
INAUGURAL - DISSERTATION
zur

Erlangung der Doktorwürde
der

Naturwissenschaftlich-Mathematischen Gesamtfakultät
der

Rupert - Karls - Universität
Heidelberg

vorgelegt von
Raul Schmidlin Fajardo Silva

aus Joinville, Brasilien

Tag der mündlichen Prüfung:

Contract Testing for Reliable Embedded

Systems

Betreuer: Prof. Dr. Reinhard Männer
Prof. Dr. Felix Freiling

Ich versichere, dass ich diese Doktor-Arbeit selbstständig verfasst und nur die
angegebenen Quellen und Hilfsmittel verwendet habe.

Abgabedatum:

Acknowledgments

The experience of working on this project was rewarding and enriching. Surpris-
ingly for me, I have learned about relations and communication as much as I
have learned about my subject. Nowadays, I feel compelled to be objective, an-
alyze requirements, cost and risk, communicate effectively and abstract. Thanks
to many discussions with people from different specific areas of the ECOMODIS
project, I learned a lot.

For the possibility of taking part of this work, I want to thank Dr. Phuc
Nguyen and Prof. Zwick who recommended me for this project. For believing in
my potential and supporting me, I am very thankful to Prof. Jürgen Hesser and
Prof. Reinhard Männer.

In the first part of my work, I worked in the group of Prof. Jürgen Hesser at the
Institute for Computational Medicine of the University of Mannheim. My first
colleagues, Dmitry Maksimov, Dr. Amel Guetat and Dzmitry Stsepankou, helped
me better understand research and gave me support when I was less motivated.
In the ECOMODIS project, especially talks with Dr. Giovanni Falcone, Monika
Jusasz and Dr. Meike Jipp have been a relief in our stressful schedule of reports
and workshops.

For my first research successes, I want to thank Prof. Reinhard Männer for
his very helpful feedbacks on papers and Prof. Jürgen Hesser for his belief in my
results and determination to motivate me. Also, positive feedback and discussions
with the OpenCores community have motivated me. Besides my personal project
on the platform, I had the privilege of discussing my research work within the
community. For this possibility and the interest of the community, I am very
thankful.

After I had my first steps in research, I was ready to start a new project that
would complement the first one. By now, the Institute of Computer Engineer-
ing of the University of Mannheim had been incorporated into the University of
Heidelberg. Under the supervision of Prof. Reinhard Männer in the Department
for Application Specific Computing, I developed the concept for driver develop-
ment enclosing architecture, systematization and contracts that allowed me to
submit this PhD thesis to the Faculties of Natural Science and Mathematics.
Throughout, Dr. Guillermo Marcus has constantly supported this work, and me
as a friend. Thanks to Prof. Reinhard Männer, we could refine our ideas to the
concept of a complete project, and the feedback of Prof. Felix Freiling steered
the project in the right direction.

vii

Acknowledgments

In the last stages of this project, I was given the chance by Dr. Simon Moore to
give a talk at the Computer Architecture Group of the University of Cambridge,
Computer Laboratory, thanks to Dr. Jeremy Bennett. This talk provided me
with great feedback for the continuation of the project. Besides, it has been an
incredible opportunity to meet Dr. Jeremy Bennett and Julius Baxter personally
and have great discussions. I want to thank them both for their ideas and interest.

I also want to thank Andreas Heck for his work on an evaluation platform
for hardware contracts and my friends and colleagues, Benny Bürger, Pavel
Krasnopevtsev, Dzmitry Hlindzich and Dmitry Maksimov, for the uncountable
lunches, discussions, excursions and fun.

Finally, I want to give my special thanks to my family for this possibility, their
unconditional support, despite the distance, and understanding for my problems.
And I want to thank all my friends who have enriched the time of this challenge
with love and joy.

viii

Zusammenfassung

Eingebettete Systeme umfassen unterschiedliche Technologien, was ihren Ent-
wurf erschwert. Durch Erstellen eines virtuellen Prototyps vom Zielsystem mit-
tels Electronic System Level (ESL), wird die frühzeitige Analyse von einem Sys-
tem aus Software und Elektronik ermöglicht. Jedoch wird das konkrete Zusam-
menspiel zwischen Hardwaremodulen beziehungsweise zwischen Hardware und
Software erst in den späteren Entwicklungsphasen und in der Prototyperstellung
deutlich. Selbst in diesen Entwicklungsphasen liegt das Hauptaugenmerk auf der
Systemfunktionalität. Dabei rückt die Sicherstellung des richtigen Zusammen-
spiels in den Hintergrund, obwohl das für die Systemfunktionalität erforderlich
ist.

Während einzelne Komponenten ausführlich getestet werden, wodurch eine ge-
wisse Zuverlässigkeit eingehalten wird, werden ihre Schnittstellen nicht ausführ-
lich genug spezifiziert. Folglich wird weder die korrekte Interaktion zwischen
Komponenten noch zwischen einer Komponente und ihrer Umgebung bzw. ih-
rem Benutzer gewährleistet. Im Normalfall werden sie nur funktional getestet.
Das lässt Defekte länger unentdeckt, was höhere Kosten verursacht, denn die Feh-
lerbeseitigung ist umso teuerer, je später Fehler entdeckt werden. Deshalb zielt
diese Arbeit darauf ab, eine richtige Komponenteninteraktion durch die Spezifi-
kation von Schnittstellen, die Testgenerierung und die Testausführung in Echtzeit
zu gewährleisten. Die Spezifikation basiert auf dem Design-by-Contract-Ansatz
von Software, der die Semantik der Komponenteninteraktion spezifiziert.

Im ersten Teil dieser Arbeit wird eine Spezifikation für das Zusammenspiel
zwischen Hardwaremodulen präsentiert. Mit der automatischen Testausführung
in Echtzeit können die Vorbedingungen für den richtigen Komponentenbetrieb
überprüft werden. Im komponentenbasierten Design werden die Komponenten
als fehlerfrei betrachtet. Dennoch weist die Ausführung der Funktionalität Ver-
haltenseigenschaften auf, durch die Nachbedingungen definiert werden, z.B. zeit-
versetzte Ergebnislieferung. In einer korrekten Komponentenzusammenstellung
ergibt sich ein betriebsfähiges System aus Komponenten, deren Verhalten die
Vorbedingungen anderer Komponente einhalten.

Die Spezifikation von Vorbedingungen folgt der Definition von Umgebungs-
eigenschaften, zulässigen Eingangsreihenfolgen für Schnittstellenpins sowie zu-
lässigen Signalparametern, wie Spannungspegeln, Flanken, Verzögerungen und
Glitches. Diese Parameter werden während des Betriebs von einer Testschaltung
ermittelt. Befinden sie sich außerhalb der definierten Grenzen, werden sie als

ix

Zusammenfassung

fehlerhaft markiert, wodurch ein möglicher Ausfall erkannt wird. Anhand des
Beispieles eines Inter-Integrated Circuit (I2C) Kommunikationssystems wird sein
Contract definiert und die Parallele zwischen den Verstößen gegen den Contract,
der Defektkategorisierung und dem Ausfall aufgrund von Fehlereinspeisungen ge-
zeigt.

Um die Arbeit an Hardware-Contracts zu vervollständigen, wird die Fehler-
analyse mit dem ESL-Design ermöglicht. Die Datenübertragungen zwischen den
ESL High-Level-Modellen werden mit den definierten Contract-Parametern er-
weitert. Somit können anhand einer spezifischen Schnittstelle digitale Fehler für
Übertragungen mit den vom Contract abweichenden Signalparametern generiert
werden. Diese Fehler können dann bei der Simulation des ESL-Designs zurück-
verfolgt werden. Auf diese Weise werden fehlerkorrigierende Maßnahmen für eine
synchrone Kommunikation vorgeschlagen und ausgewertet.

Im zweiten Teil der Arbeit wird das Zusammenspiel zwischen Hardware und
Software durch spezielle Methoden zur Treiberentwicklung angegangen. Nicht
nur wird die Schnittstelle dazwischen spezifiziert, sondern es werden auch die
Steuerelemente der Hardware in der Software abgebildet, so dass eine Software-
schnittstelle zum Gerät partiell generiert werden kann. Das ist notwendig, denn
die Treiber handhaben Geräte durch Steuerelemente, wie Register, Datenströme
und Interrupts, die in der Software nicht vorhanden sind.

Der systematische Aufbau von Treibern vereinfacht die Entwicklung einer Ge-
räteschnittstelle namens Device Mechanism. Sie ist die untere Schicht einer
Zweischicht-Architektur für die Treiberentwicklung. Der Device Mechanism bie-
tet eine reine Softwareschnittstelle zum Gerät an. Im Gegensatz zu einem kom-
pletten Treiber nimmt er nur die Geräteansteuerung vor, ohne selbst die Daten
zu verarbeiten. Indem der Device Mechanism die Funktionalität mit der Gerä-
teimplementierung teilt, ist er vollständig spezifiziert. Darauf baut eine weitere
Schicht namens Driver Policy auf. Diese vervollständigt die Datenverarbeitung
indem sie den Betriebssystemanforderungen genügt.

Auf der Basis des Device Mechanisms werden Contracts für die Spezifikation
der Schnittstellen eingesetzt. Dafür wird das dynamische Verhalten des Gerätes
durch eine erweiterte Zustandsmaschine modelliert. Darauf basierend können die
Funktionen des Device Mechanisms um Vorbedingungen an den Zustand oder
an die Variablen der Zustandsmaschine erweitert werden, die während der Lauf-
zeit überprüft werden. Nach Ausführung einer Funktion wird für die Einhaltung
ihrer Nachbedingungen gesorgt. So kann die Einhaltung der Rahmenbedingun-
gen bei der Benutzung von verschiedenen Driver Policies, für Betriebssysteme
oder Firmwares, gewährleistet werden, die sich einen universellen Device Mecha-
nism teilen können. Nach diesem Prinzip wird ein Linux-Treiber für eine Philips
Webcam entwickelt. Das Konzept kann Treiberfehler vermeiden, die auf falsche
Interpretationen von Gerätedaten oder nicht vorgesehene Bedienungsabläufe zu-
rückzuführen sind.

x

Abstract

Embedded systems comprise diverse technologies complicating their design. By
creating virtual prototypes of the target system, Electronic System Level Design,
the early analysis of a system composed by electronics and software is possible.
However, the concrete interaction between hardware modules and between hard-
ware and software is left for late development stages and real prototype making.
Generally, interaction between components is assumed to be correct. However, it
has to be assumed on development implicitly because interaction between com-
ponents is not considered in the functionality design.

While single components are mostly thoroughly tested and guarantee certain
reliability levels, their interaction is based on often underspecified interfaces. Al-
though component usage is mostly specified, operational constraints are often
left out. Finally, not only the interaction between components but also with the
environment and the user are not ensured. Generally, only functional integration
tests are executed and corner-cases are left out, leaving uncovered faults that
only manifest as failures later when their cost is higher. Therefore, this work
aims at component interaction through specification of interfaces, test generation
and real-time test execution. The specification is based on the design-by-contract
approach of software that specifies semantics of component interaction in addition
to the syntactical definition through functions.

In the first part of this work, a specification for the interaction between hard-
ware modules is given. With the automatic real-time test execution, fulfillment
of specified preconditions for correct component operation can be checked. In
component-based design, the component is trusted and thus, its functionality
is assumed to be correct when certain postconditions are specified. In a cor-
rect component assembly, component postconditions fulfill preconditions of other
components resulting in an operational system.

The specification of preconditions follows the definition of environmental prop-
erties, acceptable input sequences for interfacing pins, as well as acceptable signal
parameters, such as voltage levels, slope times, delays and glitches. Postcondi-
tions are defined by the description of a functionality accompanying constraints,
such as timing. These parameters are automatically determined on operation by
a testing circuit. Parameters that violate the specification are signaled by the
testing circuit and failure is detected. The chosen parameters can give hint of
the reason for the failure being an evidence of a circuit fault. In the example
of an Inter-Integrated Circuit (I2C) communication system, we define contracts

xi

Abstract

and show comparisons between contract violation, fault categorization and failure
occurrence under signal fault injection.

To complete this work, support for fault analysis on the electronic system
level design is given. For this, the data transfers between the high-level models
used in the design are augmented with the defined contract parameters. With a
specific interface, digital faults are generated for transactions with violating signal
parameters that can be tracked by the system. This way, recovery mechanisms
for synchronous communication are proposed and tested.

In the second part, the interaction between hardware and software is tackled
providing special methods for developing device drivers. For this, we do not only
specify the interface between hardware and software but also map the hardware
control elements to software, partially generating the software interface for a
device. This is necessary because drivers handle devices with internal control
elements like registers, data streams and interrupts that cannot be represented
on software.

This systematic composition of drivers facilitates the development of a device
interface called the device mechanism. It is the lowest layer of a two-layer ar-
chitecture for driver development. The device mechanism carries out the access
to the device exporting a pure software interface. This interface is based on the
device implementation being, thus, fully specified. Further data processing re-
quired for compliance with the operating system or application is carried out in
the driver policy, the layer on top of it.

With the definition of a software layer for device control, contracts specifying
constraints of this interface are proposed. These contracts are based on imple-
mentation constraints of the device and on its dynamic behavior. Therefore, an
extended finite state machine models the dynamic behavior of the device. Based
on it, functions of the device mechanism can be augmented with preconditions
on the state or on state machine variables. These conditions are then checked
on runtime. After execution of a function, its postconditions are ensured, such
as timing. This guarantees that different driver policies, operating systems or
firmwares, use this same device mechanism fulfilling its constraints. On the ex-
ample of a Philips webcam, we develop the complete driver for Linux based on
our architecture, creating contracts for its device mechanism. Following the sys-
tematic composition and the contract approach, driver bugs are avoided that
otherwise violate allowed values for device data and execution orders of device
protocols.

xii

Related Publications

[1] Raul Schmidlin Fajardo Silva and Guillermo Marcus. Device Mechanism:
A Structured Device Driver Development Approach. In Proceedings of the
14th IEEE International High Assurance Systems Engineering Symposium
(HASE), pages 66–73. IEEE Computer Society, 2012.

[2] Raul Schmidlin Fajardo Silva, Jürgen Hesser, and Reinhard Männer. Con-
tract Specification for Hardware Interoperability Testing and Fault Analy-
sis. Reliability, IEEE Transactions on, 60(1):351–362, 2011.

[3] Raul Schmidlin Fajardo Silva, Jürgen Hesser, and Reinhard Männer. Fault
Propagation Analysis on the Transaction-Level Model of an Acquisition
System with Bus Fallback Modes. In Proceedings of the Workshop on the
Design of Dependable Critical Systems (DDCS), page 36. University Hei-
delberg, 2009.

xiii

Contents

List of Figures xix

List of Tables xxi

1 Introduction 1
1.1 Context & Motivation . 1
1.2 Hardware Contracts . 2
1.3 Device Contracts for Drivers . 3
1.4 Contributions . 4
1.5 Thesis Outline . 5

2 Reliability & Design of Embedded Systems 7
2.1 Reliability and its Role . 7
2.2 Design for Reliability . 9
2.3 Design Methods . 12

2.3.1 Electronic System Level Design 12
2.3.2 Component-based Design 15

2.4 Driver Development Methods . 21
2.4.1 Drivers’ Reliability . 25

2.5 Summary . 29

3 Contract Specification for Hardware Interoperability Testing and
Fault Analysis 33
3.1 Introduction . 33
3.2 Related Work . 34
3.3 Contract Testing . 35
3.4 Hardware Contract . 37

3.4.1 Hardware Contract Constraints 37
3.4.2 Hardware Contract Example 38

3.5 Contract Testing in Hardware . 40
3.5.1 Fault Categorization . 41
3.5.2 Fault Diagnosis . 42

3.6 Case Study . 44
3.6.1 Inter-Integrated Circuit (I2C) Contract Specification . . . 45
3.6.2 Built-in Contract Testing 48

xv

Contents

3.6.3 Test Cases . 54
3.6.4 Generic Results . 56

3.7 Discussion . 57
3.8 Conclusion, and Future Work . 58

4 Model of Hardware Contracts and Violations on Transaction Level:
A Fault Propagation Analysis 61
4.1 Introduction . 61
4.2 Related Work . 62
4.3 Bus Model . 63

4.3.1 Modeling Signal Faults . 64
4.3.2 Fault Analysis and Digital Fault Generation 66

4.4 Acquisition Architecture . 66
4.4.1 Recovery Mechanism . 67
4.4.2 Results . 68

4.5 Conclusion . 69

5 Device Mechanism: Structured Device Driver Development 73
5.1 Introduction . 73
5.2 Related Work . 74
5.3 Device Mechanism . 76

5.3.1 Interface Design . 78
5.3.2 Formal Definition of Device Mechanism 79
5.3.3 Implementation Rules . 80
5.3.4 Specification of Specialized Functions 82

5.4 Systematic Composition . 82
5.4.1 Design . 83
5.4.2 Implementation . 84
5.4.3 Implementation of Specialized Functions 90

5.5 Evaluation . 91
5.5.1 Limitations of Device Mechanism 91
5.5.2 System and Communication Compatibility 92

5.6 Philips Webcam - Case Study . 94
5.6.1 Results . 97

5.7 Discussion . 100
5.8 Conclusion & Future Work . 101

6 Device Contracts for Drivers 103
6.1 Introduction . 103
6.2 Related Work . 104
6.3 Framework . 105
6.4 Interface Description Language 106
6.5 Device Contracts . 107

xvi

Contents

6.5.1 Device State View . 108
6.5.2 State Machine Description 108

6.6 Translation of Constraint Description to Checks 109
6.7 Case Study . 114

6.7.1 Results . 116
6.8 Evaluation . 117

6.8.1 Portability . 117
6.8.2 Error Analysis . 118

6.9 Discussion . 119
6.10 Conclusion & Future Work . 119

7 Conclusions 123
7.1 Contributions . 123

7.1.1 Hardware Contracts . 123
7.1.2 Device Contracts for Drivers 124

7.2 Future Work . 126

Bibliography 127

xvii

List of Figures

1.1 Block diagram of an embedded system architecture with a two
layered view of its software and electronic parts. Blocks of the same
layer are interdependent and associated. Blocks of the software
layer are physically associated with the CPU. Drivers are logically
associated with their hardware counterparts. 5

2.1 Percentage of fault injection and detection over product develop-
ment stages, and the incurred cost for fault correction depending
on the development stage. Analysis made by Möller [M9̈6] based
on the fault history of several projects. 8

2.2 Electronic System Level design process leading to an implementa-
tion and its architecture. Picture reproduced from [BMP07]. . . . 15

2.3 Component meta-model that includes component details missing
in traditional software development. Picture reproduced from
[Gro04]. 17

2.4 Criteria that affect system reliability and the corresponding testing
coverage to ensure correct operation. Figured reproduced from
[Gro04]. 20

2.5 Modules’ view of MinSoC, OpenRISC based System-on-Chip: ar-
rows leaving a module signalize a module’s Wishbone master in-
terface, arrows pointing to a module signalize a Wishbone slave
interface. Double-sided arrows are different connections. 23

2.6 Example of driver decomposition for file systems and disk drivers
on Linux. 25

3.1 Propagation delay of an inverter. 38
3.2 Acceptance time window tw and propagation delay tp of a D flip-

flop in contrast to setup tsu and hold times th. D must be held at
a constant logic level throughout the acceptance time window. . . 39

3.3 I2C Transmission — SCL: Clock signal — SDA: Data signal. . . . 45
3.4 Block diagram of the I2C communication system with contract

testing and fault categorization. 49
3.5 Signal parameters of a bit window categorizable by our fault analysis. 51
3.6 Linear approximation of the bit flip based on threshold measured

times. 51

xix

List of Figures

3.7 Raw data acquired by the I2C communication controller under the
faults that have occurred in test case 2. 55

4.1 UML sequence diagram for write and read calls to the modeled
bus. * represent that the variable has been set, ** modified. . . . 64

4.2 Time normalized signal characteristics. Times are multiplied by
the operating frequency resulting in phase values. 66

4.3 Block diagram of the modeled acquisition system. 67
4.4 UML activity diagram of the algorithm for fallback mode selection. 68
4.5 Graphics of the data received by the master through a bus with

fallback modes (left) and without (right). Sensors send digital
words of the amplitude of a sinusoidal signal together with signal
parameters for the transmission. On transmission, faulty signal pa-
rameters generate digital faults according to Table 4.1 that distort
the received data. 70

5.1 Hardware and software architectural layers involved in integrat-
ing device functionality in an operating system. Overview of the
driver’s interfaces in an operating system. 77

5.2 Systematic composition workflow. Register map and communica-
tion descriptions are translated to software elements that can be
managed through the existing device and USB interfaces facilitat-
ing the implementation of the device mechanism. 84

6.1 UML state machine is describing the dynamic behavior of the de-
vice mechanism of the Philips webcam. 115

xx

List of Tables

3.1 Contract specification for a NAND gate. 40
3.2 Contract specification for a D flip-flop. 41
3.3 Fault diagnosis: Fault causes, its effects, and detection by contract

testing. 43
3.4 Contract for a I2C master node. 47
3.5 I2C communication standard and contract violating values for sig-

nal parameters. 53
3.6 Detection of contract violation and signal fault in contrast to fail-

ure occurrence on I2C communication. 54

4.1 Signal conditions for signal failure detection (limit for bus opera-
tion) and digital fault generation according to detected signal fail-
ure. The phases � of the Table are defined in Fig. 4.2. Moreover,
we define x[n] as a bit series of the output data of the transmitter,
while y[n] is the bit series of the data arriving at the receiver. The
index represents the bit position of the data. 65

4.2 Parameters of the normal distribution used to model the signal
characteristics of the sensor transfers. The unlisted glitch count
parameter follows a geometric distribution with initialization value
of 0.8. That is an 80% chance of glitch free bit. 69

4.3 Test results for fallback without periodic mode reset (Reset OFF)
and with it (Reset ON). 70

5.1 Access behaviors: queries based on register and bit field properties
that affect their access. The access procedure follows the listed
queries in the top down direction. Depending on the queries’ out-
comes that are defined in Table 5.2, access procedure might con-
tinue, fail, data be managed or a cache value be returned. 89

5.2 Queries’ Outcomes dictating the processing of the procedures of
Table 5.1. 89

5.3 Code sizes of the elements of the device mechanism framework. . . 93
5.4 Bug analysis of Philips webcam driver. Bug categorization with

corresponding percentage of total bug count. 98
5.5 Value defect violations of device protocol and avoidance with an

implementation based on the device mechanism. 98

xxi

List of Tables

6.1 Argument type translation. 107
6.2 Properties used as contract’s conditions. 108
6.3 Macro definitions for the implementation of contracts in Linux, in

kernel and user space. 109
6.4 Philips webcam contract’s conditions. 116
6.5 Categorization of violations of device protocol for different drivers

and respective percentage of total violations. 118

xxii

ACRONYMS

ADC Analog-to-Digital Converter

API Application Programming Interface

BGI Byte-Granularity Isolation

CAD Computer Aided Design

CFSM Co-design Finite State Machine

COM Component Object Model

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

D Data

DAC Digital-to-Analog Converter

DC Direct Current

DDT Device Driver Testing

DMA Direct Memory Access

DOM Document Object Model

DRC Design Rule Checking

EDA Electronic Design Automation

EEPROM Electrically Erasable Programmable Read-Only Memory

EFSM Extended Finite State Machine

ESL Electronic System Level

FPGA Field-Programmable Gate Array

GPU Graphics Processing Unit

xxiii

ACRONYMS

GUI Graphical User Interface

HDL Hardware Description Language

HW Hardware

I2C Inter-Integrated Circuit

IC Integrated Circuit

IDL Interface Description Language

I/O Input/Output

IOMMU Input/Output Memory Management Unit

IEEE Institute of Electrical and Electronics Engineers

IP Intellectual Property

ISA Industry Standard Architecture

LAN Local Area Network

LED Light-Emitting Diode

LOC Lines of Code

LTL Linear Temporal Logic

LUT Look-up Table

MMU Memory Management Unit

NAND Negated AND

NMM Network-Integrated Multimedia Middleware

NULL Null Pointer

OpenCL Open Computing Language

OS Operating System

PCB Printed Circuit Board

PCI Peripheral Component Interconnect

POSIX Portable Operating System Interface

PWC Linux driver for Philips Webcams

xxiv

ACRONYMS

R Reset

RGB Red, Green, and Blue color model

RTL Register Transfer Level

S Set

SAX Simple API for XML

SCL Clock Line

SDA Data Line

SoC System on Chip

SPI Serial Peripheral Interface Bus

SR Set-Reset

SW Software

TCP Transmission Control Protocol

TLM Transaction Level Model

TTL Transistor-Transitor Logic

UML Unified Modeling Language

USB Universal Serial Bus

VHDL VHSIC hardware description language

WHQL Windows Hardware Quality Labs

XML Extensible Markup Language

xxv

1 Introduction

In this thesis, the reliability of development methods for embedded systems is
analyzed and methods are proposed to improve it. Therefore, the component
interaction is targeted as fault source, and requirements and tasks of components
are accurately specified resulting in automatic compliance checks. In this chap-
ter, we define the context of embedded systems’ development and reliability, our
motivations and summarize the scientific contributions.

1.1 Context & Motivation
Current embedded systems comprise mechanical, electronic and software tech-
nologies. While this characteristic enables these systems to execute diverse tasks,
it also makes them complex [BG06]. Each technology has specialized tools to
analyze functionality and quality factors, mostly through simulation. But these
tools are not compatible. Hence, the early analysis of the complete system is
not possible before prototype making. At this stage, faults are already more
expensive requiring redesign.

The Electronic System Level (ESL) design tackles the combined electronics and
software design [BMP07]. The design result is a virtual system prototype that
models the functional behavior of the target system. It is an executable abstract
system description. With the inclusion of the respective visibility details, such as
registers and interrupts, it also allows the execution of software on it. Although
the system design enables an early software implementation, the hardware imple-
mentation still has to occur mostly manually through component selection and
Hardware Description Language (HDL) development. Furthermore, interfaces
between hardware and software are not designed and the design of hardware in-
terfaces leaves their physical behavior and constraints undefined. The concrete
behavior of Central Processing Units (CPUs), peripheral buses, device drivers
and operating systems is not available in the unified design. Hence, the design
and implementation of these interfaces are critical especially because they are
still only evaluated in late design stages.

Also, in every design strategy, interaction of components is assumed to be
correct, at most functional tests are performed. In hardware, most part of systems
are assembled from established components that undergo many tests ensuring
certain reliability levels. However, reliable components do not guarantee a reliable
system. The diverse components of a system have to interact correctly. Not

1

1 Introduction

only the sum of every component functionality has to achieve system’s goal,
but also operational constraints of every component have to be met. Therefore,
integration testing is crucial in systems’ design. Device drivers, responsible for the
interaction between software and hardware, account for up to 70% of operating
system failures [GGP06], [Mur04] and the major cause for these failures is an
incorrect interaction between driver and device [RCKH09].

In software engineering, component-based design tries to foster component
reuse for cost reduction. The literature explains that software is normally not
designed with reuse in mind and its reuse holds complications [Gro04]. In partic-
ular, missing specification of operational conditions and interface usage, such as
function call order, leads to incorrect component interaction and missing system’s
goal.

Also when usage constraints of components are documented, their assurance re-
mains an implicit part of the design. Operational corner-cases and constraint de-
pendencies are unclear keeping design flaws uncovered throughout design stages.
A consistent specification of component interaction and constraints is missing as
well as tools that enable their verification, both in real-time and in simulation.

The design-by-contract approach of software proposes a solution to this prob-
lem [Mey92]. Its purpose is to specify component interaction explicitly in the form
of a contract. Design-by-contract envisions a separation of constraints from func-
tionality programming. It is a systematization of defensive programming, where
constraints are checked before function execution, preconditions; and constraints
related to the very function are checked after function execution, postconditions.

This thesis makes use of the contract approach to propose a paradigm switch
for constraint compliance. Instead of enclosing defensive programming code or
tolerance mechanisms deliberately, we support constraint declaration and auto-
matic compliance check through test generation and online test execution.

The strategy is applied to two different cases, the interaction between hardware
modules and the interaction between hardware and software. In the former, the
interaction between hardware modules is defined through parameters that are
tested by a test circuit. For the interaction between hardware and software, an
appropriate description of the hardware internals is proposed enabling a seamless
access to hardware from the software. Based on it, constraints in the hardware
software interaction are defined whose compliance is tested in real-time.

1.2 Hardware Contracts
Hardware has commonly embedded self tests to ensure component functional-
ity. For example, production components include test circuits that can be used
to debug them [MRC04], [ASE04], [SLA97]. Although faulty interoperability or
external or environmental reasons are responsible for failure, component integra-
tion is not ensured under system operation. Although bus monitoring techniques

2

1.3 Device Contracts for Drivers

enable test of components’ interaction [PHZ+05], [ARSH05], specification of in-
teraction and corresponding specific testing is not given.

Properties of electronics used to define contracts as component interaction and
constraints have been first envisioned by Bunse et al. [BG06]. Kamkin has used
extended finite state machines to define the timed behavior of pipelined designs
[Kam07] automatically generating functional tests for a model of a microprocessor
[Kam08]. However, Kamkin [Kam07] does not address the problem of component
interplay and Bunse et al. [BG06] only cover specification.

We specify contracts for hardware interaction also developing the corresponding
test circuitry. In component-based design, the component is trusted given that
its preconditions are fulfilled, such as compliance with interaction protocol and
environmental conditions. Therefore, components are considered black-boxes. In
contrast to software, hardware has to care about communication protocols, its
signals and especially timing.

Through the usage of bus monitors and categorization circuits for signal prop-
erties, levels for signal properties can be defined that allow a reliable commu-
nication. Together with the analysis of environmental constraints, component
preconditions can be ensured. On the violation of preconditions, component fail-
ure can be detected and located.

Compatibility with electronic system level design methodology is provided by
extension of the transaction level model to incorporate our defined signal prop-
erties for reliable interaction. This way, the propagation of signal faults can be
analyzed. In a case study for a synchronous communication protocol, mechanisms
to tolerate and recover from these faults are proposed.

1.3 Device Contracts for Drivers
While the contract testing approach allows for a systematic way of testing to
ensure operational reliability of the system, in the case of the hardware-software
interface, the black-box view of contracts is pointless. The reason lies in the
reliance of the software implementation on the hardware’s internal structure and
behavior, and thus, not only on some specified interface. Therefore, we reinvent
driver development towards the definition of a clean device interface which allows
for contract testing in return.

Driver synthesis approaches try to overcome the problematic by creating a de-
scription for device control structures enabling their access. These are described
in a custom language enabling the definition of registers, bit fields and properties
such as permission, pre-defined values, and register cross-dependency. The de-
scriptions are synthesized to C macros after a static consistency check [MRC+00],
[SYKI05].

We build on this previous work to access device registers, defining an abstrac-
tion for the communication system and stipulating rules for the definition of a

3

1 Introduction

device interface that completely wraps the device internals. This interface exposes
the hardware module with a pure software interface. For this software interface,
a specific way to handle the special access of peripheral devices, interrupts and
Direct Memory Accesses (DMAs), is defined with which the software layer above
it has to comply.

Based on the device interface, we can specify contracts as operational con-
straints related to the interaction with the device. These constraints are then
synthesized to runtime tests that run together with the device interface prevent-
ing faulty usage of the device. Based on it, drivers for different operating systems
can be created that cannot misuse the device. Alternatively, the device interface
can also be used for firmware.

Our constraints are based on a model of the device through an extended finite
state machine. During the model execution, state and variables can be used to
evaluate if the device is ready for a specific operation.

1.4 Contributions
This thesis defines a specification for module’s interaction in embedded systems
comprising both interaction between hardware-hardware and hardware-software.
Furthermore, we provide automatic test generation and execution. Instead of re-
peatedly defining tests, only constraints have to be defined. Specific contributions
for the hardware contracts and device contracts for drivers are the following.

• Definition of the specification of hardware component interaction, with cate-
gorization of signal faults enabling the discovery of evidence for environment
related failures.

• Test circuit for online categorization and detection of constraint violation
of a hardware component.

• Extension of the SystemC Transaction Level Model (TLM) for system level
simulation of signal faults.

• Recovery mechanisms for synchronous communication after signal faults.

• Two layer architecture for driver development separating device access from
data processing. Device access through a pure software interface.

• Framework supporting platform independent access to device from descrip-
tions of a register map and communication. Automatic compliance with
special behaviors of register access, such as conflicting register bits.

• Definition of the specification of hardware software interaction for drivers
based on Interface Description Language (IDL) and Extended Finite State

4

1.5 Thesis Outline

Machine (EFSM). Device constraints defined on top of the bottom layer of
the proposed driver architecture.

• Automatic constraint compliance for the exported software interface. Ex-
tended finite state machine executed together with the interface.

1.5 Thesis Outline
In the next chapter, we review the state of the art in design for reliability, design
of embedded systems, component-based design and reliability of device drivers.
In the following chapters, we treat component interaction as a source of system
faults, providing specification and testing thereof. We distinguish between hard-
ware only interaction and hardware software interaction through drivers. In Fig.
1.1, the hardware and software layers of a system are represented with their cor-
responding components. The task of every layer is enabled by the interaction
of its components. In the hardware layer, interactions rely on communication
systems/buses that transfer data through pins and signals, while the software
interacts through function calls. The software is integrated in the CPU that
typically assumes managing tasks controlling the different hardware components.
Therefore, the software needs drivers, i.e. components that know how to control
the existing hardware modules. The system’s mission is generally implemented in
form of algorithms, either in the firmware directly or as processes/applications of
an operating system that is ported to run on the CPU and control the underlying
hardware.

Display

Keyboard

Sensor

Timer

Disc

CPU

Hardware

Firmware
/OS

Display
Driver

Keyboard
Driver

Timer
Driver

Sensor
Driver

Math
Library

Disc
Driver

Software on CPU

Figure 1.1: Block diagram of an embedded system architecture with a two layered
view of its software and electronic parts. Blocks of the same layer
are interdependent and associated. Blocks of the software layer are
physically associated with the CPU. Drivers are logically associated
with their hardware counterparts.

5

1 Introduction

The specification of hardware interaction with contracts and testing os those
contracts is described in Chapter 3, followed by the extension of the SystemC
TLM to allow the simulation of the defined faults of component interaction. In
Chapter 4, recovery methods are presented for a synchronous communication
protocol. This completes the specification, simulation and real-time testing of
hardware interaction. The following chapters refer to the device driver develop-
ment as the interface and interaction between hardware and software. Chapter 5
presents our driver architecture defining the rules for the design of a pure software
interface for a device. Furthermore, the framework for its systematic development
is presented covering the device internal’s description, register maps and commu-
nication systems, and the generation of access elements. After this, our definition
of constraints based on the dynamic behavior of devices is presented in Chapter 6.
Its specification and the generation of the dynamic model and the corresponding
tests are described. Then, the conclusion of this work is drawn and future work
is discussed.

6

2 Reliability & Design of
Embedded Systems

In this chapter, we review the different strategies for reliability design and known
methods used in both hardware and driver development. We first discuss reliabil-
ity in hardware design and generic reliability techniques, particularly in applying
reliability techniques to component-based design. Component-based design is well
established in electronics but use of a contract strategy as used with software is
not. In this work, we apply the concept of contracts for hardware providing both
fault avoidance and tolerance. Software is increasingly embedded in hardware
systems in which the hardware-software interface plays a key role. Hence, driver
development methods and strategies for driver reliability are also discussed.

2.1 Reliability and its Role
The complexity of electronic systems increases continuously. It is impossible to
build a competitive system without relying on existing modules. Also, it is not
feasible to test new systems exhaustively because of their size. Modules have to
be trusted and only the specified functionality can be tested. Examples are found
everywhere, from consumer electronics, through laboratory equipment to medical
devices. Thousands of modules are used to build them and each one is trusted to
some extent. Earlier, telephones, televisions, oscilloscopes (cathod-ray) or elec-
trocardiographs relied purely on hardware modules. Nowadays, software is used
in all these examples providing much more functionality. However, this simple
fact raises the complexity of these systems immensely. Millions of lines of code
are trusted whose behavior is not thoroughly known, together with compilers,
processors, peripheral hardware and third-party drivers.

Systems do not fully exercise the functionality of their components. Regularly,
they apply components in a specific operational mode for a specific functionality.
Operational modes are normally specified and tested. However, because compo-
nents have requirements on their usage, the component assembly has to be tested
with simulation and prototypes as well. This ensures that the system fulfills the
component requirements and that the components together follow the system’s
specification.

The specification defines what the system does and how. Often, user expec-
tations and designer assumptions are not defined in the specification. However,

7

2 Reliability & Design of Embedded Systems

Analysis

Design

Implementation

Developer test

System test

Field

0%

10%

20%

30%

40%

50%

60%

0

2000

4000

6000

8000

10000

12000

14000

Injection [%]

Detection [%]

Correction cost [Euro]

Design stage

F
a

u
lt
 a

m
o

u
n

t
in

 p
e

rc
e
n

ta
g

e

F
a

u
lt

c
o

rr
e

c
tio

n
 c

o
s

t
in

 e
u

ro

Figure 2.1: Percentage of fault injection and detection over product development
stages, and the incurred cost for fault correction depending on the
development stage. Analysis made by Möller [M9̈6] based on the
fault history of several projects.

a fault can only be defined if the resulting behavior goes against the specified
functionality or is forbidden. Therefore, the specification has to be as complete
as possible. In hardware design, missing specification of components leads to
most system failures, while most failures in software occur due to erroneous as-
sumptions about its operating environment [Dub08]. This problem is known as
underspecification.

In order to improve system reliability, test cases can expose some flaws in sys-
tem functionality. However, because the specification is mostly informal, func-
tionality constraints are not well defined. Thus, tests have to be created manually
with many unspecified assumptions. That hinders the coverage of the implemen-
tation through tests. In agile software development, tests are successively created
according to an evolving specification in parallel to—or earlier than—the imple-
mentation achieving higher testing coverage of the implementation. In hardware
development, the development cycle is much longer and redesign cost is high.
However, only recently, mixed-signal simulations have been made available to
test hardware more thoroughly prior to prototype production [BCMS05]. Be-
cause of the difference in the technologies, digital and analog simulators are opti-
mized differently exhibiting different speeds. Thus, analog and digital electronics
are normally simulated individually leaving mixed-signal design flaws uncovered.
Furthermore, prototype testing costs more and is less flexible than simulation. In
addition, the testing environment might not reproduce the operational environ-
ment while the faults discovered might require a new system design.

Finally, the resulting cost of faults is relative to the design stage in which they
are solved, see Fig. 2.1. Faults which are uncovered and solved in early design

8

2.2 Design for Reliability

stages have low cost, while the failure of equipment in field might require a prod-
uct recall involving high costs. Therefore, industry and academia continuously
look for techniques that allow early fault detection. Due to the economic and
complexity factors, there is much work involved in reliability research. In partic-
ular, the study of the reliability impact of design and implementation methods is
very important because most faults can be traced back to these stages and their
correction is less expensive in these stages[Jac09].

2.2 Design for Reliability
In contrast to functional testing, reliability techniques have more success in tack-
ling faults. In particular, fault avoidance and removal can be compared to design
and testing. But also, fault tolerance and forecasting have played a fundamental
role in reliability design. In the following, we first present the reliability threats
followed by the four fields of reliability design.

In reliability, threats are categorized into faults, errors and failures. Faults are
the origin of all threats. They are defects in a system. However, faults only turn
into errors on a fault activation, a system operation that requires the faulty part.
Errors are deviations of the intended system behavior that do not compromise
the overall system functionality, such as a wrong output value. A failure, on
the other hand, is a system behavior not allowed by the specification. A failure
has consequences on the system functionality. For instance, interrupted system
functionality or necessity of repair or restart.

Because faults are the origins for all threats, design for reliability is categorized
by the way they deal with faults. The first technique is fault avoidance. The idea
is to ensure correct behavior by design. Faults can be generically dealt with by
targeting common flaws in implementation techniques. Approaches are based on
requirement specifications, tool-assisted design, enforced design principles, and
systematic reuse techniques. Also, formalized implementation and its synthesis
promise to completely prevent faults [Lyu07], although, its application scope is
limited. Reuse techniques are widely applied in the industry. But, as stated
above, the usage of reliable components has to be tested in the deployed system
to ensure correct integration. A common example of this problematic is the
explosion of the Ariane 5 rocket [Gro04]. The reused piece of code failed when
deployed in a different environment.

Although formal methods could completely prevent fault, they can only be ap-
plied to software and digital hardware because they disregard the physical envi-
ronment and can misinterpret system’s goal. Thus, strategies to remove faults are
equally important. Fault removal techniques are testing and inspection. Different
types of testing exist tackling different kind of problems, such as unit, integration
or system testing. While unit testing targets a component, integration testing
tests if an assembly of components works. Finally, a system testing tests if the

9

2 Reliability & Design of Embedded Systems

system meets its specified requirements. But tests can also be categorized based
on the depth of their checks. While black-box testing only tests the interface of
a component, white-box testing has complete information about the component
and also tests its internals. In the case of a component with both accessible and
non-accessible implementation parts, grey-box testing is possible by mixing black-
and white-box testing. Lastly, design inspection can occur both manually and
computer assisted. Because computer assisted inspection only finds a limited set
of flawed constructs which are pre-programmed in the tool, manual inspection is
also required. Examples of assisted inspection are Design Rule Checking (DRC)
on layout/Printed Circuit Board (PCB), Computer Aided Design (CAD) systems,
simulation, debugging programs and different types of static analysis of program
or hardware description. Static analysis is a wide field, it ranges from syntax
analysis through semantic analysis [ECCH00] to formal methods.

Formal methods for inspection are known as formal verification. Because reg-
ular testing can only prove the existence of a fault, not its absence, the assurance
of testing coverage requires more time than used for design and development
[Wer09]. On the other hand, formal verification is the only technique that can
ensure absence of fault promising complete coverage in reasonable time. It was
successfully used to find the Intel’s Pentium II bug for example [Kam07]. It uses
a mathematical representation of the system for which a specification, defined
as mathematical properties, is proven to hold. This proof is given either by an
automated theorem prover or by a model checker. In the case of the automated
theorem prover, a specified property holds if the theorem prover can formulate
mathematical proofs for those properties. The automated theorem prover tries
to infer proofs for the specified properties given a set of axioms and the system
description [KG99], [Gup92]. The technique of model checkers explores all pos-
sible system states of a model. If a defined property is not violated after the
exploration of all possible states, the property holds always. If it is violated, a
sequence of states leading to it can be defined [Wer09], [KG99]. The difficulty of
formal verification lies in the formalization and in the requirement of a model of
the system. Currently, some systems work with languages used for implementa-
tion. For example CVE, Checkoff-M and RuleBase handle Verilog and VHSIC
hardware description language (VHDL), while CBMC and KeY handle ANSI-C
and Java respectively. However, a complex system, based on both hardware and
software for instance, must use a model for abstraction. Furthermore, the en-
vironment is ignored. Thus, either there is a risk of mismatch between model
and implementation or uncertainty about the integration remains. Moreover, the
formalization of properties for specification can be restrictive and complicate the
specification reducing the number of found flaws [ECCH00].

A fault free system requires a high engineering effort. Although a 100 per-
cent test coverage can ensure that all system parts have been exercised, it does
not state that the required functionality has been met in all these cases. Even

10

2.2 Design for Reliability

in a fault free system, environment faults can lead to failures because systems
require specific environmental conditions to work that cannot be always guar-
anteed. Thus, remaining faults should be prevented from manifesting as system
failures. This is achieved by fault tolerance which applies redundancy as its ba-
sic technique. Redundancy can be achieved by component replication and timed
repetition. Uninterruptible power supplies, Transmission Control Protocol (TCP)
packet resend, built-in, and online testing are examples. In software, defensive
programming checking input ranges and output conditions forbidding illegal op-
erations are also redundancy [Lyu07].

Different mechanisms allow detection, location, containment or recovery of dif-
ferent fault types. Two redundant components can detect and contain a com-
ponent fault for example. Three redundant components can detect, locate and
recover from a component fault. For system specific faults, built-in testing can
be developed that allow at least fault detection and generally location. If the
tests are executed during operation, built-in testing can be classified as online
testing. Upon fault detection/location, recovery can be triggered. Besides triple
redundancy, software rollback and hardware reconfiguration are common recovery
mechanisms. In software, the program recovers its internal states to a previous
point in time. In hardware, the structure of the system is changed isolating the
faulty part and enabling a working one. If no replacement is available, the system
might work with degraded capability. Recovery mechanisms can be optimized to
specific cases. In Field-Programmable Gate Arrays (FPGAs), partial reconfigura-
tion allows timed redundancy in hardware [PHJ06], [ESS00], while virtualization
isolates an operating system extending resource control, such as computing power,
memory and peripherals [Lev09]. This way, a crashed driver of a specific resource
can be recovered while the remaining system is still available, similar to micro-
kernels [HBG+07]. Recovery strategies are diverse and a safe recovery can require
complex mechanisms depending on the dependency tree of the system. This is
the case for device drivers for instance.

A system is expected to fail. Therefore, a reliable system is a system whose
failures, their probabilities and the related operational conditions are known and
specified. The specification and achievement of a reliability level is the aim of
the fault forecasting strategy. A reliability measurement is only possible given
fault models, failure modes, and a specified environment. Naturally, it implies
the study of a specific system. For a specific system, failure modes are classified
together with their triggering events, such as component faults or environmental
conditions. Then, the measure of the reliability follows its description.

Reliability is a measure of the continuous delivery of correct service [ALR01].
It is determined as the probability of correct system operation in an interval [0, t]
given that it was operating correctly in time 0 [Dub08], [Lyu07]. A system built of
reliable components has many dependencies. Without redundancy, a component
failure can lead to system failure. For instance, a reliability of 33.79% is assessed

11

2 Reliability & Design of Embedded Systems

for a system built of 10,000 non-redundant components, each with reliability of
99.99% [Dub08].

After faults and their possible resulting failures are analyzed, the probability
of failure occurrence is evaluated from which the reliability can be derived. There
are two approaches to evaluating the reliability of a system; either by a system
model in the design phase, or by assessing it by test [Dub08]. The system model
used for reliability evaluation is based on probabilistic models that use component
level failure rates as determined by their manufacturers for instance. Examples
of such models are fault trees, block diagrams, Markov chains [Dub08], Petri-nets
[MT95] and Bayesian networks [MT95], [BPMC01]. Although modeling provides
an early reliability evaluation, it must be still validated by actual measurements.
The test assessment uses test data. Because it works with the system directly, it
is more accurate. But its cost is higher as well and occurs later in the project.
However, although fault activation is directly related to system operation, hybrid
models that simulate the system functional behavior together with their failure
modes and fault behavior are not existent.

Finally, given a specified reliability level, the reliability growth process refines
it iteratively. The process uses an iteration of testing, failure data collection and
system rework, until the specified reliability level is achieved.

Although techniques of design for reliability can be generically applied to en-
hance system reliability, better results require knowledge about the target system.
This implies initially that historic data about system fault and failures exist and
later that their relationship is established. With this information, reliability de-
sign techniques can be selectively applied achieving higher success.

2.3 Design Methods
Design methods of current electronic systems, especially embedded systems are
discussed. The design of these systems comprises board, system-on-chip and
software development. An optimal assembly of these components and their inte-
gration is the aim of the discussed technology. Starting in the 1990s, hardware/-
software co-design has evolved from an integrated circuit to a system level design
methodology [Wol03]. Its goal is to increase the predictability of embedded sys-
tems by providing performance, power, size analysis already in the design phase.
Finally, synthesis methods for development automation are also of interest.

2.3.1 Electronic System Level Design

A lot of terms have been used to describe what is now known as Electronic
System-Level design over the years. Electronic System Level Design Automa-
tion was described by Doug Fairbairn and Ron Collett in a design abstraction
taxonomy in the 1990s. This term evolved later to System Design Automation.

12

2.3 Design Methods

From 1995, the term ESL, introduced by Gary Smith, has been the most used
term in the design and Electronic Design Automation (EDA) industry. More
recently, Bailey et al. [BMP07] described ESL as "the utilization of appropriate
abstractions in order to increase comprehension about a system, and to enhance
the probability of successful implementation of functionality in a cost-effective
manner, while meeting necessary constraints." This description tries to combine
other known descriptions of ESL. Specifically, the terms system, abstraction, and
process are of particular relevance because ESL is a process to describe a system
using appropriate abstractions. But also, implementation of functionality leaves
the implementation platform unspecified, hardware or software. This is specially
important since ESL has evolved from the hardware/software co-design.

ESL is about design, verification, and handling complexity through abstrac-
tion. This complexity is posed by systems composed of hardware and software
whose early simulation was not possible leaving actual analysis of functionality,
performance and quality factors for late development stages. Thus, the aim of
ESL is to enable the analysis of functionality and constraints for these systems
in the design stage. The solution is an executable specification based on func-
tional models of components to be implemented later. Component verification
occurs through simulation of component implementation and comparison to its
high-level model whose functionality is assumed to be correct. Depending on
the abstraction level of the functionality and thus its accuracy relating to the
implemented system, performance, and quality can be measured based on the
executable specification. In contrast to formal verification that verifies system
or component independently, ESL verifies an assembly of components for com-
pliance with functionality, constraints and quality factors of the target system.
Finally, software to be run on this platform or embedded in the system can be
implemented and tested on this same executable specification, a method called
Hardware (HW)/Software (SW) co-simulation.

Thus, system design becomes especially compelling for embedded systems with
a large amount of hardware dependent software, typically systems with much
functionality, smartphones for instance. In these systems, the architectural de-
sign of hardware-software partitioning is decisive in the achievement of perfor-
mance goals. With 250 nm process technology, architecture design and valida-
tion were insignificant in comparison to implementation. However, it became
considerably important at the 90 nm technology accounting for 25% of the total
development time. As well, the requirements for hardware dependent software,
such as Operating Systems (OSs), firmwares and drivers, has similarly increased,
from 35% to 55% when compared to the complete implementation. At the same
time, traditional design with independent hardware and software development has
failed; in over 70% of the cases for missing performance expectations by at least
30%; in over 30% of the cases by missing functionality expectations by at least
50%. In addition, 54% of designs missed schedule with an average of 4 months

13

2 Reliability & Design of Embedded Systems

and about 13% of designs were canceled. The main reason for their failure has
been given as limited visibility into the complete system [BMP07].

In addition, ESL aims at architectural exploration. For this, a virtual system
prototype is created that models the behavior of the target system. This sys-
tem model is an architectural proposal for the target system made of component
models. These models have to be simple in order to reduce the time taken in
their design and to increase simulation speed. This is achieved by abstraction.
Only the functional behavior of the target components is described, their inter-
nal structure is ignored. These component models communicate with each other
through transactions that transport data without applying communication pro-
tocol or signals, thus abstracting the communication. Such a model represents
a possible architecture for the system imposing a specific task partitioning with
corresponding synchronization requirements. Executing this model, its system
performance and related quality factors, such as determinism can be estimated.
Considering the system goal, a nearly optimal architecture can be found itera-
tively by the analysis of earlier architectural bottle-necks. Because the resulting
model is executable, it can be made available to the software team for software
development with the inclusion of the required visibility such as registers and
interrupts. In addition, the model can be further refined to include implemen-
tation properties of components enabling cost, accurate performance and power
consumption analysis. At this stage, hardware-software partitioning also takes
place, where the designer decides which tasks will be implemented in hardware
components or as software. Fig. 2.2 gives an overview of the ESL design process.

The ESL methodology requires a language for model description, simulators,
and different possibilities of model refinements allowing for architecture imple-
mentation and performance analysis. In the beginning of ESL and HW/SW
co-design, executable C code was used to model the systems. That was sufficient
to allow platform description and parallel software development. However, the
performance analysis of multiple processes required the appliance of simulators
similar to the ones used for network analysis [Wol03]. Moreover, embedded sys-
tems have exhibited a tighter control requirement due to loose concurrency, not
simply multiple processes in a CPU. At this point, C was replaced by a Co-design
Finite State Machine (CFSM) that was able to describe concurrent communicat-
ing processes. In order to allow model refinement to implementation, languages as
SpecC, SystemVerilog and SystemC have emerged that allow a high-level model
description with abstractions but also permit, in the case of SpecC and SystemC,
refinement to implementation of both hardware and software. SpecC lost the
standards’ race to SystemC that has been published as the Institute of Electrical
and Electronics Engineers (IEEE) 1666 standard in 2005 [BMP07]. In 2011, an
update to the standard has been published. SystemC is currently well supported.
Co-simulation is provided by the major simulation tools, as Mentor’s ModelSim,
Synopsis’ VCS, and Cadence’s Incisive Design Team simulator. An open source

14

2.3 Design Methods

Embedded System Specification

Dataflow Algorithm
Development

Control Algorithm
Development

HW/SW
partitioning

HW/SW
partitioning

System HW/SW Co-Development

Processor Models

Standard Processors

Custom Processors

Virtual System Prototype (VSP)
(Executable Specification)
● Application SW development & re-use
● Architecture modeling, analysis,

optimization & verification
● Standard & custom IP integration
● Performance & power analysis
● Testbench development
● HW verification & debug
● Final HW/SW partitioning
● HW/SW integration
● HW/SW co-verification & debug
● Mixed-level simulation

Custom Dataflow
Hardware

Design & Verification

Custom µP

Custom DSP

Fixed-Function
Hardware

Custom Control
Hardware

Design & Verification

Custom Processor

Fixed-Function
Hardware

Figure 2.2: Electronic System Level design process leading to an implementation
and its architecture. Picture reproduced from [BMP07].

reference simulator for SystemC is available at [Ope] as well.
Besides the language barrier, the biggest barrier to the adoption of ESL has

been the automation of chip implementation. Because system-level design adds
up to 20% of the design effort, and due to the lack of high-level hardware synthe-
sis, ESL has been seen as negative by the Register Transfer Level (RTL) engineers.
Only recently, high-level synthesis tools have appeared like Cynthesizer, Cyber-
WorkBench, BlueSpec, Agility Compiler and Catapult Synthesis. However, these
tools have high cost, and require the usage of specific dialects of C/C++ for
input complicating the high-level simulation with other vendor’s simulators and
Intellectual Properties (IPs) hindering a manufacturer independent architectural
exploration.

Due to the aforementioned hardware implementation complications and to
time-to-market constraints, system design effort concentrates on assembling pre-
fabricated IPs to fulfill system functionality and performance specifications, in-
hibiting top down design. The component reuse methodology has been long used
in engineering. But, the system level design gives the ability to early evaluate
the resulting effect of single components with respect to the complete system.

2.3.2 Component-based Design

The software world has taken the opposite path of the electronic system level de-
sign. Software has been mostly developed from scratch in a top-down design. In

15

2 Reliability & Design of Embedded Systems

contrast to hardware, co-simulation and co-design are not a problem for software.
In software, different abstraction levels can be simulated seamlessly. However,
reuse promises higher quality for less cost. With object-orientation, industry ob-
servers thought that reuse would become common-place [ABB+02]. Although,
primarily, the extensive runtime environment dependency of software pieces has
hampered wider reuse, component models such as Common Object Request Bro-
ker Architecture (CORBA), Component Object Model (COM), Enterprise Java
Beans or .NET have emerged to solve this problem. However, component-based
design is still an emerging software discipline. Despite common runtime environ-
ments, wide reuse has not been achieved. Further challenges for component-based
design exist and are active research topic. In particular, testing of component-
based designs requires different strategies from traditional software testing be-
cause the component’s implementation is often not available and its deployment
environment can differ from the expectations of the component designer.

Component-based design is a subdiscipline of software engineering. Software
engineering looks for standard techniques and methods for software development.
Similar to traditional engineering, standard methods have to be classified in re-
gard to use, cost and quality. The cost factor is the target of the component-based
design. It goes along with the standard assembly of systems in engineering where
a system is composed of many prefabricated parts. In electronics, for instance,
components of different complexity are available for system’s design, such as
generic operational amplifiers, logic gates, flip-flops, Digital-to-Analog Convert-
ers (DACs), memory, processor. Basic transistors are rarely used and the cost of
a microcontroller, under $1.00, cannot be compared to its design cost.

With the rise of object-oriented programming, and especially encapsulation,
the design of components became more feasible for the software world. The ma-
jor advantage of component-based design is reuse which is expected to reduce
production costs. In addition, the quality of the end product should improve be-
cause well tested components should have less faults than a custom counterpart.
However, development for reuse has not been traditionally targeted in software
design. Components and their development are not clear concepts in software
engineering. In particular, design of components often does not anticipate dif-
ferent contexts of component usage making these components less reusable. The
lack of documentation and missing view of possible operational modes contribute
further to this.

Therefore, component-based research came up with principles for component
design; component composition, clientship, interfaces followed by quality at-
tributes and documentation [Gro04]. Composition means that components can
be assembled both hierarchically and in aggregation to create other components.
More importantly, clientship and interfaces describe how components work. The
clientship defines a client/server relation between components. A component re-
quires services. Given that its requisite services are provided, it provides services

16

2.3 Design Methods

Quality Attributes Quality Documentation

Specification

«interface»
Provided Interface

«subject»Component

«interface»
Required Interface

«private»
Implementation

OperationPrecondition Postcondition

Input Parameter Output ParameterParameter

State

Realization Specification

1
1

1

1

11

1 1
1
*

1

1..*

1

1..*

Figure 2.3: Component meta-model that includes component details missing in
traditional software development. Picture reproduced from [Gro04].

of its own too. This leads to a definition of component’s contract establishing
the duties and rights of a component. If any right is not fulfilled, the duties are
also not granted. An interface describes a collection of functions that the compo-
nent provides or requires. Quality aspects are described in quality attributes and
documentation. Quality attributes define non-functional aspects of a component
such as performance and reliability. The quality documentation augments the
functional specification (i.e. description of functions) with operational modes,
possible behaviors and how they can be achieved, similar to a datasheet known
from electronic parts. A Unified Modeling Language (UML) meta-model of a
component with its corresponding composition parts is represented in Fig. 2.3.

Similar to electronic system level design, component-based design cannot fully
rely on bottom-up design. This occurs because a system cannot be perfectly de-
composed into well matched prefabricated parts. Component-based design occurs
iteratively through system decomposition in tasks that can be fulfilled by a com-
ponent. If a component matches the requirements, it is integrated. If there is no
match, the tasks are further refined until a component is found. Otherwise, the
task is designed from scratch. Finally, the result is a system built of prefabricated
parts and custom implementations.

Different components and requirements can lead to implementations in differ-

17

2 Reliability & Design of Embedded Systems

ent programming languages using different runtime environments. In addition, a
specification is required that defines the system’s goals. However, programming
languages do not provide a system overview or allow definition of constraints.
Thus, as SystemC was created as language for ESL design, UML has bridged the
gap as modeling language for software specification, becoming an industry stan-
dard [Gro11]. Alongside ESL, synthesis of UML specifications has been studied
using the approach of generative programming following the concepts of Model-
Driven Architectures [SBF03]. The idea is to generate an executable program
based on a UML description. The synthesis of UML can be more or less useful
depending on how much more explicit and less time consuming a UML description
is in comparison to an algorithmic implementation language.

Component-based testing is technically different from traditional software test-
ing, imposing new challenges. First, components have to be tested in a different
context to that in which they have been developed to allow for exercising the
component in an untested operational mode. Besides, a prefabricated component
cannot be internally tested. Access to its internals is not possible. This requires
that black-box testing is used. However, internal state information of the compo-
nent exposed through the interface is relevant to component test and should be
made available by component developers. Finally, a finite number of tests should
suffice for system to rely on the component. Otherwise, the cost of testing the
new system may exceed the cost advantage of using prefabricated parts [Gro04].
Generically, the operational modes required by the system should be covered. In
reality, objective answers to questions about adequate testing, test types, amount
and input set, are an open challenge in testing.

Because component reuse may apply components in a different context, inte-
gration testing is most relevant. Compared to hardware design, correct operation
of applications is verified late in component-based design. Only when the design
is ready, at deployment time, can the interactions between components for the
final assembly be tested. Component interactions have to be met both syntacti-
cally and semantically. The connection of interfaces has to fit and the clientship
of the component has to be respected. While a component with the same inter-
face can be connected to the system, the system will fail if its clientship is not
respected. Interface compatibility can be ensured by the compiler for example
(syntax analysis), while clientship can only be tested in runtime (semantic anal-
ysis). Built-in contract testing offers an early and scalable solution for testing
component-based systems. Components are equipped with the ability to test
their execution environment according to their clientships. In addition, compo-
nents are made testable by their surrounding components. This way, components
validate each other automatically providing system correctness through a fault
tolerance strategy where a component’s failure is detected early.

18

2.3 Design Methods

Contracts

A contract defines the necessary conditions for a method to be successfully ex-
ecuted. It is a type of defensive programming technique. Meyer defines that a
contract is defined by preconditions and postconditions [Mey92]. Preconditions
have to be fulfilled for a method to be correctly executed. After method exe-
cution, the defined postconditions hold. Preconditions and postconditions are
defined in terms of function arguments, object state and return values in object-
oriented programming. The aim of contracts is to provide a systematic method
for the otherwise ad-hoc defensive programming techniques that reduce visibility
of the algorithm and makes it more complex.

Defensive programming has been long used through assertions being a type
of built-in testing. Assertions provide a mechanism to verify if an expression
is true or false. In the first case, program execution continues normally. If
the assertion evaluates to false, some detection or recovery mechanism can be
activated. Regularly, a message is printed along with the place where the error has
occurred. Built-in tests might run only during development and be automatically
disabled by the compiler for deployment, as is the case for assertions. However,
they can be also deployed in the field for debugging purposes.

Traditionally, built in testing is used to test the behavior of the component
itself. However, exhaustively testing a part of a component that has already been
tested will not expose a fault because software does not degrade. On the other
hand, a component has requirements on its environment that have to be fulfilled
for delivery of correct service. These requirements refer to the system/user and to
services of other components that do not know about the requirements of the first
and vice versa. These dependencies imply requirements beyond the system and
single component specification. The description of these component interactions
is possible with contracts.

In the design of applications with component reuse, components have to be
trusted. In particular, the internal implementation of third-party components is
not accessible but their functionality is normally well tested. However, a working
component can fail in the wrong environment. Therefore, component compli-
ance with the environment has to be ensured. Because contracts specify the
conditions for every method of components to successfully run and components
interact through methods only, they provide the missing specification for compo-
nent interaction. And thus, contract testing can ensure correct operation of an
assembly of reliable components. For this, every component needs a contract for
its methods. This contract defines pre- and postconditions for the component’s
methods in form of argument ranges, internal state and range of return values. If
the component’s preconditions are fulfilled, it can operate correctly. At the same
time, other components have to ensure that their preconditions are fulfilled by
its servers’ postconditions.

The fulfillment of pre- and postcondition does not cover the interaction between

19

2 Reliability & Design of Embedded Systems

Full Test Heavy-weight Tester

Medium-weight Tester

Light-weight Tester

No Test

Development time
Well-known
Not critical
Unavailable

Runtime
Not known
Extremely critical
Highly available

Time of Test
Origin of the Component
Mission Criticality
Resource Availability

Number of Test Cases

Figure 2.4: Criteria that affect system reliability and the corresponding test-
ing coverage to ensure correct operation. Figured reproduced from
[Gro04].

components completely because only the value of the exchanged data is ensured
this way. Gross et al. recommend the inclusion of a testing interface that gives
access to the global object state [Gro04]. This way, a component can specify
the behavior of its servers and verify that they behave accordingly. This implies
however that a component tests the implementation of another component with
regard to its internal states. Something that the component could not know
prior to design completion. This can be useful in the case of a standard such as
the Portable Operating System Interface (POSIX) where different components
implementing the standard could be tested against a single specification. But
regardless of restricted visibility, contract testing remains a meaningful alternative
for testing component interaction.

The implementation of contract testing presents further questions such as test
deployment and extent. Although every client could possibly test their servers
directly, deployment of a separate tester component can still increase reuse.
Through combination of tests, functionality can be tested at a higher level em-
bracing many components or even the complete system/application functionality.
Furthermore, the time and frequency with which the test is executed can be made
dependent on external criteria such as reliability or trust. Fig. 2.4 shows a scheme
for test periodicity in relation to component properties.

20

2.4 Driver Development Methods

2.4 Driver Development Methods

A device driver is a software interface (collection of functions) to be run on a
CPU that allow the control of hardware modules. This control is enabled by a
hardware interface, e.g. bus, between the CPU and the target module that only
allows for device access. Proper device control is achieved by switching device
registers and electronic data (bytes/bits) of the device made externally visible
through this bus. Thus, a device driver needs information not only about the bus
and its protocol but also about the device controls in order to translate these to
software functions.

Earlier, device control was more complex because it was also achieved through
direct signaling of bus level details, such as voltage level and timing control; for
example the control of a Direct Current (DC)- or step-motor. Now, devices’
actuators are integrated into custom controllers that translate these controls to
corresponding electronic data as numbers, such as speed/position, whose access
occurs then through a standard bus. Such actuators take over the signaling and
timing part releasing the CPU from this task.

Research in HW/SW co-design has given special attention to drivers and com-
munication interfaces. In ESL, software development assumes that drivers will
be available for modules’ control. Thus, the initial software only interacts with
functionality of modules without considering their interface. Existing hardware
and software layers that allow communication are not taken into account. While
for HW/SW co-simulation, high-level model abstracts the CPU for simulation
speed, the communication between hardware modules is also abstracted consist-
ing of transactions without protocol or interface. The refinement of the high-level
algorithmic models to implementations requires real hardware and software in-
terfaces. Therefore, the design of CPU buses, including direct memory access,
data conversion and buffering is necessary. Similarly, software from basic drivers
and Input/Output (I/O) functionality up to sophisticated operating systems and
middleware must be ported to the underlying hardware [JW05]. Although ESL
and HW/SW co-design have mostly tackled the hardware software partitioning
and early software development problems, the co-design of hardware and software
interfaces is still a missing link for high-level synthesis. Furthermore, the design of
these layers has considerable performance and reliability impact because software
and hardware mismatches follow from the separate development strategies.

The choice of the hardware interface has effect on performance, reliability, and
other quality factors, such as latency and determinism. Moreover, the Intellectual
Property (IP) compatibility on a System on Chip (SoC) is highly dependent on
the interface/CPU bus. The use of the same interface for CPU and peripherals
allow the CPU to access the peripheral registers as memory addresses. A bus
implementation of the interface has to be configured to map different periph-
erals to different memory areas. If a device has a custom interface, either an

21

2 Reliability & Design of Embedded Systems

adapter is necessary or its protocol has to be imitated by general purpose I/O,
a method commonly known as bit-bang mode. Unfortunately, both techniques
involve moderate to high performance penalty.

In the literature, synthesis techniques for interface and driver co-design have
been proposed [WB94], [COB95], [BL98], [DRS04], also predicting that network-
on-chip would substitute the current master/slave communication systems for
SoCs [Jan03]. However, the fixed purpose of a communication system and simi-
lar constraints have led the industry towards standardization instead of synthesis.
For example, ARM processors use AMBA, MicroBlaze from Xilinx uses CoreCon-
nect, Altera NIOS uses Avalon, and OpenRISC uses Wishbone. The performance
and quality factors of the different standards are known and one can be chosen
instead of synthesizing. However, performance of interface adapters for compati-
bility is reduced for example due to protocol differences regarding burst modes.

Access to devices on computers was also standardized and has changed substan-
tially with time. Originally, each peripheral device had a custom interface with
its own physical connector, pin connection, signaling and communication proto-
col. Standard solutions offered more compatibility and reduced cost resulting in
advantage for both customer and manufacturer. The initial personal computer
standards, like RS-232 [Dep69], parallel port [Com94] and Industry Standard
Architecture (ISA) [Cor07], became widely adopted, allowing connectors to be
reused and avoiding custom hardware for interface implementations. However,
violation of the standard, for example with custom communication protocol for
RS-232 and parallel port, was still common. In current personal computers,
Universal Serial Bus (USB) and Peripheral Component Interconnect (PCI) have
superseded earlier standards providing auto-configuration/enumeration allowing
a device to be automatically recognized and configured by the system. In contrast
to older standards, no manual configuration of jumpers for addressing or manual
driver selection is required. The system recognizes the new device automatically
and if a corresponding driver is available, it is automatically loaded. USB and
PCI also brought reductions in power consumption through enforcement of sus-
pend modes on peripherals. While also letting devices can on the bus for power
control, so simplifying their design.

While the CPU can access registers of devices directly connected to the CPU
bus through simple memory accesses, the access to devices connected to external
communication systems additionally requires the control of this communication
system. In Fig. 2.5, registers of modules connected to the Wishbone bus, in
the center, can be accessed by the CPU as memory addresses. Yet, the Serial
Peripheral Interface Bus (SPI) Electrically Erasable Programmable Read-Only
Memory (EEPROM) connected externally through the SPI module, a communi-
cation controller, can only be accessed through SPI transactions that are possible
through an SPI driver. To enable SPI transactions, registers of the SPI module
have to be set/retrieved. In response, the SPI controller executes the transac-

22

2.4 Driver Development Methods

 or1200
OpenRISC

ETH
start-up
 Starter

SPI

UART

D

I

RAM

Advanced
Debug

Interface

Advanced
Debug

Interface
JTAG
TAP

JTAG
TAP

W
i
s
h
b
o
n
e

W
i
s
h
b
o
n
e

or1k_startup

ETH
PHY

 UART
Transceiver

 SPI
 EEPROM

JTAG Cable
JTAG Cable

Advanced JTAG
Bridge

Advanced JTAG
Bridge

GDB
GDB

GDB Front-end
(DDD, Eclipse)

GDB Front-end
(DDD, Eclipse)

PC Workstation Software

minsoc

Figure 2.5: Modules’ view of MinSoC, OpenRISC based System-on-Chip: arrows
leaving a module signalize a module’s Wishbone master interface,
arrows pointing to a module signalize a Wishbone slave interface.
Double-sided arrows are different connections.

tions that finally set/retrieve registers from the device connected to SPI, memory
addresses in case of the SPI EEPROM memory of Fig. 2.5. The same occurs
for USB and PCI, the most common interfaces in personal computersr. A USB
or PCI device can only be accessed through the corresponding interface. Thus,
the USB/PCI driver becomes the underlying access method for the device driver.
This exemplifies the cascade dependency of system’s drivers.

The personal computer industry evolves fast due to its unified design. By
contrast, embedded solutions are custom, designed on demand, complicating the
development and raising cost. Therefore, an embedded system’s development
trend is the adoption of parts designed for personal computers. Current SoCs
and embedded systems support USB, Ethernet and run operating systems. The
enhanced functionality also enables the use of—thanks to the high number of parts
produced for them—low cost hardware such as USB flash drives and webcams.
In particular, the operating system’s notion of a process as abstraction of a task
facilitates the software design and enable seamless networking. Furthermore,
software applications designed for an operating system are portable. That is not
the case for bare-metal firmware where threads are custom designed through the
use of purpose specific interrupts and timers. However, as time control is not
straightforward for C based bare-metal firmware, it is even more complex for an
operating system. The generic solution is to outsource real time constrained tasks

23

2 Reliability & Design of Embedded Systems

to hardware modules or controllers running a purpose specific firmware, or still
balance applications on a real time operating system. Although the adoption of
operating systems bring many advantages, they are also complex systems that
require well versed specialists.

An operating system fulfills two purposes. It abstracts the hardware providing
an extended machine for software use and manages resources [TW09]. There-
fore, multiple applications can operate using computing power, memory, disk
and printer without knowing about device specifics or caring about resource own-
ership. The operating system switches the ownership of computing power and
devices avoiding conflicts. As the compiler abstracts the internal implementation
of the CPU for computation in high-level languages, a central task of operating
systems is to allow for multiple processes optionally providing virtually infinite
memory. These tasks are enabled by elements of the CPU that the operating
system has to control. Current operating systems separate this CPU dependent
code from generic code and define fixed interfaces for their implementation known
as hardware abstraction layer. Especifically, a timer together with an interrupt
controller allow processes to share computing power according to a scheduling
algorithm. Processes require their own portion of memory to run. However, it is
dangerous to allow that a process inadvertently writes to memory parts which are
possibly used by other processes, especially kernel memory. For example, kernel
code could be rewritten by a process causing the whole system to fail. This has led
manufacturers to build a hardware protection mechanism based on the memory
management unit. The main task of the a Memory Management Unit (MMU) is
to translate a virtually infinite memory to physical memory addresses. Further-
more, the MMU is able to forbid access to memory pages whose protection level
is lower than the protection level of the executing code. Generally, kernel and
application protection levels are chosen in a way that the kernel can access any
memory but the applications cannot access kernel memory. A standard approach
of ensuring encapsulation and thus fault containment on operating systems is to
move programs from kernel code to application. This has been extensively done
for drivers as described later.

In addition, in an operating system, devices with same purpose can be handled
the same way by applications through the definition of generic device interfaces.
For example, any disk and Ethernet card can be used for the file system and
networking regardless of their different internal controls. However, generic de-
vice interfaces incur the cost of restrictive design specifications for device drivers.
Drivers for operating system do not only provide the hardware functionality. They
have to comply with the generic device interface in order to be seamlessly inte-
grated into the operating system and be compatible with its applications, see Fig.
2.6. Therefore, the generic interface with its specific functions and constraints
has to be translated to device register accesses that exhibit the behavior specified
by the generic interface. While a driver for bare metal firmware comprises mostly

24

2.4 Driver Development Methods

Virtual File
System

File
Manager

Generic device interface

Kernel

User space

ext4

Block
Device

NTFS

Device driver

Disk
Driver

USB
System SATA

USB
Mass Storage

Communication drivers

Device driver

Generic device interface

Figure 2.6: Example of driver decomposition for file systems and disk drivers on
Linux.

functional specifications, a driver for an operating system also has reentrancy and
timing restrictions because processes can request the driver’s service concurrently
and a single process cannot take over the complete system for too long. Further-
more, driver’s memory and synchronization management has to occur according
to the operating system’s Application Programming Interface (API), as well as
initialization, termination and registration. These high number of constraints
imposed on driver development have made drivers highly error-prone.

2.4.1 Drivers’ Reliability

Root-cause analysis made in the late 1990s has shown that system management
was responsible for around 50% of system failures, while software and hardware
were responsible for 20% and 10% respectively [GGP06]. The trend of using
complex system management as operating system prevails. In operating systems,
drivers take almost 70% of their code [CYC+01], and are responsible for up to
70% of operating system failures [Mur04]. In the HW/SW co-design area, this led
to approaches for driver development that follow the earlier interface/driver co-
design but concentrate on the problem of describing the device controls. Device
registers are named memory addresses with a defined bit-width. They can only
be accessed as a whole. But certain bits of registers can control special device
behavior or inform device status independent of the remaining bits. Drivers
are mostly written in the C language that provides neither a description for

25

2 Reliability & Design of Embedded Systems

these elements nor enable a direct access of bits that respect the semantics of
registers [CE04]. Thus, 30% of common driver code consists of error-prone bit-
operations [MRC+00]. To tackle these issues, custom languages for register map
description have been proposed [MRC+00], [SYKI05]. In addition, O’Nils et al.
[OOJ98] and Wang et al. [WMB03] include the description of register access
constraints to avoid faulty device access. Finally, Conway et al. [CE04] also
proposes the description of the device behavior through state-machines allowing
driver inclusion in operating systems by mapping a generic device interface for
instance. However, the proposed languages for driver development did not gain
much acceptance in the industry possibly because developers struggle to adopt
custom languages and because their extension to further communication systems
and operating systems can be complex.

Although products must adhere to a tight time-to-market requirement to be
competitive, only ad-hoc reuse techniques are applied for the development of
device drivers. Device drivers are often updated to allow the control of similar
devices, producing unified drivers. They reuse the driver algorithm, updating
the functions that control the device. However, this often leads to driver faults.
For example, if a device needs to be polled each second instead of each minute,
violation of device constraint occurs; if a corner case data flow of the driver
algorithm is not allowed by the device, device protocol is violated. On occurrence
of these failures, the unified drivers are further adapted, risking non-optimized
solutions and further faults.

Due to virtualization, reuse of drivers from foreign operating systems is possible
[FHN+04], [Lev09]. This way, an existent driver for an operating system can be
directly used in another. For that, a virtual machine that runs the complete
donor OS provides every required interface for the driver. When service of the
device is required, the driver running on the virtual machine executes the required
functions and returns the data to a thin compatibility layer on the host OS
that glues the software layers together. Another approach for complete driver
reuse, the driver transplantation, is the implementation of a full compatibility
layer that imitates a foreign operating system on the host operating system in
order to run the foreign driver code. For example, the NdisWrapper project
reuses Microsoft Windows networking drivers in Linux. In comparison to the
reuse through virtualization, the full compatibility layer has to conform to many
interfaces of the donor OS. Due to the flexibility of designs, it can be hard to
always find a straightforward translation. Moreover, the OS interfaces also change
with time requiring maintenance of the compatibility layer.

Another promising technique from the literature is the complete synthesis of
the driver for operating systems [RCK+09]. This approach envisages a three layer
architecture of the driver. The central element is the device-class specification.
Similar to the generic device interface, it specifies functions generic to same de-
vice types that have to be implemented. Given this description, the functionality

26

2.4 Driver Development Methods

described by the device-class specification has to be mapped to both device and
the operating system. The behavior of device and operating system is described
as state-machines which are the device and OS specifications. The device specifi-
cation is comparable to the state-machine description described by Conway and
Edwards [CE04] that enables the complete description of a driver for an operating
system. However, the device specification of [RCK+09] treats the device directly
as a software interface that has to be complemented by the earlier work on device
internal description. The synthesis approach also includes an OS specification
that maps the device-class specification to the behavior of the generic device
interface of a target OS, also using state-machines. This tackles the underspeci-
fication problem of generic device interfaces and OS APIs in general and enables
reuse throughout operating systems [RCKH09]. The problem of underspecifica-
tion goes beyond the functional specification of the interface because timing and
concurrency are also relevant properties for the defined functions. The synthesis
approach focuses on the compliance of the driver with the generic device inter-
face and the OS API, not with the device. In order to handle the concurrency
problems, a serialization of the driver execution is proposed. Although a network
and a disk driver have been synthesized for Linux, more complex drivers on other
operating systems still have to be evaluated.

The reliability of drivers has also become a concern for operating system man-
ufacturers. The quality of their products is often measured on how often their
systems crash and most system crashes have occurred due to driver faults [Mur04].
Therefore, Microsoft created a certification process based on Windows Hardware
Quality Labs (WHQL) testing that ensures hardware compatibility with Win-
dows. Device drivers that pass the tests get a digitally signed certification that
allows installation without user confirmation. The use of static checkers has con-
siderably improved the quality of device drivers. In Linux, static checking had
modest success because only generic programming errors were modeled to be
checked. Nevertheless, Engler et al. [ECCH00] were able to find hundreds of
programming bugs in open source operating systems, such as interrupt control,
floating point usage and checking pointers before use. In Windows, the SLAM
static analysis engine achieved higher success because the SLAM checker models
the Windows API and their generic device interfaces uncovering both generic pro-
gramming bugs as well as violations of these models [BBKL10]. Alternatively, the
test of device drivers can also be done dynamically through tests and the usage of
real devices, as is possible with Driver Verifier from Microsoft and Device Driver
Testing (DDT) [KC10]. This complements the static approach, testing the driver
and device interaction on the device environment. Interestingly, DDT also allows
testing device drivers dynamically without the real device by providing symbolic
hardware that produces symbolic values and interrupts allowing exploration of
multiple driver paths. DDT found 14 serious new bugs in 6 device drivers that
had already passed the Microsoft certification process [KC10].

27

2 Reliability & Design of Embedded Systems

Besides design and verification techniques, much attention has been given to the
isolation of driver faults. Most techniques concentrate on isolating memory ac-
cess violations through the memory protection mechanisms of the MMU. Because
drivers run in kernel space, they have access to kernel memory and thus the whole
system. Microkernels have targeted this issue by making most operating system
services, as well as drivers, user-level processes instead of kernel space modules
[LCFD+05], [HBG+09]. This way, they run in protected domains without access
to kernel memory. This encapsulation ensures that a driver crash does not af-
fect non-related system parts. However, the driver and the related activities still
stop working. Similarly, Nooks [SMLE02] creates an encapsulation environment
within kernel space called Nook in which the driver runs. They provide a patch of
approximately 2,000 lines of code for Linux that creates the memory barrier for
drivers. Microdrivers [GRB+08] allow a mixed kernel and user space approach.
Most driver tasks are executed in user-space while performance critical parts are
kept in kernel space. However, Microdrivers require significant redesign of OS and
driver architecture. On the other hand, SUD [BWZ10] creates a Linux kernel en-
vironment for user-space allowing kernel drivers to run seamlessly in user-space,
while providing memory isolation. It is based on Input/Output Memory Man-
agement Unit (IOMMU) hardware, PCI express bridges, and message-signaled
interrupts. The system consists of two Linux modules of 4,000 lines of code.
Virtualization techniques for driver reuse provide encapsulation and fault con-
tainment for drivers [LUSG04], [FHN+04]. Recently, software techniques that do
not require a MMU have been proposed. They enable fault checking at runtime
through instrumented driver code [CCM+09], [ZCA+06]. SafeDrive [ZCA+06]
avoids misuse of OS data structures and buffers by annotating pointers with
corresponding data structure sizes and buffer bounds. Instead of annotating
the code, Byte-Granularity Isolation (BGI) [CCM+09] maintains tables of access
rights for each byte of virtual memory. Every data structure and buffer has an
entry in the table. Because the table is updated in runtime, control flow and
temporal memory access can be controlled.

While these techniques ensure system reliability, the fault containment mecha-
nism only tackles non-deterministic faults well. If a deterministic fault leads to a
driver failure, the fault has to be detected and the driver repaired. Otherwise, ev-
ery run of the faulty code crashes the driver blocking the system dependent parts
permanently. Nevertheless, non-deterministic faults can also lead to component
failure. In these cases, a recovery mechanism can restore the operation of the
affected part of the system. For deterministic faults, they serve as a compromise
if the faults occur seldom and the specific execution can be avoided. Two ap-
proaches for recovering a device driver together with its system dependent parts
have been proposed. Herder et al. [HBG+07] implemented a reincarnation server
for MINIX that can report malfunctioning components, such as unresponsive
components or components that violate some kernel API. Upon malfunctioning

28

2.5 Summary

report, a policy-driven recovery takes place which defines the dependency tree
of the corresponding component and the sequence for recovery. However, these
policies have to be defined for recovery candidates and transparent recovery is
not available yet. The components are restored to their initial state. Another
approach applies a shadow driver that maintains the system functional until it
recovers the regular driver [SABL06]. After the driver has been restarted, the
shadow driver re-establishes the old state of the driver.

Different operating systems have different generic interfaces and provide differ-
ent driver frameworks, whereas the driver’s task and architecture are mostly the
same. Recent driver development frameworks, such as Mac OS’s IOKit frame-
work [App07] and Windows Driver Foundation [Mic06], offer generic synchroniza-
tion facilities that shift some of the driver’s synchronization requirements to the
framework facilitating driver development. Most industry work towards driver
reliability has focused on verification techniques. Verification has the advantage
of no performance penalty. However, it has been shown that faults find their way
into the field. The adoption of development techniques developed in academia
has not been significant. Although new development strategies can provide so-
lutions to common development problems and tackle compatibility, they require
extensive tool support. In particular, compatibility with operating systems with-
out the support of the operating system’s manufacturers can be very expensive.
Generically, new development techniques are also met with skepticism by devel-
opers and do not provide an instant solution because maintenance of old APIs and
code is still required. Developers and manufacturers are commonly against any
approach which reduces performance hampering many techniques. For example,
the synthesis technique raises the implementation level but reduces performance
due to lack of control. Fault tolerance and recovery techniques impose an even
higher performance penalty and have beet met with apathy from the operating
system’s side. Nevertheless, manufacturers of devices without critical perfor-
mance requirements are already willing to accept special reuse techniques, such
as standard drivers (e.g. Jungo’s WinDriver), OS transplantation and virtualiza-
tion. Finally, the study of drivers has recently become more popular. Eventually,
developers are going to look for development techniques with reduced complexity
for enhanced reliability. Approaches still have room for improvement and new
techniques are still going to be developed. For example, the correctness of the
device/driver interaction has not been strongly targeted yet, and is a missing link
for drivers’ reliability.

2.5 Summary
In this chapter, we have discussed techniques used to achieve more reliable sys-
tems. We first discussed the economic and practical roles of reliability today that
are drivers for reliability engineering. Also, reliability threats, faults, errors and

29

2 Reliability & Design of Embedded Systems

failures, have been defined followed by the categorization of techniques to avoid,
remove, tolerate and forecast faults. It has been made clear, that knowledge
about a system’s goal, structure and historical failure data is necessary in order
to measure reliability and forecast faults. Historical fault/failure data allow tech-
niques to concentrate on relevant failure modes instead of generic technological
faults, such as electronic or software development flaws.

Every fault has its origin in the design and development stages. However, it
is difficult to foresee a system’s flaws during design, where fault correction costs
the least. In particular, complex system composed of hardware and software can
not be well simulated, hindering early visualization of design complications. ESL
proposes a way to simulate early designs also allowing performance and quality
factors to be estimated. The approach proposes a top-down design in contrast to
the bottom-up design common in electronics. The idea is that a verified design
made of high-level models be gradually refined to real components. Either existent
components should be reused or new components developed from scratch. After
an initial partitioning, software can be simulated together with the hardware in
a process called co-simulation that is enabled by including the CPU internals
required for software execution. An obstacle for ESL is the missing link between
high-level modeling and RTL design that should be bridged by high-level synthesis
tools. However, current tools do not have wide adoption yet, so most embedded
system designs are based on prefabricated IPs.

Top-down design is more common in software. However, component reuse
promises reduction of development cost and also enhancement of reliability, con-
sidering that the reused parts are already tested. But experience has shown that
software components are seldom developed for reuse. Therefore, component-
based design proposes rules for component development that requires the explicit
definition of operational modes and environment requirements. In software reuse,
integration testing is crucial because components are reused in environments that
may not have been anticipated by its developer. Testing methodologies target
mostly coverage and functionality whereas integration testing is performed mostly
ad-hoc. Therefore, contracts are proposed as specification of component interac-
tion while testing thereof tackles integration.

The hardware/software co-design area has evolved to the ESL methodology.
However, a gradual refinement of the communication abstraction of the high-level
design of ESL is difficult. Although synthesis approaches for interface/driver have
been proposed, SoCs are largely based on standard interfaces. In addition, the
underlying software layers that enable the execution of the software of the high-
level models have to be developed, so I/O, drivers and operating system have to
be ported to the underlying hardware for software compatibility. In particular,
drivers have been recognized as the major source of operating systems’ failures.
Techniques ranging from custom languages for device description, driver synthe-
sis, memory protection to driver’s recovery have been proposed. The verification

30

2.5 Summary

of device drivers has been augmented with models of the operating system in-
terfaces allowing the detection of many driver bugs. Some techniques for reuse
also exist and have been well accepted for devices that are not performance crit-
ical. Finally, although the description of the internal control of devices has been
proposed, the semantics of device/driver interaction have not been well targeted
yet.

This work is concerned with systems and their reliability as an assembly of
reliable components. We investigate how the contract testing methodology can
be transferred to hardware and subsequently to drivers and which advantages it
has. In the next chapter, we present an approach to transfer the contract testing
technique to hardware components.

31

3 Contract Specification for
Hardware Interoperability
Testing and Fault Analysis

3.1 Introduction
While hardware systems are becoming increasingly complex, short time to market
implies both the use of prefabricated components and a high degree of flexibil-
ity. In particular safety critical tasks increasingly depend on complex hardware,
posing additional reliability constraints. This is addressed by a bottom-up de-
sign [BG06] using reliable components. Furthermore, extensive functional testing
[IKK+07], and reliability modeling [Pd05] in the design phase confirm a certain
level of fault-free operation. In the case of safety critical systems, in real-time be-
havioral testing becomes necessary to avoid hazard behavior [KDK06]. Although
experience shows that generally external or environmental reasons like noise, com-
ponent aging, and faulty interoperability are responsible for failure, they are not
explicitly tested [STZ08]. In addition, while failures are typically detected, fault
localization requires the analysis of error propagation which is often not provided
[SS04].

In software, similar questions of reliability often arise. The strategy of contract
testing is presented as a suitable method for component interplay, and for external
service compliance [Gro04]. In a component contract, interoperability conditions
are defined under which the component service is guaranteed. Through constant
monitoring of those conditions, a component can detect faulty usage. Moreover,
this leads to the localization of the fault agent, a faulty component.

In this chapter, we investigate the transfer of this methodology to hardware
systems, formalizing component specification. We show that, similar to software
systems, we are able to identify faulty component assemblies using hardware
monitors. Furthermore, we categorize signal faults allowing the discovery of ev-
idence for environment related failures, tackling the fault localization problem.
For an example of a communication system, we specifically define contracts, and
show comparisons between contract violation, fault categorization, and failure
occurrence under signal fault injection.

In the next section, we give a survey of the related work on which the work in
this chapter is based. In Section 3.3, we explain the general contract, and contract

33

3 Contract Specification for Hardware Interoperability Testing and Fault Analysis

testing methods, followed by the specification of hardware contracts. After that,
the requirements for contract testing and fault categorization are defined. Our
case study of a communication system with its results is presented in Section 3.6.
Discussion of method is carried out in Section 3.7, after which the conclusion
follows.

3.2 Related Work
Contracts are a formal specification to develop reliable systems from reliable
components following the principles of software engineering [Mey92]. A con-
tract specifies component interaction. They manifest as clauses called pre- and
postconditions. Preconditions define what the component requires for correct
operation, while postconditions define what a component guarantees to deliver.
The contract testing methodology spans the contract specification, and its tests.

Contract specification has been embraced by software specification method-
ologies such as KobrA [ABB+02], [Gro04], [SPB+06]. First attempts to extend
this concept to hardware assumed that hardware can be abstracted to enable the
specification of contracts in a software way, not really addressing the hardware
perspective of contracts nor their testing [BG06], [Jan03]. Hardware contracts
were first formalized by [Kam07], addressing the timing problem of pipelined de-
signs. Based on its specification, they automatically generate functional tests for
a model of a microprocessor [Kam08]. However, they do not address correctness
of component interplay, which is the aim of the contract testing methodology
[Gro02].

Contracts assume a black-box view of components whose service is guaranteed
by fulfillment of their preconditions. In addition to software contract precondi-
tions, like the order of data input, hardware has to care about communication
protocols, its signals, and especially timing. Therefore, contract testing requires
the verification of communication protocols.

Bus monitoring methods access the link information for analysis of protocol
faults. Some methods apply behavioral simulation allowing for flexibility of test
cases and fault injection. However, modeling the environment is very difficult for
simulation methods. Moreover, to detect and isolate faults caused by the physical
environment or sporadic component misbehavior, hardware interplay has to be
monitored in real-time. For that, usually the analysis of frames is performed to
check for protocol conformity [CPC03], [BGF03], [ASH+04]. A higher fault cov-
erage is achieved by analyzing every bit of a transmission which allows detection
of binary faults such as glitches [PHZ+05], [ARSH05]. Even higher fault cov-
erage is achieved by mixed-signal verification because complicated interactions
between analog and digital components can be then verified [BCMS05]. How-
ever, this technique is only applied in simulations. A comparable monitoring
implementation generates too much data to be processed for fault detection.

34

3.3 Contract Testing

A solution for the amount of monitoring data is pre analysis of that data with
categorization of signal faults as deviations of a defined signal behavior (physical
level). Moreover, categorized signal faults give evidence of the fault cause. Cross-
man et al. [CGMC03] relate specific behaviors of sensor signals to specific faults
for example. These signal features or faults are abnormal magnitudes, rolling,
noise, and dependency faults.

To specify hardware contracts, we adapt the contract definition of [Gro04] to
include common hardware requirements. We focus on interoperability testing by
monitoring component communication as well as tackling the analog behavior,
using mixed-signal verification. This focus allows us to measure divergences of
the component input from its input specification, permitting fault localization
by considering electrical faults from conductor, external noise, and component
degradation. We categorize these faults based on signal faults, similar to the
categorization from Crossman et al. [CGMC03]. However, dependency faults are
not relevant for communication, and noise is not singularly characterized by our
model. Instead, bit delays and glitches are considered.

3.3 Contract Testing
Contract testing is developed from the idea that the system mission is only accom-
plished if all components operate correctly together [Gro04]. A hardware system
is assembled from many prefabricated components, glue logic, and some custom
modules. Correctness of integrated components is trusted in a component-based
design. Therefore, components are considered black-boxes. Instead of testing
their inner behavior, contract testing verifies the compatibility of a component
with its system by monitoring fulfillment of component requirements.

Often an integrated component does not fit completely to system requirements.
It requires inclusion of glue logic to adapt to the target implementation, which
restricts the operational range of the resulting system. In corner cases, the com-
ponent requirements might be barely ensured, resulting in the delivery of unusable
services. A deficient service can manifest as failures throughout the system. In
the contract testing method, the component monitors its specified requirements.
In addition, other components interacting with it, monitor if its services comply
with their requirements. This way, faulty components can be localized, and faulty
services isolated.

The specification of component usage and requirements is summarized in a
contract. It formalizes the operation between components. Every component
offers a number of functions or services for which a contract is specified with the
conditions for use of the service. For every service, two roles are differentiated:
the client, and the server. Clients have to comply with certain conditions to
acquire a service; in a contract, these are called preconditions. In addition, a
contract specifies under which conditions the service is delivered. It describes not

35

3 Contract Specification for Hardware Interoperability Testing and Fault Analysis

only the functionality of the service itself but also how the service is delivered;
these are postconditions. Pre- and postconditions of a service build its contract.
A component’s contract is the compilation of the contracts for every service it
delivers.

In the following, we define a contract formally.

• a contract C is a set of conditions Ci:
– C = {Ci | i 2 I} that can be subdivided into:

⇤ Preconditions: Cpre = {Ci | i 2 Ipre}
⇤ Postconditions: Cpos = {Cj | j 2 Ipos}

• Each condition Ci is a clause that is true or false:
– Ci ! {true, false}

For a system function F ⇢ Ipre ⇥ Ipos:

• the correct operation of a function fi(Cipre, Cipos) has as necessary condi-
tions that Cipre ^ Cipos = true.

Given this contract, interoperability can be defined by considering the contract
of a system S, which consists of components S(i), i 2 Is.

• For this system, the component interaction R ⇢ Is⇥Is defines a component
set-up.

• For a component set-up S(i, j) 2 R, the set-up function Fij = Fi [Fj is
defined.

• For the component set-up the contract between the two components, Cij =
(Cipos \ Cjpre) [(Cipre \ Cjpos) is defined.

In the example of a counter S(i) with its outputs connected to a display’s inputs
S(j), the component set-up S(i, j) is given, where S(i) provides service to S(j)
(i.e. counter drives signals of the display’s input). For this set-up, the contract
Cij = Cipos \ Cjpre is valid if the preconditions of component S(j) are fulfilled
by the postconditions of component S(i), i.e. Cjpre ◆ Cipos. This result shows
a case where only one part depends on the other, simplifying the interoperation
contract. This result is valid for the example because the counter does not depend
on services from the display, and we neglect the power supply requirements of the
counter.

In addition, in case of a hardware system, the hardware components can lose
functionality due to aging. This behavior asks for a continuous measurement of
the contracts. In particular unequal component aging leads to fault propaga-
tion because of degraded service constraining compliance with preconditions of
clients. Contract testing avoids this, and localizes faulty components (i.e. old
components).

36

3.4 Hardware Contract

3.4 Hardware Contract
To define the contract conditions for a component, information regarding its
interface behavior and conditions of operation has to be gathered. In the case
of hardware, product datasheets contain detailed information about components.
For every possible operating condition, component behavior is described. Despite
datasheets containing sufficient information, contract testing requires a common
format for contracts to allow monitoring and testing. To specify such a contract,
we categorize operability constraints from hardware to systematically characterize
a precondition table in a standard format.

Digital components have analog implementation, which implies operating con-
ditions for correct behavior. We categorize the four following constrained types
for digital components: environment requirements, input levels of signals,
timing, and logic set restrictions. Electronic components have different oper-
ating points, depending on their supply, temperature, or input ranges of signals.
Furthermore, gain compensation of high frequencies leads to slew rates, creating
propagation delays for digital outputs. Some components have undefined behav-
ior for certain input sets. For example, a Set-Reset (SR) flip-flop should never
have both Set (S) and Reset (R) inputs set at the same time, and communication
systems only accept certain data frames ignoring everything else.

A systematic definition of the contract results from the analysis of the con-
strained types. Environmental conditions are defined first, and then input and
timing restrictions, because both timing and input restrictions are environment
dependent. Input levels and timing constraints are interdependent, and associ-
ated with each other in the contract. That is, timing information determines
when input restrictions have to apply. The subset of the input combinations,
which is accepted by the component, composes its logic set. This restriction
applies only when all other constraints are held.

3.4.1 Hardware Contract Constraints

• Environment restrictions: voltage supply, current sink, and temperature
determine the operating point of the analog implementation of a digital
component. Outside of the specified values, the behavior of the digital
component cannot be guaranteed.

• Input levels of signals are restricted by the logic levels. Depending on the
technology, certain ranges are considered to be logic 0 or 1. Values outside
of the ranges propagate through the system, potentially leading to a failure.

• Timing restrictions can be established based on 2 premises.

– Logic components have propagation times (Fig. 3.1). This demands
that the component input be stable for the propagation time so that

37

3 Contract Specification for Hardware Interoperability Testing and Fault Analysis

in
a

out

t
p

t
p

Figure 3.1: Propagation delay of an inverter.

its output can be fully driven. Stable means no logic level violation by
the corresponding input; thus the component can successfully complete
operation.

– Some inputs of memory elements define time windows, for which the
other inputs are accepted (Fig. 3.2). Inside of time windows, inputs
have to remain stable so that the circuit can complete operation.

• Logic set restrictions have to be defined for components which have unde-
fined behavior for certain input sets. For example,

– SR flip-flop should never have both S and R inputs set together; and
– the communication system, which defines a specific frame with a spe-

cific length and characterization of start and end of frame, might not
accept different frames.

3.4.2 Hardware Contract Example

To provide a concrete example of a hardware contract, we are going to carry
out a contract specification based on component behavior, and its datasheet in-
formation. We will describe contracts for a Negated AND (NAND) gate, and
a Data (D) flip-flop, showing how contracts scale for different complexity levels.
The 4th contract constraint category, logic sets, does not apply for these exam-
ples, because their output does not depend on different sequences, and will thus
be treated later in our case study. The contracts for the NAND Gate, and the D
flip-flop are defined in the Tables 3.1, and 3.2 respectively.

38

3.4 Hardware Contract

D

clk

Q

t
w
: acceptance time window (on the raising edge of clk, D is sampled)

: outside of the time window, D is ignored

t
p

t
p
: propagation delay clk

→ Q

t
p

t
h

t
w

t
su

t
su

: setup time after which D is internally stable and ready for sampling

t
h
: hold time required for reliably sampling the input

Figure 3.2: Acceptance time window tw and propagation delay tp of a D flip-flop in
contrast to setup tsu and hold times th. D must be held at a constant
logic level throughout the acceptance time window.

A NAND gate ideally compares its inputs instantaneously, producing a negated
output of the binary product of its inputs. In the contract, this behavior is affected
by a propagation time, and is expressed in the form of a postcondition, which
considers this time. The preconditions are expressed in form of the input and
timing information extracted for one mode of operation, which is represented by
environmental constraints. The timing constraint of the NAND gate’s inputs is
dependent on the propagation time only. Combinational logic, i.e. components
without memory, does not form time windows, thus the timing constraints of
every input are independent from the signal behavior of any other input. On
the other hand, because the D flip-flop is composed of sequential logic, the time
constraint of input D is dependent on the signal behavior of the input clk. This
forms a acceptance time window that has to be specified by a a time reference
and a corresponding duration. Specifically for the D flip-flop, the rising edge of
the signal clk depicts the time window for which the D signal is processed by
the circuit. Therefore, the timing constraint of the input D has to be defined in
reference to the clk input, as in Fig. 3.2. Finally, the timing constraint of the
input clk depends on the propagation time only, as for every NAND gate input.

In the D flip-flop contract, Table 3.2, the acceptance time window of signal D
is derived from the times tsu and th. While the acceptance time window is here
no different than the well known setup and hold times, we also represent signal

39

3 Contract Specification for Hardware Interoperability Testing and Fault Analysis

NAND gate 74LCX00
Datasheet Contract
Behavior: Postconditions:
o(t) = ¬(a(t) ^ b(t)) o(t) = ¬(a(t� 5.2ns) ^ b(t� 5.2ns))
Constraints: Preconditions:
-temperature range: �40 to 85�C ENVIRONMENT:
-Power consumption: < 0.55mA -temperature range: �40 to 85�C
-voltage/current supply: 2.7� 3.6V -Power consumption: < 0.55mA
-Analog condition for bit = 0: 0� 0.8V -voltage/current supply: 2.7� 3.6V
-Analog condition for bit = 1: 2V � Vcc INPUT LEVELS:
-propagation delay of 5.2ns -Analog condition for bit = 0: 0� 0.8V

-Analog condition for bit = 1: 2V � Vcc

TIME:
how long:
-input has to be stable for minimum 5.2ns
when:
-at all times

Table 3.1: Contract specification for a NAND gate.

dependencies of communication systems/protocols with it that are unrelated to
setup and hold times, in our case study for instance. Thus, we apply the name
acceptance time window to cover a broader view of signal interdependency.

3.5 Contract Testing in Hardware
Contract testing identifies contract violations, reporting potential system inter-
operability problems. Every component has to ensure its operability by checking
the fulfillment of its preconditions. If a precondition is not fulfilled, then the
provider of that service has an interoperability issue with the checking compo-
nent. Contract testing includes the process of checking the preconditions of a
component’s contract. To enable contract testing for a component, its contract
specification and special monitoring circuits are built in the component. In this
way, the component accesses the external parameters, and compares them with
its contract, identifying violations.

Because our approach aims at execution of tests in real-time, real-time mea-
surement, and real-time processing are essential. Each categorized hardware con-
straint applies different requirements to measuring techniques. Environment vari-
ables like temperature, voltage supply, or current drain do not change fast; thus
acquisition with low sampling frequency is acceptable, compared to the system
clock. Because the propagation times and the time windows are short, input
levels and timing requirements need a high sampling frequency which is typically

40

3.5 Contract Testing in Hardware

D flip-flop 74HCT74
Datasheet Contract
Behavior: Postconditions:
a D flip-flop just accept input when the clk input switches from 0 to 1

o(t) =

(
i(t), @clk(t)

@t
> 0

o(t), otherwise
o(t) =

(
i(t� tpr),

@clk(t�tpr)
@t

> 0

o(t), otherwise
Constraints: Preconditions:
-temperature range: �40 to 125�C ENVIRONMENT:
-Power consumption: < 0.57mA -temperature range: �40 to 125�C
-voltage/current supply: 4.5� 5.5V -Power consumption: < 0.57mA
-Analog condition for bit = 0: 0� 0.8V -voltage/current supply: 4.5� 5.5V
-Analog condition for bit = 1: 2V � Vcc INPUT LEVELS:
-tpr propagation delay of 53ns -Analog condition for bit = 0: 0� 0.8V
-tsu set-up time of 18ns: D to clock -Analog condition for bit = 1: 2V � Vcc

-th hold time of 3ns clock to D TIME:
-maximum pulse frequency 18MHz data:
-clock pulse width of 27ns how long:

-minimum tsu + th
when:

-tsu before clock switch from 0 to 1 and th after clock switch
clock:
how long:

-minimum 27ns high and low
when:

-at all times

Table 3.2: Contract specification for a D flip-flop.

higher than the signal clock because one wants to identify the slope behavior of
the signal. On the other hand, logic sets do not have to be monitored analogically.
Instead, a logic test as for software is sufficient, and possible using logic gates.

The environmental characteristics, temperature, supplying voltage, and power
consumption can be compared to the contract upon acquisition, and deviations
can be reported. The amount of monitored data of time windows and logic levels
is huge, and has thus to be compressed to guarantee real-time feedback time. This
is realized by a triggering and filtering solution. As we are only interested in the
active data transfer, we trigger the acquisition only when data are transmitted.
Filtering then processes these data, and has the option to categorize faults.

3.5.1 Fault Categorization

In digital systems, data are clocked; and for every period, there is a time window
where the digital inputs have to be stable. Although stability guarantees correct
interpretation, it does not ensure correct transmission of information. On the
other hand, if the signal changes between time windows are evaluated, e.g. signal
evaluation of the complete frame transmissions, faulty signal behavior affecting
bit sampling can be recognized. If changes occur much ahead of the time window,
and if its voltage level is stable afterwards, the probability of correct transmission
is high.

Hardware components interact based on interface protocols defined by the con-
straints, logic set, timing, and input levels described earlier. Techniques to en-

41

3 Contract Specification for Hardware Interoperability Testing and Fault Analysis

hance realiability of data transmission for protocols have been investigated, such
as monitoring. Prototype based communication monitoring techniques [PHZ+05],
[ARSH05] categorize bit faults, glitches, and delays. Crossman et al. [CGMC03]
define possible signal faults of sensors, as abnormal magnitudes (voltage levels),
rolling (slope times), and noise and dependency faults (context dependent). We
categorize signal and bit faults related to digital hardware communication as a
combination of both. A digital signal is ideally represented by two voltage levels,
with instantaneous switching between both levels. For a real electronic compo-
nent to drive its output from one logic level to the other, the resulting signal has
a slope time , which can be measured as a time degraded behavior. The same
applies for delays , which represent the response time of a component. Degraded
voltage levels are variations of the output voltages for the logic levels approach-
ing its boundaries, while glitches are voltage pulses of short duration resulting
from interferences from outside. These four signal and bit faults of digital signals
are used as quality measurement of the operation of a component interface.

• Reduced voltage levels indicate degraded component supply or high load
on the line.

• Slope times measure the ability of the circuit to work up to a certain
frequency.

• Delays are a measure of the response time of the component.

• Glitches gives a measure of the interference or noise on the system.

These are also direct effects of circuit faults, and can thus be used to find the
causes of failure. In addition, they can be detected with the same measurements
needed for contract testing.

3.5.2 Fault Diagnosis

Although contract violations indicate malfunction of the system, finding the cause
thereof is typically not provided. Assuming correct logic operation of the system,
violations of contracts happen due to external influences like temperature, power
supply fluctuation, and underlying structure or interference changes. Upon aging,
components fail more often. In that case, the operation is not ensured, i.e. the
postconditions might not be held even on fulfillment of all preconditions. These
are reasons for a circuit fault. They have to be first located so that they can later
be isolated and repaired.

A faulty component can be found by elimination. On a sequence of components
tested for contract, the component not fulfilling the precondition of a client is
faulty given fulfillment of its precondition. Furthermore, circuit faults mentioned
above also relate to the environment, temperature, power supply, PCB condition,

42

3.5 Contract Testing in Hardware

Causes/Circuit faults Effects/Parameters Cause detection
by contract-testing

Supply Problem Voltage & Current Supply yes
Excessive Load Voltage Level yes
Temperature out of Operating Range Temperature yes
Excessive Wire Load/Exceeded Fan-Out Slope Times yes
Faulty Conductor no
Faulty Component Delay no
Faulty Conductor no
External Interference/Noise Glitches no
Faulty Conductor no

Table 3.3: Fault diagnosis: Fault causes, its effects, and detection by contract
testing.

cables, etc. The environment can influence components to misbehave. Thus,
detection of these circuit faults is especially relevant for system recovery.

Considering a generic electronic component equipped with contract testing con-
nected to a system/other components through wires or tracks of a PCB, we relate
our measurable effects to a set of external factors leading to generic circuit faults
in the Table 3.3. Component fault is also listed, because component misbehavior
is categorizable with our fault set. Half of the defined external factors are mea-
sured by contract testing: temperature, power supply, and load. For the external
causes measured indirectly that lead to a fault, the parameters of fault categoriza-
tion serve as indicative factors although the relation of the parameters to external
causes leaves uncertainty. For example, deviations in delay, slope times or glitches
can be the effect of multiple causes. Moreover, a faulty conductor can result in
glitches, signal absence, increased slope times or delays or a combination of them
all. Because we consider a generic electronic component, we have only associated
possible causes to the effects that we can measure, without defining combination
of effects leading to causes or quantifying probabilities of causes to measured ef-
fects. Table 3.3 only provides an approximated diagnosis for generic electronics
using contract testing. Nevertheless, this approximated diagnosis already enables
reactions to contract violations because it narrows down their possible causes.
Furthermore, more precise diagnosis is possible if we consider a specific system.
A system fault model can be created based on historic fault data and failure
modes analysis. Failure mode analysis reduces possible fault outcomes due to
system construction, while statistical data further rate the most probable causes.
However, historic data and the analysis of failure modes require a specific system
and its long term evaluation which we do not pursue in this work. Nevertheless,
the measurable effects presented on the table serve as evidence nodes of these
system reliability models.

43

3 Contract Specification for Hardware Interoperability Testing and Fault Analysis

3.6 Case Study

Our case study is based on an I2C bus which is extensively used for Integrated
Circuit (IC) communication on PCB. It allows masters to set and retrieve register
values on components connected to the bus. Correctness of component interplay
on PCB, as in embedded systems, is seldom assured. The protocols used in its
communication, such as I2C, have neither error correction nor detection codes.
Moreover, protocol compliance is not verified. However, we address constraints
of hardware interaction based on communication protocols in this chapter. With
them, every communication standard can be verified for compliance.

The contract specification for this system consists of two steps. First, the I2C
standard is analyzed to define the rules for the inputs and outputs of the bus from
and to the system. Then the product datasheets of the components, bus repeater
(i.e. line driver), and bus controller are interpreted for further constraints.

For the case study, we develop built-in circuits to allow contract testing, i.e.
monitoring of contract conditions and fault categorization. The difficulty in im-
plementating testing circuits is variable depending on the speed of the monitored
protocol. Our implemented circuits are not optimized. They serve however as
proof-of-concept. Applying contract testing with the built-in circuits, we perform
fault isolation and fault categorization for two different tests.

The first test shows the capability of the circuit to detect contract violations,
and categorize errors. Here, we explicitly test compliance with component re-
quirements detecting contract violations. Contract violations are typical interop-
eration failures, such as the fault effects defined for communication by Sosnowski
et al. [STZ08]. For our definition, we focus especially on the following failures.
Components, working at their limits, lead to a behavior incompatible with the
preconditions of the clients. PCB conditions lead commonly to contract viola-
tion. For example, the communication medium fails because it is overloaded,
and protocol violations occur due to high bus usage or inter-component conflicts.
External influences are also a typical case of protocol failure, such as the noise
generating glitches being targeted here.

In addition, the first test validates the fault categorization. The categorized
faults are the fundamental effects leading to faults on communication. Other
approaches only detect bit error, wrong frame composition, or failed transmis-
sions. While that enables failure detection and isolation, it does not analyze the
effects leading to them, preventing fault diagnosis. The categorization of errors
which occurred indicates possible circuit faults. This assists system maintenance,
accelerating fault removal.

The second test demonstrates fault isolation. Erroneous client behavior that
certainly leads to wrong data delivery, and thus system failure, is emulated. The
data interpreted by the bus controller are logged for both cases: (1) without
contract testing; and (2) with contract violation assessment and service denial.

44

3.6 Case Study

Figure 3.3: I2C Transmission — SCL: Clock signal — SDA: Data signal.

3.6.1 I2C Contract Specification

I2C Bus

I2C is a communication standard [Phi00] which specifies how the communication
between nodes is established. An I2C bus is synchronous. Its communication is a
2 bit wide serial packet composed of a Clock Line (SCL), and a Data Line (SDA).
The specification [Phi00] consists of a transmission frame (Fig. 3.3), along with
bit transmission rules.

I2C Master Role

The I2C controller is configured as a bus master. The master starts every trans-
mission, which can be write or read requests. Because the contract is made
between the I2C master and the bus, and the controller operation is not affected
by write requests, write transmissions from the master do not concern this con-
tract. A write request requires acknowledgement of the addressed node, but this
acknowledgement does not influence controller operation. That is, the transmis-
sion takes place normally, only that acknowledgement miss is asserted. On the
other hand, read requests require input data, which has to be interpreted by the
controller so that it fulfills its operation of receiving data. Here, the contract
testing has to assure that the data bit transmission rules are being followed. The
I2C standard defines that the data line shall not be toggled while the clock line is
high. This bit transmission rule can be directly translated to a timing constraint
in our contract as a time window.

45

3 Contract Specification for Hardware Interoperability Testing and Fault Analysis

I2C Communication System 1

Datasheet Contract
Behavior: Postcondition:
Component: The I2C communica-
tion controller receive the data sent
through the bus, which attain to the
I2C standard. It transmits a wave-
form, as in Fig. 3.3, where the SCL
has a high to low rate of 3/2. On
data reception, position 11th to 18th
of the frame, it samples the data at
t = 1/5 of SCL period to rising edge
of SCL.

Component: The output data cor-
respond to the data on the bus to the
sampled times.

-SCL is set to 100kHz
-Samples of data are sampled 2 s af-
ter rising edge of SCL

Communication standard and
Component: The output data cor-
respond to the sent data.

Communication standard:
Given an valid input set, correct
data can be acquired on the high
level of the SCL signal.
Constraints: Preconditions:
1 Table continues on the next page.

46

3.6 Case Study

Constraints: Preconditions:
Component: Component:
-temperature range: 0 to 85�C ENVIRONMENT:
-Power consumption: < 10W -temperature range: 0 to 85�C
-voltage/current supply A:
1.14 to 1.26V

-Power consumption:< 10W

-voltage/current supply B:
2.375 to 2.625V

-voltage/current supply A:
1.14 to 1.26V

-voltage/current supply C:
1.140 to 3.465V

-voltage/current supply B:
2.375 to 2.625V
-voltage/current supply C:
1.140 to 3.465V

IOB configured as LVTTL INPUT LEVELS:
-Analog condition for bit = 0: 0 �
0.8V

-Analog condition for bit = 0: 0 �
0.8V

-Analog condition for bit = 1: 2 �
3.6V

-Analog condition for bit = 1: 2 �
3.6V
TIME:
Given a read sequence, positions
11th to 18th in the sequence have the
following time constraints:

SDA: SDA:
-tsu, 0.738 ns before clock edge how long:
-th, 2.762 ns after clock edge -minimum tsu + th

SCL: when:
-tpr, 7.042 ns -tsu before sample trigger

-th after sample trigger
Communication standard: -Sample trigger:
SDA is valid for the high level of the
SCL signal

2s� tpr after rising edge of SCL

Input set: S = {ST: start bit Communication standard and
Component:

SP: stop bit ENVIRONMENT: Component
1: data = 1 INPUT LEVELS: Component
0: data = 0} TIME:
x 2 1, 0 Given a read sequence, positions

11th to 18th in the sequence have the
following time constraints:
SDA:

Read sequence = {ST, x, x, x, x, x,
x, x, 1, x, x, x, x, x, x, x, x, x, x,
SP}

how long:

Write sequence = {ST, x, x, x, x, x,
x, x, 0, x, x, x, x, x, x, x, x, x, x,
SP}

-minimum time 6s: SCL at high
level

when:
-starting from SCL rising edge

LOGIC SET
-not required, since these are gener-
ated by the own component

Table 3.4: Contract for a I2C master node.

47

3 Contract Specification for Hardware Interoperability Testing and Fault Analysis

I2C Communication System

To define the contract specification of the system, we have to analyze how it
is implemented, and get the contract information out of each of its composing
parts. The example system uses the I2C communication controller from Open-
Cores [Her01], implemented on a Xilinx FPGA Spartan3A DSP 1800A. Therefore,
environment requirements and input levels are derived from the FPGA specifica-
tion. The placement and routing of an FPGA design determines the propagation
delays of the circuit on the configured FPGA. These delays are reported to the
user by the place & route software. The time windows for sampling the inputs are
given, first, by the IP core itself when it occurs (for the start of the window), and
then by the same FPGA integrated flip-flops (for the end of the window) because
they determine how long it has to be sampled. Finally, the accepted logic sets
depend only on the IP core implementation.

Because we aim at communication correctness, the communication contract
has to be added to the component contract to assure it. The component contract
claims that, given its preconditions, its output data accord to the sampled data
of the input. On the other hand, the communication contract affirms that, given
its preconditions, the read data are considered to be the sent data. With this
acknowledgement, we can say that, if communication and component contracts
are fulfilled, the output data can be considered to be the sent data. Table 3.4
shows the contract for this communication system, distinguishing the component
contract from the communication system contract where relevant.

3.6.2 Built-in Contract Testing

Contract testing is composed of the measurement part, and the comparison
against the contract. In our case, an FPGA implementation is used due to the
flexibility of building dedicated hardware, and the real-time requirement to pro-
cess the fast sampled data. Analog-to-Digital Converters (ADCs), and filters are
stand-alone components on the board, which are connected to the FPGA, in-
side which the processing units are implemented as dedicated hardware. Fig. 3.4
contains an overview of the architecture.

The use of an open source communication controller allows us to modify it to
inform the acquisition module about frame transmission. This is used to trigger
the system to filter out irrelevant data on the bus, when no transmission is taking
place.

Measuring & Comparison

Two different acquisition and comparison strategies are used, one for environment,
and another for input level and timing variables. For the environment variables, a
single IC with a temperature sensor, and an eight-channel ADC is used. This IC is

48

3.6 Case Study

I2C sda

scl
data

Acquisition

trigger

Processing
Violation

Bit Analysis

Error Protocol

 Fault
Category

 Signal
Violation

Power

Temperature

Acquisition
&

Comparison

Environment
 Violation

Figure 3.4: Block diagram of the I2C communication system with contract testing
and fault categorization.

initialized to run each second in a round-robin fashion, acquiring the temperature
and data from all its inputs. Three different voltage supplies together with a
measure of the total drained current are connected to this ADC. Due to the
high time constants related to these values, no anti-aliasing filtering is necessary.
Comparisons of the temperature and the power supply with the contracts are
made with the same frequency with which the data are acquired. Each second, a
module fetches the measures from the stand-alone ADC and temperature sensor,
and compares them with the contract values informing physical violations.

For the time and input level contract parameters, dedicated signal acquisition
hardware controls a 32MHz 8-bit ADC. Furthermore, an anti-aliasing filter is
used, as well as voltage adaptation to the ADC input range, so that the bus
signal can be acquired. Having the ADC driver inside the FPGA IC, the trigger
signal of the communication controller is directly connected to it. In doing so, the
modules, processing violation, and bit analysis have information about when a
bit begins and ends. This approach enables the detection of the sequence position
by counting clock toggling, which is needed by the time and input level contract
clauses. When the processing violation module starts to receive data from the
acquisition module, it first counts the rising edges of the SCL. As defined in
contract, from count values of 10 to 17 while SCL is high, the input data are
monitored not to trespass its input level. On trespassing of allowed input level,
signal violation is asserted.

49

3 Contract Specification for Hardware Interoperability Testing and Fault Analysis

Categorization of Fault

On top of the acquisition module, a bit analysis module is designed to extract
our categorized signal parameters. These are called faults or signal faults in
the following sections. These extracted parameters are compared with contract
limits on the error protocol module. If the parameters exceed the limits, an error
is asserted in a given protocol. This error is forwarded to the component user as
output of the component.

Bit Analysis The bit analysis module extracts the signal faults from the digital
signal converted by the ADC. The output of this module, for every transmitted
bit, consists of the values for the previously categorized parameters: voltage level,
delay, rise time or fall time, and glitches.

The recognition of the bit boundaries, start and end of bit transmission, is
necessary after the signal acquisition. To find the bit boundaries, a clock signal is
used. In the synchronous case of the I2C controller, its own clock signal is used.
It is connected to the processing violation and bit analysis modules of our design.

Besides the information of the bit boundaries, we detect bit flip and glitch
occurrences. Having this information, the parameters of Fig. 3.5 can be calculated
from the time stamp relations, and the digitalized signal levels. Rise and fall times
can be derived from the time it takes for the bit flip to fully complete. The delay
value is assumed to be the time it takes for the bit to start flipping after bit
middle (clock bit flip divided by sampling time). The voltage level is the voltage
average after flipping, or after bit middle, in case of no bit flip. To be able to
determine a glitch, we store its time stamp and voltage level upon occurrence.
As we cannot know how many glitches occur, a glitch count is present to give an
idea of how much environmental interference there is on the bus.

Glitch and bit flips are detected in a sub-module of the bit analysis module,
independent of the bit boundaries. Bit flip detection is based on two voltage
limits: a lower, and an upper. On initialization, an arbitrary bit level 0 or 1 is
assumed. On bit level 0, a flip is detected when the voltage exceeds the lower
limit. It is then confirmed if it trespass the upper one. It works vice-versa for the
bit level 1. Glitch detection uses minimum voltage tangent, and maximum step
value to filter out small voltage variations and bit flips, which also are a sudden
change of voltage level. The input signal is first derived, and a glitch start is
signalized upon higher tangent than the given parameter. When the tangent
value is again lower than the defined minimum, the voltage step between these
two time points is compared with the maximum defined step. If the step was
lower than it, a glitch is confirmed.

During the glitch evaluation, the time between glitch start signaling and glitch
confirmation, the voltage sample with the maximum voltage difference to the
voltage at glitch start is stored. Glitch duration is counted as the number of
samples which belonged to the glitch.

50

3.6 Case Study

clk

dat voltage level

g
lit

c
h
 l
e
v
e

l

fall time

delay time

glitch time

bit start bit middle bit start

t

t

V

Figure 3.5: Signal parameters of a bit window categorizable by our fault analysis.

V

t

 real
fall time

dat

measured
 fall time

 upper
voltage limit

 lower
voltage limit

previous voltage level

next voltage level

measured
 delay

 real
delay

Figure 3.6: Linear approximation of the bit flip based on threshold measured
times.

51

3 Contract Specification for Hardware Interoperability Testing and Fault Analysis

Based on the stored glitch information, and the detected flips, the time param-
eters are measured in relation to the bit boundaries. At bit start, all previous
parameter outputs and counters are reset. A counter starts again from zero, and
several time stamps are marked, on arrival of the bit middle, at the start of a later
confirmed flip, on the first confirmed glitch, and at the end of the bit. Between
flip recognition and flip confirmation, another counter is started and stopped for
the slope interval count. If flip is confirmed, the counter value is saved to the
slope interval output parameter.

Still inside the bit scope, the voltage level is stored as the sum of all the voltage
levels either after clock or after flip, with priority to flip. Together with this sum,
a count of how many elements have been added is also stored. The complete
output of the bit analysis module is then composed of four items.

• Voltage level: voltage sum and number of added elements.

• Delay: count mark for start of confirmed flip, and count mark for bit
middle.

• Slope time: count of the interval between start and confirmation of a flip,
and total bit window count (i.e. amount of samples in a bit window).

• Glitches: first glitch start mark, glitch level, glitch interval count, and
glitch count.

The output of the bit analysis module is moved to the error protocol module
where the signal fault degrees are compared against time and voltage limits.

Error Protocol In this module, we treat all bit fault information of a transmis-
sion. Each bit fault information is compared with fault limits. If any violation
is found, the error protocol is filled with the found fault. This error protocol is
then forwarded to the output of the component.

For comparison, the module’s input data have to be preprocessed. We divide
the voltage level sum by the voltage level count to compare the average voltage
level of the transmitted bit with the accepted logic levels. The rise and fall times
are retrieved from the slope interval input. But to know if it has been a rise or a
fall time, the voltage level of the previous bit is used.

We compare the time input values in a normalized manner. The absolute
discrete time (counter values), stored by the bit analysis module, changes with the
bus operating frequency, and the ADC operating frequency. Thus, we normalize
it dividing time marks by a time mark corresponding to the bit length, allowing
us to compare time values independently of acquisition rules or bus operation
frequency. Similarly, the delay is normalized. Relative to the time to the bit
middle, as in Fig. 3.5.

52

3.6 Case Study

Fault category Assumed standard value Violating value
Voltage level

Low 0V > 0.8
High 3.3V < 2.0

Delay �20, 00% > 0%
Slope time 1, 00% > 26.4%

Glitch [0%� 60%] 0� 20% > 25%

Table 3.5: I2C communication standard and contract violating values for signal
parameters.

We apply corrections to delay and slope time. Slope time is measured only
between the limit parameters for high and low bit. Delay time is also marked on
start of flip recognition being also the upper or the lower limit for the flip, instead
of last voltage level as represented on Fig. 3.5. We assume a linear bit flip, and
calculate its gradient by dividing the difference between the voltage boundaries
for the flip recognition by the measured slope interval (Fig. 3.6). Then, the
previous, and next voltage levels are divided by this gradient to assess the real
slope interval. A delay correction is calculated by dividing the difference between
previous voltage level and upper voltage limit by the gradient. The real delay is
assessed then by the subtraction of the delay correction from the measured delay.

Finally, the error protocol is summarized in 5 bits. They indicate which faults
occurred in a transmission. Each bit stands for a categorized fault. As the error
protocol is asserted together with the data in each transmission, there is con-
tinuous information of which faults are occurring in the communication system.
The values for the standard conditions compared to the processed fault data are
listed in Table 3.5. These comparison values can be adapted depending on the
application. For our case study, they are extracted from the level leading to a
contract violation, when the other signal parameters are at their standard levels.

Circuit Performance

The voltage level detection of the bus monitoring module is accurate enough
to detect voltage differences on the order of 0.01 V. A 100kHz bus operating
frequency requires a sampling rate of the ADC of approximately 21 MHz, resulting
in 215 samples for each bit window. In testing, the times measured diverge
from the inserted ones by 2 samples. We assume that the anti-aliasing filter and
voltage adaptation used for the analog digital conversion are responsible for those
divergences because the propagation delays of the digital circuit are negligible in
comparison to these, and nothing else influences the signal/data propagation of
the circuit.

53

3 Contract Specification for Hardware Interoperability Testing and Fault Analysis

Fault category Deviation level [%] Error protocol Contract violation Failure occurrence
Low bit 0.5 V

Voltage Level 1 V Low voltage level yes yes
High bit 3.0 V

Voltage level 1.8 V High voltage level yes yes

Delay
0 %
+10% Delay yes
+25% Delay yes yes

Slope time
20%
30% Slope time yes
50% Slope time yes

Glitch 20% 40% Glitches yes yes
50% Glitches yes yes

Table 3.6: Detection of contract violation and signal fault in contrast to failure
occurrence on I2C communication.

3.6.3 Test Cases

To test the categorization and contract violation detection of our monitoring
system, we needed a function generator to inject signal level faults. To be able to
analyze the faults, the communication controller had to receive data. A protocol
specific frame was created as a waveform for the function generator. After a
standard waveform was created, it was possible to distort the waveform to inject
signal level faults.

Test Case 1: Detection of Contract Violation, and Error Categorization

The first test consists of adding the specified signal faults to the payload individu-
ally, checking failure on the received data, contract violation, and fault categories
assertion. The operating frequency was 100kHz. Emulated faults like voltage
level faults are described by their actual voltage level. The other faults use nor-
malized parameters as in the error protocol module. For rise time and fall time,
it represents how much of the bit time (i.e. clock period) in percent was required
for linearly sweeping from one voltage level to another. For the delays, the same
percentage of bit time is used with reference to the middle of the bit, ranging
thus from -50% to 50%. The glitch values mean how much the voltage level of
the glitch represents the other logic voltage level. But for recognition of a glitch
it is necessary to say where it occurred. So, we choose the glitch at 20%, because
the component samples its inputs on that time most probably leading to failures.
The fault categorization output, violation detection, and failure occurrence are
listed in Table 3.6.

Test Case 2: Fault Isolation

Although contract violations already indicate an emerging problem in hardware,
sporadic interferences or external events which lead to an instant violation of con-

54

3.6 Case Study

50

55

5a

5f

64

69

6e

73

78

7d

 0 200 400 600 800 1000 1200 1400 1600

Sa
m

pl
e

Va
lu

e
- 8

-b
it

He
xa

de
ci

m
al

Sample Number

'raw.dat'

Figure 3.7: Raw data acquired by the I2C communication controller under the
faults that have occurred in test case 2.

tract or even failure have to be successfully recognized by this monitor. Although
contract violations are asserted, nothing assures that they really occurred. On
the other hand, data failure occurrence is a proof of a contract violation, which
validates the detection and categorization of the monitor. Therefore, we inject
signal faults which lead to failure in order to effectively measure the capability
of the monitor to detect them. Because we rely on a static waveform to inject
faults in our system, we had to use signal faults which are most influenced by the
environment as delay or slope times. Therefore, our function generator was con-
figured to return the byte, 55 hexadecimal, with signal slope times of 16%, and
delay of 16% for 1 hour. Due to analog parametrical changes over time, cables,
and inner circuit operation of the generator, these parameters float within +-5%.
Because the I2C controller implementation samples the data on 60% of the clock
period, or 20% after the clock as in our normalization, delay faults leading to
data failure randomly occur.

Adjusting the monitor parameters to only assert delay violations of 20%, and
slope times above 25%, we were able to filter out 100% of the sporadic failure
occurrences. The filtering process uses the information about fault occurrence to
filter out data with faulty signal parameters. The acquired data without filtering
can be seen in Fig. 3.7. The filtered acquisition has no failures, thus only with
the value hex 55. The test has been run for 3593 seconds, 1441 frames of data
have been received, and 758 frames identified as faulted. All faults have been
categorized as delay faults. Through this experiment, we were able to analyze
the dynamic performance of the monitor.

55

3 Contract Specification for Hardware Interoperability Testing and Fault Analysis

3.6.4 Generic Results

The built-in test circuit consists of 2 ADCs, 2 quadruple operational amplifiers,
and 1 instrumentation amplifier. In our proof-of-concept case, the total cost of the
IC is $14.16. In addition, the logic part is a synthesizable Verilog code requiring
development time of about 2 person months. With the developed code, there
is no cost for further implementation. The logic implementation requires 1,548
Look-up Tables (LUTs), and 376 flip-flops of the Spartan3A DSP 1800A, which
costs around $65.00. Considering that the target application requires an FPGA,
the cost of contract testing implementation would consist only of the external
ICs.

On a developed application using the contract testing strategy for the I2C
communication, the FPGA design comprises an OpenRISC CPU controlling the
I2C communication controller to acquire data from external sensors. Without the
developed monitor logic, the FPGA design used 12,192 LUTs, and 5,125 flip-flops.
Thus, the monitor consumes 12.7% LUTs, and 7.3% flip-flops in comparison to
the functional FPGA design.

In exchange to this overhead, failures of the data acquisition resulting from
cable faults, external interference, or protocol misbehavior of sensors can be de-
tected and isolated. In comparison to the use of error detecting codes used in
different protocols, we categorize the errors which occurred, enabling the inference
of the circuit fault.

However, the maximal sample rate of our monitor is of 32 MHz due to the
chosen ADC. This reduces the applicability of our monitor to interfaces running
at a maximum of 3.2 MHz to still allow enough samples for error characterization.

Contrary to the area overhead and cost factor, the insertion of the monitoring
circuits does not influence the component behavior. Because the monitor inputs
are buffered using an operational amplifier, their input impedance is very high,
representing no load to the input signal. Furthermore, the execution of the con-
tract testing can be done in parallel to system operation, providing fault isolation.
Unfortunately, on fault isolation, a failure of the monitor leads to component fail-
ure. Therefore, the monitor must be highly reliable to not negatively affect the
component.

The contract testing method is developed for component-based design. How
meaningful the appliance of the built-in testing circuits is depends on the compo-
nent granularity. Monitoring the behavior of every flip flop in a system is neither
efficient nor feasible. However, monitoring the behavior of critical components of
the target application can considerably raise the overall system reliability. The
implementation of contract testing for singular critical components on the design
limits the localization of faulty components. However when contract testing is im-
plemented for a level of granularity of system functionality, misbehaving system
functions can still be localized.

56

3.7 Discussion

3.7 Discussion

Hardware contracts are easy to define because hardware components and stan-
dards are well documented. The contract information has only to be extracted
from the existing documentation.

Furthermore, hardware components age, degrade, and are directly influenced
by the environment. Thus, the environment situation and component use change
over time. That is, contract testing for hardware is always meaningful, while it
may only be reasonable for software in a modularized system where components
are steadily replaced.

With the assessment of signal faults and environment violations by the appli-
cation, information about the possible causes of the faults can be inferred. If the
cause is located, the application is able to repair or isolate it.

The results of our case study show that a fault detection and categorization
is possible for slow speed systems. With the monitor approach, both hardware
errors and sporadic faults can be detected and categorized. On the other hand,
the algorithm we use to calculate the signal fault responsible for the contract
violation does not categorize contract violations which occur due to the combined
effect of many signal faults.

Moreover, in our case study, contract violations are asserted for signal fault lev-
els, which still allow normal operation. This happens because of the divergence
between specification and implementation. This implementation does not violate
the I2C communication specification because it is a subset of it. However, regard-
less of no system failure, the communication contract is being violated; only the
component contract is not. So, the behavior is reliable for the component, but
not for the communication system.

Due to the speed requirements of the signal acquisition to execute contract
testing, the testing implementation can be expensive. This is especially the case
for simple systems, where the cost of the components required for contract testing
is higher than for the system being tested. Another constraint of the implementa-
tion is the assumption that the input signals of the component can be measured.
Even constraining the contract testing to only acquire binary levels, the imple-
mentation is based on oversampling. Thus, for all but the slowest systems, the
implementation might be infeasible because the maximum acquiring speed is lim-
ited, and some systems will also sample their inputs in a similar speed. However,
the circuit shows the strengths and the feasibility of the approach. A substantial
complexity reduction can be achieved by applying analog circuits to measure the
signal faults. Such optimization is beyond the scope of this work, which focuses
on the approach, the specification and the test method, not its implementation.

57

3 Contract Specification for Hardware Interoperability Testing and Fault Analysis

3.8 Conclusion, and Future Work

The presented method represents a way of specifying and testing. The contract
specification for software aims to ease component reuse. In hardware design,
component reuse is standard. Therefore, hardware components already possess
detailed documentation from which contracts can be extracted. A contract is
defined in two steps. First, the requirements for component operability have to be
defined, which are called preconditions. Later, the results of component operation
and their related constraints are the postconditions, to which the component is
committed.

To formalize the contract for hardware, the essential requirements for hardware
have been pointed out. Requirements for environment, input levels, time, and
logic set are considered to be common to every hardware component. This in-
formation represents the preconditions of a hardware contract. With the regular
structure of the contracts, a machine is able to interpret and monitor it.

Contract testing tests the fulfillment of the contract preconditions. For this,
real data have to be acquired, and compared to the contract. The environment
variables have slow time constants, and can thus be sampled with low frequen-
cies, while the timing restrictions for the input levels must be very short times,
requiring high sampling frequencies. The comparison of the acquired data to the
contract preconditions can be made directly for the environment variables, while
high speed input data require data compression and post-processing.

The information about contract violation is enough to detect an operation fault.
But to locate the cause of the fault we have detected, that fault categorization
is needed. With more information about the digital signal on the inputs of a
component, the causes for contract violation can be better determined. The
parameters’ voltage levels, delays, slope times, and glitches are chosen to further
categorize contract violations, and thus enable detection of causes.

Finally, we show how to describe a contract for a master node of an I2C com-
munication system. Based on this, a contract testing circuit was built to detect
contract violations and categorize them. The contract testing circuit was able to
detect contract violations, and in addition categorization of the faults has been
carried out. In a second experiment, the validation of the contract testing circuit
against occurrences of communication failures have shown 100% failure recogni-
tion. However, contract violations can be caused by combined faults, inhibiting
our fault categorization.

A contract represents an easy way to formalize specification, and to test in
real-time. The advantage of contract testing becomes evident when the aging
and environment dependent nature of hardware is taken into account. However,
contract testing turns out to be a considerable overhead for simple systems. For
safety critical systems, the overhead is justified because critical operations can be
constantly verified for their operability.

58

3.8 Conclusion, and Future Work

For the continuation of this project, we are first going to optimize the cate-
gorization mechanism to allow the categorization of combined signal faults. In
addition, we plan to support fault localization for contract testing. The current
idea is to apply a Bayesian network as a fault analysis model using the hard-
ware contracts, and categorized faults as evidence nodes. Furthermore, we are
planning different approaches to execute contract testing faster, and in a less
expensive way.

59

4 Model of Hardware Contracts
and Violations on Transaction
Level: A Fault Propagation
Analysis

4.1 Introduction
Safety critical systems have to operate safely even on the presence of faults.
It means that malfunctioning components have to be located and their faults
isolated, so that they do not propagate to the user. The behavior of the system
in the presence of faults can be analyzed using a model of the system. For that,
faults and methods for localization, isolation and correction have to be modeled.
In the case of an acquisition system, the communication buses connected to the
sensors are influenced externally by the environment and by each communicating
node, being a critical point of the design.

The early design of complex hardware systems, including software and hard-
ware parts interfacing with the real world and user, is aided nowadays by system
design methodologies. System design [BMP07] abstracts the behavior of the
system components only specifying their function. With it, different system ar-
chitectures can be explored to reason about performance, cost and dependability.
As the number of components raises, their communication begins to be crucial
to the design of the system. However, the model of communication is strongly
restricted in classical system modeling methods. For instance, in a C model,
the communication between components is abstracted to function calls hindering
performance and dependability analysis. On the other hand, the RTL, used in
hardware design, does not abstract communication hardening the exploration of
different bus architectures.

In order to effectively design system communication, the Transaction Level
Model (TLM) has been developed [Ope]. It allows the design of the communica-
tion to be independent from the components or architecture design. Furthermore,
the detail of the model can span from function calls to pin signaling. Because
TLM enables the incremental design of communication systems, the early analy-
sis of communication faults on TLM designs is of special interest. In particular,
modeling of the mixed-signal behavior of communication systems has not been

61

4 Model of Hardware Contracts and Violations on Transaction Level: A Fault Propagation Analysis

targeted yet.
In this chapter, we analyze the propagation of signal faults through a syn-

chronous bus in a Transaction-Level model of an acquisition system. This system
is composed by multiple sensors connected to a bus, a bus master and a CPU
that polls the data. First, the bus, its modes and operating characteristics are
modeled. The selection algorithm of fallback mode is placed on the communica-
tion controller, the bus master. For the fault injection, probability distributions
are defined for the characteristics of the signal: Delay, slope level, voltage level
and glitches, thus statistically generating faults. These faults are traced by the
model so that their propagation results can be evaluated later.

The next section outlines the related work of this chapter. Section 4.3 explains
the bus model, its operating modes, the fault analysis and fault processing mod-
ules. Section 4.4 presents the acquisition architecture simulated in this chapter,
the fallback selection algorithm and the fault generation, followed by the simula-
tion results. In Section 4.5, the conclusion of the work is presented.

4.2 Related Work
Monitoring techniques are especially used for the verification of buses. The mon-
itoring methods, based on simulation, monitor faults which are simulated by
testbenches as a virtual faulty environment. Generally, digital fault is injected in
the behavior model of a communication controller described in traditional HDL
languages, such as Verilog or VHDL [DLMSS08]. But novel mixed-signal veri-
fication approaches model the analog behavior of transceivers as well, allowing
the use of analog inputs in order to analyze both transceiver and communication
controller faults [BCMS05]. They claim that the fault coverage of a mixed-signal
system is often decreased due to the complex interaction between analog and dig-
ital verification methodologies. Their verification method opens the possibility of
covering these propagating signal level faults early in the development.

The use of the TLM methodology for fault analysis has been derived from the
use of SystemC [Ope] as a high level language for system design and verification.
It allows the abstraction of behavior, structure and communication [BMP07].
However, to achieve measures of performance and cost and reason about system
architecture, SystemC is able to gradually refine the specification of the system.
One key development for this is the TLM library, which tackles the problem of
the design of communication systems with gradual refinement of implementation
details. The use of SystemC for verification raises the question of the design
dependability. To reason about dependability, the previous work has focused
on the reliability assessment of the design through fault injection and analysis
on simulation. Because SystemC has several abstraction levels, Beltrame et al.
[BBM09] carry out an analysis of how RTL faults, digital faults in ports and
registers, can be modeled in the abstraction levels of TLM (e.g. approximately-

62

4.3 Bus Model

timed and loosely-timed). Chen et al. [CWP08] developed a framework for the
event triggered injection of bit faults in a TLM design. The event is here a
communication functionality (e.g. burst-read).

The classic verification methods evolve towards the inclusion of complex ana-
log digital interactions to the model for higher fault coverage. Although SystemC
AMS covers mixed-signal simulation, it works at RTL not TLM level. Therefore,
our work aims at the verification of mixed-signal systems for the TLM design
methodology taking advantage of early system level design and high speed sim-
ulation, while enabling the analysis of the impact of mixed-signal faults. This
complements the work of Beltrame et al. [BBM09] and Cheng et al. [CWP08]
extending the verification of TLM designs to the signal level. For that, signal
characteristics: Delay, slope level, voltage level and glitches are defined for trans-
actions. These characteristics are interpreted and corresponding signal faults are
assigned if operating limits of the communication system are exceeded. Assigned
signal faults are then translated to digital faults.

4.3 Bus Model

In order to model a signal fault aware bus and its fallback modes, the TLM
library is used. The current standard considers performance issues related to
the communication, but does not include operating characteristics that affect
the communication reliability. The standard comprehends standard blocking and
non-blocking transport interfaces and defines a standard payload1 which includes
performance characteristics, such as delay and latency [Ope]. We extend this
standard payload to include the signal quality factors: Delay, slope level, voltage
level and glitches, which are directly related to communication faults and the
bus operation mode. In addition, the model of the synchronous bus also holds
its operation mode: Operating frequency, clock phase, logic levels and connected
nodes.

Payload extensions contain both the value of signal characteristics of the trans-
mission and a record of the violation of their limit (i.e. signal failure). When
forwarding read calls, the extension is ignored, the signal characteristics are set
by the callee. When the callee sends back the payload, the bus analyzes its sig-
nals, assigning the corresponding signal failure if the bus operation limits are
exceeded. In addition, the bus modifies the payload transmitted data according
to the signal failures which have occurred. Finally, the complete payload is sent
to the caller. Based on the failure record, the caller can then decide to change the
operation mode in order to avoid further failure. On write calls, the bus analyzes
the signal characteristics and processes the data first, then forwards these to the

1An instance of the standard payload corresponds to a packet, when modeling a regular
communication protocol.

63

4 Model of Hardware Contracts and Violations on Transaction Level: A Fault Propagation Analysis

Figure 4.1: UML sequence diagram for write and read calls to the modeled bus.
* represent that the variable has been set, ** modified.

callee, ignoring the extension on return. The UML sequence diagrams for these
transactions are shown in Fig. 4.1.

4.3.1 Modeling Signal Faults

Prototype based communication monitoring techniques of Pallierer et al. [PHZ+05]
and Armengaud et al. [ARSH05] categorize bit faults, glitches and delays. Cross-
man et al. [CGMC03] define possible signal faults of car sensors, as abnormal
magnitudes (voltage levels), rolling (slope times), noise and dependency faults
(context dependent). We categorize signal and bit faults related to digital hard-
ware communication in a combined manner. A digital signal is ideally represented
by two voltage levels, with instantaneous switching between both levels. For a
real electronic component to drive its output from one logic level to the other,
the resulting signal has a slope time , which can be measured as a time degraded
behavior. The same applies for delays , which represent the response time of a
component. Degraded voltage levels are variations of the output voltages for
the logic levels approaching its boundaries, while glitches are voltage pulses of
short duration resulting from interferences from outside. These four signal and
bit faults of digital signals (Fig. 4.2) are used as quality measurement of a trans-
mission. They are described in the payload extension of a data frame as: Both
high and low bits voltage level; rise and fall time; delay; glitch time, level and
count.

64

4.3 Bus Model

Signal Conditions Signal Failure Detection Digital Fault Generation

VH < 2.0V
High bit All 1s to 0sVoltage Level

VL > 0.8V
Low bit All 0s to 1sVoltage level

�d > �s Delay Rotate data to the right

�d + �r > �s Rise time y[n] =

(
0, x[n� 1] = 0

x[n], otherwise

�d + �f > �s Fall time y[n] =

(
1, x[n� 1] = 1

x[n], otherwise

Glitch count > 0 Glitch time Nothing
�s � 18� < �g < �s + 18�

VH ��Vg < 2.0V Glitch high level In combination with glitch time
All 1s to 0s

�Vg + VL > 0.8V Glitch low level In combination with glitch time
All 0s to 1s

Table 4.1: Signal conditions for signal failure detection (limit for bus operation)
and digital fault generation according to detected signal failure. The
phases � of the Table are defined in Fig. 4.2. Moreover, we define x[n]
as a bit series of the output data of the transmitter, while y[n] is the
bit series of the data arriving at the receiver. The index represents the
bit position of the data.

65

4 Model of Hardware Contracts and Violations on Transaction Level: A Fault Propagation Analysis

θ

θ

V

clk

data

Φ
s

: voltage level violation

Φ
s
: sampling phase

Φ
0
 = 0° Φ

0
 = 360°

Φ
d
: delay phase

Φ
d

ΔΦ
f

ΔΦ
f
: fall phase (ΔΦ

r
rise phase)

Φ
g

ΔV
g

ΔV
g
: glitch voltage

Φ
g
: glitch phase

V
H

V
L

V
H
: high voltage level

V
L
: low voltage level

Figure 4.2: Time normalized signal characteristics. Times are multiplied by the
operating frequency resulting in phase values.

4.3.2 Fault Analysis and Digital Fault Generation

The signal conditions of the data being transmitted through the bus are analyzed
and digital faults are generated accordingly. The data sender sets the signal
characteristics for the transmission. These are then compared to the conditions
of Table 4.1 to detect signal failures. The listed conditions are based on the
limits imposed by the operation of the bus. For comparison, the timing signal
characteristics are normalized to phase signal characteristics accounting for the
bus frequency. The bus operation conditions, sample time and clock phase are
merged to the �s sampling phase. Logic levels and sample time depend on the
specification and are thus constant, not influencing the relationship between op-
eration mode and violation limits. Signal failures lead to data failure. In order
to model this, each detected violation generates a digital fault according to the
generation schemes described in Table 4.1.

4.4 Acquisition Architecture
In order to avoid asynchronous complexity and cope with the earliest design
stages, the architecture modules, acquisition CPU, bus master and sensors are
modeled in SystemC using the loosely-timed coding style of the Transaction-Level
Model, calling thus blocking transport only. While the approximately-timed style
is able to model communication handshaking through non-blocking interfaces, it

66

4.4 Acquisition Architecture

Bus Bus

Master

CPU Sensor

Sensor

Figure 4.3: Block diagram of the modeled acquisition system.

also requires accurate models and complicates the simulation.
The architecture connects the acquisition CPU to the bus master, which is

connected to the sensors through the previously modeled TLM bus, Fig. 4.3.
In the model of the acquisition CPU, only the acquisition polling function is
modeled. The bus master contains a thread safe buffer implementation, which
is accessed by the CPU. To the other side it interfaces with the bus, executing
two tasks. First, it request the data of every sensor. Then, if the bus detected
a signal failure, the bus master may change the operation mode of the bus and
retry transmission. In addition, the operation mode of the bus can be periodically
reset to raise bus performance. This also reconnects previously isolated nodes,
which might have been faulty only for a short period of time.

Each sensor continuously reads data from a different input file that can be
accessed by calls to the blocking transport method. Upon each sensor access, the
signal characteristics of the TLM extended payload are set. Apart from glitch
count, these signal characteristics follow a Gauss distribution. The values for
the mean and the standard deviation of the distributions can be set on sensor
instantiation. The glitch count is modeled by a geometric distribution instead
whose initialization value is equal to the chance of no glitch occurrences in a bit.
For this configuration, the statistic variable xk represented by the distribution
is the number of sequential bits requested for a glitch occurrence. In order,
then, to calculate the statistic variable glitch count for a data frame, the formula
framebits/xk is applied.

4.4.1 Recovery Mechanism

As recovery mechanism, we implement fallback modes for our bus system that
allow for correct functionality in the presence of faults by the usage of an alter-
native operation mode. In the bus master, the fallback mode selection algorithm
of Fig. 4.4 can be activated. The bus master gets the information about signal
failure occurrences from the bus instance. If the algorithm is activated and any
failure occurs, a selected fallback mode is assigned to the bus by the bus master.

67

4 Model of Hardware Contracts and Violations on Transaction Level: A Fault Propagation Analysis

Figure 4.4: UML activity diagram of the algorithm for fallback mode selection.

Directly after mode change, a single transmission retry is carried out, for which
neither fallback mode nor further retries are activated. After this transmission is
completed, fallback modes can continue to be assigned.

Because we model a synchronous bus, we can circumvent delays and slope times
by postponing the sampling of a bit. This strategy is followed until we reach
a maximum of 180� phase between the data and clock signals because higher
degrees would imply in a transmission delay interfering with the transmissions to
follow. If failures still occur due to delays or slope times despite the appliance of
this strategy, we reduce the operation frequency of the bus. We also deal with
adverse voltage levels by disconnecting the nodes responsible for driving the bus
incorrectly. Moreover, this also helps in cases where the bus fan-out has been
exceeded. Finally, on the occurrence of successive glitches on bit sampling, we
again increase the phase between the data and clock signals to avoid sampling on
glitch times.

4.4.2 Results

During the simulation of the model, all data is accepted by the acquisition CPU.
Faulty data is marked on simulation and counted, if faults are detected, infor-
mation about isolation or correction is logged, otherwise failure occurrence is
asserted. With these data, fault propagation analysis can be made, producing
statistics about the robustness of the model against the environment modeled by
the probability distributions.

An environment is defined in the Table 4.2. The bus works with a 100kHz
clock frequency, the sampling phase of the implementation is of 216�, and the
logic levels are Transistor-Transitor Logic (TTL) (bit 0: 0.8 V/bit 1: 2.0 V). For
a simulation of a bus in this configuration, the values of total system faults (signal
failures), fault isolation, fault recovery and failure occurrence are compared for
2 modes: fallback without periodic mode reset (Reset OFF) and fallback with
periodic reset (Reset ON). The corresponding results are presented in Table 4.3.

68

4.5 Conclusion

Signal Characteristic Mean Standard Deviation
High bit 3 0.35Voltage Level
Low bit 0 0.3Voltage level
Delay 4µs 1.2 µs

Rise time 2µs 0.1µs
Fall time 2µs 0.1µs

Glitch time 4µs 0.5µs
Glitch level 0.5 0.1

Table 4.2: Parameters of the normal distribution used to model the signal char-
acteristics of the sensor transfers. The unlisted glitch count parameter
follows a geometric distribution with initialization value of 0.8. That
is an 80% chance of glitch free bit.

We do not list the results for a bus without fallback because it neither isolates
nor recovers any fault. Thus, the same test for such a bus produces the same
number of failures as arisen faults. On the example of a transmission of data
through this bus corresponding to a sinus signal, a graphic of the data received
by the CPU for a simulation with bus fallback turned off and on can be seen on
Fig. 4.5. The simulated fallback mode includes the periodic mode reset.

Applying signal fault detection and adapting the bus operation mode according
to Section 4.4.1, 98% of the total transmissions have been blocked. The reason
for this behavior lies in the blacklist fallback that disconnects a sensor from the
bus on the delivery of wrong logic levels. This way, faults do not occur and the
bus is free for correct data transmission. But sporadic faults result in permanent
exclusion of the sensor’s data. In order to avoid permanent sensor exclusion and
ever increasing degradation of bus performance, we apply a periodic operation
mode reset that copes with sporadic fault occurrence. This results in the recov-
ery of 97% of the generated faults. The remaining 3% of the faults turned into
failures because they have occurred on the retry transmission after fallback mode
set. In this situation, no further measures are taken, otherwise the communica-
tion process with other nodes is interrupted and an endless degradation of bus
performance can occur.

4.5 Conclusion

The verification using classic hardware description languages evolves towards ap-
plying mixed-signal verification to reduce uncertainty about the interoperability
between analog and digital systems. Faults in the different abstraction levels of

69

4 Model of Hardware Contracts and Violations on Transaction Level: A Fault Propagation Analysis

Number of Reset OFF Reset ON
Transmissions 40000 40000

Transmission Retries 6 2833
Blocked Transmissions 39198 457

Faults 8 5516
Isolated Faults 4 239

Recovered Faults 8 5143
Failures 0 134

Table 4.3: Test results for fallback without periodic mode reset (Reset OFF) and
with it (Reset ON).

Figure 4.5: Graphics of the data received by the master through a bus with fall-
back modes (left) and without (right). Sensors send digital words of
the amplitude of a sinusoidal signal together with signal parameters
for the transmission. On transmission, faulty signal parameters gen-
erate digital faults according to Table 4.1 that distort the received
data.

70

4.5 Conclusion

TLM have not been yet completely modelled. In this chapter we have introduced
a mixed-signal verification strategy for TLM models, which profits from early
verification of system design.

In order to process and analyze signal faults created in the system, we first
developed a signal fault model, based on standard signal quality characteristics.
Afterwards, an algorithm for detecting these faults based on operating properties
of the same bus was created. Similarly, the same bus processes the transmitting
data generating data failures according to the detected signal faults.

Then, we inserted the developed bus in a TLM model of an acquisition system
to reason about fault propagation through a bus with fallback modes. Here, a bus
master is implemented, which controls the bus, providing the bus with different
operation modes. Faults have not been directly injected in the system. Instead,
probability distributions have been assigned to the different signal characteris-
tics of the sensors, building the environment of the system, which statistically
generates faults.

The description of the signal characteristics of the sensors is realistic and can
be easily adapted to different conditions. The online adaptation of the operation
modes of the bus is able to isolate and correct almost every fault by sacrificing
performance. In future work, we plan to compare this results with the fault toler-
ance of communication protocols with error correcting codes and error detecting
codes with retries.

71

5 Device Mechanism: Structured
Device Driver Development

5.1 Introduction
Device drivers are error-prone especially because the development methods of
hardware and software are independent. Interaction between software and hard-
ware is informally specified, and interface testing is rarely designed. This situation
is illustrated by device drivers accounting for up to 70% of the failures on oper-
ating systems [GGP06], [Mur04]. In an operating system, the device driver has
not only to comply with the device interface but also with a possible device class
interface, and the kernel specific API. The major problem lies in the flexibility
of these interfaces. The operating system interfaces may be non-standard or not
fully specified, and the device may have a custom interface. In the categorization
of six-years of bugs for Linux kernel drivers, Ryzhyk et al. [RCKH09] found out
that, 38% of driver bugs are related to violations of device protocol, and 20% to
violations of OS protocol.

In addition, the steady rise of new devices requires fast development of device
drivers. Thus, drivers are re-used creating unified drivers. A unified driver,
such as the USB class driver, serves a multitude of devices with a similar device
interface. These approaches imply that the upcoming devices have to maintain
the old device interface to some extent. Less certain, however, is the compliance of
the new devices with the non-explicit device interface constraints that the driver
expects. Finally, registers used for device control cannot be natively represented
by general purpose programming languages. Hence, up to 30% of driver code
deals with error-prone bit operations [MRC+00].

In this chapter, we propose a new architecture for device drivers based on the
separation of concerns. Most specifically, we envision a device centric software
interface for device access, the device mechanism. Instead of configuring a de-
vice operation mode for a system specific implementation, this interface enables
full device control while providing a universal means of correctly operating the
device. This way, implementations of various device abstractions, different op-
erating systems or device classes, can take advantage of the same device access
interface. This idea matches the concept of separation of mechanism and policy
widespread in the operating system design [TW09]. Despite the architectural
focus on cohesion of device access, the bit operations are error-prone, and the

73

5 Device Mechanism: Structured Device Driver Development

device access through a communication system is complex and operating system
dependent. Thus, we provide a framework for the systematic development of the
device mechanism giving semantics to device registers and communication. The
semantics allows for register and communication description and their seamless
software access providing correct access behavior and operating system indepen-
dence.

The limitations of our device mechanism abstraction and the effort for porting
the framework to another communication or operating system are evaluated. We
show the feasibility of our architecture by re-engineering the Linux driver for
Philips webcams. After describing the internal device structure, we create a
device mechanism interface for the camera using it in both a user and a kernel
space driver. Differences in code and memory size between our driver and the
original driver are presented. Based on an analysis of the Linux Git logs for
the respective driver, we show known and unknown bugs which could have been
avoided.

The next section reviews the state of the art on driver development and reli-
ability methods. Section 5.3 fully describes the device mechanism, its interface,
implementation rules, and specification of Direct Memory Access (DMA) and
Interrupt functions. After that, the implementation of the framework for the
systematic composition of the device mechanism is explained. Limitations of the
device mechanism abstraction and the implemented framework are presented in
Section 5.5. Our proof-of-concept Philips webcam example is presented together
with its results in Section 5.6. Discussion about the method is presented in Sec-
tion 5.7, followed by the conclusion.

5.2 Related Work
Device abstraction is the goal of device drivers on operating systems. To accom-
plish this, operating systems envision the architectural decomposition of drivers
into a generic device interface and device specific implementations. A generic de-
vice interface embraces a device type presenting a generic interface to any device
of that type for the applications of the operating system [TW09]. The remaining
driver maps the abstract interface to device commands using any structure of
device control (i.e. addresses of device registers and communication). Given that
the specific underlying device has a driver implementation for the operating sys-
tem, keyboards, pointing devices, disks, network cards, webcams, and others can
be used by applications in a unified way through the generic device interfaces.

Although the driver architecture in operating systems is useful, a driver remains
a complex software component mainly because its task spans multiple operational
scopes, such as controlling the device, administrating resources, synchronizing,
and coping with the generic device interface. Recent research on device driver
synthesis proposes a generic device interface as a central driver specification to

74

5.2 Related Work

which two separate description mappings have to be provided, mapping to oper-
ating system, and to a specific device [RCK+09]. With the driver specification
and the two descriptions, the driver is synthesized to a specific device, and a
specific operating system. By exchanging the corresponding description, another
operating system or device is supported. In addition, this reduces the complexity
of the driver by reducing the scope of each description.

Earlier work on driver synthesis complements the architectural approach pro-
viding semantics to device control structures. Otherwise, these devices structures
are mapped through error-prone bit operations. Earlier synthesizers generate reg-
ister accessor functions in the C language, and interface hardware in HDL, au-
tomatically resolving visibility of module registers through the interconnect, and
complying with the interface protocol of the modules [COB95], [WB94]. Later
work targets the description and access of device registers. These are described
in a custom language enabling the definition of properties such as permission,
bit fields, pre-defined values, and register cross-dependency. The descriptions are
synthesized to C macros after a static consistency check [MRC+00], [SYKI05].

Beside the avoidance of programming mistakes by the inclusion of device se-
mantics, further work moves towards the inclusion of runtime checks of assignable
values, and allowed events. The former is enabled by embedding assignable values
to the register description in the custom language. The latter requires the descrip-
tion of either a call order [OOJ98] or a state machine [WMB03]. Driver synthesis
is already able to leverage the driver development on operating systems. For
example, Conway et al. [CE04] proposes the implementation of a device specific
implementation through a state machine description. However, the requirements
of using a custom language and the restricted access modes of memory mapped
and port I/O discourages its adoption.

Fault tolerance and removal approaches have also been used to enhance driver
reliability. Fault tolerance through driver encapsulation targets non-deterministic
faults well. Most encapsulation techniques isolate memory access violations
[TW09], [LCFD+05], [SMLE02]. Based on the detection of a fault, some systems
recover to a known state. Herder et al. [HBG+07] provides a policy controlled re-
covery system for unresponsive drivers, while Swift et al. [SABL06] uses a shadow
driver for mimicking the real driver behavior during recovery. Unfortunately, fault
isolation is not suitable for solving design or implementation faults. It is able to
avoid the failures but their deterministic behavior continuously activates the fault
isolation mechanism and the fault is not corrected. To find programming faults,
model checking tools have been successfully used [ECCH00]. Extensive violations
of OS protocol have been exposed by model checking tools including a model of
the OS protocol behavior [BBKL10], [BR02]. However, a formal specification of
the device protocol, whose violation is the highest source of driver faults, is rarely
available resulting in a modest success on the removal of driver programming er-
rors. Therefore, recent research moves towards new driver architectures for fault

75

5 Device Mechanism: Structured Device Driver Development

prevention specially dealing with the lack of formal device protocol specifications.

Contribution
Our device mechanism architecture proposes a software interface for device access.
The device access embodies the mechanism part of the driver, allowing for the
software control of the device, while the remaining driver implements a policy
mapping the generic device interface, the device class, to the device mechanism.
The device mechanism is device centric, directly extracted from the hardware
functionality, providing a stateless software image of the device in contrast to the
generic device interface proposed as central driver specification by Ryzhyk et al.
[RCK+09]. The device mechanism is fully specified because it is based on the
hardware device implementation making it easy to associate constraints with the
interface. This helps in filling the device protocol specification gap.

In addition, the device mechanism completely abstracts the device control
structures, device registers and communication to the driver policy. In order
to efficiently control these elements, we provide a framework for the description
and access of registers and communication. In comparison to earlier work on
the mapping of device registers [MRC+00], [SYKI05], we define an abstraction
for communication systems for the transport of stream data, and the definition
and usage of interrupts and DMAs. The communication abstraction can also be
bound to the register map for custom register access, complementing the tradi-
tional memory mapped and port I/O access types.

5.3 Device Mechanism
In order to correctly explain the task of the device mechanism, we give an overview
of what devices do, and how they are integrated into operating systems. From
the point of view of a computer system, devices provide new functionality, gen-
erally being a means to interact with the environment. As an example, Fig. 5.1
shows the integration of a pointing device in an operating system. The device
captures movements on a plane which are reproduced with a graphical cursor on
the computer’s screen. Generically speaking, devices translate physical dimen-
sions to electronic data. The position of the cursor on the computer screen, i.e.
the designed functionality, is provided by the operating system to applications
through a generic device interface.

Put in this way, it does not seem that there is much left for the driver to
accomplish. However, the functionality implemented in the device need not be
directly related with the designed functionality. As a result, the electronic data
of a device is not necessarily the data required by the generic device interface.
For example, a graphics tablet exports the position of the pen on the table, while

76

5.3 Device Mechanism

OS

OS IO

 Device Mechanism

Driver Policy

Device Class OS API

Device

Device IO

Figure 5.1: Hardware and software architectural layers involved in integrating
device functionality in an operating system. Overview of the driver’s
interfaces in an operating system.

a regular mouse provides the displacement of the mouse in an elapsed time. In
the case of a mouse, the driver is responsible of calculating the coordinates, to
be compatible with the operating system requirement on input of pointing de-
vices. This interface mismatch is exploited by vendors to produce more affordable
devices by leaving some functionality to be implemented by the driver.

Besides the mapping of designed functionality to the functionality implemented
by the device, the driver has to access the device data through a communication
system. Although native access or memory mapped I/O might be available, the
data might not be natively representable in programming languages. Thus, the
driver has to handle the internal device structure, addresses, ports, registers and
their bit fields in order to acquire the correct information. Furthermore, in case
of non-native access, the access sequence has to be programmed, such as the
access of device registers through transmission of USB setup packets. Therefore,
the driver needs the complete information about the device structure and the
communication properties. In addition, configuration of external controllers must
also be available to the driver for implementation of specialized functions, such as
DMAs and interrupts which require joint configuration of device and controller.

In our approach, we separate the driver in two software layers. The device
mechanism provides access to the device data exporting the implemented func-
tionality as a software interface. The driver policy interfaces with the device
mechanism mapping the designed functionality to the functionality implemented
by the device. In this work, we focus on the device mechanism, whose task is
to handle the internal device structure, addresses, ports, registers, and control
of DMA and interrupts controllers for the driver, as well as the communication

77

5 Device Mechanism: Structured Device Driver Development

system to access them. Therefore, it needs complete information about the de-
vice structure and the communication properties. In return, the device data and
control are exposed to the driver as a software interface.

We aim to export the state machine of the device to be handled directly by
the driver. Hence, the device mechanism must stay a clean static interface. A
stateless interface reduces the risk of increased complexity due to state explosion.
The device mechanism is not meant to adapt the device logic to comply with the
operating system interface, which is ensured by defining that the device mecha-
nism must not modify or process any data from or to the device. The compliance
with the operating system interface is left to the driver policy using the device
mechanism to control the device.

5.3.1 Interface Design

The device mechanism interfaces with the driver policy, and with the device
through the communication system and the internal device structures. We define
here the interface to the driver policy. The interface to the driver policy is the
external interface of the device mechanism and belongs to its definition. On the
other hand, the interface to the device allows for the control of the device requiring
a mapping of the device structures and a configuration of the communication
system. The definition of how to specify and implement them can influence the
final reliability of the device mechanism. However, it is an implementation aspect
and will be dealt with under the Section 5.4.

The interface to the driver policy is a pure software interface. That means that
no device structure and communication configuration is required to use it. The
software interface is represented as a collection of software functions. In addition
to conventional functions, the device mechanism has to support DMA transfers
and interrupts.

Interrupts are supported by passing a function pointer as an argument to a
registry function of the interface. The passed function can optionally accept
values of device data, in which case also a data buffer has to be registered for
this use. This way, data related to an interrupt event can be passed back to
the driver policy right after interrupt occurrence, in the case of completion of
a DMA transfer for example. In addition, it is mandatory for an interrupt or
DMA transfer to be automatically disabled after completion to release the device
mechanism from the task of managing buffer ownership over time, and thus,
to avoid states in the device mechanism. The buffer used by the interrupt or
DMA transfer is held by the device mechanism until completion thereof because
it will be automatically filled with device data by the device mechanism. Upon
completion, the buffer is released back to the driver policy for data processing.

78

5.3 Device Mechanism

5.3.2 Formal Definition of Device Mechanism

Formalizing the device mechanism, we give an unambiguous understanding of
the task of this software layer. Moreover, the formal system allows us to math-
ematically define implementation rules for it that can be used to ensure correct
architectural design.

We first define the device data S as being the tuple of sets for the possible values
for register field �, register ⇢ and stream �. Then, there is a device structure X
which is the tuple of sets for the specific structures for the access to field �,
register P and stream ⌃. These structures hold properties regarding the amount
of information that can be held, where the information is held, and how it can
be accessed.

1. S = h�, ⇢, �i

2. X = h�, P,⌃i

Given both, we define a device D as their union. This is true from the point
of view of the device mechanism which sees the device as data input or output
disregarding its behavior. The device must be accessed through a communication
system ⌦. Data are accessible through a communication system given a device
structure that contains the access data (e.g. address). Thus, a communication
system is a relation between the device structure and data.

3. D ✓ X [S

4. ⌦ ✓ X ⇥ S

Device data are only accessible given that there is a communication system
relation between device structure and data and the corresponding device structure
exists. Thus, accessible data S 0 are the elements of S that can be accessed by the
communication system ⌦ and for which there is a corresponding access structure
x.

5. s 2 S 0 $ 8s9(x, s) 2 ⌦ ^ x 6= ?

Moreover, certain structures are only internally available. Therefore, we must
differentiate between externally X 0 and internally visible device structures X.
Normally, every device structure is visible from within the device whereas only
a subset of it is exported. Given that ⌦ is the external device communication
system, we can define that the externally visible device structures are the ones
for which the external device communication system can find data. Thus:

6. x 2 X 0 $ 8x9(x, s) 2 ⌦ ^ s 6= ?

79

5 Device Mechanism: Structured Device Driver Development

Finally, the relation between externally visible device structures X 0 and the
external communication system is the device mechanism, M . And its interface,
I, is a subset of the relation between a device mechanism and the externally
visible data, S 0.

7. M ✓ X 0 ⇥ ⌦

8. I ✓ M ⇥ S 0

In addition, we can express the liveness property below that every request
completes. For that, we use temporal logic, and assume the system M to have an
arbitrary number of states. Given an interface method i |= f(m) = s 2 I that is
a call to the device mechanism, we separate the call into two steps in time, the
request R and the completion C.

9. R ! ⇧C

5.3.3 Implementation Rules

Based on the device mechanism formal system, we define rules which further
constrain the implementation of the device mechanism. These rules ensure a valid
architectural behavior of the device mechanism. They enforce that it does not
further process any data or add states to the device. However, the functionality
exported by the mechanism is device dependent, as well as the device structure
and communication mapping. The driver correctness still depends on them but
we cannot create generic rules for them.

The rules have been defined with the nature of the device mechanism in mind,
to control a device and transport data in both directions. The idea is to restrict
anything else to be done in this software layer, specially avoiding states and
data processing. Some special cases, as the implementation of callbacks and the
grouping of register accesses in a function have been specifically considered. The
latter is required by register cross dependencies or functions controlled by multiple
registers, such as enabling a DMA address space.

Argument Rules

The interface functions of the device mechanism may have arguments only as
values of types register field, register or stream of bytes. They may have no
further arguments.

1. S 0 ✓ S = h�, ⇢, �i

In addition, the device mechanism might temporarily hold stream of bytes in
form of driver buffers. But it must release them and issue a callback call.

2. C R S 0

80

5.3 Device Mechanism

Variable Rules

The device mechanism holds no static state variables of the device.

1. M \ S = ?

The device mechanism holds variables with definitions of the device structure
or communication system. These can be addresses, ports and registers, endpoint
addresses, interrupt lines, etc.

2. M ✓ X 0 ⇥ ⌦

Calling Rules

The device mechanism is allowed to group several device functions in a single
driver function.

1. gn(x0
n) = s0n 2 M | n 2 N

2. i |= {f(m) = s | m =
Sp

n=1(gn(x
0
n) = s0n) 2 M} 2 I | p 2 N+

Calls from the device mechanism to the driver are only allowed after being
previously enabled by the driver through a non-blocking call. After completion
of the upward call (callback to the driver), the upward call is disabled until
another request re-enables it.

3. C ! ¬C U R

Processing Rules

The device mechanism must not modify the value of function arguments. They
must be forwarded through from the driver to the device and from the device to
the driver.

1. 8f(m) = s 2 I9g(x0) = s0 2 M | s0 = s

A single device mechanism function can access multiple device registers/data.

2. i |= {f(m) = s | m =
Sp

n=1(gn(x
0
n) = s0n) 2 M} 2 I | p 2 N+

Likewise, these data can be omitted from arguments of the device mechanism
function.

3. i |= {f(m) = s | m =
Sp

n=1(gn(x
0
n) = s0n) 2 M | 9s0n 6= s} 2 I | p 2 N+

81

5 Device Mechanism: Structured Device Driver Development

5.3.4 Specification of Specialized Functions

Besides every call to the device mechanism interface being a request to the de-
vice mechanism, the device mechanism can acknowledge the receipt of a request
instead of immediately completing it. However, it must complete the request at
some point in time after that. This way, we can register a buffer for stream data
for the device to fill it, receive the acknowledgement, and gather the data at a
later point when the completion arrives. The above stated rules still hold for this
case.

In addition, this allows modeling both DMAs and interrupts. However, the
above defined rules impose that every completion of either interrupt or DMA
transfer automatically disables them. That restricts the automation of the device
mechanism leaving the automation and control of the device totally to the driver
policy. This goes along with the goals of our approach because we want the device
mechanism to be mostly static. As an outcome, a driver interfacing with it has
to re-issue DMA transfers and re-enable interrupts after they complete.

5.4 Systematic Composition

The device mechanism is the relation between the device structure and the com-
munication system M ✓ X 0 ⇥ ⌦. A major difficulty of its implementation lies
in the absence of semantics for these hardware entities in general purpose pro-
gramming languages. In other words, there is no standard way of handling device
registers or its fields, whose information exchange control the device. Moreover,
the communication system is dealt with as a software interface providing mech-
anism to access addresses. However, current communication systems, like USB
and PCI, are controlled through a device driver by themselves. As such, they
include new structural elements which have to be handled as well.

With a consistent description of the device structure and communication, and
a corresponding interpretation for them, we provide the semantics missing in
current programming languages. A consistent description defines the context of
the hardware entities and defines their elements, subelements, properties, and
interrelations. The correct interpretation allows handling these elements and
subelements while respecting the given properties and interrelations. As an ex-
ample, the consistent description of a register embraces its access information,
properties, meaningful bit fields, and names for the access of the register and the
bit fields. The interpretation then enables the access to them through the defined
names also avoiding bit operations.

The explicitly described access information allows the access to be engineered in
a standard way instead of arbitrarily defining disconnected parameters and access
functions. This enhances the cohesion of these elements. Hence, a malfunction of
an element implies necessarily that it has been wrongly described narrowing the

82

5.4 Systematic Composition

search for the fault. While in conventional access, every access to the same register
is independent from each other and the parameters used may vary. Furthermore,
elements, its subelements and properties can be checked for correctness in their
context. This way, overlapping registers, assignment of invalid values or conflicts
between memory and register definitions can be detected.

Moreover, the specialized functions, DMA and interrupts, are special hardware
operations. Because they are also controlled through registers, and the communi-
cation system, they do not interfere with their description. However, a first half
interrupt handler has to be implemented by the device mechanism. It acquires
the interrupt data, and queues the second half interrupt handler, a registered
callback function of the driver policy, to be processed later. However, it must not
re-enable the interrupt as stated in the Device Mechanism Section.

5.4.1 Design

The choice of a language to describe the hardware entities, and to implement
the interpretation of the hardware semantics depends especially on its descriptive
power and user acceptance. Another important aspect is the impact of this choice
on the implementation effort for the device mechanism and the underlying frame-
work. Currently, only custom languages are available. NDL [CE04] and Wang
et al. [WMB03] define a language for the complete driver development requiring
support for the whole driver control, (e.g. synchronization, communication, etc.),
while Devil [MRC+00] and Hail [SYKI05] generate C macros for the access of the
defined registers. However, macros are only suitable for memory mapped or port
I/O.

Moreover, custom languages and the absence of support tools discourage the
user from adopting a new technology. Besides, only the description of the hard-
ware entities is a problem for conventional programming languages, not their
access. Thus, we separate description and access allowing for hardware semantics
also in standard languages. In addition, access in multiple platforms only requires
a new access API, keeping the description.

For the description of the hardware entities, we consider the Extensible Markup
Language (XML) appropriate due to its efficiency and wide adoption. It does not
ease the data input but keeps it generic, machine/human readable, and can be
extended. Besides, metadata does not require a specific syntax. Instead, it defines
type and data explicitly in a hierarchical way. Moreover, it can be used as output
of a custom language or of a Graphical User Interface (GUI) for the definition of
the data, and editors for XML are also available. Finally, existing XML parsers
can be used for the translators.

For the access of the hardware entities, we use a C API. As parameters, it
accepts C structures, generically called records, containing data from the XML
documents. In contrast to C macros, this allows for the implementation of run-

83

5 Device Mechanism: Structured Device Driver Development

OS IO

 Device Mechanism

Device
Registers

XML

XML

Com.

Translators Com. Registers

Device InterfaceUSB Interface

Device

Device IO

Figure 5.2: Systematic composition workflow. Register map and communication
descriptions are translated to software elements that can be managed
through the existing device and USB interfaces facilitating the imple-
mentation of the device mechanism.

time checks, such as permission, constrained write values, and access behaviors.
C is also the most popular programming language, leveraging its maintenance
and extension. Furthermore, only drivers implemented in C run on commodity
operating systems avoiding the necessity of translation of its code. Also, custom
register access through diverse bus systems is then possible by the access to the
respective drivers in C. Moreover, the user can use this API natively on his driver
code and directly profit from the operating system API by, for instance, using
the conventional synchronization primitives.

5.4.2 Implementation

The workflow of the systematic composition starts with the definition of XML
documents for the device registers and the communication. Each XML document
is processed by a translator producing named instances of C structures for the
corresponding XML elements. These C structures contain the same fields as the
XML element, and some fields for internal use of the APIs. The next step is
the implementation of the device mechanism. For that, the developer can access
the device data by simply issuing API calls with the generated C structures as
argument. The Fig. 5.2 gives an overview of the workflow.

The input of the translators are XML documents based on a specific XML
Schema. Hence, the structure, and the content of the input document are fixed.
From an input document, two files are generated, a C header and a source. The C

84

5.4 Systematic Composition

Listing 5.1: Register map structure
extern struct pwcblock {

Reg ⇤ brightness;
Reg ⇤ contrast;
...
Reg ⇤ agcMode;
RegField ⇤ agcMode_agcMode;
...
Mem ⇤ cache;

struct { //agcAuto register file
Reg ⇤ agc;
Mem ⇤ cache;

} agcAuto;

struct { //agcFixed register file
Reg ⇤ agc;
Mem ⇤ cache;

} agcFixed;

} pwcblock;

header contains one main C structure for the complete XML document enclosing
named pointers to instances for all elements which allow the access to electronic
data. The hierarchy of XML is mimicked by nested C structures containing
further elements. As an example, registers of a specific register file are grouped
into a C structure as shown in Listing 5.1 and are accessible through the register
file’s given name and the ’.’ operator.

The data types of the elements declared in the generated header file are defined
by the C APIs for device access. Together with their definition, helper functions
for allocation, removal, and association of instances are provided. The generated
source files define functions for initializing and removing an interface, register
map or communication. Their initialization consists of allocating all instances,
populating them with the data from the XML document, and associating them
with related elements. The removal of the interface gives back the memory to the
system removing the instances.

Context Definition

IP-XACT is a standard for integration and reuse of IP [IEE10]. They provide
XML Schemas which also contain a detailed definition of a register map. In-
stead of creating our own register map definition, we use IP-XACT. Because our
implementation, translators and APIs fully support the IP-XACT memory map
Schema, we profit from IP-XACT being able to directly integrate third-party
descriptions into our workflow,

The IP-XACT register map description includes the access to registers and their
bit fields, the description of permission, constrained write values and volatile read
behavior. Access rules are available in the form of register files and alternate

85

5 Device Mechanism: Structured Device Driver Development

registers. Registers can be described inside register files and can belong to an
alternate group, in which case, the alternate group or register file can be enabled
or disabled blocking the access to the related registers. Furthermore, there are
bit fields whose access triggers an action that can collide with other actions.
These bit fields should be described with a triggering of actions property that
is not available in the standard. Taking advantage of the metadata description,
we extend the standard, naming the property strobe read or strobe write
because registers which exhibit this behavior are called strobe registers. However,
we do not introduce more advanced access rules in this layer. We think this can
be better handled on top of the device mechanism with the inclusion of device
constraints.

In addition, we create a context for the communication system. Our XML
Schema allows the specification of the standard descriptors defined in the USB
specification. Furthermore, we extend them with setup packets for access of sta-
tus/registers. Generally, configurations, interfaces, endpoints and setup packets
are treated simply as integers by the system API. Instead, we define these el-
ements with all corresponding properties and dependencies. For instance, the
interface does not simply have a corresponding number but also belongs to a
configuration.

Translators

The translators are implemented in Python with the Lxml library for XML pars-
ing. We chose Python for its simplicity, also allowing for rapid prototyping thanks
to its memory management, metaprogramming features and dynamic typing. The
Lxml library has a native Python API and enables parsing in similar way to the
Document Object Model (DOM) but requires less memory and can traverse a
tree similar to the Simple API for XML (SAX) while freeing not used elements.

The translators are divided in three modules, the parser, the resolver, and
the code generator. The parser defines native data types for the corresponding
data of the XML document. Upon the document being read, these objects are
instantiated and the XML data is imported. That generates a tree with different
objects containing the XML data. The tree represents the XML hierarchical
structure. It is then input to the resolver that resolves cross references of the tree
elements. After that, the objects of the resulting tree contain data independent
of inherited data and default values. Moreover, only for data of the IP-XACT
translator, the following context rules are proven.

• Register width fits in the specified memory width

• Register address is within the defined memory range

• Listed values for the registers can be represented with its bit width

86

5.4 Systematic Composition

• Declared bit fields do not surpass the register width

• Listed values for the bit fields fit in

Finally, the code generator generates the header and source files in the C lan-
guage based on the tree processed by the resolver. For that, it also takes into
consideration that no naming conflicts occur. If multiple elements in a namespace
have the same name, this is detected and averted.

Semantics

The defined contexts, register map and USB communication, get a unique inter-
pretation with the implementation of C APIs, device interface and USB interface
respectively. These APIs provide the access to the values of the S 0 set through
the C structures generated by the translators. This enables the control and for-
warding of data from and to the device. In the register map context, operations
to transfer data to bit fields and registers are provided, while transfers of data
streams are available on the USB interface.

Device Interface

To access registers and bit fields, the device interface offers set and get functions.
The interface maintains a cached value of every register. At startup, the cache is
invalid, so every first read or write to a register activates the cache. If a register
is not volatile and the cache is active, the value of the cache is supplied on a get
function. Every set function updates the cache and writes to the device. We
use the denominations read and write when referring to the device access, while
get and set are the API operations.

Accesses to bit fields are dependent on the access to the register. Hence, to
set or get a bit field, the parent register has to be set or get. The bit fields of
a register share the cache of the register. Thus, on set or get to bit fields, the
register cache is used. The bit operations required to retrieve a bit field value
based on a register value or vice-versa are independent of updating the cache or
accessing the device. In case of a bit field setting, the register value is updated
and then the full register is written to the device. On a bit field get, the cached
value of the register is retrieved and the bit field value is calculated based on it.
Depending on multiple rules, the cached value is updated with the device data
prior to bit field calculation.

In addition, different access modes are available for setting and getting registers
and fields. Because a constrained write value can be set to write as read, we
support functions for getting and setting a register or a bit field at once. Also,
functions for delayed access exist. These functions are useful for setting multiple
bit fields of a register one by one and only writing the register value to the device
later. Finally, the device interface has functions for getting registers or bit fields

87

5 Device Mechanism: Structured Device Driver Development

with forced behavior. Using these functions, the developer can force the interface
to return the cached value of a register or bit field or force a read from device.

In order to temporarily store the values assigned to bit fields in the delayed
mode, we use a linked list whose elements are the temporary bit field values and
a pointer to the corresponding bit field. We also keep track of cached bit fields
through a dirty flag as a field in the bit field C structure. This helps on the
quantification of the dirty fields required to determine the access behavior.

With multiple access properties (volatile, permission, strobe) and the com-
bination of multiple access modes (get/set, forced, delayed), the rules defining
the access behavior become complex. Moreover, bit fields can have properties
on their own, influencing the behavior of the register. The Table 5.1 summa-
rizes the possible access behaviors regarding the possible register and bit field
properties for access in standard mode. To begin with, we compile the required
queries for every type of access listed in the second column of the table. Every
query is executed as its corresponding predicate depending on register’s and bit
field’s properties as defined. We use P and � as relations of register’s and bit
fields’ properties and these properties’ values. Notice that some properties’ values
are already either true or false. Moreover, there can be multiple bit fields for a
register. Thus, we use quantification operators to define the evaluation of their
properties. Depending on the result of the query, actions of the Table 5.2 are
undertaken.

The last implemented functionality of the device interface are register files and
alternate registers. These are defined by the IP-XACT XML Schema for extended
register access control. Our implementation does not fix the control conditions.
Instead, we allow the developer to freely enable or disable a register file or an
alternate group. There is no difference in the implementation of a register or
an alternate register. A register holds a list for its register files and another for
alternate groups that enable an alternate register. On every device access, if any
listed register file is not active, the access fails. If the access does not fail for the
register file, and any alternate group in the list is active, the access is granted.
Alternate groups and register files are generated by the translators, and are also
found in the main C structure in the generated header file.

USB Interface

The USB interface can be selected as wrapper to either Libusb or to the Linux
USB subsystem. Thus, our USB drivers can also be implemented in user or
kernel space in a similar manner. In comparison to the functions of the wrapped
subsystems, our interface expects the typed communication entities as arguments
for its functions. The main functions of the interface are functions to transfer
data. Again, get and set functions are provided. They expect the input of
an endpoint, a buffer, and length as arguments. The endpoint is defined by the
XML Schema and is a named pointer in the main C structure of the corresponding

88

5.4 Systematic Composition

Access Query Predicate

getReg Access P (access) = read ^ 8�(access) = read

Need Transfer P (volatile) _ P (strobe read) _ 9�(volatile) _ 9�(read action) _ 9�(strobe read)

Allowed Content ¬9�(strobe write) _ 9!�(strobe write)

Need Modify Content 9�(read action)

getField �t Access �t(access) = read

Need Transfer �t(volatile) _ �t(read action) _ �t(strobe read)

Allowed Content ¬9�(strobe write) _ 9!�(strobe write)

Need Modify Content 9�(read action)

setReg Access �(access) = write ^ 8�(access) = write

Need Transfer true

Need Read before Write 9�(write value constraint) = writeAsRead _ 9�(volatile) ^ ¬9�(read action) ^
¬9�(strobe read)

Allowed Content 8�constraint(�) ^ (¬9�(strobe write) _ 9!�(strobe write))

Need Modify Content 9�(modified write value) _ 9�(strobe write) | ¬�(volatile)
setField �t Access �t(access) = write

Need Transfer true

Need Read before Write (9�(write value constraint) = writeAsRead | � 6= �t) _ (9�(volatile) | � 6= �t) ^
¬9�(read action) ^ ¬9�(strobe read)

Need Adapt Content 9�(modified write value) | � 6= �t ^ 9�(strobe write) | � 6= �t

Allowed Content 8�constraint(�) ^ �t(write value constraint) 6= writeAsRead ^ (¬9�(strobe write) _
9!�(strobe write))

Need Modify Content ¬�t(volatile) ^ �t(modified write value) ^ �t(strobe write)

Table 5.1: Access behaviors: queries based on register and bit field properties
that affect their access. The access procedure follows the listed queries
in the top down direction. Depending on the queries’ outcomes that
are defined in Table 5.2, access procedure might continue, fail, data be
managed or a cache value be returned.

Query True False

Access Continue Fail
Need Transfer Continue Return Cache
Need Read before Write Fail Continue
Need Adapt Content Adapt Content Continue
Allowed Content Continue Fail
Need Modify Content Modify Content Finish

Table 5.2: Queries’ Outcomes dictating the processing of the procedures of Table
5.1.

89

5 Device Mechanism: Structured Device Driver Development

generated header file. Because the endpoint is a typed entity, endpoints belonging
to different interfaces or alternate interfaces are different even if they have the
same number. This way, attempts to use the device on the wrong configuration
can be blocked by the USB interface. In order to keep control of the current device
configuration and alternate interface, the device and interface configuration are
linked to the endpoint record through pointers.

In the XML Schema, setup packets have been defined for the access of device
status or registers. A transfer function can be used with a setup packet, buffer,
and length as arguments to simply transfer a packet and read or write the corre-
sponding data. More interesting, however, is binding a register to a pair of setup
packets for read and write from/to the device. This has to be done in three steps.

1. The registers have to define an element complexType with a recvPacket
and sendPacket under the vendor- Extension element of a register in
an IP-XACT XML document. The elements recvPacket and sendPacket
must contain the name of a setup packet defined in the USB document.

2. Along with the initialization function for the device interface, that transla-
tor will generate a bind function which expects a pointer of type struct *
setup_packets as argument. This function must be called with the corre-
sponding pointer which is generated by the USB translator.

3. The device interface needs to bind to the USB interface, so that the device
interface calls the USB interface for device access. For that, the USB inter-
face provides a bind function which requires the pointers to the device and
the USB interface respectively.

Their implementation is straightforward. The translator generates a bind func-
tion, which assigns the complex_if field of the C structure of a register with
pointers to the named setup packets. The assigned setup packets have the same
name under the struct * setup packets structure of the main C structure of
the generated USB header file. At last, the bind function of the USB interface,
re-assigns the function pointers readIf and writeIf of the device interface. This
way, the device interface will call these functions for accessing the device along
with it. It also forwards the complex_if pointer that contains the setup packet
for either read or write. This implementation can be easily adapted to other
custom access types.

5.4.3 Implementation of Specialized Functions

Interrupt and DMA are supported by the USB interface. According to the rules
defined for the device mechanism, the implementation is based on a callback
function and buffer registering. Moreover, the callback must be disabled after
each run. The USB subsystem already works like this, urb transfers submitted

90

5.5 Evaluation

with callback functions are disabled after completion. To provide the improved
semantics, we wrap the subsystem calls with our own interface. We combine the
instantiation of a transfer with the buffer registration, only requiring an endpoint,
buffer, and length as arguments. Then, a callback function can be registered. It is
called by the system with the buffer and its transferred length as arguments. At
last, we define a function unlock through which the interrupt can be re-enabled.

In this approach, we combine DMA with an interrupt for signaling DMA com-
pletion. Generally, the DMA only requires the registration of a buffer, while
the interrupt only registers a callback. In USB, from the driver developer view,
there is only a behavioral difference between interrupt and isochronous (DMA)
endpoints because they actually both use the same mechanisms. The interrupt oc-
curs sporadically, and therefore, does not require multiple transfers to be queued,
while the isochronous transfers complete at regular intervals and at least one
transfer has to be constantly pending to avoid data loss.

The USB interrupt transfer issues the callback upon receipt of one packet fill-
ing the registered buffer. This looks different for the isochronous transfers which
contain multiple packets. The callback function is only issued after all pack-
ets have been processed. Furthermore, the registered buffer can have scattered
data because it is divided equally and assigned for every packet on fixed offsets.
However, these implementation details are not relevant to the access of the data.
Following the systematic composition concept, this is an implementation detail
which has to be handled by the underlying framework. Therefore, the buffer
registration function initializes the urb transfers along with its multiple packets.
Before calling the registered callback, a function of the USB interface moves the
data in the buffer to ensure that the data are contiguous. The registered callback
function is then called with the buffer, and the transferred length. Moreover,
the USB interface also forwards an array containing the length of every received
packet, and the number of received packets. This detail can be necessary to find
the end of a data stream, data with no higher level protocol.

5.5 Evaluation
We analyze our method in two different ways. First, we discuss the generic
limitations of our device formal definition with respect to different device types.
Then, we evaluate the effort required to port our strategy to another operating
system or communication system.

5.5.1 Limitations of Device Mechanism

Peripheral devices offer functionality to a system. They are special purpose trans-
ducers transforming physical information into electronic data or vice-versa. There
are all kinds of devices hosted through diverse communication systems. However,

91

5 Device Mechanism: Structured Device Driver Development

the communication systems are simply a medium to transport the internal data
from and into the device. But the types of internal data made available from de-
vices are the concern of the device mechanism abstraction and also its limitation.

We have defined three electronic data types, registers, bit fields and streams.
Registers are the smallest accessible data being a collection of bits. Bit fields
are register parts ranging from a single bit to the whole register width that play
a configuration role on their own. They are therefore semantically meaningful
but are only accessible through their registers. Streams are data collections in
a specific context, such as time, destination, origin or physical interpretation.
These data types are conventionally used for digital electronic design being the
standard way of controlling peripheral devices. Therefore, these same data types
are used for the control of a digital temperature sensor or an ADC or even a
graphics card.

There are exceptions. Our abstraction is inappropriate for interfaces below the
register level, as analog and unregistered bit level signaling. One example is an
older printer on the parallel port. Here, the time to hold a bit level on a specific
parallel port pin has to be controlled. Although this could still be managed by
the bit fields, it is not its design goal. Moreover, analog signals are completely
out of the scope of our approach.

However, the trend of the electronic development is to control analog signals
with transceivers, integrated circuits for specific communication. They establish
the signal level protocol, taking care of the tightest time schedules as well. For
example, USB, the serial port and Ethernet controllers use transceivers. Although
time is a dimension of interest in the real world, real time control using operating
systems is not trivial. Therefore, real time control is custom provided, generally
already integrated in the device. In commodity operating systems, time control
is coarse grained using events/interrupts. We also take this approach specifying
the interrupt usage for the device mechanism.

Finally, the device mechanism is not designed for devices exporting more than
data. For instance, a General Purpose - Graphics Processing Unit (GPU) that
exports computing power is going to use a framework like Open Computing Lan-
guage (OpenCL) to deal with the hardware. On the other hand, the device mech-
anism is suitable to more specific computing devices. Coprocessors in general can
export a device mechanism interface that is suitable to their computational model.
The device mechanism serves as an interface to input the data and acquire the
computed result. This model may change with the coprocessor. Every model
matches another device mechanism.

5.5.2 System and Communication Compatibility

The current code size of the implementations of the device and USB translators
and interfaces has been measured with the CLOC tool from the SourceForge

92

5.5 Evaluation

Tool Lines of Code (LOC)
Device Translator 1,676
Device Interface 2,986
USB Translator 1,130
USB Interface 1,860

Table 5.3: Code sizes of the elements of the device mechanism framework.

repository. Its result is shown in Table 5.3. The device and USB translators are
written in Python and are therefore platform independent. Their output uses
C structures and initialization code defined in the device and USB interfaces
respectively. The output code uses custom macros that wrap platform dependent
implementations eliminating thus the translators’ dependencies.

The device and USB interfaces are written in C. The device interface depends on
the C standard library for special types, fixed width types, Null Pointer (NULL),
boolean, and for dynamic memory. In user space, it is therefore platform inde-
pendent. In kernel space, it needs the counterparts of these declarations which
are defined for the Linux kernel. These declarations contain 10 lines of code in
a header file of the device interface. Therefore, the device interface is nearly
platform independent.

The USB interface is dependent on the USB access system. We have imple-
mented it for the Linux USB subsystem and for Libusb applying macros for
conditional compilation. Extracting clean implementations of both, the interface
for the kernel contains 1,379 lines of code while the Libusb one 1,455. A patch
file created with the diff command from the user to the kernel port accuses that
227 lines have been removed and 149 added1. This small difference results from
the Libusb design that is based on the same Linux USB subsystem. Neverthe-
less, the code interfacing with the USB subsystem mostly makes calls to functions
specified in the USB standard which should be mapped for any operating system.

The greatest effort to adapt the framework to another operating system lies
in the development of a new communication interface. In the USB case, only
the USB interface needs a new implementation. Its translator can remain, as
the defined structures should remain also for internal compatibility. A different
communication system, however, requires both a new communication interface
and a new translator.

The requirements on the communication interface and its binding to the device
interface depends on the following device mechanism assumptions:

1. Registers have an accessor function.

2. Streams have an access structure ⌃.

3. Interrupts and DMAs’ completion are signaled through a callback.
1The sum differs probably because CLOC ignores comments or blank lines.

93

5 Device Mechanism: Structured Device Driver Development

The synchronization and access methods may vary. But from the software
point of view, they are abstracted by callbacks and functions respectively. If the
communication system does not standardize them in this way, the communication
interface provided by the framework has to provide it.

For example, the specialized functions interrupt and DMA transfers are directly
supported by the USB framework. On the other hand, the access of device
registers requires the definition of the setup packets. Still, a vendor could come
up with another way of register access, using bulk transfers for instance. Since
the current USB interface only allows register access through setup packets, it
would have to be extended with the vendor specific register accessors. For PCI,
device access is made through mapped memory avoiding this issue.

However, a PCI port requires the extension of the input XML to define the pur-
poses of the respective memory mapped areas, either device registers or stream.
Furthermore, DMA streams have to be described with a link to an interrupt line
to signal completion, as specified by the device mechanism formalism in 5.3.4.

5.6 Philips Webcam - Case Study
In our case study, we re-engineered the Linux driver for Philips Webcams (PWC)
according to the device mechanism development. In contrast to network, disk
or graphics devices, the generic device abstraction for media video devices is less
mature [Rub06]. This puts a higher burden on the driver policy because it has
to cope with incomplete specifications and implement special behaviors without
help of upper layers. This allows for a more thorough evaluation of difficulties of
the driver policy design that we intend to perform in our future work.

Linux allows for the generic management of video capturing devices through the
Video4Linux generic device interface. Every compatible device has to implement
a video stream with a supported codec, and controls of image properties, e.g.
contrast or brightness. In exchange, the device can be used by every Video4Linux
compatible application.

In the device mechanism, we define the registers and the USB communication
in XML files. These are translated to C structures for API usage. Using these
structures, we create the device mechanism as a collection of functions for device
access. The resulting functions follow the device mechanism rules having only
device data as arguments. In the following paragraphs, we explain how these
functions differ from the functions they replace.

The image properties of the Philips webcam are adjusted by setting registers
which are accessed by sending setup packets. PWC has a collection of functions
for image property control which execute bit operations, control ranges, and
transfer the data along with a setup packet. We substitute them by the access
to a semantically defined register which has been linked to the setup packets for
writing and reading the value to or from the device.

94

5.6 Philips Webcam - Case Study

Listing 5.2: Data definition on PWC
#define SET_CHROM_CTL 0x03
#define PRESET_MANUAL_BLUE_GAIN_FORMATTER 0x1400

More significantly, the driver has to decompress the incoming image data to
a sequence of Red, Green, and Blue color model (RGB) or YUV pictures, as
the Video4Linux interface expects, a non trivial task. The current code acquires
the data from the camera storing it in buffers. When a complete frame has
been stored, the corresponding buffer is marked full and another buffer begins
to be filled. When the Video4Linux interface requests an image from the device,
the driver decompresses the data of a full buffer and forwards the image to the
application.

The data acquisition is initiated with the instantiation of urb transfers (i.e.
Linux kernel USB transfers) that are associated with a buffer and a callback
function. The callback function compacts the scattered data and analyzes the
size of each transferred packet to find the end of the stream. We substitute the
initialization with our USB interface using registration functions for buffer and
interrupt. In comparison to the regular driver, our callback function does not
have to compact the buffer.

When a programmer starts to develop a driver, he needs the address, width
and fields of the registers. Generally, this information is gathered in precompiler
macros. A macro is named as the register containing its address while its bit fields
are defined as masks. This is not mandatory; as drivers can arbitrarily define the
device data. The PWC driver does not define bit masks for example. Because it
has to transfer register values through USB packets, various setup packet param-
eters for access of different registers are defined. Generically speaking, this is the
current code guideline. In our approach however, these parameters are defined in
a context, which also gives the developer a workflow to follow. The description
of register and communication are fixed by XML Schemas. If any information
is missing or inconsistent, the translators will generate corresponding warnings.
Listings 5.3 and 5.4 show how we define our data in comparison to 5.2.

In PWC, the register’s access is custom made throughout multiple func-
tions, which narrow down the 5 required parameters for the setup packet step
by step. The access of the data in the device mechanism is standard and
only requires one parameter, a hardware defined type. Besides, the hardware
defined type has a meaningful name, blueGain, and is accessed by a func-
tion named setBlueGain providing clarity, as shown in Listing 5.5. By con-
trast, the PWC access only nearly references a blue gain by the macro PRE-
SET_MANUAL_BLUE_GAIN_FORMATTER throughout the extensive pro-
cedure send_control_msg. An example of an access on PWC can be seen on
Listing 5.6.

95

5 Device Mechanism: Structured Device Driver Development

Listing 5.3: Register data definition on device mechanism
<spirit:register>

<spirit:name>blueGain</spirit:name>
<spirit:addressOffset>1</spirit:addressOffset>
<spirit:size>8</spirit:size>
<spirit:vendorExtensions>

<spirit:complexType>
<spirit:recvPacket>getBlueGainManual</spirit:recvPacket>
<spirit:sendPacket>setBlueGainManual</spirit:sendPacket>

</spirit:complexType>
</spirit:vendorExtensions>

</spirit:register>

Listing 5.4: USB data definition on device mechanism
<udev:request>

<udev:name>setChromCtl</udev:name>
<udev:bRequest>03</udev:bRequest>

</udev:request>
<udev:setupPacket>

<udev:name>setBlueGainManual</udev:name>
<udev:bmRequestType>

<udev:direction>HostToDevice</udev:direction>
<udev:type>Vendor</udev:type>
<udev:recipient>Device</udev:recipient>

</udev:bmRequestType>
<udev:requestName>setChromCtl</udev:requestName>
<udev:wValue>1400</udev:wValue>
<udev:wIndex>0003</udev:wIndex>
<udev:wLength>1</udev:wLength>

</udev:setupPacket>

Listing 5.5: Access on device mechanism via custom register access
enum transfer_error setBlueGain(uint8_t value)
{

enum transfer_error ret;
ret = setReg(devcom, pwcblock.awbOthers.blueGain, value);
PWCMECH_DEBUG_MECH("Setting BlueGain register to: 0x%x.\n", value);
return ret;

}

96

5.6 Philips Webcam - Case Study

Listing 5.6: Setting blue gain on PWC Linux-2.6.31
int pwc_set_blue_gain(struct pwc_device ⇤pdev, int value)
{

unsigned char buf;

if (value < 0)
value = 0;

if (value > 0xffff)
value = 0xffff;

/⇤ only the msb is considered ⇤/
buf = value >> 8;
return send_control_msg(pdev,

SET_CHROM_CTL, PRESET_MANUAL_BLUE_GAIN_FORMATTER,
&buf, sizeof(buf));

}

5.6.1 Results

We successfully used the device mechanism for the Philips webcam to implement
a kernel and a user space driver. The implemented kernel module is divided into a
device mechanism module called pwcmech and a driver policy module, pwc. The
pwcmech module connects to the device and USB interfaces which are also kernel
modules called devif and usbif. In kernel mode, the USB interface connects to
the Linux USB subsystem.

In the user space driver, the Video4Linux interface calls are transferred to user
space by a video loopback module (vloopback) enclosed in the Motion application.
For the user space driver, the device mechanism and interfaces appear as libraries,
pwcmech, devif and usbif. The user space driver is an application connected to
one end of the vloopback module. In order to decompress the video stream, we
completely reused the decompression code of PWC. Finally, the USB interface is
linked to the Libusb library transferring USB data directly from user space.

We built a bug database for the PWC driver by analyzing the Linux Git logs
for the PWC driver from the period from 04/2006 to 02/2012. We only evaluated
changes providing bug fixes in comments or patches. From a total of 141 commits,
28 bugs have been found. We categorized them according to Rhyzhyk et al.
[RCKH09], see Table 5.4. For this driver, the distribution of bugs in the categories
diverges from the average. In particular, the 53.57% of operating system protocol
violations show that the Video4Linux interface is still under development and
lacks a concise specification. The device protocol violations which our approach
avoids comprehend 4 bugs, 14.29% of the found bugs.

Ryzhyk et al. [RCKH09] categorize device protocol violations as following:
(1) value; (2) ordering; (3) timing and (4) data race violations. In Table 5.5,
we depict the device protocol violations of value type found in our Git repository
analysis. In the repository, only fixes of value defect and access ordering types are
present, 3 and 1 respectively. Fixes of timing and data races violations have not
been found. From the three value defects found, two would not have occurred in

97

5 Device Mechanism: Structured Device Driver Development

Types of faults Number Percentage
Operating System 15 53.57%
Device 4 14.29%
Concurrency 2 7.14%
Programming 7 25%

Table 5.4: Bug analysis of Philips webcam driver. Bug categorization with cor-
responding percentage of total bug count.

Date of fix Type Avoided
04/24/2006 Value shifts Yes
02/11/2010 USB transfer size Yes
06/26/2011 Per device missing configuration

Table 5.5: Value defect violations of device protocol and avoidance with an im-
plementation based on the device mechanism.

our approach. The third bug fix is related to a per device missing configuration
which was previously a global configuration, a static variable. This bug could
have occurred in our approach because it is related to the driver policy. However,
it is improbable because the missing configuration would be generated as a per
device configuration.

Furthermore, we have come across another bug which was not noticed before. In
the custom access implemented by the driver for the Linux kernel versions 2.6.28-
39, the function pwc_set_saturation sets a random value for the saturation
because it failed to assign the buffer to the value, see Listing 5.7. This is less
probable to happen in our approach because there is a clear register context
whose access requires fewer parameters. Finally, the send_control_msg and its
receive counterpart have passed through a cosmetic change in 2006 and have been
completely rewritten in 2011 to be adapted for the second version of Video4Linux.
This would not have been necessary if standard accessing methods were available,
as the device mechanism.

In our implementation, we found two bugs, one of them was critical. In
the XML specification of the communication, we defined the setup packet
getDynamicNoise as a packet to send data and not to receive due to a bit flip in
the bmRequestType value. Because our device translator does not verify the di-
rection bit of the linked sendPacket and recvPacket, the wrong code was built
into the driver. Unfortunately, the driver initialization grabs the value of the
dynamic noise configuration, and the data wrongly sent to the camera breaks it
after a single transfer. Normally, the camera firmware should ignore this packet
but we were unlucky. Only after new cameras arrived and the code was carefully
debugged, we found out the issue. The only remaining issue was less critical.

98

5.6 Philips Webcam - Case Study

Listing 5.7: PWC random value register write PWC Linux-2.6.31
int pwc_set_saturation(struct pwc_device ⇤pdev, int value)
{

char buf;
int saturation_register;

if (pdev�>type < 675)
return �EINVAL;

if (value < �100)
value = �100;

if (value > 100)
value = 100;

if (pdev�>type < 730)
saturation_register = SATURATION_MODE_FORMATTER2;

else
saturation_register = SATURATION_MODE_FORMATTER1;

return send_control_msg(pdev,
SET_CHROM_CTL, saturation_register, &buf, sizeof(buf));

}

The function which performs control transfers always used an internal buffer, re-
served for register data, instead of the buffer provided by its argument. When
transferring other data, the data were, thus, incorrect.

In the stream handling, our USB interface removes the necessity of dealing
with urb transfers and the USB subsystem directly. Instead, we simply deal with
callbacks and buffers. Also the returned data is already contiguous and can be
directly stored. This greatly simplifies the task of the driver policy. It has only
to look for the end of frame, mark frame completion and gather a new buffer.
We found a bug in the buffer handling of our earlier standalone user space driver
while adapting it to the device mechanism. If the end of frame was found in a
different packet than the last of a transmission, the remaining packets were not
attached to any buffer leading to a frame loss. We only found it out because
the moves of the scattered data were removed from the code, allowing the other
behaviors of the function to become clearer.

The code size for logic is reduced because the access APIs do not belong to the
driver any longer. However, the XML increases the code lines for the definition of
the access information. But there is considerably more information defined in it
too, which guarantees that the correct behavior for register access is implemented.
While the PWC driver has 5,896 lines of C code, its driver policy has 5,575. To
the driver policy numbers, we still have to add the device mechanism interface
and the XML files, respectively 437 and 1,840 lines of code. For the logic part,
driver policy and device mechanism, there is a 2% lines of code overhead. While
1,840 lines of code for the hardware description is much, it results in a complete
and clear access information of the device which does not exist in conventional
drivers. Besides, a lines of code comparison does not consider code clarity. A
function call with 5 arguments amounts to the same amount of code as a single
line single parameter function call which is less code.

99

5 Device Mechanism: Structured Device Driver Development

In the modified driver, we did not see considerable performance drawbacks.
While the calculation of a register value takes longer by the multiple behavior
tests carried out by the device interface, the transfer of the data to the register
occurs mostly within a much longer period, 125 µs for high-speed USB. Moreover,
low latency and real time sensible data generally use interrupt or DMA functions.
These functions are implemented in our method without any overhead. On the
other hand, the memory footprint of the conventional driver is 81,519 bytes,
while the sum of the pwc and pwcmech modules is 123,668. The difference results
from the dynamic allocation of the whole register parameters and communication
elements. Moreover, the device and USB interfaces occupy 26,688 and 13,291
bytes. These values have been measured through the lsmod command.

5.7 Discussion
The device mechanism interface can be used to structure the device driver de-
velopment, while its described systematic composition provides an efficient de-
velopment strategy. If device mechanism interfaces cannot be trusted, a formal
verification for its architectural behavior could be created based on its specifica-
tion.

The description of the register map and the communication system using XML
is very verbose. Its advantage is its generality. While XML can be used directly
as front-end, other front-ends can use an XML Schema as back-end as well. A
XML Schema simply defines the required document content and its hierarchical
structure imposing type safety for the data input. For example, the SPIRIT
Consortium plans to offer IP-XACT generation from register descriptions in the
SystemRDL language. In case no front-end is available, the XML verbosity can
be managed by the use of XML editors.

Due to the separation of the hardware description from its access, the device
mechanism is platform independent. It only contains the information required
for the device access while the access is implemented by a matched interface.
Therefore, another system can be supported through the implementation of an
interface for the access mechanism. In contrast, conventional access code is nei-
ther reusable nor platform independent.

Besides the enhanced API accessing the hardware seamlessly, avoiding error-
prone bit operations, the enforcement of described access behaviors can further
improve the device driver reliability. These behaviors complete the description
of the hardware types by defining their access permissions, allowed values and
bit fields dependency, Table 5.1. Without them, the driver developer has to take
care not to violate these rules, whereas a value being passed from the application
directly to the device has to be necessarily checked.

Naturally, there is a performance penalty involved in the enforcement of the
access rules. In systems running commodity operating systems, interfacing with

100

5.8 Conclusion & Future Work

devices over a communication system, the very execution time of the I/O op-
eration is expected to be higher than execution time of the rules check. For
embedded devices with restricted computation power and real time constraints,
the enforcement can be disabled. In this case, the device interface simply executes
the necessary bit operations to set or retrieve the bit field information.

5.8 Conclusion & Future Work
We have proposed a new separation of concerns in the device driver development
process by modeling policy and mechanism separately. A device mechanism is
a universal interface that exposes the functionality implemented by the device
using a consistent interface for the system. The policy uses the mechanism to
implement the features required by the operating system, effectively matching
both interfaces. The device mechanism together with its proposed systematic
composition enhances code reuse by coherently defining a device interface which
can be used throughout platforms.

Another advantage of the systematic composition is that it provides the hard-
ware semantics missing in program languages, i.e. named registers are provided
for access instead of register addresses and bit operations. The actual mapping
between the semantics and the physical layer is done using an XML file confor-
mant with the IP-XACT standard. This also provides the capability of linking
the hardware and sofware design teams to share the register map definitions. Be-
sides, we define an XML Schema for the description of USB communication which
completes a device’s access by providing a description of the communication layer.
Furthermore, we extended the IP-XACT description and our underlying frame-
work to support custom register access through which register accesses can be
bound to USB packets.

The device mechanism is a useful abstraction for a wide range of devices. How-
ever, it is not designed to comply with interfaces below the register level, as analog
or unregistered interfaces. Also, devices that export generic computing power do
not cope with this abstraction. On the other hand, specific coprocessors with
a defined computing model can be abstracted by a device mechanism interface.
Moreover, to port the framework to another operating system, new interfaces for
the required communication systems have to be implemented. The adaptation of
new communication systems to the framework requires that device mechanism as-
sumptions about the access of internal device structures not already implemented
by the communication system be completed by the framework’s communication
interface.

As a prototype for this methodology, we wrote the USB interface mappings and
ported a USB webcam driver to use the separation of policy and device mecha-
nism. The same resulting device mechanism has been used to create a kernel and
a user space driver, showing a reuse case. Moreover, by using our approach, 2 of

101

5 Device Mechanism: Structured Device Driver Development

4 bugs related to device access could have been avoided, as well as two complete
changes to the device access mechanism. Additionally, an unknown bug has been
uncovered. For no visible performance overhead, we provide rule checks for reg-
ister accesses. However, the access description of our implementation is lengthier
and the memory footprint of the loaded driver is also 50% bigger than for the
conventional approach.

Our next goal is to better investigate the performance impact of our framework.
For this, we will implement a network device for which most benchmark tools are
available. Moreover, we plan to port PCI communication and implement a driver
for our FPGA based coprocessors whose drivers have served as base for this
work. Besides, we are going to implement a checker for the correct direction of
the linked sendPacket and recvPacket of a register. In addition, we plan to
investigate constraints, whose enforcement would further increase the reliability
of a device driver, and match well on top of the device mechanism interface. Later,
in accordance with this work, we intend to analyze good alternative descriptions
for driver policies in order to avoid development faults.

102

6 Device Contracts for Drivers

6.1 Introduction
In commodity operating systems, drivers are the major contributor of system
crashes [GGP06]. Traditionally, computer and hardware manufacturers support
their hardware correcting faulty drivers. However, by the time when drivers would
become more reliable, the hardware parts are already outdated. In order to pro-
vide high code coverage in conceivable time, static checkers have had substan-
tial success being able to check driver conformity with kernel level programming
paradigms and the OS API [BBKL10], [KC10]. Other solutions use runtime tech-
niques to avoid memory corruption [LCFD+05], [HBG+09], [SABL06], bad use
of OS data structures [ZCA+06], [CCM+09] and synchronization issues [App07],
[Mic06]. But most drivers errors are actually related to violations of the device
protocol that is not formally specified or tested [RCKH09].

Furthermore, the same device requires multiple drivers for different operating
systems. With strategies for separation of drivers in device and OS specific parts,
as described in the Chapter 5, the reuse of the device part poses non-functional
requirements (e.g. timing, device protocol) that the driver has to comply with
in its functional implementation. Although every device is specific, the nature
of their non-functional requirements is the same. Therefore, they can be sum-
marized in contracts. Software contracts enable the description of non-functional
requirements targeting the separation of constraint checks from the functional
code. In addition, its constant check can signal faulty behavior enabling recovery
mechanisms.

Operating systems provide different runtime environments for drivers that
cause different interactions with the same device. In driver development, this
results in more fault sources and increased porting effort. Interface Description
Languages (IDLs) serve as a universal interface specification whose implementa-
tion can be used throughout different runtime environments. For that, the IDL
specification is translated to the target runtime environment. In this work, we
target reuse of the device part of the device driver as a software interface to the
device by defining an IDL to export the functions of the device part of the driver.
We also define a contract based on these functions specifying device constraints
explicitly as pre- and postconditions. Constraint checking is then automatically
generated for a target platform. In addition, we define the global state view of
the device with an Extended Finite State Machine (EFSM) to enhance the vis-

103

6 Device Contracts for Drivers

ibility of the device for tests, also creating a formal description of the device.
Based on the defined states, functions’ preconditions can be defined detecting
ordering defects of device protocol. These faults account for 28% of device pro-
tocol violations being the second source of errors after incorrect interpretation of
device value [RCKH09]. In our case study, we show the feasibility of our method
and violations of component requirement due to the interaction with different
environment and components.

In the next section, we discuss the work related with this chapter. Section
6.3 introduces our framework followed by the definition of our Interface Descrip-
tion Language (IDL). Section 6.5 defines the device contracts for drivers and
the description of the Extended Finite State Machine (EFSM) for modeling the
global dynamic behavior of the device. After that, we explain the translation
of the interface definition, EFSM and the contracts to a software interface and
enforcement of constraints based on the EFSM description. The proof-of-concept
case study based on the Philips webcam Linux driver is presented in Section 6.7
followed by an evaluation of the method. A discussion is carried out in Section
5.7, after which the conclusion follows.

6.2 Related Work
A contract specifies the semantics of component interaction in software. While
the syntax of software interfaces comprehends function signature, arguments and
return value, contracts define their semantics providing meaning to the parame-
ters and defining related non-functional behavior such as timing constraints and
allowed function call order. Bunse et al. [BG06] envisions a unified specification
of a hardware component embracing both an informal description of electronics
and a software interface with a contract. However, they do not outline this con-
tract nor define how its testing should be done. Our work completes the contracts
for the HW/SW interface by defining the contracts and providing a method to
test them.

The HW/SW co-design research field proposed synthesis of drivers from the
specification of the communicating interface and related software control tackling
mostly electric protocol and timing [WB94], [COB95], [BL98], [DRS04], [Jan03].
These systems did not target non-functional requirements of the driver, only the
functional part of the driver is synthesized. Further concerns about software
reuse are not considered because these systems do not target operating systems.
In their environment, the developer of the embedded software is responsible for
fulfillment of constraints.

Languages to describe registers, the control elements of the device, have been
proposed as well. They also allow the description of special device functions such
as interrupts or Direct Memory Access (DMA) [MRC+00], [SYKI05]. Through
the definition of state machines [WMB03], the device behavior associated with

104

6.3 Framework

register accesses can be further defined. Similarly, Ryzhyk et al. [RCK+09] syn-
thesize a driver from the state machine descriptions of the device and OS ensuring
that these behaviors are followed. We define a state machine based on the global
view of the device. The device control is not derived from this description. Thus,
only constraint relevant behavior has to be modeled. The resulting EFSM is com-
parable simpler. Still, it enhances the visibility of the device allowing more tests
that can be applied to any function. Following the contract testing methodology,
we define non-functional requirements as preconditions for device functionality
based on the global states of the device. Furthermore, our system allows paral-
lelism, while previous work serializes the complete driver by using a spinlock
around every driver function [WMB03], [RCKH09].

For verification, Kudlugi et al. [KHSP01] proposes a hardware/software co-
simulation technique that can early debug a driver implementation with regard
to the target hardware. Similarly, Ryzhyk et al. [RKM+10] propose merged
verification process where the testbench is designed with driver verification in
mind. Their intention is to avoid multiple descriptions of the device behavior for
testing. However, both testbench and high-level simulation are based on func-
tional description languages. By contrast, we propose to define non-functional
requirements explicitly and synthesize runtime tests.

6.3 Framework
The framework for contract implementation is based on the driver architecture
proposed in Chapter 5. The implementation of a driver is divided in a bottom
layer, the device mechanism, and a top layer, the driver policy. The architecture
aims at the separation of the device access from data processing. The device
mechanism exports the function implemented by the device as software functions
to the driver policy that implements the behavior expected by a specific OS. This
way, the hardware is handled by the device mechanism and the OS by the driver
policy.

Devices imply non-functional (e.g. timing and ordering of device protocol) con-
straints that are not handled in the device mechanism. This is enforced by this
framework as an extension of the device mechanism. The framework contains a
specification language to define non-functional requirements explicitly. The func-
tions of the device mechanism are then exported while equipped with constraint
enforcement. The result is a device mechanism with control of its software pro-
tocol. Violations of these constraints result in the device mechanism denying the
device access and returning an error code. The driver policy is then responsible
for handling the error properly. The idea is to avoid device failure and ensure
correct functionality. Furthermore, it separates constraint specification from test
generation and execution avoiding repeated design of tests and clutter of func-
tional and defensive programming code.

105

6 Device Contracts for Drivers

Constraints are defined based on an interface description for the device mech-
anism. The software functions to be exported are defined in XML and related
non-functional requirements are included. From the defined interface and con-
straints, code generators produce a function augmented with code for constraint
enforcement. Some constraints are based on states of an EFSM that is described
along with the interface and implemented by the code generators. Because the
generated code is intended to run on different platforms, macros map the us-
age of synchronization entities and function export mechanism to the different
platforms.

6.4 Interface Description Language
Interface Description Languages (IDLs) allow for encapsulation because they are
the only communication path of the described interface. Following the separation
of device mechanism and driver policy, we define a language for the description
of the device mechanism interface. The interface has to be understood by client
and server equally, regardless of their platform. For that, types for arguments
and return values are translated and the function prototype is exported.

The device mechanism is platform and communication independent. It is de-
scribed with device registers and endpoints. Through code generation and special
interfaces for register map and communication, software can access the device
registers and endpoints directly without the need of special functions or bit oper-
ations. Interrupt and DMAs are abstracted by a callback mechanism. Registers
and endpoints are then wrapped in functions that require as arguments only the
data to be transferred. In the device mechanism, these data are designed to be
of C standard type.

Through the device mechanism interface, only data from registers, bit fields
and streams are passed from/to the device. Therefore, we define our interface
using these data and translate them to C which is used for both the device
mechanism and the driver policy modules. Moreover, callback and context are
added to these types because they are necessary to define interrupt handlers.
These are the same types defined for the device mechanism. Their translation is
summarized in the Table 6.1. The context defines a pointer to a structure that
contains data to be made available for the callback function. Callbacks must
be registered together with a context before their use. The context is defined
generically because it is defined and used by the driver policy, not the device
mechanism. The stream is defined using the fixed width integer uint8_t instead
of unsigned int because USB transports data in 8 bits and we only support USB
currently. Callbacks’ return value indicates if the callback will be reactivated or
finished. Their parameters are the context defined on registration, a stream, and
two USB transport parameters that can be required to identify frames in some
simple protocols.

106

6.5 Device Contracts

IDL Type Device Mechanism C translationType

Regiter/Field Value ⇢ unsigned int (in)
� unsigned int * (out)

Stream � uin8_t * , size_t

Callback
enum cb_ret (*)(void * context, uint8_t * buf,

size_t len, size_t * p_packet_len,
size_t nr_of_packets)

Context void *

Table 6.1: Argument type translation.

6.5 Device Contracts

A contract specifies duties and rights in component interaction. In a component-
based approach, components are thoroughly tested and trusted. However, the
assembly of reliable components does not guarantee a reliable system because
components’ interaction can be faulty. A component can interact with other
components, the runtime environment and also with the physical environment to
some extent. For instance, it is crucial that the size of variables accords to the
physical range of the unit they hold. In the interaction of software components,
the corresponding software protocols have to be mutually fulfilled for correct
common behavior.

This is specified with regard to the client/server principle. Every component
can assume the role of a server and a client. It is a client when it requests services
and a server when it offers. Every server/client relation is based on a service that
is defined as a function in software. The contract defines properties that have to
hold for correct function execution, and the properties that are guaranteed after
execution. While the function prototype is a syntactic definition of a service,
the contract specification provide the semantics of the service covering the non-
functional properties related to the function execution.

Contracts specify non-functional requirements for services as pre- and post-
conditions. Preconditions define the requirements for correct function execution,
while postconditions specify the constraints of this execution. Preconditions are
associated with a component’s configuration and argument ranges, while the post-
conditions define properties of the execution and return values.

The device interface is always custom. On the other hand, the nature of devices
and drivers imposes specific non-functional requirements/constraints that can
be summarized in contracts. Drivers have to handle the device configuration,
allocate memory for device data and, when an asynchronous data model is not
possible, wait for completion of commands. We summarize these properties in
pre- and postconditions in Table 6.2. Current preconditions envisage states and
state machine variables whose update can be attached to functions and their

107

6 Device Contracts for Drivers

Contract Property Pre-Condition Post-Condition
EFSM variables (e.g. Buffer Size) X

EFSM State X
Execution Time X

Table 6.2: Properties used as contract’s conditions.

arguments. An example is its usage to control buffer sizes. Postconditions can
be timing constraints related to the execution of the function. It is related to
the time the device takes to complete the execution of the function in spite of
possible non-blocking return of commands. We force the function to wait for
commands’ completion, only updating the EFSM after the time has elapsed. In
a multithreading environment, that does not compromise performance because
other tasks can be executed meanwhile. Because device data (i.e. registers and
endpoints) require special handling, they are defined and their value ranges are
enforced by the device mechanism. Thus, they are disregarded here.

6.5.1 Device State View

Software components depend on external services and function calls have to follow
the function prototype providing the arguments in correct order. Furthermore,
components can have different operational modes, and exhibit a dynamic behavior
in which functions have to be executed in a specific order to provide the expected
functionality. There are different ways to describe these dynamic behaviors of
a component. In particular, a state machine representation is widespread and
provide an event-based model. In a state, events to which the machine reacts are
described. Other events are rejected not having any effect on the machine.

We describe the behavior of the device mechanism with an extended finite state
machine. Because the device mechanism is designed to be an image of the device
itself, this description corresponds to the device behavior. With the execution of
the state machine, the state of the device can be assessed. With the definition
and enforcement of a state precondition for function call, the device access is
only performed if the device is in the required state. This way, correct usage of
the device in conformance with its dynamic behavior can be ensured for different
driver policies.

6.5.2 State Machine Description

The state machine is generated from the description of (1) states; (2) variables;
(3) guards; (4) events; and (5) transitions. Variables hold global values which
transitions may depend on. Guards evaluate relevant variables and allow or
block a transition. The transitions are defined by an origin state, a target state,

108

6.6 Translation of Constraint Description to Checks

Macro Kernel User Space
EXPORT(FUNC) EXPORT_SYMBOL_GPL(FUNC)
MSLEEP(MSEC) msleep(MSEC) usleep(1000*MSEC)
STATEMUTEX struct rw_semaphore pthread_mutex_t
INIT_MUTEX(MUTEX) init_rwsem(MUTEX) pthread_mutex_init(MUTEX, NULL)
DEST_MUTEX(MUTEX) pthread_mutex_destroy(MUTEX)
DOWN_READ(MUTEX) down_read(MUTEX) pthread_mutex_lock(MUTEX)DOWN_WRITE(MUTEX) down_write(MUTEX)
UP_READ(MUTEX) up_read(MUTEX) pthread_mutex_unlock(MUTEX)UP_WRITE(MUTEX) up_write(MUTEX)

Table 6.3: Macro definitions for the implementation of contracts in Linux, in ker-
nel and user space.

triggering events and a guard. If (1) a triggering event occurs; (2) the current
state is the defined origin state; and (3) the guards evaluate true, the state is
updated.

Variables are updated independently or by the state machine transitions. An
update is described by a value assignment. Two mechanisms are provided. Either
value assignments are associated with events or with successful transitions.

The device mechanism provides events and variable values to the EFSM. Its
functions are used as events and their arguments can be used as values for variable
updates.

6.6 Translation of Constraint Description to
Checks

The framework targets the Linux kernel and user spaces. From the XML descrip-
tion of the interface, state machine and functions with constraint enforcement
are generated. The generator is written in Python using the Lxml library with
the Objectify API. The generated code handles synchronization by using macros
that are defined for both kernel and user space.

In the Linux kernel, function of modules can be made available to other modules
through the macro EXPORT_SYMBOL_GPL. Furthermore, C standard types are used
for the arguments of the functions of the module interface. This enables us to
export functions from the device mechanism module to the driver policy module
and interpret types for passed arguments and return values. In user space, library
functions do not have to be exported.

More complex is the definition of the synchronization entities. Semaphores
have to be defined, initialized, locked and unlocked by macros. In user space,
POSIX mutex can be used while we use rw_semaphore in kernel space. For
timing control, the user space relies on usleep, while kernel uses msleep to avoid
busy waiting. Table 6.3 summarizes the framework defined macros.

109

6 Device Contracts for Drivers

Listing 6.1: XML description of a function with contract conditions to be ex-
ported kernel wide.

<operation name="registerVideoCallback">
<parameters>

<in name="func" type="callback"/>
<in name="context" type="context"/>

</parameters>
<return type="idlError"/>
<internal>_registerVideoCallback</internal>
<preCondition mode="state">ready</preCondition>
<preCondition mode="variable">videoBufferLevel >= 2⇤10⇤devmech�>com�>
standard_descriptors.highspeed.cameraStream.Video�>wMaxPacketSize</preCondition>

</operation>

Pre- and postconditions are defined in the context of an IDL operation, see
Listing 6.1. From the IDL operation, a C function is generated with a function
prototype corresponding to the operation name, parameters and return type. The
device access is executed by a C function of the device mechanism declared under
the internal tag.

We define a state machine in XML whose implementation follows the rules of
Subsection 6.5.2. Listing 6.2 shows the description of the XML state machine for
the device mechanism of a Philips webcam. Fig. 6.1 shows the UML representa-
tion of this machine.

The state machine is run in parallel to the device mechanism and does not
necessarily affect it. Functions of the device mechanism are the events of the
state machine and state transitions may result from them. Also, a function can
be made dependent on a state through the definition of a state precondition. In
that case, the device mechanism function declared as internal is not executed
if the current state does not accord with the defined precondition denying the
access to the device.

When an IDL function is called, it is executed in the following order. First,
preconditions are evaluated. If every precondition is fulfilled, device access occurs.
If the device access is successful, variables associated with it are set. After that,
if the current state is equal to the origin state and the guard evaluates to true,
the variable updates of the transition take place followed by the update of the
machine state. The C code translation of the XML operation is shown in Listing
6.3. If the function updates the state or a variable, it has to acquire a writer
lock. Functions that do not update the state machine but have preconditions on
state or variables acquire a reader lock. Functions unrelated to the EFSM do not
acquire any lock.

To the main module C structure of the device mechanism, we add a pointer
to the C structure efsm generated for the state machine, see Listing 6.4. The
main module structure is used by the generated code to access the efsm structure,
evaluate the current state and update it. The efsm structure already contains

110

6.6 Translation of Constraint Description to Checks

Listing 6.2: XML description of the extended finite state machine of the device
mechanism for the Philips webcam.

<extendedFiniteStateMachine>
<declaration>

<states>
<state>idle</state>
...

</states>
<variables>

<variable>videoSet</variable>
...

</variables>
</declaration>
<behavior>

<assignments>
<assignment>

<event>setVideoMode</event>
<cmd>videoSet = true</cmd>

</assignment>
<assignment>

<event>assignVideoBuffer</event>
<cmd>videoBufferLevel += len</cmd>

</assignment>
...

</assignments>
<transitions>

<transition from="ready" to="streaming">
<name>configure</name>
<trigger>

<event>assignVideoBuffer</event>
<event>registerVideoCallback</event>
<event>setPower</event>

</trigger>
<guard>videoBufferAssigned and videoCallbackAssigned and power == 0</guard>

</transition>
<transition from="ready" to="idle">

<name>finish</name>
<trigger>

<event>unassignVideoBuffers</event>
</trigger>
<update>

<cmd>videoBufferAssigned = false</cmd>
<cmd>videoSet = false</cmd>
<cmd>commandSent = false</cmd>
<cmd>videoBufferLevel = 0</cmd>

</update>
</transition>
...

</transitions>
</behavior>
...

</extendedFiniteStateMachine>

111

6 Device Contracts for Drivers

Listing 6.3: Kernel wide exported C function generated from IDL operation
description.

enum idl_error registerVideoCallback(DevMech ⇤ devmech, enum cb_ret(⇤func)(void ⇤ context, uint8_t ⇤
buf, size_t len, size_t ⇤ p_packet_len, size_t nr_of_packets), void ⇤ context) {

enum idl_error ret;
DOWN_WRITE(&devmech�>efsm�>mutex);
if (devmech�>efsm�>state != ready)
{

DEVCONTRACT_DEBUG("registerVideoCallback(): state preCondition failed! Expected state,
ready, differs from current state: %u\n", devmech�>efsm�>state);

UP_WRITE(&devmech�>efsm�>mutex);
return INVALID_STATE;

}
if (!(devmech�>efsm�>videoBufferLevel >= 2⇤10⇤devmech�>com�>standard_descriptors.highspeed.

cameraStream.Video�>wMaxPacketSize))
{

DEVCONTRACT_DEBUG("registerVideoCallback(): variable preCondition failed! Expected
videoBufferLevel value: 2⇤10⇤devmech�>com�>standard_descriptors.highspeed.cameraStream.
Video�>wMaxPacketSize, differs from current value: %u\n", devmech�>efsm�>
videoBufferLevel);

UP_WRITE(&devmech�>efsm�>mutex);
return INVALID_STATE;

}
ret = _registerVideoCallback(devmech, func, context);
if (ret == 0)
{

DEVCONTRACT_DEBUG(">> registerVideoCallback(): updating state machine variables\n");
devmech�>efsm�>videoCallbackAssigned = true;
DEVCONTRACT_DEBUG("videoCallbackAssigned <� %x\n", devmech�>efsm�>

videoCallbackAssigned);
DEVCONTRACT_DEBUG("<< registerVideoCallback(): state machine variables updated\n");
transitionConfigure(devmech);

}
UP_WRITE(&devmech�>efsm�>mutex);
return ret;

}
EXPORT_SYMBOL_GPL(registerVideoCallback);

112

6.6 Translation of Constraint Description to Checks

Listing 6.4: C state machine generated from the XML state machine description.
struct efsm ⇤ init_efsm(void)
{

struct efsm ⇤ efsm = ALLOC(sizeof(struct efsm));
efsm�>state = idle;
efsm�>videoSet = false;
efsm�>commandSent = false;
efsm�>videoBufferAssigned = false;
efsm�>videoCallbackAssigned = false;
efsm�>power = 0xFF;
efsm�>videoBufferLevel = 0;
INIT_MUTEX(&efsm�>mutex);
return efsm;

}

void stop_efsm(struct efsm ⇤ efsm)
{

DEST_MUTEX(&efsm�>mutex);
FREE(efsm);

}
...
void transitionRelease(DevMech ⇤ devmech)
{

DEVCONTRACT_DEBUG(">> transitionRelease() called!\n");
if (devmech�>efsm�>state == streaming)
{

devmech�>efsm�>videoCallbackAssigned = false;
DEVCONTRACT_DEBUG("<< transitionRelease(): state updated to ready\n");
devmech�>efsm�>state = ready;

}
else
{

DEVCONTRACT_DEBUG("transitionRelease(): only valid from state streaming but current state is
%u\n", devmech�>efsm�>state);

DEVCONTRACT_DEBUG("<< transitionRelease() skipped\n");
}

}

113

6 Device Contracts for Drivers

Listing 6.5: Generated efsm structure used by IDL functions for EFSM and con-
tract execution.

struct efsm
{

enum states state;

unsigned int videoSet;
unsigned int commandSent;
unsigned int videoBufferAssigned;
unsigned int videoCallbackAssigned;
unsigned int power;
unsigned int videoBufferLevel;

STATEMUTEX mutex;
};

the state, variables and required mutexes. Listing 6.5 shows the declaration of
the efsm structure for our example.

Finally, because the Linux kernel does not have an exception mechanism, we
also add debugging information to the generated code. Through the definition of a
macro, the debugging information is enabled and misuse of the device mechanism
can be followed by logs.

6.7 Case Study

Our case study is a proof-of-concept of our method showing its feasibility. We im-
plement a driver for the Philips webcam based on the case study of the Chapter 5.
The Philips webcam driver is divided in two modules, the device mechanism, de-
vice part, and the driver policy, different for each platform. In the earlier case
study, the device mechanism contained only the functional requirements for de-
vice control. Its correct usage depended on the interaction with the driver policy.
In this case study, we describe the expected interaction between device mecha-
nism and driver policy through an EFSM. Moreover, we describe non-functional
timing, memory size and protocol ordering requirements that constrain correct
device usage.

The dynamic behavior of the camera is specified on top of its device mechanism.
While most device mechanism functions can be arbitrarily called, some functions
change the device/device mechanism state and others can only be called from
specific states.

A webcam outputs the video data stream that has been acquired by an image
sensor. The driver configures the frame mode (picture size and frame rate) and
optic values (brightness, contast, etc.). After a frame mode has been selected,
the driver can receive the data stream, generally through DMA. In parallel, optic
values can be changed to modify picture properties such as brightness or contrast.

114

6.7 Case Study

Idle

Ready

Streaming

releaseVideoCallback / updateVideoCallbackAssigned()
unassignVideoBuffers / updateIdle()

sendVideoCommand || setVideoMode [(videoSet == true) &&
(commandSent == true)]

setPower [power == 0xFF]

init_efsm / updateVariables()
stop_efsm

assignVideoBuffer || registerVideoCallback || setPower [(videoBufferAssigned == true) &&
(videoCallbackAssigned == true) &&

(power == 0)]

Figure 6.1: UML state machine is describing the dynamic behavior of the device
mechanism of the Philips webcam.

Upon device connection or module instantiation, the state machine variables
are updated and the machine initialized to the idle state. The state ready is
assigned when a specific frame configuration has been selected for the device.
With the configuration of buffers, callback and device power, the device can
advance to the streaming state. In this state, after acknowledgement, buffers
are filled and callback functions called. The dynamic behavior of device and its
device mechanism with respect to the functions calls can be seen as the UML
state machine diagram of Fig. 6.1.

We describe the interface of the device mechanism using XML. The defined
functions are used as events for the state machine that is described in the same
XML document. We map the UML state machine above to our IDL description
manually. With the description of preconditions, functions are made dependent
on the state and state variables. This enforces that certain functions follow the
dynamic behavior of the device.

Table 6.4 summarizes the defined conditions for the Philips webcam contracts.
Besides the state conditions, the buffer_level precondition ensures that at least
10 ms of pending transfers can be buffered. This is a heuristic USB recom-

115

6 Device Contracts for Drivers

Function Pre-Condition Post-Condition
sendVideoCommand state: idlesetVideoMode
assignVideoBuffer state: readyunassignVideoBuffers

registerVideoCallback

state: ready

buffer_level �
2 · 10 ms

2 · 10·(7·high_speed+1)·packet_size

2bInterval�1 bytes

acknowledgeVideoCallback state: streaming
setMotor 5,000 sresetMotor

Table 6.4: Philips webcam contract’s conditions.

mendation to avoid data loss. This condition was simplified to buffer_level
� 2 · 10 · packet_size bytes because the camera only works at full speed and
bInterval is always 1, see Listing 6.1. Furthermore, timing postconditions are
described for camera movement such as tilt and pan configurations. The function
blocks until the expected result is achieved.

6.7.1 Results

The XML file for the contract definition of the Philips webcam device mechanism
has 526 lines of code measured with the CLOC tool from sourceforge. This file
holds the state machine description, the description of the functions exported from
device mechanism and their contract conditions. The IDL generates a header and
a source file of respectively 84 and 639 lines of code.

The state and variables of the state machine have to be updated atomically to
avoid race conditions. We use the Linux rw_semaphore for that which implements
a readers-writer lock. Because the device mechanism callbacks are executed by
workqueues, in the context of a kernel process, our state machine does not require
a spinlock1. This way, any function that does not modify a state machine
variable or state can execute in parallel. Functions that update the state machine
variables or state execute alone and block any other function dependent on these
variables. The callback functions do not update state by design (see Chapter 5)
and can thus be executed in parallel. Since these are the performance critical
functions of the driver, the driver performance is not compromised.

We analyzed the Git logs of the Philips webcam driver of the Linux kernel
from 24/04/2006 to 02/02/2012. In this case, only 4 bugs, 14.29% of the defects,
are related to the device protocol. From these bugs, there is one ordering defect
because the Light-Emitting Diode (LED) control was being called before the

1Interrupts and callbacks in interrupt context have to block with a spinlock (busy waiting) if
they must, because they run in the kernel thread that cannot be preempted.

116

6.8 Evaluation

input arguments of the function were initialized. This fault could be detected by
our approach and its failure avoided.

The device mechanism with automatic constraint check is a Linux module that
can be used by two driver policies, a Linux kernel driver and a user space driver.
The user space driver is an application with computing time that performs the
data acquisition by itself. The video application only configures and requests
complete frames. The kernel driver is an interface without computing time. It
only reacts to calls and consumes computing time of the callee. Due to its strong
coupling, it became apparent that different applications handle the driver differ-
ently. Using the Cheese application, a NULL pointer dereference occurred, while
video worked with Ekiga. A new buffer request function returned NULL on the
absence of free buffers, while it used to return the oldest full buffer earlier. The
buffer pointer was thus not checked for NULL before usage. The failure occurred
more frequently with the Cheese application because it uses three frame buffers
while Ekiga only two. This is a failure of an interaction between application/-
driver and kernel, while we focus on the driver/device interface. But it shows
that a component can fail if used in an unspecified way, also when it previously
worked.

6.8 Evaluation
We first analyze the portability issues related to our approach. Later, we show
which kind of bugs can be avoided using this approach and how representative
they are for drivers.

6.8.1 Portability

The device contracts strategy requires a code generator that translates the state
machine description to an implementation and constraints to tests, also providing
debug code. Our current implementation of the IDL/constraint generator has 592
lines of code. Moreover, the macros required to support a target platform are
minimal only taking 42 lines.

Because operating systems modules are programmed in C, the same target
language of the code generator, the effort to port the system to another operating
system is minimal. For that, the header file with the nine macros required for
the synchronization has to be extended with corresponding implementations for
the target system.

In order to have a race-free state machine, access to state variables have to
be linearized. Generally, this is achieved by the use of a spinlock that allows
waiting in interrupt context and impede that any task is fulfilled in parallel.
We use the readers-writers-algorithm for mutexes instead that allows multiple
functions to read the data but only one to write it. This allows for a multithreaded

117

6 Device Contracts for Drivers

Drivers Value defects Ordering defects Timing defects Data races
Broad analysis [RCKH09] 61% 28% 8% 3%
Philips webcam 75% 25% 0% 0%
USB network devices 64.29% 26.79% 7.14% 1.79%

Table 6.5: Categorization of violations of device protocol for different drivers and
respective percentage of total violations.

driver. However, this requires that the operating system has an implementation
of the readers-writers-algorithm in form of a special mutex. A further special
consideration is that callbacks are not called in interrupt context to avoid the
necessity of a spinlock. This requires that the target operating system has a
mechanism to postpone tasks to be run in context of a dedicated kernel process.

6.8.2 Error Analysis

In the root-cause analysis of driver defects by Ryzhyk et al. [RCKH09], de-
vice protocol violations are responsible for 38% of the defects. The majority of
faults are related to value defects, 61%, followed by ordering defects 28%. In our
method, the device mechanism layer is already responsible for avoiding value de-
fects, see Chapter 5. Through the implementation of a state machine view of the
device and definition of state related preconditions, we intend to target ordering
defects too.

From 24/04/2006 to 02/02/2012, we analyzed the Git logs of the USB network
devices. These are Ethernet, modem or wireless Local Area Network (LAN)
devices that are connected to the computer through USB. The defect distribution
for these devices are close to the broader distribution found by Ryzhyk [RCKH09].
From the device violations, 64.29% were related to value defects, followed by
26.79% of ordering defects. More details can be seen in Table 6.5.

Many ordering defects occur because the driver is not aware of the global device
configuration. For example, 12 of 56 total USB network bugs occurred because
initialization or power resume failed, sometimes due to incomplete termination
or suspend code. Further five bugs occurred because the configuration of the
data transmission deviated from the driver’s assumption; 3 times related to data
transfer disregarding link configuration; and 2 times related to the configuration
USB transfer lengths.

In our approach, we are able to detect these faults and avoid their failures
because the driver is bound to the device configuration that is represented by
the state machine variables or states. If the preconditions are correctly assigned,
a device function that depends on a state or configuration will not be executed
and the occurrence logged instead of leading to unexpected behavior. Moreover,
timing is enforced by delays provided the device mechanism function has an
according timing postcondition.

118

6.9 Discussion

6.9 Discussion
The contract approach for device drivers enables the separation of functional im-
plementation from tests for non-functional requirements. Instead of manually
ensuring that function implementation fulfills non-functional requirements im-
plicitly, we define constraints to these functions for which tests are automatically
generated. Non-functional requirements are generally grasped by documenta-
tion. With our approach, their fulfillment is enforced automatically also avoiding
multiple design of tests.

Constraints are often related to device configuration and device’s dynamic be-
havior. We describe this behavior through an EFSM. EFSM is a sound, well
known model whose description is possible with various tools. It also allows for
a reduced state number due to the inclusion of state variables and guards.

The device mechanism’s functions are appropriate events for the state machine
because they mirror concrete device operations mapping the device functionality.
These functions do not have to necessarily cause a state change but any function
can be designated for this purpose. The description of a global dynamic model of
the device gives an insight into complex functionality/configuration dependencies.
The dependencies can be then directly declared as function’s preconditions in an
easy and explicit way. Furthermore, recovery procedures can be extracted from
the global state machine description by calculating which functions have to be
called to reach the required state.

Generally, state machine implementations rely on a spinlock impeding parallel
execution of the driver. Because we use the readers-writer lock, the parallel
execution of functions that do not update the state machine is possible.

The usage of XML is intentional because we do not want to specify a description
language. Our work addresses the specification of requirements and the imple-
mentation of constraint tests while using standard descriptions. XML enables
us to define the necessary data in a context. The XML document can be used
as backend for different description languages or visual description of an EFSM,
such as UML state diagrams for example.

6.10 Conclusion & Future Work
We define device contracts for drivers to specify non-functional requirements on
top of a functionality layer, the device mechanism, and allow its online testing
automatically through a framework. The framework is based on an IDL and
an EFSM description of the device, a code generator and underlying platform
descriptions. Non-functional requirements are summarized in pre- and postcon-
ditions based on EFSM states, variables and timing. These conditions are asso-
ciated with functions of the device mechanism whose declaration occur through
an interface description language. Then, a code generator exports the functions

119

6 Device Contracts for Drivers

and generates constraint tests from the interface description. The generated code
is based on macros to facilitate porting to other platforms.

The proposed IDL is adapted to the software data types used in the device
mechanism, register/bit field values, streams, callbacks and contexts. A described
interface is translated to a C header and source exporting functions with a stan-
dard C translation of the data types for software use.

In the IDL, pre- and postconditions are associated with the exported functions.
Postconditions describe the execution time of the device functionality. Precondi-
tions define a specific device configuration required for correct function execution.
The device configuration is declared as the state of an EFSM or a range value of
an EFSM variable. Tests for fulfillment of these conditions are automatically gen-
erated together with an implementation of an EFSM that describes the dynamic
behavior of the device. The EFSM’s events are defined as the device mecha-
nism’s functions. By executing the EFSM in parallel to the device mechanism,
the device configuration is mapped to the EFSM states and variables.

The implementation of an EFSM, timing control, export of functions and data
types translation requires a target platform. Required functions are summarized
in macros that need an implementation on the different target platforms. By
using workqueues for callback implementation, we can avoid spinlocks and busy
waiting altogether, suspending the requesting process if necessary. Semaphores
for synchronization and timers for delaying execution have been translated to
Linux Kernel using readers-writer lock and scheduled delay. In user space, POSIX
mutexes and a standard sleep routine have been used. The proposed approach
can be ported to other platforms easily by creating the required macros.

We developed a Philips webcam driver as a proof-of-concept of our method.
One known protocol ordering defect could have been detected by our approach.
Furthermore, a fault in our Linux kernel driver policy can depict the challenges
of component-based design imposed by the complexity of current systems. The
Cheese application acquired more buffers than expected by our driver policy lead-
ing to a NULL pointer dereference. Our work targets the device/driver interaction
and not the application/driver interaction. This violation was thus not automat-
ically detected. But it exemplifies that runtime tests for component interaction is
crucial because different applications using the same components exercise them
in different ways, which can lead to a failure due to an unexpected corner case
execution.

In our approach, configuration and function dependencies can be efficiently de-
scribed. Ordering defects correspond broadly to 28% of device protocol errors and
10% of all driver defects [RCKH09]. These defects occur due to misunderstand-
ing or missing specification of device configurations and arise from an unexisting
overview of the device behavior in drivers. Because our approach covers this lack,
these faults can be detected and their failures avoided.

A possible optimization for this method would be to disable constraint tests

120

6.10 Conclusion & Future Work

that can be proven by static model checkers. For example, this could be done for
execution paths that do not depend on user input. Wider adoption of the method
could be achieved with support for automatic generation of our XML documents
from UML tools. Also, an IDL is an interesting concept as basis for constraints.
In the future, constraints for standard libraries for drivers could automatically
enforce certain interface protocols this way. Furthermore, other constraint types
could be considered. The inclusion of Linear Temporal Logic (LTL) constraints
[HR04] can enrich the testing coverage. Also, constraint sets for specific execu-
tion modes could be envisoned, such as reentrancy and interrupt context. With
techniques for driver implementation in user space and the use of IDLs, the driver
policy could be implemented in safe languages and still communicate with the C
runtime environment.

121

7 Conclusions

Current development methods take advantage of reliable components to build re-
liable systems. But the interaction between these components is only informally
specified, not simulated and remain untested leaving room for future failures.
Therefore, this thesis aims at the specification, test generation and runtime test
of the interaction between electronic components and between software and elec-
tronics.

We have described a suitable specification for hardware and for hardware-
software interaction, and demonstrated the feasibility of our testing approach
through case studies avoiding interaction failures. In this chapter, we review our
achievements, giving a comparison to current methods where possible, and depict-
ing limitations and difficulties of our method. Then, we outline the future work
of this thesis generally. Future work related to the specific chapters is described
in each chapter individually.

7.1 Contributions

7.1.1 Hardware Contracts

In Chapter 3, we have presented a method to specify and test hardware inter-
action through hardware contracts. Requirements for component operability are
defined as environmental parameters and compliance with communication pro-
tocols. On their compliance, component functionality and its constraints are
assured. In order to test these, circuits have been proposed. In the case of the
communication protocols, the high speed input data require special circuits for
signal categorization in order to evaluate errors. Through this categorization,
evidences for circuit faults can be evaluated.

We extended the contract specification from software to hardware enclosing
hardware specific requirements and constraints. A similar hardware specifica-
tion method does not exist. Similar test methods have been proposed, such as
bus monitors that are able to analyze frame composition and bit faults of com-
munication systems [PHZ+05], [ARSH05]. Crossman et al. [CGMC03] relate
specific behaviors of sensor signals to specific faults using signal parameters. We
extended the bus monitor approaches by the categorization of the signal reduc-
ing the amount of data to enable the test of a corresponding specification. Our
generic specification of signal parameters for hardware modules is similar to the

123

7 Conclusions

one of Crossman et al. [CGMC03]. This endorses the potential of the approach
to give evidence of circuit faults.

Limitations of our approach are related to our test circuit. It is not appropriate
for high speed communication protocols. Furthermore, it represents a consider-
able overhead for simple systems. However, the overhead is well justified for
safety critical applications because critical operations can be constantly verified.

In Chapter 4, we extended the generic payload of the Transaction Level Model
to comprise the signal characteristics defined in the hardware contracts in order
to allow signal fault simulation within the system level design. Based on this
extension, we simulate an acquisition system with connected sensors that inject
signal faults in their data transmission based on probability distributions. Sig-
nal characteristics are interpreted and corresponding signal faults are assigned
if operating limits of the communication system are exceeded. Assigned signal
faults are then translated to digital faults. For this model, we have analyzed fault
propagation through a bus system with fallback modes enabling fault recovery.
This work complements the work of Beltrame et al. [BBM09] and Chen et al.
[CWP08] extending the verification of TLM designs to the signal level.

7.1.2 Device Contracts for Drivers

The subsequent chapters consider the interaction between hardware and soft-
ware. Software interfaces with hardware through a device driver that requires
information about internal hardware elements. This shifts the black-box view of
component-based design to a grey-box.

In order to allow for a contract specification of a device, we designed a driver
architecture that wraps the access to internal device elements exporting its func-
tionality through a software interface, see Chapter 5. We define rules to avoid
that device data be processed by the device interface leaving this task for the
upper driver layer. Moreover, the description of the internal device elements and
accessing them is a non-trivial task in software because these elements cannot be
handled directly by the programming language. Therefore, we propose an XML
description with declaration of a register map and communication system that is
translated to C structures. Through access interfaces, these C structures can be
used to access the device directly respecting the access behavior of the internal
elements.

Our architecture is a new approach that hides the internal parts of the de-
vice separating access from processing. It enables the description of the device
based on the device implementation instead of a desired functionality. Ryzhyk
et al. [RCK+09] propose that the device specification–the lowest layer of their
architecture–complies with a generic device interface called device class. How-
ever, this architectural layer is not very different from a regular driver because
OS drivers have to comply with a generic device interface too. The advantage of

124

7.1 Contributions

basing the lowest architectural layer on the device implementation instead is its
completeness with regard to constraints. By contrast, non-functional constraints
are hard to be provided for an abstract interface, as a generic device interface.

The systematic development bases on earlier work of register map declaration
[MRC+00], [SYKI05], [WMB03], [CE04], providing further runtime checks for
register consistency. Besides the register map declaration, we define the com-
munication interface with the device that is responsible for interrupt and DMA
functionality. Furthermore, we enable the access to registers through custom func-
tions, such as through USB setup packet transmission. This allows for register
access on absence of memory mapped or port I/O. Our systematic development
also allows for platform independence because register map and communication
descriptions and their generated C structures are platform independent.

The proposed device interface abstraction is limited to peripheral devices. De-
vices that export generic computing power do not cope with this abstraction.
Also, devices with interfaces below the register level, such as analog or unregis-
tered interfaces are not compatible. The effort to port the systematic development
framework to another operating system lies in the implementation of a commu-
nication system interface. The communication system interface has to comply
with requirements of the framework. The current Linux USB interface comprises
approximately 2 thousand lines of code.

The device interface provides a clean access to the device. In Chapter 6, we
define device contracts for drivers through the description of the dynamic be-
havior of the device, using an Extended Finite State Machine (EFSM), and by
associating constraints to the functions of its device interface. These constraints
are based on timing and on the EFSM. An IDL declares the device interface,
and describes its constraints and the EFSM. The device functions are treated
as events that can trigger state or variable changes. The description is carried
out in an XML document from which a software interface is generated respecting
the described behaviors and constraints. Also, logging facilities are generated to
allow tracking of faulty usage. The proposed contracts are able to avoid roughly
10% of driver failures. These are related to ordering defects of the device pro-
tocol, being the second major cause of driver failures after device value defects,
23% [RCKH09], that are targeted by the device mechanism.

By defining contracts for the device interface, we augment the device access
with runtime checks for non-functional constraints. Early work on contracts for
embedded systems only grasped possible constraint types for hardware [BG06].
We have defined constraint types, a specification description and developed au-
tomatic tests. In the HW/SW codesign research field, state machines have been
proposed for the description of the dynamic behavior of the device [WMB03],
[RCK+09]. In contrast to these descriptions, our model allows for a simplified
view of the specific device because the functionality does not depend on it. Thus,
only constraint relevant configuration has to be modeled. Moreover, because this

125

7 Conclusions

layer is based on the device implementation, it is fully specified allowing for con-
straints to be defined naturally. In contrast, Wang et al. [WMB03] interleave the
dynamic behavior with register accesses and Ryzhyk et al. [RCK+09] target a
generic device interface without specially considering device access. Our system
allows parallelism by automatically applying the readers-writer-lock algorithm
instead of using a spinlock around the complete driver.

The effort to port the system to another operating system is minimal because
the code generator outputs C code which is the language operating systems’
modules are programmed in. Nine macros are required for this porting. However,
a multithreaded driver can only be achieved if the operating system supports the
readers-writer-algorithm. Alternatively, a regular mutex can be used that would
again serialize the driver execution.

7.2 Future Work
Runtime tests involve performance penalty. But, in contrast to static tests, they
are able to check external influence on systems, the user input of a software
for instance. Tests of internal interaction can occur statically or be formally
verified ensuring that certain constraints are always met. In such cases, runtime
tests can be skipped without performance or reliability penalty. Therefore, a
smart balance of runtime checks for external dependencies and static checks for
internals provides an appealing future solution.

Also, a framework that understands specified interfaces and their constraints
could provide the assembly of systems as easy as connecting blocks in a diagram.
In order to provide a reliable system, interfaces and constraints compliance have
to be statically checked and inconsistencies detected. Otherwise, new modules
may fulfill the interface but violate its constraints. This is currently the case for
SoC design. IP providers’ tools offer system assembly as in a block diagram by
relying on standard interfaces. But the interface verification is left to the user,
who does not know the constraints well.

Finally, operating systems have generic interfaces to control all devices of a
specific type in the same manner. Devices of a supported type could embed
driver implementations for different operating systems enabling their usage even
if the OS did not have a driver for it. An appropriate interface for gathering the
driver and a framework for automatically instantiating it enable a new way of
connecting peripheral devices. In unified drivers, such as USB classes, the device
has to comply with a specific driver implementation, here the driver complies
with the device. Thus, the driver remains flexible and the device design free of
adverse constraints. Because the device mechanism is platform independent, our
driver architecture could provide a base for this by making driver policies that
are as platform independent as possible reducing amount of driver code to be
embedded.

126

Bibliography

[ABB+02] Colin Atkinson, Joachim Bayer, Christian Bunse, Erik Kamsties,
Oliver Laitenberger, Roland Laqua, Dirk Muthig, Barbara Paech,
Jürgen Wust, and Jorg Zettel. Component-Based Product-Line En-
gineering with UML. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[ALR01] Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell. Funda-
mental concepts of dependability. Technical report, Computer Sci-
ence Department, University of California, Los Angeles, USA, 2001.

[App07] Apple. I/O Kit Fundamentals. Technical report, Apple Inc., 2007.

[ARSH05] E. Armengaud, F. Rothensteiner, A. Steininger, and M. Horauer. A
method for bit level test and diagnosis of communication services.
In Proc. of the 8th International IEEE Workshop on Design & Di-
agnostics of Electronic Circuits & Systems, Sopron, Hungary, 2005.
IEEE.

[ASE04] Miron Abramovici, Charles Stroud, and John M. Emmert. Online
BIST and BIST-Based Diagnosis of FPGA Logic Blocks. IEEE
Trans. Very Large Scale Integr. Syst., 12(12):1284–1294, 2004.

[ASH+04] Eric Armengaud, Andreas Steininger, Martin Horauer, Roman Pal-
lierer, and Hannes Friedl. A Monitoring Concept for an Automo-
tive Distributed Network-The FlexRay Example. In Proceedings of
the 7th IEEE International Workshop on Design and Diagnostics of
Electronic Circuits and Systems (DDECS 2004), pages 173–178, Slo-
vakia, 2004. IEEE.

[BBKL10] Thomas Ball, Ella Bounimova, Rahul Kumar, and Vladimir Levin.
SLAM2: static driver verification with under 4% false alarms. In
Roderick Bloem and Natasha Sharygina, editors, Proceedings of the
Formal Methods in Computer-Aided Design (FMCAD), 2010, pages
35–42, Lugano, Switzerland, 2010. IEEE.

[BBM09] Giovanni Beltrame, Cristiana Bolchini, and Antonio Miele. Multi-
level fault modeling for transaction-level specifications. In Proceed-

127

Bibliography

ings of the 19th ACM Great Lakes symposium on VLSI - GLSVLSI
’09, pages 87–92, New York, NY, USA, 2009. ACM.

[BCMS05] G. Bonfini, M. Chiavacci, R. Mariani, and R. Saletti. A new ver-
ification approach for mixed-signal systems. In Proceedings of the
IEEE International Behavioral Modeling and Simulation Conference
(BMAS 2005), pages 22–23, San Jose, California, USA, 2005.

[BG06] Christian Bunse and Hans-Gerhard Gross. Unifying hardware and
software components for embedded system development. In Proceed-
ings of the 2004 international conference on Architecting Systems
with Trustworthy Components, pages 120–136, Heidelberg, Germany,
2006. Springer-Verlag.

[BGF03] J. W. Bruce, M. A. Gray, and R. F. Follett. Personal digital assistant
(PDA) based I2C bus analysis. IEEE Transactions on Consumer
Electronics, 49(4):1482–1487, November 2003.

[BL98] Gaetano Borriello and Luciano Lavagno. Interface synthesis: a verti-
cal slice from digital logic to software components. In Proceedings of
the 1998 IEEE/ACM International Conference on Computer Aided
Design (ICCAD), pages 8–12, New York, NY, USA, 1998. ACM.

[BMP07] Brian Bailey, Grant Martin, and Andrew Piziali. ESL Design and
Verification a Prescription for Electronic System-Level Methodology.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

[BPMC01] A. Bobbio, L. Portinale, M. Minichino, and E. Ciancamerla. Im-
proving the analysis of dependable systems by mapping fault trees
into Bayesian networks. Reliability Engineering & System Safety,
71(3):249–260, March 2001.

[BR02] Thomas Ball and Sriram K. Rajamani. The SLAM project: debug-
ging system software via static analysis. In Proceedings of the 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, volume 37, pages 1–3, New York, NY, USA, 2002. ACM.

[BWZ10] Silas Boyd-Wickizer and Nickolai Zeldovich. Tolerating malicious
device drivers in Linux. In Proceedings of the 2010 USENIX con-
ference on USENIX annual technical conference, Boston, MA, 2010.
USENIX Association.

[CCM+09] Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus
Peinado, Periklis Akritidis, Austin Donnelly, Paul Barham, and
Richard Black. Fast byte-granularity software fault isolation. In

128

Bibliography

Proceedings of the ACM SIGOPS 22nd symposium on Operating sys-
tems principles - SOSP ’09, pages 45–58, New York, New York, USA,
2009. ACM Press.

[CE04] Christopher L. Conway and Stephen A. Edwards. NDL: a domain-
specific language for device drivers. ACM SIGPLAN Notices,
39(7):30–36, 2004.

[CGMC03] Jacob A. Crossman, Hong Guo, Yi Lu Murphey, and John Cardillo.
Automotive signal fault diagnostics. I. Signal fault analysis, signal
segmentation, feature extraction and quasi-optimal feature selection.
IEEE Transactions on Vehicular Technology, 52(4):1063–1075, July
2003.

[COB95] Pai H. Chou, Ross B. Ortega, and Gaetano Borriello. The Chinook
hardware/software co-synthesis system. In Proceedings of the 8th in-
ternational symposium on System synthesis, pages 22–27, New York,
NY, USA, 1995. IEEE Comput. Soc. Press.

[Com94] Microcomputer Standards Committee. IEEE Standard 1284 - Stan-
dard signaling method for a bidirectional parallel peripheral interface
for personal computers, 1994.

[Cor07] Intel Corporation. Implementing Industry Standard Architecture
(ISA) with Intel Express Chipsets. 2007.

[CPC03] José Carvalho, Paulo Portugal, and Adriano Carvalho. A framework
for dependability evaluation of PROFIBUS networks. In Proceedings
of the 2003 IEEE International Symposium on Industrial Electronics,
volume 1, pages 466–471, Rio de Janeiro, Brasil, 2003. IEEE.

[CWP08] Yung-Yuan Chen, Yi-Chiang Wang, and Jian-Min Peng. SoC-level
fault injection methodology in SystemC design platform. In Pro-
ceedings of the 2008 Asia Simulation Conference - 7th International
Conference on System Simulation and Scientific Computing, pages
680–687. IEEE, October 2008.

[CYC+01] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Daw-
son Engler. An empirical study of operating systems errors. ACM
SIGOPS Operating Systems Review, 35(5):73–88, December 2001.

[Dep69] Electronic Industries Association. Engineering Dept. Interface be-
tween data terminal equipment and data communication equipment
employing serial binary data interchange, 1969.

129

Bibliography

[DLMSS08] Mehdi Dehbashi, Vahid Lari, Seyed Ghassem Miremadi, and Moham-
mad Shokrollah-Shirazi. Fault Effects in FlexRay-Based Networks
with Hybrid Topology. In Proceedings of the 2008 3rd International
Conference on Availability, Reliability and Security, pages 491–496,
Washington, DC, USA, 2008. IEEE Computer Society.

[DRS04] Vijay D’silva, S. Ramesh, and Arcot Sowmya. Bridge over troubled
wrappers:automated interface synthesis. In Proceedings of the 17th
International Conference on VLSI Design, pages 189–194, Washing-
ton, DC, USA, 2004. IEEE Comput. Soc.

[Dub08] Elena Dubrova. Fault tolerant design: An introduction. Kluwer Aca-
demic Publishers, 2008.

[ECCH00] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem.
Checking system rules using system-specific, programmer-written
compiler extensions. In Proceedings of the 4th conference on Sym-
posium on Operating System Design & Implementation-Volume 4,
Berkeley, CA, USA, 2000. USENIX Association.

[ESS00] John Emmert, Charles Stroud, and Brandon Skaggs. Dynamic fault
tolerance in FPGAs via partial reconfiguration. In Proceedings of the
IEEE Symposium on Field-Programmable Custom Computing Ma-
chines, pages 165–174, Washington, DC, USA, 2000. IEEE Computer
Society.

[FHN+04] Keir Fraser, Steven Hand, Rolf Neugebauer, Ian Pratt, Andrew
Warfield, and Mark Williamson. Safe hardware access with the Xen
virtual machine monitor. In Proceedings of the 1st Workshop on
Operating System and Architectural Support for the on demand IT
InfraStructure (OASIS). Citeseer, 2004.

[GGP06] Archana Ganapathi, Viji Ganapathi, and David Patterson. Windows
XP kernel crash analysis. In Proceedings of the 20th conference on
Large Installation System Administration, pages 149–160, Berkeley,
CA, USA, 2006. USENIX Association.

[GRB+08] Vinod Ganapathy, Matthew J. Renzelmann, Arini Balakrishnan,
Michael M. Swift, and Somesh Jha. The design and implementation
of microdrivers. SIGARCH Comput. Archit. News, 36(1):168–178,
2008.

[Gro02] H. G. Groß. Built-in contract testing in component-based application
engineering. In Proceedings of the Workshop on Component-based
Development, pages 87–100, Madrid, 2002.

130

Bibliography

[Gro04] Hans-Gerhard Gross. Component-Based Software Testing with UML.
SpringerVerlag, 2004.

[Gro11] Object Management Group. Unified Modeling Language (UML),
2011.

[Gup92] Aarti Gupta. Formal hardware verification methods: A survey. For-
mal Methods in System Design, 1(2-3):151–238, October 1992.

[HBG+07] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and An-
drew S. Tanenbaum. Failure Resilience for Device Drivers. In Pro-
ceedings of the 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’07), pages 41–50, Washing-
ton, DC, USA, June 2007. IEEE Computer Society.

[HBG+09] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and An-
drew S. Tanenbaum. Fault isolation for device drivers. In Proceedings
of the 2009 IEEE/IFIP International Conference on Dependable Sys-
tems & Networks, pages 33–42. IEEE, June 2009.

[Her01] Richard Herveille. I2C Controller Core, 2001.

[HR04] Klaus Havelund and G. Roşu. Efficient monitoring of safety proper-
ties. International Journal on Software Tools for Technology Transfer
(STTT), 6(2):158–173, 2004.

[IEE10] IEEE Standard for IP-XACT, Standard Structure for Packaging In-
tegrating, and Reusing IP within Tool Flows. IEEE Std 1685-2009,
2010.

[IKK+07] V. P. Ivannikov, A. S. Kamkin, A. S. Kossatchev, V. V. Kuliamin,
and A. K. Petrenko. The use of contract specifications for represent-
ing requirements and for functional testing of hardware models. Pro-
gramming and Computer Software, 33(5):272–282, September 2007.

[Jac09] Daniel Jackson. A direct path to dependable software. Communica-
tions of the ACM, 52(4):78–88, 2009.

[Jan03] Axel Jantsch. NoCs: a new contract between hardware and soft-
ware. In Proceedings of the Euromicro Symposium on Digital System
Design, pages 10–16, Washington, DC, USA, 2003. IEEE Computer
Society.

[JW05] Ahmed A. Jerraya and Wayne Wolf. Hardware/software interface
codesign for embedded systems. Computer, 38(2):63–69, 2005.

131

Bibliography

[Kam07] Alexander Kamkin. Contract Specification of Pipelined Designs:
Application to Testbench Automation. In Proceedings of the 1st
Spring Young Researchers Colloquium on Software Engineering
(SYRCoSE’2007), 2007.

[Kam08] Alexander Kamkin. Coverage-Directed Verification of Microproces-
sor Units Based on Cycle-Accurate Contract Specifications. In Pro-
ceedings of the East-West Design & Test Symposium (EWDTS),
pages 84–87. IEEE, 2008.

[KC10] Volodymyr Kuznetsov and Vitaly Chipounov. Testing closed-source
binary device drivers with DDT. In Proceedings of the 2010 USENIX
conference on USENIX annual technical conference, pages 12–25,
Berkeley, CA, USA, 2010. USENIX Association.

[KDK06] Pavel Kubalik, Radek Dobiáš, and Hana Kubátová. Dependable De-
sign for FPGA Based on Duplex System and Reconfiguration. In Pro-
ceedings of the 9th EUROMICRO Conference on Digital System De-
sign (DSD’06), pages 139–145, Washington, DC, USA, 2006. IEEE
Computer Society.

[KG99] Christoph Kern and Mark R. Greenstreet. Formal verification in
hardware design: a survey. ACM Transactions on Design Automa-
tion of Electronic Systems, 4(2):123–193, April 1999.

[KHSP01] Murali Kudlugi, Soha Hassoun, Charles Selvidge, and Duaine Pryor.
A Transaction-Based Unified Simulation / Emulation Architecture
for Functional Verification. In Proceedings of the 38th annual Design
Automation Conference, pages 623–628, New York, NY, USA, 2001.
ACM.

[LCFD+05] Ben Leslie, Peter Chubb, N Fitzroy-Dale, Stefan Götz, Charles Gray,
Luke Macpherson, Daniel Potts, Yueting Shen, Kevin Elphinstone,
and Gernot Heiser. User-level device drivers: Achieved performance.
Journal of Computer Science and Technology, 20:1–17, 2005.

[Lev09] Joshua Thomas Levasseur. Device driver reuse via virtual machines.
Phd thesis, University of New South Wales, 2009.

[LUSG04] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz. Un-
modified device driver reuse and improved system dependability via
virtual machines. In Proceedings of the 6th conference on Symposium
on Opearting Systems Design & Implementation-Volume 6, pages 2–
17, San Francisco, CA, 2004. USENIX Association.

132

Bibliography

[Lyu07] Michael R. Lyu. Software reliability engineering: A roadmap. In
Proceedings of the 2007 Future of Software Engineering, pages 153–
170, Washington, DC, USA, 2007. IEEE Computer Society.

[M9̈6] Karl-Heinz Möller. Ausgangsdaten für Qualitätsmetriken - Eine
Fundgrube für Analysen. In Softwaremetriken in der Praxis.
Springer, 1996.

[Mey92] Bertrand Meyer. Applying "design by contract". Computer,
25(10):40–51, 1992.

[Mic06] Microsoft. Architecture of the Kernel-Mode Driver Framework. Tech-
nical report, Microsoft Corporation, 2006.

[MRC+00] Fabrice Mérillon, Laurent Réveillère, Charles Consel, Renaud Marlet,
and Gilles Muller. Devil: An IDL for hardware programming. In
Proceedings of the 4th conference on Symposium on Operating System
Design & Implementation-Volume 4, pages 2–15, Berkeley, CA, USA,
2000. USENIX Association.

[MRC04] S. Mir, L. Rufer, and B. Courtois. On-chip testing of embedded
transducers. In Proceedings of the 17th International Conference on
VLSI Design, pages 463–472, Washington, DC, USA, 2004. IEEE
Computer Society.

[MT95] Manish Malhotra and Kishor S. Trivedi. Dependability modeling
using Petri-nets. IEEE Transactions on Reliability, 44(3):428–440,
1995.

[Mur04] Brendan Murphy. Automating software failure reporting. Queue,
2(8):42–48, 2004.

[OOJ98] Mattias O’Nils, Johnny Öberg, and Axel Jantsch. Grammar based
modelling and synthesis of device drivers and bus interfaces. In Pro-
ceedings of the 24th Conference on EUROMICRO - Volume 1, pages
55–58, Washington, DC, USA, 1998. IEEE Computer Society.

[Ope] Open SystemC Initiative. http://www.systemc.org.

[Pd05] Paulo José Portugal and Adriano da Silva Carvalho. A Simulation
Model based on a Stochastic Petri Net Approach for Dependability
Evaluation of PROFIBUS-DP Networks. In Proceedings of the 2005
IEEE Conference on Emerging Technologies and Factory Automa-
tion, pages 485–494. IEEE, 2005.

[Phi00] Philips Semiconductor. I2C Bus Specification, 2000.

133

Bibliography

[PHJ06] Katarina Paulsson, M Hubner, and Markus Jung. Methods for run-
time failure recognition and recovery in dynamic and partial reconfig-
urable systems based on Xilinx Virtex-II Pro FPGAs. In Proceedings
of the Emerging VLSI Technologies and Architectures, pages 159–164,
Washington, DC, USA, 2006. IEEE Computer Society.

[PHZ+05] Roman Pallierer, Martin Horauer, Martin Zauner, Andreas
Steininger, Eric Armengaud, and Florian Rothensteiner. A generic
tool for systematic tests in embedded automotive communication
systems. In Proc. of the Embedded World Conference, pages 42–49,
Nürnberg, Germany, 2005.

[RCK+09] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, Etienne Le Sueur, and Ger-
not Heiser. Automatic device driver synthesis with termite. In Pro-
ceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, pages 73–86, New York, New York, USA, 2009. ACM
Press.

[RCKH09] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, and Gernot Heiser. Dingo:
Taming device drivers. In Proceedings of the 4th ACM European
conference on Computer systems, pages 275–288, New York, NY,
USA, 2009. ACM.

[RKM+10] Leonid Ryzhyk, John Keys, Balachandra Mirla, Arun Raghunath,
Mona Vij, and Gernot Heiser. Improved device driver reliability
through verification reuse. In Proceedings of the Sixth international
conference on Hot topics in system dependability, pages 1–7, Berke-
ley, CA, USA, 2010. USENIX Association.

[Rub06] Martin Rubli. Building a Webcam Infrastructure for GNU / Linux.
Master thesis, EPFL, Switzerland, 2006.

[SABL06] Michal M. Swift, Muthukaruppan Annamalai, Brian N. Bershad, and
Henry M. Levy. Recovering device drivers. ACM Transactions on
Computer Systems, 24(4):333–360, November 2006.

[SBF03] Bernd Steinbach, Thomas Beierlein, and Dominik Fröhlich. UML-
based co-design for run-time reconfigurable architectures. In Lan-
guages for system specification, pages 5–19. Kluwer Academic Pub-
lishers, Norwell, MA, USA, 2003.

[SHM09] Raul Schmidlin Fajardo Silva, Jürgen Hesser, and Reinhard Männer.
Fault Propagation Analysis on the Transaction-Level Model of an
Acquisition System with Bus Fallback Modes. In Proceedings of the
Workshop on the Design of Dependable Critical Systems (DDCS),
page 36. University Heidelberg, 2009.

134

Bibliography

[SHM11] Raul Schmidlin Fajardo Silva, Jürgen Hesser, and Reinhard Män-
ner. Contract Specification for Hardware Interoperability Testing
and Fault Analysis. Reliability, IEEE Transactions on, 60(1):351–
362, 2011.

[SLA97] Charles Stroud, Eric Lee, and Miron Abramovici. BIST-Based Diag-
nostics of FPGA Logic Blocks. In Proceedings of the 1997 IEEE In-
ternational Test Conference, pages 539–547, Washington, DC, USA,
1997. IEEE Computer Society.

[SM12] Raul Schmidlin Fajardo Silva and Guillermo Marcus. Device Mech-
anism: A Structured Device Driver Development Approach. In Pro-
ceedings of the 14th IEEE International High Assurance Systems En-
gineering Symposium (HASE), pages 66–73. IEEE Computer Society,
2012.

[SMLE02] Michael M. Swift, Steven Martin, Henry M. Levy, and Susan J. Eg-
gers. Nooks: an architecture for reliable device drivers. In Proceedings
of the 10th ACM SIGOPS European Workshop, pages 102–107, New
York, NY, USA, 2002. ACM.

[SPB+06] Dima Suliman, Barbara Paech, Lars Borner, Colin Atkinson, Daniel
Brenner, Matthias Merdes, and Rainer Malaka. The MORABIT Ap-
proach to Runtime Component Testing. In Proceedings of the 30th
Annual International Computer Software and Applications Confer-
ence (COMPSAC’06), pages 171–176, Washington, DC, USA, 2006.
IEEE Computer Society.

[SS04] Małgorzata Steinder and Adarshpal S. Sethi. Probabilistic Fault
Localization in Communication Systems Using Belief Networks.
IEEE/ACM Transactions on Networking, 12(5):809–822, October
2004.

[STZ08] Janusz Sosnowski, Dawid Trawczyński, and Janusz Zalewski. Safety
Issues in Modern Bus Standards. Computer, 41(1):97–99, January
2008.

[SYKI05] Jun Sun, Wanghong Yuan, Mahesh Kallahalla, and Nayeem Islam.
HAIL: a language for easy and correct device access. In Proceedings of
the 5th ACM international conference on Embedded software, pages
1–9, New York, NY, USA, 2005. ACM.

[TW09] Andrew S. Tanenbaum and Albert S. Woodhull. Operating systems:
design and implementation. Pearson, Upper Saddle River, 3rd edi-
tion, 2009.

135

Bibliography

[WB94] Elizabeth A. Walkup and Gaetano Borriello. Automatic Synthesis
of Device Drivers for Hardware/Software Codesign. Technical re-
port, Department of Computer Science and Engineering, University
of Washington, Seattle, WA, USA, 1994.

[Wer09] Frank Werner. Applied Formal Methods in Wireless Sensor Networks.
PhD thesis, Universität Fridericiana zu Karlsruhe (TH), 2009.

[WMB03] Shaojie Wang, Sharad Malik, and Reinaldo A. Bergamaschi. Mod-
eling and integration of peripheral devices in embedded systems. In
Proceedings of the conference on Design, Automation and Test in
Europe-Volume 1, pages 136–141, Washington, DC, USA, 2003. IEEE
Computer Society.

[Wol03] Wayne Wolf. A Decade of Hardware/Software Codesign. Computer,
36(4):38–43, 2003.

[ZCA+06] Feng Zhou, Jeremy Condit, Zachary Anderson, Ilya Bagrak, Rob En-
nals, Matthew Harren, George Necula, and Eric Brewer. SafeDrive:
Safe and Recoverable Extensions Using Language-Based Techniques.
In Proceedings of the 7th symposium on Operating systems design and
implementation, pages 45–60, Berkeley, CA, USA, 2006. USENIX
Association.

136

	List of Figures
	List of Tables
	1 Introduction
	1.1 Context & Motivation
	1.2 Hardware Contracts
	1.3 Device Contracts for Drivers
	1.4 Contributions
	1.5 Thesis Outline

	2 Reliability & Design of Embedded Systems
	2.1 Reliability and its Role
	2.2 Design for Reliability
	2.3 Design Methods
	2.3.1 Electronic System Level Design
	2.3.2 Component-based Design

	2.4 Driver Development Methods
	2.4.1 Drivers' Reliability

	2.5 Summary

	3 Contract Specification for Hardware Interoperability Testing and Fault Analysis
	3.1 Introduction
	3.2 Related Work
	3.3 Contract Testing
	3.4 Hardware Contract
	3.4.1 Hardware Contract Constraints
	3.4.2 Hardware Contract Example

	3.5 Contract Testing in Hardware
	3.5.1 Fault Categorization
	3.5.2 Fault Diagnosis

	3.6 Case Study
	3.6.1 I2C Contract Specification
	3.6.2 Built-in Contract Testing
	3.6.3 Test Cases
	3.6.4 Generic Results

	3.7 Discussion
	3.8 Conclusion, and Future Work

	4 Model of Hardware Contracts and Violations on Transaction Level: A Fault Propagation Analysis
	4.1 Introduction
	4.2 Related Work
	4.3 Bus Model
	4.3.1 Modeling Signal Faults
	4.3.2 Fault Analysis and Digital Fault Generation

	4.4 Acquisition Architecture
	4.4.1 Recovery Mechanism
	4.4.2 Results

	4.5 Conclusion

	5 Device Mechanism: Structured Device Driver Development
	5.1 Introduction
	5.2 Related Work
	5.3 Device Mechanism
	5.3.1 Interface Design
	5.3.2 Formal Definition of Device Mechanism
	5.3.3 Implementation Rules
	5.3.4 Specification of Specialized Functions

	5.4 Systematic Composition
	5.4.1 Design
	5.4.2 Implementation
	5.4.3 Implementation of Specialized Functions

	5.5 Evaluation
	5.5.1 Limitations of Device Mechanism
	5.5.2 System and Communication Compatibility

	5.6 Philips Webcam - Case Study
	5.6.1 Results

	5.7 Discussion
	5.8 Conclusion & Future Work

	6 Device Contracts for Drivers
	6.1 Introduction
	6.2 Related Work
	6.3 Framework
	6.4 Interface Description Language
	6.5 Device Contracts
	6.5.1 Device State View
	6.5.2 State Machine Description

	6.6 Translation of Constraint Description to Checks
	6.7 Case Study
	6.7.1 Results

	6.8 Evaluation
	6.8.1 Portability
	6.8.2 Error Analysis

	6.9 Discussion
	6.10 Conclusion & Future Work

	7 Conclusions
	7.1 Contributions
	7.1.1 Hardware Contracts
	7.1.2 Device Contracts for Drivers

	7.2 Future Work

	Bibliography

