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Abstract

Coreference resolution is one of the most fundamental Nldtargguage Process-
ing tasks, aiming to identify the coreference relation ktgeThe task is to group
mentions (i.e. phrases of interest) into sets, so that afitimes in one set refer
to the same entity (i.e. a real world object). Mentions ameveationally proper
names, common nouns and pronouns. Lately, the coreferaskdas been ex-
tended to deal with verb phrases too. However, we only wotk woun phrase
mentions in this thesis. By linking mentions together in awtoent, not only
entities are recovered but also different fragments of threext are connected.
This therefore leads to a better text understanding. Canederresolution is es-
sentially important to many applications, such as text sanmation and infor-
mation extraction. In this thesis, we propose a novel coeafee model based on
hypergraph partitioning. Our system is nam@@PA standing forCoreference
Partitioner. Given a raw documentCOPArepresents it as a hypergraph, upon
which the hypergraph partitioning algorithms are appliedierive coreference
sets directly.

The Coreference Representation. The coreference relation is a high-dimensional
relation, because it depends on multiple types of basitioek (e.g. string simi-
larities and semantic relatedness). Most of the previouk wo the coreference
resolution task combines the basic relations between oreninto single ones
and derives the coreference sets afterward. Since it isvelaexpensive to learn
the combination of the basic relations, we propose a rnoygtrgraph represen-
tation model for coreference resolution. In our model, the mentions akern as
vertices in the hypergraph and the relational featureveerfrom the basic rela-
tions as hyperedges. The hypergraph allows for multiplesdgtween vertices,
so that it suits thdigh-dimension property of the coreference relation. More-
over, in a hypergraph one hyperedge can connect more thamesioes. As a
result the hypergraph directly represettits relations between sets of mentions
as required for the coreference resolution task.

Since the basic relations are incorporated in an overlgpmiannerCOPAonly
needs a few training documents to achieve competitive paence. Thaveakly



supervisednature make€OPAa good candidate when applying to different do-
mains or languages, or when only limited training data islalke.

The Coreference Inference. The inference of the coreference resolution task
deals with sets of mentions. It needs to capture the reti@mtween multiple
mentions in order to derive the final coreference sets. Thexewe consider
coreference resolution as a set problem. Most of the prevdoteference models
address the set problem by dividing the resolution into ti@ps— a classification
step and a clustering step (e$oon et al. (2000. The classification step makes
decisions for each pair of mentions on whether they are emgef or not. Upon
the pairwise decisions, the clustering step further groupations into the final
sets. The two-step division makes the classification perdoice not necessarily
positively correlated with the end evaluation numberss Mifficult to track the
error propagation and hard to optimize with respect to thel ioreference sets.
Moreover, since the coreference decisions are made betpaeshof mentions
independently, global context information is missing inga models.

In this thesis, we propose a global coreference modehyergraph partition-
ing. We design two algorithms based on the spectral clustedadgnique — a
hierarchicalR2 partitionerand a flat k-wayflatK partitioner. We also propose
extensions to the clustering algorithms@DPA aiming to include constraints to
enforce the cluster-level consistency. The constra®@eAis the first attempt to-
wardsa better learning schemefor our system. It solves the cluster-level incon-
sistency problem and at the same time contributes to rés@atbe constrained
graph clustering field.

The Coreference Evaluation. SinceCOPAis anend-to-end coreference sys-
tem, the important implementation issues encountered whelyiagpclustering
algorithms to practical uses are also addressed in thistHes instance, the ex-
isting evaluation metrics become problematic when theraatwally identified
mentions do not align with the ones in the ground truth. s thesis, we propose
variants of the coreference evaluation metricgo tackle this problem.

COPAoutperforms several baseline systems in fair settingsgubie same fea-
tures and the same mentions and only comparing the effeetsgeof the models
themselves. It also performs competitively compared tosthge-of-the-art sys-
tems across different evaluation metrics, different data and different domains.



Zusammenfassung

Koreferenzresolution ist eine der grundlegendsten Awggatter Computerlin-
guistik. Es wird dabei das Ziel verfolgt, die Koreferenateln in Texten zu iden-
tifizieren. Die Aufgabe besteht darin, Etvaungen (d.h. zu untersuchende Phra-
sen) so in Mengen zu gliedern, dass alle &mwwngen in einer Menge auf die glei-
che Entiit (d.h. ein Objekt in der Welt) referieren. Hérkmlicherweise werden
Eigennamen, Gattungsnamen und Pronomen zu deatitnwngen gezhlt, wobei

in den letzten Jahren auch vermehrt Verbphrasen einbezegelen sind. In die-
ser Dissertation werden ausschliesslich nominale undopnarale Ervédhnungen
berucksichtigt. Indem Er&hnungen in einem Dokument miteinander veéiib
werden, werden nicht nur Erditen identifiziert, sondern auch verschiedene Kon-
textfragmente miteinander verbunden. Diébrt zu einem besseren automati-
schen Textverstehen. Koreferenzresolution istviele Anwendungen wie bei-
spielsweise Textzusammenfassung und Informationsexra&ssentiell. In die-
ser Dissertation schlagen wir ein neues Koreferenzmodsliebend auf Partitio-
nierung von Hypergraphen vor. Unser System h&lX3PA was fir Koreferenz-
Partitionierer (engl. Coreference Partitiongrsteht. Gegeben ein Textdokument
wird dieses inCOPAals Hypergraph regisentiert. Anschliessend werden Parti-
tionierungsalgorithmen auf diesen Hypergraphen angegtend direkt die Ko-
referenzmengen zu erhalten.

Die Reprasentation von Koreferenz. Die Koreferenzrelation ist hochdimen-
sional, da sie von vielen Typen von Basisrelationen (z.B.l&nketteAhnlichkeiten
und semantischer Verwandtschaft) abpt. Viele fiihere Koreferenzresolutions-
arbeiten kombinieren verschiedene Basisrelationen zersezivei Ervédhnungen
zu einer einzelnen Relation und treffen die Koreferenzémeisicingen basierend
auf diesen kondensierten Relationen. Da es relativ andlig ist, die Kombination
von Basisrelationen zu lernen, schlagen wir ein neues@eptationsmodell ba-
sierend auf Hypergrapheiirf Koreferenzresolution vor. In unserem Modell wer-
den Ervdhnungen als Knoten in einem Hypergraphen betrachtet @n8asisre-
lationen werden als Hyperkanten integriert. Der Hyperggragaubt viele Kanten
zwischen Knoten, was der hochdimensionalen Eigenschialateferenzrelation
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entspricht. Hinzu kommt, dass in einem Hypergraphen eingeHgante mehr als
zwei Knoten miteinander verbinden kann. Folglich éesantiert der Hypergraph
direkt die Relationen zwischen Mengen von Bhwmungen, wie es die Koreferenz-
resolutionsaufgabe erfordert. Da die Basisrelatioieerlappend integriert sind,
berbtigt COPANnur wenige Dokumente zum Trainieren, um konkurréhaje Er-
gebnisse zu erzielen. D2OPAein schwachiberwachtes Koreferenzsystem ist,
eignet es sich auch dann, wenn verschiedene @am und Sprachen interessie-
ren oder wenn wenige Trainingsdaten vghar sind.

Inferenz fur Koreferenz. Die Inferenz fir die Koreferenzresolutionsaufgabe
erfolgtiber Mengen von Erahnungen. Es iitssen dabei die Relationen zwischen
mehreren Enghnungen beéicksichtigt werden, um die endljigen Koreferenz-
mengen abzuleiten. Wir betrachten daher Koreferenzrésolals ein Mengen-
problem. Die meisten bisher vorgeschlagenen Koreferedetteounterteilen das
Mengenproblem in zwei Schritte — einen Klassifikationsgthnd einen Clus-
teringschritt (z.B.Soon et al. (2000). Im Klassifikationsschritt wird iir jedes
Paar von En@thnungen entschieden, ob die entsprechenderalifrangen ko-
referent sind oder nicht. Basierend auf diesen paarweiséstligidungen wer-
den die Ervahnungen im Clusteringschritt in die eridiggen Mengen gruppiert.
Die Gliederung in zwei Teilschritteihrt dazu, dass die Klassifikationsergebnis-
se nicht notwendigerweise mit den Endresultai@nkioreferenzmengen positiv
korreliert sind. Es ist daher schwierig, die Fehlerfortpfiang zu verstehen und
die Inferenz hinsichtlich der enddligen Koreferenzmengen zu optimieren. Hinzu
kommt, dass globale Kontextinformation in diesen Modefignit, da die Kore-
ferenzentscheidungen zwischen Paaren vonaBnungen unaldmgig getroffen
werden. In dieser Dissertation schlagen wir ein globalegtoenzmodell basie-
rend auf Partitionierung von Hypergraphen vor. Wir schfageei Algorithmen
vor, die auf der spektralen Clusteringtechnik basieren hieirarchischeR2 Par-
titionierer und ein partitionierendek-way flatk Partitionierer Wir prasentieren
auch Erweiterungenif die Clusteringalgorithmen voG@OPA die Nebenbedin-
gungen (englconstraint$ einschliessen, um Konsistenz auf der Clusterebene zu
erzwingen. Derconstrained COPAst ein erster Versuch in Richtung eines bes-
seren Lernschemasirfunser System. E®$t spezielle Koreferenzprobleme und
tragt gleichzeitig zum Forschungsfeld von GraphclusterimgNebenbedingun-
gen bei.
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Die Evaluation von Koreferenz. Da COPAein Koreferenzsystem mit realen
Vorverarbeitungskomponenten ist, befasst sich die \gehele Dissertation auch
mit wichtigen Implementierungsschwierigkeiten, die beustéringalgorithmen
auftreten, wenn sie in Anwendungen benutzt werden. So sispielsweise Eva-
luationsmetriken problematisch, da die vom System idergifien Ervdhnungen
nicht mit den Erviahnungen im Goldstandaitbereinstimmen. Wir schlagen da-
her in dieser Dissertation neue Varianten der Koreferealm@rungsmetriken vor,
um mit diesem Problem umgehen zorken.

COPA schigt verschiedene Baseline-Systeme in einem fairen Evahgesr
szenarium mit gleichen Features, sodass ausschliesgidEfféktivitat der Mo-
delle verglichen wirdCOPAerzielt zudem auch konkurrerd@fige Ergebnisse im
Vergleich zu Systemen, welche dem Stand der Forschungreobsm. Hierbei
wird sowohl hinsichtlich verschiedener Evaluationsniketni als auch in Bezug
auf verschiedene Textsammlungen und Boen verglichen.
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Chapter 1

Introduction

"Hi Cai,
you must be very brave to work on
Coreference Resolution.”
— Prof. Mirella Lapata —

This thesis addresses the challenge of within-docurmergference resolution a task of
grouping the referring expressions (i.e. phrases) ofiest{t.e. real world semantic objects)
into coreference sets so that all expressions in one setodfge same entity. The coreference
relation is dependent on multiple basic relations such asshallow syntactic relation and
semantic relatedness. It can be derived from one of the balsittons or from a combination
of multiple ones, depending on different contexts. Theeefee consider the coreference
relation asa complex relation and a high-dimensional relationas opposed to the basic low-
dimensional relations. Since the coreference resoluéiek is not only to detect the pairwise
coreference relation but also to group the referring exgpoes into sets, we consider the task
asa set problem By analyzing the linguistic phenomena of the coreferentatiom and
understanding the task requirements, we raise four impogaestions which are addressed
throughout the thesis — (1) representing the coreferenagom, (2) inferring the coreference
relation, (3) evaluating coreference resolution, (4)n@ay cheaply.

Our proposed coreference model is motivated by the first mestions. Both its repre-
sentation model and its inference method address the esgents (1) and (2) correspond-
ingly. Our model represents documentshgpergraphs, which allow for multiple edges
between vertices and multiple vertices within one edge. vEntces are the referring expres-
sions from the documents, and the multiple edges betweem ¢éinable us to break down the
complex coreference relation into multiple basic ones. @dger, the hyperedges containing
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multiple vertices straightforwardly represent the setexjressions. Upon the hypergraph
representation, we appiyraph partitioning techniques to partition the hypergraphs into sub-
hypergraphs, each of which corresponds to a coreferencelsgtsystem is nameGOPA
standing for Coreference Partition&@OPAdiffers significantly from the previous local mod-
els, since itis able to take the global context (of a docuirietd consideration and to generate
the coreference sets simultaneously in one step.

We work onan end-to-end system settingwhich takes raw texts as input and extracts
coreference sets in a fully automatic way. Since the presehooise is unavoidable in such
a realistic setup, not only the modeling itself but also tihecpcal issues are addressed in
this thesis. For instance, our proposed evaluation medrmogo conquer the problems of the
widely used metrics when evaluating the noisy output fromh-enend coreference systems.

In this chapter, we start with introducing the coreferenberomena from a linguistic
point of view in Sectionl.1L Sectionl.2then describes the coreference resolution task and
the four questions consequently emerging. In Secti@nwe convey the intuitions behind our
proposal ofCOPAand the main contributions of the thesis. The general siradf the thesis
is given at the end in Sectidn4.

1.1 Anaphora and Coreference

In linguistic expressions, in order to preserve the cohmgam texts while keeping the diverse
phrasal expressions at the same time, the referring expnssare used frequently. In the
following Example (1), the pronoungim], [heg and |hig] are all referring expressions, which
are calledanaphorsor anaphoric expressions An anaphor is used to refer to antecedent
which is a preceding phrase (e.dreinen’s Preside)t and they are talking about the same
object in the world. A world object is called amtity, for instance the ¥MEN’ S PRESIDENT

in Example (1. The process of identifying the correct antecedent for aphar isanaphora
resolution.

Example (1): Yemen'’s Presidehthas repeatedly said an internal explosion rocked the
"USS Cole”, but tomorrow the U.S. official expectsim]; to announce thathlg; has
changedlpis]; mind, and tomorrow, the search for bodies will resume .

Besides the pronominal anaphors, as shown in Example (1pitdeind demonstrative
phrases are often used as the anaphoric expressions tofil{e.meetinpand [the regulator$
in Example (2)). Proper names can either mention a new entitgfer to a previous one, such
as both mentions otLjncoln).

2The entities are in capitalized fonts throughout this thesi
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Example (2): In & highly unusual meeting in Sen. DeConcini s office in Apr879 ,
the five senators askefiefleral regulator¥, to ease up onLincoln|; .

According to notes taken by one of the participantgta¢ meetingy , [the regulator$,
said [Lincoln]; was gambling dangerously with depositors * federally iesumoney
and was ” a ticking time bomb .”

An anaphor and its antecedent are said tedreferent with each other. In other words,
both of them are linguistic expressions that refer to a sigesmtity. It is common that there are
multiple linguistic expressions for an entity in a documaevttich together form aoreference
chain or acoreference sete.g. all the phrases marked with the same subscripts in fbeam
(1) form one coreference set). The process of identifyigctireference sets within or across
documents icoreference resolution As Example (2) illustrates, a document tends to have
multiple coreference sets, and coreference resolutianigentify all of them commonly.

Coreference resolution is closely related to anaphorautisn| and it can be viewed as
a post-processing upon the antecedent-anaphor outputanaphora resolution. Consider-
ing Example (1), resolvinghim|, [he] and [his] to [Yemen’s Presidehtespectively during
anaphora resolution will help to generate the entire coeefee set. However, in this thesis,
we argue that global (set-level) information is missed freuh post-processing interpreta-
tion. In the same Example (1), when the first two pronounseselved to the entity ¥MEN’S
PRESIDENT, it is more likely for the third one to refer to this salienttigntoo rather than to
the entityTHE U.S. OFFICIAL. As a result, a set-based one-step coreference resoluadalm
is preferable due to its global property.

1.2 The Coreference Resolution Task

In this section, the crucial requirements for modeling theeterence resolution task are dis-
cussed within an end-to-end system framework. Our proposexderence model is motivated
by the requirements and addresses all of them throughotheises.

The coreference resolution task is to group the referrimqyessions into sets so that all
expressions in one set refer to the same entity. An enddocereference system takes raw
documents as input and generates the identified corefesstsas output, via a pipeline of
automatic processors. Figutel shows an example text displayedtiMAX, which is a multi-
layer visualization tool to help illustrate the coreferemxamplesNitller & Strube, 200%

The phrases that need to be resolved for coreference resoare conventionally called
mentions in the task, such asdord, [I], [he], [his opponertand [the vice presideit In
this thesis, the mentions marked with square brackets]{).are true mentions, which are
taken from the ground truth annotation, and the ones in duidygkets (i.e.{}) aresystem
mentions, which are derived automatically. The runniegtity in this example is GRE,
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whose corresponding coreference sd€{Gord, [1], [he], [his opponerit [the vice presidet

Ir the debate; {TGore]} umped on {[Bushl} , dismissing {[his]} idea of bringing in [the
{Russians]} as unwise because {[theyl} had n't recognized { {[Kostunical} as {[wvictor]}}
{[11} 'm not suréthat T s rightfor{foslyte-mvite—fthe precident of {[RUssialll } to mediate
this dispute [there] , because {[wel} might not like the result that comes outefmmal, ™ {[Gorel }
said .

O Friday , {[Bushl} criticized {{[[his]} opponentl} - 's-staterteri Either {[hel} did n't know
what {[the president]} was doipg-ar{[he]} did know what {[the president]} was doing and was
't willing to share that witlr{[the {[American]} peoplel} |, " {[Bushl} said in { {[Florida} ,
[where] {[hel}weas campaigningl} .

{Garel} on Friday welcomed {[Yugoslavial} 's change , saying it brings {[the countryl} ™
back into {[the community of {[nations]]1}} .

" [[HeT¥Feadded , *" This is a day for celebration , " without commenting on the {[Russian]} issue

[The {White Housel} , however , came to {[his]} defense . ™ What{[the vice president]} said
is something {[the president]} fully agrees with , which is that I#the {United States]} did not
suUpport any role in which {[Russial} would mediate betweets {[Milosewvicl} and {[Kostunical} | "
said [[presidertial spokesman] {Jake Siewert} , {[whel} confirmed that { {[Clinton]} spoke with
{[Putin]} about {[Yugoslawvial} last weekend]} .

Figure 1.1: Example (3): Coreference ResolutioMiMAX

The pre-processing components may vary between diffeysterms, but the most impor-
tant ones are sentence splitting, POS tagging, mentiorctitaieand syntactic parsing. The
pre-processors provide a coreference system with the amsntd be resolved and contex-
tual information for assisting the resolution procedure.eWWbxternal resources are available,
more components for knowledge extraction may be incorpdrato the system accordingly.

The following subsections will introduce the most impottaspects for designing a coref-
erence system.

1.2.1 Representing the Coreference Relation

The Coreference relation is a high-dimensional relation. By interpreting the coreference
relation as a high-dimensional relation, we refer to the taat the coreference relation is
dependent on different types of basic relations, such adoshayntactic dependency and
semantic relatedness. These basic relations are corsittebe low-dimensional, which to-
gether form the (more) complex coreference relation.
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We use the same Example (3) (Figlr8) in this subsection to convey tiegh-dimension
property of the coreference relation. It can be seen thdtinvihe exemplar text, there are
several diverse basic (low-dimensional) relations whimmprise the coreference relation.

In Example (3), with the entity GRE, the coreference relation between the fiGbfel and
the secondGoregl can be easily detected just based on their high string arityil However,
in order to resolve the coreference relation betwegor§ and [the vice presideft external
knowledge resources are necessary for providing relevdotnnation about vice president
GORE. Ifit has been mentioned in the preceeding text thaR&is a vice president (e.g. in a
text fragment "the Vice President Gore”), the relation caralso retrieved from the very text
by extracting the relevant attributes for the entit@ & before the resolution.

In the debate ,jumped on {[Bushl} , dismissing {[his]} idea of bringing in [the
{Russans]} as unwise because {[theyl} had n't recognized { {[Kostunical} as {[victor1}} . °°
{[11} 'm not sure that it s g for{TosTr te-imvite—the president of {TRussialll } to mediate
this dispute [there] , because {[wel} might not like the result that comes out-eFTal, " |{ [Gorel }
said .

On Friday , {[Bushl} criticized {{[[his]} ooponent]} 'sstatermeri. cither {[Rel} did n't know
what {[the president]} was doing-or {[he]} did know what {[the president]} was doing and was
N't willing to share that withr{[the {[American]} peoplel} , " {[Bushl} saidin { {[Florida} ,
[where] {[he]}was campaigningl} .

{1 Gare] }|on Friday welcomed {[Yugoslavial} 's change , saying it brings {[the country]} ™
oack To { [the community of {[nations11}} .

" [[Hel¥edded , ™" This is a day for celebration , " without commenting on the {[Russian]} issue

[The {White House]} , however , came to {[hig]} defense ™ Whaty [the wvice president]}lsaid
is something {[the president]} fully agrees with , which is that he {Unite ares i no
support amy role inwhich {[Russial} would mediate betweer {[Milosevic]} and {[Kostunical} |, "

said [[presidential spokesman] {|ake Sieweert} |, {[whai} confirmed that { {[Clinton]} spoke with
{[Putin]} about {[Yugoslavial} last weekend]} .-

Figure 1.2: Example (3): Coreference Relation is High-Dinnama (part 1)

For the same Example (3), Figute3illustrates a more complex coreference relation be-
tween the mentiondhjs opponerjtand [Gore], whose resolution requires a reasoning scheme
upon the two entities GRE and BUSH. In order to identify the relation betweehi$§ oppo-
neni and [Gorg correctly, it is necessary to resolvii§| to [BuslH at first and afterward to
extract the fact that GREis the opponent of BsHin the debate. In this case, the coreference
relation is much more complex than the ones between mentibith share the same strings.



6 1. Introduction

In the debate I -| !Gore]} jumped on {[Bushl} , dismissing {[his]} idea of bringing in [the
{Russians]} as unwise because {[theyl} had n't recognized { {[Kostunical} as {[wvictor]}} . °°
{[11} 'm not sure that it s g for{osTr te-imvite—the president of {TRussialll } to mediate
this dispute [there] , because {[wel} might not like the result that comes out e, " {[Gorel}
said .

On Friday {[Bush]}lcriticized {{I[his]}IODDonPﬁt]} '‘sstatermeri, . cither {[Rhel} did n't know
what {[the presidert] } was doing o TielF ad khiows what {[the president]} was doing and was
N't willing to share that witkr{[the {[American]} peoplel} , " {[Bushl} said in { {[Florida} ,
[where] {[he]}was campaigningl} .

{1Gare]} fon Friday welcomed {[Yugoslevial} 's change |, saying it brings {[the country]} ™
TR o 1 [the community of {[nations11}} .

' [[HeT¥ledded , ™" This is a day for celebration , " without commenting on the {[Russian]} issue

[The {¥White Housel} , however , came to {[his]} defense . ™ What{[the vice president]} said
is something {[the president]} fully agrees with , which is that Irfhe {LUnited States]} did not
support amy role inwhich {[Russial} would mediate betweer {[Milosevic]} and {[Kostunical} , "
said [[presidential spokesman] {ake Siewert} , {[whai} confirmed that { {[Clinton]} spoke with
{[Putin]} about {[Yugoslavial} last weekend]} ..

Figure 1.3: Example (3): Coreference Relation is High-Dinname (part 2)

The coreference relation of pronouns is often based on whomena. Considering the

pronoun He] marked in Figurel.3, which is in a parallel sentential structure witGdre,
i.e. "[Gorg said” and "[He] added”. It is reasonably confident for such a structuradtreh

to indicate the coreference relation for pronouns. Howesteuctural information is a much

weaker indicator for most of the non-pronominal anaphors.
To sum up, the coreference relation can be inferred fromipieltow-dimensional rela-

tions (e.g. string match and parallel structure). Depeanain the types of the participating
mentions and the local contexts, different basic relatmarsbe dominating or be interacting

with each other during coreference resolution.

Q1: How to represent the multiple low-dimensional relatiors and to allow their
interactions?

is the first question to consider in terms of the represanmtatiodel for a coreference resolution

system.
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1.2.2 Inferring the Coreference Relation

The coreference resolution task is a set problem. The coreference resolution task is to
group mentions into disjoint coreference sets, so that satkhorresponds to an entity. The
resolution decision for one mention depends on the resoisitof all the others in the same
text, which together provide the global context for the rm@nin focus. As explained for
Example (3) (Figurd..3), the resolution of the mentiohis opponerjtshould benefit from the
resolution of the embedded mentidng. Therefore, inferring the coreference sets simulta-
neously is essential to making use of the complete context.

In order to achieve the overall optimized coreference skésinference procedure needs
to consider not only the relations between mentions withendame sets, but also the rela-
tions between mentions from different sets. Since the apétion is conducted at the output
end, it is important to preserve all relations from a documenil the final generation of the
coreference sets. Hence it is preferred to have the corefersets identified directly from the
original relations.

Q2: How to derive coreference sets directly and simultanealy?

is the second crucial question we need to consider. It regdwel choice of the inference
algorithm.

1.2.3 Evaluating Coreference Resolution

Evaluating the system output sets against the true corefergets is no trivial matter. There
have been several evaluation metrics designed for thearerefe resolution task, either eval-
uating on mention pairs or on sets directly. However, theyobee problematic in a realistic

system setup, where the system mentions do not align wittrieementions any more.

Q3: How to evaluate end-to-end coreference resolution sysins?

is the third concern of ours in this thesis.

1.2.4 Cheap Learning?

There are several data sets proposed for evaluating ceneferresolution systems, most of
which are collections of news articles, such as the examiblisgrated in this section. Since
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the coreference relation is a general linguistic phenomgomreference resolution is applica-
ble to different domains (e.g. the medical domain) and ttecBht languages. This urges the
requirements of a large amount of annotated data sets fquuip®se of the model training.
Annotating the corpora manually is considered to be expentherefore the question

Q4: Can we use less training data?

becomes important when extending the coreference systespein domain texts or when
applying the system to multilingual tasks.

1.3 Contributions of this Thesis

Most recent approaches to coreference resolution dividdabk into two steps: (1) a clas-
sification step which determines whether a pair of mentisroreferent or which outputs a
confidence value for this pair, and (2) a clustering step ligimups mentions into entities
based on the output of step 1.

In this thesis, we propose a global one-step mod€l©PA— to approach the coreference
resolution task COPAIs a novel coreference model which avoids the division into steps
and instead performs a global decision in one step. It reptss document as a hypergraph,
where the vertices denote the mentions and the edges daedlew-dimensional) relational
features between mentions. Coreference resolution isrpeetbglobally in one step by parti-
tioning the hypergraph into sub-hypergraphs so that alltroes in one sub-hypergraph refer
to the same entity. The left part of Figutetillustrates the appearance of the hypergraph built
by COPAand the right part shows theOPA output after the partitioning procedure. This
example is described in more detail in Chapter

(a) HyperGraph Data Representaiion (b) COPA Qutput Partiions

— — —

/oo " =
\ [/ [President Sarkazy)-
-_\l\ C—— -~ \..
1 \ %
N be i K \  [him]/
Noui \ ~.

Figure 1.4: COPA Example: Processing lllustration
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With COPA we are able to address the four questions raised in Seti®mwhich are
explicated in Sectiod.3.1to Sectionl.3.4

1.3.1 Representing the Coreference Relation

Previous two-step models attempt to predict a single coméielesvalue between a pair of
mentions by learning the combination of features from théing data $oon et al., 2001
Luo et al., 2004 Rahman & Ng, 2009Bengtson & Roth, 2008 Since these models base
their clustering step on the collapsed relations, someaglotiormation which could have
guided step 2 is already lost. In the other hand, global m&dion cannot be accessed in step
1 when making the pairwise decisions.

The hypergraph representation ©OPA (e.g. Figurel.4 (a)) enables the multiple rela-
tional features to directly come in (as hyperedges) withibatnecessity of collapsing them
into single ones (as standard edges) as standard graphswamdt have to. Comparing with
the standard graph, the hypergraph has additional regeggenpower. A hyperedge con-
nects two or more than two vertices (e.g. the hyperedge cbinggObamg, [US president
Barack Obampand Barack Obamy, and between vertices there can be multiple hyperedges
involved (for the sake of a clear illustration, Figutet does not include overlapping hyper-
edges). The set property and the overlapping manner of bgges make the hypergraph a
good candidate for representing the coreference relatrobrief, the hypergraph allows for
representing multiple low-dimensional relations and capairing set-level information, so
that the representation model©OPAIs intuitively representing coreference phenomena

Moreover, since the hypergraph is a generalization of taedstrd graph, the algorithms
based on standard graphs are still applicable to hypergnafih necessary adaptations. It is
easy to include more relations as hyperedges into the hsgggrgnodel and various graph-
based inference algorithms are supported on top o€CtbBAmodel.

1.3.2 Inferring the Coreference Relation

For most of the two-step methods, the classification stepsindhe choices of the classifiers
and the numbers of features used. The clustering step &xiioich more variations: Local
variants utilize greedy search strategi8sd@n et al., 200INg & Cardie, 2002 while global
variants optimize globally but still upon the pairwise auitfrom step 1 Kuo et al., 2004
Daun® Ill & Marcu, 2005 Nicolae & Nicolae, 2006Denis & Baldridge, 200 As already
mentioned, since these methods base their global clugtstap on a local pairwise model,
some global information which could have guided step 2 isaaly lost.

There have also been attempts on establishing global epersbdels, most of which
are probabilistic oneQulotta et al., 200;7Sapena et al., 2010icCallum & Wellner, 2005
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Poon & Domingos, 2008 The global models allow one to make use of set-level infdrom
and more context during the inference procedure.

Upon the hypergraph representatiQ@PAapplies graph partitioning techniques to derive
coreference sets directly and simultaneously. The graghipaing algorithms ofCOPAgen-
erate the optimized coreference sets, so that the mentibnis Whe same sets are connected
to each other as closely as possible, while the mentions élifferent sets as loosely as pos-
sible. It is the first graph-partitioning-based corefeeentdel that takes all mentions from a
document into one unified graph and achieves competitiiepeances across different data
sets in a realistic setting. Partitioning algorithms epald to make global coreference de-
cision by using whichever contextual information encoded in ttaobr rather than to work in
a sequential and local manner.

Unlike the probabilistic model€OPAis based on a graph partitioning technique that is
preferable for its simple inference procedure. We diffenfiNicolae & Nicolaés graph parti-
tioning model Nicolae & Nicolae, 200§ as we do not make pairwise coreference predictions
and we manage to handle all types of mentions in one unifieceinod

1.3.3 Evaluating Coreference Resolution

In this thesis, we address an important issue in the comfereesolution task — evaluation
metrics. Since most widely used metrics are designed tolddanee mentions only, they
become problematic when evaluating end-to-end corefersystems. We proposeariants
of different evaluation metrics for dealing with this issue.

1.3.4 Cheap Learning!

The hypergraph-based coreference modeCOPA derives the coreference relation by ana-
lyzing the graph structure at the inference phase, and tagaral features used for the graph
construction are simply represented in an overlapping marince no feature combination

function needs to be learned beforeha@@PAonly requires a small amount of training data
to learn the weights for low-dimensional relations (i.e.pégedge weights), which makes

COPAaweakly supervisedsystem.

1.3.5 Other Contributions

Coreference resolution is a set problem and thus the corgfenelation is a transitive rela-
tion. Due to the transitive closure which is implicitly dodering the partitioning process of
COPA inconsistent coreference sets may be derived. Differptitnization strategies have
been employed in the literature in order to enforce the eoegice transitivity. In this thesis,
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we address this problem within the graph partitioning frenor by proposing constrained
clustering algorithms. We propose a novel method to combamstrained data clustering al-
gorithms with the spectral graph clustering technique Weéadpectral embedding, hereby con-
tributing to the constrained graph clustering field. At theng time, theeonstrained COPA
contributes to the coreference problems which can only weddy considering cluster-level
consistencies. We experiment with both artificial cleanst@ints and automatically gener-
ated ones. Although the clean setting produces promisipganements, our results on the
automatically generated constraints are mostly negadivadw. Further efforts on designing
more high-recall constraints are needed.

Extensive experiments show th@OPA outperforms strong baseline systems in strict fair
comparisons, and it performs competitively with a smalkdea set and a small amount of
training data across different domains.

1.4 The Thesis Structure

The thesis is organized into two parts, (1) Chagtéo Chapter7 form the backbone of our
contributions to the coreference resolution task; (2) Gérdpintroduces the important exten-
sions we made upon the basic versiorC&PAmodel, both in the algorithms and in solving
special types of coreference problems.

e Chapterl helps the readers to develop an idea about the work presarttad thesis —
the motivation and the significant contributions.

e Chapter2 introduces the important related work for coreferencelug®m, which pro-
vides a big picture to the task modeling.

e Chapter3 describes the corpora used throughout the thesis. Theammoschemes
adopted by each of the data sets are illustrated and the tampalifferences between
them are pointed out. The chapter aims at assisting the réadet familiar with the
coreference phenomena and the involved issues relatechtdagions, both of which
are important for understanding the coreference resolusisk addressed in this thesis.

e Chapter4 introduces our proposed coreference systenCOPA The chapter is self-
contained, with the representation model, the partitigraigorithms and the system
components described in detail. For the techniques indoimethe basic version of
COPA readers can read Chapt#rand Chapter7 (for experiments) alone, with the
features in Chaptes to be briefly looked up if necessary.

e Chapters presents the features usedd@PA
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e Chapter6 discusses the problems of the previous evaluation mettsheen introduces
our variants of the metrics for evaluating end-to-end crerice systems. Experiments
verifying our variants are included at the end of the chagter readers who have been
working in the field and are concerned about evaluating ereltl coreference systems
due to ones’ own experiences, Chafean be read as a stand-alone chapter.

e Chapter7 evaluatesCOPA with thorough experimental comparisons, against strong
baseline systems and state-of-the-art systems in diffei@mains.

e Chapter8 describes the constrained versionGDPA We aim to guide the system to-
wards more consistent partitionings by imposing negatieeCannot-Link constraints
on the partitioning algorithm. Experimental results fonstrainedCOPAare provided
within the chapter.

For readers interested in graph clustering algorithms, @n&focuses on including
constraints into graph clustering algorithms without aiag the objective functions,
and the chapter applies the proposed methods to an appfiaatticoreference resolu-
tion. Readers may also want to check on all the implementassues addressed in
Chapterd, which give important hints to use clustering techniquesdal applications.

e Chapter9 concludes the entire thesis and suggests future improvedrections for
graph-based coreference models.

1.5 Published Work

The proposal ofCOPAIs published in Cai & Strube, 2010g where the hypergraph rep-
resentation of texts and the coreference inference viatiparng are described.Cai et al.,
20111 describes the positive-negative-weak feature engingamnd illustrates the application
of COPAonN a large corpora to compete with the state-of-the-aresysiCOPASs participation
on clinical tasks is introduced ifC@i et al., 2011p

The proposed evaluation metrics for end-to-end corefereesolution are published in
(Cai & Strube, 2010p



Chapter 2
Related Work On Coreference Models

Understanding and automatically resolving the corefezgritenomena in texts has been of
interest to computational linguists for decades, stafftiagn the early work on linguistic the-
ories to the latest research on exploring machine learmogniques. The inclusion of the
early theories (SectioB.1) in this chapter is to illustrate the linguistic insight®yhprovide,
which still inspire good features for modern methods. Havethe main stream of research
is moving towards the machine-learning-based task magiéBection2.3to0 2.5).

In this chapter, the most important research lines in thd &e¢ introduced. The existing
coreference models are categorized according to themit@pschemes — rule-based systems
(Section2.2), unsupervised models (Secti@), weakly supervised methods (Sectidd)
and finally the supervised ones (Sect@®). Our proposed system & supervised coref-
erence model However, we show in Chaptérthat our system only needs a little training
data to achieve competitive performance, which makes itaklyesupervised one (when us-
ing limited training data). Unlike the weakly supervisedthaals in Sectior2.4 which make
use of unlabeled data together with labeled ones, our meaglly trained on (manually) an-
notated data in a conventional supervised manner witholtngdootstrapping procedures
necessary.

2.1 Early Theories and Formalisms

In this section, two important theories related to corafeeeresolution are introduced. Cen-
tering theory (Sectio.1.]) studies the referring relation between utterances (emtesces)
and entities in order to model the discourse coherence. thbimry can be used directly to
estimate the possible entity assignments for referringessgions, and therefore to predict the
coreference relation. Centering theory is summarized wstimiportant claims in this section,
and the details are provided in the corresponding refesence

Binding theory (Sectio2.1.2 models the preference of antecedents for anaphoric expres
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sions on dependency trees. It can be easily adopted a®nelbateatures (or constraints) for
machine-learning-based coreference models.

2.1.1 Centering

Centering theoryGrosz & Sidner, 1986Grosz et al., 19955trube & Hahn, 19909s a theory
of the local component of attentional statkashi & Kuhn (1979, Joshi & Weinstein (1981
show that there is a connection between changes in immddate and the complexity of
the inference required for understanding the utterancteicorresponding discourse. From
a coreference modeling point of view, the less complex tlogired inference is, the more
possible it is to be a correct usage of referring expressiotige utterances.

Centers (e.g. referring expressions) of an utterance reféne entities which help to
link the utterance to others within a discourse segment. hkdierancel/ in a discourse
segmentDS has a set oforward-looking centersC (U, DS) and (except for the segment
initial utterance) has a singleackward-looking centeiCy, (U, DS). The simplified notations
areCy(U) andC,(U). When a centet is the semantic interpretation of an utterancet is
defined as a relation - directly realizesc. A "realize$ relation is a generalization of the
"directly realizes. Since the realization relation combines syntactic, seiinadiscourse, and
intentional factors, the centers of an utterance are datedhiby the properties of the utterance
in focus, the corresponding discourse segment and theudseo

The center elements @f;(U,,) are derived from the expressions that constifute and
they are partially ordered according to their prominence,j. The top ranked element of
Ct(U,) that is also realized b, is taken as”,(U,+1). Three types of transition relations
between pairs of utterances are defined.

1. Center continuation: C,(U,,.+1) = C,(U,,), and the entity is the top ranked element of
Cf(UnJrl)'

2. Center retaining: C,(U,+1) = C,(U,,), but this entity is not the top ranked element in
Cf(UnJrl)'

3. Center shifting: Cy(U,11) # Co(U,,).
Different centering transitions between utterances mtéiclifferent degrees in coherence
for the corresponding segment. The most fundamental cléicemtering theory is that the

inference load on the hearer decreases as the discoursercolencreases. Several other
major claims are provided, which can be used as constraintofeference modeling.

1. AuniqueC,: eachlU,, has only one backward-looking center.
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2. Ranking ofC;: the elements of’; are partially ordered according to a number of
factors.

3. Centering constraints realization possibilitiesf any element ol”;(U,,) is realized by
a pronoun in’,, 1, thenCy(U,, 1) must be realized by the pronoun too.

4. Preferences among sequences of center transitigegjuences of continuation are pre-
ferred over sequences of retaining; sequences of retaammgp be preferred over se-
guences of shifting.

5. Primacy of partial information: a semantic theory supporting the construction of partial
interpretations is necessatry.

6. Locality of Cy,(U,,): C,(U,) cannot be corresponding €& (U,,_») or other prior sets of
forward-looking centers.

7. Centering is controlled by a combination of discourse fagtocenters are determined
on the basis of the combination of syntactic, semantic aagrpatic processes.

Centering theory connects the focuses of attention, thecebaif referring expressions,
and the coherence of utterances within a discourse segrtdrats been used in extended or
re-formulated forms for anaphora resolution tagk®(inan et al., 198 Hahn & Strube, 1997
Strube, 1998Walker, 199§.

2.1.2 Binding Theory

The binding theory is formulated in Chomsky’s Lectures of &ownent Binding Chomsky,
1981 Chomsky, 1995 which discusses anaphora within the generative paradigransiders
the anaphoric relation for reflexive pronouns, reciprgcaéssonal pronouns and referential
expressions (lexical noun phrases), by imposing syntaotistraints on their NP interpreta-
tions. Reflexives and reciprocals need local antecederdiappns may have an antecedent,
but must be free locally; referential expressions must &ée.fr

The three principles in binding theory are described as:

Principle A: An anaphor (reflexive or reciprocal) must be bound in itsegoing cate-
gory.

Example:[John]; saw[himself];. ([John] binds[himself], and they are coreferen-
tial.)

Principle B: A pronoun (except reflexive and reciprocal) must be fregésmgoverning
category.
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Example:[John]; saw[him];. ([John] binds[him] which violates the principle,
so that they are not coreferential.)

Principle C: An referential expressions must be free everywhere.

Example:[John]; saw[Katja] ;. ([John] binds[Katja] which violates the princi-
ple, so that they are not coreferential.)

The binding theory is helpful in ruling out the antecedentgironominal anaphors that vi-
olate the proposed constraints, as well as in assigninglppessitecedents to bound anaphors.
For instance, our feature (6) corresponds to Principle Cfeatlire (17) to Principle A (see
Chapter).

2.2 Rule-based Deterministic Coreference Models

The coreference resolution systems from earlier yearskgbs (1978andLappin & Leass
(1994) rely on manually configured rules, most of which are detifrem the linguistic in-
terpretations of the coreference phenomena. There arepdecoiuately emerged coreference
resolution systems (Sectidh2.3and2.2.4 which are also completely built upon heuristic
rules and perform in a deterministic manner. These syst@m#oeexplore how syntactic and
semantic information helps the task by neglecting the etiethe learning schemes. The suc-
cessfully explored heuristic rules should inspire (stydiegtures for machine-learning-based
algorithms (see Sectio®.3 2.4 and2.5), and the deterministic systems may serve as good
baselines for the complex coreference models.

2.2.1 Hobbs’ Algorithm

Hobbs (1973 proposes one of the first algorithmic approaches to promesaolution, deter-
mining the antecedents for pronominal anaphors by seayahinsyntactic parse trees and
incorporating semantic analysis.

Hobbs first algorithm performs on surface parse trees, which aseiaed to be correctly
available for each sentence to be resolved. A surface paesexhibits the grammatical struc-
ture of a sentence. This simple method traverses the tre@antigular order looking for a
noun phrase of the correct gender and number as the expetéagdent of a pronoun. Selec-
tional constraints can be further applied to the algoritbrrestrict the candidate antecedents.

Hobbs second algorithm is working on texts, where the syntadtioderivable corefer-
ence and non-coreference relations have already beertatkt@te texts should be in logical
representations, exhibiting functional semantic retafops. In this semantic algorithm, there
are four principal semantic operations on logical notatiohtexts. These are (1) detecting
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inter-sentence connections, (2) interpreting generatis/or predicates in context, (3) merg-
ing redundant statements and (4) extracting the yet unfahentities. The four options
together are able to accomplish the pronoun resolution ofdke times. Where they fail, the
naive algorithm is used to determine the final antecedent.

Hobbs approach remains one of the most influential work in the fégld serves frequently
as a common benchmark for evaluating later propod4itk¢v, 2002).

2.2.2 Lappin and Leass’ Algorithm

Lappin & Leass (1994 propose an algorithmRAP (Resolution of Anaphora Procedure),
which is applied to the syntactic representations genetatédvicCord’s Slot Grammer parser
(McCord, 1989. The system uses multiple salience measures, which eptuariety of
syntactic properties. Moreover, the system uses a modédesftenal state too.

From a list of candidate antecedents of a pronominal anaptiiP determines the pre-
ferred one by relying on several components.

1. Anintra-sentential syntactic filter.

2. A morphological filter rules out the candidate NPs for anpun according to their
syntactic grounds or agreements on person, number or gender

3. Pleonastic pronouns are identified by a separated filter.

4. An NP is assigned several salience values, which faveufiject over non-subject NPs,
(ii) direct objects over other complements, (iii) argunseat a verb over adjuncts and
objects of prepositional phrase adjuncts of the verb, anjch@ad nouns over comple-
ments of head nouns.

5. For an equivalent class of NPs, an overall salience valuaalculated.

6. At the end, a decision maker selects the preferred areateéor each anaphoric pro-
nouns

Lappin & LeasgestRAPon five computer manuals containing approximately 82,000 to
kens. The success rate of the system is optimized on thengaset in a heuristic way. In
the blind testRAPscores higher than a Slot Grammer versiotdobbs algorithm (Hobbs,
1978.



18 2. Related Work On Coreference Models

2.2.3 Haghighi and Klein’s Simple System

Haghighi & Klein (2009 present a deterministic coreference system, which igdry syn-
tactic and semantic compatibility lists extracted from afabeled corpus. They try to break
from the standard view of focusing on coreference modelimgtead, they are devoted to
exploringlinguistic featuresin a simple deterministic manner.

Haghighi and Klein’s system works in a three-step processt each anaphor, a best
antecedent is chosen or is set to be NULL, following the tisteps:

1. Syntactic Constraints a self-contained syntactic module generates syntactictstes
using an augmented parser and extracts syntactic pathshHeoamaphor to its candidate
antecedents. When applicable, syntactic constraintsreatiferce or disallow corefer-
ence relations on paths.

2. Semantic Constraints a self-contained semantic module evaluates semantic &opmp
bilities between head words and between names, so that ddslefurther filters the
remaining antecedents from 1.

3. Selection Select the final antecedent with the minimal tree distantbd anaphor.

For agreement constraintdaghighi & Klein implementperson numberandentity type
agreementsRole appositiveandpredicate nominativeare extracted from syntactic trees to
assist non-pronominal resolution. A set of compatible wmails which match the predicate-
nominative patterns are extracted from two external ddsa se that rich semantic knowledge
can be accessed.

The simple system manages to outperform the state-ofsth@aupervised coreference
resolution systems and is broadly comparable to the sfateeeart supervised systems. The
authors suggest to use the system as a simple-to-reprodddegh-performance baseline for
future work in the field.

2.2.4 Stanford’s Multi-Pass Sieve System

When patrticipating in the CoNLL-2011 shared tagkgdhan et al., 20)which is one of
the most influential shared task on the coreference reealtdsk, the Stanford’s systelinee

et al., 201) won in all provided settings. The proposkulti-pass Sievaystem is built in an
architecture which implements multiple sieves in a casdadanner. In a top down manner,
the sieves output the highest precision predictions todives$t ones. Since at each sieve all
information available (including the predictions from yias sieves) can be usecluster-
level features(e.g. cluster head matghhave a means to come into the model. The sieves
proposed are described briefly below.
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H

. Pass 1: Extract string match.

2. Pass 2: Precise constructions (e.g. appositive; predicate ndm@aole appositive).
3. Pass 3: Strict Head Match (e.g. cluster head match; compatible figvd).

4. Pass 4 & 5 & 6: Variants of head match.

5. Pass 7: Pronoun resolution.

Despite of its simplicity, Stanford’s multi-sieve systech&ves more competitive perfor-
mance than most of the complex models. With careful engingetit is easier to add more
sieves and features without harming the performance whadhe other hand can frequently
happen to more sophisticated models.

2.3 Unsupervised Coreference Models

Generally speaking, unsupervised models are studied totkagequirements for expensive
human annotations. However, the unsupervised corefemaodels have not yet surpassed
the supervised ones. In this section, an unsupervisecedluigtmethod, three unsupervised
probabilistic models and one bootstrapping method forfeoeace resolution are described.

2.3.1 Cardie and Wagstaff's Clustering Method

Cardie & Wagstaff (199Prepresent mentions to be resolved as vertices in a graphe Ed
weights are calculated from a distance metric which meastlve compatibility degree be-
tween vertices. The proposed distance metric is

dist(NP;, NP;) =Y " wy x incompatibility;(N P;, N F;)
!

where f corresponds to a specific pairwise feature. To generateditederence sets, an ag-
glomerative clustering algorithm is applied afterwardjehihmerges compatible partial clus-
ters according to the judgments from the distance metrie. algorithm performs in a greedy
manner and does not allow clusters with incompatible mastiorherefore it may become
problematic when dealing with noisy data sets.
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2.3.2 Haghighi and Klein’s Bayesian Model

Haghighi & Klein (2007 propose a fully generative model for coreference resmutA non-
parametric Bayesian model is adopted in order to avoid theagsemption about the number
of entities. For non-pronominal mentions, the model malexssibns based on their depen-
dencies on mention heads. For pronouns, the model incdagsaitze parameters for the entity
type, gender and number. Entity salience is added into tlteehtoo. Haghighi & Kleinreport
higher numbers tha@ardie & Wagstaff (199Pon the MUC-6 data, and show that including
more unannotated data can improve the performance due tm#upervised learning nature
of their model. HoweverHaghighi & Klein's Bayesian model is difficult to extend, since it
requires the change of the model structure to include martefes.

2.3.3 Ng’'s EM Clustering Method

Ng (200§ recasts the unsupervised coreference resolution proateEM clustering. The
adopted joint probability is

P(D,C) = P(C)P(D|C)

whereD represents an observed document@rns a clustering on it. The document is further
represented by mention pairs andeatures are applied to each pair of mentions. Therefore
P(D|C) is given by

PDIC) =11 P(mjj, -+, m|Cy)

m; € Pairs(D) i

The parameters (i.e. the probabilities of the featuresngilie clusterings) are estimated
using an EM algorithm and at the end a converged clustéririnduced for each document.
In order to cope with the number of possible clusterings Wiie exponential to the number
of mentions in a document, complex schemes are proposedtselonly the best clusterings
at each iteration.

Ng achieves better performance compared with the enhanceidn@fHaghighi & Klein's

system but his system is still not comparable to superviseeference models.

2.3.4 Poon and Domingos’ Markov Logic Model

In order to perform a joint inference across mentions as s@gto focus on pairwise relations,
Poon & Domingos (2008make use of the expressive power of Markov Logic to represen
relations between mentions in first-order logRoon & Domingogropose an unsupervised
system based on Markov Logic Networks to infer the corefezesets.

Several relational features are adopted, whesgands for a mentiom,for a cluster and
for an entity.
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1. Head Match for Non-pronouns:

—IsPrn(m) A InCluster(m,+c) A Head(m, +t)

2. Mention Types Agreement:

InCluster(m, c) = (Type(m,e) <> Type(c,e))

3. Pronoun-Cluster Types Agreement:

IsPrn(m) A InCluster(m, c) A Head(m, +t) A Type(c, +e)

4. Apposition Constraint:

Appo(z,y) = (InCluster(x, c) <> InCluster(y, c))

5. Predicate Nominative Constraint:

PredNom(x,y) = (InCluster(z, c) <> InCluster(y, c))

Poon & Domingoseport competitive performance of their system, benefitiom lever-
aging relations between mentions from the cluster-levedgective. Markov Logic provides
an easy way for incorporatinguster-level features which is non-trivial for pair-wise mod-
els. However, their big gain by adding appositive and pregicominative constraints cannot
be reproduced for other data sets where these relation®ttaken as being coreferent.

2.3.5 Kobdani et al.'s Bootstrapping Model

Kobdani et al. (201)lcollect word associations from large unlabeled data setspropose an
unsupervised system to learn the association scores betweations. For the testing phase,
the word association scores are used in the same way as tferemice probabilities. Built
upon the predictions of the unsupervised system, a saffiitigascheme is adopted to learn the
coreference relation in a conventional supervised mariece no manually labeled data is
used, the self-training system can be viewed as unsupdrtose and it outperforms several
strong unsupervised systems.

2.4 \Weakly Supervised Coreference Models

Weakly (semi-) supervised learning algorithms work witildi labeled data and attempt to
make use of the unlabeled data while processing. They arctegto perform better than
the unsupervised methods due to the available (althougtetiinguidance from the training
labels. In this section, several weakly supervised coeefe models are described.
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2.4.1 Multi-view Co-training Models

Co-training Blum & Mitchell, 1998 is a multi-view method to bootstrap by gradually ex-
tending the training (labeled) set with thetomaticallylabeled data. Co-training algorithms
utilize multiple learners each of which captures a sepatiate of the data (i.e. using disjoint
subsets of features to represent the data).

Mduller et al. (2002 apply a co-training method to coreference resolution bpgisnvo
classifiers and therefore two views of the data. They proposature selection strategy to
create the two subsets of features, representing the twswigth the two best features and
selecting the remaining one by one. Besides the greedy &aélection method bililler
et al, Ng & Cardie (2003 also experiment with random selection and the selecticorang
to the feature types. The two classifiers are trained witir then feature sets, and predict
labels for the unlabeled data. At each iteration of trainiegch classifier chooses its most
confident predictions and add the auto-labeled data inttréin@ng set of the other classifier.

However, the results reported bjuller et al.are mostly negative andg & Cardiedo
not generate improvements with co-training algorithmbBegit The main difficulties lie in the
generation of the independent feature sets (views), thieelod the number of iterations and
the training data growth speeRiérce & Cardie, 2001

Raghavan et al. (20)2ropose semantic and temporal features as views for toeir c
training classifiers, and these views appear to work onaairdata sets.

2.4.2 Single-view Bootstrapping Methods

Ng & Cardie (2003 compare multi-view weakly supervised methods with singév ones
with the application to coreference resolution. They ps#ptwo single-view algorithms, a
self-training algorithm and an EM algorithm. Both of theinglie-view methods are based on
the bootstrapping scheme.

The self-training algorithm involves a committee of cléisss, each of which is trained on
a random sampled subset of the labeled data. The classifegteifor all the unlabeled data
and the predictions agreed by all of the classifiers are atiddu labeled data.

The single-view weakly supervised EM assumes a parametrdehof data generation.
The unlabeled data are considered to be missing labels aradgbrithm optimizes the poste-
rior probability of the parameters given both the labeled #re unlabeled data. More details
can be found ilNigam et al. (200D

Ng & Cardie (2003 conclude that the single-view methods easily outperfdrenrhulti-
view co-training algorithm for the coreference resolutiask.
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2.5 Supervised Coreference Models

Due to the existence of well-annotated corpora (see Ch&pter details), more attention
has been paid recently to supervised coreference resolmoaleling. Although coreference
resolution is asetproblem (i.e. grouping mentions into sets), the first magh@&arning-based
approach applies pairwise classification models whichkodesvn the problem into two-step
processing (Sectio2.5.1). The success of the two-step method is mainly due to itsssspre
simplicity and straightforward learning strategy. Howewaore global models are coming
into the field (Sectior2.5.3 aiming to conquer the performance bottle-neck from thesmgs
of pairwise-beyond information (e.g. relations betweemerthan two mentions).

Both local and global models are introduced in this sectiorthat readers can grasp an
idea of the motivations and the importance of working on glahodels, specifically on the
relative simpler graph-partitioning-based inference.

2.5.1 Two-step Methods

The Mention-pair model was firstly proposed Bgne & Bennett (1995and McCarthy &
Lehnert (199% HoweverSoon et als system §oon et al., 2001is the first successful attempt
applying machine learning technique to the mention-paidehdor coreference resolution,
which has become the most widely used baseline system irefde fi

Soon et aldivide the task into a two-step processing, a classificagtep and a cluster-
ing step. In step 1, the classifiers perform on pairs of mastio decide whether they are
coreferent or not. Based on the classification decisionsclingering component merges
mention pairs into sets so that all mentions in one set aefe@nt to each other. A decision
tree classifier (e.g. CQuinlan (1993) is adopted along with2 features for step 1, and the
closest-first search strategy for step 2 (i.e. choosing libgest positive antecedent for the
focusing anaphor). A simple example illustrating the twepgprocessing is given below.

e Mention list:
al! bl! a21 b2a aS
e Step 1: Classification step

Forb;: a «|b;

Fora: a«a; bi«|a

For by: & <—|by; by<by; @by

Fora: aj«a;; bi«|as; a<as; boc|ag

e Step 2: Clustering step
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Set: {a, &, &}
Set: {bl, bz}

The sign«| denotes that the mention pair is decided not to be corefarahthe sign—
applies to the ones which are predicted to be coreferentasith other.

In the literature, one line of improvements afg&won et alis made along two directions,
either by proposing more powerful pairwise classifiers (@psl) or by clustering the pairwise
decisions with better algorithms (in step 2). For a moreitigtaverview, readers are referred
to Ng (2010.

Work on the Classification Step. Step 1 can be improved by exploring more powerful
classifiers. Besides the decision tree classifier 8apn et al. (2001 Ng & Cardie (2002),

the Maximum Entropy classifier (e.guo et al. (2004) and the averaged perceptron learning
algorithm (e.gBengtson & Roth (2008 have also been applied to the classification step.

There have been researchers working on enriching the éesatifor step INg & Cardie
(2002 extendSoon et als feature set to a size 62, including more sophisticated linguistic
knowledge Bengtson & Roth (2008stress on the importance of feature selection and propose
to serve as the enhanced baseline system for complex cameéemodels.

Ponzetto & Strube (200Q86irstly exploit semantic features (by the means of semante
labeling) and world knowledge (from Wikipedia) for coredace resolution, anBahman &
Ng (201) proceed to analyze in details the behavior of combiningldavknowledge with
different models. Since world knowledge (especially whétamed from the web data) is
noisy, it is still of interest how to make use of it in a robustywMore recent attempts can be
found inKobdani et al. (201jlandBansal & Klein (2012.

Work on the Clustering Step. By always choosing the closest positive antecedents (as in
Soon et al. (200, the pairwise decisions from the classification step enleet into sets.
Since theclosest-firssstrategy is too sensitive to error propagatiobgat-firstmethod is pro-
posed byNg & Cardie (2002 instead to link the most confident positive antecedents.

Luo et al. (2004 perform a greedy search on a bell tree representationr@2yi). In each
step a decision is made to connect a focusing anaphor (e).gvitta previously constructed
partial entity (e.g. [12]). Although this method moves tods entity-level modeling, the
greedy (and sequential) nature of the algorithm excludg®rtant information contained in
all the other paths except for the chosen one.
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Figure 2.1: Luo’s Bell Tree Method_(i0 et al., 2004

Optimization algorithms have been applied to the clusgesiep, in order to achieve better
performance given the output from the classification step.ifistance, bottlenner (2007
andFinkel & Manning (2008 impose transitivity constraints on integer linear pragnaing
(ILP) to enforce transitive closure which cannot be take® od by greedy algorithms.

2.5.2 Preference Models

Selecting the correct antecedent for an anaphor amongralidate antecedents can also be
approached by preference modeling, which predicts theingncandidates based on compar-
isons between all candidates. Preference models allowmoersider not only the corefer-
ence relations between antecedents and anaphors, buhalsorhpetition relation between
antecedents.

Twin Candidate Model. A twin candidate model is proposed Mang et al. (200bto
model the competition between pairs of antecedents. Eaaph@nana together with two
candidate antecedenigte; andante, form one tuple instanc€ana, ante;, antes}, which
has three possible labels 40 suggesting the preference afte;, 01 suggestinginte, and
00 indicatingana being non-anaphoric. The best antecedents are ranked goimd-robin
manner.
Yang et alpropose features describing relations between a pair etadents, which are

not accessible for non-preference models.

e inter_SentDist: Distance betweeimte; andantes In Sentences
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e inter StrSim: 0,1,2 ifStrSim(ante, ana) is equal to, larger or less than
StrSim(antey, ana) (Where StrSim(-,-) measures the string similarity between two
mentions)

e inter SemSim: 0,1,2 iSemSim(ante,, ana) is equal to, larger or less than
SemSim(antey, ana) (WhereSemSim(-, -) measures the semantic agreement between
two mentions in WordNet)

Ranking Models. Denis & Baldridge (200¥ rank all candidate antecedents for pronoun
anaphors simultaneously, and the system is shown to ootpethe twin candidate model
significantly. To be able to exploit cluster-level infornaet upon the mention ranking model,
Rahman & Ng (2009propose to rank clusters instead of antecedents.

The preference models start exploring the global relatwatisout assuming pairwise pre-
dictions given. But due to their sequential property, ong/pheceding context of each anaphor
is participating in the decision making which is still sianlto the two-step methods.

2.5.3 One-step Methods

In this section, one-step models for the coreference résaltask are introduced. Those are
the closest work to ours in terms of resolving all mentiomsuttaneously by considering the
available full context.

2.5.3.1 Clustering Methods

Two algorithms are described in this section, both of whielfgrm the global inference by
means of clustering algorithms.

Nicolae and Nicolae’s graph clustering algorithm to beadtrced is still built upon pair-
wise classification output (as edge weights). However, doissidered as a global model as
they do not sequentially cluster mentions into coreferesats, but resolve them all together.

Cardie and Wagstaff's Method. It is worth noting that Cardie and Wagstaff's method
(Cardie & Wagstaff, 1990in Section2.3is unsupervised since the edge weights are set man-
ually. However their clustering mechanism can be easilptathinto a supervised version by
learning the weights automatically.

Recall thatCardie & Wagstaffepresent mentions to be resolved as vertices in the graph,
and edge weights are calculated from a distance metric wiieasures the compatibility
degree between vertices. An agglomerative clusteringrighgo is applied to generate the
coreference sets afterward.
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Nicolae and Nicolae’s Best-cut. Nicolae & Nicolae (200Bdescribe a graph-cut-based al-
gorithm with the same graph representation as Cardie andtsfEigisThe graph-cut strategy
superficially resembles our approach. However, they apy@ycttting algorithm only on the
output from a classification step which form a weighted staddyraph as shown in Figure
2.2

Figure 2.2: Nicolae and Nicolae’s Best-cut Methdtiqolae & Nicolae, 2006

They report considerable improvements over state-ofatheystems includinguo et al.
(2004. However, since they not only change the clustering gsakeit also the features for
the classification step, it is not clear whether the improsets are due to the graph-based
clustering technique. Furthermore, they separate proreagoiution from the core processing
but adopt a standard two-step method for pronouns. The Hatttheir algorithm is only
applied to a subset of mentions makes it less elegant than our

2.5.3.2 Probabilistic Models

Being conceptually similar to the graph clustering algeon#h probabilistic models optimize

the entity assignments by considering all relations alséelan the focusing contexts. Different

inference frameworks have been explored in the literammapture cluster-level information

(e.g. transitivity) and different approximation algoritk are used to make globally optimized
predictions. It is not very clear yet which model is distirgiably superior.
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McCallum and Wellner’s Conditional Model. McCallum & Wellner (200% introduce
three discriminative, conditional-probabilistic modis coreference resolution, all examples
of undirected graphical models. The models condition omtieations, and generate entity
assignments for them. It is shown that the most improvedameis.e. the third model) can
transform itself to an equivalent (different) graph, whishvith mentions as vertices and edge
weights ranging from-oo to +o0o. The inference thus becomes a graph partitioning problem,
where e.g. correlation clusteringdnsal et al., 2002can be applied to handle the negative
edges.

Culotta’s First-order Logic Method. Culotta et al. (200yadopt a first-order logic repre-
sentation where features over sets of mentions are impleadne. cluster-level features).
The proposed models can be viewed as estimating the parsn@teach cluster-wise com-
patibility independently and then being combined togeth&iclustering. Uniform sampling
is used for generating training instances (i.e. positegétive clusters) in one model, and
on-line training schemes are proposed for the other two ong versions. They use four
features in the model. The first is an enumeration @aers of noun phrases. The second is
the output of gpairwisemodel. The third is the cluster size. The fourth counts noentype,
number and gender in each cluster. They assume true measdnput and only report one
evaluation metric numbers. It is not clear whether the imgneent in results translates into
system mentions.

Sapena’s Relaxation Labeling Algorithm. Sapena et al. (20)@ise a constraint-based ap-
proach (i.e. relaxation labeling) for coreference resoiutThey generate pairwise predictions
as constraints using a decision tree classifier and refdréssm in a graph. Afterward they
optimize with respect to the constraints (both positive m@glative ones) in an iterative proce-
dure. It is shown that the proposed model outperforms an Ig&righm with the transitivity
enforced.

In his thesis $apena, 2002 Sapenashows that his graph representation can be viewed
as hypergraphs, as illustrated in Fig@.& The mentions are taken as vertices and the con-
straints generated from the decision tree are taken as €dgps:;, e; andes). The main
differences betweeBapena work and ours lie in (1) his hyperedges represent the &shrn
combinations of features while ours are derived directiyrfrsimple (low-dimensional) rela-
tional features; (2) his resolution model is a probabistiodel while ours performs under the
graph-based clustering framework. The two work differsathizthe representation model and
the resolution algorithm, despite of the similar namings.
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Figure 2.3: Sapena Thesis’s Hypergraph Representeéiapeha, 2012

Markov Logic Models for Coreference Resolution. As mentioned,Poon & Domingos
(2008 propose to use a learning-based unsupervised Markov IMagie| for coreference res-
olution, which manages to incorporate cluster-level fesgwia formulasSong et al. (201R
implement a supervised framework using Markov Logic, tdgren the mention pair classifi-
cation and the mention clustering jointly. They make usehefd@xpressive power of Markov
Logic Networks to include hard (global) constraints for best-firstscheme and for transitiv-
ity. Frank et al. (201Radopt Markov Logic Networks to detect errors in automagimantic
annotations. The automatic system predictions for worgeelisambiguation and corefer-
ence resolution are taken together into the their model aa@dptimized (i.e. corrected) via
the joint inference. Botlsong et als andFrank et als proposed models can be viewed as
optimization methods for step 2 in the two-step coreferdramaework.

2.6 Summary

Two-step Coreference Models. Although coreference resolution is naturally a clustering
problem, which aims to cluster mentions into coreferent®, seost of the recent approaches
divide the task into two steps: (1) a classification step Wwidetermines whether a pair of
mentions is coreferent or which outputs a confidence valoe,(3) a clustering step which
groups mentions into entities based on the output of step 1.

Soon et al. (200/firstly propose the two-step strategy under the machinaileg frame-
work, i.e. pairwise classification and clustering. They aset of twelve powerful features.
Their system is based solely on information of the mentiarsggae. anaphor and antecedent),
and does not take any information of other mentions intoaetdHiowever, it turned out that it
is difficult to improve upon their results by just applying ama sophisticated learning method
without improving the features.
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A number of approaches have been focusing on improving emete modeling within
the two-step framework, either by proposing linguistiaded or world-knowledge-based fea-
tures or by applying different optimization algorithms tbe clustering phase. Most of the
two-step methods are considered to be local, because theycoeeference decisions on pairs
of mentions and cluster the mentions into sets considemhgtbe preceding antecedents. In
order to exploit the full contexglobal models are preferred over the two-step methods

Global Coreference Models. As an example of graph partitioning models for coreference
resolutionNicolae & Nicolae (200bpropose a graph-cut-based approach where mentions are
vertices and edge weights are learned from pairwise caneder classifiers. Unfortunately,
they only manage to resolve non-pronoun mentions in thiméwork and have to approach
pronoun resolution separately. This work is superficiaiiyilar to ours, but our graph-based
model includes mentions of all types in the graph represientaln this way, we are able to
access the full context of the focusing document, which make model fully global.

Graphical models have the superiority of precise prolghbitirmulating, which conse-
guently enables the coreference systems to learn compleandency structures between
mentions and entities. However, the learning and infergmoeedures can be complicated
even with the approximation (e.drinkel & Manning (2008), which make them less prefer-
able than the simpler coreference systems such as ours.

Lang et al. (200ppropose an unsupervised coreference resolution systeedlmm a hy-
pergraph partitioning algorithm, which did not appear asdde before our first proposaléi
& Strube, 20103 Lang et alrepresent mentions as vertices and generate hyperedgesydir
from features. Unfortunately, no strict experimental canigon (with the same feature sets) is
provided to verify the effect of their model. Furthermoitge mentions along with their heads
and semantic types are all taken from the gold annotatidvang et al's system.

In contrast, in this thesis we present a complete hypergpapiitioning model for coref-
erence resolution and provide thorough experiments walistec system settings. Crucial
issues regarding both the clustering algorithms and thefe@nce application are addressed
in this thesis. For instance, we propose the feature cagegion in Chapteb to ensure the
stable construction of the hypergraphs. Extensive exmarisnacross different domains and
different evaluation metrics are able to convey the effectess and the robustness of our
proposed system.



Chapter 3
Data Sets for Coreference Resolution

Two data sets have been frequently used for years to evalaegéerence resolution. The for-
mer is from the MUC conferences (see SecBdl) and the latter is provided by the Automatic
Content Evaluation (ACE) program (see Sect®8). Stoyanov et al. (2009oint out that
there are significant differences in annotating mentiorstha coreference relation between
these corpora, which will be illustrated in this chapter. Aah larger corpus OntoNotes (see
Section3.3) was recently released. It became the standard evaluatdorsthe coreference
resolution task soon after its first usage in the CoNLL 201teshtask Pradhan et al., 201

In this thesis, we also experiment on a medical data set (@et®083.4), which consists
of clinical reports with annotated coreference relatiotwaen persons, (clinical) problems,
treatments etc.

We describe the coreference data sets before introducingroposed coreference model
in this thesis, aiming to assist the readers to better utatetsoreference phenomena and the
annotation- scheme-related problems involved in the task.

3.1 MUC

The MUC data sets consist of MUC-6 (MUC-VI Text Collectioi@§hinchor & Sundheim,
2003 with a standard training/testing division (30/30) and MUGQ}ata (North American
News Text Corpora)Ghinchor, 2001 (30/20). The documents in the MUC data sets are
all news articles, and are prepared (annotated) for fouluatian tasks — Named Entity
Recognition, Coreference Resolution, Template Elements eexda®io Templates.

The MUC corpora are annotated with general types of mentioumisonly the ones that
participate in the coreference relation. In other words,ghtities containing single mentions
(denoted asingleton entitiesare not tagged, such as "the Federal Railway Labor Act” in
the following MUC Example. It is also worth noting that nethapposition nor predicate
nominatives are annotated as the coreference relation.
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MUC Example:

Under the Federal Railway Labor Act, if the mediator fails timb [the two sidelg
together andthe two sidels do n’'t agree to binding arbitratiornga [30-day cooling-
off period,, follows .

After [thaf], , [the unior}; can strike or the company can lodké uniorj; out .

Since we only focus on the end-to-end coreference resalgtioblem, which takes raw
texts as input without assuming any annotations, mentiees to be detected automatically.
Our mention tagger (see Chapi@rtends to identify too many mentions for MUC data, as
there is no restriction on the types of mentions to be resblVais is therefore resulting in too
many spurious coreference sets, such as the entity camjeseveral yesterdaymentions.

3.2 ACE

There are four corpora from the ACE program, ACE 208t¢hell et al., 2002, ACE 2003
(Mitchell et al., 2003, ACE 2004 (Mitchell et al., 2004 and ACE2005. The annotations
of ACE data contain six areas — Entity Detection and RecognitiftDR), Entity Mention
Detection (EMD), EDR Co-reference, Relation Detection andogeition (RDR), Relation
Mention Detection (RMD), and RDR given reference entities.eréhare different types of
document sources for ACE data sets, i.e. news wire reposdbast news programs and
newspapers, and in three different languages, i.e. Aréliimese and English. In this thesis,
we use both ACE 2003 and ACE 2004. Since we do not have accedictal CE testing
data (only available to ACE participants), we foll@&engtson & Roth (2008to divide ACE
2004 English training data into training, development asdihg partitions (268/76/107). We
randomly split the 252 ACE 2003 training documents using #meesproportions into training,
development and testing (151/38/63).

The coreference relation in ACE data sets is annotated ontyigithe mentions of certain
entity types. For instance, ACE 2004 adoptsentity types, which are Person (PER), Orga-
nization (ORG), Location (LOC), Geo-Political Entity (GPERcility (FAC), Vehicle (VEH)
and Weapon (WEA). Singleton entities are allowed in ACE dafamg as they are of the re-
quired entity types. In the following ACE Example that illteges the ACE annotations, both
mentions Palestiniar}; and fthe former Soviet Unidg form singleton entities due to their
GPE types.

ACE Example:
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The problem arose afterRalestinian] Mahmood Abu Talibjwhosé, testimony
the court has been hearing since Fridayrefused to continue answering a ques-
tion by [[defense lawyés Richard Keely about the detailed reasons fdrig];
having lived in fhe former Soviet Unidg for a period of 18 months in the 70s .

[The lawye}; asked the judges to forcAlpu Talilj; to answer the question aimed
at demonstratingthe witnesk, 's "professional terrorism” precedents .

There are several special relations that are taken as teé&oence relation in ACE data
sets, such as appositive (e.g. entity 2), predicative natiwim and role appositive (e.g.dg-
fense lawydg Richard Keely). Features designed for capturing these special relatogist
not work when moving to different data sets, as they usuadlyndt form the coreference
relation from the linguistic perspectives.

It is relatively easier to detect ACE mentions given the fixatitg types. However, since
entity extraction is also implicitly evaluated via singletentities, it brings non-trivial im-
plementation issues to the the coreference evaluationaséfor more details, readers are
referred to Chaptes).

3.3 OntoNotes

The OntoNotes Release 4.0 corpWgefschedel et al., 20)provided by the Linguistic Data
Consortium (LDC) is used for CoNLL 2011 shared task on modelimmgstricted coreference
in OntoNotes. It consists df, 999 English documents], 674 of which are chosen as the
training data202 as the development set an@l7 as the testing set for the shared task. In the
collection, there are news wire texts, broadcast newsdoas conversations, magazine and
web documents. The diverse text types impose more challemgeoreference systems.

In addition to the coreference relation, OntoNotes datésis @gged with syntactic trees,
high-coverage verb and some noun propositions, parti@l &ed noun word senses, and 18
named entity types. The shared task provides two types aftation layers, the gold layers
(for the training set) and the system predicted layers (faeds). The participating systems
can only have access to system predicted information dthmtgsting phase, which explicitly
stresses on the importance of the end-to-end corefereticeyse

In OntoNotes data, appositive structures are annotated@gaate type and they are not
included in the coreference sets. The predicative nomiesitire not considered being coref-
erent either. Event coreference is annotated, such a®wveecpmind, and [This examplp
entity in the following OntoNotes Example (1). As shown int@Motes Example (2), the
generic phrases (e.gOfficialg;) are also tagged as mentions as long as there are other men-
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tions being coreferent with them. GPEs are linked to theregiges of their governments, e.g.
[Ching]; and the Chinese governmeni;sn OntoNotes Example (3).

OntoNotes Example (1):

[The South Korean team of vetergndy [overcomingy, [their]; injuries to give a
display of athleticism at the international level , have eyed from the shadow of
war and transformedtjeir]; handicaps into glorious results.

[This examplk should provide food for thought to the disabled and sports-co
munities in the future .

OntoNotes Example (2):

[Officiald; say they]; have reduced the reunion schedule from four days to three
and will spend some $ 800,000 to bring the families togetlsempared with the
nearly $ 1.6 million it spent for the August event .

OntoNotes Example (3):

[Ching; today blacked out a CNN interview that was critical tifd Chinese gov-
ernment ’'$; handling of the SARs epidemic and dahg country '$; health care
system.

3.4 12B2

The 12B2/VA/Cincinnati Childrens 2011 challenddzuner et al., 2012held one NLP shared
task in 2011, the first track of which was on coreference tgsnl. Participants were asked
to mark the concept mentions (i.e. entity mentions), iniclggbronouns, as coreferent or not.
Data for this track were provided yartners HealthCargBeth Israel Deaconess Medical
Center(MIMIC Il Database),University of Pittsburghandthe Mayo Clinic According to
different settings, the task was further divided into task 1B and 1C. We participated in all
three of them.

The ODIE corpus (including the Mayo and Pittsburgh data)sstased for task 1A and
task 1B. Task 1B provides manually annotated mentions (exfedo as concepts in the task
description) while task 1A requires an automatic mentidecten. The ODIE corpus consists
of 97 training documents. The 12b2/VA/Cincinnati corpusc(uding thePartner, Bethand
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Pittsburghdata sets) with 492 training documents is used for task 1Crenthe true mentions
are provided too.

The entities of interest in the 12B2 data sets are signifigadifferent from the ones in
standard coreference data sets (i.e. the previously itexticorpora in this chapter), which
cover persons, problems, treatments, tests, etc. All tkte tge in semi-structured formats,
with content of the clinical treatments a patient receivewell as a rich set of his/her relevant
information, e.g. the admission date, the date of birth, etc

12B2 Example (1):
[Attending; :
[Gayle M Whitener , M.}y

12B2 Example (2):
On hospital day 2 she experiencexdr{al fibrillation]; with HR in the 140s.

We decided given her age that she would not be a good candidai@rdioversion
for [her afid; nor would she be a good candidate for coumadin.

12B2 Example (3):
[VULVAR CANCER.

A tumor was noted on her vulva which was biopsied and revealgaamous cell
carcinoma in siti.

Examples from 12B2 corpora are shown above. It can be seenltigato the organized
structures, some of the coreference entities are obviossive, e.g. Attending, and [Gayle
M Whitener , M.D}; in 12B2 Example (1). However, abbreviations (e.gtrial fibrillation];
and fher afig; in 12B2 Example (2)) can be difficult as well as the variantsrfedical ex-
pressions (e.gfULVAR CANCER and [squamous cell carcinoma in situijn 12B2 Example

3))-

3.5 Summary

In order to convey the improvements one achieves, resaaran¢he corefernce resolution
field always conduct comparison experiments on severatlatdrdata sets. The documents
selected for the corpora are conventionally news articlése community starts to include
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speech transcripts and others only recently in OntoNot&s tlathis chapter, the coreference
data sets used by our system are introduced, including atigaachl medical corpus.

The given examples show that the entity types and the anmotsthemes vary between
different data sets, so that the corpus-specific systermeagng and feature designing are
necessary to some degree. For instance, features captueikgowledge on GPE entities are
required for news articles, while for clinical reports, ned-domain-specific knowledge are
needed in order to solve the difficult cases. Neverthel@sgyistically driven features (e.g.
binding constraints) can be applied universally.



Chapter 4

COPA Coreference Partitioner

In this thesis, we propose a novel coreference resolutiodeinohat represents documents
as hypergraphs, upon which partitioning algorithms ardieppo derive the coreference sets
directly and simultaneously. Our system is nar@€PA, standing for Coreference Partitioner.

The Hypergraph Representation. Unlike most of the previous work that resolves the pair-
wise relations independently (e.g. the two-step metho@hapter2), representing documents
as graphs enabléSOPAto have a global view of the relations between all mentiongreM
specifically, we propose the hypergraph model for the remtasion, motivated by thisigh-
dimensionproperty of the coreference relation. The standard graptietsdave to collapse
the multiple low-dimensional relations between mentians single ones (i.e. the coreference
relation) as edges, which leads to a loss of informationredfte inference phase. In contrast,
a hypergraph is a graph in which (a) a hyperedge can conneettiman two vertices, and (b)
between two vertices there can exist more than two hypesedfleerefore, our hypergraph
model is able tanaintain the original low-dimensional relationsas overlapping hyperedges
(i.e. (b)) until the final inference, and the model aéssily represents sets of mention@.e.
(a)) which suits well the set property of coreference retsmiu

The Partitioning Inference. Upon the hypergraph representatiQ@PAproduces the coref-
erence sets so that the mentions within the same sets astyctosinected and different sets
are far apart from each other. In order to achieve such amaation, we propose to apply
the graph partitioning technique as the inference methoddoeference resolution. Graph
partitioning algorithms seek for a cut upon the graph edges$hat the derived subgraphs are
optimized with respect to a specific graph cut function.ClaPA we adopt theNormalized
Cut (NCut) function which measures both the inner-set and thex-gett connectivities. The
spectral clustering algorithm is employed to optimize theulvalue, so that the inner-set
connections are as strong as possible while the inter-estane as weak as possible. With the
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graph partitioning algorithm applied, tlgptimized coreference setsre able to be derived
simultaneously.

The Chapter Organization. Section4.1 illustrates howCOPAworks via examples. The
mathematical background of both the hypergraph model amdpbctral clustering algorithm
is described in SectioA.2, which provides the notation used throughout the thesisti@e
4.3describes in detail our proposed hypergraph partitioningehfor coreference resolution.
The important issues regarding applying the graph pantitg technique to practical uses
are discussed in Sectidgh4. As mentioned previously, the hypergraph is a generatinati
of the standard graph and is equipped with additional poWeepresentation. However,
there exist standard graphs to which the hypergraph canabsftrmed (see Sectighb).
Upon the standard graphs, more graph-based algorithmsecdirdrtly applied. Therefore
such transformation gives the freedom in choosing the emieg algorithm to hypergraph-
based models. AlthougBOPAperforms directly on the hypergraphs, future extensionghen
inference method may benefit from such graph transformation

4.1 Introductionto COPA

Figure 4.1 shows the modules of our proposed coreference resolutistersy TheCOPA
system includes the learning modules for collecting theshgg@ge weights (i.e. tHdyperedge
Learnerin Section4.3.2 and for predicting the number of entitiés(i.e. thek modelin
Section4.3.4. The resolution modules of tt@OPAsystem construct the hypergraph models
for the testing documents (using thigpergraph Buildelin Section4.3.2 and partition them
into sub-hypergraphs (using thypergraph Resolvein Sectiord.3.3.
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Learning Modules

Hyperedge Learner
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Hypergraph Builder

Hypergraphs

Coreference Sets

Figure 4.1: COPA Model lllustration

COPAExample. To illustrate honCOPAworks, an example of a short document involving
two entities — B\RACK OBAMA and NCOLAS SARKOzY — is provided in Tablet.1

US President Barack Obamzame to Toronto today.

Obamadiscussed the financial crisis wifRresident Sarkozy

Hel talked to[him] about the recent downturn of the European markets.
Barack Obamjawill leave Toronto tomorrow.

[
[
[
[

Table 4.1:COPAExample: Texts

A hypergraph (Figurd.2a) is built for the example document based on three featilives.
red (solid line) hyperedges denote the feafumetial string match— {US President Barack
Obama, Barack Obama, Obahand {US President Barack Obama, President Sarkozy
One green (dashed line) hyperedge denotes the feptar®un match— {he, him. Two
blue (dashed-dotted line) hyperedges denote the fesitiljectobject match— {Obama, hé
and {President Sarkozy, hijn Each of the hyperedges has an associated edge weights (the
examples of which can be seen in Seci08.9.
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On this initial representation, spectral clustering tegbha is applied to find two partitions
that have the strongest within-cluster connections andeasame time the weakest between-
clusters relations. The cut found in this way is calidarmalized Cu{abbreviated ablCuy),
which avoids trivial partitions frequently output by themygut algorithm (see Sectigh2.2).
The two resulting sub-hypergraphs (Fig4r@ b) correspond to two resolved entities shown
on both sides of the bold dashed line, i.e. the upper leftggaph being BRACK OBAMA
and the lower right NCOLAS SARKOZY. In real cases, multiple entities can be found within
one document.

(a) HyperGraph Data Representation (b) COPA Cutput Partiions
[ [US president US president
B[ara:FI){ Chamal Barack Obama] [USp
“eiiimt = TR NI s R e

....... ~ iz
1 Fd

/ [President Sarkazy)-.
P e - R

Figure 4.2: COPA Example: Processing lllustration

4.2 The Mathematical Background

4.2.1 The Hypergraph Representation

A hypergraph is a graph in which hyperedges can connect maretivo vertices, and between
two vertices there can be multiple hyperedges.

The Hypergraph Notation. Let HG = (V, E) be a hypergraph with a vertex segtand
a hyperedge set. The hyperedges can connect arbitrarily multiple vertmash thatk) C
{U|U C V,|U| > 1}. A weightedH G has a positive weight value(e) associated with each
hyperedge:. A vertexwv is incident with a hyperedgeif it is connected with the edge, being
denoted as € e.

For a vertexv € V, the degree ob is the number of hyperedges connecting to it and is
thus defined as
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dw) = > w(e) (4.1)

ecE|vee
For a hyperedge € F, its degree is the number of vertices connected by it, derade

o(e) = le] (4.2)

In order to be analyzed mathematically, the hypergraphessmtation is further trans-
formed into matrices. The incidence mattik of a HG is a|V| x |E| matrix with entries
H(v,e) = 1if v € e and 0 otherwise.D, and D, denote the diagonal matrices with the
vertex and hyperedge degrees respectively,Jérttie diagonal matrix with the corresponding
hyperedge weights. After the transformation, the matramgain full information about the
original hypergraphs.

The Matrix Computation Example. We use the hypergraph in Figu4eé8as an example to
illustrate the matrix computations introduced above. Tambers in brackets are the corre-
sponding hyperedge weights.

Figure 4.3: An Example for the Hypergraph Notation

The incidence matrix{ of this hypergraph and the hyperedge weight mdtrixare

€1 €9 €3
€1 €9 €3
U1 1 0 0
1 1 0 e (04 0 0
v
H= " W= el 0 01 0
vs] 1 1 1
es \ O 0 0.7
(% 0 0 1



42 4. COPA Coreference Partitioner

The degrees of vertices are calculated as

d(vy) = w(ey) = 0.4

d(ve) = w(ey) +w(ez) = 0.5

d(vs) = w(ey) +w(eg) +w(es) = 1.2
d(vy) = w(ez) = 0.7

€1 €9 €3
v, /04 0 0 0
0 05 0 0 afs 00
U .
D,= ,De= el 0 2 0

vs| O 0 12 0
vg \ 0 0 0 07

4.2.2 Hypergraph Partitioning

Grouping data into meaningful clusters is well knownchsster analysior data clustering
which is to discover the intrinsic structures of the focgsdata sets (seéain et al. (1999
for an overview). The data points to be clustered are usualyector-based feature repre-
sentations, the quality of which often influences the pengomnce of the clustering algorithms
directly. For tasks where the relations between data panetsf greater interest, such as coref-
erence resolution, explicit data vector representati@msbe avoided by resorting to graph
models.

Partitioning upon graphs is also referredgaaph clustering Graph clustering is the task
of dividing the vertices in a graph into sets (i.e. sub-ggpkuch that vertices within sets
are tightly connected to each other in some pre-defined seusie the ones from different
sets are loosely related. The edges to be removed to oupstbigraphs form eut, and the
edges are said to be crossing the cut. In a weighted graplatheof a cut is defined by the
sum of the weights of these edges crossing the cut. Graptechg algorithms are aiming at
finding a partition that optimizes the chosen cut value, abttie partition provides an optimal
segmentation solution on the graph.

Spectral clustering is a family of clustering algorithmatthas been proven to work ef-
ficiently in applications and frequently outperforms stamticlustering algorithms such as
k-means. INCOPA we adopt a spectral clustering algorithm that can perfomactly on
hypergraph models.
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4.2.2.1 Spectral Clustering

Taking the two-way partitioning as an example, we introdbdefly the intuitions behind
spectral clustering in this section.

The Standard Graph Cut. Let A, B denote two disjoint sub-graphs from the original graph
G = (V,E) (V, E are vertex set and edge set respectively), whereB = V. andAN B = ().
The standargraph cutis defined as

cut(A, B) = Z w(u,v) (4.3)

uceAveEB

Finding the minimum cutrfin-cu) of a graph (i.emin 4 g(cut(A, B))) is the simplest and
most direct way to solve the partitioning problem. Then-cutis well-studied (se&toer &
Wagner (199yfor algorithms and discussions) and is used in applicatton Wu & Leahy,
1993. However, it is noticed that thein-cutcriteria favors cutting isolated verticedain
etal., 1999, which have few edges connecting to others in the graphetdtia corresponding
cut value is small. Most applications focus on detectingmregful cluster structures (i.e. the
clusters consisting of multiple vertices), and are notregted in such trivial singletons output
by min-cutalgorithms.

Normalized Cut. Shi & Malik (2000 propose a new measure of disassociation between
sub-graphs, taking the inner-cluster density into comatilen too. The new measure is called
Normalized Cu{NCuy:

cut(A.B) cut(A, B)

NCut(A, B) = assoc(A, V) ' assoc(B,V)

(4.4)

Whereassoc(A,V) = 3, 4 ,cy w(u,t) sums all the edges between verticeslisub-graph
and all vertices in the original graph. Therefore, by mimimg theNCutvalue, the resulting
sub-graphs should be weakly connecting to each other whitegkas dense as possible at the
same time.

However, introducing the inner-cluster factor makes theimization of NCut an NP-
hard problem. Spectral clustering techniqu€sing, 1997 Shi & Malik, 2000 Ng et al.,
2002 solve the relaxed version by partitioning the rows of a mdtee the Laplacian matrix
L, in Section4.2.2.3 according to the components in the top few singular vedturshe
matrix. They are simple to implement and reasonably fasthave been shown to frequently
outperform traditional clustering algorithms such as kanmgealgorithm in applicationwv¢n
Luxburg, 2007.
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4.2.2.2 Spectral Clustering for Hypergraphs

(Zhou et al., 200ygeneralize spectral clustering to operate directly orehgraphs (in contrast
to e.g.Agarwal et al. (200pwho partition a graph that approximates the hypergraph). |
COPA we adopt their hyperspectral clustering algorithm.

Following the same intuition behind the standard normdlizet as introduced in Section
4.2.2.1 hypergraph spectral clustering defines #i€'ut;, of a k-way partitioningP; as

voldV;
1<i<k
WhereV, NV, =0, forall1 <i,j < kandi # j.
The volumewolV; of a vertex sel/; is defined by
volV; = " d(v) (4.6)

veV;

The hyperedge bounda®yy; is defined as the graph cut separatingrom other vertices
in the graph, such that

IV, ={e€ ElenV; #0,enV #0} 4.7)

whereV;* denotes the complement Bf.
The volume of the hyperedge boundary is defined by
_ e Ville N V]
voldV; = Z w(e) 5 (4.8)

ecdVj

When a minimizedVCut(P;) value is reached, the linkage between clusters is as weak as
possible while it is as dense as possible within clusterg. mimimization can be approached
using a relaxation approach, which approximates discitatger memberships with continu-
ous real numbers by solving the eigen problem ofttigpergraph LaplacianThe symmetric
Laplacian (,,,) (von Luxburg, 200Yis adopted.

Lym=1-D, 2 HWD,"H"D, > (4.9)
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Given a hypergrapiG, a set of matrices is generatef),, and D, denote the diagonal
matrices containing the vertex and hyperedge degreesatasge |V| x | E| matrix H repre-
sents theHG with the entriesi(v, ¢) = 1 if v € e and0 otherwise.H” is the transpose of.

W is the diagonal matrix with the edge weights.

Let (\;,v;),7 = 1,...,n, be the eigenvalues and the associated eigenvectdrswifiere
0 <\ <--- <\, and|v;]| = 1. The continuous solution to minimiziny Cut(FP) is then
provided by a new data representati&nwith lower dimensions compared with the original
data dimensions:

X = (Ula e avk) (410)

where X is called thek-th orderspectral embeddingof the graph. It has been shown that
k is generally equal to the number of clusters (Ng et al. 20@Lstandard data clustering
algorithm, such as the k-means methbh¢Queen, 1967 can afterward be applied to cluster
the graph nodes in the new space. An illustration is givengure 4.4to show how spectral
clustering work on graph models.
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Figure 4.4: lllustration of Spectral Graph Clustering

4.3 COPA Coreference Resolution via Hypergraph Parti-
tioning

Figure4.5illustrates the work flow of th€ OPAsystem. The system takes raw documents as
input and outputs the expected coreference sets. The poegsing components perform text
parsing (e.g. POS tagging and syntactic parsing), merdemification, and mention-relevant
information extraction (e.g. semantic class identifiaatiowith the identified mentions and
the extracted feature€OPArepresents the input text as hypergraphs. At the @@RPA
partitions the hypergraphs into coreference sets.
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Figure 4.5: lllustration oCOPASystem Flow

4.3.1 Preprocessing Pipeline

COPAIs implemented on top of tiBART-toolkit (Versley et al., 2008 Documents are trans-
formed into theVIMAX2-format (Muller & Strube, 200Bwhich allows for easy visualization
and (linguistic) debugging. Each document is stored in regveML-files representing dif-
ferent layers of annotations. These annotations are crdste pipeline of preprocessing
components. We use ti&anford MaxentTaggdiToutanova et al., 20Q3or part-of-speech
tagging, and th&tanford Named Entity RecogniZ&iinkel et al., 200%for annotating named
entities. In order to derive syntactic information, we uke €harniak/Johnson reranking
parser (Charniak & Johnson, 200ombined with a constituent-to-dependency conversion
Tool 1.

We have implemented an in-house mention tagger, which madeesf the parsing output,
the part-of-speech tags, as well as the chunks fronvainecha ChunkgiKudoh & Matsumoto,
2000. The mention tagger detects automatically the mentiombaties, along with their
syntactic heads.

The separated-annotation-layer scheme and the flexilileéeg@presentation (see Chapter
5) enableCOPAto incorporate knowledge easily. For instance, to enrighdyistem with
medical domain information, we query the Unified Medical §aage System (UMLS)and
the MetaMap softwareXronson, 2001 for each mention. All the top matched concept names
returned by the MetaMap API as well as their correspondirfigitiens in the UMLS database
are collected during preprocessing.

4.3.2 Constructing Hypergraphs for Documents

The Hypergraph Builder component ofCOPA represents documents in undirected hyper-
graphs with basic relational features. Hyperedges areatefrom the adopted feature set.

http://nip.cs.lth.se/software/treebank_converter
2http://www.nlm.nih.gov/research/umls/
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Each hyperedge corresponds to a feature instance modetipgc#ic relation of that feature
type between two or more mentions. This leads to initiallgrtapping sets of mentions (as in
Figure4.2(1a)).

Hyperedges are assigned weights that are calculated fretnaiming data using thidy-
peredge Learnecomponent, as the percentage of the initial edges beingctrctaeferent.
For instance, when calculating the edge weights foiHHeadMatchfeature,126 binary corre-
sponding relations are found, out of whigh are coreferent. As a result, the edge weight for
HeadMatchis %56 = 0.4365. Since only basic statistics are collected from the anedtdata,
COPAis not sensitive to the size of the training set (see Chapter

The weights for some o§oon et al., 2001s features learned from the ACE 2004 training
data are given in Tablé.2

Edge Name Weight

Alias 0.777
StrMatchPron 0.702
Appositive 0.568

StrMatchNpron  0.657
NonPronPron 0.403

Table 4.2: Hyperedge Weight Examples for ACE 2004 Data

4.3.3 Hypergraph Resolver

Raw documents are transformed into hypergraphs with menagrvertices and features as
edges. In contrast to the common practice in graph modelsneaporate rich relational
information directly without assuming a distance metrid amaintain all the relations until
the final generation of the coreference sets. As introduneSection4.2.2.1 for a given
hypergraph, the hypergraph Laplaciay,,, is computed. After solving the eigenvectors of
L,,., a new representation of the original vertices are formesl.illastrated in Figuret.,
after forming a matrix using the eigenvectors as columns,rtws of the matrix are taken
as the new vector representations of the vertices. Thecesrin the new spectral space can
easily be partitioned, because they are well-separatekddny t
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Figure 4.6: lllustration of the Spectral Embedding

TheHypergraph Resolve(i.e. the partitioner) aims to detect the intrinsic clustieacture
in the hypergraph. It partitions every hypergraph into ssveub-hypergraphs, each corre-
sponding to one set of coreferent mentions (see e.g. theioutpigure4.2(1b) which con-
tains two sub-hypergraphs). Sectidr8.3.1and 4.3.3.2describe our proposed partitioning
algorithms which form the core parts of the hypergraph resol

4.3.3.1 Recursive 2-way Partitioner

We propose the recursive variant of spectral clustemnagyrsive 2-way partitioning (R2 par-
titioner) (Cai & Strube, 2010r; This method does not need any information about the number
of target sets (the numbérof clusters). Instead a stopping criterian has to be provided
which is adjusted on development data. At each recursign #$teR2 partitionerbi-partitions
the focusing graph and the resulting partitions will be kagy if the cut value is smaller than
«a*. The graph Laplacian is re-computed at each recursion basede input graph. The
algorithmic details are referred to Algorithin

In theR2 partitioner only one eigenvectar; is used for the spectral embedding and con-
sequently the new vertex representation is only in one d&wan Therefore, directly search-
ing for a best splitting point i is sufficient to partition the graph, with vertices ordered
according to their correspondirig values. For recursion purpose, all the sub-hypergraphs
that can be partitioned with ldCut value smaller than thex are partitioned further. When
the NCutvalue is bigger than thex, it is suggesting a strong connectivity within the hyper-
graph in focus so that it should not be partitioned any more.
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Algorithm 1 R2 partitioner
Note: { Lyym =1 — D, *HWD.,"HTD, % }
Note: { NCut(S) := voldS (-5 + )}
input: target hypergraplt/ GG, predefinedv*
Given aHG, construct itsD,,, H, W and D,
Computel for HG
Solve theL for the second smallest eigenvecter
for each splitting point ifl; do

calculateNCut;
end for
Choose the splitting point withvin (N Cut;)
Generate two SUl/G'’s '
2 if min(NCut;) < o* then
for each subfG do

Bi-partition the subH{ G with R2 partitioner
end for
. else
Output the current suBG
- end if
. output: partitionedHG
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Since the mention detectors usually aim at high recall etlage a lot of system mentions
which do not match with true mentions. Including system nogrst into graphs results in
loosely connected outliers, a@DPAis expected to split them out as singleton clusters. Using
Normalized Cut does not generate singleton clusters, hersuastic singleton detection
strategy is proposed IBOPA We apply a threshold@ to each node in the graph. If a node’s
degree is below the threshold, the node will be removed.

4.3.3.2 Flat k-way Partitioner

The R2 partitionergenerates an optimized bi-partitioning at each recursiep. sDue to its
hierarchical nature, however, it is not guaranteed thafitta¢ output clusters are also globally
optimized, and it does not have any intrinsic means to irelgidbal constraints to globally
guide the clustering. In order to overcome these problerepnepose a flat variant of parti-
tioner,flatk partitioner(see Algorithn?). k clusters will be output simultaneously by making
use of thek smallest eigenvectors of the hypergraph Lapladigp, (as in Figure4.6).
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Algorithm 2 flatK partitioner

Note: { Lyym =1 — D, *HWD.,"HTD, % }

Note: { NCut(Py) = Yo, 20

input: target hypergraplﬂ}é, number of clusters

Given aHG, construct itsD,,, H, W and D,

ComputeLs,,, for the HG

Solve theL,,,, for thek smallest eigenvectors, ..., vy

Construct the spectral embeddifg= (vy, - -, vx)

Apply k-means to the points:;);—; ..., to producek clustersCy, ..., Cy
output: partitionedHG with clustersCy, ..., Cj,

To assist thdlatK partitioner we propose a preference-bagechodelto predict the num-
ber of entities within documents. The details of thenodelis introduced in Sectiod.3.4

4.3.4 k Model: Predicting the Number of Entities

Most clustering methods for multi-cluster tasks assumenthmeber of clusterg to be known
beforehand. However, & is not known, choosing it turns out to be a general problem for
clustering algorithms, especially when partitioning yoiata. Several methods to estimate
k have been proposed (for an overview skhlligan & Cooper, 198% and {on Luxburg,
2010) which focus on detecting the intrinsic cluster strucsuirem the data where clustering
is viewed as an unsupervised task.

The methods of analyzing the cluster structures, such agahstatistic Tibshirani et al.,
2007 and the stability measuremenBen-David et al., 2006 require relatively big graphs
to support valid statistics. For instance, when there a®tleanl 00 vertices in a graph to be
partitioned, the analysis methods are not able to work wte®ihce documents vary largely
in numbers of mention§GOPAseeks methods that anet sensitive to the graph sizesvhen
predicting the number of entities.

In this thesis, we propose a supervigeghodelto decide on & — the number of entities
— for each hypergraph. The objective of dumodelis to find the besk thatoptimizes the
end coreference performance The best does not necessarily correspond to the number of
true entities (the trué), when spurious system mentions are included in the hypphg: We
address thé predicting problem with preference modeling, where twdipanings of two
differentk compete with each other and the better partitioning is exgokto generate a better
coreference performance (e.g. the F-score number). By iaygpllge preference modeling
the differences between partitionings can be captured;iwdiie less sensitive to noise than
the methods solely analyzing the graph structures. In a@ewvoid confusion, the terms
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Partitioning, Partition andClusterare clarified via the following example.

e mentions
— My, My, M3, My, M5
e apartitioning P (k = 2)
— {m;, my}, {mg, my, m;}
e apartitioning P; (k = 3)
= {my, mp}, {mz, my}, {ms}
e an exampleluster|partition
= {m;, my}

Our proposed: modelis outlined in Algorithm3. Given a set of possible's for a hyper-
graph, a preference model is trained to find the kesith respect to the application F-score.
The details of the model are described in the following satises.
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Algorithm 3 %&£ modeloutline
Training :
Construct hypergraphs for the documents
for each hypergrapto
Estimate the: range [k, k]
Decide on OneCluster
for k; € [kq, k,] do
Generate a partitior,
end for
Find the best partitio®,.;
Pair the{ P, ., Pr. }, kvest < ki, @s positive training instances
Pair the{ Py, Py,.., }, ki < kuest, @S NeQative training instances
end for
Build £ modelfrom training instances
Testing:
Construct hypergraphs for the documents
for each hypergrapto
Estimate the: range |k, k]
Decide on OneCluster
for k; € [kq, k,] dO
Generate a partitior,
end for
Pair each P, Py, }, ki < kj, as testing instances
Use the learned modelto annotate the instances
Choose the beg?, using the round-robin scheme
Output Py
end for

Training. Before the training, a range of possildfs for each hypergraph is estimated based
on the string properties of the mentions. The lower bounceist® bel, while the upper
bound is the number of different mention strings. Deterngnithe possiblé:’s can also be
approached by including more linguistic knowledge, fotamse, to set the lower bound as
the number of different proper names, which are most likelye different entities.

Since determining if a graph should be partitioned at alladsnary decision) is easier
than deciding on the best partition (as a preference degjdioe cluster withc = 1 denoted
asOneClustelis decided separately by simply looking at the the secorstetwithk = 2, as
opposed to the other situations in which both partitionimgsd to be considered. A graph with
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the second cluster which generates a Ngtutvalue (greater than 0.1 in our experiments) will
prefer the OneCluster, and all the others will be passed tprésference model.

We patrtition each hypergraph built from the training datéhvei set of possiblé’s. The
resulting partitioning withi; is denoted ag},,. Thek modelaims to find thexrg max, F'(F, ),
where theF'(P;,) denotes the coreference F-score when the partitioRing taken.

Two partitionings are paired as one training instajde, , P, } with k; < k;. Aninstance
is labeled positive whet#'(Fy,) > F(F;,), and negative otherwise. This way, thenodel
casts the original problem of picking the bédstnto a binary classification task where the
preference among each pair/g$ is learned.

Testing. For testing data, all pairs of partitioning#’.,, Py, } with k; < k; are selected as
instances. The learngd modelassigns each instance a label of positive or negative, with
positive indicating the preference fé}, and negative for, .

To find the topk from the pairwise preference decisions, a round-robirexisais adopted.
We assign each partitioff,, a confidence valueon f(Py,) = pos(Py,) — neg(Fy,), Where
pos(Py,) is how many timesP,. is preferred, andieg(Fy,) denotes the times not preferred.
The topk then is simply the one with the highest confidence value.

k Model Features. There are currently only a few features used for thmodel proposed
in this section. For an instandé’;, P; }, there are features:

(1) MaxNCwuty: the biggestNCutvalue of partitioning?;;
(2) Max N Cut,: the biggesiNCutvalue of partitioning?;;

(3) MaxNCutDif f: the difference between biggesCutvalues of the partitioning’;
and partitioningP;;

(4) kDif f: the difference between thievalues used for both partitioning and parti-
tioning P;;

(5) ConNumD:if f: the difference between the numbers of constraints vidletgar-
titioning F; and partitioningP;, and the constraints used are simply the negative features
used iNCOPA(see Sectioh.2).

For thek modelearner, a decision tree classifidd8provided by Witten & Frank, 200%)
is used.
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4.3.5 Complexity of COPA

In COPA the hyperedge weights are assigned using simple desergittistics, so that the
time theHypergarph Resolveneeds for building the hypergraph model, transforming the
hypergraph to matrices and computing the graph Laplaciamixnia not substantial. For
eigensolving, we use an open source library provided by tHep@ojecfwhich implements

a Householder-QL algorithm to solve the eigenvalue decaitipa. When applied to the
symmetric graph Laplacian, the complexity of the eigenisglis given byO(n?), wheren is

the number of the mentions in the hypergraph.

For theR2 partitioner only the top two eigenvectors are required at each reqursie
decomposition can be easily improved by Lonczos algorithricivgivesO(nm) as the com-
putational cost withn as the number of an equivalent (different) graph of the hyyagah. The
equivalent graph here is depicted by the hypergraph Lagmaoaplicitly.

To sum up, the worst computational complexity of our resajvdbrocedure give®(n?)
and in hierarchical manner it is only(nm). Spectral clustering only becomes problematic
when the graph has millions of vertices. However, for docotsi@here at most hundreds of
mentions appear it is not an issue at all.

4.4 Implementation Issues

4.4.1 The Post-processing For Pronoun Anaphors

In a hypergraph built bfCOPA pronouns are connected to all other non-pronouns which do
not violate any agreement relations, such as gender andaraagbeements. In an end-to-end
setting, there are many singleton entities included intdypergraphs via their connections to
pronouns. As mentioned before, a spectral clustering itgoiis unable to separate singletons
during partitioning, thus we may derive clusters mixed vgthgleton entities. In order to
address this issue, we propose a post-processing strategya pronoun anaphor, only its
strongest connection within its assigned cluster is kegtadiother links are removed.
Figure4.7 gives an example for the post-processing of pronouns, taghgis shown in
a standard graph form for the sake of clarity. The dashed @iedes indicate the cluster
boundaries.

Shttp://acs.Ibl.gov/ ~ hoschek/colt/
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0.7 {a,} 07 {a}
K {a }/06 \\‘ ' {a, }/
Before ) I// m - ) After “\ m
Post-processing ! { he } . Post-processing \\\ { he }

Figure 4.7: lllustration of the Post-processing for Pramou

Considering the generated cluster in the left side of Figufgvhich contains the mentions
{a}, {&}, {he}, {b,}, {c,}, with links betweer{ he} and all the other mentions and one link
between{a } and{a}. Assuming the strongest connection{toe} is {a }, the proposed
post-processing removdd,; } and {c,} while leaving{a }, {&}, {he} in the final cluster.
This post-processing is driven by the intuition that therawtions between pronouns and
non-pronouns are not confident enough to support trangitbgires. For instance, the links
between{he} and{b, }, {c, } are not confident enough to enforce a connection betWgn
and{c; }. We only maintain one link per pronoun after the partitihprocedure, e.g. the one
between{he} and{a, }, but keeping other relations being transitive so #at is also in the
final cluster.

4.4.2 Partitioning Issues

Graph Components. The number of zero eigenvalues corresponds to the numbemof ¢
ponents in the graptvén Luxburg, 200Y. A graph component is a disconnected sub-graph,
and inCOPAmultiple components can occur when only limited featuresused, so that not

all mentions from the document are connected (directly aravpath). Different components
can be processed separately during partitioning procesthd sake of reducing complexity.
Only for the connected graphs, the tdy) €igenvectors are taken as described for the spectral
embedding.

Eigenvalue Smoothing. It is worth noting that depending on the implementation etz
the eigen decomposition component, the solved eigenvahrebe a double or a float type. It
is necessary to smooth the eigenvalues, for instance byiagmn Epsilon variable (e.g. a
small number) to allow for small fluctuations on the eigeneal
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The k-means Initialization. It is well known that the k-means algorithm is sensitive te th
initialization of cluster centers. Since there is a lot ofseoinvolved in our hypergraphs,
the decision on the initial cluster centers becomes ever mrrcial. Accidentally choosing
the noisy mentions as initial centers can generate unexgetisters. ICOPA we address
this issue by restricting the initial cluster centers tog@monames that are more likely to lead
entities. This modification manages to introduce applicaspecific knowledge into the k-
means to guide the initialization, and can be easily impidwe estimating the entity centers
using more information.

4.5 Hypergraphs to Standard Graphs

The hypergraph is a generalization of the standard grapgh.plbssible to find graphs which
approximate hypergraphs and thus can be accessed usirtgrilarsl graph-based algorithms.
In order to preserve the power of representation of the lyypph, inCOPAwe avoid the
transformation step by applying the partitioning algamittirectly to the hypergraph models.
However, in this section, we introduce the equivalent gsajphthe hypergraph, which serve
as alternatives when hypergraph-based algorithms are not available or vamenwants to
explore more inference models upon the hypergraph repgan

The two most commonly used ones &tar Expansiorand Clique Expansior{Agarwal
et al., 200%. Star Expansior(in Section4.5.]) introduces a new star vertex for each hy-
peredge, which connects all the vertices covered by thenatifpyperedge. As a result, a
bi-partite graph is generated where the edge weights casdigned by distributing the cor-
responding hyperedge weights ever@Bfique Expansiorfin Section4.5.2 expands each hy-
peredge into cliques, and the similarity between two vestits proportional to the summed
weights of their common labels.

4.5.1 The Star Expansion

Star Expansiortransforms the hypergraph into a bi-partite graph, wheeeetlare additional
starred vertices corresponding to original hyperedgetth&l vertices belonging to a hyper-
edge are therefore connected to the new starred vertex bi-fhetite graph. The weights of
the multiple edges generated from one hyperedgenormalized by the degree of

w'(u, e) = w(e)/o(e) (4.11)

where thew(e) is the original hyperedge weight amds a vertex connecting te
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4.5.2 The Clique Expansion

Clique Expansiortransforms each hyperedge into several pairwise edjen €t al., 1999
so that the vertices in a hyperedge form a clique. The new eegghts between vertexand
vis

w'(u,v) = ,uz h(u,e)h(v,e)w(e) (4.12)

where thew(e) is the original hyperedge weight apds a fixed scalar.

4.6 Summary

Our Contributions.  In this chapter, we introduce our proposed coreferencéutso model
— COPA standing for coreference partitioner. Our contributians two-fold, (1) represent-
ing the coreference relation with thgpergraph model, and (2) inferring coreference sets
using thehypergraph partitioning algorithms.

COPArepresents documents in the hypergraph model, so that thiplelow-dimensional
relations between mentions are easily expressed as hygesradthout the necessity of com-
bining them before the final decision. Upon the constructgeelgraphs, the spectral cluster-
ing technique is applied to derive coreference sets dyreattl simultaneously. By adopting
spectral clustering algorithms, it is made sure that thetimes within a coreference set are
closely related, while the ones from different sets are ffarefrom each other.

Spectral Hypergraph Partitioning for Coreference Resoluton. The proposed hypergraph
partitioning model looks at the entire graph to make coesfee decisions. Not only the
context preceding a mention but also the one after it ara@iated to assign the mention to one
of the clusters. We propose two partitioning algorithmsGQPA theR2 partitionerperforms
the hierarchical clustering and tfiatK partitioner partitions only once. To assist tlilatK
partitioner, we propose a noveél modelto predict the number of entities within documents.

End-to-end Coreference Resolution. We address the coreference resolution problem in an
end-to-end system setup, where noise is unavoidable anchéhéons to be resolved may
not align with the true mention set. Implementing corefeeemodels in end-to-end systems
is very important, since it has been observed that improwtbpnance on true mentions
does not necessarily translate into the improved perfocaan system mentiondl@, 200§.

The implementation issuesof applying clustering techniques to coreference resmuéire
addressed in this chapter too.
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Overall, the hypergraph representationGfdPAavoids the expensive training for the fea-
ture combination, and its light weighted partitioning-edénference does not ask for complex
probabilistic estimationsCOPAs patrtitioning-based strategy can be taken as a general pre
erence model, where the preference of entities for one oredgpends on information on all
other mentions. Therefore, we believe tkEDPAis a coreference model preferable not only
to the previous local models but also to complicated gragmethods.
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Chapter 5

COPAFeatures

In this chapter, we introduce the feature representatibarse encoded i@BOPA Our features
aim to capture the linguistic phenomena of the corefereglegion, as well as the data-specific
statistics. COPAhas been applied to various types of data sets ranging frors asicles (e.qg.
MUC, ACE and OntoNotes data sets in Cha@gto clinical reports (e.g. the I12B2 corpus),
the feature sets it implements therefore cover both geaechtiomain-specific information.

5.1 The Feature Categorization in the Hypergraph

Positive relational features can be incorporated into gpergraph model o€EOPAas types

of hyperedges (e.g. in Figu#e2 (b) the two hyperedges marked by “* are of the same
type from featuresubject/object matghso that a realized hyperedge is an instance of a cor-
responding type. All hyperedge instances that are derned the same type have the same
weight, but they may get re-weighted by the distance fegeetion5.5). Negative relations
can be treated either as filters to be applied to the grapHroatisn phase (e.g. the negative
features described in Secti@?) or as constraints to be applied to the inference procedure
(see Chapte8). In this chapter, we only focus on the features adopted dostructing the
hypergraphs, which consist of three categories:

Negative Features:to prevent hyperedges between mentions;
Positive Features:to generate relatively strong hyperedges between mentions

Weak Features:to add hyperedges to an existing hypergraph without intodunew
mentions into the hypergraph;

Negative features here act as global filtering variablesjdavg incompatible mentions
to be connected in a graph. For instance, altholdh [Clinton] and [Mrs. Clintor] match
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via substring matct{positive) feature, there is no hyperedge built betweemttae to their
incompatible gender.

COPAdifferentiates between positive and weak features, becspectral clustering al-
gorithms do not have intrinsic means to handle singletostels. Recall that the spectral
clustering technique targets at optimizing the normalizat (NCut) value, which has the
inner-cluster connectives factor as the denominator. Trresefore makes it impossible to
output singleton clusters. In order to avoid too much nogsg.(singleton mentions) in our
hypergraph model, we construct the graphs in a conservatarmer. While weak relations
contribute to the graph structure, they tend to involve t@nynsingleton mentions into the
graph. So we construct hypergraphs solely out of the pesfgatures and only add weak
relations into the graph afterward without introducing nestices at all.

In the following sections we describe the features implaedm COPA

5.2 Negative Features

Negative features describe the pairwise relations betwesntions that are most likely to be
not coreferent. They have been conventionally used in coatioin with other featuresSpon
et al., 200) and is implemented as weak positive features in an earioriof COPA(Cai

& Strube, 2010a Now we apply negative features as global filters in the lyregnstruction
phase. When mentions are detected to be in a negative relati®omade sure that no edges
are built between them in the hypergraphs.

(1) N_Gender, (2) NNumber
Two mentions do not agree in gender or number.
For instance, no edge is allowed between the mentidiigfy Clinton] and [he] due to their
incompatible gender. The mentioM{. Sisuly has the negative relation of incompatible
number with the mentiorbpyq.

(3) N_.SemanticClass
Two mentions do not agree in semantic classe.
For news articles (e.g. MUC, ACE and OntoNotes data sets), threl®pbject Date, Person
and other top categories derived from WordNegl{baum, 1998are used. For clinical reports
(e.g. 12B2 corpus), this feature is replaced by feature (& itthentifies the medical types for
each mention.

(4) N.Mod
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Two mentions have the same syntactic heads, and the anapht@r tmodifier that does not
occur in the antecedent or contradicts the modifiers of thecadent.

For instance, a negative relation is built between the mnastexpedited proceedinpand [the
investigation proceedinjsas the modifiers of the two mentions convey different infation.
However, simply enforcing the modifiers to be the same cahantlle the situations in which
the modifiers appear differently though without contradigteach other (e.g.tle case in
guestiofhand the case against the accuggdrhe current version d€OPAdoes not take care
of these difficult cases.

(5) N.DSPrn
Two first person pronouns (i.e.l]] [mg, [my] etc.) in direct speech which are assigned
to different speakers should not be linked together. Thalggeinformation is given in the
OntoNotes data set.

(6) N_ContraSubjObj
Two mentions are in the subject and object positions of theeseaerb, and the anaphor is not
a possessive pronoun.
For instance,John talks to [him], where Pohr] should not be coreferent witlinjm].

(7) NLi2b2Type
Two mentions have different mention types (ergatment problem etc. as defined in the
12B2 data set).
For instance,lgchemic bowélhas an incompatible 12B2 type witff horacentesis as a clin-
ical problem mention cannot be coreferent with a medicalinent mention.

(8) N.i2b2Quant
Two mentions are modified by different quantities.
For instance, the mentiohéart ratd in the text fragment "heart rate 116” and the mentian [
heart ratg in the text fragment "a heart rate of 128” cannot be corefere

(9) NLi2b2ConName
Two mentions have the same syntactic heads, and their noh{dhever) concept names in
MetaMap are different.
For example, the mentiobéck pairj and the mentiondhest paihare in this negative relation.
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5.3 Positive Features

The majority of the well-studied coreference features. @tgyanov et al. (2009 are positive
coreference indicators. In our system, the mentions thdicgeate in positive relations are
included in the hypergraphs as vertices.

(10) StrMatch_Npron & (11) StrMatch _Pron
After discarding stop words, if the strings of mentions ctetgly match and are not pronouns,
they are put into hyperedges of tBé&MatchNprontype. When the matched mentions are
pronouns, they are connected witB@MatchPron hyperedge. We differentiate the two types
of string matchings, as pronouns suggest much less infamgtan non-pronouns do.

(12) Alias
After discarding stop words, if mentions are aliases of eattier (i.e. proper names with
partial match, full names and acronyms of organizatiornts).et
For instance,Australia’s Qinte} and [Qintex Australia Ltd. are aliases of each other.

(13) HeadMatch
If the syntactic heads of mentions match, suchtlas D.S. rulekand [the ruleg.

(14) Nprn_Prn
If the antecedent is not a pronoun and the anaphor is a proddwnfeature is designed with
the intuition that pronouns are used to refer to existingtiest Although this feature is not
highly weighted, it is crucial for integrating pronounsdrihe hypergraph.

(15) Speaker12Prn
If the speaker of a second person pronoun is talking to thakspeof a first person pronoun,
the two pronouns are connected with a hyperedge. This typgpdredges only contain first
and second person pronouns. This feature is useful for theN@tes data set where speaker
information (e.g. the speaker names and the speech boasgarexplicitly provided.

(16) DSPrn
If one of the mentions is the subject ospeakverb, and other mentions are first person pro-
nouns within the corresponding direct speech. Direct dpbecndaries are detected simply
by paring double quotes.
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(17) ReflexivePrn
If the anaphor is a reflexive pronoun, and the antecedeneisubject of the same clause.
Dependency trees are utilized to conduct the necessarynggiioal analysis.
In sentence 'foday’s generation of Taiwanégssave our island’s last remaining forest of these
giant trees, forthemselvdsand later generations?”, the marked mentions are linkadhis
feature.

(18) PossPrn
If the anaphor is a possessive pronoun, and the antecedleasisbject in the same sub-clause.
In sentence "How would you feel ifypur child] learned from hig] classmates to cough up
phlegm all over the place?”, the marked mentions are in giation.

(19) GPEIsA
If the antecedent is a Named Entity of GPE entity types (ine a@f the ACE entity typeNIST,
2004), and the anaphor is a definite expression of the same type.
For instance,lfaq] is linked with [the natior).

(20) OrglsA If the antecedent is a Named Entity of Organization entifyetyand the
anaphor is a definite expression of the same type.
For instance,Google Inc} is linked with [the companly

Feature (19) and (20) capture the ISA relations for spegifies of Named Entities, and
are designed for news article data sets.

(21) Appositive
Two mentions are in an appositive structure, such as theiomefitaurence Tribe, Gore’s
attorney} and its embedded mentiopre’s attorney. Depending on the annotation schemes
of the adopted data set, this relation may or may not be a@@mte indicator.

(22) Concept
We disambiguate each Named Entity to Wikipedia entfi@h(ni et al., 201 and if mentions
linked to the same entries.
For instance, $outh Korehand [ROK] are disambiguated to the same entry so that they are
connected by this feature.
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(23) i2b2PisA
A pseudo IsA relation. One mention appears in other mentaefmitions extracted from the
UMLS thesaurus.
For instance, the mentionBdracentesisand [the tag are captured by this feature, since the
top ranked definition ofthe tag is "Paracentesis”.

(24) i2b2Abbr
One mention is in the abbreviation format (i.e. with alléest capitalized), the other mentions
match (exactly or partially) with its concept name extrddig MetaMap.
For instance, the mentioe(GD] is identified to be the abbreviation of the menti@sppha-
gogastroduodenoscopy

(25) i2b2CatMatch
There is always structured information in the clinical dsg¢#s (e.g. 12B2), as shown in the
text "[Attending: [Erm K. Neidwierst , M.J'. The mentions are linked when they appear in
the same category slot of the report and both are persons.

(26) i2b2PrnPreference
This is a data specific feature, describing the prefererareseftain types of pronouns.
For example, first person singular pronouns in the data setiyn@fer to the physician who
writes the clinical report.

5.4 Weak Features

Weak features are weak coreference indicators. Using tisgpositive features would intro-
duce too much noise to the graph (i.e. a graph with too margletsons). We apply weak
features only to mentions already integrated in the grapthat weak information provides it
with a richer structure.

(27) W_VerbAgree
If the anaphor is a pronoun, and the antecedent appears ageatsar an object in previous
sentences. The verbs of both mentions should be the same.
For instance, the sentence "Born in Homei, Changhua in 1928 [studied the violin in
Japan as a youth” is followed by the sentence "Lateg §tudied in France ...”, so that the
marked two mentions share thi¢ VerbAgreeaelation.

(28) W_Subject
If mentions are subjects.
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(29) W_Synonym
If mentions are synonymous as indicated by WordNet, sucthag¢wr) and [the villagg.

(30) W.i2b2SubStr
One mention is the substring of the other.
For instance, the mentio[splatin| is the substring of the mentioCjsplatin chemotheragy

5.5 The Distance Feature

Graph models cannot deal with positional information welich as distance between men-
tions or the sequential ordering of mentions in a documeherdfore the hypergraph model
of COPAdoes not have any obvious means to encode distance inform&towever, distance
between mentions plays an important role in coreferencgdutsn, especially for resolving
pronouns. We do not encode distance as a binary featureisaattibduces too many hyper-
edges into the graph. Instead, we use distance to re-wejggrégges of degrees dfwhich
are supposed to be sensitive to positional information.

We experiment with two types of distance weighl) sentence distancas used ifsoon
et al. (200)'s feature set an@B2) compatible mentions distances introduced bBengtson
& Roth (2008.

5.6 The Learned Hyperedge Weights

Table5.1and Tables.2 provide the example feature weights (i.e. hyperedge wejdéarned
from the OntoNotes training set, in order to indicate thedrgpaph structures we derived.
I2B2-relevant feature weights are shown in Tabl& In Table5.4, the statistics for the nega-
tive features suggest how strongly the features are contitndpto non-coreference decisions.

OntoNotes data does not annotate appositive relations ragecence relations, so that
Feature (21) gives surprisingly small weights.
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Positive Features Weights
(10) StrMatchNpron 0.766
(11) StrMatchPron 0.620
(12) Alias 0.733
(13) HeadMatch 0.614
(14) Nprn.Prn 0.176
(15) Speaker12Prn 0.552
(16) DSPrn 0.9
(17) ReflexivePrn 0.567
(18) PossPrn 0.75
(19) GPEIsSA 0.308
(20) OrglsA 0.111
(21) Appositive 0.001
(22) Concept 0.494

Table 5.1: Positive Feature Weights on OntoNotes Data

Weak Features Weights
(27) W_VerbAgree 0.342
(28) W_Subject 0.4425
(29) W_Synonym 0.429

Table 5.2: Weak Feature Weights on OntoNotes Data

12B2 Features Weights
(23) i2b2PisA 0.348
(24) i2b2Abbr 0.423
(25) i2b2CatMatch 0.935
(26) i2b2PrnPreference 0.967
(30) W.i2b2SubStr 0.594

Table 5.3: Feature Weights on 12B2 Data
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Negative Features Statistics

(1) N_Gender -0.993

(2) N.Number -0.996

(3) N_SemanticClass -0.993

(4) N-Mod -0.853

(5) N.DSPrn -0.762

(6) N_ContraSubjObj -0.997

(7) N_i2b2Type -0.999

(8) N_i2b2Quant -0.999

(9) N_Li2b2ConName -0.816

Table 5.4: Negative Feature Statistics on OntoNotes Data

5.7 Summary

In COPA features are expressed as hyperedges. Since the combioafeatures is implic-
itly done during the inference phase, the features in thplgcanstruction phase simply are
included in an overlapping manner. Therefore it is strdaghtard and costs little effort to
include more features IBOPA We categorize the features into three types, which do gt on
indicate the linguistic functions of different featurest lalso provide a systematic way for
feature development IBOPA

Negative relations are interpreted as global filters dutivggraph construction in this
Chapter, and they are explored further in Chagtass global constraints which are applied
during the inference phase. Coreference decisions depemdedtgrences, where negative
information in certain cases contributes as much as theetional positive indicators.



70

5. COPAFeatures




Chapter 6

Evaluation Metrics for End-to-end
Coreference Resolution

Evaluating clustering results is one of the most importasues in cluster analysis, and is
referred as clustering validatiomélkidi et al., 200). When the ground truth is provided,
the evaluation methods aim to measure how similar the cingteesults are to the gold an-
notations. For instance, the evaluation metrics for coesfee resolution measure the output
coreference sets (i.e. clusters) against the ground tetsipsovided by domain experts. Since
there may be different numbers of output clusters (e.g. dheference sets) compared with the
gold annotations, such an evaluation task is different femaluating classification problems
which directly assesses the label assignments of instamtcbecomes more complicated to
perform the evaluation when the numbers of the output its®s e.g. the mentions) are also
different from the gold ones. In this chapter, we focus ondhd-to-end system setting for
the coreference resolution task, and propose evaluatjomitdms to assess noisy coreference
output.

Early research on coreference resolution has worked ofrileementionsetting, where
the mentions participating in coreference sets are givengalith their exact boundaries.
The commonly used coreference resolution evaluation osediie designed for such systems,
but evaluate the output coreference sets from differerggeetives. For instance, the MUC
score Vilain et al., 1993 in Section6.1.1performs on the relations between mentions, the
B? algorithm @agga & Baldwin, 1998in Section6.1.2 operates on the relations between
mentions and sets, and ti¥EAF algorithm (uo, 2009 in Section6.1.3 captures the rela-
tions between sets. However, it is not trivial to apply thewmsrics to end-to-end coreference
systems, where the automatically identifggtem mentionmay not align with the true men-
tions. To be consistent with the literature, in this chap&r mentions used to refer to true
mention.

In Section6.1, we discuss the problems of the existing coreference nsedincl propose
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two variants of thd3®> andCEAF algorithms which can be applied to noisy coreference output
dealing with system mentions. Our experiments in Sedi@show that our variants lead to
intuitive and reliable results for end-to-end coreferesystems.

6.1 Evaluation Metrics for the End-to-end Coreference Res-
olution

6.1.1 MUC

The MUC scoreVilain et al., 1995 counts the minimum number of links between mentions
to be inserted or deleted when mapping a system responseold atgndard key set. Given
an example,

Key : {m;, my, mg, m,}
Response{m;, m,} {ms, m,}

Figure6.lillustrates the relations between mentions for both thegkeythe response. Since
the response sets require at least one link (e.g. betwgandm) to form a set (i.e{m;, m,,
m3, m, }) which matches the provided key, the recall is giverkagall = 2/3. The precision
is computed ag’recision = 2/2, as all the links in the response are correct.

Key Response
/ m; \ / m,
m2 m3 mz m3
\ I / . /

Figure 6.1: The MUC Score lllustration

Although pairwise links capture the relations in a set, tbagynot represent singleton en-
tities, i.e. entities, which are mentioned only once. Tfares the MUC score is not suitable
for the ACE data lfttp://www.itl.nist.gov/iad/mig/tests/ace/ ), which in-
cludes singleton entities in the keys. Moreover, the MUGQesamwes not give credit for sep-
arating singleton entities from other chains. This becopreblematic in a realistic system
setup, when mentions are extracted automatically.
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6.1.2 B3

The B? algorithm Bagga & Baldwin, 1998overcomes the shortcomings of the MUC score.
Instead of looking at the link€g* computes precision and recall for all mentions in the doc-
ument, which are then combined to produce the final preciammhrecall numbers for the
entire output. For each mention, tB& algorithm computes a precision and recall score using
equations.1and6.2

My Km
Precision(m;) = i, O K| (6.1)
’Rmi
N K,
Recall(m;) = % (6.2)

whereR,,, is the response chain (i.e. the system output) which insltige mentionn;, and
K,,, is the key chain (manually annotated gold standard) with The overall precision and
recall are computed by averaging them over all mentions.

Considering the same example as in the previous section,

Key : {my, my, mg, my}
Response{m;, my} {ms, m,}

Figure6.2illustrates the relations between mentions and their spording sets.

m, my,

my,

m
Figure 6.2: TheB* Algorithm Illustration

3:
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According to Equatiors.1and6.2,

Precision(my) = %, Recall(m,) = %
Precision(msy) = %, Recall(my) = %
Precision(mg) = %, Recall(ms) = 421
Precision(my) = %, Recall(my) = %

SinceB?’s calculations are based on mentions, singletons are takemccount. How-
ever, a problematic issue arises when system mentions bdedealt with:B*> assumes the
mentions in the key and in the response to be identical. HaYdeas to be extended to deal
with system mentions which are not in the key and key mentim®xtracted by the system,
so calledwinless mentionéStoyanov et al., 2009

6.1.2.1 ExistingB? variants

A few variants of theB? algorithm for dealing with system mentions have been intoed
recently. Gtoyanov et al., 200%uggest two variants of tHg® algorithm to deal with system
mentions B} andB3,,1. For example, a key and a response are provided as below:

Key:{abc
Response{a b d;

B; discards all twinless system mentions (i.e. mention d) agwhfizes recall by setting
recall,,, = 0 for all twinless key mentions (i.e. mention c). TBg precision, recall and
F-score (i.eF = 2 . Lrecision-Recall y for the example are calculated as:

Precision+ Recall

Prgg=3(3+3)=10

Recpg = 3(5 + 3 +0) = 0.444

N — 1.0x0.444 -
Fpy =2 x 00448 = () 615

B3, retains twinless system mentions. It assigfg?,,,| to a twinless system mention as its
precision and similarlyt /| K,,. | to a twinless key mention as its recall. For the same example
above, theB?;, precision, recall and F-score are given by:

Prys =35+ 3 +3) = 0.556

1Our discussion of B} and B3, is based on the analysis of the source code available at
http://www.cs.utah.edu/nlp/reconcile/
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Recps = 5(5+ 3+ 3) = 0.556

_ 0.556x0.556 _-_
Fps, =2 X g35650.441 = 0-596

Tables6.1, 6.2and6.3illustrate the problems witB? andB?,,. The rows labele®ystem
give the original keys and system responses while the rdvedddB;, B, andB? , show the

performance generated I3foyanov et ak variants and the one we introduce in this chapter,
BZ,. (the row labeledCEAF,,, is discussed in Subsectiénl.3.

Setl
System 1 key tabg
response {a b d}
P R F
B} 1.0 0.444 0.615
B3, 0.556 0.556 0.556
B3, 0.556 0.556 0.556
BZ,. 0.667 0.556 0.606
CEAF,, 0.5 0.667 0.572
System 2 key tabg
response {abdé&
P R F
B} 1.0 0.444 0.615
B2, 0.375 0.556 0.448
B, 0.375 0.556 0.448
B2, 0.5 0.556 0.527
CEAF,, 0.4 0.667 0.500

Table 6.1: Problems @}

In Table6.1, there are two system outputs (i®ystem hndSystem 2 Mentionsd ande
are the twinless system mentions erroneously resolved artaiinless key mentiorSystem 1
is supposed to be slightly better with respect to precidienaus&ystem produces one more
spurious resolution (i.e. for menti@). However,Bj computes exactly the same numbers for
both systems. Hence, there is no penalty for erroneousarerafe relations i}, if the
mentions do not appear in the key, e.g. putting mentmias e in Set 1does not count as
precision errors. —B} is too lenient by only evaluating the correctly extractechtiens.
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Setl Singletons
System 1 key fabg
response {ab d
P R F
B, 0.556  0.556 0.556
B3, 0.556  0.556 0.556
B’ 0.667  0.556 0.606
CEAF,, 0.5 0.667 0.572
System 2 key fabg
response {abd {c}
P R F
B3, 0.667  0.556 0.606
B3, 0.667  0.556 0.606
BS,. 0.667  0.556 0.606
CEAF,; 0.5 0.667 0.572

Table 6.2: Problems @2, (1)

Setl Singletons
System 1 key tab}
response {abd}
P R F
B3, 0.556 1.0 0.715
B 0.556 1.0 0.715
B, 0.556 1.0 0.715
CEAF,, 0.667 1.0 0.800
key {a b}
System 2 response {abd {i} {j} {k}
P R F
B, 0.778 1.0 0.875
B3, 0.556 1.0 0.715
B, 0.556 1.0 0.715
CEAF,,, 0.667 1.0 0.800

Table 6.3: Problems d&?,, (2)
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B?,, deals well with the problem illustrated in Tabfel, the figures reported correspond
to intuition. However,B?, can output different results for identical coreferencehgions
when exposed to different mention taggers as shown in Té&b®snd6.3 B, manages to
penalize erroneous resolutions for twinless system mesitivowever, it ignores twinless key
mentions when measuring precision. In Tabl2 System JandSystem 2)enerate the same
output, except that the mention taggeBystem 2also extracts mention Intuitively, the same
numbers are expected for both systems. HoweB&r,gives a higher precision t8ystem 2
which results in a higher F-score.

B?,, retains all twinless system mentions, as can be seen in Ba®l&ystem & mention
tagger tags more mentions (i.e. the mentignsandk), while both System Jand System 2
have identical coreference resolution performance., 8fill outputs quite different results for
precision and thus for F-score. This is due to the crBgjjttakes from unresolved singleton
twinless system mentions (i.e. mentignj, k in System 2 Since the metric is expected
to evaluate the end-to-end coreference system perfornratioer than the mention tagging
quality, it is not satisfying to observe th},,'s numbers actually fluctuate when the system is
exposed to different mention taggers.

Rahman & Ng (200Papply another variant, denoted hereBjg,. They remove only
those twinless system mentions that are singletons befiplying theB* algorithm. So, a
system would not be rewarded by the the spurious mentionshware correctly identified as
singletons during resolution (as has been the caseBjjtls higher precision foSystem 2s
can be seen in Tabg 3).

We assume th&ahman & Ngapply a strategy similar tB?,, after the removing step (this
is not clear inRahman & Ng (2009. While it avoids the problem with singleton twinless
system mentions3?, = still suffers from the problem dealing with twinless key rtiens, as
illustrated in Table5.2

6.1.2.2 Our proposed variant —B?

sYs

We here propose a coreference resolution evaluation mBﬁrJg which deals with system
mentions more adequately (see the rows Iabﬂgg in Tables6.1, 6.2 6.3 6.8 and6.9).
We put all twinless key mentions into the response as sioiggetvhich enabIeBg’yS to pe-
nalize non-resolved coreferent key mentions without peing non-resolved singleton key
mentions, and also avoids the probl&d, andB?,, have as shown in Tab&2 All twinless
system mentions that are deemed not coreferent (hence biaigigtons) are discarded. To
caIcuIatij:’yS precision, all twinless system mentions that are mistakezdolved are put into
the key since they are spurious resolutions (equivalerttaassignment operations Bj;,),
which should be penalized by precision. UnliRg,, B}, does not benefit from unresolved

twinless system mentions (i.e. the twinless singletonesysnentions). For recall, the algo-



78

6. Evaluation Metrics for End-to-end Coreference Resolutin

rithm only goes through the original key sets, similaip, andB?, ,. Details are given in
Algorithm 4.

Algorithm 4 B3

sys

Input: key setskey, response setssponse
Output: precisionP, recall R and F-score”

1
2:
3:
4:

10:

11:
12:
13:
14:
15:

© 0 N o’

Discard all the singleton twinless system mentiongeispon se;
Put all the twinless annotated mentions inteponse;
if calculating precisiothen
Merge all the remaining twinless system mentions witly to form
keyy;
Useresponse to form reESPONSE,,
Throughkey, andresponse,;
CalculateB? precisionP.
end if
if calculating recalthen
Discard all the remaining twinless system mentions-daponse to
from response,;
Usekey to form key,
Throughkey, andresponse,;
CalculateB? recall R
end if
Calculate F-scoré”’

For example, a coreference resolution system has the folipkey and response:

Key :

{abg

Response{a b d} {ij}

To calculate the precision &

the key and response are altered to:

sys?

Key, : {ab g {d} {i} {j}
Responsg {abd; {ij} {c}

So, the precision dB? _ is given by:

SYS
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Prgs =2((+2+3:+3+35+1)=0611

sYs

The modified key and response for recall are:
Key, : {abc
Response {a b} {c}

The resulting recall 0B, is:

Recps, = (3 + 2+ 3) = 0.556

SYs

Thus the F-score number is calculated as:

_ 0.611x0.556 -
Fps =2 X Gairosse — 0-982

Biys indicates more adequately the performance of end-to-emdezence resolution systems.
It is not easily tricked by different mention taggers. Fertexample analysis for the proposed
B? . can be found in Sectio8.1.2.3

SYs

6.1.2.3 B3 Example Output

sYs

Here, we provide additional examples for analyzing the tieinaf Bgys where we system-
atically vary system outputs. Since we propcﬁg?gs for dealing with end-to-end systems,
we consider only examples also containing twinless mestidie systems in Tab&4 and

6.6 generate different twinless key mentions while keepingi¥irless system mentions un-
touched. In Tables.5 and 6.7, the number of twinless system mentions changes through
different responses and the number of twinless key mentsoinsed.

In Table6.4, Bi’ys recall goes up when more key mentions are resolved into thieaset.
And the precision stays the same, because there is no chatfge mumber of the erroneous
resolutions (i.e. the spurious cluster with mentions i gné&gr the examples in Tablés5and
6.7, Bi’ys gives worse precision to the outputs with more spuriousluésas, but the same
recall if the systems resolve key mentions in the same wayceSihe set of key mentions
intersects with the set of twinless system mentions in TétBewe do not have an intuitive
explanation for the decrease in precision from resppitseesponse However, both the

F-score and the recall still show the right tendency.
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Set 1 Set 2 B?,.
key {abcdég P R F
response | {a b} {ij} | 0.857 0.280 0.422
responsg | {ab ¢ {ij} 10.857 0.440 0.581
responsg | {abcd  {ij} | 0.857 0.68 0.784
response| {abcdg {ij} | 0.857 1.0 0.923
Table 6.4: Analysis oB?,, 1
Set 1 Set 2 BZ,.
key {abcdég P R F
response | {ab ¢ {ij} 0.857 0.440 0.581
response | {abc {ijk} 0.75 0.440 0.555
responsg | {ab ¢ {ijkl} 0.667 0.440 0.530
response | {ab ¢ {ijklm} | 0.6 0.440 0.508
Table 6.5: Analysis oB?,, 2
Set 1 B,
key {abcdég P R F
response | {abij} 0.643 0.280 0.390
response | {abcij} 0.6 0.440 0.508
responsg | {abcdij} |0.571 0.68 0.621
response | {abcdei} | 0.551 1.0 0.711
Table 6.6: Analysis oB?,, 3
Set 1 B,
key {abcdé P R F
response | {abcij} 0.6 0.440 0.508
response | {abcijk} 0.5 0.440 0.468
responsg | {abcijkl} 0.429 0.440 0.434
response | {abcijklm} | 0.375 0.440 0.405

Table 6.7: Analysis oB?,, 4
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6.1.3 CEAF

Luo (20095 criticizes theB? algorithm for using entities more than one time, becdsfseom-
putes precision and recall of mentions by comparing esttt@taining that mention. Hence
Luo proposes th€EAF algorithm which aligns entities in key and responSEAF applies a
similarity metric (which could be either based on mentiorentity) for each pair of entities
(i.e. a set of mentions) to measure the goodness of eaclbfmaBgnment. The best mapping
is used for calculatin@EAF precision, recall and F-measure.

Consider the same example as cited for previous metrics,

Key : {my, my, mg, my}
Response{m;, my} {ms, m,}

The best mapping of the key and response sets is illustratédgure 6.3. Since the
response se®; is aligned with the key sei’;, R, is forced to align with an empty set.

Figure 6.3: TheCEAF Alignment Illustration

Luo proposes two entity-based similarity metrics (Equagd®and6.4) for an entity pair
(K;, R;) originating from key,K;, and responsey;.

_2|K; N Ry

KiJR‘_
P 1) = T 1R,

(6.4)
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The CEAF precision and recall are derived from the alignment whichthe best total simi-
larity (denoted a®(¢*)), shown in Equation§.5and6.6.

o 9(9Y)
Precision = —Zl o(Fo ) (6.5)
%)
Recall = —Zi¢(Ki,Ki) (6.6)

If not specified otherwise, we applyo’s ¢3(x, ) in the example illustrations. We denote the
original CEAF algorithm asCEAF,,,.
Detailed calculations are illustrated via a new examplewel

Key:{abc
Response{a b d
The CEAF,,;, ¢3(*,*) are given by:
¢3(K1, Ry) = 2 (K : {abc}; Ry : {abd})
¢3(K1, K1) =3
¢3(Ri, By) =3
So theCEAF,,;, evaluation numbers are:

Pregar,,, = 3 = 0.667

Reccpar,,, = 5 = 0.667

_ 0.667x0.667 __
FCEAFong =2x 0.667+0.667 0.667

6.1.3.1 Problems ofCEAF,,;,

CEAF,,;, was intended to deal with key mentions. Its adaptation ttesysnentions has not
been addressed explicitly. AlthouglEAF,,;, theoretically does not require the same number
of mentions in key and response, it still cannot be direcfiplied to end-to-end systems,
because the entity alignments are based on mention mappings

As can be seen from Tab&8, CEAF,,,, fails to produce intuitive results for system men-
tions. System dutputs one more spurious entity (containing mentiandj) compared with
System lhowever, achieves the safG&AF,,;, precision. Since twinless system mentions do
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not have mappings in key, they contribute nothing to the nmppimilarity. So, resolution
mistakes for system mentions are not calculated, and mergibne precision is easily skewed
by the number of output entitie<CEAF,,;, reports very low precision for system mentions
(see alséstoyanov et al. (2009.

Setl Set2 Singletons
key {abg
system 1 response {a b} {c} {i} {j}
P R F
CEAF,,, 0.4 0.667 0.500
B, 1.0 0.556  0.715
CEAF,, 0.667  0.667 0.667
key {abg
System 2 response {ab} {ij} {c}
P R F
CEAF,,, 0.4 0.667 0.500
B, 0.8 0.556  0.656
CEAF,, 0.6 0.667 0.632

Table 6.8: Problems &€EAF,,;,
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Setl Set 2 Set3 Singletons
key {ab¢
System 1 response {ab} {ij} {k1} {c}
P R F
CEAF.¢, 0.286  0.667 0.400
B2, 0.714  0.556  0.625
CEAF,, 0.571  0.667 0.615
key {ab¢
System 2 response {ab} {ijkl} {c}
P R F
CEAF.¢, 0.286  0.667 0.400
B2, 0.571  0.556  0.563
CEAF,,, 0.429  0.667 0.522

Table 6.9: Problems of CEAE,,

6.1.3.2 ExistingCEAF variants

Rahman & Ng (2009 briefly introduce theilCEAF variant, which is denoted aSEAF.,,
here. They use;(*,*), which results in equaCEAF,,, precision and recall figures when
using true mentions. Sindgahman & N¢s experiments using system mentions produce un-
equal precision and recall figures, we assume that, afteowieig twinless singleton system
mentions, they do not put any twinless mentions into therstee In the example in Tab&9,
CEAF,.,, does not penalize adequately the incorrectly resolvedientionsisting of twinless
system mentions. SBEAF,..,, does not tell the difference betwe8gstem AndSystem 2It

can be concluded from the examples that the same number diom&m key and response is
needed for computing theEAF score.

6.1.3.3 Our proposed variant —CEAF;,

We propose to adjustEAF in the same way as we did f(B;*yS, resulting INCEAF,,;. We
put all twinless key mentions into the response as singetddl singleton twinless system
mentions are discarded. For calculati@§AF,,; precision, all twinless system mentions

which were mistakenly resolved are put into the key. For asimg CEAF,, recall, only the



6.1 Evaluation Metrics for the End-to-end Coreference Resolubn

85

original key sets are considered. In this WalgAF;,; deals adequately with system mentions
(see Algorithmb for details).

Algorithm 5 CEAF,,

Input: key setskey, response setssponse
Output: precisionP, recall R and F-score”

1
2:
3:
4:

10:

11:
12:
13:
14:
15:

© 0 N o’

Discard all the singleton twinless system mentiongeispon se;
Put all the twinless annotated mentions inteponse;
if calculating precisiothen
Merge all the remaining twinless system mentions witly to form
keyy;
Useresponse to form reESPONSeE,,
Form Mapg* betweerkey, andresponse,
CalculateC' EAF precisionP usingos(x, )
end if
if calculating recalthen
Discard all the remaining twinless system mentions-daponse to
form response,;
Usekey to form key,
Form Mapg* betweenkey, andresponse,
CalculateC EAF recall R using s (, )
end if
Calculate F-scoré”’

Taking System 2n Table6.8as an example, key and response are altered for precision:

Key, : {ab ¢ {i} {j}

Responsg {abd {ij} {c}

So theg;(*, ) are as below, only listing the best mappings:

¢3(Ky, Ry) =2 (K : {abc}; Ry : {abd})

b3(Ky, Ry) = 1 (Ko : {i}; Ry : {ij})
$3(0, Rs) = 0 (R3 : {c}) ¢3(R1, R1) = 3

¢3(Ra, Ry) =2
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¢3(Rs, R3) =1
The precision is thus given by:

_ 24140 _
Prepar,. = 5550 = 0.6

The key and response for recall are:
Key, : {abc
Response {a b} {c}

The resultingps (, x) are:

o3(Ky, Ry) = 2(K; : {abc}; Ry : {ab})

¢3(0, Ry) = O(Ry : {c})

¢3(K17K1) =3
¢3(R1, Ry) =2
¢3(Ra, Ry) =1

The recall and F-score are thus calculated as:

ReCCEAFSyS = % = 0.667

— 0.6x0.667 __
Fopar,, =2 % 0.6+0.667 — 0.632
However, one additional complication arises with regardhi similarity metrics used

by CEAF It turns out that onlyps(x, ) is suitable for dealing with system mentions while
¢4(x, ) produces unintuitive results (see Tabl&0).

Setl Singletons
key {abc
System 1
ysiem response {a b} {c}{i} {i}
P R F
Ga(, *) 0.4 0.8 0.533
¢3(x, %) 0.667 0.667 0.667
key {ab¢
System 2
ysiem response {ab} {ij} {c}
P R F
a5, %) 0.489 0.8 0.607
3, %) 0.6 0.667 0.632

Table 6.10: Problems af(x, %)
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¢4(x, x) computes a normalized similarity for each entity pair ugimg summed number
of mentions in the key and the respon€&AF precision then distributes that similarity evenly
over the response set. Spurious system entities, such aa¢hgith mention andj in Table
6.10 are not penalized¢s(*, ) calculates unnormalized similarities. It compares the two
systems in Tablé.10adequately. Hence we use omly(x, x) in CEAF,.

When normalizing the similarities by the number of entitiesm@ntions in the key (for
recall) and the response (for precision), @eAF algorithm considers all entities or mentions
to be equally important. Henc@EAF tends to compute quite low precision for system men-
tions which does not represent the system performance atidguHere, we do not address
this issue.

6.1.4 BLANC

Recently, a new coreference resolution evaluation algoritBLANGC has been introduced
(Recasens & Vila, 2010 This measure implements tik&and indeXRand, 1971 which has
been originally developed to evaluate clustering methddse BLANC algorithm deals cor-
rectly with singleton entities and rewards correct ergitecording to the number of men-
tions. However, a basic assumption behBIJANC s, that the sum of all coreferential and
non-coreferential links is constant for a given set of n@amgi This implies thaBLANC as-
sumes identical mentions in key and response. It is not tlearto adapBLANCto system
mentions. We do not address this issue here.

6.2 Experiments with the Proposed Evaluation Metrics

While Section6.1 used toy examples to motivate our metriB%S and CEAF,,,, we here
report results on two larger experiments using ACE2004 data.

6.2.1 Data and Mention Taggers

We use the ACE2004Mitchell et al., 2004 English training data which we split into three
sets followingBengtson & Roth (2008 Train (268 docs), Dev (76), and Test (107). We use
two in-house mention taggers. The firStM1) implements a heuristic aiming at high recall.
The second§M2 uses thel48decision tree classifieWitten & Frank, 200%. The number

of detected mentions, head coverage, and accuracy ongeélstia are shown in Tab&11
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SM1 SM2

training mentions 31,370 16,081
twin mentions| 13,072 14,179
development mentions 8,045 -
twin mentions| 3,371 —

test mentions 8,387 4,956
twin mentions| 4,242 4,212

head coverage 79.3% 73.3%

accuracy 57.3% 81.2%

Table 6.11: Mention Taggers on ACE2004 Data

6.2.2 The Artificial Setting

For the artificial setting we report results on the developihgata using th&M1tagger. To
illustrate the stability of the evaluation metrics withpest to different mention taggers, we re-
duce the number of twinless system mentions in interval©®§,.while correct (non-twinless)
ones are kept untouched. The coreference resolution systedhis the BART \ersley et al.,
2008 reimplementation oSoon et al. (2001 The results are plotted in Figur6stand6.5.

0.85 T T T

MUC ---x---
BCubedsys &
BCubed0 ---o--
BCubedall —+—
0.8 - BCubedng ---*--- |

F-score for ACEO4 Development Data

06 | S semmmmmm R B

1 0.8 0.6 0.4 0.2 0
Proportion of twinless system mentions used in the experiment

Figure 6.4: Artificial Settind8® Variants
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F-score for ACEO4 Development Data

05F @ .

0.45 —

0.4 1 1 1 1
1 0.8 0.6 0.4 0.2 0

Proportion of twinless system mentions used in the experiment

Figure 6.5: Artificial SettingCEAF Variants

Omitting twinless system mentions from the training datalevkeeping the number of
correct mentions constant should improve the coreferegmaution performance, because a
more precise coreference resolution model is obtained.aAde seen from Figurés4 and
6.5 theMUC-score,B?, . andCEAF,, follow this intuition.

sYs

6.2.3 The Realistic Setting

Experiment 1 For the realistic setting we compa&M1and SM2as preprocessing com-
ponents for the BART \fersley et al., 200Breimplementation oSoon et al. (2001 The
coreference resolution system with tB&2tagger performs better, because a better corefer-
ence model is achieved from system mentions with higherracgu

The MUC, Biys and CEAF,,; metrics have the same tendency when applied to systems
with different mention taggers (Tab&12 6.13and6.14 and the bold numbers are higher
with a p-value of 0.05, by a paired-t test). Since M&C scorer does not evaluate singleton

entities, it produces too low numbers which are not informeséiny more.
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MUC
R Pr F
51.7 53.1 524
49.1 69.9 57.7

Soon (SM1
Soon (SM2

Table 6.12: Realistic SettingUC

B3

sYs BS Bgll Bg&n
R Pr F R Pr F R Pr F R Pr F
Soon (SM1) 65.7 76.8 70.857.0 91.1 70.1|65.1 858 74.065.1 787 71.2
Soon (SM2) 64.1 87.3 73.9|54.7 91.3 684643 87.1 739643 849 73.2
Table 6.13: Realistic Setting® Variants
CEAF,,, CEAF,,;, CEAF.,
R Pr F R Pr F R Pr F
Soon (SM1) 66.4 61.2 63.7 62.0 39.9 48.5 62.1 59.8 60.9
Soon (SM2) 67.4 65.2 66.3| 60.0 56.6 58.2| 60.0 66.2 62.9

Table 6.14: Realistic SettinQEAF Variants

As shown in Table5.13 B?,, reports counter-intuitive results when a system is fed with
system mentions generated by different mention taggér§, cannot be used to evaluate
two different end-to-end coreference resolution systdrasause the mention tagger is likely
to have bigger impact than the coreference resolution sysB fails to generate the right
comparison too, because it is too lenient by ignoring alhtess mentions.

The CEAF,,;, numbers in Tabl€.14illustrate the big influence the system mentions have
on precision (e.g. the very low precision number &mon (SM1) The big improvement for
Soon (SM2)s largely due to the system mentions it uses, rather thaiffeyeht coreference
models.

Both B?,,,, andCEAF,,, show no serious problems in the experimental results. Hewev

as discussed before, they fail to penalize the spuriousenwwith twinless system mentions
adequately.
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By By
R Pr F R Pr F
Soon (SM2) 64.1 87.3 73.954.7 91.3 68.4
Bengtson | 66.1 81.9 73.169.5 74.7 72.0

Table 6.15: Realistic Setting; vs. B?

sYs

Experiment 2 We compare results dBengtson & Rotls (2008 system with ourSoon
(SM2) system. Bengtson & Rotls embedded mention tagger aims at high precision, gen-
erating half of the mentionSM1generates (explicit statistics are not available to us).
Bengtson & Rothreport aB? F-score for system mentions, which is very close to the
one for true mentions. TheiB3-variant does not impute errors of twinless mentions and is
assumed to be quite similar to tB strategy.
We integrate both thB} andB,, variants into their system and show results in Tablb
(we cannot report significance, because we do not have atccessults for single documents
in Bengtson & Rotls system). It can be seen that, when different variants afuation

metrics are applied, the performance of the systems vaghwil

6.3 Summary

In this chapter, we address problems of commonly used ev@tuemetrics for coreference
resolution and suggest two variants 8t andCEAF, caIIengys andCEAF;,. In contrast to

the variants proposed [Stoyanov et al. (20093;38 andCEAF,,; are able to deal with end-
to-end systems which do not use any gold information. Thebmrimproduced b;B;”yS and

CEAF,,, are able to indicate the resolution performance of a systene mdequately, with-
out being tricked easily by twisting preprocessing commbsie We believe that the explicit
description of evaluation metrics, as given in this chgpten precondition for the reliable

comparison of end-to-end coreference resolution systems.
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Chapter 7

Evaluating COPA

In order to analyze the effectiveness@DPA we present three groups of comparison experi-
ments (1, 2, and 3) and two analytical ones (4 and 5) in thipteina

1. Section7.1 comparesCOPAagainst two baseline systems, both of which are pairwise
models with strong features. The comparisons aim to corlveystperiority of the
global partitioning method proposed @OPAover local pairwise models, with all pre-
processors (including the mention detector) being the same

2. Section7.2shows the performance @OPAIn the CoNLL 2011 shared task on coref-
erence resolution, which is one of the most influential sthémsks in the field. Demon-
strating COPAs results in the task enables us to identify the competitags of our
system, by comparing it with the most important state-efdint systems.

3. Section’.3testsCOPAon medical data sets, to illustrate the robustne<s@PAwhen
adapted to new domains.

4. Experiments on the weakly supervised propert¢@PAare shown in Sectioi.5.

5. Experiments on analyzing our proposecthodelare in Sectiorv.6.

Since the experimental settings differ between sectiorsgudsions are provided sepa-
rately in each section, making them self-contained. Featatrentioned in this chapter are
described in Chaptéyin more details, and the data sets are introduced in Ch3pter

7.1 COPAVvs. Baselines

We compareCOPAwith two implementations of pairwise models. The first bameis SOON
— the BART Mersley et al., 200Breimplementation oSoon et al. (2001 with few (i.e. 12)
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but strong features. Our second baselinB&R — Bengtson & Roth (2008, which exploits

a much larger feature set while keeping the machine leamipgoach simpleBengtson &
Roth (2008 show that their system outperforms much more sophisticatachine learning
approaches such &ulotta et al. (200) who reported the best results on true mentions
beforeBengtson & Roth (2008 Bengtson & Roth (2008&s is the strongest pairwise model
on the ACE data sets before the CoNLL 2011 shared task (whickscsigbed in Section
7.2), and its source code is accessible for modifications sosthiat fair comparisons can be
conducted. ThereforBengtson & Roth (200& system is the second reasonable competitor
for evaluatingCOPAIN this Section.

Both of the baseline systems are chosen because they areotingest pairwise models to
compare with to illustrate the effectiveness of our proplagiebal method. We usibe same
pre-processors (including the mention detectionfor all systems to exclude the possible
influences from them. Differences in outputs mainly indésahe differences in the inference
algorithms.

7.1.1 Data

We use the MUCG6 dataChinchor & Sundheim, 20Q3vith the standard training/testing divi-
sions (30/30) and the MUC7 dat&lfinchor, 200} (30/20). Since we do not have access to
the official ACE testing data (only available to ACE participgnwe followBengtson & Roth
(2008 for dividing the ACE 2004 English training seM{tchell et al., 2004 into training,
development and testing partitions (268/76/107). We ranigsplit the 252 ACE 2003 train-
ing documentsNlitchell et al., 2003 using the same proportions into training, development
and testing (151/38/63). The systems were tuned on developdata and run only once on
testing data.

7.1.2 The Mention Tagger

We implement a classification-based mention tagger, whagls each NP chunk (e.g. the
output of the Yamcha Chunker) as being an ACE mention or not) thi¢ necessary post-
processing for embedded mentions. For the ACE 2004 testitay d@& cover75.8% of the
syntactic heads of mentions withra.5% accuracy.

Since the MUC data sets do not limit the mentions to any spesafiinantic classes as the
ACE sets do, our mention tagger directly outputs all the erdbddhoun phrases.

http://I12r.cs.uiuc.edu/ ~ cogcomp/asoftware.php?skey=FLBJCOREF
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7.1.3 Evaluation Metrics

In order to report realistic results, we neither assumertrestions as input nor do we evaluate
only on true mentions. Instead, we use an in-house mentggetgor automatically extract-
ing mentions, and evaluate using variants of the evaluatietrics B® (Bagga & Baldwin,
1998 and CEAF (Luo, 2003, namengyS and CEAF,,, respectively, which are adapted to

the evaluation of end-to-end coreference resolution sysisee Chapte). For the sake of
completeness we also report tki&C score.

7.1.4 Results
7.1.4.1 COPAvs.SOON

In this section, we compare tIB8OONbaseline withCOPAusing theR2 partitioner(param-
etersa* and s optimized on development datayOPAuses the same features as adopted by
SOON which are shown in Tablé.1 Moreover, the two systems use the same set of system
mentions too.

Negative| (1) N_Gender, (2) NNumber, (3) NSemanticClass
Positive | (10) StrMatchNpron, (11) StrMatcHPron, (12) Alias,
(14) NprnPrn, (21) Appositive, (31)sentence distance

Table 7.1:COPAFeatures for Comparing witBOON(details in Chapteb)

Table 7.2 gives the comparison results, it can be seen that even watlsaime features,
COPAconsistently outperformSOONon all data sets using all evaluation metrics. With the
exception of MUC7, ACE 2003 and ACE 2004 data evaluated ®HBAF,,,, all of COPAs
improvements are statistically significant. When evaluatedgMUC anngys, COPAwith
theR2 partitionerboosts recall in all data sets while losing in precision.sTiad us to believe
that incorporating more features would increase precisidhout losing too much recall.
Hence we integrated features fra@engtson & Roth (2008 system to conduct the second

comparison in Sectior.1.4.2
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SOON COPA with theR2 partitioner

R P F R P F o I6;
MUC | MUCG6 59.4 679 63.462.8 66.4 645 0.08 0.03
MUC7 52.3 67.1 58.8 55.2 66.1 60.1 0.05 0.01
ACE 2003| 56.7 75.8 64.9 60.8 75.1 67.2 0.07 0.03
ACE 2004| 50.4 67.4 57.7154.1 67.3 60.0 0.05 0.04
Bg’ys MUC6 53.1 78.9 63.556.4 76.3 64.1 0.08 0.03
MUC7 49.8 80.0 614533 76.1 62.7 0.05 0.01
ACE 2003| 66.9 87.7 759715 83.3 77.0 0.07 0.03
ACE 2004| 64.7 85.7 73.8 67.3 83.4 745 0.07 0.03
CEAF,,, | MUCG6 56.9 53.0 54.962.2 575 59.8 0.08 0.03
MUC7 57.3 54.3 55.758.3 54.2 56.2 0.06 0.01
ACE 2003| 71.0 68.7 69.8 71.1 68.3 69.7 0.07 0.03
ACE 2004| 67.9 65.2 66.5685 655 67.0 0.07 0.03

Table 7.2:SOONvs. COPAR2 (SOONfeatures, system mentions, bold indicates significant
improvement in F-score ov&OO0ONaccording to a paired-t test wigh< 0.05)

In brief, Table7.2conveys that the global hypergraph partitioning methcd©PAmodels
the coreference resolution task more adequately 8w et al. (200{s local model — even
when using the very same features and the same mentions.

7.1.4.2 COPAvs.B&R

Table 7.3 gives our re-produceB&R numbers on the ACE 2004 testing data using the true
(and system) mention settings, in comparison to the nunbeysreported in the paper. Their
lenient variant ofB? (Stoyanov et al., 20Q9s used, which discards all twinless mentitins
Table 7.3 is to show that we make sure that their reported numbers aaessfully regen-
erated. Replacing their preprocessing components withgensrate§4.8 F-score ofBgys,
which is comparable to thel.0 using their own’s.

2The mentions which are not aligned with true mentions aredawinless Stoyanov et al., 2009
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Reported Reproduced
R P F R P F
true mention (lenieni3?) 745 88.3 80.8/73.0 89.6 804
B&R’s system mention (lenier$®) | 72.5 84.9 78.24 72.1 83.2 77.3
B&R'’s system mentionf?, ) - - - |168.3 80.8 74.0
COPAs system mentionl@fys) - - 73.8 | 66.3 85.8 74.8

Table 7.3: Reproduced NumbersB&R

In Table7.4we report theBg’yS performance o5OONandB&R on the ACE 2004 testing
data (which was the data $8&R’s original results reported on) using true mentions andgisi
COPAs automatically identified system mentions. For evaluatie usijZ’yS only, because
(Bengtson & Roth, 200& system does not allow one to easily integr@teAF. B&R con-
siderably outperformSOON(we cannot compute statistical significance, bec&@&R does
not provide single document performance). The differersiegusystem mentions, however,
is not as big as we expectelengtson & Roth (2008reported very good results when using
true mentions. For evaluating on system mentions, howéwey, were using the lenier?.

When replacing this witt3? _ the difference betweeROONandB&R shrinks.

sYs

SOON B&R (Reproduced)
R P F|R P F
67.4 90.3 77.273.0 89.6 804
64.7 85.7 73; 66.3 85.8 74.8

true mention 33 )

sYs

COPAs system mention®? )

sys

Table 7.4: Baselines on the ACE 2004 Testing Data

In this section, we compare tH&&R system (using our preprocessing components and
mention tagger), an@OPA with the R2 partitionerusing B&R features. The features are
given in Table7.5 COPAdoes not use the learned features frB&R, as this would have
implied to embed a pairwise coreference resolution syste@OPA
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Negative| (1) N.Gender, (2) NNumber, (3) NSemanticClass

(4) N_-Mod,

Positive | (10) StrMatchNpron, (11) StrMatcHPron, (12) Alias,

(13) HeadMatch,(14) Nprrn, (21) Appositive,
(31)sentence distance, (32) compatible mention distance
Weak (27) W_VerbAgree, (29) WSynonym

Table 7.5:COPAFeatures for Comparing witB&R (details in Chapteb)

The comparison results are provided in Tahle We report results for ACE 2003 and ACE
2004. The parameters are optimized on the ACE 2004 da@PAwith the R2 partitioner
outperformsB&R on both data set8engtson & Roth (2008developed their system on ACE
2004 data and never exposed it to ACE 2003 data. We suspethé¢hatatively poor result of
B&R on ACE 2003 data is caused by its over-fitting to ACE 2004. ThosvsthatCOPAIs a
highly competitive system as it outperforBengtson & Roth (2008 system which claims
to have the best performance on the ACE 2004 data.

B&R COPAwith theR2 partitioner
R P F R P F
BS,, | ACE2003|56.4 97.3 71.470.3 86.5 77.5
ACE 2004| 66.3 85.8 74.j 68.4 84.4 75.6

Table 7.6:B&R vs. COPAR2 (B&R featuresCOPAs system mentions)

7.1.4.3 Running Time

On a machine with 2 AMD Opteron CPUs and 8 GB RARIQPAfinishes preprocessing,
training and partitioning the ACE 2004 data set in 15 minutdsch is slightly faster than our
duplicatedSOONDbaseline and is much faster than the origiB&R system.

7.1.5 Discussion

Most previous attempts to solve the coreference resoltdiskglobally have been hampered
by employing a local pairwise model in the classificatiopgtee. step 1 mentioned in Chapter
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2) while only the clustering step realizes a global approaElg(Luo et al. (2004, Nicolae
& Nicolae (2006, Klenner (2007, Denis & Baldridge (2009 lesser scCulotta et al. (200)j.
In this section, we conduct experiments comparing our eoeeice resolution systei@OPA
against two strong baselineSdon et al., 2001Bengtson & Roth, 2008 Soon et al. (2001
is the first two-step model with2 very strong featuresBengtson & Roth (2008 system
has been claimed to achieve the best performance on the AGEI2@8 (using true mentions,
Bengtson & Roth (2008did not report any comparison with other systems usingesyst
mentions). COPAimplements a global decision in one step via hypergraphtjpaihg and
considers all the relations in a graph, which enablesautiperform the two strong pairwise
models

It has been observed that the improved performance withmbergions do not necessarily
translate to an improved performance when system mentrenssad Kg, 2009. We follow
Stoyanov et al. (2009nd argue that evaluating the performance of coreferezgaution
systems on true mentions is unrealistic. Hence we integrat®CE mention tagger into our
system, tune the system towards the real task, and evahigtesing system mentions. While
Ng (2008 could not show that superior models achieved superioiiteesn system mentions,
COPAIs able to outperform both baseline systeémstrict comparisons and in an end-to-
end setup

7.2 COPAvs. State-of-the-art Systems

COPAhas participated in the CoNLL shared task on modeling uncésticoreferencedqradhan
et al., 201}, and we submitte@OPASs results to theopensetting of the task. We used only
30% of the training data (randomly selected) and 20 featuresTable7.7).

Negative| (1) N.Gender, (2) NNumber, (3) NSemanticClass,
(4) N_Mod, (5) N.DSPrn,

(6) N_ContraSubjObj

Positive | (10) StrMatchNpron, (11) StrMatchPron, (12) Alias,
(13) HeadMatch, (14) Nprirn, (15) Speakerl12Prn,
(16) DSPrn, (17) ReflexivePrn, (18) PossPrn,

(19) GPEIsA, (20) OrglsA, (31) sentence distance
(32) compatible mention distance

Weak (27) W_-VerbAgree, (28) WSubject, (29) WSynonym

Table 7.7:COPAFeatures for the CoNLL 2011 Shared Task (details in Ch&yter
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7.2.1 Data

The CoNLL shared task aims to predict coreference on the Gotes\data. There are 1,674
training documents, 202 development documents and 20i@desicuments. As is customary
for CoNLL tasks, two tracks are provided, i.e. closed and ofem the closed track, partic-
ipating systems are restricted to using the distributedwees (with the predicted layers of
information provided by the task), in order to allow fair afghmic comparisons. The open
track allows for unrestricted usage of additional exteraaburces. Since several off-the-shelf
pre-processing components are use@PA participates in the open setting track (without
actually using additional resources such as Wikipedia).

7.2.2 The Mention Tagger

For the CoNLL shared task, we incorporate information fromtagtic parse trees into our
mention tagger. Both the semantic classes and the syntaetitsiare generated along with the
system mentions. The official evaluation on the mentioneegghows that the performance
of our mention tagger falls into the average-performanoegi(see Tabl&.9).

\ R =) F1
COPA \67.15 67.64 67.40
max open| 74.31 67.87 70.94

Table 7.8:COPAs Mention Tagger Performance on the CoNLL testing set

7.2.3 Evaluation Metrics

The unweighted average MUC, BCUBEDandCEAF(E)is used as the final score in CoNLL
shared task CEAF(E)is using the entity based similarity metric (see Chagerlt is con-
sidered that each of the three metrics represents a differgrortant dimension@enis &
Baldridge, 2009 the MUC being based on link8CUBEDbased on mentions ai@EAF on
entities. The combination of them should be adequate fduatiag the performances of a
coreference resolution system.

7.2.4 Results

The stopping criteriomx (see Sectiod.2.2.3 is tuned on development data to optimize the
final coreference scores. A value®06 is chosen for the CoNLL testing set.
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COPAs results on the development set and the testing set aragespin Table7.9 and
Table7.10respectively. Th&verall numbers in both tables are the average scorés$Ug,
BCUBEDand CEAF(E) In Table7.11, the best performances in both open and closed are
given, along with the median numbers. Sil@®PAis not using additional resources anyway,
the closed numbers can still be roughly compared with. Thismeéntioned in the overview
paper of the task too (see the second paragraph in page Pgaah@n et al., 2011

Metric R P F1
MUC 52.69 57.94 55.19
BCUBED | 64.26 73.39 68.52
CEAF(M) | 54.44 54.44 54.44
CEAF(E) | 45.73 40.92 43.19
BLANC | 69.78 75.26 72.13
Overall 55.63

Table 7.9:COPAs results on the CoNLL development set

Metric R P F1

MUC 56.73 58.90 57.80
BCUBED | 64.60 71.03 67.66
CEAF(M) | 53.37 53.37 53.37
CEAF(E) | 42.71 40.68 41.67
BLANC | 69.77 73.96 71.62
Overall 55.71

Table 7.10:COPAs results on the CoNLL testing set

F1
COPA 55.71
max open 58.31
med open 54.32
max closed 57.79
med closed 50.98

Table 7.11: Overall Results on the CoNLL testing set
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The best system of CoNLL 2011 shared task is Stanford’s MRé#is Sieve systerhde
et al., 201}, which is based on heuristic rules. The second rankingeeystare not signifi-
cantly different from ours, for instance Sapena’s systehickvuses an iterative probabilistic
model with the constraints between mentions learned froecesobn tree. Both of the systems
are described in Chapt@r Overall, COPAperforms competitively when compared with the
state-of-the-art systems in the field, while using a reddyismall set of features and a small
amount of training data.

7.2.5 Discussions

The CoNLL 2011 shared task enables us to compare our coretereadelCOPAwith the
state-of-the-art systems on a much bigger data set, theNOtes data. We only app30% of
the training documentsto learn the hyperedge weights, and the leat@@PAmodel comes
in asthe second teamn the open track in which five teams participated. SiG&@PAdoes
not use additional resources, it is considered to belonpdasecond small ball park in the
closed track tooRradhan et al., 20)ivhere there arés8 teams participating.

Pradhan et al. (203Xoncludes that most of the participating systems aretsaidtstep
models, fully trained upon the training set using the apghoas described inSpon et al.,
2007). It is suggesting again th&@OPAs global partitioning algorithnoutperforms the
pairwise models under the CoNLL setup even with a small set of features (i2).

7.3 COPAIn the Medical Domain

We participated in all three tasks of the 2011 i2b2/VA Track@hallenges in Natural Lan-
guage Processing for Clinical Data (descriptions can bedanrChapter3). The features
used to report the results are given in Tablg2
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Negative| (1) N.Gender, (2) NNumber, (3) NSemanticClass,

(4) N_-Mod, (6) N.ContraSubjObj, (7) N2b2Type,

(8) N_i2b2Quant,

(9) NLi2b2ConName

Positive | (10) StrMatchNpron, (11) StrMatctPron, (12) Alias,

(13) HeadMatch, (14) Nporn, (17) ReflexivePrn,

(21) Appositive, (23) i2b2PisA, (24) i2b2Abbr,

(25) i2b2CatMatch, (26) i2b2PronPreference, (31)sentdistance,
(32) compatible mention distance

Weak (28) W_Subject,(29) WSynonym, (30) Wi2b2SubStr

Table 7.12:COPAFeatures for the 2011 i2b2/VA Shared Task (details in Ch&jter

7.3.1 Data

For task 1A and task 1B — ODIE corpus without and with concemstraining set of 97
documents is released (including the Mayo and Pittsburgg skets). A total number of 492
documents (including the Partner, Beth and Pittsburgh et are used as training data for
task 1C —i2b2/VA corpus with concepts. In task 1A, our in$®mention tagger is integrated
into the preprocessing components.

For development purposes, we randomly split the training dsto two parts with the
ratio of 4 to 1. From the ODIE corpus, 78 documents are keptr&iming, and 19 are used as
development set. A split of 394/98 is used for the i2b2/VApLe:.

7.3.2 The Mention Tagger

For the 12B2 shared task, the semantic classes of mentiapsgersons and treatments) are
evaluated together with the output coreference sets inltAskour mention tagger makes use
of the entity definitions extracted from the Unified Medicariguage System (UMLS)for
the semantic class identification. Our mention tagger a®€0% of the syntactic heads of
mentions with an accuracy 6£.2% on the ODIE corpus.

3Concepts in the shared task refer to the given true mentions.
“http://www.nlm.nih.gov/research/umls/
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7.3.3 Evaluation Metrics

For coreference resolution there exists no evaluationimttat has been approved unani-
mously. Hence the i2b2/VA/Cincinnati shared task adoptsafoach taken by the CoNLL
2011 shared task to measure the final coreference perfoentre unweighted average of
the MUC, BCUBEDand CEAF(E)evaluation metrics, here being denoted>asrall. How-
ever, in contrast to th€oNLL evaluation, the i2b2/VA/Cincinnati shared task evaluatés a
ditional mentions that do not participate in any corefeeeset, so that it results in too high
performance numbers (S&CUBED numbers in Tabl&.15for an example). In addition,
i2b2/VA/Cincinnati adopts th&LANC evaluation metric but does not include it @verall.
We report numbers according to the i2b2/VA/Cincinnati eaiin scripts for Task 1B and
Task 1C (denoted a®2B2). For task 1A (with automatically detected mentions) we €eom
pute the evaluation metrics according to our own variantB@UBED and CEAF (denoted
asSY9, and CoNLLs variants oBCUBED and CEAF (denoted a££oNLL). Reporting our
results for task 1A using th2B2 metrics is meaningless because the final i2b2/VA/Cincinnati
evaluation script also evaluates the semantic classesrmfons which we do not include into
our output files. The final i2b2/VA/Cincinnati evaluationigtichanged during the final eval-
uation phase. The released script during the developmesepdctually does not evaluate the
semantic classes. All evaluations in this section are cctediacross semantic classes.

7.3.4 Results

COPAoN the Development Data. COPAs results on the development sets for all three tasks
are displayed in Tablé.13 Table7.14 Table7.15and Table7.16 The evaluation metrics (i.e.
MUC, BCUBED, CEAF(E) overall as the unweighted average of the three, and additionally
BLANQ) are calculated with the scripts provided by the shared task

task IA(SYS|R P F1

MUC 88.9 61.8 729
BCUBED 83 90 864
CEAF 78,5 63.6 70.2
Overall 76.5

Table 7.13:COPAs Results on the ODIE Development Set w/o Concepts (Task 149dJs
SY SEvaluation Metrics
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task 1A (CoNLD | R P F1
MUC 88.9 61.8 729
BCUBED 825 944 88
CEAF 78.5 48.2 59.7
Overall 73.6

Table 7.14:COPAs Results on the ODIE Development Set w/o Concepts (Task 14)dJs
CoNLL Evaluation Metrics

task 1B(I2B2) | R P F1
MUC 88.6 79.1 827
BCUBED 88.5 93 90.7
CEAF 715 62.2 66.5
(BLANC 80.5 95.8 86.6)
Overall 80.0

Table 7.15:COPAs Results on the ODIE Development Set with Concepts (Task 1B)dJs
I2B2 Evaluation Metrics

task 1C(12B2) | R P F1
MUC 80.8 84.9 82.8
BCUBED 95.6 96.1 95.8
CEAF 88.8 86.3 87.6
(BLANC 93.3 97.2 95.2)
Overall 88.7

Table 7.16:COPAs Results on the i2b2/VA Development Set with Concepts (T&kUsing
I2B2 Evaluation Metrics
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COPA on the Testing Data. Our final performances on the testing data for Task 1B (i.e.
overall F1 measure of 0.806) and Task 1C (i.e. overall F1 nreasf 0.888) are similar to our
results on the development set (see Tabiband Tabler.16).

Our testing results are slightly worse than the results@fdp performing system for Task
1C, and are not significantly different from the top resultsTask 1B UJzuner et al., 2012
It is indicating that our system is competitive in the meta@main. However, our results on
the testing data of Task 1A are much worse than on the developdata, because the final
evaluation scriptl@B2) also evaluates the semantic classes of mentions too, widahd not
include into our output files. It can be seen from Tabl&7 that, SYSmetrics give similar
numbers on the Task 1A testing data as on the Task 1A develdpia&, which are the best
SYSerformances in the shared task.

task1A(SY$ |R P F1 |Flmax Flmed
Exact and Partial .760 .648 .696| .696 .690

Exact .783 .707 .730| .730 .703

Table 7.17:COPAs Results (in bold) on the ODIE Testing Set w/o Concepts (Tagkdsing
SYSEvaluation Metrics

task1A(12B2 |R P  F1 |Flmax F1med
Exact and Partial .617 .423 .417| .657 .624
Exact 765 .568 .630| .675 634

Table 7.18:COPAs Results (in bold) on the ODIE Testing Set w/o Concepts (TagKdsing
I2B2 Evaluation Metrics

task1B(I2B2 |[R P F1 |Flmax F1med
Overall | 850 .773 .806| .827 .800

Table 7.19:COPAs Results (in bold) on the ODIE Testing Set with Concepts (Td3kUsing
I2B2 Evaluation Metrics
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task1C(12B |[R P F1 |Flmax F1med
Overall \.894 882 .888\ 915 859

Table 7.20:COPAs Results (in bold) on the i2b2/VA Testing Set with Conceptasi 1C)
Using12B2 Evaluation Metrics

Medical Domain Knowledge. As mentioned in Chaptes, the UMLS thesaurus and the
MetaMap API are used to equipOPAwith medical domain knowledge. Featu(@sN_i2b2Type,
(9) N_izb2ConName (23) i2b2PisAand(24) i2b2Abbr are left out in Tabl&.21to illustrate
the influence of domain knowledge.

w/o KnowledgeFeats| w KnowledgeFeats
task 1C(I12B2) | R P F1 R P F1
MUC .807 .821 .814 .808 .849 .828
BCUBED 959 .953 .956 956 .961 .958
CEAF .859 .867 .863 .888 .863 .876
Overall .878 .887

Table 7.21:COPAs Results on the i2b2/VA Development Set with Concepts (Ta3k With
and without Knowledge Features, Usil&B2 Evaluation Metrics. (bold indicates significant
improvement in F1 measure over the column w/o Knowledget-aatording to a paired-t test
with p < 0.005)

By accessing domain knowleddge@QPAmanages to capture the coreference relation which
pure linguistic features cannot capture. For example, thetion {neurolysig is correctly
resolved tofthe procedur¢R due to the contribution of thisArelation. Because the version
of the evaluation metrics used by the shared task is ovemdgby unresolved singletons
(in particularBCUBED), the contribution of the knowledge features appears smtian it
actually is. The same comparison is conducted Bit8metrics in Tabler.22 which shows
a bigger improvement by using knowledge features.
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w/o KnowledgeFeats| w KnowledgeFeats
task 1C(SYS | R P F1 R P F1
MUC .807 .821 .814 .808 .849 .828
BCUBED 750 .849 .797 752 .883 .813
CEAF .786 .731 .757 792 750 .770
Overall 787 .804

Table 7.22:COPAs Results on the i2b2/VA Development Set with Concepts (T&3k With
and without Knowledge Features, UsiBY SEvaluation Metrics. (bold indicates significant
improvement in F1 measure over the column w/o Knowledgef-aatording to a paired-t test
with p < 0.005)

7.3.5 Discussions

By participating in the 12B2 shared task, we are able to convegdmain adaptation ability
of the COPAmodel. With the system mention setting and 8¥Smetrics (see Tabl&.17),
COPAgenerates thbest performance In terms of the true mention settinGOPAIs ranked
into thesecond group(Uzuner et al., 2012

From the experiences in the 12B2 shared task, we confirm tlsa¢#sy to adapt theOPA
model to new domains. Theature engineering is easylue to the overlapping hyperedges
and thelearning phase can be cheaply donwith a small portion of the training documents.

7.4 Error Analysis

7.4.1 COPAErrors for News Articles

Mention Detection Errors. As described in SectioA.3.1, our mention detection is based
on automatically extracted information, such as syntgudising trees and basic NP chunks.
Since nominimum sparinformation is provided in the OntoNotes data (in contrasthte
previous standard corpus, ACE), exact mention-boundamlcten is required. A lot of the
spurious mentions in our system are generated due to theatukas of the ending or starting
punctuations, and the OntoNotes annotation is also noistensin this regard. The mention
detection F-score a€OPAIs 67.40, whereas the best system in the CoNLL shared task has
the F-score 0f0.94.
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Our current mention detector does not extract verb phrashsrefore it misses all the
Eventmentions in the OntoNotes corpus.Besides the fact that tlierd OPAis not resolv-
ing anyevent coreferencesur mention detector performs weakly in extractdaementions
too. As a result, the system outputs several spurious gergfe sets, for instance a set con-
taining theSeptembefrom the mentionl5th SeptemberMoreover, an idiomatic expression
identification needs to be included too, which should helpwoid detecting some spurious
mentions, such agGod} in the phrasgfor God’s saké.

Resolution Errors. A big portion of the recall loss in our system is due to the latorld
knowledge. For exampl€OPAdoes not resolve the mentidthe Europe statioh correctly
into the entity RADIO FREE EUROPE because the system does not know that the entity is a
station.

Some more difficult coreference cases in etoNotesdata might require a reasoning
mechanism. To be able to connect the menfitive victin} with the mention{the groom’s
brother}, the event that the brother is killed needs to be interpriyeithe system.

We also observed from the experiments that the resolutigheofit} mentions are quite
inaccurate. Although our mention detector discards thenalstic pronouns, there are still a
lot of them left that introduce wrong coreference sets. &Sihe{it} mentions do not contain
enough information by themselves, more features expldhag local syntax are necessary.

7.4.2 COPAErrors for Clinical Reports

The data sets adopted in the i2b2/VA shared task contain-steanttured reports describing
clinical relevant information of patients. Therefore sotaga-specific coreference chains can
be easily derived, such as in the case fPdtient name: {XXX}” where the patient name
is explicitly given. Pronouns in these data sets are not dsicaraus as they are in news
articles. The patient is quite centered in the context oheaport, who occupies most of the
third person pronouns. Most singular first person pronoafes to the doctors who write the
reports.

Definite noun phrases are not used frequently in the i2b2/ata dets. Instead, variations
of medical terms and expanded descriptions of entitiesuatly appear, which are difficult
to detect without domain-dependent knowledge resources.

Mention Detection Errors. The mention detection in task 1A has been a challenge fosus, a
the annotated mentions are not always the largest noungspass (which is usually the case
in coreference annotations). Annotated is rather a meauningedical usage. For instance,
phrase{appendix 8.0 x 0.5 cinis a mention while{ 135 pulse raté is not.
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Resolution Errors. COPAhas difficulties deciding whether the difference betweemtiod-
ifiers of the mentior chest pairy and the mentiogback pair} is essential enough to separate
them from each other. It requires knowledge tftzsick and{chest are both part of the body
while being different ones. We attempt to handle this pnobly including the medical con-
cept names the mentions refer to (see feature (9)). Howieetrding even deeper knowledge
would be beneficial.

7.5 Experiments on the Training Data Size

We conducted a series of runs with different amounts of thmitig data, shown in Figure
7.1 The curve derived from the i2b2/VA/Cincinnati corpus usihg12B2 metrics is tagged
with "i2b2 _trsize”, while the curve using ousYSmetrics is tagged with "i2b2rsize,sys”.

Because of the skewed evaluation metrics adopted in the\VRiR2incinnati (see Section
7.3.3, the curve "i2b2trsize” shows only a small drop in performance (i.e. fourceet F-

measure) when only two training documents are used. When phg apr own version of the
evaluation metrics which is not as influenced by singletses (Chapte6), the drop on the
curve "i2b2trsize,sys” is more pronounced. However, even with thiguateon measure we
can see that only little training data is sufficient for oustgyn to reach its top performance.

Training Size Experiment on i2b2 dev and CoNLL dev
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Figure 7.1:COPAs Results with Different Sizes of the Training Data
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In order to check whether the task of coreference resoligieasier in the clinical domain
than in the news domain, we perform the same experiment uemgoNLL-shared task
development data using our own evaluation metrics (“sy&§,curve of which is tagged as
“conll_trsize,sys”. Here we see a slight increase when using marezf training documents,
though even here we reach top performance with only aboutrding documents (out of
more than 1,800 original ones). The overall lower numbendegpartially explained by using
automatically tagged mentions and partially by the diffigwaf the news domain (due to the
more occurrences of pronouns and diverse entity types).edMeryvin both domains our system
needs only very little training data to achieve competipegformance.

7.6 Experiments on thek Model

We proposed two partitioning algorithms in this thesis, R partitionerwhich partitions
the hypergraphs in an iterative manner andftat partitioner which attempts to conquer
the hierarchical limitation of th&2 partitionerby deriving the clusters at one step. TieK
partitionerassumes the number of clusters to be known beforehand, apdoposed: model
in Chapterd addresses this issue via preference modeling.

The effect of singleton entities. It is no trivial matter to predict the number of entities (i.e
clusters) during the end-to-end coreference processihgnwoise is involved in the graphs
to be partitioned. System mentions which do not participatay coreference set present as
singleton entities in the graphs, which dramatically cleatige distributions of the number of
entities.

Figure7.2compares the distributions of the number of entitieslpermentions with and
without singleton entities involved. The figures on the $&de plot the frequencies of different
k’s without singleton entities, while the right ones inclusirgleton entities. The upper two
figures are for MUC 6 data set and the lower two are for ACE 2008w
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Figure 7.2: The Distributions df With and Without Singleton Entities

It can be seen that when using system mentions (i.e. thegetith singleton entities),
the distributions of the number of entities contain a lot@fe compared with the true mention
setting without singletons. Such noisy distributions méie prediction oft difficult to be
approached by regression methods. This motivates our pedppreference-basédmodel
which does not estimate the intrinsic distributionkobut attempts to optimize the application
F-score directly.

The Performance of Our Proposed: Model.  With the set of features described in Section
4.3.4 Table7.23gives the performance for the classification step of our gsegk model.
The true and false classes correspond to the decisions yhefbr the first or the second
partitionings. Since the upper bound kfis decided by simply counting the numbers of
different mention strings, we generate an approximatebyratio for positive and negative
instances. The much bigger size of negative instancesiegjtee low F-score the false class
achieves. Although the classification performance doeslimettly correlate with the final
coreference results, it is empirically observed that inaprg the classification step boosts
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COPAs resolution results correspondingly.

Class\R =) F
false | 0.271 0.428 0.332
true | 0.759 0.611 0.677

Table 7.23:k Model’s Classification Performance on the CoNLL DevelopmeaitiaD

Table 7.24 illustrates the performance of our proposed partitionifgp@thms on the
CoNLL development data and on the ACE 2004 development datéh #& current set of
the £ model features, th@atK partitioner does not show its superiority over tiR2 parti-
tioner. However, it is potentially useful for incorporating gldlsat-level information, such as
the number of entities and the relations between entities.nimbers witestK suggest the

upper bound performance of tifilatkK partitioner. The bestK setting chooses this which
achieve the best coreference performances.

R2 flatk flatK(bestK)
R P F R P F R P F
CoNLL

MUC 59.99 61.82 60.8960.04 60.99 60.5160.51 61.97 61.23
B3, 67.78 73.29 70.4368.23 71.94 70.03 68.6 73.28 70.86
CEAFy,, | 46.72 4493 45.8145.97 45.02 45.4946.86 45.42 46.13
ACEO4
MUC 63.3 709 669 635 70.8 67.0/ 61.8 78.8 69.3
Bg’ys 709 810 7564 71.0 810 757 688 86.2 76.5
CEAFy,, | 71.8 674 69.6) 71.8 675 69.6] 71.9 69.3 70.6

Table 7.24: COPA R2 Vs. flatK’s ( with the alpha*=0.07, bold icattes significant improve-
ment in F-score over the others according to a paired-t telstpw 0.05)
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7.7 Summary

In this chapter, our proposed mod&DPAIs evaluated in various settings. For the model com-
parisons, we do not include the graph partitioning algamiffroposed bWicolae & Nicolae
(2006 as a baseline system, because our adopted baseline Bengison & Roth (2008is
claimed to produce better performance over the previous.df@ the state-of-the-art systems
afterBengtson & Roth (2008 we compare them with the CoNLL 2011 shared task setup.

COPAVvs. Pairwise Models. By comparingCOPA with two pairwise models in a strict
manner (i.e. leaving only the models to be different), ituggested that the performance
gains of our graph-partitioning model come from the usagéubbfcontexts and the direct
optimization of coreference sets. From the comparison raxgats conducted on several
corpora and with different evaluation metrics, we concltitkt our global model triumphs
over the pairwise methods consistently.

COPAVvs. the State-of-the-art. The CoNLL 2011 shared task allows us to compare our
system with the state-of-the-art systems on the OntoNaigsus, which is a big collection
of documents and is well-annotatgflOPAparticipates with th&2 partitioner and performs
competitively with only a limited amount of training docunts applied (coming in as the
second in the open track, and also belongs to the second bidtle closed track). It is
shown thatCOPAworks stable on different types of documents, such as neticdearand
speech transcripts, and incorporating new features islsiagthe learning process is very
light-weighted.

COPAs Domain Adaptation & Weakly Supervised COPA  In order to further test the
robustness o€OPA we also provide the experiments on a data set of clinicartep The
flatK partitioneris used in this setting, and the performance is encouragat@OPAcan be
easily adapted to new domains by incorporating some dosyaeeific knowledge.

In Section7.5, more extensive experiments are conducted to illustratevibakly super-
vised nature of th€OPAmModel. Our hypergraph model is shown to be stable with réspec
to the amount of the training data. For the clinical set, wednas little as five percent of the
training data to achieve a competitive performance. Thises&@OPAa good choice, when
coreference resolution needs to be applied to new domatheem languages.

Our Proposedk model We analyze our proposddmodel in SectiorY.6which is designed
to assist thdlatK partitioner. We show statistics on the number of entities within docuisien
and provide experimental numbers to show the current stditile model.
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Graph models cannot deal well with positional informatisuch as distance between men-
tions or the sequential ordering of mentions in a documer.irdplement distance informa-
tion as weights on hyperedges which results in a decentpeaftce. However, this is limited
to pairwise relations and thus does not exploit the powene@high-degree relations available
in COPA We expect further improvements, once we manage to incladéi@nal information
directly.

An error analysis reveals that there are some cluster-iagehsistencies in th€OPA
output, such as the cluster with three mentidddl [Clinton], [Clinton] and [Hillary Clinton]
where Bill Clinton] and [Hillary Clinton] are incompatible with each other. Enforcing the
consistency would require a global strategy to respect ¢instcaints during the partitioning
phase. We also explore constrained clustering algorithif@&IPA a field which has been very
active recently Basu et al., 2009 Constrained clustering methods should allow us to make
use of negative information from the cluster-level persipeqsee Chaptes for details).
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Chapter 8

The Constrained COPA

The ConstrainedCOPA  The coreference resolution task is to cluster mentionssats so
that all mentions in one set refer to the same enf@PPArepresents documents as hyper-
graphs, with relational features as hyperedges. Upon thergyaphs, the system resorts to
graph partitioning techniques to generate the final coeefer sets. The partitioning should
be significantly improved using supervision in the formpairwise constraints e.g. pairs
of mentions which are known to be in the same coreferenceMeist-Linkconstraints) or in
different onesCannot-Linkconstraints). The constraints suggest top-down adviaapoave
the output partitioning. While it is straightforward to inpeetMust-Linkconstraints as highly
weighted edges, there is no trivial way to include negatelations (i.e. Cannot-Linkcon-
straints) into a graph representation. Directly addingatieg edges into a graph results in a
NP-hard problem for the standard graph partitioning atpors, although it can be addressed
by specific algorithms such as correlation clusteriBgr(sal et al., 2002

In this chapter, we includ€annot-Linkconstraints within the hypergraph partitioning
framework ofCOPAwithout changing the already-adopted spectral clusteringlgorithms.
The constraine€OPAapplies constrained data clustering algorithms to theoveaepresen-
tations in the spectral space, which are generated durenggéctral clustering procedure. In
this way, the consistent partitions are found by both retapgthe constraints and optimizing
the normalized cut. From the supervision point of view, thask of including constraints can
be viewed as the first step towarddetter learning model for COPA However, pairwise
constraints only provide limited pairwise guidance. Im@ments are expected by further
exploring the learning phase GIOPA

Enforcing Transitivity in Coreference Resolution. In this chapter, we aim to show that
including Cannot-Linkconstraints is helpful to the task of coreference resatutia our hy-

pergraph representation, the weight of a hyperedge ireidadw close its incident vertices
are to each other with respect to the corresponding relafidre vertices without edges in
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between can still be clustered into the same coreferenciisdb the transitive closure which
is implicitly done during the clustering process. Therefowithout any means to enforce
the constraint respecting, inconsistent clusters can beede For example, when a mention
[Bill Clinton] is connected with a mentiorClinton] in a graph, and at the same time a simi-
larly weighted edge is connecting the menti@iifiton] and a mentionHlillary Clinton], the
mention Bill Clinton] and the mentionHillary Clinton] therefore end up in the same cluster
despite of the negative relation between them (e.g. diftgperson names indicate different
entities).

There have been attempts to enforce transitivity in coesfeg resolution, for instance,
by imposing constraints on integer linear programming JI(fAnkel & Manning, 2008 or
by disallowing inconsistent assignments during the oation of the graphical models (the
second model itMcCallum & Wellner (200%). However, we work on including constraints
into graph partitioning algorithms, in order to generate@nmmonsistent coreference sets.

We experiment with both artificial clean constraints andeaétically generated ones. The
experiments on clean constraints show significant impr@resby applying our proposed
constrained partitioning algorithm. However, our expennal results with generated con-
straints are mostly negative, due to the low coverage of tbpgsed constraints. Detailed
discussions on the current problem and future work are atsaged.

The previous efforts on including constraints in the camfiee resolution task are intro-
duced in Sectio.1.1, and the existing general purpose constrained clustelguogithms are
in Section8.1.2 We describe our proposed algorithm in Seci8 and empirically analyze
the performance of the constrain€®PAiIn Section8.5.

8.1 Background

8.1.1 Enforcing Transitivity in Coreference Resolution

It has been observed that the two-step coreference systems@nducting a classification
step and a clustering step) tend to generate inconsistegfiecence sets. Since the negative
predictions from the classification step are ignored, theditivity of the coreference relation
is not enforced explicitly in the clustering step.

Constrained Clustering Methods. Cardie & Wagstaff (199Pinclude constraints into their
distance metric to modify the edge weights between mentiand perform graph cluster-
ing algorithms upon the modified graphs afterward. Built u@andie & Wagstafs system,
Wagstaff (2002 attempts to apply constrained clustering algorithmsatliyeto the task (see
her Chapter 5). To illustrate the contributions of the camsts, Wagstaffonly compares
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against the system that does not use constraint informati@ti. For instance, thgender
agreemenindicator is excluded from the feature set of the baselirstesy. We argue that
constraints can be straightforwardly incorporated int® skandard feature sets, and simply
excluding constraint information leads to a very low perfance of the baseline system (see
column 1 of Table 5.5 iWagstaff (2002).

Constrained ILP Models. Klenner (2007 andFinkel & Manning (2008 impose transitiv-
ity constraints on the integer linear programming optimaa (ILP) to cluster the pairwise
classification decisions into sets. With constrai@dPA we enforce transitivity with one-
step clustering algorithms. We also do not suffer from espencomputational complexity as
ILP models do.

Constrained Probabilistic Models. McCallum & Wellner (200% optimize the conditional
probability of the global entity assignment, by casting fneposed graphical model as an
equivalent graph partitioning problem — the correlationstéring problemBansal et al.,
2002. Correlation clustering operates on pairwise relatiortsvben data points, to derive
partitions which respect the relations as much as poss8itee negative edges are allowed
in such graphs, the cluster-level consistency is taken afadirectly. McCallum & Wellner
use fully connected graphs with all mentions as vertices.b@eve that the coreference re-
lation can be represented in much sparser graphs as the doged byCOPA(see Chapter
4). Moreover, only a small amount of negative relations betwementions need to be consid-
ered as constraints, rather than intensively making useamiyrtrivial ones (i.e. the negative
relations between the mentions which are not likely to bsteled into the same set at all).
In this thesis, we propose to guide the graph clusteringrithgp to generate more consistent
partitions with the selecte@annot-Linkconstraints.

Sapena et al. (20)@se a constraint-based approach (i.e. relaxation lag)efor coref-
erence resolution with the learned constraints applieds $hown that the proposed model
outperforms an ILP algorithm which enforces transitivignstraints. The work is conceptu-
ally similar to the constraine@OPA except that we focus on the standard graph-clustering
setup.

Entity-mention Models. Entity-mention modelsl{uo et al., 2004Yang et al., 2008Culotta

et al., 2007 take care of the entity-level consistency by the incremlentanner of processing.
Entity-level information gets accumulated as the entitjesv, the within-entity consistency
is therefore maintained. Despite of the improved expres&ss, entity-mention models have
not yield particularly encouraging results y&ig, 2010, possibly due to the seriousness of
the error propagation.
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8.1.2 Literature on Constrained Clustering

Due to the unsupervised nature of clustering algorithms offitained clusters may not nec-
essarily be consistent with the domain knowledge of inteffésr instance, in the image seg-
mentation task, while expecting to cluster portraits ospes by gender, it is still possible to
generate clusters with and without glasses in the portr@issistrained clustering allows one
to specify prior (domain) information about clusters todguthe clustering process in order to
avoid creating spurious partitions.

Constrained Data Clustering. Most of the previous efforts of including constraints into
clustering algorithms have been on the data which can besepted as vectorgvVagstaff &
Cardie (2000 propose to modify the standard k-means algoritMag¢Queen, 19670 make
sure that no constraint is violated while assigning datatsdo clustersBasu et al. (2002
use annotated data points to form k-means’s initial clgsérd to constrain the following
assignments. Instead of modifying the assignment methbdsreans, one can also learn
distance metrics from pairwise constrainBa¢-Hillel et al., 2003 Klein et al., 2002 Xing

et al., 2003. Basu et al. (2004propose a probabilistic model for semi-supervised chusge
based on Hidden Markov Random Fields (HMRFs). Recently, tieia has greatly expanded
to include algorithms that leverage additional domain kieolge for the purpose of clustering
(Basu et al., 2000

Constrained Graph Clustering. For tasks where relations are of greater interest than data
points themselves (e.g. the coreference resolution tagitwviticuses on identifying the coref-
erence relation) or where data vectors are not directlylaai, graph clustering fits more
appropriately than data clustering techniques. Therelisalittle work on constrained graph
clustering. Kamvar et al. (2008modify the similarities between the constrained data gem
and then apply classifiers in the spectral space, so thatrapelustering is transformed to
spectral classification. Our proposed constrai@@PAresembles the spirit of making use of
the data representation in the spectral space, but we dgpbt elassification stepsKulis

et al. (2009 construct appropriate kernels including constraint fieasa with which kernel
k-means Dhillon et al., 2004 can be applied to iteratively find the optimization of the-co
responding objective functions. There are also attemptsnabine pairwise constraints with
the normalized cut directly, but only witklust-Linkconstraints Yu & Shi, 2009 or only for
two-class problemsGoleman et al., 2008

In the constraine@OPA we combine a simple constrained data clustering algorfivagstaff
& Cardie, 2000 with our hypergraph spectral clustering algorithms (seapidr4) via the
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spectral embedding. With our constrained clustering &lgor, we avoid modifying the con-
structed graphs or changing the objective functions of tiggral partitioning algorithms.

8.2 Inconsistency Analysis on Output Coreference Sets

Before introducing our proposal of the constraif@®PA we firstly provide examples of
inconsistent coreference sets generated by the K&E3RA (Chapterd). Since we only focus
on the pairwis€Cannot-Linkconstraints in this chapter, the inconsistent sets arerdeted to
be the ones containing at least one pair of mentions whichotlaarefer. By illustrating the
spurious coreference set examples, we motivate the progioee constrainedCOPA

The analysis in this section is conducted on the OntoNotesldement set (see Section
3.3), andCOPAs CoNLL evaluation numbers are given in Tal3ld.

R2 partitioner| R P F1
MUC 60.87 61.92 61.39
BCUBED 68.76 72.57 70.61
CEAF(E) 46.18 45.15 45.66
overall 59.22

Table 8.1: COPA R2 partitiones results on the OntoNotes development set ushodNLL
metrics

Frequency of Inconsistent Clusters. We collect the output coreference sets where there
are at least one pair of mentions belonging to differentiesti The inconsistencies are only
measured between the mentions which are not twihlesghat their ground truth annotations
are available and the effect of the mention detection isaiari into account. From Tab82,

it can be seen that arourigd6 of the output clusters from the basic versionG®PAcontain
inconsistent mentions, occurring in half of the documents.

1The mentions which are not aligned with true mentions aredaWwinless Stoyanov et al., 2009
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Overall Output Cluster# Inconsistent Clusters
3097 (in 202 document#)484 (in 102 documents)

Table 8.2: Inconsistent Output Clusters fr&@®PA R2 partitioneron the OntoNotes Devel-
opment Set

Although there is only a small portion of the output clus@yataining inconsistencies, we
believe that the problem will become more severe when mdatioral features are included
and when the graph structure becomes richer. Since theveegaations are taken as negative
features INCOPA(see Chapteb), the violated ones in the output result from the partitngni
phase only. Our objective here is to guide the partitionilggrthm with cluster-level infor-
mation. It is worth noting that although tl@annot-Linkconstraints adopted in this chapter
are pairwise, the consistencies are enforced on the clestdr

Inconsistent Cluster Examples. With the inconsistent cluster examples, we aim to illustrat
how they are generated via the transitivity closure autmaly done during the partitioning
procedure. In the examples, the subscripts of the squaokdiga(i.e. []) indicate the true
entity assignments and the ones of the curly brackets{(})egive the system output.

In Example (1), the mentiofi[He]} is wrongly cut away from the entityusTICE AN-
TONIN SCALIA, and is grouped with the AURANCE TRIBE entity whose name indicates
female gender. This mistake is generated via the conneogitwmeen the mentiorf§He] } and
{[Tribe]}. It shows that solely activating a negative feature betwidele] } and{[Laurance
Tribe, Gore’s attorne)} does not prevent this inconsistent cluster in the output. efelb
partitioning should be expected for this example when thestel-levelgender agreement
constraint is respected.

Example (1):
{[Laurance Tribe, Gore’s attorngy};, said the state court did nothing illegal.

{[Justice Antonin Scalla}, also pressed[Tribe]; }.

{[He],}: said the state court relied on the Florida Constitution tdtdisadecision.

In Example (2), both entitieaNY ECONOMIC THEORY andAN ECONOMIC THEORY are
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only active locally (i.e. in their own sentences). Howewubgy are mistakenly linked to-
gether via the definite expressidfthe theory}. Since it is most likely that the indefinite
noun phrases introduce new entities, the connections ketf{fan economic theoty and
its preceding mentions should be forbidden. This can bédyeiaserpreted as £annot-Link
constraint.

Example (2):

For example your uncle, usinffany economic theoty};, the probability that
{[it]; }1 will be accurate is virtually 0.

So whenever you discug$an economic theoty},; with someone, the response
would be: My uncle isn't like that, s@[the theorY, }; is baloney.

In Example (3), the mentiofi[him] } is clustered together with the menti¢fHe]}. This
violates Principle B of the binding theory (see Sectibi). When the principle is respected,
the resolution of the mentiof{He] } can be indicated by the observation that the entiysR
SIAN FOREIGN MINISTER IGOR IVANOV is more salient (i.e. in the subject position of the
sentence) than the entitydSTUNICA in this context.

Example (3):

{[Russian Foreign Minister Igor lvandy}; congratulated[Kostunicg,}» on
{[his], }+ election victory .

{[He], }1 also gave{[him],}; a letter from Russian President Vladimir Putin.

The examples introduced in this section convey that simpygnting links between non-
coreferent mentions as suggested by the negative featarestdensure the within-cluster
consistencies in the output. The examples also indicatéttbgartitioning algorithms should
be improved with the guidance of linguistic knowledge. listthapter, we focus on guidance
information in the form ofCannot-Linkconstraints, and address the problem by proposing
constrained hypergraph partitioning algorithm .
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8.3 Our Proposal — the ConstrainedCOPA

In this section, we propose to combine constrained dat&eclng algorithms with our hyper-
graph spectral clustering algorithms via the spectral eldiogy. The proposed method avoids
changing the objective function of the adopted hypergréystering algorithms. It also avoids
propagating the constraints on the originally construtigoergraphs. Our proposal makes it
feasible to apply different constrained data clusterirgpathms within the spectral graph
clustering framework.

A simple constrained data clustering algoritf®®P-KMeansis introduced in Section
8.3.1 and our variant of th€ OP-KMeanss in Section8.3.2 Section8.3.3describes our
proposal of combining the modifiedOP-KMeansvith COPAVvia the spectral embedding, in
order to tackle the constrained hypergraph clusteringlprnob

8.3.1 Constrained Data Clustering —COP-KMeans

The standard k-means algorithrivlgcQueen, 1967iteratively assigns data points to their
closest clusters, and converges when there are no moreaehanthe cluster assignments.
The k-means algorithm solely depends on the intrinsic ibigfions of the given data sets.
Wagstaff & Cardie (2000provide a modified version of the k-means algorithm whictkesa
use of the background knowledge being expressed as paicorsdraints. Their proposed
variant COP-KMeangespects the pairwise constraints during the cluster misgjgorocess.
The algorithm disallows the assignments where constrairgsviolated, therefore resulting
in consistent partitions. There are two types of pairwisest@ints which are prevalently
adopted and are the input@OP-KMeans

e A Must-Link constraint suggests that the given pair of data points shmelbng to the
same cluster.

e A Cannot-Link constraint suggests that the given pair of data points shwatl belong
to the same cluster.

Algorithm 6 gives the details o€OP-KMeans Line 4 and Line 5 of the algorithm lo-
cate the modification€OP-KMeansnakes upon the standard k-means algorithm. Instead
of assigning a data point to the closest clusgP-KMeanshecks on the constraint viola-
tion first. Only the clusters which do not violate any givemsipaints are considered in the
assignment.
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Algorithm 6 COP-KMeansAlgorithm (single iteration)(agstaff & Cardie,
2000
1: input: data setD, must-link constraints”on_ C D x D, cannot-link
constraintsCon. C D x D
2: LetC; ...C, be the initial cluster centers
3: for each point/; in D do

4. Assign d; to the closest cluster C; such that
violateConstraints(d;, C;, Con_, Con) is false

5.  If no such cluster exists, faitéturn ()

6: end for

7. for each cluste€’; do

8:  Update the center of’; by averaging all of the pointg; that are as-
signed toC;

9: end for

10: return partitionedC . .. Cy

The ViolateConstraints function in Algorithm7 suggests that the pairwise constraints are
brutally enforced irCOP-KMeansNo partitioning output is generated when there is no single
assignment respecting all given constraints (i.e. Line 12)

Algorithm 7 ViolateConstraints Function Algorithm Wagstaff & Cardie,
2000
1: input: data pointd, clusterC, must-link constraintsCon_ C D x D,
cannot-link constraint§'on C D x D
for each(d,d-) € Con_ do
if d— ¢ Con_ then
return true
end if
end for
for each(d,d.) € Con. do
if dx € Con then
return true
end if
. end for
. return false

[
N B O
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8.3.2 Our Variant of COP-KMeans

SinceCOPAIis an end-to-end system which works in a noisy environmenmfgreing con-
straints in a hard way aSOP-KMeansdoes can be problematic. We propose a variant of
COP-KMeango minimize the number of the violated constraints. The pssolVD-KMeans

is given in Algorithm8, with the modification in line 4 replacing th&iolateConstraints
function with the ViolationDegree function (see Algorithn®). ViolationDegree counts the
number of the violate@annot-Linkconstraints when assigning a data point to a cluster, and
VD-KMeanssimply decides on the cluster with the smallest violatiogrde or on the closest
cluster when the violation degrees are the same.

Algorithm 8 VD-KMeansAlgorithm (single iteration)
1: input: data setD, cannot-link constraint§'on. C D x D

2: LetC; ...C, be the initial cluster centers

3: for each point/; in D do

4. Assign d; to the  cluster C; with the smallest
ViolationDegree(d;, C;j, Con)

5. For clusters are with the same violation degree, choosddlsest one

6: end for

7. for each cluste€’; do

8:  Update the center of’; by averaging all of the pointg; that are as-
signed toC;

9: end for

10: return partitionedC . .. Cy

Algorithm 9 ViolationDegree Function Algorithm

1: input: data pointd, clusterC', cannot-link constraint§'on € D x D
2: for each(d,d.) € Con. do

3 ifd. e Cthen

4: Increase the violation degreedCnt + +

5. endif

6: end for

7. return vdCnt

We only consideCannot-Linkconstraints in constraingdOPA asMust-Linkconstraints
can be straightforwardly incorporated as highly weightggddnedges in our hypergraph mod-
els.
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8.3.3 Constrained Hypergraph Spectral Clustering

The hypergraph-based spectral clustering has been ieddn Sectiordt.2.2 In short, spec-
tral clustering reduces the data dimensionality by usimgeigenvectors of the graph Lapla-
cians. The resulting vector representation of the datasseispectral embeddingFor the
sake of the expressive convenience, we start with rewisome of the basic notations.

Hypergraph Normalized Cut. When the normalized cuiNcut (Shi & Malik, 2000) is
adapted to hypergraphZHou et al., 200Y, it preserves the intuition that a good partitioning
cuts as few hyperedges as possible while leaving the negudartitions as dense as possible.
The hypergrapiNcutfor a k-partitioning P, is defined by

voldV;
Neut(P) = Y it (8.1)

1<i<k

P, ={Vi[lV = ViUV U---UV,}, whereV;NV; =, forall1 < i,j < kandi # j.
The volumevolV; gives the within-cluster density of the the vertex BetThe volume of the
hyperedge bounda@V; measures the hyperedges to be cut in order to défiees a cluster.
The objective of our partitioning algorithm is thereforemdnimize Equatior8.1

The Spectral Embedding. The Ncutvalue can be minimized using a relaxation approach,
which approximates discrete cluster memberships withicoots real numbers. The approx-
imation can be approached by solving the eigen problem dfiypergraph Laplacian

L=1-D, *HWD,"HTD, = (8.2)

Let (\;,v;),7 = 1,...,n, be the eigenvalues and the associated eigenvectdrswifiere
0 <A <--- <\, and|v] = 1. The continuous solution to tiécutminimization is then
provided by a new low-dimensional data representalion

X = (v, ,vp) (8.3)

where X is called thek-th orderspectral embeddingf the graph. It has been shown that
k generally equals to the number of clusters (Ng et al. 2001)stahdard data clustering
algorithm, such as the k-means, can be applied to clustegryEh nodes in the new space
afterward.

Applying Constrained Data Clustering Algorithms to the Spectral Embedding. Fig-

ure 8.1 illustrates our proposal of the constrained spectral g@pstering algorithm. The
Cannot-Linkconstraints are extracted from the graph to be partitionad,are imposed on
the generated spectral embedding. Since the spectral eéimedansforms the original graph
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to a vector representation of vertices, constrained datstaring algorithms can be directly
applied.

vertex; [T 1] Spectrdl

Embedding : Cannot-Link
vertex, ::::] : Constraints
vertex, [T T ] 5 l

Constrained

/ Data Clustering
subgraph, subgraph,) ... (‘subgraph

Figure 8.1: lllustration of Constrained Spectral Graph @&risty

8.3.4 ConstrainedCOPAPartitioners

COPAiImplements a hierarchical multi-class partitiorieg, partitioner which recursively bi-
partitions the hypergraph until a stopping criterion (i€) is reached (see Secti@n3.3.).

We propose to apply constraints to each recursion oRth@artitioner The resultingConR2
partitioner is outlined in Algorithm10. ConR2 patrtitionerecursively bi-partitions when the
Ncutvalue is smaller than* or when the violated constraints are fewer compared with the
input hypergraph (i.e. Line 8). The current bi-partitiomist accepted when the constraint
violations do not become fewer after partitioning (i.e. &.ihl). VD-KMeansis used as the
data clustering algorithm, taking the spectral embeddmbCGannot-Linkconstraints as input.
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Algorithm 10 ConR2 partitioner
1: input: target hypergraplt/G, Cannot-LinkconstraintsCN, o*
Counts the violated constrainigoCnt for the inputHG
Solve for the2-nd spectral embedding,F
Generate two sul/G’s usingVD-kmeang&SE, CN)
Counts the violated constraini§oCnt;, VioCnt, for two subHG'’s
if min(Ncut;) < o OR both VioCnt,;’s are smaller tharVioCnt then
for each subG do
Bi-partition the subH G with R2 partitioner
end for
else
if any VioCnt, is bigger than or equal tdi0Cnt then
Output the inputHG
end if
. else
Output the current sueG
- end if
. output: partitionedH G

N T ~ T e o e =
N g A W N RO

The R2 partitioneroptimizes the bi-partition at each recursion step. Howeives not
guaranteed that the final output clusters are globally apéchdue to the hierarchical nature.
To overcome the problem, we experiment with fla¢K partitioner (see Algorithm2) as well
2, However, theConflatK partitioneris not covered in this chapter.

8.4 Cannot-Link Constraints for Coreference Resolution

The Difference Between Negative Features and Cannot-Link Cot®ints. In this sec-
tion, we describe th€annot-Linkconstraints proposed for coreference resolution. Géwenot-
Link constraints are negative relations between a pair of mestiand are at the same time
taken as negative features too. Negative featur€IRAprevent hyperedges to be built dur-
ing the graph construction phase, while tbannot-Linkconstraints guide the partitioners in

2With the constraine€onflatK partitioner & clusters are output simultaneously. TWB-kmeanslgorithm
is again applied to thé-th spectral embedding of the input hypergraph, and diemitputs the final clusters.
The model used to predict theis introduced in Sectio4.3.4
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the inference procedure. Duplicating the constraints gatne features enables us to analyze
the contributions which are solely from the constrainedigtng algorithm.

(1) CN_Gender

— Two mentions do not agree in gender.
— For instance, the mentionBiillary Clinton] and [he] should not be clustered into
one set due to the incompatible gender.

(2) CN_ContraMod

— Two mentions have the same syntactic heads, and the anagghanmodifier which
does not occur in the antecedent or which contradicts theflradof the an-
tecedent.

— For instance, £&annot-Linkconstraint is built betweerl[000 coal rail car$ and
[the 1,450 coal rail carg as the two mentions contain different quantitative mod-
ifiers.

(3) CN_ContraGPE

— Two mentions realizing different GPEs should not be in orte se

— Forinstance, a negative relation exists between the nrenfiyrigl and [Lebanof
because they are different countries. A gazetteer congisti lists of country
names and city names is looked up for computing this comstrai

(4) CN_ContraSubjObj
— Two mentions are in the subject and object positions of acopular verb, and

the anaphor is not a possessive pronoun.

— Considering the text John talks to [him]”, where the mentionJohn] should not
be coreferent with the pronouhifn]. The dependency tree is used to identify the
verbs on which the mentions depend. This constraint is éerikom Principle B
of the Binding theory (Sectio.1.2.

(5) CN_Span

— A mention spanning another one cannot be linked to it, exicegRoleAppositive
cases.

— Considering the embedding mentionkif] brother, the two should not be clus-
tered together.
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(6) CN_ContraPerson

— Two person mentions with different names cannot be linked.

— For instance, the mentioMr. Wright] should not be coreferent with the mention
[Mr. Valenti] due to the different family names of the two person entities

The Cleanness of the Proposed Constraints. Table8.3 analyzes the cleanness of the pro-
posed constraints. The statistics corresponds to thedraxgs of the constraints holding on
the OntoNotes training data. The negative signs in the tadlieate that theCannot-Link
constraints are negative relations between mentions.

Constraints Statistics

(1) CN_Gender -0.993
(2) CN_ContraMod -0.980
(3) CN_ContraGPE -0.992
(4) CN_ContraSubjObj -0.997
(5) CN_Span -0.996

(6) CN_ContraPerson -0.961

Table 8.3: The Cleanness of the Cannot-Link Constraints on theNdtes Training Set

8.5 Experiments on the ConstrainedCOPA

Experimental Settings. In this section, we experiment with the proposed consttiG@PA
The numbers are reported on the OntoNotes developmensgay,the unweighted average of
MUC, BCUBEDandCEAF(E)(i.e. the final score in CoNLL 2011 shared task). The setting
of COPAusing theR2 patrtitioneris denoted af2, upon which the settin2+N_Featsin-
cludes theCannot-Linkconstraints as negative features. The baseline syBtstiR2encodes
the standard k-means algorithm and keeps bi-partitionirig tinere is no violated constraint
any more.ConR2corresponds to the constrain€E@PAproposed in this chapter.

In Section8.5.1, we first experiment with the clean constraints which aresgatied from
the ground truth annotations. Such upperbound settingvallss to evaluate the proposed
method while excluding the effect of the constraint genengphase. The automatically gen-
erated constraints are tested in Sec8d52 where the constraingdOPAperforms in a fully
automatic manner.
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8.5.1 Experiments with Artificial Clean Constraints

The Generation of Clean Constraints. The clean constraints are only generated for the
mentions which can align with the true mentions. In this waisa brought by the twinless
mentions is still kept, otherwise building clean constiior all mentions will directly remove
the spurious ones. There are a total ¢f, 858 clean constraints generated for the OntoNotes
development set.

ConR2vs. Baselines. Table8.4 gives the performance of our proposed constra@edPA
with clean constraints. The difference betw@&astR2andConR2is thatPostR2only uses the
constraints as the stopping criterion for the recursivéiggaring, but ConR2actually guides
the partitioning inference with the constraints.

R2 R2+N_Feats PostR2 ConR2
R P F R P F R P F R P F

MUC 60.85 61.93 61.3961.81 64.06 62.92 59.6 64.67 62.03 62.66 67.6 65.03
BCUBED | 68.68 72.59 70.58 69.6 76.28 72.78 67.62 7858 72.69 69.8 80.0 74.55

CEAF(E) | 46.19 45.13 45.66 47.85 45.72 46.76 49.47 44.8 47.02 50.03 45.49 47.65

overall 59.21 60.82 60.58 62.41

Table 8.4.ConR2vs. Baselines with Clean Constraints on the OntoNotes Devedop®et
(bold indicates significant improvement in F-score oRestR2according to a paired-t test
with p < 0.05)

The improvemenConR2achieves compared with the settiR@+N Featsdemonstrates
the contribution which is solely from the proposed algorthThe precision of all metrics
(except forCEAF(E) are improved by using the constrained clustering algoritihis is not
surprising given the fact th&annot-Linkconstraints are applied to prevent spurious linkages.
Gains on recall are observed too. Since constraints paatiiin the partitioning decisions
when usingConR2 the recall improvements suggest that the corrections oresoentions
(which are involved in the constraints) also improve theh@sons of others.

The baseline systePostRyreedily partitions the clusters which violate constrajimtith-
out incorporating constraint information into the padiiting decisions. Th&ostR2results
also produce higher precision (except for @EAF(E)metric), but suffer from a bigger loss
in recall. This confirms again that the constraints need terderced on the cluster level
during the partitioning inference.
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ConR2with Randomly Sampled Constraints. Figure8.2 plots the performance curve of
ConRZ2given the increasing number 6annot-Linkconstraints. The used constraints here are
randomly sampled from the full set of clean constraints &®duced previously. It is worth
noting that all the original clean constraints are includschegative features throughout the
experiments, and only the ones usedCasinot-Linkconstraints differ in size. Therefore the
leftmost points in all three plots correspond to the perfomoe of theR2+N_Featsmodel.

ConR2 with Clean Constraints using MUC Score ConR2 with Clean Constraints using BCUBED Score
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Figure 8.2:ConR2Performance with Increasing Size of Clean Constraints

Figure8.2 shows thatConR2only outperformsR2+N_Featswhen more tha®0% of the
constraints (arountll 5, 880) are used. Smaller sets of constraints generate worsapenfice
compared with thdR2+N_Featssystem which does not use constraints at all. The possible
explanation is that more constraints help to generate batholusters, while a few can easily
skew theConR2patrtitioner. This demonstrates a drawback of the propokgmtithm, that
enforcing the constraints is a higher priority than degvengood partitioning.
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We conduct another group of experiments by adding noiseti@nts, as shown in Figure
8.3 Noise constraints are randomly sampled, and are added thpdinll set of the clean
constraints. The straight lines in all plots indicate thégrenance of the baseliriR2+N Feats
ConR2s performance drops below the baseline soon after ab@it noise constraints are
included, and keeps decreasing quickly.

ConR2 with Noise Constraints using MUC Score ConR2 with Noise Constraints using BCUBED Score
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Figure 8.3:ConR2Performance with the Increasing Size of Noise Constraints

In this section, we experiment with the artifici@annot-Linkconstraints using the pro-
posed constraineBOPA We analyze the influence of the size of applied constraimdstie
size of the involved noise constraints (i.e. incorrect t@msts). Significant improvement is
achieved when a big enough set of constraints is providedndmesh the set consists of less
than10% spurious ones. The experiments on the randomly sampled ctaestraints suggest
a reasonableecall range for designing the real constraints, and the expetsranthe noise
constraints hint on a prop@recision range. In the following section, experiments with the
automatically generated constraints (i.e. the real caims) are provided.
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8.5.2 Experiments with Automatically Generated Constraints

ConR2vs. R2+N_Feats Table8.5 shows the results adTonR2using theCannot-Linkcon-
straints proposed in Secti@4. Since the constraints are already included as negatiuerésa

in the basicCOPA the R2 performance in Tabl8.4is the same as the baseline performance
in Table8.5(i.e. R2+N Featg.

R2+N_Feats ConR2
R P F R P F
MUC 60.85 61.93 61.3959.58 61.77 60.66
BCUBED| 68.68 72.59 70.5867.57 73.22 70.28
CEAF(E) | 46.19 45.13 45.66 46.6 44.47 4551
overall 59.21 58.82

Table 8.5: ConR2vs. R2+N Feats with Automatically Generated Constraints on the
OntoNotes Development Set

From the statistics provided in Tab83, it can be seen that more thaa% of our auto-
matically generated constraints are correct. This is destnaied in the previous section to be
a good proportion in order to improve upon tR8+N_Feats However,ConR2yields worse
results compared with the baseline system. It can be dgrégplained by the small size of
the applied constraints, which 18, 555 for the entire development set. The contributions of
the proposed constraints are illustrated in Tab& ordered in accordance with the cleanness
of the constraints. Increases in precisions are observedofth MUC and BCUBED, but a
bigger loss loss in recalls constantly occurs.

The current constrainedOPAunfortunately generates negative results. A detailedeitssp
tion shows that several inconsistent output clusters (sdéeB.2) are not covered by the
proposed constraints. For instance, (2) ChntraMod does not capture the negative relation
between the mention€hina’s Red Cross Sociétgnd [the international Red Cross Organi-
zatior]. Since the current constraints target at high precisionwe high-recall ones should
be developed.
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MUC BCUBED CEAF(E)

R P F R P F R P F
(4) CN_ContraSubjObj| 60.22 61.73 60.97 68.19 72.8 70.42 46.26 44.79 4551
+ (5) CNLSpan 60.22 61.78 60.99 68.15 72.86 70.42 46.33 44.81 45.56
+ (1) CN.Gender 59.93 61.76 60.83 67.87 73.01 70.3546.42 44.63 45.51

+(3) CN.ContraGPE | 59.85 61.7 60.76 67.78 72.95 70.27 46.44 44.63 45.52
+(2) CN.ContraMod | 59.69 61.74 60.7| 67.68 73.1 70.28 46.53 44.53 4551
+ (6) CN.ContraPerson 59.58 61.77 60.66 67.57 73.22 70.28 46.6 44.47 4551

Table 8.6: The Contributions of the Proposgannot-LinkConstraints

Solved Example byConR2 Although ConR2does not generate promising results yet, we
now show an example which is solved by applying the constthatustering algorithm. Fig-
ure 8.4 shows the output clusters by the basic versio@OIPA where the entity RESIDENT
SLOBODAN MILOSEVIC is mistakenly mixed with the entityBESIDENT PUTIN. This hap-
pens because both persons are male presidents and thewkaretbgether via other mentions
such asthe presiderjtand [he.

Tens of thousands of people crowded [the streets of [the Yugoslavian capital]ll {[todayl} after the apparent overthrow of
esident Slobodan Milosevicl} .

Yesterday ;protesters stormed key government buildings and seized Serb state television in {[Belgradel} .

{[Russial} has joine the West]} in {[its]} support of {[opposition leader Vojislav Kostunical} .

{[Russian Foreign Minister Igo nov]} congratulated {[Kostunical} on {[his]} election victory .

{[Hel} also gave {[hi Tom {[Russian President Vladimir Putin]} .

dan Milosevic]} met with {[Russian Foreign Minister Igor Ivanovl} .

{[Ivanov]} says {[Milosevicl} tal f {[hel} plans to remain in {[Serbial} and continue to run {[its]} largest political
party .

Figure 8.4: Example Output Clusters Using the B&3@PA

By applying the constrainedOPA it can be seen from Figu&5that the two entities are
correctly resolved thanks to the constraint (6) CntraPerson.
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President Slobodan Milosevic :

Tens of thousands of people crowded [the streets of [the Yugoslavian capitalll {[today]l} after the apparent overthrow of
{[President Slobodan Milosevicl} .

Yesterday , protesters stormed key government buildings and seized Serb state television in {[Belgrade]} .
{[Russial} has joined {[the West]} in {[its]} support of {[opposition leader Vojislav Kostunical} .
{[Russian Foreign Minister Igor Ivanov]} congratulated {[Kostunical} on {[his]} election victory .

{[Hel} also gave {[him]} a letter from {[Russian President Vladimir Putin]} .

{[Putin]} says {[hel} hopes [the opposition leader] will do ** everything possible to overcome the internal political crisis "
N {[Yugoslavial} .

{[Russial} was the last European power to withhold support for {[the opposition]} .

{[The man who lost power in {[Yugoslaviall}} finally surfaced {[todayl} .

dan Milosevic]} met with {[Russian Foreign Minister Igor Ivanov]l} .

{[Ivanov]} says {[Milosevic]} tol t {[hel} plans to remain in {[Serbial} and continue to run {[its]} largest
political party .

President Putin :

Tens of thousands of people crowded [the streets of [the Yugoslavian capital]l] {[todayl} after the apparent overthrow of
{[President Slobodan Milosevic]} .

Yesterday , protesters stormed key government buildings and seized Serb state television in {[Belgrade]} .
{[Russial} has joined {[the West]} in {[its]} support of {[opposition leader Vojislav Kostunical} .
{[Russian Foreign Minister Igor Ivanov]} congratulated {[Kostunical} on {[his]} election victory .

{[Hel} also gave {[hi rom {[Russian President Vladimir Putin]} .

{[Putin]} says
in {[Yugoslavial} .

hel} hopes [the opposition leader] will do ** everything possible to overcome the internal political crisis "

{[Russial} was the last European power to withhold support for {[the opposition]} .

{[The man who lost power in {[Yugoslaviall}} finally surfaced {[today]l} .
{[Slobodan Milosevicl} met with {[Russian Foreign Minister Igor Ivanov]} .

{[lvanov]} says {[Milosevic]}
political party .

Id {[him]} {[hel} plans to remain in {[Serbial} and continue to run {[its]} largest

Figure 8.5: Example Output Clusters Using the Constral®@éA

8.6 Summary

Incorporating Constraints into Coreference Resolution. In this chapter, we consider a
general problem for the clustering field. Due to the tramsittlosure which is implicitly
done during the clustering phase, counter-intuitive eltsstan be derived. This is also an
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issue for the coreference resolution task when the comatersets are generated by clustering
models. For instance, the mentiam I[Norwegian Transport Shjps clustered together with
a preceding mentionThe damaged shjwia another mentionthe shig which appears later
in the document. However, the indefinite article "a” strgngldicates that the mentiora|
Norwegian Transport Sh]ps not anaphoric. Such information can be interpreted asvise
constraintsMust-Linkasks the mentions to be in one cluster &ahnot-Linkforbids so.

In order to generate consistent coreference sets, theteekagprevious work on enforcing
transitivity for coreference resolution (e inkel & Manning (2008) and on applying corre-
lation clustering to incorporate negative edges in grapls McCallum & Wellner (200%).

In this thesis, we focus on incorporating the pairwise a@msts within the graph spectral
clustering framework.

Our Proposal: Constrained COPA In this chapter, we extend the basic versiorCaPA
in order to guide the partitioning algorithms with pairwisenstraints. Since th&lust-Link
constraints can be straightforwardly included as strorgesdn a graph model, we only deal
with Cannot-Links for now. We propose to combine constrained data clugiealgorithms
with hypergraph spectral clustering algorithms via thectjaé embedding. In this way, we
address the constrained graph clustering problem withloamging the clustering objective
function or modifying the originally constructed graphustiures.

We conduct experiments with the constrai®dPAon both the artificial clean constraints
and the automatically generated ones.The experimentsan cbnstraints allow us to study
the effect of the size of constraints and the proportion efrtbise on the proposed algorithm.
Although the improvement achieved by using the clean caimgf is significant, our results
on the automatically generated ones are unfortunatelytiwegalrhe possible reason is that
the currenCannot-Linkconstraints do not have enough coverage on the data sahgresth
constraints of a small coverage does not convey the efegatiss of the algorithm, especially
when the number of the inconsistent clusters to be solvedtigary big in the first place.

Future Work.  Since the number of the inconsistent clusters will grow bigghen the graph
structures become richer, the importance of providingrpritormation to guide the cluster-
ing algorithms remains. Our proposed method provides a wadtiress the problem with
relatively little effort on adapting the original clusteg algorithms. The next step for us is to
include more constraints in order to explore the potentighe constrainedC OPA We cur-
rently exclude the negative relations suclsesiantic class agreemeartdnumber agreement
to avoid too much noise. However, the experiments with ctearstraints suggest that at most
10% noise is allowed, which is the case for both of them. So it bélreasonable to include
more high-recall constraints in the future.



Chapter 9
Conclusions

Natural Language Processing (NLP) tasks process textmatitmally on the syntactic, seman-
tic and pragmatic levels, targeting at the full text undsamnging. Coreference resolution has
been one of the most fundamental NLP task for decades, winichthe referring expressions
of the same entities into sets. From a pragmatic point of veetext can be considered as
a collection of entities and the relations between them. Riegpthe referring expressions
therefore enables us to identify the entities in a documEuntthermore, the local context of
the different occurrences of an entity are implicitly metgea the coreference relation built
between the referring expressions. Therefore it is maderdasextract the relations between
entities from their enlarged context.

In the introduction of this thesis, we interpret the corefere relation as a high-dimensional
relation, which can be derived from multiple basic relaside.g. string similarity and seman-
tic relatedness). Unlike the previous methods which cshaihe basic relations before the
inference step, we aim to maintain the basic relations timgilfinal inference procedure. In
order to do so, we proposehypergraph model to represent a documenas shown in Figure
9.1(a).

(a) HyperGraph Data Representaiion (b) COPA Qutput Partiions
B[grfx:':l){%slljda?% Berack Obam] [US president
s e - e ’_\ . h //"_-‘-:- -

/ [President Sarkazy)-.
oo %

0 —

Figure 9.1: COPA Example: Processing lllustration
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The thesis presents our proposed coreference syYS@RA an end-to-end hypergraph-
partitioning-based model Upon the hypergraph representation of documents, [amitity
algorithms are proposed to derive the coreference setoassh Figure9.1(b). By making
use of the graph partitioning techniqUeDPAis able to generate the coreference sets at one
step by considering all the relations encoded in the hypelgtogether. In contrast to the local
coreference models, our system performs the inferenceguoe in a global manner; and un-
like the probabilistic global methods, our partitioning@alithms do not involve sophisticated
probability estimations but achieves more competitivégrarance.

In this chapter we summarize the main contributions of oukvamd point out the possible
future research directions.

9.1 Main Contributions

In this thesis, we address four important questions comugthe coreference resolution mod-
eling and the end-to-end coreference system designing.

Representing the High-dimensional Coreference Relation. COPA represents the men-
tions as vertices in thaypergraph model, and connects them with weighted hyperedges
which are directly derived from the basic relations (i.eattees). Since this allows for mul-
tiple hyperedges existing between mentions, the basitoetaare incorporated into the hy-
pergraphs in an overlapping manner. The hypergraph prewidewith a way to make the
coreference decisions only during the inference phaseantrast to the previous work which
combines the basic relations into the coreference relalioimg the graph construction phase
(i.e. the representing phase).

We propose to categorize the coreference features inte thpes. The negative features
prevent the hyperedges to be built between mentions, itidgcéhe non-coreferential rela-
tions. The positive features are used to construct the gyaeins, which are mainly the strong
indicators for the coreference relation. The weak feateresch the hypergraph structures
by providing many weak hyperedges which do not stronglyetate with the coreference re-
lation but are still informative. Théeature categorizationis important for applying graph
models in end-to-end systems, making them less sensitie tooise and making it easier to
incorporate more features.

Inferring the Coreference Sets Globally. The coreference resolution task is to derive the
coreference sets from a collection of mentions. We arguethleacoreference models should
not only analyze the relations between mentions but alseidenthe relations between dif-
ferent coreference sets. The hypergraph partitioningrélfigos adopted irCOPAmanage to
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optimize the output coreference setslirectly instead of only making the best decisions for
mention pairs. Moreover, in our model resolving one mentlepends on the resolutions of
all the others, which mak&sOPAa global method.

In this thesis, we also exploredconstrained version ofCOPA We demonstrate the im-
portance of enforcing the transitivity in the coreferenesolution task and propose to address
the problem within the constrained graph clustering fraomwThe idea of our method is to
combine the constrained data clustering algorithms wighsgiectral graph clustering ones via
the spectral embedding. Due to the low coverage of the autcalig generated constraints,
our experimental results are mostly negative so far. Howere clean (artificial) constraints
show promising improvements from the proposed algorithre. |&dve the work on incorpo-
rating the generated constraintsG@PAas a future research direction.

Evaluating the End-to-end Coreference Systems. In this thesis, we report the problems of
the existing coreference evaluation metrics when they@pbex to end-to-end system output.
In order to evaluate the coreference task in a realisticnggtive proposdwo variants of
the evaluation metrics B> and CEAF . Our variants are empirically shown to evaluate the
noisy coreference output in an adequate way. The appreiaiuation metrics are essential
especially when the coreference systems optimize withexdgp the final coreference output.

Learning Cheaply. Due to the overlapping manner of the hypered@3PAonly needs to
learn the weights for the basic relations instead of a higiedsional combination of them.
It requires only a few training documents to collect the dergtatistics for the weights of the
basic relations, sS€OPAIs considered aswaeakly supervisedsystem. The experiments also
confirm thatCOPAachieves competitive results with a small training setsThake<COPAa
good candidate when moving to a different domain or a diffel@nguage where not enough
ground truth annotation is available.

9.2 Future Work

In this section, we highlight a couple of possible futurecagsh directions which should be
worth investigating.

More Coreference Features. Due to the well-defined hypergraph representation and the
feature categorization strategy @OPA it requires little effort to incorporate relational fea-
tures. The current version @OPAonly adopts a standard set of coreference features, and
it should be further improved by designing more linguisacrd world- knowledge. For in-
stance, weak features enable us to include (a large amounbigly relations extracted from
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the Internet such as word associations.

Besides building relations between mentions, it will be aiteresting to explore the rela-
tions between mention contexts. For instance, the mengarigipating in the same event as
the same roles or having the same relations with the samé@nentity should have a good
possibility to be coreferent with each other.

In brief, more features will help to generate hypergraprt wcher structures, and there-
fore better partitions should be produced on such hypehngrap

Learning to partition. The learning scheme currently adopted@@PAis only to collect
simple statistics about the basic relations. The congHIOPAcan be viewed as a first step
towards a better learning of our hypergraph-partitioniaged model. However, it should be
worth efforts to find a learning algorithm which can direabigtimize the hyperedge weights
with respect to the partitioning criterion (i.e. th&Cutvalue). In general, the learning pro-
cedure being consistent with the inference procedure dimribble to make the most of the
training data.

Graph-partitioning-based Entity Model.  Although the hyperedges iBOPAare able to
represent sets of multiple mentions, we have not yet modaiities explicitly . Enabling
properties on hyperedges may be able to capture entityilgeemation, and such informa-
tion can be propagated to mentions and vice versa via theesltgx incidences.
Incrementally or iteratively partitioning the hypergraptan be another way to model en-
tities. Entities derived from the previous runs or iteraichould help with later partitionings.

Application to Other Languages and Domains. COPAhas been lately tested on differ-
ent languages, such as Chinese. It performed stable by bog@eme of the language-
independent features from the English implementationh aghead match As discussed
in the thesis already, the proposed system performs cotmpitiacross different domains
too. In the future, it will be interesting to appyOPAto other languages and domains where
hardly any annotation for coreference resolution is alaéglain such cases, training on similar
languages or relying more on the weak Internet features thagraribute.
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