ep3 on 24-11-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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Appendix D. Plots to the Astrometric Fits

HD202730 C16 s ep1 on 24-08-11

Figure D.36. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD202730 C16 s ep1 on 24-08-11, as well as the distribution of the
2,000 fits to the resampled data sets from the bootstrap analysis.
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HD66598 C17 s ep1 on 26-11-11

Figure D.37. – Corrected differential delays ∆d and residuals of the astrometric fit to the
observation sequence HD66598 C17 s ep1 on 26-11-11, as well as the distribution of the 2,000
fits to the resampled data sets from the bootstrap analysis.
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Appendix D. Plots to the Astrometric Fits

Multi Epoch Fits:

HD10360 m1; ∆T = 6.19 d

Figure D.38. – Corrected differential delays ∆d and residuals of the multi epoch astrometric
fit to the observation sequence HD10360 m1, as well as the distribution of the 2,000 fits to
the resampled data sets from the bootstrap analysis.
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HD10360 m2; ∆T = 91.92 d

Figure D.39. – Corrected differential delays ∆d and residuals of the multi epoch astrometric
fit to the observation sequence HD10360 m2, as well as the distribution of the 2,000 fits to
the resampled data sets from the bootstrap analysis.
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Appendix D. Plots to the Astrometric Fits

HD108248J m1; ∆T = 5.03 d

Figure D.40. – Corrected differential delays ∆d and residuals of the multi epoch astrometric
fit to the observation sequence HD108248J m1, as well as the distribution of the 2,000 fits
to the resampled data sets from the bootstrap analysis.
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HD108248J m2; ∆T = 5.03 d

Figure D.41. – Corrected differential delays ∆d and residuals of the multi epoch astrometric
fit to the observation sequence HD108248J m2, as well as the distribution of the 2,000 fits
to the resampled data sets from the bootstrap analysis.
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Appendix D. Plots to the Astrometric Fits

HD156274 m1; ∆T = 0.15 d

Figure D.42. – Corrected differential delays ∆d and residuals of the multi epoch astrometric
fit to the observation sequence HD156274 m1, as well as the distribution of the 2,000 fits to
the resampled data sets from the bootstrap analysis.
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HD202730 m1; ∆T = 5.05 d

Figure D.43. – Corrected differential delays ∆d and residuals of the multi epoch astrometric
fit to the observation sequence HD202730 m1, as well as the distribution of the 2,000 fits to
the resampled data sets from the bootstrap analysis.
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Appendix D. Plots to the Astrometric Fits

HD202730 m2; ∆T = 40.02 d

Figure D.44. – Corrected differential delays ∆d and residuals of the multi epoch astrometric
fit to the observation sequence HD202730 m2, as well as the distribution of the 2,000 fits to
the resampled data sets from the bootstrap analysis.
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HD66598 m1v2; ∆T = 8.06 d

Figure D.45. – Corrected differential delays ∆d and residuals of the multi epoch astrometric
fit to the observation sequence HD66598 m1v2, as well as the distribution of the 2,000 fits
to the resampled data sets from the bootstrap analysis.
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Appendix D. Plots to the Astrometric Fits

HD66598 m2; ∆T = 2.14 d

Figure D.46. – Corrected differential delays ∆d and residuals of the multi epoch astrometric
fit to the observation sequence HD66598 m2, as well as the distribution of the 2,000 fits to
the resampled data sets from the bootstrap analysis.
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HD66598 m3v2; ∆T = 303.2 d

Figure D.47. – Corrected differential delays ∆d and residuals of the multi epoch astrometric
fit to the observation sequence HD66598 m3v2, as well as the distribution of the 2,000 fits
to the resampled data sets from the bootstrap analysis.
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