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Abstract

The renormalizable couplings of the Standard Model are invariant under two accidental
global symmetries, which correspond to conserved baryon and lepton numbers. In this
thesis, we discuss possible roles of these symmetries in extension of the Standard Model.
Two approaches are considered: explicit violation of lepton number by two units in the
renormalizable couplings of the Lagrangian, and promotion of the global symmetries
to local gauge symmetries that are spontaneously broken. The former approach directly
leads to Majorana neutrino masses and neutrinoless double beta decay. We discuss
the interplay of the contributions to this decay in a one-loop neutrino mass model, the
colored seesaw mechanism. We find that, depending on the parameters of the model,
both the light Majorana neutrino exchange and the contribution of the new colored
particles may be dominant. Additionally, an experimental test is presented, which
allows for a discrimination of neutrinoless double beta decay from unknown nuclear
background using only one isotope. In the latter approach, fascinating implications
originate from the attempt to write down an anomaly-free and spontaneously broken
gauge theory for baryon and lepton numbers, such as an automatically stable dark
matter candidate. When gauging the symmetries in a left–right symmetric setup, the
same fields that allow for an anomaly-free theory generate neutrino masses via the
type III seesaw mechanism.

Zusammenfassung

Die renormierbaren Kopplungen des Standard-Modells sind invariant unter zwei
globalen Symmetrien mit den Erhaltungsgrößen Baryon- und Lepton-Zahl. In die-
ser Arbeit diskutieren wir die Rollen, die diese Symmetrien in Erweiterungen des
Standard-Modells spielen können. Zwei Ansätze werden verfolgt: explizite Brechung
der Lepton-Zahl um zwei Einheiten in den renormierbaren Kopplungen der Lagrange-
dichte, und Eichung der globalen Symmetrien mit anschließender spontaner Brechung.
Der erste Ansatz führt direkt zu Majorana-Massen der Neutrinos und neutrinolosem
Doppel-Betazerfall. Wir diskutieren die Beiträge zu diesem Zerfall im sogenannten
colored seesaw mechanism und finden, dass sowohl der Austausch der leichten Majorana-
Neutrinos als auch der Austausch der neuen Teilchen des Modells, die Farbladung
tragen, dominant sein können. Zusätzlich präsentieren wir einen Test, der es erlaubt,
unbekannte kernphysikalische Hintergründe vom Signal für neutrinolosen Doppel-
Betazerfall in einem einzigen Isotop zu unterscheiden. Im zweiten Ansatz ergeben sich
faszinierende Resultate aus dem Versuch, eine anomaliefreie und spontan gebrochene
Eichtheorie für Baryon- und Lepton-Zahlen aufzuschreiben, z.B. finden wir einen Kan-
didaten für die dunkle Materie, der automatisch stabil ist. Bei Eichung der Symmetrien
im links-rechts-symmetrischen Kontext erzeugen die gleichen Felder, die eine anomalie-
freie Theorie garantieren, Neutrino-Massen über den type III Seesaw-Mechanismus.
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Chapter 1

Intro: The Standard Model and beyond

Our imagination is stretched to the utmost, not, as in fiction,

to imagine things which are not really there,

but just to comprehend those things which are there.

Richard P. Feynman

During the 1960s, particle theorists stretched their imagination to the utmost, with the
aim to “comprehend those things which are there” and to provide a description, at the
level of elementary particles, of the processes happening in nature. Their efforts resulted
in the so-called electroweak theory, which was put into its final form by Sheldon L.
Glashow [1], Steven Weinberg [2], and Abdus Salam [3]. Together with quantum
chromodynamics (QCD), the theory of the strong interaction, their electroweak theory
forms the Standard Model of particle physics (SM), which has been extremely successful
in its predictions ever since.

With the discovery of the top quark at the CDF [4] and DØ [5] experiments at
the Tevatron at Fermilab in 1995, the existence of all SM fermions and gauge bosons
was confirmed. However, the mechanism giving mass to all these particles remained
elusive. Therefore, one of the aims of the Large Hadron Collider (LHC) at CERN in
Switzerland was to prove or disprove the existence of the famous Higgs boson, the
particle presumably responsible for the masses of the elementary particles via the Higgs
mechanism. This mechanism was proposed independently by Peter W. Higgs [6], by
François Englert and Robert Brout [7], as well as by Gerald S. Guralnik, Carl R. Hagen,
and Tom W. B. Kibble [8] in 1964.

Eventually, in 2012, the discovery of this last missing piece of the Standard Model
was reported by the ATLAS [9] and CMS [10] experiments. It remains to be conclusively
shown that the discovered boson is indeed the SM Higgs boson, although all experi-
mental results point in this direction. A second aim of the LHC was to discover some
of the particles predicted by theories beyond the Standard Model. It seems, however,
that the Standard Model is even more successful than many particle physicists had
hoped: no persistent signs of new physics beyond it have shown up at the LHC so far.

1



2 Chapter 1 Intro: The Standard Model and beyond

Be that as it may, there are long-standing experimental and theoretical hints that
the Standard Model is not the final particle physics theory, even leaving aside the fact
that it is not a complete description of all forces in nature because it does not contain
gravity. Particle theorists have continued to stretch their imagination with the aim to
consistently extend the Standard Model, sometimes even imagining “things which are
not really there.” However, all these efforts by so many scientists have not been enough
to solve the issues that remain.

I have also stretched my imagination during the past three years, and this thesis is
my humble contribution in the endeavor to find a consistent extension of the Standard
Model. To do so, we are guided by the concepts of baryon and lepton numbers, which
could provide windows to the new physics necessary to solve the SM issues. Two
different avenues are followed, and accordingly this thesis is divided into two parts:
Part I (Chapters 2 and 3) contains a discussion of the special case of lepton number
violation by two units, and Part II (Chapters 4 and 5) is dedicated to gauge theories of
baryon and lepton numbers. Let us discuss the origin of the SM issues addressed in
this thesis before we go in medias res.

Since the late 1990s, oscillation experiments with atmospheric [11], reactor [12], and
solar [13] neutrinos have conclusively shown that neutrinos have a non-zero mass.
Neutrino masses were not incorporated into the original version of the Standard Model,
because neutrinos were thought to be massless at that time. However, the necessary
modification of the Standard Model might be a trivial one: by adding right-handed
neutrinos to the SM particle content, the Higgs mechanism can be used to generate
Dirac neutrino masses in the same way it generates Dirac masses for the quarks and
charged leptons. Due to the smallness of the neutrino masses, such a setup requires
extremely tiny couplings of the right-handed neutrinos to the SM Higgs and lepton
doublets. This solution is certainly not totally satisfactory from a theoretical point
of view, and additional problems immediately arise. After introducing right-handed
neutrinos, gauge invariance allows one to write down a lepton number violating
Majorana mass term for these SM singlets. To truly make neutrinos Dirac particles,
conservation of lepton number therefore has to be imposed in some form.

Giving up lepton number conservation and allowing for a Majorana mass term
for the right-handed neutrinos offers the appealing possibility of using the seesaw
mechanism [14–18] to explain the smallness of the neutrino masses, avoiding the
aforementioned problem of tiny couplings.1 Neutrinos are then Majorana particles,
thereby violating lepton number by two units. The mass scale of the right-handed
neutrinos cannot be related to the electroweak scale, the only energy scale present in

1This is the so-called type I seesaw. We discuss type II [19–23] and type III [24] seesaw later, which
introduce scalar and fermionic triplets of SU(2)L, respectively.
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the Standard Model, because they are SM singlets. Therefore, the Majorana masses
of the introduced singlets can expected to be very large. This might just be the way
nature chose neutrino masses to be generated, but will probably never allow to test
their origin in experiments. Most certainly nature does not care too much about our
ability to test fundamental processes experimentally, thus such arguments do not
provide evidence for or against a particular mechanism. Nevertheless, it is interesting
to explore alternative mechanisms for neutrino masses that allow for an experimental
test, possibly even at current experiments. We come back to all these issues in Chapter 2
and discuss neutrino masses in more detail.

It is an open question whether the total lepton number L is conserved in nature. In
neutrino oscillations, only the individual lepton flavor numbers are broken (Le, Lµ, and
Lτ). Violation of total lepton number could be observed in various experiments, but at
the moment the most promising experimental test (if lepton number is violated by two
units) is the search for neutrinoless double beta decay (0νββ). Recently, experiments
using different isotopes reported improved lower bounds on the half-life of the decay:
EXO-200 [25] and KamLAND-Zen [26] using the isotope 136Xe, and GERDA [27] using
the isotope 76Ge. Limits for both isotopes are of the order 1025 y, thus showing that
0νββ, if existent at all, is an extremely rare decay.

It is often stated that an observation of 0νββ would provide us with the absolute
neutrino mass scale, but that is true only if the decay is mediated exclusively by
light Majorana neutrinos. Then, the so-called effective Majorana mass m0νββ could
be extracted from the measured half-life, with some uncertainty coming from the
imperfectly known nuclear matrix elements.

However, any other lepton number violating theory might also contribute to 0νββ.
This opens a window to test new physics beyond the Standard Model that may or
may not be connected to neutrino masses directly. We discuss 0νββ in some detail in
Chapter 3. Especially, we present two original results: in Section 3.2, we discuss the
0νββ phenomenology of the colored seesaw mechanism, a one-loop neutrino mass
model that is introduced in Chapter 2. In Section 3.3, we discuss how to cross check a
possible observation of 0νββ by considering the decays to the first excited 0+ states in
addition to the ground state transition.

Another long-standing mystery is the phenomenon of dark matter (DM). It was
already noticed by Fritz Zwicky in the 1930s [28] that there must be a non-luminous
(and therefore dubbed “dark”) matter component in galaxy clusters. Today, we have
evidence on vastly different scales for a non-baryonic form of matter that interacts
at least gravitationally with visible matter and makes up about 26% of the energy
density of the Universe. We do not really have a clue about the origin and nature of
this form of matter. Many theoretical ideas exist to describe the DM sector, which could
be as complex as the visible sector. Among the very popular particle candidates for
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cold DM are weakly interacting massive particles (WIMPs) and axions; see Ref. [29]
for an overview of particle candidates. Due to the lack of a definite observation of
DM particles in experiments, the particle nature of dark matter is far from settled and
alternative explanations such as a modification of gravity are also pursued [30].

To not immediately be ruled out, a DM candidate must be stable on cosmological
time scales and may not carry electromagnetic charge. It is of course appealing not to
introduce such a particle by hand but to try to connect the solution of the DM puzzle to
the solution of some other problem remaining in the Standard Model. The textbook
examples for this approach are supersymmetric theories (SUSY). These theories were
originally proposed to solve the hierarchy problem and it turned out that a symmetry
called R-parity had to be introduced to forbid proton decay. This symmetry makes the
lightest SUSY particle stable and thus, if neutral, a DM candidate [31].

This thesis is concerned with non-SUSY theories only, and we cannot go into as much
details on dark matter as on the other topics discussed before. Nevertheless, we will
see that a DM candidate can arise in the models we introduce for the solution of one or
the other SM issue. See Section 2.4.1 for a neutrino mass model with a DM candidate,
and Section 4.4.6 for a fermionic DM candidate originating from a gauge theory for
baryon and lepton numbers. The stability of the latter DM candidate is a consequence
of the breaking of the gauge symmetry and does not have to be demanded by hand.
Another interesting feature of the latter DM candidate is that it carries baryon number.
Calling dark matter non-baryonic merely refers to the fact that it must be different from
ordinary matter that is made of quarks (and leptons). In the context of the Standard
Model, quarks are the only particles that carry baryon number, and they form protons
and neutrons, the building blocks of atomic nuclei.

The phenomena of neutrino masses and dark matter are experimental hints for the
necessity of an extension of the Standard Model, and we have seen that the concepts of
baryon and lepton numbers may play an important role in formulating a consistent
description. However, there also is an issue with baryon and lepton numbers in the
Standard Model from a more theoretical perspective: when writing down the full
SM Lagrangian, i.e., all Lorentz-invariant and renormalizable terms that are invariant
under the SM gauge group, one realizes that all these terms accidentally conserve
baryon and lepton numbers. Contrary to this fact, we have hints that both may be
broken in nature. Having mentioned before that neutrino masses may point towards a
violation of lepton number, we also know that baryon number must be broken in order
to explain the matter–antimatter asymmetry in the Universe.

Taking into account non-renormalizable interactions, higher-dimensional operators
such as

O5 =
c5

ΛL
LLHH and O6 =

c6

Λ2
B

QQQL (1.1)
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can always be added to the Standard Model [32, 33]. The notation is a symbolic one: L
is a lepton doublet, H is the SM Higgs field, and Q is a quark doublet. c5 and c6 are
coupling constants, which can be calculated if we know the underlying fundamental
theory at a higher scale. The so-called Weinberg operator O5 violates lepton number
L by two units and generates Majorana neutrino masses after electroweak symmetry
breaking. The operator O6 breaks both lepton number L and baryon number B by one
unit, but conserves B− L. It is responsible for proton decay, and the corresponding
experimental bounds are strong, for more details see the discussion in Section 2.2. Thus,
we have to postulate the existence of a great desert between the weak scale where the
Standard Model lives and a scale ΛB > 1014−16 GeV where we can understand the
origin of the baryon number violating interactions.

The problem of proton decay is immanent in Grand Unified Theories (GUTs) that
unify the strong with the electroweak interaction, because they also unify baryons and
leptons in the same multiplets such that baryon and lepton numbers necessarily are
broken. By computing the operators mediating proton decay in these theories and then
using the running of gauge couplings, it is at least possible to understand at which
scale the GUT gauge group is spontaneously broken to the SM gauge group, and hence
why the scale ΛB is so large. Due to the presence of baryons and leptons in the same
multiplets, baryon and lepton numbers cannot be treated as independent symmetries
in these theories.

In this thesis, we are concerned with the origin of baryon and lepton numbers as
global symmetries and we want to treat them individually. Therefore, we pursue a dif-
ferent approach, namely the promotion of baryon and lepton numbers to independent
local gauge symmetries. Similar attempts exist in the literature [34–37]. Despite the
spontaneous breaking of these symmetries at a low scale, the charges of the fields are
such that baryon number violating processes are very suppressed even in the presence
of non-renormalizable interactions. Such models provide a way to understand the
suppression of baryon and lepton number violating interactions without the necessity
of a large desert. Unfortunately, all the proposed solutions [34–37] are in disagreement
either with the recent constraints from the LHC experiments or with cosmological data.
We dedicate Chapters 4 and 5 to the search of viable models realizing this idea.

The last issue of the Standard Model that we discuss in this thesis is the violation
of parity, i.e., the V − A structure of the weak interaction. It is appealing to consider
this observation as a low-energy phenomenon, and assume that left–right symmetry
is restored at higher energies. This is the basis of so-called left–right symmetric the-
ories [14, 15, 23, 38–41]. Starting from a left–right symmetric gauge group, parity is
broken spontaneously in these models by the vacuum expectation values (VEVs) of
some scalar fields. An especially interesting feature of these models is the presence of
right-handed neutrinos in the right-handed lepton doublets. This allows for a direct
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implementation of neutrino masses. Additionally, also the seesaw mechanism (a hy-
brid version of type I and type II) arises quite naturally in these models, such that the
spontaneous breakdown of parity can be connected to the smallness of the neutrino
masses. An implementation of type III seesaw is also possible. In Chapter 5 we gauge
U(1)B and U(1)L in a left–right symmetric framework, and will thus be able to connect
the spontaneous breakdown of parity with the spontaneous breaking of baryon and
lepton numbers.

Finally, we conclude and give some outlook in Chapter 6.

A remark on publications

Most of the results presented in this thesis were already published before, exist as
an e-print on the arXiv, or are work in progress, and all of them were done together
with collaborators: Section 3.2 is based on a project together with Sandhya Choubey,
Manimala Mitra, and Werner Rodejohann [42]; Section 3.3 is based on a collaboration
with Manfred Lindner and Kai Zuber [43]; Chapter 4 is based on a paper together
with Pavel Fileviez Pérez and Mark B. Wise [44], and the full exploration of the model
currently is work in progress; finally, Chapter 5 is based on a collaboration with Pavel
Fileviez Pérez and Manfred Lindner [45]. Also see my conference proceedings dis-
cussing the interplay between neutrinoless double beta decay, lepton number violating
new physics, and Majorana neutrino masses [46, 47].

Some projects done during my PhD time were too far from the main focus of this
thesis, such that the results cannot be presented here due to limitations of space. Such
was the fate of a collaboration with Damien P. George and Kristian L. McDonald [48] on
the phenomenological aspects of a neutrino mass model in a warped extra-dimensional
setup. A project together with Mayumi Aoki, Jisuke Kubo, and Hiroshi Takano [49]
on multi-component DM systems also had to be left out, as well as an exploration of
the DM phenomenology of a simplified version of the model presented in Chapter 4,
which was done together with Pavel Fileviez Pérez [50]. A paper published together
with Manfred Lindner and Alexander Merle [51] essentially contains the (extended)
results of my diploma thesis, which will not be repeated here. I will nevertheless point
the reader to these results in a suitable place and comment on the relation to the results
presented in this thesis.
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Lepton number violation by two

units





Chapter 2

Neutrino masses

As mentioned in the introduction in Chapter 1, one of the solid evidences for the
necessity to modify the SM of particle physics is the observation of neutrino oscillations
in atmospheric, reactor, and solar neutrino experiments [11–13]. The results of these
experiments prove that neutrinos have a non-vanishing mass; this chapter presents
the corresponding basics. To lay the ground for the rest of this thesis, we start with
some details of the Standard Model of particle physics in Section 2.1. After that, in
Section 2.2, we discuss higher-dimensional operators that violate baryon and lepton
numbers. These operators will guide us in the search for viable extensions of the SM in
the rest of this thesis. We present the famous seesaw mechanisms for the generation
of Majorana neutrino masses in Section 2.3, and discuss a different pathway to small
neutrino masses, namely radiative generation, in Section 2.4. Finally, we summarize
this chapter in Section 2.5.

2.1 The Standard Model of particle physics

The Standard Model of particle physics is a gauge theory based on the gauge group

GSM = SU(3)C ⊗ SU(2)L ⊗U(1)Y, (2.1)

which consists of the gauge group of quantum chromodynamics, SU(3)C, with C for
“color,” and of the electroweak gauge group GEW = SU(2)L ⊗U(1)Y. Here, the index L
refers to the fact that only left-handed fields take part in weak interactions, and Y is the
weak hypercharge.

The Standard Model fields and their corresponding transformation properties under
the gauge group GSM are listed in Tab. 2.1. For later use, we also give the baryon number
B and the lepton number L of the quarks and leptons. These quantum numbers
are the charges of the fields under the global symmetries U(1)B and U(1)L, which
are accidentally conserved by the renormalizable couplings of the Standard Model
Lagrangian. We discuss the origin of these accidental global symmetries in Part II of

9



10 Chapter 2 Neutrino masses

Table 2.1: Field content of the Standard Model of particle physics and corresponding
transformation properties under the Standard Model gauge group GSM. Additionally,
we list the baryon and lepton numbers of the fermionic fields. The SM quarks and
leptons come in three families, α = 1, 2, 3, but we will often suppress the family index
α in the remainder of this thesis. The electric charge is defined as Q = Y + T3, where T3

is weak isospin.

Type Spin Field SU(3)C SU(2)L U(1)Y U(1)B U(1)L

Quarks 1
2

Qα
L =

uα
L

dα
L

 3 2 1
6

1
3 0

uα
R 3 1 2

3
1
3 0

dα
R 3 1 − 1

3
1
3 0

Leptons 1
2

`α
L =

να
L

eα
L

 1 2 − 1
2 0 1

eα
R 1 1 −1 0 1

Higgs boson 0 H =

H+

H0

 1 2 1
2 0 0

Gauge bosons 1

Ga, a = 1, . . . , 8 8 1 0 0 0

Wb, b = 1, 2, 3 1 3 0 0 0

B0 1 1 0 0 0

this thesis, where we promote them to local gauge symmetries. Fantastic implications
originate from the attempt to write down anomaly-free theories for gauged baryon
and lepton numbers. The fields that have to be introduced in addition the SM fields in
Tab. 2.1 allow, e.g., for an implementation of neutrino masses or provide us with a DM
candidate.1

The fermionic fields (particles with half-integer spin) of the SM are the so-called
quarks and leptons. They come in three families with identical quantum numbers,
with the only difference between the families being their masses. The Higgs boson

1Note that the “L” in SU(2)L refers the left-handedness of the weak interaction, whereas the “L” in
U(1)L refers to lepton number. Although it is not considered good practice to use the same letter for
different meanings, we think that it will be clear from the context to which “L” we refer.
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is a scalar particle, i.e., it has spin zero. The gauge bosons with spin one mediate the
different forces of the SM: the gluons Ga (a = 1, . . . , 8) mediate the strong interaction,
and the W-bosons Wb (b = 1, 2, 3) and the B0 boson mediate the electroweak interaction.
Note that there are no right-handed neutrinos in the SM particle spectrum, because the
neutrinos were considered to be massless when creating the SM.

The principle of gauge invariance strongly restricts the possible interactions of the
theory, and renders all SM fields massless before the spontaneous breaking of GEW to
U(1)EM, the electromagnetic gauge group with the massless photon as gauge boson.
The electroweak symmetry breaking is achieved by the neutral component of the Higgs
field obtaining a VEV

〈H0〉 = 1√
2

v, (2.2)

where v = 246 GeV.2 This mechanism, the famous Higgs mechanism, gives all SM
particles a mass proportional to v. Let us demonstrate the Higgs mechanism for the
SM charged leptons as an example. Taking into account the quantum numbers of the
fields given in Tab. 2.1, we can write down the gauge invariant term

−LY ⊃ Y`
αβ`

α
LHeβ

R + h.c., (2.3)

where Y` is a Yukawa coupling matrix, and α and β are family indices. Repeated indices
are summed over in all cases, i.e., the Einstein summation convention is used. After
electroweak symmetry breaking, we obtain Dirac mass terms for the charged leptons,

−LY ⊃ Me
αβeα

Leβ
R + h.c., (2.4)

where the Dirac mass matrix is given by

Me
αβ =

v√
2

Y`
αβ. (2.5)

The electroweak gauge bosons also obtain a mass after electroweak symmetry breaking,
but we do not want to go into more detail here.

Neutrino masses cannot be generated in the same way, because right-handed neu-
trinos are not contained in the SM, see Tab. 2.1, and therefore a Yukawa term similar
to Eq. (2.3) cannot be written down for the neutrinos. As already mentioned in the
introduction in Chapter 1, we would not obtain a completely satisfying explanation for
neutrino masses even if we introduced right-handed neutrinos (and imposed lepton
number conservation to forbid Majorana mass terms for them).

2The Higgs VEV v can be determined from the Fermi coupling constant GF via v = (
√

2GF)
−1/2. The

value of GF can be measured precisely in muon decay experiments. The most current value provided
by the MuLan collaboration is GF = 1.1663788(7)× 10−5 GeV [52].
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Neutrino masses are many orders of magnitude smaller than the masses of the
charged leptons: a lower limit on the neutrino mass scale can be obtained from the
larger of the two measured mass-squared differences,3 the atmospheric mass-squared
difference [53]

∆m2
atm ≈ 2.4× 10−3 eV2 (2.6)

leading to
mosc

ν & 0.05 eV. (2.7)

Upper limits on the neutrino masses can be obtained in different experiments. The
kinematical mass

mβ =
√

∑
i
|Uei|2 m2

i (2.8)

can be deduced from the endpoint spectrum of single beta decay experiments. Here,
Uei are the elements of the first line of the neutrino mixing matrix that is introduced in
Section 2.3.1 to diagonalize the mass matrix of the light neutrino species; mi (i = 1, 2, 3)
are the eigenvalues of the neutrino mass eigenstates. The current bound is [54]

mβ ≤ 2.3 eV (2.9)

The upcoming KATRIN experiment [55] is expected to reach a sensitivity of mβ ≤ 0.2 eV.
In cosmology, the sum of the light neutrino masses

Σ = ∑
i

mi (2.10)

can be extracted from observations. The current limit is [56]

Σ ≤ 0.23 eV. (2.11)

Thus neutrino Yukawa couplings of the order 10−12 are necessary to generate neu-
trino masses of the desired order. We take this issue as a motivation to search for
alternative approaches to neutrino masses, and discuss different possibilities in the rest
of this chapter.

2.2 Higher-dimensional operators in the Standard Model

All renormalizable couplings of mass dimension four or smaller that we can write
down with the SM particle content in Tab. 2.1 conserve baryon and lepton numbers.

3Note that neutrino oscillation experiments can determine the two mass-squared differences between the
three light neutrino mass eigenstates. It is therefore possible that the lightest neutrino mass eigenstate
has a zero mass.
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Going to higher-dimensional operators, we can easily find operators that violate baryon
and/or lepton number, a fact first noticed by Weinberg [32], see also the discussion by
Wilczek and Zee [33].

A possible operator breaking lepton number arises at dimension five,

O5 =
c5

ΛL

(
`T

L Ciσ2H
) (

HTiσ2`L

)
. (2.12)

Here, ΛL is the scale where lepton number is broken and c5 is a dimensionless coupling;
C is the charge conjugation matrix. Family indices have been suppressed for simplicity.
After electroweak symmetry breaking, when the SM Higgs has obtained its VEV, a
neutrino mass term is generated. Assuming a coupling c5 of order one, we find that
the scale ΛL has to be large to generate neutrino masses at the eV level, i.e.,

ΛL . 1014 GeV. (2.13)

This operator guides us in the search for viable neutrino mass models in the rest of this
thesis. All the models we present contain heavy particles that realize the dimension
five Weinberg operator at tree or one-loop level.

Baryon number violating operators that induce proton decay arise at dimension six.
With the SM particle content in Tab. 2.1, we can write down the operators

O1
6 =

c1
6

Λ2
B

(
QT

L Ciσ2QL

) (
QT

L Ciσ2`L

)
, (2.14)

O2
6 =

c2
6

Λ2
B

(
QT

L Cτaiσ2QL

) (
QT

L Cτaiσ2`L

)
, (2.15)

O3
6 =

c3
6

Λ2
B

(
QT

L Ciσ2QL

) (
uT

RCeR

)
, (2.16)

O4
6 =

c4
6

Λ2
B

(
QT

L Ciσ2`L

) (
uT

RCdR

)
, (2.17)

O5
6 =

c5
6

Λ2
B

(
uT

RCuR

) (
dT

RCeR

)
, (2.18)

O6
6 =

c6
6

Λ2
B

(
uT

RCdR

) (
uT

RCeR

)
. (2.19)

SU(3)C and family indices have been suppressed here for simplicity. All these operators
violate B and L, but conserve B− L. Proton decay has not been observed experimentally,
and the bounds on the lifetime of the decay are severe. The lower limits on the mean
lifetime are of the order

τp > 1031−33 y, (2.20)
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depending on the decay mode [57]. The decay mode with the largest lower limit on the
mean lifetime is the channel

p→ e+π0 (2.21)

with a lower limit on the lifetime of

τp > 8.2× 1033 y (2.22)

at 90% CL [58].
From O6, we can make a naive estimation of the proton decay rate

Γp =
c2

6

Λ4
B

m5
p, (2.23)

where mp is the mass of the proton. Using the bounds on the proton decay lifetime
given above and a not too small or too large coupling c6, we find that the scale of
baryon number violation must be very high,

ΛB > 1014−16 GeV. (2.24)

Therefore, we have to postulate the existence of a great desert between the electroweak
scale where the Standard model lives and the large scale ΛB, where we can understand
the origin of the baryon number violating interactions.

We provide a solution to this issue in Part II of this thesis, where we gauge baryon
and lepton numbers individually. We will be concerned with viable theories that can be
broken at the low scale without the need to rely on the existence of the aforementioned
desert. When breaking baryon number, we have to make sure to break it in a way that
does not introduce the dangerous proton decay operators given above. The charges of
the fields introduced in the models we discuss in Chapters 4 and 5 are such that baryon
number violating processes are suppressed even in the presence of higher-dimensional
operators.

2.3 The seesaw mechanism

Let us discuss the neutrino masses generated by the Weinberg operator in Eq. (2.12) in
some more detail. At tree-level, there are only three realizations of this operator [59]:
the famous seesaw mechanisms of type I, type II, and type III. All three types introduce
exactly one new representation of the SM gauge group. Of course, there may be hybrid
scenarios between two or more of the three types.

All three mechanisms can be naturally realized in left–right symmetric theories,
where the seesaw scale can be related to the scale where the discrete left–right parity is
broken spontaneously. We discuss such theories in more detail in Chapter 5.
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�νL νLνR νR

MM

〈H0〉 〈H0〉

Figure 2.1: Feynman diagram of the Majorana neutrino mass term in the type I seesaw
mechanism, which introduces right-handed neutrinos νR ∼ (1, 1, 0) with a Majorana
mass MM.

2.3.1 Type I seesaw

In type I seesaw [14–18], one adds fermionic singlets to the SM particle content, i.e.,

να
R ∼ (1, 1, 0) . (2.25)

In principle, an arbitrary number n of these can be introduced, α = 1, . . . , n. To explain
the two mass-squared differences observed in neutrino oscillation experiments, at least
two singlets are required. The relevant couplings are a Yukawa coupling to the SM
Higgs and a Majorana mass term for the right-handed singlets,

−LType I ⊃ Yν`LH̃νR +
1
2

MM(νR)cνR + h.c., (2.26)

where H̃ = iσ2H∗. The Yukawa term generates a Dirac mass term for the neutrinos
after electroweak symmetry breaking, in complete analogy to the Yukawa terms for
the charged leptons in Eq. (2.3). Thus, the full neutrino mass term we obtain after
electroweak symmetry breaking is

−LType I ⊃
1
2
(νL (νR)c)

 0 MD

MT
D MM

(νL)
c

νR

+ h.c. (2.27)

with
MD = Yν v√

2
. (2.28)

See Fig. 2.1 for the Feynman diagram of type I seesaw.
Note that the Dirac mass term connects the left-handed neutrino components of the

lepton doublets with the right-handed singlet neutrinos, whereas the Majorana mass
term connects the right-handed neutrinos with their charge-conjugates,

(νR)
c = CνR

T, (2.29)
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and violates lepton number by two units (when assigning lepton number to the right-
handed neutrinos).

Assuming that MM � MD,4 one obtains the light neutrino mass matrix

Mν = MDM−1
M MT

D (2.30)

after block diagonalization of the neutrino mass matrix in Eq. (2.27). This neutrino
mass matrix (and all the following that we obtain in the different realizations of the
Weinberg operator) can be diagonalized by the Pontecorvo–Maki–Nakagawa–Sakata
(PMNS) [60–62] neutrino mixing matrix UPMNS, such that

U†
PMNSMνU∗PMNS =Mdiag

ν = diag (m1, m2, m3) , (2.31)

with mi being the light neutrino mass eigenvalues. The mixing matrix UPMNS is the
neutrino equivalent to the Cabibbo–Kobayashi–Maskawa (CKM) mixing matrix in the
quark sector [63, 64].

For the canonical type I seesaw, the Yukawa couplings are taken to be of order one
which results in a value of MD of about the electroweak scale. Thus the new singlets
should have a mass

MM . 1014 GeV (2.32)

for sub-eV light neutrinos. It will therefore practically be impossible to probe this
neutrino mass mechanism directly, because this energy is out of reach of current (and
most certainly any future) experiments. Of course, the Yukawa couplings could be
much smaller. Taking MD ≈ me, one should have

MM . 1 TeV. (2.33)

This mass scale is in the reach of the LHC. However, one has to remember that these neu-
trinos are SM singlets, so they only participate in any electroweak process through their
mixing with the light neutrinos. Therefore, any such physical process is suppressed by
the heavy–light mixing

|VνLνR |2 =
M2

D

M2
M

=
Mν

MM
, (2.34)

and thus unobservably small.
The only hope could be that the type I seesaw actually is embedded into a gauge

extension of the SM, such as GSM ⊗U(1)B−L. This is possible because the addition of

4This and all following estimations of mass scales refer to the size of the eigenvalues of the corresponding
matrices.
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three right-handed neutrinos makes this gauge group anomaly-free.5 The correspond-
ing new gauge boson ZB−L may be produced at the LHC through its gauge interactions
with the quarks, and could subsequently decay to a pair of Majorana neutrinos, such
that no small mixing is involved. Quite distinctive features such as dileptons plus jets,
or displaced vertices due to the decays of the heavy Majorana neutrinos could arise in
such a model. A discussion of the corresponding collider phenomenology is beyond
the scope of this thesis, see, e.g., Ref. [65] for a detailed analysis of such models at the
LHC.

2.3.2 Type II seesaw

Type II seesaw is the extension of the SM, where one extra scalar triplet,

∆ =

δ+/
√

2 δ++

δ0 −δ+/
√

2

 ∼ (1, 3, 1) (2.35)

is introduced [19–23]. The relevant terms of the Lagrangian are

LType II ⊃ −Y∆(`L)ciσ2∆`L + h.c.−V(H, ∆), (2.36)

where

V(H, ∆) = −M2
H H†H + M2

∆Tr
(

∆†∆
)
+
(

µHTiσ2∆†H + h.c.
)
+ quartic terms. (2.37)

Lepton number is explicitly broken by two units, because the simultaneous presence
of the Yukawa term Y∆ and the µ-term in V(H, ∆) does not allow for a consistent
assignment of lepton numbers to the fields. After spontaneous symmetry breaking,
when the Higgs fields have obtained the VEVs

〈H〉 =
 0

v/
√

2

 and 〈∆〉 =
 0 0

v∆/
√

2 0

 , (2.38)

a neutrino mass matrix
Mν =

√
2Y∆v∆ (2.39)

is generated. Minimizing the potential (assuming a heavy Higgs triplet such that the
quartic terms can be neglected), we find that the VEV of the triplet is actually induced
by the VEV of the Higgs doublet, i.e.,

v∆ ≈
µv2
√

2M2
∆

. (2.40)

5We discuss the gauging of global symmetries and the corresponding anomalies in more detail in
Chapter 4.
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�νL νL

∆

〈H0〉 〈H0〉

Figure 2.2: Feynman diagram of the Majorana neutrino mass term in the type II
seesaw mechanism, which introduces a scalar triplet ∆ ∼ (1, 3, 1). The VEV of the
scalar triplet is induced by the VEVs of the neutral component of the SM Higgs.

See Fig. 2.2 for the corresponding Feynman diagram. Taking Y∆ ≈ 1 and assuming
µ ≈ M∆, we would thus need M∆ ≈ 1014 GeV for a neutrino mass of the order eV.

The type II seesaw mechanism can be naturally embedded into a class of left–right
symmetric theories. It always is a hybrid scenario between type I and type II seesaw in
that case, due to the presence of right-handed neutrinos in the right–handed doublets.
See Chapter 5 for more details.

The triplet VEV v∆ can constrained to be small. The VEVs have to fulfill the relation

v2 + 2v2
∆ = (246 GeV)2 , (2.41)

because the W mass is found to be

mW =
g2(v2 + 2v2

∆)

4
. (2.42)

The Z mass is

mZ =
g2(v2 + 4v2

∆)

4 cos2 θW
, (2.43)

where θW is the Weinberg angle. This leads to a change in the tree-level ρ parameter

ρ ≡ m2
W

m2
Z cos2 θW

=
1− 2v2

∆
v2

1− 4v2
∆

v2

. (2.44)

The current experimental limit constrains the ρ parameter to be close to one [57],

ρ = 1.0004+0.0003
−0.0004, (2.45)

such that
v∆ < O(GeV)� v. (2.46)
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Of course, the type II seesaw can be tested directly if the mass scale of the triplet is
within reach of the LHC. The most spectacular signature would be the lepton number
violating decay of the doubly charged Higgs to same-sign leptons,

δ±± → e±i e±j , (2.47)

which is the dominant decay channel if v∆ < 10−4 GeV [66]. For that final state, limits
from current LHC searches constrain [67]

mδ++ > 409 GeV. (2.48)

For v∆ > 10−4 GeV, the dominant decay channel is

δ±± →W±W±, (2.49)

and the limits on the mass of δ±± are weaker. Prospects of LHC searches strongly
depend on the size of v∆ and also on the triplet mass splittings. A more detailed
discussion is provided in Refs. [66, 68].

2.3.3 Type III seesaw

The third option to realize the Weinberg operator at tree level is the type III seesaw
mechanism, where at least two extra fermionic triplets with zero weak hypercharge,

ρα ∼ (1, 3, 0), (2.50)

are added [24]. The relevant term in the Lagrangian is

−LType III ⊃ Yρ`
T
L Ciσ2ρH +

1
2

MρTr(ρTCρ) + h.c. (2.51)

The structure of the neutrino mass matrix is very similar to type I seesaw. After
integrating out the heavy triplets, the mass matrix for the light neutrinos is given by

Mν = Yρ M−1
ρ YT

ρ v2. (2.52)

Just as before, for order one Yukawa couplings, a huge mass Mρ . 1014 GeV is necessary
for light neutrino masses of the order 1 eV or below. See Fig. 2.3 for the corresponding
Feynman diagram.

The cleanest channel to search for these new fermionic triplets at the LHC is the
trilepton final state. Current LHC results constrain the masses of the fermionic triplets
to be of 100 GeV or higher [69].

The type III seesaw mechanism can be easily incorporated into left–right symmetric
theories [70]. We do so in Chapter 5, where it will turn out that the minimal left–
right symmetric model that allows for gauging baryon and lepton numbers separately
contains exactly the fields that can generate neutrino masses via type III seesaw.
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�νL νLρ ρ

Mρ

〈H0〉 〈H0〉

Figure 2.3: Feynman diagram of the Majorana neutrino mass term in the type III
seesaw mechanism, which introduces fermionic triplets ρ ∼ (1, 3, 0) with a Majorana
mass term Mρ.

2.4 Radiative neutrino masses

Neutrino masses do not have to be generated at tree level. Their smallness might point
to a generation at loop level, using the suppression coming from the loop factors to
make their masses tiny compared to the other fermion masses in the SM. A benefit of
loop-induced neutrino masses is the possible lightness of the required new particles,
with their masses potentially being around the TeV scale and therefore being testable
at the LHC. We saw in the last section that the new particles in tree-level realizations
have to be heavy to suppress the neutrino masses (assuming no unnaturally small
couplings). This renders these new particles practically unobservable in experiments.

We present two one-loop examples in this subsection: the Ma model [71] and the
colored seesaw mechanism [72, 73]. Another one-loop model is the Zee model, in which
an SU(2)L singlet scalar that is electrically charged and an additional SU(2)L doublet
scalar [74] are introduced. Often, a simplified version of this model is studied, where a
discrete symmetry is imposed to only allow for one of the scalar doublets to couple to
the leptons, the so-called Zee–Wolfenstein model [74, 75]. The Zee–Wolfenstein model
is ruled out by neutrino data but the original Zee model can satisfy the experimental
constraints, see, e.g., Ref. [76]. Of course, it is also possible to generate neutrino masses
at more than one loop: an example is the Zee–Babu model at two loops [77, 78].

2.4.1 The Ma model

By introducing fermionic singlets (right-handed neutrinos) and an additional Higgs
doublet,

Ni ∼ (1, 1, 0) and η =

η+

η0

 ∼ (1, 2,
1
2

)
, (2.53)
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Figure 2.4: One-loop neutrino mass in the Ma model [71].

and imposing an exact Z2 symmetry under which all SM fields are even and the new
fields are odd, tree-level neutrino masses can be forbidden. This is the so-called Ma
model [71]. Additionally, the exact Z2 symmetry forbids a VEV for η. The part of the
Lagrangian involving the couplings of the new singlet neutrinos is

−LN = hαj`Lαη̃Nj +
1
2

MiNc
i Ni + h.c., (2.54)

with η̃ = iσ2η∗, and the scalar potential is given by

V(H, η) = m2
1H†H + m2

2η†η +
1
2

λ1

(
H†H

)2
+

1
2

λ2

(
η†η
)2

+ λ3

(
H†H

) (
η†η
)
+ λ4

(
H†η

) (
η†H

)
+

1
2

λ5

[(
H†η

)2
+ h.c.

]
. (2.55)

Thus, the generation of a neutrino mass at the one-loop level is possible, see Fig. 2.4.
The neutrino mass matrix can be calculated to be

Mαβ = ∑
k

hαkhβk Mk

16π2

(
m2

R
m2

R −M2
k

ln
m2

R
M2

k
− m2

I
m2

I −M2
k

ln
m2

I
M2

k

)
, (2.56)

where mR and mI are the masses of the real part η0
R and the imaginary part η0

I of η0,
respectively. This neutrino mass is thus induced by a difference between mR and mI ,
which can be calculated to be

m2
R −m2

I = 2λ5v2, (2.57)

and thus the seesaw scale can be reduced by a factor of λ5/(16π2).
This model has two candidates for the dark matter of the Universe. Due to the

imposed Z2 symmetry either the lightest fermionic singlet N1 or the lightest of the
scalar mass eigenstates η0

R or η0
I is stable.
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It is possible to extend the Ma model by additional fields and an additional Z ′2 sym-
metry, to realize a multi-component dark matter model. Such a model was proposed in
collaboration with Mayumi Aoki, Jisuke Kubo, and Hiroshi Takano in Ref. [49], where
we additionally introduced a Majorana fermion χ and a real scalar boson φ (both SM
singlets) to obtain a three-component DM system, together with the real component
of the doublet η introduced before. Usually, each unbroken symmetry guarantees the
stability of one DM particle. By choosing

mη0
R
> mχ > mφ and mη0

R
< mχ + mφ, (2.58)

the decay of η0
R is kinematically forbidden and three stable DM particles exist. In such

a setup, DM conversions and DM semi-annihilations are possible in addition to the
standard DM annihilations that usually control the relic density. It was shown that the
DM relic density can be very sensitive to these non-standard processes. The solution
of the coupled Boltzmann equations in the presence of more than one DM particle
is somewhat out of the main focus of this thesis and will not be included here, see
Ref. [49] for more details.

2.4.2 The colored seesaw mechanism

Another radiative possibility is the so-called colored seesaw mechanism [72, 73]. Neu-
trino masses in agreement with the experimental data can be generated by adding
fields in the adjoint of SU(3)C to the particle content of the SM, namely a scalar color
octet

Φ =

Φ+

Φ0

 =

 Φ+

1√
2

(
Φ0

r + Φ0
i

)
 ∼ (8, 2,

1
2

)
(2.59)

and two or more color octet fermions

Ψi ∼ (8, 1, 0) . (2.60)

Sticking to real representations of SU(3)C avoids new anomalies, where the lowest-
dimensional real representation is the adjoint.

The Lagrangian of the new sector is

−Lν ⊃ Yαi
ν `Lα iσ2 Tr

(
Φ†Ψi

)
+

1
2

MΨi Tr
(
Ψc

i Ψi
)
+ λΦHTr

(
Φ†H

)2
+ h.c., (2.61)

where the traces are over color matrices. The mass matrix of the color octet fermions
can be taken to be diagonal, without loss of generality. Greek indices correspond to
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flavor states, and roman indices correspond to mass eigenstates. λΦH and MΨi are
taken to be real for simplicity.

The color octet scalar also couples to the quarks via

−LQ ⊃ dRκDΦ†QL + uRκUQLΦ + h.c. (2.62)

Baryon number is conserved in these interactions, such that this model does not need
an additional mechanism to suppress baryon number violating interactions. The new
colored fields can decay to SM quark–antiquark pairs via the coupling in Eq. (2.62), so
that there is no problem with cosmological constraints. Rotating the quark fields into
the physical basis, the Lagrangian reads

LQ = d̄
[

PL

(
D†

RκDUL

)
− PR

(
D†

Lκ†
UUR

)]
Φ−u

+ ū
[

PR

(
U†

Lκ†
DDR

)
− PL

(
U†

RκU DL

)]
Φ+d

+
Φ0

r√
2

d̄
[

PL

(
D†

RκDDL

)
+ PR

(
D†

Lκ†
DDR

)]
d

+
Φ0

r√
2

ū
[

PL

(
U†

RκUUL

)
+ PR

(
U†

Lκ†
UUR

)]
u

− i
Φ0

i√
2

d̄
[

PL

(
D†

RκDDL

)
− PR

(
D†

Lκ†
DDR

)]
d

+ i
Φ0

i√
2

ū
[

PL

(
U†

RκUUL

)
− PR

(
U†

Lκ†
UUR

)]
u.

(2.63)

Here, UL,R and DL,R are the rotation matrices for up- and down-type quarks u and d.
If one assumes minimal flavor violation (MFV),6

κU = cUYU and κD = cDYD (2.64)

with some constants cU and cD, the physical interactions can be rewritten using the
quark masses mU , mD, and the Cabibbo–Kobayashi–Maskawa (CKM) quark mixing
matrix VCKM [63, 64] as

LMFV
Q =

√
2

v
d̄
(

PLcDmDV†
CKM − PRcUV†

CKMmU

)
Φ−u

+

√
2

v
ū (PRcDVCKMmD − PLcUmUVCKM)Φ+d

+ cD
mD

v
Φ0

r d̄d + cU
mU

v
Φ0

r ūu + icD
mD

v
Φ0

i d̄γ5d− icU
mU

v
Φ0

i ūγ5u.

(2.65)

6The framework of MFV requires that all flavor-violating interactions are linked to the structure of the
ordinary Yukawa couplings, which is exactly what the condition in Eq. (2.64) demands in our case.
MFV can be defined more rigorously, see, e.g., Ref. [79].
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Figure 2.5: One-loop neutrino mass generated by the color octet particles in the col-
ored seesaw mechanism [72, 73].

SU(3)C remains unbroken. Therefore, the new scalar does not obtain a VEV and the
neutrinos remain massless at tree level. No additional symmetry has to be imposed in
this model to achieve this, as opposed to the Ma model where a Z2 symmetry forbids
neutrino masses at tree level. As displayed in Fig. 2.5, a neutrino mass is generated at
the one-loop level, given by [72, 73]

Mαβ
ν = ∑

i
v2 λΦH

16π2 Yαi
ν Yβi

ν I (MΦ, MΨi) . (2.66)

Here, v is the SM Higgs VEV as before, MΦ the mass of the new scalar, and I(MΦ, MΨi)

is a loop function of the octet particle masses given by

Ii ≡ I (MΦ, MΨi) = MΨi

M2
Φ −M2

Ψi
+ M2

Ψi
ln
(

M2
Ψi

M2
Φ

)
(

M2
Φ −M2

Ψi

)2 . (2.67)

For MΦ � MΨi , the neutrino mass matrix can be approximated as

Mαβ
ν ≈∑

i
v2 λΦH

16π2 Yαi
ν Yβi

ν
MΨi

M2
Φ

. (2.68)

The color octet fermions have the same quantum numbers as gluinos in supersym-
metric theories. The Particle Data Group gives MΨ > 8× 102 GeV as their best limit [57].
For the octet scalars, current bounds are about 2 TeV [80, 81]. Usually, these bounds are
derived assuming negligible couplings to the quarks, i.e., production only in the gluon
fusion channel. The color octet scalar has interactions with the quarks in the colored
seesaw scenario, therefore these bounds may be weakened. Using these values and
v = 246 GeV, one needs

Y2
ν λΦH ≈ 10−8 (2.69)
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in order to obtain neutrinos with mass around eV. Thus, it is perfectly viable to have an
explanation for the light neutrino masses that is in reach of the LHC. Using neutrino
Yukawa couplings of order one, this amounts to a value

λΦH ≈ 10−8. (2.70)

We study such values in our survey of 0νββ in the colored seesaw scenario in Section 3.2.
Note that, for such values, there is a strong hierarchy between λΦH and the Yukawa
coupling of the quarks. Radiative corrections might spoil this hierarchy, for example in
diagrams in which the quartic Φ†Φ†HH coupling is mediated by quark loops. However,
in the limit where only the coupling of Φ to the up and down quark is non-zero, which
is sufficient for our 0νββ analysis, this diagram is suppressed heavily by (mu,d/v)2 and
causes no problem.

The structure of the neutrino mass matrix is similar to the seesaw mechanism. Just
as with heavy singlets or triplets in type I or type III seesaw, respectively, one heavy
fermionic field corresponds to one massive light neutrino. The two mass-squared
differences observed in neutrino oscillation experiments [53] thus require at least two
additional heavy fermions, as mentioned before. Therefore, with i = 1, 2, one of the
light neutrinos will be massless. We focus on the case i = 1, 2, 3 in our analysis in
Section 3.2, but we also mention the results for the case i = 1, 2.

In some sense, neutrino masses and lepton number violation can be decoupled in this
model. In Eqs. (2.61) and (2.62), two independent sources of lepton number violation
exist. The first term of Eq. (2.61) may be used to assign lepton number to the color
octet particles. If one assigns lepton number to Ψi, the colored fermion mass term is
lepton number violating. If one assigns lepton number to Φ, then both the λΦH term
in Eq. (2.61) and the quark couplings to Φ in Eq. (2.62) are lepton number violating.
Thus, even if λΦH = 0 and the one-loop neutrino masses in Eq. (2.66) vanish, there is a
source of lepton number violation in the theory. Specifically, there are be non-vanishing
contributions to 0νββ, which we discuss in more detail in Section 3.2. Since lepton
number is not conserved, higher order diagrams will of course lead to very small
neutrino masses also in this case. In addition, lepton flavor conservation is violated
even for vanishing λΦH from the term proportional to Yν. We take the bounds from
lepton flavor violating decays into account in our analysis in Section 3.2.

Colored fields offer the great advantage of being easy to produce at the LHC (if their
masses are around the TeV scale), so that there is the possibility that this mechanism for
neutrino masses may be probed independently. Production and decay mechanisms of
the colored octet scalars were first studied in detail in Refs. [82, 83]. If the neutral
component of the octet scalar is the lightest new particle, it will decay to quark–
antiquark pairs via the coupling in Eq. (2.62). Another option is the decay at one
loop via terms in the scalar potential to gluons [84]. Due to a mass splitting between
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the octet scalars introduced by the SM Higgs VEV [84], decays such as Φ± → Φ0W±

might be allowed. Alternatively, the probably dominant decay mode is Φ± → tb̄, also
via the coupling in Eq. (2.62).

Production and decay of the colored fermions was discussed in detail in Ref. [73].
The octet fermions will be produced in pairs via the strong interaction,

pp→ ΨiΨi, (2.71)

either in gluon–gluon fusion or in quark–antiquark annihilation. The dominant decay
modes will depend on the masses of the octet particles. In Section 3.2 we consider the
case that the scalar is heavier than the fermion, such that for MΦ > MΨi > mt the most
dominant decay channel is via an off-shell charged scalar octet into a charged lepton
and a quark pair [73]

Ψi → `+k t̄b or Ψi → `−k tb̄, (2.72)

or for MΦ > MΨi > 2mt
7 via an off-shell neutral scalar octet into neutrinos and a top

quark pair
Ψi → νk t̄t or Ψi → ν̄ktt̄. (2.73)

It was found that, for fermionic octets up to a few TeV in mass, events with same-sign
dileptons plus multiple jets in the final state could be detectable over SM background
as an indication of lepton number violation in the decay of the fermionic octets [73].

2.5 Summary

This section provided an introduction to the concepts used throughout the rest of this
thesis. We started with the SM of particle physics as a gauge theory and presented the
particle content with the corresponding transformation properties under the gauge
group GSM given in Eq. (2.1). Any particle physics model intended to solve any of the
issues remaining in the SM extends GSM by additional gauge factors and/or extends
the SM particle content given in Tab. 2.1. We discussed approaches to neutrino masses
introducing extra particles in this chapter, and we will extend both the gauge group and
the particle content of the SM in Part II, where we discuss gauge theories for baryon
and lepton numbers.

Then, we turned to extensions of the SM to incorporate neutrino masses. We fo-
cussed on the implementation of Majorana neutrino masses. The generic tree-level
realizations of the Weinberg operator were discussed in some detail: the famous seesaw
mechanisms of type I, type II, and type III. Although being minimal extensions of the

7Assuming no mass splitting for the color octet scalars, i.e., them being much heavier than the electroweak
scale.
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SM in the sense that they only introduce one new representation to the particle content,
and no new gauge groups are necessary, this solution is somewhat unsatisfactory. If
one wants to avoid unnaturally small couplings (as was the original aim when going
from Dirac neutrino masses via the Higgs mechanism to Majorana neutrino masses via
the seesaw mechanism), the new particles have to live at a scale

Λseesaw . 1014 GeV, (2.74)

which makes it impossible to test this neutrino mass mechanism experimentally.
The radiative neutrino mass models we discussed (we presented the Ma model and

the colored seesaw mechanism in some detail) do not suffer from the problem of large
scales, because the additional loop factors can be used to suppress the neutrino masses.
The additionally introduced particles can then live at the TeV scale and therefore be
tested, e.g., at the LHC.

One does not have to rely on loops or large masses of mediators to suppress the
neutrino masses compared to the other fermion masses in the SM. A more exotic option
is to allow the right-handed neutrinos, which are SM singlets, to be part of some hidden
sector, and to use features of this sector to understand the origin of the light neutrino
masses. Going to extra-dimensional setups, a realization of this idea is the so-called
mini-seesaw mechanism in warped space [85], which combines naturally suppressed
Dirac and Majorana masses leading to light SM neutrinos via a low-scale seesaw. This
is achieved by allowing the right-handed neutrinos to be bulk fields in a warped extra
dimension. The suppression of the Dirac mass scale is then achieved by a small wave
function overlap between the bulk neutrinos and the SM fields, which are confined to
the UV brane. The suppression of the Majorana masses is generated by warping. Thus,
no small couplings or large scales have to be involved for tiny neutrino masses. As a
key feature of this model, a tower of Kaluza–Klein modes of sterile neutrinos exists
and mixes with the SM. A detailed phenomenological analysis for these (of the order
GeV) sterile neutrinos was done in [48] in collaboration with Kristian L. McDonald
and Damien P. George, and it was shown that viable parameter space exists in which
light neutrino masses can be generated without relying on supra-TeV scales. Lepton
flavor violation in µ→ eγ, neutrinoless double beta decay, and invisible Z decays were
discussed, and key observables lie just below current experimental sensitivities. For
example, the most recent MEG limit for µ→ eγ already cuts into the parameter space.
Thus, there is hope that in such a setup the origin of neutrino mass may be probed
directly. Introducing extra-dimensional theories is beyond the scope of this thesis, so
we refer the interested reader to the original publications [48, 85] for more details.





Chapter 3

Neutrinoless double beta decay

At least theoretically, it is an interesting possibility that not only the individual lepton
flavor numbers Le, Lµ, and Lτ are not conserved in nature, but also the total lepton
number L = Le + Lµ + Lτ is broken. Currently, the most promising experimental test
for lepton number violation is neutrinoless double beta decay (0νββ), which we discuss
in this chapter. We start with a general introduction to 0νββ in Section 3.1. In Section 3.2,
we discuss the phenomenology of 0νββ in detail for one of the models from the neutrino
mass model zoo that we introduced in Section 2.4.2 of the last chapter: the colored
seesaw mechanism. After that, in Section 3.3, we tackle a more experimental question
and discuss the possibility of discriminating 0νββ from unknown nuclear background
lines in only one isotope by considering the decay to excited states in addition to the
ground state transition. We give a summary of this chapter in Section 3.4.

3.1 Basics of neutrinoless double beta decay

Thirty-five even/even nuclei (even number N of neutrons and even number Z of pro-
tons) can undergo the second-order process double beta decay, because the first-order
process single beta decay is energetically forbidden or at least strongly suppressed.
This observation can be made from the semi-empirical Bethe–Weizsäcker mass formula
[86, 87], which describes the binding energy of a nucleus and contains a term for the
tendency of protons and neutrons to form pairs. The pairing energy is positive for
even/even atomic nuclei, thus increasing the binding energy and therefore decreasing
the mass of the nucleus, and negative for odd/odd ones, thus decreasing the bind-
ing energy and increasing the mass. The pairing energy vanishes for even/odd or
odd/even nuclei. As a result, the mass parabolae of even/even and odd/odd nuclei
split, as shown in Fig. 3.1. In that case, single beta decay is forbidden if the (potential)
daughter nucleus has a larger mass than the decaying one. In some cases, single beta
decay is energetically allowed because the neighboring odd/odd nucleus is lower
in mass, but the spin difference between the states of parent and daughter nucleus
strongly suppresses the decay. This is the case in, e.g., 96Zr.

29
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Figure 3.1: Mass parabolae of even/even (gray) and odd/odd (blue) nuclei. For some
even/even nuclei the first-order process single beta decay (denoted by β− in the figure)
is energetically forbidden, see the red arrow, because the (potential) daughter nucleus
has a larger mass. In that case, the second-order process double beta decay (denoted by
β−β−) can occur. The Q-value of double beta decay is the mass difference between the
decaying nucleus and its daughter nucleus.

In the SM, double beta decay of a nucleus with mass number A = N + Z may occur
in the two-neutrino mode,

(Z, A)→ (Z + 2, A) + 2e− + 2ν̄e (2νββ), (3.1)

where two electrons and two antineutrinos are emitted. Thus, 2νββ decay conserves
lepton number. It has been observed experimentally in several isotopes with half-lives
in the range 1018−24 y [88].

If lepton number is broken in nature (by two units), the neutrinoless mode,

(Z, A)→ (Z + 2, A) + 2e− (0νββ), (3.2)

is also allowed, where only two electrons are emitted. This decay mode has not yet been
observed experimentally and the best half-life limits are of the order 1025 y. The best
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Table 3.1: Best experimental lower limits on the half-lives of 0νββ for the isotopes
76Ge and 136Xe (at 90% CL).

Isotope T0ν
1/2 [years] Experiment

76Ge ≥ 1.9× 1025 Heidelberg–Moscow (HdM) [92]

76Ge ≥ 1.57× 1025 IGEX [93, 94]

76Ge ≥ 2.1× 1025 GERDA [27]

76Ge ≥ 3.0× 1025 combination HdM, IGEX, GERDA [27]

136Xe ≥ 1.6× 1025 EXO-200 [25]

136Xe ≥ 1.9× 1025 KamLAND-Zen [26]

136Xe ≥ 3.4× 1025 combination EXO-200, KamLAND-Zen [26]

lower limits for 76Ge and 136Xe from the current round of experiments are provided in
Tab. 3.1. Note that a subgroup of the Heidelberg–Moscow collaboration, which used
76Ge as double beta isotope, claims to have a positive signal and gives the half-life [89]

T0ν
1/2 = 1.19+0.37

−0.23 × 1025 y. (3.3)

A later analysis results in [90]

T0ν
1/2 = 2.23+0.44

−0.31 × 1025 y, (3.4)

although it has some known inconsistencies [91]. The results from GERDA phase I [27]
now strongly disfavor the claim. Earlier results from KamLAND-Zen and EXO-200
were also incompatible with it (for all but one nuclear matrix element calculation) [25,
26]. In any case, the Heidelberg–Moscow collaboration provided (in a different analysis)
the most stringent limit on 0νββ in 76Ge before GERDA; see Tab. 3.1.

The two modes of double beta decay can be distinguished experimentally by the
energy spectrum of the emitted electrons. For 0νββ, the energies of the two electrons
add up to the total released energy of the nuclear transition, the so-called Q-value.
For 2νββ, the spectrum of the total kinetic energy of the two electrons is continuous
because the emitted neutrinos may take away an arbitrary amount of energy. For a
comparison of the spectra, see Fig. 3.2.

Other lepton number violating processes depending on the same particle physics
parameters as 0νββ are neutrinoless double positron decay (0νβ+β+),

(A, Z)→ (A, Z− 2) + 2e+, (3.5)
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Figure 3.2: Schematic plot of the spectrum of the total energy of the emitted electrons
for the two modes of double beta decay. The spectrum for 2νββ is continuous, because
the emitted neutrinos may take away an arbitrary amount of energy. The spectrum for
0νββ is a single peak at the Q-value of the nuclear transition.

positron emitting electron capture (0νβ+EC),

e−b + (A, Z)→ (A, Z− 2) + e+, (3.6)

and double electron capture (0νECEC),

2e−b + (A, Z)→ (A, Z− 2)∗, (3.7)

where the latter two include bound state electrons e−b . In 0νECEC, the final nucleus is
in an excited state and will de-excite via emission of photons. All of these processes
are somewhat suppressed in comparison to 0νββ. In this thesis, we therefore focus on
0νββ, which we discuss in more detail in the following subsections.

3.1.1 The standard mechanism: light Majorana neutrino exchange

Shortly after Majorana published his symmetric theory for particles and antiparti-
cles [95], it was realized that the so-called Racah sequence [96] is possible if the neutrino
is its own antiparticle (a so-called Majorana particle) and if it has a non-vanishing rest
mass to account for the helicity matching,

(Z, A)→ (Z + 1, A) + e− + νe (3.8)
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Figure 3.3: The standard mechanism of neutrinoless double beta decay: light Majo-
rana neutrino exchange.

(Z + 1, A) + νe → (Z + 2, A) + e−. (3.9)

With virtual neutrinos, this is a realization of neutrinoless double beta decay. This
decay was first discussed by Furry as early as 1939 [97].

The particle physics amplitude of 0νββ mediated by light Majorana neutrinos (see
the corresponding Feynman diagram in Fig. 3.3) is given by

Aν = G2
F

3

∑
i=1

U2
eimi

p2 −m2
i

, (3.10)

where Uei are the elements of the first line of the PMNS neutrino mixing matrix that we
introduced in Eq. (2.31), mi (i = 1, 2, 3) are the light neutrino mass eigenvalues, and p
is the momentum exchange of the process. GF is the Fermi coupling constant. For this
nuclear process, the typical momentum scale 〈p2〉 is set by the size of the nucleus. A
typical distance between two nucleons is r ≈ 10−13 cm, such that we arrive at

〈p2〉 ≈ 1
r2 ≈ (100 MeV)2. (3.11)

For light Majorana neutrinos, m2
i � 〈p2〉, we can thus approximate

Aν ' G2
F

3

∑
i=1

U2
eimi

〈p2〉 , (3.12)

From the amplitude, the half-life T0ν
1/2 of neutrinoless double beta decay can be

calculated to be
1

T0ν
1/2

=
m2

0νββ

m2
e

∣∣M0ν
∣∣2 G0ν(Q, Z). (3.13)
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See the seminal survey of neutrinoless double beta decay by Doi et al. [98] for details of
the corresponding calculation.

The nuclear matrix elementM0ν and the phase space integral G0ν(Q, Z) depend on
the nucleus under consideration. The electron mass me is only introduced in order
to make the “coupling constant” m0νββ/me dimensionless. In a different convention,
this factor is absorbed into the phase space factor. Assuming the standard mechanism
for 0νββ, it is thus possible to measure the so-called effective Majorana mass of the
electron neutrino, m0νββ. Below, we discuss the three building blocks of the half-life
formula in Eq. (3.13).

The effective mass

The effective mass used in Eq. (3.13) is given by

m0νββ =

∣∣∣∣∣ 3

∑
i=1

U2
eimi

∣∣∣∣∣ . (3.14)

A widely parameterization of the PMNS matrix U, which is unitary in a framework
with three light neutrino species, is [22]

U =


c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 S, (3.15)

where cij = cos θij, sij = sin θij, and δ is the Dirac CP phase. This parameterization is
now adopted as standard by the Particle Data Group [57]. θij are the mixing angles
measured in neutrino oscillation experiments [53], see Appendix A for current values.
In case of Dirac neutrinos, S is the unit matrix; for Majorana neutrinos,

S = diag
(

1, ei α
2 , ei β

2 +iδ
)

, (3.16)

where α and β are the two Majorana CP phases.
Using this parameterization for the PMNS mixing matrix U, the effective mass can

be expressed as
m0νββ =

∣∣∣c2
13

(
m1c2

12 + eiαm2s2
12

)
+ eiβm3s2

13

∣∣∣ . (3.17)

In neutrino oscillation experiments, the sign of the mass-squared difference ∆m2
31 ≡

m2
3 −m2

1 cannot be determined. Therefore, two hierarchies of the neutrino masses are
possible:

m1 < m2 � m3 (normal hierarchy), (3.18)
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Figure 3.4: The effective Majorana mass m0νββ as a function of the lightest neutrino
mass eigenvalue mmin = m1 for normal (blue/light blue) and mmin = m3 for inverted
(orange/yellow) mass hierarchy. In the quasi degenerate regime, where mmin is much
larger than the mass-squared differences measured in oscillation experiments, the two
bands overlap. Bold colors denote the best fit values range (varying the unknown CP
phases only), light colors give the ranges where all oscillation parameters are varied
inside their 3σ values ranges.
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m3 � m1 < m2 (inverted hierarchy). (3.19)

For both hierarchies, we denote the smallest neutrino mass eigenvalue by mmin (m1 for
normal hierarchy, m3 for inverted hierarchy). If

mmin �
√∣∣∆m2

31

∣∣, (3.20)

both orderings overlap in the so-called degenerate regime. For a more detailed discus-
sion of the results of neutrino oscillation experiments, see Ref. [53].

We can use the oscillation parameters given in Appendix A and calculate the effective
mass as a function of the lightest neutrino mass eigenvalue. Even for the best-fit values,
there is some uncertainty in the value due to the variation of the unknown Majorana
phases. The result is plotted in Fig. 3.4. Note that for inverted hierarchy a lower limit
on m0νββ exists, whereas for normal hierarchy, for a certain range of m1, the double beta
contribution of the light neutrinos may vanish due to cancellations in the expression
for the effective mass m0νββ.

Due to uncertainties in the nuclear matrix element calculations, see below for a more
detailed discussion, there is some uncertainty in the upper limits on m0νββ that can be
inferred from experiment. The most recent result for 76Ge comes from the GERDA [27]
experiment, which provides a range

m0νββ ≤ (0.2− 0.4) eV. (3.21)

A combination of the results of EXO-200 and KamLAND-Zen on 0νββ in 136Xe provides
a range [26]

m0νββ ≤ (0.12− 0.25) eV. (3.22)

Compare the other limits for neutrino masses given before; see Eqs. (2.9) and (2.11).

Phase space factors

Due to the phase space factor G0ν(Q, Z), the total decay rates and hence the inverse
half-lives of 0νββ depend strongly on the available Q-value: G0ν(Q, Z) scales with Q5.
Therefore, isotopes with a high Q-value (above about 2 MeV) are usually considered
for experiments on double beta decay. This restricts the candidates to 11 promising
isotopes, which are given in Tab. 3.2 together with the corresponding Q-values, matrix
elementsM0ν, and phase space factors G0ν(Q, Z), all for the decay to the ground state
of the daughter nucleus.

The original calculations of the phase space factors for 0νββ [98–102] are only ap-
proximate, because the electron wave functions are approximated at the nuclear radius
and electron screening is not included. The newer approaches take exact Dirac wave
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Table 3.2: List of all double beta isotopes with a Q-value larger than 2 MeV. The
corresponding Q-values, nuclear matrix elementsM0ν, and phase space factors G0ν

are given, for the decay to the ground state of the daughter nucleus. All Q-values
with an error larger than 1 keV are taken from Ref. [105]. All other Q-values were
recently remeasured using Penning traps [106–114]. The matrix elements are IBM-2
calculations [115]. The phase space factor for 124

50Sn is from Ref. [103], all other phase
space factors are from the more recent calculation in Ref. [104]. gA is the axial coupling.

Decay Q [keV] M0ν [115] G0ν [g4
Ay−1] [103, 104]

48
20Ca→48

22Ti 4267.98±0.32 [106] 1.98± 0.59 2.49× 10−14

76
32Ge→76

34Se 2039.061±0.007 [107] 5.42± 1.03 2.34× 10−15

82
34Se→82

36Kr 2997.9±0.3 [108] 4.37± 0.83 1.01× 10−14

96
40Zr→96

42Mo 3347.7±2.2 [105] 2.53± 0.40 2.03× 10−14

100
42Mo→100

44Ru 3034.40±0.17 [109] 3.73± 0.60 1.57× 10−14

110
46Pd→110

48Cd 2017.85±0.64 [110] 3.62± 0.58 4.79× 10−15

116
48Cd→116

50Sn 2813.50±0.13 [111] 2.78± 0.44 1.66× 10−14

124
50Sn→124

52Te 2287.8±1.5 [105] 3.50± 0.67 9.04× 10−15

130
52Te→130

54Xe 2526.97±0.23 [111] 4.03± 0.77 1.41× 10−14

136
54Xe→136

56Ba 2457.83±0.37 [112, 113] 3.33± 0.63 1.46× 10−14

150
60Nd→150

62Sm 3371.38±0.20 [114] 2.32± 0.37 6.20× 10−14

functions with finite nuclear size and electron screening into account [103]. The cal-
culations can be additionally improved by using a Coulomb potential derived from a
realistic proton density distribution in the daughter nucleus [104]. The values of the
phase space factors for the transition to the ground state of the daughter nucleus as well
as for the transition to the first excited 0+ state are calculated in the literature [103, 104].
For the ground state, values of the different calculations agree on the percent level. We
have combined both data sets in Tab. 3.2, which gives the values for the ground state
transition. Later, when we discuss double beta decay to excited states in Section 3.3, we
give the values for the transition to the first excited 0+ state in Tab. 3.3.
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Nuclear matrix elements

The nuclear matrix elements M0ν cannot be measured and have to be calculated
numerically. Throughout this thesis we use the most current values of the nuclear
matrix elements for 0νββ calculated in the microscopic interacting boson model (IBM-
2) [115, 116], providing values for the transition to the ground state and the first excited
state of the daughter nucleus.

Many different models for the calculation of the nuclear matrix elements are on
the market, using different approximations. The various approaches give a spread in
matrix elements by about a factor of two. An overview of the current situation, and
a comparison of alternative approaches to the IBM-2 nuclear matrix elements can be
found in Ref. [115].

3.1.2 Other lepton number violating mechanisms

Light Majorana neutrino exchange (see Fig. 3.3) is usually assumed to be the dominant
contribution to 0νββ. It is, however, important to point out that neutrinoless double
beta decay is a black box:1 we do not observe the virtually exchanged particles directly,
so any ∆L = 2 lepton number violation process in models for physics beyond the
Standard Model may trigger the decay.2

One model-independent approach to 0νββ is the separation into long-range and
short-range contributions [119, 120]. In the long-range contributions, a light neutrino
is exchanged, whereas in the short-range contributions, some heavy new physics
mediator is exchanged.

Considering the short-range contributions, 0νββ becomes an effective vertex diagram
as shown in Fig. 3.5, as the heavy new physics can be integrated out. The most general
Lorentz-invariant Lagrangian for 0νββ is given by [120]

L =
G2

F
2

m−1
p
(
ε1 J J j + ε2 Jµν Jµν j + ε3 Jµ Jµ j + ε4 Jµ Jµν jν + ε5 Jµ J jµ

)
, (3.23)

where the hadronic currents are

J = u (1± γ5) d, Jµ = uγµ (1± γ5) d, Jµν = u
i
2
[γµ, γν] (1± γ5) d, (3.24)

and the leptonic currents are

j = e (1± γ5) ec, jµ = eγµ (1± γ5) ec. (3.25)
1We discuss the so-called “black box” or Schechter–Valle theorem [117] in the next subsection.
2It should be clear that ∆L = 2 lepton number violating new physics will induce Majorana neutrino
masses at some loop level. A model where this happens only at four-loop level, so that the neutrinos
are pseudo-Dirac particles, but a sizable contribution to 0νββ may arise from new particles is given in
Ref. [118].
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Figure 3.5: Effective dimension-nine operator for neutrinoless double beta decay.

From the experimental non-observation of neutrinoless double beta decay, limits on
the coupling constants εi can be deduced (on-axis evaluation), see [120] and also [121]
for current values.

The scaling with GF and mP chosen in Eq. (3.23) is motivated by comparison with
light neutrino exchange. The effective operator for 0νββ is of dimension nine, such that
the εi scale as

εi ∝ Λ−5
0νββ. (3.26)

The resulting amplitude can be compared with the amplitude of 0νββ in the light
neutrino picture,

Alight ' G2
F

∣∣∣∣∣∑i

U2
ei mi

〈p2〉 −m2
i

∣∣∣∣∣ ' (2.7 TeV)−5 , (3.27)

with typical values of
m0νββ =

∣∣∑ U2
ei mi

∣∣ ' 0.5 eV (3.28)

for the effective mass and
〈p2〉 ' 0.01 GeV2 � m2

i (3.29)

for the exchanged momentum. Thus, a model with a heavy physics scale of

Λ0νββ ' O(TeV) (3.30)

can give contributions to 0νββ of a similar size as those from light neutrino exchange.
The dimension nine operator in Fig. 3.5 can be decomposed in terms of the quantum

numbers of the internal mediators, see Ref. [121] for an exhaustive list. At tree-level,
two different topologies are possible, see Fig. 3.6. This decomposition of course includes
the short-range as well as the long-range contributions.

There is a plethora of lepton number violating new physics models that contain
a 0νββ mechanism on the market, the usual suspects being seesaw models with the
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� �
Figure 3.6: The two tree-level topologies of neutrinoless double beta decay dia-
grams [121]. The plain lines are fermions, the zigzag lines can be scalar or vector
particles.

exchange of heavy Majorana neutrinos (type I) [122] or Higgs triplets (type II) [123],3

left–right symmetric models [23, 124], and R-parity violating SUSY [125, 126]. A full
discussion of possible diagrams is beyond the scope of this thesis and can be found
in a current review focussing on particle physics models for 0νββ [127]. Let us give
the diagrams for left–right symmetric models as an example below, because neutrino
masses are generated through a combined seesaw type I and type II in these setups, such
that the corresponding diagrams are also present. In Section 3.2, we perform a detailed
analysis of 0νββ in another new physics model: the colored seesaw mechanism [72, 73].

Example: left–right symmetric theories

Left–right symmetric theories will be discussed in more detail in Section 5, where
we connect the spontaneous breakdown of parity in these models to the breaking
of baryon and lepton numbers. An interesting feature of these theories is the large
number of diagrams for 0νββ and their possible interplay. Neutrinos usually acquire
a Majorana mass in these models through the seesaw mechanism, and the standard
diagram will therefore be present, see Fig. 3.3. However, lepton number violation
is possible in various vertices in left–right symmetric theories, such that many other
diagrams can contribute, see Fig. 3.7. Compare to the diagrams to the two general
topologies in Fig. 3.6: both topologies are present in the left–right symmetric model.
A quite detailed survey of the different possible diagrams in the parameter space of
left–right symmetric theories was performed recently [128]. Depending on the scale of
new physics, the different diagrams can have different magnitude. An unambiguous

3In type III seesaw, the neutral component of the fermionic triplets can play a similar role in 0νββ as the
heavy neutrino in type I seesaw.
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Figure 3.7: Additional diagrams for 0νββ decay in the left–right symmetric model,
besides light Majorana neutrino exchange. The lower line displays the so-called λ-
diagram (left) and the so-called η-diagram (right).

analysis is impossible. There are regions in parameter space where the often neglected
so-called λ- and η-diagrams (see lower line of Fig. 3.7) give sizable contributions to
0νββ. Currently, with the LHC up and running, the connection between 0νββ and the
LHC for left–right symmetric theories are also discussed [129].

3.1.3 The Schechter–Valle theorem

As we have seen before, a Majorana mass term for the neutrinos can give a sizable
rate for 0νββ. However, as we also have seen, light Majorana neutrino exchange is not
the only possible realization of 0νββ at the particle physics level. If 0νββ is mediated
by a diagram not containing virtual Majorana neutrinos, the connection between the
Majorana nature of the neutrinos and 0νββ is not direct anymore. In that case, the
so-called Schechter–Valle or black box theorem saves the connection between 0νββ and
a Majorana mass for the neutrino, independent of the mechanism underlying the decay:
if 0νββ is observed with a non-zero rate, it is possible to draw the diagram in Fig. 3.8,
which is a Majorana mass term for the electron neutrino [117]. The theorem can be
extended by showing that there cannot be any symmetry protecting a zero Majorana
mass for the neutrino if 0νββ is observed [130, 131]. It can also be extended to arbitrary
lepton number and lepton flavor violating processes by taking into account mixing
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Figure 3.8: Black box (or Schechter–Valle) diagram: four-loop neutrino Majorana mass
term generated by a non-vanishing neutrinoless double beta decay operator [117].

between the neutrino generations [132].
However, the diagram is four-loop (see Fig. 3.8) and therefore strongly suppressed.

A quantitative analysis for point-like operators (heavy new physics contributions)—
compare the most general Lagrangian for the decay in Eq. (3.23)—was performed
together with Manfred Lindner and Alexander Merle in [51] and showed that the result
is many orders of magnitude smaller than the neutrino masses one expects to have
from the observed mass splittings in oscillation experiments. Thus the assertion of
the theorem is merely academic. Lepton number violating new physics, which is not
necessarily related to neutrino masses at tree level, may induce black box operators
that explain a (possibly) observed rate of neutrinoless double beta decay. The smallness
of the black box contributions to neutrino mass, however, shows that other neutrino
mass terms must exist. Those could be of Majorana type as well as of Dirac type. If the
neutrinos are mainly Majorana particles, the mass mechanism will be the dominant
part of the black box operator. If the neutrinos are mainly Dirac, then other lepton
number violating new physics dominates 0νββ. Translating an observed rate of 0νββ

into neutrino mass would then be completely misleading.

3.2 Neutrinoless double beta decay mediated by color

octets

In this section we discuss the neutrinoless double beta decay phenomenology of the
colored seesaw mechanism [72, 73], which we introduced as a possible neutrino mass
mechanism in Section 2.4.2. Two contributions to 0νββ arise in this model, and we
compare them in what follows. The direct contribution is the virtual exchange of the
newly introduced color octet particles, see Fig. 3.9, whereas the indirect one is the usual
light Majorana neutrino exchange, see Fig. 3.3. The latter is an indirect contribution,
because the light Majorana neutrino mass is generated radiatively by the colored fields,
see Fig. 2.5 and the corresponding discussion in Section 2.4.2 for more details. In
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Figure 3.9: Direct contribution to neutrinoless double beta decay by the color octet
particles of the colored seesaw mechanism [72, 73]. The indirect contribution from
neutrino masses, the standard mechanism shown in Fig. 3.3, is also present. We discuss
the interplay between the two contributions in detail in this section.

general, depending on the parameters of the model, the color octet contribution can
dominate over the Majorana neutrino exchange. We take the constraints from lepton
flavor violating processes such as µ→ eγ into account when performing the analysis.

The main results presented in this section were published together with Sandhya
Choubey, Manimala Mitra, and Werner Rodejohann [42]. The discussion was updated
to incorporate the most current neutrino oscillation data obtained from global fits [53]
(provided in Appendix A for convenience). The most current MEG limit for µ →
eγ [133] was also taken into account.

3.2.1 Direct and indirect contributions to the decay

The relevant part of the Lagrangian responsible for neutrinoless double beta decay
mediated by the colored octets is

L0νββ ⊃ ū
[

PR

(
U†

Lκ†
DDR

)
11
− PL

(
U†

RκU DL

)
11

]
Φ+d + Yei

ν eL(Φ+)∗Ψi, (3.31)

compare the full Lagrangian of the model in Section 2.4.2.
The effective operator responsible for neutrinoless double beta decay thus is〈

uuee
∣∣∣L∆Le=2

eff (x)
∣∣∣ dd
〉

,

with

L∆Le=2
eff (x) = ∑

i
(Yei

ν )
2 1

M4
Φ MΨi

[
ū
(

PR(U†
Lκ†

DDR)11 − PL(U†
RκU DL)11

)
d
]
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×
[
ū
(

PR(U†
Lκ†

DDR)11 − PL(U†
RκU DL)11

)
d
]
(eLec

L). (3.32)

Let us assume κU � κD and concentrate on the right-chiral part only for illustration.
We can then define the coupling of the color octet to the quarks as

y11 = (U†
Lκ†

DDR)11 (3.33)

and find the particle physics amplitudes of the two contributions to be

Alight ' G2
F

m0νββ

〈p2〉 and Acolor '
y2

11

M4
Φ

∑
i

(Yei
ν )

2

MΨi

. (3.34)

Here Acolor is the amplitude for the direct contribution (color octet exchange) and
Alight the indirect contribution due to the light Majorana neutrino exchange. As before,
〈p2〉 ≈ (100 MeV)2. In a general setup, both contributions depend differently on the
model parameters.

The neutrino Yukawa couplings Yν can be expressed in terms of light neutrino masses,
mixings, color octet masses and a Casas–Ibarra [134] matrixR as

Yν =

√
16π2

λΦH

1
v

UPMNS

√
Mdiag

ν R
√
(Idiag)−1, (3.35)

where
Idiag = diag(I1, I2, I3) (3.36)

and UPMNS is the neutrino mixing matrix. A general parameterization of the complex
orthogonal4 Casas–Ibarra matrixR [134] is given by

R =


ĉ2ĉ3 ĉ2ŝ3 ŝ2

−ĉ1ŝ3 − ŝ1ŝ2ĉ3 ĉ1ĉ3 − ŝ1ŝ2ŝ3 ŝ1ĉ2

ŝ1ŝ3 − ĉ1ŝ2ĉ3 −ŝ1ĉ3 − ĉ1ŝ2ŝ3 ĉ1ĉ2

 , (3.37)

with ŝi = sin θ̂i, ĉi = cos θ̂i (i = 1, 2, 3). θ̂1, θ̂2, and θ̂3 are arbitrary complex angles.
In that case, one can re-write the color octet amplitude in terms of the PMNS matrix

elements Uei:

Acolor '
16π2

λΦHv2
y2

11

M4
Φ

(
∑

i
miU2

ei ∑
j

R2
ij

MΨjId
j
+ 2 ∑

j<i

√
mimj UeiUej ∑

k

RikRjk

MΨkId
k

)
. (3.38)

4That is, it satisfies the orthogonality conditionRTR = 1.
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Thus, in case the new octet fermions are degenerate in mass, i.e., for MΨk = MΨ,
both contributions are be proportional to the effective Majorana mass of the light
neutrinos, m0νββ = ∑ miU2

ei, because the elements of R drop out of this expression.
Therefore, if the light neutrino contribution vanishes due to some cancelation, the color
octet contribution also vanishes identically. In the general case, however, the neutrino
exchange mechanism can be dominating or sub-leading, depending on the masses of
the octets and the quartic coupling governing the interaction between the color octet
scalar and the Standard Model Higgs boson.

The existence of our direct contribution to 0νββ by the new colored fields was noted
in the literature before, but not studied in detail [72]. In the phenomenological survey of
the model [73], MFV was assumed to avoid large flavor changing neutral current effects.
Strong constraints on these processes exist, and the scalar octet can contribute to, e.g.,
K0–K̄0 mixing or to b→ sγ [84]. In the MFV setup, the coupling of the charged member
of the weak doublet scalar octet to a quark q is proportional to mq/v, see Eq. (2.65).
Thus, the amplitude of the direct contribution to 0νββ is suppressed by m2

u,d/v2 and
completely negligible. When departing from the MFV framework, a sizable rate can be
obtained, as we show in what follows. Note that the octet contribution to neutrinoless
double decay that we consider in this thesis only depends on the coupling of the scalar
octet Φ to an up and a down quark. In all possible flavor changing neutral current
diagrams this coupling never appears on its own. For instance, in K0–K̄0 mixing
diagrams or in b → sγ it appears together with couplings involving 2nd and 3rd
generation quarks. While this is not a completely satisfying situation, we nevertheless
note that in the limit of only the coupling to up and down quarks being non-zero, we
face no phenomenological problem. In addition, neutrinoless double decay is the only
place in which this coupling appears on its own and hence it is the only place where it
can be constrained directly.

3.2.2 Lepton flavor violation

Lepton flavor violation in the charged lepton sector is also possible in this model [135],
see Fig. 3.10, and the branching ratio (BR) is given by

BR(lα → lβγ) =
3αem

4πG2
F M4

Φ

∣∣∣∣∣∑i
Yβi

ν (Yαi
ν )∗F (xi)

∣∣∣∣∣
2

, (3.39)

with

F (xi) =
1− 6xi + 3x2

i + 2x3
i − 6x2

i ln(xi)

12(xi − 1)4 (3.40)
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Figure 3.10: Lepton flavor violation in the colored seesaw scenario [72, 73].

and

xi =
M2

Ψi

M2
Φ

. (3.41)

Here, αem is the fine structure constant.
Let us rewrite the branching ratio of µ→ eγ in terms of the neutrino parameters and

the matrixR as

BR(µ→ eγ) =
3αem

4πG2
F M4

Φ

(16π2)2

λ2
ΦHv4

∣∣∣∣∣∑k

F (xk)

Ik
∑
i,j

UeiU∗µjRikR∗jk
√

mimj

∣∣∣∣∣
2

. (3.42)

For the simple choice ofRij = δij, the above expression reduces to

BR(µ→ eγ) =
3αem

4πG2
F M4

Φ

(16π2)2

λ2
ΦHv4

∣∣∣∣∣∑i

F (xi)

Ii
UeiU∗µimi

∣∣∣∣∣
2

. (3.43)

In the following analysis for 0νββ, we took the current bounds on lepton flavor
violating processes into account. The MEG experiment constrains (at 90% CL) [133]

BR(µ→ eγ) ≤ 5.7× 10−13, (3.44)

which is about a factor of four better than the old MEG limit [136]

BR(µ→ eγ) ≤ 2.4× 10−12 (3.45)

(at 90% CL) that was taken into account in the analysis in [42]. Lepton flavor violating
decays of heavier leptons have weaker constraints, with

BR(τ± → e±γ) ≤ 3.3× 10−8 (3.46)

and
BR(τ± → µ±γ) ≤ 4.4× 10−8, (3.47)

both at 90% CL [137].
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3.2.3 The case of two color octet fermions

With two color octet fermions, one of the light neutrinos is massless, and the Casas–
Ibarra matrix R depends only on one complex parameter ω. For normal hierarchy
(NH) and for inverted hierarchy (IH), it can be given as

R(NH) =


0 0

√
1−ω2 −ω

ω
√

1−ω2

 andR(IH) =


√

1−ω2 −ω

ω
√

1−ω2

0 0

 , (3.48)

respectively.

Normal hierarchy

Let us have a look at the normal hierarchy first. For mass degenerate color octet
fermions, i.e., MΨ1 = MΨ2 ≡ MΨ and hence I1 = I2 ≡ I , the Yukawas can be
expressed as

Yν =

√
16π2

λΦH

1
v

U diag(0,
√

m2,
√

m3)Rdiag(
√
I−1,

√
I−1) . (3.49)

and the amplitude for the colored octet exchange is found to be

Acolor =
16π2

λΦHv2
y2

11

M4
Φ MΨI

∣∣U2
e2m2 + U2

e3m3
∣∣ . (3.50)

The expression for the amplitude is independent of the parameter ω, even though the
Yukawa couplings depend strongly on it. Due to the degeneracy of the octet fermion
masses, Acolor is also proportional to the effective mass

m0νββ =
∣∣U2

e2m2 + U2
e3m3

∣∣ . (3.51)

The color octet contribution therefore vanishes whenever the light neutrino exchange
contribution vanishes due to cancelations coming from the Majorana phases. For a
non-vanishing m0νββ however, the color octet contribution Acolor can basically be taken
independent of Alight. This is due to the coupling λΦH, which is a free parameter and
only present in the amplitude of the octet contribution.

There is viable parameter space where light neutrino masses can be achieved and a
dominating (and even saturating the present half-life limits) contribution to 0νββ can
still be obtained. See the original paper [42] for a more detailed discussion of the case of



48 Chapter 3 Neutrinoless double beta decay

two color octets. Note that the rate of 0νββ coming from light neutrino exchange is very
small for normal hierarchy and way below the reach of next-generation experiments.
However, in this setup, a dominant and saturating contribution can arise from the
color octet exchange even in the normal hierarchy, such that 0νββ cannot be used to
distinguish between hierarchies anymore.

The branching ratio for µ→ eγ is also independent of ω in this case and is given by

BR(µ→ eγ) =
3αem

4πG2
F M4

Φ

(16π2)2

λ2
ΦHv4

(F (x)
I

)2 ∣∣∣m2Ue2U∗µ2 + m3Ue3U∗µ3

∣∣∣2 . (3.52)

It was shown in Ref. [42] that in this setup both the 0νββ bound and the bound from
µ→ eγ can be saturated. Interestingly, if the lepton flavor violation bound is saturated,
the color octet fermions can be within the reach of the LHC. If they are also required to
give a saturating contribution to 0νββ, their masses need to be higher.

Inverted hierarchy

In the inverted hierarchy, the amplitude for neutrinoless double beta decay is

Acolor =
16π2

λΦHv2
y2

11

M4
Φ MΨI

∣∣U2
e1m1 + U2

e2m2
∣∣ , (3.53)

and the branching ratio for µ→ eγ is

BR(µ→ eγ) =
3αem

4πG2
F M4

Φ

(16π2)2

λ2
ΦHv4

(F (x)
I

)2 ∣∣∣m1Ue1U∗µ1 + m2Ue2U∗µ2

∣∣∣2 . (3.54)

A dominant 0νββ contribution can arise also in the inverted hierarchy, see Ref. [42] for
more details.

Lepton flavor violation

The ratios of the branching ratios for different lepton flavor violating processes in this
particular setup with two degenerate color octet fermions are

BR(τ → eγ)

BR(µ→ eγ)
=

(Ue2U∗τ2m2 + Ue3U∗τ3m3)(
Ue2U∗µ2m2 + Ue3U∗µ3m3

) , (3.55)

BR(τ → µγ)

BR(µ→ eγ)
=

(
Uµ2U∗τ2m2 + Uµ3U∗τ3m3

)(
Ue2U∗µ2m2 + Ue3U∗µ3m3

) (3.56)
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for normal hierarchy, and

BR(τ → eγ)

BR(µ→ eγ)
=

(Ue1U∗τ1m1 + Ue2U∗τ2m2)(
Ue1U∗µ1m1 + Ue2U∗µ2m2

) , (3.57)

BR(τ → µγ)

BR(µ→ eγ)
=

(
Uµ1U∗τ1m1 + Uµ2U∗τ2m2

)(
Ue1U∗µ1m1 + Ue2U∗µ2m2

) (3.58)

for inverted hierarchy.
In this simple setup one therefore finds exact predictions for these ratios in terms of

neutrino oscillation parameters and experimental measurements of these ratios can be
used to check if the lepton flavor violation is solely due to the neutrino mass generation
mechanism.

Not taking into account possible cancelations in Eqs. (3.55)–(3.58), the expressions
are expected to be of order one. Thus, because the upper limit on the branching ratio
for µ→ eγ is much more stringent than the limits on the other branching ratios, those
are automatically fulfilled if µ→ eγ is fulfilled.

3.2.4 The case of three color octet fermions

We now turn to the three generation scenario, dropping in addition the assumption of
degenerate octet fermions. Then, the color octet contribution to 0νββ is not proportional
to m0νββ anymore, see Eq. (3.38). Thus, if the light neutrino contribution vanishes due
to cancelations, the color octet contribution can still give a significant contribution.

In general, the color octet contribution has a significant dependence on the phases of
the matrixR. We do not address this issue here, because we encounter extreme cases
even when choosingRij = δij. The particle physics amplitude of 0νββ is then given by

Acolor '
16π2

λΦHv2
y2

11

M4
Φ

(
∑

i

miU2
ei

MΨiIi

)
. (3.59)

In what regards neutrino mixing, we keep things as simple as possible. We study
a minimal deviation from tribimaximal mixing. Tribimaximal mixing [138, 139] is
defined by a particular choice of the moduli-squared of the elements of the PMNS
mixing matrix, i.e., 

|Ue1|2 |Ue2|2 |Ue3|2∣∣Uµ1
∣∣2 ∣∣Uµ2

∣∣2 ∣∣Uµ3
∣∣2

|Uτ1|2 |Uτ2|2 |Uτ3|2

 ≡


2
3

1
3 0

1
6

1
3

1
2

1
6

1
3

1
2

 , (3.60)
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and was consistent with neutrino data prior to the discovery of a large mixing angle
θ13. It can nevertheless still serve as a zeroth-order approximation to a more general
neutrino mixing matrix.

Denoting sin θ13 = λ, the form of the PMNS mixing matrix that we use in the analysis
is

UPMNS '


− 2√

6
1√
3

λe−iδ

1√
6
− λ√

3
eiδ 1√

3
+ λ√

6
eiδ − 1√

2
1√
6
+ λ√

6
eiδ 1√

3
− λ√

6
eiδ 1√

2

diag(1, eiα, ei(β+δ)). (3.61)

Note that we allow for a complex PMNS matrix in what follows. In this case, the
amplitude for the light neutrino contribution to 0νββ is

Alight '
G2

F
〈p2〉

(
2m1

3
+

m2

3
ei2α + m3λ2ei2β

)
. (3.62)

For the amplitude of 0νββ mediated by the color octet fermions and scalars, we have

Acolor '
y2

11

M4
Φ

16π2

λΦHv2

(
2m1

3I1MΨ1

+
m2ei2α

3I2MΨ2

+
m3λ2ei2β

I3MΨ3

)
. (3.63)

The branching ratio for the process µ→ eγ is given by

BR(µ→ eγ) =
2
3

16π3

λ2
ΦHv4

αem

G2
F M4

Φ

∣∣∣∣(2eiδλ−
√

2)
m1F (x1)

I1

+(
√

2ei2α + λei2α+iδ)
m2F (x2)

I2
− 3ei2β+iδλ

m3F (x3)

I3

∣∣∣∣2 . (3.64)

In Figs. 3.11 and 3.12, the ratio of Acolor and Alight are plotted as a function of the
smallest neutrino mass for normal and inverted hierarchy. For the different values
of λΦH used, this shows the relative size of the direct and indirect contributions to
0νββ. Even for this simple example, the ratio of the amplitudes can be very large or
very small, corresponding to the dominance of one of the contributions. For the figure,
the mass of the color octet scalar was chosen to be MΦ = 2 TeV, while the masses of
the color octet fermions were varied inside the interval MΨi ∈ [0.9 TeV, 1.1 TeV]. No
particular form of hierarchy was considered between the color octet fermions. The
random variation inside this interval mainly assures that there is no exact degeneracy
between the three fermions. The Yukawa coupling y11 was varied inside the interval
[0.001, 1.0]. Additionally, all phases in the PMNS matrix have been varied in the interval
[0, 2π]. The solar and atmospheric mass-squared differences, as well as the mixing
angles were varied inside their presently allowed 3σ intervals [53], see Appendix A for
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Figure 3.11: The ratio of the particle physics amplitudes Acolor/Alight for normal
hierarchy as a function of the lightest neutrino mass mmin = m1 in the colored seesaw
mechanism. The parameters used are given in the text. The colored areas give the
allowed regions using the current MEG limit for µ → eγ. Note that the areas for
different values of λΦH overlap. The large increase in the ratio in the range 2 ×
10−3 eV < m1 < 9× 10−3 eV is due to the cancellation in Alight. Here, all three regions
overlap, and Acolor is non-zero and dominant.

the used values. The differently colored regions in this figure correspond to different
λΦH values as shown in the plot legend, all satisfying the current MEG limit [133]

BR(µ→ eγ) < 5.7× 10−13. (3.65)

Note that as λΦH increases, the ratio Acolor/Alight decreases. The large increase in
Acolor/Alight for low values of mmin in normal hierarchy is an artifact of cancelations in
Alight due to conspiring Majorana phases.

Another way to visualize the direct contributions is to define a “color effective
mass”: noting that the usual effective mass m0νββ is obtained by multiplyingAlight with
〈p2〉/G2

F, we can define

mcolor
0νββ =

〈p2〉
G2

F
Acolor, (3.66)
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Figure 3.12: The ratio of particle physics amplitudes Acolor/Alight for inverted hier-
archy as a function of the lightest neutrino mass mmin = m3 in the colored seesaw
mechanism, similar to Fig. 3.11.

where Acolor is given in Eq. (3.63). In Fig. 3.13, the color effective mass is given as a
function of the lightest neutrino mass eigenvalue. The usual phenomenology can be sig-
nificantly modified. For instance, in the inverted hierarchy (negligible m3) one expects
m0νββ > 0.05 eV for the exchange of light Majorana neutrinos. The direct contribution
from the octets does approach 1 eV, and hence, even for the simple example considered
here, limits coming from 0νββ experiments can be used to cut in the parameter space
of couplings and masses. Note also that the predicted rate of 0νββ is very large even
for normal hierarchy and almost comparable to that for inverted hierarchy, as pointed
out earlier for the case of two color octets.

3.3 Consistency test of neutrinoless double beta decay

with one isotope

Having discussed the 0νββ phenomenology of a particular model for lepton number
violating physics beyond the SM in the last section, in this section we turn to a more
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Figure 3.13: The “color effective mass” mcolor
0νββ as a function of the lightest neutrino

mass eigenvalue, which has to be compared with the effective mass from the standard
mechanism for 0νββ in Fig. 3.4. We use λΦH = 10−8 for the plot. The normal ordering
is given in blue and the inverted ordering in yellow. Best-fit values are used for
the oscillation parameters, the other parameters are varied as before. Recall that the
standard effective mass m0νββ would be observable in the next few years for values
of mmin > 0.3 eV, and the current limit on the half-life corresponds to about 1 eV for
m0νββ, which is also roughly the limit for mcolor

0νββ.

experimental question. As stated before, experiments on 0νββ are currently the most
promising attempts in the search for lepton number violation. Although the present
round of experiments did not detect a signal [25–27], the next round of experiments
might do so in the near future. Of course, in case one of the experiments finds a signal at
the expected Q-value, it will be necessary to cross-check that indeed 0νββ was detected
and not some unknown background line. Usually, a second isotope would then be
used to also detect the decay. There are, however, other options.

Here, we discuss a consistency test which allows one to discriminate unknown
nuclear background lines from neutrinoless double beta decay with only one isotope,
i.e., within a single experiment. By considering both the transition to the ground
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state (g.s. in equations and figures) and to the first excited 0+ state (0+1 in equations
and figures) of the daughter nucleus, a sufficiently large detector can reveal if indeed
neutrinoless double beta decay or some other nuclear physics process is observed. Such
a detector could therefore simultaneously provide a consistency test for a certain range
of Majorana masses and be sensitive (without the consistency test, of course) to even
lower values of the effective Majorana mass m0νββ.

The results presented in this section were published together with Manfred Lindner
and Kai Zuber in [43]. At that stage, a consistent set of phase space factors for the
ground state transition and the transition to the first excited 0+ state (G0ν

g.s. and G0ν
0+

1
,

respectively) was not available. We therefore approximated

G0ν
0+

1

G0ν
g.s.

≈ (Q− E(0+1 ))
5

Q5 , (3.67)

where Q is the maximum energy that can be released in 0νββ to the ground state of the
daughter nucleus (the so-called Q-value), and E(0+1 ) is the energy of the first excited
0+ state. For this thesis, the discussion was updated with the most recent IBM-2 matrix
element calculations [115]5 using the now available complete sets of phase space factors
[103, 104]. The plot for the effective neutrino mass was updated with the most recent
global fit on neutrino oscillation data, provided in [53] and given in Appendix A for
convenience.

3.3.1 Double beta decay to excited states

Usually, double beta decay to the ground state of the final nucleus is considered.
However, practically all interesting nuclei, i.e., those with a Q-value above 2 MeV (see
Tab. 3.3) have at least one excited 0+ and one excited 2+ state which are accessible by
double beta decay as well. The level scheme of 76Ge is given in Fig. 3.14 as an example.
Transitions to excited 2+ states might be dominated by potential contributions of V + A
interactions (see, however, [141]).

The decay rate to excited states is lower due to the lower Q-value of the decay. The
ratio between the decay rate to the excited 0+1 state and the ground state is given by

Γ0+1
Γg.s.

=
G0ν

0+
1

G0ν
g.s.

×
(
M0ν

0+
1

M0ν
g.s.

)2

, (3.68)

whereM0ν
g.s. denotes the nuclear matrix element for the decay to the ground state, and

M0ν
0+

1
denotes the nuclear matrix element for the decay to the first excited 0+ state.

5In [43], the values for the nuclear matrix elements provided in [116, 140] were used. For a full list
of matrix elements as of September 2010, see the online version of the corresponding talk at http:
//www.ba.infn.it/~now/now2010/TALKS/sept.5/plenary/iachello-otranto.pdf.

http://www.ba.infn.it/~now/now2010/TALKS/sept.5/plenary/iachello-otranto.pdf
http://www.ba.infn.it/~now/now2010/TALKS/sept.5/plenary/iachello-otranto.pdf
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Figure 3.14: Level scheme of the double beta decay of 76Ge. Single beta decay to 76As
is energetically forbidden, thus the only open decay channel is double beta decay. It
may proceed in the two-neutrino mode, as well as in the neutrinoless mode. In addition
to the transition to the ground state (g.s.) of the daughter nucleus 76Se, we discuss the
decay to the first excited 0+ state, labeled by 0+1 .

Excited state transitions have been observed in 100Mo (latest results given in [142])
and 150Nd (latest results given in [143]), both considered to be 2νββ transitions.

The experimental signature of the decay to the first excited 0+ state is quite distinctive,
two gammas with well-defined energies and a known total electron energy different
from the Q-value of the ground state transition. Therefore, the transition to the first
excited 0+ state could be used as a consistency check within the same isotope, i.e.,
within the same experiment, whether a ground state transition is observed. Such a test
might be desirable in future large-scale experiments due to the involved costs. The
ratio of rates to the first excited 0+ and to the ground state for all double beta emitters
with a Q-value of at least 2 MeV are compiled in Tab. 3.3.

With current values, the best choice (highest rate of decays to the first excited 0+

state relative to the ground state transition) would be 48Ca.6 This isotope, however, has
the lowest natural abundance of all 0νββ isotopes (0.187%, compare with 7.8% of 76Ge).
Currently, there is only one experiment using the isotope 48Ca, CANDLES [145], which
is in the R&D phase, and is not as developed as the 76Ge experiment GERDA. In this

6In [43] it seemed that the two most suitable choices for such an internal consistency check would be
150Nd and 76Ge, the first being about a factor of two better than the latter.



56 Chapter 3 Neutrinoless double beta decay

Table 3.3: List of all double beta isotopes with a Q-value larger than 2 MeV, compare
Tab. 3.2. We give the relevant parameters for the decay to the first excited 0+ state
(which we call 0+1 here): the energies E(0+1 ) of this state, the nuclear matrix elements
M0ν

0+
1

and phase space factors G0ν
0+

1
. The values of E(0+1 ) are taken from Ref. [144]. The

matrix elements are IBM-2 calculations [115]. The phase space factor for 124
50Sn is from

Ref. [103], all other phase space factors are from the more recent calculation in Ref. [104].
For all isotopes, we calculate the ratio between the rates of the decay to the 0+1 state
and the ground state, Γ0+1

/Γg.s. by means of Eq. (3.68). Based on the ratio of rates, the

best choices for the proposed consistency test are 48
20Ca and 76

32Ge.

Decay E(0+1 ) [keV] [144] M0ν
0+

1
[115] G0ν

0+
1
[g4

Ayr−1] [103, 104] Γ0+1
/Γg.s.

48
20Ca→48

22Ti 2997 5.83 3.05× 10−16 1.06× 10−1

76
32Ge→76

34Se 1122 2.46 1.87× 10−16 1.65× 10−2

82
34Se→82

36Kr 1488 1.32 9.17× 10−16 7.26× 10−3

96
40Zr→96

42Mo 1148 0.04 3.30× 10−15 4.06× 10−5

100
42Mo→100

44Ru 1130 0.99 3.07× 10−15 1.38× 10−2

110
46Pd→110

48Cd 1473 0.46 1.08× 10−16 3.64× 10−4

116
48Cd→116

50Sn 1757 0.85 7.19× 10−16 4.05× 10−3

124
50Sn→124

52Te 1657 2.70 1.71× 10−16 1.13× 10−2

130
52Te→130

54Xe 1794 3.07 3.57× 10−16 1.47× 10−2

136
54Xe→136

56Ba 1579 1.82 6.59× 10−16 1.35× 10−2

150
60Nd→150

62Sm 740 0.39 2.70× 10−14 1.23× 10−2
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Figure 3.15: Schematic plot of the spectrum of the total energy of the emitted electrons
for double beta decay to the ground state and to the first excited 0+ state. The spectrum
for double beta decay to the ground state was discussed before, see Fig. 3.2. For the
decay to an excited final state, the diagrams are qualitatively the same. However, as
energy is taken away by the emitted photons, the line for 0νββ decay lies at lower
energies. Moreover, the number of decays to excited states is lower than the number of
decays to the ground state.

thesis, we therefore focus on the second best option, which is 76Ge, and discuss the
prospects of a consistency test in this isotope in more detail.

A possible benefit of the proposed method is that the nuclear matrix elements of the
transition to the ground state and to the excited state may have common uncertainties,
which would cancel in the ratio. Improvement of the nuclear matrix elements will thus
allow for a more precise extraction of m0νββ from half-life measurements.

3.3.2 Experimental considerations and possible backgrounds

The expected signature for the required additional decay channel into the excited 0+1
state of the daughter nucleus is two electrons and two gammas with defined energies,
in contrast to the ground state transition emitting only two electrons with a defined
total kinetic energy (see Fig. 3.15 for a comparison of the corresponding energy spectra).
Therefore, the gammas must be clearly separated from the emitted electrons in the
experiment, otherwise the excited state transition would look like a decay to the ground
state. Hence, a purely calorimetric approach without spatial resolution to determine
the individual gammas will fail. Consequently, in a large homogeneous detector, there
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Figure 3.16: Angular correlation of the emitted gammas in double beta decay to the
first excited 0+ state, see Eq. (3.69) for the function W(θ).

must be spatial resolution to see the gammas independently from the emitted electrons.
In a high granularity detector, the granularity should be chosen such that both gammas
can leave the crystal containing the decay without any interaction, making it possible
to search for coincidences with high efficiency.

All double beta decays into the first excited 0+ state will de-excite via the sequence
of 0+ → 2+ → 0+, compare the level scheme of 76Ge in Fig. 3.14, so there will be
an angular correlation between the emitted gammas. For this particular angular
momentum sequence, the angular correlation is given by

W(θ) =
5
8
× (1− 3 cos2 θ + 4 cos4 θ). (3.69)

The function W(θ) is plotted in Fig. 3.16. It is easy to see that the angles 0 and π have
the highest probability.

Due to the low count rates expected in 0νββ experiments, the reduction of possible
backgrounds is an important part of the experimental efforts. As usual in 0νββ, the
major background for the consistency test also is the 2νββ decay into the 0+1 excited
state, observed so far for two isotopes [142, 143]. Since the high energy tail of the
continuous two-neutrino spectrum can mimic the signal of the neutrinoless transition,
energy resolution is the crucial experimental quantity for rejecting this background.

The consistency test relies on even lower backgrounds than regular 0νββ experiments,
so small background contributions also have to be taken into account. One possible
type of background can arise because double beta emitters are surrounded by unstable
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isotopes in the chart of nuclides. The intermediate nucleus in the double beta system,
which may be produced by (p, n) reactions on the double beta emitter, is also unstable
and its beta decay into excited states leads to the same gamma-signature. The energy
spectrum of the single beta decay is continuous but overlapping with the double beta
electron signal. The fraction of beta electrons in the peak range depends on the energy
difference of the ground states of the double beta emitter and the intermediate nucleus.
If it is small, only electrons close to the endpoint of the beta spectrum contribute. If it
is large, more electrons contribute. A detailed estimate depends also on the quantum
numbers of the ground state of the intermediate nucleus, as allowed or forbidden beta
decays lead to different electron energy spectra. Thus, it is essential to measure the
electron energy accurately or to build a detector which is able to discriminate one and
two electrons, typically done in detectors with tracking capabilities. Normally, there are
no free protons in an underground experiment, so the aforementioned (p, n) reactions
are not an issue. Free protons could be produced by (n, p) reactions on a nucleus.
Underground, high energy neutrons are dominantly produced by muon interactions in
or close to the experiment. These neutrons in principle have enough energy to trigger
(n, p) reactions. A detailed estimation depends on the actual cross section for (n, p)
reactions (which is in the region of millibarn for neutron energies below 100 MeV) and
the following (p, n) reactions (which is in the region of millibarn to barn, depending
on the proton energy).

External backgrounds may also be an issue. The signal of a decay into excited states,
however, will be a triple coincidence with well-defined energies of all involved particles.
Additionally, angular correlation exists between the gammas, and the total sum of
particle energies must correspond to the Q-value of the double beta decay. These
constraints make the search for a signal more or less background free, depending of
course on the detector technology used, but a more detailed discussion is beyond the
scope of this thesis. Especially in the case of 76Ge detectors with their excellent energy
resolution, the triple coincidence is so sharply defined that it cannot be mimicked by
any other process. Decay sequences with the same gamma energies are very unlikely,
and furthermore the electron in such a sequence would be continuous, and only a small
fraction will have the right energy. Triple Compton events (note that we have three
different energy depositions) are als very unlikely. In any case, applying the equation
of Compton scattering to the three energy depositions will immediately tell whether
this is consistent with Compton scattering or not.

3.3.3 A consistency test with germanium

We discuss the prospects of a consistency test for the case of 76Ge, which is used in
the GERDA [27] and MAJORANA [146] experiments, in more detail. In addition to
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the signal in the spectrum of the total energy of the emitted electrons in the form of
a peak at 2039 keV as an indication of the ground state transition, the decay into the
first excited 0+ state would be indicated by a total energy of the electrons of 917 keV,
associated with two gammas of 559.1 keV and 563.2 keV, respectively. A coincidence
measurement would be preferential for this form of decay. Even ignoring the angular
correlation among the photons, see Eq. (3.69), this channel should be basically free of
background. In this case, one or two events would indicate an observation, which,
however, implies 61–122 neutrinoless ground state transitions (compare the rates in
Tab. 3.3).

The emitted gammas can be detected quite efficiently. Monte Carlo simulations7 show
that about 60% of the gammas are expected to leave the crystal without interaction for
76Ge detectors in the form of disks of 15 cm diameter and 1 cm thickness. These photons
might be detected in neighboring 76Ge detectors or an active medium surrounding the
crystals.

Let us check whether the necessary number of counts (several hundred, see above)
can be reached for the decay into the ground state in future detectors. In case the
half-life T1/2 of the isotope under consideration is much longer than the measuring
time t, we can write the number of double beta decays as

Nββ =
ln 2aMtNA

T1/2
, (3.70)

where a is the isotopical abundance of the nuclide of interest, M is the used mass and
NA = 6.022× 1023/mol is the Avogadro constant. However, in experiments, we may be
confronted with background, such that there are two different possible dependencies
of the expected half-life sensitivity:

(T1/2)
−1 ∝ aMεt (background free) (3.71)

or

(T1/2)
−1 ∝ aε

√
Mt

B∆E
(background limited) . (3.72)

Here, ε is the efficiency for detection, B is the background index [in counts/(keV kg
y)], and ∆E is the energy resolution at the peak position. See [147] for a more detailed
discussion on 0νββ experiments.

Consider a future 76Ge detector. Two scenarios are thinkable: the Klapdor claim
T0ν

1/2 = 2.23× 1025 y [90] is right, so that one only would have to reach this half-life.
However, it is not improbable that the effective Majorana neutrino mass is as low as
50 meV, where the inverted hierarchy begins (cf. Fig. 3.17). Results for the running

7The simulations were performed by B. Lehnert.
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Table 3.4: Running times that have to be accumulated to perform the proposed con-
sistency test in a future 76Ge detector for two possible scenarios: checking Klapdor’s
claim [90] and with an effective mass of m0νββ = 50 meV.

Klapdor’s claim T0ν
1/2 = 2.23× 1025 y [90]:

background free Mt = 0.92 ton y

background limited Mt = 25.3 ton y

m0νββ = 50 meV:

background free Mt = 25.7 ton y

background limited Mt = 19.6 kton y

Table 3.5: Experimental parameters of the 76Ge 0νββ experiment GERDA [27] used in
the calculations. The nuclear matrix element is calculated in IBM-2 [115], and the phase
space factor is taken from Ref. [104]. In the calculations, we use an axial coupling of
gA = 1.25.

Isotopical abundance a [m−1
u ] 86%

Efficiency ε 60%

Number of decays to the ground state Nββ 122

Background B [counts/(keV kg y)] 0.01

Energy resolution at peak position ∆E 3 keV

M0ν 5.42

G0ν [g4
A y−1] 2.34× 10−15

Typical mass [kg] 1000
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times that need to be accumulated in order to be able to use the proposed consistency
test in both scenarios are given in Tab. 3.4. All parameters used in the calculations are
given in Tab. 3.5.

What is the largest half-life, so that the proposed consistency check can be used in a
running time of 10 years? This means that we need at least 122 decays to the ground
state in 76Ge. Assuming a background-free experiment, and using the values from
Tab. 3.5, for a 76Ge detector of 1 ton, the maximal half-life where this number of decays
to the ground state is reached is

T1/2 = 2.43× 1026 y . (3.73)

This corresponds (using the matrix elements and phase space factors in Tab. 3.5) to an
effective Majorana neutrino mass of

m0νββ = 79 meV. (3.74)

For other isotopes with their typical mass ranges, results are expected to be similar.
Thus, for the next generation of detectors of the size of several hundred kilograms
up to 1 ton, the method should work down to an effective mass below 100 meV. See
Fig. 3.17 for the reach of the consistency test in a future 1 ton 76Ge experiment.

3.4 Summary

In this chapter, we have provided a discussion of neutrinoless double beta decay, which
is one of the most promising searches for lepton number violation at the moment. We
discussed the standard interpretation of this decay, i.e., the virtual exchange of light
Majorana neutrinos, in some detail and mentioned possible beyond the SM mechanisms
discussed in the literature. After that, we presented two original results. First, we
discussed neutrinoless double beta decay and lepton flavor violation processes such
as µ → eγ in the so-called colored seesaw mechanism in Section 3.2. In this model,
color octet scalars and fermions generate Majorana masses for the light neutrinos via a
one-loop diagram, and the same fields can directly mediate neutrinoless double beta
decay and lepton flavor violating processes.

We compared the direct contribution of the color octet particles with the standard
contribution to neutrinoless double beta decay, namely the exchange of light Majorana
neutrinos, whose masses are generated by the color octet particles. In this sense, the
latter contribution is an indirect one of the new colored fields. Extreme cases are easily
possible, in the sense that both contributions can be either dominant or negligible.
Studying only simple examples, we found interesting features: it is possible that the
octet states saturate the limits on both µ → eγ and 0νββ. If the octet fermions are
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Figure 3.17: The effective Majorana mass m0νββ as a function of the lightest neutrino
mass eigenvalue, just as in Fig. 3.4, given here to show the reach of the proposed
consistency test. The best fit value m0νββ = 0.34 eV obtained in the Heidelberg–Moscow
experiment [89] is marked. A future 1 ton 76Ge experiment [148] could probe the
inverted hierarchy down to m0νββ = 0.01 eV. Using this experiment for the consistency
test, the probed value for m0νββ would be higher, due to the lower rate of the decay to
excited states, but could still cover the mass-degenerate regime.
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degenerate in mass, then the contributions to 0νββ from the octets and the light neutri-
nos are both proportional to the effective mass m0νββ, with their relative importance
depending on the model parameters.

Second, we proposed a method to check within a single experiment whether a
possibly observed signal in a future 0νββ detector is really due to 0νββ or due to some
unknown background line in Section 3.3. This question will arise if a positive signal
is seen in one of the next-generation experiments. Usually, it is argued that another
experiment with a different isotope can settle the question. We pointed out that it is
also possible to combine effort into one large detector, instead of using various different
isotopes. Such a detector would therefore serve two purposes: it would have sensitivity
to lower values of m0νββ and it would be able to cross-check a claim for larger values
of m0νββ due to the very characteristic features described before. It is clear that the
proposed consistency test is only viable for relatively large effective neutrino mass
(see Fig. 3.17). Should we really have to cover the whole inverted hierarchy, or even
go down to normal hierarchy, one large detector may not be viable due to the large
amount of material needed, and a set of various isotopes in smaller detectors may be
preferable to check for consistency.
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Chapter 4

A gauge theory for baryon and lepton

numbers with leptoquarks

In Part I of this thesis, we were concerned with two manifestations of lepton number
violation by two units: Majorana neutrino masses and neutrinoless double beta decay.
Now, in Part II, we have a closer look at the origin of this accidental global symmetry
lepton number. Additionally, we include baryon number, the second accidental global
symmetry of the SM, in the discussion. In this context, accidental means that both
baryon and lepton number turn out to be symmetries of the renormalizable and gauge-
invariant couplings of the SM Lagrangian, without imposing these symmetries when
constructing the model.

As we already discussed in the introduction in Chapter 1, there are hints that both
symmetries may actually not be conserved in nature. One way to include a violation
of, e.g., lepton number into a particle physics model is an explicit breaking of the
symmetry at the level of the Lagrangian: when writing down all renormalizable and
gauge-invariant couplings of a model with a particular field content, one can include
couplings that do not respect lepton number, in the sense that any assignment of such
a number to the field content of the model leads to lepton number violation. This is
exactly what we did in Part I of this thesis: all the models we discussed violate lepton
number explicitly by two units.

There is no reason to object to the aforementioned approach if it leads to a phe-
nomenologically viable model, but there is a more interesting way to include a viola-
tion of baryon and/or lepton number into a particle physics theory: promoting the
accidental global symmetries to local gauge symmetries. These gauge symmetries can
then be broken spontaneously by the vacuum expectation value of a scalar field. Thus,
the quantum numbers of the fields breaking the local gauge symmetries dictate which
processes will be allowed after symmetry breaking. The breaking of baryon number
has to be done in a way that does not introduce dangerous baryon number violating
operators mediating proton decay, see Section 2.2 for a discussion of these operators.

Of course, unwanted baryon number violating processes can always be suppressed
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by postulating a great desert between the electroweak scale and a high scale where the
baryon number violating processes have their origin. This is somewhat unsatisfying,
and now, in Part II of this thesis, we are concerned with models where we can under-
stand the breaking of baryon and lepton number at a low scale, with still suppressed
dangerous baryon number violating processes.

The goal of this chapter is to define an anomaly-free theory based on the gauge
group1

GBL = SU(3)C ⊗ SU(2)L ⊗U(1)Y ⊗U(1)B ⊗U(1)L. (4.1)

With the SM particle content given in Tab. 2.1, however, baryon and lepton numbers
are not free of anomalies and therefore cannot be gauged separately immediately.2 In
Section 4.1 of this chapter, we discuss the promotion of the global U(1)B and U(1)L

symmetries to local gauge symmetries, and present the anomalies that have to be
canceled to do so consistently. Then, in Section 4.2, we revisit the attempts in the
literature to build models where the baryon and lepton numbers are local gauge
symmetries that are spontaneously broken at a low scale (e.g., TeV scale). We will see
that all of them are ruled out by current collider results or by cosmological data. Aim of
this exercise is of course to find guidance in building a viable extension of the Standard
Model, which we will do in Section 4.3 (and in Chapter 5 in a left–right symmetric
framework). We will take into account all experimental and observational constraints.

We then consider the theoretical framework of the simplest scenario, i.e., colorless
fermionic leptoquarks, in Section 4.4. As desired, the local baryonic and leptonic gauge
symmetries can be broken at a scale close to the electroweak scale without the need to
postulate the existence of a great desert in order to satisfy the experimental constraints
on baryon number violating processes such as proton decay. In this setup, the seesaw
mechanism for neutrino masses can be realized easily, and no flavor-changing neutral
currents arise at tree level. Furthermore, there is a stable DM candidate, whose stability
is a consequence of the gauge theory and therefore does not have to be put into the
model by hand. We summarize the main results of this chapter in Section 4.5.

The model presented in this chapter was published in collaboration with Pavel
Fileviez Pérez and Mark B. Wise in Ref. [44] and the discussion presented here is an
extension of the one in the paper. A more detailed analysis of the phenomenology of
the model is work in progress together with Pavel Fileviez Pérez.

1As mentioned before, the “L” in SU(2)L refers the left-handedness of the weak interaction, whereas the
“L” in U(1)L refers to lepton number.

2Baryon minus lepton number (B− L) is anomaly-free in the SM with three right-handed neutrinos, and
can therefore be gauged without the introduction of additional fermions beyond these SM singlets, see
the discussion in Section 4.1.2.
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4.1 Relevant anomalies

4.1.1 Standard Model anomalies

The SM fermionic fields and their transformation properties under the SM gauge group
GSM, see Eq. (2.1), can be found in Tab. 2.1. With this field content, the SM gauge group
is free of anomalies. This is important, because the chiral couplings of the theory can
lead to problems at the one-loop level: an axial current that is conserved classically
can obtain a non-zero divergence through one-loop triangle diagrams, coupling the
axial current to two gauge currents. In a theory in which gauge bosons couple to a
chiral current these contributions show up in the one-loop corrections to the vertex
of three gauge bosons. Such a theory can be gauge invariant only if the anomalous
contributions cancel.

The anomalous triangle diagram of three gauge bosons Aa
µ, Ab

ν, and Ac
ρ is propor-

tional to
Tr
(
±tatbtc

)
, (4.2)

where ta, tb, and tc are the corresponding representation matrices and the trace is taken
over all fermion species circulating in the loop. Of course, also the diagram with the
fermions circulating in opposite direction has to be taken into account. The ± accounts
for the fact that left-handed and right-handed contributions contribute with a different
sign. Therefore, all anomalies automatically cancel in theories where the gauge bosons
couple to left-handed and right-handed in the same way, as is the case in, e.g., quantum
chromodynamics and quantum electrodynamics.

Triangle diagrams containing three SU(2)L currents vanish identically. Diagrams
containing only one SU(2)L or one SU(3)C current also vanish because of Tr(ta) = 0
for all corresponding representation matrices ta. Triangle diagrams containing only one
external gravitational field also vanish [149]. See Tab. 4.1 and Fig. 4.1 for the non-trivial
SM anomalies. When extending the particle content in extensions of the SM, we have
to make sure not to introduce non-zero values for any of these anomalies.

In what follows, we are concerned with gauging the symmetries U(1)B and U(1)L

individually. We start to do so by considering the gauge group given in Eq. (4.1) in this
chapter. See Refs. [34–36] for earlier attempts to gauge baryon and lepton numbers in
this way, and Refs. [150, 151] for early related studies. In Chapter 5, we will move to a
left–right symmetric setup using the gauge group

GBL
LR = SU(2)L ⊗ SU(2)R ⊗U(1)B ⊗U(1)L ⊗P , (4.3)

where P is the discrete left–right parity transformation, and we omitted the QCD
gauge group SU(3)C for simplicity. This gauge group was used in Ref. [152], where
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Table 4.1: Non-trivial SM anomalies. The SM is an anomaly-free gauge theory and
therefore, with the fermionic field content given in Tab. 2.1, all of these anomalies
vanish. When extending the SM field content by additional fermions, as we will do in
this chapter and the following ones to gauge baryon and lepton numbers, we have to
make sure not to introduce non-zero values for one or more of these anomalies.

Anomaly SM value

ASM
1

(
U(1)3

Y
)

0

ASM
2

(
SU(3)2

C ⊗U(1)Y
)

0

ASM
3

(
SU(2)2

L ⊗U(1)Y
)

0

ASM
4

(
gravity2 ⊗U(1)Y

)
0

�U(1)Y U(1)Y

U(1)Y

�SU(3)C SU(3)C

U(1)Y

�gravity gravity

U(1)Y

�SU(2)L SU(2)L

U(1)Y

Figure 4.1: Triangle diagrams of the non-trivial anomalies of the SM, see also Tab. 4.1.
Figures clock-wise from top left: ASM

1 (U(1)3
Y), ASM

2 (SU(3)2
C ⊗U(1)Y), ASM

3 (SU(2)2
L ⊗

U(1)Y), ASM
3 (gravity2 ⊗U(1)Y).
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�SU(3)C SU(3)C

U(1)B

�SU(2)L SU(2)L

U(1)B

Figure 4.2: Triangle diagrams of the baryonic anomalies that are calculated in the text:
A1
(
SU(3)2

C ⊗U(1)B
)

and A2
(
SU(2)2

L ⊗U(1)B
)
.

the authors discussed some solutions for the cancelation of anomalies, and we shortly
present these solutions in Chapter 5.

From now on, we take the right-handed neutrinos to be part of the (slightly extended)
SM fermionic spectrum, having the following transformation properties under the
gauge group GBL:

να
R ∼ (1, 1, 0, 0, 1) . (4.4)

The introduction of these right-handed neutrinos of course affects the values of anoma-
lies involving U(1)L, but leaves the SM anomalies in Tab. 4.1 untouched, because the
right-handed neutrinos are total singlets under the SM gauge group GSM.

4.1.2 Baryonic and leptonic anomalies

The additional anomalies (baryonic, leptonic, and mixed) that need to be canceled
are presented in Tab. 4.2, together with their values with the SM particle content
plus right-handed neutrinos. The mixed anomalies become important when we deal
with particles charged both under U(1)B and U(1)L, the so-called leptoquarks that we
introduce later.

Let us calculate the SM values of A1
(
SU(3)2

C ⊗U(1)B
)

and A2
(
SU(2)2

L ⊗U(1)B
)

from Tab. 4.2 as an example. The corresponding triangle diagrams are given in Fig. 4.2.
To A1, all SM fermions in a non-trivial representation of SU(3)C and a non-zero baryon
number contribute, i.e., all SM quarks. We obtain (ta, a = 1, . . . , 8, are the matrices of
the corresponding SU(3)C representation)

A1
(
SU(3)2

C ⊗U(1)B
)

δab ≡ Tr(tatbB) =
1
2

δab ∑
i

Bi, (4.5)

where the sum runs over all SM quarks with an extra minus for the right-handed
quarks:

∑
i

Bi = 3
(

2 · 1
3
− 1

3
− 1

3

)
= 0. (4.6)
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Table 4.2: Purely baryonic, purely leptonic, and mixed anomalies and their values in
the SM with right-handed neutrinos. To be able to gauge baryon and lepton numbers
consistently, the non-zero anomalies have to be canceled by new fermions and non-zero
values for the vanishing ones may not be introduced. See Ref. [34] for a first detailed
discussion of these anomalies.

Type Anomaly SM value

Baryonic

A1
(
SU(3)2

C ⊗U(1)B
)

0

A2
(
SU(2)2

L ⊗U(1)B
) 3

2

A3
(
U(1)2

Y ⊗U(1)B
)

− 3
2

A4
(
U(1)Y ⊗U(1)2

B
)

0

A5
(
gravity2 ⊗U(1)B

)
0

A6
(
U(1)3

B
)

0

Leptonic

A7
(
SU(3)2

C ⊗U(1)L
)

0

A8
(
SU(2)2

L ⊗U(1)L
) 3

2

A9
(
U(1)2

Y ⊗U(1)L
)

− 3
2

A10
(
U(1)Y ⊗U(1)2

L
)

0

A11
(
gravity2 ⊗ (U(1)L

)
0

A12
(
U(1)3

L
)

0

Mixed

A13
(
U(1)2

B ⊗U(1)L
)

0

A14
(
U(1)2

L ⊗U(1)B
)

0

A15 (U(1)Y ⊗U(1)L ⊗U(1)B) 0
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The factor of 3 accounts for the three quark families. To A2
(
SU(2)2

L ⊗U(1)B
)
, only the

quarks in a non-trivial representation of SU(2)L contribute, i.e., the left-handed quark
doublets. We thus find (τa, a = 1, 2, 3, are the matrices of the corresponding SU(2)L

representation)

A2
(
SU(2)2

L ⊗U(1)B
)

δab ≡ Tr(τaτbB) = 3 · 3 · 1
3
· 1

2
δab =

3
2

δab. (4.7)

One factor of 3 comes from color, the second one represents the three quark families.
The anomalies A2

(
SU(2)2

L ⊗U(1)B
)

and A8
(
SU(2)2

L ⊗U(1)L
)

cannot be canceled
in the SM, because each SM family contains only one quark doublet and one lepton
doublet. Therefore, we need to introduce new fermions with non-trivial transformation
properties under SU(2)L to cancel these anomalies. It is worth to point out that
A11

(
gravity2 ⊗U(1)L

)
and A12

(
U(1)3

L
)

are only canceled after we extend the SM
particle content by right-handed neutrinos.

It is obvious from Tab. 4.2 that the gauge group

GB−L = SU(3)C ⊗ SU(2)L ⊗U(1)Y ⊗U(1)B−L (4.8)

is free of anomalies with the SM field content (extended by right-handed neutrinos).
Compare the values of A2

(
SU(2)2

L ⊗U(1)B
)

and A8
(
SU(2)2

L ⊗U(1)L
)
, as well as the

ones of A3
(
U(1)2

Y ⊗U(1)B
)

and A9
(
U(1)2

Y ⊗U(1)L
)
. GB−L can therefore be gauged

without the introduction of new fermionic fields. Since our ultimate aim is to write
down gauge theories for baryon and lepton number without the need to assume a
great desert to suppress baryon number violating processes, it is of no use to follow
this direction: the dimension-6 proton decay operators given in Section 2.2 invariant
under B− L. We will thus not discuss such models in more detail in this thesis.

4.2 Attempts in the literature to gauge baryon and lepton

numbers

Different solutions of the equations that ensure the cancelation of the anomalies pre-
sented in Tab. 4.2 were studied in the literature [34–37]. Early attempts to gauge baryon
and lepton numbers can be found in Refs. [150, 151, 153–155]. By current experimental
results, however, all of the models in [34–37] are ruled out. We nevertheless present
them here to serve as a guideline for model building, which we will do later in this
chapter and in Chapter 5.
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Table 4.3: Field content of a sequential family and the corresponding transformation
properties under the gauge group GBL [34, 35]. The new quarks transform like the SM
quarks under the SM gauge group, but have baryon number BQ′L

= Bu′R
= Bd′R

= −1.
The new leptons transform like the SM leptons under the SM gauge group, but have
lepton number L`′L

= Le′R
= Lν′R

= −3.

Field SU(3)C SU(2)L U(1)Y U(1)B U(1)L

Q′L 3 2 1
6 BQ′L

0

u′R 3 1 2
3 Bu′R

0

d′R 3 1 − 1
3 Bd′R

0

`′L 1 2 − 1
2 0 L`′L

e′R 1 1 −1 0 Le′R

ν′R 1 1 0 0 Lν′R

4.2.1 Sequential or mirror family of quarks and leptons

In Refs. [34, 35], two solutions were presented: a sequential family and a mirror family
of quarks and leptons. The corresponding particle contents are presented in Tabs. 4.3
and 4.4. In the sequential family, the new quarks have baryon number

BQ′L
= Bu′R

= Bd′R
= −1, (4.9)

and the new leptons have lepton number

L`′L
= Le′R

= Lν′R
= −3, (4.10)

which is their only difference from the corresponding SM fields.3 In the mirror family,
the new quarks have baryon number

BQ′R
= Bu′L

= Bd′L
= 1, (4.11)

and the new leptons have lepton number

L`′R
= Le′L

= Lν′L
= 3. (4.12)

The factor of three in comparison to the SM fields is somewhat obvious, because one
family of new fermions has to cancel the contribution of three SM families.

3A similar charge assignment was used before in the context of gauging baryon number only [154].
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Table 4.4: Field content of a mirror family and the corresponding transformation
properties under the gauge group GBL [34, 35]. The new quarks transform like SM
quarks of opposite chirality under the SM gauge group, but have baryon number
BQ′R

= Bu′L
= Bd′L

= 1. The new leptons transform like SM leptons of opposite chirality
under the SM gauge group, but have lepton number L`′R

= Le′L
= Lν′L

= 3.

Field SU(3)C SU(2)L U(1)Y U(1)B U(1)L

Q′R 3 2 1
6 BQ′R

0

u′L 3 1 2
3 Bu′L

0

d′L 3 1 − 1
3 Bd′L

0

`′R 1 2 − 1
2 0 L`′R

e′L 1 1 −1 0 Le′L

ν′L 1 1 0 0 Lν′L

All the baryonic and leptonic anomalies in Tab. 4.2 cancel in both setups. The mixed
anomalies do not play a role because fields are either charged under U(1)B or U(1)L,
but not under both symmetries. The anomalies of the SM gauge group do not pose a
problem because a full new family is introduced.

Unfortunately, both solutions are ruled out today by LHC data. LHC bounds on
the masses of the new quarks are strong: a CMS search excludes mass-degenerate
fourth-generation quarks with masses below 685 GeV at 95% CL [156]. Because these
quark masses can only come from Yukawa interactions with the SM Higgs, the fourth
generation Yukawa couplings have to be quite large, changing the gluon fusion Higgs
production by a factor of 9 [157]. This is in disagreement with the recent LHC results,
where Higgs production is well described by the SM [158]. Additionally, the Yukawas
have to be so large that one enters the regime of non-perturbativity, expecting Landau
poles for the new Yukawa couplings in the TeV region [159]. A current two-loop
analysis for a 126 GeV Higgs shows that perturbation theory is useful for the new quark
masses of the order 600 GeV, but becomes to be marginal at masses ≥ 900 GeV [160].

4.2.2 Vector-like family of quarks and leptons

The problem of too large Yukawa couplings occurred in the case of a sequential or a
mirror family because the particles could get their masses only from the SM Higgs. By
introducing a vector-like family of quarks and leptons (vector-like with regard to the
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SM gauge group), this problem can be avoided.4 In Ref. [36] anomalies were canceled
using vector-like fermions, consisting of a sequential and a mirror family, see Tabs. 4.3
and 4.4. In this case, all anomalies are canceled provided

BQ′L
= Bu′R

= Bd′R
, (4.13)

BQ′R
= Bu′L

= Bd′L
, (4.14)

BQ′L
− BQ′R

= −1 (4.15)

for the baryon numbers of the new quarks and

L`′L
= Le′R

= Lν′R
, (4.16)

L`′R
= Le′L

= Lν′L
, (4.17)

L`′L
− L`′R

= −3 (4.18)

for the lepton numbers of the new leptons.
In addition to the Yukawa couplings to the SM Higgs, one can then write down the

couplings
−Lvec = λQQ′LQ′RSB + λuu′Ru′LSB + λdd′Rd′LSB + h.c., (4.19)

where
SB ∼ (1, 1, 0,−1, 0) (4.20)

is the scalar that eventually obtains a VEV and breaks U(1)B, thereby generating vector-
like masses for the new quarks. Thus, in this setup, the masses of the new quarks can
be large without the need of large Yukawa couplings to the SM Higgs. The model can
therefore be free of non-perturbative Yukawa couplings up to the Planck scale and the
Higgs production channels are not modified by the new quarks.

In the setup used in Ref. [36], the neutrino masses are generated through the type I
seesaw and the new charged leptons get mass only from the SM Higgs VEV. The
corresponding Lagrangian is

−L` = h′e`′LHe′R + h′′e `′RHe′L + h′ν`′LH̃ν′R + h′′ν `′RH̃ν′L

+ Ye`LHeR + Yν`LH̃νR + λ(νR)
cνRSL + h.c., (4.21)

where the new scalar transforms as

SL ∼ (1, 1, 0, 0,−2) . (4.22)

4Vector-like means that left- and right-handed fields transform in the same way under the SM gauge
group.
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After SL acquires its VEV, the right-handed neutrinos obtain a Majorana mass term.
Therefore, in this model the lepton number is broken by two units and one does never
generate proton decay. Unfortunately, the new charged leptons reduce the Higgs
branching ratio into gamma gamma [161] by about a factor of 3. This model therefore
disagrees with the recent LHC results where the newly discovered boson is SM-like.

One can modify this model by adding a second new Higgs boson with lepton number

S′L ∼ (1, 1, 0, 0,−3) (4.23)

to generate vector-like masses for the charged leptons via

−L`
vec = λ``

′
L`
′
RS′L + λee′Re′LS′L + λνν′Rν′LS′L + h.c. (4.24)

after spontaneous symmetry breaking, when S′L obtained its VEV. Then, one will
generate dimension nine operators mediating proton decay, e.g.,

O9 =
c9

Λ5 (uRuRdReR) SBS†
LS′L. (4.25)

Assuming that c9 ∼ 1 and that the VEVs of SB, SL, and S′L are around TeV, one finds
that Λ ≥ 107−8 GeV. This means that we still have to postulate half of the desert (on
a logarithmic scale) in order to satisfy the proton decay bounds. Of course, we could
also assume that c9 is very small. We will not discuss this model further but instead
look for solutions, where proton decay is absent and we do not have to postulate the
existence of a desert.

4.2.3 Family of fermionic leptoquarks

Instead of introducing a full family of quarks and a full family of leptons, it is natural
to think about canceling the B and L anomalies by adding fermionic leptoquarks, i.e.,
particles that carry both baryon and lepton numbers. A generic starting point can be
the assignment of quantum numbers provided in Tab. 4.5, where, for simplicity, all
new fields are in the same representation N of SU(3)C and the SU(2)L structure is
similar to the one of a SM family of quarks and leptons (one left-handed doublet and
two right-handed singlets). The conditions obtained from the requirement of anomaly
cancelation then lead to a unique model, up to different choices for N.

The combination of A5
(
gravity2 ⊗U(1)B

)
and A6

(
U(1)3

B
)

allows for two assign-
ments of baryon numbers B1, B2, B3:

B1 = 0, B2 = −B3 or B1 = B2 = B3 ≡ B. (4.26)

Let us consider the second assignment. Similarly, for the lepton numbers, we are led to

L1 = L2 = L3 ≡ L. (4.27)



78 Chapter 4 A gauge theory for baryon and lepton numbers with leptoquarks

Table 4.5: Generic assignment of quantum numbers for a family of leptoquarks. For
simplicity, all new fields are in the same representation N of SU(3)C, which will fix
the baryon and lepton numbers of the fields. For simplicity, the SU(2)L structure is
similar to the one of a SM family of quarks or leptons: one left-handed doublet and
two right-handed singlets.

Field SU(3)C SU(2)L U(1)Y U(1)B U(1)L

ΨL N 2 Y1 B1 L1

ηR N 1 Y2 B2 L2

χR N 1 Y3 B3 L3

Then, A2
(
SU(2)2

L ⊗U(1)B
)

and A8
(
SU(2)2

L ⊗U(1)L
)

immediately fix B and L to be

B = L = − 3
N

. (4.28)

The combination of ASM
1

(
U(1)3

Y
)

and ASM
4

(
gravity2 ⊗U(1)Y

)
leads to two possible

combinations (compare the discussion for baryon and lepton numbers above):

Y1 = 0, Y2 = −Y3 or Y1 = Y2 = Y3. (4.29)

Combining this condition with the one obtained from A3
(
U(1)2

Y ⊗U(1)B
)
, the unique

assignment of hypercharges is

Y1 = 0, Y2 = ±1
2
= −Y3. (4.30)

This discussion nicely illustrates the power of anomaly cancelation in fixing the quan-
tum numbers of the additional fields.

For the choice N = 3, this is just the model which was presented in Ref. [37], where
the authors introduced the fields

FL ∼ (3, 2, 0,−1,−1) , (4.31)

jR ∼
(

3, 1,
1
2

,−1,−1
)

, (4.32)

kR ∼
(

3, 1,−1
2

,−1,−1
)

, (4.33)

in addition to the SM fermion content given before. This simple particle content cancels
all relevant anomalies. Of course, one could similarly introduce a set of “mirror”
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leptoquarks with opposite chirality and lepton and baryon numbers B = L = +1,
also canceling all anomalies. The new particles have exotic electric charges, Qj = 1/2
and Qk = −1/2, and one predicts the existence of stable charged fields. This model is
therefore ruled out by cosmology. In the next section, we present different solutions
with particles having both baryon and lepton numbers, in which one can avoid this
problem.

4.3 Vector-like family of fermionic leptoquarks

In the last section, we saw that all models proposed in the literature to gauge baryon
and lepton numbers are by now ruled out by observations. In the case of sequential
and mirror families, as well as the vector-like family, LHC data rules out the setups; the
case of a family of leptoquarks is ruled out by cosmology. In this section, we build a
viable model that can satisfy all current constraints. We combine the advantages of the
different models presented before, namely vector-like fermions and leptoquark fields
that carry both lepton and baryon numbers.

4.3.1 Anomaly cancelation

As we have seen in the last chapter, there are different possibilities to cancel all relevant
anomalies to gauge B and L. However, it is difficult to write a consistent model which
is in agreement with collider data and cosmology without the need to postulate the
existence of a large desert. In order to find viable scenarios, we consider the particle
content listed in Tab. 4.6. We consider different possibilities for the quantum numbers
of the new fields under SU(3)C and use the conditions for the cancelation of anomalies
to determine the quantum numbers under U(1)Y, U(1)B, and U(1)L. The anomalies
A2(SU(2)2

L ⊗U(1)B) and A8(SU(2)2
L ⊗U(1)L), see Tab. 4.2, can only be canceled by a

field charged under SU(2), most conveniently by a doublet. We therefore fix the SU(2)L

quantum numbers of the new particles to be similar to a SM family of quarks or leptons
(one SU(2)L doublet and two singlets). To not spoil the SM anomaly cancelation, see
the non-trivial anomalies in Tab. 4.1, we choose the new fields to be vector-like under
the SM gauge group.

Starting with the cancelation of A2(SU(2)2
L ⊗U(1)B), one finds the condition

B1 − B4 = − 3
N

, (4.34)

and for simplicity we use

B1 = −B4 = − 3
2N

(4.35)
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Table 4.6: Generic assignment of quantum numbers for a vector-like family of lepto-
quarks. Compare with the single family of leptoquarks presented before, see Tab. 4.5.
For simplicity, all new fields are in the same representation N of SU(3)C, which will fix
the baryon and lepton numbers using the constraints that come from the cancelation of
anomalies, see the discussion in Section 4.3.1. For simplicity, the SU(2)L structure is
similar to the one of a SM family of quarks or leptons: one left-handed doublet and
two right-handed singlets.

Field SU(3)C SU(2)L U(1)Y U(1)B U(1)L

ΨL N 2 Y1 B1 = − 3
2N L1 = − 3

2N

ηR N 1 Y2 B2 = − 3
2N L2 = − 3

2N

χR N 1 Y3 B3 = − 3
2N L3 = − 3

2N

ΨR N 2 Y1 B4 = + 3
2N L4 = + 3

2N

ηL N 1 Y2 B5 = + 3
2N L5 = + 3

2N

χL N 1 Y3 B6 = + 3
2N L6 = + 3

2N

The same applies to the corresponding leptonic anomaly A8(SU(2)2
L ⊗U(1)L), and we

have
L1 = −L4 = − 3

2N
. (4.36)

To cancel A5(gravity2 ⊗U(1)B), one needs to impose the condition

2(B1 − B4)− (B2 − B5)− (B3 − B6) = 0. (4.37)

Using
B5 = −B2 and B6 = −B3, (4.38)

this reduces to
2B1 − B2 − B3 = 0, (4.39)

which is most easily canceled by the choice

B1 = B2 = B3. (4.40)

Similarly, a good choice for the lepton numbers is

L5 = −L2, L6 = −L3, and L1 = L2 = L3. (4.41)
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Finally, we have to cancel the anomalies with weak hypercharge. The anomalies
A4
(
U(1)Y ⊗U(1)2

B
)

and A10
(
U(1)Y ⊗U(1)2

L
)

are always canceled with the above
used assignment of baryon and lepton numbers, and do not provide a condition for
the hypercharges. From A3(U(1)2

Y ⊗U(1)B), we obtain the condition

Y2
2 + Y2

3 − 2Y2
1 =

1
2

. (4.42)

A useful set of solutions for this equation is

(Y1, Y2, Y3) ∈
{(
±1

2
,±1, 0

)
,
(
±1

6
,±2

3
,±1

3

)
,
(

0,±1
2

,±1
2

)}
. (4.43)

It is easy to check that, using any of these choices, all baryonic and leptonic anoma-
lies are canceled. Since the new particles are vector-like with respect to the SM gauge
group, the SM anomalies do not pose a problem. Additionally, it can be checked that
the mixed anomalies A13(U(1)L ⊗ U(1)2

B), A14(U(1)2
L ⊗ U(1)B), and A15(U(1)Y ⊗

U(1)L ⊗U(1)B) are canceled as well. These could be relevant because we deal with
particles charged both under U(1)B and U(1)L.

In the following three subsections, we discuss the possible scenarios for different
values of N in some detail. For a viable model, one has to avoid scenarios with a stable
electrically charged or a stable colored field; this can most easily be done if we either
demand that the new fields should have a direct coupling to the SM fermions to allow
for a decay channel, or that the lightest particle in the new sector is neutral and stable.

4.3.2 Color singlets

In the case of N = 1, i.e., if the new fields do not feel the strong interaction, both the
solutions with the hypercharge assignments (Y1, Y2, Y3) = (±1/6,±2/3,±1/3) and
(Y1, Y2, Y3) = (0,±1/2,±1/2) contain a stable electrically charged field (compare the
leptoquark discussion in the last section). The only solution which allows for a stable
neutral field in the new sector is (Y1, Y2, Y3) = (±1/2,±1, 0). This neutral particle can
then be a dark matter candidate. This is a very interesting setup, and we discuss this
solution in Section 4.4 in more detail.

4.3.3 Color triplets

In the case N = 3, both the solutions (Y1, Y2, Y3) = (0,±1/2,±1/2) and (Y1, Y2, Y3) =

(±1/2,±1, 0) do not allow for a decay of the new colored fields to SM particles and/or
electrically neutral and colorless fields. A stable colored field can be avoided if one
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uses the weak hypercharge assignment (Y1, Y2, Y3) = (±1/6,±2/3,±1/3), because
part of the new leptoquarks can decay to the SM quarks and a new scalar SM singlet

X ∼
(

1, 1, 0,−1
6

,−1
2

)
(4.44)

via the following coupling

−L ⊃ λQXQLΨR + λuXuRηL + λdXdRχL + h.c. (4.45)

Additionally, one can introduce a new scalar

SBL ∼ (1, 1, 0,−1,−1) (4.46)

that couples to the new leptoquarks as

−L ⊃ λΨSBLΨLΨR + ληSBLηRηL + λχSBLχRχL + h.c. (4.47)

If the new scalar X does not acquire a VEV, no mass mixing between the SM quarks
and the new leptoquarks will be induced. Actually, if X is the lightest new particle
with baryon number, it will be a stable DM candidate. This is ensured by a global U(1)
symmetry where the new leptoquarks and X are multiplied by a phase. It is worth
pointing out that this symmetry does not have to be put in by hand because it is an
automatic consequence of the particle content of the model and the underlying gauge
symmetry. The VEV of SBL will break U(1)B and U(1)L and give vector-like masses
to the leptoquarks. Unfortunately, with SBL one generates dimension seven operators
mediating proton decay, e.g.,

O7 =
c7

Λ3 (eRuRuRdR)SBL. (4.48)

Assuming that the VEV of SBL is around TeV and that c7 ≈ 1, one finds that Λ >

1011 GeV, such that one has to still postulate a large desert to account for the large
proton lifetime. Therefore, we will not pursue this model further in this thesis.

4.3.4 Color octets

This scenario with N = 8 also is viable if one chooses

(Y1, Y2, Y3) =

(
±1

2
,±1, 0

)
, (4.49)

such that the leptoquarks couple to the SM fermions via

−L ⊃ λ1ΨR`LS + λ2ηLeRS + λ3χLνRS + h.c., (4.50)
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Figure 4.3: Decay of the scalar S to two gluons at one loop.

introducing the extra colored scalar field

S ∼
(

8, 1, 0,
3
16

,−13
16

)
. (4.51)

By additionally introducing a scalar SM singlet with non-zero baryon and lepton
numbers

SB ∼
(
1, 1, 0, B′, L′

)
(4.52)

that will break B and L once it obtains a VEV, one can allow for a term Tr(S3SB) in the
scalar potential that fixes B′ and L′. Then, after spontaneous symmetry breaking, S can
decay at one loop to a pair of gluons [82]; see the corresponding Feynman diagrams in
Fig. 4.3.

Although this setup is interesting, we do not consider N = 8 further in this thesis,
but instead present the simplest possible model with N = 1 in the following sections
in more detail.

4.4 Color singlets: framework and phenomenology

4.4.1 Particle content and interactions

The additional fields of the solution with colorless leptoquarks are given in Tab. 4.7.
The new fermions are exactly the ones necessary to cancel all relevant anomalies to
be able to gauge U(1)B and U(1)L. We call these fields leptoquarks even though they
do not couple to quarks and leptons because they have baryon and lepton numbers
±3/2. Because we need to break both local gauge symmetries, we need to introduce
two additional scalar fields, SBL and SL. Their quantum numbers are also given in
Tab. 4.7.

The Lagrangian of the model can be written as

L = Lscalar + Lgauge
kin + Lfermion

kin + LYuk, (4.53)

where Lscalar defines the scalar sector of the model, Lgauge
kin contains the kinetic terms

of the gauge bosons, Lfermion
kin contains the kinetic terms of the fermions (SM quarks
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Table 4.7: The extra particle content of the simplest model with colorless leptoquarks
and the corresponding transformation properties under the gauge group GBL. The
leptoquark fields ΨL, ηR, χR, ΨR, ηL, and χL cancel all relevant anomalies. The scalar
fields SBL and SL will obtain VEVs and contribute to the breaking of U(1)B and U(1)L.

Field SU(3) SU(2) U(1)Y U(1)B U(1)L

ΨL 1 2 ± 1
2 − 3

2 − 3
2

ηR 1 1 ±1 − 3
2 − 3

2

χR 1 1 0 − 3
2 − 3

2

ΨR 1 2 ± 1
2 + 3

2 + 3
2

ηL 1 1 ±1 + 3
2 + 3

2

χL 1 1 0 + 3
2 + 3

2

SBL 1 1 0 −3 −3

SL 1 1 0 0 −2

and leptons as well as leptoquarks), and LYuk contains all Yukawa couplings of the SM
quarks and leptons as well as of the new leptoquarks.

The scalar sector is defined by

Lscalar =
(

DµH
)† DµH +

(
DµSBL

)† DµSBL +
(

DµSL
)† DµSL − V(H, SBL, SL) (4.54)

with the scalar potential

V(H, SBL, SL) = m2
1H†H + m2

2S†
BLSBL + m2

3S†
LSL + µ1(H†H)2 + µ2(S†

BLSBL)
2

+ µ3(S†
LSL)

2 + µ4(H†H)(S†
BLSBL) + µ5(H†H)(S†

LSL) + µ6(S†
BLSBL)(S†

LSL). (4.55)

The general covariant derivative is given by (sum over repeated index a implied)

Dµ = ∂µ + igtaWa
µ + ig′YBµ + igLLBL

µ + igBBBB
µ . (4.56)

For symmetry breaking, we use the parameterization of complex scalars in terms of
real scalars and pseudoscalars:

H0 =
1√
2
(v + h) +

i√
2

A, (4.57)
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SL =
1√
2
(vL + hL) +

i√
2

AL, (4.58)

SBL =
1√
2
(vBL + hBL) +

i√
2

ABL. (4.59)

The local baryonic and leptonic symmetries, U(1)B and U(1)L, are broken by the
VEV vBL of SBL, while the VEV vL of SL only contributes to the breaking of U(1)L. After
symmetry breaking, the two new physical scalars hL and hBL mix with each other and
with the Standard Model Higgs boson to form three real scalars.

Ignoring the kinetic mixing with U(1)Y, which has to be small, the kinetic terms of
the gauge bosons are given by

Lgauge
kin = LSM gauge

kin − 1
4

FB
µνFµν

B −
1
4

FL
µνFµν

L −
εBL

2
FB

µνFµν
L , (4.60)

where LSM gauge
kin is the usual SM gauge boson term and

FL
µν = ∂µBL

ν − ∂νBL
µ , (4.61)

FB
µν = ∂µBB

ν − ∂νBB
µ . (4.62)

The kinetic terms of the fermions are given by

Lfermion
kin = iQL /DQL + iuR /DuR + idR /DdR + i`L /D`L + ieR /DeR + iνR /DνR

+ iΨL /DΨL + iΨR /DΨR + iηL /DηL + iηR /DηR + iχL /DχL + iχR /DχR, (4.63)

where /D = γµDµ. The corresponding covariant derivatives for each fermionic field can
be obtained from Eq. (4.56).

The Yukawa interactions are given by

−LYuk = YdQLHdR + YuQLH̃uR + YelLHeR + h1ΨLHηR + h2ΨLH̃χR

+ h3ΨRHηL + h4ΨRH̃χL + λ1ΨLΨRSBL + λ2ηRηLSBL + λ3χRχLSBL

+ a1(χL)cχLSBL + a2(χR)cχRS†
BL + Yν`LH̃νR +

λR

2
(νR)cνRSL + h.c., (4.64)

with H̃ = iσ2H∗. Terms proportional to ai (i = 1, 2) give Majorana masses for the
neutral fields after symmetry breaking, and all interactions proportional to the λi
(i = 1, 2, 3) couplings generate vector-like mass terms for the new fermions. Note that
the quantum numbers of the Higgs fields SL and SBL that break U(1)B and U(1)L are
totally fixed by these interactions, see Tab. 4.7 for their values. Thus, after symmetry
breaking there will be interactions that violate baryon number by three units (therefore
not allowing for proton decay) and/or violate lepton number by two or three units.
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4.4.2 Neutrinos

In this model, it is very easy to realize the type I seesaw [14–18] mechanism (even at
the weak scale) for neutrino masses by introducing the new Higgs SL, see Tab. 4.7 for
its quantum numbers. The interactions providing neutrino masses are given by

−Lν = Yν`LH̃νR +
λR

2
(νR)cνRSL + h.c. (4.65)

After symmetry breaking, the mass terms for the neutrinos are

−Lmass
ν =

1
2

(
νL MDνR + (νR)c MT

D(νL)
c + (νR)c MRνR

)
+ h.c., (4.66)

where the Dirac mass term is given by

MD =
1√
2

Yνv (4.67)

and the Majorana mass term of the right-handed neutrinos is given by

MR =
1√
2

λRvL. (4.68)

4.4.3 Fermionic leptoquarks

After symmetry breaking, we have four neutral and four charged chiral fermions in the
leptoquark sector. It is important to remember that the new fermions, since they have a
different baryon number, do not couple to the SM fermions and one never generates
new sources of flavor violation in the SM quark and lepton sectors.

Let us denote the leptoquark doublets as

ΨL =

ψ0
L

ψ−L

 and ΨR =

ψ0
R

ψ−R

 . (4.69)

Then, the charged lepton mass term is

−Lcharged
mass =

(
ψ−L ηL

)
Mcharged

ηR

ψ−R

+ h.c. (4.70)

with

Mcharged =
1√
2

 h1v λ1vBL

λ2vBL h3v

 . (4.71)
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The neutral lepton mass term is

−Lneutral
mass =

(
ψ0

L (χR)c (ψ0
R)

c χL
)
Mneutral



(ψ0
L)

c

χR

ψ0
R

(χL)
c


(4.72)

with

Mneutral =
1√
2



0 h2v λ1vBL 0

h2v 2a2vBL 0 λ3vBL

λ1vBL 0 0 h4v

0 λ3vBL h4v 2a1vBL


. (4.73)

The mass matrices can be diagonalized via

Mdiag
charged = V†

LMchargedVR, (4.74)

Mdiag
neutral = RTMneutralR, (4.75)

where VL and VR are unitary matrices and R is an orthogonal matrix.

4.4.4 Gauge sector

The mass matrix of the new gauge bosons in the basis (BB
µ BL

µ) is given by

M2
gauge =

 9
2 g2

Bv2
BL

9
2 gBgLv2

BL

9
2 gBgLv2

BL
9
2 g2

Lv2
BL + 2v2

Lg2
L

 (4.76)

This matrix can be diagonalized by(
Mdiag

gauge

)2
= UTM2

gaugeU, (4.77)

where

U =

cos θ − sin θ

sin θ cos θ

 , (4.78)



88 Chapter 4 A gauge theory for baryon and lepton numbers with leptoquarks

with

tan 2θ =
9gBgLv2

BL
9
2 (g2

B − g2
L)v

2
BL − 2v2

Lg2
L

. (4.79)

The new mass eigenstates areZ′1µ

Z′2µ

 = UT

BB
µ

BL
µ

 or

BB
µ

BL
µ

 = U

Z′1µ

Z′2µ

 . (4.80)

4.4.5 Scalar sector

Minimizing the scalar potential in Eq. (4.55), we find the conditions

m2
1 = −(µ1v2 +

µ4

2
v2

BL +
µ5

2
v2

L), (4.81)

m2
2 = −(µ2v2

BL +
µ4

2
v2 +

µ6

2
v2

L), (4.82)

m2
3 = −(µ3v2

L +
µ5

2
v2 +

µ6

2
v2

BL). (4.83)

The scalar potential is bounded from below if

µ1, µ2, µ3 ≥ 0, (4.84)
µ4

2
+
√

µ1µ2 ≥ 0, (4.85)

µ5

2
+
√

µ1µ3 ≥ 0, (4.86)

µ6

2
+
√

µ2µ3 ≥ 0, (4.87)

(4.88)

and

det


µ1 µ4/2 µ5/2

µ4/2 µ2 µ6/2

µ5/2 µ6/2 µ3

 ≥ 0, (4.89)

where the last condition is equivalent to

µ4

2
√

µ3 +
µ5

2
√

µ2 +
µ6

2
√

µ1 +
√

µ1µ2µ3 ≥ 0. (4.90)
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After spontaneous symmetry breaking, the Higgs mass term is given by

Lh
mass =

1
2
(h hBL hL)M2

Higgs


h

hBL

hL

 (4.91)

with the CP-even Higgs mass matrix

M2
Higgs =


2µ1v2 µ4vvBL µ5vvL

µ4vvBL 2µ2v2
BL µ6vBLvL

µ5vvL µ6vBLvL 2µ3v2
L

 . (4.92)

4.4.6 Dark matter candidate

The lightest fermionic field in the new sector is automatically stable and a candidate
for the cold dark matter of the Universe if it is electrically neutral. The dark matter
stability is a consequence of the gauge symmetry and we do not need to impose any
discrete symmetry by hand to obtain a stable particle. Indeed, after the breaking of
the local U(1)L and U(1)B symmetries we obtain a Z2 symmetry as a remnant, under
which the new fermions transform as

Z2 : ΨL,R → −ΨL,R, ηL,R → −ηL,R, and χL,R → −χL,R. (4.93)

All other fields are even under this Z2. The DM candidate carries baryon number, such
that we have “baryonic dark matter.” The idea of having a DM candidate with baryon
number was already discussed in the early papers for gauge theories of baryon and
lepton numbers, see, e.g., Ref. [34].

The careful study of the properties of the dark matter candidate in this model is
beyond the scope of this thesis. We cannot discuss the relic density calculations and
the constraints coming from direct and indirect detection in detail. Let us nevertheless
shortly mention how the direct detection constraints can be satisfied and the right relic
density can be achieved. The dark matter candidate, ΨDM, couples to the new neutral
gauge bosons in the theory, Z′1 and Z′2, and to the new scalars, hL and hBL. It will be
possible to achieve the right annihilation cross section, and therefore the right relic
density by using one of these resonances, e.g., a DM mass of

mΨDM '
1
2

MZ′i
. (4.94)
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DM direct detection will also be possible through the couplings of the DM to the Z and
the Z′i . There is quite some freedom in choosing the parameters of the model, so there
should be no problem to satisfy the experimental constraints. A detailed analysis of the
DM sector of this model is work in progress.

An analysis of the DM sector of a simplified version of this model was performed
recently together with Pavel Fileviez Pérez in Ref. [50]. We only considered baryon
number, and therefore used the gauge group

GB = SU(3)C ⊗ SU(2)L ⊗U(1)Y ⊗U(1)B. (4.95)

We discussed the case of a SM singlet-like Dirac fermion as a DM candidate, which
carries baryon number and therefore couples to the new gauge boson ZB related to
baryon number. The new gauge ZB boson also couples to the quarks, and this is crucial
for the relic density and for direct detection: the DM particle can annihilate into two
SM quarks via the exchange of ZB, and the same interaction allows for direct detection
of the DM particles. See Ref. [50] for a detailed discussion of the DM relic density and
direct detection in this simplified model. A relevant result of the numerical survey is
that in this case one does not have to be on the resonance to achieve the correct relic
density and consistent scenarios with the results of DM direct detection experiments
can easily be achieved. Additionally, this model only has four free parameters and is
therefore fully testable by comparing dark matter and collider experiments.

Related work exists in the literature: a discussion of the DM candidate in a model
with vector-like leptons can be found in Ref. [162], where also the impact of the new
fields on the SM Higgs decays and the constraints from electroweak precision observ-
ables were studied. A recent publication uses a model similar to ours, however only
taking into account gauged lepton number and ignoring baryon number [163]. They
obtain a Dirac electroweak (mostly) singlet neutrino as a DM candidate and show its
viability. Of course, the phenomenology of the model presented here is quite different
from theirs, due to the baryon number that our DM candidate carries.

4.4.7 Baryon and lepton number violating processes

The new Higgs field SBL breaks baryon number by three units, therefore non-renor-
malizable operators that cause proton decay do not occur. Thus, there is no need to
postulate a large desert between the electroweak scale and the scale where baryon
number violation occurs. The field SL breaks lepton number in two units, so one
generates a ∆L = 2 Majorana mass term for the light neutrinos as we discussed before,
and we have the usual constraints coming from neutrinoless double beta decay; see
the discussion of this experimental test of lepton number violation in Chapter 3 of
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this thesis. The lowest-dimensional B and L violating operator that contains only SM
fermions after symmetry breaking is

O19 =
c19

Λ15 (uRuRdReR)
3 SBL. (4.96)

It has dimension nineteen, and therefore B and L violating processes are strongly
suppressed even if the cut-off Λ of the theory is quite low.

4.5 Summary and outlook

In this chapter, we proposed viable models for gauging B and L in an anomaly-free the-
ory and spontaneously breaking these gauge symmetries at a low scale (e.g., TeV scale).
We found that using leptoquarks, i.e., particles carrying baryon and lepton numbers,
one can cancel all anomalies and generate masses for all fields in the theory. Various
setups were briefly introduced, and the simplest scenario with colorless leptoquarks
was discussed in some detail, by presenting the full Lagrangian of the model and dis-
cussing some phenomenology. In this setup, there is a fermionic dark matter candidate
whose stability is an automatic consequence of the breaking of the gauge symmetry.
The new leptoquarks do not induce flavor violation and after symmetry breaking one
only generates ∆L = ±2,±3 and ∆B = ±3 interactions. Therefore, non-renormalizable
operators that cause proton (and baryon number violating neutron) decay do not occur
and there is no need to assume a large desert between the electroweak scale and the
scale where we can understand the origin of the baryon number violating interactions.
Due to limitations of time and space, a complete survey of the model is beyond the
scope of this thesis and left for future investigation.

We outlined that a viable DM candidate can arise in this model, which is a fermion
that carries baryon number. Due to the freedom in parameter space of the model, it
should be possible to achieve the correct relic density and be in agreement with direct
detection experiments. Of course, the collider phenomenology and the predictions for
indirect DM detection of this model should also be investigated, and we plan to do so
in the future.

Potentially more difficult is the generation of a cosmological baryon excess because
B and L are broken at a low scale in this model. It has however been shown before [35]
that it is in principle possible to generate a non-zero baryon asymmetry in such models
even though B and L are broken at a low scale, e.g., by making use of accidental global
symmetries of the renormalizable couplings in the model.





Chapter 5

A left–right symmetric theory for baryon

and lepton numbers

In this chapter, we extend the idea of gauging baryon and lepton numbers as indepen-
dent symmetries to left–right symmetric models. We present solutions of the equations
that ensure the cancelation of the relevant anomalies for the gauge group

GBL
LR = SU(2)L ⊗ SU(2)R ⊗U(1)B ⊗U(1)L ⊗P , (5.1)

where the QCD gauge group SU(3)C is omitted for simplicity and P is the discrete
left–right parity. We discuss the minimal model based on this gauge group in detail
and show that the new leptoquark fields introduced to obtain an anomaly-free theory
also generate neutrino masses via the type III seesaw mechanism. The spectrum of
neutrinos and some phenomenological aspects of the model are presented. Without
assuming any extra symmetries, the model contains two light sterile neutrinos.

Just as in Chapter 4, where we extended the Standard Model gauge group by a factor
U(1)B ⊗U(1)L, the latter symmetries can be broken at a low scale in this setup. There
is no need to postulate the existence of a large desert between the left–right scale and
the high scale where one can understand the origin of higher-dimensional operators
inducing baryon number violating processes such as proton decay. The breaking scale
of B and L can be as low as a few TeV, such that there is hope that this theory may be
tested at the LHC. Another of extending the discussion to left–right symmetric theories
is that the spontaneous breaking of parity can be related to the spontaneous breaking
of baryon and lepton numbers.

The outline of the chapter is as follows: to set the grounds for our new model, we
start this chapter with a short discussion of left–right symmetric theories in Section 5.1,
focussing on the generation of neutrino masses. Then, in Section 5.2, we discuss
the anomalies that have to be canceled to gauge the group GBL

LR. We review possible
solutions regarding the additional particle content, and present a new solution with
fermionic triplets, which have exactly the right quantum numbers to generate neutrino
masses via the type III seesaw mechanism. We discuss the implementation of the

93
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type III seesaw mechanism in this setup and the resulting spectrum of neutrinos
in Section 5.3. Further aspects of our solution are presented in Section 5.4, and we
summarize the main results of this chapter in Section 5.5.

The original results presented in this chapter were published in collaboration with
Pavel Fileviez Pérez and Manfred Lindner in [45].

5.1 Left–right symmetric theories

Left–right symmetric theories [14, 15, 23, 38–41] are very appealing candidates for
physics beyond the SM. These theories provide a natural framework to understand the
maximal parity violation, i.e., the V − A structure of the weak interaction observed at
low energy, as a result of the spontaneous breaking of the gauge group [39–41]. Later
versions of these theories [14, 15, 23] additionally connect the spontaneous breakdown
of parity to the origin of neutrino masses.

In general, one cannot predict the scale above which the left–right symmetry is
restored, which also sets the mass scale of the right-handed gauge bosons WR. If this
scale is as low as a few TeV, this can lead to very interesting signals at the LHC. In
particular, if the right-handed neutrinos are Majorana particles and lighter than the
right-handed gauge bosons, one could observe the “smoking gun” signal of same-sign
dileptons plus two jets without missing energy [164],

WR −→ `±`± jj. (5.2)

For recent phenomenological studies of left–right symmetric models in the context
of LHC physics, see, e.g., Refs. [165–167]. In particular, LHC searches constrain the
masses of WR to be of the order TeV or larger, see the Particle Data Group for a listing
of recent bounds [57].

5.1.1 General framework

The original left–right symmetric theories [38–40] are based on the gauge group

GLR = SU(2)L ⊗ SU(2)R ⊗U(1)B−L, (5.3)

omitting the QCD gauge group SU(3)C for simplicity. As before, B− L is baryon minus
lepton number. Quarks and leptons are organized in doublets of SU(2)L and SU(2)R

with the following transformation properties under GLR:

QL =

uL

dL

 ∼ (2, 1,
1
3

)
, QR =

uR

dR

 ∼ (1, 2,
1
3

)
, (5.4)
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`L =

νL

eL

 ∼ (2, 1,−1) , `R =

νR

eR

 ∼ (1, 2,−1) . (5.5)

The left–right symmetry directly predicts the existence of right-handed neutrinos and
allows for the implementation of neutrino masses in a simple way. In this sense,
massive neutrinos are a prediction of left–right symmetric models.

Under the discrete left–right parity P , the fields transform as

QL
P←→ QR and `L

P←→ `R, (5.6)

and electric charge is defined as

Q = T3L + T3R +
B− L

2
, (5.7)

where T3L and T3R are the isospin under SU(2)L and SU(2)R, respectively.
Fermion masses can be generated if a Higgs bidoublet is introduced

Φ =

φ0
1 φ+

2

φ−1 φ0
2

 ∼ (2, 2, 0) , (5.8)

which transforms as
Φ P←→ Φ† (5.9)

under the left–right parity transformation. This allows for the Yukawa interactions

−LY = QL
(
Y1Φ + Y2Φ̃

)
QR + `L

(
Y3Φ + Y4Φ̃

)
`R + h.c., (5.10)

where
Φ̃ = σ2Φ∗σ2 (5.11)

again is a bidoublet. After the bidoublet Φ obtains its VEV

〈Φ〉 =
v1 0

0 v2

 , (5.12)

with v2
1 + v2

2 = (174 GeV)2, we find the fermion mass matrices to be

Mu = Y1v1 + Y2v∗2 , (5.13)

Md = Y1v2 + Y2v∗1 , (5.14)
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Me = Y3v2 + Y4v∗1 , (5.15)

MD
ν = Y3v1 + Y4v∗2 . (5.16)

In the limit v2 � v1, where the mixing between the left-handed and right-handed
charged gauge bosons is small1 (see the mass matrix of the charged gauge bosons
below in Eq. (5.22)), this allows to have small Dirac neutrino masses only for tiny
couplings Y3. This is somewhat similar to the SM when right-handed neutrinos are
introduced with tiny Yukawa couplings and is of course not fully satisfying from a
theoretical point of view. We fix this issue in the next subsection, where the small
neutrino masses are generated by the seesaw mechanism.

To complete symmetry breaking, additional Higgs fields have to be introduced

HL =

h+L

h0
L

 ∼ (2, 1, 1) , (5.17)

HR =

h+R

h0
R

 ∼ (1, 2, 1) . (5.18)

It can be shown that for some range of coupling parameters, the absolute minimum
of the left–right symmetric scalar potential can found to be [41]

〈HL〉 =
0

0

 , and 〈HR〉 =
 0

vR/
√

2

 , (5.19)

together with Eq. (5.12), such that the breaking of gauge symmetry leads to spontaneous
parity violation. The breaking sequence is therefore

GLR
〈HR〉−→ SU(2)L ⊗U(1)′

〈Φ〉−→ U(1)EM, (5.20)

where the generator of the U(1)′ is

1
2

Y′ = T3R +
1
2
(B− L). (5.21)

After symmetry breaking, the mass matrix of the charged gauge bosons in the basis
(W±L , W±R ) is given by [41]

M2
± =

 g2

4

(
v2

1 + v2
2
)

− g2

2 v1v2

− g2

2 v1v2
g2

4

(
v2

1 + v2
2 + v2

R
)
 (5.22)

1Defining the lighter mass eigenstate as W1 = WL cos ξ −WR sin ξ, the mixing angle can be constrained
to be ξ < 10−2 [57].
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where gL = gR ≡ g, with the equality of the gauge couplings being a consequence of
the left–right symmetry. The VEV vR, which is much larger than v1 and v2, gives mass
to the right-handed gauge bosons, so the absence of right-handed weak currents in
low energy experiments can easily be understood due to the large mass of these gauge
bosons.

5.1.2 Majorana neutrino masses

It is very easy to incorporate the seesaw mechanism into left–right symmetric models,
such that there is an explanation for the tiny neutrino masses, beyond a small cou-
pling chosen by nature. In extensions of the original left–right symmetric theories,
neutrino masses are generated through a combination of type I and type II seesaw
mechanisms [14, 15, 23]. Then, these theories connect the maximal violation of parity
that is observed in low-energy processes to the smallness of neutrino masses. We
explain this in more detail here.

Instead of introducing left- and right-handed Higgs doublets HL and HR that were
used before to break left–right symmetry in the above discussion, see Eqs. (5.17) and
(5.18), one can also introduce two Higgs triplets [14, 15, 23]

∆L =

 1√
2
δ+L δ++

L

δ0
L − 1√

2
δ+L

 ∼ (3, 1, 2) , (5.23)

∆R =

 1√
2
δ+R δ++

R

δ0
R − 1√

2
δ+R

 ∼ (1, 3, 2) , (5.24)

which transform under the left–right parity as

∆L
P←→ ∆R. (5.25)

The relevant interactions of the neutrinos are

−Lν = `L
(
Y3Φ + Y4Φ̃

)
`R + λ∆

(
`T

L Ciσ2∆L`L + `T
RCiσ2∆R`R

)
+ h.c. (5.26)

After the triplets have obtained the VEVs

〈δ0
L,R〉 =

1√
2

κL,R, (5.27)

we find the neutrino mass matrix to be

Mν =

√2λ∆κL M∗D

M†
D −

√
2λ†

∆κ∗R

 (5.28)
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in the basis (νL, (νR)
c). Diagonalizing this matrix in the seesaw limit

λ∆κR � MD, (5.29)

one finds the Majorana mass matrix for the three light active neutrinos to be

MνL =
√

2λ∆κL −M†
D(
√

2λ†
∆κ∗R)

−1M∗D. (5.30)

The given VEVs are the most general ones in agreement with electromagnetic gauge
invariance. It can be shown that this solution corresponds to an absolute minimum of
the left–right symmetric potential, where the VEVs are related by [23]

κL = γ
v2

1
κR

, (5.31)

with γ being a constant to be calculated from the scalar potential.
Thus, the smallness of neutrino masses can directly be understood from a large

value of κR (or, equivalently, mWR ). Especially, when κR → ∞, the masses of the light
neutrinos vanish. This is the promised connection between tiny neutrino masses and
maximal parity violation [15].

The type III seesaw also can be nicely implemented in the left–right symmetric
context, see Ref. [70]. We do so in the next section, when we gauge baryon and lepton
numbers individually, which forces us to introduce fermionic triplets that just have the
right quantum numbers to give Majorana masses to the neutrinos.

5.2 Gauging baryon and lepton numbers in left–right

symmetric models

5.2.1 Anomaly cancelation

Now, we go beyond the original left–right symmetric setup and define a simple theory
where we can investigate the spontaneous breaking of baryon and lepton numbers as
well as parity based on the gauge group GBL

LR given in Eq. (5.1).
Under GBL

LR, the quarks and leptons transform as [compare to the transformation
properties under GLR given in Eqs. (5.4) and (5.5)]

QL =

uL

dL

 ∼ (2, 1, 1/3, 0) , QR =

uR

dR

 ∼ (1, 2, 1/3, 0) , (5.32)

`L =

νL

eL

 ∼ (2, 1, 0, 1) , `R =

νR

eR

 ∼ (1, 2, 0, 1) . (5.33)
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As before, under the left–right discrete parity, the quarks and leptons transform as

QL
P←→ QR and `L

P←→ `R (5.34)

and the electric charge is defined as in Eq. (5.7).
The set of non-trivial anomalies that have to be canceled in order to be able to define

an anomaly-free theory is quite small in this setup. As always, triangle diagrams
containing only one SU(3)C or only one SU(2)L,R current vanish, due to a vanishing
trace of the corresponding representation matrices. Additionally, the fermionic fields
presented before are either in a non-trivial representation of SU(2)L or SU(2)R, such
that mixed anomalies between these gauge groups cannot play a role. Due to the
manifest left–right symmetry of the theory, any further anomaly not containing exactly
two SU(2)L or exactly two SU(2)R currents also vanishes. This means that (see Tab. 4.2
in Chapter 4)

A1
(
SU(3)2

C ⊗U(1)B
)
= A7

(
SU(3)2

C ⊗U(1)L
)
= 0, (5.35)

and that also the purely baryonic, purely leptonic, and mixed anomalies vanish (see
also Tab. 4.2 in Chapter 4):

A5
(
gravity2 ⊗U(1)B

)
= A11

(
gravity2 ⊗U(1)L

)
= 0, (5.36)

A6
(
U(1)3

B
)
= A12

(
U(1)3

L
)
= 0, (5.37)

A13
(
U(1)2

B ⊗U(1)L
)
= A14

(
U(1)2

L ⊗U(1)B
)
= 0. (5.38)

Thus, the only non-trivial anomalies that have to be canceled by new fermionic degrees
of freedom are

ALR
1
(
SU(2)2

L ⊗U(1)B
)
= 3/2, (5.39)

ALR
2
(
SU(2)2

L ⊗U(1)L
)
= 3/2, (5.40)

ALR
3
(
SU(2)2

R ⊗U(1)B
)
= −3/2, (5.41)

ALR
4
(
SU(2)2

R ⊗U(1)L
)
= −3/2. (5.42)

5.2.2 Solutions in the literature

Some solutions for the cancelation of these anomalies were studied in [152], where the
gauge group GBL

LR was considered for the first time. The aim of the authors of [152]
was to discuss solutions that contain equal numbers of singlets and triplets under
SU(3)C, similar to the conventional fermion families. They discussed solutions where
the fermions either have baryon or lepton number (mirror fermions and fermions in
different representations of SU(2)L,R) and also solutions where the new fermions have
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both baryon and lepton numbers. Of course, these solutions are motivated by the
family structure found in the SM quarks and leptons, and are not minimal in the sense
of the number of fields necessary for a cancelation of all anomalies.

Additionally, they found two very simple solutions (for n families of conventional
quarks and leptons). Two singlets F1

L and F1
R of SU(3)C that transform under GLR

BL as

F1
L ∼ (2, 1,−n,−n) , (5.43)

F1
R ∼ (1, 2,−n,−n) , (5.44)

or two triplets F3
L and F3

R of SU(3)C that transform under GLR
BL as

F3
L ∼

(
2, 1,−n

3
,−n

3

)
, (5.45)

F3
R ∼

(
1, 2,−n

3
,−n

3

)
. (5.46)

This of course can be generalized to exotic fermions transforming as a representation
N of SU(3)C. Then,

FN
L ∼

(
2, 1,− n

N
,− n

N

)
, (5.47)

FN
R ∼

(
1, 2,− n

N
,− n

N

)
. (5.48)

These solutions are more minimal than the ones mentioned before with an equal
number of triplets and singlets under SU(3)C. Yet, we do not consider them in more
detail, because neutrinos are Dirac particles in this setup. Thus, the nice implementation
of the seesaw mechanism that is characteristic for left–right symmetric models is not
possible and one would only rely on tiny Yukawa couplings for light neutrinos. We
thus opt for another solution that will allow for the implementation of the type III
seesaw mechanism, which we present in the following subsection.

5.2.3 New solution: fermionic leptoquarks

Let us discuss a different solution in this subsection, sticking to extra fields that do not
feel the strong interaction. The introduction of the triplet fields

ρL =
1
2

 ρ0
L

√
2ρ+L√

2ρ−L −ρ0
L

 ∼ (3, 1, B, L) , (5.49)

ρR =
1
2

 ρ0
R

√
2ρ+R√

2ρ−R −ρ0
R

 ∼ (1, 3, B, L) , (5.50)
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allows for a cancelation of all four anomalies ALR
i , and due the left–right symmetry

does not introduce non-zero values for any of the other relevant ones. Again, anomaly
conditions allow for a unique determination of the values of B and L. Consider

ALR
1
(
SU(2)2

L ⊗U(1)B
)
=

3
2
+ 2B !

= 0, (5.51)

where the factor 2 comes from the trace over the matrices of the adjoint representation.
Thus we obtain

B = −3
4

and L = −3
4

, (5.52)

using a similar calculation for the lepton numbers L. Thus, the full transformation
properties of the new fields are

ρL ∼
(

3, 1,−3
4

,−3
4

)
, (5.53)

ρR ∼
(

1, 3,−3
4

,−3
4

)
. (5.54)

Under the discrete left–right parity, the new fields transform as

ρL
P←→ ρR. (5.55)

These leptoquarks introduced for anomaly cancelation have just the right quantum
numbers to generate neutrino masses through the type III seesaw mechanism in this
left–right setup, see Ref. [70] for a first implementation of this without gauging baryon
and lepton numbers. Let us note here that even in the SM, the introduction of a
triplet fermion per family leads to an anomaly-free U(1)X symmetry that may be
gauged [168, 169]. This is somewhat similar to the anomaly-free U(1)B−L in the SM
with three right-handed neutrinos.

This solution is the simplest left–right symmetric theory based on the gauge group
GBL

LR that allows us to generate masses for all fields and we discuss its phenomenology
in more detail in the following sections.

5.3 Neutrino masses via the type III seesaw mechanism

Let us now discuss the implementation of the type III seesaw for the solution presented
before. This is similar to the implementation given in Ref. [70]. Introducing the Higgs
fields

Φ =

φ0
1 φ+

2

φ−1 φ0
2

 ∼ (2, 2, 0, 0) , (5.56)
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HL =

h+L

h0
L

 ∼ (2, 1,
3
4

,−1
4

)
, (5.57)

HR =

h+R

h0
R

 ∼ (1, 2,
3
4

,−1
4

)
, (5.58)

SBL ∼
(

1, 1,
3
2

,
3
2

)
, (5.59)

the relevant interactions are

−L ⊃ `L
(
Y3Φ + Y4Φ̃

)
`R + λD

(
`T

L Ciσ2ρLHL + `T
RCiσ2ρRHR

)
+ λρ Tr

(
ρT

L CρL + ρT
RCρR

)
SBL + h.c., (5.60)

and, as always, Φ̃ = σ2Φ∗σ2. Notice that the Higgs sector is quite simple. Under the
left–right parity the Higgs fields transform as

Φ P←→ Φ†, HL
P←→ HR. (5.61)

For spontaneous symmetry breaking, the Higgs fields obtain the VEVs

〈HL〉 =
 0

vL/
√

2

 , 〈HR〉 =
 0

vR/
√

2

 , (5.62)

〈Φ〉 =
v1 0

0 v2

 , 〈SBL〉 = vBL/
√

2. (5.63)

The hierarchy of the VEVs, and therefore the symmetry breaking sequence, is deter-
mined by the constraints on the model. vR is giving mass to the right-handed gauge
bosons, which have to be heavy (beyond TeV scale). HL and Φ have SU(2)L quantum
numbers and will therefore participate in electroweak symmetry breaking. The sum of
their VEVs can therefore not be beyond the electroweak scale, and we have to fulfill

v2
1 + v2

2 +
1
2

v2
L = (174 GeV)2. (5.64)

Furthermore, because Φ directly gives mass to the charged leptons à la SM Higgs,

vL � v1, v2. (5.65)
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Figure 5.1: Type III seesaw for the left-handed and right-handed neutrinos.

A combination of all these constraints directly leads to parity violation

vL � vR. (5.66)

Finally, vBL gives mass to ρL and ρR, see Eq. (5.60), which have to be a hundred GeV or
larger; for a recent discussion of these fields at the LHC, see Ref. [69]. In our setup, we
want to use type II seesaw mechanism also for the right-handed neutrinos, see Fig. 5.1,
such that we have to demand

vBL � vR. (5.67)

After spontaneous symmetry breaking, we can integrate out ρ0
L and ρ0

R and obtain
the relevant Lagrangian for the neutrino masses

−Lν = MD
ν νLνR −

1
2

MI I I
νL

νT
L CνL −

1
2

MI I I
νR

νT
RCνR + h.c., (5.68)

where the masses are given by (
MD

ν

)ij
= Yij

3 v1 + Yij
4 v2, (5.69)(

MI I I
νL

)ij
=

λi
Dλ

j
Dv2

L

4
√

2λρvBL
, (5.70)

(
MI I I

νR

)ij
=

λi
Dλ

j
Dv2

R

4
√

2λρvBL
. (5.71)

The Feynman diagrams of these mass terms are given in Fig. 5.1. Both mass terms MI I I
νL

and MI I I
νR

are generated through the type III seesaw mechanism and there is a simple
relation between them:

MI I I
νL

=
v2

L
v2

R
MI I I

νR
. (5.72)

Now, parity violation, vL � vR, tells us that

MI I I
νL
� MI I I

νR
. (5.73)
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This is the first consequence of having the type III seesaw mechanism in this context.
The second consequence is that the Majorana mass matrix for the right-handed neutri-
nos given by MI I I

νR
has rank one. Therefore, only one of the three right-handed neutrinos

will have a non-zero Majorana mass. We can rotate the right-handed neutrinos via
νR → URνR, and obtain

−Lν = M̃D
ν νLνR −

1
2

MI I I
νL

νT
L CνL −

1
2

MRν3T
R Cν3

R + h.c., (5.74)

where M̃D
ν = MD

ν UR. Then, ν3
R will generate an additional Majorana mass for the

left-handed neutrinos via type I seesaw, such that we arrive at

−Lν = −1
2

MLL
νL

νT
L CνL +

(
M̃D

ν

)iα
νi

Lνα
R + h.c., (5.75)

where α = 1, 2, after integrating out ν3
R. The mass of the left-handed neutrinos is given

by (
MLL

νL

)ij
=
(

MI I I
νL

)ij
− 1

MR

(
M̃D

ν

)i3 (
M̃D

ν

)j3
. (5.76)

We can go to the basis where the matrix MLL
νL

is diagonal and write the mass matrix for
the light neutrinos in the theory as

M3+2
ν =



0 0 0 m1
D m2

D

0 m1 0 m3
D m4

D

0 0 m2 m5
D m6

D

m1
D m3

D m5
D 0 0

m2
D m4

D m6
D 0 0


, (5.77)

which is of full rank and leads to five massive states. This matrix is similar to the
neutrino mass matrix discussed in a SUSY setup in Refs. [170, 171].

This simple matrix defines the mixing between the SM active neutrinos and the two
extra sterile neutrinos. The theory does not predict the masses in the above matrix, but
one expects that the two extra sterile neutrinos can have mass below or at the eV scale.
See Ref. [172] for the constraints on sterile neutrinos with mass around the eV scale.
In the interesting limit mi

D → 0, the sterile neutrinos decouple and one of the active
neutrinos is massless.
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5.4 Further aspects of the model

After having implemented the type III seesaw mechanism and discussed the resulting
neutrino spectrum, let us discuss some further aspects of the model with fermionic
triplets. In particular, we check higher-dimensional operators and loop corrections,
and have a look at cosmological constraints on the model.

5.4.1 Higher-dimensional operators and loop corrections

In this subsection, we discuss possible corrections to the discussion we presented
before. In particular, the mass matrices of the neutrinos may receive corrections from
higher-dimensional operators and loop diagrams. Let us first discuss possible higher-
dimensional operators. With the particle content of the model, one can write down the
higher-dimensional operator

OνL =
cL

Λ2 `L`LHLHLS†
BL, (5.78)

which generates neutrino masses of the order

MνL ∼ v2
LvBL/Λ2 (5.79)

for cL ≈ 1. Thus, using vL ∼ 1 GeV and vBL ∼ 10 TeV, one needs

Λ & 3× 103 TeV (5.80)

to avoid a neutrino mass above 1 eV. The value of vL can of course be much smaller,
such that this is a very naive bound on Λ. A similar operator can generate masses for
the right-handed neutrinos,

OνR =
cR

Λ2 `R`RHRHRS†
BL, (5.81)

which generates a right-handed neutrino mass of the order

MνR ∼ v2
RvBL/Λ2 (5.82)

for cR ≈ 1. Using vR ∼ 1 TeV, vBL ∼ 10 TeV, and the above bound for Λ, one finds
MνR < 1 MeV, which is a not too large correction. Notice that the two operators OνR

and OνL are connected by the left–right parity.
There are higher-dimensional operators that induce baryon number violation in the

quark sector, e.g.,

O20 =
c20

Λ16 (QLQLQL`L)
3 S†

BLS†
BL, (5.83)
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Figure 5.2: Two-loop correction to the right-handed neutrino mass matrix.

which however is of dimension 20 and therefore strongly suppressed. Due to the
quantum numbers of the fields breaking U(1)L and U(1)B, proton decay is not induced.
Hence, there is no need to postulate a large desert in this scenario.

Possible radiative corrections should also be taken into account. The smallest one
arises at two-loop level, see Fig. 5.2. A very naive estimation of the mass correction
induced by this diagram is

Mij
νR ∼

g4

(16π2)2
M4

τ

M4
WR

Mν3
R
∼ 7× 10−17Mν3

R
, (5.84)

where Mτ is the mass of the τ lepton, and therefore negligibly small. g = gL = gR is
the SU(2) gauge coupling.

5.4.2 Cosmological constraints

The extra light neutrino degrees of freedom that appear in the model presented above
contribute to the radiation content of the Universe, and we should therefore check the
corresponding cosmological constraints. Such extra radiation is parameterized in the
value of Neff, the effective number of thermalized neutrino species. The Planck Collab-
oration [56] has recently set a new limit on this parameter (for a certain combination of
data sets)

Neff = 3.30± 0.27, (5.85)

which is compatible with the standard value coming from three active neutrinos only,

NSM
eff = 3.046. (5.86)

Two mechanisms control the thermalization of the extra sterile neutrinos and there-
fore control their contribution to Neff in our setup: Interactions with the new gauge
bosons, which can be in thermal equilibrium with the SM plasma, and active–sterile
oscillations. Taking into account the first mechanism, the contribution of the extra
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neutrinos to Neff depends on the mass of the new gauge bosons, Z1, Z2, and WR. In
Refs. [173] and [174], the constraints on the new forces that keep the right-handed neu-
trinos in thermal equilibrium were investigated, see also Ref. [175] for a recent study
in a different context. It was shown that one does not have a large contribution to the
effective number of relativistic degrees of freedom because the neutrinos decouple very
early if the masses of the new gauge bosons are in the TeV region. LHC limits constrain
the masses of the new gauge bosons to be of that order, and the cosmological constraints
are therefore expected to be satisfied. Active–sterile oscillations are important for the
case mi ∼ mi

D in the matrix given in Eq. (5.77), i.e., when the active–sterile mixing
is large. Then, oscillations will put the two sterile neutrinos in thermal equilibrium
and they are in strong tension with cosmology. Large mixing of eV sterile neutrinos is
necessary to resolve the existing oscillation anomalies, see Ref. [172] for more details,
such that these cannot be resolved in this model. Note, however, that the presence of
these extra sterile states is a prediction of the model, and was not introduced to resolve
any anomaly.

5.5 Summary and outlook

In this chapter, we investigated the possibility of defining a simple theory for the
spontaneous breaking of parity, baryon and lepton numbers at a low scale without
generating interactions that mediate proton decay and make a great desert necessary.
We have found that the leptoquark fields introduced for anomaly cancelation also
generate masses for the left-handed and right-handed neutrinos through the type III
seesaw mechanism. The theory presented in this chapter can be considered as the
simplest theory with these features.

The spectrum for neutrinos in this theory was studied in detail, showing that one
predicts the existence of two light right-handed neutrinos. The existence of these
light degrees of freedom can change the phenomenology of the new gauge bosons at
colliders. In particular, the neutral gauge bosons can decay into the extra right-handed
light neutrinos, Zi → ν̄RνR, and more important, the decays WR → ν̄ReR are allowed.
These decays can change the present collider bounds on the WR mass based on the
lepton number violating decays of the right-handed neutrinos and will be investigated
in the future.





Chapter 6

Summary and outlook

In this thesis, we discussed the role of lepton and baryon numbers as windows to
physics beyond the SM of particle physics. The text was separated into two parts: in
Part I, we discussed the special case of lepton number violation by two units, and in
Part II we focussed on promoting the accidental global symmetries baryon and lepton
number of the SM Lagrangian to local gauge symmetries.

We saw in Chapter 2 that a violation of lepton number could allow for neutrinos
to be Majorana particles. Then, the seesaw mechanism in one of its variants offers
the possibility of explaining the smallness of neutrino masses by adding heavy new
particles to the SM particle content without the necessity of tiny Yukawa couplings
in the neutrino sector. The “naturalness” of the seesaw mechanism is of course no
solid argument for the Majorana nature of neutrinos, but it would be fantastic if the
discovery of neutrino mass revealed deeper insights into the lepton sector of the SM
than a preference of nature for small couplings. The downside of the seesaw mechanism,
at least in its canonical form, is its testability. The large mass scales involved (for order
one couplings) make an experimental test impossible, and this lead us to explore
alternatives that allow for an experimental test at current or future facilities. Radiative
neutrino mass models, or more exotic setups such as a mini-seesaw mechanism in
warped space, contained low-scale physics (around TeV) and still allowed to generate
neutrino masses of the desired eV order without invoking unnaturally small couplings.
LHC experiments or searches for lepton flavor violation could provide a test of these
models in the near future.

In Chapter 3, we discussed a very prominent experimental test of lepton number
violation, the neutrinoless mode of double beta decay. While mentioning that the stan-
dard mechanism, namely the exchange of light Majorana neutrinos, is a well-motivated
possibility of realizing this decay and would connect it directly to neutrino masses,
we focused on mechanisms beyond the SM. We discussed the contributions of color
octet particles in the colored seesaw mechanism in detail in Section 3.2. We found that,
depending on the parameters of the model, both the direct and the indirect contribution
could be dominant. The presence of various mechanisms at the same time is a generic
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problem of neutrinoless double beta decay in models beyond the SM, and depending
on the choice of parameters different mechanisms can be dominant, see also Ref. [128]
for a recent study in left–right symmetric models, which we also shortly discussed
in this thesis. It should be clear that much work is left to be done here. Assuming
the dominance of one particular mechanism, the lower limits on the 0νββ half-life
obtained so far in all experiments can be transformed into limits on the parameters of
new physics models (or upper limits on neutrino masses, in the case of light Majorana
neutrino exchange). However, interference effects between different decay modes are
easily thinkable and would alter the picture completely. In case this rare decay should
indeed be observed in some future experiment, additional importance must be given
to the determination of the underlying mechanism. First of all, the observation of 0νββ

shows the violation of lepton number in nature. The connection to neutrino masses is
an indirect one and is based on a particular interpretation of the decay. Ideas exist of
how to distinguish different mechanisms in 0νββ experiments: measurements in differ-
ent nuclei [176] or using the angular correlation of the emitted electrons [98, 177] might
allow for a discrimination. Most likely, only a combination of 0νββ experiments with
the LHC or other experiments may be able to provide a complete picture. This requires
of course that the scale of lepton number violation is reachable by the experiments, and
we saw that TeV-scale physics might give contributions to 0νββ at the same order of
magnitude as the light neutrino exchange. Additionally, in Section 3.3, we discussed a
cross check that would allow for an unambiguous test for 0νββ in future large-scale
experiments. Using the decay to the first excited 0+ state in addition to the ground state
transition, a very characteristic experimental signature could be found. However, due
to the low rates of 0νββ to excited states, this will only work to a size of the effective
Majorana neutrino mass of about m0νββ ≈ 80 meV for ton-scale experiments.

Part II of this thesis was dedicated to the origin of the accidental symmetries baryon
and lepton number in the SM. We promoted the global symmetries to local gauge
symmetries and explored the implications of doing so. In order to define anomaly-free
gauge theories, we needed to introduce additional particles, and deep consequences
resulted from this simple task: a DM candidate arose, whose stability was a conse-
quence of the breaking of the gauge symmetries and did not have to be put in by
hand by demanding a discrete symmetry, see Chapter 4, and neutrino masses could
be implemented in a simple manner via the type III seesaw mechanism in a left–right
symmetric setup, see Chapter 5. It is important to point out that the models presented
in Chapters 4 and 5 allow for a low breaking scale of baryon and lepton numbers and
there is no need to postulate the existence of a large desert in order to be consistent with
the bounds from proton decay. This is in the spirit of Part I, where we tried to lower
the scale of new physics to allow for an experimental test of the models underlying
neutrino masses and neutrinoless double beta decay. We were able to highlight some
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of the phenomenology of the proposed models, but a full exploration is beyond the
scope of this thesis.

In the model presented in Chapter 4, we outlined the phenomenology of the fermionic
DM candidate that carries baryon number. We also mentioned that similar models
allow for a successful generation of the baryon excess in the Universe, even though
baryon and lepton numbers are broken at a low scale. It is an interesting question
whether this can be implemented in our model, too, and we will tackle this question
in the future. Also a detailed collider phenomenology of the model is an interesting
direction of investigation.

In the model presented in Chapter 5, we discussed the implementation of the type
III seesaw and the corresponding neutrino mass matrix. Without imposing any extra
symmetries, the model contains two light sterile neutrinos. The extra light sterile
neutrinos have implications at colliders and can change the phenomenology of the new
gauge bosons considerably. This will also be investigated in the future.

To finally summarize, we addressed various issues that remain unexplained in
the Standard Model. One prominent issue was the phenomenon of neutrino masses
that originates from the observation of neutrino oscillations. The related question
whether lepton number is broken in nature was also discussed, and we presented
some detailed phenomenology of a corresponding rare decay, neutrinoless double
beta decay. The dark matter observed in the Universe requires a neutral particle
that is stable on cosmological time scales. We mentioned how such a particle can be
achieved in the models we presented in this thesis. The origin of the accidental global
symmetries of baryon and lepton numbers was discussed by promoting them to local
gauge symmetries and a plethora of interesting implications was the result, resolving
some of the aforementioned issues. All in all, we can conclude that baryon and lepton
numbers provide us with a very interesting window to physics beyond the Standard
Model.
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Appendix A

Neutrino oscillation parameters

The neutrino oscillation parameters (in the three-neutrino picture) used throughout this
thesis are obtained in a global fit of all experimental neutrino data [53] and are given in
Tab. A.1 for convenience. These are the most current values, including the non-zero
reactor mixing angle θ13 measured by the reactor neutrino experiments Daya Bay [178],
RENO [179], and Double Chooz [180]. We use the values where reactor fluxes were left
free in the fits and short-baseline reactor data are used (see Ref. [53] for more details).

Table A.1: Neutrino oscillation parameters used throughout this thesis [53]. The
chosen convention is such that always the larger mass-squared difference is given,
which is ∆m2

31 for normal hierarchy (NH) and ∆m2
32 for inverted hierarchy (IH).

Parameter best fit ±1σ 3σ range

sin2 θ12 0.302+0.013
−0.012 0.267→ 0.344

sin2 θ23 0.413+0.037
−0.025 ⊕ 0.594+0.021

−0.022 0.342→ 0.667

sin2 θ13 0.0227+0.0023
−0.0024 0.0156→ 0.0299

∆m2
21 [10−5 eV2] 7.50+0.18

−0.19 7.00→ 8.09

∆m2
31 [10−3 eV2] (NH) +2.473+0.070

−0.067 +2.276→ +2.695

∆m2
32 [10−3 eV2] (IH) −2.427+0.042

−0.065 −2.649→ −2.242
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