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To Özge



Relativistic features and time delay
of laser-induced tunnel-ionization

Referees: Hon. Prof. Dr. Christoph H. Keitel

Prof. Dr. Georg Wolschin





Zusammenfassung

Die Tunnelionisierung wird im Rahmen der relativistischen Quantenmechanik
untersucht. Dies geschieht, indem für ein beliebiges konstantes elektromagnetis-
ches Feld ein Energieoperator eingeführt wird, mit dessen Hilfe sich der klassisch
verbotene Bereich der Tunnelionisation identifizieren lässt. Außerdem werden die
relativistischen Signaturen der Tunnelionisation erforscht. Ein eindimensionales,
intuitives Bild sagt eine Verschiebung des Impulses entlang der Laserpropaga-
tionsrichtung für das Wellenpaket des ionisierten Elektrons voraus. Es zeigt sich,
dass diese Beobachtung mit der etablierten Starkfeld-Näherung konsistent ist.
Darüber hinaus wird die Spin-Dynamik während der Tunnelionisation sowohl
in der Standard- als auch in einer modifizierten Starkfeld-Näherung diskutiert.
Als Nächstes wird die Zeitverzgerung während der Tunnelionisation mithilfe
einer erweiterten Definition der Wigner-Zeitverzgerung untersucht. Anschließend
wird dieses Konzept unter Bezug auf die Phase des Propagators zu fester Energie
umdefiniert. Der entwickelte Formalismus wird auf das tiefe Tunnelregime und
den schwellennahen Bereich angewendet. Es wird gezeigt, dass auch in großer
Entfernung in letzterem Fall Signaturen der durch den Tunnelprozess auftre-
tenden Zeitverzgerung noch messbar sind. Schließlich wird eine pfadabhängige
Formulierung der Eichtheorie diskutiert. Diese äquivalente Formulierung der
Eichtheorie führt zu einer kanonischen Eichung, in welcher das Feynman’sche
Pfadintegral besonders intuitiv erscheint und sich die Berechnung des quasi-
klassischen Propagators stark vereinfacht.

Abstract

Tunnel-ionization is investigated in the framework of relativistic quantum me-
chanics. For an arbitrary constant electromagnetic field a gauge invariant energy
operator is introduced in order to identify the classically forbidden region for
tunnel-ionization. Furthermore, relativistic features of tunnel-ionization are ex-
plored. A one-dimensional intuitive picture predicts that the ionized electron wave
packet in the relativistic regime experiences a momentum shift along the laser’s
propagation direction. This is shown to be consistent with the well-known strong
field approximation. Furthermore, spin dynamics in tunnel-ionization process
is discussed in the standard as well as in the dressed strong field approximation.
Next, the tunneling time delay is investigated for tunnel-ionization by extending
the definition of the Wigner time delay. Later, this concept is redefined in terms of
the phase of the fixed energy propagator. The developed formalism is applied to
the deep-tunneling and the near-threshold-tunneling regimes. It is shown that in
the latter case signatures of the tunneling time delay can be measurable at remote
distance. Finally, the path-dependent formulation of gauge theory is discussed. It
is demonstrated that this equivalent formulation of gauge theory leads to a canoni-
cal gauge fixing, in which the Feynman path integral becomes more intuitive and
the calculation of the quasiclassical propagator is considerably simplified.
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1. Introduction

On the visible side of the universe, all known phenomena can be well described with
four fundamental interactions. These are the strong, the weak, the electromagnetic
and the gravitational forces. As human beings, obviously we are familiar with and
aware of phenomena mediated via the latter two forces in our daily experiences, even
just right now while reading the current sentences and comprehending them in our
brains. The weak and the strong interactions, on the other hand, might seem not to
be empiric and heuristic due to the fact that they are short range forces, which are
responsible for certain decay processes, and binding neutrons and protons together in
the cores of atoms, respectively.

The present work is dedicated to the study of the electromagnetic interaction:
the interaction of light and matter. In the chronology of science, electricity and
magnetism were first considered as two unrelated physical phenomena [1]. They
were studied and formulated separately as a theory of static electric and magnetic
fields until the remarkable step taken by Michael Faraday in 1831 [2]. He observed
the role of the dynamics, i.e., the time dependency, by demonstrating that a changing
of magnetic field generates an electric field, which was the first step towards the
unification of electromagnetism. However, this led to inconsistencies in the existing
equations at that time and it was James Clerk Maxwell who did manage to remove
these inconsistencies in 1865 [3]. He wrote down a consistent set of equations which
are now called Maxwell’s equations. Then, the two theories had been unified in a
single elegant theory, as electromagnetism (or electrodynamics), the first victorious
unified scientific theory of fundamental forces. The unification was so elegant that
it was already consistent with the special theory of relativity formulated by Albert
Einstein 40 years later [4].

The elegance of the unification of electricity and magnetism expressed by Maxwell’s
equations allows to express the electric and magnetic field in terms of potentials such
that any other potential related by a so-called gauge transformation describes the
same electric and magnetic fields. This property is known as gauge invariance of
electromagnetism [5].

Historically, the introduction of potentials may seem to be just a mathematical con-
vention in order to calculate the electromagnetic fields and hence the gauge invariance
may be interpreted as an artifact of the theory. However, in terms of the paradigm
of modern physics, gauge invariance is not a consequence of electromagnetism, it
is the reason for the existence of electromagnetism. More fundamentally, gauge
invariance can be viewed as a consequence of the conservation of the electric charge
under a global symmetry transformation via Noether’s theorem [6–8]. Furthermore,
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demanding a local symmetry transformation imposes an interaction between the
associated conserved quantity and the gauge field. Electromagnetism is such a type of
interaction. In general, a gauge theory can be patterned as follows [9]: First, for every
conservation law there is an associated symmetry via Noether’s theorem: Second, the
local symmetries lead to the existence of gauge fields: And third, the resulting gauge
theory imposes interactions between the gauge field and the conserved quantity. Such
a generalization of the local gauge invariance, for instance, leads to the existence of
non-abelian gauge fields, also called Yang-Mills fields [10].

In order to describe all phenomena related to electrodynamics on the experi-
mentally feasible scale of the universe, a quantum theory of electromagnetism is
imperative. After many milestone contributions to its development, the complete
quantum theory of the electromagnetic field was finally formulated by Sin-Itiro
Tomonaga [11], Julian Schwinger [12, 13], Richard Feynman [14–16] and Freeman
Dyson [17, 18], which resulted in the most accurate theory (see, for instance, [19])
that is available today: Quantum electrodynamics (QED).

QED provides a framework to investigate both light and matter in terms of their
quantum nature, i.e., in terms of the quanta of their fields: Photons and electrons.
However, for a large number of photons in a given volume, as in the case of lasers, a
coherent state of light can be treated as a classical electromagnetic field [2, 20]. In
this case, the interaction of an electron with a classical field can be well described
within the framework of quantum mechanics. In this sense, the present thesis is based
on the relativistic quantum mechanical formulation of the interaction of classical
light, specifically lasers, with a quantized matter field representing electrons.

The investigation of the regime of the relativistic laser-electron interaction is feasi-
ble with current laser technology [21,22], particularly in the strong field ionization of
highly charged ions [23–30]. The main aspect of this work is to investigate the rela-
tivistic strong field ionization, specifically the relativistic features of tunnel-ionization.
Fig. 1.1 illustrates how in such a process the bound electron of a H-like ion leaks out
to the continuum and is ionized [31].

In fact, quantum tunneling, on its own, is a novel phenomenon of quantum me-
chanics. It has been in the focus of both theoretical and experimental attention since
the formulation of quantum mechanics (see for instance [32] for a comprehensive
review). In particular the issue of whether the motion of a particle under a barrier is
instantaneous or not is a long standing and controversial problem in physics since
MacColl’s first attempt to consider it in 1932 [33]. The main reason for the con-
troversy is due to the fact that there cannot exist a well-defined time operator in
standard quantum mechanics, time is just a parameter and it cannot be translated in
an observable [34, 35]. Nonetheless, it is possible to infer information about the time
via different proposals [36–43].

Furthermore, it is often argued in the literature that the description of ionization
with the mechanism of tunneling is just an intuitive picture and it does not have
to reflect the “physical reality” (for instance see [44]). The main argument of this
assertion is based on the gauge dependency of the potential barrier. Nevertheless, a
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Figure 1.1. – Numerical simulation of the electron wave function in a soft-core potential
via the Dirac equation. The density plot shows the electron density at the
moment when maximal laser field strength is attained. The solid black line
indicates the maximum of the density in laser propagation direction while
the dashed line corresponds to the most probable trajectory resulting from
the quasi-classical description. Solid green lines correspond to the border
of the classical forbidden region. White arrows and the cross indicate
the directions of the laser’s electromagnetic fields and its propagation
direction. The inset shows a scale-up of the region close to the tunnel exit,
see chapter 6. The applied parameters are Ip/c2 = 0.25, and E0/Ea = 1/30.
The figure is taken from [31].

careful investigation of gauge theory indicates that it is always possible to identify a
gauge invariant tunneling barrier for the ionization process [45].

After all, in a nutshell, the theoretical ingredients of this thesis are the relativistic
properties of quantum tunneling and gauge theory. In this direction, we begin the
thesis by discussing gauge theory in chapter 2 in order to establish a tunneling bar-
rier without any ambiguity. We introduce a gauge invariant energy operator for an
arbitrary constant electromagnetic field. Thereby, the classically forbidden region
can be identified both in the nonrelativisitic as well as in the relativistic regime of
tunnel-ionization. Besides, in that chapter, the path-dependent formulation of gauge
theory is discussed. The formulation is developed by DeWitt and Mandelstam in
order to discuss quantum theory without electromagnetic potentials [46, 47]. Basi-
cally, the formalism replaces the gauge freedom with the path freedom, i. e., the
vector potentials are defined via certain paths such that each path corresponds to
an associated gauge function [48, 49]. Based on this geometrical picture of gauge
theory we propose a canonical gauge fixing which makes the Feynman path integral
formulation of quantum mechanics more intuitive and simplifies the calculation of
the quasiclassical propagator.
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Then, we consider the relativistic features of tunnel-ionization in two separate
chapters. In chapter 3, we have discussed the one dimensional intuitive picture of
tunnel-ionization at the presence of a magnetic field and it is shown that the ionized
electron wave packet in the relativistic regime experiences a momentum shift along
the laser’s propagation direction in contrast to the well-known nonrelativisitic regime.
We confirm the momentum shift by comparing it to the result of the strong field
approximation (SFA) [50–53]. Since the SFA neglects the influence of the binding
potential on the continuum state, we have modeled the binding potential with a
zero-range potential.

Later, in chapter 4, the spin effects in the tunneling regime are investigated via
the SFA. Accordingly, the SFA is explicitly driven for different partitions of the
Hamiltonian as in [54, 55]. It is demonstrated that the SFA predicts an asymmetry in
the tunneling probabilities of different spin states. This asymmetry is suppressed in
the nonrelativisitic regime taking into account the influence of the laser field on the
bound state.

In chapter 5, we unite two powerful methods, the proper time formalism and the
path dependent formulation of gauge theory, for the calculation of the propagator
of a relativistic charged particle interacting with an external electromagnetic field.
Specifically, the developed formalism is applied to the calculation of the quasiclassical
propagator for a spinless charged particle interacting with the following external
fields: an arbitrary constant and uniform electromagnetic field, an arbitrary plane
wave and an arbitrary plane wave combined with an arbitrary constant and uniform
electromagnetic field. The result will later be used for the analysis of tunneling time
delay in chapter 6.

In chapter 6, the tunneling time delay is investigated via Wigner’s time delay
concept. This concept is based on the time difference between the quasiclassical and
the Wigner trajectory, which is the trajectory of the peak of the wave packet, at the
remote distance. First, Wigner’s time delay is applied to various model problems.
Then, we extend the Wigner’s time delay definition to tunnel-ionization problems. It
is shown that there exist signatures of the tunneling time delay that may be measurable
at remote distances. Finally, we propose the phase of the fixed energy propagator as a
measure of the tunneling time delay, which is much more compatible than Wigner’s
original definition for the relativistic problems.

Finally, chapter 7 is devoted to the discussion on one of the most important
long standing unresolved problems in theoretical physics [56]: charge quantization.
Although this chapter seems to be a little far away from the main line of the thesis,
the connection emerges from the path-dependent formulation of gauge theory that
we introduced in chapter 2. In fact, it is shown that the path-dependent formalism
can provide a compact description for the flux quantization. Moreover, the path-
dependent formalism gives suggestions for searching quantized fluxes in different
configurations and other possible reasons for charge quantization. As an example of
charge quantization, the developed formalism is employed in a (1+1) dimensional
spacetime, predicting the fundamental unit of charge.

In addition to the main chapters, we present two issues connected with the main
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aspect of the thesis as appendices which can also be read as independent works.
Firstly, we calculate the causal electric field, Liénard - Wiechert potential, for a
(1+1) dimensional spacetime in appendix A. Secondly, we discuss the relativistic
spin operator in appendix B on the base of the inhomogeneous Lorentz group and we
derive a spin operator which commutes with the free Dirac Hamiltonian and satisfies
the corresponding S U(2) algebra.

1.1. Notation, system of units and presentation of
the thesis

The metric signature is g = (+,−,−,−) and unless otherwise stated Einstein summa-
tion convention is used in the entire work. The Lorentz scalar product AµBµ for two
vectors A and B appears as A B as well as A · B and the three vectors are represented
via bold characters asA.

The totally anti-symmetric tensor εµνρσ has ε0123 = 1 and the usual Levi-Civita
symbol is defined as ε0i jk = ε i jk.

Feynman slash notation /A for a vector A indicates γµAµ. In the standard represen-
tation [57] the Dirac matrices γµ are

γ0 = β =

(
I 0
0 −I

)
, γi = β αi =

(
0 σi

−σi 0

)
(1.1)

with the 2 × 2 identity matrix I and the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.2)

The notation for electromagnetism is adapted from [2]: Electric charge is negative,
e < 0, the four-vector potential is defined as Aµ = (φ,A) and the Maxwell equations
are written in the CGS (Gaussian) units as

∂µFµν =
4π
c

Jν , (1.3)

εαβµν∂µFαβ = 0 (1.4)

with the field strength tensor

Fµν = ∂µAν − ∂νAµ . (1.5)

In chapters 3, 4, and 6, where we present numerical results, atomic units (a.u.) are
used for convenience. In these units we have

~ = 1 , me = 1 , e = −1
1

4πε0
= 1 (1.6)
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with Planck’s constant ~, the electron mass me, the electron charge e, and the Coulomb
force constant (4πε0)−1. Other physical quantities can be expressed in terms of the
constants (1.6) in a reduced way, for instance the dimensionless fine structure constant

α =
e2

(4πε0)~c
≈ 1/137 (1.7)

identifies the speed of light as c ≈ 137. Other physical quantities can be found in a
similar way in atomic units, see Table 1.1.

Physical Quantity atomic units (a.u.) SI units

length (Bohr radius) a0 = 4πε0~
2/(mee2) = 1 0.526 Å

time t = (4πε0)2~3/(mee4) = 1 2.42 × 10−17 s

energy (Hartree) εh = −mee3/(4πε0~)2 = 1 27.2 eV

electric field E = −εh/(ea0) = 1 5.14 × 1011 V/m

Table 1.1. – A brief summary of some fundamental quantities. Here time is the required
quasiclassical time for an electron to fly one period in the first Bohr orbit,
the Hartree energy is twice the ionization energy of the ground state of
Hydrogen atom, and intensity is given in units of I = ε0cE2/2 = 3.5 ×
1016 W/cm2, further information can be found in [58].

The presentation of the thesis is the following. Each chapter has its own introduc-
tion and conclusion sections, where we give a motivation, statement of the problem
and the summary of the chapter, respectively. At the end of the introduction of every
chapter we clearly indicate the system of units that is used throughout the chapter
and cite the relevant articles that partly include the results and figures.



2. On gauge theory

2.1. Introduction

The homogeneous Maxwell equations, Gauss’ law for magnetism and Faraday’s law
of induction, identify the electromagnetic field strength tensor in terms of gauge
dependent vector potentials. Moreover, any other vector potential, related by a gauge
transformation, describes the same physical reality which is known as the gauge
invariance of electromagnetism.

The gauge invariance is, in fact, deeply connected with the charge conservation.
This connection was made first by Herman Weyl when he attempted to unify elec-
tromagnetism and general relativity [5]. In this connection, the gauge invariance
is equivalent to the phase invariance of a wave function. More fundamentally, the
electric charge conservation appears as a consequence of the invariance of the theory
under a global internal continuous symmetry transformation via Noether’s theo-
rem [59]. Furthermore, extending the global symmetry transformation to the local
one requires the introduction of a vector potential (gauge field), which ends up with
the interaction. In a sense, a global internal continuous symmetry implies a conserved
quantity, while demanding the associated local symmetry induces the interaction
between the conserved quantity and the gauge field [6–8].

Moreover, as elegantly described by Aharanov and Bohm, the vector potential
has a significant role in quantum mechanics [60]. The vector potential does not
only provide a compact mathematical formulation of the associated field strength
tensor but also it explains predictions such as the Aharanov-Bohm effect [60–62], flux
quantization [63–66] and Dirac’s charge quantization condition when the existence
of a magnetic monopole is assumed [67, 68].

In this chapter, we first briefly summarize the conventional gauge theory in Sec. 2.2
where we introduce the gauge invariant physical energy operator via discussing the
gauge covariant operators in quantum mechanics. It is shown that for a constant
electromagnetic field there exists a well-defined potential barrier which later indicates
the gauge invariance of the tunneling barrier in the tunnel-ionization process.

After that, we will present the path-dependent formulation of gauge theory in
the next Sec. 2.3. The formalism is developed by DeWitt and Mandelstam in order
to discuss quantum theory without electromagnetic potentials [46, 47]. Indeed, as
discussed in [69], it can be shown that the formalism emerged from the nonintegrable
(path-dependent) phase factor. In this equivalent formulation of gauge theory the
vector potentials are defined via certain paths such that each path corresponds to an
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associated gauge function [48, 49]. The formalism further represents a geometric
picture of the path transformation, i.e., gauge transformation, via the electromagnetic
flux.

The CGS units are used throughout this chapter and the results can be partly found
in [45, 69].

2.2. Conventional gauge theory

The conventional gauge theory (the reason of why we call it conventional will be
clear in the following sections when we introduce the path-dependent formulation of
gauge theory) can be summarized in the light of [9,70]. Here we focus on the abelian
case.

In classical electrodynamics the Maxwell equations in (3+1) spacetime dimensions
read

∂µFµν =
4π
c

Jν , (2.1)

εαβµν∂µFαβ = 0 , (2.2)

where the components of the electromagnetic field strength tensor Fµν are the electric
field F i0 = Ei and the magnetic field F jk = ε i jkBk such that

Fµν =


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 . (2.3)

Further, the four-vector current is defined as Jµ = (cρ,J ). The homogeneous Maxwell
equations (2.2) allow to express the electric and magnetic fields in terms of a four-
vector potential Aµ = (φ,A) as

Fµν = ∂µAν − ∂νAµ . (2.4)

In other words, the electric field and the magnetic field can be written as

E = −∇φ − 1
c
∂tA , (2.5)

B = ∇ ×A . (2.6)

Furthermore, any other four-vector potential, related by a so-called gauge transfor-
mation, describes the same electric and magnetic field. The transformation

Aµ → A′µ = Aµ + ∂µχ , (2.7)

φ→ φ′ = φ +
1
c
∂tχ , (2.8)

A→ A′ = A − ∇χ (2.9)
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leaves the electromagnetic field strength tensor invariant and, consequently, all the
physically measurable phenomena related to electrodynamics such as Maxwell equa-
tions, the Lorentz force law become gauge invariant. Furthermore, the Schrödinger
equation which governs the time evolution of the wave function

i~
∂ψ(x, t)
∂t

=
1
2

(
−i~∇ − e

c
A(x, t)

)2
ψ(x, t) + eφ(x, t)ψ(x, t) (2.10)

becomes invariant under the gauge-transformation ( [70]) as long as the wave function
transforms as

ψ(x)→ exp
( ieχ
~c

)
ψ(x) . (2.11)

More generally, as we underlined in the introduction Sec.(2.1), the gauge invari-
ance is not a consequence of electromagnetism, rather it leads to the existence of
the interaction of electromagnetism. This perspective of understanding of gauge
theory makes the weak interaction and the strong interaction more clear. Explicitly,
gauge theory follows from the steps [9]. First, for every conservation law there is an
associated symmetry via Noether’s theorem; second, the local ones among them lead
to the existence of gauge fields; and third, the gauge field theory imposes interactions
between the gauge field and the conserved quantity. Such a generalization of the local
gauge invariance leads to the existence of non-abelian gauge fields, i.e., Yang-Mills
theory which is the generalization of electromagnetism [10].

2.2.1. Gauge invariant energy operator

Besides the elegance of gauge theory, all the physical quantities, i. e., the experimental
observables cannot depend on the choice of the gauge function. For example, the
canonical momentum operator p transforms under the gauge transformation U =

exp
( ieχ
~c

)
as

p→ U†pU = p +
e
c
∇χ , p . (2.12)

The kinetic momentum q(A) = p − eA/c, however, obeys

q(A)→ U†qU = p − eA′/c = q(A′) . (2.13)

Here, the canonical momentum p which generates the space translation and satisfies
the canonical commutation relation is not a physical measurable quantity, it is the
kinetic momentum q(A) that is measured in an experiment. In general, any operator
that satisfies the transformation

O(p,x,A, φ)→ U†O(p,x,A, φ)U = O(p,x,A′, φ′) (2.14)

is called a physical operator. For instance, the Hamiltonian for a charge particle
interacting with an arbitrary electromagnetic field in the nonrelativisitic regime

H =
(p − eA/c)2

2
+ eφ (2.15)
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transforms under the gauge transformation as

H → (p − eA′/c)2

2
+ eφ . (2.16)

Hence, it cannot be a physical operator (because φ is not equally transformed to φ′),
while H − i~ ∂/∂t is the physical operator which guarantees the invariance of the
Schrödinger equation under a gauge transformation.

In contrast to the Hamiltonian H, the total energy of a system has to be a gauge
invariant physical quantity. Therefore, we have to distinguish two concepts: the
Hamiltonian and the total energy. The Hamiltonian is the generator of the time
translation and the Legendre transformation of the associated Lagrangian, while the
total energy is defined as a conserved quantity of the dynamical system under a time
translation symmetry of the Lagrangian. As a consequence, if the Hamiltonian is
explicitly time independent, then the Hamiltonian coincides with the total energy
operator.

For a time independent electromagnetic field there exists a certain gauge where the
Hamiltonian is explicitly time independent. The identification of the Hamiltonian as a
total energy operator implies that both the vector potentialA and the scalar potential
φ associated to the constant electromagnetic field have to be time independent. This
leads to the fact that

φ = −
∫ x

E(x′) · dx′ , (2.17)

where we have used Eq. (2.5). In this gauge, the Hamiltonian which coincides with
the total energy operator ε̂ in the presence of any external potential V(x) reads

H = ε̂ =
1
2

(
p − e

c
A(x)

)2
− e

∫ x

E(x′) · dx′ + V(x) , (2.18)

where the time independent vector potentialA(x) generates the associated magnetic
field via Eq. (2.6).

Accordingly, if we identify Eq. (2.18) as a definition of the gauge independent
total energy operator, it reads in an arbitrary gauge

ε̂ =
1
2

(
p − e

c
A′(x, t)

)2
− e

∫ x

E(x′) · dx′ + V(x) , (2.19)

where we have used the transformation (2.14). The first term on the right hand side of
Eq. (2.19) is the kinetic energy for an arbitrary vector potentialA′(x, t) that appears
in the corresponding Hamiltonian. The second term should not be regarded as a scalar
potential, but defines the potential energy.

The energy operator (2.19) has to fulfill the conservation law for time independent
fields

dε̂
dt

=
i
~

[H, ε̂] +
∂ε̂

∂t
= 0 (2.20)

for the corresponding Hamiltonian

H =
1
2

(
p − e

c
A′(x, t)

)2
+ e φ(x) + V(x) . (2.21)
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The validity of the requirement (2.20) can be proven in a straightforward calcula-
tion. We find

∂ε̂

∂t
= −e

2

((
p − eA′/c

) · ∂A′
c ∂t

+
∂A′

c ∂t
· (p − eA′/c

))
, (2.22)

[H, ε̂] = −e
2

((
p − eA′/c

) · [p, ∫ x

E · dx′ + φ

]
+

[
p,

∫ x

E · dx′ + φ

]
· (p − eA′/c

))
(2.23)

and hence

dε̂
dt

= −e
2

((
p − e

c
A′

)
·
(
E + ∇φ +

∂A′

c ∂t

)
+

(
E + ∇φ +

∂A′

c ∂t

)
·
(
p − e

c
A′

))
= 0

(2.24)
is obtained.

As a consequence, for an arbitrary constant electromagnetic field, there exists
a well-defined gauge invariant energy operator which fulfills the conservation law
(2.20). The definition (2.19), then, suggests to introduce the gauge independent
effective potential energy as

Veff(x) = −e
∫ x

E(x′) · dx′ + V(x) . (2.25)

The physical energy operator for an arbitrary constant electromagnetic field can be
generalized to the relativistic regime straightforwardly by using the Dirac Hamiltonian

H = cα ·
(
p − e

c
A(x, t)

)
+ e φ(x) + V(x) + βc2 (2.26)

with the Dirac matrices α and β [57]. From Eq. (2.19) we deduce the physical energy
operator in the relativistic case as

ε̂ = cα · (p − eA(x, t)/c) − e
∫ x

E(x′) · dx′ + V(x) + βc2 . (2.27)

It is also straightforward to show that the relativistic energy operator (2.27) fulfills
the conservation law (2.20) as

dε̂
dt

=
i
~

(
−ecα

[
p,

∫ x

E(x′) · dx′
]

+ ecα
[
φ,p

]) − eα ∂tA = 0 . (2.28)

2.3. The path-dependent formulation of gauge
theory

In their celebrated paper [71], Wu and Yang pointed out that the field strength tensor
underdescribes the complete electromagnetic phenomena, in other words, a different
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physical realization of electromagnetic phenomena may have the same field strength
tensor Fµν. Further, they gave a complete description of electromagnetism based on
the concept of the nonintegrable (path-dependent) phase factor (or it may be called
Wilson line [72])

exp
(
− ie
~c

∫ x

P
Aνdyν

)
. (2.29)

The integration path P starts at a point where the fields are zero and runs up to the
point of interest x. Historically, such kind of line integrals of the potentials were
previously suggested in [46, 47, 73, 74]. Moreover, it was shown by DeWitt [46] and
Mandelstam [47] that the nonintegrable phase factor Eq. (2.29) can eliminate the
vector potential from the formalism. However, the expense is that the “unique” vector
potentials, which depend on the field strength tensor, become path dependent. Every
gauge function in the conventional gauge theory has a corresponding path in this
equivalent formulation [48, 49].

Electromagnetism is a consequence of the local phase transformation of the wave
function. In fact, we can impose this transformation via the nonintegrable phase
factor as

ψ(x)→ Ψ (x) = exp
(
− ie
~c

∫ x

P
Aν(y)dyν

)
ψ(x) , (2.30)

which corresponds to identifying the gauge function χ via the path integral

χ(x) = −
∫ x

P
Aν(y)dyν . (2.31)

Then the associated Schrödinger equation becomes invariant under the following
gauge transformation

Aµ(x)→ Aµ(x) ≡ Aµ(x) − ∂

∂xµ

∫ x

P
Aνdyν . (2.32)

The latter yields to the gauge invariant vector potentialAµ(x). Explicitly, let us first
parametrize the path y = y(s, x) as

y(1, x) = x , y(0, x) = x′ , (2.33)

where the electromagnetic field vanishes at x′, at which Aµ may, without loss of
generality, be set equal to zero. Then, Eq. (2.32) becomes

Aµ(x) = Aµ(x) − ∂

∂xµ

∫ 1

0
Aν(y)

∂yν

∂s
ds

= Aµ(x) −
∫ 1

0

(
Aν(y)
∂yλ

∂yλ

∂xµ
∂yν

∂s
+ Aν(y)

∂

∂s
∂yν

∂xµ

)
ds ,

= Aµ(x) −
∫ 1

0

(
Aλ(y)
∂yν

∂yν

∂s
∂yλ

∂xµ
+ Aν(y)

∂

∂s
∂yν

∂xµ
− Fνλ(y)

∂yλ

∂xµ
∂yν

∂s

)
ds , (2.34)

where in last line we have used Aν,λ(y) = Aλ,ν(y) − Fνλ(y). Further, the first two

integrand terms in Eq. (2.34) can be written as
∂

∂s

(
Aλ(y)

∂yλ

∂xµ

)
and using the boundary

conditions (2.33),

Aµ(x) =

∫ 1

0
Fνλ(y)

∂yν

∂s
∂yλ

∂xµ
ds (2.35a)
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is obtained. Furthermore, since the field strength tensor Fµν is antisymmetric,
Eq. (2.35a) can be written as

Aµ(x) =
1
2

∫ 1

0
Fνλ(y)

(
∂yν

∂s
∂yλ

∂xµ
− ∂yλ

∂s
∂yν

∂xµ

)
ds . (2.35b)

At this point it worths to verify that Eq. (2.35) satisfies the natural relation

Fµν =
∂Aν(x)
∂xµ

− ∂Aµ(x)
∂xν

, (2.36)

as follows :

∂Aν(x)
∂xµ

− ∂Aµ(x)
∂xν

=
∂

∂xµ

∫ 1

0
Fαβ(y)

∂yα

∂s
∂yβ

∂xν
ds − ∂

∂xν

∫ 1

0
Fαβ(y)

∂yα

∂s
∂yβ

∂xµ
ds, (2.37)

=

∫ 1

0

[
∂Fαβ

∂yλ
∂yλ

∂xµ
∂yα

∂s
∂yβ

∂xν
+ Fαβ

∂

∂s

(
∂yα

∂xµ

)
∂yβ

∂xν
(2.38)

− ∂Fαβ

∂yλ
∂yλ

∂xν
∂yα

∂s
∂yβ

∂xµ︸                ︷︷                ︸
λ↔ β

− Fαβ

∂

∂s

(
∂yα

∂xν

)
∂yβ

∂xµ︸               ︷︷               ︸
β↔ α

 ds ,

=

∫ 1

0


(
∂λFαβ − ∂βFαλ

)︸              ︷︷              ︸
∂αFλβ

∂yα

∂s
∂yλ

∂xµ
∂yβ

∂xν
+ Fαβ

∂

∂s

(
∂yα

∂xµ
∂yβ

∂xν

) ds , (2.39)

=

∫ 1

0

∂

∂s

(
Fαβ

∂yα

∂xµ
∂yβ

∂xν

)
ds = Fαβ

∂yα

∂xµ
∂yβ

∂xν

∣∣∣∣∣∣1
0

= Fµν . (2.40)

Here, in the second line we interchange the dummy indexes λ and β, and β and α in
the third and forth integrands, respectively. Further, in the third line we have used the
Bianchi identity

∂λFµν + ∂µFνλ + ∂νFλµ = 0 . (2.41)

Finally, in the last line, the corresponding boundary conditions (2.33) are used such
that

∂yα(s = 1)
∂xµ

= gαµ , (2.42)

Fαβ(s = 0) = 0 . (2.43)

The expression (2.35) is gauge independent because it is written solely in terms of
the gauge invariant field strength tensor Fµν. However, the expense is that the vector
potential is path dependent and every gauge function in the conventional gauge theory
has a counterpart in the path-dependent formalism [48, 49]. As a consequence, we
will label both the vector potentialAµ and the wave function Ψ with the path index
P which refers to a certain path as[

i~γµ
(
∂µ − ie

~c
Aµ(P, x)

)
− mc

]
Ψ (P, x) = 0 . (2.44)
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Moreover, the Dirac equation (2.44) is invariant under the following path transforma-
tion

Aµ(P′, x) = Aµ(P, x) + ∂µ

∮ x

∂Σ

Aνdyν , (2.45)

as long as the wave function satisfies

Ψ [P′, x] = exp
(

ie
~c

∮ x

∂Σ

Aµdyµ
)
Ψ [P, x] , (2.46)

with the closed loop ∂Σ = P − P′.
Furthermore, using the four-dimensional Stokes’ law, the loop integral can be

converted to surface integral∮ x

∂Σ

Aµdyµ =
1
2

∫ x

Σ

Fµνdσµν = ΦEM(x) (2.47)

with the electromagnetic flux ΦEM [75]. In addition to that, using the definition of the
path dependent vector potential (2.32), the electromagnetic flux for a nonconfined
field can also be identified as∫ x

P
Aµ(P′)dyµ = ΦEM(x) , (2.48)

which implies that for any path P∫ x

P
Aµ(P)dyµ = 0 (2.49)

always holds1. In conclusion, true electromagnetism can be described by path
invariance of the so-called nonintegrable phase factor which is known as Wilson line
when the gauge group is nonabelian [72].

In order to illustrate the equivalence between the conventional gauge theory and the
path-dependent formalism, let us specify some certain paths which have a well-known
counterpart in the conventional gauge theory. For the sake of simplicity, assume that
there is only a constant and uniform electric field E0 and further, without loss of
generality, let the initial point be x′µ = (0, 0). If one chooses the path P = P1 + P2

with the segments

P1 : yµ(s, x) = (0, sx) , 0 ≤ s ≤ 1 , (2.50)
P2 : yµ(s, x) = (s ct,x) , 0 ≤ s ≤ 1 , (2.51)

then the path dependent vector potential becomes

Aµ(x) = F0i

∫ 1

0

∂y0

∂s
∂yi

∂xµ
ds,

= (0,−ctE0) . (2.52)

1For confined fields, the electromagnetic flux is always given by Eq. (2.47), and further
∫ x
P Aµ(P)dyµ

may not be equal to zero, see Sec. 7.3.
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This gauge is called velocity gauge. On the other hand, if we choose the segments of
the path as

P′1 : yµ(s, x) = (s ct, 0) , 0 ≤ s ≤ 1 , (2.53)
P′2 : yµ(s, x) = (ct, sx) , 0 ≤ s ≤ 1, (2.54)

then the vector potential yields

Aµ(x) = Fi0

∫ 1

0

∂yi

∂s
∂y0

∂xµ
ds ,

= (−x ·E0, 0) , (2.55)

which is known as length gauge. Furthermore, if we trace a straight line as

P′′ : yµ(s, x) = (s ct, sx) , 0 ≤ s ≤ 1 , (2.56)

then, the vector potential is given by

Aµ(x) = Fi0

∫ 1

0

(
∂yi

∂s
∂y0

∂xµ
− ∂y0

∂s
∂yi

∂xµ

)
ds ,

Aµ(x) =

(
−1

2
x ·E0,−1

2
ctE0

)
, (2.57)

which is known as Fock-Schwinger gauge xµAµ = 0. Following the path transforma-
tion (2.45), relations between different gauges is given by the electromagnetic flux.
For instance, the gauge transformation between velocity and length gauge is given by

ΦEM(x) = −ctx ·E0 (2.58)

with ∂Σ = P − P′. Similarly, the transformation between the length gauge and the
Fock-Schwinger gauge can be accomplished by

ΦEM(x) = −1
2

ctx ·E0 (2.59)

with ∂Σ = P′ − P′′.
In the previous section, we have introduced the gauge invariant energy opera-

tors (2.19) and (2.27) for the nonrelativistic and relativistic regimes. The condi-
tion (2.14), which identifies a physical operator, can be written in terms of the
path-dependent formulation of gauge theory as

O(P)→ exp
(
− ie
~c
ΦEM

)
O(P) exp

( ie
~c
ΦEM

)
= O(P′) . (2.60)

For the scalar potential the transformation (2.60) indicates

A0(P) = A0(P′) . (2.61)

In general, for an arbitrary electromagnetic field this condition, naturally, cannot be
fulfilled. The condition (2.61) can be satisfied if and only if the electromagnetic flux
ΦEM through the area bounded by the loop ∂Σ = P − P′ is time independent, i.e.,

A0(P) −A0(P′) = ∂t

∫
Σ

Fµνdσµν = 0 (2.62)
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which imposes the following two necessary constraints; first the electromagnetic field
has to be time independent, second the two paths P and P′ can only deviates from
each other on a hypersurface of the constant time. In fact, these constraints identify
the corresponding Hamiltonian as an energy operator, which is consistent with the
result of the previous section.

The full machinery of the path-dependent formalism of gauge theory provides
some fundamental simplifications for the path integral formulation of quantum me-
chanics. Namely, let us consider the propagator in terms of the Feynman path integral
which is defined by

KE
F (x,x′; t) =

∫
D(PF) exp

( i
~

S (PF)
)
, (2.63)

where D(PF) and S (PF) represent the sum over all paths and the action evaluated
along the path PF , respectively. For the sake of simplicity, we consider the action of
a spinless charged particle interacting with an electromagnetic field

S (PF) = −mc2
∫
PF

dτ − e
c

∫
PF

Aµ(PG, y)dyµ (2.64)

with the particle’s infinitesimal proper time c dτ =
√

dyµdyµ. Here we should
emphasize that paths appearing in the Feynman path integrals PF are real paths in
the sense that the transition amplitude of a particle from spacetime point x′ to x
depends on these paths. Paths used for the vector potential PG are just the gauge
paths. Moreover, the action (2.64) can be defined via the electromagnetic flux (2.48)
as

S (PF) = −mc2
∫
PF

dτ − e
c
ΦEM(Σ, x) (2.65)

with ∂Σ = PF − PG.

The compact form of the action (2.65) provides us a further simplification for
the quasiclassical propagators. The quasiclassical propagator can be defined via the
classical action S c which is the action evaluated along the classical trajectory (world
line) Pc. Furthermore, using the VanVleck-Pauli-Morette formula [76–79], it reads

KF(x,x′; t) =

√(
1

2πi~

)3

det
(−∂2S c

∂x∂x′

)
exp

(
− i
~

mc2
∫
Pc

dτ − i
~

e
c
ΦEM(Pc − PG, x)

)
.

(2.66)
Now, if we choose a gauge such that the corresponding gauge path becomes the clas-
sical path, the flux term in the above expression vanishes and then the quasiclassical
propagator reduces to

KF(x,x′; t) =

√(
1

2πi~

)3

det
(−∂2S c

∂x∂x′

)
exp

(
− i
~

mc2
∫
Pc

dτ
)

(2.67)

where the classical path Pc satisfies the Lorentz force law

m
∂2yµc
∂τ2 =

e
c

Fµν(yc)
∂ycν

∂τ
(2.68)
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with the particle’s proper time τ. Here we should underline that Eq. (2.68) is not a
parametrization independent equation (see for example [1]).

The latter defines the path dependent vector potential (2.35) as

Aµ(Pc, x) = −mc
e

∫ τ f

τi

∂2ycν

∂τ2

∂yνc
∂xµ

dτ , (2.69)

with the boundary conditions yµ(τ f ) = xµ and yµ(τi) = x′µ, where the dependence
on the electromagnetic fields contains only in the definition of the classical path
via Eq. (2.68). Furthermore, in terms of the reparametrization invariant form of the
equations of motion

∂pµ

∂s
=

e
c

Fµν(yc)
∂ycν

∂s
(2.70)

with the particle’s four momentum pµ, the vector potential for the classical path reads

Aµ(Pc, x) = −c
e

∫ 1

0

∂pν
∂s

∂yνc
∂xµ

ds . (2.71)

For a nonrelativistic particle, on the other hand, the classical trajectory can be
parametrized with the physical time t′. Then, the path dependent vector potential for
the nonrelativistic classical path y(t′) with the boundary conditions y(0) = x′ and
y(t) = x can be written as

Aµ(Pc, x) =
mc
e

∫ t

0

∂2y

∂t′2
· ∂yc

∂xµ
dt′ =

c
e

∫ t

0

∂p

∂t′
· ∂yc

∂xµ
dt′ , (2.72)

where we have used ∂t′/∂xµ = 0. This form of the vector potential (2.72) provides
great convenience for the quasiclassical propagator for a nonrelativistic particle. Since
the integral of the corresponding potential terms in the action vanishes, i.e.,∫ t

0
dt′

(e
c
A · ẏ(t′) − eA0

)
= 0 , (2.73)

the quasiclassical propagator for a nonrelativistic particle in the classical path gauge
yields

KF(x,x′; t) =

√(
1

2πi~

)3

det
(−∂2S c

∂x∂x′

)
exp

(
i
~

∫ t

Pc

m ẏc2

2
dt′

)
. (2.74)

In fact, this result can also be obtained directly via replacing the particle’s infinitesimal
proper time with the usual nonrelativistic kinetic term of the Lagrangian in Eq. (2.67).

In summary, since the equations of motion are gauge invariant, they are first found
in any convenient gauge, then the propagator for a nonrelativistic particle as well as
for a relativistic particle can be calculated in the corresponding classical path gauge
via Eq. (2.74) and Eq.(2.67), respectively. The compact form of the quasiclassical
propagator can be applied to any type of potential, when the classical equations of
motion are known. The developed convenience for the quasiclassical propagator will
be used for the calculation in later chapters in order to discuss the tunneling time
delay of the tunnel-ionization process.
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2.4. Conclusion

In this chapter, after briefly reviewing the conventional gauge theory, we have intro-
duced the gauge invariant physical energy operator for an arbitrary constant electro-
magnetic field. This result will be used later to identify the tunneling barrier without
any ambiguity in the tunnel-ionization process. Then, the path-dependent formulation
of gauge theory was developed explicitly via the nonintegrable phase factor. There we
have imposed the local phase invariance of the wave function via the path-dependent
gauge function. In this equivalent formulation of gauge theory we have replaced
the gauge functions with a path such that it reveals the new set of gauge choices
which makes the Feynman path integral formulation of quantum mechanics more
convenient. This leads to the fact that for the quasiclassical analysis these gauges let
the interaction part of the classical action vanish. These results will later be used to
calculate the quasiclassical propagators in chapter 5.



3. Relativistic features of
laser-induced tunnel-ionization

3.1. Introduction

The investigation of the relativistic regime of laser-atom interactions, in particular
the strong field ionization of highly charged ions [23–30], is feasible with current
laser technology [21,22]. Strong field multiphoton atomic processes in the relativistic
domain are governed by three parameters [80] which can be chosen to be the Keldysh
parameter γ = ω

√
2Ip/E0 [50], the barrier suppression parameter E0/Ea, and the rel-

ativistic laser field parameter ξ = E0/(cω), with the ionization potential Ip, the atomic
field Ea = (2Ip)3/2, the laser’s electric field amplitude E0, the angular frequency
ω, and the speed of light c. At small Keldysh parameters (γ � 1) the laser field
can be treated as quasistatic and the ionization is in the so-called tunneling regime
up to intensities with E0/Ea . 1/10, while for higher intensities over-the-barrier
ionization dominates [81]. In the nonrelativistic case, quasistatic tunnel-ionization is
a well-established mechanism, which is incorporated as a first step in the well-known
simple-man three-step model of strong field multiphoton ionization [82]. In the first
step of this intuitive picture the bound electron tunnels out through the effective
potential barrier governed by the atomic potential V(x) and the scalar potential of
the quasistatic laser field as Vbarrier(x) = x · E(t0) + V(x), where t0 indicates the
moment of quasistatic tunneling. In nonrelativistic settings, the effect of the magnetic
field component of the laser field can be neglected and the quasistatic laser field is
described solely in terms of the scalar potential x · E(t0). In the second step the
ionized electron propagates in the continuum according to the quasiclassical theory
and the third step is a potential recollision of the laser driven electron with the ionic
core that will not be considered in this work.

When entering the relativistic regime at ξ2 & 1, the laser’s magnetic field modifies
the second step via an induced drift motion of the continuum electron into the laser’s
propagation direction. For even stronger laser fields, that is when Ip/c2 ∼ γ2ξ2 ∼ 1,
the laser’s magnetic field can also not be neglected anymore during the first step.
Here, the description by a sole scalar potential Vbarrier(x) is not valid anymore and
the intuitive picture of tunneling fails. The presence of a vector potential which
generates the associated magnetic field led to a controversy over the effective potential
barrier [44]. Hence we ask, can the tunneling picture be remedied for the application
in the relativistic regime and can it be formulated in a gauge-independent form?
These questions are addressed in this chapter. It is shown that for a quasistatic
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electromagnetic wave, it is possible to define the tunneling barrier without ambiguity
in any gauge via the energy operator [45] that we identified in chapter 2.

One of the theoretical tools applied in this chapter is the strong field approximation
(SFA) [83, 84], see Sec. 4.2. Neglecting the atomic potential for the continuum elec-
tron and approximating its dynamics with a Volkov state is the main approximation of
the SFA [50–52]. Consequently, the prediction of the SFA is much more accurate for
a zero-range potential than for a more realistic long-range potential as the Coulomb
potential. SFA calculations for tunnel-ionization modeled with a zero-range potential
show that there is a momentum shift along the laser’s propagation direction due to
the tunneling step. We find that this shift can also be estimated via a WKB analysis
when a Coulomb potential is used and that it is measurable in a detector after the
laser field has been turned off [45].

The structure of the chapter is the following: In Sec. 3.2 the parameter domain of
the relativistic tunneling dynamics is estimated. In Sec. 3.3 gauge independence of
the tunneling barrier is established in nonrelativistic as well as in relativistic setting.
The intuitive picture for tunnel-ionization is discussed in Sec. 3.4 reducing the full
problem to a one-dimensional one. In Sec. 3.5 the SFA formalism is presented and
the momentum distribution at the tunnel exit is calculated.

Atomic units (a. u.) are used throughout this chapter. The chaper is based
on [31, 45] and all the figures are taken from [45].

3.2. Relativistic parameters

Let us estimate the role of relativistic effects in the tunnel-ionization regime which is
valid for γ � 1 and for the intensities up to E0/Ea < 1/10. The typical velocity of the
electron during the under-the-barrier dynamics can be estimated from the bound state
energy Ip as κ ≡ √

2Ip (for a hydrogenlike ion with charge Z and Ip = c2−
√

c4 − Z2c2

in the ground state it follows κ ∼ Z). The nonrelativistic regime of tunneling is defined
via κ � c. This relation is valid for hydrogenlike ions with nuclear charge up to
Z ∼ 20 where κ/c ∼ 0.14. For ions with charge Z > 20 the relativistic regime is
entered because the velocity during tunneling is not negligible anymore with respect
to the speed of light. However, even for an extreme case of U91+ with Z = 92 it is
κ/c ∼ 0.6, i. e., the dynamics is still weakly-relativistic and a Foldy-Wouthuysen
expansion of the relativistic Hamiltonian up to order (κ/c)2 is justified. The expansion
yields

H =
1
2

(
p +

A(η)
c

)2

− φ(η) + V(x) − p
4

8c2 (3.1)

+
σ ·B(η)

2c
+ i
σ · (∇ ×E(η))

8c2 +
σ · (E(η) × p)

4c2 +
∇ ·E(η)

8c2 ,

where V(x) is the binding potential, the four-vector potential is given by Aµ =

(φ(η),A(η)) and the phase of the electromagnetic wave is η = xµkµ = ω(t − k̂ · x/c),
with xµ = (c t,x), kµ = ω/c(1, k̂) and the lasers propagation direction k̂.
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In the tunneling regime, the typical displacement along the laser’s propagation
direction can be estimated as k̂ · x ∼ k̂ · FL τ

2
K with the Lorentz force FL and the

typical ionization time (Keldysh time) τK = γ/ω = κ/E0. Identifying the Lorentz
force along the laser’s propagation direction as k̂ · FL ∼ κB0/c (E0 = B0), the typical
distance reads k̂ · x ∼ γκ2/(ωc). Hence, electric as well as magnetic non-dipole
terms are negligible since ω k̂ · x / c ∼ γ (κ/c)2 � 1, i. e., the typical width of the
electron’s wave packet is small compared to the laser’s wavelength.

Furthermore, the leading spin term in Eq. (3.1) is the spin-magnetic field coupling
Hamiltonian HP = σ ·B/(2c). Its order of magnitude can be estimated as HP/κ

2 ∼
E0/(cκ2) = κ/c(E0/Ea). Therefore, in the tunneling regime the spin related terms and
the Darwin term ∇ ·E(η)/(8c2) in Eq. (3.1) can be neglected because E0/Ea � 1. In
summary, the electron’s under-the-barrier dynamics is governed in the Göppert-Mayer
gauge, see Sec. III, by the Hamiltonian

H = H0 + HED + HMD + HRK + HI , (3.2)

=
1
2

(
p + x ·E(ωt)

k̂

c

)2

− p
4

8c2 + x ·E(ωt) + V(x)

with the free atomic Hamiltonian H0 = p2/2 + V(x), the electric-dipole HED =

x · E(ωt), the magnetic-dipole HMD = x · E(ωt)p · k̂/c, the relativistic kinetic
energy correction HRK = −p4/(8c2), and finally HI = (x · E(ωt))2/(2c2). For the
electron’s under-the-barrier dynamics the relative strengths of the various terms of
the Hamiltonian (3.2) are HED/H0 ∼ 1, HMD/H0 ∼ (κ/c)2, HRK/H0 ∼ (κ/c)2, and
HI/H0 ∼ (κ/c)2 for typical displacements x ·E ∼ κ2 along the polarization direction.

3.3. Gauge invariance of the tunneling barrier

Tunneling is, by definition, the penetration of a potential barrier by a particle which is
classically forbidden. The classical forbidden region is the domain where the potential
barrier exceeds the energy of the incoming particle. Hence, the electron dynamics
during ionization can be described as tunneling through a potential barrier if the total
energy of the electron is conserved. In other words, the tunneling picture of any
process becomes legitimate for constant fields only. Then there exists a well-defined
gauge invariant energy operator which can reveal the tunneling barrier unambiguously
as we have introduced in the previous chapter (2.2.1). Thus, for ionization in a laser
field we have to identify the quasistatic limit such that the tunneling picture becomes
applicable.

The tunnel-ionization regime in a laser field is determined by the Keldysh parame-
ter γ � 1. It defines the so-called tunneling formation time τK = γ/ω, which may be
interpreted as the time that a classical free electron would need to cover the length
l ∼ Ip/E0 of the tunneling barrier at the characteristic velocity of the bound electron
κ. The tunneling regime γ � 1 corresponds to situations when the formation time
of the ionization process is much smaller than the laser period. Consequently, the
electromagnetic field can be treated as quasistatic during the tunneling ionization
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process and the electron energy is approximately conserved. Therefore, the gauge-
independent operator for the total energy ε̂ in a quasistatic electromagnetic field can
be defined and from the latter the gauge-independent potential energy can be deduced,
which in the case of tunnel-ionization constitutes the gauge-independent tunneling
barrier. Therefore, Eq. (2.25) defines the gauge independent tunneling barrier in the
tunnel-ionization regime. In the long wavelength approximation it yields

Vbarrier = x ·E(t0) + V(x) , (3.3)

where t0 is the moment of ionization and V(x) is the binding potential.

As an illustration of the gauge independence of the tunneling barrier, let us compare
two fundamental gauges used in strong field physics to describe nonrelativistic
ionization. In the length gauge where φ = −x · E0, A = 0, the nonrelativistic
Hamiltonian for a constant uniform electric field is given by

H =
p2

2
+ x ·E0 + V(x) . (3.4)

Here, the Hamiltonian coincides with the physical energy operator. In the velocity
gauge, however, where A = −cE0t, φ = 0, the same dynamics is governed by the
Hamiltonian

H =
(p −E0t)2

2
+ V(x) . (3.5)

In Eq. (3.5) it seems as if there is no potential barrier. However, the energy operator

ε̂ =
(p −E0t)2

2
+ x ·E0 + V(x) (3.6)

reveals the tunneling barrier x · E0 + V(x). Thus, for arbitrary time independent
(quasistatic) electromagnetic fields, the gauge-independent tunneling barrier can be
defined without any ambiguity. The tunneling barrier can be generalized into the
relativistic regime straightforwardly by Eq. (2.27).

In the nonrelativistic regime, the Hamiltonian which coincides with the total
energy operator is the length gauge. One possible generalization of the length gauge
into the relativistic regime is the Göppert-Mayer gauge

Aµ = −x ·E(η)(1, k̂), (3.7)

Taking into account that the dipole approximation for the laser field can be applied
inside the tunneling barrier, the Hamiltonian which coincides with the total relativistic
energy operator in the Göppert-Mayer gauge reads

H = ε̂ = cα ·
(
p − k̂x ·E(η0)

c

)
+ x ·E(η0) + V(x), (3.8)

where η0 is the laser phase at the moment of ionization.

The tunneling barrier results from an interpretation of the individual mathematical
terms of the quasistatic energy operator (3.8). It has, however, also a physical
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Figure 3.1. – The electron density (solid line) along the laser polarization direction at
the instant of maximal field strength at the atomic core. The shaded area
represents the classical forbidden area, gray dashed lines are exponential
fits on the wave function density. The electron’s wave function ψ(x, z) is
obtained by solving the two-dimensional Dirac equation for an electron in
a soft-core potential interacting with an external laser pulse and the laser
parameters are the same as in [31].

significance as it can be also confirmed by an ab initio numerical simulation of the
tunneling process in a highly charged ion in a laser field of relativistic intensities
based on the Dirac equation [31, 45, 85]. Fig. 3.1 shows the gauge-independent
electron density along the laser’s polarization direction at the instant of maximal
field strength at the atomic core. The electron density can be divided in two parts
that are characterized by two different decay rates. The switchover region includes
the tunneling exit that is defined by the tunneling barrier. The decay of the density
under the barrier is related to damping due to tunneling, i. e., approximately exp(−κx),
whereas outside the barrier it is dominated by transversal spreading. As the change
of slopes occurs close to the tunneling exit the tunneling barrier is real and physical
and not just a result of an interpretation in a particular gauge.

3.4. Intuitive picture for the tunnel-ionization
process

Having identified the gauge invariant tunneling barrier, we elaborate in this section
on the intuitive picture for the tunnel-ionization process in the relativistic regime. For
the reminder of the section we choose our coordinate system such that the laser’s
electric field component E0 is along the x direction, the laser’s magnetic component
B0 is along the y direction and the laser propagates along the z direction. Since we
work in the quasistatic regime, the Hamiltonian in the Göppert-Mayer gauge is used,
as it coincides with the energy operator. In the nonrelativistic limit the latter is equal
to the length gauge Schrödinger Hamiltonian.
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3.4.1. Nonrelativistic case

Figure 3.2. – The potential barrier Vbarrier for quasistatic tunnel-ionization. The electric
field E(t0) = −κ3/30 is along the x direction. The most probable tunneling
path is indicated by the black dashed line.

In the nonrelativistic limit the intuitive picture for tunnel-ionization is well-known.
In this picture the magnetic field and nondipole effects can be neglected, and the
Hamiltonian reads

H =
p2

2
+ x E(t0) − κ

r
, (3.9)

with r =
√

x2 + y2 + z2. Introducing the potential

Vbarrier(x) = x E(t0) − κ
r
, (3.10)

one can define the classical forbidden region. The tunneling probability increases
with decreasing width of the barrier. Thus, the most probable tunneling path is
concentrated along the electric field direction as indicated by the dashed line in
Fig. 3.2. Therefore, it is justified to restrict the analysis of the tunneling dynamics
along the laser’s polarization direction1.

1 The one-dimensional motion along the laser’s electric field during tunnel-ionization can also be
justified from the following estimation. The role of different forces can be evaluated by their
contribution to the action, which can be estimated by an order of magnitude as S ∼ ετ, where ε is
the typical energy and τ is the typical time of an acting force. The contribution from the laser’s
electric field is S L ∼ τK xeE0 ∼ κ3/E0 = Ea/E0, with the typical distance on which the laser’s
electric field acts on the tunneling electron xe ∼ κ2/E0 (the barrier length) and the Keldysh time
τK . The contribution from the Coulomb potential can be separated into two parts. The longitudinal
Coulomb force contribution is of the order of S ‖c ∼ (κ/xc)τc ∼ 1, with the typical time τc and
coordinate xc ∼ κτc, where the Coulomb force makes the main contribution on the electron. The
transverse Coulomb force contribution can be estimated via S ⊥c ∼ F⊥c zcτc ∼ z2

c/x2
c ∼
√

E0/Ea,
where the transverse Coulomb force is F⊥c ∼ κzc/x3

c , the typical longitudinal coordinate is derived
equating the laser and Coulomb forces κ/x2

c = E0, and the typical transverse coordinate is estimated
from κz2

c ∼ xc. Therefore, the longitudinal contribution of the Coulomb potential into the dynamics
represents the leading order correction to the zero-range potential case, while the transversal effect
of the Coulomb potential is an higher order correction in the tunneling regime where E0/κ

3 is
small and will be neglected.
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Figure 3.3. – The nonrelativistic tunneling probability versus the momentum along z
direction. The maximum tunneling probability occurs at pz = 0. The
applied parameters are E(t0) = −κ3/30 and κ = 90. Without loss of
generality, py = 0 was chosen.

In this one-dimensional picture the barrier for tunnel-ionization is

Vbarrier = xE(t0) − κ

|x| . (3.11)

The momentum components py and pz along the y and the z direction are conserved
and tunneling along the x direction is governed by the energy

εx = −Ip −
p2

y

2
− p2

z

2
. (3.12)

The wave function of the electron and the corresponding transition probability can be
derived within the Wentzel-Kramers-Brillouin (WKB) approximation [70, 86]. The
zeroth order WKB wave function is given by

ψ ∝ exp (iS cl) (3.13)

with the classical action (Hamilton’s principle function [87])

S cl = −εxt +

∫ x

px(x′) dx′ (3.14)

and the momentum’s x component

px(x) =
√

2(εx − Vbarrier) . (3.15)

The WKB tunneling probability follows as

|T |2 ∝ exp
(
−2

∫ xe

x0

dx |px(x)|
)
, (3.16)

where x0 and xe are the entry point and exit point of the barrier such that p(x0) =

p(xe) = 0, respectively. The dependence of the tunneling probability on the momen-
tum pz is shown in Fig. 3.3. The tunneling probability is maximal for pz = 0, because
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Figure 3.4. – Schematic picture of nonrelativistic (a) and (b) and relativistic (c) tun-
neling from a bound state into the continuum: (a) the atomic potential is
aproximated by a zero-range potential; (b) and (c) the Coulomb potential
case. The potential barrier (solid, blue) and the energy levels (dashed, red)
for pz = 0 (in the nonrelativistic cases) and for the most probable transver-
sal momentum pz (relativistic case) are plotted against the longitudinal
tunneling coordinate x. The shaded area can be interpreted as a measure
for the tunneling probability. The electron wave packet is indicated in
black.

the energy level (3.12) decreases with increasing p2
z . From this it follows that the exit

coordinate increases with increasing pz.

In summary, nonrelativistic tunneling from an atomic potential can be visualized
by a one-dimensional picture given in Fig. 3.4(a) and (b). The area between the
barrier and the energy level represents a measure for the probability of the process:
The larger the area the less likely the ionization.

3.4.2. Relativistic case

In the relativistic regime, the largest correction to the nonrelativistic Hamiltonian
comes from the magnetic dipole term. Let us consider the role of the magnetic dipole
interaction in the laser field for the tunneling picture. The corresponding Hamiltonian
which coincides with the energy operator reads

H =
1
2

(p − xE(t0)ẑ/c)2 + xE(t0) − κ
r
. (3.17)

Similar to the nonrelativistic case, an approximate one-dimensional description is
valid for the most probable tunneling path along the electric field direction. Restricting
the dynamics along the electric field direction and neglecting the dependence of
the ionic core’s potential on the transverse coordinate, we have py,z = const and
the momentum along the polarization direction is given by Eq. (3.15) with the
barrier (3.11), which is the same as in the nonrelativistic case. The energy, however,
is modified by the magnetic dipole term

εx = −Ip −
p2

y

2
− (pz − xE(t0)/c)2

2
. (3.18)

The energy level (3.18) depends on the x coordinate. This is because the electron’s
kinetic momentum along the laser’s propagation direction qz(x) ≡ pz − xE(t0)/c
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Figure 3.5. – Tunneling probability vs. the kinetic momentum along the laser’s propaga-
tion direction at the tunnel entry (lines with peak on the left) and tunnel
exit (lines with peak on the right). Results for calculations including mag-
netic dipole correction are indicated in blue while for the red lines also the
leading relativistic correction to the kinetic energy are taken into account.
The dashed-black lines correspond to a fully relativistic calculation, which
are very close to the ones including leading relativistic corrections to the
kinetic energy. The densities are normalized to the maximum density in
the nonrelativistic case. A similar comparison was made in [31] for the
case of a zero-range potential via SFA.

changes during tunneling due to the presence of the vector potential (magnetic field).
As a consequence, the tunneling probability in the relativistic regime is maximal
at some non-zero canonical momentum pz in the laser’s propagation direction. For
instance, the kinetic momentum qz(x) with maximal tunneling probability at the
tunneling entry is qz(x0) ≈ −0.42Ip/c, whereas at the exit it is qz(xe) ≈ 0.28Ip/c for
the Coulomb potential, see Fig. 3.5. During the under-the-barrier motion the electron
acquires a momentum kick into the laser’s propagation direction due to the Lorentz
force, which can be estimated as

∆pz ∼ xeE0/c ∼ Ip/c, (3.19)

with the barrier length xe ∼ Ip/E0. Thus, the tunneling can be visualized by a one-
dimensional picture given in Fig. 3.4(c) when we take into account the magnetic
dipole term. The area between the barrier and the position dependent energy level
is larger than in the nonrelativistic case due to the non-vanishing transversal kinetic
energy, indicating the reduced tunneling probability in the description of the leading
relativistic effect.

The WKB analysis can be carried out also in a fully relativistic way. Taking into
account the relativistic energy-momentum dispersion relation, one obtains for the
momentum and the ionization energy along the polarization direction

εx =

√
p2

xc2 + c4 + Vbarrier − c2 , (3.20)

px(x) =

√(
c2 − Ip − Vbarrier

c

)2

− c2 − p2
y −

(
pz − xE(t0)

c

)2

(3.21)
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Figure 3.6. – The kinetic momentum shift at the tunnel exit qz(xe) versus the barrier sup-
pression parameter E0/Ea for an electron bound by a Coulomb potential
(dashed) and a zero-range atomic potential (solid).

which determines the fully relativistic tunneling probability via Eq. (3.16). The latter
is shown in Fig. 3.5. For comparison it shows the calculation using the magnetic
dipole correction, and the calculation with the leading relativistic kinetic energy
correction −p̂4

x/8c22.

As demonstrated in Fig. 3.5 the shift of the kinetic momentum along the laser’s
propagation direction that maximizes the WKB tunneling probability is determined
mainly by the magnetic dipole correction to the Hamiltonian. This correction also de-
creases the tunneling probability, since the Lorentz force due to the laser’s transversal
magnetic field transfers energy from the tunneling direction into the perpendicular
direction hindering tunneling. Taking into account further relativistic effects does not
change the behavior qualitatively but increases the tunneling probability. This can
be understood intuitively by noticing that in the reference frame of the relativistic
electron the length of the barrier is contracted and in this way enhancing the tunneling
probability. The mass correction term is more important in the zero-range-potential
case than in the Coulomb-potential one, since the typical longitudinal velocities are
smaller in the latter case. Furthermore, Fig. 3.5 indicates that the calculation includ-
ing only the leading relativistic kinetic energy correction O(1/c2) reproduces the
fully-relativistic approach satisfactorily. Thus, the magnetic dipole and the leading
order mass shift are the only relevant relativistic corrections.

The value of the kinetic momentum shift at tunnel exit qz(xe) varies significantly
with respect to the barrier suppression parameter E0/Ea in the case of a Coulomb
potential of the ionic core, as shown in Fig. 3.6, while it does not depend on the laser
field in the case of zero-range atomic potential. The main reason for the decreased
momentum shift in the Coulomb potential case is that the length of the Coulomb-
potential barrier is reduced approximately by a factor (1 − 8E0/Ea) compared to the
barrier length of the zero-range potential. According to Eq. (3.19), this barrier length
reduction leads to smaller momentum kick due to the magnetic field.

In order to verify the above results, we compare the prediction of the WKB
2The typical value of pz is already of order of 1/c and the − p̂4

z/8c2 term is neglected as an higher
order term in the 1/c expansion.
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Figure 3.7. – Electronic density in the mixed space of position x and kinetic momentum
qz at the moment of maximal field strength at the atomic core (left panel).
The electron’s wave function has been obtained by simulating tunnel-
ionization from a two-dimensional soft-core potential by solving the time-
dependent Dirac equation with all numerical parameters as in Fig. 3.1. The
right panel shows the normalized kinetic momentum distribution of the
tunneled electron at the tunnel exit (indicated by the white line in the left
panel) as obtained by solving the Dirac equation and by using the WKB
approximation.

approximation with the results obtained by an ab initio numerical calculation solving
the time-dependent Dirac equation [45, 85]. For this purpose tunnel-ionization from
a two-dimensional soft-core potential was simulated yielding the time-dependent
real space wave function ψ(x, z, t). A transformation into a mixed representation of
position x and kinetic momentum qz via

ψ̃(x, qz, t) =
1√
2π

∫
ψ(x, z, t)e−iz(qz−Az/c) dz (3.22)

allows us to determine the kinetic momentum in z direction as a function of the x
coordinate and in this way at the tunnel exit x = xe, see Fig. 3.7. Both, the solution of
the fully relativistic Dirac equation and the WKB approximation predict a momentum
distribution with a maximum shifted away from zero. The momentum shifts are in a
good agreement.

3.5. Tunnel-ionization with a zero-range potential
model

The intuitive considerations of the previous section about relativistic under-the-barrier
motion during tunnel-ionization led us to the conclusion that relativistic tunneling
induces a momentum kick along the laser’s propagation direction. The aim of this
section is to prove this conclusion by a rigorous calculation based on SFA, to show
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how this momentum shift arises during the under-the-barrier motion, and to find out
how this relativistic signature is reflected in the electron momentum distribution in
far distance at the detector.

The SFA is based on an S-matrix formalism, see Sec. 4.2. The ionization is
described by the Hamiltonian

H = H0 + HI(t) , (3.23)

where H0 is the field-free atomic Hamiltonian including the atomic potential V(x)
and HI(t) denotes the Hamiltonian of the laser-atom interaction. Initially, at time
t → −∞, the electron is in the bound state |ψ(−∞)〉 = |φ0〉. In SFA the influence of
the atomic core potential on the free electron and the influence of the laser field on
the bound state are neglected. This allows us to express the time evolution of the state
vector in the form [80]

|ψ(t)〉 = −i
∫ t

−∞
dt′UV(t, t′)HI(t′) |φ0(t′)〉 , (3.24)

where UV(t, t′) is the Volkov propagator which satisfies

i
∂UV(t, t′)

∂t
= HV(t)UV(t, t′) (3.25)

with the Volkov Hamiltonian HV = H − V(x). The SFA wave function in momentum
space of the final state reads

〈p|ψ〉 = −i
∫ ∞

−∞
dt′ 〈ψV(t′)|HI(t′)|φ0(t′)〉 , (3.26)

where |ψV(t)〉 denotes a Volkov state [88]. The ionized part of the wave function in
momentum space in Eq. (3.26) can be expressed also in the form [80]

〈p|ψ〉 = −i
∫ ∞

−∞
dt′ 〈ψV(t′)|V(x) |φ0(t′)〉 . (3.27)

As the SFA neglects the effect of the atomic potential on the final state, the SFA gives
an accurate prediction when the atomic potential is short ranged. For this reason,
we will model tunnel-ionization with a zero-range potential in the following. The
nonrelativistic tunneling scheme for this case is visulized in Fig. 3.4(a). The barrier
has a triangular shape which simplifies the analytical treatment of the tunneling
dynamics.

3.5.1. Nonrelativistic case

Let us start our analysis with the nonrelativistic consideration when the Hamiltonian
for an atom in a laser field is given by Eq. (3.23) with

H0 =
p2

2
+ V (0)(x) , (3.28)

HI = x ·E(t) , (3.29)
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where V (0)(x) is the zero-range atomic potential. In SFA the ionized part of the wave
function far away after the laser field has been turned off reads [89]

〈p|ψ〉 = −iN
∫ ∞

−∞
dt e−iS̃ (p,t) , (3.30)

where

S̃ (p, t) = −κ2t/2 −
∫ t

dt′ q2/2 (3.31)

is the contracted action, q = p +A/c is the kinetic momentum, A = −c
∫ t
E dt′,

N ≡ 〈q|V (0) |φ(0)〉 = const, and |φ(0)〉 eiκ2t/2 is the bound state of the zero-range
potential. The time integral in Eq. (3.30) can be calculated via the saddle point
approximation (SPA). The saddle point equation

˙̃S (p, ts) = q(ts)2 + κ2 = 0 (3.32)

yields the kinetic momentum q(ts) = iκ at the saddle point time ts. Then, the wave
function in momentum space reads in the quasi-static limit

〈p|ψ〉 = −iN
√

2π

|E(ts)|
√

p2
⊥ + κ2

exp
[
− (p2

⊥ + κ2)3/2

3|E(ts)|
]

(3.33)

for the vector potentialA = cE0 sin(ωt)/ωx̂ and with |E(ts)| = E0

√
1 − (px/(E0/ω))2

and p⊥ =
√

p2
y + p2

z . From expression (3.33) it follows that the density of the ionized
wave function is maximal at p⊥ = 0 for any value of px. The coordinate space wave
function

〈x|ψ〉 = −i
N

(2π)3/2

∫ ∞

−∞
dt

∫
d3 p exp

[
ix · p − iS̃ (p, t)

]
(3.34)

is obtained by a Fourier transform of Eq. (3.30). From the SPA it follows that the
main contribution to the integral over p in Eq. (3.34) originates from momenta near
the momentum which fulfills the saddle point condition x − ∂pS̃ (p, t) = 0. The latter
defines the trajectories x = x(p, t) which contribute to the transition probability with
amplitudes depending on p. For the most probable final momentum p0 = 0, the
trajectory which starts at the tunneling entry at time ts is given by

x(t) = ∂pS̃ (p0, t) =

∫ t

ts

dt′
A(t′)

c
. (3.35)

The line integral in Eq. (3.35) is along a path connecting the complex time ts with the
real time t. The complex saddle point time ts can be determined by solving q(ts) = iκ
for ts. The corresponding kinetic momentum is

q(t) =
A(t)

c
. (3.36)

In Fig. 3.8 the complex trajectory (3.35) and the complex kinetic momentum (3.36)
along the tunneling direction are shown. The spatial coordinate is real under the
barrier as well as behind the barrier, whereas the kinetic momentum is imaginary
during tunneling and becomes real when leaving the barrier, which corresponds to
the time Re[ts]. The tunneling exit coordinate is xe = xe(Re[ts]) = Ip/E0 which
is consistent with the intuitive tunneling picture. The momentum in the tunneling
direction is q(ts) = iκ when tunneling starts, whereas it is q(Re[ts]) = 0 at the tunnel
exit.
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Figure 3.8. – Coordinate (a) and momentum (b) along the electric field direction of the
complex SFA trajectory for tunnel-ionization from a zero-range potential.
During the under-the-barrier motion the momentum is imaginary whereas
the coordinate is real. Tunneling finishes when the kinetic momentum
becomes real.

3.5.2. Relativistic case

Our fully relativistic consideration is based on the Dirac Hamiltonian with a zero-
range atomic potential

H = cα · (p +A/c) − φ + βc2 + V (0)(x) (3.37)

where α and β are standard Dirac matrices [90] and the Göppert-Mayer gauge (3.7)
is employed. The ionized part of the momentum wave function in SFA yields

〈p|ψ〉 = −i
∫ ∞

−∞
dt

∫
d3xψV(x, t)γ0V (0)(x) φ(0)(x, t) . (3.38)

Here φ(0)(x, t) = e−iε0tϕ(0)(x)v(0)± is the ground state of the zero-range potential
with the ground state spinor v(0)± and ε0 = c2 − Ip; ψV(x, t) = NVu±eiS is the
relativistic Volkov wave function in the Göppert-Mayer gauge for a free electron
in a laser field, which is obtained from the Volkov wave function in the velocity
gauge [88] with further gauge transformation via the gauge function χ = −x ·A/c,
A(η) ≡ − c

ω

∫ η
E(η′)dη′. Furthermore, NV is the normalization constant,

S = −εt +

(
p +

A

c

)
· x − 1

cΛ

∫ η (
p ·A +

A2

2c

)
dη′ (3.39)

is the quasiclassical action and

u± =

(
1 +

ω

2c2Λ
(1 +α · k̂)α ·A

)
u0± (3.40)

with Λ = pµkµ = ω(ε/c2 − p · k̂/c), pµ = (ε/c,p), and the free particle spinor u0±.
After averaging over the spin of the initial electron as well as over the spin of the
ionized electron the wave function of the ionized electron reads

〈p|ψ〉 = −i
NV(2π)3/2

2ω

∫ ∞

−∞
dη e−iS̃

∑
s,s′
〈qd, s′|V (0)(x) |ϕ0, s〉 . (3.41)
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Figure 3.9. – The momentum distribution of the ionized electron: (a) in infinity at
the detector; (b) at the tunnel exit, depending on the tunnel exit time te.
The maximum tunneling probability occurs at pz = Ip/(3c). The applied
parameters are κ = 90, E0/Ea = 1/30 and ω = 10.

Here, a coordinate transformation (t,x)→ (η,x) is employed and

S̃ =
1

2Λ

(
−κ2η −

∫ η

qd
2dη′

)
(3.42)

is the contracted action with the field-dressed electron momentum in the laser field

qd = p +
A

c
− k̂(ε − ε0)

c
. (3.43)

For a zero-range potential the inner product 〈qd, s′|V (0)(x) |ϕ0, s〉 is only η dependent.
Further, the η-integral in Eq. (3.41) can be calculated using SPA and the saddle point
equation yields qd2(ηs) = −κ2 as in the nonrelativistic regime [45, 91]. Then, the
wave function of the ionized electron in momentum space yields

〈p|ψ〉 = −iN(ηs)

√
2πΛ

ω |E(ηs)|
√

qd
2
⊥ + κ2

exp
[
−ω(qd

2
⊥ + κ2)3/2

3Λ |E(ηs)|
]

(3.44)

for the vector potentialA = cE0 sin(η)/ωx̂ with the laser’s propagation vector k̂ = ẑ,
where

|E(ηs)| = E0

√
1 − (px/(E0/ω))2 , (3.45)

qd⊥ =

√
p2

y +

(
pz − ε − ε0

c

)2
, (3.46)

N(ηs) =
NV(2π)3/2

2ω

∑
s,s′
〈qd, s′|V (0)(x) |ϕ0, s〉 . (3.47)

The relativistic momentum distribution of the ionized electron of Eq. (3.44) differs
qualitatively from the nonrelativistic one. In the nonrelativistic case the maximum of
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the distribution is at p⊥ = 0 for any px. In the relativistic case, however, the momen-
tum distribution has a local maxima along the parabola which can be approximated
as

pz ≈
Ip

3c

(
1 +

Ip

18c2

)
+

p2
x

2c

1 +
Ip

3c2 +
2I2

p

27c4

 + O
 I2

p

c4

 , (3.48)

see Fig. 3.9(a). The global maximum of the tunneling probability is located at
pz = Ip/(3c), while in the nonrelativistic case it is at pz = 0. This shift of the
maximum is connected with the first step of the ionization, the tunneling, whereas the
parabolic wings are shaped in the second step, they are connected with the continuum
dynamics. These wings are located around pz = Up/c with ponderomotive potential
Up = E2

0/(4ω
2).

The momentum distribution at the tunnel exit can be calculated via back propaga-
tion of the final momentum space wave function (3.44). Thus, the wave function at
the tunnel exit is given by

〈p|ψ(te)〉 =

∫
d3 p′ 〈p|U(te, t f ) |p′〉 〈p′|ψ(t f )〉 ≈

∫
d3 p′ 〈p|UV(te, t f ) |p′〉 〈p′|ψ(t f )〉

(3.49)
with the tunnel exit time te = Re[ts] and final time t f where the interaction is turned off,
hence the Volkov wave function reduces to the free particle wave function. Because
ω k̂ · x � c holds at the tunnel exit, the exact Volkov propagator

〈x|UV(t, t′) |x′〉 =

∫
d3 p ψV(t,x)ψ†V(t′,x′) (3.50)

can be simplified by expanding the phase dependent functions around ωte, which
yields

UV(te, t f ) =

∫
d3 p exp

(
iϕ(te, t f )

)
|pe〉 〈p| (3.51)

with the exit momentum and the phase

pe = p +
A(ωte)

c
+ k̂

ω

c2Λ
(p +

A(ωte)
2c

) ·A(ωte) , (3.52)

ϕ(te, t f ) = ε(t f − te) +
1

cΛ

∫ ωte

dη
(
p +

A(η)
2c

)
·A(η) , (3.53)

respectively. As a result, the momentum space wave function at the tunnel exit te

reads in terms of the final wave function 〈p′|ψ(t f )〉

〈p|ψ(te)〉 = eiϕ(te,t f ) 〈p′|ψ(t f )〉 (3.54)

with

p′ =

(
−Ax(ωte)

c
, py, pz +

Ax(ωte)2ω

2c3Λ

)
. (3.55)

The transversal momentum distribution at the tunnel exit can be calculated via
replacing the momentum in the wave function Eq. (3.44) with Eq. (3.55), which
can be seen in Fig. 3.9(b). The comparison of Figs. 3.9(a) and (b) indicates that the
relativistic shift of the peak of the transverse momentum distribution at the tunnel
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exit pz = Ip/(3c) is maintained in the final momentum distribution. The parabola can
for example be calculated from classical trajectories. The kinetic momentum at the
exit is connected with the final momenta via

qx(ηs) = px +
A(ηs)

c
= 0 ,

qz(ηs) = pz +
ω

c2Λ

(
pxA(ηs) +

A(ηs)2

2c

)
=

Ip

3c
(3.56)

and the relation

pz =
Ip

3c
+
ωp2

x

2cΛ
(3.57)

follows.

We investigate the trajectory of the electron and its momentum during the tunneling
in the relativistic regime. The coordinate wave function can be obtained via a Fourier
transform of momentum space wave function (3.41). Then, the stationary phase
condition gives the quasiclassical trajectories at the most probable momentum given
by Eq. (3.48). The results are plotted in Fig. 3.10. It shows that in the relativistic
regime the most probable trajectory is the trajectory where the electron enters the
barrier with the transversal momentum −2Ip/(3c) and reaches the exit with Ip/(3c).
This is in accordance with our intuitive discussion in Sec. 3.4. For the most probable
momentum, the trajectory starts at the real axis, obtains complex values during
tunneling and has to return to the real axis after tunneling as shown in Fig. 3.10(a).

The shift of the electron’s momentum distribution along the laser’s propagation
direction in the relativistic regime could be measurable by detecting the final momen-
tum distribution of the ion [92]. The ionized electron acquires momentum along the
laser’s propagation direction in the laser field because of the absorbed momentum
of laser photons. However, part of the momentum of laser photons is transferred to
the ion. The energy conservation law provides a relationship between the number of
absorbed photons n and the electron momentum pe

nω − Ip + c2 ≈ εe , (3.58)

where ω is the laser frequency, Ip the ionization potential and εe = c
√

p2
e + c2 the

energy of the electron. The kinetic energy of the ionic core can be neglected due
to the large mass of the ion. Additionally, the momentum conservation law gives
information on the sharing of the absorbed photon momentum between the ion and
the photoelectron nω/c0

0

 =

pe z + p0 z

pe x + p0 x

pe y + p0 y

 . (3.59)

In the nonrelativistic tunneling regime of ionization in the linearly polarized laser
field, the photoelectron’s most probable momentum is pe = 0, when nω = Ip and the
ion carries out a momentum p0 z = Ip/c. In the relativistic regime of interaction the
most probable value of the photoelectron’s momentum is not vanishing but equals to
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Figure 3.10. – Comparison of the nonrelativistic (blue) and relativistic (black) complex
SFA trajectories: (a) coordinates and (b) momentum components. The
dashed and the solid lines correspond to the under-the-barrier motion and
the motion after the tunneling, respectively. In the relativistic regime, the
trajectory enters the tunneling barrier at (0, 0), it is complex under the
barrier and becomes real again when it leaves the tunneling barrier. The
trajectory enters the barrier with the transversal momentum −2Ip/(3c)
and leaves the barrier with Ip/(3c). The applied parameters are κ = 90,
E0/Ea = 1/30.

pe z ≈ Ip/3c in the case of linear polarization. In this case the momentum conservation
will provide the ion momentum p0 z ≈ 2Ip/3c. In [92, 93] the momentum sharing
between ion and electron during tunnel-ionization in a strong circularly polarized
laser field is investigated. Their result supports the simple-man model prediction. It
is shown that the total momentum of the absorbed photons, that is Ip/c, is transferred
to the ion and not to the ionized electron. The difference with respect to our result
may be explained by the focal averaging as well as by the fact that our parameters
are situated in the pure tunneling regime whereas the references deal with ionization
at the transition to over-the-barrier ionization. The momentum shift of the ionized
electrons at the detector that we describe is a genuine feature of the relativistic
tunneling dynamics.
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Figure 3.11. – The ionization momentum amplitude for px = 0 vs. the observation
time t. The inset shows the momentum amplitude for large times, which
coincides with the ionization amplitude. The applied parameters are
E0/Ea = 1/30 and κ = 1.

3.5.3. Tunneling formation time

The physical interpretation of the Keldysh time as the ionization formation time
given in Sec. III B can be readily clarified within the SFA formalism. In the SFA,
the momentum wave function in the case of a zero-range atomic potential at some
intermediate time is given by

〈px|ψ(t)〉 = −i
∫ t

−∞
dt′ exp[−iS̃ (t, t′)] 〈q(t′)|HI(t′)|φ0〉 , (3.60)

where 〈q(t′)|HI(t′)|φ0〉 is the pre-exponential factor that slowly varies with time and
the quasiclassical action S̃ (t, t′) is given either by Eq. (3.31) for the nonrelativistic
case, or by Eq. (3.42) for the relativistic case.

A numerical integration of Eq. (3.60) for a monochromatic laser field in the
nonrelativistic regime is shown on Fig. 3.11. The value of the momentum amplitude
starts with zero at early times and then varies on a time scale that is of the order of
the Keldysh time. Thus, the Keldysh time is the typical time scale for the formation
of the moment components of the ionized wave function, or in short, the formation
time of the ionization. For large times, the momentum amplitude stabilizes on
some positive value, which can be identified as the ionization amplitude of the
specific momentum component, see inset in Fig. 3.11. Considering nonrelativistic
or relativistic ionization from a Coulomb potential will not change the qualitative
behaviour of the time evolution of the ionization amplitude shown in Fig. 3.11.
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3.6. Conclusion

We have carried out an investigation of the relativistic regime of tunnel-ionization
with an emphasis on the role of the under-the-barrier dynamics. In the quasistatic
limit, the potential barrier of relativistic tunneling can be defined in a gauge invariant
manner by means of an analysis of the physical energy operator. In contrast to the
nonrelativistic case, relativistic tunnel-ionization in the quasistatic limit is modeled
as tunneling through a potential barrier in an additional magnetic field. Moreover,
the latter problem is shown to reduce to one-dimensional tunneling with a coordinate
dependent energy.

Later on, we have calculated the momentum distribution of the ionized electron
wave packet at the tunnel exit using the SFA. We showed that the Lorentz force due
to the magnetic field during the under-the-barrier motion induces a momentum shift
of the electron in the laser’s propagation direction.



4. Spin dynamics in
tunnel-ionization

4.1. Introduction

In the previous chapter we have discussed the relativistic features of tunnel-ionization.
However, we have neglected the spin dynamics and hence the spin features of tunnel-
ionization. In the present chapter we investigate the spin effects in the tunneling
regime as a further relativistic feature of tunnel-ionization. Thus, this chapter can be
considered as a continuing chapter of the previous one. Although we have already
used the techniques of strong field approximation (SFA) in the previous chapter, its
formal development will be discussed in the present chapter.

The spin dynamics in electromagnetic waves and the spin resolved calculations
of light matter interactions have attracted great interest in theoretical physics for a
long time. Particularly, there are considerable works on laser assisted Mott [94–96]
and Møller scattering [97], free electron motion in a strong laser field [98,99] and the
Kapitza-Dirac effect [100]. The spin resolved production rates have been calculated
for the process of electron-position pair production in strong laser fields [101–103].
Spin effects have been shown in the relativistic laser-driven bound electron dynamics
[104–107]. The spin dynamics in nonsequential double ionization of helium has been
considered in [108, 109].

In the nonrelativistic as well as in the relativistic regimes, an analytical treatment
of strong field ionization and hence of tunnel-ionization can be employed by using
the SFA [50–53]. As a pioneering work on the spin effect of ionization, the spin
asymmetries have been investigated in [110] using the standard technique of SFA.
However, the standard SFA approximates the final state with the Volkov state via
neglecting the Coulomb potential on the continuum state and it further neglects
the laser field on the bound state dynamics. Although the former seems to be
legitimate, the latter approximation may fail for the spin resolved calculation of
ionization rates [111]. This standard method can be modified and improved via
employing a different partition of the Hamiltonian within the SFA formalism [54, 55],
which enables us to take into account the effect of the laser field on the bound state
dynamics [111].

For the generic problem of spin dynamics in tunnel-ionization we investigate the
spin asymmetries in relativistic tunneling ionization with standard SFA in different
gauges. Furthermore, we compare the results of the standard SFA with the results
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that we obtained within the framework of improved SFA. On this purposes, we first
develop the SFA in terms of a different partitions of the Hamiltonian in Sec. 4.2. Later,
in Sec. 4.3, the spin asymmetries for a circularly polarized laser field are investigated
in the velocity gauge as well as in the length gauge with standard SFA. The results are
obtained for the most interesting case where the quantization axis is aligned with the
laser’s propagation direction. Finally, in Sec. 4.4, the same calculations are repeated
in the improved SFA which we call it dressed SFA.

Atomic units (a. u.) are used throughout this chapter and the results can be partly
found in [89, 91, 111].

4.2. Strong field approximation (SFA)

The S-Matrix treatment for strong field ionization can be calculated using the strong
field approximation (SFA). The S-Matrix element for transition from the initial state
|ψi(ti)〉 to the final state |ψ f (t f )〉 can be written as

S i→ f = lim
t f→∞
ti→−∞

〈ψ f (t f )|U(t f , ti) |ψi(ti)〉 (4.1)

where the evolution operator U(t, t′) is given by the differential equation

i∂tU(t, t′) = H(t)U(t, t′) (4.2)

with the Hamiltonian H(t) which governs the corresponding dynamics.

The Hamiltonian can be split up as

H = Hi(t) + Vi(t) , (4.3)
= H f (t) + V f (t) (4.4)

with certain initial and final partitions [54, 55], where the associated time evolution
operators satisfy

i∂tUi , f (t, t′) = Hi , f (t)Ui , f (t, t′) . (4.5)

The time evolution operator (4.2), then, can be written for the initial partitions (4.3)
as

U(t f , ti) = Ui(t f , ti) − i
∫ t f

ti
dt U(t f , t)Vi(t)Ui(t, ti) . (4.6)

If the integral equation is solved iteratively as

U(t f , ti) = Ui(t f , ti) − i
∫ t f

ti
dt Ui(t f , t)Vi(t)Ui(t, ti) + · · · (4.7)

one ends up with the usual perturbation theory. Moreover, the time evolution operator
can also be solved via the final partitions (4.4) as

U(t f , ti) = U f (t f , ti) − i
∫ t f

ti
dt U(t f , t)V f (t)U f (t, ti) (4.8)
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whose iterative solution yields

U(t f , ti) = U f (t f , ti) − i
∫ t f

ti
dt U f (t f , t)V f (t)U f (t, ti) + · · · . (4.9)

In fact, one can further combine two different expansions via replacing the inte-
grand U(t f , t) in Eq. (4.6) with the iterative solution (4.9). The result reads

U(t f , ti) = Ui(t f , ti) − i
∫ t f

ti
dt U f (t f , t)Vi(t)Ui(t, ti) (4.10)

+ (−i)2
∫ t f

ti
dt

∫ t f

t
dt′U f (t f , t′)V f (t′)U f (t′, t)Vi(t)Ui(t, ti) + · · ·

The first integral in Eq. (4.10) is known as the strong field approximation for the time
evolution operator. Then, the transition matrix in the SFA reads

Mi→ f = (S − 1)i→ f = −i
∫ ∞

−∞
dt 〈ψ f (t)|Vi(t) |ψi(t)〉 (4.11)

where we have used

|ψi(t)〉 = Ui(t, ti) |ψi(ti)〉 , (4.12)
|ψ f (t)〉 = U f (t, t f ) |ψ f (t f )〉 . (4.13)

If we compare the result of the SFA (4.11) with the exact expression (4.6), it is
seen that the main approximation of the SFA is to neglect the influence of the final
potential V f (t) on the exact final state.

The transition matrix (4.11) can further be written as

Mi→ f = −i
∫ ∞

−∞
dt 〈ψ f (t)|H − H + Vi(t) |ψi(t)〉 , (4.14)

= −
∫ ∞

−∞
dt ∂t 〈ψ f (t)|ψi(t)〉 − i

∫ ∞

−∞
dt 〈ψ f (t)|V f (t) |ψi(t)〉 , (4.15)

= −i
∫ ∞

−∞
dt 〈ψ f (t)|V f (t) |ψi(t)〉 , (4.16)

where in the second line we have used

i∂t |ψi , f (t)〉 = Hi , f (t) |ψi , f (t)〉 (4.17)

and in the last line we used the fact that the interaction vanishes at t → ±∞. The
result (4.16) can also be obtained via first plugging the iterative solution (4.7) into
Eq. (4.8) and then taking the hermitian conjugate of the outcome.

In this chapter we investigate the spin dynamics in the tunneling regime γ � 1
in the standard SFA as well as in the modified SFA. The relativistic strong field
ionization can be governed by the relativistic Hamiltonian

H = cα · p + c2β + Va(r) +α ·A − φ (4.18)
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with the binding Coulomb potential Va(r) = −κ/r. The spin dynamics in the tunneling
regime can be investigated via the probabilities of the spin-flip S F, the spin-flip
asymmetry A and the ensemble averaged asymmetry parameter 〈A〉, which can be
defined in terms of the differential ionization rate |Mi→ f |2 as

S F =
2|M+→−|2

T
, (4.19)

A =
|M+→−|2 − |M−→+|2

T
, (4.20)

〈A〉 =
|M+→+|2 + |M−→+|2 − |M+→−|2 − |M−→−|2

T
(4.21)

with the total rate T = |M+→+|2 + |M−→+|2 + |M+→−|2 + |M−→−|2 [110], where + (−)
represents the spin-up (down) state.

Before concluding the derivation of the SFA, we should underline that the SFA
cannot yield gauge invariant results. Although the perturbative expansion of the
time evolution operator obeys the gauge invariance at each order, the strong field
expansion breaks down the gauge symmetry in general.

4.3. Standard SFA

In the standard SFA which is also known as the Keldysh-Faisal-Reiss (KFR) theory
[50–53], the full Hamiltonian (4.18) is partitioned as

Hi = cα · p + c2β − κ
r
, Vi = α ·A − φ, (4.22)

H f = cα · p + c2β +α ·A − φ, V f = −κ
r
. (4.23)

Here H f and Hi correspond to the Volkov Hamiltonian and the usual Coulomb
potential Hamiltonian, respectively. As a consequence, the SFA transition matrix
becomes

Ms→s′ = −i
∫ ∞

−∞
dt 〈ψs′

V (t)|α ·A(t) − φ(t) |φs
0(t)〉 (4.24)

where |ψs′
V (t)〉 and |φs

0(t)〉 are the Volkov state and the bound state, respectively.
Inserting the resolution of identity, the above transition matrix in the position space
reads

Ms→s′ = −i
∫ ∞

−∞
dt

∫
d3xψ

s′

V (x, t)γµAµ(t)φs
0(x, t) . (4.25)

Equivalently, using Eq. (4.16), the transition matrix could also be written as

Ms→s′ = iκ
∫ ∞

−∞
dt

∫
d3xψ

s′

V (x, t)γ0 1
r
φs

0(x, t) . (4.26)

At this stage, it should be noted that the result is clearly gauge dependent because
both the Volkov state and the interaction Hamiltonian depend on the choice of the
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gauge. In the strong field literature, there are two common gauges that are used for
the calculation of the transition amplitude; the length gauge (the Göppert-Mayer
gauge in the existence of a magnetic field) and the velocity gauge. Hence, we will
obtain the corresponding results in both gauges and we will compare them. It should
be noted here that although the SFA generates gauge dependent results, the difference
between the qualitative behavior of the results is not significant.

Furthermore, the standard SFA does not take into account the effect of the elec-
tromagnetic field on the bound state, which has a drastic consequence for the spin
dynamics in tunnel-ionization as we will discuss now.

The Volkov wave function in the velocity gauge Aµ = (0,A(η)) with η = k · x can
be written as

ψs
V(x, t) =

√
c2

ε
exp (iS )

(
1 − 1

2c k · p/k /A
)

vs . (4.27)

Here the classical action of a charge particle interacting with a plane wave reads

S = −p · x +
1

c k · p
∫ η

dη′
(
p · A +

1
2c

A2
)

(4.28)

and the free particle spinor is

v± =

√
ε + c2

2c2


ς±

c
ε + c2p · σ ς±

 (4.29)

with the two component nonrelativistic spinors ς± [90]. The Volkov solution in the
Göppert-Mayer gauge

Aµ = − c
ω
x ·E kµ (4.30)

can be obtained via the gauge function

χ = −A · x . (4.31)

In our physical configuration we investigate tunnel-ionization of the ground state
of a H-like ion. The ground state is given by

φs
0(x, t) =

(2κ)γ+1/2

√
4π

√
1 + γ

2Γ(1 + 2γ)
exp (−κr − iε0t) rγ−1us (4.32)

with the ground state spinor

u± =


ς±

ic(1 − γ)
κ

r̂ · σ ς±

 . (4.33)

Here ε0 = c2− Ip is the ground state energy with the ionization potential Ip = c2(1−γ),
γ =

√
1 − κ2/c2, and the charge of the ion κ [57].
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After plugging the wave functions (4.27) and (4.32) into the transition ma-
trix (4.16), we obtain

Ms→s′ = N
∫ ∞

−∞
dt

∫
d3x exp

(
−iS − iσ

A · x
c

+ iIpt − κr
)

rγ−2Ps→s′ , (4.34)

where the constant N is given by

N = iκ

√
c2

ε

(2κ)γ+1/2

√
4π

√
1 + γ

2Γ(1 + 2γ)
(4.35)

and the relevant spin transition matrix is

Ps→s′ = v†s′

(
1 − 1

2c k · p/k /A
)†

us . (4.36)

Furthermore, we have introduced the parameter σ in Eq. (4.34) in order to select the
gauge at any step such that σ = 0 denotes the velocity gauge, while σ = 1 is for the
length gauge.

If we employ the coordinate transformation (t,x)→ (η,x) and if we further define

Φ(η) =
ε0 − ε
ω

η +
1

c k · p
∫ η

dη′
(
p · A +

1
2c

A2
)
, (4.37)

q(η) = p + σ
A(η)

c
+ k̂

ε0 − ε
c

, (4.38)

the transition matrix (4.34) yields

Ms→s′ =
N
ω

∫ ∞

−∞
dη exp (−iΦ(η))

∫
d3x exp (−iq(η) · x − κr) rγ−2Ps→s′ . (4.39)

The spin transition matrix Ps→s′ can be written as

Ps→s′ = v†s′

(
1 +

ω

2c2 k · pα ·A
(
1 +α · k̂

))
us . (4.40)

When the space integral in Eq. (4.39) acts on the spin transition matrix Ps→s′ ,
the relevant position dependency comes from the ground state spinor us. As a
consequence, let us define the following space integrals

I0(η) =

∫
d3x exp (−iq(η) · x − κr) rγ−2 , (4.41)

σ · I1(η) =

∫
d3x exp (−iq(η) · x − κr) rγ−2r̂ · σ . (4.42)

These integrals can be calculated via the plane wave expansion [112]

e−iq·x = 4π
∞∑

l=0

l∑
m=−l

(−i)l jl(qr)Ylm(Ωq)Y∗lm(Ωr) (4.43)
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where Ylm and jl are the Spherical Harmonics and the Spherical Bessel functions,
respectively. The results yield

I0(η) = 4πΥ0(η) , (4.44)
σ · I1(η) = −i4πσ · q̂Υ1(η) (4.45)

with
Υn(η) =

∫ ∞

0
dr rγ exp (−κr) jn(qr) . (4.46)

Therefore, with the defined integrals, the strong field transition matrix reads

Ms→s′ =
4πN
ω

∫ ∞

−∞
dη exp (−iΦ(η))Υ0(η) v†s′

(
1 +

ω

2c2 k · pα ·A
(
1 +α · k̂

))
ũs(η) .

(4.47)
with

ũs(η) =


ς±

c(1 − γ)
κ

Υ1(η)
Υ0(η)

σ · q̂ ς±

 . (4.48)

The η integral in the above expression can be evaluated via the saddle point
approximation. Then, the transition matrix (4.47) becomes

Ms→s′ =
4πN
ω

√
2π

iΦ̈(ηs)
exp (−iΦ(ηs))Υ0(ηs)v

†
s′

(
1 +

ω

2c2 k · pα ·A
(
1 +α · k̂

))
ũs(ηs)

(4.49)
where the saddle phase ηs is given by

dΦ(η)
dη

∣∣∣∣∣
η=ηs

= 0 . (4.50)

At this stage we should discuss the saddle point conditions. The saddle point
implies that q(σ = 1) = iκ in an arbitrary gauge for the tunneling regime. This
further indicates that in the length gauge the integration (4.46) has a singular point
at the saddle. Therefore, in order to use the saddle point approximation in the
length gauge one has to use a modified saddle point method for integrals with a
singularity [113] (see also the discussion in [114]). However, since our aim is to
evaluate the corresponding ratios, i.e., spin-flip S F, spin-flip asymmetry A and the
ensemble averaged asymmetry parameter 〈A〉, the ordinary saddle point method is
sufficient to deduce the result. In fact the ration for the length gauge in the limit of
η→ ηs yields

lim
η→ηs

Υ1(η)
Υ0(η)

= i . (4.51)

Finally, the relevant terms in the transition matrix (4.49) reduce to

Ms→s′ = v†s′

(
1 +

ω

2c2 k · pα ·A(ηs)
(
1 +α · k̂

))
ũs(ηs) (4.52)
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Figure 4.1. – Any quantization axis can be aligned with two angles.

where we have omitted the common factors for the ratios.

In the present work, we investigate the spin dynamics in the tunneling regime
for a right circularly polarized electromagnetic plane wave, though the result can
be generalized to an arbitrary polarization. The most general vector potential for an
arbitrary polarized plane propagating along z direction can be written as

A =
√

2 A0

(
cos(

ξ

2
) cos(η)x̂ − sin(

ξ

2
) sin(η)ŷ

)
(4.53)

with the polarization parameter ξ such that ξ = 0 corresponds to the linear polarization
while ξ = ±π/2 correspond to the right and left circular polarization, respectively.
The right circularly polarized plane wave

A = A0 (cos(η)x̂ − sin(η)ŷ) , (4.54)

then, yields the following fields

E = E0 (sin(η)x̂ + cos(η)ŷ) , (4.55)
B = B0 (− cos(η)x̂ + sin(η)ŷ) (4.56)

with E0 = B0 = ω A0/c.

The spin quantization axis, on the other hand, can be aligned with any preferred
direction, which enables us to investigate different configurations for the spin dynam-
ics. The corresponding spinors of both the Volkov state and the ground state can be
written down for an arbitrary quantization axis using a rotation matrix [115]. Let
z-axis be the initial quantization axis (propagating direction of the laser). For a given
state | j ,m〉 where j and m label corresponding angular momentum of the state and
its component along the quantization axis, respectively, the rotated state is defined as

D(R) | j ,m〉 =
∑
m′

D( j)
m ,m′(R) | j ,m′〉 (4.57)
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Figure 4.2. – Comparison of the nonrelativistic results of the standard SFA performed
in the velocity gauge (solid red lines) and in the length gauge (black
dashed lines) for (a) the ensemble averaged asymmetry parameter 〈A〉,
(b) the spin-flip S F, and (c) the spin-flip asymmetry A as a function of
the ionization angle θ. The applied parameters are κ = 1, ω = 0.05 and
E0/Ea = 1/(2

√
2).

with the spin- j representation of the rotation matrix D( j)
m ,m′(R) [115]. Both the Volkov

state and the ground state of a H-like ion can be rotated via the j = 1/2 representation
as

vR
s =

∑
s′

D( j=1/2)
s ,s′ (R)vs′ , (4.58)

uR
s =

∑
s′

D( j=1/2)
s ,s′ (R)us′ . (4.59)

Then, the spinor along an arbitrary quantization axis n̂, see Fig. 4.1, can be evaluated
with the following j = 1/2 representation of the rotation matrix

D( j=1/2)
s ,s′ (R) =

 e−iζ1/2 cos(ζ2/2) eiζ1/2 sin(ζ2/2)

−e−iζ1/2 sin(ζ2/2) eiζ1/2 cos(ζ2/2)

 . (4.60)

Putting all together, the standard SFA transition matrix for a generic quantization
axis reads

MR
s→s′ = vR

s′
†
(
1 +

ω

2c2 k · pα ·A
(
1 +α · k̂

))
ũR

s (ηs) (4.61)

or in terms of the transition matrix for the initial alignment M j→k, Eq. (4.61) yields

MR
i→ f = D∗k , f M j→k Di , j . (4.62)
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Figure 4.3. – Comparison of the relativistic results of the standard SFA performed in the
velocity gauge (solid red lines) and in the length gauge (black dashed lines)
for (a) the ensemble averaged asymmetry parameter 〈A〉, (b) the spin-flip
S F, and (c) the spin-flip asymmetry A as a function of the ionization angle
θ. The applied parameters are κ = 90, ω = 0.05 and E0/Ea = 1/(2

√
2).

We consider the most interesting case where the quantization axis is perpendicular
to the plane of the magnetic field, it is aligned with the laser’s propagation direction.
The corresponding angles can, then, be defined

ζ1 = 0 , ζ2 = 0 . (4.63)

We first start with the nonrelativistic regime where we set κ = 1. The ensemble
averaged asymmetry parameter 〈A〉, the spin-flip S F, and the spin-flip asymmetry A
as a function of the ionization angle

θ = − arctan
(

px

pz

)
(4.64)

with py = 0, are shown in Fig. 4.2. In the figures, the solid red lines correspond
to the result performed in the velocity gauge, while the dashed black lines are for
the length gauge. It is clearly seen that both gauges agree with each other for
nonrelativistic parameters. However, with the increasing atomic number which
characterizes signature of the relativistic regime, the two results start to deviate.
The difference between two gauges becomes larger as κ increases. The Fig. 4.3
demonstrates the extreme case where we have set κ = 90.
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4.4. Dressed SFA

In the previous section we have calculated the spin asymmetries using the standard
SFA. Nevertheless, the standard SFA does not take into account the electromagnetic
field on the bound state. In this section we will also consider the influence of the
laser field on the bound state dynamics via employing a different partition of the
Hamiltonian. Consider the full Hamiltonian (4.18) in the length gauge

H = cα · p + c2β − κ
r
−E · r α · k̂ +E · r , (4.65)

we can partition it as

Hi = cα · p + c2β − κ
r
−E · r α · k̂, Vi = E · r, (4.66)

H f = cα · p + c2β −E · r α · k̂ +E · r, V f = −κ
r

(4.67)

where the last term in Hi gives rise to the Zeeman splitting and the spin precession in
the bound state [111].

The transition matrix, then, reads

Ms→s′ = −i
∫ ∞

−∞
dt

∫
d3xΨ s′

V
†
(x, t)E · rϕs

0(x, t) (4.68)

or via Eq. (4.16) it can be written as

Ms→s′ = iκ
∫ ∞

−∞
dt

∫
d3xΨ s′

V
†
(x, t)

1
r
ϕs

0(x, t) . (4.69)

Here Ψ s
V(x, t) is the Volkov wave function in the length gauge, while ϕs

0(x, t) is the
ground state solution of the Coulomb potential including the Zeeman term −E ·r α·k̂.

The dressed bound state ϕs
0(x, t) can be solved exactly within the long wave

approximation. Since the typical length scale for the bound dynamics is much
smaller than the wavelength of the plane wave [91], which is called the long wave
approximation, one can neglect the spatial dependency of the field and approximate
η ∼ ω t for the bound state dynamics. Based on the following ansatz

|ϕs
0(t)〉 ≡ C s s′(t) |φs′

0 (t)〉 (4.70)

with the ground state solution of H-like ion |φs′
0 (t)〉 defined in Eq. (4.32) and the

superposing coefficients C s s′(t), we can split up the Hamiltonian Hi in Eq. (4.66) as

H0 = cα · p + c2β − κ
r
, (4.71)

HI = −E · r α · k̂ . (4.72)

The Schrödinger equation

i∂t |ϕs
0(t)〉 = (H0 + HI) |ϕs

0(t)〉 , (4.73)
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then, reduces to
i Ċ s s′′(t) = C s s′(t) 〈φs′′

0 |HI |φs′
0 〉 . (4.74)

First observe that the matrix element vanishes for the same spin states, i.e., 〈φs
0|HI |φs

0〉 =

0. Next, calculating the relevant matrix elements, we end up with the following solu-
tions

C+ +(t) =

√
Γ + 1

2Γ
exp

( iωt
2

(1 − Γ)
)
, (4.75a)

C+−(t) = −
√
Γ − 1

2Γ
exp

( iωt
2

(−1 − Γ)
)
, (4.75b)

C−+(t) =

√
Γ − 1

2Γ
exp

( iωt
2

(1 + Γ)
)
, (4.75c)

C−−(t) =

√
Γ + 1

2Γ
exp

( iωt
2

(−1 + Γ)
)
, (4.75d)

where

Γ =

√
4E2

0(1 + 2γ)2/(6c)2 + ω2

ω
. (4.76)

Finally, the approximated ground state is given by the following replacement

C s s′(t)→ C s s′(η/ω) . (4.77)

Similar to the calculation performed in the previous Sec. 4.3, employing the
coordinate transformation (t,x) → (η,x), the transition matrix in the dressed SFA
reads

MD
s→s′ =

N
ω

∫ ∞

−∞
dη exp (−iΦ(η))

∫
d3x exp (−iq(η) · x − κr) rγ−2PD

s→s′ (4.78)

where the spin transition matrix PD
s→s′ is defined as

PD
s→s′ = v†s′

(
1 +

ω

2c2 k · pα ·A
(
1 +α · k̂

))
C s s′′us′′ . (4.79)

Evaluation of the space integral can be performed identical to the calculation in
the standard SFA in the length gauge. The saddle point integration, on the other hand,
needs a further consideration due to presence of phase dependent exponential terms
given in Eq. (4.75). However in the tunneling regime, since

Γ ω

ε0 − ε � 1 , (4.80)

the saddle point is still determined by Φ̇(ηs) = 0.

After the space integral and the saddle point integration and further omitting
common factors we end up with

MD
s→s′ = v†s′

(
1 +

ω

2c2 k · pα ·A(ηs)
(
1 +α · k̂

))
˜̃us(ηs) . (4.81)
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Figure 4.4. – Comparison between nonrelativistic results of the standard SFA and the
dressed SFA (blue dotted lines) for (a) the ensemble averaged asymmetry
parameter 〈A〉, (b) the spin-flip S F, and (c) the spin-flip asymmetry A as
a function of the ionization angle θ. The applied parameters are κ = 1,
ω = 0.05 and E0/Ea = 1/(2

√
2).

Here the Fourier transform of the ground state spinors read

˜̃u+(ηs) = 4π

√
Γ + 1

2Γ
exp (iηs(1 − Γ)/2)


ς+

ic(1 − γ)
κ

q̂ · σ ς+


− 4π

√
Γ − 1

2Γ
exp (iηs(−1 − Γ)/2)


ς−

ic(1 − γ)
κ

q̂ · σ ς−

 , (4.82)

˜̃u−(ηs) = 4π

√
Γ − 1

2Γ
exp (iηs(1 + Γ)/2)


ς+

ic(1 − γ)
κ

q̂ · σ ς+


+ 4π

√
Γ + 1

2Γ
exp (iηs(−1 + Γ)/2)


ς−

ic(1 − γ)
κ

q̂ · σ ς−

 , (4.83)

where we have used the limit (4.51). Finally, one can extend the result for an arbitrary
quantization axis via the rotation matrix and ends up with Eq. (4.62).

Now we can compare the results obtained in the dressed SFA with figures 4.2 and
4.3 for case of that the quantization axis is parallel to the propagation direction of the
right circular polarized laser. For nonrelativistic parameters the comparison is shown
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Figure 4.5. – Comparison between relativistic results of the standard SFA and the
dressed SFA (blue dotted lines) for (a) the ensemble averaged asymmetry
parameter 〈A〉, (b) the spin-flip S F, and (c) the spin-flip asymmetry A as
a function of the ionization angle θ. The applied parameters are κ = 90,
ω = 0.05 and E0/Ea = 1/(2

√
2).

in Fig. 4.4. It can be seen that the asymmetries are suppressed in the dressed SFA for
nonrelativistic parameters. However, when we approach the relativistic regime, the
previously suppressed results of the dressed SFA reach the same order of the results
obtained in the standard SFA. For instance, the highly relativistic regime is plotted in
Fig. (4.5). Another observation based on the graphs is that the qualitative behavior of
the asymmetries obtained in the standard SFA in the length gauge and the dressed
SFA is similar.

4.5. Conclusion

As a conclusion we have investigated the spin dynamics in relativistic tunnel-ionization
using the spin asymmetries. After developing the SFA on the base of different parti-
tions of the Hamiltonian, we calculated the differential ionization rate for the spin
resolved ionization for H-like ions in the standard SFA. A comparison of velocity
and length gauge is illustrated for a circular polarized electromagnetic plane wave,
where we set the quantization axis along the laser’s propagation direction. Later, the
result was extended to the dressed SFA. In the nonrelativistic regime, asymmetries
are suppressed by the dressed SFA in comparison to the results obtained in the stan-
dard SFA. However, it is shown that the qualitative and quantitative behavior of the
results of the standard SFA in the length gauge and the dressed SFA is similar for the
relativistic parameters.



5. The relativistic propagator via
the path-dependent vector
potential

5.1. Introduction

For those potentials which vary much more slowly than the corresponding wave
function, the wave function can be calculated using Wentzel-Kramers-Brilluin (WKB)
approximation [70]. In a sense, we are in the quasiclassical regime where the
de Broglie wavelength of the particle varies only slightly over the distance that
characterizes the problem [86]. In fact, if the Lagrangian of a point particle is
a quadratic function of the coordinate and the velocity, then the corresponding
exact propagator coincides with the quasiclassical propagator, i.e., the classical path
dominates the Feynman path integral [116–119]. It is interesting that the exact
Volkov propagator, the propagator of a charged particle interacting with a plane
electromagnetic wave, also coincides with the quasiclassical limit [88, 120–123],
though the Lagrangian is not quadratic. Furthermore, there are many cases where
the quasiclassical propagator is a good approximation. In this chapter, we show that
the calculation of the quasiclassical propagator can be significantly simplified by
employing the path dependent formulation of the vector potential within the proper
time formalism.

The propagator of a particle in an electromagnetic field can be calculated via the
Feynman path integral [116, 117], where the propagator is expressed in terms of
the action (2.64). When additionally the path-dependent formulation of the gauge
representation is used, the interaction part of the action of the Feynman path integral
can be expressed in terms of the electromagnetic flux through the area between the
arbitrary Feynman path and the gauge path which generates the associated path-
dependent vector potential [69]. The significant simplification of the quasiclassical
propagator expression verifies when one specifies the gauge path to coincide with the
classical trajectory. In fact, as we will show here, the electromagnetic flux vanishes in
this case and, consequently, the interaction part of the action vanishes in the Feynman
path integral.

The straightforward calculation of the relativistic propagator via the Feynman
path integral is cumbersome due to the presence of the particle’s infinitesimal proper
time [116–119]. However, one can overcome this difficulty via introducing a fifth
parameter to the theory which is known as the proper time formalism [16,124–129]. In
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this method one defines an effective Lagrangian associated to the super-Hamiltonian
H (P, X). The latter is defined by quantum mechanical equation. Any quantum
mechanical equation can be written in the form of

H (P, X) |ψ〉 = 0 (5.1)

with the four-momentum operator P and four-position operator X. Then, the rela-
tivistic propagator derived by the standard rules of the nonrelativistic Feynman path
integral for an effective system governed by effective Lagrangian.

In this chapter, we unite two powerful methods for the calculation of the propagator
of a relativistic charged particle interacting with an external electromagnetic field.
In particular, the path-dependent formulation of gauge theory is incorporated in the
proper time formalism for propagators. This allows us to obtain simple expressions
of the quasiclassical propagators for a constant and uniform electromagnetic field, for
an arbitrary plane wave and for an arbitrary plane wave combined with an arbitrary
constant and uniform electromagnetic field. In all these cases, the quasiclassical
propagator coincides with the exact result.

The structure of the chapter is the following: In Sec. 5.2, the proper time formalism
for calculation of propagators is introduced, which incorporates the path-dependent
gauge formalism. The explicit expressions for the propagators of a spinless charged
particle interacting with a constant and uniform electromagnetic field, with a plane
wave and with a plane wave combined with a constant and uniform electromagnetic
field, respectively, are derived in Sec. 5.3. The conclusion is given in Sec. 5.4.

The CGS units are used throughout the chapter and the operators and the corre-
sponding eigenvalues label with the uppercase letters and lowercase, respectively.
Further, the chapter is based on [69, 130].

5.2. The Proper Time Formalism

The calculation of the relativistic propagator is, in general, tedious due to the presence
of the particle’s infinitesimal proper time. Nevertheless, this can be overcome via the
proper time (eigentime, fifth parameter or einbein) formalism [16, 124–129].

The proper time formalism is based on the fact that any quantum mechanical
equation can be written in the form

H (P, X) |ψ〉 = 0 (5.2)

with a certain operator H(P, X), so called super-Hamiltonian. For instance, in the
case of Klein-Gordon equation the super-Hamiltonian is

H =

(
P − e

c
A(PG, X)

)2
− m2c2 . (5.3)
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The four-momentum operator Pµ and the four-position operator Xµ in Eq. (5.2) satisfy
the eigenvalue equations

Pµ |p〉 = pµ |p〉 , (5.4)
Xµ |x〉 = xµ |x〉 , (5.5)

respectively, with pµ = (E/c,p) and xµ = (c t,x). Further, the assumption of the
canonical commutation relation [Xµ, Pν] = i~ gµν implies the relations 〈x| Pµ |ψ〉 =

i~∂µψ(x), 〈x| Xµ |ψ〉 = xµψ(x),

〈x|p〉 =
1

(2π~)2 exp
[
− ix · p
~

]
, (5.6)

〈x|x′〉 = δ4(x − x′) =

∫
d4 p

(2π~)4 exp
[
− ip · (x − x′)

~

]
. (5.7)

In position space, the fundamental equation (5.2) yields

〈x| H (P, X) |ψ〉 = H (i~ ∂, x) ψ(x) = 0 . (5.8)

Then, the corresponding Green’s function satisfies

H (i~ ∂, x) G(x, x′) = δ4(x − x′) . (5.9)

Hence, the Green’s function can be identified as

G(x, x′) = H−1 (i~ ∂, x) δ4(x − x′) (5.10)

which can be written as

G(x, x′) = 〈x| H−1 (P, X) |x′〉 = 〈x| 1
H (P, X) + iε

|x′〉 (5.11)

with the Feynman iε prescription. Furthermore, Eq. (5.11) may also be defined as

G(x, x′) = − i
~
α

∫ ∞

0
dτ 〈x| exp

[ i
~
H (P, X)α τ

]
|x′〉 e−ετ (5.12)

with an auxiliary field α (einbein field). Here the parameter α is introduced in order
to fix the right classical equations of motion of the corresponding super-Hamiltonian
H(P, X) [128, 129].

Let us define the integrand in Eq. (5.12) as a Feynman kernel

KF(x, x′; τ) = 〈x| exp
[ i
~
H (P, X)α τ

]
|x′〉 , (5.13)

with the effective Hamiltonian αH and “time” parameter τ, which determines the
propagator

G(x, x′) = − i
~
α

∫ ∞

0
dτKF(x, x′; τ)e−ετ . (5.14)

The Feynman kernel can be expressed using a path integral

KF(x, x′; τ) =

∫
D(PF) exp

(
− i
~

S (PF)
)
, (5.15)
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with a action S (PF), which is derived by introducing an effective Lagrangian via a
Legendre transformation

L = p · ẋ − αH (5.16)

with pµ = ∂L/∂ẋµ. Then,

KF(x, x′; τ) =

∫
D[y] exp

(
− i
~

∫ τ

0
dσL(y, ẏ)

)
, (5.17)

where the parametrized path y(σ) satisfies the boundary conditions yµ(0) = x′µ,
y(τ) = xµ.

In the present work, we restrict ourselves to spinless charged particles, although
the results can be easily generalized to Fermionic particles. Then using Eq. (5.16) for
Eq. (5.3), the corresponding effective Lagrangian is given by

L =
1

4α
ẏ2 +

e
c

ẏA(PG, y) + αm2c2 . (5.18)

The Euler-Lagrange equation for the effective Lagrangian provides the effective
equation of motion

1
2α

ÿ(σ)c
µ =

e
c

Fµ
ν(yc)ẏ(σ)c

ν (5.19)

which coincides with the classical equation of motion in the given external electro-
magnetic field for α = 1/(2m) as long as the path is parametrized with the particle’s
proper time τ [1].

In chapter 2 we have proposed a convenient gauge choice, the classical path gauge.
This gauge fixing removes the interaction term from the action, see Sec. 2.3. As a
consequence, in the quasiclassical approximation using this gauge, see Eq. (2.67),
the Feynman kernel becomes

KF(x, x′) =

√(
1

2πi~

)4

det
(
∂2S c

∂xµ∂x′ν

)
exp

(
− i
~

m2c2ατ − i
~

∫ τ

0
dσ

ẏ2
c

4α

)
. (5.20)

Finally, the Green function is obtained via Eq. (5.14).

Eq. (5.20) is the main result of this chapter, which shows how to derive the
fundamental Feynman kernel for the quasiclassical Green’s function in a simple way,
when the classical equation of motion Eq. (5.19) is integrable for the given field.

5.3. Examples

In this section we will apply the developed formalism to some important cases where
the quasiclassical propagator coincides with the exact propagator.
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5.3.1. Constant and uniform electromagnetic (EM) field

Let us first consider a spinless charged particle interacting with a constant and
uniform electromagnetic field Fµν. Since the Lagrangian for a constant and uniform
electromagnetic field (5.18) is a quadratic function of y and ẏ, the quasiclassical
formula gives the exact result.

The Euler-Lagrange equation derived from the effective Lagrangian (5.18) gives
the effective Lorentz force law

ÿ(σ)c
µ = λFµ

ν ẏ(σ)c
ν (5.21)

with λ = 2αe/c and the field strength tensor

Fµ
ν =


0 Ex Ey Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

 . (5.22)

Then, the classical path with boundary conditions y(0)c
µ = x′µ, y(τ)c

µ = xµ yields

y(σ)c
µ =

(
eλFσ − 1
eλFτ − 1

)µ
ν

(x − x′)ν + x′µ . (5.23)

Here it should be understood that(
eλFσ − 1
eλFτ − 1

)µ
ν

=
σ

τ
gµν +

λ
(
σ2 − στ

)
2τ

Fµ
ν +

λ2
(
2σ3 − 3σ2τ + στ2

)
12τ

Fµ
αFα

ν + · · ·
(5.24)

As a result, in the classical path gauge, the Feynman kernel (5.20) reads

KF(x, x′; τ) =

√
det

[
−λ2F2τ

8α sinh−2(λFτ
2 )

]
(2πi~)4

× exp
(
− i

4α~
(x − x′)

(
λ2F2τ

4
sinh−2(

λFτ
2

)
)

(x − x′) − im2c2ατ

~

)
.

(5.25)

The kernel in an arbitrary gauge, then, is given by the transformation

KF(x, x′; τ)→ exp
(
− ie
~c
ΦEM(x)

)
KF(x, x′; τ) exp

( ie
~c
ΦEM(x′)

)
(5.26)

where the electromagnetic flux ΦEM is calculated for the area bounded by the loop
∂Σ = Pc − PG with desired gauge PG. Equivalently, the kernel in an arbitrary gauge
can also be found as follows. The vector potential for the classical path can be
expressed as

Aµ(Pc, x) = −1
λ

∫ τ

0
dσ

∂2yc
ν

∂σ2

∂ycν

∂xµ
(5.27)
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where we have used Eq. (5.19) in Eq. (2.35). Then, the desired gauge is obtained via
the corresponding gauge function χ.

The constant and uniform crossed field with equal amplitude

E = E0 x̂ , B = E0 ŷ , (5.28)

is an important spacial case of a constant field, corresponding to the limit ω→ 0 in
the domain of interest with the frequency of the electromagnetic field. Since the third
power of the field strength matrix (5.22) vanishes for the above fields, the Feynman
kernel in the classical path gauge yields

KF(x, x′; τ)FS =
1

(4π~ατ)2 exp
(
− i
~

(x − x′)2

4ατ
+

iλ2τ

48 ~α
(x − x′)F2(x − x′) − im2c2ατ

~

)
(5.29)

which corresponds to the vector potential in the classical path gauge

Aµ(Pc, x) = −1
2

(
F +

λτ

3
F2

)
µν

(x − x′)ν . (5.30)

For comparison, in the Fock-Schwinger gauge, the vector potential

Aµ(PFS , x) = −1
2

Fµν(x − x′)ν (5.31)

is obtained via the gauge function

χ =
λτ

12
(x − x′)µF2

µν(x − x′)ν . (5.32)

In terms of the gauge paths, the above gauge function corresponds to the flux through
the area bounded by the classical path (5.23) and the Fock-Schwinger path which is a
straight line

PFS : yµ(σ) = σxµ + (1 − σ)x′µ (5.33)

with the boundary conditions yµ(1) = xµ, yµ(0) = x′µ.

5.3.2. Plane wave: Volkov propagator

Another case where the quasiclassical approximation yields the exact result is the
interaction of a charged particle with a plane electromagnetic wave [88, 120–123].
The corresponding propagator for this case is called Volkov propagator. The field
strength tensor Fµν of a linearly polarized plane wave can be written as

Fµν(φ) = εµν f ′(φ) (5.34)

where the phase of the wave is defined as φ = nx and the antisymmetric tensor εµν =

nµεν − nνεµ with the propagation and polarization directions nµ and εµ, respectively.
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The classical trajectory Pc via Eq. (5.19) for a plane wave reads:

nyc(σ) =
σ

τ
n(x − x′) + nx′ , (5.35)

εyc(σ) =
σ

τ
ε(x − x′) + εx′ +

λ

τ
(τg1(σ) − σg1(τ)) , (5.36)

εyc(σ) =
σ

τ
ε(x − x′) + εx′ , (5.37)

nyc(σ) =
λ (τg1(σ) − σg1(τ))

n(x − x′)τ
(
ε(x − x′) − λ g1(τ)

)
+

λ2

2 n(x − x′)
(τg2(σ) − σg2(τ)) +

σ

τ
n(x − x′) + nx′ , (5.38)

where
gm(σ) =

∫ σ

0
f (nyc)mdσ′ (5.39)

and the basis nµ, εµ, εµ, nµ is introduced such that it satisfies n2 = n2
= εn = εn =

εn = εn = εε = 0, ε2 = ε2
= −1, and nn = 1.

Furthermore, the classical action in the classical path gauge can be written in terms
of the new basis as

S c = m2c2ατ +

∫ τ

0
dσ

1
4α

(
2nẏc nẏc − εẏ2

c − εẏ2
c

)
(5.40)

where we have used the fact that any four-vector can be expanded in terms of the new
basis as

Aµ = nA nµ + nA nµ − εA εµ − εA εµ . (5.41)

Consequently, the Feynman kernel in the classical path gauge yields

KF(x, x′; τ) =
1

(4π~ατ)2

× exp
− i
~

(x − x′)2

4ατ
− im2c2ατ

~
− iλ2

4~ατ

(∫ τ

0
dσ f (nyc)

)2

+
iλ2

4~α

∫ τ

0
dσ f (nyc)2

 .
(5.42)

The result is more compact due to the absence of the interaction term (see for instance
Eq. (31) of [122]). For a constant and uniform plane wave one naturally recovers
Eq. (5.29) and in the absence of the field one obtains the relativistic propagator for a
free particle (see Eq. (19.28) of [119]). Furthermore, the Volkov propagator can be
written in an arbitrary gauge via the transformation (5.26).

5.3.3. Plane wave combined with a constant and uniform EM
field

In the last example we will obtain the relativistic propagator for a charged particle
interacting with an arbitrary plane wave combined with a constant and uniform
electromagnetic field.
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The associated field strength tensor can be written as

Fµν(φ) = F0
µν + f µν(φ) (5.43)

where F0
µν and f µν(φ) are the field strength tensors of the constant and uniform

electromagnetic field (5.22) and the plane wave (5.34), respectively.

Before calculating the classical action, we note that, since the action is a Lorentz
scalar, one can calculate it in an arbitrary frame of reference. In fact, in an arbi-
trary reference frame, there are two fundamental Lorentz invariants which can be
constructed using field strength tensor

FµνFµν = 2 (B2 −E2) , (5.44)
GµνFµν = −4E ·B (5.45)

with the dual of the field strength tensor Gµν = εµναβFαβ/2. Hence, for a constant and
uniform electromagnetic field a reference frame exists, where the magnetic field and
the electric field can be parallel to each other 1. Furthermore, the direction of the
parallel magnetic and electric fields can be chosen along the propagation direction of
the plane wave [131]. As a consequence, the field strength tensor for a constant and
uniform electromagnetic field F0

µν can be written as

F0
µν = E0 (nµnν − nνnµ) − iB0 (εµ+ε

ν
− − εν+εµ−) , (5.46)

where E0 and B0 are the electric field and magnetic field in the aforementioned frame,
respectively, and the new basis ε±µ = 1√

2
(ε ± iε)µ satisfy ε+ε− = −1, ε2

± = 0. Moreover,
one can recover the field strength tensor as

E0 =
1
2

√√
I2
1 + I2

2 − I1 , (5.47)

B0 = −1
2

√√
I2
1 + I2

2 + I1 (5.48)

with I1 = F0µνF0
µν and I2 = G0µνF0

µν.

Then in the frame of reference where the electric field and the magnetic field of
Fµν

0 and the propagation direction of f µν(φ) are all parallel to each other, the equations
of motion are governed by

nÿc(σ) = −λE0 nẏc(σ) , (5.49)

nÿc(σ) = λE0 nẏc(σ) +
λεẏc ḟ

nẏc
, (5.50)

ε+ÿc(σ) = −iλB0 ε+ẏc(σ) +
λ ḟ√

2
, (5.51)

ε−ÿc(σ) = iλB0 ε−ẏc(σ) +
λ ḟ√

2
. (5.52)

1It should be noted here that this particular frame cannot exist for a crossed field. Consequently, the
constant and uniform field strength tensor Fµν

0 cannot include a constant and uniform crossed field
for this analysis.
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As a consequence, the Feynman kernel becomes

KF(x, x′) =

√(
1

2πi~

)4

det
(
∂2S c

∂xµ∂x′ν

)
exp

(
− i
~

S c

)
, (5.53a)

where the classical action reads

S c = m2c2ατ +

∫ τ

0
dσ

1
2α

(nẏc nẏc − ε+ẏc ε−ẏc) (5.53b)

with the following solutions of the equations of motion

nyc(σ) = nx′ +
e−λE0σ − 1
e−λE0τ − 1

n(x − x′) , (5.53c)

ε+yc(σ) = ε+x′ +
e−iλB0σ − 1
e−iλB0τ − 1

[
ε+(x − x′) (5.53d)

− i√
2B0

(
eiλB0(σ−τ) − 1

1 − eiλB0σ

∫ σ

0
(1 − eiλB0ρ) ḟ dρ +

∫ σ

τ

(1 − eiλB0(ρ−τ)) ḟ dρ
)]
,

ε−yc(σ) = ε−x′ +
eiλB0σ − 1
eiλB0τ − 1

[
ε−(x − x′) (5.53e)

+
i√
2B0

(
e−iλB0(σ−τ) − 1

1 − e−iλB0σ

∫ σ

0
(1 − e−iλB0ρ) ḟ dρ +

∫ σ

τ

(1 − e−iλB0(ρ−τ)) ḟ dρ
)]
,

nyc(σ) = nx′ +
eλE0σ − 1
eλE0τ − 1

[
n(x − x′) (5.53f)

− 1
E0

(
eλE0τ − eλE0σ

eλE0σ − 1

∫ σ

0
(1 − e−λE0 ρ)

εẏc ḟ
nẏc

dρ +

∫ σ

τ

(1 − e−λE0(ρ−τ))
εẏc ḟ
nẏc

dρ
)]
.

Although the closed expression for the Feynman kernel is very cumbersome and
is not shown here, it could be derived by straightforward calculation when the
plane wave function f ′(φ) and the components of the field strength tensor of the
constant and uniform electromagnetic field F0

µν are known. Moreover, the form
of the Feynman kernel given by Eq. (5.53) provides considerable convenience for
numerical calculations. Simpler expressions for the propagator can be obtained in the
limit E0 → 0 (B0 → 0), corresponding to a plane wave combined with a constant and
uniform magnetic (electric) field along the propagation direction of the plane wave.

5.4. Conclusion

We have applied the path-dependent formulation of gauge theory within the Feynman
path integral formalism of quantum mechanics for a Klein-Gordon particle in an
external electromagnetic field. The applied formalism points to a specific gauge
when a significant simplification of the expression for quasiclassical propagators is
obtained. The simplification is due to the fact that the interaction part of the classical
action vanishes in this gauge. In the path-dependent formulation the optimal gauge
corresponds to the choice of the classical path in the definition of the vector potential.
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Specifically, we have calculated the quasiclassical propagators of a scalar charged
particle interacting with an arbitrary constant and uniform electromagnetic field, an
arbitrary plane wave and, finally, an arbitrary plane wave combined with an arbitrary
constant and uniform electromagnetic field. It is shown that in the classical path
gauge the expressions for the quasiclassical propagators, which yield the exact result
for above configurations, are more compact.



6. Tunneling time delay

6.1. Introduction

A particular controversial aspect of tunneling and hence tunnel-ionization is the issue
of whether the motion of a particle under a barrier is instantaneous or not. The
question of whether the tunneling phenomenon contradicts special theory of relativity
has been raised [132]. The main difficulty in the definition of the tunneling time delay
is due to the lack of a well-defined time operator in quantum mechanics.

In quantum mechanics time, as it stands, is a parameter and not an observable.
Furthermore, as it is discussed by Pauli [34, 35], it cannot be upgraded to an operator
which is conjugate to the Hamiltonian. In essence, this is due to the fact that the time
can take any value, but the spectrum of allowed energy levels of a given Hamiltonian
cannot span the entire real line. Namely, either the Hamiltonian is bounded from
below or it may take discrete values due to bound states. Nevertheless, a time
delay problem can be formulated in quantum mechanics. It is possible to answer in a
reasonable way within quantum mechanics the question on how much time an electron
spends in a specified space region during its motion and, in particular, to determine
the time delay for the tunneling through a potential barrier [33, 36–40, 43, 133–135].

For the generic problem of the tunneling time delay [33] different definitions
have been proposed and the discussion of their relevance still continues [36–43, 136].
Recent interest to this problem has been renewed by a unique opportunity offered
by attosecond angular streaking techniques for measuring the tunneling time delay
during laser-induced tunnel-ionization [137–141]. Here we investigate the tunneling
time problem for ionization in nonrelativistic as well as in relativistic settings [45].

Within the quasiclassical description, using either the Wentzel-Kramers-Brillouin
(WKB) approximation or a path integration in Euclidean space-time along the imagi-
nary time axis [142–146], the under-the-barrier motion is instantaneous. Thus, we
address the time delay problem by going beyond the quasiclassical description [45].

In the present work, we adopt the Eisenbud-Wigner-Smith definition of the time
delay (here refered to as the Wigner time delay.) [36–38] which, pictorially, allows to
follow the peak of the tunneled wave packet. In this chapter, we find conditions when
a non-vanishing Wigner time delay under the barrier for tunnel-ionization is expected
to be measurable by attosecond angular streaking techniques [45].

The structure of this chapter is the following. In Sec. 6.2 the tunneling time delay
and its corresponding quasiclassical counterpart are investigated and in Sec. 6.3 it is
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applied to tunnel-ionization. Later, in Sec. 6.4, we obtain the Wigner trajectory from
the phase of the fixed energy propagator . Our conclusions and further remarks are
given in Sec. 6.5.

In the reminder of this chapter, we consider tunnel-ionization by a monochromatic
plane wave in the infrared (ω = 0.05 a.u.) and we use two extreme but feasible
sets of parameters, which ensure that we are in the tunneling regime, viz. κ = 90
and E0/Ea = 1/30 for the deep-tunneling regime and E0/Ea = 1/17 for the near-
threshold-tunneling regime. Formal definitions of these two regimes will be given in
Sec. 6.4.3.

Atomic units (a. u.) are used throughout this chapter. The results and the discussion
can be partly found in [31, 45] and most of the figures are taken from [45].

6.2. General aspects of the Wigner time delay

The definition of the Wigner time delay is based on the trajectory of the peak of the
electron wave packet, as long as the wave packet has a unique peak. Let us illustrate
it considering the motion of the following wave packet in position space

〈x|ψ(t)〉 =
1√
2π

∫ ∞

−∞
dp exp (ipx) 〈p|ψ(t)〉 , (6.1)

assuming that the wave packet in momentum space 〈p|ψ(t)〉 is centered around p0

and is expressed in the form

〈p|ψ(t)〉 = g(p) exp (−iφ(p, t)) (6.2)

with real functions g and φ. The peak of the wave packet in position space at a
moment t

〈x|ψ(t)〉 =
1√
2π

∫ ∞

−∞
dp exp (i (px − φ(p, t))) g(p) (6.3)

can be found in the limit ∆pg � φ′(p0), where ∆pg is the width of the density g, by
the stationary phase approximation, and is given by the stationary phase condition

∂

∂p
(px − φ(p, t))

∣∣∣∣∣
p0

= 0 ⇒ x =
∂φ(p, t)
∂p

∣∣∣∣∣
p0

. (6.4)

In the limit ∆pg � φ′(p0), the phase φ can be linearized, viz., φ(p) = φ(p0) +

φ′(p0)(p− p0) and the maximum of the wave-packet is shifted from 0 to φ′(p0) due to
the coordinate translation operator exp

[
ipφ′(p0)

]
. Therefore, in both cases the phase

derivative at p0 yields the coordinate of the maximum of the wave-packet. In fact,
this result is consistent with the expectation value of the position operator

〈x〉 = 〈ψ(t)| x |ψ(t)〉 =

∫ ∞

−∞
dp

(
ig(p)g(p)′ + g(p)2φ(p, t)′

)
. (6.5)

In the latter expression, the first term vanishes because the wave packet is initially
formed symmetrically around p0, while from the second term one obtains 〈x〉 ≈
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φ(p0, t)′, if the phase φ(p, t)′ is expanded around p0 and the third and higher-order
derivatives are neglected.

Similarly, the wave packet in position space can be expanded in energy eigenfunc-
tions with energy eigenvalues ε [147]

〈x|ψ(t)〉 =

∫ ∞

0
dε 〈x|ε〉 〈ε|ψ(t)〉 =

∫ ∞

0
dε f (x, ε) exp (iϕ(x, ε) − iε(t − t0)) , (6.6)

where f (x, ε) ≡ 〈ε|ψ(t0)〉 | 〈x|ε〉 | and 〈ε|ψ(t0)〉 is the energy distribution of the initial
wave packet at t = t0, which is symmetrically centered around ε0, and ϕ(x, ε) is the
phase of 〈x|ε〉, which is the steady-state solution. Analogously to the discussion of
the coordinate maximum, the condition

τ ≡ t − t0 =
∂ϕ(x, ε)
∂ε

∣∣∣∣∣
ε0

(6.7)

determines the moment when the wave packet is maximal at a given point with
coordinate x, i. e. , the Wigner trajectory. Eq. (6.7) indicates that the phase of the
steady state solution to the Schrödinger equation is sufficient to deduce the Wigner
trajectory. The difference between the Wigner trajectory and the classical trajectory,
no time interval is spent under the barrier and the trajectory obeys Newton’s law
outside the barrier1, at points far behind the barrier we call Wigner time delay [37]. In
the following we will apply the Wigner time delay formalism to some exactly solvable
basic systems under the dynamics of the Schrödinger equation with some potential
V(x). These examples will give us some hints for the analysis of the tunnel-ionization
process.

6.2.1. Square potential

As a first example we consider the Wigner time delay during the penetration of a
wave packet through a box potential

V(x) = V0 (θ(x) − θ(x − a)) (6.8)

with θ(x) denoting the Heaviside step function. The wave packet propagating to
the barrier and tunneling through it is constructed via superposing the steady-state
solutions with energy eigenvalues ε < V0,

〈x|ψ(t)〉 =

∫ V0

0
dε exp (−iε(t − t0) + iφ(x, ε)) g(x, ε) (6.9)

with g(x, ε) = 〈ε|ψ(t0)〉 |u(x, ε)|. Here 〈ε|ψ(t0)〉 is the initial wave packet centered
around ε0 < V0, |u(x, ε)| and φ(x, ε) are the amplitude and the phase of the steady-
state solution u(x, ε), respectively. We only consider the steady-state solution u(x, ε)

1In essence, it is the quasiclassical trajectory since it has a portion under the barrier.



76 Chapter 6. Tunneling time delay 6.2

for ε < V0 due to the assumption that the initial wave packet 〈ε|ψ(t0)〉 has a sharp
enough profile such that the integral

〈x|ψ(t)〉 =

∫ ∞

V0

dε exp (−iε(t − t0)) u(x, ε) 〈ε|ψ(t0)〉 (6.10)

vanishes.

Generally, the wave packet in Eq. (6.9) includes both transmitted and reflected
waves. To define the Wigner trajectory for the transmitted wave packet, we omit
the reflected wave packet from the barrier and utilize the steady-state solutions with
positive current

u+(x, ε) =


eik1 x x < 0
C1

(
e−k2 x + iek2 x

)
+ C2

(
e−k2 x − iek2 x

)
0 ≤ x ≤ a

Teik1 x x > a

(6.11)

with k1 =
√

2ε, k2 =
√

2V0 − 2ε, and the matching coefficients C1, C2 and T 2. The
Wigner trajectory for the transmitted wave can then be defined implicitly via

τ(x) =
∂ϕ+(x, ε)

∂ε

∣∣∣∣∣
ε=ε0

(6.12)

where ϕ+(x, ε) is the phase of u+(x, ε).

The Wigner trajectory for the outgoing wave packet defined in Eq. (6.12), is shown
in Fig. 6.1(a) and is compared with the classical trajectory. From the latter one can see
that the Wigner trajectory, which initially coincides with the classical one, deviates
during tunneling from the classical trajectory. In the quasiclassical limit κa � 1, the
Wigner time delay is τ = 1/2

√
(V0 − ε0)ε0, which is formed when the wave packet

enters and exits the barrier.

This simple example provides us the opportunity to compare Wigner’s approach
with the exact trajectory of the wave packet’s maximum which can be calculated via
Eq. (6.9). Let us choose the initial normalized wave packet in momentum space as
the following Gaussian

〈p|ψ(t0 = 0)〉 =
e−ix0(p−p0)(
2πδp2)1/4 exp

− (
p − p0

2δp

)2 , (6.13)

with initial position x0 and initial momentum p0 =
√

2ε0. The position x0 is assumed
to be far away from the barrier and the energy spread δε of the wave packed so small
that ε0 + δε < V0 with δε = p0δp. To be consistent with the tunnel-ionization case,
where the wave packet has a sharp energy, we assume that δp/p � 1. Then, the time
evolution of the wave packet becomes

〈x|ψ(t)〉 =

∫ ∞

0
dε

〈x|ε〉(
2πδp2)1/4 e

−iεt−ix0(
√

2ε−√2ε0)−
( √

2ε−√2ε0
2δp

)2

. (6.14)

2Note that the coefficients are matched by requiring continuity of the wave function u(x, ε), which
includes the reflected portion of the wave function rather than u+(x, ε). Furthermore, one can also
omit the reflected portion of the wave packet valid for the under-the-barrier motion by setting C2
to zero in Eq. (6.11). However it does not affect the Wigner time delay.



6.2 General aspects of the Wigner time delay 77

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x/xe

−15

−10

−5

0

5

10

15

20

τ(
x)
κ2

(a) classical
Wigner

1.00 1.05 1.10 1.15 1.20 1.25
x/xe

1

2

3

4

5

6

τ(
x)
κ2

(b) wave packet’s maximum
classical
Wigner

Figure 6.1. – (a) Comparison of the Wigner trajectory (6.12) (solid red line) and the
classical (dashed blue line) trajectory for tunneling through a square po-
tential barrier (6.8). The applied parameters are V0 = 2ε0, ε0 = Ip,
Ip = c2 −

√
c4 − c2κ2 with κ = 90 and a = 14/κ. (b) Close-up of (a) with

additionally showing the position of the wave packet’s maximum.

If we trace the maximum of the wave packet outside the barrier, we see that it overlaps
with Wigner trajectory defined in Eq. (6.12). The result can be seen in Fig. 6.1(b).

To investigate the role of the magnetic field in relativistic tunnel-ionization, we
modify the previous configuration by applying an additional static magnetic field
within the square potential. The vector potential which generates the magnetic field
B = −E0 (θ(x) − θ(x − a)) ŷ may be written as

A = E0 (x (θ(x) − θ(x − a)) + aθ(x − a)) ẑ . (6.15)

Then, the Hamiltonian for this field configuration is given by

H =
p2

x

2
+

[pz + Az(x)/c]2

2
+ V(x) . (6.16)

Since the canonical momentum pz is conserved, [pz,H] = 0, the energy eigenfunc-
tions have the form

〈x, z|ε, pz〉 =
u(x, pz, ε)√

2π
eipzz, (6.17)

and the motion along the x coordinate is separable[
−1

2
d2

dx2 +
(pz + Az(x)/c)2

2
+ V(x)

]
u(x, pz, ε) = ε u(x, pz, ε) . (6.18)
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Figure 6.2. – Tunneling through a square potential with an additional magnetic field with
E0 = κ3/30 and other parameters as in Fig. 6.1. Sub-figures (a) and (b)
compare the Wigner (red solid lines) and the classical (blue dashed lines)
trajectories along the x direction and in the x-z-plane, respectively.

The solution of Eq. (6.18) outside the barrier is given by

u(x, pz, ε) =

u1(x, pz, ε) = eik1 x + Re−ik1 x x < 0
u3(x, pz, ε) = Teik3 x x > a

(6.19)

with k1 =
√

2ε − p2
z , k3 =

√
2ε − (pz + aE0/c)2, and the reflection and transmission

coefficients are R and T , respectively. For the dynamics under the barrier (0 ≤ x ≤ a,
ε < V0) the Schrödinger equation[

−1
2

d2

dx2 +
(pz − xE0/c)2

2
+ V0

]
u2(x, pz, ε) = ε u2(x, pz, ε) (6.20)

has two linearly independent solutions, which can be expressed using the parabolic
cylinder function D [148] as

u2(x, pz, ε) = C1 D
−E0 + 2cV0 − 2cε

2E0
,

√
2(cpz + E0x)√

cE0


+ C2 D

−E0 − 2cV0 + 2cε
2E0

,
i
√

2(cpz + E0x)√
cE0

 . (6.21)

Here, the matching coefficients C1 and C2 can be found by using the continuity of the
wave function at the borders of the potential ( x = 0 and x = a). The wave packet
which has tunneled out of the potential barrier is

〈x, z|ψ(t)〉 =

∫ ∞

−∞
dpz

∫ V0

0
dε 〈x, z|ε, pz〉 〈ε, pz|ψ(t)〉 ,

=
1√
2π

∫ ∞

−∞
dpz

∫ V0

0
dε eizpz−iε(t−t0)+iφ+(x,pz,ε)g(x, pz, ε) , (6.22)

where g(x, pz, ε) = 〈ε, pz|ψ(t0)〉 |u(x, pz, ε)|, 〈ε, pz|ψ(t0)〉 is the initial wave packet
centered around pz0 and ε0, and φ+(x, pz, ε) is the phase of the outgoing part of
u(x, pz, ε).
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Figure 6.3. – Comparison of the Wigner trajectory (red solid line) and the classical
trajectory (blue dashed line) for tunneling through a linear potential barrier
(6.25) for V0 = 2ε0, ε0 = Ip, with the numerical parameters κ = 90, and
E0/Ea = 1/30.

Calculating the transition probability |T |2 as a function of pz, we find that the
maximum is reached at pz0 = −Ip/(2c) which equals the kinetic momentum at the
tunneling entry x = 0, qz(0) = −Ip/(2c). At the tunneling exit x = a the kinetic
momentum with maximal tunneling probability is qz(a) = pz0 + Az(a)/c = Ip/(2c).

As the phase now depends also on pz, Eq. (6.12) generalizes to

τ(x) =
∂ϕ+(x, pz, ε)

∂ε

∣∣∣∣∣
ε=ε0

. (6.23)

Thus, for each choice of pz, Eq. (6.23) defines a different trajectory and setting
pz = pz0 in Eq. (6.23) gives the most probable trajectory, which is shown in Fig. 6.2(b)
together with the classical one. Comparing Figs. 6.1(a) and 6.2(a) shows that the
presence of the magnetic field does not change the Wigner time delay.

In analogy to Eq. (6.4), one can also define the coordinate z as a function of x

z = − ∂φ+(x, pz, ε0)
∂pz

∣∣∣∣∣
pz=pz0

, (6.24)

which gives the most probable trajectory (path) in the x-z-plane as shown in Fig. 6.2(b)
together with the corresponding classical trajectory. Outside the barrier both the
Wigner and the classical trajectory nearly coincide; under the barrier, however, the
Wigner trajectory shows a clear spatial drift into the z-direction, that is perpendicular
to the tunneling direction. Nevertheless, this spatial drift is (in contrast to the Wigner
time delay) not observable on the detector at remote distances. This is intuitively
plausible, because the drift at the entry point to the barrier ∆zd(0) = qz(0)τ =

−(Ip/2c)τ is exactly compensated by the drift at the exit point ∆zd(a) = qz(a)τ =

(Ip/2c)τ.

6.2.2. Linear potential

As a second example, we consider tunneling through a linear potential barrier

V(x) = θ(x) (E0x + V0) . (6.25)
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The solution of the corresponding Schrödinger equation is given for the domain
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Figure 6.4. – (a) Comparison of the Wigner trajectory (red solid line) and the classical
trajectory (blue dashed line) for tunneling through the parabolic potential
barrier (6.27) for V0 = 2ε0, ε0 = Ip with the numerical parameters κ = 90,
and β = 1/30. (b) The coordinate z as a function of x for tunneling through
a parabolic potential barrier in the presence of a magnetic field.

x < 0 by
u1(x, ε) = eik1 x + Re−ik1 x (6.26a)

with k1 =
√

2ε and the reflection coefficient R. In the region x ≥ 0, the solution can
be written as

u2(x, ε) = T
(
Ai

(
2E0x + 2(V0 − ε)

(2E0)2/3

)
+ i Bi

(
2E0x + 2(V0 − ε)

(2E0)2/3

))
= T Ai

(
e−2πi/3 2E0x + 2(V0 − ε)

(2E0)2/3

)
, (6.26b)

where Ai and Bi are the Airy function of first and second kind, respectively. Under the
barrier, that is 0 ≤ x ≤ xe with the tunneling exit point xe = −ε0/E0, the wave function
(6.26b) is a superposition of reflected and transmitted portions. The transmission
coefficient T in (6.26b) is deduced from matching the wave functions at the border
x = 0. The phase of the total wave function (6.26) is used to calculate the Wigner
trajectory (6.7), which is compared in Fig. 6.3 with the classical one. This comparison
shows that shortly before the tunneling exit xe, a substantial time delay builds up,
which is reduced after tunneling. Finally, a non-vanishing Wigner time delay remains
which is detectable at a remote detector. This time delay is induced during entering
the barrier and equals in magnitude τ = 1/(2

√
(V0 − ε0)ε0).

6.2.3. Parabolic potential

As a last example we examine the Wigner time delay for tunneling through a parabolic
potential barrier

V(x) = θ(x)
(
−βκ4x2 + V0

)
, (6.27)

with a dimensionless parameter β. In this case, the exact solution for the region x ≥ 0
is given by

u2(x, ε) = T D
−1

2
− i(V0 − ε)√

2
√
βκ2

,−(−2)3/4xβ1/4κ

 , (6.28)



6.3 Time delay in tunnel-ionization 81

with the transmission coefficient T and D denoting parabolic cylinder functions [148].
The Wigner and the classical trajectories for tunneling through the parabolic potential
are compared in Fig. 6.4(a). Qualitatively, the Wigner time delay behaves similar as
for the case of a linear potential. In the barrier close to the exit a time delay is built
up, which is reduced after tunneling and eventually a small non-vanishing Wigner
time delay remains.

In analogy to Sec. 6.2.1 we add now to the parabolic potential (6.27) a static
magnetic field in the region x > 0 and investigate the spatial drift in the Wigner
time delay which is induced by the magnetic field. Introducing the vector potential
Az(x) = θ(x)E0x, this scenario can be described by the Hamiltonian

H =
p2

x

2
+

[pz + Az(x)/c]2

2
+ V(x) . (6.29)

The canonical momentum that maximizes the tunneling probability equals pz =

−0.15Ip/c. The coordinate z as a function of x is shown in Fig. 6.4(b) for this
canonical momentum. As in the case of a square potential with magnetic field, the
spatial shift between the classical and the Wigner trajectories is small.

6.3. Time delay in tunnel-ionization

The previous sections’ techniques can also be employed to analyze tunnel-ionization
in Hydrogenic ions as considered in Sec. 3.4. The fundamental difference between
the above one-dimensional model systems and tunnel-ionization in Hydrogenic ions
is that in the former cases there is a source that produces a positive current incident
on the tunneling barrier. In the latter case, however, a bound state tunnels through a
barrier and consequently the continuum wave function has to be matched with the
bound state wave function, instead of the incident and the reflected plane waves as in
the model systems. In the model systems of Sec. 6.2 the Wigner trajectory and the
classical trajectory coincide before they enter the tunneling barrier.

This, however, is no longer true for tunnel-ionization from bound states, which
can be explained by observing that some portion of the bound state resides always in
the barrier. In order to define a meaningful Wigner time delay, one has to match the
classical trajectory with the Wigner one at the entry point x0. As a consequence, the
Wigner trajectory for tunnel-ionization τTI(x) may be defined via the relation

τTI(x) = τ(x) − τ(x0) . (6.30)

Hence the corresponding Wigner time delay for tunnel-ionization is identified as

τW = τc(∞) − τTI(∞) (6.31)

with the classical trajectory τc(x). Since the coefficients that match the bound wave
function and the continuum wave function are position independent, the Wigner
trajectory τTI(x) for tunnel-ionization is solely determined by the phase of the wave
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Figure 6.5. – (a) The potential barrier (6.32) (red solid line) and its linear approximation
(6.34) (blue dashed line) in the deep-tunneling regime. The blue dotted
line indicates the energy level of the bound state with ε = −Ip. (b) The
Wigner trajectory (red solid line) and the classical trajectory (blue dashed
line) in the deep-tunneling regime for nonrelativistic tunnel-ionization
with κ = 90 and E0/Ea = 1/30. The vertical black line indicates the exit
coordinate.

function which is the solution of the corresponding Schrödinger equation for the
potential

V(x) = θ(x − x0)(xE0 − κ/x) (6.32)

and represents asymptotically a plane wave. Although there is no analytical solution
for this potential, approximate solutions can be found in limiting cases which we will
discuss in this section.

6.3.1. Nonrelativistic case

In the one-dimensional tunneling picture, the relevant Schrödinger equation is, within
the electric dipole approximation, is given by(

−1
2

d2

dx2 + xE0 − κ

|x|
)
ψ(x) = ε ψ(x) . (6.33)

When the tunneling potential is of sufficient height (deep-tunneling regime), the
potential barrier (6.32) can be approximated near the tunneling exit point xe by a
linear potential

V(x) = V(xe) + V ′(xe)(x − xe) , (6.34)

see Fig. 6.5(a). With this approximation the problem of tunnel-ionization in Hy-
drogenic ions resembles the case of a linear potential as discussed in Sec. 6.2.2.
Therefore, in the deep-tunneling regime, the solution of the Schrödinger equation is
given by the Airy function

ψ(x) = Ai
(
e−2πi/3−2xV ′(xe) − 2 (ε + V(xe) − xeV ′(xe))

22/3 (−V ′(xe))2/3

)
. (6.35)

Note, that the potentials considered in Sec. 6.2.2 and here differ in their positions,
heights, and slopes. The comparison between the Wigner trajectory and the classical
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Figure 6.6. – (a) The tunneling barrier (6.32) (red solid line), its linear approximation
(6.34) (blue dashed line), and the quadratic approximation (6.36) (black
dash-dotted line) in the near-threshold-tunneling regime. The blue dotted
line indicates the energy level of the bound state with ε = −Ip. (b) The
Wigner (red solid line) and the classical trajectories (blue dashed line) in
the near-threshold-tunneling regime for nonrelativistic tunnel-ionization
with κ = 90 and E0/Ea = 1/17. The vertical black line indicates the exit
coordinate.

trajectory are plotted in Fig. 6.5(b). In contrast to the linear potential case of Sec. 6.2.2
the Wigner trajectory catches up the classical one at far distance and consequently
the Wigner time delay vanishes.

When the electric field strength is increased, but the dynamics still remains in the
tunneling regime, the linear approximation (6.34) becomes invalid. We may call this
regime near-threshold-tunneling regime of ionization. In this regime the potential
may be approximated by including the next quadratic term

V(x) = V(xe) + V ′(xe)(x − xe) + V ′′(xe)
(x − xe)2

2
, (6.36)

see Fig. 6.6(a). As a consequence, the solution of the Schrödinger equation in
the near-threshold-tunneling regime can be expressed using the parabolic cylinder
function as

ψ(x) = D (a, b) (6.37a)

with

a = −
i
(
V ′(xe)2 −

(
2ε + 2V(xe) + i

√
V ′′(xe)

)
V ′′(xe)

)
2V ′′(xe)3/2 , (6.37b)

b =
(1 − i) (V ′(xe) + (x − xe)V ′′(xe))

V ′′(xe)3/4 . (6.37c)

A comparison of the Wigner and the classical trajectories in the near-threshold-
tunneling regime is shown in Fig. 6.6(b). A non-vanishing Wigner time delay exists
in this case due to the parabolic character of the potential barrier near the tunneling
exit xe.
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Figure 6.7. – Comparison of the Wigner (red solid line) and the classical trajectories
(blue dashed line) for tunnel-ionization taking into account leading effects
in 1/c (magnetic dipole effects): (a) for the deep-tunneling regime with
the most probable momentum at the exit qz(xe) = 0.28Ip/c, κ = 90
and E0/Ea = 1/30; (b) for the near-threshold-tunneling regime with
qz(xe) = 0.12Ip/c, κ = 90 and E0/Ea = 1/17. Corresponding classical and
Wigner trajectories z as a function of x are presented in (c) for parameters
of (b). The vertical black lines indicate the exit coordinate.

6.3.2. Magnetic dipole effects

When the laser’s magnetic field is taken into account, tunnel-ionization in Hydrogenic
systems can be described by a one-dimensional model if one introduces a position
dependent energy level inside the barrier as discussed in Sec. 3.4. In this one-
dimensional model the role of the curvature of the potential barrier and, therefore,
its approximations are the same as in the nonrelativistic case within the electric
dipole approximation. As for the square and the parabolic potentials with magnetic
field we calculate the Wigner time delay when the tunneling probability is maximal.
This happens at a certain non-vanishing momentum along the laser’s propagation
direction.

The leading term in 1/c is the magnetic dipole correction. Including the latter into
the Schrödinger equation in the electric dipole approximation yields[

−1
2

d2

dx2 +
(pz − xE0/c)2

2
+ xE0 − κ

|x|
]
ψ(x) = εψ(x) . (6.38)

As a consequence of the presence of the vector potential term, for both deep-tunneling
and near-threshold-tunneling regimes, the relevant solutions are given by parabolic
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cylinder functions. Since the quadratic approximation covers also the deep-tunneling
regime, in the former case the solution yields

ψ(x) = D (a, b) (6.39a)

with

a =

c
(
−cV ′′(xe)

√
c2V ′′(xe) + E2

0 − E2
0

√
E2

0/c
2 + V ′′(xe)

)
2
(
c2V ′′(xe) + E2

0

)3/2 (6.39b)

+
c3

(
V ′′(xe)

(
p2

z + 2V(xe) − 2ε
)
− V ′(xe)2

)
2
(
c2V ′′(xe) + E2

0

)3/2

+
c (−2cE0 pz (V ′(xe) − xeV ′′(xe)))

2
(
c2V ′′(xe) + E2

0

)3/2 +
c
(
E2

0

(
x2

eV ′′(xe) − 2 (xeV ′(xe) + ε) + 2V(xe)
))

2
(
c2V ′′(xe) + E2

0

)3/2 ,

b = −
i
√

2
(
c2(x − xe)V ′′(xe) + c2V ′(xe) + E0(cpz + E0x)

)
c2

(
E2

0/c
2 + V ′′(xe)

)3/4 . (6.39c)

In the deep-tunneling regime, where the potential barrier is approximately linear,
the Wigner time delay vanishes as plotted in Fig. 6.7(a). However, when tunneling
happens in the near-threshold-tunneling regime, there exists a non-zero Wigner time
delay, see Fig. 6.7(b). Its order of magnitude equals the result of the nonrelativistic
near-threshold-tunneling regime ionization, compare Figs. 6.6(b) and 6.7(b). More-
over, due to the non-vanishing Wigner time delay, a spatial shift between the classical
trajectory and the Wigner trajectory along the laser’s propagation direction is expected
because of the Lorentz force. Both trajectories are shown in Fig. 6.7(c).

6.3.3. Relativistic effects

In order to investigate relativistic effects in the relevant weakly relativistic regime, the
leading relativistic corrections to the kinetic energy are expected to be dominant with
regard to the Wigner time delay. For simplicity, the exact Klein-Gordon equation
is solved in a regime where, the higher order relativistic effects play no significant
role. Other leading relativistic effects of order 1/c2 like those depending on the spin
and on the magnetic field are conjectured to be smaller than the leading relativistic
correction to the kinetic energy. In our one-dimensional intuitive picture of Sec. 3.4,
the corresponding Klein-Gordon equation yields(

−c2 d2

dx2 + c4
)
ψ(x) = (ε − V(x))2 ψ(x) (6.40)

with the potential barrier (6.32).

In the deep-tunneling regime, we can linearize the potential barrier, i. e., V(x) =

V(xe) + V ′(xe)(x − xe). The corresponding solution which, asymptotically, has the
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Figure 6.8. – Comparison of the Wigner trajectory (red solid line) and the classical
trajectory (blue dashed line) for tunnel-ionization taking into account
kinematic relativistic effects for the deep-tunneling regime employing
nonrelativistic (part (a)) and relativistic (part (b)) parameters. In both
parameter regimes no non-zero time delay is detectable at remote distance.
The vertical black line indicates the exit coordinate.

form of a plane wave, reads
ψ(x) = D (a, b) (6.41a)

with

a = −1
2

+
ic3

2V ′(xe)
, b = − (1 + i) ((x − xe)V ′(xe) + V(xe) − ε)√

c
√

V ′(xe)
. (6.41b)

For the deep-tunneling regime, where the Wigner time delay is zero in the nonrel-
ativistic case, the relativistic corrections to the kinetic energy are also not able to
induce a non-zero Wigner time delay as illustrated in Fig. 6.8.

As pointed out in Sec. 6.3.1, an analysis of tunneling from a Coulomb potential in
the near-threshold-tunneling regime employs best a quadratic fitting of the tunneling
barrier in the vicinity of the tunneling exit. However, there is still no analytic solution
to this problem. Therefore, we replace now the Coulomb potential again with a
zero-range potential rendering the linear approximation applicable again apart for the
singular position of the core. Note that the high nonlinearity of the effective potential
barrier near the core is still maintained. Then, the solution indicates that the leading
relativistic correction to the kinetic energy has a negligible effect on the Wigner time
delay as illustrated in Fig. 6.9. In this figure, the scaled Wigner time delay τWIp for
the nonrelativistic (dashed lines) as well as relativistic case (solid lines) is shown for
different values of Ip and of E0/Ea.

6.4. The phase of the fixed energy propagator

In the previous sections we have related the Wigner time delay to the phase of the
corresponding steady-state wave function. This way of identifying the time delay is
convenient, especially for tunnel-ionization, due to the fact that the relevant phase
is independent of the matching coefficients, see Sec. 6.3. Alternatively, one can



6.4 The phase of the fixed energy propagator 87

0.65

0.55

0.45

0.35

0.25

0.15

0.050 1000 2000 3000 4000
0.00

0.05

0.10

0.15

0.20

0.25

Figure 6.9. – The scaled Wigner time delay τWIp as a function of Ip for different values
of E0/Ea for tunnel-ionization taking into account relativistic kinematic
effects (solid lines) and for nonrelativistic tunnel-ionization (dashed lines)
for the zero-range potential. Note the increasing small deviations of the
scaled Wigner time delay with increasing Ip(relativistic effects).

identify the Wigner trajectory in terms of the phase of the corresponding fixed energy
propagator. This identification is not only of intellectual interest, but also provides an
easier way to calculate the Wigner trajectory in particular cases, for instance, in the
highly relativistic case, where the associated phase is harder to handle.

The basic idea is to reveal the phase of the steady-state wave function via the fixed
energy propagator. The steady-state wave function is the solution of the corresponding
Schödinger equation for constant electromagnetic field. In fact, the steady-state
solution is only valid in certain set of gauges, where the Hamiltonian coincides with
the total energy operator. As a consequence, in order to reveal the phase, we need
to calculate the fixed energy propagator in these gauges. In general, this can be
accomplished by the Göppert-Mayer gauge which, in the absence of the magnetic
field, reduces to the length gauge, see Sec. 2.2.1.

Here, we stick to the one-dimensional intuitive picture of tunneling, Sec. 3.4, and
hence we will either calculate the propagators for one spatial dimension (electric
field direction) or reduce the full propagator along the electric field direction via the
Fourier transforms on the other coordinates.

Our fundamental definition of the Wigner trajectory follows from the relation be-
tween the spacetime propagator G(x, x′; t) and the fixed energy propagator G̃(x, x′; ε)

G(x, x′; t) =
1

2π

∫ ∞

−∞
dε exp (−iεt) G̃(x, x′; ε) . (6.42)

Similarly to the case discussed in Sec. 6.2, the fixed energy propagator can be split
into its phase φ and its amplitude A. Then the spacetime propagator reads

G(x, x′; t) =
1

2π

∫ ∞

−∞
dε A(x, x′, ε) exp

(−iεt + iφ(x, x′, ε)
)
. (6.43)
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Finally, applying the stationary phase condition, the Wigner trajectory can be ex-
pressed as

τ(x, x′) =
∂φ(x, x′, ε)

∂ε

∣∣∣∣∣
ε=ε0

(6.44)

with the energy of the incoming wave packet ε0. Here we should stress that the iden-
tification of the Wigner trajectory by means of the phase of the electron’s propagator
is similar to the procedure given in Sec. 6.2. Nevertheless, Eq. (6.44) is based on a
more fundamental approach that prevents us to discuss the appropriate conditions in
order to identify a well-defined Wigner trajectory by means of wave packets.

In the tunnel-ionization case we have argued that the classical trajectory and
the Wigner trajectory have to coincide at the entry point of the tunneling barrier xi.
Therefore, we impose the same condition here and we obtain the Wigner trajectory
for the tunnel-ionization in terms of the phase of the fixed energy propagator as

τTI(x) ≡ ∂φ(x, xi, ε)
∂ε

∣∣∣∣∣
ε=ε0

− ∂φ(xi, xi, ε)
∂ε

∣∣∣∣∣
ε=ε0

(6.45)

with ε0 = c2 − Ip, where Ip = c2 −
√

c4 − c2κ2 is the ionization energy of the ground
state of H-like ion.

The remaining task is to calculate the fixed energy propagator and its phase. Here
we will focus on the relativistic tunnel-ionization from a zero-range potential under
the effect of the constant and uniform electric field and the constant and uniform
crossed fields (6.57). The relativistic fixed energy propagator can be identified via
the inverse Fourier transform as

G̃(x, x′; ε) =

∫ ∞

0
dt exp (iεt) G(x, x′; t) , (6.46)

where the corresponding spacetime propagators G(x, x′; t) were already calculated in
chapter 5.

6.4.1. Constant and uniform electric field

Let us apply the developed formalism first to tunnel-ionization from a zero-range
potential under the effect of a constant and uniform electric field

E = E0 x̂ . (6.47)

Following the calculation performed in Sec. 5.3.1, the spacetime propagator along
the electric field direction x in the length gauge Aµ = (−xE0, 0) can be written as

G(x, 0; t) = − iE0 exp (−iE0tx/2)
8πc

∫ ∞

0
dτ csch

(E0τ

2c

)
× exp

− i
(
2c3τ − E0x2 coth

(
E0τ
2c

))
4c

− i
4

E0ct2 coth
(E0τ

2c

)
− ετ

 . (6.48)
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with the Feynman iε prescription. Here the tunneling entry point for the tunnel-
ionization form a zero-range potential can be set as xi = 0.

Then using the inverse Fourier transform (6.46), the corresponding fixed energy
propagator in the length gauge reads

G̃(x, 0; ε) = −i

√
E0

2πi c3

∫ ∞

0
dτ

1√
sinh(E0τ/c)

(6.49)

× exp
(
−i
τc2

2
+ i

E0x2

4c
coth

(E0τ

2c

)
+ i

(E0x − 2ε)2

4E0c
tanh

(E0τ

2c

)
− ετ

)
,

where we have omitted the complementary error function for the sake of simplicity
due to the fact that it does not affect the phase.

Before calculating the Wigner trajectory via the phase of Eq. (6.49), we will
present the classical trajectory via the proper time parametrization.

The classical equations of motion are governed by Eq. (5.19)

ÿ(σ)c
µ = −1

c
Fµ

ν(yc)ẏ(σ)c
ν . (6.50)

The solutions for a constant and uniform electric field (6.47) read

y0(τ) =
cu0

0 sinh
(

E0τ
c

)
− cu0

1 cosh
(

E0τ
c

)
+ cu0

1 + E0x0
0

E0
, (6.51)

y1(τ) =
−cu0

0 cosh
(

E0τ
c

)
+ cu0

1 sinh
(

E0τ
c

)
+ cu0

0 + E0x0
1

E0
(6.52)

with the initial conditions yµ(0) = x0
µ and ẏµ(0) = u0

µ, where x0
µ and u0

µ are the
initial spacetime point and the initial four-velocity, respectively. After setting x0

0 = 0,
i.e., y0(0) = 0, without loss of generality and further using the Lorentz invariant
relation of the four-velocity ẏµẏµ = c2, initial conditions yield

x0
µ = (0, xe) , (6.53)

u0
µ = (c, 0) (6.54)

with the tunnel exit point xe = Ip/E0, where the classical trajectory starts. Hence, the
equations of motion read

1
c

y0(τ) =
c2 sinh

(
E0τ

c

)
E0

, (6.55)

y1(τ) =
c2

(
− cosh

(
E0τ

c

))
+ c2 + E0xe

E0
. (6.56)

In principle, one can eliminate the proper time τ and write down the equation of
motion in terms of the parameter time t as x(t) via identifying 1

c y0(τ) = t and y1(τ) = x.
However, we will keep this form in order to be consistent with the case of constant
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Figure 6.10. – Comparison of the Wigner trajectory (red solid line) and the classical
trajectory (blue dashed line) for tunnel-ionization from a zero-range
potential under the effect of a constant and uniform electric field; the
deep-tunneling regime (a) with E0/Ea = 1/7 and the near-threshold-
tunneling regime (b) with E0/Ea = 1. The vertical black line indicates
the exit coordinate and the applied parameter is κ = 90.

and uniform crossed fields, where writing down the equation of motion in terms of
the time is quite difficult.

Now, we can compare the classical trajectory (6.55), (6.56) with the Wigner
trajectory (6.45) for tunnel-ionization from a zero-range potential. We did compar-
isons for two sets of parameters: First for E0/Ea = 1/7, κ = 90, corresponding
to the deep-tunneling regime, and for E0/Ea = 1, κ = 90, which represents the
near-threshold-tunneling regime of tunnel-ionization, see Fig. 6.10. The results ex-
actly match with the previous analysis based on the phase of the steady-state wave
function. For the deep-tunneling regime the Wigner time delay vanishes, while for
the near-threshold-tunneling regime it persists and is detectable at remote distance.

6.4.2. Constant and uniform crossed fields

The next consideration is based on the more realistic scenario of tunnel-ionization
from a zero-range potential under the influence of a constant and uniform crossed
fields

E = E0 x̂ , (6.57)
B = E0 ŷ . (6.58)

In chapter 5.3.1, we have already calculated the propagator for a constant and uni-
form crossed field (5.29). The corresponding (3+1) dimensional spacetime propagator
in the Göppert-Mayer gauge Aµ = −xE0 nµ, then, reads

G(xµ, 0) = − i
2

exp
( iE0

2c
P · x n · x

) ∫ ∞

0
dτ

1
(2πτ)2

× exp
(
−i

x · x
2τ
− iτ

24c2 x · F · F · x − ic2τ

2
− ετ

)
(6.59)
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with the wave vector nµ = (1, 0, 0, 1) and the polarization vector Pµ = (0, 1, 0, 0),
where we set the initial spatial position x′µ = 0.

The fixed energy and the fixed transversal momenta propagator along the laser’s
polarization direction can be calculated via the Fourier transform

G̃(x, 0; ε, pz, py) =

∫
dε dpz dpy G(xµ, 0) exp

(
iεt − ipzz − pyy

)
, (6.60)

which reads

G̃(x; ε, pz, py) = − (−1)3/4

2c

∫ ∞

0
dτ

1√
2π τ

(6.61)

exp

 ix2

2τ
−

iτ
(
c2 + p2

y + p2
z

)
2

+
iτ(cE0 pzx + ε(ε − E0x))

2c2 − iτ3E2
0(ε − cpz)2

24c4 − ετ
 .

Here we set the initial spatial position x′ = 0.

The tunneling probability for a given energy ε0 can be obtained via

|T |2 =

∣∣∣G̃(xe; ε0, pz)
∣∣∣2∣∣∣G̃(0; ε0, pz)
∣∣∣2 , (6.62)

where we further set py = 0 without loss of generality and the tunnel exit point xe can
be calculated via the condition

(
c2 − Ip − xeE0

)2
= c2

(
pz − xe

E0

c

)2

+ c4 , (6.63)

which yields

xe =
I2

p − c2(2Ip + p2
z )

2E0(c2 − Ip − cpz)
. (6.64)

The transition probability (6.62) reveals the most probable tunneling probability
for a certain transversal momentum pz, see Fig. 6.11. This indicates that during the
tunneling there is a momentum transfer along the propagation direction of the crossed
fields. The kinetic momentum qz(x) = pz− xE0/c with maximal tunneling probability
at the tunneling entry is qz(0) = pz ∼ −2Ip/(3c), whereas at the exit it is qz(xe) ∼
Ip/(3c). As a consequence, the momentum transfer along the laser’s propagation
direction is Ip/c. Furthermore, contrary to tunnel-ionization from a Coulomb potential
case, the momenta at the entry and the exit, and hence the momentum transfer are
independent from the barrier suppression parameter E0/Ea for a zero-range potential,
which is consistent with Fig. 3.6.

In order to compare the Wigner trajectory with the classical trajectory, we need
to evaluate the classical equations of motion. For a constant and uniform crossed
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Figure 6.11. – Tunneling probability vs. the kinetic momentum along the propagation
direction of the crossed fields at the tunnel entry (dashed line) and tun-
nel exit (solid line). In the case of tunnel-ionization from a zero-range
potential, the values are independent from the barrier suppression param-
eter E0/Ea and the transversal momentum transfer is Ip/c. The applied
parameters for the figure are E0/Ea = 1/7 and κ = 90.

fields (6.57), the solutions are given by

1
c

y0(τ) =
τ

6c3

√
c2 + vz

2
0

(
6c2 + E2

0τ
2
)
− E2

0τ
3vz0

6c3 , (6.65)

y1(τ) =
E0τ

2

2c

(
vz0 −

√
c2 + vz

2
0

)
+ xe , (6.66)

y3(τ) =
E2

0τ
3

6c2

(√
c2 + vz

2
0 − vz0

)
+ τvz0 (6.67)

with the initial conditions yµ(0) = (0, xe, 0) and ẏµ =

(√
c2 + vz

2
0, 0, vz0

)
, where

vz0 = qz(xe) = pz − xeE0/c is the initial velocity along the propagation direction of
the crossed fields. Moreover, the tunnel exit is given by

xe = − Ip

E0

(
18c2 − 5Ip

18c2 − 6Ip

)
, (6.68)

where we have used pz = −2Ip/(3c) in Eq. (6.64).

Similarly to the previous case, we can compare the Wigner trajectory with the clas-
sical trajectory in two distinct regimes. In the deep tunneling regime, E0/Ea = 1/7,
the Wigner time delay vanishes. For the near-threshold-tunneling regime, E0/Ea = 1
the Wigner time delay is detectable.

Furthermore, one can compare the Wigner and the classical trajectories in terms of
the transversal coordinate z. The stationary phase condition identifies the transversal
coordinate as

zTI(x) ≡ − ∂φ(x, ε0, pz)
∂pz

∣∣∣∣∣
pz=pz0

+
∂φ(0, ε0, pz)

∂pz

∣∣∣∣∣
pz=pz0

(6.69)

with the most probable momentum pz0 = −2Ip/(3c). Due to the existence of a non-
zero Wigner time delay, there exists also a spatial drift along the propagation direction
at the tunnel exit, which, however, vanishes at remote distance, see Fig. 6.12(c).
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Figure 6.12. – Comparison of the Wigner trajectory (red solid line) and the classical
trajectory (blue dashed line) for tunnel-ionization from a zero-range
potential under the effect of constant and uniform crossed fields; the
deep-tunneling regime (a) with E0/Ea = 1/7 and the near-threshold-
tunneling regime (b) with E0/Ea = 1. Comparison of the Wigner and the
classical trajectories in terms of the transversal coordinate z (path) for
the parameters E0/Ea = 1 (c). The vertical black line indicates the exit
coordinate and the applied parameter is κ = 90.

6.4.3. Intuitive explanation of the Wigner time delay

Finally, we address the formal definition of deep-tunneling and near-threshold-
tunneling and clarify the reason for the differing behavior of the Wigner time delay
in these regimes. A general rule for the validity of the linear approximation, which
allows us to neglect the quadratic and the higher-order terms in the expansion of the
potential barrier, can be given via the condition∣∣∣∣∣V ′′(xe)

V ′(xe)
δx

∣∣∣∣∣ � 1 (6.70)

for the characteristic distance δx that will be quantified later. Indeed, this condition
defines the deep-tunneling regime. The regime, which meets the condition∣∣∣∣∣V ′′(xe)

V ′(xe)
δx

∣∣∣∣∣ ∼ 1 (6.71)

is identified as the near-threshold-tunneling regime. In the latter case the potential has
to be approximated by including also at least the quadratic term, which is sufficient
unless it is too close to the threshold

V(x) = V(xe) + V ′(xe)(x − xe) + V ′′(xe)
(x − xe)2

2
. (6.72)
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In Sec. (6.3) we characterized the Wigner time delay as the asymptotic deviation
of the maximum of the wavepacket position from its corresponding classical path.
Therefore, the typical distance δx can be identified with the deviation of the maximum
of the wavepacket position with respect to the classical one, viz. x = xe + δx, and
similarly for the momentum p = pe + δp, with xe and pe denoting the classical
position and momentum at the tunnel exit. The typical distance δx may be estimated
by considering the Hamiltonian for a nonrelativistic particle which tunnels trough a
potential barrier V(x). The corresponding Schrödinger Hamiltonian

H =
p2

2
+ V(x) (6.73)

can be written in terms of δx and δp as

δp2

2
+ δx V ′(xe) = 0 , (6.74)

with V(xe) = −Ip and pe = 0. Employing the uncertainty relation δx δp ∼ 1, the
deviation from the classical trajectory is obtained as

|δx| ∼
∣∣∣V ′(xe)−1/3

∣∣∣ . (6.75)

Inserting Eq. (6.75) into Eq. (6.70), the condition for the validity of the linear
approximation reads ∣∣∣∣∣ V ′′(xe)

V ′(xe)4/3

∣∣∣∣∣ � 1. (6.76)

The latter condition which also quantifies the transition regime between the deep-
tunneling and the near-threshold-tunneling regime can be also expressed via the
parameter E0/Ea in the case of the one-dimensional potential (111) as(

16E0

Ea

)5/3

� 1 . (6.77)

For instance, (16E0/Ea)5/3 ≈ 0.3 for the deep tunneling regime with E0/Ea =

1/30, whereas (16E0/Ea)5/3 ≈ 0.9 for the near-threshold-tunneling regime with
E0/Ea = 1/17. In the case of a short-range atomic potential, where V ′′(xe) = 0, the
condition of the near-threshold-tunneling regime, Eq. (6.76), should be modified.
The tunneling potential is not linear in this case due to the edge of the triangular
shaped effective barrier, which becomes essential for the tunneling time at δx ∼ xe.
Therefore, in the case of a short-range atomic potential Eq. (6.77) is replaced by
δx/xe ∼ (E0/Ea)2/3 � 1.

It should be noted here that the nonrelativistic Schrödinger equation(
−1

2
∇2 + xE0 − κr

)
ψ(x) = ε ψ(x) (6.78)

can be separated in cylindrical parabolic coordinates such that the three-dimensional
problem reduces effectively to a one-dimensional one with the one-dimensional
potential for the ground state [86, 139]

V(ζ) = − 1
4ζ
− 1

8ζ2 −
1
8

E0ζ . (6.79)
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A calculation of the tunneling time delay utilizing the potential (6.79) instead of (6.32)
would give qualitatively the same results in both tunneling regimes because both
potentials have the same behavior in the continuum range of the potential barrier. The
quantitative difference comes only from a numerical value in the transition regime
between the deep-tunneling and the near-threshold-tunneling regime. Namely, the
condition (6.77) can be written for the potential (6.79) as(

9E0

Ea

)5/3

� 1 (6.80)

where E0/Ea = 1/9 is in the border between tunnel-ionization and over-the-barrier
ionization.

Further, this classification of the tunneling regimes allows to formulate a condition
for a non-zero Wigner time delay. When the potential barrier is linear on the typical
distance δx around the exit, i.e., in the deep tunneling regime, the time delay vanishes
at far distances. If this is not the case, in the near-threshold-tunneling regime, a
non-zero tunneling time is expected. This is consistent with our results in Fig. 2

To sum up, a possible experimental verification of the tunneling time delay is
expected to be feasible in the near-threshold-tunneling regime. This delay is approxi-
mately proportional to 1/Ip as shown in Fig. 6.9.

6.5. Conclusions

In this chapter, the problem of tunneling time delay has been considered. Although
there is no well-defined time operator in quantum mechanics, it is possible to infer
information about the tunneling time delay via tracing the peak of the wave packet,
which brings in the so-called Wigner time concept. The Wigner time formalism was
applied to the nonrelativistic as well as to the relativistic tunnel-ionization process. It
was shown that the Wigner time formalism can be simplified further for the tunnel-
ionization process, due to the fact that the quasiclassical trajectory starts at the entry
point of the barrier. In the nonrelativistic case, it was illustrated that the Wigner
time delay vanishes for the deep-tunneling regime when the potential barrier at the
tunneling exit can be approximated by solely its tangent line. At larger laser field
strength, in the near-threshold-tunneling regime of tunnel-ionization, the potential
barrier is not linear in coordinate at the tunnel exit. Consequently, the Wigner time
delay is preserved at far distances. Finally, our results were extended to the relativistic
regime via the phase of the fixed energy propagator. It was shown that the Wigner
time delay is characterized mainly by the nonrelativistic dynamics.





7. On the quantization of the
electromagnetic flux

This additional chapter including the figures is based on [69] and it can be read
independently of the rest of the thesis.

7.1. Introduction

Historically, the introduction of gauge potentials may seem to appear just as a
mathematical convention in order to calculate the electromagnetic fields. However,
as elegantly described by Aharanov and Bohm, the gauge potential has a significant
role in quantum mechanics [60]. Namely, the gauge potential does not only provide a
compact mathematical formulation of the associated field strength tensor, but also it
leads to predictions such as Aharanov-Bohm effect [60–62], flux quantization [63–66]
and Dirac’s charge quantization condition when the existence of a magnetic monopole
is assumed [67, 68]. Furthermore, in their celebrated paper [71], Wu and Yang gave a
complete description of electromagnetism based on the concept of the nonintegrable
(path-dependent) phase factor. Wu and Yang pointed out that the field strength
tensor underdescribes the complete electromagnetic phenomena. In other words, the
different physical realization of electromagnetic phenomena may have the same field
strength tensor Fµν in a local theory. In fact, in terms of the paradigm of modern
physics, gauge potentials (gauge fields) emerge from requiring the theory invariant
under a group of local internal continuous symmetry transformations [6–8]. Non-
abelian gauge theories are the consequence of such an inclusive approach [10]. This
approach stems from the fact that conservation of electric charge follows from the
invariance of the theory under a global symmetry transformation, viz. global gauge
invariance of the theory. This connection was made first by Herman Weyl when he
attempted to unify electromagnetism and general relativity [5]. Demanding a further
local gauge invariance introduces gauge potentials. In this connection, the gauge
invariance is equivalent to the phase invariance of a wave function. For instance, the
Dirac equation for a relativistic spin-1/2 particle[

i~γµ
(
∂µ − iq

~c
Aµ(x)

)
− mc

]
ψ(x) = 0 (7.1)

is invariant under the transformations

ψ(x)→ exp
(
iqχ(x)
~c

)
ψ(x) , (7.2)
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where the gauge potentials obey the transformation law

Aµ → Aµ + ∂µχ . (7.3)

After the introduction of gauge potentials, the local phase invariance (or the group
of local continuous symmetry transformations) can also be accomplished by

exp
(
− iq
~c

∫ x

P
Aνdyν

)
, (7.4)

where the integration path P starts at a point where the field is zero and runs up
to the point of interest x [8]. This phase factor (7.4) is known as the Wilson line
[72]. Historically, such kind of line integrals of the potentials have previously been
suggested in [46,47,71,73,74], and it was shown by DeWitt [46] and Mandelstam [47]
that the phase factor Eq. (7.4) can replace the gauge freedom of the theory with the
path freedom. The resulting formalism can be called the path-dependent formulation
of gauge theory.

Although the path-dependent formalism was discussed in various places and in
different contexts in the literature [8, 46–49, 72, 75], in this additional chapter, we are
confident that we present a complete framework for the path-dependent formulation
of gauge theory. We discuss and explore the quantum mechanical topological effects
in the light of the path-dependent formalism. Although the results are well-known in
the literature, we will present a clear geometric picture for the electromagnetic flux
quantization. We further discuss the electric charge quantization via the developed
formalism.

The CGS units are used throughout this chapter.

7.2. The path-dependent formalism

The complete description of a gauge theory can be constructed demanding the
invariance of the theory under a local phase transformation via the Wilson line
as (after the introduction of gauge potentials)

ψ(x)→ Ψ (x) = exp
(
− iq
~c

∫ x

P
Aνdyν

)
ψ(x) . (7.5)

In fact, Eq. (7.5) corresponds to defining the gauge function χ via the path integral
χ = −

∫ x

P Aνdyν. However, it should be noted that this particular choice of gauge
function is not a gauge fixing in the conventional sense because the path freedom of
the Wilson line covers all possible gauge functions.

Then, in order to require the invariance of the theory under a local symmetry
transformation, gauge potentials satisfy the transformation law

Aµ(x)→ Aµ(x) ≡ Aµ(x) − ∂

∂xµ

∫ x

P
Aνdyν . (7.6)
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The latter defines “gauge invariant” but path dependent gauge potentials Aµ(x).
The gauge potentialAµ(x) is invariant under the transformation (7.3) and its gauge
freedom is recovered by the path freedom. Since, instead of gauge functions, we have
a path freedom in this equivalent formulation of gauge theory, we will label both the
gauge potentialAµ and the wave function Ψ with the path index P. This leads to a
completely path-dependent but gauge-function-free theory. For instance, the Dirac
equation reads [

i~γµ
(
∂µ − iq

~c
Aµ(P, x)

)
− mc

]
Ψ (P, x) = 0 , (7.7)

and furthermore it is invariant under the path transformation

Ψ [P′, x] = exp
(

iq
~c

∮ x

∂Σ

Aµdyµ
)
Ψ [P, x] , (7.8)

as long as the gauge potentials obey the following path transformation

Aµ(P′, x) = Aµ(P, x) + ∂µ

∮ x

∂Σ

Aνdyν (7.9)

with the closed loop ∂Σ = P − P′. Here the gauge invariant generator of the path
transformation is called the Wilson loop [72].

The Wilson loop further provides a geometric picture of the gauge invariance.
Using the four-dimensional Stokes’ law, a loop integral can be converted to a surface
integral, which yields the electromagnetic flux ΦEM as∮ x

∂Σ

Aµdyµ =
1
2

∫ x

Σ

Fµνdσµν = ΦEM(x) . (7.10)

Consequently, if we compare conventional gauge theory (7.2) with the path-dependent
formalism (7.8), we infer that a gauge function χ comes into existence as an elec-
tromagnetic flux ΦEM through the surface bounded by two gauge paths whose end
points are the same. It should be underlined that contrary to an electromagnetic flux
appearing in the conventional gauge theory, which has a direct measurable physical
implication, the flux of the path-dependent formalism is path dependent and hence it
cannot have a physical implication. Nevertheless, when it becomes path independent,
it has direct physical consequences as we will discuss later.

The gauge potentialAµ(x) defined in Eq. (7.6) can be written in terms of gauge
invariant physical expressions. Here, we first provide DeWitt’s derivation and show
that it is not complete. Then, we formulate the general expression for gauge potential
applicable to all cases. We parametrize the path P as y = y(σ, x) with boundary
conditions

y(s, x) = x , y(0, x) = x0 , (7.11)

where the electromagnetic field vanishes at x0, at which Aµ may, without loss of
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generality, be set equal to zero. Then, Eq. (7.6) becomes

Aµ(P, x) = Aµ(x) − ∂

∂xµ

∫ s

0
Aν(y)

∂yν

∂σ
dσ ,

= Aµ(x) −
∫ s

0

(
Aν(y)
∂yλ

∂yλ

∂xµ
∂yν

∂σ
+ Aν(y)

∂

∂σ

∂yν

∂xµ

)
dσ ,

= Aµ(x) −
∫ s

0

(
Aλ(y)
∂yν

∂yν

∂σ

∂yλ

∂xµ
+ Aν(y)

∂

∂σ

∂yν

∂xµ
− Fνλ(y)

∂yλ

∂xµ
∂yν

∂σ

)
dσ ,

(7.12)

where in last line we have used the definition of the field strength tensor as Aν,λ(y) =

Aλ,ν(y) − Fνλ(y). The first two integrand terms in Eq. (7.12) can be written as
∂

∂σ

(
Aλ(y)

∂yλ

∂xµ

)
and using the boundary conditions (7.11),

Aµ(P, x) =

∫ s

0
Fνλ(y)

∂yν

∂σ

∂yλ

∂xµ
dσ (7.13)

is obtained. The expression (7.13) first is given in the DeWitt’s paper [46]. Later,
the correspondence between paths and gauge functions was discussed in a series of
papers [48, 49].

However, the expression of the gauge potentialAµ given in Eq. (7.13) is incom-
plete. In fact, it is only valid for nonconfined electromagnetic fields and it immediately
violates the path transformation rule (7.9) for a confined field. Since Eq. (7.13) de-
pends on the field strength tensor Fµν as well as path choice, any path which does not
pass through the field region of a confined field generates a vanishing gauge potential,
though there may exist an electromagnetic flux through the area bounded by such
kind of paths. However this obviously contradicts to the original definition of the path
dependent gauge potential (7.6) as well as to the general path transformation rule (7.9).
Furthermore, consider two paths P1 and P2, whose segments pass through the field
region are common as shown in Fig. 7.1 and they generate the gauge potentials
Aµ(P1, x) andAµ(P2, x), respectively. Since only relevant segments which generate
the gauge potential are those pass through the field region, both the paths yield the
same gauge potential. However, according to the general path transformation (7.9),
relation between the gauge potentials should be given by

Aµ(P2, x) = Aµ(P1, x) + ∂µΦEM(x) (7.14)

with the electrodynamics flux ΦEM(x) (the flux through pink region in Fig. 7.1).

The fundamental reason of the incompleteness of Eq. (7.13) is the fact that for a
confined field the field strength tensor Fµν vanishes outside the field region, however
the corresponding gauge potential does not vanish and its loop integral has to be
the electromagnetic flux. Nonetheless, we can provide a complete expression for
the path-dependent gauge potential. Let us go back to the original definition of the
path-dependent gauge potential given by Eq. (7.6). Any path P can be decomposed
as

P ≡ PF − PL , (7.15)
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where the path PF , which has the same end points as the path P, passes through the
field region, whereas PL is a loop that connects with PF to the path of interest P.
Then, Eq. (7.6) can be written as

Aµ(P, x) = Aµ(x) − ∂

∂xµ

∫ x

PF

Aνdyν +
∂

∂xµ

∫ x

PL

Aνdyν . (7.16)

On the one hand, the first two terms in the above equation can be written in the form
of Eq.(7.13), on the other hand, the last term is nothing else but the electromagnetic
flux due to a confined field through the area bounded by the loop PL. As a result, we
derive the complete expression for the path-dependent gauge potential as

Aµ(P, x) =

∫ s

0
Fνλ(y)

∂yν

∂σ

∂yλ

∂xµ
dσ +

∂ΦEM(PL, x)
∂xµ

. (7.17)

Indeed, the expression (7.17) can also be directly obtained by means of the path
transformation (7.14) as

Aµ(P, x) = Aµ(PF , x) + ∂µΦEM(PL, x) . (7.18)

In summary, existence of a confined field implies a not simply connected space
where a path may not be continuously deformed into another path and a loop may
not be contracted to a point due to a confined field. Consequently, the complete
expression for the path dependent potential is given by Eq. (7.17). However, a
nonconfined field corresponds to a simply connected topological space where every
path can be continuously deformed into each other and every loop can shrink to a
point. In this case, the loop path PL can be omitted. This implies that P = PF and
the expression (7.17) reduces to Eq. (7.13).

7.3. Quantization of the electromagnetic flux

In this section, we will apply the developed path-dependent formalism of gauge
theory in order to analyze quantum mechanical topological effects.

In the case of a nonconfined field, the electromagnetic flux ΦEM(x) depends on the
gauge paths and it behaves like a gauge function. However, the electromagnetic flux of
a confined field through the area bounded by the border of the field is path independent
and, therefore, has physical implications. Due to the latter, the electromagnetic flux
is either detectable in an Aharanov-Bohm type interference experiment or has to be
quantized as we discuss below.

For this purpose, consider two arbitrary paths P1 and P2 in the case of a confined
electromagnetic field as shown in Fig. 7.1, which have the same starting and termi-
nating points. If the electromagnetic flux ΦEM through the confined field is constant
and uniform in the spacetime, then the path dependent gauge potentials Aµ(P1, x)
andAµ(P2, x) coincide. Since the gauge potential already overdescribes the physical
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Figure 7.1. – Both gauge pathsP1 andP2 generate the same gauge potential according to
Eq. (7.13), which is inconsistent with the general path transformation (7.9).
The complete expression for the path-dependent gauge potential can be
given by Eq. (7.17). Furthermore, in terms of topological point of view,
path P2 cannot be continuously deformed into P1 due to the presence of
the confined field (pink region), which has direct physical consequences.
If the electromagnetic flux ΦEM through the area bounded by the loop
∂Σ = P1 − P2 is constant and uniform, then the flux is quantized.

reality [71], i.e., different gauge potentials can describe the same physics, the wave
function for a given gauge potential has to be unique. As a result, the wave function
defined via the path P2

Ψ [P2] = exp
( iq
~c
ΦEM

)
Ψ [P1] (7.19)

should match with Ψ [P1]. Then it follows that the electromagnetic flux has to be
quantized as

qΦEM

~c
= 2π n, n = ±1,±2, . . . , (7.20)

which can be interpreted as a condition of the flux quantization1. Here we want
to stress that the constant and uniform phase appearing in Eq.(7.19) is a nontrivial
phase based on the requirement of a local gauge invariance. On the contrary, the
trivial phase of a global gauge invariance χ can be set equal to zero without loss of
generality.

The validity of such a requirement can be further confirmed in the following way.
If there exists a constant and uniform flux ΦEM due to a confine field, then it is also
possible to find another path P3 whose winding number N is greater than 1, i.e., a
path which wraps the flux more than one time such that each turn can pass through
different hypersurfaces. In this case the wave function defined for the path P3

Ψ [P3] = exp
( iq
~c

NΦEM

)
Ψ [P1] (7.21)

would depend on the winding number N, which is inconsistent with physical realiza-
tion unless there exists an Aharanov-Bohm type experiment which can differentiate
the winding number N.

1In general, further quantization conditions can be obtained by imposing other conditions like
periodicity of the wave function.
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Thus, the analysis of the gauge transformation of the wave function within the
path-dependent formalism allows us to find a very simple geometric explanation for
the topological quantum mechanical effects such as the Aharonov-Bohm effect and
the flux quantization. From the topological point of view, one can give the following
interpretation: If one gauge path cannot be continuously deformed into another gauge
path relative to their endpoints due to the existence of a topological object on the
deformation region, then this topological object - the electromagnetic flux - has to
be quantized as long as these two gauge paths generate the same gauge potential.
Meanwhile, when different gauge paths generates different gauge potentials, the path
independent electromagnetic flux can be measurable via the wave function phase as
an interference phenomena2. Specifically, consider a spatially confined magnetic field.
Firstly, if the confined field is time dependent, than the field can be detectable in an
Aharanov-Bohm experiment. Secondly, if the confined field is also time independent,
then the associated flux is quantized, which can be referred to the flux quantization
occurring in Type II superconductors [63–66].

Let us illustrate the flux quantization in two specific examples, where we choose
two gauge paths which provide the same gauge potential and show that the electro-
magnetic flux bounded by these paths should be quantized.

As a first example, we consider a confined static magnetic field

B(x) = B0 (1 − θ(r − r0)) ẑ , (7.22)

with r =
√

x2 + y2, r0 =

√
x2

0 + y2
0, and the Heaviside step function θ(x). The path

P1, shown in Fig. 7.2, generates the following gauge potential

A(P1,x) =


B0 (−y, x, 0) /2, r ≤ r0 ,

B0r2
0

2r2
(−y, x, 0) , r > r0 .

(7.23)

Similarly, the path P2 will also give the same gauge potential Eq. (7.23). Although
these two paths give the same gauge potential, there is a non zero magnetic flux in
the surface bounded by these paths, which appears as a local constant phase in the
wave function defined on the path P2. In order to satisfy the uniqueness of the wave
function, the flux of the confined static magnetic field has to be quantized as

qB0πr2
0

~c
= 2π n . (7.24)

In the second example, we investigate a constant and uniform electric field along
x-direction, which is confined on a specific region of the spacetime as

E(t, x) = E0 (θ(ct) − θ(ct − c∆t)) (θ(x) − θ(x − ∆x)) x̂ . (7.25)

2In fact, the mathematical connection can be established in the framework of homotopy between the
gauge paths, see the relevant references listed in [7].
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Figure 7.2. – Geometric configuration for the magnetic flux quantization. Both the path
P1 (solid) and the path P2 (dashed) give the same gauge potential. As
a consequence, the flux enclosed by the loop has to be quantized. The
starting point is x0 = (−∞,−∞) at which the gauge potential is zero.

Following Fig. 7.3, both the path P1 and the path P2 give the same potential

Aµ =



−E0 (−x, ct, 0, 0) /2, ∆x ≥ x ≥ 0 ∧ ∆t ≥ t ≥ 0 ,

−E0∆x2

2x2
(x, ct, 0, 0) , x > ∆x > 0 ∧ ∆t > t > 0 ,

−E0∆t2

2t2
(x, ct, 0, 0) , ∆x > x > 0 ∧ t > ∆t > 0 .

(7.26)

Since there is a non-zero electromagnetic flux in the loop enclosed by the paths, the
flux has to be quantized such that

q c E0∆x∆t
~ c

= 2π n (7.27)

holds.

7.4. On the electric charge quantization

Since the electric charge was measured by Millikan in 1913 [149], probably one of
the most important long standing unresolved problems in theoretical physics is the
quantization of electric charge [56]. In the early times of quantum mechanics the
question was why electron and proton have the same but opposite electric charges.
Later, with the discovery of quarks, the question was reformulated as why all particles
have charges which are integer multiples of the charge e/3, the charge of down-type
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Figure 7.3. – Geometric configuration for the electric flux quantization. The starting
point is x0 = (−∞,−∞) at which the gauge potential is zero.

quarks (down, strange, bottom) which can be identified as the fundamental unit of
electric charge.

One particular interesting explanation of the problem is the possible existence
of magnetic monopole3 that is introduced by Dirac [67, 68]. Although quantum
mechanics does not require the existence of magnetic monopoles, it does not also
prohibit its presence even in the current formulation of electromagnetism. The
fundamental relation, as it stands,B = ∇×A with a non singular free gauge potential
A allows to modify the associated Maxwell equation to ∇ · B = 4π ρm with the
magnetic monopole charge density ρm. Dirac’s original derivation was based on the
singular gauge potential whose singularity corresponds to the so-called Dirac string
(see also Schwinger’s discussion [153]). Later, the same result was obtained in [71]
using a nonsingular gauge potential defined on a domain which is divided into two
overlapping regions.

In the context of the path-dependent formalism such a derivation was done by
Cabibbo and Ferrari in [75]. This elegant description can be illustrated as follows:
Consider two gauge paths P1 and P2 which generate the associated gauge potential
of a magnetic monopole with charge g. Then, using Eq. (7.8) and Eq. (7.10), the
path transformation for the wave function of an electron interacting with a magnetic
monopole reads

Ψ [P2] = exp
(

ie
2~c

∫
Σ1

Fµνdσµν

)
Ψ [P1] = exp

(
ie
~c

∫
Σ1

B · dσ
)
Ψ [P1] , (7.28)

where e is electric charge of the electron and Σ1 is a spacelike surface4 bounded by
the paths P1 and P2. However, a wave function can not depend on the particular

3see [150] for a comprehensive review and [151, 152] for the models of particles with both electric
and magnetic charges.

4The derivation is not restricted to a spacelike surface, but it is general, see [75].
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choice of the surface, and hence the wave function in the gauge path P2 can also be
written as

Ψ [P2] = exp
(

ie
~c

∫
Σ2

B · dσ
)
Ψ [P1] . (7.29)

Consequently, using the divergence theorem, we require

exp
(

ie
~c

∫
V
∇ ·B dv

)
= 1 (7.30)

where V denotes the volume of the closed surface ∂V = Σ1 − Σ2. In the absence of
a magnetic monopole, the requirement (7.30) is trivially satisfied. The nontrivial
solution, which exists when the existence of a magnetic monopole is assumed,
requires Dirac’s charge quantization

2e g
~c

= n . (7.31)

As a result, the existence of a magnetic monopole anywhere in the universe would
explain electric charge quantization everywhere. However magnetic monopoles have
not been observed so far [154].

Another elegantly described possible explanation is based on grand unified theo-
ries, where the U(1) gauge group is embedded in a non-abelian gauge group [155].
The nontrivial Lie algebra of the non-abelian group implies the charge quantiza-
tion [156] (see also magnetic monopoles in non-abelian gauge theories [6, 157, 158]).
Lastly, we want to cite another notable idea which is based on constraints from the
absence or cancellation of anomalies in the standard model [159–164]. In fact, there
are many other further attempts that we cannot cite here, however, none of them
provides a fully satisfactory resolution for the problem. Particularly appealing is the
question considered by Dirac if it is possible to infer the fundamental unit of the
charge from the theory. All the mentioned theories above and other existing theories
fail to answer this question.

Here we discuss electric charge quantization within electromagnetism in the
absence of a magnetic monopole on a toy model in a (1+1) dimensional causal
spacetime.

In addition to the (1+1) dimensional causal spacetime, let us assume that there
exists a quantum vacuum with a possibility of creation and annihilation of a pair
of a charged particle and its antiparticle. Then, due to the particle-antiparticle pair
creation-annihilation process in this universe, a confined electric field arises on the
spacetime region bounded by the world lines of each one of the pair as shown in
Fig. 7.4.

To find the field created by particles, we solve the Maxwell’s equations in the (1+1)
dimensional spacetime. The Maxwell’s equations in an arbitrary (d+1) dimensional
spacetime is given by [1]

∂µFµν =
2πd/2

Γ(d/2)
Jν

c
, (7.32)

εαβµν∂µFαβ = 0 , (7.33)
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Figure 7.4. – The spacetime area bounded by the world lines of each one of the pair
implies a constant uniform confined electric field in a (1+1) dimensional
spacetime.

with the Gamma function Γ(x), the vector current Jµ = (cρ,J). The causal electric
field of a point charge q moving on an arbitrary world line rµ(τ) =

(
r0(τ), ri(τ)

)
can

be found via solving the Maxwell equation (7.32) with the retarded propagator [2].
In a (1+1) dimensional spacetime the causal electric field can be written as

E(t, x) = (k(1)) q (θ (x − r(τ0)) − θ (r(τ0) − x)) , (7.34)

where the retarded time is given by ct − r0(τ0) =
∣∣∣x − r1(τ0)

∣∣∣, see appendix A, and the
constant k(1), which appears in SI units, denotes the Coulomb constant for the (1+1)
dimensional spacetime. Consequently, the flux defined on this spacetime area A reads

ΦEM = (k(1)) 2 qp A (7.35)

with the charge of one of the pair qp.

Then, the flux quantization condition (7.20) implies

(k(1)) q qp
A
~c

= π n . (7.36)

We should underline that in Eq. (7.36) q is electric charge of a particle interacting
with the potential generated by a charged particle qp. In other words, q is electric
charge of a receiver particle, while qp is the charge of a source particle.

We can further consider a scenario where both the receiver and the source particle
have the same electric charge qp. If we assume that the area A has a fundamental
value which is determined by the universe, then the fundamental unit of electric
charge can be given by

qp =

√
π ~ c

A (k(1))
. (7.37)
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Finally, electric charge q of any particle can be written in terms of the fundamental
unit of charge qp as

q = qp n , (7.38)

which would explain why electric charge of any particle is an integer multiple of the
elementary charge.

We may further estimate the area A for the confined field created by the electron-
positron pair in (1+1) dimensional spacetime as follows. It is bounded as A < c2τ2/2,
with the lifetime of an electron τ which can be estimated from the Heisenberg
uncertainty relation τ ∆E ∼ ~, with ∆E ∼ mec2, yielding τ ∼ λC/c and

A ∼ λ2
C , (7.39)

with the Compton wavelength λC = ~/(mec), as long as the Planck constant ~, the
speed of light c, the mass of the electron me, and the fundamental charge e remain the
same in the (1+1) dimensional world. Then the fine structure constant for the (1+1)
dimensional spacetime can be estimated from Eq. (7.37) as

α(1) ≡ (k(1))q2
p

~c
≈ λ−2

C . (7.40)

The derived scaling law for the fine structure constant of the one dimensional world,
Eq. (7.40), can be tested in an effectively one-dimensional solid layers like quantum
wires.

7.5. Conclusion

The Wilson line introduces a completely path-dependent but gauge-function-free
theory. This equivalent formulation of gauge theory can provide a very simple descrip-
tion of the quantization of the electromagnetic flux on the basis of the topology of the
gauge paths. In particular, we have shown that the path independent electromagnetic
flux through the area bounded by two gauge paths has to be quantized if these paths
generates the same gauge potential. The developed formalism was applied to a toy
model where we discussed the electric charge quantization on a (1+1) dimensional
spacetime.



8. Summary and outlook

In this concluding chapter we first highlight the main results of the thesis. Then we
discuss and further point out aspects in connection with the thesis as an outlook.

Summary

The main scope of the present thesis is laid on relativistic features of laser-induced
tunnel-ionization. In order to present a comprehensive study on the tunnel-ionization
we approached the problem under different aspects with different tools. We have
first discussed gauge theory in chapter 2. We introduced the gauge invariant energy
operator for an arbitrary time independent electromagnetic field enabling us to define
the tunneling barrier for tunnel-ionization without ambiguity. Consequently, it is
clearly pointed out that the tunneling mechanism for the ionization is not an intuitive
picture that is valid in the certain gauges, but it was identified as a gauge invariant
physical mechanism [45].

Next in chapter 3, the relativistic character of tunnel-ionization was investigated.
First, it was demonstrated that in the relativistic regime, where one cannot neglect the
magnetic field component of the laser, the ionized electron experiences a momentum
shift along the laser’s propagation direction. This result was obtained in the WKB
approximation by reducing the whole dynamics to the one dimensional picture. Then,
this result was clearly corroborated using the strong field approximation. Further, an
ab initio numerical calculation confirmed the aforementioned result [31, 45].

In chapter 4, spin dynamics was discussed as a further relativistic feature of tunnel-
ionization [89, 91, 111]. This dynamics was investigated via spin asymmetries. It was
shown that there is an asymmetry between the tunneling probabilities of different
spin states. Even taking into account the effect of the laser on the bound state, it is
shown that although the asymmetry is suppressed for nonrelativistic parameters, for
relativistic parameters the spin asymmetry prevails.

One of the most controversial issues regarding tunneling, the tunneling time
delay, was discussed in chapter 6. Although no well defined time operator conjugate
to the Hamiltonian exists in quantum mechanics, the time delay problem can be
investigated according to the rules of quantum mechanics. To this end, the Wigner’s
time delay definition was adopted. First, we investigated it for model problems
given in Sec. 6.2 via comparing the Wigner trajectory with the quasiclassical one at
remote distance. Then, the definition was extended to the tunnel-ionization process.
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It was shown that for the deep tunneling regime, where the continuum side of the
potential is approximated linearly, the time delay vanishes. However, at a large
laser field strength, in the near-threshold-tunneling regime of the tunnel-ionization,
it was demonstrated that the signature of the time delay can be measurable at the
detector [31, 45].

The detailed investigation of gauge theory led us to a path-dependent formulation
of gauge theory as we discussed in chapter 2. In this equivalent formulation, the vector
potentials are expressed in terms of paths instead of the gauge function of conventional
gauge theory. Furthermore, this formulation leads to a geometric interpretation of
gauge theory. Specifically, it is of great convenience for the quasiclassical calculation
of the propagator via canceling the interaction term of the action [130]. Therefore, in
chapter 5 we have calculated the relativistic propagator for an arbitrary constant and
uniform electromagnetic field, for an arbitrary plane wave, and for an arbitrary plane
wave combined with an arbitrary constant and uniform electromagnetic field. In this
calculation we have used the proper time formalism. These results were later used
in order to redefine the Wigner trajectory in terms of the phase of the fixed energy
propagator, which is a more fundamental approach.

Finally in chapter 7, one of the most significant long standing unresolved problem
in theoretical physics, which is charge quantization, was discussed via the path-
dependent formulation of gauge theory. It was shown that, in the absence of a
magnetic monopole, the possible reasons for charge quantization can be the unique-
ness of the wave function for different paths yielding the same vector potentials.
The developed formalism was applied in a (1+1) dimensional spacetime where the
confined electric field due to pair production not only explains the charge quantization
but also predicts the fundamental unit of the charge [69].

Outlook

First of all, our intuitive picture for relativistic tunnel-ionization is based on a one
dimensional approximation of the exact potential barrier. Although in the absence
of a magnetic field the full problem can be reduced to a one dimensional problem
via separation of variables in parabolic cylindrical coordinates, the reduction of the
entire problem to one dimension is still missing in the presence of a magnetic field.
Hence finding a coordinate system which can separate the full Schrödinger equation
could be a significant achievement.

The strong field approximation (SFA) is a commonly used and powerful mathemat-
ical tool for the strong field ionization. However, the main deficiency of the SFA is
its gauge dependence. Although the dressed SFA can produce gauge invariant results
in certain partitions of the Hamiltonian, the partitioning of the Hamiltonian cannot
be unique. Therefore, a new mathematical method that can yield gauge independent
results would reveal further properties of strong field ionization.

The controversy on the tunneling time delay in the literature is due to the lack of a
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well defined time operator in quantum mechanics. A successful attempt to raise the
parameter time to an operator would be a milestone work in the understanding of the
foundations of quantum mechanics. The main reason for the current status of time as
a parameter is that while time can take any value, the spectrum of the eigenvalues
of the Hamiltonian that is conjugate to time cannot span the entire real line. This
main argument was given by Pauli in 1926 [34, 35]. One possible resolution of the
problem might be to extend the Hamiltonian in such a way that the eigenvalues of
the new Hamiltonian span the entire real line, but its eigenvalues on the physical
state coincide with those of the ordinary Hamiltonian, as in the case of the covariant
quantization of the electromagnetic field with the introduction of unphysical states.

In chapter 4, we investigated the spin asymmetries in the tunneling regime. Actu-
ally, the spin states of interest used in this chapter are eigenstates of the Hamiltonian
as well as of the total angular momentum operator J , but not of the spin operator S.
The standard spin operator found in all textbooks S = ~Σ/2 does not commute with
the free Hamiltonian, nevertheless there is no physical background for it. Although
there are many proposals for a relativistic spin operator, (see [165] for a compre-
hensive review for comparison of different spin operators), we have also proposed a
relativistic spin operator which commutes with the free Dirac Hamiltonian as well as
satisfies the corresponding rotation group algebra, S U(2) algebra, in appendix B. As
a consequence, an investigation of spin asymmetries in terms of the eigenstate of the
“right” spin operator would be a very remarkable research.

We want to conclude with commenting on gauge theory. We are confident that
the path dependent formulation of gauge theory may reveal further phenomena in
electromagnetism as well as in other gauge theories. Moreover, it might take the
initiative to connect gauge symmetry with spacetime symmetries due to the fact that
the path-dependent formalism provides a geometric interpretation of gauge theory.





A. Liénard - Wiechert potential in a
(1+1) dimensional spacetime

In an arbitrary (d+1) dimensional spacetime, the nonhomogeneous Maxwell’s equa-
tion (7.32) can be written in terms of the potential as

∂2Aµ(x) =
2πd/2

Γ(d/2)
Jµ(x)

c
(A.1)

where the Lorenz gauge ∂µAµ is employed. Note that in terms of the language of the
path-dependent formalism, there exists a certain set of paths, which may be called
the Lorenz paths, that ∂µAµ(P) = 0 holds.

The corresponding solution of the potential, then, can be obtained via

Aµ(x) =
2πd/2

Γ(d/2)c

∫
dd+1x′D(x, x′)Jµ(x′) (A.2)

where the current Jµ(x) of a point charge q moving on the world line rµ(τ) =(
r0(τ), ri(τ)

)
can be written as

Jµ(x) = qc
∫

dτVµ(τ)δd+1(x − r(τ)) (A.3)

with the velocity of the source V(τ) [2]. Furthermore, the Green’s function, the
propagator, D(x, x′) defined in Eq. (A.2) satisfies

∂2
xD(x, x′) = δd+1(x − x′) (A.4)

with the (d+1) dimensional Dirac delta function δd+1(x − x′). Then in the Fourier
k-space, the transformed Green’s function D̃(k) yields

D̃(k) = − 1
k2 . (A.5)

The causal fields can be obtained via the retarded Green’s function. The retarded
propagator Dr(z) is followed by

Dr(z) = − 1
(2π)d+1

∫
dd+1k

e−ik·z

(k0 + iε)2 − k2 (A.6)

with z = x − x′ and ε > 0.



114 Appendix A. Liénard - Wiechert potential in a (1+1) dimensional spacetime A.0

In a (1+1) dimensional spacetime, the field strength tensor only includes the
electric field as

Fµν =

(
0 −E
E 0

)
, (A.7)

such that
E = F10 = ∂1A0 − ∂0A1 . (A.8)

Then, the retarded propagator for a (1+1) dimensional spacetime reads

Dr(z) =
θ(z0)
4πi

∫ ∞

−∞
dk1

eik1(z1+z0)

k1 − eik1(z1−z0)

k1

 . (A.9)

Furthermore, after calculating k1 integral for the causal vector z0 > |z1|, the retarded
propagator can be written

Dr(z) =
1
2
θ(z0)θ(z0 − |z1|) . (A.10)

As a consequence, plugging the retared propagator (A.10) and the current vec-
tor (A.3) into Eq. (A.2), the causal potential

Aµ = q
∫

dτVµ(τ)θ(x0 − r0(τ))θ
(
x0 − r0(τ) − |x1 − r1(τ)|

)
(A.11)

is obtained, which is the Liénard-Wiechert potential for a (1+1) dimensional space-
time. Note that in contrast to the (3+1) case where the retardation condition appears
in the vector potential, in a (1+1) dimensional world, this condition comes later with
defining the causal electric field.

From Eq. (A.8), the causal electric field reads

E = −q
∫

dτV0(τ)θ(x0 − r0(τ))
∂

∂x1 θ
(
x0 − r0(τ) −

∣∣∣x1 − r1(τ)
∣∣∣)

− q
∫

dτV1(τ)δ(x0 − r0(τ))θ
(
x0 − r0(τ) −

∣∣∣x1 − r1(τ)
∣∣∣)

− q
∫

dτV1(τ)θ(x0 − r0(τ))δ
(
x0 − r0(τ) −

∣∣∣x1 − r1(τ)
∣∣∣) . (A.12)

Since the second integral vanishes, the causal field becomes

E = −q
∫

dτθ(x0 − r0(τ))δ
(
x0 − r0(τ) −

∣∣∣x1 − r1(τ)
∣∣∣) (V1 ∓ V0

)
(A.13)

where − (+) sign in front of V0 is for x1 − r1(τ) > 0
(
x1 − r1(τ) < 0

)
. The Dirac delta

in Eq. (A.13) gives the retardation condtion

x0 − r0(τ0) =
∣∣∣x1 − r1(τ0)

∣∣∣ . (A.14)
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Furthermore, because the velocity satisfies the condition V0 >
∣∣∣V1

∣∣∣, the causal electric
field for a (1+1) dimensional world can be written as

E =


q θ

(
x1 − r1(τ+

)
, x1 − r1(τ) > 0,

−q θ
(
r1(τ−) − x1

)
, x1 − r1(τ) < 0 ,

(A.15)

where the light-cone conditon is given by x0 − r0(τ±) = ±
(
x1 − r1(τ±)

)
. This can be

further compactified as

E(t, x) = q
(
θ
(
x1 − r1(τ0)

)
− θ

(
r1(τ0) − x1

))
. (A.16)





B. On the relativistic spin operator

The spin operator that is used in the standard relativistic quantum mechanical calcula-
tions is given by

S i =
Σi

2
=

1
2

(
σi 0
0 σi

)
. (B.1)

Although it satisfies S U(2) Lie algebra, there is a substantial deficiency of this
operator; it does not commute with the free Dirac Hamiltonian [57]. It only commutes
with the corresponding free Hamiltonian in the rest frame of a given Dirac particle.
We have identified it as a deficiency, since there is no physical background of the
reasoning of why it does not commute with the free Hamiltonian. On the contrary,
there is neither a dynamical rotation nor a kinematic rotation on the free spin state.
Namely, there is no interaction to cause any dynamical rotation and further, since one
can go to an arbitrary frame from the rest frame by a single boost transformation,
there cannot exist a Thomas-Wigner rotation [166, 167] on the spin state.

One way to resolve the problem is diagonalizing the free Dirac Hamiltonian via
Foldy-Wouthuysen transformation. In this new representation the free Hamiltonian
commutes with the spin operator (B.1) [168]. However, the rest of the formulation of
the relativistic quantum mechanics should be based on the new formulation, which
can be treated as a drawback.

Instead, one can construct the relativistic spin operator, which satisfies both S U(2)
Lie algebra and commutes with the free Hamiltonian, on the basis of the group
theoretical consideration of the Poincaré transformation x′µ = Λµνxν + aµ. Indeed,
each irreducible unitary representation of the Poincare group (combined with the
discrete symmetries such as C, P, T ) can be connected to the corresponding quantum
state of an elementary particle [167,169,170]. Hence, for a Dirac particle, one should
be able to construct the corresponding spin operator via the associated irreducible
unitary representation.

As comprehensively described by Wigner in [167], the Poincaré group can be
represented for a quantum particle on the Hilbert space of one particle states. The
one particle state can be denoted with momentum p and all collective other quantum
numbers σ as |p , σ〉 = a†p ,σ |0〉 with the vacuum state |0〉. Since p can span the
entire real line, the Hilbert space of one particle state is infinite dimensional and as a
consequence the associated representation can be unitary and the generators of the
Poincaré group can be represented by hermitian operators [167] (see [20, 171–173]
for the details). Furthermore, finding the unitary irreducible representations of the
Poincaré group can reduce to finding the unitary irreducible representations of its
little group [167].
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The little group is the subgroup of the Poincaré group which leaves a given choice
of Pµ invariant. For a massive particle, one can always defined a rest frame Pµ =

(m, 0). Trivially, mass is the first invariance, and further, the group of transformations
which leaves Pµ = (m, 0, 0, 0) invariant is the group of three dimensional spatial
rotations S O(3). Further, for spin representation of the rotation group, one can also
specify the little group as S U(2) which is the double cover of S O(3). It is well-known
that the irreducible representations of S U(2) are labeled by the spin quantum number
s [115]. Thus, a massive particle can be completely characterized by two labels, mass
m, and the spin s [20, 171, 172].

In fact, there is another way to see that a massive representation of the Poincaré
group can be completely specified by the labels m and s. This is based on the Casimir
operators. By definition, the Casimir operators are operators that commute with
all the generators of the algebra, and hence, the representation on the space of the
eigenstates of the Casimir operators is irreducible. Moreover, the Casimir operators
can also reveal the relativistic spin operator as follows: The Poincaré group has two
Casimir operators [20, 172, 174]

P2 = PµPµ , (B.2)

W2 = WµWµ , (B.3)

where Wµ = −εµνρσMνρPσ/2 is the Pauli-Lubanski vector with the generators of the
homogeneous Lorentz transformations Mµν and the translations Pµ. For a massive
particle, one can go to the rest frame Pµ = (m, 0) where the components of the
Pauli-Lubanski vector yield

W0
R = 0 , (B.4)

W i
R = mS i . (B.5)

Here we identified the spin S i as the value of total angular momentum Ji in the rest
frame. Thus, two Casimir operators read

P2 = m2 , (B.6)

W2 = −m2S2 , (B.7)

which leads to the facts that the representations are labeled by the mass m and by the
spin s for massive particles as we promised. Further, we observe that S2 is Lorentz
invariant and relativistic spin operator is related to Pauli-Lubanski vector via Eq. (B.5)
as

S =
WR

m
. (B.8)

This relation can further be identified in an arbitrary frame via

W i
R = L−1(p)i

µW
µ = W i − PiW0

m + H
(B.9)

with the inverse Lorentz transformation L−1(p)νµ [20]. As a result, the spin operator
originally defined in Eq. (B.8) yields

S =
W

m
− W0P

m(m + H)
, (B.10)



B.0 119

and in terms of the generators of the Poincaré group, it reads

S =
HJ
m
− K × P

m
− P (P · J )

(H + m)m
. (B.11)

This form of the spin operator has been known since early days of quantum mechanics
(see [175]) and later it was rederived in different context [172, 173, 176–179].

What we have proposed is the following; the spin operator (B.11) can be further
elaborated in the Dirac basis via choosing the following representations for the
generators of the Poincaré group [180]

P = −i∇ , (B.12)

H = α · P + mγ0 , (B.13)

J = x × P +
Σ

2
, (B.14)

K =
1
2

(Hx + xH) . (B.15)

After plugging the representations into Eq. (B.11), it is calculated that the spin
operator reads

S =
γ0Σ

2
+
P

2
γ5

(
γ0 + 1

) 1
H + m

. (B.16)

Finally, using the operator identity

1
H + m

=
α · P + m(γ0 + 1)

P 2 , (B.17)

we end up with the “right” relativistic spin operator

S i =
γ0 Σ j

2

(
δi j + (γ0 − 1)P̂iP̂ j

)
. (B.18)

There are many remarkable features of this spin operator: First of all, it fulfills
S U(2) algebra in order to be the generator of the rotation group. Next, it commutes
with the free Dirac Hamiltonian and hence the drawback that we discussed at the
beginning of the appendix has been removed. Furthermore, since we constructed
it via the unitary representation of the Poincaré group, it includes the γ0 factor in
itself, which identifies the Lorentz scalar as ψ† ψ instead of ψψ. Another consistent
property of the relativistic spin operator (B.18) is that it yields the proper helicity
operator S · P as

S · P =
Σ · P

2
. (B.19)
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