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INTRODUCTION 

Basic research in the area of complex problem solving (henceforth CPS) has 
been criticized repeatedly for its lack of a theoretical foundation (Funke, 
1986, 1991a). As will become apparent, this state of affairs has changed 
little. There is still a long way to go before a level of theoretical resolution 
is achieved that is comparable to that of the related areas of learning and 
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memory research. This chapter describes and evaluates important basic re­
search approaches to the study of CPS. Besides being strongly biased toward 
basic research, the discussion is naturally confined to topics not covered in 
detail in other chapters. 

What follows is divided into four sections. Quite conventionally, a bit of 
history will make up the first section of the chapter. The historical perspective 
is useful in sketching what could be considered major trends in CPS research, 
the discussion of which will be spiced with a number of the area's most 
aggravating methodological problems. Second, approaches will be presented 
that try to pin down what CPS is by relating it to constructs traditionally 
used to describe interindividual differences. Some of this research will be 
called deficit oriented, mostly because of some researchers' conviction that 
subjects who fail can tell us more than those who succeed. In contrast, the 
third section will introduce competence oriented approaches that focus on 
determinants of successful learning and control. These approaches typically 
base their theorizing on formal analyses to the task environments. The final 
section will try to name and characterize interesting future directions of 
research in the area. 

HISTORICAL AND METHODOLOGICAL ASPECTS 

As has been pointed out in the first chapter, research on problem solving— 
particularly in the German­speaking countries—dates back to the very early 
days of Experimental Psychology. Basic research that looks at how people 
interact with complex dynamic task environments did not become possible, 
however, until new technological advances enabled the simulation of com­
plex systems in laboratories. While this was a necessary precondition for 
this new line of problem­solving research, the force behind it arose largely 
from two other, independent sources. One was a sincere discontent with 
the limitations of the theoretical concepts present at the time which did not 
seem to be able to explain how people control "buildings, equipment, man­
power and consumable supplies" (Broadbent, 1977, p. 192). The second 
source was a dissatisfaction with a one-sidedness of tasks (see Dorner & 
Reither, 1978, p. 527) used in typical laboratory studies on problem solving 
such as chess or the disk problem (Ewert & Lambert, 1932; later the problem 
was referred to as the Tower of Hanoi). Such problems were criticized for 
being too simple, fully transparent, and static, whereas real­world economi­
cal, political, and technological problem situations were said to be complex, 
intransparent, and dynamic. Thus, controlling dynamic scenarios such as 
simulated economies, cities, and factories would seem to bring real world 
problems into the laboratory (Dorner, 1981). It is probably not a mere co­
incidence that such statements emerged at about the same time as Neisser 
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(1976) published his influential plea asking for ecologically more valid said-
ies in Cognitive Psychology. 

However, as should become evident in the reminder of this chapter, 
although both approaches appear to have been motivated similarly, there 
are fundamental differences between them in terms of methodology, re­
search strategy, and theoretical development, to name just a few. For in­
stance, Broadbent (1977), in illustrating this point, described a study in which 
subjects controlled a simple city TRANSPORTATION SYSTEM that was based 
on two simultaneous linear equations. The number of individuals per bus 
and the available parking space could be manipulated by altering the time 
interval between buses entering the city and by altering the parking fees. 
Broadbent emphasized that the system was deliberately kept simple and 
mathematically well­defined "to allow an analysis of psychological proc­
esses" (p. 192). 

The other end of the continuum is occupied by the often­cited 
LOHHAUSEN study (Dorner, Kreuzig, Reither, & Staudel, 1983; see also 
Dorner, 1981, 1987). In this study, subjects were asked to control a small 
town (named LOHHAUSEN) by manipulating, for instance, the working 
conditions, leisure time activities, taxes, the housing policy and the like. 
Overall, the LOHHAUSEN computer simulation comprised more than 2,000 
highly interconnected variables, far too many for subjects to digest even 
within the span of 8 two­hour experimental sessions.' The goal for subjects 
governing LOHHAUSEN was deliberately kept vague. They were simply told 
to make sure the town would prosper in the future. Each subject interacted 
with the system indirectly by telling the experimenter which measures to 
take. The experimenter would then make the appropriate inputs. Also, sub­
jects had to acquire the information they felt to be important by asking 
questions of the experimenters who, in turn, tried to answer at the level of 
aggregation of the questions. In sum, the LOHHAUSEN study combined a 
number of features believed to be relevant in real­life political and economic 
decision making. 

To return to Broadbent (1977), his focus was on the striking disparity 
between his subjects' satisfactory control performance on the one side and 
the lack of subjects' ability to answer questions about the system they had 
learned to control on the other. The fundamental question was which overall 
cognitive architecture would be capable of explaining such findings. In 
subsequent studies, Broadbent and Berry and their coworkers were able to 
pin down a number of factors that appear to influence the development of 
either control performance or verbalizable knowledge or both (e.g., Berry, 

'While LOHHAUSEN certainly represents the "tip of the iceberg," the naturalistic task 
environments used in the systems thinking program (Dorner, 1983a) generally tend to be quite 
large and complex with many interconnected variables—typically about 10­60 ( s e e Funke, 
1988, 1991b, for a review and brief characterization of these systems). 
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statistically significant results (Eyferth, Schomann, & Widwoski, 1986), the 
systematic variation and control of system properties both helps to detect 
effects that are unique to a specific task, and it serves to estimate the impact 
of these properties on processes of knowledge acquisition and knowledge 
application. 

At this point, it is interesting to note that, within the systems thinking 
tradition, a few naUiralistic scenarios have become quite popular and are 
typically referred to by their proper names as if they constituted experimental 
paradigms in their own rights. A short list of examples includes MORO 
(Putz-Osterloh, 1985, 1987; Putz-Osterloh & Lemme, 1987; Roth, Meyer, & 
Lampe, 1991; Strohschneider, 1986, 1991; Staudel, 1987), FIRE (Brehmer, 
1987, this volume; Brehmer & Allard, 1991; Dorner & Pfeifer, 1992; Schoppek, 
199D, and the TAILORSHOP (Funke, 1983; Hormann & Thomas, 1989; 
Hussy, 1991; Liier, Hiibner, & Lass, 1985; Putz-Osterloh, 1981, 1983b, 1987; 
Putz-Osterloh & Lemme, 1987; Putz-Osterloh & Liier, 1981; Siifc, Kersting, 
& Oberauer, 1991).2 This development most likely is a consequence of the 
fact that naairalistic scenario's are formally intractable systems with largely 
unknown properties such that they do not lend themselves to experimental 
manipulations. Needless to say, simply using a task with largely unknown 
properties over and over again is not a solution to the problem. 

The availability of formal tools to describe the dynamic task environments 
with sufficient precision provided a first basis for theorizing about how 
system knowledge could be represented in memory. For instance, Funke 
(1985, 1986) has suggested a class of dynamic tasks based on linear equation 
systems. The relations among the variables of these systems can be described 
by deterministic multivariate autoregressive processes. Consequently, Funke 
(1985, 1986) hypothesized that a subject exploring and later controlling a 
dynamic task environment that is based on linear equation systems, gradually 
constaicts a causal model of the task. In a certain sequence, information is 
added to the model corresponding to the autoregressive processes' parame­
ters (such as the direction and the relative strength of the interconnection 
between two variables). 

The idea of taking the formal model of a task as a starting point for 
theorizing about its mental representation is perhaps test illustrated by anal­
ogy to the role of formal logic in research on deductive reasoning. While 
early hypotheses discussed in the psychology of reasoning rested on the 

MORO is a developing country scenario in which subjects can influence the living conditions 
of a ficticious nomadic tribe. FIRE is a fire fighting scenario in which fire fighting units must 
be deployed so as to minimize the impact of fires that emerge unpredictably at various locations 
of an imaginary terrain. This scenario—with a different semantic embedding—was first used 
in military contexts. Finally, subjects managing the TAILORSHOP must run a simplistic small 
company by purchasing raw materials, hiring and firing workers, and the like. Again, these 
scenarios have been described in detail by Funke (1986, 1988, 1992b). 
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premise that human inferencing was to be seen in close analogy to formal 
logic (Beneke, 1833/1877), it appears that the systematic deviations from 
this premise were particularly interesting cases for both empirical research 
and theorizing (e.g., Wason & Johnson-Laird, 1972). Very similarly, formal 
system characteristics, for instance those of linear equation systems, can be 
used as a starting point for theorizing about the representation of such 
systems in memory. 

To summarize, research on human performance when interacting with 
complex dynamic systems has been coarsely divided into two different main 
streams. One approach has been to use naturalistic scenarios in order to 
bring everyday problems into the laboratory, and to try to identify interin-
dividual differences in how subjects control a dynamic system. In contrast, 
the other approach has been to use formally well-defined systems with 
known properties and to systematically manipulate feaaires of the task en­
vironment to test assumptions about how people acquire and use knowledge 
in interacting with these tasks. Each approach appeals to a different part of 
the research community. 

Of course, the distinction between the two lines of research is not quite 
as clear­cut as has been portrayed here. For instance, researchers employing 
naturalistic scenarios do in fact manipulate some features of their tasks— 
features that do not require any knowledge of formal system properties such 
as the semantic context of the system (Hesse, 1982a) or the degree to which 
the system variables' interrelations are made transparent to subjects (Putz­
Osterloh & Liier, 1981). Nevertheless, the bisection appears useful in that it 
captures the general trends in the field. With this in mind, it is now appro­
priate to go into more detail and look at some of the major empirical and 
theoretical developments in the area. 

THE SEARCH FOR INDIVIDUAL DIFFERENCES 

A number of diverse constructs have been used as determinants of interin­
dividual differences in system control performance. Among them, we find 
constructs that are known to have a psychometric background, such as test 
intelligence or motivation. In addition, a number of concepts have been 
coined rather ad hoc to descrite phenomenologically what distinguishes 
good from poor system controllers. As mentioned previously, poor control­
lers have been said to be unable to understand the concept of exponential 
growth, to reason in causal chains rather than in causal nets, and to exhibit 
a tendency towards "intellectual emergency reactions" (see Dorner, 1981, 
p. 167). It is important to keep these two major classes of concepts separated 
because the former, but not the latter, are psychometrically founded as of 
yet. This, of course, must not be understood as a prejudice about the theo­
retical value of constructs from the one or the other class. 
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Intelligence, Learning Potential, and Motivation 

One of the most startling results of early research on how people controlled 
dynamic systems was the lack of a correlation between subjects' intellectual 
abilities as assessed by Raven's (1965) Advanced Progressive Matrices or 
other standard tests of intelligence, and control performance—at least not 
when the problem was intransparent, as many real-life problems were said 
to be (Dorner, 1979; Putz-Osterloh, 1981; Putz-Osterloh & Liier, 1981). These 
findings seemed rather plausible at the time, given the pertinent dissatisfac­
tion with static and artificial standard tests of intelligence combined with 
the idea that naturalistic scenarios would somehow be more ecologically 
valid. This may help to explain, among other things, the popularity of control 
tasks in personnel selection (see U. Funke, this volume) despite warnings 
of experts in the field against this practice (Kluwe, Schilde, Fischer, & Oel­
lerer, 1991). However, the patterns of correlations between measures of test 
intelligence and measures of control performance in subsequent studies 
have been much less clear, and their interpretation is subject of an ongoing 
debate (for details see Beckmann & Guthke, this volume). For a theory of 
how people control dynamic systems, however, the most promising way 
seems to go beyond simply correlating global test intelligence scores with 
control performance measures. Rather, it seems more interesting to try to 
single out components of intellectual ability that contribute to control per­
formance under different experimental conditions. In other words, a purely 
psychometric approach is probably not sufficient if anything of theoretical 
relevance is to be gained. 

Consider, for instance, the study by Hussy (1989) in which several variants 
of a relatively simple dynamic system were employed. Subjects' task was to 
control a LUNAR LANDER—its speed, heat, fuel resources, and height above 
the moon surface—and bring it to ground safely. The nonlinear problem is 
mathematically tractable (Thalmaier, 1979). The average deviation of a sub­
ject's intervention from what would be the optimal input served as perform­
ance measure. As in a number of studies before, Hussy (1989) manipulated 
how transparent the problem was for subjects. In the transparent condition, 
numerical information was provided about the effects of different slow­down 
maneuvers, and subjects received feedback about some of the system states. 
This information was not available in the intransparent condition due to 
"inoperative gauges." All subjects' intellectual abilities were assessed using 
scales from the Berlin Intelligence Stmcture Model Oager, 1982). According 
to this model, operative factors such as speed of processing, memory, or 
processing capacity with respect to verbal, figural, and numerical information 
processing must be distinguished. Among other things, Hussy (1989) found 
processing capacity to be the single most predictive operative factor, regard­
less of the experimental condition. However, in the intransparent condition, 
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figural memory, but not verbal or numerical memory, predicted control 
performance. This finding fits the assumption that intransparent systems 
place particularly high demands on subjects' ability to generate and maintain 
mental models of the task for successful control. 

Hormann and Thomas (1989) used the same tasks to measure intelligence, 
but their subjects controlled the TA1LORSHOP, a 24-variable scenario in­
tended to simulate a small company that subjects were asked to run for 12 
fictitious months. HOrmann and Thomas's results differed from those of 
Hussy (1989) in that control performance—the amount of capital accumu­
lated over the 12 months—correlated with indicators of intelligence only 
under the transparent presentation condition. The authors also assessed 
subjects' system knowledge in terms of how many relations between vari­
ables subjects were able to reproduce correctly after the control trials. Hor­
mann and Thomas (1989) argue that this measure, in contrast to the control 
performance index, reflects how well subjects understood, and learned 
about, the complexity of the entire system. System knowledge correlated 
highest with the processing capacity operative factor. In the intransparent 
condition, the memory factor correlated with performance. The latter findings 
parallel those of Hussy (1989; see also Sills' et al., 199D, but it should be 
kept in mind that the systems used appear to differ greatly (although we 
have no means to analyze exactly how they differ). Another problem is that 
the two studies rely on different dependent measures (in fact, the amount 
of capital accumulated in running the TAILORSHOP is a rather arbitrary, 
idiosyncratic measure of performance). Nevertheless, both studies seem 
promising for a future theory in that they combine a component­oriented 
view of what constitutes intelligence with theoretically meaningful experi­
mental manipulations of system properties. In other words, studies on the 
relation between intelligence and the control of dynamic systems seem in­
teresting to the degree to which they can contribute to answering the ques­
tion which cognitive faculty is demanded by which property of the task. 

A very recent development is to relate not static intelligence but rather 
subjects' learning potential to performance on dynamic control tasks 
(Guthke, 1993a; for details see Beckmann & Guthke, this volume). Both 
types of tasks seem to involve learning from feedback about success and 
failure which is not true for traditional tests of intelligence (Guthke, 1993b). 
Beckmann (in press) has provided interesting evidence pertaining to this 
presumption. He investigated the relation between both control performance 
and system knowledge on the one side, and learning potential performance 
on the other. Subjects interacted with a dynamic scenario based on linear 
equation systems. The same underlying system was either presented as an 
abstract MACHINE with three different dials as input variables and three 
gauges as output variables, or as a concrete CHERRYTREE with water supply, 
light, and warmth to be regulated, and the number of cherries, leaves, and 
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insects on the tree as output variables. As it turned out, subjects learned 
nothing when interacting with the CHERRYTREE, and there was no relation 
between control performance and either of two learning potential tests. 
Presumably, the semantic context provided by the CHERRYTREE labels pre­
vented subjects from acquiring new information. Rather, they maintained 
their inadequate prior knowledge. In contrast, however, subjects showed 
significant learning when interacting with the structurally identical MACHINE 
system, and there were indeed substantial correlations between learning 
about the system and performance on both learning potential tests. These 
results validate Guthke's (1993b) assumptions and show that it is rather 
promising to further explore what is or is not shared in terms of cognitive 
processes between interacting with complex dynamic tasks and the construct 
of learning potential. 

Focusing on nonintellectual aspects of problem solving, Hesse, Spies, 
and Liier (1983) investigated the influence of motivational factors on how 
well subjects controlled the spread of an epidemic in a small town. These 
authors based their study on a state­trait concept of motivation. The trait 
component—success versus failure orientation—was assessed by a ques­
tionnaire, while the state component was manipulated experimentally by 
describing the disease as rather, or not very disastrous; one group of subjects 
was told to fight smallpox, the other group fought influenza. The underlying 
system was identical for both groups. The smallpox, but not the influenza 
group, was assumed to show high degrees of personal involvement. A rather 
complex combination of the values of several system variables served as 
performance criterion. The results were rather clear; subjects in the smallpox 
group showed more personal involvement, took more time, and were better 
at controlling the spread of the disease than subjects in the influenza group. 
In addition, better performance for the smallpox problem was observed for 
subjects classified as success oriented. More detailed analyses with respect 
to the state component of motivation revealed, among other things, that 
highly involved subjects showed more signs of self­reflective and analytical 
cognitive activity which resulted in a better understanding of the system and 
a selection of more effective measures to control the spread of the diseases. 
Also, the trait­component of motivation resulted in better performance pri­
marily because success­oriented, but not failure­oriented subjects sustained 
their initial levels of self­reflective activities. 

This study is interesting not only because it helps to integrate problem­
solving research with other research areas, but also because the authors 
took a step toward analyzing in more detail how relatively stable and rela­
tively transient aspects of motivation influence the way people attempt to 
understand and control a dynamic system. 

A number of other personality traits have been related to control per­
formance with varying success. For instance, self­confidence and a ques­
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tionnaire of cognitive control were found to correlate substantially with a 
summary performance score in the LOHHAUSEN task (Dorner, Kreuzig, 
Reither, & Staudel, 1983; Kreuzig, 1981). One major problem is, however, 
that these assessments have taken place after the control task. Funke (1986) 
was able to show that post hoc correlations between control performance 
and the questionnaire of cognitive control were much larger than a priori 
correlations, suggesting that the questionnaire was capturing people's mem­
ory of having been successful or unsuccessful at the task rather than pre­
dicting success. In addition, the fact that subjects governing Lohhausen had 
to interact with the experimenter to retrieve system information and to make 
system interventions, may account for the role of self­confidence in control 
performance in this particular task. 

Certain features of spoken language (e.g., use of words classified as 
dogmatic such as all, always, or must) were also related to poor control 
performance (Roth, 1985, 1987). Unfortunately, these results could not be 
replicated (Roth et al., 1991), and the theoretical connection between control 
performance and linguistic features remains unclear. Finally, eye movement 
patterns have also been found to covary with control performance. Liier, 
Hiibner, and Lass (1985) compared the best and worst subjects in their sample 
and found that less successful subjects showed unsystematic strategies of 
collecting information from the display. 

Experts Versus Novices 

Another typical approach to analyze how a task is performed is to look at what 
distinguishes experts from novices. Reither (1981) found that, in line with 
assumptions about differences between good and poor controllers (Dorner, 
1981), novices were more likely to reason in causal chains as opposed to causal 
nets, and also more likely to ignore side effects when interacting with a 
scenario simulating "the climatic, ecological, and ethnic conditions of a region 
similar to Upper Volta in West Africa" (Reither, 1981, p. 126; translation by the 
author). Experts were economic aid professionals with 6 to 8 years of 
e x p e r i e n c e in T h i r d W o r l d c o u n t r i e s , a n d n o v i c e s w e r e p o s t g r a d u a t e s w h o 
were just about to start an economic aid career. 

Putz­Osterloh (1987) compared seven economics faculty with a sample of 
30 "unselected" students on their interactions with, first, the economic scenario 
TAILORSHOP and, later, the Third World ecological scenario MORO. Depend­
ent measures were derived from subjects' control performances and from 
thinking aloud protocols. For both systems, Putz­Osterloh found that the 
experts were better than the student sample with respect to knowledge 
acquisition and verbalized intervention strategies. In contrast, experts' control 
performance was better at the economical scenario TAILORSHOP than at the 
ecological scenario MORO. In particular, when controlling the TAILORSHOP, 
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experts, but not novices, were able to take into account conflicting goals such 
as simultaneously having to increase the company's revenues and the workers' 
wages. This was interpreted to show that experts have an advantage over 
novices because they can use their domain-specific knowledge to control the 
economic system, whereas their generalizable heuristic knowledge about how 
to operate complex systems shows up in better system knowledge and more 
adequately verbalized strategies in both systems. A replication of the previous 
study (Putz-Osterloh & Lemme, 1987) compared 24 graduate students in 
business administration who served as experts to 28 students from non-busi­
ness areas. This time, experts were better at controlling both MORO and the 
TAILORSHOP. However, both groups of subjects were indistinguishable with 
respect to strategic knowledge. 

Unfortunately, the pattern of results of these few studies on expert­novice 
differences is inconsistent and, so far, relatively uninformative for a theory of 
CPS. Future investigations should place more emphasis on defining and 
assessing in greater detail what knowledge and skills experts have that novices 
don't (see Funke, 1992b). Ideally, these differences should be explicated a 
priori on the basis of thorough task analyses and the cognitive processes the 
tasks involve, and not by simply observing how apparent experts perform at 
tasks that semantically appeal to the experts' professional designation. This, 
of course, is useful only if one believes that expertise in controlling complex 
dynamic systems is more than just the conditioned application of "grand­
mother's know­how" (Dorner & Scholkopf, 1991) 

Self-Reflection, Heuristic Competence, and the Need 
to Gain Control: The Regulation of Actions 

It seems highly plausible that self­reflection should be helpful in controlling 
complex dynamic systems. In particular, attempts to cope with critical situ­
ations of a system should both stimulate and benefit from self­reflective 
activities (Dorner & Scholkopf, 1991). Indeed, post­hoc analyses of subjects' 
verbalizations when interacting with complex dynamic systems have indicated 
that there might be a difference between good and poor controllers with 
respect to self­reflective activities (Dorner, 1981; Dorner, Kreuzig, Reither, & 
Staudel, 1983; Reither, 1979). As we know from the study by Hesse et al. (1983), 
highly motivated subjects show more signs of self­reflection, and success­ori­
ented subjects sustain their initial levels of self­reflective activities relative to 
failure­oriented subjects. Also, when the matchingfamiliarfigurestesr. is used 
to distinguish between self­reflective subjects (more hits, longer latencies) and 
impulsive subjects (fewer hits, shorter latencies), better control of the LUNAR 
LANDER is observed with those classified as being self­reflective (Hussy & 
Granzow, 1987). 

In addition, it has been shown that experimentally induced self­reflection 
is effective in improving performance on items taken from a standard test 
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of intelligence (Hesse, 1982b). Putz-Osterloh (1983b) attempted to test em­
pirically whether induced self­reflection also increases control performance 
when interacting with the TAILORSHOP. After subjects had made their in­
terventions, they were to answer a number of questions (adapted from 
Hesse, 1982b) pertaining to their past interventions and to the possibilities 
to improve their interaction with the system. These manipulations had no 
effect on control performance. In a subsequent study, Putz­Osterloh (1985) 
investigated whether in the previous experiment the focus of subjects' self­
reflection could have been too general to yield results that could be turned 
quickly into concrete interventions. One group of subjects practiced specific 
self­reflection while working on a training problem. Typical self­reflection 
questions were "Do I have a precise goal?" or "Do I have enough informa­
tion?" Subsequently, subjects controlled the MORO system. In addition to 
control performance, system knowledge was assessed by recording the num­
ber of variables and their interrelations as they surfaced in subjects' think 
aloud protocols. Again, the group that had practiced self­reflection did not 
perform better at controlling the system nor at verbalizing system knowledge 
than the group with no self­reflective practice. Thus, induced self­reflec­
tion—with both rather general and relatively concrete foci—does not seem 
to have an influence on control performance. In the light of the present 
evidence, earlier conclusions based on correlational results that self­reflection 
is instnimental in improving learning about, and control of, complex dynamic 
systems, have to be interpreted with caution. As of yet, there is no evidence 
for a causal role of self­reflection in controlling complex systems. 

Another trait­like concept that has been assumed to play a role in system 
control is subjects' so­called heuristic competence (Dorner, 1982; Dorner, 
Kreuzig, Reither, & Staudel, 1983; Dorner, Reither, & Staudel, 1983). Heuristic 
competence has been defined as "the confidence of a person in his or her 
abilities to cope successfully with novel situations" (Staudel, 1988, p. 137; 
translation by the author). Heuristic competence is assumed to be relatively 
stable and to change only in the long run through accumulated experiences 
with novel problems. The constaict is conceptually related to the locus of 
control(Roner, 1966) and self-efftcacyCBandura, 1977) constructs. Indeed, the 
need to gain and maintain control is thought to be the primary motive that 
underlies subjects' interactions with complex dynamic systems (Brehmer, 
1989; Dorner, 1983b; Dorner, Kreuzig, Reither, & Staudel, 1983). A question­
naire has been developed that measures the constaict of heuristic competence 
(Staudel, 1988). 

Currently, there is some evidence linking high heuristic competence to 
successful control of the MORO system (Staudel, 1987), but there is also 
other evidence of no relation between heuristic competence as assessed by 
Staudel's (1988) heuristic competence questionnaire and control perform­
ance with a relatively simple "cold­storage depot" (Reichert & Dorner, 1988). 
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Beyond the more traditional personality traits, poor controllers, that is, 
subjects who fail to gain control over a complex and intransparent task, are 
assumed to be distinguishable from good controllersby the typical errors they 
make (Dorner, Schaub, Staudel, & Strohschneider, 1988). Over the years, quite 
a few of these errors have been extracted from observations and described in 
a number of studies conducted in Dorner's laboratory (Dorner, 1981, 1983b; 
Dorner & Pfeifer, 1992; Dorner & Reither, 1978; Reichert & Dorner, 1988). 
These errors are said to demonstrate, better than anything else, how cognition, 
emotion, and motivation interact in system control tasks. As an illustrative 
example, consider the feeling of loosing control over the system which may 
result in a "cognitive emergency reaction" (Dorner, 1981), a state in which 
subjects (a) reduce their self-reflective activities, (b) increase their tendency to 
react quickly, (c) entertain more and more reductive and rigid hypotheses 
about what is going on in the system to be controlled, and, (d) formulate 
increasingly global and abstract goals. As this example shows, errors may 
occur at four different stages: (a) in the area of self-organization, (b) when 
making decisions, (c) when framing hypotheses, and (d) when defining action 
goals. 

Based on an analysis of poor controllers, Dorner et al. (1988) have 
presented an action regulation model of how the tendencies to commit errors 
such as the "cognitive emergency reaction" may develop. Even more, the 
model is designed to serve as a "general structure for the explanation of human 
behavior in complex dynamic systems" (p. 217; translation by the author). The 
model is based on a memory structure composed of interconnected sensory, 
motivational, and motor components for storing information about facts, 
needs, and actions, respectively. At the heart of the model, and central for the 
control of actions, are intentions. Intentions are ephemeral units consisting of 
temporarily structured information from memory. Each intention is assumed 
to comprise information about initial and final states, the past history of the 
system, the importance of the intention, its temporal perspective (i.e., the 
beginning and end of actions associated with the intention), the intention's 
success probability, and the competence to act according t.o the intention. 
Further, the model has four information processing units. One unit generates 
intentionsfrom information available about the systems' needs and the current 
environment. Another unit selects intentions from information about the 
situation and thejjatentions currently active in some sort of intention working 
memory (coiaKming the weighted importance of an intention with its associ­
ated success probability much like an expectancy­value model would predict). 
A third unit promotes intentions, either by activating automated action 
sequences or by initiating controlled planning activities. The final unit per­
ceives the environment in light of the currently active intentions, delivering 
information about the space­time coordination of the system. Figure 2.1 
graphically depicts tfie information processing units (in rectangles), together 
with the data structures (in ovals) they operate on. 
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o f a c t i o n r e g u l a t i o n . I n f o r m a t i o n p r o c e s s i n g units a r e r e p r e s e n t e d a s r e c t a n g l e s 

a n d t h e data s t r u c a i r e s t h e y o p e r a t e o n are r e p r e s e n t e d a s o v a l s ( D o r n e r et 

al . , 1988; s e e text for d e t a i l s ) . 

As mentioned previously, this conceptual framework can be used to de­
scribe errors typical for poor controllers. For instance, if the intentions se­
lected for processing change repeatedly, then the unit responsible for pro­
moting intentions is under time pressure and works less well. In turn, the 
system's competence is reduced, a new intention (designed to find the causes 
for the failure) is added to the intentions working memory and competes 
with other active intentions. In addition, the weights of all active intentions 
have to be adjusted. Thus, the selection unit will change the intentions to 
be processed even more often, resulting in even worse processing of the 
intentions, and the associated states of need accumulate. At the end of the 
vicious circle we may find a "cognitive emergency reaction." 

The model is designed to be implemented as a computer simulation (see 
Dorner & Wearing, this volume) and as such has a number of advantages 
over more vague earlier formulations (e.g., Dorner, 1982). Nevertheless, 
Funke (1992b) has criticized the model for being too weak to provide testable 
predictions, and also for presenting as causal hypotheses what are simply 
a priori tniths to the competent language user (e.g., the importance of an 
intention is said to increase if the underlying state of need increases, see 
Dorner et al., 1988, p. 222). More precision is perhaps achieved easiest by 
incorporating in greater detail the theories the model capitalizes on in its 
current state. For instance, the operation of the unit that selects intentions 
might be specified according to existing expectancy­value theories (e.g., 
Feather, 1982). In addition, the concept of competence implied by the rep­
resentation of each intention could be specified by incorporating assump­
tions from self­efficacy theory (e.g., Bandura, 1977). 

However, it is granted that not all aspects of the theory can be open for 
empirical tests, and some tests of the action regulation model might indeed 
be possible. For instance, according to the model, higher competence should 
result in better overall performance but, as mentioned above, the evidence 
for this assumption is contradictory (Reichert & Dorner, 1988; Staudel, 1987). 
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It will be interesting to see which other testable predictions will be derived 
from the model and submitted to empirical tests in the future. 

Another noteworthy point about the model proposed by Dorner et al. 
(1988) is that, although it allows for the theoretical reconstruction of some 
typical errors of poor controllers, other errors identified in earlier research 
as primaryby the same group of researchers (Dorner, 1981; Dorner, Kreuzig, 
Reither, & Staudel, 1983) have been left out. Examples of such primary errors 
include subjects' inability to take into account side effects (i.e., subjects have 
been said to be reasoning in causal chains rather than in causal nets), or 
their lack of understanding of exponential trends. In the present model of 
action regulation, the focus appears to have shifted from looking at why 
subjects fail in terms of the cognitive processes involved to what happens 
during the process of failing. 

The obvious alternative is, of course, to take a closer look at how subjects 
learn about a system and analyze what it takes to arrive at successful control. 
The approaches described in the rest of this chapter take this perspective 
and shall thus be referred to as competence-oriented. As will become clear, 
a competence-oriented perspective quite naturally leads not only to different 
research questions, but also to a different sort of model. The interest is 
primarily in the forms of learning, knowledge representation, and knowledge 
use when subjects interact with complex dynamic systems, and the focus is 
on the impact of the task's properties on these cognitive processes. 

APPROACHES BASED ON FORMAL TASK ANALYSES 

In order to determine the influence of task properties on learning and mem­
ory, one must be able to manipulate the task environment systematically. 
This, in turn, requires that the relevant task properties can be pinned down 
formally. The straightforward way to/ accomplish this goal is to search for 
an established formalism that can be used to describe interesting task envi­
ronments and see how far one can go with it. 

Linear Equation Systems 

Funke (1985, 1986, 1992a, 1992b) has developed ^ theory that combines, 
in one homogeneous framework, three essential aspects of research on how 
people interact with complex dynamic systems: the formal description of 
the task environment, assumptions about learning and knowledge repre­
sentation, and the diagnostic methods to assess what has been learned­

As a formalism for describing dynamic task environments, Funke suggests 
the theory of multivariate autoregressive processes, ARk, where k is the 
degree of temporal dependency between the input of an exogenous system 
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variable and its effect on an endogenous variable.* Bypassing the formal 
details, the approach is best described by giving an example. In one of 
Funke's typical task environments, the so-called SINUS scenario, inputs at 
three exogenous variables have effects on three endogenous variables of 
the system. Like most of Funke's systems, this scenario is time discrete and 
does not change states autonomously, that is, the system waits until the 
subject has made all inputs. The system is abstract in the sense that the 
labels of the exogenous and endogenous variables have no meanings in 
order to minimize the influence of prior knowledge (the approach is also 
applicable to semantically rich domains such as ecological systems, see e.g., 
Funke, 1985). Figure 2.2 presents the system in graphical form, and the 
simultaneous difference equations governing the system behavior are given 
in (1). 

j Y f i = 1 .0 * yt, + 1 0 . 0 • xu 

ytn = 1.0 * yu * 0.2 • yxt + 3.0 • xxt 

yst*, = 0.9 • ya + 2.0 • x2,t + 0.5 * xXl (i) 

where y,t+i represents the state of an endogenous variable / at time t+1, y,,i 
represents the state of an endogenous variable i at time t, and xlf represents 
the state of an exogenous variable i at time t. 

The SINUS scenario is only one instance of an infinitely large class of 
scenarios that are based on simultaneous difference equations. Actually, a 
software shell exists to generate new scenarios following this formalism. 
The precision and simplicity of the formalism makes it very easy to manipu­
late particular features of the task environment such as time delays, variable 
connectivity, et cetera. Also, goal states can be defined precisely, and for 
any current system state, it is possible to specify an optimal intervention. 
From a methodological point of view, these are major advantages over 
naturalistic scenarios (see also Kluwe et al., 1989; Ringelband et al., 1990). 

Funke developed a theory of how people learn and represent what they 
have learned when interacting with systems of this sort. Basically, subjects 
are assumed to built a causal model of the task, to which the input and 
output variables and then the parameters of the /l/?k­processes describing 
the system behavior are added in a certain sequence. Hypotheses about the 
relations between exogenous and endogenous variables are built in the 
order of their numerical strengths in the system, provided the user manipu­
lates the particular x^ ­ re l a t ion by making an input at the exogenous vari­

3Hiibner (1989) has argued that mathematical system theory may be a more adequate 
formalism to derive system properties. However, Funke's approach is preferred here because 
it implies both a representational theory and a method for constructing rational diagnostic 
procedures. 
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FIG. 2.2. Causa! structure of the 
standard SINUS system (Funke, 
1992b). Numbers next to the arrows 
represent the weights of the influ­
ence. Left of the figure: three vari­
ables that can b e manipulated in­
dependently; Right, three variables 
that have to be controlled. 

able. Relations with time-delays (i.e., k > 2) are built u p later and more 
slowly. Relations open to direct manipulations (i.e., . ^ - r e l a t i o n s ) are in­
cluded before indirect relations (i.e., jy r j rrelat ions which result in side-effects 
for any direct influence on y). Providing a semantic context has the effect 
of adding parameters to the model before learning starts which means that 
some relations may not have to be explored. Relations set a priori are 
resistant to learning which is why providing a semantic context has detri­
mental effects if it induces false parameters. Finally, forgetting is also assumed 
to occur. 

Hypotheses about relations are built u p from data about current and 
memorized system states and interventions. According to Funke (1991b, 
1992b), hypotheses about system relations can b e represented in terms of 
the following quadruple: 

H= (Vh V2, R, C) (2) 

where V, and V2 are the variables be tween which a relation R is assumed 
with confidence C. R comprises all forms of relations a subject may know, 
including qualitative information, quantitative information, and time delays. 
C is obviously conceived of in close analogy to the idea of the subject 
operating as an intuitive scientist. 

Finally, Funke and his coworkers have also developed the diagnostic 
instalments suitable for assessing subjects' task­relevant knowledge in their 
paradigm (Funke, 1992a, 1992b; Miiller, 1993). They distinguish be tween 
knowledge relevant to control performance and structural knowledge, a 
rather straightforward and common distinction (De Kleer & Brown, 1983; 
Kluwe & Haider, 1990).' Control performance, CP, is assessed as the distance 
of the endogenous variables to their goal states. More precisely, control 
performance is measured by 

\ i 
life di! 'This distinction appears sirrlilar, but is not identical to the distinction made by Berry and 

Broadbent and their coworkers (Berry & Broadbent ,,1984, 1987, 1988; Broadbent et al., 1986; 
Hayes & Broadbent, 1988). For instance, Funke does not make any assumptions about the 
location of subjects' knowledge along the explicit­implicit continuum that is central to the work 
of Berry and Broadlient (see Berry & BroadHent, this volume). 

/ 
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M, it, 

^ £ l n l j „ - g \ 

CP = (3) 
riy*nT 

where riy is the number of endogenous variables, nr is the number of trials 
the system has to be controlled, g is the goal value for the endogenous 
variable i, and ylt is the empirical value of variable /at time /. The logarithmic 
transformation in assessing control performance reduces the influence of 
extreme deviations. 

In order to assess subjects' structural knowledge, the causal diagram 
analysis was developed. Essentially, subjects receive a diagram similar to 
the one depicted in Figure 2.2. They are asked to fill in the relations they 
assume to be present in the system. Subjects may do this at one of three 
different levels of precision. They may simply state that a relation between 
two variables is present, they may add the relation's direction, or they may 
specify the relation's numerical value. A summary score is then computed 
from this information indicating subjects' structural knowledge. 

Of course, other methods are possible to assess different aspects of sub­
jects' knowledge about the task. For instance, Miiller (1993) has explored 
the usefulness of reaction time analyses in a yes/no recognition task adapted 
for the paradigm. However, the advantage of the stmctural diagram analysis 
lies in the close relation between representational theory and diagnostic 
procedure. It is obvious that indices for control performance and structural 
knowledge can be dissociated. For instance, subjects may build up an initial 
action base (Kluwe & Haider, 1990) when first interacting with the system 
which may be too fragile and vague to be picked up by the stmctural 
diagram analysis. Also, even formally inadequate and fragmentary subjective 
models of the system stmcture may lead to considerable control performance 
(Ringelband et al., 1990). Haider (1992) has pointed out that such a con­
stellation may look like a dissociation between explicit and implicit system 
knowledge. However, for his tasks, Funke assumed that subjects first built 
up structural knowledge which is then turned into successful control per­
formance. 

A number of experiments have been stimulated by the theory, examining 
how properties of the task environment affect the acquisition of structural 
knowledge and control performance. In these experiments, subjects typically 
explore the system for a number of trials before they are asked to control 
it. For instance, the basic SINUS system was manipulated to have either no, 
one, or two jyrj>­relations that result in side effects. Structural knowledge 
should become worse as a function of the number of jyrJVf relations present 
in the system, and control performance should be a function of staictural 
knowledge. A path­analytic evaluation confirmed this prediction. A similar 
result was not found for >>­y,­relations (i.e., the effect of one variable at time 
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t on its state at time t+\ resulting in autonomous growth or decline). Structural 
knowledge and control performance did not depend on whether no, one, 
or two ^ - r e l a t i ons were present (Funke, 1992a, 1992b). Higher degrees 
of "connectivity" (more .^-relations to be included into the model) resulted 
in both lower control performance and less structural knowledge (Funke, 
1985). 

If the semantic context of a scenario activates prior knowledge, some 
parameters are added to the subjects' model of the task before learning 
starts. This may have beneficial and detrimental effects on learning, depend­
ing on whether the actual system structure corresponds to subjects' pre­
exploration model of the task or not. Funke (1992a, 1992b) has developed 
a simple eight variable ecological linear equation system according to rec­
ommendations provided by environmental experts. In a pilot saidy, 32 sub­
jects were asked to draw causal diagrams of the system without having 
interacted with it. Each relation implemented in the scenario was assumed 
by at least 72% of the pilot subjects, confirming that the system corresponded 
to subjects' knowledge about the domain. In the subsequent experiment, 
half of the subjects explored and later controlled this system, while the other 
half interacted with a system in which the sign of two (out of five) ^­^­re­
lations had been changed. This relatively small change resulted in substantial 
decrements in both control performance and structaral knowledge, showing 
that activating prior knowledge can effectively impair learning by exploration 
(see also Beckmann, in press). 

If the effects of subjects' inputs are delayed (i.e., ^ ­ r e l a t i o n s represent 
AR2 rather than ARX processes), structural knowledge also suffers (Funke, 
1985). Similar results have been reported by Brehmer and Allard (1991) and 
by Dorner and Preussler (1990). Dorner and Preussler (1990) confronted 
subjects with a relatively simple predator­prey system and asked them to 
adjust the predator variable so as to keep the prey population at a certain 
level. The authors manipulated a number of independent variables, but the 
one manipulation that impaired performance most was feedback delay. 
Brehmer and Allard (1991) used a variant of the FIRE FIGHTING scenario 
(see Footnote 2). This system is naturalistic in that it tries to model how a 
"fire chief" would make decisions about the deployment of fire fighting 
units. Nevertheless, Brehmer and Allard (199D agree that in order to be 
useful for experimental research, certain features of the task must be open 
for experimental manipulations. Therefore, they developed a simulation sys­
tem that allows to manipulate six different features of the scenario. In a first 
exploratory study, the authors varied two of these features, feedback delay 
and task complexity. Feedback about the fire fighting units' activities was 
either delayed by one or two time units or it was not delayed. In the low 
complexity condition, all units were equally effective whereas in the high 
complexity condition, some units were twice as effective as others. While 

I 



2. BASIC TOPICS AND APPROACHES 47 

the complexity manipulation had little effect, the feedback delay clearly 
impaired subjects' control performance. However, it is unclear whether sub­
jects did not detect the delay or whether they were unable to include the 
delay into their model of the task. 

Funke and Muller (1988) hypothesized that active intervention should be 
an important factor in learning to control a system. They manipulated 
whether subjects could actively control the SINUS system or simply observe 
the effects of interventions, and whether or not subjects were required to 
make predictions about the next system state after each intervention. Ob­
servers were yoked subjects in that each of them attended to the interventions 
and system states produced by an active control subject. In a final phase, 
all subjects had to control the system. As expected, active control resulted 
in better control performance, but making predictions had an unexpected 
negative effect on structural knowledge. 

Berry (199D, using the SUGAR FACTORY scenario (Berry & Broadbent, 
1984) further explored the role of active intervention. She found that, for 
instance, neither making decisions about the next intervention nor typing 
inputs according to another person's decisions alone had a positive effect on 
subsequent control performance relative to normal interaction with the 
system. Also, Hubner (1987) found that learning from an example how to 
control a technical system was drastically more efficient after some experience 
of active control. Thus, it appears plausible that both the process of generating 
an intervention from a given state and a desired next state and the experience 
of the contingency between one's intervention and the next system state are 
necessary for efficient initial learning. However, motivational effects may help 
to explain differences in performance: As we know from the study by Hesse 
et al. (1983) discussed earlier, personal involvement accounts for considerable 
differences in control performance. It might therefore be argued that active 
and uninfluenced interaction with the system simply creates higher personal 
involvement which then, in turn, plays a mediating role by stimulating other 
processes necessary for successful control. 

To summarize, variations in task properties have noticeable influences 
on people's knowledge acquisition while interacting with dynamic systems. 
One of the advantages of Funke's approach is that it allows for the systematic 
variation of well­known task properties. In addition, the approach includes 
a theory of what and how people learn when exploring dynamic systems, 
and it includes rational methods for assessing this knowledge. The combi­
nation of these three aspects in one homogeneous framework contributes 
to the faiitfulness of this line of research. 

Of course, the approach also has its limitations. First, the price of the 
formal lucidity of the task environments is the limited set of task properties 
that are available for manipulation. Although exponential behavior can be 
simulated with linear equation systems (one simply sets the weight of a 
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j/j-^-relation to a value larger or smaller than one for exponential growth or 
decline, respectively), other interesting behaviors such as sinusoidal or s-
shaped trends and ramp-like or step-like developments are beyond the limits 
set by the formal basis. Second, and related to the first point, few if any 
real-world systems will have the exact properties of linear equation systems. 
The framework therefore does not have the ecological validity that appeared 
so important in the development of this research area. Nevertheless, real-
world systems can at least be approximated (as in Funke's ecological sce­
narios) which is, after all, what naturalistic simulation systems do, too. Third, 
by its very nature, the framework places a heavy emphasis on task properties 
as determinants of human learning to control a system. This is, of course, 
a problem only if it leads to the neglect of other relevant variables. Funke 
(1992b) was aware of this possible shortcoming, and has suggested a tax­
onomy for further theorizing that includes not only task variables but also 
person variables (cognitive, emotional, and motivational states and traits) 
and properties of the situation (how the system is presented physically, and 
what the instructions define as the task to be performed). 

Finite State Automata 

A framework that shares some of the basic principles with the linear equation 
systems approach makes use of elementary concepts of the theory of finite 
state automata (see Buchner & Funke, 1993; Funke & Buchner, 1992 for 
details). Again, the theory serves as a tool for formally describing the dynamic 
task environment, it is used as a starting point for hypothesizing about how 
such systems are represented mentally, and it allows to derive rational meth­
ods for assessing these representations. First, as before, it will be necessary 
to introduce some of the basic concepts used in the approach. Then as­
sumptions about learning and knowledge representation will be presented, 
and finally the diagnostic methods to assess what has been learned will be 
discussed. 

A deterministic finite state automaton is defined by a finite set of input 
signals, a finite set of output signals, a finite set of statej^aflcl two mapping 
functions. To illustrate, input signals of a technical device could be buttons 
and dial positions that can be selected as input at a certain point in time. 
Output signals are all possible display settings. It is assumed that the system 
works on the basis of a discrete time scale. At each point in time, the 
automaton is in a certain state in which it receives one input signal (e.g., 
on a video recorder, the "fast forward" button is pressed). The system then 
moves to the next state which is determined by the transition function 8 
(e.g., the video recorder starts to wind the video tape). Subsequently, the 
device emits exactly one output signal which is determined by the result 
function X as a consequence of the current state and the input signal (e.g., 

I 
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the "fast forward" arrows on the video recorder's front display are high­
lighted). As with the linear equation systems approach, a software shell 
exists to generate arbitrary scenarios following this formalism. 

As a concrete example, consider the SUGAR FACTORY as used by Berry 
and Broadbent (1984, this volume) and by others (Marescaux, Luc, & Karnas, 
1989; McGeorge & Burton, 1989; Stanley, Mathews, Buss, & Kotler­Cope, 
1989) to investigate different modi of learning while interacting with a dy­
namic task environment. The system operates according to a simple equation 
which states that the sugar output at time t+l, 5|M, is determined by the 
most recent sugar output 5, and the present input I„ the number of workers 
employed by the subject: 

SUi ­ 2 • I -5, (4) 

where 1 < / < 12 and 1 < 5 < 12. The values of / are multiplied by 100 and 
the values of 5 are multiplied by 1,000 to represent the number of workers 
and the sugar output in tons, respectively, at time t. (In addition, a random 
component is usually added such that on two­third of the trials, the system 
changes, at time t, to a state that is one unit above or below the correct 
state according to the system equation. I ignore this random component 
here.) 

A convenient way to describe a finite state automaton is by a state tran­
sition matrix. In its cells, the matrix contains the automaton's state at time 
/+1 (SJ+,, the next sugar output) given a specific state at time / (5[, the current 
sugar output) and a specific input signal at time t{Iu the number of workers 
employed). In each column, it contains the function of an input signal, 
whereas the rows reflect possible next states given a certain current state. 
The SUGAR FACTORY can easily be described in such terms of a state 
transition matrix (for more details, see Buchner, Funke, & Berry, in press). 

As with the linear equation systems framework, the formal descriptions 
of automata provide not only the background for precise descriptions of 
task properties such as system complexity (McCabe, 1976), but they also 
serve as a starting point for hypothesizing about how people might learn 
to control automata and how what is learned might be represented. It is 
assumed that users' knowledge about a system can be described in terms 
of those parts of the transition matrix that are represented in memory and 
available for guiding system interventions. This is called the person's indi­
vidual transition matrix (ITM) which may, of course, deviate from the automa­
ton's transition matrix. 

When confronted with a previously unknown automaton, learning must 
begin at the level of individual state transitions, composed of a previous 
state, an intervention, and a next state. A person's experiences of these 
transitions while exploring the automaton constitute the entries for the ITM. 
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At that level, a simple associative learning process is assumed to operate on 
states, interventions, and next states experienced by the exploring subject. 

As learning proceeds, people will shift from using knowledge about in­
dividual state transitions to clustering state transitions. First, routines may 
be developed to get a system reliably from one particular state to a distant 
state. This can be referred to as the formation of horizontal chunks of state 
transitions. For example, the state transition sequence SflfS^-I^-^-I^i-S^i 
may be reduced to the form S,-[ll-I^]-IlJ-St,i, where the interventions nec­
essary to get from state $ to s;+3 form one single component of a compound 
state transition and the user no longer needs to attend to the intermediate 
output signals (Anderson, 1981; Frensch, 1991; MacKay, 1982). Second, state 
transitions can be combined across a specific intervention or a specific state, 
given the intervention or the state can be identified as the source of a specific 
form of invariance. This process can be referred to as the formation of 
vertical chunks of state transitions. An example could be an intervention to 
change the mode of operation of a device (in the most simple case an on/off 
switch). 

The formal descriptions of finite state automata also serve as tools for 
developing rational methods to assess system and control knowledge. For 
instance, state transitions consist of a given system state at time t (5,), an 
intervention at time / (/,), and a next system state at time t+l These 
elements can be used to generate cued recall tasks to assess what has been 
retained about a system by presenting two of the elements as cues for the 
third one (requiring predictive, interpolative, and retrognostic judgments if 
the missing element is Ilt and 5|, respectively). In all these tasks, the 
basic idea is to take samples from the ITM. 

One can also expose subjects to entire state transitions that are either 
possible or impossible for a given device, and measure the speed and ac­
curacy of the verification judgment. For instance, Buchner and Funke (1993) 
presented sequences of state transitions taken from an explored automaton 
for verification. If the second of two state transitions was a transition that, 
in the chronology of system events, had occurred after the first transition, 
reaction times were faster than when the second transition had actually 
occurred first, or was unrelated to the first one. 

Further, a criterion for optimal control performance which is lacking for 
most naturalistic scenarios is readily available within the finite state automata 
approach. Given a present state of a discrete system and an arbitrarily defined 
goal state, it is always possible to specify whether there exists a sequence 
of interventions to reach the goal state and, if so, how many and which 
steps constitute an optimal sequence of interventions (i.e., a sequence in­
volving a minimal number of steps). Subjects' exploration behavior (i.e., the 

^ way they approach the knowledge acquisition task) may be an interesting 
basis for additional dependent variables. A readily available indicator of 
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exploration behavior is the number of different state transitions that are 
explored relative to all states in the state transition matrix of the system. 
The more different state transitions subjects explore, the more they should 
learn about the system. In a recent study (Buchner et al., in press), it has 
been shown that this may be one reason for negative correlations between 
control performance and so-called verbalizable knowledge (Berry & Broad-
bent, 1984). Note that "good controllers" reach the target state more fre­
quently and, thus, experience a smaller area of the system's state transition 
matrix than poor controllers. On the other hand, verbalizable knowledge 
was assessed by items which probed subjects for the next system state given 
an old work force value, a current state of the system, and a new intervention. 
These items can be conceived of as samples from the state transition matrix. 
Consequently, good controllers who know less about the system's state 
transition matrix should be worse at these items, resulting in a negative 
correlation between control performance and verbalizable knowledge. 

The associative learning mechanism assumed to be important in early 
learning about a new system has also been under examination. The basic 
idea has been that if an associative learning mechanism is at work, then 
one should be able to observe transfer interference similar to that known 
from the paired associative learning paradigm (Martin, 1965). After initially 
interacting with a source automaton (a simplified radio with a built­in alarm 
device), several groups of subjects tried to control different target automata. 
The state transition matrices underlying the target automata were identical 
for all groups but were completely different from that of the source automa­
ton. However, the target automata differed with respect to the labeling of 
their input and output signals. For instance, in one condition, these labels 
were entirely new, whereas in a different condition, the original labels had 
been preserved. The latter case corresponds to the A­B, A­Br situation in 
paired associate learning (stimuli and responses from the first list are pre­
served in the transfer list but they are repaired) which is known to produce 
considerable negative transfer. In contrast, the former case corresponds to 
the A­B, C­D situation in which a completely new list is learned. Indeed, 
knowledge of state transitions, as assessed with predictive cued recall items, 
was worst for the "new automaton, old labels" condition, and was best for 
the "new automaton, new labels" condition. 

Indirect measures have also been used to assess system knowledge 
(Buchner, 1993). In one experiment, subjects interacted with an automaton 
that was constructed such that it "understood" sentences generated by the 
finite state grammar used in typical implicit learning experiments (Reber, 
Kassin, Lewis, & Cantor, 1980). One group of subjects memorized sequences 
of inputs while another group made predictions about the next output signal. 
Output signals were patterns of 5 black squares in a 5 x 5 grid. In a subsequent 
phase, subjects were again instructed to make sequences of inputs. This time, 

0 
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an output signal was occasionally masked after a very brief display interval 
which previously had been adjusted for each subject's perceptual threshold. 
Subjects were asked to indicate which of a number of possible output signals 
they believed to have seen. The output signal actually presented was either 
the correct signal given the previous system state and the required interven­
tion, or an incorrect signal. Both groups of subjects were better at identifying 
the output signal if it was correct than if it was incorrect. Moreover, when the 
output signal was incorrect, subjects did not choose the signal that would have 
been correct at that position in the sequence more often than would have been 
expected under conditions of guessing. This latter finding indicates that 
subjects indeed treated the test as an indirect test. 

In recent experiments (Miiller, Funke, & Buchner, 1994), the focus has 
shifted from singular associations to chunking processes. Subjects were 
trained on twelve element input sequences that were arranged on a struc­
tured display such that the first four and the final four elements of the 
sequence each took place in a different display structure. It was hypothesized 
that the display structure would induce a clustering of the elements into 
two horizontal chunks. In a transfer phase, subjects learned new input 
sequences in which four elements of the original sequence were retained. 
These four elements could either be the final chunk, or adjacent elements 
from both chunks, or four disconnected elements. As predicted, the chunk 
structure transferred and subjects in the first condition made significantly 
less errors than subjects in the other two conditions. 

Finally, the finite state approach has also been fruitful in applied settings. 
Funke and Gerdes (1993) analyzed the standard manual of a popular video 
recorder brand. They asked whether the information contained in the manual 
was appropriate for building up an adequate ITM of the device. A typical 
inadequacy was, for instance, a lack of descriptions of output signals (es­
sential for diagnosing what state the device is in). On the basis of this 
analysis, the authors developed an improved version of the manual designed 
to facilitate learning how to operate the video recorder. Subjects were asked 
to perform a number of timer programming tasks (i.e., they programmed 
the video recorder such that a certain TV show would be automatically 
tape­recorded). Subjects trying to program the video recorder with the old 
manual needed 27 minutes to perform the tasks as opposed to only 18 
minutes for subjects who had received the improved version. The improved 
manual also resulted in higher accuracy scores. In addition, subjects in the 
improved manual group were significantly better at responding to interpo­
lative cued recall items (given $ and 51M, which input I, is appropriate?). 

This latter example demonstrates that the finite state automata framework 
can be useful not only for basic research on how people interact with 
complex dynamic systems, but also for questions of applied psychology. 
However, the major drawback of the finite state approach is that it becomes 
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impracticable with large-scale systems (although some of the concepts de­
veloped within the approach seem transferable to larger systems). Never­
theless, many technical systems we deal with in everyday life are adequately 
described within the formalism provided by finite state automata theory. 
Examples include, besides video recorders, computer programs, TV sets, 
digital wrist watches, banking machines, and so on. Thus, the first point to 
be made here is that, in drawing upon a well­developed formalism for 
constructing dynamic task environments, one does not automatically loose 
ecological validity. One can have it both, ecologically valid task environments 
and the methodological advantages of well­defined task properties. In fact, 
the successful research of Funke and Gerdes (1993) shows this empirically 
rather than simply appealing to the ideal of ecological validity by constructing 
tasks that look natural. 

The second point is that, contrary to widespread assumptions, learning 
to control complex dynamic tasks might not be fundamentally different from 
learning and memory as investigated in more traditional research paradigms. 
Rather, it appears that fundamental cognitive processes as investigated in 
traditional learning and memory research are also involved in people's in­
teractions with dynamic task environments. Of course, it would be grossly 
inadequate to claim that there is nothing more involved in controlling a 
technical device than there is in memorizing lists of paired words. However, 
at a certain level, the two tasks seem to involve similar learning processes. 
This suggests that, besides emphasizing the uniqueness and novelty of the 
dynamic task environments paradigm (Dorner, Kreuzig, Reither, & Staudel, 
1983; Dorner & Reither, 1978), it might also be useful to consider the potential 
contributions of established theories of learning and memory for a theory 
of how people successfully perform in complex dynamic tasks. 

CONCLUDING REMARKS AND FUTURE PERSPECTIVES 

In this chapter, I have tried to provide an overview of the major lines of 
basic research on how people interact with complex dynamic tasks. Two 
different ways to approach the topic have been described. On one side, 
some researchers favor naturalistic scenarios as tasks, and they search ex­
planatory constructs based on interindividual differences. On the other side, 
some researchers exhibit a strong preference for well-defined task environ­
ments and a focus on knowledge acquisition processes modulated by fea­
tures of the tasks. Recent developments in basic research on how people 
control complex systems point to at least three different directions. 

First, those interested in interindividual differences in CPS now try to 
move beyond the psychometric approach of simply correlating state or trait 
variables with ad hoc measures of control performance. Also, it is realized 
that much can be gained if the task environments used to assess control 
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performance provide rational performance measures and are open to ex­
perimental manipulation. Beckmann's (in press) work on the relation be­
tween learning potential tests and system control is a good example of the 
progress already made in this area. 

Second, some researchers involved in the systems thinking program moved 
towards action theory. They believe that cognitive, motivational, and emo­
tional processes should not be analyzed separately if one wants to get a 
complete and realistic picture of how people come to control complex 
dynamic systems. One problem here is that the inclusion of theoretical terms 
from action theory such as intention (conceptually an action constituent 
requiring a deliberately acting person) into a (mechanistic) cognitive frame­
work characterized by information processing units and knowledge structures 
as in Dorner et al. (1988) will result in the mixing of incompatible theoretical 
languages. On the surface, one finds semantically queer theoretical formula­
tions (e.g., a processing unit is said to be responsible for generating intentions, 
see Dorner et al., 1988, p. 223), but more serious is that both precision and 
testability of such a theory will suffer. Another point is that, because there is 
no such thing as an unique action theory, one should make explicit the 
underlying perspective (Brandtstadter, 1985) to help clarify which theoretical 
relations are empirical and which are simply analytical. 

A third approach is to search for interesting frameworks to adequately 
describe the formal basis of the task environment, to hypothesize about the 
systems' mental representation, and to derive rational measures of control 
performance and system knowledge. This approach is limited to the types of 
systems that can be formalized within a particular framework, and it does not 
take into account noncognitive processes that may be involved in controlling 
complex systems (although it is of course granted that such processes may 
play important roles). One of the more problematic aspects here is that 
focusing on formalizeable task properties, one tends to neglect subjects' prior 
knowledge. In fact, a number of studies using formally well­described systems 
have sometimes tried deliberately to exclude the influence of prior knowledge 
by avoiding meaningful labels of input and output variables (Buchner & 
Funke, 1993; Funke, 1992b). This Ebbinghaus approach to controlling dy­
namic task environments obviously has its merits in terms of rigorous 
experimental control, but it also has its limitations, and we do not necessarily 
have to go back to Bartlett (1932) to see those. Very likely, subjects virtually 
never control a real­world dynamic task without recourse to some sort of prior 
knowledge. According to Funke (1992a), the development here should be to 
focus more on the interaction of person, situation, and system influences, 
rather than on the main effects alone. This would include an explicit 
consideration and assessment of subjects' prior knowledge that is relevant to 
the simulation's domain. In addition, on the person side, Funke demands that 
the deficits in diagnosing heuristic knowledge be overcome. 
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Future research will also have to turn to questions that are currently 
ignored. For instance, the importance of real-time decisions for human sys­
tem control has been pointed out repeatedly (e.g., Brehmer, 1989, this vol­
ume; Brehmer & Allard, 199D, but basic research has largely ignored this 
variable. Note that decisions can be real­time in a dual sense. First, subjects 
may have to plan and execute interventions under time pressure. This can 
be investigated with any of the available dynamic task environments by 
simply requiring the control task to be completed within a certain temporal 
limit (e.g., Dorner & Preussler, 1990). Reduced performance should result 
because the mental processes involved would terminate earlier than under 
normal circumstances. Second, the system subjects interact with may change 
autonomously as a function of time. Here, the time pressure is not set 
externally but is inherent in the task. In addition, subjects must deal with a 
special type of state change, namely autonomous state changes that are 
presumably quite different from the ones initiated by subjects' self­generated 
interventions. We know from the research of Funke and Miiller (1988) and 
of Berry (1991) that learning is severely impaired when both the decision 
and the active intervention components are missing—which is what char­
acterizes autonomous state changes. 

The FIRE task used, for instance, by Brehmer and Allard (1991), is a major 
exception to the rule that virtually all scenarios employed so far—even the 
most complex and naturalistic ones—do not require real­time decisions un­
der autonomous state change conditions. Here, we have a fundamental 
difference to applied research on process control (Bisseret, Figeac, & Falzon, 
1988; Strizenec, 1980; Van Daele & De Keyser, 199D where most complex 
systems people interact with require decisions in real time. Both the linear 
equation systems approach and the finite state automata framework can be 
adapted to incorporate the temporal dimension. For instance, in a finite state 
automaton one could simply add a separate column to the transition matrix 
analogous to a new input signal. This new column would contain, for each 
state, as parameters both the next system state S,tl and the length of the 
time interval after which the specified state transition will occur, provided 
the user did not select a different intervention before the end of the time 
interval. 

Another aspect currently ignored, but relevant from an ecological point 
of view is that professionals frequently cooperate with others in process 
control and decision making. Thus, as we learn more about the cognitive 
processes involved in an individual's interactions with complex dynamic 
systems, basic research should also move towards investigating process con­
trol embedded in group processes (Schmidt, 1991; Waern, 1992). A related 
real­world area is the question of whether skills relevant for successful system 
control can be taught effectively (e.g., Sonntag & Schaber, 1988). For in­
stance, if one of the primary errors people make when interacting with 
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complex systems really is to reason in causal chains as opposed to causal 
nets, then teaching how to analyze feedback structures might help to remedy 
the problem. It is rather ironic that, as with dynamic task environments as 
tools to select personnel, the real world is again ahead of basic cognitive 
research in recommending "network thinking" as a "new instrument for 
tomorrow's successful business executives" (Probst & Gomez, 1991, Fore­
word; translation by the author). 

Finally, the chapter has concentrated on psychological approaches embed­
ded in empirical work rather than on the numerous formal modeling attempts 
such as task action grammarsthat claim ex cathedra to represent user's mental 
models of a task (e.g., De Haan, Van der Veer, & Van Vliet, 199D­ In their 
current states, these models specify, at most, what the expert user must know 
to perfectly operate a device such as a computer program (e.g., De Haan & 
Muradin, 1992). However, it might be useful to explore whether attempts of 
formal modeling can be utilized for cognitive theories in the future. To repeat 
the basic idea again, the methodological advantages to be gained from precise 
formal analyses of the task environments cannot be overestimated, and the 
question of ecological validity is orthogonal to the question of whether or not 
a particular scenario has a naturalistic look. However, as with finite state 
automata and linear equation systems, such formalisms are useful only to the 
degree to which they can be used to develop theories about knowledge 
acquisition and knowledge use in dynamic task environments, and to create 
rational measures for assessing knowledge and control performance. The idea 
is always to take the formal model of a task as a tool to stimulate theorizing 
about the task's mental representation, knowing that, beyond a certain point, 
it will be the deviations from this conceptualization that will turn out to be 
interesting. This is, of course, an old idea: "By pushing a precise but inadequate 
formulation to an unacceptable conclusion we can often expose the exact 
source of the inadequacy and, consequently, gain a deeper understanding" 
(Chomsky, 1957/1971, p. 5). 
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