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Abstract 
 

Imprinted genes in placental mammals play a critical role in regulating 

prenatal growth and setting the metabolic rate of development. Highly 

expressed in embryos and early postnatal life, imprinted genes are down 

regulated when the organism reaches adulthood, remaining expressed in 

individual cells where they control activation and plasticity. Maternally 

imprinted gene Pw1, also known as Peg3, recently was described as a 

potential adult stem cell marker in various tissues such as bone marrow, 

central nervous system and intestines. In skeletal muscle it marks myogenic 

stem cells, which are located in interstitia and can efficiently contribute to 

muscle regeneration after focal freeze-crush injury. Using a transgenic 

Pw1:nLacZ reporter mouse, I described a subpopulation of 

proepicardial/epicardial derived mesenchymal cells involved in maintaining 

homeostasis of adult mouse heart through secretion of various growth factors. 

Immunohistochemistry and cytometric analysis revealed that myocardial Pw1 

cells express the cardiac stem cell membrane receptors Sca1, Pdgfra, Cd34 

and Cd29, making them a potentially interesting component of regenerative 

medicine for further investigation. Based on mRNA expression profiles and 

patterns during embryonic development I surmise an epicardial origin of Pw1 

cells and their involvement in cardiac growth, as adult Pw1 cells are highly 

pro-angiogenic in vitro and can induce tube formation when they are co-

cultured with an endothelial cell line. To investigate the role of Pw1 cells 

during postnatal cardiac growth I have linked their action to heart hypertrophy 

during pregnancy. Using pharmacological tools I locally depleted Pw1 cells 

which resulted in local cardiomyocyte atrophy and fibrosis. To explore the 

remodelling potential of Pw1 cells in pathological conditions we are planning 

to investigate their involvement in disease models of myocardial infarction. 
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Zusammenfassung 
 

Geprägte Gene in Plazentatiere spielen eine entscheidende Rolle bei der 

Regulierung des pränatalen Wachstums und der Einstellung der 

Stoffwechselrate während der Entwicklung. Gene, die im embrionalen und 

frühen postnatalen Stadium hoch exprimiert sind, werden im 

Erwachsenenstadium herunterreguliert und bleiben nur noch in einzelnen 

Zellen exprimiert, in denen sie die Aktivierung und Plastizität kontrollieren, 

Das mütterlich geprägte Gen Pw1, auch als Peg3 bekannt, wurde vor kurzem 

als potentieller adulter Stammzellmarker in verschiedenen Geweben wie dem 

Knochenmark, dem zentralen Nervensystem und dem Darm, beschrieben. Im 

Skelettmuskel markiert er myogene Stammzellen, die sich im Interstitium 

befinden und die effizient zur Regenerierung der Muskulatur nach einer 

fokalen Gefrier-Quetschverletzung beitragen können.  Mit der transgenen 

Pw1:nLacZ Reportermaus, haben wir eine Subpopulation von proepikardial / 

epikardialen mesenchymalen Zellen beschrieben, welche an der 

Aufrechterhaltung der Homöostase des adulten Mausherzens durch Sekretion 

verschiedener Wachstumsfaktoren beteiligt sind. Die Immunhistochemie und 

zytometrische Analyse ergab, dass die miokardialen Pw1 Herzstammzellen 

die Zellmembran-Rezeptoren Sca1, Pdgfra, Cd34 und Cd29 exprimieren, 

wodurch sie ein interessantes Ziel weiterer Untersuchungen im Rahmen der 

regenerativen Medizin sind. Basierend auf mRNA-Expressionsprofilen und 

Mustern während der Embryonalentwicklung vermuten wir einen epikardialen 

Ursprung der Pw1 Zellen und ihre Beteiligung am Herzwachstum. Adulte Pw1 

Zellen sind stark proangiogen in vitro und können die Enstehung von Gefäßen 

induzieren, wenn sie zusammen mit einer endothelialen Zellinie ko-kultiviert 

werden. Um die Rolle von Pw1 Zellen während des postnatalen 

Herzwachstums zu untersuchen, wurde ihre Funktion mit der Hypertrophie 

des Herzens während der Schwangerschaft in Verbindung gesetzt. Mit 

pharmakologischen Instrumenten haben wir lokal Pw1 Zellen entnommen, 

welches zu einer lokalen Atrophie und Fibrose der Kardiomyozyten führte. Um 

das Umbaupotenzial der Pw1 Zellen in pathologischen Bedingungen zu 
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untersuchen, planen wir ihre Beteiligung in verschiedenen 

Krankheitsmodellen des Myokardinfarkts zu erforschen. 
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1. Introduction 
 

In the forth century BC, Greek philosopher Aristotle in his Historia 

Animālium described the beating heart as a first organ to be formed in chicken 

embryos. In formation of the beating heart he saw a starting point for the body 

plan and as such a beginning of life itself. During classical antiquity the heart 

was not only considered to be a “seed of life”, but also a chamber that hosts 

the soul. From the Aristotle’s time, through the middle ages, up to the modern 

days heart remains one of the most studied organs. In the past few decades 

we have learned a great deal about heart’s embryonic development and about 

the mechanical force of the cardiomyocyte, but it still remains unclear how 

different cell types regulate and maintain the beating heart. 

The heart is a muscle that supplies the rest of the body with nutrients 

and oxygen and because of this important role the heart is also an organ 

whose physiological state is reflected in the total physiological state of the 

organism and vice versa. According to the 2012 WHO report 

(http://www.who.int/gho/publications/world_health_statistics/2012/en/index.ht

ml) the leading cause of death in developed world is congestive heart failure, 

most frequently caused by myocardial infarction (MI) (48%). The damaged 

area of the heart in patients who survive MI is scarred permanently, causing 

future MIs, eventually leading to complete organ failure. Furthermore it is 

projected that the number of deaths due to cardiovascular disease will almost 

double until 2030. For these reasons heart repair and heart regeneration are a 

main focus of regenerative medicine. Today’s regenerative medicine efforts 

for heart repair could be divided in three different strategies: promoting heart 

repair via activation of cardiac resident stem cells (Smart et al., 2011; Beltrami 

et al., 2003; Oh et al., 2003); transplantation of in vitro derived 

cardiomyocytes (Qian et al., 2012; Radisic et al., 2007); or administrating 

various growth factors and compounds such as IGF1 (Santini et al., 2007; 

Padin-Iruegas et al., 2009) or NRG1 (Bersell et al., 2009) that promote 

cardiomyocyte proliferation, improving vascularisation and modulating 

immune response to prevent scar formation. Even though the progress of 

understanding processes involved in heart repair has been made, we still 
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haven’t developed successful therapy for life improvement for millions of 

patients. 

In recent years powerful insights into functional heart regeneration 

came from studies conducted in lower vertebrates, such as zebrafish or newts 

which re-grow functional myocardial tissue after partial amputation of the 

heart and repair damaged areas without the generation of non-functional scar 

tissue (Poss et al, 2002; Bettencourt-Dias et al., 2003; Laube et al., 2006; 

Singh et al., 2010). New muscle comes from partial dedifferentiation and 

proliferation of already existing cardiomyocytes and mobilization of epicardial 

cells. Recently it was shown that mechanisms and pathways involved in 

successful heart regeneration in lower vertebrates are also present in 

mammalian heart (Figure 1). Porrello and colleages (2011, 2013) described 

the remarkable regenerative capacity of the neonatal murine heart. Newborn 

mice (up to seven days) subjected to 10-25% of ventricular amputation could 

regenerate in a very similar way to zebrafish through dedifferentiation and 

proliferation of pre-existing cardiomyocytes. Mice restored complete heart 

function after 30 days without showing any scaring and signs of pathological 

hypertrophy. Those results are revealing that the regenerative process is 

more conserved than we previously thought.  

Other studies also changed our view of adult heart as a terminally 

differentiated organ. There is compelling evidence that the adult human heart 

possesses populations of cardiomyocytes with proliferative potential (Beltrami 

et al., 2001) and furthermore human cardiomyocytes renew around 1% until 

age 25 (Bergmann et al.; 2009). Recently similar results were also found in 

ageing mice by measuring the incorporation ratio between 15N and 14N 

labelled thymidine (Senyo et al., 2013). These results suggest that the lack of 

cardiomyocytes capable of proliferation is not the main reason for the poor 

regenerative capacity of mammalian heart.  

From zebrafish we know that other cardiac cell types, such as 

epicardium, have a crucial role in heart regeneration, development and 

homeostasis through promoting vascularisation, but it remains unclear what is 

the role of these cells in remodelling of the mammalian heart in physiological 

and pathological conditions.  
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Figure 1. Cardiac regeneration in zebrafish and neonatal mice 
(A) Partial resection of ventricular myocardium of zebrafish leads to complete 

regeneration of cardiac muscle within 4-8 weeks without any signs of fibrosis 

(adapted from Poss et al., 2002). (B) Similar regenerative response characterized by 

cardiomyocyte proliferation with minimal hypertrophy or fibrosis is described in 1-day-

old neonatal mice (adapted from Porrello et al., 2011). This remarkable regenerative 

capacity is lost by 7 days of age. 

 

 

Role of epicardium in heart development, homeostasis and 
regeneration 
 

 The epicardium is the outer surface of the heart and consists of a 

single epithelial layer and underlying connective tissue. Blood vessels and 

nerves that supply the heart lie in the epicardium and are surrounded by 

adipose tissue that cushions the heart in the pericardial cavity.  

During development, the epicardium derives from the proepicardium 

and it has been shown that a population of epicardial cells goes through 

epithelial to mesenchymal transition (EMT), migrates into the developing 
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myocardium and gives rise to the vasculature and interstitial cells (Figure 2). 

This process is mandatory for normal heart development and impairment by 

deletions of selected genes expressed in the epicardium (like Raldh2 and 

Tcf21) or signalling necessary for EMT and invasion (like thymosin beta 4 and 

Fgfr1) leads to severe defects (Kikuchi et al., 2011; Mahtab et al 2008, Smart 

et al., 2007; Pennisi and Mikawa 2009). Epicardial derived cells (EPDCs) after 

invading the myocardium can differentiate into several heart populations, 

including fibroblasts, pericytes, smooth muscle and endothelial cells (Winter et 

al., 2007; Wilm et al., 2005; Azambuja et al., 2010). Zhou and colleagues 

(2008) also showed that mouse EPDCs could have cardiomyocyte potential. 

Using Cre recombinase driven by the Wt1 promotor (transcription factor 

located within epicardium) they showed that during normal murine heart 

development a subset of epicardial cells differentiate into fully functional 

cardiomyocytes. Although epicardium as a source of cardiac progenitors was 

also described in adult heart after MI (Smart et al., 2011; Huang et al., 2012), 

it is still very controversial and needs further investigation. A major problem 

impeding genetic fate mapping is the lack of specific epicardial markers. 

Lineage tracing based on regulatory sequences from Tbx18 and Wt1 is not 

reliable because their expression is not restricted only to epicardial 

progenitors. Using Tcf21 (epicardin) as a more specific marker of epicardium 

in zebrafish, it was found that epicardial cells do not contribute to myocardium 

(Kikuchi et al., 2011). In general the rate of cardiomyocyte generation from 

epicardium is very modest. 

In the adulthood, as in development, mammalian epicardium is much 

more than an outside cover of the heart. Epicardial progenitors with 

multilineage potential persist in adulthood in mice and humans (Smart et al., 

2007; van Tuyn et al., 2007). Chong and colleagues (2011) described a 

population of EPDCs based on expression of PDGFRa that occupy 

perivascular and adventitial niches. Using in vitro system they showed that 

these subpopulations could be differentiated into smooth muscle and 

endothelial cells, cardiomyocytes, hepatocytes and neurons. This trans-germ 

layer potency makes epicardial cells and EPDCs interesting tool for 

regenerative medicine. 
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Figure 2. Model for the role of epicardium in coronary vessel development 
During normal heart development epicardial cells undergo an epithelial to 

mesenchymal transition (EMT) in response to BMP, FGF, TGFβ and Tβ4 and migrate 

into developing myocardium where they respond to angiogenic factors (like VEGF 

and PDGF) and differentiate into smooth muscle or endothelial cells (adapted from 

Smart et al., 2007). 

 

In zebrafish it has been shown that regeneration of the injured heart 

proceeds through two coordinated steps in which epicardium plays an 

important role (Lepilina et al., 2006). First a blastema of progenitor cells is 

formed at the apical edge of the existing myocardium. Then epicardial tissue 

surrounding both cardiac chambers induces developmental markers and 

rapidly expands, creating a new epithelial cover for the exposed myocardium. 

Some of these epicardial cells undergo EMT, in similar way to that in 

development, and invade the wound and provide new vasculature and signals 

to regenerating myocardium. Although epicardial cells do not contribute to the 
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new cardiac muscle after injury, blocking the activation or migration of 

epicardium leads to fibrosis rather than regeneration.  

Smart and colleagues (2007) suggest that one of the reasons why 

mammalian heart cannot regenerate well is because the epicardium cells 

don’t have migrating potential and cannot form vasculature in newly formed 

myocardial tissue. They also showed that thymosin β4 (Tβ4) could promote 

vessel formation in mice by recruiting epicardial cells, which would have 

considerable therapeutic potential in humans. Priming the adult mouse heart 

with Tβ4 reactivates epicardial Wt1 and induces their migration into 

myocardium (Smart et al 2011). Furthermore after experimental MI not only 

did animals treated with Tβ4 showed better recovery, but also Wt1 cells 

contributed to myocardial mass.  

Recent studies suggest EPDCs are not a major source of cardiac 

progenitors but their important role comes from secretion of trophic factors 

such as retinoic acid (RA) (Chen et al., 2002), which stimulate growth and 

morphogenesis of developing myocardium. Formation of epicardium and 

migration of foetal EPDCs corresponds to thin-walled ventricular chamber 

expansion and formation of compact myocardium. One of the signals involved 

in compact zone formation and cardiomyocyte proliferation is retinoic acid. 

Rat embryos deficient in RA (Wilson and Warkany, 1949), mouse embryos 

lacking the retinoic acid receptor gene RXRa (Sucov et al., 1994; Kastner et 

al., 1994) and mouse embryos lacking the RA synthetic enzyme Raldh2 

(Brade et al., 2011) all suffer from an inability to properly form the compact 

zone (Figure 3). Chen and co-workers (2002) showed that foetal epicardium 

responds to retinoic acid by secreting trophic factors, which stimulate 

cardiomyocyte proliferation and compact zone morphogenesis. 

One of the most prominent morphogens secreted in response to 

retinoic acid (RA) signalling by embryonic mouse epicardium is IGF2 (Brade 

et al., 2011; Li et al., 2011). Brade and colleagues (2011) proposed a new 

mechanism for RA-mediated myocardial expansion in which RA directly 

induces hepatic EPO resulting in activation of epicardial IGF2 that stimulates 

compact zone growth. Epicardial IGF2 is required for ERK proliferation 

pathway in the developing heart and disruption of IGF signalling resulted in a 
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significant decrease in cardiomyocyte proliferation and ventricular wall 

hypoplasia (Li et al., 2011). 

 

 

 
Figure 3. Comparison of heart phenotype in rescued Raldh2-/- and Rxra-/- 
mouse embryos 
(A-F) Sections of H&E stained E13.5 hearts from wild-type (A,D), germline Rxra-/- 

(B,E) and rescued Raldh2-/- (C,F) embryos. Representative heart sections are 

shown at 40× magnification in A-C and detailed photographs of the compact zone at 

400× magnification in D-E. Both mutants exhibit a severe reduction in size of the 

compact zone myocardium (CZ) whereas the trabecular myocardium (Tr) is only 

mildly affected; the black bar indicates the thickness of the compact zone. Similar 

results were observed for all mutants analyzed (n=3 for each genotype). Rescued 

Raldh-/- embryos refer to low dose treatment with RA which delays lethality from 

E9.5 to E13.5. Taken from Brade et al (2011).  

 

 Many other specific growth factors secreted from the epicardium are 

responsible for heart morphogenesis during development (Figure 4). 

Members of the fibroblast growth factor (FGF) family are involved in 

ventricular development, as mouse knockouts of ligand or receptor genes 

result in a hypoplastic phenotype (Lavine et al., 2005). Erythropoietin (EPO) 
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and EPO receptor (EPOR) are highly expressed in the epicardium and both 

EPO and EPOR null embryos display a thin ventricular wall with abnormal 

epicardial structure, which appears often detached from the myocardium (Wu 

et al., 1999). Furthermore EPO works with RA to promote cardiomyocyte 

proliferation. Blocking of EPO signalling with ant-EPOR antibodies results in 

decreased cardiomyocyte proliferation that could be rescued by exogenous 

RA administration (Stuckmann et al., 2003). During coronary vessel 

development TGFβ ligands are detected both in the epicardium and 

myocardium (Molin et al., 2003) and ablation of TGFβ3R results in thinner 

epicardium, detached from the myocardium and a partial disruption of 

coronary vessels (Compton et al., 2007).  

Several Wnts and their receptors are expressed in the developing 

heart. Canonical Wnt signalling inhibits cardiac differentiation and maintains 

secondary heart field in an undifferentiated state. On the other hand, Non-

canonical Wnt signalling promotes cardiomyocyte differentiation and is 

required for outflow tract development (Cohen et al., 2008). Specific deletion 

of β-catenin in the proepicardial organ leads to myocardial hypoplasia and 

embryonic lethality between E15.5 and birth. Finally, β-catenin, Wnt9b and 

FGF2 are retinoid-induced growth factors since they are down-regulated in 

epicardial explants from epicardial RXRα knockout mice (Merki et al., 2005). 

During heart development Sonic hedgehog (Shh) is expressed in the 

epicardium and is responsible for expression of multiple proangiogenic 

molecules, including VEGFA, VEGFB, VEGFC and angiopoientins in a FGF 

dependent manner (Lavine et al., 2006). 

 Besides representing a source of progenitors, adult EPDCs also could 

play an important role through secretion of growth factors that promote 

angiogenesis and cardiac survival (Zhou et al., 2011). To test proangiogenic 

role of EPDCs in post-MI heart, cells were isolated from infracted heart based 

on Wt1 expression and expanded in culture. A large number of proangiogenic 

transcripts were highly enriched in EPDCs, including Vegfa, Angpt1, Ang, 

Fgf1, Fgf2, Fgf9, Pdgfa, Pdgfc, Pdgfd, Adamts1, Sdf1, Mcp1, and Il6. The 

EPDC conditioned media stimulated growth of multiple types of endothelial 

cells in vitro and reduced infarct size and improved heart function in vivo. 

Treating the conditioned media with blocking antibodies for FGF2 and VEGFA 
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accounted for approximately half the growth-promoting activity on endothelial 

cells. 

 

 
Figure 4. Growth factor mediated signalling pathways involved in myocardial 
and coronary vessel growth in the embryonic heart. 
Progenitor cells in the epicardium give origin to epicardial cells and cardiomyocytes. 

BMP/FGFs signalling plays a role in the cardiogenic commitment of proepicardial 

cells. Signalling pathways involving RA, Shh, VEGF and Ang2 are required for 

endothelial cell (ECs) differentiation of epicardial cells. TGFβ, Thymosin β4, Wnt/β-

catenin and PDGF signalling are involved in regulating epicardial cell differentiation 

into smooth muscle cells (SMCs). A crosstalk between epicardial and myocardial 

growth factor signalling is also shown. RA regulates FGF and Shh expression from 

the epicardium modulating both epicardial and myocardial cell functions and induces 

VEGF and Ang2 expression from myocardial cells. Taken from Limana et al (2011). 
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A recent study from Huang and co-workers (2012) showed that the 

injury of the adult heart results in activation of developmental genes in the 

epicardium through C/EBP transcription factors. Disruption of C/EBP 

signalling in the adult epicardium resulted in reduced fibrosis and enhanced 

cardiac function through reduction of inflammation in the first few days after 

injury.  

These recent results describe EPDCs as cells that in one hand 

promote heart healing through secretion of survival factors like VEGF and 

FGF2 (Zhou et al., 2011), and in the other are responsible for prolonging the 

pro-inflammatory phase (Huang et al., 2012) in post-injured heart. These 

contradictory results show the importance of epicardium during heart healing 

by promoting cardiomyocyte survival, angiogenesis and by regulating 

inflammatory response and neutrophil infiltration through still unknown 

temperospatial mechanisms and pathways.  

One of the problems of studying epicardium is the lack of appropriate 

epicardium specific markers. Most common markers such as Wt1, Tbx18 or 

Tcf21 are not restricted only to epicardium and EPDCs, and are not 

expressed in the entire structures (epicardium/proepicardium) or lineages. 

Wt1 encodes a zinc-finger transcription factor important for epicardial cell 

adhesion and for maintaining high levels of Raldh2 expression (Moore et al., 

1999; von Gise et al., 2011; Guadix et al., 2011). It is found in epicardium, in 

the subepicardial mesenchyme and in migratory EPDCs during development 

(Carmona et al., 2001) During epicardial differentiation Wt1 expression is 

down regulated and in post-natal heart is barely detectable (Perez-Pomares 

et al., 2002). Using two cre knock-in alleles of Wt1 (Wt1CreEGFP and Wt1CreERT2) 

several groups postulated epicardial contribution to the myocardium, 

interventricular septum, fibroblasts, smooth muscle and endothelial cells 

(Zhou et al., 2008; Smart et al., 2011) Furthermore, using the same two Wt1: 

Cre lines Smart and colleagues (2011) demonstrated epicardial contribution to 

newly formed myocardium after myocardial infarction with thymosin β4 

pretreatment. Rudat and Kispert (2012) disputed these findings by using in 

situ hybridization and immunofluorescence on tissue sections. They detected 

endogenous expression of Wt1 mRNA and protein in the endothelial cells 

throughout cardiogenesis and moreover using the same Wt1:Cre lines 
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mentioned before they described Cre activity in cardiomyocytes before 

establishment of proepicardium/epicardium. 

 Although Tbx18 expression is largely restricted to proepicardial organ 

during early heart development, at later stages in a similar manner as Wt1 

endogenous Tbx18 is also found in a subpopulation of cardiomyocytes and 

mesenchymal progenitors (Haenig and Kispert, 2004; Torlopp et al., 2010; 

Christoffels et al., 2009). A more restricted epicardial marker during heart 

development is Tcf21, also known as epicardin (Quaggin et al., 1998; Braitsch 

et al., 2012). Cell fate analysis in the zebrafish using Tcf21Cre showed that 

epicardial cells are limited to fibroblasts and smooth muscle cells (Kikuchi et 

al., 2011). In the postnatal heart Tcf21 mostly is expressed in interstital 

fibroblasts and is not expressed in epicardium, smooth muscle or endothelial 

cells (Acharya et al., 2011). The proepicardial organ and epicardium consist of 

several cell populations whereas Wt1, Tbx18 and Tcf21 are expressed only in 

subpopulation of proepicardial cells thus making them inadequate tools for 

epicardial studies (Braitsch et al., 2012; Katz et al., 2012, Russell et al., 

2011).  

These findings suggests that frequently used Cre-mediated lineage 

tracing systems (Wt1CreEGP, Wt1CreERT2, Tbx18Cre and Tcf21Cre) are not 

suitable for epicardial fate mapping because of endogenous expression in 

other cell lineages, ectopic or poor recombination efficiency and expression 

only in sub-lineage of epicardial cells. In this study we show that a recently 

discovered adult pan-stem cell marker Pw1 identifies subpopulations of 

epicardial cells and EPDCs in the adult mouse heart. The main focus of this 

research was to identify Pw1 cells in adult mouse heart and to investigate 

their role in cardiac homeostasis. The potential use of Pw1 as a marker of 

epicardium and EPDCs during development and adulthood warrants further 

investigation. 
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Paternally expressed gene Pw1/Peg3 regulates metabolic rate 
of embryonic development and postnatal growth in mammals 

 

The imprinted genes were discovered in early 1980s as a result of two 

types of mouse experiments: generating uniparental embryos using nuclear 

transplantation (McGrath and Solter, 1984; Barton et al., 1984) and using 

genetic techniques to make embryos that inherited specific chromosomes 

from one parent only (uniparental disomy) (Cattanach and Kirk, 1985). In both 

cases mammalian genes function differently depending on whether they are 

passed on from father or mother. The imprinted genes play a crucial role in 

development of placental mammals through regulation of nutrient transfer 

from the mother to the offspring. Paternally expressed genes generally 

enhance foetal growth whereas maternally expressed genes suppress foetal 

growth and the balance between the two is responsible for the setting the 

normal metabolic rate of development (Moore and Haig, 1991).  

Pw1, also known as Peg3, is maternally imprinted Cys2His2 Kruppel-

type zinc finger protein (Iuchi et al., 2001; Relaix et al, 1996; Kuroiwa et al., 

1996) involved in diverse cellular pathways like cell proliferation (Kohda et al., 

2001), p53 mediated cell death (Relaix et al, 2000; Yamaguchi et al., 2002; 

Deng et al., 2000), inhibition of Wnt signalling by promoting β-catenin 

degradation (Jiang et al., 2010) and regulation of TNF signalling by activating 

NFκB (Relaix et al, 1998; Coletti et al., 2002). Furthermore, studies on a 

mouse knock out model implicated Pw1 in regulating maternal, feeding and 

male mating behaviour (Li et al, 1999; Curley et al, 2004; Champagne et al, 

2009; Swaney et al., 2008). Although from these studies suggest a significant 

role for Pw1 in various physiological processes, the molecular mechanism 

through which it acts still remains unclear.  

To study the function of Pw1 in vivo Li and co-workers (1999) mutated 

the Pw1 gene by inserting β-galactosidase (βgeo) selection cassette into its 5’ 

coding exon using gene targeting. The heterozygous embryos that inherited 

the Pw1βgeo mutation from paternal germ line showed no detectable wild-type 

Pw1 mRNA. The paternally transmitted Pw1βgeo heterozygous embryos and 
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placentas were significantly growth retarded without any histological 

abnormalities. At birth the mutants were 81% of the normal weight with 

proportionally smaller, but morphologically normal organs. Although mice 

were smaller they were healthy, fertile and normal in their general behaviour. 

Crossing two paternally inherited Pw1βgeo heterozygous mutants revealed a 

distinct behaviour phenotype. Only 8% of first litters from mutant mothers 

survived to weaning age, compared with those nursed by wild type females 

(83%). Furthermore progeny of mutant mothers crossed with wild type father 

also failed to survive, suggesting that father’s genotype was not relevant for 

this survival rate. Low survival rate was attributed to a maternal nurturing 

defect. Nurturing defects are connected to reduced hypothalamic oxytocin 

neurones and increased anxiety-like behaviour that inhibited mothers from 

exploring pups and resulting in overall poor maternal response (Curley et al., 

2004; Li et al., 1999; Champagne et al, 2009). 

On the other hand male Pw1βgeo mutants have deficits in sexual 

behaviour and olfactory recognition of sexually receptive mates (Swaney et 

al., 2007; Swaney et al., 2008). This behaviour phenotype is connected with 

lower neuronal activity in Pw1βgeo mutants. Analysis of forebrain c-Fos 

expression showed significant sexual experience-dependent changes in 

neuronal responses to female chemosignals in wild type males but far smaller 

changes in activation in Pw1βgeo males, matching the behavioural findings. 

According to Swaney and colleagues (2007) postulate that these different 

behaviours regulated by Pw1 suggests that co-adaptation between individuals 

has been a key driver in the evolution of imprinting and its major role in 

mammalian brain evolution.  

 

 The imprinting and transcription of the Pw1 gene is regulated by a 

Pw1-differentially methylated region (DMR) (Kim et al., 2012; Kim et al., 

2003). Not only does this imprinting control region (ICR) regulate expression 

of Pw1, but also the whole cluster of imprinted genes in the Pw1 domain. To 

investigate the relationship between imprinting and transcription of Pw1 and 

the genes from the same cluster Kim and co-workers (2012) made a mutant 

mice in which they knocked-out Pw1-DMR during development. Paternally 

transmitted mutation caused partial embryonic lethality (50%) and reduced 
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body weight. Smaller body weight was much more pronounced in male then 

female heterozygous pups. Maternally transmitted mutation had no effect on 

survival and the majority of heterozygous pups were heavier then wild type 

littermates. Homozygous mutants were never born. On the protein level pups 

inheriting the knock-out allele paternally showed a 4 fold down regulation of 

PW1, whereas the maternally inherited allele did not show any changes in 

PW1 expression. 

 

 
Figure 5. Schematic summary for the role of the Pw1-DMR on imprinting and 
expression of Pw1 cluster genes. 
The deletion effects of the Peg3-DMR (Pw1-DMR) are schematically presented: each 

gene is indicated with an arrow while each DMR is indicated with a box. The open 

and closed boxes indicate unmethylated and methylated state of a given DMR, 

whereas an X on the box represents the deleted allele (KO) of the Peg3-DMR. The 

first illustration summarizes the imprinting status of the Peg3 domain that has been 

known so far (A). The two illustrations below summarize the deletion effects 

observed from neonatal brains with the paternal (B) and maternal (C) transmission of 

the KO	
  allele, respectively. Figure was taken from Kim et al (2012). 
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The Pw1 genomic domain consists of four paternally expressed genes 

(Zfp264, Usp29, Pw1 and APeg3) and three maternally expressed genes 

(Zim3, Zim1 and Zim2). As predicted, the deletion of DMR domain caused 

several changes in expression and imprinting of Pw1- cluster genes 

depending on the origin of mutation (Figure 5). The paternal transmission of 

the KO allele in neonatal brain caused down-regulation of Pw1, and also bi-

allelic expression of the maternally expressed Zim2. A switch from maternally 

to bi-allelic expression of Zim2 could be explained if Pw1 and Zim2 share the 

same enhancers for their expression. If this is the case, Pw1 and Zim2 might 

compete in cis for these enhancers and down regulation of the 

transcriptionally dominant Pw1 might allow the expression of Zim2 in the 

paternal allele, resulting in the bi-allelic expression of Zim2. The paternal 

transmission of mutant allele also caused up regulation of Zim1, however the 

observed upregulation was still derived from maternal chromosome (Kim et 

al., 2012). Compared with paternal transmission, maternal transmission of the 

mutation had a mild impact on transcription and imprinting of Pw1 cluster 

genes, in that the levels of gene expression were almost unchanged in 

comparison with the wild type control. Interestingly, the maternal transmission 

of DMR mutation caused a switch in expression of Zfp264 from the paternal to 

maternal allele. One possible explanation could be that the maternal Pw1 

DMR is active during one stage of development and the switch is 

consequence of deletion of Pw1 DMR on maternal chromosome. This is in 

accordance with the fact that homozygous mice are never born, although they 

should have the same expression pattern as a paternally transmitted deletion. 

 Although genetic work on mice gave us insight how the expression and 

imprinting of Pw1 gene cluster is regulated, we are still far from understanding 

the variety of phenotypes in mutant mice. How much of phenotypes can be 

attributed to the function of PW1 protein and how much comes from 

deregulation of expression of the genes from cluster is still unknown. 

Recently, Thiaville and colleagues (2013) confirmed that PW1 is a DNA 

binding zinc finger protein that acts as a transcription factor. Using chromatin 

immunoprecipitation with polyclonal anti-PW1 antibody they identified a PW1 

DNA binding motif. PW1 binds to an AGTnnCnnnTGGCT consensus motif 

with its five zinc finger domains near C-terminus. They also identified direct 
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target genes for PW1 (Figure 6) and validated them by documenting their 

expression levels in the Pw1-DMR mutant mouse model with low levels of 

PW1 expression (Kim et al., 2012). Comparing the mutants with the wild type 

showed that the expression levels of targeted genes were reduced (Grb10, 

Mapk14, Nt5c1a, Ppargc1b, Setd1a, Syap1, Wnt9a), increased (Dusp1, 

Pgm2l1), or remained the same (Aebp2, Eml2, Ndufs8, Sdhb). These results 

indicate that PW1 could posses both repressor and activator function. 

Direct targets of PW1 could explain a variety of phenotypes from 

different Pw1 mutant mouse lines. Metabolism and growth rate changes could 

be explained by PW1 directly regulating transcription of a subset of nuclear-

encoded mitochondrial genes (Ndufs7, Ndufs8, Ppargc1b, Sdhb) and genes 

involved in modulating insulin/IGF-1 signalling (Mapk14, Dusp1, Grb10). 

Furthermore, PW1 alternation of maternal behaviour caused by defective 

neuronal connectivity (Li et al., 1999) could be connected to impaired Wnt 

signalling. Inhibition of the Wnt signalling pathway has been proposed to be 

necessary for specific tissue types (i.e. hypothalamus) to develop properly 

(Kapsimali et al., 2004). In this context observations of Wnt9a expression 

being influenced by PW1 binding need further investigation. Additional 

evidence of PW1 regulating Wnt signalling comes from work of Jiang and 

colleagues (2010). Enforced over-expression of Pw1 mRNA during zebrafish 

embryogenesis decreased β-catenin protein expression and inhibited Wnt-

dependent tail development. Also the alternations in insulin/IGF-1 signalling 

pathways can have behaviour defects (Mitschelen et al., 2011; Devon et al., 

2006), which makes identification of Dusp1, Mapk14, and Grb10 as direct 

PW1 targets intriguing.  
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Figure 6. Pw1 regulates a subset of genes through direct DNA biding  
Chromatin immunoprecipitaction was done with Pw1 antibody (A and B). A subset of 

genomic regions were demonstrated to be bound by Pw1 through both (A) regular 

PCR and (B) qPCR. (C) The expression levels of Pw1 bound genes were compared 

between wild type mice and mice with reduced Pw1 expression (DMR KO) by qRT-

PCR. (Adapted from Thiaville et al., 2013) 
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Pw1 marks adult stem cells in various tissues 
 

Like many other imprinted genes Pw1 is expressed at high levels in 

early embryonic mesoderm and is down regulated in tissues as they 

differentiate, remaining to be expressed in a small population of cells (Relaix 

et al., 1996). Pw1 is a part of imprinted gene network (IGN), which consist of a 

subset of imprinted genes that are down regulated postnatally, but in 

adulthood are predominantly highly expressed in somatic stem cells (Berg et 

al., 2011). A key feature of somatic stem cells is that they are generally 

considered quiescent, dividing infrequently, but are driven into cycle during 

periods of tissue regeneration or self-renewal. Berg and colleagues (2011) 

showed that members of the imprinted gene network are expressed in long-

term hematopoietic cells (LT-HSC), satellite cells of skeletal muscle and 

epidermal stem cells of skin where they play a significant role in maintenance 

of “stemness”.  

A small subset of IGN genes (Dlk1, Grb10, Gtl2, H19, Igf2, Mest, Ndn, 

Pw1, Plagl1) is expressed in majority of studied adult stem cell populations at 

higher levels compared to their differentiated progeny. To explore whether 

IGN gene expression correlates with functional stem cell properties Berg and 

colleagues (2011) stressed LT-HSC under two distinct conditions that mimic 

an acute response to injury (5-fluorouracil treatment) and chronic 

overstimulation (transplantation Irgm deficient bone marrow into irradiated 

mice). Thus, two conditions that disrupt LT-HSC homeostasis perturb the 

expression of a central group of imprinted genes known to be involved in 

embryonic and early postnatal growth.  

Recently, Sassoon and colleagues using a Pw1-reporter mouse 

(Pw1nLacZ) showed that Pw1 identifies multiple adult stem cell populations in 

various tissues including skeletal muscle, intestine, testis, central nervous 

system, bone, bone marrow and skin (Besson et al., 2011) (Figure 7). In the 

same study, using an example of stem cells isolated from CNS, they showed 

that Pw1 expression is also a marker for stem cells in vitro. One of the 

characteristics of stem cells is their capability of self-renew and neural stem 
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cells can be expanded in vitro by generating neurosphers. After first passage 

neurospheres contain mostly stem cells that express Pw1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Pw1:IRESnLacZ expression profile in various  
(A) Reporter activity and Pw1 expression identify progenitor cells in adult small 

intestine. Reporter activity and endogenous PW1 protein expression are restricted to 

the stem cell niche in basal crypt. (B) Co-localization of PW1 protein and LacZ in 

nestin positive neurospheres isolated from the reporter line after one passage. (C) 

Transverse sections of TA muscle from 7-week-old transgenic mice were stained for 

LacZ and Pw1 and did not reveal expression in myonuclei. (Adapted from Besson et 

al., 2011) 
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In skin PW1 protein and reporter activity were detected in the bulge, 

hair germ, and dermal papilla at all phases of the hair cycle and it was co-

localized with known epidermal stem cell markers CD34, cytokeratins 5 and 

15. Furthermore FACS sorted β-gal positive cells and transplanted into nude 

mice were capable of reconstituting hair follicles. When the grafts were 

challenged to regenerate, they demonstrated that only PW1 expressing cells 

were capable of robust regeneration. Lineage tracing with double labelled 

Pw1nLacZ/H2bGFP cells revealed that PW1 positive cells also repopulate the 

hair follicle stem cell niches proving that PW1 marks the self-renewing stem-

cell population in skin. 

Pw1 as a marker of tissue resident stem cells was first described in 

postnatal skeletal muscle where PW1 expression is detected in satellite cells 

and in their precursors called PICs (PW1+/Pax7- interstitial cells) (Mitchell et 

al., 2010). Isolated from skeletal muscle PICs have bipotential behaviour in 

vitro generating both smooth and skeletal muscle. Similar results were 

obtained by transplantation of PICs in injured skeletal muscle, where they 

gave rise to satellite cells and both smooth and skeletal muscle in comprising 

to transplantation of satellite cells that gave rise only to myofibres.  

Using the transgenic reporter lines I identified Pw1 positive cells in the 

adult heart in significant numbers. Based on mRNA expression profiles and 

patterns during embryogenesis we surmise an epicardial origin. 

Immunohistochemistry and flow cytometric analysis revealed that Pw1 cells 

express the adult stem cell receptors Sca1, Pdgfra and Cd34 in similar 

manner like PICs do in skeletal muscle. Furthermore adult cardiac Pw1 cells 

are highly pro-angiogenic in vitro and can induce tube formation when they 

are co-cultured with an endothelial cell line. Using pharmacological tools I 

locally depleted Pw1 cells which resulted in local cardiomyocyte atrophy and 

fibrosis. These results make Pw1 cells a potentially interesting component of 

regenerative medicine. 
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2. Materials and Methods 

	
  

Animals 
	
  

To detect Pw1 expressing cells we used two BAC transgenic reporter 

lines (Figure 8) Pw1nLacZ (Besson et al., 2011) and Pw1eGFP (Gong et al., 

2003). In Pw1nLacZ line IRESnLacZ was introduced in 5’ portion of Pw1 exon 9 

and line was selected with single copy integration. The Pw1nLacZ line was kept 

on a mixed C57Bl/6 and FVB background. For the Pw1eGFP line the reporter 

gene was inserted immediately upstream of the coding sequence of the Pw1 

gene, and the line was kept on mixed FVB and CD1 background.  

 

 

 

 

 

 

 

 
Figure 8. Schematic representation of transgenes from PW1 reporter lines 
Upper panel represents transgene from the Pw1nLacZ line where IRESnLacZ-pA 

cassette (blue) was introduced in exon 9 of Pw1 gene. Translation from mRNA from 

transgene results with nLacZ and non-functional truncated PW1 protein. Lower panel 

shows trangene from the Pw1eGFP line where eGFP-pA (green) was introduced 

immediately after the Pw1 START codon resulting only in eGFP translation. 

Schematic representation was constructed according to descriptions from Besson et 

al., 2011 and Gong et al., 2003. 
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Genotyping was performed by PCR using genomic DNA from tail 

biopsies after over-night digestion (50 mM KCl, 10 mM Tris pH 8.0, 2 mM 

MgCl2 0.1 mg/ml gelatin, 0.45 % (v/v) NP-40, 0.45 % (v/v) Tween 20, 1 mg/ml 

proteinase K) at 56 °C. The PCR products were analyzed on 2 % agarose 

gels; primer sequence and PCR programs are provided below (Table 1). 

Depending on gel size, gels were run at the voltage between 100 and 120 V 

with constant current. 

 
Table 1. Primer sequences and programs for genotyping of Pw1nLacZ and 
Pw1eGFP transgenic reporter lines 

Mouse line PCR primers (5’-3’) PCR program 

 94°C for 1 min 

Pw1nLacZ 

ACCAACGTAACCTATCCCATT 
(sense) 
 
CTGATCTTCCAGATAACTGCC 
(anti-sense) 35 cycles 

94°C for 1 min 
52°C for 30 s 
72°C for 1 min 

 94°C for 5 min 

10 cycles 
94°C for 15 s 
65 °C for 30 s 
72°C for 40 s 

Pw1eGFP 

GTGTGAGCAAAACAGACAACTGT
GAAA (sense) 
 
TAGCGGCTGAAGCACTGCA (anti-
sense) 

30 cycles 
94°C for 15 s 
55 °C for 30 s 
72°C for 40 s 

 

Animals were housed in a clean, temperature controlled (22 °C) mouse 

facility on a 12-hour light/dark cycle. Mice were weaned around three weeks 

of age and housed in same sex groups of 3-5 per cage with pellet food and 

water ab libidum. All mouse procedures were approved by European 

Molecular Biology Laboratory Monterotondo Ethical Committee 

(Monterotondo, Italy) and were in accordance with national and European 

regulations.  

For preparation of heart tissue and cells for histology and FACS, 

animals were anesthetised with avartin (0.5 mg/g) and perfused with HBSS 

solution without calcium supplemented with a 100 U/ml of heparin through the 

left ventrical. Tissues and cells for X-gal staining and FACS were processed 

as described below and for immunostaining mice were additionally perfused 
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with 4 % (w/v) PFA in PBS, tissue was harvested and incubated in fresh 4 % 

(w/v) PFA in PBS over-night. 

 

Isolation of embryos 
 

To determine the development stages of the embryos, the days from 

the detection of the vaginal plug (E0.5) until time of dissection of the animals 

were counted. Dissections were always carried out around the same time of 

the day to minimize variation in developmental stages. Pregnant female 

animals were sacrificed by cervical dislocation and the uterus was isolated 

and washed with PBS. Embryos were then sequentially isolated from the 

uterus, the placenta and the extra-embryonic membranes. Embryos were 

sacrificed by cutting off the head and hearts were removed and processed 

separately for X-gal staining (E9.5, E10.5 and E11.5) or cell isolation (E11.5 

and E12.5) or whole embryos were processed (E9.5). 

 

Local inactivation of Pw1 cells using Daun02 
 

The “Daun02 inactivation method” is an approach for selective 

inactivation of LacZ positive cells, previously described on nucleus 

accumbens neurons in rats (Koya et al., 2009) (Figure 9). Daun02 was 

administrated into the pericardial sac of Pw1nLacZ mice in the following way.  

Animals were anesthetized using 2 % isofluran and endo-tracheal 

intubation was carried out to ventilate the lungs while the chest was open. An 

incision of several mm length away from the sternal border towards the right 

armpit was made. Underlying connective tissue was opened and the two 

muscle layers underneath were spread and held by retractors without incision 

into the muscle. The rib cage was opened at 4th intercostal space to allow 

access to the heart without damaging the pericardial sac. In total 50 µg of 

Daun02 in 500 µl of 2 % (w/v) sodium alginate was administrated into the 

pericardial sac. For the sham operated animals only 500 µl of 2 % (w/v) 

sodium alginate was administrated. The retractors were removed and the 

chest was closed by bringing together the 4th and 5th ribs using 6-0 nylon 
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sutures. The muscles were placed into the original position and the skin was 

closed using 6-0 nylon sutures. Mice were monitored until awakening and 

body temperature was kept up by heat pad. Mice were sacrificed 7 days post 

surgery. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. Schematic mechanism for Daun02 inactivation in Pw1nLacZ mouse 
heart 
The Pw1nLacZ transgene contains a Pw1 promotor  that drives expression of LacZ, 

encoding β-galactosidase (β-gal). β-galactosidase  can catalyze the conversion of the 

prodrug Daun02 into daunorubicin which reduces polymerase activity affecting 

regulation of gene expression (adapted from Koya et al., 2009). 

 

!
!"#$!"#$

%&$'$ %&$($ %&$)$ %&$*$ %&$+$ %&$,$ %&$-$ %&$.$

%&$/$

!"#$01234$ 5!$ %&$/$ 5!$

67'801234$



	
   40	
  

Tissue processing and histochemistry  
 

X-gal staining 
	
  
 After perfusion tissues were excised and prepared for X-gal staining in 

the following way. For whole-mount staining total hearts were fixed in ice-cold 

X-gal fix buffer (0.1 M phosphate buffer pH 7.3, 5 mM EGTA pH 7.3, 2 mM 

MgCl2 and 0.2 % (w/v) glutareldahyde) for 30 min on ice. Following the 

fixation tissues were washed three times for 20 min with 0.1 M phosphate 

buffer (pH 7.3) supplemented with 2 mM MgCl2, 0.02 % (v/v) NP-40 and 0.01 

% (w/v) sodium deoxycholate and incubated in X-gal staining solution 

(washing buffer supplemented with 5 mM K4Fe(CN)6, 5 mM (K3Fe(CN)6 and 

1 mg/ml X-gal). For thin sections hearts after perfusion were embedded in 

OCT and immediately frozen on dry ice. Ten-micron thick tissue sections were 

cut and air dried for 2-3 min and stored at -80 °C until staining. Frozen 

sections were fixed for 10 min in X-gal fix buffer and washed twice for 5 min in 

X-gal wash buffer. Sections were placed in X-gal staining solution and 

incubated at 37 °C for 4 h. Whole-mount tissue and frozen sections were 

post-fixed with 4 % (w/v) PFA in PBS and frozen sections were 

counterstained using eosin.  

 

Immunohistochemistry 
 

 Heart tissue after overnight post-fixation was washed in PBS and 

embedded in 3 % (w/v) low melting agarose. For 100 µm thick section 

staining, tissue was sectioned using a vibrating blade microtome (Leica 

Microsystems). The thick sections were pearmeabilised and blocked with 

blocking buffer (1 % (v/v) normal goat serum, 0.5 % (v/v) Triton X-100, 0.5 % 

(w/v) BSA, 0.1 % (w/v) glycine in PBS) for 2h with light agitation. After 

permeabilisation and blocking floating sections were incubated overnight in 

primary antibodies (Table 2) and following day washed three times for 30 min 

with blocking buffer and then incubated with secondary antibodies (Table 2) 

for 3h. Next sections were washed two times with blocking buffer and the 
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nuclei were contra-stained with DAPI in PBS supplemented with 0.5 % (v/v) 

Triton X-100 and 0.1 % (w/v) glycine for 30 min. After nuclear staining with 

DAPI sections were washed three times for 30 min in PBS with 0.1 % (w/v) 

glycine and mounted on glass slide.	
   Fluorescent microscopy images were 

obtained using Leica SP5 confocal laser scanning microscope (Leica 

Microsystems). Two and three-dimensional images were prepared using 

Imaris software (Bitplane), with adjustments made to brightness and contrast. 

 
Table 2 List of primary and secondary antibodies and their dilution used for 
immunohistochemistry. 

Antibody Dilution 
Rabbit anti-LacZ (Capel) 1:250 
Chicken anti-GFP (Invitrogen) 1:100 
Mouse anti-desmin (Abcam) 1:100 
Rabbit ant-Wt1 1:100 
IB4 Alexa 594 (Invitrogen) 1:250 
Goat anti-mouse Alexa 488 
(Invitrogen) 

1:1000 

Goat anti-rabbit Alexa 546 
(Invitrogen) 

1:1000 

Goat anti-chicken Alexa 546 
(Invitrogen) 

1:500 

Streptavidin Alexa 647 
(Invitrogen) 

1:200 
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Ultracryotomy, immunogold labelling and electron 
microscopy 
 

 After perfusion tissue samples were post-fixed with 4 % (w/v) PFA in 

0.1 M sodium phosphate buffer, pH 7.1. Samples were cut into 0.5 mm3 

squares, embedded in 12 % (w/v) gelatine and infused in 2.3 M sucrose 

(Painter et al., 1973; Tokuyasu et al., 1973). Mounted gelatine blocks were 

frozen in liquid nitrogen and ultrathin (50nm) cryosections were cut at -120˚C 

with an Ultracryo-microtome (Leica). Sections were retrieved in 1.15 M 

sucrose in 2 % (v/v) methylcellulose solution and processed for 

immunolabelling. After blocking step with 0.5 % (w/v) BSA, single immuno-

labelling was performed in a humid chamber with primary antibody (rabbit 

anti-LacZ, Capel, 1:25) and protein A coupled to 10 nm diameter gold 

particles, PAG-10nm (CMC, University Medical Center, Utrecht, The 

Netherlands). 

 

Haematoxilin/eosin (H&E) staining 
 

 Frozen sections were fixed with 4% (w/v) PFA in PBS for 15 min and 

washed three times with PBS for 10 min. Slides were rinsed in distilled water 

and incubated in Harris haematoxilin solution for 1 min. Slides were washed in 

distilled water, treated with acidic alcohol (1% HCl, 70% ethanol) for 30 s, 

washed again with distilled water and incubated with 1% eosin solution for 1 

min. After washing for 30 s with distilled water, slides were incubated in 95% 

ethanol (30 s), 100% ethanol (2 min) and xylene (3 min) before mounted with 

Eukitt quick hardening mounting medium. 
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Preparation of single cell suspensions from heart and flow 
cytometric analysis and sorting 
 

After perfusion with HBSS supplemented with 100 U/ml of heparin 

hearts were finely minced with surgical scissors and incubated in 10 ml of 2 

mg/ml collagenase type II /HBSS (with calcium and magnesium) enzyme 

solution for 60 min at 37 °C with gentle agitation. Dissociated heart tissue was 

filtered through 70 µm filters, mixed with 5 ml of FBS and centrifuged at 250×g 

for 5 min. Cells were processed for staining for FACS. LacZ positive cells 

were detected with a fluorogenic substrate, FDG, of galactosidase (LacZ 

enzyme) (Nolan et al., 1988; Guo and Wu, 2008). 

Cells from Pw1nLacZ hearts were resuspended in 100 µl of HBSS and 

incubated at 37 °C for 10 min. Next 100 µl of pre-warm FDG solution (2 mM 

FDG in water) was added to the cell suspension and incubated further at 

37°C for exactly 1 min. The FDG loading into the cells was stopped with 10 ml 

of ice-cold FACS staining buffer (HBSS, 2% FBS, 10 mM HEPES, 100 U/ml 

penicillin and 100 µg/ml streptomycin) and cells were incubated in the dark for 

90 min on ice. Next cells were centrifuged and proceed with standard FACS 

staining protocol. 

Cells were re-suspended into FC receptor blocking solution consisting 

of FACS staining buffer and Cd16/Cd32 (eBioscience) (1:50) and incubated 

for 10 min. Next fluorophore coupled antibodies for FACS were added as 

described in the table (Table 3) and incubated for 10 min (for Cd34 staining 

cells was incubated for 60 min). Cells were centrifuged and washed with 

FACS staining buffer and resuspended in the same buffer supplemented with 

living die Sytox Blue or 7AAD to exclude the dead cells. Fluorescence 

activated cell sorting and analysing was conducted using FACS-ARIA cell 

sorter (Becton Dickinson) and the using FlowJo Software. 
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Table 3 List of antibodies and their dilution used for FACS staining. 

FACS antibody Dilution 
Sca1 PE-Cy7 
(BD Pharmingen) 1:150 

Cd31 eFlour 450 
(eBioscience) 1:200 

Cd34 APC 
(eBioscience) 1:50 

Cd29 APC-Cy7 
(eBioscience) 1:100 

Cd45 PE-Cy5 
(BD Pharmingen) 1:250 

Cd140a APC 
(eBioscience) 1:50 

Cd117 APC 
(eBioscience) 1:200 
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Transcriptome analysis 
 

Isolation of RNA and quantitative real time PCR 
 

For total RNA from the heart snap frozen ventricles were homogenized 

in ice-cold TRIzol (tissue : TRIzol = 20 mg : 500 µl) and 20 mg of tissue 

homogenate was used for RNA extraction. TRIzol was also used in total RNA 

extraction from FACS-sorted Pw1 cells. Cells were sorted in 500 µl of TRIzol 

and vigorously vortexed to dissociate cells. Next 100 µl of chloroform was 

added to 500 µl of tissue /cell homogenate and after 2-3 min of incubation on 

room temperature homogenate was centrifuged at 12 000 × g, 4 °C for 15 

min. The aqueous phase after centrifugation was separated in the new tube 

and mixed with 70 % ethanol in ratio 1:1. Then RNA was cleaned using 

RNeasy Mini Kit (QIAGEN) and the RNA concentration was determined with 

spectrophotometer. After RNA quality verification, 1-2 µg of RNA was used for 

DNaseI treatment and cDNA synthesis using QuantiTect Reverse 

Transcription Kit (QIAGEN). TaqMan gene expression assays (Applied 

Biosystems) were used for relative quantification of the mRNA levels of the 

genes of interest. Probes for TaqMan Gene Expression Assays are as listed 

in the table below (Table 4). 

 Expression levels of genes of interest were analysed by normalizing 

against expression levels of house keeping gene Gapdh using the ΔΔC(T) 

method. To transform Ct values to linear expression values, the following 

formula was used: 

 

Relative expression = 2-(ΔCt-Ct (stable)) 

ΔCt =Ct (gene) – Ct (Gapdh) 

Ct (stable): Ct one constant sample across all Cts for the same gene 

 

Statistical analysis was performed using the Student’s t test (tail 2, 

type2). Values were expressed as mean ± standard error and differences with 

p value < 0.05 were considered significant. 
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Table 4 List of TaqMan probes used for qRT-PCR 

Gene Assay part number 

Gapdh 4352339E 

Pw1 Mm01337379_m1 

Tcf21 Mm00448961_m1 

Tbx18 Mm00470177_m1 

Raldh2 Mm00501306_m1 

Id1 Mm00775963_g1 

Upk3b Mm00558406_m1 

Vim Mm01333430_m1 

Snail Mm00441533_m1 

Slug Mm00441531_m1 

Twist1 Mm00442036_m1 

Tmsb4x Mm01161568_m1 

Angpt1 Mm00456503_m1 

Angpt2 Mm00545822_m1 

Tgfb3 Mm00436960_m1 

Tgfb1 Mm01178820_m1 

Igf1 Mm00439560_m1 

Igf2 Mm00439564_m1 

Vegfa Mm00437306_m1 

Jag1 Mm00496902_m1 

Grb10 Mm01180443_m1 

Dusp1 Mm00457274_g1 

Igf1r Mm00802831_m1 
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GeneChip analysis  
 

 Expression analyses were conducted on FACS sorted Pw1eGFPSca1N/L 

and Pw1eGFPSca1H cells from the mouse heart and compared with the RNA 

isolated from the total mouse heart. Isolation of RNA was done as described 

as described above and the RNA quality was analysed with a Bioanalyzer 

(Agilent Technologies) and further processed at Genecore (EMBL Heidelberg, 

Germany). 

Microarrays experiments were performed on Affymetrix GeneChip 

MoGene-2.0 Array. Data were extracted and analyzed on GeneSpring GX 

12.5 software. All gene array raw data was first normalized in order to make 

multiple chip data comparable and than filtered on their signal intensity 

values. The range of intensity values to pass the filter was set between 20 

and 50 percentile.  Furthermore a list of Pw1 cell-enriched genes was created 

by using parametric unpaired t test with unequal variance. Of the resulting 

genes, Pw1 cell genes were defined as genes with a normalized >2-fold 

increased expression compared to the total heart expression. After 

normalization to total heart expression created gene lists of Pw1 cell gene 

populations were compared between each other.  

 To determine the categories of genes upregulated in Pw1 cells, we 

tested whether any Gene Ontology (GO) terms were overrepresented for the 

gens found to be up-regulated compared with the total heart samples. Using 

the publicly available software GeneCodis14 28 GO terms (Table S 2) were 

found to be significantly enriched in this set of upregulated genes 

(Hypergeometric test16 p-value<0.05, FDR17 adjusted). Furthermore a 

KEGG and Panther pathway enrichment analysis was performed using 

GeneCodis14 and revealed 10 enriched pathways. 
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Primary cell cultures 
	
  
Cultures of adult Pw1 cells and transplantation assays 
 

 For Pw1 cultures cells were FACS sorted into Dulbecco’s modified 

Eagle’s medium (DMEM) containing 10 mM HEPES, 1mM sodium pyrovate, 2 

mM L-glutamine, 1 × nonessential amino acids, 15% (v/v) FBS, 100 U/ml 

penicillin and 100 µg/ml streptomycin. After the sorting Pw1 cells were plated 

on collagen type I coated chamber slides and incubated at 37 °C, 5% CO2 for 

8 days. Media was changed every 4 days. Cells were fixed with 4% PFA and 

stained for phalloidin and LacZ.  

 The matrigel plug assay was used as in vivo angiogenesis model. 

Briefly, after FACS sorting Pw1 cardiac cells with or without endothelial cells 

were resuspended in 200 µl of matrigel on ice and was implanted into Rag-/- 

mice by subcutaneous injections. Mice were sacrificed after 8 days from 

implantation.  

 

Embryonic Pw1 cardiac cultures 
 

 Embryonic epicardial derived cells were isolated and cultured as 

previously described with some modifications (Smart and al., 2007; Chen et 

al., 2002). Embryonic hearts from the development stage E11.5 and E12.5 

were dissected and cleaned from the extra tissue. The whole hearts were 

plated onto collagen type I coated 12 well dishes in a single drop of M199 

media supplemented with 100 ng/ml Tβ4. Plates were placed in humidified 

chamber and incubated over-night in cell incubator at 37 °C, 5% CO2. Next 

day a 500 µl of fresh media with Tβ4 was added and hearts were incubated 

for additional 24h. Epicardial cells migrated away and formed a monolayer 

surrounding the remaining cardiac tissue, which was removed using the 

forceps. Epicardial cells were further cultured in M199 media supplemented 

with 15% of FBS.  
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Biochemistry 
 

To investigate the role of Pw1 in growth factor signalling mouse Pw1 

cDNA was cloned into pcDNA3.1(-) vector, designed for high-level constitutive 

expression in mammalian cells. For inducible expression of Pw1 stable NIH 

3T3 cell line was made by introducing mouse Pw1 cDNA into Tet-On pTRE3G 

plasmid and transfecting NIH 3T3 Tet-On cells. For detecting the Pw1 HA tag 

with the Kozak consensus sequence was added before the first AUG (Pw1 

start of translation) site (Figure 10).  

 

 
Figure 10. Schematic representation of CMV:Pw1 plasmid for transient and 
pTRE3G:Pw1 plasmid for inducible stable over-expression of Pw1  
The Pw1 cDNA was cloned under CMV promotor into pcDNA3.1(-) plasmid (left 

panel) or into Tet-On pTRE3G plasmid (right panel). To track PW1 protein 

expression HA tag and Kozak sequence were cloned in front of START codon for 

Pw1 translation. 
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Transformation of bacteria for plasmid amplification 
 

 One Shot TOPO10 competent E. coli was used for plasmid 

amplification. Cells were thawed on ice and 5 µl of plasmid was added. 

Following 5 min of incubation cells were heat-shocked for 30 s at 42 °C and 

placed on ice for 2 min. Immediately after, 50 µl of transformed cells were 

seeded on pre-warmed selective plate containing 100 µg/ml ampicillin and 

incubated over-night. Next day individual colonies were picked and cells 

containing the plasmid were grown 24h at 37 °C in 200 ml of LB medium 

supplemented with 100 µg/ml ampicillin. Cells were centrifuged at 8000 × g 

for 5 min and plasmid was purified following the plasmid purification kit 

(QIAfilter Plasmid Purification Kit, Qiagen). The quality and quantity of purified 

plasmid was assessed spectrophotometrically by measuring absorption at 

wavelengths of 260 nm and 280 nm. The right cloning was confirmed by DNA 

sequencing.  

 

Culture conditions of NIH 3T3 and HEK 293 cell lines 
 

Human HEK 293 epithelila cells were maintained on plastic tissue 

culture dishes in Dulbecco’s modified Eagle’s medium (DMEM) containing 10 

mM HEPES, 1mM sodium pyrovate, 2 mM L-glutamine, 1 × nonessential 

amino acids, 10 % (v/v) heat-inactivated FBS, 100 U/ml penicillin and 100 

µg/ml streptomycin. The embryonic fibroblast cell line NIH 3T3 were cultured 

in DMEM supplemented with 2 mM L-glutamine, 1 × nonessential amino 

acids, 10% (v/v) heat-inactivated FBS, 100 U/ml penicillin and 100 µg/ml 

streptomycin. 

 Transient transfections of HEK 293 cells were done using Xfect 

transfection reagent (Clonetech) with some modifications. Cells were grown 

on 12-well plates in 500 µl of growth media and at the 80 % of confluence 

cells were transfected with 2.5 µg of CMV:Pw1 or mock plasmid DNA. First, 

plasmid DNA was mixed in 50 µl Xfect Reaction Buffer and than 0.75 µl Xfect 

polymer was added. The transfection mixture was vigorously mixed and 
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incubated at room temperature for 10 min. The transfection mixture was 

added dropwise to the cells. After 48h cells were harvested for protein or 

immunohistochemistry.  

 For making stable inducible Pw1 expression, Tet-On NIH 3T3 cell line 

was transfected by elctroporation with	
   pTRE3G:Pw1 plasmid. Cells were 

harvested at the 80 % of confluence and prepared for electroporation 

according to Amaxa protocol. Four million cells were resuspendet in 100 µl of 

electroporation buffer (7.12 mM ATPNa2, 11.6 mM MgCl2, 144 mM KH2PO4, 

23.3 mM NaHCO3, 3.63 mM glucose) with 5 µg of pTRE3G:Pw1 plasmid. 

After applying electrical pulse cells were incubated for 10 min in pre-warmed 

RPMI medium and plated afterwards in complete NIH 3T3 medium described 

before. After three passages, Pw1 overexpression was induced by adding 

doxycycline to the cells at final concentration of 1 µg/ml. For RNA analysis, 

after 24 and 48h of induction cells were trypsinized and FACS sorted based 

on RFP expression. Total RNA was extracted as described before. 

 

Preparation of protein lysates from cultured cells and western 
blot analysis 
 

Cultured HEK 293 cells were washed two times with DMEM and 

collected into cell lysis buffer (50 mM Tris pH 7.0, 150 mM NaCl, 5 mM NaF, 2 

mM NaVO3, 50 mM β-glycerophophate, 1 % (v/v) NP-40, 0.25 % (w/v) Na-

deoxycholate, 1 mM PMSF, 1 mM EDTA pH 7.5 and complete proteinase 

inhibitors (Roche)). Lysates were sonicated for 20-30 s and centrifuged for 10 

min at 10 000 × g and 4 °C. Protein concentration of supernatant was 

determent by a dye-binding technique (Bradford assay and protein extracts 

were stored at -80 °C.  

For SDS PAGE protein extracts were diluted in Laemmli sample buffer 

(32 % (v/v) glycerol, 4 % (w/v) SDS, 125 mM Tris pH 6.9, 0.1 % (v/v) β-

mercaptoethanol, 0.01 % (w/v) bromphenol blue) and denaturated for 5 min at 

95 °C. Approximately equal amounts of proteins (20 µg per well) were loaded 

on 8 % (w/v) polyacrylamide gels with SDS (Biorad) and electrophoresis was 

performed at constant voltage (200 V for 1h) and room temperature. 
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 Following SDS PAGE, proteins were electrophoretically transferred 

onto a polyvenylidene difluoride (PVDF) membrane, which has been activated 

in methanol and equilibrated in transfer buffer (25 mM Tris pH 8.3, 192 mM 

glycine, 10 % (v/v) methanol). Transfer was carried out in a wet transfer 

apparatus for 1.5 hours at constant voltage (100 V) and 4 °C. After the 

transfer proteins on the membrane were stained and fixed with Rouge 

Ponceau S. After the washing in TBS buffer (20 mM Tris pH 7.5, 500 mM 

NaCl) the membranes were blocked in 5 % (w/v) BSA in TBST buffer (20 mM 

Tris pH 7.5, 500 mM NaCl, 0.1 % (v/v) Tween 20) for 1 h at room 

temperature. Primary antibodies were diluted in blocking buffer (table) and 

incubated over-night at 4 °C. Next day membranes were washed three times 

for 5 min in TBST buffer and incubated with secondary antibodies in blocking 

buffer for 1 h at room temperature. Following three times wash in TBST buffer 

specific bands were detected with chemiluminescence. 

 
Table 5 List of antibodies and their dilution used for Western staining 

Antibody Dilution 
HA-tag 
(Santa Cruz) 

1:1000 

PW1 
(provided by Professor 
David Sassoon from 
UPMC Paris VI) 

1:1000 

α-tubulin 
(Sigma) 

1:2000 

ECL Anti-rabbit IgG 
(Amersham) 

1:10 000 

ECL Anti-mouse IgG 
(Amersham) 

1:10 000 
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3. Results 
 

Pw1 is expressed in the adult steady state heart 
 

For describing Pw1 expression patterns in the adult steady state hearts 

I used Pw1nLacZ reporter mouse line (Besson et al., 2011). Eight to twelve 

weeks old mouse hearts or 10 µm thin cryo-sections were stained for β-

galactosidase activity (Figure 11). Whole mount staining revealed high 

expression levels of the reporter in atrium and on the surface of the ventricles. 

Cross-sections of the heart showed abundance of interstitial and epicardial 

cells positive for LacZ. Expression of the reporter was limited to a subset of 

cells within the epicardium. This is in the line with recent studies showing that 

the epicardium, and also the proepicardial organ, is a not homogeneous cell 

population during development, but rather a very heterogeneous one 

(Bochmann et al., 2010; Katz et al., 2012).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11. Pw1nLacZ expression profile in adult mouse heart  
Hearts of 8-12 weeks old animals were stained for β-galactosidase activity. (A) 

Whole mount staining show different expression levels of nLacZ between atrium and 

A	
  

B	
   C	
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ventricle. (B) On cross-sections one can nicely see distribution of Pw1 cells in adult 

myocardium and (C) at higher magnification the heterogeneous localization of Pw1 

cells in epicardium. 

 

Flow cytometric profiling of Pw1 ventricular cells 
 

As Pw1 was previously described as a potential adult stem cell marker 

I analysed Pw1 expressing cells from an nLacZ reporter line for known 

cardiac stem cell receptors (Figure 12). To detect Pw1 cells I used FACS-

based detection of LacZ positive cells with a well described fluorogenic β-

galactosidase substrate FDG. Galactosidase cleaves FDG and releases a 

fluorescence product FITC. Using a combination of FACS-based LacZ 

detection and antibody staining for receptors I found that a subset of Sca1, 

Pdgfra, Cd34 and Cd29 cells are also expressing Pw1. There is not a 100% 

overlap between any of the markers and Pw1. Interestingly Pw1 cells do not 

express c-Kit, previously described as a bone marrow derived cardiac stem 

cell marker, but the majority of Pw1 cells express Sca1, Cd29 and Pdgfra, 

which were described as receptors of epicardium-derived cells (EPDCs).  
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Figure 12. Immuno-phenotype of Pw1 ventricular cells from adult heart  
(A) Representative FACS scatter profiles showing Sca1, Pdgfra, Cd34 and Cd29 

heart populations from wild type and Pw1:nLacZ reporter mice. The gates show a 

subpopulation of stem cell receptor positive cells (Sca1, Pdgfra, Cd34 or Cd29) that 

are also LacZ positive. Blood and endothelial cells were excluded based on Cd45 

and Cd31 expression. (B) Quantification of the staining for stem cell receptor (Sca1, 

Pdgfra, Cd34, Cd29 or c-Kit) and Pw1 (LacZ). Values are presented as the mean 

percentage ± SEM, n=4. 

B	
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Gene expression of Pw1 cells based on Sca1 expression 
 

To further investigate the origin of the Pw1 cells I sorted two 

populations based on Sca1 expression (Sca1 low/negative and Sca1 high 

population) and compared expression levels of Pw1, epicardial and EMT 

markers to the expression levels from total heart extract (Figure 13). 

Interestingly Pw1 RNA levels were differently expressed between Sca1 

negative/low (Sca1N/L) and Sca1 high (Sca1H) population based on gender of 

the mice. The expression levels of adult epicardial markers such as Upk3b, 

Wt1 and Id1 were higher in Sca1N/L than in Sca1H population. Both 

populations were enriched in Raldh2, Tbx18 and Tcf21 (markers of epicardial 

activation) in comparison to RNA levels from total heart extract. Both 

populations were also enriched in EMT inducers Snail, Slug and Twist1 which 

suggests an epicardial/proepicardial origin of the Pw1 cells.  
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Figure 13. Gene expression profile of Pw1 cells based on Sca1 expression 
(A) Flow cytometric sorting of single cells based on LacZ (Pw1) and Sca1 expression 

from the adult heart. The gates used to sort Pw1nLacZSca1N/L and Pw1nLacZSca1H 

populations are shown in red and blue. Blood and endothelial cells were excluded 

based on Cd45 and Cd31 expression. (B) Pw1 expression levels by qRT-PCR on 
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sorted Pw1 populations from male and female animals are normalized to total heart 

expression (H).	
   Histograms show mean ± SEM, n=3. (C) qRT-PCR analysis of 

selected epicardial (Upk3b, Wt1 and Id1), epicardium activated (Raldh2, Tbx18 and 

Tcf21) and EMT (Snail, Slug and Twist1) genes on isolated Pw1 populations. Values 

are presented as the relative expression normalized to the expression of total heart 

extract ± SEM, n=6. 

 

Pw1 heart cells during development 
 

To determine the developmental time course for Pw1 expression I used 

Pw1nLacZ mouse reporeter line. The Pw1 gene is expressed in majority of the 

tissues during early embryonic development and at later stages becomes 

restricted to small number of cells. At the age of E9.5 of mouse embryonic 

development Pw1 reporter activity can be detected in majority of the cells 

except in the heart (Figure 14a and 14b). At later stages (E10.5 and E11.5) 

heart contains abundant Pw1 cells (Figure 14c and 14d). This expression 

pattern co-responds with the formation of epicardium from proepicardial 

organ. At E9.5 proepicardial cells migrate towards the heart tube. As they 

reach the heart they form the epicardium and migrate over the heart. The 

migration follows well-defined pattern. As the cells reach the heart they cover 

the dorsal surface of ventricle and continue towards the atrium and 

subsequently cover the ventral surface of the ventricle. The cells then cover 

the outflow tract and atria and by E11.5 the entire heart is engulfed by the 

epicardium. This timing perfectly follows the envelopment of developing heart 

by epicardial layer.  
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Figure 14. Pw1 expression patterns during early heart development  
Whole-mount β-galactosidase (X-gal) staining of (A) E9.5 embryo and (B) E9.5, (C) 

E10.5 and (D) E11.5 embryonic heart. Reporter activity is detected in the embryonic 

heart from the stage E10.5 and continues to be expressed during adulthood. This 

pattern of expression correlates with cell invasion from the proepicardial organ and 

formation of epicardium.  

A B 

C D 
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The Pw1 transcription profile  
 

To investigate the role of Pw1 cells I analyzed their gene profile in 

normal steady state heart. Using Pw1eGFP reporter line Pw1 cells were 

isolated based on eGFP and Sca1 expression and total RNA was isolated as 

described in Materials and Methods. RNA was analyzed by exon expression 

microarray and compared to total RNA isolated from ventricle tissue. To 

confirm that expression of eGFP is overlapping with expression of nLacZ 

reporter I performed immuno-staining on double transgenic 

Pw1:nLacZ/Pw1:eGFP mice. The staining for nLacZ and eGFP showed a 

100% overlap (Figure 15).  

 

 
Figure 15. Expression of eGFP and nLacZ in double transgenic mouse 
Pw1eGFP/nLacZ is overlapping in cardiac Pw1 cells 
Immunofluorescent staining of cardiac Pw1 cells from double transgenic Pw1eGFP/nLacZ 

reporter show overlapping expression of eGFP and nLacZ.  

 

eGFP	
   nLacZ	
   eGFP	
   nLacZ	
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In order to compare differentially expressed genes between 

Pw1eGFPSca1N/L and Pw1eGFPSca1H populations, individual populations were 

normalized with the Gapdh expression from ventricle tissue. Analysis focused 

only on genes enriched in Pw1 cells compared with total ventricles (Table 6 

and Table 7) and revealed 795 up-regulated genes in Pw1eGFPSca1N/L and 

729 up-regulated genes in Pw1eGFPSca1H population. Comparison of enriched 

genes between the two populations after normalization to total ventricle tissue 

showed 467 commonly expressed genes, 328 genes specific for 

Pw1eGFPSca1N/L and 729 genes specific for Pw1eGFPSca1H population (Figure 

16A). In both populations we found up-regulated previously described 

epicardial and EMT genes (Figure 16B).  

To determine the categories of genes up-regulated in Pw1 populations 

we performed Gene Ontology (GO) Biological Process, KEGG and Panther 

pathways analysis (Hypergeometric test 16 p-value<0.05, FDR17 adjusted) 

using publicly available software GeneCodis14 (Figure 17). We found the 

same categories of genes up regulated in both Pw1eGFPSca1N/L and 

Pw1eGFPSca1H populations. The majority of gene categories include 

extracellular matrix remodelling, focal adhesion, angiogenesis, TGFβ, MAPK 

and integrin signalling pathways. Overall, enriched genes revealed modest 

differences between the two populations of Pw1 cells, mainly in extent of 

induction. 
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Figure 16. Microarray gene expression analysis of Pw1 populations 
(A) Venn diagram of differentially expressed genes from Pw1eGFPSca1N/L and 
Pw1eGFPSca1H cells. Analysis reveals 467 commonly expressed genes, 328 genes 
specific for Pw1eGFPSca1N/L and 729 genes specific for Pw1eGFPSca1H population (B) 
Histograms of fold enrichment for the up-regulated epicardial and EMT genes in Pw1 
populations over total ventricle tissue is presented and the cut off value is 2.0. 
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Table 6. List of enriched genes in Pw1eGFPSca1N/L population 

List of top 20 genes expressed in Pw1eGFPSca1N/L heart population. Fold enrichment 
of the genes expressed in Pw1eGFPSca1N/L population over total heart is presented 
and the cutoff value is 2.0. 
 

Fold of 
enrichment Target ID Definition 

103.56969 Nid1 nidogen 1 
96.304855 Hspa1a heat shock protein 1A 
56.620167 Hspa1b heat shock protein 1B 
41.77531 Fosb FBJ osteosarcoma oncogene 

B 
38.875603 Gfpt2 glutamine fructose-6-

phosphate transaminase 2 
27.201145 Atf3 activating transcription factor 3 
26.319384 Pdgfra platelet derived growth factor 

receptor, alpha polypeptide 
22.487839 Hmox1 heme oxygenase (decycling) 1 
20.961435 Nr4a1 nuclear receptor subfamily 4, 

group A, member 1 
20.658092 Tnfaip6 tumor necrosis factor alpha 

induced protein 6 
20.315193 Scn7a sodium channel, voltage-gated, 

type VII, alpha 
20.04692 Ptgs2 prostaglandin-endoperoxide 

synthase 2 
19.915783 Il6 interleukin 6 
19.157991 Fbn1 fibrillin 1 
18.967112 Btg2 B cell translocation gene 2, 

anti-proliferative 
18.504148 Ier2 immediate early response 2 
16.789785 Mfap5 microfibrillar associated protein 

5 
15.807719 Sema3c sema domain, immunoglobulin 

domain (Ig), short basic 
domain, secreted, 
(semaphorin) 3C 

15.659446 Wbp5 WW domain binding protein 5 
15.60975 Hspa1a|Hsp

a1b 
heat shock protein 1A | heat 
shock protein 1B 
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Table 7. List of enriched genes in Pw1eGFPSca1H population 

List of top 20 genes expressed in Pw1eGFPSca1H heart population. Fold enrichment of 
the genes expressed in Pw1eGFPSca1H population over total heart is presented and 
the cut off value is 2.0. 
	
  

Fold of 
enrichment Target ID Definition 

106.60513 Hspa1a heat shock protein 1A 
69.37048 Hspa1b heat shock protein 1B 

57.1611 Cxcl1 chemokine (C-X-C motif) 
ligand 1 

38.436428 Fosb FBJ osteosarcoma oncogene 
B 

38.029053 Fos FBJ osteosarcoma oncogene 
34.74291 Nid1 nidogen 1 

28.600054 Nr4a1 nuclear receptor subfamily 4, 
group A, member 1 

21.153975 Atf3 activating transcription factor 3 

19.648472 Nop58 NOP58 ribonucleoprotein 
homolog (yeast) 

18.937458 G530011O0
6Rik|Mid1 

RIKEN cDNA G530011O06 
gene | midline 1 

17.512335 Pdgfra platelet derived growth factor 
receptor, alpha polypeptide 

16.900106 Ppp1r15a 
protein phosphatase 1, 
regulatory (inhibitor) subunit 
15A 

16.769703 Btg2 B cell translocation gene 2, 
anti-proliferative 

16.050785 Scn7a sodium channel, voltage-gated, 
type VII, alpha 

15.815527 Hmox1 heme oxygenase (decycling) 1 
15.803132 Jun  
14.989476 Cyr61 cysteine rich protein 61 

14.9340515 Ecm2 
extracellular matrix protein 2, 
female organ and adipocyte 
specific 

14.827088 Gprasp2 G protein-coupled receptor 
associated sorting protein 2 

14.726479 Gfpt2 glutamine fructose-6-
phosphate transaminase 2 

13.80541 Socs3 suppressor of cytokine 
signaling 3 
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Figure 17. Gene Ontology, KEGG and Panther pathway analysis of Pw1 
signature genes 
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GO Biological process, KEGG and Panther pathway analysis of Pw13eGFPSca1N/L 

(red) and Pw1eGFPSca1H (blue) cells show enrichment of genes involved in 

extracellular matrix remodelling, angiogenesis and signalling pathways implicated in 

cell migration and EMT (TGFβ, MAPK, PDGF and integrin signalling pathways).  

 

Cardiac Pw1 cells are associated with the capillary network  
 

As the GO ontology analysis of genes specific for the Pw1 cells 

suggested the role in extracellular matrix remodelling and blood vessel 

development and angiogenesis, I looked more closely into the relationship 

between endothelial and Pw1 cells. Pw1eGFP transgenic heart sections were 

co-stained with capillary marker isolectin B4 (IB4) (Figure 18a) and the 

images were obtained using a confocal laser scanning microscope. Results 

showed that the Pw1 cells form 3D networks closely associated with cardiac 

capillaries. The same results were obtained on Pw1nLacZ reporter line with 

cryo-immuno electron microscopy (Figure 18b). Using secondary antibodies 

coupled with gold particles I observed Pw1 cells, with specific morphology, in 

near proximity of endothelial cells.  

 Gene expression profile from FACS sorted Pw1 cells from Pw1nLacZ 

reporter revealed that Pw1 cells secrete numerous growth factors involved in 

promoting angiogenesis (Figure 19). Growth factors such as angiopoietins 

(Angpt1 and Angpt2), insulin like growth factors (Igf1 and Igf2), Vegfa, Jag1, 

thymosin β4 and growth factors from TGFβ family are required for 

angiogenesis during development and maintenance of mature blood vessels 

during adulthood. The qRT-PCR results also showed differences in growth 

factor expression between the two Pw1 populations suggesting heterogeneity 

between the two. 

 To investigate relationship between endothelial and Pw1 cells I used a 

matrigel plug assay as a model for in vivo angiogenesis (Figure 20). I isolated 

Pw1eGFP cells from CAB:dsRed mice and injected them with endothelial cell 

line (bEND.3) in matrigel under the skin of immunodeficient  Rag-/- mice. After 

seven days mice were sacrificed and matrigel plugs were analysed. 

Immunofluorescent staining for endothelial marker VE-Cad and dsRed (Pw1 
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cells) revealed close proximity of endothelial cell and Pw1 cell networks 

(Figure 20a). The H&E staining showed presence of structures that indicate 

endothelial tube formation when bEND3. cells were cultured with Pw1 cells 

(Figure 20b). 
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Figure 18. Heart Pw1 cells are associated with the cardiac capillary network  
(A) Max projections of Pw1:eGFP cells with perivascular position in myocardium with 

longitudinal (left) and transversal (right) cardiomyocyte orientation (capillaries stained 
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with IB4 and nuclei with DAPI). (B) Electron microscopy image of perivascular nLacZ 

(+) Pw1 cells from the adult myocardium.  

 

 

 

 

 

 

 

 

 

 

 
Figure 19. Enriched expression of growth factors in Pw1 cells 
Expression of angiogenic factors was measured by qRT-PCR in sorted Pw1 

populations (Sca1 L/N and Sca1 H) from Pw1:nLacZ hearts. Expression values are 

presented as the relative expression normalized to the expression of total heart 

extract ± SEM, n=6. 
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Figure 20. Matrigel plug assey using bEND.3 with Pw1/dsRED cells 
The matrigel plug assay was used as in vivo angiogenesis model. FACS sorted 

Pw1eGFP cells from CAB:dsRed reporter mice were injected subcutaneously with 

bEND.3 cells (n=3). (A) Immunofluorescent staining for dsRed and VE-Cad and (B) 

H&E staining of matrigel gels shows close relationship between endothelial and Pw1 

cells. Arrows indicate structures resembling endothelial tubes. 
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Pw1 cells during physiological heart hypertrophy caused by 
pregnancy 
 

 To investigate the role of Pw1 cells in adult cardiac remodelling I 

investigated the extent and patterns of Pw1 gene activation in pregnancy- 

induced cardiac hypertrophy (Figures 21 and 22). During pregnancy, maternal 

hearts undergo physiological hypertrophy and show increases in size and 

mass of cardiomyocytes. Measuring total heart mass and normalizing it to 

tibia length, I confirmed that the majority of heart growth happens already 

during the first week of pregnancy (Figure 21b), with heart growth preceding 

the body mass increase during pregnancy. Whole-mount X-gal staining 

reveals activation of epicardial Pw1 cells. Similar to non-pregnant hearts 

epicardial Pw1 cells on the surface of pregnant hearts (7.5 days) show distinct 

patterns, with wider stripes consisting of increased Pw1 cells. 

Immunohistochemistry revealed the same up-regulation of Pw1 cells in 

interstitium of pregnant hearts (Figure 21d). 
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Figure 21. Physiological cardiac hypertrophy during pregnancy is 
accompanied with increased numbers of Pw1 cells 
(A) Comparison of non-pregnant and seven days pregnant hearts. (B) According to 

the heart weight to tibia length measurements, the majority of cardiac growth 

happens in first week of pregnancy preceding the body weight increase. Values are 

presented as the mean ± SEM, n=6 (C) Whole mount β-galactosidase (X-gal) 

staining shows increased numbers of Pw1 cells on the surface of the heart in 

pregnant animals. Immunofluoresent staining (D) for Pw1 reporters also showed 

higher numbers of Pw1 cells in interstitium of cardiac muscle.  
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To investigate up-regulated genes and pathways in cardiac Pw1 expressing 

cells during physiological cardiac growth I compiled a list of common genes 

between Pw1eGFPSca1N/L and Pw1eGFPSca1H populations from non-pregnant 

hearts after normalization to total ventricular tissue and compared it to the list 

of Pw1 specific genes from 7.5 days pregnant hearts (Figure 22a). 

Comparison of enriched genes from non-pregnant and pregnant Pw1 cells 

showed 358 commonly expressed genes, 109 genes specific for Pw1 cells 

from un-pregnant and 251 genes specific for Pw1 cells from pregnant hearts.  

To determine the categories of genes up regulated in the Pw1 

population during pregnancy I performed KEGG and Panther pathways 

analysis (Hypergeometric test 16 p-value<0.05, FDR17 adjusted) using 

publicly available software GeneCodis14 (Figure 22b). Major gene categories 

include pathways involved in protein processing in endoplasmic reticulum, 

regulation of inflammation and pathways previously described as important in 

EMT and pregnancy induced heart hypertrophy such as TGFβ, Wnt, MAPK 

,PI3 kinase and focal adhesion pathways (Chung et al., 2012a; Chung et al., 

2012b; Drozdov et al., 2010). In general, only modest differences were 

observed in enriched genes in Pw1 cells from pregnant and non-pregnant 

hearts, mainly attributed to the higher level of activation of Pw1 heart cells 

during pregnancy. 
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Figure 22. Microarray gene expression analysis of Pw1 cells isolated from 
pregnant and un-pregnant hearts 
(A) Venn diagram of differentially expressed genes from Pw1eGFP cells isolated from 

non-pregnant and 7.5 days pregnant hearts. Analysis reveals 358 commonly 

expressed genes, 109 genes specific for un-pregnant and 231 genes specific for 

pregnant Peg3eGFP cells. (B) KEGG and Panther pathway analysis of enriched genes 

in Peg3eGFPcells from pregnant hearts. Enriched genes are involved in protein 

processing in endoplasmic reticulum, regulation of inflammation and signalling 

pathways implicated in EMT and physiological heart hypertrophy (TGFβ, MAPK, PI3 

kinase and integrin signalling pathways). 
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For studying the role of Pw1 heart cells in vivo I took advantage of the 

Pw1nLacZ reporter line to specifically inhibit β-gal positive cells using 

pharmacological approach. We used “Daun02 inactivation method” previously 

described for specific inactivation of cocaine induced psychomotor activity of 

nucleus accumbens neurons in rats (Koya et al., 2009). Daun02 is a substrate 

for β-galactosidase acitivity in which Daun02 is cleaved into daunorubicin, 

reducing cellular activity (Farquhar et al., 2002). As Daun02 has poor 

distribution beyond the vascular space I administrated the drug dissolved in 

1% of sodium alginate and injected directly into the pericardial space. I treated 

four groups of animals: wild type and Pw1nLacZ; non-pregnant and 7.5 days 

pregnant mice. Seven days post-treatment mice were sacrificed and tissue 

was collected for histological analysis. Comparing the body weight and heart 

weight of treated animals after normalization to tibia length I noticed reduction 

in heart growth during pregnancy in Pw1nLacZ animals treated with Daun02 

(Figure 23b). Body weight increase during the pregnancy between all groups 

was normal (Figure 23a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 23. Comparison of body and heart growth rates during pregnancy after 
inactivation of cardiac Pw1 cells with Daun02  
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(A) Body weight to tibia length ratio of non-pregnant and 14.5 days pregnant animals 

shows normal growth rate of the Daun02 and PBS treated animals. (B) Heart weight 

to tibia length ratio in pregnant animals treated with Daun02 is reduced in 

comparison with the animals treated with PBS. Values are presented as the mean ± 

SEM, n=4 

 

Histological analysis after H&E staining revealed cardiomyocyte atrophy of the 

compact myocardium near epicardial surface (Figure 24). Cardiomyocytes of 

non-pregnant Pw1nLacZ animals treated with Daun02 were smaller and lacking 

normal organization in comparison to the wild type animals (Figure 23a left 

panel). During pregnancy cardiomyocytes show hypertrophic growth in wild 

type and Pw1nLacZ animals (Figure 24a right panel). In pregnant Pw1nLacZ 

animals treated with Daun02 hypertrophic growth of cardiomyocytes is 

unequal and disorganised with small pockets of fibrosis at the surface of the 

heart (Figure 24b).  

 

Pw1 regulates signalling through regulation of growth factor 
receptors 
 

 Recently, Thiaville and colleagues (2013) showed by chromatin 

immunoprecipitation (IP) that PW1 directly binds to DNA and regulates 

transcription of growth factor signalling adaptor proteins Grb10 and Dusp1. 

Furthermore, these data were confirmed in Pw1DMR mutant mice with lower 

expression of PW1 protein. To investigate if PW1 protein can directly up-

regulate expression of Grb10 and Dusp1 I generated a construct for transient 

and stable over-expression, where PW1 protein is labelled with HA-tag at its 

N-terminus (Figure 10). First, I checked if the construct gives functional 

expression of PW1 protein in HEK 293 cells by immunohistochemistry and 

Western blotting (Figure 25). In transfected HEK 293 cells PW1 protein was 

detected in nucleus (Figure 25a), which is in accordance with its predicted 

transcription factor role (Relaix et al, 1996). Furthermore, with Western 

blotting using anti-HA-tag and anti-PW1 antibody I showed that PW1 protein 

is expressed at its full length (Figure 25b). 
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Figure 24. Daun02 treatment of Pw1nLacZ mice causes local atrophy and fibrosis 
in non-pregnant and pregnant animals 
ß-galactosidase can catalyze the conversion of the prodrug Daun02 into 

daunorubicin, which reduces cellular activity. Administration of Daun02 into 

pericardial sac of wild type and Pw1nLacZ causes local atrophy and cardiomyocyte 

disorganization in transgenic animals (A) and local fibrosis in pregnant animals (B). 
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Figure 25. HEK 293 cell line transfected with CMV:HA-Pw1 plasmid show 
strong PW1 protein expression with nuclear localization 
Transiently transfected HEK 293 cells with CMV:HA-Pw1 showed high expression of 

PW1 protein with immunohistochemisty and Western blot analysis. (A) Using the 

advantage of HA tag PW1protein was detected in nucleus of transfected (T) cells. (B) 

Western analysis of PW1 protein expression. 20µg of protein were loaded for each 

sample. CMV:HA-Pw1 transfected cells (T) show high levels of PW1 detected with 

anti-HA tag and anti-PW1 antibodies in comparison with untransfected controls (UT). 
 

To investigate if over-expression of PW1 protein can directly up-

regulate the expression of Grb10 and Dusp1 over time I generated a stable 

NIH 3T3 cell line, which expresses high levels of PW1 and RFP under the 

pTRE3G promotor after doxycycline treatment. As cardiac Pw1 cells express 

high levels of Igf1 (Figure 18) and as IGF1 signalling is necessary for normal 

heart maintenance and growth I also looked for expression of Igf1 and Igf1r in 

PW1 over-expressing cells (Figure 26). NIH 3T3 cells were grown to 80% 

confluence before they were treated with doxycycline for 24 and 48h. Positive 

and negative cells for RFP were sorted by FACS (Figure 26a) and total RNA 

was isolated as described in Materials and Methods. Relative expression 

levels of Pw1, Grb10, Dusp1, Igf1 and Igf1r were analyzed by qRT-PCR using 

A	
   B	
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TaqMan probes (Figure 26b).  Results showed higher levels of Pw1 

expression in RFP positive cells (approximately 60,000 fold) than in control 

after 24h on doxycycline. After 48h expression levels of Pw1 were reduced 

but were still significantly higher (approximately 20 000 fold) than in the 

control cells. Higher levels of expression of adaptor proteins Grb10 and 

Dusp1 were accompanied by up-regulation of Pw1. Unexpectedly a slight up-

regulation of Igf1r (approximately 6 fold) was noted in Pw1 expressing cells; 

as well as higher levels of Igf1 (up to 20 fold). Higher levels of Igf1 were in 

accordance with up-regulation of adaptor proteins Dusp1 and Grb10 which 

slow down IGF1 signalling and increase IGF1 secretion by preventing 

negative feedback loop trough IGF1R inactivation. 
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Figure 26. Relative expression of Pw1 and its target proteins Grb10 and Dusp1 
in inducible Pw1 over-expressing NIH 3T3 cells. 
Inducible Pw1 system was generated by electroporating pTRE3G:Pw1 plasmid into 

TetOn NIH 3T3 cell line. (A) After doxycycline treatment cells that integrate 

pTRE3G:Pw1 plasmid express RFP and PW1 and based on RFP expression can be 

sorted by FACS. (B) Expression of Pw1, Grb10, Dusp1, Igf1R and Igf1 was 

measured by qRT-PCR in sorted NIH 3T3 RFP(+) and as a control RFP(-) cells after 

24 and 48h of doxycycline treatment.  
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4. Discussion  
 

The imprinted genes play a crucial role in development of placental 

mammals through regulation of nutrient transfer from the mother to the 

offspring. Paternally expressed genes generally enhance foetal growth 

whereas maternally expressed genes suppress foetal growth and the balance 

between the two is responsible for the setting the normal metabolic rate of 

development. The majority of imprinted genes are highly expressed during the 

development and early postnatal life, but then their expression becomes 

restricted to tissue specific cells (Lui et al., 2008). As a part of the metabolic 

network recently it was shown that in adulthood expression of many imprinted 

genes is restricted to the stem cell compartment. In the hematopoietic system 

imprinted genes are expressed in long term hematopoietic stem cells, in 

skeletal muscle they are expressed in satellite cells and their progenitors, and 

in skin in epidermal stem cells (Berg et al., 2011). Furthermore their 

expression is rapidly altered after perturbations such as 5-fluorouracil 

stimulation in hematopoietic system or cryo-injury in skeletal muscle (Berg et 

al., 2011; Mitchell et al., 2010) that stimulate the stem cell compartment.  

As a part of so-called imprinted gene network Pw1 is expressed in the 

majority of adult stem cell compartments in bone marrow, brain, skeletal 

muscle, skin and intestines (Besson et al., 2011). To investigate if Pw1 also 

mark stem cell compartment of adult heart where they appear in significant 

numbers, I investigated the gene expression profile, morphology and 

embryonic origin of cardiac Pw1 cells. Although cardiac Pw1 cells express 

some stem cell receptors such as Cd29, Cd34, Sca1 and Pdgfra from their 

morphology and behaviour during pregnancy it seems “stemness” is not their 

primary role. These data are in accordance with recently published studies 

showing that regenerated cardiac muscle in lower vertebrates and early 

postnatal mammals comes from pre-existing cardiomyocytes rather than from 

cardiac stem cells (Poss et al., 2002; Porrello et al., 2011) 

Pw1 cells appear in the heart between developmental stages E9.5 and 

E10.5 what is the time when epicardium is formed and heart is invaded with 

EPDCs (epicardium derived cells). Adult cardiac Pw1 cells express epicardial 
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markers (Upk3b, Wt1, Raldh2, Tcf21 and Tbx18) and EMT (Snail, Slug, 

Twist1) shown by qPCR. Based on timing during development and on these 

gene expression profiles I surmise a proepicardial/epicardial origin of cardiac 

Pw1 cells. Although it was shown that during development epicardial cells can 

give rise to the majority of cardiac cell types, in adults the role of epicardium 

as a source of cardiac progenitors still remains very controversial. Using 

developmental genes such as Tcf21, Wt1 or Pdgfra as markers of activated 

adult epicardial cells it was shown that EPDCs in vitro have trans-germ layer 

potency (Smart et al., 2007; Chong et al., 2011). Because of the lack of 

exclusive adult epicardial markers this claim of multi-potency in vivo is at least 

questionable. In a recent study using more mature marker for epicardial cells 

Upk3b, Huang and colleagues (2012) showed the importance of epicardium in 

modulating immune processes in injured heart through its paracrine role. In 

similar manner through secretion of growth and survival factors (FGF2, IGF1, 

VEGFA) epicardial cells reduced scaring in post-injured heart (Zhou et al., 

2011). These new data suggest an important role of the epicardium in 

modulating cardiac environment by secreting various growth factors rather 

than acting as a source of progenitors in injured muscle. 

Based on our data and the data of others mentioned before I 

hypothesise that the primary role of epicardium is not to provide a source of 

progenitors in adult hearts. What is clear from my microarray data on cardiac 

Pw1 cells is that the epicardium can go through EMT process throughout 

adulthood and this developmental program could be responsible for stem cell 

phenotype of adult EPDCs. Recently was shown that in breast epithelia the 

tumour suppressor p53 has a role in regulating both EMT and EMT-related 

stem cell properties through activation of miR-200c (Chang et al., 2011). Not 

only is EMT connected to stemness in various cancer models (Mani et al., 

2008; Chiou et al., 2010; Li and Zhou, 2011; Tellez et al., 2011), but also in 

generating proliferative islet precursor cells in pancreas (Gershengorn et al., 

2004). Furthermore knock out of Wt1, a reporter of activated epicardium, in 

embryonic stem cells caused reduction of EMT, impairment in cell migration 

and differentiation of embryoid bodies into hematopoietic, endothelial and 

cardiac lineages (Martinez-Estrada et al., 2010). This study and others 

reveals a potential therapeutic implication of EMT not only for cancer 
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treatments but also for regeneration. Using naturally occurring or induced 

EMT of the adult epicardium and applying known growth factors for 

differentiation of EPDCs from in vitro studies could have great potential in 

healing injured myocardium in the near future. 

An important function of foetal epicardium is to regulate myocardial 

growth and angiogenesis (Pennisi and Mikawa, 2009; Brade et al., 2011; 

Chen et al 2002). Studies using FGFR1 and FGFR2 knock out mice have 

shown the importance of epicardial derived FGF signals for direct and indirect 

myocardial proliferation and coronary growth during midgestation heart 

development (Lavine et al., 2005; Lavine et al., 2006). Zhou and colleagues 

(2011) using Wt1 to delineate activated epicardium described proangiogenic 

role of EPDCs in injured heart in adult animals. Using blocking antibodies they 

showed that Fgf2 and Vegfa accounted for approximately half the growth-

promoting activity in post MI EPDCs. Furthermore EPDC secreting factors 

from in vitro conditioned media reduced infarct size and improved heart 

function.  

The GO Ontology and pathway analysis of Pw1 signature genes 

revealed a potential role of Pw1 cells in cardiac remodelling. Genes involved 

in angiogenesis, ECM synthesis and organization and cell adhesion are more 

consistent with a cell type responsible for maintaining the structure of the 

heart than with a stem cell giving the rise other cell types. Furthermore Pw1 

cells express numerous growth factors such as Vegfa, Jag1, thymosin β4, 

angiopontins and growth factors from insulin and TGFß family important for 

vasculature remodelling and cardiac growth during physiological hypertrophy. 

Close connections of Pw1 cells with capillaries revealed by 

immunohistochemistry and the fact that Pw1 cells are intimately associated 

with endothelial cells in our in vivo model of angiogenesis, stressing the 

importance of these fibroblast like cells in maintaining and remodelling 

vasculature during cardiac homeostasis.  

Together with published data on the paracrine role of epicardium 

during development and injury, I propose that epicardium-derived Pw1 cells 

play an important role in heart growth and homeostasis as scaffolding cells for 

vasculature (Figure 25). Heart hypertrophy, caused by pregnancy or exercise, 

is accompanied with vessel remodelling and angiogenesis. Muscle 
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hypertrophy causes local hypoxia and mechanical stimuli for activation of 

epicardium. Activated epicardial cells, Pw1 cells, migrate in to the cardiac 

muscle providing the paracine signals, together with structural support to 

promote vasculogenesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 27. Model of the scaffolding function of Pw1 cells  
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During postnatal heart growth cardiomyocyte hypertrophy is accompanied with 

vessel remodelling and angiogenesis. Local hypoxia and mechanical stress activates 

epicardial cells to undergo EMT and start expressing Pw1. Activated Pw1 cells 

migrate into the muscle where through secretion of growth factors and scaffolding 

support provide signalling queues for angiogenesis. 

 

Lower vertebrates can completely regenerate injured heart tissue 

without scarring (Tsai et al., 2007). One of the abilities of lower vertebrates 

such as zebrafish and amphibians is that they can grow throughout life, which 

is accompanied with equivalent levels of heart growth (Jordan, 1905). Wills 

and co-workers (2008) noticed that lowering fish density in the aquarium 

triggered rapid animal growth and robust cardiomyocyte proliferation 

throughout the adult ventricle, greater than that observed during slow animal 

growth or size maintenance. This rapid postnatal cardiac growth is 

accompanied with activation of developmental epicardial genes including 

Raldh2 and Tbx18. They also showed that intervention in epicardial activation 

during this process of zebrafish hypertrophy results in cardiac scarring. 

Understanding the pathways involved in physiological heart growth could be 

beneficial for future treatment of pathological conditions.  

To determine if similar activation of epicardium happens during rapid 

postnatal heart growth in mammals, I documented Pw1 expression during 

pregnancy, which is associated with a prolonged cardiac volume that results 

in cardiac hypertrophy with no induction of the foetal gene program (Eghbali 

et al., 2005). Rapid hearth growth during first week of pregnancy is 

accompanied with higher numbers of epicardial and interstitial Pw1 cells. 

Looking into specific gene signature of Pw1eGFP cells during pregnancy I saw 

up-regulation in MAPK, TGFß, Wnt and PI3 kinase signalling pathways, which 

have been previously described as pathways important for cardiomyocyte 

growth during physiological hypertrophy (Chung et al., 2012a; Drozdov et al., 

2010; Chung et al., 2012b). Furthermore using the Daun02 method for 

inactivation of Pw1 cells I documented a reduction in heart hypertrophy and 

scarring during pregnancy, in a similar way to the scarring produced by 

blocking the FGF signalling during rapid heart growth in zebrafish (Wills et al., 
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2008). Daun02 treatment not only caused atrophy in pregnant mice, but also 

in non-pregnant controls. This is in accordance with the fact that PW1 cells 

express numerous growth factors and structural materials for normal cardiac 

homeostasis.  

Physiological cardiac hypertrophy caused by post-natal growth, 

pregnancy or exercise is primarily mediated by IGF1 signalling. Not only is 

IGF1 is important in the context of rapid heart growth, but it is also an 

important signalling molecule for maintaining cardiac homeostasis. According 

to microarray expression profile and qRT-PCR Igf1 mRNA is highly expressed 

(more then 100 fold) in Pw1 cells in comparison to total RNA from the heart. 

To investigate the potential role of PW1 in IGF1 signalling I investigated 

transcript levels of Igf1 and Igf1r in cell lines with stable PW1 over-expression. 

Also I monitored expression of two direct targets of PW1, Grb10 and Dusp1, 

which were described as regulators of IN/IGF1 signalling.  

GRB10 is adaptor protein that interacts with numerous receptor 

tyrosine kinases like IR/IGF1R (Durfresne and Smith, 2005; Langlais et al., 

2004), EGF receptor (Ooi et al., 1995; Rose et al., 1998), PDGF receptor 

(Frantz et al., 1997; Wang et al., 1999), Ret (Pandey et al., 1995) and the 

ephrin receptor ELK (Stein et al 1996). The action of GRB10 is best described 

as negative regulator of insulin/IGF1 mediated signalling through receptor 

internalization (Stein et al., 2001; Monami et al., 2008). Another PW1 target 

involved in down regulating IN/IGF1 signalling is DUSP1, a phosphatase that 

specifically inactivates MAPK pathway (Cellier et al., 2003; Manetsch et al., 

2012).  

These data show that cells expressing PW1 at high levels also express 

higher levels of Grb10 and Dusp1. Over time, cells expressing PW1 also 

express higher levels of IGF1. IGF1 signalling is subjected to negative 

regulation through feedback mechanisms and higher levels of Grb10 and 

Dusp1 would prevent this negative feedback loop allowing higher expression 

of IGF1 over time (Figure 28). We hypothesize that PW1 down-regulates 

growth factor signalling through direct targets Grb10 and Dusp1 preventing 

negative feedback and higher secretion of growth factors including IGF1 in 

epicardial activated PW1 cells. Similarly to PW1 knock-down mice, transgenic 

GRB10 over-expressing mice show postnatal growth retardation (Shiura et al., 
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2005), confirming the role of PW1 and GRB10 in setting the metabolic rate of 

growth. Furthermore, mice with a disruption of the Grb10 gene had improved 

whole-body glucose tolerance and insulin sensitivity, as well increased muscle 

mass and reduced adiposity (Smith et al., 2007; Charalambous et al., 2003), 

what is in accordance with increased growth factor signalling. Another 

mechanism through which PW1 could directly inhibit IGF1 signalling is 

through direct protein interaction with decorin (Buraschi et al., 2013). Decorin 

binds to surface of several growth factor receptors	
  and negatively regulates 

their activity and signalling via robust internalization and eventual degradation 

(Goldoni and Izzo, 2008; Buraschi et al., 2010). 

The role of PW1 in regulating growth factor signalling would explain its 

broad expression in various cell types in adulthood. In heart, liver and 

pancreas PW1 is expressed in the growth factor producing cells preventing a 

negative feedback loop, whereas in skeletal muscle and hematopoietic 

system it is expressed in subpopulation of stem cells preventing their 

activation and keeping them quiescent in normal homeostatic conditions.  

 

 
Figure 28. Schematic representation of regulation IGF-1 signalling by PW1 
During IGF1 signalling IGF1 binds to IGF1R causing phoshorrylation of the receptor 

and activation of MAPK and mTOR signalling cascade, which activates transcription 

of target genes. Overstimulation of MAPK and mTOR pathway also inhibits further 

transcription and secretion of IGF-1. PW1 direct targets GRB10 and DUSP1 inhibit 
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IGF1 signalling pathway on several levels and preventing negative feedback loop for 

IGF1 secretion. GRB10 interacts with IGF1R preventing its activation and DUSP1 is 

phosphatase that inhibits MAPK pathway. 
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5. Conclusion and Future Directions 
	
  

In this research using the Pw1 reporter mouse lines, I have described a 

subpopulation of epicardium-derived mesenchymal cells involved in 

maintaining the integrity of adult mouse heart through secretion of various 

growth factors and components of extracellular matrix. Cardiac Pw1 cells 

express high levels of Igf1, Vegfa, Jag1, angiopoietins, growth factors from 

TGFβ family and thymosin β4 necessary for cardiomyocyte growth and 

angiogenesis. I have also shown that Pw1 cells are highly pro-angiogenic in 

vitro and can induce tube formation when they are co-cultured with an 

endothelial cell line. Using pregnancy as a model of cardiac growth I have 

shown that Pw1 cells play an essential role in tissue remodelling during 

physiological heart hypertrophy. Inhibition of Pw1 cells with Daun02 resulted 

in local cardiomyocyte atrophy and fibrosis. All these results suggest an 

important role of Pw1 cells in heart homeostasis and potentially, in formation 

of various pathological conditions. Previously published data showed the 

importance of epicardium-derived cells in regulating inflammation and scarring 

after heart injury (Huang et al., 2012). Based on this previous research and 

based on my microarray data, where Pw1 cells are enriched in different 

cytokines, I propose further investigation of interaction between Pw1 cells and 

immune cells in different models of heart injury. 

Immunohistochemistry and cytometric analysis revealed that 

myocardial Pw1 cells express the cardiac stem cell membrane receptors 

Sca1, Pdgfra, Cd34 and Cd29, making them a potentially interesting 

component of regenerative medicine for further investigation. Based on ultra-

structural and functional assays it seems “stemness” is not the primary role of 

Pw1 cells. No less, the differentiation potential of Pw1 cells in in vitro and in 

vivo conditions should be addressed. Albeit it was shown that newly formed 

cardiomyocyte in regenerative myocardium do not come from stem cells, but 

from already existing cardiomyocytes (Poss et al., 2002; Porrello et al., 2011), 

using naturally occurring or induced EMT of epicardium in generating cardiac 

progenitors could have great potential in healing injured myocardium.  
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Although the literature has described different cell types expressing 

Pw1 in various tissues (Mitchell et al., 2010; Besson et al., 2011; Berg et al., 

2011) the role of PW1 protein still remains unclear. PW1 is expressed in 

majority of quiescent stem cells together with other members of imprinted 

gene network, setting up the metabolic rate of individual cells through 

regulation of growth factor signalling. How this regulation works and where in 

this protein hierarchy PW1 is, still needs further investigation. For these 

reasons, I propose chromatin IP experiments on Pw1 heart cells to detect 

PW1 direct transcriptional targets. According to my microarray expression 

profile and qRT-PCR Igf1 mRNA is highly expressed in Pw1 cells, which 

makes Pw1 cells an interesting subject for IGF1 signalling studies. 

Physiological cardiac hypertrophy caused by post-natal growth, pregnancy or 

exercise is primarily mediated by IGF1 signalling (Chung et al., 2012a; Chung 

et al., 2012b; Drozdov et al., 2010). Investigating the role of PW1 in cardiac 

IGF1 signalling, could have a great potential for understanding diseases like 

post- and peri-partum cardiomyopathies which lead to complete organ failure 

and are induced by defects in cardiac growth during pregnancy. Generating 

inducible Pw1 knock out line and investigating deletion of IGF1 specifically in 

cardiac Pw1 cells would be of great interest for understanding the role of Pw1 

cells in regulating cardiac homeostasis. 
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