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Abstract

Recent advances in RESOLFT (reversible saturable optical fluorescence transitions)

microscopy have enabled the non-invasive three-dimensional visualization of numerous

structures in living cells at high spatial resolution. This technique, which utilizes low

light intensities, has manifold potential applications in the life sciences. The work

presented here envisions further broadening the applications of RESOLFT microscopy

by implementing a scheme for fast image acquisition of large fields of view, applicable

to thick specimen.

With a pattern consisting of line-shaped intensity minima, this novel technique,

called lineRESOLFT, permits fast imaging of living cells at ∼40 nm lateral resolution

while offering strong optical sectioning. The full potential of this method is further

illustrated by the achievement of continuous three-dimensional imaging of neurons in

living brain slices with high spatio-temporal resolution, enabling the observation of

rapid spine motility for large fields of view on the second time scale.

Zusammenfassung

Jüngste Fortschritte in der RESOLFT (reversible saturable optical fluorescence transi-

tions) Mikroskopie haben die nichtinvasive, dreidimensionale Visualisierung einer Viel-

zahl von Strukturen in lebenden Zellen mit hoher räumlicher Auflösung ermöglicht. Die

Technik, welche niedrige Lichtintensitäten nutzt, besitzt ein vielfältiges Anwendungspo-

tential in den Lebenswissenschaften. Die hier vorgestellte Arbeit eröffnet neue Anwen-

dungsmöglichkeiten der RESOLFT Mikroskopie, durch die Implementierung eines Sys-

tems zur schnellen Aufnahme von großen Bildbereichen, anwendbar für dicke Proben.

Mit Hilfe eines Musters bestehend aus linienförmigen Intensitätsminima, erlaubt

diese neue Technik, genannt lineRESOLFT, eine schnelle Bildgebung von lebenden

Zellen mit ∼40 nm lateraler Auflösung und einer deutlichen optischen Tiefensepera-

tion. Das hohe Potential der Methode wird weiterhin durch eine kontinuierliche, drei-

dimensionale Bildgebung von Neuronen in lebenden Hirnschnitten mit hoher räumlich-

zeitlicher Auflösung, welche die Beobachtung von schnellen Spinebewegungen für große

Bildbereiche zulässt, verdeutlicht.
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Chapter 1

Introduction

The foundations of far-field light microscopy were laid out by Ernst Abbe in 1873.

He concluded that because of the wave nature of light, diffraction limits the resolving

power of a microscope1, with resolution being defined as the ability to distinguish close

lying object details. Finding that only spatial frequencies up to a certain cut-off can

be transmitted by an objective, focussed light always results in a blurred spot, known

as the point spread function (PSF). Abbe found that the size of this spot, limited by

diffraction, scales with the wavelength of light and inversely with the numerical aperture

(NA) of the objective. This fundamental law is known as the Abbe diffraction barrier.

Since the NA of a single objective, being the product of the refractive index of the lens

and the sine of its semi-aperture angle, cannot be increased beyond the refractive index

of the lens material (1.5 - 1.7), the diffraction barrier restricts the obtainable resolution

of conventional microscopes utilizing visible light to about 200 nm in the focal plane

and 500 nm along the optic axis.

However, increasing the aperture of a microscope was achieved with the invention of

4Pi microscopy2,3. Employing two opposing lenses, it doubles the solid angle available

for the light illumination and/or collection. When operated with coherent illumination

and detection, the axial resolution can be increased up to 7-fold4,5. Since the maximum

aperture cannot be increased beyond the full spherical solid angle (4π), the wavelength

of the light seemed to be the only parameter left for substantial improvement.

Hence, a straightforward way of obtaining higher resolution is utilizing light of a

shorter wavelength. Unfortunately, the associated high photon energy might lead to

pronounced photodamage. Additionally, optics for imaging with UV light below 350 nm
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1. INTRODUCTION

are demanding and expensive, since most lens materials are nontransparent for this

wavelength range. However, X-ray microscopes have been successfully used to visualize

structures of biological specimen6,7. Frozen, hydrated samples can be imaged with a

resolution below 30 nm. Electron microscopes, based on the interaction of electrons with

matter, provide even higher resolution. Featuring substantially shorter wavelengths,

electron microscopy allows imaging with atomic resolution8, making it a valuable tool

to characterize the structure of inorganic and organic materials. However, applications

to biological specimens are limited. Samples must undergo an extensive preparation

process, possibly changing their cellular structure. Requiring fixed cells under vacuum

conditions, this technique does not allow investigation of dynamic processes or cellular

interactions. Furthermore, experimental restrictions in penetration depths prevent the

imaging of thick specimen.

Another path to high resolution is to remove the fundamental far-field diffraction

restrictions completely by applying near-field techniques. These methods rely on the

rapidly decaying electromagnetic near-field and light has to be collected at close vicinity

to the surface. In near-field scanning optical microscopy (NSOM), a fine tip consisting

of a sub-wavelength-diameter aperture used for illumination or detection, is scanned

across the surface, placed at a distance much smaller than the wavelength. Exploiting

the properties of evanescent waves, resolution compared to the diffraction limited far-

field microscopy can be 10-fold higher lateral and 100-fold higher axial9. Another

scanning probe method, atomic force microscopy (AFM), records the topography of

the surface by sensing forces between the tip and the surface with high sensitivity10.

The disadvantage common to all these lens-less approaches is their bondage to surfaces.

Their inability to research the interior of cells greatly restricts their usage in the life

sciences.

1.1 Far-field fluorescence microscopy and the advent of

fluorescence nanoscopy

In order to address biological problems, a non-invasive, three-dimensional visualization

of living cells and their dynamics with high spatio-temporal resolution is desirable,

preferably in the natural environment of biological specimens. Far-field fluorescence

2



1.1 Far-field fluorescence microscopy and the advent of fluorescence
nanoscopy

microscopy best suits these challenging tasks. With the development of powerful la-

belling techniques, like antibody-based immunostaining11 in the 1940s, displaying a

high specificity, it was made possible to visualize virtually any protein with a high

contrast. Nowadays, fluorescence microscopy is widely used in the life sciences and has

become “an integral part of the basic toolbox of many biologists”12.

The invention of confocal microscopy in 196113 is a major cornerstone of fluores-

cence microscopy. Point-like illumination and the introduction of a pinhole in front of

the detector provide strong optical sectioning (see Section 3.1), whereas conventional

bright-field microscopes suffer from an out-of-focus excitation resulting in an image

blur. Thus, the possibility to reconstruct three-dimensional images of thick specimens

has led to countless biological applications. In principle, when using an infinitesimal

small pinhole, confocal microscopy additionally improves lateral resolution by a factor

of two compared to the widefield case. Under experimental conditions, the choice of a

finite pinhole size, determined by the need to collect sufficient signal, prevents such a

strong improvement. However, cameras consisting of multiple detectors allow doubling

of the lateral resolution without losing signal strength14. Another way of doubling the

resolution without discarding any emission light was presented by the introduction of

structured illumination microscopy (SIM)15. Instead of a point-like illumination, this

widefield-based technique uses a pattern of parallel lines formed by standing waves.

After shifting and rotating of the pattern, linear deconvolution reconstructs the image.

While not sharing the strong optical sectioning strength inherent to confocal imaging,

the parallel illumination of a large area requires less recording steps, thus facilitat-

ing a much faster image acquisition16. However, all those methods based on linear

fluorescence response are fundamentally limited in their resolution17.

Instead, recent developments17–20 have established techniques to image well be-

yond the diffraction barrier, enabling an unprecedented spatio-temporal resolution21.

These methods, called super-resolution far-field fluorescence microscopy or nanoscopy,

offer theoretically unlimited resolution beyond the diffraction barrier and are based on

fluorophores transiently populating distinct fluorescent states17,22. If two fluorescing

molecules reside within a diffraction limited area, they can neither be excited nor de-

tected separately. However, by sequentially switching them between fluorescent (“on”)

and non-fluorescent (“off”) states, with one molecule being off while the other being

on, they can be read out separately.
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1. INTRODUCTION

The first concept to break the diffraction barrier was stimulated emission deple-

tion (STED)23,24. Exploiting the photophysical properties of fluorophores, a part of

the excited (on) molecules is sent back to their ground (off) state, preventing them

from fluorescing. Typically, using a donut-shaped beam for this switching off consist-

ing of a central intensity zero, the remaining on-molecules are located within an area

much smaller than the diffraction-limited spot. Through a repeated coordinate-targeted

preparation and read-out, accompanied by scanning the beams across the sample, a sub-

diffraction resolution image is formed automatically. A resolution enhancement down

to ∼20 nm with conventional organic dyes was demonstrated25,26 and fluorescent ni-

trogen vacancies in diamond could be resolved with sub-10 nm resolution27. However,

the de-excitation by stimulated emission requires high light intensities > 10 MW/cm2.

While it has been demonstrated to be compatible to live-cell measurements21,28–31,

methods applying low light levels and a low dose intake can minimize photodamage

and reduce photobleaching.

Instead of inducing the on-off transitions at defined positions, stochastic nanoscopy

techniques are based on switching the single-molecule fluorescence randomly in space.

Invented in 2006, stochastic optical reconstruction microscopy (STORM)18 and pho-

toactivated localization microscopy (PALM)19,20 localize individual molecules sequen-

tially with very high accuracy. Operating in widefield mode, they cover a large area

but temporal resolution suffers from the need to collect many frames32. This trade

off is common to all single molecule localization methods, including techniques exploit-

ing random fluctuations of the emitters33,34. However, recent developments in camera

technology enabled much faster data acquisition35. Additionally, while using relatively

low light intensities for switching, rapid localization requires high excitation intensi-

ties. Being a widefield technique the full sample is exposed to the illumination for the

complete measurement, cumulating to a substantially high light dose intake.

Concurrent advances in photochromic genetically-encoded fluorescent proteins36

that can act as endogenous labels, have opened new opportunities for high-resolution

live-cell imaging. Reversible saturable optical fluorescence transitions (RESOLFT)

nanoscopy17,37, a coordinate-targeted switching technique, uses these proteins to achieve

diffraction-unlimited resolution. Reversible switchable fluorescent proteins (rsFPs) that

can be switched more than a thousand times have established RESOLFT nanoscopy as

a powerful tool in the imaging of living cells with low light intensities and a low light

4
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dose38,39. The initial point-scanning approaches used in this technique led to imag-

ing times of 20-30 minutes for ∼10 x 10 µm2. More advanced rsFPs, exhibiting faster

switching kinetics, reduced the recording time below one minute40. Still, the imaging

speed for these point-scanning approaches remains mainly governed by the number of

scanning steps.

However, the low light levels of RESOLFT facilitate the implementation of vari-

ous parallelization schemes41–43. Combined with rapid data acquisition, fast live-cell

nanoscopy of large fields can be achieved43.

1.2 A route to fast, parallelized scanning nanoscopy

Parallelized scanning microscopy covering a large area was first provided by satu-

rated structured illumination microscopy (SSIM)44. There, subdiffraction resolution

is achieved by negative imaging. A sinusoidal excitation pattern saturates most of the

fluorophores, leaving only those within a subdiffraction area in their off-state. Postpro-

cessing the information contained in these dark regions renders the image. However,

requiring high intensities, this technique is vulnerable to photobleaching. Furthermore,

power limitations of available laser sources prohibit a versatile use of SSIM. For similar

reasons, attempts to parallelize STED did not yet reach a large area coverage45,46.

Nevertheless, RESOLFT, using ∼105 times lower intensities, can overcome these

power limitations. Recently, the application of RESOLFT to nonlinear SIM was suc-

cessfully demonstrated42. While reaching a resolution comparable to point-scanning

methods, the image acquisition was still slow. In another recently reported RESOLFT

approach, a massive parallelization was achieved by switching off with two incoherently

superimposed orthogonal standing waves43. The resulting multiple subdiffraction-sized

foci of residual fluorescing molecules could be detected separately. A parallel read-out

pushed down the imaging time below one second for a large field of view with sub-

100 nm resolution. The common basis of these parallelization concepts is the simul-

taneous illumination of a large area, reducing the amount of required scanning steps.

Thus, they feature similar characteristics to widefield microscopes. Consequently, while

point-scanning RESOLFT offers strong optical sectioning making it suitable for three-

dimensional imaging of thick tissue47, parallelized widefield-based RESOLFT suffers

from out-of-focus blur.
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1. INTRODUCTION

Figure 1.1: Scanning schemes in RESOLFT microscopy - Various scanning schemes

offer different degrees of parallelization. While widefield based approaches offer massive

parallelization, they miss the confocality inherent to point illumination. RESOLFT based

on line illumination covers the middle ground, featuring substantial parallelization and

optical sectioning.

In this thesis a novel parallelized RESOLFT implementation, based on line scan-

ning48–50 and therefore named lineRESOLFT, is presented. The technique bridges the

gap between confocal schemes, which feature strong optical sectioning at the cost of

long image acquisition times, and the widefield schemes, which feature fast imaging

speed at the cost of background contamination. Fig. 1.1 illustrates various scanning

schemes suitable for high resolution, coordinate-targeted RESOLFT and highlights the

mediating character of line-based lineRESOLFT.

In order to reach a subdiffraction resolution d, the scan step size, according to the

Nyquist-Shannon sampling theorem51, has to be ≤ d/2. Thus, to cover a square field of

length l, point scanning needs (2l/d)2 ∝ l2 steps. In contrast, the multifocal approach

with a separation between the individual foci of at least the diffraction limit D, requires

just (2D/d)2 steps, independent of the field of view.

Line scanning covers the field by scanning only along one direction. Subsequent

rotations and scans assure isotropic resolution. With m ≤ 10 rotations being typically

sufficient (see Section 2.1), it results in (m × 2l/d) ∝ l1 steps, substantially speeding

up image acquisition, as compared to the point scanning scheme.

The concept and realization of lineRESOLFT is explained in detail in Chapter 2.

6



1.2 A route to fast, parallelized scanning nanoscopy

It will be shown that using a switching-off illumination with line-shaped zeros enables

parallel diffraction-unlimited resolution. The length of the line can be modified conve-

niently, thus readily adapting the degree of parallelization to the needs of the particular

experiment.

Chapter 3 outlines the inherent confocality of the setup and derives the optical sec-

tioning strength. The camera-based detection implementation allows an adjustment of

the pinhole, from which an improvement of the sectioning over the confocal microscope

can be achieved. For the first time it is demonstrated that this improved confocality

is compatible with high NA objectives and subdiffraction resolution. Furthermore, the

successful parallelization without impairing resolution is highlighted by imaging living

cells with a lateral resolution ∼40 nm.

High spatio-temporal resolution imaging of neurons in living brain slices presented

in Chapter 4, demonstrates the full potential of the method. Continuous optically

sectioned recording allowed the investigation of the dynamics of distant spines with

subdiffraction resolution and on the second-time-scale. For the first time, fast three-

dimensional RESOLFT imaging of living tissue with subdiffraction resolution and a

high degree of parallelization is achieved.

7
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Chapter 2

Experimental methods and

techniques

2.1 The lineRESOLFT microscope

2.1.1 Image formation

In a far-field fluorescence microscope the image is formed by collecting the photons

emitted from the excited fluorophores with an objective lens. Once the photons are

collected, the capability to spatially resolve structures in the resulting image is limited,

caused by the diffraction of light1.

Nanoscopy methods thus target on processes preceding the emission − the inter-

action of the fluorophores with the illumination light. Inducing transitions of the

molecules between fluorescent and non-fluorescent states can enable the reconstruction

of an image with theoretical unlimited resolution17,22. In RESOLFT, this switching

can be spatially controlled (coordinate-targeted switching), while stochastic switching

is used in STORM and PALM.

In the case of the lineRESOLFT microscope, the fluorophores are reversible switch-

able fluorescent proteins (rsFPs). Diffraction-unlimited resolution is achieved by the

preparation of the rsFPs in two distinct states, a deactivated (off) or an activated (on)

one. The ones in the deactivated state are not able to fluoresce, while the ones in the

activated state absorb and emit photons like conventional fluorophores. Because each

individual molecule can only either be on or off, the transition is saturable. Diffraction-

unlimited resolution is achieved by spatially controlling the area of remaining activated

9



2. EXPERIMENTAL METHODS AND TECHNIQUES

Figure 2.1: Parallelization in lineRESOLFT microscopy - Three line-shaped diffrac-

tion limited illumination pattern are used to prepare and excite the rsFPs. First, an ac-

tivation beam switches them on. Second, most non-central rsFPs get switched off by a

deactivation beam. Only the central activated molecules remain fluorescent (effective ac-

tivation). Thus, subsequent excitation by a third beam leads to a subdiffraction sized

effective PSF.

rsFPs. The following section explains in detail the methods and techniques used to

gain this control.

2.1.1.1 Enabling parallel diffraction-unlimited resolution in 1d

Figure 2.1 illustrates the mechanism of reducing the area of activated fluorophores. A

first illumination activates the rsFPs. A second illumination deactivates most rsFPs

outside the central region where the intensity is zero. The probability to switch off a

single rsFP (ideally) approaches 1 exponentially with an increase in irradiance. Thus,

increasing the intensity or the duration of the deactivation shrinks the residual area of

activated molecules. A third illumination excites the remaining activated rsFPs. The

emitted photons are registered by a detector.

This sequence of activation, deactivation and excitation is then repeated while spa-

tially moving the illumination intensity pattern over the sample. Registration of the

detected fluorescence intensity with its corresponding pattern position allows recon-

struction of a subdiffraction-resolved image.

10



2.1 The lineRESOLFT microscope

Figure 2.2: Illumination point spread functions - (I) Schematic illustration of the

illumination. (II) a-d, Intensity, phase and polarization in the aperture of the objective

lead to various PSFs in theory (e-m) and experimentally (n-v). The plots i and r show

the intensity profiles orthogonal to the double lines in h and g.

11
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Contrary to the typical spot scanning approach, line scanning is used. Hence the

name lineRESOLFT. By illuminating all rsFPs along a line and detecting with a cam-

era, the sample has to be scanned only orthogonal to the line in order to excite every

molecule at least once. Subdiffraction resolution is achieved orthogonally for all pixel

along the line, massively parallelizing the scanning. This parallelization vastly increases

image acquisition speed. The structured line illumination is produced by under-filling

the objective lens. Fig. 2.2 illustrates the under-filling and the resulting extension of

the illumination PSFs. The pattern corresponding to point scanning are depicted in

the two left columns, while the pattern corresponding to line scanning are shown in the

two right columns. The PSFs were calculated (Fig. 2.2e-m) and measured (Fig. 2.2n-v)

using light with a wavelength of ≈ 490 nm focussed by an 1.4 NA oil objective lens.

The activation and excitation patterns (white rows) were produced with a beam of ho-

mogeneous phase while for the deactivation (grey rows) the phase of half of the beam is

retarded by half a wavelength. This phase step leads to destructive interference in the

center of the focal plane. The minimal intensity in this central area is called the “zero”

of the PSF. Besides the quality and robustness of this zero, the steepness of the edge is

crucial for experimentally achieving diffraction-unlimited resolution. The peak-to-peak

distance (Fig. 2.2i,r) reaches down to ≈ 280 nm experimentally, outperforming deac-

tivation pattern of grid scanning RESOLFT methods relying on point38 or standing

wave illumination43. Another important feature is the conservation of the confocal-

ity. When under-filling the objective, the length of the PSF in axial direction (≈ λ)

remains mostly unchanged. Thus resolution in z is similar to a confocal microscope.

Additionally the line microsccope achieves the parallelization of the scanning without

losing the axial sectioning ability (see Section 3.1). Slightly disadvantageous are the

stronger axial side lobes. But because the deactivation PSF has similar stronger side

lobes, the additional activated rsFPs out-of-focus will get deactivated as well. Thus

this mutually cancelling effects are, by continuing to restrict activated fluorophores to

the focal plane, not impairing subdiffraction resolution.

Theoretical unlimited resolution orthogonal to the line is achieved by increasing the

intensity or duration of the deactivation beam. This leads to a deactivation of all rsFPs

except the ones close to the center of the line. Excitation of these remaining activated

molecules leads to an effective line PSF whose thinness is not limited by diffraction but

just by the practical feasibility of switching-off of only the non-central molecules.

12



2.1 The lineRESOLFT microscope

2.1.1.2 Diffraction-unlimited resolution in all directions

A single, one-directional scan with the lineRESOLFT microscope achieves subdiffrac-

tion resolution orthogonal to the line, i.e. parallel to the scan direction. Having just to

scan once along one direction speeds up the image acquisition time massively compared

to point scanning where a second direction has to be scanned multiple times. In other

words, the image acquisition time for a rectangular field of view of length l scales with

l for the line scanning and l2 for the point scanning approach. However, a single line

scan improves resolution just in one direction.

For many applications one wishes to retrieve an image with subdiffractional re-

solved structures in any direction. The lineRESOLFT microscope accomplishes this

by rotating and scanning the illumination PSFs in multiple directions. Each scan pro-

duces a high-resolved image containing details not visible in the others. A combination

and subsequent deconvolution of all measurements results in an image with the highest

content of structural details, exhibiting spatially isotropic resolution.

Acquiring several rotated images increases the total image acquisition time. Hence,

a crucial question regarding speed is the number of required orientations which guar-

antee a certain resolution in any direction. The more orientations the better the guar-

anteed resolution.

To derive the relation between the number of orientations n and the guaranteed res-

olution λmin, we start with a single scan in one direction. Along this direction, imaging

with subdiffraction resolution can be performed while the resolution orthogonal to it (i.

e. parallel to the line) remains similar to the conventional diffraction limited widefield

resolution. It is worth considering the situation in reciprocal (Fourier) space. The

Fourier transform of the PSF is the optical transfer function (OTF). Its magnitude,

called the modulation transfer function (MTF), determines the capability of the mi-

croscope to transfer spatial frequencies. Since any object can be described by Fourier

theory as a superposition of basic waves, and fine details translate to waves with high

frequency, high resolution manifests in an ability to transfer high spatial frequencies.

Abbe1 showed that because of diffraction, an objective with numerical aperture NA

can only transfer frequencies lower than a certain value, called the cut-off frequency

Λco. For light of wavelength λ, the MTF is zero for frequencies higher than:

Λco =
2NA

λ
(2.1)

13



2. EXPERIMENTAL METHODS AND TECHNIQUES

Figure 2.3: Support of the optical transfer function - (a) Combining several ver-

sions of the modulation transfer function (MTF) by consecutive imaging with rotated one

direction (1d) subdiffraction-resolution PSFs increases the observable region of spatial fre-

quencies; with the pink circle denoting the observable region for a widefield microscope.

Without rotation, subdiffraction-resolution is only achieved along 1d. (b) Extending the

circle of observation leads to a higher cut-off frequency Λco, defined as the maximum radius

for which within the MTF does not reach zero. The plot shows the values of the MTF along

its circumference. (c) This cut-off frequency increases with the number of orientations, ul-

timately reaching the maximum resolution equal to an isotropic subdiffraction-resolution

PSF (FWHMx = FWHMy). The unrotated MTF (n = 1) in a corresponds to an effective

1d subdiffraction-resolution PSF of FWHMy = 50 nm).

14



2.1 The lineRESOLFT microscope

Nanoscopy methods break this diffraction limit by enabling the transfer of higher spa-

tial frequencies. In case of the lineRESOLFT microscope, this subdiffraction resolution

is achieved only parallel to the scanning. Thus, when scanning in just one direction,

the worst case (or guaranteed) resolution is λmin = Λ−1
co ≈ 200 nm. The best reso-

lution (parallel to the scanning) depends on the experimental conditions. In Fig. 2.3

an effective one direction (1d) subdiffraction-resolution PSF with FWHMy = 50 nm

is assumed. Panel 2.3a displays the support of the OTF. The extension over the cir-

cle of observation of a widefield microscope (pink circle) corresponds to an increased

resolution for lineRESOLFT.

By rotating the PSF and scanning it along different directions, the goal is to even-

tually cover an isotropic area in Fourier space (Fig. 2.3a, n = 10). Upon increasing the

number of orientations, every additional scan transfers some high spatial frequencies

that were previously inaccessible. The circle of observation, guaranteeing the transfer

of all frequencies laying within, gets extended. Its radius Λco is the reciprocal of the

guaranteed resolution. It depends on the number of rotations as well as on the original

effective PSF (Fig. 2.3c). As a rule of thumb, when starting with 50 nm resolution in

one direction, three orientations already allow sub 100 nm resolution in any direction.

With six orientations a resolution better than 60 nm is guaranteed.

However, this ideal treatment is only an estimate. Experimental conditions will

cause further complications. First, the transfer strength of high frequencies is very

low. Additionally, while low frequencies get transferred in several images, the highest

frequencies will only appear in one. Thus noise will interfere with the resolution of

the finest details. Second, the extent of the MTF may vary for different orientations.

Hence, the initial resolution (n = 1) has to be estimated carefully for experimental

conditions. With a too optimistic estimation one might use less rotations than actu-

ally required. The recording of some additional orientations in the experiment would

automatically add a margin of safety.

In conclusion, the number of orientations required to achieve isotropic resolution is

in the order of ten. For quasi-isotropic subdiffraction resolution below 100 nm as low

as three orientations are sufficient. For a typical field of view of 20 x 20 µm2, a point

scanning nansocope with a step size of 20 nm uses 103 · 103 = 106 steps. The line scan-

ning approach lowers the amount of steps to ≈ 10 · 103 = 104. Thus, the parallelization

15



2. EXPERIMENTAL METHODS AND TECHNIQUES

ideally increases the image acquisition speed by two orders of magnitude. Larger fields

of view would amplify the speed advantage of the lineRESOLFT microscope even more.

2.1.2 Experimental realization

The concept of lineRESOLFT, enabling parallelized diffraction-unlimited imaging, can

be realized with any photocromic protein suitable for RESOLFT microscopy. Here, an

implementation for negative-switching rsFPs was realized. Negative switching being

defined as switching in which the excitation and deactivation wavelengths are the same.

Fig. 2.4 depicts the setup which uses three separate laser beams − 405 nm for activation,

488 nm for deactivation and 491 nm for excitation.

The 491 nm light was provided by a diode-pumped solid-state laser (75 mW, Ca-

lypso, Cobolt). Its power was modulated by an acousto-optic modulator (AOTFnC-

VIS-TN, AA Opto-Electronics). Linear, horizontal polarization was assured by passing

it through a Glan-Thomson polarizer (B. Halle). A band-pass filter (BP2, z491/10,

AHF Analysentechnik) spectrally cleaned the light. For spatial cleaning the beam was

focused by an achromatic doublet (f = 30 mm, Qioptiq) onto a pinhole of 20 µm diam-

eter and collimated (achromatic doublet, f = 200 mm, Qioptiq) back to a diameter of

roughly 10 mm.

The light for the deactivation was provided by an Argon Ion laser (1.5 W, Innova

300, Coherent). After reducing the output power by a combination of a half-wave

retardation plate and a Glan-Thomson polarizer (B. Halle), the light was guided to the

optical table by a polarization-maintaining single-mode fiber (PMC-460Si-3.9N009-3-

XPC-5000-P, Schäfter & Kirchhoff). After spectral filtering (BP1, z488/10, AHF) the

power was controlled and stabilized by a laser power controller (LPC-VIS, Brockton

Electro-Optics) and modulated by an acousto-optic modulator (MTS-110/A3-VIS, AA

Opto-Electronics). Vertical polarization was guaranteed by a Glan-Thomson polarizer

(B. Halle). For spatial cleaning the beam was focused by an achromatic doublet (f =

40 mm, Qioptiq) onto a pinhole of 20 µm diameter and collimated (achromatic doublet,

f = 200 mm, Qioptiq) back to a diameter of roughly 10 mm. For phase retardation of

half the beam a custom made phase plate (600 nm MgF2 on glass, in-house built) was

used.

The 491 nm and 488 nm light was combined using a polarizing beam splitter cube

(PBS, PTW20 440 - 650 nm, B. Halle).
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2.1 The lineRESOLFT microscope

Figure 2.4: Schematic overview of the experimental setup - (a) Three laser beams,

for activation (405 nm), deactivation (488 nm) and excitation (491 nm), are combined and

a cylindrical lens (CL) focuses them to a line in the aperture of the objective (Obj).

This translates into the extended illumination PSFs in the focal plane (see Fig. 2.2). The

imprinted phase of 0-π (PP) causes the central intensity zero for the deactivation, leading

to diffraction-unlimited resolution. The fluorescence is imaged on an sCMOS camera. (b)

Illustration of the timing and power control as well as spatial and spectral cleaning of the

beams. (c) A beam rotator enables isotropic diffraction-unlimited resolution by rotating

the intensity pattern as well as the polarization and the phase.

AOM, AOTF: acousto-optic modulator; BP1-BP3: band pass filter; CL: achromatic cylin-

drical lens; D1, D2: dichroic mirror; GTP: Glan-Thomson prism; LPC: laser power con-

troller; Obj: objective; P: pellicle; PP: 0-π phase plate; PBS: polarizing beam splitter; PH:

pinhole; PMF: polarization-maintaining single-mode optical fiber; PMT: photomultiplier

tube; S: sample on an xyz piezo stage
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2. EXPERIMENTAL METHODS AND TECHNIQUES

A continuous wave laser diode (405 nm, 60 mW, PhoxX, Omicron) was used for

activation of the reversible switchable fluorescent proteins. Its output power was con-

trolled and gated electronically. The beam, after passing a Glan-Thomson polarizer

(B. Halle), was spatially cleaned by focusing with a fused silica UV-lens (f = 50 mm,

Oerlikon) onto a pinhole of 20 µm diameter. After collimation by a fused silica UV-lens

(f = 300 mm, LA4579-UV, Thorlabs ) the activation beam was combined with the

other two beams by a dichroic mirror (D1, zt405rdc, AHF).

A dichroic mirror (D2, 500dcxru, AHF) reflected all three beams into the aperture of

the objective (HCX PL APO 100x/1.40-0.70 Oil CS, Leica Microsystems). Differently

from confocal imaging, the lineRESOLFT setup under-illuminates the aperture of the

objective in one direction in order to produce line foci in the focal plane. This was

achieved by inserting an achromatic cylindrical doublet (CL, f = 200 mm, ACY254-

200-A, Thorlabs). The superior aberration correction of the achromatic cylindrical

lens compared to a cylindrical singlet allowed under-illuminating the aperture of the

objective with a line thinness close to the diffraction limit ≈ 10 µm. This extended

the full width half maximum (FWHM) of the PSFs to up to 70 µm in one direction

(Fig. 2.5a,b) while conserving the diffraction limited FWHM for the unaffected direction

(see Fig. 2.2p,u).

By temporary insertion of a pellicle (P, BP145B1, Thorlabs), the illumination foci

were mutually aligned. The back scattered light from a silver nanobead (60 nm silver

colloid, BBInternational) was focused onto a photomultiplier tube (PMT, MD 963,

PerkinElmer). A pinhole or slit could be used to stop the light reflected from the

coverslip from entering the detector. Secondarily the position of the phase plate was

optimized this way. The quality of the central intensity minimum (“zero”) of the de-

activation beam was additionally confirmed by probing with a yellow-green fluorescent

bead (20 nm carboxylate-modified FluoSpheres, Life Technologies), see Fig. 2.5c,d.

A beam rotator (K-mirror, home built) inserted into the beam path enabled rota-

tion of the PSFs. It consists of three protected silver mirrors (PF10-03-P01, Thorlabs)

mounted on a motorized rotation stage (8MR190-2-28 with 8SMC1-USB(h), Standa).

Rotating the K-mirror by an angle β rotates the electromagnetic field by 2β. This en-

abled simultaneous rotation of the spatial intensity pattern of the beams as well as their

polarization and phase. Additionally, two lenses (f = 200 mm and f = 250 mm, Qiop-

tiq) worked as a 4f-relay. The fluorescence from the sample was collected by the same
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2.1 The lineRESOLFT microscope

Figure 2.5: Dimensions of the illumination PSFs - (a) Excitation of a fluorescent

membrane. (b) The size of the excitation PSF along x shows an extension to ∼73 µm

(FWHM). (c) Scanning a 20 nm fluorescent bead along y while illuminating with the de-

activation PSF demonstrates the quality of the zero (line profile in d). Scale bars: 20µm

(a) and 500 nm (c).

objective as used for illumination. After passing a band pass filter (BP3, HQ532/70,

AHF) an achromatic doublet (f = 120 mm, Qioptiq) focused the fluorescence onto a

scientific complementary metal-oxide semiconductor (sCMOS) camera (pco.edge, PCO

AG). Because the fluorescence was sent through the beam rotator in the opposite di-

rection, it was rotated back so that it would always hit the same lines of the camera,

independent of the rotation of the illumination. Imaging with any arbitrary orientation

of the line PSF was thus achieved without having to rotate the camera. The design

of the sCMOS sensors makes the read out rate independent from the number of pixels

along a line, leaving only the number of lines as the determining factor. Having just

to read out a few central camera lines facilitates dwell times down to a few hundred

microseconds.

A three-axes piezo stage (NanoMax MAX311D/M with BPC303, Thorlabs) posi-

tioned and scanned the sample. ImSpector, a software for data acquisition and analysis

(in-house built), was used to control the measurements. Together with the help of a data

acquisition card (NI PCIe 6353, National Instruments) it generated the scan voltages

and triggered the start of the pulse sequence. The sequence, i. e. start and duration,

was generated by a digital delay pulse generator (Model 9514, Quantum Composer)
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which modulated the three laser beams and triggered the exposure of the camera. To

assure the accuracy of the sequence, the pulses were monitored by a four channel digital

real-time oscilloscope (TDS694C, Tektronix). The camera frames were recorded using

the Camera link interface (microEnable IV VD4-CL, Silicon Software).

Custom MATLAB programs rendered the information of the raw data stacks into

conventional (two-dimensional) images either by just displaying the central camera line

adjusted for the scan position or by using more sophisticated algorithms, adjusting for

background or out-of focus light or combining structural information of different PSF

orientations.

2.2 Beam rotation

Having a non-isotropic effective illumination requires rotation when targeting for im-

proved resolution in all directions. The lineRESOLFT microscope with its linear illu-

mination PSFs uses a three mirror arrangement called K-mirror for its beam rotation.

2.2.1 Comparison of prism and mirror rotators

On-axis rotation is a common problem in optics and systems for beam rotation have

been reported already several decades ago52,53. Because of manufacturing precision

and reliability, most of them, e.g. Dove prism, Schmidt/Delta prism or Abbe prism,

are based on glass prisms using total internal reflection.

Unfortunately, while relatively easy to manufacture, the implementation of these

prisms has the inherent disadvantage of introducing aberrations at the glass-air inter-

face, caused by refraction when entering and exiting the prism. If the propagation of

the light is non-perpendicular to the front or back surface of the prism, the light gets

refracted. The dispersion of the glass will then lead to chromatic aberrations.

This was tried to be circumvented by only using surfaces perpendicular to the

propagation of the beam (Abbe type prism52,54). While this works well for rotating

the collimated illumination in a conventional microscope, using these prisms to rotate

the collected fluorescence would introduce the aforementioned aberrations. For infinity

corrected objectives, the collected fluorescence of the focal plane consists of a super-

position of several collimated waves of different propagation angles that in the end are
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2.2 Beam rotation

interfered to form the image. When passing the surface of a prism these different prop-

agation angles would be responsible not only for chromatic aberrations of the typically

broad-spectral fluorescence but the slightly different refraction for each angle would

additionally lead to a distortion of the image. In case of the lineRESOLFT microscope,

the use of non-collimated illumination beams add to the complications. The cylindrical

lens placed before the beam rotator changes the propagation direction of the rays, fo-

cussing them in a line. Thus a spatially varying refraction at the air-glass interface of a

prism beam rotator would then lead to astigmatism. Additionally, the lineRESOLFT

microscope requires the preservation of the linear polarization of the deactivation beam.

That is why we opted for a mirror arrangement for the beam rotation. With the

K-mirror, as used in modern telescopes55, we were able to aberration-free rotate the

intensity pattern, phase and polarization of the beams collinearly. The fluorescence

was sent back the same path. By passing the rotator in the reverse direction it was

de-rotated back to hit the same position on the camera, independent of the rotation.

This was the key to achieve high read-out rates up to 2 kHz.

2.2.2 Theory of the K-mirror

The name K-mirror is derived from the shape of the mutual positions of the three

mirrors. Their configuration is depicted in Fig. 2.6a. An image passing it gets inverted,

and rotated double the rotation of the K-mirror.

The centers of the mirrors form a plane, which can be rotated to any angle β. Their

surfaces are perpendicular to that plane. A ray entering the K-mirror collinear to the

axis of rotation hits the first mirror M1 in P0 and gets reflected to the mirror M2 whose

surface is parallel to the axis of rotation. From that surface it gets reflected back to

the third mirror M3 which reflects it out of the K-mirror. The angles of M1 and M3

are chosen so that the exiting ray is collinear with the entering one. This determines

the length l and height h of the K-mirror.

Let ~P0 = (0, 0)T be in the center of the coordinate system. A second ray enters

the K-mirror under a small angle ~ε = (εx, εy)
T , with εx and εy being the projections

to the plane defined by the axis of rotation and the x- or y-axis, respectively. It hits

M1 offset in ~P = (x, y)T . Let us further assume that M3 has a small angular shift of

~δ = (δx, δy)
T , with δx and δy being the projections into the rotated K-mirror plane,

representing an internal angular misalignment of the whole K-mirror. Replacing the

21
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Figure 2.6: K-mirror - (a) Detailed description of the K-mirror arrangement and possible

misalignment deviations. An image passing the K-mirror gets rotated and inverted along

the y-axis. Rotating the K-mirror by β results in an image rotation of 2β. (b) Under

continuous rotation a misaligned K-mirror leads to characteristic trajectories of the lateral

shift of the outgoing ray with respect to the incoming ray.

offset of M3 by a misalignment of M1 or M2 is straightforward. With these deviations

the second ray is reflected differently from the first (optimal) ray. Its exit will not be

identical with the axis of rotation. It will hit M3 by an offset ~d and exit under an angle

~α. With that we derive the following equation for the spatial exit offset:

~d = MR2β · ~P︸ ︷︷ ︸
rotation and inversion

+ R−1
β ARβ · ~ε︸ ︷︷ ︸

rotation axis tilt

+ 2hR−1
β · ~δ︸ ︷︷ ︸

internal misalignment

(2.2)

with the rotation matrix

Rβ =

(
cosβ − sinβ
sinβ cosβ

)
,

the mirror matrix

M =

(
1 0
0 −1

)
and the alignment matrix

A =

(√
4h2 + l2 0

0 2h

)
.

The displacement consists of three terms. The first term describes the feature of

rotating the beam, while the other two are deviations caused by a misalignment of the
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2.2 Beam rotation

K-mirror.

The first term reveals that an image passing the K-mirror gets rotated by 2β. This

constitutes the ability of the K-mirror to rotate the beam. Additionally the image gets

inverted along one axis. When working with elliptically polarized beams, this leads to

a reversing in handedness, optionally resolved by adding a half-wave plate.

The second term is caused by the axis of rotation not being parallel to the propaga-

tion of the beam. A decomposition of this angular deviation in two parts, one parallel

to the plane of the K-mirror and the other one orthogonal to it, reveals that the dis-

placement is the product of each part with its corresponding travel distance through

the K-mirror.

The third term represents an internal misalignment of the mirrors. Here the dis-

placement does not depend on the position or angle of the incoming ray. Instead

a constant displacement proportional to the height h of the mirror and the internal

angular misalignment is added, its vectorial composition depending on the angle of

rotation.

2.2.3 Alignment of the K-mirror

Passing a ray under continuous rotation of the K-mirror and monitoring the displace-

ment at its exit results in characteristic curves, called limaçons Fig. 2.6b.

A limaçon56, the special case of an epitrochoid, is produced by tracing a point fixed

to a circular wheel as the wheel rolls along on top of another circular wheel with the

same radius. In case of the K-mirror, the two “wheels” are introduced by the internal

mirror misalignment rotating on top of the external lateral or angular misalignment of

the rotation axis with respect to the ray axis.

The lineRESOLFT microscope requires the lateral shift of the outgoing beam with

respect to the incoming beam to be smaller than 5% of the aperture of the objective (≈
280 µm) and the parallelism to be better than 1 mrad (≈ 2 µm shift in sample space).

The restrictions arise from the necessity to preserve the zero of the deactivation PSF

and the field of view for multiple angles.

For matching these tight requirements, we developed a protocol for aligning the

K-mirror. Two position sensitive diodes (PSDs) tracked the trace of a ray sent through

the rotating K-mirror. Knowing the distances of the PSDs from the K-mirror, we could

calculate the curves of the lateral and angular displacements at the exit mirror. With
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a self-written Matlab code we were able to fit the measured curve and with help of

Eq. 2.2 derived the (mis)alignment parameters ~P , ~ε and ~δ.

Reducing the fitting time to below one second, enabled tracking of the ray trajec-

tory while simultaneously deriving the parameters. This allowed us to continuously

minimize the misalignment. The necessary degrees of freedom were provided by plac-

ing the mirrors on kinematic mounts and mounting the whole K-mirror on a 4-axes

stage, consisting of a 2-axes tip-tilt stage (Edmund Optics) and a 2-axes lateral stage

(Newport).

Because for continuous rotation Eq. 2.2 leads to curves that are ambiguous with

respect to the alignment parameters, we introduced known misalignments in the be-

ginning of the alignment process. Combining the measured curves with that a priori

knowledge led to definite parameters ~P , ~ε and ~δ, which then were minimized.

With the help of this alignment procedure we pushed down the shifts for a full turn

of the K-mirror to less than 50 µm in the lateral and less than 0.1 mrad (≈ 2′) in the

angular direction (Fig. 2.7). Considering that for the lineRESOLFT microscope a half

turn of the PSF covers the full sample space, means that already a quarter of a turn of

the K-mirror is sufficient and yields even smaller deviations during the imaging process.

Repeating the measurements after three days revealed no significant change in align-

ment.

Exceeding the requirements for the rotation by a wide margin and confirming the

stability towards drift, the K-mirror is a robust and reliable tool for aberration-free

rotation of the beam, polarization and phase.
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2.2 Beam rotation

Figure 2.7: Residual deviations after full alignment - Lateral (a,b) and angular

(c,d) residual shift for continuous rotation after full alignment. Measuring the identical

configuration 72 h later confirmed the time stability of the K-mirror (b,d).

25



2. EXPERIMENTAL METHODS AND TECHNIQUES

26



Chapter 3

Performance of the microscope

3.1 Optical sectioning strength

Besides resolving power, the ability to block out of focus light is a typical measure of

performance in a microscope. In a confocal microscope this is achieved by illuminating

the sample with a point source and introducing a pinhole in front of the detector, letting

only pass the light originated in focus. Other methods such as multiphoton excitation

microscopy57,58, 4Pi microscopy2,59, total internal reflection fluorescence (TIRF) mi-

croscopy60,61 or selective plane illumination microscopy (SPIM, also known as Light

Sheet Microscopy)62 achieve improved optical sectioning by confining the excitation of

molecules to the focal plane.

The extended illumination pattern in one direction in the lineRESOLFT microscope

boosts the imaging speed significantly but comes at the cost of exciting a broader area,

in and out of focus. Detecting the fluorescence with single pixelated line detector would

therefore reduce the optical sectioning strength compared to the confocal case. This can

be overcome by detecting with multiple line detectors, parallel to each other. A detector

shifted away laterally from the central illumination maximum would not detect the in

focus light anymore but still register the fluorescence from out of focus illumination.

Subtracting this fluorescence from the signal of the central detector gives rise to an

improvement in optical sectioning strength from z to z3. For the case of objectives with

low numerical aperture this has been demonstrated before63. We extended this method

to high NA objectives and employed it in the lineRESOLFT microscope featuring

multiple illumination lines.
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In this chapter the improved sectioning strength is demonstrated in detail and it is

shown that the suppression of far from focus signal even surpasses the confocal case.

3.1.1 Derivation of the infinite plane response

While the resolving power of a microscope is characterized by the response to a point,

optical sectioning strength is measured by the response to an infinitely thin fluorescent

sheet parallel to the optical axis, called infinite plane response (IPR) or z response.

Mathematically this thin layer is expressed by a Dirac delta function

Obj(x, y, z) = δ(z − z̃) =

{
+∞, z = z̃
0, otherwise

The detection point spread function of a small pixel is approximated by a two dimen-

sional Gaussian

Det(x, y, z) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
, with σ = σ(z) (3.1)

as well as the line excitation extended in the x-direction

Exc(x, y, z) =
I0

2πσσext
exp

(
− x2

2σ2
ext

− y2

2σ2

)
, with σ0 = σ(0)� σext(0). (3.2)

For simplification a negligible Stokes shift is assumed (λExc ≈ λDet).
The broadening of the PSF for defocus is64

σ(z) = σ0

√
1 +

(
zλ

4πσ2
0

)2

. (3.3)

Image formation in a fluorescence microscope is a convolution (⊗) of the detection with

the excited object. Assuming linear, unsaturated excitation yields:

Image = (Object · Excitation)⊗Detection

For a detector centered in the corresponding sample coordinates r = (x0, y0, z0) placed

in focus z0 = 0, the infinite plane response IPR is thus

IPR(x0, y0, 0) =
I0

4π2σ3σext

∫∫
R2

exp

(
− x2

2σ2
ext

− y2 + (x− x0)2 + (y − y0)2

2σ2

)
dx dy

which can be simplified to

IPR(x0, y0, 0) =
I0

σ
√

2(σ2 + σ2
ext)
· exp

(
− x2

0

2(σ2 + σ2
ext)
− y2

0

4σ2

)
. (3.4)
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Now the sectioning strength can be derived. Considering the confocal case, where

σext = σ, the intensity for the central detector is

IPRconf ∝ σ−2 ≈ const . · z̃−2, for |z̃| ≥ 4λ.

In case of the line microscope, according to Eq. 3.3 σ2 + σ2
ext can be treated as a

constant for the relevant region |z̃| ≤ 104λ . The intensity for a detector in the central

line (y0 = 0) is

IPRline ∝ σ−1 ≈ const . · z̃−1, for |z̃| ≥ 4λ.

Summarizing this equations in the context of experimental conditions leads to the

conclusion that the residual intensity originating from a defocused infinitely thin fluo-

rescent sheet drops with defocus−2 in the confocal case. This strong decline is partly

lost in the line microscope. Here the drop follows the defocus−1. Extending the exci-

tation to all directions leads to widefield illumination where the discrimination is lost

completely. Thus for a conventional widefield microscope holds:

IPRwidefield = const .

3.1.2 Differential detection for the line microscope

To obtain an improved sectioned image a differential detection (DD) is used. For this,

the signal from a detector shifted ∆y orthogonal to the central line gets subtracted,

hence the name differential detection. This results in a plane response of

IPRline,DD = IPR(x0, 0, 0)− IPR(x0,∆y, 0)

∝ σ−1
[
1− exp

(
− (∆y)2

4σ2

)] (3.5)

Taylor expansion leads to

IPRline,DD ≈ const . · z̃−3, for |z̃| ≥ 4λ. (3.6)

The differential detection strongly suppresses far from focus light. The residual detected

intensity drops with defocus−3, resulting in a superior optical sectioning strength com-

pared to the confocal microscope.

Some consideration must be given to choosing the shift ∆y of the second detector.

The smaller the shift the better the optical sectioning close to the focal plane. Never-

theless, it is undesirable to lose signal that originated from in focus specimen, resulting
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in a reduced signal to noise ratio (SNR). Additionally, a bright structure located close

to the shifted detector could negate the detection of a dimmer structure located close

to the central detector, potentially resulting in negative values. The in-focus signal

drop orthogonal to the illumination line can be estimated by Eq. 3.2:

Signal in−focus ∝ exp

(
−4 ln 2

y2

FWHM 2

)
, (3.7)

corresponding to a signal drop below 5% for y ≥ FWHM .

In conclusion, placing the differential detector 2 · FWHM apart from the central

detector limits negative values to 5% of the maximum count. Averaging the signal from

the differential detector with a third detector, shifted the opposite direction (−∆y),

does further reduce the negative values by a factor of ≈ 2.

Because of the reduced FWHM of the effective illumination in RESOLFT mi-

croscopy, we regularly targeted for a shift equal to a drop below 10−3. Possible re-

maining negative values were set to zero.

3.1.3 Experimental demonstration

Probing the sectioning strength was realized by measuring the fluorescence intensity

of a thin supported lipid bilayer (<10 nm) labeled with Oregon Green. By detecting

with a camera array of 16 lines, conventional and differential detection were recorded

simultaneously, eliminating the possibility of artefacts.

Fig. 3.1 shows the obtained dependency of the normalized intensity over defocus.

Experimental data is compared to the theoretical behavior of the widefield, line and

confocal microscope. The theoretical curves were calculated using Matlab programs

combined with in-house developed routines for calculating the illumination and detec-

tion PSFs. The finite size of the camera pixel was taken into account.

The suppression of out of focus light matches the theoretical predictions. Confining

the illumination to a smaller focal area improves optical sectioning. While line illumi-

nation improves the widefield microscope, it lags behind the point source illumination

of the confocal microscope. Employing the differential detection extricates the line

microscope from this limitation, improving the sectioning strength over its confocal

counterpart. The steeper decline suppresses most of out of focus light, resulting in an

improved contrast in thick samples.
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3.1 Optical sectioning strength

Figure 3.1: Infinite plane response - The plots demonstrate the optical sectioning

strength by showing the intensity drop when defocussing a thin fluorescent sheet. Left:

linear scales, Right: double logarithmic. Comparing widefield, line and confocal excita-

tion yields an asymptotic defocus dependence in the order of magnitude of 0, -1 and -2,

respectively. Applying the differential detection (DD) to the line microscope improves

the sectioning strength significantly, suppressing out of focus light even more than in the

confocal microscope.
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The small deviation between experimental data and the theoretical model can be

attributed to imperfect experimental conditions like small aberrations of the PSFs. As

signal drops in regions of very low signal-to-noise ratios, it gets impossible to discrimi-

nate noise from signal.

An asymptotic decline to defocus−2.9 for the differential detection matches the low

NA behavior reported before63. Demonstrating that this steep decline is not limited by

the NA allowed us to merge the improved sectioning strength of differential detection

with the much better resolution of high NA objectives.

3.1.4 Differential detection lineRESOLFT in living cells

The preceding considerations focussed on a common line microscope, with the exci-

tation being the only illumination. As was shown, line excitation already results in

a strong sectioning. The lineRESOLFT case, using three line illuminations, is thus

expected to at least match this behavior. In order to demonstrate the compatibility of

the differential detection (DD) with the lineRESOLFT microscope, a three-dimensional

image of a living cell (HeLa) was acquired. Fig. 3.2 displays an xz-slice through the

cell, visualizing a part of the cytoskeleton, being a dense filamentous network. Ap-

plying the differential detection to the lineRESOLFT microscope greatly improves the

axial sectioning. Comparing conventional and differential detection proves the strong

reduction of out of focus light detection.

While differential detection does not increase the cut-off frequency of the micro-

scope’s optical transfer function but solely enhances contrast, it still boosts the ability

to discriminate structures axially close to each other under experimental conditions,

i.e. with finite signal-to-noise ratios Fig. 3.2c. Defining resolution as the ability to

discriminate structures close to each other, differential detection leads to an increased

axial resolution in raw data.

In conclusion, lineRESOLFT DD is a highly competitive tool for measuring thick

samples, providing both parallelization and confocality. By subtracting out of focus

light, background gets suppressed resulting in a clear signal originated in-focus. Three-

dimensional imaging shows axial resolution comparable to a confocal microscope while

having a better optical sectioning capability.
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Figure 3.2: Optical sectioning in the lineRESOLFT microscope - An xz-slice of

a living HeLa cell expressing keratin-19−rsEGFP(N205S) imaged in lineRESOLFT mode

with conventional (a) and differential (b) detection (DD). The slice is retrieved from a

full xyz-data stack of 43.52 µm x 18 µm x 14 µm by averaging over 180 nm along y. When

applying the differential detection a strong improvement in signal-to-background facilitates

the discrimination of otherwise unresolved structures (c). The arrows in a and b indicate

the positions and widths of the 8-pixel wide average line profiles in c. Scale bar: 5 µm
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Using unsaturated activation and excitation would further enhance the sectioning

strength in RESOLFT. If fluorescence requires two steps, activation and excitation, it

essentially becomes a two-photon process, without need to double the wavelength. This

increases axial resolution and reduces out-of-focus fluorescence. For bright samples

the unsaturated activation and excitation resulting in a reduced signal is a valuable

trade-off in exchange for an additional gain in sectioning strength. Deconvolution,

using the information of several parallel camera lines, would further render subtraction

unnecessary and strengthen the optical sectioning even more. However, detailed a priori

knowledge, like the shape of the effective PSF, is necessary, making deconvolution less

robust.

3.2 Resolving power in the focal plane

3.2.1 Resolution enhancement along the scanning direction

The resolving power of the lineRESOLFT microscope is best verified when imaging

under realistic conditions, i.e. in living cells or tissue. Inherently, the line PSF best

suits imaging of thin, linear filamentous structures.

Keratin, a family of fibrous structural proteins, forms intermediate filaments, one

of the three main kinds of filaments that compose the cytoskeleton of eukaryotic cells

(Fig. 3.3). A living mammalian cell, kidney epithel cell of Potorous tridactylis (PtK2),

was imaged multiple times with the lineRESOLFT microscope. A broadened excitation

as well as saturated activation and excitation resembled conventional widefield imaging

(Fig. 3.3a). Turning on the deactivation beam enabled subdiffraction resolution along

the vertical scan direction (Fig. 3.3b). Clearly, filaments that are not resolved in con-

ventional microscopy become separable when employing lineRESOLFT (Fig. 3.3c,d).

Displayed are raw data without any correction or post-processing. A single scan al-

lowed imaging a large field of view (FOV). Over the full horizontal extent of 57 µm the

line PSF provides homogeneous illumination. Using saturated activation and excitation

prevents the fluorescence intensity to drop off at the edges, maximizing it over the full

FOV. To prove that the resolution enhancement is observed over the whole FOV, line

profiles of distant filaments are displayed (Fig. 3.3d,i), showing similar widths < 60 nm

(FWHM).
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3.2 Resolving power in the focal plane

Figure 3.3: Resolution enhancement along the scanning direction - A living mam-

malian (PtK2) cell expressing keratin-19−rsEGFP imaged in widefield (a) and scanned

vertically in the lineRESOLFT mode (b). The total image acquisition time was 30 s for

a field of view of 57µm x 20 µm. (c,d) A magnified view demonstrating the improved

resolution. The two-pixel averaged line profile of d is shown in j. (e-i) Separate views

of the indicated area when increasing the intensity of the deactivation beam (ID). The

corresponding line profiles of a thin filament (denoted by arrow) point out the narrowing

of the microscope’s PSF. The dependence of its FWHM on ID is plotted in k. Scale bars:

1 µm, OG: overglow
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3. PERFORMANCE OF THE MICROSCOPE

To determine the required deactivation intensity ID for a significant resolution en-

hancement, the power of the deactivation beam was varied and consecutive images were

recorded. With a constant irradiation time of 10 ms, increasing ID led to an improved

resolution (Fig. 3.3e-i). Intensities of a few kW/cm2 were sufficient to reach a resolution

below 60 nm. The dependency of the resolution on ID is depicted in Fig. 3.3k. With

increasing ID, the width of the effective PSF asymptotically approaches zero, follow-

ing the relation FWHM→ 1/
√
ID. Not surprisingly, an identical asymptotic behavior

is found in STED microscopy65, where similar switching kinetics apply, although on

faster time scales. While all novel nanoscopy concepts promise unlimited resolution

enhancement in theory, the attainable resolution is restricted experimentally. Practi-

cal limitations include, among others, non-ideal switching kinetics of the fluorophores,

an unwanted residual intensity at the central “zero” of the deactivation PSF reducing

signal to noise, and photobleaching. A special type of photobleaching displayed by

rsFPs is the so called switching fatigue, addressing the inability to activate molecules

beyond a certain amount of cycles. For lineRESOLFT with its highly efficient use of the

switching cycles this is just a minor issue. In fact, after repeated imaging of identical

FOVs, no photodamage was observed and photobleaching was very low (Fig. 3.3e-i).

The possibility to verify and optimize the quality of the zero of the deactivation (see

Chapter 2), a conceptual strength of the lineRESOLFT setup, guarantees a minimal

residual deactivation intensity. Thus, the maximum photon count when applying the

deactivation got reduced to just 50%, mainly attributed to the reduced spatial extent

of the effective excitation PSF.

Reaching optimal imaging performance is not just a matter of the microscope and

its conception, the properties of the fluorophores are equally important. Non-optimal

switching kinetics, like cross-talk between activation and deactivation, may introduce

a non-switchable background contribution. This leads to a broadening of the effective

PSF impairing resolution improvement. Another critical point is the emitted photons

per switching cycle. With more photons a higher signal-to-noise is reached, facilitating

the discrimination of thin and dark filaments. To exclude limiting effects originating

from the fluorophores and to exemplify the full capacity of the lineRESOLFT micro-

scope, several reversible switchable proteins were tested. Additionally, multiple struc-

tures and cell types were targeted. Table 3.1 displays the variants used. Numerous
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3.2 Resolving power in the focal plane

different combinations were imaged and subdiffraction resolution accomplished for all

tested combinations. This confirms the versatility of the method.

Table 3.1: Versatility of lineRESOLFT imaging

Subdiffraction resolution achieved for:

rsFPs rsEGFP, rsEGFP(N205S), Dronpa-M159T

Targets keratin-19, lifeact, homer, cytosol

Cells PtK2, HeLa, neurons

For best imaging performance a bright signal is desirable. The number of emitted

photons per switching cycle is limited, mainly due to the simultaneous deactivation

during excitation. Thus, using slowly deactivating rsFPs which remain activated for

longer periods, will increase signal-to-noise. rsEGFP(N205S), switching 3-fold slower

compared to rsEGFP, therefore provides higher signal levels43. It facilitates higher

resolution by enabling imaging of thin, dark filaments. This is illustrated in Fig. 3.4,

which shows imaging of keratin filaments in a living HeLa cell.

First, only the two line-shaped illumination (activation and excitation) patterns

were scanned vertically (Fig. 3.4a) to resemble a semi-confocal microscope. A second

scan in lineRESOLFT mode, featuring the additional double-line-shaped deactivation

pattern, resulted in superior resolution (Fig. 3.4b), revealing much more structural de-

tails. Since a cell is a three-dimensional object, suppressing out-of-focus background

results in a better image quality. Thus, imaging the axially dense keratin network,

covering most of the cell, profits from axial sectioning. Differential detection (DD)

provides this improved axial discrimination, leading to better contrast. A compari-

son between semi-confocal and lineRESOLFT imaging (Fig. 3.4c,d) demonstrates the

excellent resolving capability of the latter.

Comparing the resolutions reached for all tested rsFPs, it can be concluded that

an rsFP facilitating imaging with a higher signal-to-noise allows higher resolution. In

RESOLFT microscopy deactivation confines fluorescing molecules to an area much

smaller than a diffraction-limited spot. The size of that area determines the achievable

resolution. While increasing the deactivation intensity reduces the area of activated

molecules and thus increases resolution, less molecules contribute to the fluorescence

signal. However, experimentally a certain minimum signal level is required in order

to be distinguishable from noise. Thus, depending on the brightness of the molecules,
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3. PERFORMANCE OF THE MICROSCOPE

Figure 3.4: LineRESOLFT imaging with a more than 4-fold resolution enhance-

ment - A living mammalian (HeLa) cell expressing keratin-19−rsEGFP(N205S) scanned

vertically in the lineRESOLFT microscope without (a) and with (b) the deactivation pat-

tern. Differential detection (DD) enhances contrast for areas with axially dense structures.

(c,d) The magnified views of the indicated region demonstrate a superior resolution im-

provement. (e) The 2-pixel wide average line profile along the arrows proves a more than

4-fold resolution enhancement of the lineRESOLFT microscope compared to the diffrac-

tion limited (confocal) counterpart. While the RESOLFT image displays peaks fitted to

Gaussians with individual FWHM of 127 nm, 83 nm and 34 nm, for the confocal case an

identification of single peaks is impossible. Scale bars: 10µm (a,b) and 1µm (c,d)
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3.2 Resolving power in the focal plane

decreasing the area of fluorescing molecules beyond a certain threshold will not result

in a higher resolution but a loss of signal. Compared to an rsFP with faster switching,

rsEGFP(205S) requires less activated molecules to maintain a sufficient signal level,

enabling imaging with higher resolution. In addition it makes imaging more robust

towards a suboptimal quality of the zero (caused by aberrations, switching cross-talk,

etc.).

Precise assessment of the resolving power is complicated since in an image the

width of the structure depends on both the structure size of the object (the sample),

as well as on the effective PSF of the microscope. Measuring the imaged FWHM of

thin filaments is an established estimate for resolution. Since for the figures presented

in this section resolution improvement was only targeted along the vertical direction,

horizontal filaments are used to assess resolving power.

In Fig. 3.4c,d three horizontal filaments are clearly separated under RESOLFT

imaging while undistinguishable in the confocal case. A line profile along the indicated

arrows was taken (Fig. 3.4e). To avoid artifacts a two pixel wide mean was applied,

minimizing the contribution of noise. The fit to three Gaussian peaks results in individ-

ual FWHM down to 34 nm. According to the Nyquist-Shannon sampling theorem51, a

signal containing no higher frequency than f , is completely determined by sampling at

points spaced (2f)−1. For the presented images a scan step size of 20 nm was chosen.

Thus the lineRESOLFT microscope enabled a resolution enhancement down to 40 nm,

corresponding to a more than 4.5-fold gain over the Abbe limit (≈ 185 nm, see Eq. 2.1).

To test the reproducibility of the results, several living cells were imaged. A selection

is displayed in Fig. 3.5. LineRESOLFT imaging was performed by scanning the effective

line PSF along the vertical direction, yielding a field of view of 42 x 19 µm2 which is

partly displayed. No post-processing, for example subtraction of out of focus signal or

deconvolution, of the presented raw data was performed. Every image stems from a

different cell.

Thin filaments could be identified regularly (Fig. 3.5a-c). Artifacts caused by dis-

ruptive movements of the piezo-scanner can be excluded. This would also be visible

along the whole line and not just for the extent of the thin filament. Two pixel-wide

average line profiles allow for a quantification of the resolving power (Fig. 3.5d-f). Gaus-

sian fits reveal structure width around 40 nm. This confirms the excellent subdiffraction

resolution of the lineRESOLFT microscope. The raw data images additionally prove
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Figure 3.5: Examples of subdiffraction lineRESOLFT imaging - (a-c) Three dif-

ferent HeLa cells expressing keratin-19−rsEGFP(N205S) imaged with lineRESOLFT. Raw

data of a vertical scan without differential detection is shown. (d-e) 2-pixel wide average

line profile along the indicated arrows fitted to Gaussian. A reproducible resolution down

to 40 nm is demonstrated. The peaks in (f) feature individual FWHM of 82 nm and 47 nm.

Scale bars: 1µm
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that the differential detection as well as deconvolution are not necessary to reach high

resolution.

A robust measure of performance is the ability to discriminate close filaments.

Fig. 3.5c,f shows an image where two filaments in close proximity can be separated.

With the individual widths of the filaments being 82 nm and 47 nm, a peak to peak

distance of 87 nm is resolved, well beyond Abbe’s diffraction limit.

In conclusion, here we demonstrated parallelized subdiffraction imaging along one

direction with lineRESOLFT. Living cells were repeatedly imaged with a reproducible

resolution of ∼40 nm. With point scanning RESOLFT typically reaching 35 - 50 nm

resolution38–40, this proves that the focal-plane resolution is neither theoretically, nor

experimentally impaired by our parallelization scheme. The presented method was ap-

plied to a variety of different proteins, structures and cells. The versatility allows tuning

the expression to meet specific biological problems, e. g. targeting for highest resolution

or fastest image acquisition. Structural details close to each other and orthogonal to

the line-shaped illumination were resolved. The following section will show how the

excellent resolution improvement along the scanning direction is used to retrieve an

image with spatially quasi-uniform subdiffraction resolution.

3.2.2 Rotation enables spatially quasi-isotropic resolution enhance-

ment

The acquisition of several one-directional lineRESOLFT scans with varying scanning di-

rections allows the combination into a final image which exhibits spatially quasi-uniform

resolution. As explained in Section 2.1, each individual scan provides extended subd-

iffractional information along the scanning direction. A post-processing step including

the mutual alignment (superimposition) and subsequent combined deconvolution is nec-

essary. In this section the realization of this post-processing is discussed. First, the

experimental accuracy of the superimposition will be assessed and second, we explain

the combined deconvolution leading to an image of isotropic subdiffraction resolution.

Accuracy of the image superimposition

Of major practical relevance is the ability to superimpose subsequent lineRESOLFT

scans acquired with varying oriented line-shaped illuminations. As an example, in order

to target for a resolution of ∼50 nm, the superimposition accuracy should be below
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Figure 3.6: Co-localization precision of multiple orientations - (a) Schematic illus-

tration of determining the co-localization: First, fluorescent nanobeads are consecutively

imaged under varying orientations of the line-shaped illumination. Subsequent combination

to a single image and localization of each bead position allows to investigate the accuracy

of the rotation. (b-d) Statistics of the displacements of the apparent from the actual bead

positions. While the displacements without rotation are mainly caused by Poisson noise

(b), the (dis)ability to mutually align individual images within a target area additionally

contributes to the error in co-localization when using multiple orientations (c,d)

this limit, preferably at least by a factor of two. For this task, home-built MATLAB

routines were used to mutually align subsequent lineRESOLFT scans. An algorithm

based on maximizing the cross-correlation determined an affine transformation for each

individual scan, which accounts for rotation, shifting, scaling and shearing to optimize

the overlap. These affine transformations co-align all subsequent scans with the first

scan.

To test the accuracy of the setup and the algorithm, fluorescent nanobeads were

imaged with ten different orientations of the line-shaped illumination (Fig. 3.6).

For each scan the algorithm calculated an affine transformation which provided best

overlap with the first one. Subsequently, N > 50 beads, contained in all scans, were

localized within a central area of 8x8 µm2 or 18x18 µm2. The localization precision only

depends on the number of photons66 (Fig. 3.6b). With rotation the apparent bead po-
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3.2 Resolving power in the focal plane

sitions in the 10 scans additionally fluctuate around the actual (mean) position. The

distribution of all 10N displacements characterizes the accuracy of the image registra-

tion (Fig. 3.6c,d). Resulting mean distances below 20 nm provide an upper boundary

for the inaccuracy of the rotation. In reality, the rotation is more accurate because the

bead localization works suboptimally for dim or non-spherical beads. Additionally, in

rare cases it is difficult to determine the center of a bead if two beads happen to be close

together (well below the diffraction limit). This inefficiencies when localizing beads pro-

duce outliners in the presented statistics. They are not caused by the algorithm used to

optimize the affine transformations, which works via cross-correlation, but caused by

the subsequent localization algorithm. Since the localization algorithm was only used

for testing purposes, we conclude that in principle the rotation scheme allows an image

registration of an accuracy better than 20 nm. The accuracy of the actual calculated

co-alignment depends on the performance the implemented algorithm. Unfortunately,

a direct assessment of the accuracy of the cross-correlation algorithm when measuring

cells is not possible. However, individual inspection of co-aligned scans of cells suggest

an accuracy comparable to the presented bead-based tests.

Combined deconvolution retrieves isotropic resolution

Once the affine transformations to superimpose individual, one-directionally scanned

images are determined, a subsequent combined deconvolution step is necessary. In this

step the structural details of the multiple scans of the same object but with differ-

ent scanning directions get combined to render one final image exhibiting the highest

information content.

Here we used an iterative, nonlinear image deconvolution algorithm based on Richard-

son67 and Lucy68. A maximum likelihood estimation using different (rotated) effec-

tive PSFs for each available image can reconstructs an object that best represents all

recorded scans69,70. In short, the method averages all update factors resulting from sin-

gle images using their specific PSFs on a common estimate of the object. Applying the

averaged update factor provides the estimate used for the next iteration. The process

was stopped after 40 iterations. The algorithm has the advantage of constraining the

object to non-negative values, corresponding to the physical reality that the dye density

is non-negative. Similar iterative nonlinear methods exist, having been “routinely used

with success by biologists”71.
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Fig. 3.7 displays the resulting object (living HeLa cell expressing keratin-19−rsEGFP-

(N205S)) deconvolved from four scans. For each subsequent scan the line-shaped illu-

mination was rotated by 45°. To compare the results an identical procedure was applied

to line confocal and lineRESOLFT imaging of the same field of view. A resolution en-

hancement for each individual lineRESOLFT scan was observed (not displayed here).

The deconvolved final image clearly features an improved resolution along all directions

(Fig. 3.7a). Thin keratin filaments and a substantially higher level of detail are visible

− for example along vertical, horizontal as well as diagonal directions − whereas the

confocal combined deconvolution is blurred. To exemplify the enhanced separation of

filaments a magnified view is provided (Fig. 3.7b,c). To assure that the appearance of

separated filaments is not an artifact of the superimposition and/or deconvolution, we

identified identical distinct filaments in the raw data. It was confirmed that the de-

convolution only combines structural information and resolution enhancement already

present in the original (raw) data.

Noise within the raw data is a challenge for every deconvolution algorithm. A

deconvolution could mistake noisy pixel values for real structures. In the deconvolved

RESOLFT image this behaviour can be partly observed. A priori knowledge like a

constraint to connected filaments, corresponding to an absence of point-like objects,

would improve contrast further72. However, in order to make the deconvolution more

robust, no such extra assumptions were used.

Evaluating the resolution of an optical system is relative straightforward for raw

data, where FWHM of the blurred objects are determined. For deconvolved data no

such simple criterion exists. A point-like object restored from a blurred image can

be confined to a substantially smaller volume73,74. Thus, a more general measure for

resolution is the capability to “sufficiently” distinguish details. The precise definition

of what constitutes “sufficiently” varies75. The Sparrow criterion defines two objects

as just resolved when the dip between them just disappears, while the well-known

Rayleigh criterion requires the dip to be at least ≈ 26% in contrast76. This theoretical

simple task is experimentally demanding, because the ability to find thin and bright

structures in close proximity strongly depends on the sample.

Figure 3.7d quantifies the distance between two filaments which are resolved. A 10-

pixel-wide average line profile is fitted to a sum of two Gaussians with individual FWHM

of 100 nm and 87 nm. The peaks with a separation of 84 nm can be distinguished.
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3.2 Resolving power in the focal plane

Figure 3.7: Deconvolved images with quasi-isotropic resolution - (a) A deconvo-

lution of four scans with different orientations of the line-shaped illumination. RESOLFT

imaging provides a strong resolution enhancement in any direction. (b,c) Magnified views

of the indicated area. A direct comparison reveals much more structural information for

the RESOLFT mode. (d) A 10-pixel-average line profile demonstrates that close filaments

which remain unresolved in confocal mode, get separated when imaging in RESOLFT

mode. The fit to a sum of two Gaussians results in a peak to peak distance of ∼84 nm.

Pixel size: 20 x 20 nm2, Scale bars: 5 µm (top), 1µm (bottom)
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In summary, this section illustrated how the superior subdiffraction resolution of

single lineRESOLFT scans get extended to all directions when rotating the line pat-

tern. The approach renders quasi-isotropic resolution in the focal plane. While more

directions will lead to a more homogeneously uniform resolution, practical consider-

ations suggest a trade-off between imaging speed, usability and the level of isotropy.

Here we demonstrated that four rotations lead to a resolution well beyond the diffrac-

tion barrier along all lateral directions, experimentally confirming previously theoretical

considerations (see Section 2.1).
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Chapter 4

Biological application

4.1 Dynamics in living brain slices

Dendritic spines, the tiny outgrowths on the dendrites of neurons, play a key role in

brain activity. They form synapses with axons of other neurons thereby establishing

the inter-connectivity of neurons. They are regarded to be central to learning and

memory. Therefore precise determination of their morphology and temporal variation

are essential to understand brain function. Imaging the amount, shape and motility

of spines gives valuable insight to the neurosciences77. This requires novel nanoscopy

methods to non-invasively resolve the fine details of synapses30.

While neuronal activity is best studied in vivo, experimental realization is very

demanding31 (need to anesthetize, breathing introduces vibrations, etc.). Imaging

organotypical brain slices simplifies the experiment while preserving the natural in-

terconnectivity, function and environment of neurons. The advantage of a minimal

disruption of tissue for brain slices is evident when put into contrast with the prepa-

ration of neurons in culture where initially, all natural interconnections between single

neurons are lost, with only a partial regrowth after some time. Individual neurons only

retain their functionality, but the neuronal network is lost.

Insights to brain functions requires studies of its dynamics. Researching the pro-

cessing of signals by monitoring organization and interconnection of neurons requires

the combination of non-invasive high resolution power with fast and low irradiation

image acquisition. Here we will show that the lineRESOLFT microscope is an out-

standing tool to tackle this challenging task.
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The dynamics of dendritic spines in a living hippocampal brain slice of newborn mice

is illustrated in Fig. 4.1. The widefield image visualizes Lifeact labelled F-actin inside

spines along a dendrite. An undesirable high background caused by excitation of out

of focus structures demonstrates an inherent disadvantage when imagining in widefield

mode (Fig. 4.1a). Because of the three-dimensional extent of the dendrites, and cells in

tissue in general, axial sectioning is required to discriminate between spines. The ax-

ial sectioning lineRESOLFT imaging combined with the differential detection enables

mapping the morphology of individual dendritic spines and filopodia (Fig. 4.1b,c). To

represent a 2D image of a three-dimensional organization, a maximum intensity projec-

tion over 5 µm in z is displayed. Color-coding the axial sections (see inlets) demonstrates

the quasi-confocality of the method, highlighting the non-planar orientation of spines.

To exemplify individual spine motility, magnified views are provided (Fig. 4.1i,ii). Pro-

jections over three planes were sufficient, because they already contained the spines

completely. Line profiles were extracted from non-projected raw data, clearly showing

resolution well beyond the diffraction limit (Fig. 4.1iii -v). The high resolution al-

lows a detailed visualization of close structural features. The thinnest structures with

FWHM ≈ 70 nm indicate that the resolving power is at least of that order. Increas-

ing the deactivation intensity between (Fig. 4.1b) and (Fig. 4.1c) did not result in the

observation of thinner structures. The spine necks can therefore be assumed to be at

least that large, which is in accordance with a typical variation in spine neck diameter

of 40 nm to 500 nm in CA1 pyramidal neurons78. Subdiffraction resolution addition-

ally allowed the observation of distinct ring-like actin substructures47,79 on some of the

spines (e. g. Fig. 4.1b,c, left edge).

The high dynamic range of the images is note-worthy: The ability to register low

to very high photon signals within a single scan, facilitates imaging of thin and dark

spines next to bright structures without saturating the detector.

To stimulate spontaneous neuronal activity, short-term treatment with an artifi-

cial cerebrospinal fluid containing elevated K+ and reduced Na+ levels was performed.

This high-K+ stimulation globally activates hippocampal neurons by depolarizing the

membrane potential and holding it close to 0 mV. This greatly increases the sponta-

neous activation of synapses throughout the entire brain slice and has been shown to

induce growth of new filopodia and dendritic spines, induce morphological changes of
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Figure 4.1: Stimulation of neurons in a living brain slice - A brain slice expressing

Lifeact−Dronpa-M159T fusion protein imaged in widefield (a) and scanned along y in

lineRESOLFT mode (b, c) for multiple z planes, before (a, b) and after (c) stimulation.

In (b, c) the axial maximum intensity projection of the recorded xyz-stack of 87µm x

19 µm x 5 µm (640 px x 950 px x 10 px) is shown. Total image acquisition time: 1.9 s (xy),

30 s (xyz). The inlets show an axial color-coding of the central volume. (i , ii) Magnified

views of the indicated regions under continuous lineRESOLFT imaging exemplify dendritic

spine dynamics pre- and post-stimulation. The projection of three planes, 0.5 µm apart

in z, is shown. The arrows denote moving structures. (iii -v) Line profiles of a single

z-section fitted with Gaussians. All images display raw data of differential detection using

normalized, nonlinear intensity scales to highlight thin filaments over bright, thick fibers

(SNR > 100). Scale bars: 10 µm (a-c) and 1µm (i ,ii).
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existing spines and increase other activities, such as microtubule invasion of dendritic

spines80,81. The frequency and duration of the stimulation (repetitive over stationary)

help determine whether or not the observed changes are merely transient or lasting in

nature.

Imaging identical fields of view pre- and post-treatment revealed movement of spines

and filopodia (see Fig. 4.1b,c), which substantiates their participation in signal process-

ing. With the low photobleaching of the lineRESOLFT method, long-term dynamics

could be monitored. Repetitive imaging, totalling 180 z-stacks, each recorded in 1.9 s,

illustrates spine motion for up to 30 minutes. No damage of the dendrite nor individual

spines was observed.

To investigate spine activity further, focussing more on short-term changes, we con-

tinuously imaged another area of the hippocampal CA1 region under lineRESOLFT

illumination for a single z-plane (see Fig. 4.2). An image acquisition time below 2 s

per frame facilitated the detection of rapid spine motility on the second time scale.

Recording 50 images in under 100 s without any visible damage emphasizes the low

phototoxicity of the method. RESOLFT features ultra-low intensities as well as a low

total light-dose. Line scanning additionally does not require a high amount of switching

cycles per frame which allowed continuous recording of a large area without needing

to wait for a replenishment of the fluorophores. Not surprisingly, the thin, less bright

spines show the highest motility. Since the lifeact label attaches to actin, reduced

brightness indicate a low incorporation of stabilizing actin filaments, making the spines

more flexible. While most of the thick and bright spines remain almost unchanged,

a rapid shifting of thin spines is observed. In the magnified view (Fig. 4.2i) the fast

dynamics of two spines in close proximity in the second time scale is resolved. Initially,

one of the dendritic spines, with a neck diameter of less than 120 nm, is covered by

another one. It becomes visible when they are shifting apart. Subdiffraction resolution

is essential to discriminate between the individual spines. Subsequently, the head gets

pulled back, closer to the dendrite. Spine activity was observed in several areas, see

Fig. 4.2ii. This highlights the novel opportunity to monitor fast dynamics of spines

activity with high-resolution for large fields of view.

A comparison between nanoscopy methods, which have been applied to imaging

spines in living brain slices or in vivo, clearly shows the vast increase in imaging speed.
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Figure 4.2: Fast dynamics of dendritic spines in a living brain slice - (a) Con-

tinuous lineRESOLFT imaging of a living brain slice expressing Lifeact−Dronpa-M159T

fusion. A central part of the total field of view of 87 µm x 19 µm (640 px x 950 px) is

displayed. Total image acquisition time: 1.9 s per frame. (i , ii) Magnified views of the

indicated regions in (a). Rapid spine motility on the second time scale can be observed. In

(i) high spatio-temporal resolution of the independent movement of two individual spines

is shown. Initially being in front of each other, they quickly shift apart. (b) Two pixel

average line profile of raw data, fitted to a sum of two Gaussians with individual FWHM

of 115 nm and 166 nm. The arrows in (ii) highlight rapidly shifting structures. All images

display raw data of differential detection using normalized, linear (i) or nonlinear (a, ii)

intensity scales to best highlight thin filaments over bright, thick fibers. Scale bars: 10 µm

(a) and 1µm (i ,ii).
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Previously reported acquisition times for subdiffraction imaging of spines for a field

of view of 20 x 20 µm2 ranged from >10 s using STED31,82 to >1 min using the low

light-dose RESOLFT47. PALM measurements imaged spine dynamics at time inter-

vals >25 s in fixed neurons79. The parallelization in lineRESOLFT allows to reduce

the imaging time to 2 s. In fact the acquisition time is independent of the length in

x, readily demonstrated by the extension of the FOV to 87 x 20 µm2. Recording an

equally sized image with point scanning RESOLFT would take at least 4 min. In the

presented experiments resolution enhancement was targeted only for the y-direction.

For isotropic super-resolution, the acquisition of m > 6 rotated images is necessary

(see Ch. 2), leading to an imaging speed comparable to STED. Because of the linear,

instead of quadratic scaling of the acquisition time with the imaged area, increasing

the field of view would quickly regain the lineRESOLFT advantage (concerning the

acquisition time).

To summarize the experiments, first we demonstrated the excellent optical sectioning

of lineRESOLFT enabling the subdiffraction imaging of thick tissue. However, in this

thesis, all measurements were performed close to the surface with penetration depths

of just a couple of micrometers. As for most optical microscopy techniques, tissue pen-

etration is limited due to scattering and aberrations. Spherical aberrations caused by

the refractive index mismatch of the oil-immersion to the brain tissue83 contribute the

most. The use of glycerol-immersion objectives allow a correction of spherical aberra-

tions which can extend penetrations depth of nanoscopy methods to up to 120 µm, as

was reported before82. As it should be straightforward to apply the same approach to

the lineRESOLFT microscope, we are planning to follow up with imaging deep inside

tissue.

Further, high-resolution well beyond the diffraction limit of conventional microscopy

enabled imaging of fine neuronal details and discrimination of substructures within

dendritic spines. Continuous imaging highlighted the short- and long-term dynamics of

dendritic spines for spontaneous activation of synapses. With a 100-fold faster image

acquisition compared to point scanning RESOLFT, movements of spines within a few

seconds were visualized.

Whereas nanoscopy of rapid spine motility on the second time scale was previously

only achieved by a strong reduction of the field of view31,47,82, we were able to track
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4.1 Dynamics in living brain slices

fast dynamics within a large area of roughly 80 x 20 µm2. LineRESOLFT imaging

enabled simultaneous investigation of spines separated by tens of micrometers. A re-

duced number of switching cycles allowed imaging of a slow-replenishing actin label,

which provides more structural insight than e. g. a voluminous cytosol label. Measuring

with low light intensities as well as a low total light dose results in low photobleaching

which, besides facilitating long-term imaging, minimizes the risk of introducing photo-

toxic stress. This novel method to research the nanoscopic dynamics of distant spines

with high resolution gives rise to exciting opportunities to extend our knowledge of

brain function.
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Chapter 5

Conclusions and outlook

In this thesis, lineRESOLFT was presented, a method for the parallelization of scanning-

based, diffraction-unlimited, optical sectioning RESOLFT. The experimental realiza-

tion enabled non-invasive three-dimensional imaging of large fields of view of living

tissue with high spatio-temporal resolution at low light levels.

Parallelization of RESOLFT nanoscopy

Opting for a line implementation, it was made possible to parallelize RESOLFT and

substantially speed up imaging. Line-shaped intensity minima, formed by a cylindrical

lens and a phase plate, were used for the deactivation. The length of the line can be

varied by using cylindrical lenses of different focal lengths and thus be adapted to the

experimental needs. We achieved a line length of ∼70 µm (FWHM), a 350-fold paral-

lelization over a diffraction limited spot (∼0.2 µm). This high degree of parallelization

was produced without impairing resolution.

Live-cell lineRESOLFT imaging of large fields of view reached a lateral resolu-

tion of ∼40 nm, similar to point scanning RESOLFT, typically reaching 35 - 50 nm

resolution38–40. While recently reported widefield-based parallelization schemes cov-

ered larger fields of view, they either could just reach 80 nm resolution43 or were still

slow42. As reported here, lineRESOLFT provides both high spatial and temporal res-

olution for large fields of view, as it was successfully demonstrated by the investigation

of spine dynamics on the second time scale. The monitoring of rapid spine motility

was accompanied by the discrimination of fine structural details, unresolvable to con-

focal microscopy. Nevertheless, when comparing the imaging times to other schemes,
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5. CONCLUSIONS AND OUTLOOK

it should be taken into account that the high-speed lineRESOLFT images targeted

a diffraction-unlimited resolution along just one direction. Subdiffraction resolution

along one direction is sufficient for specific biological applications, where certain a

priori knowledge about the object is available. For example, in the case of round vesi-

cles, a single scan would provide their diameter and the position of their center and

thus contain all necessary information to reconstruct the object. Another example

where a single 1d scan is sufficient are co-linear line-shaped structures like parallel fil-

aments. The required pattern rotation for isotropic lineRESOLFT adds complexity

and the need for deconvolution. However, we demonstrated the possibility of achieving

quasi-isotropic subdiffraction resolution by co-aligning multiple scans and by using a

combined deconvolution.

The speed sensitive part of our setup was the mechanical rotation (∼5 s per ori-

entation). While state of the art rotation stages could speed up the rotation 10-fold,

the vulnerability to mechanical drift would remain. Developing a scheme, which could

reconstruct the image from scanning under continuous rotation, abandoning the need

to repeatedly accelerate, would render the imaging process substantially faster and

more stable. Another approach, an implementation based on a spatial light modulator

(SLM), seems equally promising. Structured illumination microscopy, facing similar

challenges, has benefited from this approach, where an SLM-based pattern rotation

enabled video-rate image acquisition16.

Clearly, lineRESOLFT does not target on competing with widefield-based paral-

lelization schemes for speed. Instead, lineRESOLFT complements these widefield-based

techniques, by offering strong optical section.

Non-invasive optical sectioning

While confocal microscopes exhibit strong optical sectioning, widefield illumination in-

duces a high out-of-focus background, potentially obscuring in-focus details. Thus, the

infinite plane response (IRF), representing the fluorescence contribution of a fluorescent

sheet located at a distance z away from the focal plane, while being constant for the

widefield microscope, decays with z−2 (for z > 2 µm) in the confocal case. In Chapter 2

we demonstrated, that optical sectioning is fundamentally inherent to line microscopes,

for which the IRF decays with z−1. Furthermore, we introduced a detection scheme for

high NA objectives, previously reported only for low NA, that increases the sectioning
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further, beyond that of the confocal microscope. The implementation of a differential

detection (DD) results in an IRF-decay with z−2.9. The theoretical derivations were

experimentally confirmed by measuring the response of a thin fluorescent membrane

when defocussing.

Since at least two detectors are used for DD, each contributing with individual

noise, the increased contrast comes at the cost of (slightly) lower signal-to-noise levels,

depending on the number of detectors averaged over. Thus, for dim samples, it might

be preferable not to use DD. Since in our lineRESOLFT implementation all camera

data was stored without discarding any lines, the application of DD can be readily

reversed, meeting the experimental needs.

Illustrating the power of lineRESOLFT DD, the presented data on three-dimensional

lineRESOLFT imaging of living cells exhibited strong reduction of out-of-focus back-

ground when using DD. A pronounced increase in contrast was visible for axially dense

structures.

Studying dynamics on the second time scale

The confocality of lineRESOLFT facilitated imaging of thick tissue with diffraction-

unlimited lateral resolution. Due to the low light intensities employed, photobleaching

and photodamage were minimized. Demonstrating the full potential of the method,

continuous lineRESOLFT imaging of large fields of view enabled the observation of

the dynamics of distant spines with subdiffraction resolution and on the second time

scale. For the first time, fast three-dimensional RESOLFT imaging of living tissue with

subdiffraction resolution and a high degree of parallelization was achieved.

Aberrations caused by an refractive index mismatch between the oil objective and

the sample prevented from imaging at penetration depths deeper than ∼5 µm. As has

been demonstrated before, these spherical aberrations can be corrected with appropri-

ate optics47,82,84,85. Incorporating these corrections to the lineRESOLFT setup should

be straightforward47,82 and would allow penetration depth of ∼50 µm.

Outlook

Continuing progress in camera technology is likely to increase frame rates even further.

A negligible time for reading out the camera combined with low read noise, would enable

measuring the switching kinetics during imaging. Instead of exposing the camera for
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a time t, the fluorescence signal could be recorded at multiple (n) time intervals t/n,

without reducing imaging speed. Thus, when illuminating negative switching rsFPs,

which get excited and switched off at the same wavelength, the time-dependent signal

decay could be extracted, opening new opportunities. For example, by recording the

fluorescence for the deactivation as well as for the excitation, a potential cross-talk

could be corrected for. As studies of related processes suggest86,87, this would result

in a better contrast and higher resolution. Additionally, with high-speed low-noise

cameras and a further development in fast switching rsFPs, lineRESOLFT has the

potential to resolve many biological processes in real-time.

Future advances, focussing on the switching processes of rsFPs, might lead to an

even higher increase in sectioning and penetration depth. With switching induced

by a two-photon process, RESOLFT could reach much deeper penetration depths, as

does two-photon microscopy58. Since two-photon switching would require substantially

higher light intensities, available laser sources would not permit simultaneous coverage

of very large areas. Thus, two-photon lineRESOLFT would be the natural method of

choice for parallelization.
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1d one direction

AFM atomic force microscopy

DD differential detection

FOV field of view

FWHM full width half maximum

IPR infinite plane response

MTF modulation transfer function

NA numerical aperture

NSOM near-field scanning optical microscopy

OTF optical transfer function

PALM photoactivated localization microscopy

PSD position sensitive diode

PSF point spread function

RESOLFT reversible saturable optical fluorescence transitions

rsFP reversible switchable fluorescent protein

sCMOS scientific complementary metal-oxide semiconductor

SIM structured illumination microscopy

SLM spatial light modulator

SNR signal to noise ratio

SSIM saturated structured illumination microscopy

STED stimulated emission depletion

STORM stochastic optical reconstruction microscopy
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