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Abstract 

 

 

Since the development of advanced mathematical modelling techniques in biology, 

thermodynamics (and therefore equilibrium statistical mechanics) has played a key role in 

mathematically quantifying biological activities. We use this underlying notion of 

thermodynamic ‘micro-states’ to attempt to uncover how the hormone hepcidin under the 

influence of two major signalling pathways maintains systemic iron homeostasis. Systemic 

iron homeostasis involves a negative feedback circuit in which the expression level of the 

peptide hormone hepcidin depends on and controls the iron blood levels. Hepcidin expression 

is regulated by the BMP6/SMAD and IL6/STAT signalling cascades. Deregulation of either 

pathway causes iron storage diseases such as hemochromatosis or anaemia of inflammation 

(AI). We quantitatively analyzed how BMP and IL6 control hepcidin expression in human 

hepatoma (HuH7) cells. We used data from our experimental collaborators who measured 

transcription factor phosphorylation and reporter gene expression under co-stimulation 

conditions and perturbed the promoter by mutagenesis. We applied statistical data analysis 

and mathematical modelling to reveal possible biological mechanisms that control hepcidin 

expression at the promoter level. Specifically we develop a thermodynamic modelling 

framework that is able to simulate and predict possible molecular mechanisms that might 

underlie iron homeostasis by hepcidin. Our results reveal that hepcidin cross- regulation 

primarily occurs by combinatorial transcription factor binding to the promoter, whereas 

signalling crosstalk is insignificant. We find that the presence of two BMP-responsive 

elements in the promoter ensures high sensitivity towards the iron-sensing BMP signalling 

axis, which promotes iron homeostasis in vivo. IL6 stimulation reduces the promoter 

sensitivity to the BMP signal that may explain the disturbance of iron homeostasis in AI. We 

get to understand why the iron homeostasis circuit is sensitive to certain perturbations 

implicated in disease. Taken together, our work reveals how mathematical quantification and 

modelling can aid in understanding biological phenomenon that underlies gene expression.  
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Kurzfassung 

 

 

Durch die Entwicklung fortgeschrittener mathematischer Modellierungstechniken in der 

Biologie nimmt die Thermodynamik und damit die statistische Mechanik von 

Gleichgewichtsprozessen eine bedeutsame Rolle bei der quantitativ mathematischen 

Beschreibung biologischer Systeme ein. Wir verwendeten den Grundgedanken 

thermodynamischer Mikrozustände, um zu verstehen, wie das Hormon Hepcidin unter dem 

Einfluss zweier grundlegender Signaltransduktionswege die Eisenhomöostase reguliert. Die 

systemische Eisenhomöostase unterliegt einer negativen Rückkopplung, bei der das 

Expressionsniveau des Peptidhormons Hepcidin von der Eisenkonzentration im Blut gesteuert 

wird und letztere gleichzeitig kontrolliert. Die Expression von Hepcidin wird durch die 

BMP6/SMAD- und IL6/STAT-Signalwege gesteuert. Die Dysregulation eines der beiden 

Signalwege verursacht Eisenspeichererkrankungen wie Hämochromatose oder 

entzündungsbedingte Anämie. Wir untersuchten quantitativ, in welchem Maße BMP und IL6 

die Expression von Hepcidin in humanen Hepatomzellen (HuH7) kontrollieren. Die 

verwendeten Daten stammen von experimentellen Kooperationspartnern, durch welche die 

Phosphorylierung von Transkriptionsfaktoren sowie die Expression von Reportergenen unter 

Kostimulation gemessen und eine Promotermutagenese durchgeführt wurde. Wir 

verwendeten statistische Methoden und mathematische Modelle, um mögliche biologische 

Kontrollmechanismen der Hepcidinexpression auf Promoterebene aufzudecken. Insbesondere 

entwickelten wir eine Modellierungsumgebung für die Simulation und Vorhersage möglicher 

molekularer Mechanismen der Eisenhomöostase durch Hepcidin. Wir konnten zeigen, dass 

die rückgekoppelte Regulation von Hepcidin vorrangig durch kombinatorisches Binden von 

Transkriptionsfaktoren an Promoter stattfindet, wobei wechselseitige Abhängigkeiten 

irrelevant sind. Wir fanden heraus, dass das Vorliegen zweier BMP-abhängiger 

Promoterelemente für die hohe Sensitivität gegenüber des eisensensitiven BMP Signalwegs 

verantwortlich sind, wodurch die Eisenhomöostase in vivo gewährleistet wird. Stimulation 

durch IL6 reduziert die Promotersensitivität gegenüber dem BMP-Signal, wodurch die 
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gestörte Eisenhomöostase bei der entzündungsbedingten Anämie erklärt werden kann. Wir 

konnten in Erfahrung bringen, weshalb der Regelkreis der Eisenhomöostase sensitiv 

gegenüber bestimmten krankheitsbedingten Beeinträchtigungen ist. In Zusammenschau 

unserer Ergebnisse zeigt sich, wie durch quantitativ mathematische Beschreibung und 

Modellierung ein tieferes Verständnis biologischer Phänomene der Genexpression erlangt 

werden kann.  
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Glossary: 

 

 

Actin: A globular multi-functional protein that participates in cell-signalling along with          

             many other functions 

 

BMP: Bone morphogenic protein (a group of growth factors with the ability to induce     

           formation of bone and cartilage) 

 

BRE1: First BMP responsive element (portion of the hepcidin promoter [in this case an  

             area near the transcription start site or “proximal”] that is essential for response     

             to BMP stimulation) 

 

BRE2: Second BMP responsive element (portion of the hepcidin promoter [in this case  

             an area farther from the transcription start site or “distal”]that is essential for  

             response to BMP stimulation) 

 

HH: Hereditary hemochromatosis (a genetic disorder characterized by excessive  

         internal absorption of dietary iron resulting in pathological increase in body’s iron  

         store) 

 

HJV: Hemojuvelin (a membrane bound protein in mammals that is responsible for the  

          severe iron overload condition or hemochromatosis in humans) 

 

HFE: the HFE gene codes the Human hemochromatosis protein 

 

HuH7: an immortal cell-line derived from cancer-infected liver cells 

 

IL6:  Interleukin 6 (small signalling molecules released by white blood cells and act as  

          response to infection) 

 

kb: Kilo-base (Base pairs are building blocks of the DNA double helix and contribute to the 

folding of DNA and RNA. The size of an individual gene is measured in base pairs since the 

DNA is double-stranded. Total number of base pairs is therefore equal to the total number of 

nucleotides in one of the strands. A Kilobase (kb)is a unit of measurement equal to 1000 base 

pairs of DNA or RNA.) 
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Specific binding: Binding to the receptor of interest. (Binding to other receptors is known as  

                              non-specific binding)  

 

pSMAD/pSTAT: phosphorylated proteins [see SMAD/STAT for explanation] (in the               

                              context of this work, the purpose of phosphorylation is to activate and   

                              increase energy of  the proteins so that they can take part in initiating 

                              gene-expression) 

 

RNAP: RNA (Ribonucleic Acid) Polymerase (an enzyme that produces RNA, necessary in  

             cells for constructing RNA chains using DNA genes as templates in transcription) 

 

SMAD: Intracellular proteins that transduce/transfer signals from growth factors (like  

              BMP) when they activate gene transcription 

 

 

STAT: Intracellular proteins that transduce/transfer signals from cytokines (like IL6)  

             and growth factors (like BMP)  

 

STATBS: STAT binding site (special region in the hepcidin promoter that selectively  

                  binds to phosphorylated STAT proteins) 

 

TFR2: Transferrin receptor protein 2 (this protein mediates cellular uptake of of  

             transferrin bound iron and mutations in the gene TFR2 have been associated with  

             hereditary hemochromatosis) 

 

TGF-β: Transforming growth factor beta is a protein that controls cellular  

              differentiation and other functions in most cells and acts majorly through the  

               SMAD pathway 

 

TSS: Transcription start site is the location on the genetic sequence where transcription  

          is initiated 

 

WT: Wild type (phenotype of the typical form of a species as it occurs in nature and  

         considered as the standard for comparison in experiments) 
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I. Introduction 
 

 

I.1 A brief introduction to Systems Biology and modelling 
 

 
 

The 21
st
 century has seen a rapid development of technology due to which scientific research 

is witnessing an exponential increase in the amount of information as raw data. As with other 

scientific disciplines, such development poses an important challenge to cell biology which  is 

to facilitate integration of the available molecular information for improving quantitative 

understanding of biological units/structures at the systems level. This is where and why 

systems biology comes in with its typically cyclical methodology of efficient experimentation 

validated and updated by evolving modelling approaches. 

 

 

I.1.1 Purpose and outlook of Systems biology 

 

 

Systems Biology aims to understand how interaction between components of a living system 

brings about its functional properties and characteristic behaviour. As a field of study, 

Systems Biology is unique as its foundations lie in existing and evolving technologies and 

purports to analyse scientific issues that are described by a variety of existing disciplines yet 

remain unsolved.  Its main focus is to quantitatively and predictably reveal biological 

processes that underlie regulation of complex cellular pathways or intercellular 

communication [2, 3]. It is believed by scientists that the existing paradigms for biomedical 

research fail for a multitude of human diseases due to the lack of achieving this understanding 

of living systems as a unified entity rather than a conglomerate of isolated systems. Systems 
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biology aims to provide a suitable approach to study these complex and multifactor diseases. 

Contemporary systems biology is a vigorous and expanding discipline, in many ways a 

successor to molecular biology and genomics on the one hand and mathematical biology and 

biophysics on the other [4]. It is typically an interdisciplinary field as it lies at the interface of 

many different scientific disciplines. However in effect it may also be seen as a 21
st
 century 

culmination of all the biological research that science has witnessed till now. Systems biology 

aims to understand how functional properties of life and living matter might arise out of a 

particular organization of its molecular components or interactions between them. Models are 

used to describe cell types or regulation mechanisms in order to arrive at new hypotheses 

about the biological system. This methodology reveals approaches that cannot be explained 

exclusively by traditional natural sciences like biology or physics [5]. Alongside, 

development of the various high-throughput technologies used in genome sequencing, 

transcriptomics, proteomics and metabolomics have enabled comprehensive analysis of 

complete living systems in terms of the identity and concentration of all their components [6].  

However, since these technologies do not take into account the interactions and biological 

processes at the molecular level, by themselves they are incapable of providing an 

understanding of the living cell and hence life. Systems biology, therefore, provides scientists 

with the techniques to decipher how biological functions arise from the interactions between 

components of living organisms [7-9].   

 

 

 

I.1.2 Approaches to systems biology 

 

Systems biology is characterized by two established approaches: Top-down and bottom-up 

[8]. Top-down systems biology begins with experimental data based on the behaviour of 

specific components in the living system as a whole. This is mostly done using high-

throughput approaches to measure types and levels of (macro)molecules in the cell on a large 
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scale [6]. In the analysis of such data, new hypotheses on the molecular organization and 

functioning of the organism may be induced on the basis of correlations in the behaviour of 

the concentration of the molecules [10]. In contrast, the bottom-up approach of systems 

biology starts from the interactive properties of the molecules and proceeds to determine how 

these interactions may lead to functional behaviour. Typically, a biological network forms the 

basis of this approach. A network is a system of sub-units that link the parts to the whole and 

biological networks are essential in providing a ground for mathematical analysis of how the 

constituents are connected. Most important biological networks involve building-blocks like 

the DNA, RNA, proteins and metabolites and follows up interactions between them. For 

example, a gene regulatory network is a collection of DNA segments in a cell that can be 

activated or suppressed thereby controlling production of particular proteins at a given time. 

Such regulation can be triggered by external signals or regulatory proteins. In many cases 

these proteins serve to activate other genes and are called transcription factors, which are the 

key-players in bringing about gene-expression. Metabolic networks on the other hand 

represent the complete extent of metabolic and physical processes determining physiological 

and biochemical properties of a cell. Another form of networks is formed by the signals that 

are transduced within cells or between cells thereby forming complex signalling networks. At 

the other end, neuronal networks connect neurons (nerve cells) in the brain the activation of 

which defines a recognizable linear pathway. 

 

 

 

I.1.3 Introduction to modelling techniques 

 

One of the major goals of systems biology is to create comprehensive models that would be 

able to predict cellular behaviours. The prevalence of expanding genomic information and 

high-throughput experimental techniques with a focus on systems biology has lead to the 

predominance of mathematical modelling of biological systems. Gene regulation modelling is 
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especially of great importance because gene expression is connected to a variety of biological 

processes, so much so that subtle changes of regulatory protein levels or links can underlie 

human diseases, population differences, and the evolution of morphological novelties [11].  

 

 

Till recently, the study of mechanistic gene regulation has been empirically focused on the 

characteristics of individual transcriptional components, rather than creating an integrated 

picture of the system. Of late, studies in systems biology are being substantiated by large-

scale biological datasets. An example of such detailed data is complete sequences of genomes 

that identify many proteins and RNAs influencing the regulatory processes in the nucleus. 

Additionally these also provide dynamic measurements of expression levels for many genes. 

However, though such data are available extensively our understanding still remains relatively 

incomplete. This is mainly because most of the available data normally provide selective view 

of dynamics of the systems or averages over many cell-states. Therefore, using exclusively 

experimental approaches to obtain a complete operational picture is a challenge.  

 

 

Mathematical modelling addresses this problem by presenting approaches that incorporate 

details of the dynamics of biological systems in model construction. This necessarily requires 

an assimilation of inputs from all levels and integration of experimental, computational, and 

theoretical approaches. Molecular interactions need to be precisely described in a series of 

mathematical formulations that take into account the necessary parameters, such as initial 

concentration of each component and kinetic constants, which are normally estimated from 

experimental data. Gene regulatory models mostly employ analytical or statistical approaches. 

Both of these approaches can effectively provide non-intuitive insights into gene regulatory 

systems. The statistical approach is appropriate for datasets representing the expression levels 

of thousands of genes. To represent regulatory interactions, probabilistic models that are 

graph-based such as neural, Boolean, and Bayesian networks are used [12, 13]. Varied 
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conditions bring in statistical correlations that highlight which groups of genes function 

together thereby indicating possible regulatory relations. This analysis identifies shared motifs 

that might be involved in transcriptional control. The final aim of this approach is to uncover 

regulatory networks that possibly underlie the given data. However, though such statistical 

approaches provide a big picture based on large proportions of genes in a system, they are not 

really able to explain complex relations between polymerase, transcription factors or the 

details of the cellular architecture. Development of gene array data has lead to better-evolved 

statistical approaches and some have been discussed in recent reviews [13-17]. 

 

 

The analytical approach is represented by a variety of mathematical models focusing on gene-

expression. These models incorporate terms that define binding of RNA-polymerase and 

transcription factors to the DNA, cooperative and/or inhibitory interactions between 

transcription factors and mRNA, protein degradation and mRNA translation rate. The 

analytical approach is based on extensive knowledge of components in the system and on 

hypotheses about the structure of the system. As covered in the review by Ay & Arnosti 

(2011) there are three major classes of mathematical models that are useful for us in the 

context of this thesis and characterize the analytical approach to systems biology: 

thermodynamic, Boolean, and differential equation-based models [18]. In existing literature 

we can find these models being used to summarize experimental data [19], to infer new 

relations from complex experimental data thereby presenting new testable hypotheses [20] 

and to find properties of the system that are challenging to measure directly but lead to 

accurate modelling of emergent behaviour [21]. Some general features characterize these 

models. In most cases the models are deterministic such that the independent variable has a 

reproducible and predictable impact on the dependent variable. However, they can also be 

constructed as stochastic models that can capture any erratic behaviour that is observable in 

many biological systems due to extrinsic or intrinsic noise [15, 22, 23].  
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At the next level, modelling approaches might be categorized as discrete or continuous. 

Boolean models are an example of the discrete form and represent time, state or space as a set 

of discrete values thereby simplifying calculations. On the other hand, differential equation 

models utilize continuous values to facilitate (mathematically) “smoother” representation of 

dynamical changes. In the following sections we provide an overview of three major classes 

of models.  As in the case of our work on hepcidin modelling, the choice of model depends 

entirely on the biological system under consideration. A successful model should fit existing 

experimental data providing alongside new insights on the system under consideration and be 

predictive. We hope such a description would provide the reader with a baseline 

understanding of modelling approaches in systems biology and an introductory reasoning 

regarding the use of thermodynamic modelling in the framework of our project.  

 

 

 

I.1.4 Thermodynamic Model 

 

 

Approach 

 

This modelling approach efficiently extracts gene regulation information from sequences of 

cis-regulatory regions (cis-element is a region of DNA/ RNA that regulates the expression of 

genes located on that same molecule of DNA) and known or hypothesized binding of 

elements to sequence-specific transcription factors. These models aim to predict how and 

whether a gene will be activated or repressed given that the relevant transcription factors and 

promoters are well explained for the system. Based on the underlying tenet that gene 

expression is (inversely) directly proportional to the level of (repressors) activators bound to 

the promoter, these models can also predict how varied spatial and temporal expressions can 
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result from various combinations of binding sites present on a regulatory region. 

Thermodynamic (also known as fractional occupancy) models are based on simple 

biophysical descriptions of DNA–protein interactions and statistical physics (Fig. 1A) [18]. 

The first column shows a simplified enhancer region with two binding sites for a repressor 

(R) and an activator (A). The mathematical formulation represents binding efficiency for the 

repressor site. In the second column, all four possible states of this enhancer region are 

shown. The third column represents the probability of this state occurring, which is not 

simply one-fourth but rather a function of the protein concentration and quality of the binding 

site(s). The fourth column indicates the efficiencies with which a particular state drives gene 

expression. This may be a simple additive expression of activators minus repressors, or a 

more complex expression. The last column represents the total expressions coming from each 

state (the probability that a state will occur multiplied by the potential of this configuration of 

proteins) and their summation, which provides a measure of the total output of the cis-

element. Generally implementations ignore additional processes like DNA methylation or 

chromatin structure and modification and do not independently account for the recruitment of 

cofactors or general transcription machinery, although some aspects may be incorporated in 

the later sequence of models. Such a simplification allows for more comprehensibility of the 

directed application of this modelling approach. 

 

 

There are two main ways to implement these models. To start with, potential transcription 

factor-DNA interactions that illustrate all the variant states of the enhancer are listed and each 

state has a statistical weight is assigned to it (Fig. 1A). States where activators are bound to 

specific binding-sites are considered to be active. For example, a simple regulatory region 

with only one binding site will have two states (2
1
 states: simply bound and unbound) and one 

with four sites would have 16 states (2
4
). Calculating statistical weight takes into account 

concentration and binding affinity of transcription factors. Proteins binding with high affinity 

have greater statistical weights than where binding is weak. Each state has a probability of 
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occurrence that is given by dividing the statistical weight of the particular state by the sum of 

statistical weights of all possible states. Calculation of this probability incorporates various 

properties that are known to affect rate of transcription. As an example, inhibitory effects of 

repressors on activators or competitive or cooperative interactions between transcription 

factors may be included in an existing model by assigning higher or lower weights. At the 

next stage gene expression output is calculated from each of the states. High expression is 

likely to be induced from the states having high activator occupancy whereas low expression 

levels mostly characterize repressor occupancy. Various approaches have been used with the 

aim of converting occupancy to gene expression. As is the underlying tenet of thermodynamic 

modelling, gene expression output can be modeled as proportional to the weighted sum of the 

transcription factors or the probability of RNA-polymerase binding to the transcription start 

site [24, 25]. 

 

 

 

Applications 

 

The theoretical foundations of thermodynamic modelling have been studied majorly using 

prokaryotic systems. Simple bacterial systems provide an extremely comprehensible setting 

for quantitative research since the regulatory regions contained by them is generally small and 

bind to very few transcription factors. The lac operon in Escherichia coli and the 

lysis/lysogeny switch of phage lambda are two examples that have been treated ([1, 26]. [27]). 

Additional promoters and configurations are considered in Bintu et al.[24]. Zhou and Su 

generalized the results of Bintu et al. to derive a single formula calculating transcriptional 

probability for all simple regulatory configurations [27]. In eukaryotic systems, 

thermodynamic modelling shows great potential to predict the function of different 

combinations of transcription factor binding sites since they are able to efficiently incorporate 

complex cis-regulatory regions [27]. 
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The possible effectiveness and limitations of this approach are illustrated by the recent uses of 

thermodynamic modelling in yeast and Drosophila [28-30]. With a wide range of 

applications, thermodynamic modelling has also aided in discovery of functions of single, 

complex regulatory regions in great detail. Reinitz and colleagues modeled the activity of a 

1.7-kb promoter proximal region of the Drosophila melanogaster even-skipped (eve) gene that 

expresses as seven stripes in the stage of embryonic development [31]. This particular study 

was of specific importance since it concluded that enhancer-like outputs maybe generated by 

binding sites that are widely dispersed, further suggesting that developmental regulatory 

modules need not always exist as compact modules. 

 

 

 

I.1.5 Differential Equation Models 

 

 

Approach 

 

In the previous section we observe that thermodynamic models are especially efficient in 

accounting for detailed, quasi-equilibrium activity of transcriptional elements that are well 

defined. At the other end of the scale, however, there are many multi-component and 

temporally evolving biological systems that require a model that is able to represent these 

properties. For such cases differential equation models are best suited. Differential equations 

can efficiently define regulatory networks by incorporating explicit rules defined by rate 

equations that embody the interactions of molecules such as mRNAs and proteins. As the 

system evolves, the levels of the respective protein or mRNA as a function of the other 

components can be specified by these equations. These models generally include space or 

time-dependent variables like mRNA and protein concentrations and parameters such as 

production and degradation rates. In Figure 1B, regulatory relationship between two genes is 
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depicted. Synthesis of gene 1 (G1) involves expression of mRNA (M1) and translation of 

protein (P1), which regulates gene 2 (G2). Both mRNA and protein are subjects to turnover 

and protein is subject to diffusion. mRNA and protein synthesis, degradation, and diffusion 

events are shown at left. This process can be modeled with reaction diffusion equations as 

shown at right. Each molecular constituent is assigned such an equation.  There are two main 

groups of differential equation models: one using ordinary differential equations (ODEs) 

where dependence is on a single variable like time; the other group consists of application of 

partial differential equations (PDEs) which involves multiple variables like time and space 

together. Although ODEs are a well-established area of mathematics, it is hard to solve them 

analytically and numerical methods are applied to arrive at their solutions with the help of 

approximations and software applications. Similarly, though PDEs are established 

analytically and numerically, they are computation intensive and their theory is much more 

complex. Therefore even in case of PDEs, it is difficult to find analytical solutions and one 

must rely on numerical analysis tools.  
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Figure 1: Analytical modelling approaches used in gene regulation studies. (A) Thermodynamic or 

fractional occupancy model of gene expression. (B) Differential equation model of gene expression. 

(C) Boolean model of gene expression. [18] 
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consisting of one binding site, there will be just two 

states, bound and unbound, although an element with 

four sites will have 16 states. A statistical weight for a state 

is calculated using the concentration of transcription fac-

tors and binding a nity of these factors to their sites on 

the DNA. For abundant proteins binding to high a nity 

sites, the weight will be much greater than cases where 

the transcription factor is scarce or the binding site is 

weak. e probability of each state can be calculated by 

dividing the statistical weight of the state by the sum of 

the statistical weight of all possible states. is calcula-

tion process can incorporate properties known to a ect 

transcription. For example, cooperative and competitive 

interactions between transcription factors and inhibitory 

e ects of repressors on activators can be explicitly added 

to the model by assigning higher or lower weights. e 

second step in thermodynamic modeling is to calculate 

gene expression output from each state. States with high 
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Figure 1. Analytical modeling approaches used in gene regulation studies. (A) ermodynamic or fractional occupancy model of 

gene expression. e rst column shows a simpli ed enhancer region with two binding sites for a repressor (R) and an activator (A). 

e mathematical formulation represents binding e ciency for the repressor site. In the second column, all four possible states of this 

enhancer region are shown. e third column represents the probability of this state occurring, which is not simply one-fourth but rather a 

function of the protein concentration and quality of the binding site(s). e fourth column indicates the e ciencies with which a particular 

state drives gene expression. is may be a simple additive expression of activators minus repressors, or a more complex expression. e 

last column represents the total expressions coming from each state (the probability that a state will occur multiplied by the potential of this 

con guration of proteins) and their summation, which provides a measure of the total output of the cis-element. (B) Di erential equation 

model of gene expression. In this case, regulatory relationship between two genes is depicted. Synthesis of gene 1 (G
1
) involves expression 

of mRNA (M
1
) and translation of protein (P

1
), which regulates gene 2 (G

2
). Both mRNA and protein are subjects to turnover and protein 

is subject to di usion. mRNA and protein synthesis, degradation, and di usion events are shown at left. is process can be modeled 

with reaction di usion equations as shown at right. Each molecular constituent is assigned such an equation. (C) Boolean model of gene 

expression. e network describing the regulatory relationships among four proteins is shown; the directed arrows show activation, and 

the blunt arrows show repression. Starting from initial state, three temporal steps are demonstrated. In this model, protein turnover occurs 

in one time interval and repression is assumed to be dominant over activation. Here, superscripts [1] and [0] indicate active or inactive 

states, respectively. 
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Application 

 

 

ODEs were first applied to bacterial operons like tryptophan (trp) and lac. These operons each 

consist of structural genes and a small regulatory region in the DNA that controls gene 

expression [32-35]. Such operons have been subject to detailed experimental and quantitative 

studies.  These models have been applied to systems with varying levels of complexity, from 

basic descriptions of diffusible morphogens to complex gene regulatory networks showcasing 

cell signalling. Features of differential equations are uniquely suited to reflect the dynamics of 

biological systems. These models, however, do have their limitations. They work best only in 

well-characterized systems with adequate quality and quantity of data. The important effects 

of addition of new proteins might even be missed due to overfitting of an incomplete model 

[36]. 

 

 

Significant improvement in results was observed by Reinitz and colleagues by simply 

improving data quality keeping the modelling and optimization techniques same as earlier 

efforts. This also showed much lower levels of error and provided more precision for 

parameter estimates [20, 31]. Larger regulatory networks are broken by parts into smaller 

modules for applying these models and this method keeps the analysis tractable. Extensive 

data often requires a large number of parameters and this might make modelling 

computationally challenging. Therefore it is often difficult to analyze a complex regulatory 

system that has numerous between-molecules interactions. Statistical methods along with 

advancement in computational techniques are expected to eventually ameliorate this problem 

[12, 13]. 
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Another limiting factor is that differential equation models generally fail to consider 

translational regulation, sequence of transcriptional cis-regulatory elements or other such very 

fine-scale phenomena. Therefore these models are not able to provide much insight to the 

structure of the enhancer or that of its organization in a way provided by thermodynamic 

models. In effect ODE models are able to occupy the middle ground in the world of 

transcriptional modelling and provide an option of analysing moderate to high complexity 

biological systems by efficiently describing dynamical aspects that are lacking in other 

approaches like thermodynamic modelling. 

 

 

 

I.1.6 Boolean Models 

 

 

Approach 

 

Some biological processed show on-off behaviour. Logic gates are building blocks of 

Boolean models and can represent such characteristics. In biological systems proteins or 

mRNAs normally have two states on or (1) and off or (0). In Figure 1C, a network describing 

the regulatory relationships among four proteins is shown; the directed arrows show 

activation, and the blunt arrows show repression. Starting from initial state, three temporal 

steps are demonstrated. In this model, protein turnover occurs in one time interval and 

repression is assumed to be dominant over activation. Here, superscripts [1] and [0] indicate 

active or inactive states, respectively.  Interaction between these elements can be described by 

using logic gates like ‘OR’, ‘AND’ and ‘NOT’. To illustrate the nature of these interactions, 

when there are two transcription factors, the ‘OR’ function indicates that transcription takes 

place if any one of them are bound (active), ‘AND’ implies that for transcription both need to 

be active and ‘NOT’ means there is no gene transcription if both transcription factors bind to 
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their respective sites. Boolean modelling can be efficiently used to combine qualitative 

experimental results logically in order to simulate the dynamic behaviour in biological 

frameworks with pre-defined theoretical components and interactions. The great advantage of 

Boolean models is that they can be easily analyzed through computational implementation 

and can be scaled from a smaller to a larger system. These models can efficiently create and 

analyze variants of the same network and might be used even in systems without detailed 

network description. They are simple yet efficient in illustrating basic characteristics 

underlying the biological system. 

 

 

 

Application 

 

There is extensive literature where Boolean measures have been applied to analyze gene 

regulation [19, 37]. Sánchez and Thieffry have studied the Drosophila gap gene network by 

applying Boolean models followed up later by Jaeger and colleagues who carried out the 

study using reaction diffusion models [20]. In this case, both differential equation-based 

models and Boolean models provide equable understanding of this study yet have their 

characteristic differences [20, 37]. Protein concentrations that are continuous in nature are 

discretized in the Boolean set-up and though this eases computation, such conversion of the 

data prevents detailed quantitative analysis of gene gap network features. Generally speaking, 

application of Boolean models sometimes requires a simplification of set up which in turn 

might heavily tax the accuracy of results. However these still provide a successful starting 

point for preliminary investigative analysis. 

 

 

 



 34 

I.1.7 Summing up the reasoning 

 

 

The project covered by this thesis might be seen as a case study for modelling gene-

expression data based on the bottom-up approach. The experimental data we have is 

quantitative and provides details at the promoter level. We note that of all modelling 

approaches thermodynamic modelling fits the bill best since this modelling framework allows 

for a quantitative description of combinatorial promoter regulation. Comparatively, we see 

that applying ODEs would not work since this approach would neglect the details on 

promoters that are available in the data whereas Boolean modelling would be a failure as well 

due to its qualitative approach when the need is to quantify a rather complicated transcription 

procedure. Stochastic modelling is also not an option since we are not interested in single-cell 

variability and are dealing with population data. On this basis we aim to study how systemic 

iron homeostasis might be influenced by hepcidin expression brought about by promoter level 

interactions of transcription-factors and possible signalling level crosstalk of certain pathways 

(BMP & IL6) and protein molecules. By calculating how the model might behave in silico 

and then comparing to observations made at the system level, emergent systems properties are 

predicted. Even in case of model failure, we hoped that the lack of correspondence might 

bring more certainty to what are not the characteristics of the system and what might be 

hypothesized instead. As we see in the course of our investigation, correspondence with 

experimental data, mostly leads to the discovery of interactive or organizational properties 

that are important biological functions. The discovered properties are then inserted in a new 

generation of models, and eventually more detailed and accurate models can be obtained. As 

our work illustrates, the multi-level biological interactions eventually affect or effect 

processes that enable a living system to maintain its state or develop in time through 

processes that repair damage or compensate for dissipation. In some systems, for example, the 

molecular constituents are understood sufficiently enough to prompt the construction of 

detailed kinetic models of reaction networks (‘silicon cells’) [38-40]. As applications, these 

approaches might be used to design drugs in silico or to improve understanding of how 
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molecules might jointly bring about a particular cellular behaviour [41, 42]. It is also 

interesting to mention here that top-down and bottom-up systems biology approaches are not 

mutually exclusive. Ultimately these two approaches aim to be synergistic and mutually 

corroborative.  

 

 

Given this background of systems biology and applications of various modelling approaches, 

the reader can better understand the way we have progressed to find the answer to the 

problem being addressed in this thesis. Further into the project now, we begin with an 

explanation of the biological background and the mechanisms explained in existing literature 

on hepcidin and its regulation. We then proceed with an overview of the experimental data 

from our collaborators followed by analysis of the data and modelling methods applied by us. 
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I.2 Hepcidin  
 

 

I.2.1 Hepcidin and regulation of systemic iron homeostasis 

 

 

Iron homeostasis is tightly regulated to provide this critical element for growth and survival 

while preventing the toxicity of iron excess. Intestinal absorption, reticulo- endothelial cell 

recycling and mobilization of hepatocyte(liver cells) stores maintain plasma iron levels. 

Circulating iron is secreted into serum transferrin and delivered primarily to the bone marrow 

for erythropoiesis (production of red-blood cells). Excess iron in the body can only be 

removed by sloughing of enterocytes and blood loss; the remaining iron is stored primarily in 

macrophages (white blood cells) and hepatocytes. There is no known regulated mechanism 

for iron excretion; therefore systemic iron homeostasis is maintained by tight regulation of 

intestinal iron absorption and macrophage and hepatocyte iron release [43]. The mechanism 

for iron regulation is yet to be fully understood but recent research suggests that hepcidin has 

a key role in regulating systemic iron homeostasis.  Hepcidin is an iron-regulated hepatic 

peptide hormone that controls systemic iron homeostasis. Iron excess or inflammatory 

cytokines stimulate hepcidin expression, leading to reduction in plasma iron levels as the 

result of iron retention in macrophages and reduced intestinal iron absorption. Hypoxia 

(oxygen deficiency), high erythropoietic activity, and iron deficiency inhibit hepcidin 

expression by largely unknown mechanisms to mobilize iron stores and increase iron 

absorption. Hepcidin exerts its function by binding to the iron efflux channel ferroportin (Fig. 

2), which is predominantly expressed on macrophages, intestinal enterocytes, and 

hepatocytes, causing ferroportin internalization and degradation [44]. Hepcidin thereby 

decreases both intestinal iron absorption and macrophage iron release.  The mechanisms by 

which hepcidin expression is regulated remain poorly understood. Data suggest that hepcidin 

expression is enhanced by iron overload and inflammation, whereas it is inhibited by anaemia 
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and hypoxia. This is consistent with a compensatory role for hepcidin to limit intestinal 

absorption during iron overload and to increase iron availability when needed for 

erythropoiesis.  
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Figure 2: Hepcidin is expressed by hepatocytes as a response to excess iron levels in blood. Human 

physiology does not allow for excretion of iron. Therefore strict balance is maintained by controlling 

the absorption of iron into blood plasma. Hepcidin is controlled by a negative feedback loop. Excess 

of iron stimulates hepcidin expression that degrades ferroportin thereby blocking iron-absorption from 

the duodenum resulting in prevention of iron overload in the liver. 
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Figure 3: Hepcidin promoter with three major responsive sites. The proximal STAT-binding site is 

responsive to phosphorylated-STAT proteins (pSTATs) released on activation of the IL6/JAK/STAT 

pathway. There are two BMP responsive regions, one at the proximal and one at the distal end. 

Simultaneous presence of these two similarly responsive regions increases the BMP-responsiveness of 

the hepcidin promoter. How the binding sites influence each other is the question we attempt to 

answer with the help of modelling. [3] 
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I.2.2 Hepcidin Control pathways 

 

 

Hepcidin expression is primarily controlled at the transcriptional level. Information about 

blood iron levels is transduced from the cell membrane to the nucleus by the bone-

morphogenetic-protein (BMP) signalling pathway [43, 45]. HFE and TFR2, two proteins 

mutated in HH [46, 47], sense increasing blood iron concentrations. The signal is transmitted 

by the BMP co-receptor HJV and BMP receptor 1 to trigger the phosphorylation and nuclear 

translocation of SMAD1/5/8 transcription factors (referred to as SMADs hereafter). BMP6, 

which is regulated by hepatic iron levels, plays a critical role in this process [48, 49]. The 

hepcidin promoter contains two BMP-responsive elements (BRE1 and BRE2) that are 

recognized by the SMADs (sometimes also abbreviated as BMP-RE1 and BMP-RE2) [50, 

51]. 

 

 

I.2.3 Hepcidin Regulation with focus on modelling 

 

 

We see from existing literature [52, 53] that there are two major signalling pathways, which 

communicate to activate hepcidin expression in hepatocytes, control hepcidin expression: 

 

a) Bone morphogenetic proteins (BMPs), a group of cytokines of the (TGF-β) family, 

induce hepcidin expression by activating SMAD transcription factors that bind to 

BMP-responsive elements (BREs) in the hepcidin promoter.  

 

b) Inflammatory cytokines (specifically IL-6) stimulate hepcidin transcription via the 

JAK/STAT signalling pathway and a STAT binding motif proximal to the 

transcription start site. 
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BMP and IL6 signalling pathways play different roles in the regulation of hepcidin 

expression. BMP signalling is important for maintaining steady-state hepcidin expression. 

Moreover, BMP signalling is activated upon blood iron overload and thereby communicates 

systemic iron levels. IL-6 is not involved in sensing systemic iron levels, but induces hepcidin 

in case of inflammation to reduce intestinal iron absorption. Literature evidence suggests that 

both pathways not only contribute additively to hepcidin, but that there is complex 

interdependence between pathways: For example, SMAD4, a member of the BMP signalling 

cascade, contributes to the activation of hepcidin by inflammatory stimuli. Both BMP and IL-

6 synergistically induce hepcidin, thus suggesting nonlinear amplification mechanisms, either 

at the signalling or promoter levels.   

 

 

Our objective is to identify and quantitatively describe the crosstalk mechanisms between the 

IL6 and BMP signalling pathways in controlling hepcidin expression since these are 

incompletely understood (Fig.3). 

 

 

Regulation of hepcidin by BMP 

 

Hepcidin is critical for maintaining systemic iron homeostasis and hepcidin levels are 

inappropriately low in juvenile and adult forms of hereditary hemochromatosis (HH), a 

disease caused by mutations in HFE, transferrin receptor 2 (TFR2), hemojuvelin (HJV, 

HFE2), or hepcidin itself [51]. 

 

 



 42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Signal integration at the hepcidin promoter. Schematic representation of two critical 

signalling pathways controlling hepcidin expression. SMAD and STAT transcription factors are 

phosphorylated upon BMP and IL6 stimulation, and bind BMP-responsive elements (BRE) and a 

STAT-binding site (STATBS) in the hepcidin promoter, respectively. The importance of signalling 

crosstalk is not clear. 
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These mutations thus lead to increased duodenal iron absorption and macrophage iron release 

resulting in elevated serum iron levels and liver iron overload. Recently, the pathogenesis of 

HH was linked to the bone morphogenetic proteins (BMPs), a group of cytokines that belongs 

to the TGF-ß superfamily [54]. BMPs initiate intracellular signalling by binding to complexes 

of type I and type II serine/threonine kinase receptors, which when activated phosphorylate 

intracellular SMAD proteins. These translocate to the nucleus to control gene transcription. 

The HH (Hereditary hemochromatosis) protein HJV is a BMP co-receptor that enhances BMP 

signalling to regulate hepcidin expression and iron metabolism [55]. 

 

 

Regulation of hepcidin by IL6 

 

Hepcidin is induced in anaemia of inflammation, which is an acquired condition that affects 

patients with a variety of disorders including infection, arthritis, cancer etc. It may range from 

being moderate to severe but is always characterized by loss of general health. Induction of 

hepcidin in this case can be majorly attributed to the inflammatory cytokine inerleukin-6 

(IL6).  It has been established that IL6 acts directly to up-regulate hepcidin expression [56]. 

An IL6 responsive element was identified in the hepcidin promoter and it has been 

demonstrated that IL6 regulates hepcidin expression through direct binding of STAT3 to the 

promoter. It has also been shown by [56] that STAT3 is necessary and sufficient to confer IL6 

responsiveness in a luciferase reporter assay. These observations have established that besides 

IL6 regulating hepcidin, even in the absence of elevated cytokine levels, aberrations in 

hepatic STAT3 regulation could lead to increased systemic hepcidin level and anaemia. 

 

 

 

 

 

 

 



 44 

I.2.4 Hepcidin malfunction and related disease- Motivation for modelling 

 

 

Hepcidin malfunction results in two main groups of disorders. The first one relates to 

dysregulation of iron. Most forms of genetic iron overload as in hemochromatosis 1,2 and 3 

are characterized by inappropriately low hepcidin levels leading to parenchymal (hepatocytes, 

pancreatic cells and cardiac cells) iron overload. Mutations in the BRE1 promoter element 

and in the BMP signalling pathway are associated with human hemochromatosis [57]. On the 

other hand, hepcidin expression is additionally regulated by external cues other than iron 

blood levels, including inflammatory cytokines and hypoxia [58, 59]. Inflammatory cytokines 

like IL6 activate the STAT3 signalling pathway in hepatocytes. Phosphorylated STAT3 

transcription factors are directly recruited to a STAT-binding site (STATBS) in the hepcidin 

promoter, thereby enhancing expression [56, 60]. Inflammatory cytokines thus diminish iron 

blood levels. In particular, chronic inflammation causes an iron-related disorder, known as 

anaemia of inflammation [61]. Patients with chronic inflammation show permanently elevated 

levels of IL6, increased hepcidin expression and plasma iron deficiency. The lack of iron 

availability blocks erythropoiesis (production of red blood cells) thereby causing anaemia of 

inflammation. This indicates that the integration of BMP and IL6 signals at the level of 

hepcidin expression plays a key role in systemic iron homeostasis. In anaemia of 

inflammation (which is an acquired condition in people suffering from chronic infections over 

a long period of time), hepcidin over-production is caused through the pathway involving 

inflammatory cytokine IL6 and its corresponding signal-transducer and transcription activator 

STAT3. 

 

 

The second group of disorders is caused by implicit variations in hepcidin production.  For 

example, alcoholism [62] and hepatitis C virus infection [63] results in suppression in 

hepcidin production that might contribute to the moderate iron-excess that sometimes 

characterizes these diseases. Therefore it is evident that finding the keys to hepcidin 
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regulation and understanding hepcidin expression would in the course of time aid to 

understand iron-metabolism better and help identifying a series of genetic and acquired iron-

relation disorders to make way for novel therapeutic approaches. 
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II. Results: Towards modelling hepcidin expression 
 

 

II.1 Conceptual model of systemic iron homeostasis 
 

 

Existing literature shows that systemic iron homeostasis is maintained by an auto-regulatory 

negative feedback loop [44]. Iron overload triggers hepcidin expression, and hepcidin in turn 

lowers intestinal iron influx (Fig. 2, Page 38). Such feedback regulation is thought to 

compensate for fluctuations in dietary iron content [64]. We analyzed a minimal mathematical 

model of this circuitry to gain insights into iron homeostasis and the factors determining iron 

blood levels. As a measure of homeostasis, we investigated how well the negative feedback 

loop maintains constant iron levels in the face of imbalances in systemic iron availability and 

consumption. The ODE model for feedback (Equation 1.2, Page 49) also explicitly shows us 

what governs and ensures iron-homeostasis. The model suggests that the performance of the 

iron regulatory loop is optimal if hepcidin expression responds in a steep, nonlinear manner to 

alterations in iron blood levels. This finding supports previous studies showing that nonlinear 

negative feedback regulation is particularly efficient in promoting homeostasis [65]. We 

therefore reasoned that data of dose-dependent hepcidin promoter regulation, and its 

modulation by iron-independent stimuli, could provide valuable insights into the regulation of 

iron homeostasis.  

 

The dynamics of the model species were described using the framework of ordinary 

differential equations.  
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The model equations read (1.1.1-1.1.2) 

 

 

      

  
                 

       

                
                                (Equation 1.1.1) 

 

 

 

           

  
                                       

                   

(Equation 1.1.2) 

 

 

 

Iron blood levels were described by the species Feb, whose levels are controlled by influx and 

efflux reactions. The iron influx rate is proportional to the intestinal iron concentration 

(species Fei). The efflux rate is modeled as a first-order process, and represents iron excretion 

and incorporation into red blood cells. Iron blood levels are assumed to control hepcidin 

expression (parameter kinduced). The role of the BMP signalling in iron-induced hepcidin 

expression was not modeled explicitly. Induction was assumed to occur with an exponent n to 

take into account that the activity of the hepcidin promoter may depend in a nonlinear manner 

on the iron blood concentration. Hepcidin levels are additionally controlled by first-order 

degradation (kdeg) following its uptake into ferroportin expressing cells [66]. Negative 

feedback regulation was considered in the model by assuming that the iron influx is 

negatively influenced by hepcidin. The feedback strength is determined by the parameter kFB.   

 

 

For the analysis of long-term iron homeostasis, we are not interested in the temporal 

dynamics of the system but focus on the steady state behavior. The steady state can be 
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calculated by assuming that iron blood and hepcidin levels do not change over time, i.e., 

setting  

 

      

  
   

and 

           

  
   

                 

 

 

Thus, Eq. 1.1.1 and Eq. 1.1.2 simplifies to a set of algebraic equations that can be solved for 

the steady state concentration of iron in the blood. In the limit of strong feedback (large kFB) 

we can approximate this solution as (1.2) 
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               (Equation 1.2) 

 

 

This equation implies that the steady state iron blood level responds to a change in iron diet 

content [Fei] in a less than linear manner, since the exponent 1/(n+1) ensures that [Fei] enters 

as the (n+1)-th root only. We see that this simple model reflects partial homeostasis. The term 

partial homeostasis implies that changes in the diet iron content cannot be fully compensated. 

Iron blood levels are less sensitive to changes in the diet content if feedback regulation is 

steep and nonlinear (n > 1). We conclude that the steepness of the hepcidin promoter 

response towards iron-BMP signalling determines how well the homeostasis loop 

compensates fluctuations in diet iron levels. Interestingly, tuning the steepness is the only way 

that homeostasis can be improved in this simple model. Other ways may exist in more 
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complex versions of the negative feedback model, but the steepness of the promoter will 

always be a very important factor controlling the performance of the homeostasis loop.   

 

 

Another important aspect of iron homeostasis is the transcriptional regulation of hepcidin 

expression by pathways other than BMP signalling. Consider the following extended model 

which takes into account that hepcidin synthesis occurs by an iron-independent term (kbasal) 

(1.3)   
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(Equation 1.3.2) 

 

 

 

Here, we assumed that hepcidin expression by iron occurs with moderate steepness (n = 1), 

because the steady state of the iron blood level would be much more complicated for n > 1. 

However, the following general conclusions derived from the model continue to hold true for 

a steeper hepcidin promoter response as well.   
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The steady state iron blood concentration can be derived from Eq. 1.3 for the limit of strong 

feedback (i.e., large kFB) (1.4) 
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)                      (Equation 1.4) 

 

 

 

This equation reveals that the intestinal iron concentration ([Fei]) enters in a square-root 

manner for kbasal = 0, confirming that the system without basal expression shows partial 

homeostasis. For non-zero basal expression the iron blood concentration can depend on the 

intestinal iron concentration in a linear manner, i.e., homeostasis may be lost. This emergence 

of linear behavior is not immediately obvious from Eq. 1.4.  

 

 

Linear behavior can be shown by calculating the gain of the iron blood concentration with 

respect to the intestinal iron level (1.5).   

 

 

   
     

     
 
      

      
                                                  (Equation 1.5) 

 

 

 

The gain is a normalized slope that describes how a percent change in the intestinal iron 

translates into a percent change in the iron blood level. A gain equal to one implies a linear 



 52 

relationship between intestinal and blood iron concentrations, while G = ½ and    G = 2 imply 

sub-linear and quadratic behavior, respectively (i.e., dampening and amplification). G <1, 

which means that external perturbations are dampened generally characterizes homeostatic 

systems. By calculating the gain of Eq. 1.4, and using l’Hopitals’ rule it can be shown that 

 

                 ⁄   ( )                                                                                   (Equation 1.6) 

 

 

 

Thus, a linear relationship between intestinal and blood iron levels, i.e., a loss of homeostasis, 

is observed for sufficiently high iron-independent, basal hepcidin expression. We conclude 

that the regulation of hepcidin by signalling pathways other than BMP may modulate how 

strongly iron diet content fluctuations can be compensated.  

 

 

Whether iron-independent regulators of hepcidin expression compromise iron homeostasis, 

however, depend on the mode of signal integration at the hepcidin promoter: In Eqs. 1.3.1-

1.3.2 (Page 50), it was assumed that the iron-BMP-signalling axis and the iron-independent 

terms control hepcidin expression in an additive manner (logical OR gate). Alternatively, two 

pathways may control hepcidin expression multiplicatively (logical AND gate, Fig. 5). This 

scenario is covered by the differential equation system Eqs. 1.1.1-1.1.2 (Page 48): In this 

model, the iron-independent pathway would change the value of the synthesis rate constant 

kinduced. From Eq. 1.2, we learned that the degree of homeostasis in this system is only 

determined by the steepness of promoter regulation by BMP, but not by other parameters such 

as kinduced. We therefore conclude that the performance of the iron homeostasis loop is 

determined by the steepness of the promoter response towards BMP stimulation. Whether or 

not this steepness (and thus iron homeostasis) is modulated by iron-independent regulators of 

hepcidin expression depends on the mode of signal integration at the hepcidin promoter. 
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Additionally we also conclude that iron-independent pathways would not modulate how 

strongly iron diet content fluctuations can be compensated in the multiplicative scenario. 

Instead, the iron-independent pathways would modulate the absolute iron blood levels, 

although to a limited extent only.  

 

In the next sections, we therefore set out to systematically quantify hepcidin promoter 

regulation by BMP and IL6 using systematic promoter mutagenesis and co-stimulation 

experiments.  
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Figure 5: Plasticity of combinatorial regulation. Transcription may follow logic models such that 

presence, absence or combined effect of binding sites or signalling pathways directly influence 

expression.  
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II.2 Quantification of hepcidin cross-regulation by BMP and IL6 
 

 

II.2.1 Experimental characterization of hepcidin promoter variants reveals impact of 

individual binding sites - performed by Muckenthaller group 

 

 

Our model is based on in-vivo homeostasis where we use cell culture system to characterize 

promoter response. Genetic reporters were used by our experimental collaborators to study 

gene expression levels and the impact of transcription-factor binding-sites (TFBS) on 

hepcidin expression. The analysis focused on the influence of BMP-responsive elements 

(BRE1 and BRE2) and the STAT binding site (STAT-BS) on hepcidin expression.  In 

particular, we hoped to understand the interdependency of TFBS by combinatorial TFBS 

mutations. Our collaborators cloned the hepcidin promoter variants upstream of the firefly 

luciferase reporter, and transfected the constructs into Human hepatoma (HuH7) cells. 

Luciferase is an enzyme that catalyzes the conversion of Luciferin into Oxyluciferin, a 

reaction that is accompanied by the emission of light (‘bioluminescence’). The light signal is 

therefore a direct readout for promoter activity. To correct for different transfection 

efficiencies, the Firefly luciferase signal has to be normalized by the signal of a co-transfected 

Renilla luciferase reporter (that catalyzes a different light reaction). Luciferase reporter assays 

were allowed to measure the activity of WT (wild-type, hepcidin promoter with its binding 

sites intact) and mutant hepcidin promoter (binding sites as seen in Fig. 3, Page 39, 

combinatorially mutated or deleted) versions under various experimental conditions. There 

are eight different constructs where different transcription factor binding elements are 

mutated individually or in combination by direct mutagenesis. Some constructs (hepcidin 

DNA segments) were based on a short version of the hepcidin promoter (1 kb), which 

contains the STATBS and the BRE1. Additionally, there are characterized constructs that 
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were based on the native (as occurring in nature) full-length 2.7 kb promoter containing all 

three TFBS (STATBS, BRE1, and BRE2). For example, the construct BRE1_1kb refers to the 

1kb promoter that lacks the BRE1. TFBS mutations were introduced in both constructs either 

singularly (BRE1_1kb, STATBS_1kb, BRE1_2.7kb, STATBS_2.7kb, BRE2_2.7kb), or in 

combination (rest). In total, 8 out of 12 possible constructs were characterized; the promoter 

variants lacking all TFBS (STATBS_BRE1_BRE2_2.7kb, STATBS_BRE1_1kb) were not 

investigated since luciferase expression was undetectable. Additionally, the following 

promoters were not available: STATBS_BRE2_2.7kb and STATBS_BRE1_2.7kb. Our 

collaborators carried out gene-expression analysis on the luciferase constructs but by 

combinatorially co-stimulating them with varying doses of BMP and IL6 giving rise to 4x4 

matrices per construct which we analyse in three-dimensions by illustrating them as heatmaps 

(Fig. 6). Each replicate measurement series was normalized to correct for slight differences in 

absolute luciferase signals between replicate experiments: Each measured value was divided 

by the median over all 92 data points (7 constructs with 16 stimulation conditions each) of 

that replicate series.  

 

 

QPCR measurements of endogenous hepcidin mRNA were performed under the same 

experimental conditions to confirm that the reporter measurements reflect endogenous 

hepcidin expression. 
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II.2.2 Theoretical analysis of promoter data 

 

 

We estimated the experimental errors by calculating standard deviations over all replicates. In 

some cases, we calculated fold changes in luciferase expression by dividing the measured 

values by their respective basal level (i.e., expression in unstimulated cells) or by the 

expression of other promoter versions under the same experimental conditions. The errors of 

these fold-changes were calculated using a Monte-Carlo approach:  In the simulations, 

random realizations were drawn from normal distributions with mean and standard deviation 

equal to those of the measured luciferase expression data. Fold-changes were calculated for 

103 pairs of realizations, and the fold-change error was evaluated by calculating the standard 

deviation of the resulting probability distributions.  

 

Subsequently, using qPCR (real-time polymerase chain reaction) data, we systematically 

compared qPCR and luciferase signals (fold-change over basal expression) over various 

stimulation and knockdown conditions [44] and found a high correlation coefficient of at least 

R = 0.9835 (replicate 2, Fig. 7A, Page 62) which confirms that luciferase measurements 

faithfully reflect endogenous regulation. Moreover, this eventually supports our model 

assumption that post-transcriptional regulation of hepcidin expression is negligible.  

 

Mono-stimulation experiments reveal that the WT promoter primarily responds to BMP6 

stimulation, since the highest BMP6 dose induced a 450-fold induction of luciferase activity, 

while IL6 only enhanced luciferase levels by 20-fold (Fig. 6). Notably, even higher IL6 levels 

could not raise luciferase activity any further, as can be seen from more detailed titration 

experiments with higher doses of IL6. We conclude that IL6 is an intrinsically weaker inducer 

of hepcidin expression when compared to BMP.  

 

Co-stimulation of the WT construct with IL6 and BMP enhanced luciferase activity compared 

to mono-stimulation with IL6 or BMP (Fig. 6).  
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Figure 6: Analysis of transcription factor crosstalk at the promoter level by reporter gene assays. 

Luciferase expression is driven by the wildtype (WT) hepcidin promoter (3 kb upstream of TSS) or 

promoter mutants lacking one of the transcription factor binding sites (panel B; BRE1m = BRE1 

mutated; STATdel = deleted for STATBS). Luciferase activity of each reporter construct (shown on a 

log10-scale) was measured for increasing doses of IL6 and/or BMP (n = 6). 
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From a quantitative point of view, the co-stimulation response was more than additive, but 

less than multiplicative: the induction upon co-stimulation with the maximal doses of BMP 

and IL6 (600-fold) ranged between the sum and the product of the mono-stimulation effects 

(450- and 20-fold, respectively, Fig. 6). QPCR measurements quantitatively confirm this co-

stimulation response at the level of endogenous hepcidin mRNA, thereby supporting the 

physiological relevance of the luciferase results (Fig. 7). 

 

 

Whether transcriptional regulation follows an additive or multiplicative mode depends on the 

molecular events at the promoter level: Additive behavior would be expected if the two 

stimuli drive transcription in a mutually exclusive manner (e.g., if only one of the respective 

transcription factors establishes a loop with the TSS at a time). In operating multiplicatively, 

the transcription factors would simultaneously attract RNAP to the TSS: The simultaneous 

presence of multiple independent recruitment sites in the promoter could boost RNAP 

binding, thus establishing a more than additive response (avidity effect). Most thermodynamic 

models of gene expression implement this avidity concept and predict a multiplication of 

mono-stimulation effects in the absence of promoter saturation or cooperative transcription 

factor binding [67]. 

 

 

We quantified the co-stimulation response for all available promoter constructs and stimulus 

combinations to distinguish between additive and multiplicative modes in hepcidin promoter 

regulation. We find that the hepcidin promoter mutants show near-multiplicative behavior, 

while the WT promoter tends to respond sub-multiplicatively. Further, the sub-multiplicative 

behavior appears to be less pronounced the lower the luciferase signal, indicating a promoter 

saturation effect (Fig. 8). This suggests that the hepcidin promoter generally follows a 

multiplicative mode of regulation. Accordingly, after extensive application of a variety of 

modelling approaches, we find that standard thermodynamic models with multiplicative 
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behavior are able to describe the promoter data, while additive models fail to do so. The less-

than multiplicative behavior that arises for certain constructs and stimulus conditions further 

suggests the existence of saturation effects or inhibitory crosstalk at the signalling and 

promoter levels, respectively.  

 

 

We analyzed the co-stimulation response of mutant promoters to further understand the 

determinants of hepcidin cross-regulation. The BRE1m promoter primarily responds to BMP 

stimulation and exhibits a co-stimulation heatmap that is qualitatively similar to the WT 

promoter. However, the expression levels of BRE1m are generally ~10-fold lower than WT 

(Fig. 6, Page 58, compare BRE1m and WT). Thus, the BRE1 deletion ‘scales’ hepcidin 

expression and elicits a similar reduction in basal and induced expression. The impact of 

BRE1 on basal expression can be explained by partial phosphorylation of SMAD1/5/8 in 

unstimulated cells.  

 

 

Analysis of the BRE1 mutant promoter (in Fig. 6) uncovers that BRE1 is required for full IL6 

responsiveness of the hepcidin promoter: strong mono-stimulation with IL6 enhances 

luciferase activity 20-fold for the WT promoter, but only 5-fold for the BRE1m promoter. 

This observation supports previous reports concluding that BRE1 is required for IL6-induced 

hepcidin expression [50]. We additionally see that BRE1 is only partially required for the 

response towards high IL6 doses. We next investigated how a deletion of the STATBS in turn 

affects the BMP responsiveness. The STATdel promoter shows a slightly but significantly 

reduced BMP responsiveness when compared to the WT promoter (Fig. 6; p < 0.001, paired 

t-test). This indicates that the STATBS promotes full BMP responsiveness. We conclude that 

BRE1 and the STATBS synergistically control hepcidin expression: the presence of one 

element enhances the responsiveness towards the stimulus targeting the other element.  
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However, the synergism is not fully symmetric, as the BRE1 deletion has a stronger effect on 

IL6 responsiveness than a STAT deletion on BMP inducibility.  
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Figure 7: Less than multiplicative co-stimulation response in the WT promoter preserved at the level 

of endogenous hepcidin mRNA expression. The fold-expression-changes over basal were compared for 

qPCR and luciferase assays.. (A) Scatter plots showing correlation between Luciferase Assay data 

(n=3) and qPCR data (green and blue are biological replicates, each with technical replicates (n=2)). 

The axes show log10 of fold-changes over basal expression in unstimulated cells. The respective 

Pearson Correlation Coefficients(R) for qPCR1 vs. Luciferase Expression and qPCR2 vs. Luciferase 

Expression support a strong correlation. The blue and green solid lines show linear fits to the data. (B) 

Co-stimulation modestly increases expression when compared to BMP mono-stimulation. Bargraph 

showing log10 of fold changes over basal (y- axis) for Luciferase Expression (Blue), and for the two 

biological replicate qPCR experiments (green and brown; same data as in panel A). 
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Figure 8: Co-stimulation response of luciferase reporters reveals multiplicative/sub- multiplicative 

behavior for multiple stimulus concentrations and promoter mutants. The x dimension shows the 

experimentally observed fold-change in expression upon co-stimulation with BMP and IL6. The y 

dimension shows the product mono-stimulation responses with the same doses of BMP and IL6, 

respectively. Each data point represents one co-stimulation condition (different concentrations of BMP 

and IL6 and/or different promoter constructs). The colors of the data points correspond to different 

promoter constructs (legend). The bisectrix (solid line) marks the expectation for a multiplicative 

system.  

 

 

The co-stimulation response of the BRE2m construct is qualitatively different from that of the 

WT and BRE1m promoters (Fig. 6). The BRE2m promoter resembles a coincidence detector 
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(‘logical AND gate’) (Fig. 5, Page 54): Mono-stimulation with either BMP or IL6 raises 

luciferase activity to intermediate levels only, and co-stimulation with both ligands is required 

for maximal expression (Fig. 6). This suggests that BRE1 and BRE2 fulfill distinct functions 

in hepcidin regulation: The BRE2m promoter shows only a slight reduction in basal luciferase 

activity compared to the WT promoter. This reduction in basal activity did not reach 

statistical significance (paired t-test), and was much less pronounced than the effect of a 

BRE1 mutation. The promoter responsiveness to IL6 mono-stimulation was not significantly 

affected by the BRE2 mutation (paired t-test), indicating that BRE2 has lesser impact on IL6-

induced hepcidin expression than BRE1. However, the responsiveness to BMP mono-

stimulation is strongly reduced in the BRE2m promoter (0.001 < p < 0.0025, paired t-test): 

maximal BMP stimulation enhances luciferase activity by only 80-fold in BRE2m, when 

compared to 400-fold in WT and BRE1m. We conclude that the most prominent feature of the 

BRE2m promoter is the reduced ability to respond to BMP stimuli compared to the WT 

promoter. In contrast, the BRE1 mutation primarily affects basal activity and IL6 inducibility 

of the promoter. The loss of BRE1 hardly affects the promoter responsiveness to maximal 

BMP doses, although it has some impact at intermediate BMP doses.  Taken together, these 

data raise the interesting question of how two transcription-factor binding-sites with very 

similar sequence can show qualitatively distinct behavior in hepcidin expression regulation.  

 

 

This quantitative analysis shows that BMP and IL6 signalling cascades regulate hepcidin 

expression in an interdependent manner. Apparently, the BMP/IL6 co-stimulation response 

reflects a superposition of multiple regulation effects. Therefore for further analysis we 

adopted mathematical modelling to quantitatively understand the dynamics of hepcidin 

promoter regulation. In particular, we sought to understand why BRE1 and BRE2 play 

different roles in hepcidin expression with respect to basal expression, BMP inducibility and 

co-stimulation response. 
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Figure 9: Modular modelling approach for arriving at gene expression data by integrating systemic 

behaviour at each level. This approach provides quantitative understanding of effects involved at the 

various levels leading to gene expression. 
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II.3 Modelling Regulation of Hepcidin 

 

 

II.3.1 Definition of model assumptions 

 

 

We derived a mathematical model of hepcidin regulation by IL6 and BMP that links the 

activity of signalling pathways to combinatorial promoter regulation and gene expression.  

   

 

The molecular mechanisms underlying regulation of hepcidin expression by IL6 and BMP 

can be subdivided into three layers of regulation (Fig. 9): Each input rapidly activates an 

intracellular signalling pathway (‘signalling module’). The active signalling molecules (i.e., 

pSMAD and pSTAT) in turn bind to transcription-factor binding-sites in hepcidin promoter 

(‘promoter level’). This induces transcription of hepcidin mRNA, which is then either 

degraded or translated into protein (‘gene expression module’).  It is necessary for our model 

to represent this biological reality of a) signalling, b) promoter-level interactions and c) 

protein expression to quantitatively analyze the extent to which IL-6 and BMP regulate the 

expression of hepcidin. 

 

 

The upstream signalling module of the model describes stimulus-induced transcription factor 

phosphorylation, while the downstream module characterizes combinatorial transcription 

factor binding to the promoter and gene expression. The model describes hepcidin regulation 

at steady state and neglects the temporal dynamics of gene expression. The kinetic parameters 

of the model were a priori unknown, and were estimated by fitting the model to luciferase 

activity data.  
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In this chapter, we would derive quantitative signalling module with simple Hill-equations, 

promoter model based on the foundation of thermodynamics and a gene expression module. 

 

 

a) Modelling dose-response behaviour of signalling module- without assuming signalling  

   crosstalk  

 

 

For the signalling module, we chose a phenomenological modelling approach and did not 

focus on the molecular mechanisms underlying intracellular signal processing. 

Phenomenological modelling means that an arbitrary mathematical function is used to 

represent the dose-response curves of transcription factor phosphorylation. We chose the 

sigmoidal Hill equation, as BMP- and IL6-induced dose-response curves are typically of 

sigmoidal shape. We neglected putative signalling crosstalk between IL6 and BMP pathways 

in the initial versions of our model.  

 

 

The dose-response of intracellular signalling pathways is typically sigmoidal in shape, and 

described by the Hill equation [46, 68] (2.0) 

 

 

                                                             
              

       
                                      (Equation 2.0) 

 

 

This Hill equation expresses signalling (y) as a sigmoidal function of the stimulus (S), and 

takes into account basal signalling (ybasal), maximal pathway activation (ymax), the half-

maximal-stimulus (EC50) and the Hill coefficient (n) as a measure of steepness of the dose-
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response curve. In our initial model, we neglected inhibitory crosstalk between BMP and IL6 

pathways, and described the steady state of each signalling cascade using a Hill equation. The 

concentrations of phospho-STAT (pST) and phospho-SMAD (pSM) are thus described by 

(2.1.1) and (2.1.2)  

 

 

                                                              (Equation 2.1.1) 
 

 

 

 

                                                                       (Equation 2.1.2) 

 

 

 

Where  

 

          
       

              
  

                                         (Equation 2.1.3) 

 

 

          

                                                  
       

              
  

                                       (Equation 2.1.4) 

 

 

 

 

The output concentrations of these Hill equations (pSM and pST) were in turn used as an 

input for the thermodynamic promoter model. 
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b) Promoter Module 

 

 

The downstream promoter module describes steady state luciferase activity as a function of 

phosphorylated transcription factors. We neglected post-transcriptional steps in gene 

regulation, and could therefore assume that steady state gene expression is proportional to the 

transcription initiation rate [69]. The transcription initiation rate thus served as a model 

readout that was fitted to the luciferase expression data (using a scaling factor). We used the 

framework of thermodynamic modelling to mechanistically describe transcriptional initiation. 

In order to apply kinetic models to describe gene expression at the promoter level, we require 

kinetic laws for the transcription rates. Putting it simply, we assume in such cases that the 

transcription rate of a gene depends on regulator activities xi and other influences on 

transcription are neglected. The rate y is defined by a gene regulation function  

 

           

 ( )   ( ( )  )                                          (Equation 2.1.5) 

 

 

 

The mathematical function f and the parameter p are specific to the gene in question. The 

vector x consists of information on activities of all the regulators in the system. We make two 

underlying assumptions for developing a quantitative kinetic model of gene regulation: (i) 

regarding the time-scale the different states are in thermodynamic equilibrium and the 

probability of each state depends on its binding energy and on the concentration of the 

regulator molecules present. (ii) Transcription initiation occurs randomly at a certain rate in 

each of the states. 
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The mathematical form of the gene regulation function can follow from these assumptions 

and the analysis of the possible state-variants.  

 

Each of the states has a free energy associated with it, given by  

 

 

                                           (Equation 2.1.6) 
 

 

where T is the temperature, E stands for the energy and S denotes the entropy of the state. The 

free energy depends on the presence and sequence of binding sites on the promoter. The 

number of available regulator molecules influences the entropy term. The statistical weight 

(Zi) of a promoter state i is determined by its free energy (Fi) and is defined as 

 

    
  

                                         (Equation 2.1.7) 

 

where Kb is the Boltzmann constant.  

 

 

The statistical modelling approach illustrated by Bintu et al. [24] establishes a way of linking 

the microscopic binding states and macroscopic gene regulation mechanism. The modelling 

framework focuses on gene regulation at the level of transcription initiation, and assumes that 

the activity of a gene can be understood based on the determinants controlling RNAP 

recruitment to the transcription start site (TSS). Thermodynamic modelling has been shown to 

accommodate various modes of signal integration on a promoter [1, 24]. Experimental and 

theoretical characterization of bacterial and yeast promoters revealed that even relatively 

simple promoter architectures could give rise to complex and non-intuitive modes of signal 
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integration [70-72]. More recently, thermodynamic modelling was extended to aspects of 

eukaryotic gene regulation, including nucleosome-positioning effects [73]. 

 

 

In this project, we applied thermodynamic modelling to quantitatively analyze how the iron-

sensing BMP and inflammatory IL6 pathways coordinately control hepcidin expression. We 

show that cross-regulation of hepcidin promoter activity by BMPs and IL-6 can be 

quantitatively understood as a superposition of two promoter regulatory events: weak 

cooperative binding of transcription factors and strong promoter saturation with RNA 

polymerase. We find that the presence of two BMP-responsive elements promotes high 

sensitivity towards BMP stimulation, which is a key feature promoting iron homeostasis in 

vivo. IL6 reduces the ability of the promoter to sense the BMP signal in co-stimulation 

experiments, suggesting that this mechanism leads to disturbance of iron homeostasis in the 

anaemia of inflammation. Taken together, we employed a combined experimental and 

theoretical approach to gain insights into the regulation of hepcidin and iron homeostasis in 

health and disease. 

 

 

c) Gene-expression module 

 

 

A simple promoter model predicts how the transcription rate depends on promoter 

architecture. However, the luciferase assays used as experimental readout for gene expression 

reflect the amount of luciferase protein produced. Thus, the experimental and theoretical 

readouts disagree. In this section, we eventually show that protein expression is proportional 

to the transcription rate in simple models of gene expression, thus justifying our assumption 

that luciferase is an appropriate readout for promoter activity and the quantity of protein 
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produced at the gene-expression level is proportional to the transcription initiation rate for the 

promoter module.   

 

 

 

 

Consider a minimal model for gene expression (Inset 1), where mRNA is subject to synthesis 

and degradation. Moreover, the mRNA is translated into protein, which in turn might be 

degraded.  

 

 

The system can be described by the following set of ODEs: 

 

 

 (    )

  
                                               (Equation 2.2.1) 

 

  

    

                                         
 (       )

  
                                   (Equation 2.2.2) 

 

Inset 1: Expression of a gene into its protein as determined 

by the four stages: transcription, translation, mRNA 

degradation and protein degradation. 
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where k1, k2, d1 and d2 are the transcription rate, translation rate, mRNA degradation rate and 

protein degradation rate, respectively.   

 

 

In order to understand the relationship between promoter activity (k1) and protein expression, 

we integrate the differential equation system assuming that the promoter activity switches 

from low (k1=x) to high (k1=y) at t=0.  

 

 

The time course of protein expression P(t)  is given by  

 

 

 ( )     (  
     ( )

   
 
                   

     
)              (Equation 2.2.3) 

 

 

Where Pss is the steady state protein concentration and is given by: 

 

  

    (
    

  
)  (

  

  
)                                                          (Equation 2.2.4) 

 

 

 

Experimental measurements revealed that the half-lives of luciferase mRNA and protein are 

1.5h and 1h, respectively [74, 75].  
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Since the mRNA and protein degradation follow simple exponential decays, the half-life and 

the degradation rates d are related by 

 

 

  

 

   ( )                                             (Equation 2.2.5) 

      

 

 

Thus, the mRNA and proteins degradation rates are approximately given by 0.5 h
-1

 and 0.7 h
-

1
. Given that our luciferase measurements of gene expression are performed at 24hours, the 

exponential part in Eq. 2.2.3 is close to zero, implying that the system is close to steady state 

under our experimental conditions. 

 

 

In steady state therefore, protein expression is proportional to promoter activity (k1), thus 

justifying our assumption that luciferase signals are a good experimental readout for our 

promoter model  
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II.3.2 Thermodynamic Model for Hepcidin Promoter 

 
 
a) Derivation of Thermodynamic model  

 

 

The hepcidin promoter consists of three major regulatory elements, all of which are controlled 

by IL6 and/or BMP signalling [64]: (i) the STAT-binding site (STATBS); (ii) and (iii) the 

BMP-responsive elements 1 and 2 (BRE1 and 2). When occupied by cognate transcription 

factors, each of these sites may directly recruit RNA polymerase II and thereby initiate 

transcription. Additionally, the transcription factors may mutually enhance their impact on 

transcription, e.g., by cooperative promoter binding, DNA looping or opening of chromatin.  

 

A thermodynamic model of transcription was derived in order to quantitatively describe 

signal integration by the hepcidin promoter (reviewed in [24] [76]). Thermodynamic 

modelling applies methods from statistical thermodynamics to describe combinatorial binding 

of transcription factors to promoters. The approach additionally takes into account protein-

protein interactions on the promoter: (i) transcription factors may contact RNAP, and thereby 

promote RNAP recruitment and transcription. (ii) transcription factors may form pairwise 

complexes, thus cooperatively enhancing their promoter binding or transcriptional activation. 

In the following, we will derive a thermodynamic model comprising all possible pairwise 

protein-protein interactions on a promoter containing three transcription-factor binding-sites. 

We reduced the complexity of this model based on model fitting and model selection 

approaches.  

 

 

A central concept in thermodynamic modelling is establishing the so-called promoter states 

that represent the transcription factor binding configurations of a promoter. Combinatorial 

binding of transcription factors to three specific binding sites in the promoter and polymerase 
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binding to the transcription start site (TSS) gives rise to 2
4
 = 16 promoter states (Fig. 10, Page 

89).  

 

 

Thermodynamic modelling assumes that the transcription initiation rate is proportional to the 

amount of polymerase bound to the promoter. We therefore derive an expression for the 

probability of polymerase binding based on the promoter states. The probability of 

polymerase binding is given by the sum over the statistical weights of the polymerase-bound 

promoter states (Zbound) divided by the sum over all promoter weights (Ztot) (2.3.1)  

 

           

                                                                      
∑      

    
                                 (Equation 2.3.1) 

 

 

We use the notation ‘P’ to describe empty promoter states where all P polymerase molecules 

are bound non-specifically to genomic DNA (or diffuse freely in the nucleoplasm). ‘P-1’ 

refers to the active promoter scenario where one polymerase molecule is bound specifically to 

the TSS, and the remaining P-1 molecules show background or no binding. Using a similar 

nomenclature for each of the activating transcription factor binding sites Ai, we can write the 

sum over the statistical weights of the polymerase-bound states as (2.3.2)    
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(Equation 2.3.2) 
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The total statistical weight additionally takes into account 8 polymerase-free promoter states 

(2.3.3) 

 

     ∑       ∑     

 ∑         (          )   (            )   (            )

  (            )   (              )   (              )

  (              )   (                ) 

                          (Equation 2.3.3) 

        

The weights of the 16 individual promoter states are given by (2.3.4-2.3.19) 

 

 

 (          )  
      

 
  
      

      
      

  

    

               (              ) 
                                          (Equation 2.3.4) 
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(Equation 2.3.5) 
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(Equation 2.3.9) 
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 (Equation 2.3.10) 
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(Equation 2.3.11) 
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(Equation 2.3.13) 
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(Equation 2.3.14) 
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(Equation 2.3.15) 
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(Equation 2.3.16) 
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(Equation 2.3.17) 
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(Equation 2.3.18) 

 

 (                  )  

      
 

  
     

     
     

      
     

     
      

      
      

    

(   )  (    )  (    )  (    )  (    (   ) (    ) (    ) (    )) 
  

 

(Equation 2.3.19) 

 

 

 

Here, NNS is the number of non-specific binding sites in the genome. The Boltzmann weights 

  
  characterize specific binding of protein i to the promoter, while   

   describes non-specific 

binding to the genomic background. Transcription factor complexes with RNAP and other 

transcription factors are described by the weights     
 and      

, respectively.  

 

 

 

Using Eqs. 2.1.1 – 2.3.19, the probability of polymerase binding (Eq. 2.3.1) can be rewritten 

as (2.4) 
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In the last step, we calculated the ratio of Z(P,A1,A2,A3) and Z(P-1,A1,A2,A3), and 

additionally assumed that the number of polymerase and transcription factor molecules is 

much smaller than the total number of non-specific binding sites in the genome (NNS >> P, 

NNS >> A1, NNS >> A2, NNS >> A3). This leads to the following approximation (2.5) 
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(Equation 2.5) 

 

Additionally, we used the notation 

 

                                                  
    

                                         (Equation 2.6) 

 

and will use similar definitions to describe specific vs. non-specific binding of other proteins 

below.  

 

 

The regulation factor may be seen as describing an effective increase (for Freg > 1), or 

decrease (for Freg < 1), of the number of RNA polymerase molecules that are available to 

bind the promoter. The regulation factor in Eq. 2.4 is given by (2.7) 
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Using Eq. 2.3.4-2.3.19, we obtain (2.8) 
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Where (2.9.1-2.9.14) 
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By lumping constant terms together, we can rewrite Eqs. 2.8 and 2.4 as (2.10) and (2.11) 

respectively. 

 

 

     

  
    

   
   

    

   
   

    

   
   

    

   

    

   
        

    

   

    

   
        

    

   

    

   
        

    

   

    

   

    

   
               

  
    

   
 

    

   
 

    

   
 

    

   

    

   
    

    

   

    

   
    

    

   

    

   
    

    

   

    

   

    

   
         

  

(Equation 2.10) 

 

 

  

       
    

       
                                   (Equation 2.11) 

 

 

 

Here, the parameters    
 and KP characterize specific vs. non-specific transcription factor or 

polymerase binding to DNA (2.12.1-2.12.2).  
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Protein-protein complexes are described by ij and i that determine interactions between 

transcription factors, and transcription factors and RNAP, respectively (2.12).   

 

     
 

     

                                       (Equation 2.13.1) 

 

    
 

    
                                           (Equation 2.13.2) 

 

 

Luciferase expression was modeled using Eq. 2.10, assuming that steady state expression is 

proportional to the transcription initiation rate. The transcription factor concentrations [Ai] 

represent the phospho-SMAD and phospho-STAT input into the promoter model, and were 

modeled as described in the previous section on signalling module (Eq. 1.1.1-1.1.2, Page 48).  

 

 

 

b) Promoter Variants  

 

 

During our modelling analyses, we fitted multiple variants of the model to the experimental 

data. In the following, we will describe the implementation of different model variants before 

discussing the model fitting strategy and the model selection procedure. 

 

 We analyzed eight variants of the promoter model (Fig. 11). All model variants contained 

well-known aspects of promoter regulation such as pSTAT/pSMAD binding to the promoter 

and RNAP activation by transcription factors (grey arrows in Fig. 11). In the full model 

(topology 8 in Fig. 11), we additionally allowed all possible cooperative protein-protein 
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interactions between transcription factors (indicated by red arrows in Fig. 11). The 

thermodynamic promoter model derived in Equation 2.10 describes this full model.  

 

 

Let us define two terms as: 

 

               
        

   
    

        

   
    

        

   
    

         

      
            

                

      
                        

                        

(Equation 2.14.1) 

 

 

 

                 
        

   
 

        

   
 

        

   
 

         

      
      

                

      
    

 

(Equation 2.14.2) 

 

 

Then, in the context of hepcidin promoter regulation, Eq.  2.10 may be rewritten as (3.1) 
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Where, 

 

                                                                
            

              
                                 (Equation 3.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10: Possible promoter states for applying thermodynamic model. Basis of mathematical 

modelling of signalling and promoter crosstalk 
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Figure 11: Model selection approach allows for the identification of protein-protein interactions on 

the promoter. Various model variants were tested for their ability to fit the data in Fig. 6 (Page 58). 

The minimal model (model 1) assumes that each transcription factor independently activates RNAP 

(grey arrows), while more complex variants additionally take into account cooperativity among 

transcription factors (red arrows). 
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Here, we have replaced the generic transcription factor concentrations Ai by the levels of 

phosphorylated SMAD and STAT transcription factors, designated as [pSM] and [pST], 

respectively.  Transcription factors of the SMAD and STAT families homo- and hetero-

oligomerize upon phosphorylation, and oligomerization is thought to be important for gene 

expression regulation [77, 78]. Oligomerization would result in a nonlinear relationship 

between the level of transcription factors and gene expression. To accommodate possible 

oligomerization reactions we allowed that pSM and pST control hepcidin expression with the 

exponents nSM and nST, respectively. The values of nSM and nST were allowed to vary between 

1 and 3 during fitting to reflect dimerization and trimerization reactions. An exponent larger 

than one for SMAD signalling improved the fitting result, while nST > 1 was not beneficial 

(see Inset 2, Page 98, for best-fit parameters). 

 

 

The affinity of the transcription factors for the BRE1, the BRE2 and the STATBS is described 

by the corresponding dissociation constants (KB1, KB2, KST) (Eqs. [2.14.1-2.14.2]-3.2, Page 

88). Each transcription factor bound to DNA contacts polymerase, and enhances RNAP 

recruitment to the TSS with the binding energies fB1, fB2 and fST (denoting the effects of 

transcription factors bound to BRE1, BRE2 and STATBS, respectively). The half-maximal 

saturation parameter KP takes into account that the TSS may be fully occupied by RNAP, 

implying that a further increase in gene expression is not possible if FReg >> KP. Protein-

protein interactions among transcription factors on DNA may mutually enhance promoter 

binding and/or RNAP activation; in the model, such complex formation is described by the 

binding energies B1B2 (bridging between transcription factors bound to BRE1 and BRE2), 

B1ST (bridging between BRE1 and STATBS) and B2ST (bridging between BRE2 and 

STATBS).  
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We also analyzed the ability of simpler model variants (topology 1-7 in Fig. 11) to fit the 

experimental data that allowed us to derive a minimal essential model of hepcidin promoter 

regulation. These simpler variants contained only a subset of all possible cooperative protein-

protein interactions between transcription factors (red arrows in Fig. 11). Cooperative 

interactions were eliminated by fixing the parameters ij of the forbidden cooperative protein-

protein interaction to unity (Eq. 3.1, Page 88). For example, the minimal model variant 1 did 

not contain any of the hypothetical protein-protein-interactions among transcription factors 

(i.e., the corresponding interaction parameters in Eqs. 2.14.1 & 2.14.2(Page 88)  were set to 

B1B2 = B1ST = B2ST = 1).  

 

 

Model fitting to the luciferase data required the simulation of promoter mutants. Equations 

2.14.1 & 2.14.2(Page 88) describes the wildtype construct, but was adjusted to mutant 

promoters by eliminating transcription factor binding terms (i.e., by setting [pSM]/KB1, 

[pSM]/KB2 and/or [pST]/KST to zero). 

 

 

The simple equations (Eq. 1.1-2.3.19; Eq. 3.1) are used to define the promoter model in an 

efficient way. The promoter model (Eq. 3.1, Page 88; 10 parameters) was either combined 

with a signalling model that does not take into account pathway crosstalk (Eq. 1.1.1-1.1.2, 

Page 48; 7 parameters; best-fit in Fig. 12) or with a signalling model considering signalling 

crosstalk (See Section 3.1; 9 parameters; best-fit in Figs. 14-15).  
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II.3.3 Model Calibration 

 

a) Fitting strategy: All model variants were fitted to the data by minimizing the 
2
 metric (

2
 

= (Mi-sjDi)
2
/I , as given by Eq. 3.4 in the next section; where Mi, Di and i are the simulated 

value, the measured value and the experimental error, respectively). The model species [pSM] 

and [pST] were fitted to the transcription factor phosphorylation data, while pbound was fitted 

to the luciferase measurements. A scaling factor sj was used to adjust the simulated 

transcription rate (pbound; Eq. 3.1, Page 88) to the luciferase data. Transcription factor 

phosphorylation was formulated in arbitrary units (Eqs. 2.1.1-2.3.3, Page 68; Inset 2, Page 

98), and could thus be fitted without the use of a scaling factor (by adjusting ymax,1 and ymax,2). 

All parameters of the model were allowed to vary within a physiologically reasonable range; 

the ranges as well as the best-fit values are given in Inset 2. The parameters 1-9 belong to the 

signalling module of the model, while the remaining ones describe promoter regulation. Each 

parameter was constrained to a physiologically feasible range during fitting to ensure 

reasonable modelling results. The Hill coefficients of the signalling module (parameters 3 and 

7) were restricted to values typical for biochemical response curves. The other parameters of 

the signalling module (ymax, EC50) represent a combination of multiple signalling reaction 

constants, and were thus constrained such that they match the experimental measurements of 

transcription factor phosphorylation (Fig. 6, Page 58 ). Most parameters of the promoter 

module were taken from literature. Some were allowed to vary over a broad range to 

accommodate different kinds of qualitative behavior. For example, the wide range of half-

maximal promoter saturation constants (KP; parameter 10) allows for promoter saturation to 

occur upon stimulation. Likewise, the KD values of transcription factor binding to cognate 

promoter sites (parameters 11-13) were allowed to vary over a broad range to accommodate 

weak and strong binding. The parameter ranges for the constants describing protein-protein 

interactions on the promoter (parameters 14-19) represent the typical interaction energies of 

1-5 kcal/mol reported in the literature [1]. The exponents nSM and nST reflect transcription 

factor dimerization and trimerization, implying that values of up to 3 can be expected. 
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Parameter optimization was done using a deterministic trust region optimizer in Matlab. In 

order to circumvent local minima, we repeatedly fitted the model starting from 80.000 quasi 

randomly distributed positions in the space of allowed parameter ranges. The results of this 

repeated fitting strategy apparently converged to a global optimum, since ~50% of the fitting 

runs yielded  values close to the minimum all 80.000 runs.  
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Figure 12: Best-fit of a hepcidin expression model without crosstalk at the level of BMP and IL6 

signalling pathways. Luciferase expression was simulated using Eqs. 2.1 and 3.1, and the transcription 

rate in the model (pbound) were fitted to the data in (using a scaling factor). The best-fit parameter 

values of this model are given in Inset 2(Page 98). 
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b) Model selection: To derive a minimal essential model of hepcidin regulation, we employed 

a model selection approach considering model topologies of different complexity, and 

systematically compared their ability to fit the experimental observations. Models of different 

complexities (Fig. 11) were compared using the Akaike Information criterion and the 

Likelihood ratio test. This statistical goodness of fit criteria indicates whether a more complex 

model with more parameters fits the data significantly better than simpler variants. 

 

 

Briefly, we used the following formula for the Akaike information criterion (3.3) 

 

                                                         

                                                                                                             (Equation 3.3) 

 

 

Here, k is the number of parameters of that model and    is given by: 

  

                                                  ∑
(                        )

 

           

 
                         (Equation 3.4) 

 

 

Where n  is the number of data points. The model with the least AIC was taken as the variant 

that is most suited to describe the data. The likelihood ratio statistic (3.5)  

 

    
    

                                                          (Equation 3.5) 

 

equals the difference in the 
2
 values of two nested models. Nested means that the larger 

model (characterized by 2
2
) must contain the smaller model (characterized by 1

2
), and can 
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thus be interconverted into the smaller variant by appropriate parameter choice. D was 

compared to a tabulated value of the 
2
 statistic using the difference in the number of model 

parameters as the degree of freedom. If the tabulated values were less than D we rejected H0, 

null hypothesis that the extra parameters are necessary for a better model. 

 

Both statistical measures revealed that a relatively simple model containing a single protein-

protein interaction among SMAD and STAT transcription factors bound to BRE1 and the 

nearby STATBS was sufficient to explain the data (model 4 in Fig. 11, Page 90). The best 

fitting result of the BRE1-STATBS interaction model without signalling crosstalk is shown in 

Fig. 12 (Page 95). Statistical measures indicate that the model matched the data close to 

experimental measurement noise ( = 124, N = 80).  

 

 

c) Parameter identifiability analysis: Parameter identifiability was analysed using the 

strategy proposed by Hengl et al. [79]: Briefly, the parameter vectors of the top 45% fitting 

results had a similar goodness of fit ( < 135), and were analysed with respect to parameter 

ranges and parameter correlations. The robustness of model predictions was estimated by 

repeatedly simulating predictions for the top 45% of the model solutions. The upper and 

lower bounds of the computed solution are given as a prediction range in Fig. 21(Page 119).  
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# Parameter Description Fitting range Value with 

signalling 

crosstalk  

(Fig. 2C and 

D) 

Value without 

signalling crosstalk 

(Fig. S3) 

1 ymax,1 Maximal STAT 

activation 

0.5 – 7 

(a.u.) 

2.8520 0.2598 

2 EC50,1 Half-maximal IL6 

concentration for 

STAT activation 

0.5 – 50 

(ng/ml) 

7.7388 2.5048 

3 n1 Hill coefficient 

STAT activation 

0.5 - 5 1.0242 2.3717 

4 Ybasal,2 Basal SMAD 

activation 

0.03 – 0.11 

(a.u.) 

0.0583 0.0458 

5 ymax,2 Maximal SMAD 

activation 

1.5 – 3 

(a.u.) 

1.9490 33.3224 

6 EC50,2 Half-maximal 

BMP concentration 

for SMAD 

activation 

20 – 5000 

(ng/ml) 

140.2440 464.7168 

7 n2 Hill coefficient 

SMAD activation 

1 - 5 1.4481 1.2969 

8 kC,1 Cross-inhibition of 

STAT signalling 

by pSMAD 

0.01 - 5 0.4135 - 

9 kC,2 Cross-inhibition of 

SMAD signalling 

by pSTAT 

0.01 - 5 0.1285 - 

10 

 

KP Half-maximal 

promoter saturation  

1 - 10000 6804.7 5413.9 

11 KB1 KD of pSMAD 

binding to BRE1 

0.001 - 5000 0.4391 1.6370 

12 KB2 KD of pSMAD 

binding to BRE2 

0.001 - 5000 16.8738 94.8517 

13 KST KD of pSTAT 

binding to 

STATBS 

0.001 - 5000 206.3988 339.9842 

14 fB1 Binding of BRE1-

bound pSMAD to 

RNAP 

1 - 5000 537.6490 257.3671 

15 fB2 Binding of BRE2-

bound pSMAD to 

1 - 5000 4972.6 2777.9 
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Inset 2: Best-fit parameters for the models with and without signalling crosstalk (Figs. 15(Page 107) 

and 11(Page 95), respectively).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RNAP 

16 fST Binding of 

STATBS-bound 

pSTAT to RNAP 

1 - 5000 584.75 4691.8 

17 B1B2 cooperativity 

between BRE1 and 

BRE2 

1 - 300 1 

(fixed) 

1 

(fixed) 

18 B1ST cooperativity 

between BRE1 and 

STATBS 

1  - 300 5.3869 6.1287 

19 B2ST cooperativity 

between BRE2 and 

STATBS 

1 - 300 1 

(fixed) 

1 

(fixed) 

20 nSM Exponent 

reflecting pSMAD 

oligomerization  

1 - 3 1.7807 1 

(fixed) 

21 nST Exponent 

reflecting pSMAD 

oligomerization 

1 - 3 1 1 

(fixed) 
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III. Discussion and analysis of model and approach 

 

 

III.1 Mathematical modelling of the IL6 and BMP crosstalk at the                 

        signalling and promoter levels 
 

 

Model fitting and statistical evaluation revealed that the data were best explained by a model 

containing a single cooperative interaction among SMAD and STAT transcription factors 

(model 4 in Fig. 11, Page 90). This minimal essential model corroborated our initial 

hypothesis concerning a synergism between BRE1 and STATBS promoter elements. 

Moreover, the analysis supports that hepcidin expression can be described by a standard 

thermodynamic model that is based on the assumption of a multiplicative mode of 

transcriptional regulation.  

 

 

Interestingly, the fitting result (Fig. 12, Page 95) suggested that the luciferase data could be 

fully explained without assuming pathway crosstalk at the level of signal transduction.  

Moreover, inclusion of signalling crosstalk in the model did not improve the fit to the data 

when compared to the crosstalk-less formulation (compare Figs. 12 and 15, Page 109). Thus, 

the model predicted that crosstalk at the level of transcription factor phosphorylation is weak 

or absent.   

 

 

We confirmed this model prediction by directly measuring signalling crosstalk. 

Phosphorylation of STAT3 and SMAD1/5/8 was monitored after stimulation with BMP 

and/or IL6 for 12 h using quantitative immunoblotting. The phosphorylation of STAT and 
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SMAD transcription factors upon co-stimulation with BMP and IL6 was monitored using 

immunoblotting with phospho-specific antibodies. Our collaborators from the Muckenthaller 

group performed two replicate measurements, and the corresponding gels are shown in Fig. 

13. Bands were quantified by densitometry, and duplicate measurements were merged by 

multiplying one of the duplicates with a fitted scaling factor. This procedure adjusts the 

duplicate dose-response curves according to their shape, thereby correcting for differences in 

arbitrary units between gels. A single scaling factor was used to merge all STAT 

measurements, and another one for the SMAD measurements. Some experimental errors 

estimated from scaling were unreasonably small; therefore we assumed a minimal 

experimental error, based on typical variability in Western Blot measurements (relative error 

of 5% plus an absolute error value).  

 

 

On our part, we analysed the immunoblotting data and Figure 13E and 12F show mean and 

standard deviation of the duplicate experiments. As shown previously in Section II.III (Eq. 2, 

Page 67), here as well the Hill equation (4) 

 

                                                                
              

                                         (Equation 4) 

 

 

expresses phosphorylation (y) as a sigmoidal function of the stimulus (S), and considers basal 

signalling (ybasal), maximal pathway activation (ymax), the half-maximal-stimulus (EC50) and 

the Hill coefficient (n) as a measure of steepness of the sigmoidal curve. The co-stimulation 

data (green) can be fitted well by the Hill equation if it is assumed that the non-canonical 

stimuli (i.e., BMP in panel E and IL6 in panel F) affect only the maximal activation level 

(ymax) of the dose-response curve.  
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As expected, analysis of promoter data shows stimulation with BMP or IL6 alone resulted in 

dose-dependent increases of SMAD1/5/8 and STAT3 phosphorylation, respectively (see data 

points in Fig. 13). Co-stimulation with a saturating dose of IL6 appeared to slightly reduce 

BMP-induced SMAD1/5/8 phosphorylation (Fig. 13F, Page 104), but the effect is not 

statistically significant (paired t-test). High doses of BMP had significant and stronger 

crosstalk effects on IL6-mediated STAT3 phosphorylation (p < 0.001, paired t-test), but again 

the effects were moderate and never exceeded a two-fold change (Fig. 13E). We conclude 

that crosstalk at the level of transcription factor phosphorylation is relatively weak. This 

supports the model prediction that crosstalk at the promoter level dominates over signalling 

effects.  

 

 

Modelling including signalling crosstalk 

 

To allow for a quantitative description of signalling and promoter events, we refined our 

model by simultaneous fitting to the transcription factor phosphorylation and luciferase data. 

During our experimental analyses, we observed that the IL6 and BMP mutually inhibit each 

other at the level of transcription factor phosphorylation, although to a minor extent (Fig. 13). 

We therefore extended our initial signalling model, and took inhibitory crosstalk into account.  

 

 

The main objective of the signalling crosstalk model was to represent the existing data (Figs. 

6 and 12), and to extrapolate the concentrations of phosphorylated transcription factors for 

conditions where experimental measurements were not available: STAT phosphorylation was 

only assessed for increasing doses of IL6 in the presence or absence of saturating amounts of 

BMP (800 ng/ml). Likewise, SMAD phosphorylation was monitored for increasing doses of 

BMP, alone or in combination with 25 ng/ml IL6 (Figs. 13). Since luciferase expression was 

additionally assessed for intermediate IL6 and BMP doses, less input than output conditions 
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are known in the promoter model. To overcome this problem, we estimated transcription 

factor activity using a model-based extrapolation strategy.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Moderate inhibitory crosstalk at the signalling level. (A) - (D) Analysis of crosstalk at the 

signalling level by immunoblotting against phosphorylated SMAD and STAT. HuH7 cells were 

stimulated with increasing doses of IL6 in the presence or absence of BMP (A, C) or vice versa (B, 

D). Actin levels serve as loading controls. Two biological replicates were performed (Replicate 1: 

panels A and B; Replicate 2: panels C and D). (E) and (F) Quantification of signalling crosstalk. Data 

points represent mean and standard deviation of densitometric analyses of Western Blots (N =2). Lines 

are fits of the Hill equation to the data.  
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A model describing signalling crosstalk should be able to simultaneously describe dose-

response curves of pSMAD and pSTAT in the presence or absence of the non-canonical 

inhibitory stimulus (IL6 and BMP, respectively). To investigate the mode of crosstalk 

regulation, we fitted the Hill equation to the dose-response data (Figs. 13E and F). Different 

scenarios of signalling crosstalk were analyzed: the non-canonical stimulus (i.e., BMP for 

STAT and IL6 for SMAD) was assumed to affect dose-response of transcription factor 

activation at the level of one or more parameters of the Hill equation (ybasal, ymax, EC50 and 

n).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Integrative crosstalk model fits the dose-response curves of transcription factor 

phosphorylation. Solid lines represent model trajectories in comparison to experimentally measured 

data points (shown as mean +/- std).  

 

 

 

 

The fits in Fig. 13E and F reveal that crosstalk can be described quantitatively if it is assumed 

that non-canonical stimulation modulates that maximal activation level in the Hill equation 

(ymax). The assumption of selective crosstalk modulation at the level of ymax was used to 
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derive a simple mathematical model for signalling crosstalk as described in the following part 

of this section (Fig. 14).     

 

 

In a simple crosstalk formulation the concentration of phosphorylated transcription factors 

can be written as (5.1) 

 

 

                                                         
      

            
                                    (Equation 5.1) 

 

                                                

                                                                  
                

            
                   (Equation 5.2) 

 

 

Where 

 

 

                                                          
       

              
  

                                    (Equation 5.31) 

 

 

And 

 

                                                         
       

              
  

                                 (Equation 5.3.2) 

 

 

 

 

For each transcription factor, the maximal activation level is reduced by the presence of the 

opposite factor (with crosstalk strength constants kC,1 and kC,2). We have taken into account 

that basal STAT phosphorylation is negligible in our experimental setup (ybasal,1 = 0). 
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We can solve for pSTAT by plugging in the pSMAD concentration, and obtain (5.4) 
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(Equation 5.4) 

 

 

 

As expected, this expression simplifies to the normal Hill equation  

 

 

                       

 

in the absence of SMAD signalling (i.e., if ybasal,2 = 0 and ymax,2 = 0).  
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This minimal crosstalk model was sufficient to accurately and simultaneously describe the 

phospho-STAT and phospho-SMAD dose-response curves (Figure 14 shows the fit of Eqs. 

5.1 and 5.4 to the Western Blot data). The crosstalk model could extrapolate transcription 

factor phosphorylation for intermediate levels of BMP and IL6 that were not measured 

experimentally. Thus, the signalling crosstalk provided a complete input map for the promoter 

module. The promoter level was thus described using the model topology containing a single 

cooperative interaction between BRE1 and STATBS (variant 4 in Fig. 11). The best fitting 

result model is shown in Fig. 15. The model described the data with accuracy close to 

experimental measurement noise ( = 124, N = 80).  
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Figure 15: Integrative crosstalk model fits promoter data from luciferase assay. The thermodynamic 

promoter model (topology 4 in Fig. 10, Page 89) was coupled to a simple signalling model describing 

inhibitory crosstalk between phospho-SMAD and phospho-STAT transcription factors (Fig. 14). The 

simulated luciferase activities in the heatmaps agree well with the corresponding data in Fig. 6. 
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III.2  Experimental validation of model-predicted mechanisms of   

          hepcidin promoter regulation 

 

 

As a next step, we sought to verify our model by an independent set of experiments not used 

for model calibration. To this end, we first analyzed whether the parameters of our model 

were sufficiently constrained by the experimental data used for model fitting (‘parameter 

identifiability analysis’). In case of insufficiently constrained parameters, the model may not 

be able to generate reliable predictions for previously untested conditions. The analysis 

revealed that most (but not all) predictions could be made with reasonable accuracy. Based on 

our parameter identifiability analysis, we formulated all model predictions to be discussed in 

the following as a range of expected behaviors, not as a single predicted value (Figs. 16 and 

17). The formulation and verification of our model predictions was focused on double mutant 

promoters (Fig. 16), since these are experimentally accessible and allow for confirmation of 

predicted promoter mechanisms. 

 

 

One central promoter mechanism predicted by the model is the cooperative interaction 

between pSMAD and pSTAT transcription factors bound to BRE1 and STATBS, 

respectively. The double mutant promoter lacking functional BRE1 and STAT elements 

(BRE1mSTATdel promoter, Fig. 16) was employed to confirm the cooperativity effect. The 

model predicted that the combined mutation of BRE1 and STATBS should reduce expression 

less than the sum of the individual mutation effects: Each individual mutation can be 

considered to independently eliminate the cooperative enhancement of transcription by the 

two sites, while the combined mutation does so only once.  
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Figure 16: Co-stimulation response of double mutant promoters. Confirms that the isolated BRE1 and 

BRE2 behave similarly. This figure shows heatmaps of luciferase activity under co-stimulation 

conditions along with the range of model predictions from ‘lower’ to ‘upper’. Data points show the 

mean values and the two rows of model predictions indicate the range of variation. 
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Figure 17: Model prediction range. The shaded corridor in the figure represent model predictions and 

show measurement-compliant parameter sets with highest and lowest predicted effects. Data and 

model were normalized to basal luciferase expression in the BRE2mSTATdel construct. 

 

 

 

 

As predicted by the model, we found that the reduction of expression in BRE1mSTATdel 

relative to WT is less than the sum of the individual BRE1 and STATBS mutation effects 

(Fig. 18). This finding supports a cooperative interaction of binding sites. Interestingly, we 

find that the effect of a BRE1 single mutation is similar to the combined BRE1-STATBS 

mutation at low IL6 doses (compare green and red bars, Fig. 18). STATBS thus acts as a 

‘helper site’ that hardly affects expression in a BRE1 mutant, yet it affects expression if the 

cooperating BRE1 site is present (blue bars, Fig. 18). At higher IL6 doses, STATBS tends to 

affect the expression even in the absence of the cooperating site, because the single BRE1 and 

double BRE1-STATBS mutation effects are significantly different. The role of STATBS thus 
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shifts from a pure helper site to an independent site that enhances transcription on its own. 

The model explains this shift by increased STAT3 binding to the STATBS at higher IL6 

doses: low-level STAT3 binding is sufficient to establish the high-affinity cooperation with 

BRE1, while stronger STAT3 binding is required to directly recruit RNAP with low affinity. 

These data explain our previous observation that the BRE1m promoter fails to respond to IL6 

at low but not high doses (Fig. 15,Page 109). BRE1 and BRE2 play different roles in 

hepcidin expression with respect to basal expression, BMP inducibility and co-stimulation 

response. One difference between the two sites is the above-mentioned cooperative 

interaction between BRE1 and STATBS. How do the BMP-responsive elements differ 

beyond this interaction? The model predicted that BRE1 has higher affinity for 

phosphorylated SMAD than BRE2, explaining why BRE1 plays a predominant role under 

basal conditions. Upon sufficiently strong BMP stimulation both sites are predicted to activate 

RNAP with comparable efficiency. In conclusion, the model suggested that BRE1 and BRE2 

should behave similarly in the absence of cooperative promoter interactions. This prediction 

can be tested by co-stimulation of BRE2mSTATdel and BRE1mSTATdel promoters that 

solely contain BRE1 and BRE2, respectively (Fig. 16, Page 111). The experimental data was 

in good qualitative agreement with model predictions: Both mutants showed very similar co-

stimulation heatmaps and primarily responded to BMP stimulation (Fig. 16, bottom row). 

Maximal luciferase activity at high BMP levels was comparable for both constructs, 

indicating that BRE1 and BRE2 indeed drive RNAP activation with similar efficiency (Figs. 

16 and 17). Basal activity was approximately 10-fold higher in the BRE2STATdel promoter, 

suggesting that the isolated BRE1 has indeed a higher pSMAD affinity than BRE2 (Fig. 17).  

 

 

Quantitative model predictions for the BRE2mSTATdel and BRE1mSTATdel heatmaps were 

only possible up to a certain range of absolute luciferase activities owing to non-identifiability 

of model parameters (Fig. 23, Page 123, top and middle row). The experimentally observed 

luciferase activities were within the predicted range, which further supports the validity of our 
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model (Fig. 15,Page 109). In the co-stimulation heatmap of the WT promoter, we observed 

that BMP and IL6 regulate hepcidin expression in a less than multiplicative manner (Fig. 6, 

Page 58; Fig. 7, Page 62). The model suggested that sub-multiplicative regulation arises from 

saturating RNAP binding to the promoter: BMP alone elicits near-complete occupancy of the 

TSS with RNAP, implying that IL6 co-stimulation cannot enhance expression much further. 

Accordingly, the transcription factor binding sites mediating BMP and IL6 responsiveness are 

predicted to recruit RNAP in a highly redundant manner upon co-stimulation. 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: BRE1 and STATBS cooperativity effect. Systematic analysis of transcription factor binding 

site deletion effects confirms cooperativity of BRE1 and STATBS. The impact of binding site 

deletions was calculated by taking the luciferase activity ratios of different promoters (indicated on the 

bottom) and expressed as a log10-fold change (y axis). Data points are mean and standard deviation, 

and model predictions represent the range of measurement-compliant parameter sets.  
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The model further predicted that similar redundancy also occurs between BRE1 and BRE2 

elements, provided that BMP stimulation is sufficiently strong. In the following, we will 

present independent experimental evidence for the functional redundancy of BRE1 and 

BRE2, as the model predicted the strongest effects between these two sites. A similar analysis 

for BRE2 and STATBS can be found in the following figure (Fig. 19) where impact of 

binding site deletions was calculated by taking the expression ratios of different promoter 

constructs (indicated on the bottom) and expressed as a log10-fold change (y axis). The 

analysis was restricted to co-stimulation conditions, where BRE2 and STATBS are both 

occupied. The combined deletion of BRE2 and STATBS (red) has stronger impact than the 

sum of individual deletion effects (green and blue, left). This supports that BRE2 and 

STATBS are functionally redundant and serve as buffers. The buffering effect is, however, 

less pronounced in the data than predicted by the model. The degree of buffering is directly 

visible if one compares the STATBS deletion effect in the WT construct (left blue bars) with 

the STATBS deletion effect in a mutant promoter that lacks the buffering BRE2 site (right 

blue bars). Similarly, the buffering in opposite direction can be assessed by comparing the 

BRE2 deletion effect in the WT construct (left green bars) with the BRE2 deletion effect in a 

mutant promoter that lacks the buffering STATBS (right green bars). 

 

 

Redundancy is expected to reduce the impact of single transcription factor binding site 

deletions owing to buffering effects of backup sites. We used BRE1mBRE2m double mutant 

promoter to confirm redundancy, since buffering effects should no longer compensate for the 

combined deletion of multiple sites. Figure 20 compares the expression of BRE1m, BRE2m 

and BRE1mBRE2m promoters relative to WT (Fig. 20). In line with model predictions, we 

find that the combined deletion of BRE1 and BRE2 affects expression much more than the 

sum of the corresponding single deletions (Fig. 20, red bars). This confirms the functional 

redundancy of the binding sites.  
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Figure 19: Redundancy of BRE2 and STATBS. Systematic analysis of transcription factor binding site 

deletion effects supports promoter saturation and redundancy of BRE2 and STATBS. The impact of 

binding site deletions was calculated by taking the expression ratios of different promoter constructs 

(as indicated along the y-axis) and expressed as log10 fold-change. Data points are mean and standard 

deviation, and model predictions represent the range of measurement-compliant parameter sets. The 

combined deletion of BRE2 and STATBS (red bars) are functionally redundant and act as buffers. 
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Figure 20: Redundancy of BRE1 and BRE2. Systematic analysis of transcription factor binding site 

deletion effects confirms promoter saturation and redundancy of BRE1 and BRE2. Concepts similar to 

Figure 17.A range of BMP stimulation conditions were considered to ensure visible contribution of 

both BRE1 and BRE2. 
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The validity of our model is further supported by the quantitative agreement of the model’s 

predictions with the data: the buffering tends to be more pronounced the stronger the (co-

)stimulation strength (Fig. 20). This is consistent with promoter saturation being an important 

aspect of buffering. Non-specific saturation in RNAP binding to the promoter would also 

suggest that buffering effects occur for binding site combinations other than BRE1 and BRE2. 

Accordingly, we find similar, albeit less pronounced, buffering effects between STATBS and 

BRE2 (Fig. 19). Taken together, the promoter response to binding site deletions is consistent 

with binding site redundancy arising from saturating RNAP binding to the TSS. Promoter 

saturation effects and the differential affinity of BRE1 and BRE2 for phospho-SMAD explain 

why BRE1 mutations affect expression most strongly at intermediate BMP concentrations 

(Fig. 19, blue bars): BRE1 is incompletely occupied by phosphorylated SMAD transcription 

factors under basal conditions. BMP stimulation promotes complete phospho-SMAD binding 

to BRE1, explaining why the impact of BRE1 mutations initially increases for increasing 

BMP doses. Stronger BMP stimulation results in phospho-SMAD binding to the low-affinity 

BRE2 site and promotes redundancy, implying a reduced impact of BRE1 single mutations. 

These data explain why BRE1 primarily affects the promoter inducibility by intermediate 

BMP stimuli, while it is dispensable for the responsiveness to high BMP doses.   

 

We conclude that a superposition of relatively simple crosstalk effects fully explains 

interdependent regulation of hepcidin expression by BMP and IL6. The two BMP-responsive 

elements are functionally redundant and show very similar behavior in isolation, but are 

differentially modulated by a cooperative interaction with the STATBS.  
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Figure 21: Systems properties of hepcidin expression: BMP signalling pathway activity is required for 

optimal IL6 responsiveness of the hepcidin promoter. The IL6 inducibility, defined as the maximal 

fold expression change by IL6 (over basal), is shown as a function of phospho-SMAD levels (best-fit 

WT model). The grey corridor indicates range of phospho- SMAD levels in HuH7 cells. The inset 

shows how the BMP inducibility of WT and BRE2m promoters is in turn affected by the STAT 

signalling pathway activity. 
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III.3 Analysis of signal integration in the promoter model 
 

 

Thermodynamic modelling showed that hepcidin expression could be quantitatively 

understood as a superposition of weakly cooperative transcription factor binding and strong 

promoter saturation with RNA polymerase. The net result of this superposition under our 

experimental conditions is less-than multiplicative regulation of hepcidin expression by BMP 

and IL6 (Fig. 7, Page 62). Interestingly, the best-fit model suggested that the system can also 

attain a regime where SMAD and STAT signalling pathways control hepcidin synergistically 

(i.e., more than multiplicatively): Figure 21 shows that phospho-SMAD signalling may 

enhance the IL6 inducibility of the promoter in the regime of very weak BMP signalling. 

Thus, a synergism between signalling pathways can be observed as long as promoter 

saturation is negligible. Synergism in the model required the phospho-SMAD concentration 

to be below the basal level in HuH7 cells (grey shading in Fig. 21). Our collaborators 

performed siRNA-mediated knockdown of the co-factor SMAD4 to lower the basal activity 

of the BMP pathway. We find that SMAD4 siRNA indeed lowers the IL6 inducibility of the 

WT hepcidin promoter (Mleczko-Sanecka et al., unpublished observation). This qualitatively 

supports the model prediction that low-level BMP signalling enhances the IL6 responsiveness 

of the promoter 

 

 

As a next step, we addressed in silico whether IL6 signalling in turn affects the BMP 

inducibility of the promoter (Fig. 21, inset). We find that the BMP inducibility is never 

enhanced by the IL6 pathway (inset, blue line). Pathway synergy is thus an asymmetric 

phenomenon, and the model explains this observation as follows: BMP stimulation enhances 

the IL6 inducibility of the promoter owing to the cooperative BRE1-STATBS interaction. 

Conversely, the impact of IL6 signalling on the BMP inducibility is less pronounced, since 

the redundant BRE2 functions independently of STATBS. Accordingly, we find in silico that 
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the BMP inducibility of a BRE2-less promoter partially depends on IL6 signalling (Fig. 21, 

inset, green line). Thus, the presence of two BMP-responsive elements and only one STAT-

binding site may establish a stimulus hierarchy, where the iron-sensing BMP pathway 

dominantly regulates expression. However, in the model this hierarchy was not very 

pronounced and could only be observed in a narrow range of phospho-SMAD levels (Fig. 

21). This suggested that the promoter design with two redundant BMP-responsive elements 

might be more relevant for aspects other than the integration of BMP and IL6 signals.  

 

 

We investigated in silico how the presence of two BREs affects the BMP mono-stimulation 

response. To this end, we compared BMP dose-response curves of WT, BRE1m and BRE2m 

promoters in silico (Fig. 22). Given the functional redundancy of BRE1 and BRE2, it was not 

surprising that either site is sufficient to confer (partial) BMP responsiveness to the promoter. 

However, the dose-response curve of the WT promoter was much steeper than that of BRE-

mutated constructs: Given a certain increase in phospho-SMAD levels, the WT promoter 

responds with a larger fold-change in expression when compared to BRE1m and BRE2m 

promoters (Fig. 22). This suggests that the presence of two BMP-responsive elements 

establishes a highly sensitive response towards BMP stimulation (Fig. 21). Such a high BMP 

sensitivity may allow the iron-BMP signalling axis to sense minor changes in iron blood 

levels, and to maintain systemic iron homeostasis.  
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Figure 22: Systems properties of hepcidin expression: Hepcidin expression (fold over basal) is shown 

as a function phospho-SMAD level for the WT, BRE1m, and BRE2m promoter (phospho-STAT was 

assumed zero). The dashed lines indicate the maximal steepness of the WT dose-response. Grey 

corridor same as in Fig. 21. 
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The hepcidin promoter contains a single STAT-binding site as opposed to two BREs. 

Accordingly, the model predicts that the dose-response curve of IL6 is much shallower than 

that of BMP (Fig. 23). We confirmed this model prediction by performing detailed dose-

response measurements with multiple doses of IL6 and BMP, respectively (Fig. 24). These 

analyses qualitatively support that the hepcidin promoter is much more sensitive towards 

BMP stimulation when compared to IL6. In quantitative terms, the steepness of the 

experimentally observed BMP dose-response curve is, however, less pronounced than 

predicted by the model. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 23: Systems properties of hepcidin expression:  The luciferase activity (fold over basal) is 

plotted as function of the IL6 (blue) or BMP (red concentration) concentration. The figure shows 

simulations of the best-fit model (Fig. 14, Page 105) 
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Figure 24: Systems properties of hepcidin expression: The luciferase activity (fold over basal) is 

plotted as function of the IL6 (blue) or BMP (red concentration) concentration. The figure contains 

experimental data (n = 3-6) and fits of the Hill equation (solid lines). Dashed lines indicate the 

maximal steepness of the BMP response. 

 

 

 
 

One possible explanation is that cellular heterogeneity reduces the steepness of the dose-

response curve in population-based reporter gene assays [80]. We conclude that the promoter 

design with two BMP-responsive elements as opposed to one STATBS specifically confers 

high sensitivity towards BMP stimulation. In the next step, hepcidin expression regulation by 

BMP and IL6 in the model described using the best-fit parameters (Fig. 12, Page 95), leads us 

to quantitatively analyze how the hepcidin promoter architecture affects systemic iron 

homeostasis. 
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III.4  Description of detailed homeostasis model 
 

 

Systemic iron homeostasis is maintained by an auto-regulatory negative feedback loop. Iron 

overload triggers hepcidin expression, and hepcidin in turn lowers intestinal iron influx (Fig. 

25). Previous theoretical studies showed that negative feedback is particularly efficient in 

mediating homeostasis if the sensitivity of the feedback is sufficiently high (reviewed in [65] 

). We therefore reasoned that the high BMP sensitivity of the WT promoter might be essential 

for maintaining systemic iron homeostasis. To confirm this hypothesis, iron homeostasis in 

the living animal was simulated using an extended model with feedback (Fig. 25). Iron blood 

levels were described by the species Feb, whose levels are controlled by influx and efflux 

reactions. The iron influx rate is proportional to the intestinal iron concentration (species Fei). 

Iron blood levels control the activity of the BMP signalling pathway, and thus hepcidin 

expression. Negative feedback regulation was considered in the model by assuming that the 

iron influx is negatively influenced by hepcidin. 

 

 

We sought to investigate how the experimentally verified model of signal integration at the 

hepcidin promoter affects systemic iron homeostasis. We therefore extended the homeostasis 

model (Eq. 1.1.1-1.1.2, Page  48)  to (6.1-6.2) 

 

                               
      

  
 

       

                
                                      (Equation 6.1) 

 

 

 

                           
           

  
                                                (Equation 6.2) 
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Here, pbound equals the probability being bound to the transcription start site according to the 

best-fit promoter and signalling crosstalk model (Eqs. 3.1, 3.2(Page 88) and 5.1 (Page 106)).  

 

 

The best-fit promoter and signalling crosstalk model describes pbound as a function of BMP 

and IL6 concentrations. In mammals, the iron blood levels control the activity of the BMP 

signalling pathway. For simplicity, we assumed that the effective BMP concentration in the 

body is proportional to the iron blood level. Thus, the BMP concentration entering pbound was 

replaced by the species [Feb] in the detailed model of systemic iron homeostasis. For the 

simulations in Fig. 26, we chose the following kinetic parameters (kinflux = 1; kFB = 100; kefflux 

= 1; kinduced = 1; kdeg = 1). The IL6 concentration was set to zero in most simulations, and 

assumed to be saturating in the dashed blue line in Fig. 26.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 25: Conceptual model of iron homeostasis: Extended mathematical model describing negative 

feedback regulation of iron blood levels by hepcidin in vivo. Iron blood levels (Feb) are controlled by 

influx and efflux reactions, and the iron influx rate is proportional to the intestinal iron concentration 

(species Fei). 
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Figure 26: Systems properties of hepcidin expression: Iron homeostasis requires two BMP-responsive 

elements and is abolished by inflammatory stimulation. The extended model (Fig. 25) was used to 

simulate how iron blood levels respond to changes in the intestinal iron concentration.  

 
 
 
 

The detailed model of systemic iron homeostasis thhus describes how promoter mutations and 

IL6 co-stimulation affect the performance of the iron homeostasis loop. Fig. 26 shows 

corresponding simulations for one particular set of kinetic parameters. It should be noted that 

similar conclusions concerning the modulation of iron homeostasis continue to hold for other 

parameter values of kinflux, kFB, kefflux, kinduced and kdeg. This is because these parameter values 

affect the absolute iron blood levels in the model, but not the qualitative features of 

homeostasis.  
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Qualitatively, homeostasis was analyzed by assessing how the iron blood levels in the model 

(Feb) respond to changing intestinal iron concentrations (Fei). This scenario mimics a change 

in the diet iron content. The simulations in Fig. 26 show that a model with the WT hepcidin 

promoter efficiently maintains systemic iron homeostasis, as the iron blood levels remain 

essentially constant over a broad range of intestinal iron concentrations. Models with BRE1m 

and BRE2m promoters perform less well, as the perturbation-response curves are steeper and 

homeostasis is restricted to a narrower range of influx rates (Fig. 26, green and red curves). 

This suggests that the simultaneous presence of two BMP-responsive elements in the 

promoter indeed optimizes the performance of the systemic iron homeostasis loop. 

 

 

One important question is why IL6 stimulation reduces iron blood levels and induces anaemia 

of inflammation even though the homeostasis feedback works efficiently. At a first glance, 

one might expect that the auto-regulatory feedback loop effectively buffers IL6-induced 

perturbations in hepcidin expression. Nevertheless, simulations of the extended feedback 

model show strongly diminished iron levels and a loss of homeostasis if high IL6 levels are 

assumed (Fig. 26, blue dashed line). We analyzed the dose-response behavior of the best-fit 

promoter model (Fig. 12, Page 95) to understand this effect. The simulations reveal that 

increasing IL6 levels not only increase hepcidin expression, but also reduce the sensitivity of 

the BMP dose-response (Fig. 27). Moreover, significant changes in hepcidin expression are 

restricted to a narrower range of phospho-SMAD levels. Thus, IL6 stimulation impairs the 

performance of the auto-regulatory homeostasis loop, and thereby efficiently lowers iron 

blood levels. We conclude that the promoter saturation by BMP and IL6 observed in cultured 

cells may help to explain the loss of iron homeostasis in anaemia of inflammation.     
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Figure 27: Systems properties of hepcidin expression: The best-fit model (Fig. 14, Page 105) was 

employed to simulate how increasing IL6 stimulation affects the BMP dose-response curve of the 

promoter. Dashed lines indicate the maximal slope in the absence of IL6. Grey corridor same as in 

Fig. 21. 

 

 
 
 
 
On the other hand, iron blood levels are chronically elevated in hereditary hemochromatosis, 

in most cases due to inactivating mutations in the iron-sensing BMP signalling axis. This 

gives rise to another unexplored question which is why HH is commonly associated with 

inactivating mutations in the SMAD signalling pathway, while mutations in the BRE1 

promoter element are rare and BRE2 mutations are not associated with disease. We analyzed 

how iron blood levels (Feb) change upon mutational inactivation of BREs to understand iron 

overload associated with HH (Fig. 26). Our iron homeostasis model predicts that a deletion of 

BRE1 affects the iron blood levels more strongly than the BRE2 deletion, at least in the range 

where homeostasis occurs in WT (compare green and red lines in Fig. 26, respectively). The 
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model explains the more critical role of BRE1 at low iron levels with its higher affinity for the 

phosphorylated SMAD transcription factors when compared to BRE2. The differential 

phospho-SMAD affinity may thus explain why only BRE1 mutations have been associated 

with HH. The model further predicts strong redundancy of BRE1 and BRE2: Single 

mutations in either site have much weaker effects than a complete feedback ablation by a 

BRE1mBRE2m double mutation (light blue line in Fig. 26). The more-than-additive effect of 

a BRE double deletion in cultured cells (Fig. 20, Page 117) is thus predicted to be preserved 

in vivo. These simulations may explain why BMP signalling pathway mutations that 

simultaneously inactivate expression regulation via BRE1 and BRE2 are by far the most 

common cause of HH.  

 

 

Taken together, it seems that the steepness of the hepcidin promoter response is a key 

parameter controlling how well the systemic iron homeostasis loop compensates for 

fluctuations in iron diet content. Our results indicate that the hepcidin promoter is no longer 

able to efficiently sense changes in iron blood levels in clinically relevant iron disorders. This 

leads to a breakdown of the homeostasis loop, which is accompanied by a strong drop in the 

absolute iron blood levels. 
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IV. Outlook and scope of work done 
 

 

IV.1 Relation and context to previous studies on hepcidin promoter 

regulation 
 
 

Hepcidin, a circulating peptide hormone, is the master regulator of systemic iron homeostasis, 

coordinating the use and storage of iron with iron acquisition [53]. This hormone is primarily 

produced by hepatocytes and is a negative regulator of iron entry into plasma. De Domenico et 

al. have discussed how regulation of hepcidin expression appears to occur at the level of 

transcription [52]. Inflammatory cytokines, predominately IL-6, induce transcription 

of HAMP in hepatocytes. This induction involves the activation of Stat3 and binding of Stat3 

to a regulatory element in the hepcidin promoter [56, 60]. A second mode of hepcidin 

regulation depends upon signalling through the bone morphogenetic protein/SMAD 

(BMP/SMAD) pathway. In particular, BMPs play essential roles in cardiac, neural, and 

cartilaginous differentiation. Wang et al. demonstrated that deletion of SMAD4 results in 

embryonic lethality but that liver-specific inactivation of SMAD4 results in loss of hepcidin 

synthesis and an iron overload phenotype similar to the phenotype seen in hepcidin-knockout 

mice [81]. Babitt et al. also showed that mice with a deletion in the SMAD4 gene were unable 

to synthesize hepcidin in response to inflammatory stimuli or to iron load [82]. This result was 

the first to our knowledge to show that the BMP/SMAD4 pathway is critical to hepcidin 

expression. Babitt and colleagues previously demonstrated that HJV acts as a BMP co-receptor 

in vitro, which facilitates the activation of the BMP–type I/type II receptor complex [43]. 

Mutations in HFE2, the gene that encodes HJV, lead to early-onset iron overload disease [83]. 

This form of juvenile hemochromatosis is typified by the absence of hepcidin and leads to 

heart disease, liver iron overload, and diabetes and is indistinguishable from the effects 

of HAMP mutations in patients. It has also been shown by Wang et al. that neither iron nor IL-

6 can induce hepcidin expression in mice with a liver-specific SMAD4 gene deletion [81].  
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Alongside Babitt et al. and Wang et al. provide compelling data that the BMP signalling 

pathway is critical for IL-6 induction [81, 82]. The architecture of the hepcidin promoter was 

characterized in detail in previous studies, and BRE1, BRE2 as well as STATBS were 

identified as central cis-regulatory elements mediating the responsiveness to BMP and IL6 

[50]. Our results confirm the central role of these elements, as STATBS deleted promoters and 

BRE1mBRE2m double mutants showed strongly reduced IL6 and BMP inducibility, 

respectively. However, we also observed that stimulation with high doses of BMP enhances 

expression from the BRE1mBRE2m promoter three-fold (Fig. 23, Page 123). This suggests 

that weak BMP-responsive elements other than BRE1 and BRE2 exist. We hypothesize that 

BMP receptors phosphorylate SMAD2/3 transcription factors to a minor extent, which in turn 

allows for activation of the previously described TGFβ-responsive elements in the hepcidin 

promoter [43].  
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IV.2 Signal integration and implication of the hepcidin promoter   

        description 
 

 

The hepcidin promoter showed remarkable plasticity in the co-stimulation response, since IL6 

and BMP appeared to control expression more-than multiplicatively at low doses, while sub-

multiplicative behavior was observed at high doses (Fig. 21, Page 119). Synergistic control at 

low doses arises from a cooperative interaction between transcription factors bound to BRE1 

and STATBS. Previous studies reported that BRE1 is required for full IL6 responsiveness of 

the hepcidin promoter [44, 50], and thus already indicated cooperation between pathways. 

However, it remained unclear whether synergistic regulation occurs at the level of signal 

transduction as well. Our co-stimulation data excludes synergistic regulation at the level of 

signalling pathways, and rather suggests moderate pathway cross-inhibition (compare Figs. 

11, Page 90 and 15, Page 109). Our mathematical model could not identify the molecular 

nature of the cooperative interaction between BRE1 and STATBS promoter elements. 

Cooperativity may arise from a protein-protein complex between STAT and SMAD 

transcription factors that stabilizes promoter binding. Alternatively, the two transcription 

factors may establish complementary activating marks on chromatin that would imply an 

epigenetic mechanism of cooperation.   

 

 

High-level stimulation with BMP and IL6 saturates hepcidin expression in HuH7 cells, most 

likely due to saturating binding of RNAP to the TSS. Saturation already starts at much lower 

stimulus doses, explaining why IL6 and BMP generally control expression in a less-than 

multiplicative, antagonistic manner (Fig. 7, Page 62). Similar sub-multiplicative behavior 

was reported in previous studies analyzing a hepcidin reporter construct or the expression of 

hepcidin peptides under co-stimulation conditions [84, 85]. Promoter saturation promotes 

redundancy of BRE1 and BRE2, and may help explaining why single mutations in BRE1 and 
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BRE2 generally have moderate effects on systemic iron homeostasis (Fig. 20, Page 117). 

Moreover, promoter saturation effects explain our experimental observation that BRE1 and 

BRE2 single mutations have particularly strong impact on expression at intermediate BMP 

concentrations, while the effects are less pronounced at lower and higher BMP concentrations 

(Fig. 25, Page 119 ): At low BMP concentrations, the BREs are incompletely occupied by 

phosphorylated SMAD transcription factors. Stronger stimulation promotes phospho-SMAD 

binding, explaining why the impact of binding site mutations initially increases for increasing 

BMP doses. Strong BMP stimulation saturates the hepcidin promoter and promotes 

redundancy, implying that a further increase in the BMP signal reduces the impact of BRE1 

and BRE2 single binding site deletions.    

 

 

The presence of two BMP-responsive elements as opposed to a single STAT binding site on 

the hepcidin promoter raises the question of why such a promoter design may be 

advantageous for the regulation of systemic iron homeostasis. Our results suggest that the 

presence of two BREs has little impact on the qualitative features of IL6 and BMP signal 

integration at the promoter level (Fig. 21, Page 119). Rather we propose that the presence of 

two BREs renders the expression of hepcidin more sensitive towards changes in the iron-

sensing BMP pathway (Fig. 22 - D). This makes the negative auto-regulation loop more 

nonlinear, thereby promoting systemic iron homeostasis (Fig. 26, Page 127).  
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IV.3 Limitations of current modelling approach 

 

 

The fine-tuned expression of hepcidin plays a central role in systemic iron homeostasis, and is 

deregulated in two major clinical settings, hemochromatosis and anaemia of inflammation. In 

this project, we comprehensively and mathematically characterized the gene regulatory 

function of the hepcidin promoter using data from systematic promoter mutagenesis and co-

stimulation experiments with BMP and IL-6. We presented an integrative mathematical 

model simultaneously describing crosstalk events at the signalling and promoter levels. Our 

modelling approach thus captures multiple scales, ranging from fast post-translational 

modifications to slow gene expression responses. We showed that crosstalk mainly arises at 

the level of hepcidin promoter regulation, while crosstalk between IL6 and BMP at the level 

of signalling plays only a minor role. 

 

 

Gene expression may be a gradual or a binary event at the single cell level [86]. The present 

study in this thesis was based on cell population measurements of transcription factor 

phosphorylation and reporter gene expression. The model assumes that population-based 

measurements reflect the behavior at the single-cell level, and thus presumes a gradual mode 

of hepcidin expression. Single-cell measurements indicate that BMP-induced target gene 

expression is indeed a gradual event at the single-cell level [87], thus supporting this basic 

assumption of our model. In any case, our population-based mathematical model reflects 

upon the physiologically relevant aspects of hepcidin expression, since systemic hepcidin 

levels in vivo are governed by expression in an ensemble of hepatocytes.      

 

 

Thermodynamic modelling assumes that transcription factor binding to the promoter has 

reached an equilibrium state. This presumption holds for our experimental setup, since we 
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focused on signalling and gene expression responses at steady state. A plausible promoter 

model could be derived despite uncertainties about cooperativity between transcription factors 

by systematically comparing the ability of different model topologies to fit the experimental 

data (Fig. 11, Page 90). In future studies, model selection approaches may be combined with 

transcription factor binding site information and mRNA half-life data to model genome-wide 

gene expression responses to co-stimulation. Our simple model of negative autoregulation by 

hepcidin (Fig. 25, Page 126) constitutes a first step towards a quantitative description of 

systemic iron homeostasis. Future studies are required to investigate whether this simple 

model can predict the dynamics of iron metabolism in vivo.  
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IV.4 Extension of the proposed modelling approach 
 

 

We employed the framework of thermodynamic modelling to describe the combinatorial 

transcription factor binding to the promoter. Thermodynamic models also are fractional 

occupancy models and are based on formulations originating from statistical physics. In 

modelling transcriptional analysis we see that these models take into consideration all 

possible states of the promoter where each ‘state’ implies a specific configuration of 

regulatory proteins/transcription factors bound to the DNA. As described in the previous 

sections on modelling, each of these states is awarded a weight that depends on properties like 

concentration or binding affinity of the site-specific proteins. The mathematical formulation 

we used for calculating the expression level (Freg) is a rational function in which the estimable 

parameters are present in the numerator as well as the denominator. 

 

 

Thermodynamic modelling was previously applied mainly to bacterial gene regulation [70-

72] or allowed for the coarse-grained analysis of eukaryotic gene expression [25, 88]. The 

present work shows that the method can successfully predict the detailed behavior of a 

complex mammalian promoter as well: calibration of the homeostasis model has been 

observed in mouse data [89]. Time-resolved hepcidin expression data might in future provide 

us with the necessary foundation for developing ODE models for describing the dose-

dependent dynamics for the hepcidin promoter. However such a modelling approach assumes 

that the dynamics at the promoter level are exclusively driven by internal deterministic 

mechanisms. Therefore there is an important scope of our present study that we extend our 

current approach to include more variations in the dynamics. One way of modelling the 

system accounting for more variations would be by using stochastic influences. If data on 

single-observation variability is available then one could extend the existing results to making 

a model based on stochastic differential equations where relevant parameters are modeled as 
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suitable stochastic processes or stochastic processes are added to the set of equations defining 

the system under consideration. Here however, It would be necessary to understand the 

weightage of noise in the dynamics of the hepcidin promoter since all biological dynamical 

systems evolve under stochastic processes where stochasticity maybe defined as the part the 

model cannot predict or is not explicitly included in the modelling. In a way of being 

computationally and experimentally intensive, it is still realistic that to draw a robust 

conclusion from a biological system we ought to take into account the random influences 

since they are an integral part and cannot be entirely isolated from the external and inherent 

effects that the system in consideration is exposed to. 
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IV.5 Implications for disease and therapy 
 

 

Iron is the main stimulus for hepcidin production and needs to be tightly regulated to avoid a 

variety of diseased conditions. Iron is sensed through the hepatocytes’ plasma membrane and 

involves the bone-morphogenic proteins (BMPs) and their receptors along with some 

ancillary proteins as the informers for iron-concentrations in the blood. Low hepcidin levels 

lead to high accumulation if iron in organs whereas consistently high hepcidin level leads to 

anaemia. For the whole range of iron-related disorders, there is now evidence for involvement 

of hepcidin in a number of them, either hereditary (hemochromatosis, ferroportin disease etc.) 

or acquired (anaemia of inflammation, inefficient erythropoiesis in thalassemia intermedia) 

[90]. Experimental evidence suggests that alcohol consumption [91] and chronic viral 

hepatitis [92] effect hepcidin transcription and cause hepatic iron overload. Since 

hemochromatosis is caused by defective synthesis of hormone hepcidin it might benefit from 

hormonal (hepcidin) therapy. However patients with latent anaemia may not be able to 

tolerate this treatment since an excess of hepcidin inflow might induce the anaemia to get 

worse. All genetic or acquired factors that cause increased hepcidin synthesis activity 

necessarily lead to decreased iron transfer into plasma and hypoferremia. If hepcidin 

stimulation persists, iron-restricted erythropoiesis and anaemia might follow as an effect. It is 

our hope that our efforts to mathematically analyse the behaviour of hepcidin promoter and 

interdependence of relevant pathways would spark off a steady lease of further theoretical and 

quantitative studies that, along with relevant experimental validation, would help develop 

well-designed clinical studies leading to long-term efficacy with minimal damaging side-

effects and reduce the risks and improve benefits of hepcidin-targeted treatments. 
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APPENDIX 
 

 

 

 

I. Numbered list of equations for easy reference 
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II. Figures list for easy reference 

 

Figure 1: Analytical modelling approaches used in gene regulation studies. (A) 

Thermodynamic or fractional occupancy model of gene expression. (B) Differential equation 

model of gene expression. (C) Boolean model of gene expression. [18] 

 

 

Figure 2: Hepcidin is expressed by hepatocytes as a response to excess iron levels in blood. 

Human physiology does not allow for excretion of iron. Therefore strict balance is maintained 

by controlling the absorption of iron into blood plasma. Hepcidin is controlled by a negative 

feedback loop. Excess of iron stimulates hepcidin expression that degrades ferroportin thereby 

blocking iron-absorption from the duodenum resulting in prevention of iron overload in the 

liver. 

 

 

Figure 3: Hepcidin promoter with three major responsive sites. The proximal STAT-binding 

site is responsive to phosphorylated-STAT proteins (pSTATs) released on activation of the 

IL6/JAK/STAT pathway. There are two BMP responsive regions, one at the proximal and one 

at the distal end. Simultaneous presence of these two similarly responsive regions increases 

the BMP-responsiveness of the hepcidin promoter. How the binding sites influence each other 

is the question we attempt to answer with the help of modelling.[51]  

 

Figure 4: Signal integration at the hepcidin promoter. Schematic representation of two 

critical signalling pathways controlling hepcidin expression. SMAD and STAT transcription 

factors are phosphorylated upon BMP and IL6 stimulation, and bind BMP-responsive 

elements (BRE) and a STAT-binding site (STATBS) in the hepcidin promoter, respectively. 

The importance of signalling crosstalk is not clear. 

 

 

Figure 5: Plasticity of combinatorial regulation. Transcription may follow logic models such 

that presence, absence or combined effect of binding sites or signalling pathways directly 

influence expression.  

 

 

Figure 6: Analysis of transcription factor crosstalk at the promoter level by reporter gene 

assays. Luciferase expression is driven by the wildtype (WT) hepcidin promoter (3 kb 
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upstream of TSS) or promoter mutants lacking one of the transcription factor binding sites 

(panel B; BRE1m = BRE1 mutated; STATdel = deleted for STATBS). Luciferase activity of 

each reporter construct (shown on a log10-scale) was measured for increasing doses of IL6 

and/or BMP (n = 6). 

 

 

Figure 7: Less than multiplicative co-stimulation response in the WT promoter preserved at 

the level of endogenous hepcidin mRNA expression. The fold-expression-changes over basal 

were compared for qPCR and luciferase assays.. (A) Scatter plots showing correlation 

between Luciferase Assay data (n=3) and qPCR data (green and blue are biological replicates, 

each with technical replicates (n=2)). The axes show log10 of fold-changes over basal 

expression in unstimulated cells. The respective Pearson Correlation Coefficients(R) for 

qPCR1 vs. Luciferase Expression and qPCR2 vs. Luciferase Expression support a strong 

correlation. The blue and green solid lines show linear fits to the data. (B) Co-stimulation 

modestly increases expression when compared to BMP mono-stimulation. Bargraph showing 

log10 of fold changes over basal (y- axis) for Luciferase Expression (Blue), and for the two 

biological replicate qPCR experiments (green and brown; same data as in panel A). 

 

 

Figure 8: Co-stimulation response of luciferase reporters reveals multiplicative/sub- 

multiplicative behavior for multiple stimulus concentrations and promoter mutants. The x 

dimension shows the experimentally observed fold-change in expression upon co-stimulation 

with BMP and IL6. The y dimension shows the product mono-stimulation responses with the 

same doses of BMP and IL6, respectively. Each data point represents one co-stimulation 

condition (different concentrations of BMP and IL6 and/or different promoter constructs). 

The colors of the data points correspond to different promoter constructs (legend). The 

bisectrix (solid line) marks the expectation for a multiplicative system.  

 

 

Figure 9: Modular modelling approach for arriving at gene expression data by integrating 

systemic behaviour at each level. This approach provides quantitative understanding of effects 

involved at the various levels leading to gene expression. 
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Figure 10: Possible promoter states for applying thermodynamic model. Basis of 

mathematical modelling of signalling and promoter crosstalk 

 

 

 

Figure 11: Model selection approach allows for the identification of protein-protein 

interactions on the promoter. Various model variants were tested for their ability to fit the 

data in Fig. 6 (Page 58). The minimal model (model 1) assumes that each transcription factor 

independently activates RNAP (grey arrows), while more complex variants additionally take 

into account cooperativity among transcription factors (red arrows). 

 

 

Figure 12: Best-fit of a hepcidin expression model without crosstalk at the level of BMP and 

IL6 signalling pathways. Luciferase expression was simulated using Eqs. 2.1 and 3.1, and the 

transcription rate in the model (pbound) were fitted to the data in (using a scaling factor). The 

best-fit parameter values of this model are given in Inset 2(Page 98). 

 

 

Figure 13: Moderate inhibitory crosstalk at the signalling level. (A) - (D) Analysis of 

crosstalk at the signalling level by immunoblotting against phosphorylated SMAD and STAT. 

HuH7 cells were stimulated with increasing doses of IL6 in the presence or absence of BMP 

(A, C) or vice versa (B, D). Actin levels serve as loading controls. Two biological replicates 

were performed (Replicate 1: panels A and B; Replicate 2: panels C and D) (E) and (F) 

Quantification of signalling crosstalk. Data points represent mean and standard deviation of 

densitometric analyses of Western Blots (N =2). Lines are fits of the Hill equation to the data.  

 

 

Figure 14: Integrative crosstalk model fits the dose-response curves of transcription factor 

phosphorylation. Solid lines represent model trajectories in comparison to experimentally 

measured data points (shown as mean +/- std).  
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Figure 15: Integrative crosstalk model fits promoter data from luciferase assay. The 

thermodynamic promoter model (topology 4 in Fig. 10) was coupled to a simple signalling 

model describing inhibitory crosstalk between phospho-SMAD and phospho-STAT 

transcription factors (Fig. 14). The simulated luciferase activities in the heatmaps agree well 

with the corresponding data in Fig. 6. 

 

 

Figure 16: Co-stimulation response of double mutant promoters. Confirms that the isolated 

BRE1 and BRE2 behave similarly. This figure shows heatmaps of luciferase activity under 

co-stimulation conditions along with the range of model predictions from ‘lower’ to ‘upper’. 

Data points show the mean values and the two rows of model predictions indicate the range of 

variation. 

 

 

Figure 17: Model prediction range. The shaded corridor in the figure represent model 

predictions and show measurement-compliant parameter sets with highest and lowest 

predicted effects. Data and model were normalized to basal luciferase expression in the 

BRE2mSTATdel construct. 

 

 

Figure 18: BRE1 and STATBS cooperativity effect. Systematic analysis of transcription factor 

binding site deletion effects confirms cooperativity of BRE1 and STATBS. The impact of 

binding site deletions was calculated by taking the luciferase activity ratios of different 

promoters (indicated on the bottom) and expressed as a log10-fold change (y axis). Data 

points are mean and standard deviation, and model predictions represent the range of 

measurement-compliant parameter sets.  

 

 

Figure 19: Redundancy of BRE2 and STATBS. Systematic analysis of transcription factor 

binding site deletion effects supports promoter saturation and redundancy of BRE2 and 

STATBS. The impact of binding site deletions was calculated by taking the expression ratios 

of different promoter constructs (as indicated along the y-axis) and expressed as log10 fold-

change. Data points are mean and standard deviation, and model predictions represent the 

range of measurement-compliant parameter sets. The combined deletion of BRE2 and 

STATBS (red bars) are functionally redundant and act as buffers. 
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Figure 20: Redundancy of BRE1 and BRE2. Systematic analysis of transcription factor 

binding site deletion effects confirms promoter saturation and redundancy of BRE1 and 

BRE2. Concepts similar to Figure 17.A range of BMP stimulation conditions were 

considered to ensure visible contribution of both BRE1 and BRE2. 

  

Figure 21: Systems properties of hepcidin expression: BMP signalling pathway activity is 

required for optimal IL6 responsiveness of the hepcidin promoter. The IL6 inducibility, 

defined as the maximal fold expression change by IL6 (over basal), is shown as a function of 

phospho-SMAD levels (best-fit WT model). The grey corridor indicates range of phospho- 

SMAD levels in HuH7 cells. The inset shows how the BMP inducibility of WT and BRE2m 

promoters is in turn affected by the STAT signalling pathway activity. 

 

Figure 22: Systems properties of hepcidin expression: Hepcidin expression (fold over basal) 

is shown as a function phospho-SMAD level for the WT, BRE1m, and BRE2m promoter 

(phospho-STAT was assumed zero). The dashed lines indicate the maximal steepness of the 

WT dose-response. Grey corridor same as in Fig. 21. 

 

 

Figure 23: Systems properties of hepcidin expression:  The luciferase activity (fold over 

basal) is plotted as function of the IL6 (blue) or BMP (red concentration) concentration. The 

figure shows simulations of the best-fit model (Fig. 14, Page 105) 

 

 

Figure 24: Systems properties of hepcidin expression: The luciferase activity (fold over 

basal) is plotted as function of the IL6 (blue) or BMP (red concentration) concentration. The 

figure contains experimental data (n = 3-6) and fits of the Hill equation (solid lines). Dashed 

lines indicate the maximal steepness of the BMP response. 

 

 

Figure 25: Conceptual model of iron homeostasis: Extended mathematical model describing 

negative feedback regulation of iron blood levels by hepcidin in vivo. Iron blood levels (Feb) 

are controlled by influx and efflux reactions, and the iron influx rate is proportional to the 

intestinal iron concentration (species Fei). 
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Figure 26: Systems properties of hepcidin expression: Iron homeostasis requires two BMP-

responsive elements and is abolished by inflammatory stimulation. The extended model (Fig. 

25) was used to simulate how iron blood levels respond to changes in the intestinal iron 

concentration.  

 

 

Figure 27: Systems properties of hepcidin expression: The best-fit model (Fig. 14, Page 105) 

was employed to simulate how increasing IL6 stimulation affects the BMP dose-response 

curve of the promoter. Dashed lines indicate the maximal slope in the absence of IL6. Grey 

corridor same as in Fig. 21. 
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