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Abstracts

This thesis deals with advanced models to characterize microfluidic flows from
image sequences. The governing equations and boundary conditions for viscous
flows are introduced as a global model in order to impose physically sound
motion results. The connection between the computational fluid simulations and
experimental measurement data is established by using constrained optimization.
This framework also allows to introduce control variables, which are determined
in agreement with the underlying data.
In this context, the thesis focuses on the study of the influence of i) the
image data, ii) the underlying motion and iii) the boundary conditions on the
estimation of the control variables and the corresponding physical quantities.
These questions are assessed by the application to synthetic images that allow
to measure the induced errors. It is shown that the application of physically
motivated differential equations as global motion models increase the robustness
and accuracy of the motion estimation. Control variables are used to change the
equations in a modeled manner, so that the solution describes the processes that
are inherent in the images. The strength of global models lies in the combination
with sparsely distributed information in the images, where common state-of-
the-art methods have extreme difficulties to obtain reasonable results. It is
demonstrated that the optimal control framework allows to relax the governing
equations in order to model uncertainty of the measurement setting parameters,
such as wall-slip. And finally, such a parameter model is extended to three
dimensions and allows to estimate the pressure drop of the flow and the diffusion
coefficient of the trace substance caged Q-rhodamine dextran in water.
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Diese Arbeit befasst sich mit der verbesserten Modellierungen von Mikrokanal-
strömungen, die eine genauere Charakterisierung durch Bildsequenzen
ermöglicht. Die geltenden Gesetzmäßigkeiten und Randbedingungen werden
als globales Model verwendet, um physikalisch plausible Resultate des
Bewegungsfeldes zu erzielen. Die Kombination von Strömungssimulationen
und experimentellen Messdaten wird durch die Verwendung von
Optimierungsmethoden unter Nebenbedingungen erreicht. Dieser Ansatz
erlaubt die Einführung von Kontrolvariablen, die in Übereinstimmung zu den
Messdaten bestimmt werden.
In diesem Zusammenhang konzentriert sich diese Arbeit auf die Untersuchung
der Einflüsse durch i) die Bilddaten, ii) das zugrunde liegende Bewegungsfeld
und iii) die Randbedingungen auf die Kontrolvariablen und die dadurch
bestimmten physikalischen Größen. Diese Fragenstellungen werden mit
synthetischen Bilddaten quantitativ erfasst und erlauben somit eine
Abschätzung der Genauigkeit. Es wird gezeigt, dass die Verwendung von
Stömungsgleichungen als Bewegungsmodel die Robustheit und Genauigkeit
der Geschwindigkeitsbestimmung aus Bildern verbessert. Kontrollvariablen
werden verwendet um die Lösungen der Gleichungen in geeigneter Weise
zu verändern, so dass diese die Prozesse in den Bildern beschreiben. Die
Stärke von globalen Bewegungsmodellen beruht auf der Tatsache, dass wenige
vereinzelte Bildinformationen für eine sinnvolle Bestimmung ausreichen,
wogegen Methoden mit lokalen Bewegungsmodellen große Probleme haben.
Es wird gezeigt, dass mit Hilfe von optimaler Steuerung die physikalischen
Gesetze abgeschwächt werden können, um Ungenauigkeiten der gegebenen
Referenzeparameter zu modellieren. Und schließlich wird der Ansatz auf
drei Dimensionen erweitert, was eine Bestimmung des Druckabfalls und des
Diffusionskoeffizienten vom Farbstoff caged Q-rhodamine dextran in Wasser
aus Fluoreszenzmessbilden ermöglicht.
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CHAPTER 1

Introduction

1.1 Motivation

The characterization and accurate description of dynamical processes are among the
most interesting topics in the field of physics. In order to understand these processes
it is necessary to observe the kinematic behavior and conclude physical properties and
models. In this context motion takes a key role because it describes the change of position
of objects or more general matter in time.

The measurement of kinematic properties is of special interest for fluid dynamical
questions. Figure 1.1 shows the wide range of relevant flows on earth that are of
scientific interest. For many relevant cases the accurate characterization and prediction
of dynamical systems is not possible because their governing equations are non-linear and
the initial state of the system or the exact boundary conditions are not known precisely
enough. For many flow phenomena it is not possible to develop models that describe the

length scale1 nm 1µm 1mm 1m 1km 1000 km

Figure 1.1: This scheme illustrates the wide range of length scales for flow phenomena
on earth, which covers up more than 9 orders of magnitude. Starting from nano-flows
(Huang et al., 2013, Courtesy of Yu-Chieh Lo), micro-flows (Roetmann, 2008, Courtesy
of Laser-Laboratorium Göttingen e.V.), moderate-scale flows (NASA, 1994) up to large-
scale flows (NASA, 2004).

1



CHAPTER 1. INTRODUCTION

behavior sufficiently accurate because the system is too complex. Simplifications help to
find mathematical descriptions of the phenomena but often these approximations are not
accurate enough to predict dynamical processes. As a consequence, it is quite common to
conduct experiments as a means to verify numerically simulated results. With respect to
aerodynamics or environmental physics, the standard procedure of estimating quantities
of interest include scaled model experiments besides numerical evaluations. Whenever
necessary and possible a field test is also conducted to dismiss all doubts about deficiencies
of the laboratory experiments and numerical results.

Simplified fluid motion models make use of corrections that include empirical
constants and terms that make up for the inadequate modeling (e.g. Reynolds stress
models). The following list gives a selection of challenging fluid phenomena, which are
not only of scientific interest but also relevant for engineers in order to optimize the
performance of processes and products:

• fluid-structure interaction (e.g. bird flight, pumping heart)
• multiphase flows (e.g. sprays)
• reacting flows (e.g. combustion)
• fluid interfaces (e.g. wind-wave interaction)
• aerodynamic flows (e.g. airplanes)
• atmospheric flows (e.g. weather forecast, hurricane trajectories)
• turbulence (e.g. jets, wake) .

For all these problems experimental assessment is necessary in order to verify
numerical results and to determine properties and relationships that help to improve
state-of-the-art models while increasing the accuracy of the estimate. This is certainly
relevant for flows that have to be described by time-dependent, non-linear models
(e.g. aerodynamics) but it also applies to stationary linear models as in microfluidics.
Measurements help to tell whether model assumptions are justifiable or should be adapted
to match the experiment and of course reality.

The velocity is one of the crucial quantities that describes the kinematics and is
therefore the main subject of most investigations. An accurate and robust assessment of
the velocity is mandatory in order to validate existing dynamical models or to improve
them. Most often motion estimation from experimental data is based on local motion
models (e.g. differential models) that do not include a global description of the flow. Such
global relations can be exploited to achieve higher accuracies and robustness and allow
to estimate physically sound results. However, the combination of fluid simulation and
fluid measurements is highly desirable because it allows to benefit from both fields: the
comprehensive knowledge of all physical quantities from the simulation and the fidelity
from experimental data.

1.2 Previous work

In the beginning, photographs were mostly used for visualizing flows in order to get a
qualitative understanding of the kinematics. The books of Merzkirch (1987) and Samimy
et al. (2003) show a large variety of flow visualization methods. These images are well
suited for estimating geometries, orientations and length scales of flow structures, but

2



1.2. PREVIOUS WORK

the accuracy of quantitative evaluations of the motion was limited. From a current
point of view, many of these visualizations seem rather artistic than an actual scientific
measurement (Gharib et al., 2002). Since these visualization images were not suitable
for quantitative investigations, scientists started to generate highly structured images by
introducing tracer particles into the fluid. The fluid acts as a carrier medium for the
dispersed particles that follow the fluid motion and can be tracked. The velocity was
locally estimated by an optical measurement technique called Young’s Fringe method
(Meynart, 1983; Arnold and Hinsch, 1989; Keane and Adrian, 1990), which analyses
interference patterns that encode the velocity. With the advent of digital images
in the early 90’s this technique was imitated on computers and became known as
particle image velocimetry (Adrian, 1991; Willert and Gharib, 1991). This was the first
motion estimation method acting on digital images that could estimate fluid motion
quantitatively.

But motion estimation is not just important for fluid dynamicists but also to computer
scientists, whose aim is to estimate object or camera motions. More than 10 years before
the fluid dynamicists, the computer vision community had already developed methods
to estimate motion from images, which they called optical flow (OF) (Horn and Schunck,
1981; Lucas and Kanade, 1981). Optical flow is very flexible because it is based on a
cost function that can be easily adapted to model the underlying effects that describe
the evolution of the image sequences structures.

Just recently, before the turn of the millennium, these methods have been rediscovered
for fluid motion estimation (Wildes et al., 1997; Quénot et al., 1998) and have been
extended to deal with individual characteristics of the recorded scene. The standard
optical flow method is a differential method, which assumes the conservation of
image intensity. Therefore, it is very sensitive to illumination changes, which will be
interpreted wrongly as motion (Horn, 1986). In order to account for this effect Gennert
and Negahdaripour (1987) introduced additional brightness terms that model contrast
changes and mean intensity shifts. A generalized illumination model was presented by
Haußecker and Fleet (2001), which uses a parameterized model function to describe the
brightness changes along one streamline. With this model, it was possible to include
physical processes as exponential decay or diffusion into the motion estimation. Much
effort has been done to improve the motion estimation by using not only the conservation
of the brightness, but also the conservation of its derivatives (Uras et al., 1988; Brox et al.,
2004). However, local sinks or sources of brightness were still problematic, which might
occur due to motion towards or away from the camera. Wildes et al. (1997) extended the
optical flow method to deal with such situations by allowing divergent flows.

Other than object motion, fluid motion has the advantage that additional information
exists that can be used to enhance the quality of the estimate. First and foremost, there
are the partial differential equations (PDEs) that fluid flows satisfy, which allow to deduce
certain properties that can be enforced during the motion estimation. Examples for
local properties are given in Corpetti et al. (2002) and Corpetti et al. (2006), where the
estimated velocity is biased towards a divergence-free and irrotational flow. However, a
real strength of fluid flow estimation is the global description by its governing equations,
which can be used to improve the motion estimation. Depending on the type of flow
visualization, the PDEs of the physical flow can be remodeled to get PDEs for the
projected two-dimensional flow in the images (Liu and Shen, 2008). Including PDEs
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brings the advantage of a global motion model that rigidly connects all local estimates and
gives physically sound results. The governing partial differential equations of turbulent
flows are non-linear and therefore small changes of the initial state or boundary conditions
can change the result globally. As a consequence, scientists tried to work with simpler
global models like stream functions (Luttman et al., 2011, 2013) or a two-dimensional
description of turbulent flows (Nakajima et al., 2003; Doshi and Bors, 2007), in order to
exploit the benefit of physically-based, global motion models. The advantage of such
methods is that they establish a connection between Computational Fluid Dynamics
(CFD) and measurement data. The idea is to find a solution of the governing equations
which also explains the motion in the measurement data.

In case of not too turbulent flows, the solution of the flow equations can be calculated
if the boundary conditions are known. However, very often these are not known precisely
enough, so assumptions have to be made. A way to overcome this problem is to use
optimal control theory (Lions, 1971; Tröltzsch, 2009), which allows to introduce scalar or
distributed parameters into the PDEs and compute them in such a way that a quantity
of interest is optimal. With respect to image sequences, the possible quantity of interest
can be the error between the recorded and the predicted image of a model.

The first appearance of optimal control in combination with image motion was
presented by Borzì et al. (2002), who estimated the image motion as control variable
in such a way that it was in accordance with the provided measurement data. Ruhnau
(2006) published a variational optimal control approach, which determines the underlying
motion from images that also satisfy some fluid dynamical PDE constraints. His work
dealt with the estimation of the pressure and the velocity for two-dimensional synthetic
data of a viscous non-turbulent flow (Ruhnau and Schnörr, 2006). An extension to
turbulent flows was presented one year later, where he focused on the two-dimensional
vorticity transport equation (Ruhnau et al., 2007). He proved in his work that variational
optimal control methods are well suited to deal with fluid dynamical measurement data.
Moreover, it has the advantage to estimate physical variables that are included in the
constraints and are not measurable by other methods (e.g. pressure, body forces,...).

1.3 Contribution of this work

This thesis focuses on optimal control and parameter estimation methods for the
estimation of motion from images using global motion models. These methods are
applied to microflow applications and with special emphasis to Molecular Tagging
Velocimetry (MTV) measurement data. The benefits and difficulties of the approaches
are investigated and compared to standard estimation methods that include no global
model. Of special interest is the accuracy with respect to the flow rate and the noise level,
which was tested for a two-dimensional model. Such a parameter study is not available
yet, since previous optimal control publications deal only with flow test cases to prove
the concept. Another issue is the influence of the noise level, which has not been studied
in detail so far.

In contrast to previous research that restricted their investigation to the estimation of
two-dimensional flows, the given microfluidic images show integrated intensities of three-
dimensional flows, which require of course three-dimensional modeling. The presented
approach allows to estimate the fluid motion along with the molecular diffusion coefficient
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of the tracer material. Especially in biology and medicine there is a keen interest in
knowing diffusion coefficients of molecules in a solution.

The flexible optimal control framework RoDoBo (Becker et al., 2005) and PDE solver
Gascoigne (Becker and Braack, 2005) were adapted to deal with image processing tasks
and allowed optimal performance in terms of computational effort. Additional extensions
of the framework allow a variable application in order to deal with arbitrary geometries
of the fluid motion.

1.4 Outline of this thesis

This thesis is organized in such a way that the notation and necessary fundamental
mathematics will be introduced in the second chapter. Special effort is given to the
description of the efficient computation of optimization and optimal control problems.
It includes a brief section about second-order partial differential equations, which are
required to describe fluid motions. Furthermore, the finite element method (FEM) is
presented as a technique to solve PDEs. The third chapter focuses on the estimation
of motion from images in general. It clarifies the differences between real-world motion
and image motion and presents the most prevailing methods to recover them. The main
advantages and disadvantages of each technique will be pointed out and discussed. The
fourth chapter deals with the specific application of these techniques to microfluidic
images. The topic of microfluidics is introduced along with a set of applications and
intrinsic problems that accompany it. Special measurement data of microfluidic devices
are presented, which require a thorough modeling and adequate motion estimation
method in order to give accurate results. Standard motion estimation methods are
compared to optimal control and parameter estimation approaches that include the
governing fluid motion equations. The accuracy of these approaches is investigated with
respect to the flow rate and the level of noise. The final chapter contains the conclusions
that can be drawn from the results, shown in the previous chapter and emphasizes the
advantage of combining fluid simulations with measurement data in an optimal control
framework. Finally, an outlook is given that points out the potential improvements and
developments concerning this approach.
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CHAPTER 2

Mathematical Preliminaries

2.1 Notation

Before proceeding with the concept of image motion it is necessary to introduce some
mathematical definitions and notations that will be used in this thesis to describe methods
and algorithms in the following chapters. Vector-valued functions of Rn are row vectors
and are denoted with boldface variables and the components are labeled with numerical
indices (e.g. x = (x1, x2, x3)T ). A row vector can be turned to a column vector by
taking its transpose. The common notation is used for partial derivatives ∂xu := ∂u

∂x
and outer normal derivatives ∂nu := (nT∇)u. Derivatives with respect to functions are
denoted by a prime symbol with the corresponding variable as subscript index (e.g. j′u).
Furthermore, it is assumed that all variables are sufficiently smooth so that the derivatives
exist. For the sake of readability the dependent variables (e.g. x, t) are omitted whenever
the formulation is self-explanatory. Photographic cameras provide area-integrated image
intensities at discrete locations, the pixels. Consequently, the spatial domain Ω and the
temporal domain T are discretized. In the following, all equations will be formulated
using continuous spatial domains and discrete temporal domains. Nevertheless, all the
conclusions and statements remain also valid for the actual discrete domains.

Definition An image I is defined as a square-integrable function that maps from a
bounded coordinate domain Ω to an intensity domain I. If there is also a temporal
dependency t ∈ T , it is refer to it as image sequence.

Image: I : Ω→ I (2.1)
Image sequence: I : Ω× T → I (2.2)

In a most general sense, the domains Ω and T, I can be assumed to be compact
subsets of R2 and R, respectively. The temporal domain T is a set of N discrete
time values {t1, . . . tN}. Any appropriate interpolation scheme can be used to extend
the discrete domain to a continuous domain. In order to simplify the mathematical
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expressions, the temporal variable is being omitted by using indices, Ii(x) ≡ I(x, ti), ∀i =
{1 . . . N}. Since most algorithms use two images to determine motion, two consecutive
images are usually denoted Ii and Ii+1, assuming i+ 1 ≤ N .

Definition An inner product of two variables a, b : D → Rm with D ⊂ Rn is defined as

〈a, b〉D :=

ˆ
D
aT (x)b(x)dx , (2.3)

which induces the standard Euclidean L2-norm

‖a‖D = ‖a‖L2(D) :=
√
〈a,a〉D . (2.4)

If no domain is specified as index, the inner product and norm are with respect to the
image domain Ω. In order to allow this notation also when a and b are matrices, they are
reshaped as row vectors. Along with this norm, the maximum norm ‖ · ‖∞ = ‖ · ‖L∞(D)

and the L1-norm ‖ · ‖L1(D) will also be used.

Furthermore, it is necessary to define the displacement field d : Ω → R2, which
contains the information about the displacement of each pixel’s intensity from one image
to the next.

Definition The displacement function D acts on the spatial image domain by applying
a coordinate transformation

D : Ω→ Ω (2.5)
D : x 7→ x + d(x) . (2.6)

The displacement field d(x) : Ω 7→ R2 can easily be converted into a velocity field u if
divided by the separation time δt between two images. It has to be noted that x+ d(x)
does not necessarily have to be in Ω. In this case the function D returns the coordinate
that is closest to it (Euclidean distance) and still in Ω. In order keep the notation
condensed, a displacement operator D̂ is introduced that acts on an image: D̂I := I ◦D.

2.2 Optimization

Optimization is done in many scientific disciplines where a certain quantity needs to be
the lowest or highest for a given situation. In economy it is usually monetary quantities
that have to be optimal while for engineering purposes the fuel consumption of an engine
or more general production processes have to be optimized. Physical optimization usually
deals with the minimization of energy in order to determine the state of a system. In
general, optimization describes the selection of the element u of a given set of elements
U that is best with respect to some criterion. The criterion is an objective function J
that maps each element of U onto a real number, J : U → R. The best element u∗ ∈ U
could either minimize or maximize J , depending on what is defined as optimal. Without
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loss of generality it can be assumed to find the minimum of J because any maximization
problem can be converted into a minimization problem by changing the sign of the
objective function. The objective function for minimization problems is usually called
cost function. Therefore, the problem can be formulated as

u∗ = arg min
u∈U

J(u) . (2.7)

This means that for any other element u ∈ U\{u∗} the objective functional is larger or
just equal to J(u∗)

J(u∗) ≤ J(u), ∀u ∈ U\{u∗} (2.8)

The above definition includes discrete and continuous optimization. However, for
many physical questions u is a function that is defined over some spatial and temporal
domain. Therefore, in the following the focus will be on the continuous optimization.

2.3 Optimality conditions

Let U ⊆ L2(Ω) be the vector space of square-integrable functions over Ω, then the extreme
value theorem guarantees the existence of a solution u∗, if J ∈ C1(Ω) is a continuous
function and Ω is a compact domain in Rn (Heuser, 2009, §36.3). However, the uniqueness
of the solution is not guaranteed in general. Most often it is unfeasible to find the global
minimum within the entire solution space. Therefore, most algorithms try to find critical
points by satisfying general properties of minima. For this purpose, a general definition
of derivatives with respect to functions has to be introduced. The Gâteaux derivative is
the generalization of a directional derivative in the context of differential calculus.

Definition Let X and Y be two normed vector spaces and f : X → Y be a mapping
between them. Then the directional derivative of f at x in direction of δx is defined as

f ′(x)(δx) = lim
ε→0

f(x+ εδx)− f(x)

ε
=
∂f(x+ εδx)

∂ε

∣∣∣∣
ε=0

, (2.9)

if the limit exists for all δx ∈ X. If f ′(x) is a continuous linear mapping from X to Y , it
is called Gâteaux derivative (Gateaux, 1919) and f is Gâteaux differentiable in x. Since
f might be non-linear, the linear variables of f ′ are separated with additional parenthesis,
here (δx). If f depends on a number of variables, the Gâteaux derivative with respect to
one variable is indicated by a subscript of the variable, e.g. f ′y(x, y) for the directional
derivative with respect to the second variable y. For functions with just one dependent
variable, the subscript is usually omitted. Higher-order derivatives are denoted in the
same fashion, e.g. f ′′xy(x, y).

This definition can be used to formulate conditions that the critical point has to fulfill
in order to be the optimal solution. Let J be Gâteaux differentiable at u∗, then the
minimizer satisfies the first-order necessary condition
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J ′(u∗)(u∗ − δu) = 0 ∀δu ∈ U (first-order necessary condition) , (2.10)

which means that any small variation of the candidate solution u∗ does not change the
value of the cost functional J . In most cases this is not sufficient to tell whether the
critical point satisfying (2.10) is the actual minimizer. The candidate solution could also
be a maximizer or a saddle point. Wrong candidate solutions can be ruled out by testing
the second-order sufficient condition

J ′′(u∗)(u∗ − δu,u∗ − δu) ≥ 0 ∀δu ∈ U (second-order sufficient condition) . (2.11)

If both conditions are satisfied at u∗, the cost functional J has a at least a local minimum.
For special cases the local minimum can coincide with the global minimum, e.g. if J is
a convex function in u.

2.3.1 Euler-Lagrange equation

If the cost functional can be formulated as an integral over a compact domain Ω of a
twice continuously differentiable function L (see equation (2.12)), the first-order necessary
condition can be expressed as a partial differential equation. Let Ω be a compact domain
in Rn and L be an element of C2(Ω) that depends on the spatial coordinate x, a function
u(x) and its spatial derivative u′(x).

J(u) =

ˆ
Ω
L(x,u(x),u′(x))dx (2.12)

A function u has to be found that renders the cost functional J stationary. Furthermore,
it is assumed that the solution u∗ has prescribed boundary values at ∂Ω. As a
consequence any variation δu needs to vanish at ∂Ω so that the boundary values remain
the same. Calculating the first-order necessary condition gives

0 = J ′(u) = J ′ε(u + εδu)
∣∣
ε=0

=

ˆ
Ω
∂εL(x,u + εδu,u′ + εδu′)

∣∣
ε=0

dx

=

ˆ
Ω

(
L′x

∂x

∂ε
+ L′u

∂(u + εδu)

∂ε

∣∣∣
ε=0

+ L′u′
∂(u′ + εδu′)

∂ε

∣∣∣
ε=0

)
dx

=

ˆ
Ω

(
L′uδu + L′u′δu′

)
dx .

(2.13)

The second term under the integral can be integrated by parts and leads to the expression

0 =

ˆ
Ω

(
L′uδu

)
dx+ L′u′δu

∣∣∣
∂Ω
−
ˆ

Ω

(
L′′u′xδu

)
dx

= L′u′δu
∣∣∣
∂Ω

+

ˆ
Ω

(
L′u − L′′u′x

)
δudx ,

(2.14)

10



2.4. CONSTRAINED OPTIMIZATION

where the first term is evaluated at the boundaries of Ω and vanishes due to δu
∣∣
∂Ω

= 0.
The remaining integrand consists of the product of L′u−L′′u′x with the variation δu. The
fundamental lemma of variational calculus (Byerly, 1917) states that if this equation
holds for any variation that vanishes at ∂Ω, than L′u − L′′u′x must be identically zero
within Ω. This leads to the Euler-Lagrange equation

0 = L′u − L′′u′x . (2.15)

This equation is especially important for optimization tasks since it can be used to
find stationary solutions. This concept is well-known and widely applied in physics, in
particular in the field of classical mechanics.

2.4 Constrained optimization

For many optimization problems there are also restrictions on the solution. The sought
solution has to fulfill certain constraints that can not be introduced directly into the
cost functional. This can be due to non-linear constraints with no explicit representation
or due to inequality constraints. The general constraint optimization problem can be
written as

J(u)→ min s.t.

{
ai(u) = 0 (equality constraints)
hj(u) ≤ 0 (inequality constraints) , (2.16)

where the indexes 1 ≤ i ≤ N and 1 ≤ j ≤ M indicate the individual constraints, N
equality and M inequality constraints. Since inequality constraints will not play a role
for this thesis, they are going to be omitted from this point on.

Constrained optimization problems can be converted into unconstrained optimization
problems by using the Lagrangian function L, which introduces additional variables for
each constraint, the Lagrangian multipliers z, which are also called adjoint variables or
dual variables. The new unconstrained formulation of the problem reads

L(u, z) = J(u)− zTa(u) (2.17)

where zTa can be viewed as an inner product and the equality constraints are
bundled in the vector a. The optimal solution u∗ of the constraint problem in
equation (2.16) coincides with the optimal solution (u∗, z∗) of the unconstrained problem
in equation (2.17). The solution for the unconstrained problem can be found by standard
optimization algorithms, which search for stationary points that fulfill

L′u = 0 (2.18)
L′z = 0 . (2.19)

Of course, the second-order sufficient condition must be satisfied in order to test whether
the solution is really a local minimizer.
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2.5 Optimal control

Optimal control is an extension of the variational calculus, where a cost functional has
to be minimized with respect to so-called state and control variables u and q. The
optimal control q∗ is a function that minimizes a given cost functional J under certain
constraints, usually partial differential equations that link the state and control variables.
This mathematical field has gained a lot of interest since many processes in the world are
governed by PDEs. One of the most prominent examples is the so-called Brachistochrone
problem, where the trajectory has to be found, on which a body travels from one position
to another position in the shortest time under a constant gravity force. There are many
applications emerging from economical, technical and biological descriptions. The books
of Lions (1971) and Tröltzsch (2009) give a detailed overview about optimal control under
PDE constraints while the book of Gunzburger (2003) focuses on the application towards
flow phenomena.

The general optimization formulation with equality constraints reads

J(u, q)→ min

s.t. a(u, q) = 0 .
(2.20)

This problem resembles the unconstrained optimization with the difference, that the
dependent variables are separated into state u and control q variables that are connected
by a system of equality constraints a. However, the procedure for solving the problem
remains the same. The constrained formulation is converted into an unconstrained
optimization problem by using the Lagrangian multiplier method

L(u, q, z) = J(u, q)− zTa(u, q) (2.21)

The optimum can be found by searching the solution (u∗, q∗, z∗) that renders J stationary.
The first-order necessary condition reads

∇L = 0 , (2.22)

where ∇ denotes the vector of Gâteaux derivatives with respect to u, q and z. The
ensemble of these three equations is called the optimality system.

optimality system




L′z = 0 → state equation
L′u = 0 → adjoint equation
L′q = 0 → optimality condition

. (2.23)

State equation:

For an arbitrary variation δz of the adjoint state, the derivative can be written using the
Gâteaux derivative.
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0 = L′z

= lim
ε→0

(L(u, q, z + εδz)− L(u, q, z)

ε

)

= lim
ε→0

(
J(u, q)− (z + εδz)Ta(u, q)−

[
J(u, q)− zTa(u, q)

]

ε

)

= lim
ε→0

(
εδzTa(u, q)

ε

)

= δzTa(u, q)

(2.24)

Since the equation has to be valid for any variation δz, it follows that a(u, q) = 0, which
is the original constraint equation.

Adjoint equation:

The very same is done for an arbitrary variation δu of the state variable.

0 = L′u

= lim
ε→0

(L(u + εδu, q, z)− L(u, q, z)

ε

)

= lim
ε→0

(
J(u + εδu, q)− zTa(u + εδu, q)−

[
J(u, q)− zTa(u, q)

]

ε

) (2.25)

Introducing the Taylor series in order to replace J(u + εδu, q) yields

J(u + εδu, q) = J(u, q) + J ′u(u, q)(εδu) +O(ε2) . (2.26)

Substituting this into the derivative equation gives

0=lim
ε→0

(
J(u,q)+J ′u(u,q)(εδu)−zT [a(u,q)+a′u(u,q)(εδu)]−

[
J(u,q)−zTa(u,q)

]

ε

)

=lim
ε→0

(
J ′u(u,q)(εδu)−zTa′u(u,q)(εδu)

ε

)

=
[
J ′u(u,q)−zTa′u(u,q)

]
(δu).

(2.27)

Since the variation δu is arbitrary, the term in the brackets has to be zero within the
entire domain Ω. This yields the adjoint equation

J ′u(u, q) = zTa′u(u, q) . (2.28)
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Optimality condition:

For an arbitrary variation of the control by δq, the Gâteaux derivative reads

0 = L′q

= lim
ε→0

(L(u, q + εδq, z)− L(u, q, z)

ε

)
.

(2.29)

After substitution of the first-order Taylor approximation of J and a the equation
becomes

0=lim
ε→0

(
J(u,q)+J ′q(u,q)(εδq)−zT

[
a(u,q)+a′q(u,q)(εδq)

]
−
[
J(u,q)−zTa(u,q)

]

ε

)

=lim
ε→0

(
J ′q(u,q)(εδq)−zTa′q(u,q)(εδq)

ε

)

=
[
J ′q(u,q)−zTa′q(u,q)

]
(δq).

(2.30)

Since the variation δq is arbitrary, the so-called optimality equation reads

J ′q(u, q) = zTa′q(u, q) . (2.31)

Collecting all three first-order necessary equations leads to the optimality system of
the following equations

optimality system





a(u, q) = 0
J ′u(u, q) = zTa′u(u, q)
J ′q(u, q) = zTa′q(u, q)

. (2.32)

The above equations can be used to determine the optimal solution (u∗, q∗, z∗). Since
this is just a necessary condition for the optimum, the second-order condition from
equation (2.11) has to be fulfilled in order to be sufficient.

2.5.1 Reduced Lagrangian

Most optimization algorithms utilize the gradient to approach the optimum in an iterative
manner, such as steepest descent, conjugate gradient or the Newton method (Wright
and Nocedal, 1999). The previous section introduced the state and control variables
explicitly. An alternative approach is the reduced Lagrangian j, where the state variable
u is eliminated and treated implicitly. It is assumed that there is a solution operator S,
which maps a given control parameter onto a unique state u:

S(q) = u , (2.33)
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where u is a solution of the state equation. Putting this into the cost functional yields
the reduced cost functional

j(q) = J(S(q), q) . (2.34)

In order to find local minima, it is just necessary to calculate the derivatives with
respect to the controls q. Now, the reduced cost functional depends only on the control
q. The derivative of j with respect to the control is

j′(q)(δq) = J ′u(u, q)(S′(q)(δq)︸ ︷︷ ︸
δu

) + J ′q(u, q)(δq)

= J ′u(u, q)(δu) + J ′q(u, q)(δq)

(2.35)

The unknown term δu is the sensitivity and is related to the variation of the control
variable via δu = S′(q)(δq). The linearized state equation can be used to calculate δu
from δq

a′u(u, q)(δu) = a′q(u, q)(δq) (2.36)

The resulting δu can be put together with δq into equation (2.35) to calculate the gradient
of j. However, this procedure gets easily unfeasible, if the control is a distributed variable
because after discretization of Ω, the equation (2.36) has to be solved for each basis
function of Ω.

A way to circumvent this problem is to calculate the derivative via the adjoint
approach (Meidner, 2008; Duffy, 2009; Tröltzsch, 2009). Using the solution operator
S, the Lagrangian from equation (2.17) has to be equal to the reduced cost functional j
for all possible choices of the adjoint state z.

j(q) = J(S(q), q) = L(S(q), q, z) ,∀z ∈ U (2.37)

As a consequence the gradient j′(q)(δq) can also be calculated by using derivatives of the
Lagrangian

j′(q)(δq) = L′u(u, q, z)(δu) + L′q(u, q, z)(δq) . (2.38)

The advantage is, that this equation holds for any arbitrary z if u = S(q). Therefore,
the adjoint state z can be chosen in such a way that the first term

L′u(u, q, z)(δu) = 0 (2.39)

for any variation δu. This simplifies the equation for the gradient to

j′(q)(δq) = L′q(u, q, z)(δq)

= J ′q(u, q)(δq)− zTa′q(u, q)(δq) .
(2.40)
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Determining the gradient via the adjoint approach involves the computation of the
adjoint state z via equation (2.39), inserting it into equation (2.40) and computing j′(q)
for the given direction δq. The computation via the adjoint method is independent from
the discretization of Ω. Unlike the sensitivity approach, the gradient can be calculated
all at once because the adjoint equation does not depend on δq.

Similar to the calculation of the first-order derivative, the second-order derivative
can be computed easier by choosing appropriate adjoint states and solving corresponding
auxiliary problems. At this point, the interested reader is referred to Meidner (2008) for
a rigorous and lengthy derivation of the second derivative. The second derivative for the
two directions δq and τq reads

j′′(q)(δq, τq) =J ′′qq(u, q)(δq, τq) + J ′′uq(u, q)(δu, τq) + J ′′qq(u, q)(δq, τq)

− δzTa′q(u, q)(τq)− zTa′′uq(u, q)(δu, τq)− zTa′′qq(u, q)(δq, τq)
(2.41)

and involves the computation of axillary equations.
Having the first- and second-order derivatives with respect to the control q allows to

use the efficient iterative Newton method to compute the optimal solution (u∗, q∗, z∗).
Using this method the solution can be computed by

q(i+1) = q(i) −
[
j′′(q(i))(δq, τq)

]−1
j′(q(i))(δq) ∀δq, τq , (2.42)

where i indicates the iteration. For many problems the hessian is too large to be
inverted or to calculate the matrix vector product. Therefore, one often tries to compute
the update q(i+1) − q(i) between two iterations rather than the actual variables. The
advantage lies in the fact that for the update, the hessian does not need to be inverted.
The update is computed by solving

j′(q(i))(δq) = j′′(q(i))(δq, τq) · (q(i+1) − q(i)) ∀δq, τq , (2.43)

which can be done with a conjugate gradient method (CG) because the hessian is a
positive semi-definite matrix. The presented optimal control method is implemented in
the C++ framework RoDoBo1 (Becker et al., 2005) and combined with the finite element
solver Gascoigne (Becker and Braack, 2005) in order to allow solving PDE constrained
problems.

2.6 Boundary value problems

For many processes in nature, the dynamics of the system depend not only on the
magnitude of some variables but also on their derivatives with respect to time and space.
This dependency can be formulated as a partial differential equation of the form

F (x,u(x),u′x(x),u′′xx(x), . . . ) = 0 , (2.44)

1http://www.rodobo.org
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where x ∈ Ω and u : Ω→ Rn and F is a function mapping to Rn . If F is a linear function
in all its variables then the PDE is called linear. Special interest of this thesis lies upon
linear second-order PDEs. For this purpose we introduce the differential operator L̂ to
formulate the general second-order PDE

L̂u =
∑

n

aij∂i∂ju +
∑

n

ai∂iu + au = f . (2.45)

The functions a, ai, aij are coefficient functions for the u associated variables and f
is the right-hand-side. Without loss of generality it can be assumed that aij = aji.
Linear second-order PDEs can be categorized into three types: elliptic, parabolic and
hyperbolic. Similar to cone sections, a determinant criterion is used to classify them into
the categories, which depends just on the coefficient functions. Since this thesis deals just
with elliptic boundary value problems, the other two categories will not be treated in this
context. A thorough description can be found in many graduate mathematical textbooks
dealing with PDEs or numerical mathematics, e.g. Tveito and Winther (2005), Evans
(1998), Wright and Nocedal (1999). In the normal form an elliptic operator L̂ does
not contain mixed second-order derivatives but just the Laplacian ∆ and lower-order
derivatives. The prototypical example is the Poisson equation.

∆u = f (2.46)

In combination with some boundary conditions on ∂Ω the problem is called boundary
value problem. The general boundary condition can be formulated as

αu + β
∂u

∂n
= g on ∂Ω , (2.47)

where α and β are coefficients. If the constant β is zero, the boundary condition
is of Dirichlet-type. Alternatively, if α is zero it is called Neumann-type. A mixed
combination is referred to as Robin boundary condition.

2.6.1 Weak solutions

Focusing on the Dirichlet-type boundary value problems, it has to be mentioned that the
existence of a classical solution is hardly ever given. A classical solution u for a second-
order PDE is a function that is at least twice continuously differentiable in Ω, continuous
up to the border ∂Ω and satisfies the boundary conditions. In cases of discontinuous
boundary data g or non-smooth domains Ω, there might not exist a classical solution.
However, it is possible to find so-called weak solutions that do not satisfy the original
boundary value problem but the corresponding variational problem. The benefit lies in
the larger solution space that requires less regularity on the solution. The variational
formulation of the Poisson equation (2.46) can be derived by applying the fundamental
lemma of variational calculus that introduces test functions φ so

ˆ
Ω

(∆u + f)φ = 0 (2.48)
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is valid for any appropriate choice of φ. Certainly, if u is a classical solution, the equation
holds true for any φ if the integral is well defined. Suppose the test functions are
sufficiently smooth, the smoothness of the solution u can be reduced by applying the
product rule of derivation

ˆ
Ω
φ∇2u = −

ˆ
Ω
∇u · ∇φ+

ˆ
Ω
∇ · (φ∇u) . (2.49)

It is assumed that the border ∂Ω can be separated into a distinctive Dirichlet boundary
∂ΩD and Neumann boundary ∂ΩN with u = g on ∂ΩD and ∂nu = g on ∂ΩN , respectively.
For the Dirichlet boundary condition, the last integral cancels out because φ has to be
identical zero at ∂ΩD. For Neumann boundary conditions, the integral can be rewritten
with the divergence theorem and the boundary condition from equation (2.47) to

ˆ
Ω
φ∇2u = −

ˆ
Ω
∇u · ∇φ+

ˆ
∂ΩN

φ
∂u

∂n

= −
ˆ

Ω
∇u · ∇φ+

ˆ
∂ΩN

φg

(2.50)

The solution u and the test function φ need to have certain properties in order to have
well defined integrals. Their gradients have to be square-integrable in Ω. This leads to
the definition of the Sobolev vector spaces

H1(Ω) :=
{
u : Ω→ Rn

∣∣∣ u, ∂iu ∈ L2(Ω) , ∀i = 1 . . . n
}
, (2.51)

H1
0 (Ω,Γ) :=

{
φ ∈ H1(Ω)

∣∣∣ φ
∣∣
Γ

= 0
}
, (2.52)

H1
g (Ω,Γ) :=

{
φ ∈ H1(Ω)

∣∣∣ φ
∣∣
Γ

= g
}
. (2.53)

A weak solution u ∈ H1
g(Ω, ∂ΩD) that satisfies the Poisson equation (2.46) with

Dirichlet boundaries u
∣∣
∂ΩD

= g and Neumann boundary ∂nu
∣∣
∂ΩN

= g satisfies also its
variational formulation

ˆ
Ω
∇u · ∇φ =

ˆ
Ω
fφ+

ˆ
∂ΩN

φg ∀φ ∈ H1
0 (Ω, ∂ΩD) . (2.54)

The variational formulation can be written rather shortly by using the following notations:

(u,v) =

ˆ
Ω
u(x)v(x)dx, (u,v)V =

ˆ
V
u(x)v(x)dx . (2.55)

In the condensed notation the variational Poisson problem reads

(∇u,∇φ) = (f , φ) + (g, φ)∂ΩN
∀φ ∈ H1

0 (Ω, ∂ΩD) . (2.56)
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It can be proved that if there is a classical solution of an elliptical second-order boundary
value problem, it is equal to the weak solution of the variational formulation (Braess, 2007,
p. 35). Also, the Lax-Milgram Theorem can be used to show that there always exists
a weak solution to elliptic boundary value problems and that it is unique (Evans, 1998,
chap. 6.2).

2.7 Finite element method

The finite elements method (FEM) is a numerical technique for solving partial differential
equations. Instead of finding a solution in H1

0 (Ω, ∂Ω) to the linear problem in
equation (2.56), the solution space is replaced by a suitable finite dimensional vector
space Sh. The parameter h characterized the discretization and for h→ 0 the solution
in Sh converges to the solution of the continuous problem. Let {e1, . . . eN} be the basis
for Sh, then the weak formulation of Poisson equation with zero Dirichlet boundaries is
equivalent to

(∇u,∇ei) = (f , ei) ∀i ∈ {1, . . . N} , (2.57)

because the test functions φ can be composed by a linear combination of the basis
functions. The solution u and f can be also represented in this basis by

u =

N∑

j=1

ajej and f =

N∑

j=1

bjej , (2.58)

which in combination with the previous equation leads to the linear system

N∑

j=1

(∇ej ,∇ei)︸ ︷︷ ︸
Mij

aj =

N∑

j=1

(ej , ei)︸ ︷︷ ︸
Gij

bj , ∀i ∈ {1, . . . N} . (2.59)

The entire system of equations can be written as a vector matrix product of the form

Ma = Gb , (2.60)

where M is referred to as stiffness matrix and G is called the mass matrix. If the basis
functions are chosen in such a way that they have a small local support, then the matrices
are very sparse and there are efficient numerical techniques to solve them.

The set of basis functions is intrinsically connected to the discretization of the domain.
The domain Ω is divided in tiles {T1, T2, . . . } of finite size, the so-called elements. In
two dimensions the tiles have usually triangular or quadrilateral shape. For each tile
the solution is approximated by a continuous polynomial function between its nodes.
The FEM-computations of this thesis use linear quadrilateral FEs, which are commonly
denoted as Q1 elements. Figure 2.1 shows a basis function of such a discretization
in two dimensions, which is has a support that covers four Q1 elements in total. For
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Figure 2.1: The left illustration shows a basis function of a linear quadrilateral
discretization (Q1-FE). The right sketch shows how one FE is mapped onto a rectangular
reference FE in order to allow an easy numerical integration.

convenience the tiles in this figure are of rectangular shape, this is not necessarily the
case. In order to calculate the inner products of pairwise basis functions, they have
to be multiplied and integrated. It is convenient to transform each quadrilateral to a
rectangular reference element (see figure 2.1 right) in order to enable easy integration by
Gaussian quadrature. A comprehensive description of the finite element method can be
found in many graduate textbooks, such as the books from Braess (2007), Elman et al.
(2005) or Gockenbach (2006).

The partial differential equations of fluid dynamics have the special property that
they belong to the saddle point problems. The pressure p can be seen as a Lagrangian
multiplier that imposes the incompressibility (Strang, 2007). This causes numerical
instabilities that might lead to a singular system of equations, especially if ∇p becomes
zero for p 6= 0. To ensure that this is not the case the inf-sup condition or Ladyzhenskaya-
Babuška-Breezi condition has to be satisfied. It states that for every p there has to be a
velocity u such that

uT∇p ≥ β
√
uT∆−1u

√
pT p for a fixed β > 0 , (2.61)

where ∆−1 is the inverse operator of the Laplacian. A workaround to satisfy this condition
is to use different finite elements for u and p. The so-call Taylor-Hood discretization uses a
lower-order FE for p than for u, e.g. Q1 for pressure and Q2 for velocity. However, mixed
finite elements are inconvenient in terms of their computational design. Alternatively,
stabilization methods can be used to allow equal order elements for u and p that also
allow easier implementations of robust solvers. The computations of this thesis take
advantage of the local projection stabilization (LPS) Becker and Braack (2001) in order
to use Q1-FEs for pressure and velocity. The interested reader is referred to the book of
Girault and Raviart (1986) for further information about finite elements in combination
with Navier-Stokes equations.
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CHAPTER 3

Motion Estimation

There is an important difference between the real world motion and the optical motion.
Real world motion describes the actual motion of a moving object, while image motion
describes the motion after being projected onto a plane. The projection can be
modeled by the so-called plenoptic function (Adelson and Bergen, 1991), and the image
motion from its derivative with respect to time (Longuet-Higgins and Prazdny, 1980).
Purely translational motion can appear entirely different on the images because of the
perspective projection of most cameras. Figure 3.1 shows the three types of optical
motion fields that originate from purely translational motion of the object with respect
to the camera. If the object moves orthogonal to the line of sight, the optical motion
is just scaled by the magnification factor of the lens. However, if the distance between
an object and the camera changes, its projected image grows or shrinks due to the
perspective projection. The corresponding optical motion fields are shown in the middle
and the right of figure 3.1.

Figure 3.1: These three optical motion fields originate from a purely translational
motion of the object with respect to the camera after being projected.

These three optical motions stem from completely translational motion of a rigid
object. However, for non-rigid objects, like fluids, one can not distinguish anymore
between optical flow that originates from motion towards the camera or because the
its size changed. In order to deduce the actual motion form images, special care
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has to be taken during the recording of the images. There are several methods to
overcome this problem. Either one tries to record only the motion within a distinct plane
(e.g. illumination sheet), uses multiple projections (e.g. tomographic reconstruction) or
telecentric lenses.

3.1 Fundamentals of image motion

In order to determine motion from a sequence of images, it is necessary that consecutive
images are not independent. This inherent relationship can be formulated statistically
in such a way that for every pixel the joint probability of consecutive images does not
factorize, they are not independent:

pdf(x, Ii, Ii+1) 6= pdf(x, Ii) pdf(x, Ii+1) . (3.1)

Consequently, there has to be a functional relationship that accounts for this dependency
and that converts one image into the other.

It is assumed that this relationship can be described by a function f that transforms
the first image into the second image. Because of random processes like camera noise,
the mapping is corrupted by noise:

Ii+1 = func(Ii) + noise . (3.2)

Apart from the noise, the function func(·) incorporates all processes that lead to the
evolution from Ii to Ii+1. This includes especially motion but also all systematic
phenomena that have an effect on the brightness. Such effects could be a changing
illumination, occluding objects in the image or any change of physical properties that
can be pictured by the camera. In the simplest case, it is assumed that all changes
are due to the dislocation of pixel intensities from one image to the consecutive image.
This means that func(·) is fully described by knowing the displacement function di. The
modeled dependency for this case can be written in the form

Ii+1(x) = Ii(x + di) + noise . (3.3)

The retrieval of the motion field di from the two images Ii and Ii+1 is an inverse
problem, which is not well-posed in the sense of Hadamard (1902). This means that not
all of the following requirements are fulfilled:

1. a solution exists,

2. the solution is unique,

3. slightly changed data does not affect the solution very much.

The equation (3.3) is underdetermined since there are two unknowns for every pixel of
the image. This can be easily demonstrated by the simple example in figure 3.2, where
the motion can not be uniquely determined because there are two possible solutions.
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Figure 3.2: Illustration of the ill-posedness of the motion retrieval from equation (3.3).
The o indicates pixels with non-zero intensity in the first image and o in the second
image, respectively. The motion is not uniquely determined so that each pixel value
could move to one or the other pixel position in the second image.

In order to find a solution, it is necessary to define a cost functional which measures
the similarity of two images. A common measure is the sum of squared differences (SSD)

SSD =

ˆ
Ω

(Ii+1(x)− Ii(x + di))
2dx . (3.4)

The displacement di is a parameter that has to be chosen in such a way that the SSD
becomes as small as possible. The problem can be formulated as finding the optimal
solution d∗i that yields the smallest possible value for the SSD:

d∗i = arg min
di

ˆ
Ω

(Ii+1(x)− Ii(x + di))
2dx . (3.5)

This equation is ill-posed like the equation (3.3). Additional information has to be
included in order to render the problem well-posed. There are several ways to do
this. One possibility is to reduce the number of velocity estimates to less than one
estimate per pixel. This decreases the number of unknowns and leaves more information
for the remaining pixels. Another possibility is the Tikhonov -regularization (Tikhonov
and Arsenin, 1977), which imposes certain properties on the solution. A reasonable
assumption is the smoothness of the solution, since adjacent pixels are most likely to
have similar motion estimates. The two possibilities are going to be addressed in the
following paragraphs.

3.2 Image motion estimation techniques

Among all motion estimation approaches, this thesis explains the most prominent ones,
that have been also applied to fluid flow images. Therefore, correlation and gradient
methods are briefly introduced, while frequency or feature methods are omitted. A
comprehensive review about possible motion estimation techniques can be found in
Beauchemin and Barron (1995), Derpanis (2006) or in the book of Jähne (2006).
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3.2.1 Correlation based

As indicated previously, the amount of data does not suffice to estimate uniquely a dense
motion field. A way to overcome this deficiency is to divide the image domain Ω in
smaller subdomains Ωj , so-called interrogation windows (IW) and to estimate for each
IW just one motion estimate. For reasons of convenience, the partitioning is usually done
into rectangular shapes.

di|Ωj
= arg min

di

ˆ
Ωj

(Ii+1(x)− Ii(x + di))
2dx (3.6)

Expanding the squared parenthesis gives three terms, of which
´

Ωj
I2i+1dx is a constant

and
´

Ωj
I2
i (x + di)dx is assumed to be constant. This means that independent of the

position of the IW, the total intensity of the pixels remains the same or more specifically
∂/∂di‖Ii(x + di)‖Ωj = 0. This assumption holds if the in- and outflow of intensity over
the borders of Ωj cancels out. This constraint relaxes for large interrogation windows Ωj

because the net gain of intensity is usually negligible in comparison to the intensity that
remains in the domain. Since constants do not effect the minimization, they are discarded
and the only leftover term can be written as scalar product −2 〈Ii+1, Ii ◦Di〉Ωj

. The
Cauchy-Schwarz-inequality states that for inner product spaces the relation 〈a, b〉D ≤
‖a‖D · ‖b‖D holds for all a, b ∈ D. Therefore, it can be normalized by the appropriate
image norms, which were argued to be constant previously. The factor in front of the
inner product can be neglected and the minimization is turned into a maximization by
changing the sign, which gives the formula for the normalized correlation

di|Ωj
= arg max

di

〈Ii+1, Ii ◦Di〉Ωj

‖Ii+1‖Ωj‖Ii ◦Di‖Ωj

. (3.7)

Just a single motion estimate has to be found for the entire subdomain Ωj , which
maximizes the correlation value. Figure 3.3 shows patches of two consecutive images
depicting a flow, which is seeded with particles. The pattern of the particles remains
almost constant and is translated to the right. The same figure shows also the
corresponding correlation function. It has a sharp peak at the displacement, which
leads to the best overlap of both image patterns. The maximal value is about 0.9,
which means that the pattern is not just translated but also slightly changed. The
constant level of correlation (about 0.55) stems from the fact that images have usually
just positive intensity values. Subtracting the mean over Ωj corrects for this effect, so
that also negative correlations are possible.

In a more general manner the correlation window can be defined as a weighting
function w : Ω 7→ R+, which is centered around the position of the estimate

di = arg max
di

〈wIi+1, wIi ◦Di〉
‖wIi+1‖‖wIi ◦Di‖

. (3.8)

The correlation technique is most frequently used in fluid engineering in order to
determine motion. This has historical reasons. Before the advent of digital images, laser
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Figure 3.3: Two images of a flow that is visualized with particles. The function on the
right is the corresponding cross-correlation according to equation (3.7)

speckle velocimetry and Young’s fringe method were used to estimate motion (Keane and
Adrian, 1990). These techniques used interference patterns to deduce the direction and
magnitude of the motion by optical correlations.

The idea of correlation was transferred to digital images and in the fluid dynamics
community this approach became known as particle image velocimetry (PIV) (Adrian,
1991, 2005; Raffel et al., 2007; Willert and Gharib, 1991). PIV uses particles to visualize
the motion of a fluid flow. The particles are illuminated with a thin laser sheet (< 1mm)
and photographed by a recording system. This way the visualized motion lies within a
known plan and is not superimposed by other motions or integrated over the line-of-sight.

3.2.1.1 Hierarchical approach

One drawback of these methods lies in the reduced spatial resolution, since the estimate
belongs to the entire subdomain Ωj . As a consequence it is not possible to resolve
motions that are smaller than the interrogation window. Astarita (2006) showed that the
resolution can be increased by knowing the modulation transfer function and applying
an overlap between the subdomains Ωj

⋂
Ωk 6= ∅. A general method to increase the

resolution is to decrease the size of the correlation window. However, if the correlation
window is to small, there might be an insufficient amount of data left to determine reliable
motion estimates. With respect to PIV, Keane and Adrian (1992) found a minimum of 4
corresponding particles should be in both images to allow a detection probability of 90%.
A very high particle density is not possible either because of the loss of distinctive particle
patterns, which lead to ambiguous correlation peaks. Another rule of thumb is called
Adrian’s one-quarter-rule (Keane and Adrian, 1990), which states that the size of the
correlation window has to be at least four times bigger than the maximal displacement in
order to allow a proper determination. These guidelines limit the choices of parameters to
yield the best achievable result throughout the entire image. Especially flows with large
velocity gradients suffer from this restrictions because the large displacements conceal
small motions that are lost due to the averaging effect.

A solution to this vicious circle was found by using a hierarchical approach. The
images are first processed with large correlation window sizes to capture the large
displacements. In the following step, the correlation window size is reduced but also
shifted by the previously estimated displacement. This way the overlap of mutual
information remains large enough to give meaningful results. This approach was
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published under the name discrete window offset (Westerweel et al., 1997) and makes
up for the deficiency of a limited dynamic range. Still, the method has problems with
the estimation of flows with strong velocity gradients. A shearing of the image pattern
can decrease the correlation value drastically as shown in the article of Scarano (2002).
Especially for particle images this becomes an issue because the particles have usually
a narrow width (<3 pixels). Shearing the particle pattern leads to a broadening of the
correlation peak and a reduced peak height. As a consequence, commonly used peak
detectors (e.g. 3-point Gaussian fit, (Raffel et al., 2007, p.160)) have difficulties to localize
the maximum accurately. Rather than pre-shifting the correlation window Scarano (2002)
proposed to distort the image with respect to the previously estimates. The method is
based on the research of Huang et al. (1993a,b) who applied an image distortion to
make up for the disadvantageous shearing effect. The original data is altered in each
hierarchical level because the image is corrected by the estimate of the previous level.
Distorting the image requires a high accuracy of image interpolation schemes (Astarita
and Cardone, 2005; Astarita, 2006) in order to work properly. Nevertheless, this method
performs best and therefore most commercial and research PIV algorithms are based on
image deformation (Stanislas et al., 2003, 2005, 2008).

3.2.1.2 Extensions of PIV

A serious disadvantage for the research of turbulent flows is the limitation of PIV to
estimate just velocities in the illuminated plane. This is the reason why this method is
classified as 2D2C method, it allows to estimate two dimensions and two components of
the velocity field. However, the knowledge of the entire velocity field in three dimensions
and three components is necessary to allow a thorough investigation of turbulent fluid
structures. A straight forward approach is to use two cameras in a stereoscopic setting in
order to determine the third component of u by the parallax of the particles (Arroyo and
Greated, 1991). This allows to estimate the entire velocity vector, but just within a planar
domain. In order to capture also the third dimension Kähler and Kompenhans (2000)
used a fast scanning planar illumination through the volume in combination with the
stereoscopic PIV technique. This works quite well but not for fast flows because during
the scan the flow structures are changing. However, the holy grail for fluid dynamicists
is the possibility to measure all three components of u in a volume instantaneously.
This allows to compare the results directly to CFD computations. One method uses
holography to estimate the 3D3C velocity field (Hinsch, 2002) but it is very inconvenient
to perform the measurement and to evaluate the hologram from photographic films.
The other method and current state-of-the-art technique uses a tomographic approach.
Multiple cameras record a particle-laden flow from different perspectives (Elsinga et al.,
2006; Elsinga, 2008). The images can be used to reconstruct the particle density for two
consecutive time steps, from which the motion is estimated by means of correlation.

3.2.2 Gradient based

Although the expression optical flow refers to the apparent motion field of objects or
image structures within the image, it is commonly also used to refer to image gradient
based methods in order to estimation the motion. The optical flow data term can be
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derived in various ways. One of them originates from the assumption that the image
brightness remains constant along its trajectory

I(x(t), t) = const . (3.9)

This means especially that the total derivative with respect to the time is zero
d
dtI(x(t), t) = 0. The expansion into the substantial derivative gives the so-called
brightness constancy constraint equation (BCCE), which has to be satisfied at all pixels

0 = ∂tI + uT∇I , (3.10)

where∇ is the spatial gradient operator. This equation resembles the continuity equation
of incompressible flows and has equivalent properties. It states that no intensity gets
lost or is produced. It is the differential formulation of the conservation of intensity.
The second way to derive the BCCE is by performing a Taylor expansion for small
displacements ‖d(x)‖ � 1 of the integrand in equation (3.4) and to disregard higher-
order terms. It is assumed that Ii and Ii+1 are very similar and the difference can be
explained by a linear translation of the brightness. For a small displacement field di the
second image can be represented sufficiently good by the Taylor approximation of the
first image

Ii(x + di) = Ii(x) + dTi ∇Ii(x) +
1

2
dTi ∇Ii(x)∇T Ii(x)di +O(d3

i ) . (3.11)

Dropping higher-order terms beyond the second-order yields Ii + di∇Ii. Subtracting
this first-order Taylor approximation from the consecutive image Ii+1 and replacing
(Ii+1 − Ii) with δt∂tI and dividing by the separation time δt gives the very same BCCE
as shown in equation (3.10).

The second derivation reveals more obviously the shortcoming of the gradient
approach. The Taylor approximation is just accurate for small displacements, so that
the trajectory can be approximated by a linear motion. For large displacements this
is in general not correct. The motion estimation for all pixels can be bundled by
applying a norm of the BCCE. Rather than finding the root, the constraint is relaxed
and reformulated as a minimization problem of the cost functional J

J(u) =
1

2
‖∂tI + uT∇I‖2Ω → min , (3.12)

in order to account for noise or neglected effects that change the brightness. The
factor 1/2 is introduced for convenience and has no effect on the location of the
minimum. Still, the minimization problem in equation (3.12) is underdetermined and
needs a regularization to render it well-posed. This can be achieved by either grouping
information from multiple pixels or regularizing the solution u (Tikhonov and Arsenin,
1977). The first approach leads to local optical flow methods (see p. 28) and the latter
to global optical flow methods (see p. 30).
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3.2.2.1 Aperture problem

Looking at small parts of an images might cause problems because motion might appear
differently and cannot be determined correctly. This happens if the underlying brightness
structures are much larger than image part in focus. Figure 3.4 illustrates this issue by
showing an one-dimensional brightness structure that inheres a motion. From the point of
the observer, the motion can not be determined uniquely because many different motions
are imaginable. Unless there is a two-dimensional structure within the close-up, it is not
possible to determine the motion confidently. This problem is referred to as the aperture
problem (Marr and Ullman, 1981).

image 1 image 2

?
?
?
?
?

motion

Figure 3.4: Illustration of the aperture problem. The image structure is too large
to be seen entirely, so that the close-up shows just a one-dimensional structure. As a
consequence, many different motions are possible that can explain the two images.

Especially optical flow methods suffer from this phenomenon because the motion
information is estimated pixelwise and cannot contain two-dimensional structures. The
best local estimate with lowest energy is the so-called normal flow u⊥ (Horn, 1986),
which points in the direction of the image gradient and reads

u⊥ = −∂tI
∇I
‖∇I‖2 . (3.13)

The aperture problem gets less significant if larger images parts are used to determine
one motion estimate because it is more likely that it contains two-dimensional patterns.

3.2.2.2 Local methods

Lucas & Kanade

Just like correlation methods, Lucas and Kanade (1981) proposed to include the
information of neighboring pixels so that the problem becomes overdetermined. Each
pixel of a spatial neighborhood N contributes to the BCCE

min
u
J(u) with J(u) =

1

2

∑

N
(∂tI + uT∇I)2 . (3.14)

The minimizer has to satisfy the first-order necessary condition J ′u(u)(δu) = 0, which
yields
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0 =
∑

N
(∂tI + uT∇I)∇Iδu . (3.15)

The equation has to be true for all variations δu so that it can not depend on it. This
gives a system of equations that can be used to compute u

∑

N

[
I ′xI
′
x I ′xI

′
y

I ′yI
′
x I ′yI

′
y

]

︸ ︷︷ ︸
S

(
u
v

)
= −

∑

N

(
I ′xI
′
t

I ′yI
′
t

)

︸ ︷︷ ︸
b

. (3.16)

The matrix S is called structure tensor and contains information about the predominant
motion within N (Bigün, 2006). This linear system can be easily inverted to get an
ensemble velocity estimate u = S−1b for the entire neighborhood N .

Bigun

A second method from Bigün et al. (1991) reformulates equation (3.14) as inner product
of a three-component vector ∇3 = (∂x, ∂y, ∂t)

T and an extended velocity vector ue =
(u, v, 1)T , which yields

min
ue

∑

N
(uTe∇3I)2 . (3.17)

The squared parenthesis can be expanded and reordered such that it resembles a
quadratic form uTSu with [Sij ] =

∑
N I
′
iI
′
j for i, j = {x, y, t} being the positive definite

structure tensor, which contains the integrated correlations of all pairwise gradients. If N
includes at least two pixels then S has full rank and can be diagonalized by an orthogonal
matrix Q

min
‖ue‖=1

uTe Q−1ΛQ︸ ︷︷ ︸
S

ue . (3.18)

A vector ue with length one has to be found such that the cost are minimized. This
happens when ue equals the eigenvector emin that corresponds to the smallest eigenvalue
of Λ. The velocity can be estimated from emin = (e1, e2, e3)T by dividing the spatial
components by the temporal component,

u =
(e1, e2)T

e3
. (3.19)

From a statistical point of view, this method can be seen as principle component analysis
in the phase space of the gradients ∇3I. Figure 3.5 illustrates this issue by showing the
ellipsoid of gradients (∂xI, ∂yI, ∂tI) whose orientation encodes the velocity (Jähne, 2006).
The inclination of the principle axis is related to the magnitude, while its azimuthal
orientation is connected to the direction of the motion. Since the motion has to be
orthogonal to the principle axis of the image gradient ellipsoid, it is chosen such that the
smallest energy λ3 is necessary (normal flow).
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Figure 3.5: This figure shows the ellipsoid of image gradients whose orientation contains
information of the inherent motion.

3.2.2.3 Global methods

Horn & Schunck

The methods presented before used spatial averaging of the data term in order to render
the problem well-posed. The other possibility is to demand a certain regularity of the
solution u, the so-called Tikhonov regularization (Tikhonov and Arsenin, 1977). Horn
and Schunck (1981) added a penalizing term that adds the gradients of the solution to
the cost functional in order to enforce smooth results. The minimization problem of the
Horn & Schunck optical flow reads

min
u
J(u) with J(u) = ‖uT∇I + ∂tI‖2Ω +

α2

2
‖∇uT ‖2Ω , (3.20)

where ∇uT is a matrix containing the derivatives of the velocity components with respect
to the coordinates. The parameter α ∈ R controls the degree of regularity and is a user-
defined parameter. The general idea is that nearby motion estimates are not supposed to
be very different. This assumption is especially true for fluid flows images because their
motion field is usually not discontinuous. For any regularization parameter α > 0 the
problem gets well-posed (see Appendix A.10) and has to be chosen in such a way that
the solution has the desired smoothness but still depends mostly on the image data. The
effect of the regularization parameter onto the neighbors can be illustrated by estimating
its correlation length. For this reason an one-dimensional image was used where just one
pixel has a non-zero motion. The motion from this pixel would propagate over the entire
image until there is a uniform velocity, if there would be no brightness information at
the other pixels. However, if ∇I is non-zero and ∂tI is set to zero, it is possible to show
the spreading of a single motion information over the nearby pixels (see figure 3.6). This
shows that such a regularization can corrupt significantly correct local estimates if the
regularization parameter α is chosen to large. Unfortunately, a reasonable choice depends
on the distribution of the image gradients and cannot be determinable beforehand.

This example shows the global behavior of this method. Large gradients in one
location affect all other estimates in the domain.
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Figure 3.6: This graph shows the effect of increasing regularization parameter α and
its influence to the propagation of motion information. The larger α gets, the wider the
information is spread over the nearby estimates. This is accompanied by a decreased
magnitude of the actual estimate.

In order to find the solution u, one uses the first-order necessary condition
J ′u(u)(δu) = 0, which leads to

J ′u(u)(δu) = ‖
(
uT∇I + ∂tI

)
∇Iδu + α2∇u∇δu‖Ω = 0 . (3.21)

Due to the rule of summation by parts, the derivative operator in front of the variation
can be swapped to the velocity and turns it into a Laplacian operator ∆. The equation
gets linearly dependent of the variation δu. Since the variation is arbitrary the equation
can not depend on it, which yields the second-order partial differential equation

0 =
(
uT∇I + It

)
∇I − α2∆u . (3.22)

Horn and Schunck (1981) replaced the Laplacian with a finite difference representation
∆u ≈ ū− u, where ū is a weighted average of the estimates in the neighborhood.
Without the Laplacian, the solution u can be computed with

u =
[
∇I∇IT + α21

]−1
(α2ū− ∂tI∇I) . (3.23)

The gain of this first-order approximation of the data term is that the cost functional
becomes strictly convex (Schnörr, 1991), which allows to proof the existence of global
minimizers and to use efficient linear solvers to find them. Horn and Schunck (1981)
proposed the Gauss-Seidel method to solve the linear system because the matrix doesn’t
have to be assembled and can be solved iteratively.
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3.2.2.4 Extensions of optical flow

One of the foremost advantages of optical flow is that the cost functional can be adapted
easily to model all kinds of different experimental situations. Where correlation methods
need to perform multiple individual steps to account for different effects (e.g. motion,
decay,...), optical flow allows an all-in-one formulation that needs to be solved. As a
consequence there are many publications where the method is adapted to fit a certain
situation.

Similar to correlation techniques, gradient based techniques use hierarchical methods
to overcome the limitations of the first-order Taylor approximation. The images are
usually scaled in a pyramidal manner (Burt and Adelson, 1983) so that the last level
contains just velocities that are below 1 pixel/δt. The motion field from this level is
transferred to the next larger level and used as an offset until the final resolution is
reached. Alternatively, scale-space methods can be used, which apply a smoothing to
the image, so that the autocorrelation length of large displacements is increased and
can be estimated by optical flow. The smoothing is gradually reduced and the motion
estimates corrected until the original image is restored Alvarez et al. (1999).

The adequate modeling of illumination changes is crucial for optical flow, since it
is based on gradients. Comparable to the continuity equation of fluid dynamics Wildes
et al. (1997) extended the BCCE to ∂tI = −∇T (uI), which allows sinks and sources of
the brightness. This is especially useful for emerging brightness structures (e.g. clouds).
A generalized model for illumination changes has been presented by Haußecker and Fleet
(2001), who introduced a function that depends on the initial image, the time and some
brightness change model parameters.

Physical modeling has been first applied by Corpetti et al. (2002), who imposed the
smoothness of physical characteristics. Rather than regularizing the motion field u, he
enforced the smoothness constraint on the divergence and the vorticity of u by adding

‖∇ divu‖2 and ‖∇ curlu‖2 (3.24)

to the cost functional. For highly viscous flows it would make sense to penalize the
divergence and vorticity. Penalizing the gradients has the advantage that physical
relations (e.g. zero divergence) might be violated in a two-dimensional projection.

3.2.3 PDE modeled optical flow

Up to this point, the presented methods used localized features that are smoothly linked
to each other rather than global motion models. The huge benefit of fluid flow is that
it satisfies certain motion equations, which for instance are used for simulations. The
connection of computer simulation and motion estimation was first done by Nakajima
et al. (2003), who included the Navier-Stokes equations as weighted penalizing terms
(α1, α2) into the cost functional

J(u) = α1‖∂tI + uT∇I‖2Ω + ‖∇Tu‖2Ω + α2‖
Du

Dt
+

1

ρ
∇p− ν∆u− f‖2Ω . (3.25)
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The corresponding non-linear Euler-Lagrange-equations were solved in order to obtain
the motion field. Other researchers tried to denoise the estimated motion field by using
physical PDEs (Vlasenko and Schnörr, 2008; Doshi and Bors, 2010). The work of Ruhnau
(2006) extended the combination of simulation and measurement to the field of optimal
control. The previous method required the knowledge of the precise boundary conditions.
With optimal control Ruhnau and Schnörr (2006) were able to estimate the boundary in
such a way that the cost functional

J(u,f , g) = ‖∂tI + uT∇I‖2Ω +
α1

2
‖f‖2Ω +

α2

2
‖nT∇g‖2∂Ω (3.26)

becomes minimal under the constraints (Stokes equations)




−µ∆u +∇p = f , in Ω

∇Tu = 0 , in Ω
u = g , on ∂Ω

. (3.27)

This approach allowed to relax the governing equations by the introduction of parameters,
that are determined in such a way that the cost functional becomes minimal. Since the
motion equations act as constraints the result will satisfy them in contrast to the method
of Nakajima et al. (2003), which balances between accurate PDE solution and data term.
However, the disadvantage remains that regularization parameters α1, α2 have to be
chosen manually in order to balance the individual terms.

3.3 Comparison of the motion methods

The presented method can be compared by their behavior with respect to data. Figure 3.7
shows an analogue representation of PIV, optical flow and PDE constrained motion
estimation. A parabola is sampled at discrete locations and corrupted with noise. PIV
estimation can be compared to a convolution and estimates a linearly interpolated
function. Optical flow behaves like a spline-fit that minimizes the distances to the
points but has also restrictions on the gradient of the function. In this analogy the
PDE constrained model corresponds to knowing the correct model function and using it
in order to fit the data. This gives of course the best result. A drawback of all presented
methods are, that certain user-defined parameters have to be chosen. These dependent on
the actual ground truth motion and the images and are usually set intuitively. Commonly
used values (α = 0.01) might lead to inaccurate results if the underlying motion field or
brightness pattern is very inhomogeneous.

Local motion methods have the advantage that errors can not propagate to other
estimates. The spatial averaging of the data allows to compute confidence measures in
order to rate the trustworthiness of such estimates. In case of local optical flow methods
these measures originate from the analysis of the matrix S. For correlation methods it is
common to use the ratio of the two highest peaks. These confidence measures are used
to accept or reject estimates locally and to replace inappropriate ones by suitable values,
e.g. (Westerweel and Scarano, 2005).

On the other hand, global methods connect all estimates to each other, which leads
to an error propagation that is difficult to predict because it depends strongly on the
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Figure 3.7: These four graphs illustrate the different approaches in order to recover
the noise corrupted signal in a). PIV compares to a convolution of the data points
with a boxcar function as shown in b). Optical flow in c) has constraints that connect
neighboring estimates by the regularization parameter. The best method uses of course
the correct model to fit the data points, see d). This compares to the PDE constraint
motion estimation.

images. Large erroneous estimates contaminate all other estimates and lead to a slower
convergence of the iterative solvers. However, they allow to incorporate models that
account for physical properties of the measured fluid motion. Global optical flow is
sensitive to outliers due to its least-squares character. In order to reduce this influence
scientist experimented with other norms that are less prone to outliers (Black and
Anandan, 1993; Bab-Hadiashar and Suter, 1996). Local measures of reliability are not at
hand because of the propagation of motion information that can corrupt the estimates
globally. The usual measure of quality is the value of the BCCE, ‖∂tI + uT∇I‖2Ω, which is
assumed to be very low for good quality results. For instance, other confidence measures
depend on the magnitude of the image gradient (Bruhn and Weickert, 2006).

The approach of combining PDEs and optical flow gives the major advantage of
providing global motion models. The motion estimates are linked by a rigid law that
restricts the solution. If included as a constraint, the estimated motion satisfies perfectly
the PDEs. There are no local outliers because the equations do not permit such
deviations. Localized wrong image data alters the solution globally and not locally.
This makes it difficult to quantify the confidence if the ground truth solution is unknown.
All results from this technique seem physically sound, so that confidence measures need
to be found. Since PDEs have to be solved for this technique, the usual approach uses
FEM, which entails a high computation effort for images that contain millions of pixels.
However, combining optimal control of PDEs with motion estimation allows a flexible
modeling of the physical motion equation.
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Microfluidic Flows

Within the past decade, the development of microfluidic devices gained more and more
attention. The evidence can be found in the many published textbooks that deal with
nano- and microfluidics (Liou and Fang, 2006; Bruus, 2007; Karniadakis et al., 2005;
Kirby, 2010; Fritzsche, 2012). The miniaturization of devices down to the smallest
achievable scales brings several benefits. Especially in biology (Beebe et al., 2002;
Verpoorte, 2002) and medicine (Yager et al., 2006; Squires and Quake, 2005), where
large quantities of substances are usually not at disposal, it is of tremendous value to
develop instruments, which can operate with tiny amounts of material. Along with
the miniaturization comes, of course, the possibility to create portable devices but also
energy efficiency is an important issue. Applications of nano- and micro-flows occur in
many different scientific and engineering areas, such as inkjet printers (Meinhart and
Zhang, 2000), blood analysis (Chang et al., 2000) or patient diagnosis devices (Nguyen
and Wereley, 2002, chap. 4+5). As for the miniaturization of electrical circuits, there is
also a change of regime for miniature fluid flows. While entering the small-scale regime
of flows, common tasks can become inefficient or even impossible. Mixing is an example
for such tasks. In moderate size flows it is common to mix two liquids by pouring one
into the other or by stirring them. In the low Reynolds number regime (Re < 1) this is
a difficult endeavor because efficient mixing is just possible with turbulence. The Péclet
number Pe is a nondimensional number that puts the advective transport in relation to
the diffusive transport. It is defined as Pe = U /̀κ, a typical length scale `, a velocity scale
U and the mass diffusion coefficient κ of the fluid. For most miniature flows the product
of the length and velocity scale is still some orders larger than the molecular diffusion κ
(Pe = 102 . . . 104) (Hardt and Schönfeld, 2007, p. 122) and consequently the transport is
mostly driven by advection than by diffusion. An example of the slow mixing effect due
to diffusion was given in Bau et al. (2001): At room temperature myosin proteins have a
diffusion coefficient of κ ≈ 10−11 m2/s. In order to travel across a 100µm channel requires
circa 1000 sec, which is to long for most engineering applications. Several attempts have
been made to improve mixing in an active or passive manner. Passive methods involve
micro-structuring the walls, geometrical obstacles in the duct while active methods utilize
temperature, electrical, magnetic or acoustical stimulations. An extensive overview about
mixing in microscopic scales can be found in the book of (Hardt and Schönfeld, 2007, p.
117–155).
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4.1 Governing equations of fluid motion

The general motion equations of continuous fluids can be derived from Newton’s law of
momentum conservation (Batchelor, 2000, pp. 137) and are commonly known as Navier-
Stokes equations. Under the assumption of a uniform viscosity µ throughout the fluid
and an incompressible fluid, the equations simplify to

ρ
Du

Dt
= −∇p+ µ∆u + ρf (momentum equation) (4.1)

0 = ∇Tu (continuity equation) , (4.2)

where u : Ω3 → R3 is the velocity, p : Ω3 → R is the pressure and f : Ω3 → R3 are external
forces that act on the fluid. The equations can be rewritten in a nondimensional form
by introducing a reference length ` and velocity U (see Appendix A.1)

Du∗

Dt∗
=
∂u∗

∂t∗
+ (u∗T∇∗)u∗ = −∇∗p∗ +

1

Re
∆∗u∗ +

`

U2
f∗

0 = ∇∗Tu∗ .
(4.3)

In absence of external forces (f = 0), all dimensional scales are combined in the
Reynolds number Re = ρU`

µ , which is nondimensional. The Reynolds number weighs
the importance of the viscosity forces with respect to the inertia forces and therefore
controls its dominance in the equation. In order to keep the notation as easy as possible,
the superscript ”∗” will be omitted in the following. For most microfluidic applications
the Reynolds number is very low (Re� 1). A typical fluid for micro devices is water
(µ ≈ 0.001Pa·s, ρ ≈ 1000 kg/m3), common length scales ranging from 1µm to 1mm and
velocities from 1 µm/s to 1 cm/s (Squires and Quake, 2005). This results in a wide range
of possible Reynolds number starting from 10−6 to 101. In these cases the viscosity
term ∆u is much more dominant than the inertia term (uT∇)u. This argument allows
to neglect the latter term and ∂tu can also be neglected by considering just stationary
flows. Consequently, the Navier-Stokes equations simplify to

0 = −∇p+
1

Re
∆u

0 = ∇Tu .
(4.4)

The remaining equations are called Stokes equations and the corresponding flows Stokes
flows, respectively. In mathematics these equations belong to the class of elliptic
boundary value problems. This means that the problem is well-posed and has a unique
solution (u, p) that fulfills equation (4.4), if the solution is given at the boundaries of the
domain. The proofs of existence and uniqueness of a solution can be found in various
textbooks (Temam, 1979, chap 1, §2 ; Ladyzhenskaya, 1969) along with an extensive
discussion about the mathematical properties of the more general Navier-Stokes equation.

It has to be remarked that in some flow cases the description with the Navier-Stokes
equation could be inappropriate. This happens if the flow cannot be modeled as a
continuous medium any more. It has to be treated as a particle flow that includes
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particle convection and particle collisions. In this case the flow has to be described by
the Boltzmann equation from statistical mechanics. A typical example is a rarefied gas,
where the molecules are separated far away from each other (e.g. like expelling gas into
a vacuum), which renders the definition of gradients, viscosity, etc. meaningless. This
applies also to nano-flows because the dimension of the flow ` is of the order of the
molecular mean free path λ, O(`) = O(λ). The Knudsen number Kn = λ/` defines the
ratio between the free path length λ and this characteristic length `. In general it can
be said that the larger Kn, the less valid is the continuity assumption. The commonly
accepted range for the validity of the continuum assumption and consequently the Navier-
Stokes model is bounded by Kn < 0.01 (Karniadakis et al., 2005, p. 16). The Navier-
Stokes equations can be derived from the Boltzmann equations by using the Chapman-
Enskog expansion of the first-order in Kn (see Liou and Fang, 2006, p. 62). Higher-order
expansions yield the Burnett equations (Burnett, 1936) and can be used to describe flows
with Kn up to unity. The assumption of a continuum gets easily violated for nano-scale
gas flows but also for micro-flows that contain large molecules like polymers or DNA.
For these examples Kn can reach the limit of the Navier-Stokes equations so that other
models have to be considered.

4.2 Boundary Conditions

The no-slip boundary condition has been controversially discussed over the past 200 years,
see (Goldstein, 1938, pp. 676–680) and Day (1990). Some experiments revealed for micro-
and nano-scale flows that there were unexpected discrepancies between measurements
and the predictions, which included the no-slip boundary condition (Joseph and Tabeling,
2005; Cheng and Giordano, 2002). A general boundary condition can be derived from
the Boltzmann equation and has the form (Karniadakis et al., 2005, p. 69)

uslip − uwall =
2− σv
σv

(
λ
∂u

∂n
+
λ2

2

∂2u

∂n2
+O(λ3)

)
, (4.5)

where the wall-slip uslip is expanded in a power series of λ, n is the boundary normal
and uwall the velocity of the wall. The first factor contains the tangential momentum
accommodation coefficient σv, which describes the interaction of the gas with the walls.
More precisely, it is the ratio of elastic molecule rebounds from the wall to the inelastic
molecules rebounds. The equation (4.5) can be nondimensionalized, which yields a slip
velocity that is a power series of the Knudsen number Kn. It can be seen that for very
small Knudsen numbers the slip velocity tends to zero and the commonly applied no-slip
condition is justifiable. Already Maxwell (1878) introduced a first-order slip boundary
condition, which models a slipping effect by introducing the slip length β that is still
used nowadays

u− uwall = β
∂u

∂n
. (4.6)

The first-order slip velocity is sufficiently accurate for Navier-Stokes flows, since they
are both first-order models. If the Navier-Stokes equations fail to describe the flow
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precisely, higher-order slip models have to be considered. Examples of such cases are
given in Leger et al. (1997) and Mhetar and Archer (1998), where polymers produce a
non-linear dependency for the slip velocity. Moreover, the slip length depends strongly
on the fluid-solid interaction. Wetting fluids are more likely to reduce the slip while
hydrophobic surfaces lead to a reduced drag and larger slip (Priezjev, 2007; Tretheway
and Meinhart, 2002). The roughness of the solid walls has a major influence on the
wettability and therefore also on the magnitude of slip. By texturizing the walls it
is possible to enforce hydrophobicity, which is accompanied by an increase of the slip
length β and this leads to a larger mass flow (Quéré, 2008). This is especially favorable
for miniature devices that need to transport fluid with the least amount of energy. A
general overview about the description and the influential parameters of the boundary
condition is given in (Tropea et al., 2007, chap. 19). The commonly accepted range of
Kn for the slip regime is Kn = 10−3 . . . 101 (Xu and Li, 2004; Karniadakis et al., 2005),
where at least the additional linear terms of equation (4.5) have to be used. However,
the no-slip boundary condition is sufficiently accurate for small Kn < 10−3.

The measurement of slip-velocities is a challenging task because of its small
magnitudes. Especially, PIV has the disadvantage of estimating just average velocities
that make the detection of large velocity gradients difficult.

4.3 Microchannel flow

The flow through a miniature rectangular channel is used as a test case of microfluidics.
The advantage of this setup lies in the fact that there is an analytical solution for pressure-
driven flows (Poiseuille flows). The laminar solution can be derived (see Appendix A.3)
under the assumption of the no-slip boundary condition at the wall (u = 0) and a given
pressure drop δp = pout − pin between the inlet and the outlet of the channel

u(y, z) =
16

π4

(pout − pin)

µL

∞∑

odd n,m

1(
n2

W 2 + m2

H2

)
nm

sin
(
n
π

W
y
)

sin
(
m
π

H
z
)
. (4.7)

The parameter L, W and H represent the length, width and height of the channel
while µ is the dynamic viscosity. The lateral velocity components v and w are normal
to the pressure gradient are consequently zero. The sum stems from a Fourier series and
takes account for the rectangular shape of the channel. In case of a duct with a round
cross-section, the equation (4.7) simplifies to the Hagen–Poiseuille equation.

4.3.1 Experimental data

The accurate measurement of microfluidic flows is more difficult compared to flow
measurements of moderate dimensions (` ∼ 1m). This is due to the fact that probing
the flow requires an intrusion into the flow. The probing has to be less intrusive as
usual because the fluid quantity is so small. There are several means available how to
measure the velocity (Nguyen and Wereley, 2002, pp. 138; Sinton, 2004). Most often
micron particles are used to visualize the motion. For micro-flows one runs the risk of
altering the viscosity coefficient due to a high percentage of particles (Einstein, 1906,
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0.2mm 0.2mm

Figure 4.1: The left image shows the MTV pattern at the time when it was written
into the channel. The right image shows the distorted and diffused pattern after nearly
3.5 sec.

1911; Taylor, 1932). Nevertheless, this flow visualization method is used to estimate
the velocity in micro-flows by common techniques, such as Laser Doppler Anemometry
(Durst et al., 1981) and µPIV (Santiago et al., 1998; Nguyen and Wereley, 2002; Kirby,
2010). The molecular counterpart of these visualization techniques uses fluorescent dye
molecules as tracers and is called Laser Induced Fluorescence (LIF). The molecules are
introduced in the flow and excited with a laser of the appropriate wavelength in order to
excite fluorescence light that can be recorded by photographic systems. The advantage
is a minimal intrusion into the dynamics of the flow. However, it is nearly possible
to obtain accurate motion estimates from LIF images because the velocity can only be
estimated at the interface of the fluorescent to the non-fluorescent liquid. In addition, the
aperture problem (see section 3.2.2.1) causes ambiguities at prevent the determination of
accurate velocities at such one-dimensional interfaces. A way to circumvent this problem
emerged with utilizing caged fluorescent dyes for the visualization of the flow (Paul et al.,
1998). In its normal state the dye is non-fluorescent because a functional group within
the molecule is avoiding its fluorescence property. The excitation of the molecules with
light of a certain wavelength allows to disable the functional group and to render the
molecules fluorescent. Shadow masks are used to control, which molecules shall become
fluorescent and which shall remain non-fluorescent. This way it is possible to produce
highly structured fluorescent patterns in the fluid which can be tracked. This technique
is commonly known as Molecular Tagging Velocimetry (MTV) and further information
can be found in general reviews (Koochesfahani and Nocera, 2007) or in the research
articles of Gendrich and Koochesfahani (1996) and Koochesfahani (1999).

Figure 4.1 shows two frames of a MTV experiment in a straight micro-channel, which
was conducted by Roetmann (2008). Roetmann (2008) kindly provided the whole dataset
of MTV micro-channel and micro-mixer images that provided the basis of this work.
The experimental setup is well-explained in Roetmann (2008) and the corresponding
journal publications (Garbe et al., 2008; Roetmann et al., 2008). However, the important
characteristics of the experiment will be mentioned in the following. The channel has
a width of 1mm and depth of 0.2mm, which produces a velocity profile that differs
significantly from the two-dimensional profile (see Appendix A.3). Water was used as
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flow medium and enriched with 0.5 g/l of caged Q-rhodamine dextran (Gee et al., 2001),
which was partially rendered fluorescent by using a dot pattern mask. A given pressure
drop causes a motion of O(100µm/sec), which advects the fluorescence pattern as it can
be seen in the second image of Figure 4.1. The experimental settings lead to Reynolds
numbers that range between 0.5 to 5 and the camera was operated at a recording frame
rate of 10Hz. The blurriness of the image pattern increases with elapsed time and is
caused by two effects. The first contribution is due to molecular diffusion of the dye
molecules and the second is caused by Taylor dispersion (see section 4.3.2).

Concerning the experimental images the boundary conditions of the fluid flow can
be assumed to be of no-slip type because the Knudsen number is sufficiently small,
Kn = O(10−4). The channel geometry defines the length scale ` = O(10−4m) and the free
mean path length can be estimated by the average distance between two dye molecules
(λ = O(10−8m)). The latter value was calculated using the concentration and assuming a
homogeneous distribution in the volume. The diameter of the molecules (≈ 10000Daltons
(Gee et al., 2001)) can be neglected, since they are at least one order smaller than the
free path length (Haller, 1977).

4.3.2 Taylor dispersion

The dispersion of a molecular species in a fluid is caused by molecular diffusion and
velocity gradients that drive molecules apart by locally varying advection velocities.
The latter phenomenon was first described and modeled for flows in a tube by Taylor
(1953) and Aris (1955). The effect is called Taylor dispersion and is illustrated in
Figure 4.2. Considering a two-dimensional channel where a solute is compactly located
within a solvent at time t0. The entire fluid is moving laminarly with a steady velocity
profile, which distorts the interface between the solute and the fluid. Velocity gradients
drive neighboring solute parcels further apart, which can be interpreted as a diffusive
process. Therefore, a new diffusion coefficient κtay was introduced, which accounts of the
additional diffusive effect Taylor (1953). The effective diffusion or dispersivity K can be
described by

K = κ+ κTay . (4.8)

For circular tubes κTay depends just on the Péclet number. However, for rectangular
shapes, the geometry of the cross section has to be taken into account. Doshi et al.
(1978) found that K depends significantly on the ratio of the channel height H and its
width W . They found that for H/W � 1 the dispersivity K is about 8 times larger
than the molecular diffusion coefficient κ. A general description for ducts was presented
by Chatwin and Sullivan (1982), who found that the longitudinal dispersivity can be
expressed as

K = κ+
1

210

(uH)2

κ
func

(
H

W

)
, (4.9)

where u is the mean streamwise velocity in the cross section. The function func(·)
accounts for the specific geometry of the cross section and depends just on the aspect
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t0 t1 t2t0 t1t0

Figure 4.2: This figure illustrates the Taylor dispersion in a two-dimensional channel,
which leads to a mixing effect due to locally different advection velocities.

ratio of H and W . The explicit solution for rectangular cross sections can be found in
the appendix of Chatwin and Sullivan (1982) and reads

K=
1

4κ


2
∑

p even
≥2

(
W

πp

)2

W 2
p+2

∑
q even
≥2

(
H

πq

)2

W 2
q+

∑
p,q even
≥2

{
W 2
pq

(pπ/W )2+(qπ/H)2

}


with





Wp =−32(pout−pin)WH3

µπ5

∑
n odd

tanh(nπW/2H)
n3(n2W 2+p2H2)

Wq =−2(pout−pin)H2

µπ2q2

{
1+ 8

π2

∑
n odd

q2

n2(n2+q2)
tanh(nπW/2H)

nπW/2H

}

Wpq =−32(pout−pin)WH3

µπ5

∑
n odd

tanh(nπW/2H)
n(n2−q2)

1
n2W 2+p2H2

.

(4.10)

For H �W the equations can be simplified by neglecting higher-order terms
of Taylor expansions. This yields a linear dependency of the aspect ratio:
K = κ(1 +A)(1−O(H/W )) with A ≈ 6.9512 being the limit of a series. This
approximation is sufficiently accurate for H/W ≤ 0.3 and therefore can be used for
the presented micro-channel experiment. Consequently, an effective dispersion with
K ≈ 5.69κ can be expected.

4.3.3 Modeling the experiment

There are four physical effects that have to be included in the model in order to describe
the image sequence properly:

1. Motion model for the duct
2. Fluorescence pattern model
3. Dispersion model
4. Imaging model .

The first part accounts for the solution of the motion equations of the channel flow with
a given pressure drop and no-slip boundary conditions. For a channel flow the analytical
solution was already presented in equation (4.7). The second model deals with the
generation of the fluorescent pattern. Because the pattern was generated by a projection
of parallel light, it can be assumed that each layer of the volumetric fluorescent pattern
looks like the pattern of the mask. The “writing” of the pattern can be modeled as a
projection operator P̂ ↑ : Ω→ Ω3 that maps the mask pattern into the volume

ρ0 = P̂ ↑I0 . (4.11)
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Furthermore, it is assumed that there is sufficient light that the molecules do not
occlude the laser light and prevent other molecules to be rendered fluorescent. Another
assumption is that the fluorescent molecules are homogeneously distributed along the
path and the integral over the height sums up to give the pixels brightness. The
third effect is the dispersion of the fluorescent dye molecules. It can be assumed that
the dye is homogeneously dissolved in water and making them fluorescent does not
effect the molecular diffusion coefficient κ. Therefore, the entire process of dispersion
can be described by an advection-diffusion equation of the fluorescent dye density
ρ : Ω3 × T → R+ with a diffusion constant κ

∂ρ

∂t
+ uT∇ρ = κ∆ρ . (4.12)

The velocity field is stationary and not coupled to the concentration field. This way it
can be treated as a constant motion field. The temporal development of ρ depends on
an advective term uT∇c and a diffusive term κ∆ρ. The first term describes implicitly
the Taylor dispersion and the second term the molecular diffusion. The last step of the
modeling deals with the recording of images by projection through an optical system
with a telecentric lens. The projection operator P̂ ↓ : Ω3 → Ω is defined as

P̂ ↓ρ =

ˆ H

0
ρ(x, t)dz . (4.13)

Putting all components together the image sequence Ii can be modeled as system of
partial differential equations with corresponding boundary conditions and initial state I0,
where the fluorescent pattern was written.

I(x, t) = P̂ ↓ρ+ noise s.t. C :=





∂ρ
∂t = −uT∇ρ+ κ∆ρ , in Ω3

ρ = P̂ ↑I0 , for t = 0
ρ = 0 , on Γwall
0 = −∇p+ 1

Re∆u , in Ω3

0 = ∇Tu , in Ω3

u = 0 , on Γwall
p = pin , on Γin
p = pout , on Γout

(4.14)

Because the flow is pressure-driven, the boundary conditions at the in- and outlet of C
can be set to the average pressure pin and pout rather than prescribing a velocity profile.
This modeling can be justified by the assumption that the channel extends beyond the
imaged section to both sides, so that boundary effects of orifices are negligible.

4.3.4 Projected motion equation

Some theoretical considerations of the relationship between real flows and image flows
were made by Liu and Shen (2008) for a variety of flow visualization techniques. The
advection-diffusion-equation from (4.12) is integrated along the z direction to get the
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Figure 4.3: Scheme of the computational domain Ω for the micro-channel flow with the
corresponding boundary labels.

intensity, which is recorded by the camera (up to a scaling factor). They defined a new
velocity variable

〈u12〉ρ =

´ H
0 ρu12dz´ H

0 ρdz
, (4.15)

which consists of the first two components of the original velocity field u and are ρ-
weighted and z-averaged. It turns out that this new 2D velocity field satisfies a partial
differential equation that resembles the original PDE except of some additional boundary
integrals that can be neglected because the flow is bounded in z direction by parallel
surfaces and the velocity is close to zero at the boundary (no-slip). The projected motion
equation for the micro-channel reads

∂tI +∇12 · (I 〈u12〉ρ) = κ∇2
12I . (4.16)

This equation looks like the extended brightness constancy constraint (see equation (3.10)
as it is used for optical flow calculations with an extra diffusive term. In order to estimate
the discrepancy between 〈u12〉ρ and the optical flow u it can be assumed that the dye
concentration ρ is constant along z. This is certainly true for the very first time steps,
where the smallest scale of the intensity pattern is larger than the maximal displacement.
Furthermore the z-velocity profile can be assumed nearly parabolic in the center of
the channel (u12 = umax · 4z(H − z)H−2) because of the aspect ratio of the channel.
Introducing this into the equation (4.15) yields

〈u12〉ρ =
4umax
H3

ˆ H

0
z(H − z)dz =

2

3
umax . (4.17)

This shows that under these circumstances the motion estimates from projections are two
thirds of the actual magnitude, if ρ = const along the line of sight. If the displacement
of the image pattern exceeds the image structure size, it can happen that just very small
z-ranges contribute to the integral. In this case the estimated velocity is the average
velocity of the corresponding z-range.
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4.3.5 Generation of two-dimensional data

For the purpose of estimating the accuracy of optimal controlled motion estimation using
PDE constraints, a set of synthetic images with known characteristics was produced. It
is sufficient to use images of two-dimensional flows because the objective is to analyze
the effects of image structures onto the motion estimation. The 2D flow is the solution
of the Stokes equations and has the form of a parabola in the spanwise direction (Bruus,
2007, p.45)

u(x) =
(pout − pin)

2µ

(
y2 −Hy

)
. (4.18)

This flow field was used to advect pixel brightness of a given image. The pressure
difference controls the magnitude of the parabola and therefore it was set in such a way
that the maximal velocity ranged between 0 and 5 pixels. The initial image was generated
so that it imitates the real measurement images by image size and image pattern. For
this purpose a 10 by 10 dot pattern was produced using an indicator function with an
additional Gaussian smoothing step (G3 px) to remove steep gray value discontinuities.
The latter step can be interpreted as modeling the optical blur of lens that is not exactly
in focus, which is reasonable due to the imperfection of optical systems.

–sourcefile– –revision– 2013-07-03 –time– –owner–

Figure 4.4: This figure shows a pair of synthetic images with a parabolic displacement
of maximal 50 pixels (left and right) and the original image from which both images are
computed.

An examples image pair is shown in Figure 4.4 where the advection of the initial
pattern (center) was applied for −u/2 and +u/2 to yield the first and second image (left
and right image). The usage of symmetric advection is reasoned by the fact that the
coordinate transformation requires a brightness value interpolation. Apart from integer
displacements all interpolation schemes suffer from slight alterations of the brightness at
the individual pixels. To illustrate this circumstance a measurement image was taken
and displaced linearly by δx followed by a displacement of −δx in order to obtain the
original image. Figure 4.5 shows the relative variation of the brightness and its derivative
with respect to the displacement. For the generation of the synthetic images there is
just one interpolation step necessary, hence the graphs are scaled by 1/2 assuming a
symmetric error. It shows that the average change of a pixel’s brightness varies up to
3%. The alteration is even higher for the gradient of the image with up to 7% for
spline interpolation. Since image gradients are essential for optical flow algorithms, the
interpolation error was kept small by applying the half displacement to each image but
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Figure 4.5: These two figures illustrate the induced error for linear, cubic and spline
interpolation of an image depending on the displacement δx. The left graph shows the
standard deviation of the relative change of the image intensity, while the right graph
shows the same for the its x-derivative.

in opposite directions. This way both images are experience the same smoothing effect
of the interpolation.

A second set of synthetic images was produced where the background noise of the
authentic images was added to mimic real measurement images. Here, the signal-to-
noise ratio (SNR) is defined as the magnitude of the indicator function divided by the
standard deviation of the background noise. This parameter was set to values ranging
from 1 to 300, which yields images with rugged brightness profiles up to very smooth
profiles. Figure 4.6 shows a profile of one individual dot of the pattern for a varying SNR
value. The last profile was taken from an authentic measurement image and is included
for reasons of comparison. However, it reveals that the noise rate is dependent on the
intensity. The background noise has a standard deviation of 2.6 brightness units while
the fluorescent pattern (assuming top-hat shape) has a standard deviation of around 12
brightness units that is almost 5 times larger. The two noise levels are weighted with
their occurrence (area) in order to determine a single value of 4.1 brightness units. This
yields to a SNR of about 70, given the average magnitude of 300 brightness units for the
top-hat pattern.
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Figure 4.6: These profiles illustrate the cross sections of the pattern for different SNR.
A measurement profile is show for comparison at the very right.
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4.3.6 Deficiencies of methods without global motion model

In this section the standard motion estimation algorithms are applied to the micro-
channel images that compare to the images in figure 4.1. The lack of global motion
models will turn out to be a serious disadvantage for the evaluation of data that has just
sparsely distributed information which is spread over the entire image. Local motion
models are not capable to overcome image regions that contain no processable information
because the motion model is to flexible so that actual motion information from other
parts has too little influence. In order to point out the deficiencies of local motion
models, a synthetic image pair (umax = 1 px/δt) is taken and processed by a state-of-the-
atr correlation method1 and optical flow method2.

4.3.6.1 Correlation approach

Patch matching techniques have intrinsically the drawback that they estimate an average
velocity for an entire image part. As a consequence, the spatial resolution is reduced and
depends on the size of the interrogation window. By using a special weighting function
w and overlapping patches it is possible to achieve higher resolutions (Astarita, 2006).
Nevertheless, pixel resolution can just be obtained by a very expensive computation,
since for each pixel all the neighboring pixels have to be taken into accounted. This
can increase the number of pixels to be processed by a factor of 100 to 1000. Usually
this computational effort is too large, so that the velocity field is not estimated densely
but with a spacing of 4 pixels in each dimension. Another disadvantage of the spatial
averaging is that complex motions below the size of the interrogation window cannot be
estimated. The user has to make a trade-off between spatial resolution of the solution
and the accuracy.

With respect to the evaluation of MTV images like the ones shown in figure 4.1 the
choice of adequate user parameters is not too straight forward. The initial interrogation
window has to be set in such a way that the velocity gradients can be resolved sufficiently
accurate but also it has to be large enough to contain information. The symmetry of this
experiment allows to use interrogation windows that extend further into the streamwise
direction than to the spanwise direction. The following multilevel interrogation scheme
was used: 96× 64 px→ 64× 48 px→ 32× 32 px. A quadratic interrogation window was
chosen to avoid numerical artifacts for the final evaluation step of this hierarchical scheme.

The results are shown in figure 4.7 for four different choices of final interrogation
windows. Since the velocity estimates are computed at the nodes of a uniform grid, it
occurs that some of the images patches contain just noise, especially if the IW is very
small. This is clearly visible for a 8× 8 pixels IW. There are many wrong estimates
that corrupt the general shape of the velocity profile. If the size of the final IW is set
to larger values, this effect is reduced and the motion field becomes smoother. However,
the motion field shows ripples that appear for the largest IW sizes. This effect is caused
by aliasing since the spatial frequency of the image pattern does not combine with the
IW size. Since the images contain just the pattern and no background, the motion field

1PIV software Widim that uses a multiple scales and a image deformation approach (Scarano and
Riethmuller, 1999).

2Optical flow code by Liu (2009), which based on the publications of Brox et al. (2004) and Bruhn
et al. (2005)
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Figure 4.7: This figure shows the results of correlation based techniques when applied
to microfluid MTV images. The interrogation window size is gradually increased from
8× 8 px to 64× 64 px in order to show the averaging effect.

extends up the image borders since the channel borders are not visible. A velocity of zero
at the channel border can not be estimated because motion information propagates from
the inner channel to the borders. However, the larger the IW gets, the more information
is averaged and consequently the profile gets flattened. The largest IW with a size of
64× 64 pixels corresponds to almost one seventh of the entire channel width.

4.3.6.2 Optical flow approach

The very same images were process with optical flow for three different regularization
parameters α. Figure 4.8 shows the results that reveal a significant influence of the
image pattern. Motion information is only provided at the dots of the pattern and at the
positions in between the motion is smoothly interpolated. The steepest image gradients
have a largest impact on the estimated motion field and cause the circular velocity
patterns. For small regularization parameters (α = 0.01) the motion is too close to the
image data and consequently not smooth at all. With increasing α the extreme motion
peaks become regularized and adapt to the magnitude of the surrounding estimates.

α = 0.01 α = 0.1 α = 1x

u
y

Figure 4.8: This figure shows the results of Horn & Schunck optical flow if applied to
microfluid MTV images. The outcome was tested for several regularization parameters
α. Shown are the results for α = 0.01, α = 0.1 and α = 1.
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4.3.7 PDE constrained approach

This section will demonstrate the advantages of global motion models that allow to
overcome the difficulties of the methods without global motion model. The Stokes
equations will be included as constraints into the solution finding process. Two types of
controls will be used: a distributed control of the boundary condition and a parameter
control of the average pressure at the flow inlet. Both types can be computed by the
optimal control framework RoDoBo in combination with Gascoigne. Both approaches
are compared to each other by evaluating the synthetic two-dimensional image sequence,
which allows to assess the accuracy.

4.3.7.1 Velocity control

In order to maintain the generality of this approach the solution (u∗, p∗) is assumed to be
unknown and has to be determined in such a way that it minimizes a given cost functional
J . The cost functional consists of the usual brightness constancy constraint from
equation (3.10) and some costs of the control q that are weighted by the parameter α > 0.
The constraint equations are the Stokes equations with no-slip boundary condition at
the walls u

∣∣
Γwall

= 0 and controls qin and qout as streamwise component of u at the inlet
Γin and outlet Γout, respectively. The spanwise component is set to be zero. Without
loss of generality the average pressure in Ω is set to zero since just the derivatives of the
pressure enter the state equation. The constrained minimization problem reads

J(u, q) =
1

2
‖∂tI + uT∇I‖2Ω +

α

2
‖qin‖2Γin

+
α

2
‖qout‖2Γout

min
q
J(u, q) s.t.





0 = 1
Re∆u−∇p , in Ω

0 = ∇Tu , in Ω
u = 0 , on Γwall
u = (qin, 0)T , on Γin
u = (qout, 0)T , on Γout

.
(4.19)

With the notation H := H1
0 (Ω, ∂Ω) and L = L2

0(Ω) := {q ∈ L2(Ω),
´

Ω qdx = 0} the
variational formulation for (4.19) can be reformulated as finding u ∈ (qin, 0)T

∣∣
Γin

+

(qout, 0)T
∣∣
Γout

+H and p ∈ L that minimizes

J(u, q) =
1

2
‖∂tI + uT∇I‖2Ω +

α

2
‖qin‖2Γin

+
α

2
‖qout‖2Γout

(4.20)

and satisfies

0 =
1

Re
(∇u,∇φ)− (p,div φ) + (divu, χ) ,∀(φ, χ) ∈ H × L . (4.21)

The optimal solution (u∗, p∗, q∗in, q
∗
out) can be found by using the optimal control

method, which was introduced in section 2.5 in combination with finite elements to solve
the system of PDEs. In agreement with the experimental settings, the Reynolds number
was chosen to be one.
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Choosing the regularization parameter α

Similar to optical flow, the regularization affects not just the solution of the state equation
but also the value of the cost functional. The parameter α has to be chosen in such a
way that the control becomes not too irregular (non-smooth) and does not contribute
too much to the total cost J . A L2-penalization was chosen, that tries to limit the
magnitude of the control. In order to test the effect of α, a noise-free synthetic image
pair with a maximal displacement of umax = 1px at the center of the parabola was taken
and evaluated for a range of α parameters. In order to illustrate the influence onto the
solution figure (4.9) shows the results of six different α parameters. For small α’s the
control is not smooth and oscillates around its true profile. The oscillations stem from
the intensity pattern in the images (see Appendix A.7). By virtue of the BCCE all image
gradients generate motion (see equation (3.10)). However, the vertical gradients do not
originate form a motion but from the shearing that is caused by different velocities in
the streamwise direction. This issue was already introduced and discussed as aperture
problem on page 28 and leads to the definition of normal flow. Between the dot pattern
there is no image information that prevents vertical motion. Hence, the velocity controls
at the openings are free to adapt until the vertical gradients lead to a vertical motion or
the induced control costs contribute significantly to the total costs J .
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Figure 4.9: This figure shows the parabolic u-profiles for differently weighted L2(Γin)-
costs of the control q.

However, towards the center of the channel the oscillations level off quickly due to the
rigid nature of the Stokes equations and because motion information from all directions
contribute. At the openings of the channel there is just information towards the two
inward directions of the channel. Consequently, a perfect parabolic profile is computed
at the center of the channel where border effects are negligible.

The oscillations of the controls can be reduced by increasing α and consequently the
costs of the controls. With larger α the swinging of the profile lessens and it becomes
smoother. The parameter α balances the costs of the data term and the control. The
larger α is, the less significant becomes the image data and the result can deviate very
much from the expected result (e.g. α = 100). Penalizing the magnitude of the control
improves the result just to a certain value of α where large oscillations corrupt the result.

49



CHAPTER 4. MICROFLUIDIC FLOWS

Beyond that value the cost of the ground truth velocity parabola is of the same order as
the data costs. Further increase of α leads to a reduced magnitude of the velocity profile
at the openings. Another effect of the L2-penalization becomes apparent for α ≥ 0.1.
For a constant mass flow through a channel, the lowest control costs can be achieved by
a constant inflow velocity and not a parabola. This can be seen for α = 100, where the
inlet velocity resembles a boxcar function. For αs around unity this effect is less obvious
but still present. The magnitude of the profiles is reduced and the additional mass flow
is injected through two side lobes close to the border. With respect to the control costs
this bypass is “cheaper” because the spatial image gradients close to the wall are very
small and do not contribute significantly to J .

It has to be mentioned that the controls qin and qout are not exactly equal. The
reason is the distinct motion direction from the left to the right and the fact that image
pattern is closer to Γout than to Γin. As a result the influence of the gradients is not the
same for both openings. Especially for very small α’s both controls are distinguishable
but still they have the same magnitude. For larger α’s the data becomes less important
and so the controls become almost identical.

In order to find the “best” α, the difference of the estimated solution u and the
reference solution uref is measured with the L1(Ω) and L2(Ω)-norms and normalized
by umax = ‖uref‖∞. Using the L1-norm becomes reasonable because large errors occur
mostly at the near region of the inlet where the control is set. The L2-norm treats these
errors quadratically and is dominated by them although the solution u in the remaining
part of Ω has a small error. This will become more obvious when applying the inflow
control approach to noisy images (see A.3 for comparison).
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Figure 4.10: The left plot shows the α dependency of the L2-error with respect to
the reference solution of two images with a dot pattern and a maximal displacement of
1 pixel in the center of the parabola. The right plot shows the ratio of the estimated flow
rate Q to the reference flow rate Qref on the basis of two images with a dot pattern and
a maximal displacement of 1 pixel.

Figure 4.10 shows the α dependency on the accuracy of the entire solution in Ω. The
optimal value that gives the lowest error is close to unity. For α < 1 the error increases
due to the irregular inflow profile, which is caused by the lack of image information while
on the other hand the general profile resembles closely the reference parabola. For α > 1
the error increases drastically because the control costs make up a significant portion of
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the entire cost. The control becomes more important than the actual solution and the
error raises.

In order to illustrate that the irregular effects at the openings are caused by a shortage
of data, figure 4.10 shows the flow rate Q =

´
Γout

udx/
´

Γout
dx through a cross section

normalized by the reference flow rate Qref . It reveals that the estimated flux is quite
accurate for a wide range of small αs, where the estimated value is just 0.3% larger. The
slightly higher estimated value is due to the fact that also the vertical image gradients
contribute to the motion, e.g. normal flow. The additionally estimated motion leads to
the small overestimation of the flow rate Q. Similar to the L2-error the flow rate error
increases rapidly for α > 1. For the following investigations concerning the inflow control,
the apparently “best” choice of α = 1 is used, which gave very low errors for u and still
good results for Q.

Dependency on the displacement

Using the brightness constancy constraint equation (BCCE) involves a Taylor
approximation of first-order. For this reason the proposed approach is very likely to
fail for large displacements umax � 1 px. This shortcoming of the BCCE is already
well-known and usually circumvented by hierarchical or scaling schemes. However, the
accuracy of the solution depends on the smoothness of the image pattern but also on
the used motion model. Global motion models can compensate for missing or erroneous
local estimates if they occur not to often. At first the approach was applied to noiseless
images with maximal displacements that range between 0.1 px/δt and 5 px/δt.
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Figure 4.11: These figures show the normalized L1- and L2-errors of the estimated
velocity u, the corresponding normalized cost functional value j and the ratio between
the estimated flow rate Q and the reference flow rate Qref for α = 1.

Figure 4.11 illustrates the evolution of the error with increasing umax. Not
surprisingly, both errors are very low for small displacements and grow with increasing
umax. The two norms differ by a factor of up to two for umax < 2.5 px/δt . This comes from
the oscillations at the in- and outlet. The L2-norm is optimal for Gaussian noise (see A.4)
and therefore not the best choice for estimating the quality of the result that contains non-
Gaussian outliers. The L1-norm is much more appropriate to deal with the few “outliers”
that are located near the boundaries Γin and Γout. Moreover, the normalized costs for
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the estimated u are displayed in the left graph of figure 4.11. They are normalized with
the reference cost jref , which is computed for zero velocity u = 0 px/δt. It reveals that
for umax ≈ 0.4 px/δt the relative costs are the lowest, about 0.4% of the initial costs. The
reference flow rate jref decreases gradually while approaching umax = 0 px/δt , hence the
relative cost increase in the vicinity of zero because of the small overestimation of j that is
associated with the normal flow. This effect cannot be seen in the velocity graph because
the oscillations are much more significant for the velocity as for the flow rate. The costs
increase to the right of the minimum because of a growing costs of the controls and
larger errors due to the insufficient representation of the data by the first-order Taylor
approximation.

The second graph in figure 4.11 shows the ratio between the estimated flow rate Q
and the reference flow rate Qref . It is overestimated by 2.5% for small displacements
and decreases with growing umax. The overestimation originates from the highly adapted
motion towards the data, where any image gradient ∇I contributes equally to the motion
(especially ∂yI). The continuity equation requires additional inflow to compensate these
gradients, which leads to the overestimation (see Appendix A.8). Larger displacements
cause additional cost on the control and lead also to a decreased flow rate.

In order to investigate the dependency on the noise level, the noise corrupted images
were processed for the same displacement range as before. Figure 4.12 shows contour
lines indicating the accuracy levels with varying noise and maximal velocity. It draws
a similar picture as the noise-free dependency in figure 4.11. There is a minimum near
umax = 3 px/δt, which appears to be rather independent of the noise level. Of course,
for far too much noise the accuracy drops rapidly (noise level < 25). The flow rate
graph on the right of the very same figure reveals that the mass flow is overestimated
for umax < 3 px/δt and underestimated beyond it. The value of the exact estimation of
the flow rate shifts from around 2 px/δt in the noise-free images to circa 3 px/δt for noisy
images. The flow rate graph allows to understand the velocity graph and explains why
the error is also large for small umax. It is originated in the overestimation of the velocity,
which cannot be seen by plotting the norm of the residual.
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Figure 4.12: These graphs show the contour lines of the normalized error ‖u−
uref‖1/umax error (left) and the ratio of the estimated to the reference flow rate Q/Qref
(right), respectively.
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Estimating wall-slip

In section 4.2 it was pointed out that the assumption of a no-slip boundary condition
might not be appropriate for all microfluidic applications. The reason is the failure of
the continuity assumption. Another reason for allowing a finite wall-slip is the inaccurate
knowledge domain Ω. If the boundary ∂Ω of the fluid domain is not known precisely
then the no-slip condition would be ill-suited and induce additional errors (Silva et al.,
2009). These two cases motivate to extend the optimal control q and to include also the
wall-boundaries of the domain. For such a case the problem reads

J(u, q) =
1

2
‖∂tI + uT∇I‖2Ω +

α

2
‖q‖2∂Ω

min
q
J(u, q) s.t.





0 = 1
Re∆u−∇p , in Ω

0 = ∇Tu , in Ω
u = (q, 0)T , on ∂Ω

.
(4.22)

Here, it is assumed that v is zero and just the streamwise velocity is estimated. This
approach was tested with two synthetic images containing a regular grid pattern (see
Appendix A.7) with umax = 1 and α = 1. The u-solution is shown in figure 4.13 with the
emphasis on the wall-slip velocity. Using this boundary control approach shows that the
wall velocity uwall is constantly underestimated by nearly 2%. This corresponds exactly
to the error of the overestimated flow rate. The variations of the wall velocity stem from
the subscribed image pattern. This becomes more obvious during the next investigation,
where a constant wall velocity is prescribed and has to be recovered by this approach.
A constant offset velocity ranging from 0px to 1 px was added to the reference velocity
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Figure 4.13: This figure shows the result of the u-component of the boundary control
problem from equation (4.22). The graph reveals the fine structure that can not be seen
in the color plot.

field (umax = 1 px/δt), which was then used to produce the synthetic images with a regular
grid pattern. Exactly this grid pattern of 40 grid lines can be seen in all 20 normalized
wall velocity profiles (u/uwall)

∣∣
Γwall

in figure 4.14. They match so closely, that just a
single line is observable. The immense drop to both ends of the profile is caused by
a reduced influence of the regularization because the image provides only information
from 2 directions in the image corner. The shear induced spanwise gradients contribute
significantly to the motion and lower the streamwise velocity estimate considerably. The
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averaged wall velocity was computed with respect to the data in the range x ∈ [0.1, 0.9]
in order to leave out the edge disturbances. The right graph of figure 4.13 reveals that
uwall gets slightly overestimated. For uwall = 1 px/δt this happens to be up to 10%, which
tends to zero for uwall → 0. However, it can be clearly seen that the overestimation
is systematic because the dependency of the estimates is linear with a slightly larger
slope. Considering the large error of wall-slip estimates of up to 45% from other image
processing approaches (Joseph and Tabeling, 2005), the estimation by the presented
approach seems quite good, especially for small uwall.
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Figure 4.14: This left figure shows the normalized wall velocities profiles for wall
velocities ranging from 0 to 1 pixel. The right figure depicts the average wall velocity uwall
along the boundary disregarding the data close to the openings. The correct dependency
is shown as a solid line for comparison.

In order to investigate the influence of the image data, this method has to be applied
to many different images that share the same global characteristics and containing exactly
the same image motion. This allows to compute statistical moments of the boundary
functions in order to cancel out the effects of the individual image pattern. For this
purpose, a set of randomly structured images were produced (Fieguth, 2010, Example
8.3) that are independent samples but have the same spatial correlation length. A set
of 100 image samples was produced to calculate the mean and the variance of a flow
with zero wall-velocity and umax = 0.5 px/δt. Figure 4.15 shows one of these images. The
plot to the right shows the estimated average wall-slip profile together with the standard
deviation. It reveals that it is constantly underestimated by (1± 1)% of the maximal
velocity umax. The deviation reduces towards the domain borders and yields even
overestimated wall-velocities. The reason is the L2-penalization of the inlet boundary
function, which produces side lobes at the inlet profile to reduce the costs. This leads to
a propagation of the overestimated inlet velocity towards the edges of the domain. Since
the flow rate is overestimated by 2%-3% (see figure 4.12), the boundary control function
compensates the overestimation by 1%. The image data limits the underestimation of
uwall by increasing costs of the data term. Some other quantities could be determined
from this set of images. The average deviation of the flow rate is 0.3%, while the cost
functional j varies up to 2.75%.
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Figure 4.15: The left image shows a sample image which contains a random sample.
The right graph depicts the estimated average normalized wall-velocity with its standard
deviation.

4.3.7.2 Pressure control

The previously discussed velocity control has the drawback that it adapts to much to the
data which causes the oscillations of the boundary control. The micro-channel flow is a
purely pressure-driven flow, which means that it is fully determined by the just knowing
the pressure difference between the inlet and outlet (assuming no-slip wall condition).
Instead of estimating the entire velocity profiles at the openings, the degrees of freedom
can be reduced to estimate just one parameter, the pressure drop δp = pout − pin. This is
possible because the flow in the experiment was driven by hydrostatic pressure difference
and not by the injection of fluid stream. Consequently, the velocity profile in two
dimensions has to be parabolic throughout the entire domain, in particular at the
openings too. The optimal control problem can be converted to a parameter estimation
problem with PDE constraints

min
q

1

2
‖∂tI + uT∇I‖2Ω s.t.





0 = 1
Re∆u−∇p , in Ω

0 = ∇Tu , in Ω
u = 0 , on Γwall
p = 0 , on Γin

nq = 1
Re∂nu− np , on Γout

. (4.23)

Without the loss of generality the pressure at the inlet boundary can be set to zero.
The constraint 1

Re∂nu− np = 0 is known as natural boundary condition or “do-nothing”
condition because it appears naturally in the variational formulation if no boundary
condition is prescribed (Heywood et al., 1996; Rannacher, 2000). The parameter q
represents the average pressure over the boundary of the opening 〈p〉Γout

. The variational
formulation of this problem reads
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min
q

1

2
‖∂tI + uT∇I‖2Ω

s.t.
{

0 = 1
Re (∇u,∇φ)− (p, div φ)− (q, φ)Γin , ∀φ ∈ H1

0 (Ω,Γwall)
0 = (divu, χ) , ∀χL2(Ω)

.

(4.24)

The control parameter does not need any additional penalization with the cost functional
J since it is just one value. Consequently, there is no regularization parameter α necessary.
Figure 4.16 shows the three components of the estimated solution (u∗, v∗, p∗). The
streamwise component u is of perfect parabola shape while the spanwise component
v is zero and the pressure shows a linear trend between the openings.

α = 0.001 α = 0.01 α = 0.1

α = 1 α = 10 α = 100x

u

y

Figure 4.16: This graph shows qualitatively the representative results of (u, v, p) in
case of the pressure control method. The streamwise component has the ideal parabola
shape, the spanwise component is zero and the pressure grows linearly.

In order to assess the accuracy, the same images were analyzed as it was done for the
velocity controlled approach. An important benefit of this approach is the lack of user
defined parameters, such as the regularizing parameter α. Pressure control estimation
does not need any special regularization of parameters as distributed controls, just the
images and the constraint equations with boundary conditions. Figure 4.17 shows the
normalized residuals of the velocity estimate u with respect to the reference solution
uref , the normalized cost functional and the normalized flow rate. The first aspect that
becomes apparent is the remarkable similarity of the estimated flow rate to the flow
rate from the velocity control approach, just with a constant offset of about 1% (see
Figure 4.11). The offset comes from the side lobes of the estimated velocity control, that
lowers the flow rate. The overestimation is also caused by the aperture problem and the
normal flow that contributes to the estimates.

The relative errors are shown at the left plot of Figure 4.17 and reveal a similar
trend compared to the velocity control results, but have an almost one order smaller
magnitude. This confirms the previous assumption, that the velocity error at small
umax for the in- and outlet boundary control is mainly caused by the oscillations at the
borders. For the average pressure control the velocity error for noiseless images is below
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0.5% for umax < 1.5 px/δt. The L2-error reaches its lowest value for the displacement of
at 1.2 px/δt where the overestimation of the flux cancels out with the error due to the
Taylor approximation in the brightness constancy constraint (see 3.10). The small kink
at 0.2 px/δt is probably due to disadvantageous combination of image-grid interpolation,
since the grid and the pixel locations do not coincide accurately.
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Figure 4.17: The left graph shows the normalized L1 and L2-errors of the velocity field
together with the normalized cost functional j/jref for noisefree images. The right graph
displays the corresponding estimated momentum flux.

The dependency of the error with respect to the noise level and the displacement is
shown in Figure 4.18. It can be seen that this approach yields errors below 1% for a
wide range of velocities (umax = 0 pixels/δt. . . 1.5 pixels/δt) and noise levels (60 to∞). Noise
becomes significant for noise levels below 50. From this point on, the signal looses its
dominance and the error increases rapidly. At a given noise level the error grows rather
slowly for increasing umax. This effect cannot be assessed accurately because the velocity
profile is a parabola with the whole range of displacements between zero and umax. The
lowest error occurs for displacements close to unity. The small bubble-like area in the top
left corner of the graph is caused by the image interpolation error of the synthetic images,
that has been already addressed to on page 44. The interpolation error is the largest
for displacements of 1/2 pixels and has obviously also effects on the motion estimation.
For increasing noise, this effect levels off. The right graph of figure 4.18 shows the ratio
between the reference Qref and the estimated momentum flux Q. The trend of the error
with respect to the displacement and the SNR equals the graph from the velocity error.
It can be seen, that the image interpolation error leads to slightly larger motion estimates.
This comes from the different interpolation errors of the brightness and the its gradients
(see figure 4.5). The temporal gradient ∂tI is based on the brightness and ∇I is based
on the gradient of the brightness.

Stability of the estimates

Reasonable estimates of physical quantities should hardly change if the data is slightly
altered in order to be meaningful. Besides the robustness and speed of the parameter
estimation, it is feasible to calculate the second-order derivatives j′′qq explicitly. The
Hessian can be used to tell whether the parameter q∗ is a “deep” or “shallow” minimum,
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Figure 4.18: These graphs show the contour lines of the normalized error ‖u−
uref‖1/umax error (left) and the ratio of the estimated to the reference flux Q/Qref
(right), respectively.

whether it is stable or close to indifferent. At the minimum the reduced cost function
can be approximated by

j(q) ≈ j(q∗) +
1

2
(q − q∗)TH(q − q∗) , (4.25)

where H is the hessian of j at the optimal control q∗. The confidence interval of the
estimate q∗ depends on the amount of noise in the data. The idea is to find the confidence
range of q∗ in such a way that the increase of the cost functional j is of the order of the
image noise with standard deviation σ. The relation

1

2
(q − q∗)TH(q − q∗) ≤ σ2 (4.26)

can be reordered to give confidence bounds for the control parameter q∗, which is
equivalent to the pressure drop. With the image noise already determined in section 4.3.5
it is possible to calculate the asymptotic standard parameter error (Press et al., 2002) of
q by

σqi = σ

√
2H−1

ii . (4.27)

For this case the index i is redundant, because the Hessian is a one-by-one matrix. For
multiple parameters it is possible to estimate the individual asymptotic standard errors
with the corresponding matrix entries at the diagonal. The inverse of the Hessian is
known as data covariance matrix and can be interpreted as confidence ellipsoid. For this
one-parameter estimation problem the inversion of the Hessian is trivial because it is
a scalar. Figure 4.19 shows the estimated asymptotic standard errors for the pressure
control.

Obviously, the asymptotic standard error depends only on the noise and is hardly
effected by the motion. For a maximal velocity of 1 pixel/δt with no noise, the relative
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Figure 4.19: This plot shows the estimated asymptotic error of the pressure drop. It
depends just on the noise level and is independent of umax. The absolute standard error
is normalized and corrsponds to pressure value of the upper horizontal axis.

standard error is about 2%. Larger velocities yield a lower relative error because of
the constant error with larger pressure drop. Since the velocity depends linearly on the
pressure, it has the same relative error. It seems unfortunate that the motion has no
effect on the shape of the minimum. Consequently, the stability of the optimal control
estimate can not be used as a measure for the accuracy because it depends basically just
on the image and not on the motion.

4.3.8 Generation of three-dimensional data

The previous section assessed the errors of the combination of PDE constrained motion
estimation with images by means of two-dimensional data. From this point on the
focus lies on the error, which is induced by the physical models. For this purpose,
three-dimensional reference data was produce by solving the time-dependent advection-
diffusion equation in equation (4.12). The forward simulation was solved for 100 steps
within one time unit using a second-order Crank-Nicolson scheme in order to keep the
numerical dissipation small (Thomas, 1995) and three preceding Euler steps to accelerate
the solution finding procedure. The dimensions of the domain were set in such a
way that they compare to the measurement channel: length : width : height = 1 : 1 : 0.25.
The domain was discretized by LPS-Q1 finite elements and had about half a million
nodes (129× 129× 31) in order to yield projected images of a reasonable size 129× 129
pixels. Since the velocity field u is time-independent and the solution can be calculated
analytically, see equation (4.7), it was not necessary compute it beforehand. The maximal
velocity of u was set in such way that within one time unit the structures are convected
by 1/3 of the channel length. For each time step this produces a maximal displacement
of 0.42 pixel or 0.42 nodes, respectively. The normalized kinematic viscosity κ∗ was set
to values ranging from 10−1 to 10−5. In order to imitate the measurements, an initial
4× 4 dot pattern were chosen that was equally distributed over the height of the channel.
The small number of dots in the pattern was chosen so that each dot is represented by
a sufficient number of nodes in order keep discretization artifacts small. Figure 4.20
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shows the iso-surfaces of the fluorescent density ρ for three time steps and three diffusion
coefficients.

–sourcefile– –revision– 2013-05-23 –time– –owner–

U0

U0

U0

Figure 4.20: This figure shows in each row three forward simulated time steps
(t∗ = 0, 0.15, 0.3) of the advection-diffusion equation (4.12) in a rectangular channel with
different diffusion coefficients. Top row: κ∗ = 10−5, Middle row κ∗ = 10−3, Bottom row
κ∗ = 5 · 10−3.

The density ρ was integrated along the height to yield 8bit reference images that
were used to assess the accuracy (see figure 4.21). For the smallest diffusion coefficient,
the image structures remain rather sharp in the vertical direction and get fuzzy in the
horizontal direction due to the advection and the projection. For larger κ∗ this effect is
blurred by the diffusion. Although a second-order numerical scheme was used to calculate
the forward simulation there is a measurable dissipation of about 0.4% of the intensity
between two time steps. This accumulates over 100 time steps so that just 2/3 of the
initial intensity remains at the final calculation. In particular, this issue is visible for the
three images of κ∗ = 0.001 in Figure 4.21.

4.3.9 Parameter estimation approach with 3D motion model

The focus lies on the estimation of characteristic model variables, like the velocity field
u and the diffusion coefficient κ. The estimation of diffusion coefficients is especially
important for biological and medical flows that involve macro-molecules of several
thousand atoms (Gregor et al., 2005; Thiagarajah et al., 2001). A specific example is
the research of DNA diffusion coefficients in micro devices (Curtin et al., 2006). Rather
than finding the velocity field u it is also possible to estimate the pressure drop along
the duct and calculate the corresponding velocity field from it. This is possible because
the given flow is purely pressure-driven (Poiseuille flow). The problem in equation (4.14)
simplifies to finding a pressure drop such that the modeled image is the closest to the
measured image. Without the loss of generality pin is set to zero, which leaves pout and κ
to be estimated. The squared L2-norm is chosen as the measure of similarity, which is the
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Figure 4.21: This figure shows the synthetic images that correspond to the fluorescence
densities ρ shown in Figure 4.20

correct norm if Gaussian noise can be assumed (see A.4). In this case the minimization
problem reads

min
{pout,κ}

‖Ii − P̂ ↓ρ‖2Ω s.t. C , (4.28)

where C are the constraints from equation (4.14). Because the velocity in a straight
rectangular duct can be calculated analytically, it is convenient to replace the Stokes
equations and boundary conditions in C by the explicit solution from equation (4.7).

Neglecting for now the diffusive effects and focusing on the advection effect allows to
simplify the model, such that the density is just transported and projected by P̂ ↓D̂ρ. In
order to account for diffusive effects that play a major role for large κ, it is modeled by
a convolution with Gaussian bell function Gκ that has a time-dependent variance. The
justification of this procedure originates from the fact that the solution of the diffusion
equation can be written as a convolution with a Gaussian bell function (see Appendix
A.5). This applies also to the projected density because the diffusive effects along the
integration path cancel each other. Consequently, the projected diffusion can be described
by the same diffusion coefficient κ as the diffusion in three dimensions (see Appendix A.6).

Since all constraints can be expressed in an explicit manner, the problem from
equation (4.28) can be written without constraints as

min
{pout,κ,s}

‖Ii − s ·Gκ ∗ P̂ ↓D̂P̂ ↑I0‖2Ω . (4.29)
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Figure 4.22: This illustration shows
the Taylor dispersion of a density
structure and the
corresponding projected brightness if
integrated along z.
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Figure 4.23: This plot illustrates the linearity
of the filter described in equation (4.29). An
image can be partitioned arbitrarily and the
sum of all filtered image partitions adds up to
equal the result of the filtered image.

This model includes an additional parameter s, which accounts for the decreased intensity
due to numerical diffusion. The value of every pixel corresponds to the integrated density
along the line of sight of that pixel. With progressing time the pixel intensity appears
to be smeared over several pixels in the direction of the motion due to the velocity
dependency in z-direction. This effect is illustrated in figure 4.22. The change of each
pixel’s brightness depends just on the pixel value itself, the velocity, the diffusion and the
brightness contributions of the upstream pixels. Since the contribution from the other
pixels is additive, all pixels can be treated independently and their results accumulate.
Figure 4.23 illustrates this linear relation. The intensity I0 is split into four smaller parts
I0i. Each part experiences the Taylor dispersion I1i. The partial results are added up
and equal the result from the Taylor dispersion of the entire intensity I0. This behavior is
characteristic for linear filters. It turns out that the operator P̂ ↓D̂P ↑ can be expressed as
a convolution with a position dependent function. The function depends on the velocity
profile in y- and z-direction and in two dimensions it depends only on the y position.
Under the assumption of a homogeneously distributed dye and a known velocity profile
in z-direction the projection depends just in the length of the line of sight within the
fluorescent dye:

P̂ ↓ρ(x− d) =

ˆ H

0
ρ(x− d)dz = ρ

ˆ
ρ(x−d)>0

dz . (4.30)

With the prior knowledge of the z velocity profile, it is possible to replace the last integral
by the length of integration path that is within the fluorescent dye. This length can be
calculated by solving equation (4.7) for z. The calculation is analogue to the one in Garbe
et al. (2008) with an additional dimension. Unlike the parabolic velocity profile in two
dimensions, there is no explicit equation for z in three dimensions. Therefore, velocity
profile is approximated by neglecting all terms with m > 1, which induces an error that
is of the order O(1/(n3m)) and has a standard deviation of 3.8% of the magnitude. The
error is the largest at the borders (y ≈ 0 or y ≈W ), where the profile deviates the most
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from a parabola. Using this approximation, an equation for the integration length can
be derived and reads

Fc,pout(x, y, t) =
2H

π

[
arcsin

(x
k

)
− arcsin

(
x− c
k

)]

with k =
16

π4

poutt

µL

∑

n odd

sin(π n
W y)

n( n
2

W 2 + 1
H2 )

,
(4.31)

where the variable c contains the width of the pattern structure and t denotes the time.
An important fact is the linearity of this equation. An intensity pattern can be divided
in smaller parts and the time evolved pattern can be calculated by the summation of the
time evolved parts (see Figure 4.23). This allows to break down the intensity patterns
to pixel size, to calculate the time developed results and to sum them up. Because of
the geometrical symmetry, this operation can be done by an one-dimensional convolution
along the streamlines with the function F1 px,pout . Because F1 px,pout is different for every
y, the line convolution is denoted with “?” so that the minimization problem reads

min
{pout,κ,s}

‖Ii − s ·Gκ ∗ F1 px,pout ? I0‖2Ω . (4.32)

4.3.9.1 Assessment of the accuracy

The 3D simulated images are shown in figure 4.21 and were used to test the approach
before applying it to the real measurement data. Figure 4.24 shows the estimated
parameters in relation to the ground truth parameters. Since the image intensities for
each κ level off at a different speed, each image sequence could be evaluated just up to
a certain image. Therefore, the graphs do not cover the entire displacement range. The
first graph shows the estimated pressure drop for different diffusion coefficients κ. It
becomes apparent that this method yields better results for large displacements where
the estimated pressure approaches the ground truth value with a deviation of less than
3%. This statement holds for all diffusion coefficients except for the largest. Here, the
molecular and numerical diffusion becomes extremely large, so that hardly any brightness
is left beyond 15 time steps. The oscillations in the beginning stem from the fact that for
small displacement the modeling is inaccurate due to its discretized nature of the filter.
For small displacements the diffusion coefficient is also not accurate. In this situation the
Gaussian function is not an appropriate representation of a continuous Gaussian function
becaues it has a width of less than 3 px, which is to small.

The diffusion coefficient is estimate nearly 10% lower than the reference value. One
of the reasons is the boundary effect that is not included in the model and the other
the reason is the dependency of the two parameters κ and s. Both parameters cause a
decrease of the initial intensity so that the diffusive brightness loss is partially captured
by the scaling parameter s. However, the estimated diffusion coefficient stabilizes with
larger displacement. The scaling parameter is about to capture the loss of intensity by
numerical diffusion. The largest intensity loss happens in the first time step where the
initial intensity pattern is displaced for the first time. For every additional time step the
intensity decreases gradually until the density is about to leave the domain.
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The results are quite good considering the initial error of nearly 4% that originate
from the first-order approximation of the 3D velocity profile in z direction. Among the
parameters the pressure can be estimated best because it depends mainly on the center
part of u(y) where the approximation is good. The image parts close to the border with
larger approximation errors contribute less because of the smaller number of involved
pixels.

4.3.10 Application to MTV measurements

The parameter estimation approach is applied to MTV measurements taken from the
PhD work of Roetmann (2008) with courtesy of the Laser Laboratorium Göttingen e.V.
Figure 4.25 shows image examples of two of the eight datasets that were provided. For
illustrative purposes the upper half of each image shows the initial fluorescence pattern
and the bottom half its time-evolved counterpart. Roetmann experimented with different
initial patterns in the datasets, e.g. dot size and distance between the dots.

The minimization problem from equation (4.32) was used to estimate the diffusion
coefficient κ and the pressure drop δp along with the scaling factor s. The latter parameter
accounts for the excitation delay of the molecules but also for the photo bleaching effects
that alter the intensity of the recorded fluorescence light (Roetmann, 2008, see Figure
3.4 and 3.5). Although Roetmann applied a static pressure differences in the first place
to drive the flow, the only recorded parameter is the volume flow rate Qref . The flow
rate Q can be calculated by knowing the velocity u or pressure drop, respectively. It is
calculated via the relation

Q =

ˆ W

0

ˆ H

0
u(y, z)dydz (4.33)

and with the analytic expression for u that is given in equation (4.7). The trigonometric
functions can be integrated to yield the conversion formula
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Figure 4.24: These graphs show the estimated parameters using equation (4.32)
after normalization with the corresponding reference value for simulations with κ =
{0.0005, , 0.001, 0.005, 0.01}. From left to right the graphs show the pressure p, the
molecular diffusion coefficient κ and the scaling parameter s.

64



4.3. MICROCHANNEL FLOW

0.2mm 0.2mm

Figure 4.25: These two images show a split view from the initial (top) and time evolved
(bottom) images of two MTV measurements with different patterns and pressure drops
(data sets: G025D200, G375D300 with frame {4, 88} and {4, 90} of the sequences)
.
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. (4.34)

Another conversion has to be done in order to determine the diffusion coefficient. The
diffusion coefficient κ connects to the mean squared Brownian motion distance σ by the
relation

σ =
√

2nκt , (4.35)

where n is the number of spatial dimensions (Einstein, 1905). The value for σ corresponds
to the standard deviation of the Gaussian for the convolution and gives the possibility to
estimate κ. Figure 4.26 shows the maximal velocity umax, flow rateQ, diffusion coefficient
κ and scaling parameter s for six reference flow rates of the dataset G375D300. The top
left graph reveals that umax is determined quite constant over the entire sequence besides
the large displacements of more than 16 px and the overlapping intensity structures (see
figure 4.25 right). For the first few frames, the graphs have larger deviations, which are
caused by the unsaturated fluorescence light and the fact that this approach performs
unstable if the displacement is too small. The maximal velocity is directly connected
to the flow rate Q, which can be normalized by the reference value. Considering the
first-order approximation of u, the flow rate Q can be approximated quite good. The
normalized values come close to unity (0.94± 5) % for the this dataset. Large fluctuations
around the mean occur for the estimation of the diffusion coefficient κ. There are
several reasons for this instability, e.g. the degree of noise in the images, which is more
significant in the initial phase and the dependency on the quality of the other parameter,
especially with respect to the scaling parameter. The latter is illustrated in the last plot
of figure 4.26, where the scaling parameter s shows the increase of intensity up to 35%
within 30 frames. This is caused by the continuous excitation with the laser light that
renders more and more molecules fluorescent. An equivalent graph can be produced by
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plotting the integrated intensity of the images over time (see Appendix A.12). Therefore,
the parameter s is proportional to the amount of excited fluorescent dye molecules.

The evaluation was done for all eight datasets that were provided by Roetmann and
the results are plotted with the corresponding one-σ-errorbar in figure 4.27. It becomes
apparent, that the errorbars of the flow rate are notably larger for datasets ending with
D150 or D200. The number of the name corresponds to the distance between the dots.
The smaller the number is, the closer are the dots and as a consequence the individual
dots structures overlap earlier in time. However, the flow rate could be estimated for all
datasets within a range of (90-100)% of the reference flow rate. In order to calculate
the overall estimate of Q/Qref , the individual results were weighted with their reciprocal
variance, which yields the value Q/Qref = 0.95± 0.06. One reason for the lower estimate
is the unknown position of the walls. The experimental images had not been produced
with an exact parallel projection, so that the sides of the wall are visible. This led to a
smaller estimated domain and consequently a lower flow rate was estimated. The evolved
dot pattern does not have a perfect mirror symmetry with respect to the center of the
channel which indicates that the top and bottom plate are not exactly parallel or have
artifact from the production process. The same procedure was done to calculate the
diffusion coefficient κ. Since the images for the datasets had been taken in an alternating
manner throughout two days, an average temperature shift can be excluded that would
have altered the diffusivity. Figure 4.26 shows the κ estimates of one dataset. Usually
κ oscillates for small times t < 1 sec, which is damped quickly with progressing time.
Therefore, the first few estimates of all datasets are not included for the averaging
(t < 1.5 sec). The overall diffusion coefficient of caged Q-rhodamine dextran in water
at 20◦C could be estimated3 to κ = (55± 16) µm2/sec. This value can not be compared
to literature values because there are no publications that are related to this substance.
However, since dextran makes up the largest part of this molecule, it is reasonable to
compare the estimated κ to the dextran diffusion coefficients of similar molecules size
(≈ 10 000Dalton). According to Laurent et al. (1976) κ values range between 30 µm2/sec
and 79 µm2/sec. Other publications report diffusion coefficients of (78± 47) µm2/sec for
dextran in oral biofilms (Takenaka et al., 2009), 29.1 µm2/sec (Gregor et al., 2005) or
91 µm2/sec Thiagarajah et al. (2001). Considering the large range of published results
between (30–91) µm2/sec, it can be remarked that the estimated diffusion coefficients of
all datasets lie within these limits.

4.4 Micro-mixer

The previous straight channel experiment was used as a test case with known analytic
solution for the study of the accuracy and the limitations of the proposed methods.
A more interesting and challenging application is now presented that shows the large
potential of PDE constrained motion estimation: a fluid micro-mixer with multiple in-
and outlets (Roetmann, 2008). Two images of the device are shown in figure 4.28 and
the computational domain and boundaries are shown in figure 4.29. Such devices are
primarily used for mixing multiple fluids, which is a key task for chemical, pharmaceutical,
medical or biological diagnostics. The presented micro-device has six openings and is

3The mean and standard deviation were computed using a mixture of gaussian distributions Trailović
and Pao (2005).
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Figure 4.26: Each of these figures shows the graphs for six flow rates (in ml/min)
of the image dataset G375D300. The maximal velocity umax, normalized flow rate
Q/Qref , diffusion coefficient κ and scaling parameter s are displayed over the time axis
which corresponds to 27 image frames (frame rate: 10Hz).
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Figure 4.27: These graphs show the estimated flow rates Q and diffusion coefficients κ
for the all measurement configurations. The error bars show the deviation of the estimate
within the individual image sequence.

operated with a hydrostatic pressure difference, like the micro-channel. Consequently,
the flow is also a Poiseuille flow and fully described by the average pressure values
at the openings. The area of the mixing chamber has a size of 1× 1× 0.2mm3

and is comparable to the geometrical characteristics of the micro-channel. Several
experimental settings have been done with partially opened or closed in- and outlets.
However, the experiments had been conducted to show the feasibility of performing
MTV measurements in complex micro-devices. Therefore, the measurement settings had
not been adjusted accurately and as a consequence had not been recorded.

4.4.1 Average pressure control

This example is ideal to be analyzed by the parameter estimation of the average pressure
values at the openings because is fully described by these quantities. Therefore, the

0.2mm 0.2mm

Figure 4.28: These images show a micro-mixer with six openings and the initial dot
pattern that was marked into the fluid. The left image represents the first frame picturing
the prescribed pattern, the right image 5.5 sec later after the pattern is convected.
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Figure 4.29: The scheme illustrates the flow domain and its boundaries that is used to
evaluate the micro-mixer images.

parameter estimation problem from equation (4.23) is extended to include six openings
instead of just two. The problem for this setup has five parameters q1, ..q5 and reads

min
q1,...q5

1

2
‖∂tI + uT∇I‖2Ω s.t.





0 = 1
Re∆u−∇p , in Ω

0 = ∇Tu , in Ω
u = 0 , on Γwall
p = 0 , on Γ6

nqi = 1
Re∂nu− np , on Γi, ∀i = 1, .., 5

. (4.36)

As for the straight channel, the average pressure value for one opening (Γ6) can be set to
zero without the loss of generality. The computational framework RoDoBo handles this
problem in the same manner as the straight channel example. Therefore, there are just
minor adaptations that have to be made in order to make it work. One notable problem
is the generation of the computational mesh, which is described in the following.

4.4.2 Mesh generation

The PDE control solver RoDoBo computes the solutions starting from a coarse mesh,
which is refined automatically in an iterative manner until the final resolution is achieved.
The geometry of the micro-mixer domain is far more complex than the domain of the
straight micro-channel. Curved boundaries require to set up the initial mesh accurately,
so that the mesh boundaries coincide with the pictured boundaries in the images. The
general refinement approach of RoDoBo adds a new node in the center of all edges and
at the middle of each finite element. In order to allow curved boundaries in RoDoBo,
the position of the edge nodes can be corrected by an analytic function. However, a
mathematical description of the boundary, which is shown in figure 4.28 is difficult to find.
It would be most convenient to use image processing methods to detect the boundaries
and use this information to generate the mesh accordingly. In order to realize this
procedure, a Canny-edge-filter (Canny, 1986) was used to mark the visualized edges.
After some post-processing steps (e.g. smoothing, binarization, skeletonizing) for the
removal of wrong edges and other artifacts, the edges are nicely emphasized as illustrated
in figure 4.30 on the left. The idea is to shift the border nodes of the mesh to the closest
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Figure 4.30: The left figure shows the emphasized walls of the micro-mixer in the
images. From this edge-image it is possible to compute a distance function for every
pixel position (right figure). The contour lines show the minimal distance to the closest
wall in pixel units.

segment of the wall. This allows to begin with an initial mesh that corresponds roughly
to the actual borders and which is corrected automatically in each refinement step. The
correction of the node positions can be done with computing a potential function, which
returns the shortest distance for every pixel in the image to the next border pixel. The
calculation of this potential function (see figure 4.30 right) is done with a fast-marching
method (Sethian, 1999) that has a computational complexity of O(n log n), with n being
the number of pixels. Having this function allows to use minimizing algorithms to find the
closest wall segment. The only requirement of this approach is that the initial positions
of the nodes should be close to the corresponding border segment. However, with this
method the laborious work of generating accurate meshes can be reduced, which makes
it more convenient and easy to adapt for other experiments and other geometries.

An accurate representation of the domain can be achieved by this method as it is
shown in figure 4.31. The initial mesh grid consists of nearly equilateralQ1 finite elements.
Additional nodes are added in each refinement step and shifted to the closest image border,
thus allowing the mesh to cling to the image borders. It has to be remarked that the
mesh refinement has to be limited by the resolution of the pixel grid. The reason is that
the potential function is just accurate up to the pixel resolution. A refined mesh beyond
this resolution can lead to degenerated finite elements that have nodes with identical
positions or overlapping areas. Under these circumstances the solver diverges because
the requirements of a valid FEM discretization are not fulfilled anymore. In order to
prevent this, the FEM mesh refinement is stopped at the image resolution and the initial
mesh was chosen according to the mentioned restrictions.

4.4.3 Micro-mixer flow

The first two consecutive images of the sequence were chosen to be evaluated with the
average pressure control approach, which was outlined before. The very same images
are evaluated with optical flow and PIV. In order to allow a convenient comparison, all
results are shown in figure 4.32 with equal scalings. Since PIV and optical flow can
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Figure 4.31: This figure shows in the top row the first four meshes for the micro-mixer
experiment. The bottom row images focus onto a closeup region of the above meshes
with the underlying micro-mixer images to see the working principle.

not estimate pressure, the corresponding places are left blank and marked with a cross.
The PIV results were obtained by using a hierarchical interrogation window sequence
of 96× 96 px→ 64× 64 px→ 32× 32 px on every fourth pixel in vertical and horizontal
direction. The optical flow algorithm was applied with a image pyramid scheme that
scales the images in 85% steps down to one third of the initial width. The regularization
parameter α was set to unity as for the micro-channel.

Although there is no image information in the left opening, PDE constrained motion
allows a physically sound extrapolation because of the global motion model. The two
other local motion model approaches are not capable to estimate any reasonable velocity
because of their simple motion model. By virtue, they are just able to estimate the
motion where the brightness is significantly structured.

The drawback of the local model is clearly visible in the plots of the u- and v-
component. The regular image pattern produces a velocity beating, which can be seen
nicely in u-component of the optical result and is also present in the PIV results. On
the other side, the rigid PDE constraint produces numerical results that appear feasible
since they come from the solution of the PDEs. However, the v-component appears to
be a smoothed version of the corresponding PIV and OF results. Especially the contour
lines of the PIV results resemble closely to the ones of the PDE result, qualitatively
and quantitatively. Only for large velocities (|u| > 8 px/δt) the magnitude and shape
differ notably. It has to be mentioned, that the two-dimensional Stokes equations are
used to yield this result. This explains why the velocity towards the openings turns
into a parabolic profile. As a consequence, the estimated inflow velocity is higher than
the velocity that is predicted by the other methods because it flow rate has to be
conserved. On the other hand, the magnitude of the v-component at the lower left
outlet is underestimated because the two-dimensional PDE solution does not satisfy any
other profile.

The lower dimensional model shows in some parts significant deviations from the
actual motion. Especially in areas close to the border and the inlets, the additional
dimension alters significantly the profile and cannot be estimated properly by the two-
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Figure 4.32: This figure shows the results of PIV, optical flow and PDE constrained
motion estimation using pressure controls. The scale of all plots is in units of px/δt
except the pressure plot, which is in nondimensional units and can easily be converted
by multiplying with ρU2 (O(100 nN)).
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dimensional flow model. In image parts far away from the borders and with low velocities
this effect is much smaller, so that PDE constrained modeling yield comparable results.

4.4.3.1 Stability of the parameters

In order to investigate the influence of the Taylor dispersion, this method was applied
to different consecutive image pairs from the image sequence. So far, the first image,
which contains the undistorted pattern, was used together with the proceeding image of
the sequence. Since this flow is stationary, the exact same motion distorts the second to
the third image, the third to the fourth image, and so on. Ideally, the estimated motion
should be identical for all these image pairs. The Taylor dispersion could be neglected
for the first pair of images because the fluorescence density corresponds to the prescribed
pattern and the influence of the Taylor dispersion gains importance with increasing
time and distortion of the initial pattern. Figure 4.33 shows the five parameters for
6 images pairs. The curved shape is recovered by all image pairs but they differ severely
in magnitude. With every additional time step, the estimated magnitude of the pressure
becomes smaller and consequently also the velocity estimates. However, it shows that
the determined parameters of the first three image pairs have a similar magnitude (up
to 10%), which suggests that the influence of the Taylor dispersion is not yet sufficiently
large to seriously corrupt the motion estimate.
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Figure 4.33: This graph shows the estimated average pressure values q1, . . . , q5 for
different consecutive images.

4.4.3.2 Strength of global motion models

The real strength of using global motion models is demonstrated in the following example,
where the MTV images contain much less dots and therefore sparsely distributed motion
information (see figure 4.34) These images were processed in the same manner as the
previous example of the micro-mixer but with lower pressure drop and a different dot
mask. The motion information is sparsely localized with large distances in between. The
results of this image pair are shown in figure 4.35. The standard methods PIV and OF
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have extreme difficulties to estimate even the main flow direction. The few information
of the dots does not suffice to allow a reliable estimation or interpolation between the
dots. The only reasonable motion estimates occur at the locations of the dots, which
also experience a corruption by the smoothing effect of the hierarchical schemes or the
regularization. In contrast to these local motion methods, the PDE constrained motion
estimation yields fairly the same results as the previous example with much more dots.
The few motion information is sufficient to drive the global solution to a physically
sound motion and pressure field. The image parts that do not contain any information,
contribute hardly to the entire global solution.

0.2mm 0.2mm

Figure 4.34: These images show a micro-mixer with six openings and the initial dot
pattern that was marked into the fluid. The left image represents the first frame when
the pattern is marked, the right image 5.5 sec later after the pattern is convected.
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Figure 4.35: This figure shows the results of PIV, optical flow and PDE constrained
motion estimation using pressure controls for a micro-mixer with a sparsely distributed
image pattern. All units are in px/δt except the pressure plot, which are nondimensional
and can be easily converted by multiplying with ρU2 (O(100 nN)).
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CHAPTER 5

Conclusion

The main objective of this thesis has been the application of global motion models for the
evaluation of microfluidic flows. This was accomplished by combining fluid simulations
with motion estimation methods for measurement data in an optimal control framework.
The FEM-solver Gascoigne (Becker and Braack, 2005) and the optimization toolbox
RoDoBo (Becker et al., 2005) were used to parametrize the governing equations in order
to find solutions that describe the measurement images. The solution space of the motion
problem is reduced by considering only the subset that contains the solutions, which that
satisfy the motion equations. This makes this method accurate and robust in comparison
to other motion estimation methods. Furthermore, it is possible to impose boundary
conditions that are a priori known for many experimental setups. This concept was tested
and applied to molecular tagging velocimetry images that show integrated fluorescence
light. In the following the main investigations and results of this thesis are summarized.

5.1 Summary

Local and global motion models

In this thesis it was demonstrated that global models provide the potential to analyze
data which can hardly be evaluated by local methods. The MTV images do not contain
densely distributed image information, which causes extreme difficulties for local motion
frameworks. The results of local and global approaches can be compared qualitatively by
examining the figures 4.7 and 4.8 for the local model and the figures 4.9 and 4.16 for global
models. In this context, a comparison of the average errors with respect to the reference
solution of the synthetic images does not make sense, because local methods yield many
outliers that corrupt the solution. Global motion models are more robust and allow a
physically sound interpolation between sparsely distributed image data. The example
of the micro-mixing device from section 4.4.3 demonstrates impressively the usefulness
of global motion models, where local models are not able to retrieve reliable estimates.
However, the advantage of a global motion model is accompanied with the disadvantage
of uncontrollable error propagation. Since all estimates are rigidly connected by the
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equations, localized errors affect the global solution. On the other hand, local models
restrain the error propagation by a larger solution space that allows a more flexible
adaption or by dividing the problem into smaller non-connected parts. This limits the
propagation length of the erroneous estimates as it is shown in correlation length in
figure 3.6.

Optimal control of PDEs

The governing equations of viscous flow can be solved if the boundary conditions are
known. With respect to optimization this means that the boundary conditions or the
equations have to be changed in order to serve as an adjustable model. In this context,
the general concept of optimal control was introduced in section 2.5 and the finite element
method to solve PDEs was briefly outlined in section 2.7.
This approach was applied to synthetic data with a known reference motion that
imitates MTV images as shown in figure 4.1. Two types of control variables were
investigated: distributed control variables (section 4.3.7.1) and parameter control
variables (section 4.3.7.2). Both were applied to the very same images, which had been
generated with different noise levels and flow rates. The errors with respect to the
reference solution are shown in figure 4.12 and figure 4.18 and reveal that the pressure
as control parameter is much more robust than controlling the inflow profile. This
distributed boundary control depends very much on the pixel data close to the border
(see section A.7). However, this mainly effects the solution near the border because the
equation damps this influence quickly. While looking at the estimated flow rate, it can be
seen that both methods perform equally good. Besides the better accuracy of parameter
controlled PDEs (compare figure 4.12 and figure 4.18), the deviations at the border are
one of the reasons why parameter controlled PDEs are preferred over boundary controlled
PDE approach. Another reason is the lower computational effort, that allows to compute
gradients and Hessians explicitly, which makes it notably faster. And finally, it does not
need any regularization parameters that have to be set by the user. Boundary controls
have the benefit that they allow to relax the modeled settings. This was used to weaken
the zero-wall-slip assumption as presented in equation 4.22. For a range of prescribed
wall velocities the method was able to estimate fractional displacements with a maximal
error of 10% at 1 px/δt. In comparison with other wall-slip investigations from images
(Joseph and Tabeling, 2005), this error seems to be more than acceptable. This study
shows once more the large impact of the image data onto the estimated boundary control
variables. Therefore, random images were generated to get rid of the image structure
dependency (see figure 4.15). This revealed another issue, that counteracts against the
accuracy and is discussed in the next paragraph.

The general problem of the optical flow constraint

The brightness constancy constraint equation in equation (3.10) is ill-posed and the only
computable motion is in direction of the gradient (see normal flow in section 3.2.2.1).
This causes the global models to overestimate the motion, which is due to the fact that
shear induced image gradients contribute to the overall motion. This is illustrated in the
figures 4.11 and 4.17 and in presence of noise in figure 4.12 and figure 4.18. Apparently,
controlling the pressure preforms better than controlling the inflow motion. With respect
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to the boundary control approach, the oscillating variations of the estimated boundary
can be reduced by scaling ∂yI (see section A.8), which confirms the strong influence of the
image structure. Another problem involving the BCCE is the Taylor approximation that
prevents an accurate estimation beyond 1 px displacement between two images. Since
there are no pyramidal schemes involved, the method is likely to become inaccurate for
large displacements. However, image data from a micro-mixing device (section 4.4.3)
was used to demonstrate the strength of global motion models. Velocities up to 12 px/δt
are determined, which is not caused by the local image information but because of the
global model that interpolates with respect to the governing equations. This leads to a
physically sound interpolation of the motion, where image data does not provide sufficient
information.

Confidence of the solution

Since PDE constrained estimates appear alway physically sound, it is difficult to tell,
how trustworthy the results are. Optical flow methods that include a global optimization
experience the same problem. An error estimation of the presented method is difficult
because the shape of the minimum of the cost function depends just on the noise level and
not on the motion (see figure 4.19). However, the stability of the estimation was tested
by applying the method to different consecutive images that contain the same motion
information (see figure 4.33). This allowed to determine the limits of the simplified
two-dimensional model.

Estimation of the diffusion coefficient

The parameter estimation method had been extended to model a projected three-
dimensional velocity field in a straight channel by using an approximated analytical
solution (see section 4.3.9). The diffusive process was described by a convolution with
a Gaussian function (see Appendix A.5), which can be used to estimate the diffusion
coefficient. This approach was tested on synthetic images, which had been produced
with a three-dimensional numerical simulation of the diffusion equation with constant
advection velocity (see section 4.3.8). The results for different diffusion coefficients are
shown in figure 4.24 and reveal that the pressure drop and diffusion coefficient can be
estimated quite stable for the second half of the image sequence. The motion estimates
come close to the reference solution with a deviation of less than 3% and the estimated
diffusion reaches 90% of the reference value. The 10% discrepancy is caused by the
numerical diffusion and discretization artifacts.
Finally, this method was applied to the MTV datasets of Roetmann (2008) and the
estimated parameters are shown in figure 4.25 for a sample dataset. The flow rate and
the diffusion coefficient could be estimated quite stable for all flow rates of this dataset.
The model parameters were determined for the other datasets as well and averaged (see
figure 4.27). The flow rate could be estimated up to (95± 6)% of the reference value
and the diffusion coefficient to (55± 16) µm2/sec, which is very good, considering the
underestimation of the approximated model by 4%. This value was compared to diffusion
coefficients of similar molecules in water because there are no publications with respect to
caged Q-rhodamine dextran. However, the estimated value lies in the appropriate range.
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5.2 Future work
Like many other measurement techniques, the presented MTV images contain projections
of a tracer substance that experiences a three-dimensional motion. An appropriate
motion model for such experiments has to include the three-dimensional flow field in
order to describe it accurately. The computation of such a flow field can be easily
accomplished with Gascoigne but the optimization toolbox RoDoBo is not suited to
perform computations in three dimensions with a two-dimensional cost function. Major
adaptions of the RoDoBo framework have to be made to make it work. A further
step towards the realization of the model presented in equation (4.14) involves a forward
simulation of the diffusion equation, which can be incorporated into the framework. With
this model it is possible to describe the three-dimensional effects and to quantify physical
variables on the basis of the entire image sequence for arbitrary domains in x and y.

An important aspect is the regularization of the solution. The applied L2-
regularization can be replaced by higher-order regularizations that are not as restrictive.
Tangential or normal derivatives come to mind but also a penalization of the curvature.
A multilevel image scheme has to be introduced to overcome the restrictions of the Taylor
approximation.

The concept of optimal control in combination with the finite element method brings
many potential applications to mind. Rather than limiting the applications to viscous
flows, it is possible to use the Navier-Stokes equations as constraints. Especially, the
steady Navier-Stokes equation can be used to estimate the average flow from e.g. PIV
data, which seems to be advantageous, because for many applications the average velocity
component in direction of the camera cancels out. In such cases, a lower-dimensional
model can be applied, which speeds up the computation and provides a reasonable
representation of the underlying flow.

Instead of using control variables for the estimation of velocity or pressure,
the RoDoBo framework allows also to implement control variables with non-linear
dependencies. This gives the opportunity to estimate Reynolds numbers or Reynolds
shear stresses for a given sequence of PIV images, which are of great interest for the
modeling of turbulence. The general framework allows further to include every process
that is related - directly or indirectly - to the images. This includes for instance
chemical reactions that can be described by PDEs and have an influence on the recorded
brightness. An example application are images of fluorescence light, which depend on
the concentration of a certain substance that has to be estimated.

FEM computations are very cumbersome, especially in three-dimensions. The
RoDoBo framework provides methods that refine the computational meshes according
to some cost function. This gives the opportunity to apply numerical simulations on
large images because the solution is just estimated with a high resolution where it is
necessary. Regions that do not contain useful information can be sparsely sampled in
order to gain computational speed and without sacrificing accuracy. This resembles
the approaches of Miozzi (2004) and Theunissen (2010), who calculate only estimates
where sufficient information exists. These estimates can be included into a fluid motion
framework Vlasenko (2010) to estimate reliable solutions based on reliable data samples.
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Appendix

A.1 Nondimensional Navier-Stokes equation

The Navier-Stokes equations give a general description of physical flow phenomena in a
continuum and read

ρ
(
∂tu + (uT∇)u

)
= −∇p+ µ∆u + f . (A.1)

All variables in this non-linear PDE have units, which is inconvenient for running
simulations. In order to allow a general analysis of the equations, all dimensional
quantities and operators can be expressed as multiples of flow specific quantities, such
as a length scale ` and a time scale T or a velocity scale U . Since the velocity can be
expressed by a time and length scale, it is just necessary to define two out of the three.
The third scale is then already determined. The variables and differential operators are
scaled in the following way:

u = u∗ · U , x = x∗ · ` , p = p∗ρ · U2 ,

∇ = 1
`∇∗ , ∂t = 1

T ∂
∗
t = U

` ∂
∗
t .

(A.2)

These identities are used to substitute the variables in equation (A.1) which gives the
equation

ρU
U

`
∂∗t u

∗ + ρ
U2

`
(u∗T∇∗)u∗ = −∇∗p∗U

2ρ

`
+ µ

U

`2
∇∗2u∗ +

`

U2
f . (A.3)

The dimensional variables can be reordered in such a way, that they appear in just
two terms

∂∗t u
∗ + (u∗T∇∗)u∗ = −∇∗p∗ +

ν

U`︸︷︷︸
= 1

Re

∇∗2u∗ +
`

U2
f . (A.4)
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The two new variables are the Reynolds number Re = ρU`
µ and if f is a gravitational force,

the Froud number Fr = U2

`g . If no body force f acts on the fluid, all dimensional variables
are bundled in the nondimensional Reynolds number, which is the ration of inertial forces
to viscous forces. This means, that if the geometries of two flow phenomena are similar
up to a scaling factor and the Reynolds numbers are the same, then the motion of both
flow phenomena is the identical. This is a crucial statement, because it allows to scale
the geometry of the flow domain and to get the unscaled result, assuming the Reynolds
number is equal.

A.2 Nondimensional diffusion equation

As shown in previous paragraph for the momentum equation of the flow, the diffusion
equation

∂tρ+ (uT∇)ρ = −κ∆ρ (A.5)

can be nondimensionalized in the same manner. By introducing a reference density
ρref and expressing the density as ρ = ρ∗ρref allows to substitute the variables in
equation (A.5). This yields

Uρref
`

∂∗t ρ
′ +

Uρref
`

(u∗T∇∗)ρ∗ = κ
ρref
v2

∆′ρ′ (A.6)

(A.7)

and again it is possible to reorder all dimensional variables into one term. The non-
dimensional formulation of the diffusion equation reads

∂∗t ρ
∗ + (u∗T∇∗)ρ∗ =

κ

`U︸︷︷︸
= 1

Pe

∆∗ρ∗ , (A.8)

where the Péclet number Pe is the ratio between the advective and the diffusive transport.

A.3 Solution of the Stokes equation in a rectangular channel

The geometry of a rectangular channel is sufficiently regular, so that an analytical
solution of the motion can be derived. However, since the border of the domain is
not smooth at all, the only chance is to develop the solution into a series. The Navier-
Stokes equations simplify under the assumption of a steady flow (∂tu = 0), a negligible
advection (uT∇u� 1

Re∆u) and a purely streamwise motion to a one-dimensional Stokes
equations of the form

1

Re
∆u = ∂xp . (A.9)
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A.3. SOLUTION OF THE STOKES EQUATION IN A RECTANGULAR CHANNEL

The pressure derivative can be replaced by the pressure drop over the length of the
channel ∂xp = δp

` . The motion can be expanded into a Fourier series over the rectangular
y-z-domain and reads

u =
∞∑

n=1

∞∑

m=1

unm sin(n
π

W
y) sin(m

π

H
z) , (A.10)

where W is the width and H is the height of the channel. This ansatz function has to
fulfill the boundary conditions, which are assumed to be of no-slip type. This yields the
four identities

0 = u
∣∣
y=0

=
∞∑

n=1

∞∑

m=1

unm sin(m
π

H
z) (A.11)

0 = u
∣∣
y=W

=

∞∑

n=1

∞∑

m=1

unm sin(nπ) sin(m
π

H
z) (A.12)

0 = u
∣∣
z=0

=
∞∑

n=1

∞∑

m=1

unm sin(n
π

W
y) (A.13)

0 = u
∣∣
z=H

=

∞∑

n=1

∞∑

m=1

unm sin(n
π

W
y) sin(mπ) . (A.14)

The right hand side δp
` can also be expanded into a Fourier series in both coordinates.

Since it is independent of y and z, the identity function has to be expanded

1 =
∞∑

n=1

an cos(n
π

W
y) + bn sin(n

π

W
y) . (A.15)

The coefficients an and bn are calculated by the scalar product with of 1 with the basis
functions. Therefore, the following constraints must be satisfied

an =
2

W

ˆ W

0
cos(n

π

W
y)dy =

2

nπ

[
sin(n

π

W
y)
]W

0
(A.16)

bn =
2

W

ˆ W

0
sin(n

π

W
y)dy = − 2

nπ

[
cos(n

π

W
y)
]W

0
. (A.17)

The first condition (A.16) is always zero, which means that just sine functions are needed
to expand the identity function. The second coefficient bn is zero for even n and 4

πn for
odd n. The very same procedure can be done for the dependency of the z-coordinate so
that the right hand side can be written as

δp

`
= −δp

`

16

π2

∑

odd n,m

1

nm
sin(n

π

W
y) sin(n

π

H
z) . (A.18)
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Putting the Fourier series of the left hand side (A.10) in the equation requires to calculate
its Laplacian. The entire equation as Fourier series reads

−π2
∞∑

n=1

∞∑

m=1

(
n2

W
+
m2

H

)
unm sin(n

π

W
y) sin(m

π

H
z)

= −δp
`

16

π2

∑

odd n,m

1

nm
sin(n

π

W
y) sin(n

π

H
z) .

. (A.19)

Since the basis functions are identical, it is possible to compare the coefficients at both
sides to get to the expression

unm =
16

π4

δp

L

1

nm
(
n2

W 2 + m2

H2

) . (A.20)

Putting now all together yields the solution presented in equation (4.7)

u(y, z) =
16

π4

(pout − pin)

µL

∞∑

odd n,m

1(
n2

W 2 + m2

H2

)
nm

sin
(
n
π

W
y
)

sin
(
m
π

H
z
)
. (A.21)

Similar derivations can be found in White (1991), (Bruus, 2007, p. 48) and Chatwin and
Sullivan (1982).

A.4 Correct norm for Gaussian noise

Black and Anandan (1993) investigated robust norms to improve the performance of
optical flow algorithms. The standard L2-norm is widely used because it renders the
data term convex, which allows the application of many efficient optimization techniques.
The L2-norm penalizes extreme outliers disproportionately because they contribute
quadratically to the costs. This can corrupt the estimation of all statistical moments.
On the other hand, data points close to the average are difficult to improve because they
contribute hardly to the costs. The following argument demonstrates that the L2-norm
is the appropriate choice in case of Gaussian noise.

Theorem 1. Assuming that two images I1 and I2 can be related by

I2(x) = I1(x + u) + noise(x) (A.22)

where noise(x) ∝ N (0, σ), ∀i ∈ Ω is Gaussian noise with zero mean and variance σ. The
noise is assumed to be independently and identically distributed for each pixel. Then
the Euclidean norm is the correct norm to estimate the deviation and ‖I2 − I1‖Ω is the
corresponding error.
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Proof: The probability distribution function (pdf) for the noise is a Gaussian function
of the form

pdf(N,x) =
1√
2πσ

exp

(
−ε

2(x)

2σ2

)
, (A.23)

where ε2(x) = (I2(x)− I1(x))2 is the deviation of the model to the measurement. This
implies that the pdf for I2(x) given I1(x) dependents on u(x) and can be formulated as
conditional pdf

pdf(I2|I1;u,x) =
1√
2πσ

exp

(
−(I2(x)− I1(x + u))2

2σ2

)
, (A.24)

which is valid for each pixel. The likelihood function L describes the probability of the
image I2 given the image I1 and the velocity field u. Since each pixel has independent
noise, the joint pdf for the image factorizes into a product of the individual pixel pdfs.
The likelihood reads

L (u) =
∏

x∈Ω

pdf(I2|I1;u,x) (A.25)

in which the Gaussian pdf model can be substituted to get the relation

L (u) =
∏

x∈Ω

1√
2πσ

exp

(
−(I2(x)− I1(x + u))2

2σ2

)
. (A.26)

The multiplication of individual but identically distributed pdfs can be assimilated into
the exponential function and turns into a summation

(
1√
2πσ

)N
exp

(
−
∑

x∈Ω

(I2(x)− I1(x + u))2

2σ2

)
. (A.27)

The most probable image I2 given the first image I1 can be found by maximizing
the likelihood function L with respect to the motion estimation u. The problem of
maximizing a Gaussian function corresponds to minimizing its argument. Therefore, the
problem is to solve

arg max
u

L (u) ≡ arg min
u

∑

x∈Ω

(I2(x)− I1(x + u))2 ,

which corresponds to the Euclidean norm. This means that for regession problems with
Gaussian noise, the L2-norm is the norm that yields the most likely estimates.

99



APPENDIX

A.5 Equivalence of diffusion and kernel convolution

Solving for the evolution of diffusive effects requires computing partial differential
equations. Rather than solving PDEs, there is an alternative approach to compute
the diffusion via the fundamental solution of the diffusion equation (Tveito and Winther,
2005, p. 375ff; Nolen, 2009, p. 14ff).

Theorem 2. Diffusive processes can be described as a convolution of the initial state
of the system with the fundamental solution of the diffusion equation, which is a time-
dependent Gaussian function

Proof: Let ρ : Rn × T → R be a scalar density function whose temporal evolution can
be described by the parabolic diffusion equation

∂tρ = κ∆ρ (A.28)
ρ(x, 0) = ρ0(x) (A.29)

where ρ0 is the initial density at time t = 0. The second-order PDE can be transformed
into the Fourier space with respect to its spatial coordinates (x→ k), which yields

∂tρ̃ = −κkTkρ̃ . (A.30)

This equation can be easily solved by the separation of the variable and gives already
the solution in frequency domain

ρ̃ = ρ̃0 exp(−κkTkt) . (A.31)

This product can be seen as a multiplication of two frequency spectra, ρ̃0 and
exp(−κ|k|2t). According to the Wiener-Kinchin-Theorem (Wiener, 1930) this product
equals a convolution of the initial Intensity ρ0 with a fundamental diffusion solution
(Gauss-Weierstrass-Kernel). This solution is the Fourier transform of the above Gaussian
function and reads

Φ(x, t) =
1

(4πκt)n/2
exp

(
−|x|

2

4κt

)
. (A.32)

The time-evolved state of the density ρ can then be determined by the convolution
product

ρ(x, t) = Φ(x, t) ∗ ρ0(x) . (A.33)

A.6 Relation between 3D and 2D diffusion

Photographic images provide just projections of physical phenomena. It has to
be clarified that the diffusion coefficients, which are estimated from projections,
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are equivalent to the diffusion coefficients determined from the three-dimensional
phenomenon. Therefore, it has to be shown that the projection operator P̂ ↓ does not
alter the diffusion coefficient κ.

Without loss of generality, it can be assumed that the operator P̂ ↓ projects the z
coordinate to zero and has no effect on the other coordinates. Applying P̂ ↓ to the
general time-dependent solution from (A.32) allows to change the order of integration

P̂ ↓ρ(x, t) =

∞̂

−∞

Φ(x, t) ∗ ρ0(x)dz

=

∞̆

−∞

Φ(x− x′, t)ρ0(x′)dx′dz

=
1

√
4πκt

3

∞̆

−∞

exp

(
−|x− x′|2

4κt

)
ρ0(x′)dx′dz .

(A.34)

The two integrations over the z-direction can be easily done because of the modest nature
of Gaussian functions and with the assumption of a uniformly distributed density over
the height. It gives the factor

√
4πκt, which cancels with the existing factor in front

of the integral. However, the remaining equation is equivalent to the convolution of a
two-dimensional diffusion on a projected density

P̂ ↓ρ(x, t) =
1

√
4πκt

2

∞̈

−∞

exp

(
−|x− x′|2

4κt

)
(P̂ ↓ρ0)(x′)dx′ . (A.35)

This shows once more again, that diffusion is separable in all spatial dimensions and can
be treated independently. Of course, the identity in equation (A.35) is just valid if the
integration is done over the entire R. However, since borders effects have to be taken
into consideration, this equation is certainly valid for the bulk, where the distance to the
border is larger than

√
2nκt. For small times t� 1 this relation is nearly satisfied in

entire domain.

A.7 Dependency of the image structure on the control

The boundary controlled PDE motion estimation is highly dependent on the image data.
Figure A.1 shows the results that were obtained with three different images. All images
were processed with the model from equation (4.19) and the regularization parameter
α = 1. The images picture a dot-like pattern, a grid-like pattern and a random pattern
using a plate model (Fieguth, 2010, Example 8.3). The brightness structures of the
images are very different, especially the distributions of the image gradients that enter
the cost functional. The normal flow is extremely dominant for the line grid image,
because of the abundance of high magnitude gradients. In particular, these gradients
effect the shape of the boundary control, which is less regularized than the inner parts of
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the image. It makes sense to connect the regularization parameter α to the distribution
of the image gradients to get a comparable regularization of the solution throughout the
image and independence of the brightness structures.
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Figure A.1: This figure shows the influence of the image data onto the PDE constraint
motion estimation using a boundary control. The images have very different distributions
of image gradients ‖∇I‖, which is shown in the histograms. This effects the boundary
control differently, as it can be seen in the corresponding u-velocities.

A.8 Influence of ∂yI on the motion

As already pointed out, the spanwise image gradients contribute to the motion and have
a significant influence on the boundary controlled motion estimation from section 4.3.7.1.
The influence of the general brightness pattern was already demonstrated in the previous
chapter A.7. Since this effect could also be caused by the streamwise gradients ∂xI,
the following investigation was performed. The standard BCCE from equation (3.10)
was changed to prefer the streamwise gradients. This was done by scaling the spanwise
gradients with the factor c = {0.5, 1, 2.5, 5, 10, 20}. The new BCCE reads

0 = ∂tI + u∂xI + c · v∂yI . (A.36)

The factor has the effect that it balances the importance between ∂xI and ∂yI. If c > 1,
then the velocity component v is smaller than normal in order to satisfy the equation.
Assuming an infinitely large c∂yI forces v to be zero. Consequently, it is possible to
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control the importance of the gradients for the motion estimates. If the oscillations of
the boundary function originate from the spanwise gradients, then this effect should be
reduced by choosing c > 1. Indeed, figure A.2 shows the boundary functions at the inlet
for six different choices of the scaling parameter c and the dot and line image patterns.
It can be clearly seen, that oscillations wear off with increasing c, thus approaching
the shape of the parabolic profile. It also shows that the magnitude of the boundary
function is hardly effected. Just for large c the cost of the gradient exceed the costs of
the regularizing term and the total profile is estimated smaller. The same effect can be
seen for the line pattern image. This proves, that the oscillations at the boundary are
produced by the spanwise gradients.
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1

c = 0.5 c = 1 c = 2.5 c = 5 c = 10 c = 20u

u

Figure A.2: This figure demonstrate the effect of the spanwise image gradient onto the
estimated boundary profile for (top row) the dot pattern images and (bottom row) the
line pattern images for six choice of c.

A.9 General regularized optical flow

Restricting the cost functionals to Euclidean estimators is often not appropriate.
Examples are discontinuous velocity fields as they appear in images containing object
motion. The L2-norm penalizes optimal for Gaussian noise (see A.4) but this might not
be always the case. Therefore, more general norms ϕ and ψ can be used to relax this
limitation in the data term or the regularization term, respectively. The cost functional
can be written as
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J(u) =

ˆ
Ω
ϕ(uT∇I + ∂tI)dx +

ˆ
Ω
αψ(∇u)dx . (A.37)

Then, the minimum has to satisfy the first-order necessary condition for a variation of
u→ u + εδu, which leads to

J ′(u)(δu) =

ˆ
Ω
ϕ′(uT∇I + ∂tI)∇Iδudx +

ˆ
Ω
αψ′(∇u)∇δudx = 0 . (A.38)

Integration by parts of the last term yields

0 =

ˆ
Ω

{
ϕ′(uT∇I + ∂tI)∇I −∇(αψ′(∇u))

}
δudx . (A.39)

Since this has to be valid for any appropriate function δu, the integrand has to be zero
everywhere in Ω. This yields the differential equation

0 = ϕ′(uT∇I + ∂tI)∇I −∇(αψ′(∇u)) . (A.40)

Up to now, no assumption were made on α. Usually it is a scalar variable but it can be
a function that weights locally the contribution of the velocity gradients. By expanding
the parenthesis one finds

0 = ϕ′(uT∇I + ∂tI)∇I − ψ′(∇u)∇α− α∇ψ′(∇u)

= ϕ′(uT∇I + ∂tI)∇I − ψ′(∇u)∇α− αψ′′(∇u)∆u
(A.41)

which is a partial differential equation for u

0 = ∆u + f(∇u) + g(u,∇u) with

{
f : ∇u 7→ − ψ′(∇u)

αψ′′(∇u)

g : (u,∇u) 7→ −ϕ′(uT∇I+∂tI)
αψ′′(∇u)

. (A.42)

Many norms have been tested for modeling but also computational reasons. The
interested reader is referred to the publications Black and Anandan (1996), Bruhn et al.
(2005), Weickert and Schnörr (2001b), Weickert and Schnörr (2001a) and Werlberger
et al. (2009).

A.10 Well-posedness of Horn & Schunck

Theorem 3. The problem

min
u
‖∂tI + uT∇I‖2Ω +

α2

2
‖∇uT ‖2Ω (A.43)
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is has a unique solution for any α2 > 0.

Proof: The introduction of new variables allows to simplify equation (3.23): the
matrix A =

[
∇I∇IT + α21

]−1 and the vector b = (α2ū− ∂tI∇I). Then the linear
system can be written as u = Ab. The invertibility of A can be tested by calculating its
eigenvalues with

det(A− λ1) = 0 . (A.44)

This equation corresponds to a root-finding problem of the second-order polynomial

λ2 + bλ+ c = 0 with
{
b = (−Ix2 − Iy2 − 2α2)
c = α2(Ix

2 + Iy
2 + α2)

. (A.45)

The roots of this quadratic equation can be calculated in a closed form and read

λ1/2 =
1

2

(
Ix

2 + Iy
2 + 2α2 ±

√
(Ix

2 + Iy
2)2

)

=

{
Ix

2 + Iy
2 + α2

α2

(A.46)

This shows directly, that A is invertible because for α2 > 0 both eigenvalues are strictly
positive. In particular this means that this linear system has a unique solution.

The corresponding eigenvectors e1/2 can be computed by solving (A− λ1/21)e1/2 = 0.
Since A is a symmetric positive definite matrix, the eigenvectors are orthogonal and can
be found by calculating explicitly the inverse of A

A =
[
∇I∇IT + α21

]−1
=

[
Ix

2 + α2 IxIy
IxIy Iy

2 + α2

]−1

=
1

α2(Ix
2 + Iy

2 + α2)

[
Iy

2 + α2 −IxIy
−IxIy Ix

2 + α2

]
.

(A.47)

The eigenvectors to this matrix are

e1 =
Ix
‖∇I‖2

(
Ix
Iy

)
and e2 =

Iy
‖∇I‖2

(
Iy
−Ix

)
, (A.48)

which are indeed orthogonal.
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A.11 L2-norm of the boundary control

In the main body of this thesis, it was argued, that the L2-norm is not appropriate to
estimate the error of PDE constrained motion analysis involving boundary controls. The
reason is that it cannot deal with non-Gaussian outliers, especially not with systematic
outliers. Figure A.3 shows a comparison of the estimated L1- and L2-errors. Besides
the larger magnitude of the L2-error, there is also a severely altered dependency on the
noise level. Almost all systematic relations that are visualized with L1-errors, are lost
for L2-errors. Just for umax > 3.5 the boundary effects, which are caused by the normal
flow, loose their dominance.
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Figure A.3: This Figure shows the L1-norm (left) and the L2-norm (right) for the
PDE constraint minimization problem including boundary control. The corresponding
problem is formulated in equation (4.19).

A.12 Intensity increase of MTV images

Figure A.4 is shown to justify the introduction of a scaling parameter into the model
of equation (4.32). The left graph shows the scaling parameter for each time step, as it
was estimated from the dataset and the right graph shows the corresponding integrated
brightness

´
Ω Iidx. The pattern is written at t = 0 sec. The resemblance is astonishing

because even extreme values of s reappear in the integrated intensity graph. It has to be
mentioned, that the intensity graph appears to be shifted one frame to the left because it
is calculated on a single image and not on a pair of images. The right graph illustrates the
unsaturated fluorescence light that has just half of the intensity of the following image.
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Figure A.4: These graphs show a direct comparison of the scaling parameter s from
equation (4.32) (left) and the integrated image intensity over time (right).

A.13 Categorization of image motion algorithms
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