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Summary 
 
The large processing capacity of our brain is the result of properly formed synaptic 

contacts and their maintenance and plasticity. Synaptic cell adhesion molecules and 

neuronal activity are critically involved in these processes. While synaptic cell adhesion 

molecules govern molecular target recognition, structural integrity and plasticity of a 

synaptic contact, neuronal activity is one major factor underlying dynamic and adaptive 

responses of neurons and neuronal networks. Neuronal activity and synaptic cell adhesion 

molecules jointly contribute to the establishment of normal brain function. However, little 

is known about their interaction and mutual dependence. Here I show that Lrrtm1 and 

Lrrtm2, two recently identified synaptic cell adhesion molecules, are regulated by neuronal 

activity in cultured hippocampal neurons of the mouse. I found that their responsiveness to 

neuronal activity crucially depends on nuclear calcium signalling. In addition Lrrtm2 is 

bound and controlled by CREB, an important factor in activity-mediated gene 

transcription. Using inhibitors of several calcium-dependent pathways, I demonstrate that 

the expression of Lrrtm1 and Lrrtm2 is mediated by calcium/calmodulin-dependent 

kinases. Further I show that Lrrtm1 and Lrrtm2 mRNA levels increase during 

development, which correlates with the maturation of the neuronal network. I can further 

show that knock-down of Lrrtm2 does not influence spine density, contrary to what has 

been reported in the literature. It does, however, influence neuronal network activity, as I 

demonstrate in collaboration with H.E. Freitag using microelectrode array recordings. 

Similar changes appear under Lrrtm1 knock-down conditions. The network behavior in 

these cultures reverts to nearly normal by overexpression of Lrrtm1 protein. Similar to the 

changes observed in Lrrtm1 and Lrrtm2 knock-down cultures, overexpression of MeCP2 

causes a desynchronization of the neuronal bursting activity. MeCP2 is a transcriptional 

regulator which is found mutated in Rett syndrome, a rare but severe neurodevelopmental 

disorder in humans. I could show that the expression of endogenous Lrrtm2 is deregulated 

in cultures overexpressing MeCP2. This suggests that the network changes observed in 

MeCP2 overexpressing cultures are caused by deregulation of Lrrtm2 by MeCP2. 

However, overexpression of Lrrtm2 protein failed to rescue the MeCP2-phenotype. A 

further aim of my studies was to analyze the function of the activity-responsiveness of 
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Lrrtm1 and Lrrtm2. Using different methods I attempted to visualize AMPA receptor 

trafficking to the neuronal surface and the impact of Lrrtm knock-down thereon. However, 

the applied methods were too insensitive to detect changes in synaptic AMPA receptor 

surface expression.  

Together, these findings connect Lrrtm1 and Lrrtm2, respectively, two members of the 

group of synaptic cell adhesion molecules, to synaptic activity, nuclear calcium signalling 

and CBP/CREB, all of which are important mediators of sustained adaptive changes in the 

central nervous system. The findings also give the impetus to further explore the role of the 

Lrrtm1 and Lrrtm2 activity-responsiveness in neurons in vitro and in vivo.  
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Zusammenfassung 
 
Die Fähigkeit unseres Gehirns, Signale aufzunehmen und zu verarbeiten basiert auf der 

korrekten Bildung synaptischer Kontakte sowie deren Aufrechterhaltung und Plastizität. 

An diesen Prozessen maßgeblich beteiligt sind synaptische Zelladhäsionsmoleküle und 

neuronale Aktivität. Während synaptische Zelladhäsionsmoleküle die Erkennung, Struktur 

und Plastizität synaptischer Kontakte steuern, ist die neuronale Aktivität eine der 

Hauptkomponenten dynamischer und adaptiver Prozesse in Neuronen und neuronalen 

Netzwerken. Beide tragen gemeinsam dazu bei, eine einwandfreie Hirnfunktion 

sicherzustellen. Es ist jedoch wenig darüber bekannt, wie sie sich gegenseitig beeinflussen 

und miteinander interagieren. In diesem Projekt zeige ich, dass die vor kurzem entdeckten 

synaptischen Adhäsionsmoleküle Lrrtm1 und Lrrtm2 durch neuronale Aktivität reguliert 

werden. Diese aktivitätsabhängige Steuerung wird von im Zellkern lokalisierten 

Calciumsignalen vermittelt. Lrrtm2 wird zusätzlich durch CREB, einen wichtigen Faktor 

der aktivitätsabhängigen Gentranskription, gebunden und kontrolliert. Durch die Inhibition 

verschiedener Calcium-vermittelter Signalwege demonstriere ich, dass die Expression von 

Lrrtm1 und Lrrtm2 von Calcium-/Calmodulin-abhängigen Kinasen gesteuert wird. Weiter 

kann ich zeigen, dass die mRNA Level von Lrrtm1 und Lrrtm2 während der Entwicklung 

ansteigen und damit in Korrelation mit der Ausbildung des neuronalen Netzwerkes stehen. 

Ferner konnte ich zeigen, dass der Knock-down von Lrrtm2, anders als in der Literatur 

beschrieben, keinen Einfluss auf die Dichte dendritischer Spines hat. Er beeinflusst jedoch 

die anhand von Mikroelektroden-Arrays gemessene neuronale Netzwerkaktivität, was ich 

in Kollaboration mit H.E. Freitag nachgewiesen habe. Ähnliche Veränderungen  kann man 

bei einem Lrrtm1 Knock-down beobachten. In diesen Kulturen normalisiert sich die 

Netzwerkaktiviät nahezu komplett, wenn Lrrtm1 Protein überexprimiert wird. Zu den 

Knock-downs von Lrrtm1 bzw. Lrrtm2 vergleichbare Veränderungen finden sich auch, 

wenn MeCP2 überexprimiert wird; es verursacht eine Desynchronisation der 

Netzwerkaktivität. MeCP2 ist ein Transkriptionsregulator, welcher beim Rett Syndrom 

mutiert ist, einer seltenen aber schweren neurologischen Entwicklungsstörung des 

Menschen. Ich konnte außerdem zeigen, dass die Expression von endogenem Lrrtm2 durch 

Überexpression von MeCP2 erniedrigt wird. Dies legt nahe, dass die 
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Netzwerkveränderungen, die unter MeCP2 Überexpression zu beobachten sind,  durch die 

Abnahme der endogenen Lrrtm2 Level hervorgerufen werden. Die Überexpression von 

Lrrtm2 Protein ist jedoch nicht ausreichend, um den ursprünglichen Phänotyp 

wiederherzustellen. Ein weiteres Ziel meiner Doktorarbeit war es, die physiologische 

Funktion der aktivitätsabhängigen Lrrtm1 und Lrrtm2 Induktion zu erforschen.  Mit Hilfe 

verschiedener Methoden habe ich versucht, den AMPA-Rezeptortransport zur 

Synapsenoberfläche und die Wirkung eines Lrrtm Knock-downs hierauf zu detektieren. 

Zusammengenommen zeigen die Ergebnisse dieses Projektes eine Verbindung zwischen 

den Genen der synaptischen Adhäsionsmoleküle Lrrtm1 und Lrrtm2 und neuronaler 

Aktivität, nukleären Calciumsignalen sowie CBP bzw. CREB. All diese Faktoren gelten 

als wichtige Mediatoren von langfristigen adaptiven Veränderungen im zentralen 

Nervensystem. Die Ergebnisse legen außerdem den Grundstein zur weiteren Erforschung 

der Bedeutung der aktivitätsabhängigen Regulation von Lrrtm1 und Lrrtm2 in Neuronen in 

vitro und in vivo. 

 



 

5 

Introduction 

 
I. Activity-Regulated Gene Expression 

 

Neuronal activity plays a crucial role in initiating a multitude of events that, in their 

entirety, lead to normal brain function. In order for a neuron to exert its proper role in this 

process, it is required to dynamically respond to external stimuli. One of the essential parts 

of this adaptive responsiveness is gene expression regulated by neuronal activity. 

 

Neuronal activity, calcium signalling, and gene expression 

 

The basic function of a synapse is to connect neurons and propagate electric signals – this 

is achieved by presynaptic neurotransmitter release and subsequent receptor activation and 

influx of ions into the postsynaptic neuron, leading to depolarisation of the neuronal 

membrane (Bishop and McLeod, 1954; Curtis and Eccles, 1958; Burton, 1966). In parallel 

to this global function, a number of processes are initiated that cause internal changes in 

the postsynaptic neuron. These include regulation of AMPA (α-amino-3-hydroxy-5-

methyl-4-isoxazole propionic acid) receptors (Malinow and Malenka, 2002), control of 

actin cytoskeleton dynamics (Fischer et al., 1998; Matus, 2000), initiation of local protein 

synthesis (Steward and Levy, 1982; Steward and Schuman, 2001) and activation of gene 

transcription (Greenberg et al., 1985; Greenberg et al., 1986). The latter, gene transcription 

due to synaptic activity, critically depends on the mechanism of calcium-mediated 

signalling. 

Neuronal sources of calcium are manifold; it can enter the cytosol from the outside of the 

cell through voltage-dependent calcium channels, NMDA (N-methyl-D-aspartate) 

receptors, and AMPA receptors, and from intracellular release stores such as IP3- and 

ryanodine receptor-dependent calcium stores (Bito, 1998). The most studied source of 

cytosolic calcium in the context of gene transcription are NMDA receptors (Cole et al., 

1989; Szekely et al., 1990; Bading et al., 1995; Xia et al., 1996). These receptors are cation 
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channels gated by glutamate, one of the main excitatory neurotransmitters in the central 

nervous system, and are activated in a magnesium/voltage-dependent manner (Nowak et 

al., 1984). The channels are permeable to sodium, which contributes to postsynaptic 

depolarization, and calcium, which generates intracellular calcium transients (MacDermott 

et al., 1986). The heterogeneity of calcium signalling-dependent effects is accomplished by 

the creation of calcium micro-domains (Hardingham et al., 2001a, b) and by the activation 

of various calcium-binding proteins (Kasai, 1993). These proteins have different calcium 

binding capacities and vary in their cellular localization, suggesting that each calcium 

binding protein possesses specific functions (Kasai, 1993; Bito, 1998). One prominent 

calcium-binding protein is calmodulin: it is abundant in neurons, both in the cytoplasm and 

the nucleus and upon binding of calcium it activates a large variety of calcium/calmodulin 

(CaM)-dependent effector molecules (Klee, 1991; Means et al., 1991; Bito, 1998). Calcium 

transients, especially those propagating to the nucleus (nuclear calcium signalling 

(Hardingham et al., 1997; Hardingham et al., 2001b)), and CaM trigger a range of 

intracellular signalling pathways that ultimately lead to the activation of gene transcription 

(Bito, 1998; Greer and Greenberg, 2008). They include the Ras/MAPK/ERK pathway, 

CaM-dependent kinase signalling (e.g. CaMKII and CaMKIV), calcineurin and p38 MAP 

kinases (Westphal et al., 1998; Kasahara et al., 1999; Dolmetsch et al., 2001; Wheeler et 

al., 2008). 

All these pathways result in the activation of transcription factors and transcription-

modulating proteins, and thus, in altered gene expression. The nature of the modified 

genetic programme defines the functional outcome of neuronal activity and leads to long-

term adaptive changes like memory formation and cell survival. 

 

Synaptic activity in learning and memory, and neuronal survival 

 

Learning and memory require neuronal activity, and the long-term storage of information 

depends on activity-mediated gene transcription. In a similar way, neuronal activity 

renders neurons more resistant to toxic conditions by activating distinct genes. Thus, 

memory formation and neuronal survival find their common denominator in synaptic 

activity, and activity-mediated gene transcription. 
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LTP (long-term potentiation) is a neuronal mechanism thought to be a prerequisite of 

learning and memory (Teyler and Discenna, 1984). It describes the increase in synaptic 

strength as a result of a specific electric stimulus (Bliss and Lomo, 1973). The late phase of 

LTP requires gene transcription (Nguyen et al., 1994) and one of the pathways that has 

been shown to be involved in conveying the signal from the synapse to the nucleus in LTP 

and memory consolidation is the MAPK pathway. It has been demonstrated that theta burst 

stimulation induces the production of cAMP, which activates MAPK and leads to the 

release of BDNF. BDNF in turn activates the TrkB receptor on the cell surface, which 

leads to the translocation of MAPK to the nucleus, where it gains access to transcription 

factors (Patterson et al., 2001; Kelly et al., 2003). 

A prominent example of a transcription factor shown to be involved in LTP and memory 

formation is CREB (cAMP/calcium response element-binding protein) (Bourtchuladze et 

al., 1994; Yin et al., 1994; Ahn et al., 1999; Barth et al., 2000; Josselyn et al., 2001; 

Josselyn et al., 2004; Pham et al., 2004). CREB phosphorylation and the initiation of CRE 

(cAMP/calcium response element)-controlled gene expression are triggered during training 

in hippocampus-dependent tasks (Impey et al., 1998; Taubenfeld et al., 1999). 

Additionally, mutant mice expressing a dominant negative form of CREB, KCREB, 

demonstrate deficiencies in different forms of LTP and learning (Pittenger et al., 2002; 

Barco et al., 2006). In addition to CREB, other transcription factors have been found 

implicated in transcription-dependent LTP and learning and memory, for example, serum 

response factor, c-fos, and NFĸB (Tischmeyer and Grimm, 1999; Albensi and Mattson, 

2000; Ramanan et al., 2005). 

A large number of genes shows altered expression in the brain after learning (Cavallaro et 

al., 2001; Luo et al., 2001; Cavallaro et al., 2002; Leil et al., 2003) pointing to the 

possibility that global chromatin alteration is involved in memory formation. This includes 

epigenetic modifications of DNA and DNA-organising proteins, like DNA methylation 

and histone acetylation, respectively (Levenson and Sweatt, 2005). Acetylation of 

histone H3, for example, is increased by long-term memory formation (Levenson et al., 

2004). In addition, mice expressing an inducible dominant-negative form of CBP (CREB-

binding protein), a transcriptional co-activator and histone acetyltransferase (Kalkhoven, 

2004), show impaired learning in the spatial water maze task and novel object recognition 
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(Korzus et al., 2004). Exposure of these CBP-deficient animals to a histone deacetylase 

inhibitor restores normal long-term memory formation (Alarcon et al., 2004; Korzus et al., 

2004). Similarly, DNA methyltransferase 3A and 3B gene expression is upregulated in the 

hippocampus of rats following contextual fear conditioning, and inhibition of the 

methyltransferase abolishes long-term memory formation (Miller and Sweatt, 2007). 

In addition to being the trigger for memory formation and learning, neuronal activity 

supports the initiation of a pro-survival gene expression programme. Synaptically evoked 

bursts of action potentials lead to an influx of calcium through NMDA receptors. These 

calcium transients trigger two signalling pathways, both resulting in the phosphorylation of 

the transcription factor CREB: the MAPK pathway and the CaM kinase pathway (Bading 

and Greenberg, 1991; Chawla et al., 1998). While MAPK is activated in the vicinity of the 

NMDA receptor by cytosolic calcium and is responsible for a prolongation of CREB 

phosphorylation beyond synaptic activity (Hardingham et al., 2001a; Impey and Goodman, 

2001; Wu et al., 2001), the CaM kinase pathway requires the calcium signal to propagate 

to the nucleus, resulting in phosphorylation and activation of CREB and its transcriptional 

co-activator CBP within seconds of calcium influx (Chrivia et al., 1993; Hardingham and 

Bading, 2003). This nuclear calcium signal turned out to be the key mediator of CREB-

induced neuroprotective gene transcription (Lee et al., 2005; Papadia et al., 2005; Zhang et 

al., 2009; Zhang et al., 2011; Tan et al., 2012). Nine genes were identified as strong 

promoters of neuronal survival; they include Atf3, Btg2, GADD45β, GADD45γ, Inhibin β-

A, Ifi202b, Npas4, Nr4a1, and Serpinb2 (Zhang et al., 2009; Zhang et al., 2011; Tan et al., 

2012). Several of the genes provide neuroprotection by rendering mitochondria more 

resistant to cellular stress (Inhibin β-A, Ifi202b, Npas4, Nr4a1), while others confer 

neuroprotection by regulating a subset of genes through yet unknown means (Zhang et al., 

2009; Zhang et al., 2011). The activity-induced transcriptional repressor Atf3, for example, 

controls a genetic module that protects against ischemic brain damage (Zhang et al., 2011). 

Hence, starting from a single stimulus –synaptic activity– our brain cells exploit their 

versatile options by subdividing this stimulus into several pathways and finally the 

expression of distinct genes.  
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Activity-dependent transcription and human cognition 

 

Neurodevelopmental disorders in humans are characterised by symptom-onset in early 

postnatal life. In this period, activity-dependent gene transcription is highly induced, which 

raises the possibility that defects in activity-dependent gene expression play a role in the 

aetiology of human cognitive disorders (Greer and Greenberg, 2008). This is supported by 

the finding that mutations in the components that convey the activity-induced signal from 

the synapse to the nucleus cause cognitive disorders (Greer and Greenberg, 2008). These 

disorders comprise Timothy syndrome, Coffin-Lowry syndrome, Rubinstein-Taybi 

syndrome, Rett syndrome and autism (Petrij et al., 1995; Amir et al., 1999; Hanauer and 

Young, 2002; Splawski et al., 2004; Greer and Greenberg, 2008; Morrow et al., 2008). 

Two of these syndromes are of particular interest in the context of this project: Rubinstein-

Taybi syndrome and Rett syndrome.  

Rubinstein-Taybi syndrome is a condition characterized by moderate to severe learning 

deficits and mental disability, as well as typical physical features including facial 

abnormalities, broad thumbs, big toes and a short statue (Rubinstein and Taybi, 1963; 

Petrij et al., 1995). Many patients with Rubinstein-Taybi syndrome have breakpoints and 

microdeletions in the region of chromosome 16pl3.3 (Imaizumi and Kuroki, 1991; 

Breuning et al., 1993; Masuno et al., 1994); in 1995, Petrij et al. identified in this region 

the CBP gene as the critical factor causing the syndrome (Petrij et al., 1995). CBP is a co-

activator of many transcription factors (Shiama, 1997), including CREB, which is an 

important regulatory element for activity-dependent adaptive changes in neurons (Impey et 

al., 1998; Barth et al., 2000; Zhang et al., 2011). In addition, CBP has histone 

acetyltransferase activity (Kalkhoven, 2004) and is implicated in posttranslational 

modification of histones during learning (Korzus et al., 2004). Therefore it is 

comprehensible that patients lacking functional CBP suffer from cognitive disabilities. 

Patients with Rett syndrome present a different spectrum of symptoms: children develop 

normally until the age of one to two years, after which their development halts and 

eventually regresses, with the evolvement of repetitive hand movements, gait problems, 

autistic features, and severe mental disabilities (Rett, 1966; Samaco and Neul, 2011). A 

gene found to be mutated in individuals with Rett syndrome is MECP2 (Amir et al., 1999). 
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It encodes a protein that is abundantly expressed in the nucleus of neurons and is 

implicated in methylation-dependent transcriptional regulation, although its exact function 

remains elusive (Chahrour et al., 2008; Skene et al., 2010; Mellen et al., 2012). It has been 

shown, however, that MeCP2 is phosphorylated upon neuronal activity, suggesting that it 

exerts its function, at least partly, in an activity-dependent manner (Zhou et al., 2006; 

Cohen et al., 2011). 

 

The above described mechanisms underlying memory formation and neuronal survival are 

only two examples of activity-induced and transcription-dependent adaptive changes in 

neurons. In order to fully understand the role of activity-regulated gene expression under 

physiological and pathophysiological conditions it is necessary to identify the genes that 

change their expression upon synaptic activity. In a second, much more laborious step, the 

function of these genes has to be studied. In my PhD project, I analysed the activity-

dependent transcription of two genes, Lrrtm1 and Lrrtm2, thereby identifying them as part 

of the activity-regulated genetic programme in neurons. The second step however, 

elucidating their function, remains to be uncovered. Yet, since Lrrtm1 and Lrrtm2 belong 

to the family of synaptic cell adhesion molecules, knowing the functions of these 

molecules might help to understand those of Lrrtm1 and Lrrtm2. 
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II. Synaptic Cell Adhesion Molecules 

 

Brain function arises from the appropriate connectivity of neurons, with the synaptic 

contact as the essential part of this connectivity. Synapses are asymmetric neuronal 

connections with distinct molecules found on the pre- and postsynaptic side, separated by 

the synaptic cleft. The formation of a functional synaptic contact requires the precise 

alignment of the presynaptic neurotransmitter release machinery and the postsynaptic 

receptor apparatus. This initial formation of a synaptic junction is followed by maturation 

and plasticity of the established synapse. In all of these processes one class of proteins 

plays a major role: synaptic cell adhesion molecules. 

 

Functions of synaptic cell adhesion molecules 

 

Synaptic cell adhesion molecules are transmembrane proteins anchored in the synaptic 

membrane of neurons. They engage in hetero- or homophilic interactions across the 

synaptic cleft and organize synaptic components on both sides of the membrane. Based on 

their nature, four functions can be established for these proteins (Yamagata et al., 2003). 

The first is target recognition: after axons have been guided to their target region, they 

need to choose the correct binding partner. The recognition of the correct partner in the 

enormous network of neuronal processes, and the precise location of the connection on a 

certain part of the dendrite, can be achieved by specific protein-protein interaction of pre- 

and postsynaptic adhesion molecules (Dalva et al., 2000; Yamagata and Sanes, 2008; 

Pecho-Vrieseling et al., 2009). 

Following the initial contact of two neurons, a stable synaptic junction is formed; this is the 

second and presumably most apparent function of synaptic cell adhesion molecules. They 

maintain the integrity of the synaptic contact and guarantee its stability by attaching the 

pre- and postsynaptic membranes (Gray and Whittaker, 1962; Yamagata et al., 2003). 

As a third function, synaptic cell adhesion molecules influence synapse maturation and 

differentiation. The adhesion proteins allow a bidirectional signalling between neurons that 

form a synapse. Expression of presynaptic proteins induces postsynaptic differentiation in 



 Introduction 

12 
 

contacting neurons and vice versa, leading to the recruitment of the appropriate signalling 

machinery on either side (Scheiffele et al., 2000; Graf et al., 2004). In addition, the nature 

of the adhesion molecule dictates the type of synapse formed: e.g. distinct forms of 

adhesion molecules specifically bind to partners exclusively found at inhibitory or 

excitatory synapses (Graf et al., 2004; Chih et al., 2006). 

Finally, synaptic cell adhesion molecules are able to affect synaptic function. Synaptic 

plasticity, i.e. the dynamic modulation of the strength of the synaptic signal, is thought to 

be the cellular correlate of learning and memory. One form of synaptic plasticity is long-

term potentiation (LTP), where a certain stimulus leads to a sustained increase in synaptic 

strength (Bliss and Lomo, 1973). This plasticity was found to be influenced by synaptic 

cell adhesion molecules (Luthl et al., 1994; Muller et al., 1996; Yamagata et al., 1999; 

Bozdagi et al., 2000). Thus, in addition to their contribution to synapse function by mere 

provision of scaffolding structures for synaptic vesicles and corresponding 

neurotransmitter receptors, synaptic cell adhesion molecules also directly influence 

physiological processes at the synapse. 

 

Synaptic cell adhesion molecules and their role in synapse formation, 
maturation and function 
 

The great diversity of synaptic cell adhesion molecules includes integrins, cadherins, 

neuroligins, neurexins, nectin-like synaptic cell adhesion molecules (SynCAMs), synaptic 

adhesion-like molecules (SALMs), netrin-G-ligands (NGLs), leucine-rich repeat 

transmembrane proteins (Lrrtms), ephrin receptors (Eph) and Sidekicks (Tallafuss et al., 

2010). Up to now, no single pair of synaptic cell adhesion molecules was found to be 

sufficient to organize all aspects of synapse formation and function, indicating that 

synaptic cell adhesion molecules most likely have overlapping functions and co-operate at 

synapses (Dalva et al., 2007). 

The prototypic synaptic cell adhesion complex and classic example of bidirectional 

synaptic signalling is the interaction between presynaptic neurexins and postsynaptic 

neuroligins (Ushkaryov et al., 1992; Ichtchenko et al., 1995; Ichtchenko et al., 1996; 

Nguyen and Sudhof, 1997; Song et al., 1999). In rodents, four neuroligins exist 
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(neuroligin1-4) (Ichtchenko et al., 1995; Ichtchenko et al., 1996; Hoon et al., 2011); they 

all terminate in a PDZ domain binding site and can bind to the post-synaptic density 

protein 95 (PSD95) (Irie et al., 1997). Following recruitment of PSD95, functional AMPA 

receptors accumulate by trapping membrane-diffusible AMPARs, presumably through 

interaction of the neuroligin-PSD95 complex with the protein stargazin (Bats et al., 2007; 

Heine et al., 2008; Mondin et al., 2011). Whether this recruitment of AMPA receptors 

requires neuronal activity is not entirely resolved (Nam and Chen, 2005; Chubykin et al., 

2007; Heine et al., 2008). NMDA receptors are also recruited to clusters of neuroligins at 

the postsynaptic site, most likely through extracellular interactions (Graf et al., 2004; Chih 

et al., 2005; Budreck et al., 2013). The synaptogenic capacity of neuroligins was first 

discovered in a co-culture assay, where expression of neuroligin in non-neuronal cells 

induced presynaptic differentiation in contacting neurons (Scheiffele et al., 2000). This 

accumulation of presynaptic components is mediated by the interaction of neuroligin with 

neurexins (Scheiffele et al., 2000; Dean et al., 2003), whereas binding of the two partners 

occurs in an iso- and spliceform specific manner and defines the nature of the synapse: 

while neuroligin1 primarily binds to neurexin1β and localizes to excitatory synapses, 

neuroligin2 interacts with neurexin1α and is found at inhibitory synapses (Ichtchenko et 

al., 1995; Ichtchenko et al., 1996; Chih et al., 2005; Chih et al., 2006; Chubykin et al., 

2007). On the presynaptic side, neurexins recruit synaptic vesicles via CASK (calmodulin-

dependent serine protein kinase) and MINT (Munc 18 interacting protein) (Hata et al., 

1996; Butz et al., 1998; Biederer and Sudhof, 2000) and couple calcium channels to 

synaptic vesicle exocytosis (Missler et al., 2003). Taken together, the neuroligin-neurexin 

interaction accounts for important parts of pre- and postsynaptic differentiation; 

nevertheless, many more functions can be attributed to synaptic cell adhesion molecules in 

synaptogenesis and synapse function. 

Another important bidirectional signalling complex at the synapse is the contact between 

the receptor tyrosine kinase EphB and its ligand, ephrin-B. Primarily known as axon 

guidance molecules (Huot, 2004), EphB receptors and their ligands, ephrin-Bs, have in the 

past decade received much attention for their role in synaptogenesis and mature synapse 

function (Torres et al., 1998; Dalva et al., 2007; Sloniowski and Ethell, 2012). It has been 

shown that clustering and activation of EphB at the postsynaptic side with a soluble ephrin-



 Introduction 

14 
 

B-Fc fusion protein induces the formation of dendritic spines, recruitment of NMDA and 

AMPA receptors, and triggers differentiation of presynaptic terminals (Dalva et al., 2000; 

Henkemeyer et al., 2003; Kayser et al., 2006; Dalva et al., 2007). Upon activation by 

ephrin-B, EphBs are able to induce downstream signalling pathways through the GEFs 

(guanine nucleotide exchange factors) Tiam1 and kalirin, resulting in spine formation and 

morphogenesis (Penzes et al., 2003; Tolias et al., 2007) as well as the transition of 

dendritic filopodia to stable spine structures via kalirin–PAK (p21 activated kinase) 

signalling (Kayser et al., 2008; Tallafuss et al., 2010). 

Most intriguing, however, are the findings about the role of EphBs and ephrin-B in mature 

synapse function and in synaptic plasticity. LTP at hippocampal mossy fibre-CA3 synapses 

was shown to implicate transsynaptic signalling between postsynaptic EphBs and 

presynaptic ephrinBs (Contractor et al., 2002; Armstrong et al., 2006). Three components 

of this interaction were essential for the induction of LTP; on the postsynaptic side, 

disruption of the interaction between EphB and PDZ binding domains inhibited LTP 

(Contractor et al., 2002). On the presynaptic side, abrogation of ephrin-B intracellular 

signalling by replacing its cytoplasmic terminal with a nonfunctional domain also resulted 

in reduced LTP (Armstrong et al., 2006). Finally, blocking extracellular EphB–ephrin-B 

interaction by application of a soluble ephrin-B-Fc fusion protein decreased LTP as well 

(Contractor et al., 2002). 

Many other synaptic cell adhesion molecules have been found implicated in synaptic 

plasticity by striking and very different mechanisms (Finne et al., 1983; Becker et al., 

1996). However, a detailed description would be beyond the scope of this introduction. 

In summary, there are several lines of evidence suggesting that synaptic cell adhesion 

molecules influence and regulate synaptic plasticity and thus influence brain function. The 

existing multitude of adhesion proteins and mechanisms fuels the notion that many 

functions of these molecules are still to be uncovered. This notion is underlined by the 

recent discovery of a new member of the synaptic cell adhesion protein family, Lrrtms 

(leucine-rich repeat transmembrane proteins). 
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Lrrtm proteins in synaptogenesis and mature synapse function 

 

In 2009, Linhoff et al. identified a new group of synaptogenic proteins, the Lrrtm protein 

family. The family consists of four members (Lrrtm1-4), all of which are able to induce 

presynaptic differentiation by trans-cellular signalling in co-culture assays with non-

neuronal cells (Linhoff et al., 2009). Lrrtm1 and Lrrtm2 demonstrate the most potent 

synaptogenic activity (Linhoff et al., 2009). Localized at the postsynaptic side, they induce 

presynaptic clustering of synapsin and VGLUT1 (vesicular glutamate transporter 1); 

accordingly, they are found at excitatory synapses (de Wit et al., 2009; Ko et al., 2009; 

Linhoff et al., 2009). Further, they were found to bind the presynaptic proteins neurexin1α 

and β (de Wit et al., 2009; Ko et al., 2009). Lrrtm1 and Lrrtm2 specifically bind α and β 

neurexins lacking an insert at splice site 4 (Ko et al., 2009; Siddiqui et al., 2010). 

In vitro experiments in cultured rat hippocampal neurons demonstrated that overexpression 

of full-length Lrrtm2 increases synapse density (de Wit et al., 2009; Ko et al., 2009). The 

synaptogenic activity is abrogated by removal of the extracellular domain, indicating that 

binding to neurexin is required for synapse formation (de Wit et al., 2009; Linhoff et al., 

2009). In contrast, RNA interference experiments leading to knock-down of Lrrtm2 did not 

decrease synapse numbers (Ko et al., 2011). A decrease in synapse density was only 

observed in concurrent knock-downs of Lrrtm1, Lrrtm2, and neuroligin3 in neurons 

cultured from neuroligin1 knock-out mice; consequently, all four proteins need to be 

downregulated in order to see an effect on synapse numbers (Ko et al., 2011). Intriguingly, 

this decrease in synapse density required synaptic activity: chronic treatment with a 

combination of neurotransmitter receptor inhibitors (APV, NBQX, LY341495) blocked the 

synapse loss in Lrrtm1/Lrrtm2/neuroligin3 triple knock-down neurons cultured from 

neuroligin1 knock-out mice (Ko et al., 2011). Detailed analysis revealed that the activity-

dependent synapse loss depends on active AMPA receptors, calcium influx, and 

CaM-dependent kinase activity (Ko et al., 2011). These results are accordable with a model 

where synapses are continuously eliminated and reformed in an activity-dependent 

manner, with this ‘proof-reading’ mechanism requiring neuroligins and Lrrtms (Ko et al., 

2011). Additionally, these findings indicate a high degree of redundancy between the 

Lrrtms and the neuroligins concerning their role in synapse formation in vitro (Ko et al., 
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2011). However, this redundancy was not observed in regard to electrophysiological 

properties. In vivo experiments in mouse hippocampal slice cultures showed a decrease in 

AMPA receptor EPSC (evoked excitatory postsynaptic currents) at P14-18 for 

Lrrtm1/Lrrtm2 double knock-down beginning at P0 (Soler-Llavina et al., 2011). This effect 

was rescued by overexpression of Lrrtm2 (Soler-Llavina et al., 2011). Knock-down of 

Lrrtm1, Lrrtm2, and neuroligin3 in neuroligin1 knock-out mice further reduced AMPA 

receptor EPSCs; in addition, NMDA receptor EPSCs were decreased under these 

conditions (Soler-Llavina et al., 2011). However, this role of Lrrtms in synaptic function 

seems to be restricted to synaptogenesis as these findings are only apparent during the first 

two postnatal weeks: introduction of the Lrrtm1/Lrrtm2 double knock-down at later stages 

(P21) has no effect on the NMDAR/AMPAR ratio (Soler-Llavina et al., 2011). 

Morphological analysis of brains from Lrrtm1 knock-out mice revealed a reduction in 

hippocampus volume, an increase in hippocampal spine length and in the mean inter-

vesicular distance in both the stratum radiatum and the stratum oriens (Takashima et al., 

2011). Similarly, Linhoff et al. described a selective increase in the size of VGLUT1 

puncta in the same regions, stratum radiatum and stratum oriens, determined by 

immunofluorescence analysis (Linhoff et al., 2009). To date, there is no description of a 

Lrrtm2 knock-out mouse. However, Soler-Llavina et al. performed RNAi-mediated knock-

down of Lrrtm1/Lrrtm2 and neuroligin3 in hippocampal slice preparations from 

neuroligin1 knock-out mice starting at P0, and reported no significant changes in spine 

density (Soler-Llavina et al., 2011); this also contrasts the results obtained from cultured 

neurons, where the knock-down leads to synapse loss (Ko et al., 2011; Soler-Llavina et al., 

2011). 

Together, these findings underline the complex role of Lrrtms and synaptic cell adhesion 

molecules in synaptogenesis and mature synapse function; as a consequence, many aspects 

have to be reconciled by taking a broader point of view in order to obtain a coherent and 

logic picture of synaptic connectivity. 
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Synaptic cell adhesion molecules and neuropsychiatric disorders 

 

Research in the last decade has made major contributions to our understanding of synaptic 

cell adhesion molecules and their roles in synaptogenesis and mature synapse function, a 

small fraction of which is described above. Extrapolation of these findings to neurological 

and neuropsychiatric disorders and vice versa will help us to understand disease 

mechanisms and specific functions of molecules. Several synaptic cell adhesion molecules 

are implicated in neurological and neuropsychiatric disorders, including, but not limited to, 

autism (cadherin, neurexin, neuroligin, SynCAM), schizophrenia (cadherin, Lrrtm, 

neurexin), intellectual disability (cadherin, Lrrtm), and anxiety (EphB) (Sudhof, 2008; 

Siddiqui and Craig, 2011; Redies et al., 2012; Reichelt et al., 2012; Sheffler-Collins and 

Dalva, 2012). 

Neurexins were among the first synaptic cell adhesion molecules found to be implicated in 

neurodevelopmental disorders (Feng et al., 2006; Szatmari et al., 2007; Kim et al., 2008). 

Several different neurexin1 mutations have been identified in patients with autism, a 

disorder characterized by impaired social interaction and communication, and by restricted 

and repetitive behaviour (American Psychiatric Association, 2000). These mutations were 

all heterozygous and included point mutations, translocations, and large-scale deletions in 

the neurexin1 gene (Feng et al., 2006; Szatmari et al., 2007; Kim et al., 2008; Marshall et 

al., 2008; Yan et al., 2008; Zahir et al., 2008). The majority of these mutations affected 

neurexin1α, a gene that shares the chromosomal location with neurexin1β, but is controlled 

by a different promoter. Etherton et al. estimated that 0.5% of all autism spectrum disorder 

cases harbour neurexin1α gene deletions (Etherton et al., 2009). 

Mutations affecting neurexins have also been found in patients suffering from 

schizophrenia. Schizophrenia is a chronic illness characterized by perturbations in 

cognition, affect and behaviour, with delusions and auditory hallucinations (American 

Psychiatric Association, 2000). The neurexin mutations found in schizophrenia patients 

were mainly deletions and affected the promoter and initial exons of the neurexin1α gene 

(Kirov et al., 2008; Vrijenhoek et al., 2008; Walsh et al., 2008; Need et al., 2009). 

Approximately 0.16% of all schizophrenia cases have neurexin1α deletions (Kirov et al., 
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2009), while the frequency of these deletions in the normal control population ranges 

between 0.019% and 0.02% (Kirov et al., 2009; Ching et al., 2010). 

Since neurexin1 was identified as the presynaptic binding partner of Lrrtms, disorders with 

mutation in neurexin1 might also arise from their failed interaction, resulting in an 

impairment of transsynaptic Lrrtm function, and vice versa. 

Due to their comparatively recent discovery, knowledge about the role of Lrrtms in human 

cognitive disorders is limited. There are, however, several interesting case reports and 

mouse model studies concerning Lrrtm1, Lrrtm2 and Lrrtm3. For LRRTM1, a three-marker 

SNP (single nucleotide polymorphism) haplotype upstream of the gene was found to be 

associated with schizophrenia when inherited paternally (Francks et al., 2007; Ludwig et 

al., 2009). In addition, data was provided suggesting that LRRTM1 might make a general 

contribution to handedness (Francks et al., 2007; Ludwig et al., 2009). Further, in a case 

report of a 9-year-old girl with a de novo interstitial deletion on chromosome 2, LRRTM1 

was one of the deleted genes (Rocca et al., 2012). The girl presented a mild intellectual 

disability with difficulties of sentence organization, understanding, and ability in reading 

and writing (Rocca et al., 2012). Mice that lack Lrrtm1 perform differently in behavioral 

tasks compared to wild-type mice: they avoid approaching to large inanimate objects, have 

social discrimination deficits and present difficulties in spatial memory (Takashima et al., 

2011). Voikar et al. described another Lrrtm1 knock-out mouse with a phenotype of 

avoiding small enclosures, which was proposed as a mouse model for claustrophobia 

(Voikar et al., 2013). 

In a case report, a 7-year-old boy with a microdeletion on chromosome 5 was described 

with intellectual disability, developmental delay and mild dysmorphic features (Kleffmann 

et al., 2012). The mutation was a de novo heterozygous microdeletion in 5q31.2 and 

affected nine genes, one of which was LRRTM2 (Kleffmann et al., 2012). Similar 

microdeletions have been described in seven other patients; all displayed facial anomalies 

and developmental delay, and some individuals were affected by speech delay, short 

stature and muscular hypotonia (Mosca et al., 2007; Rosenfeld et al., 2011; Shimojima et 

al., 2011; Kleffmann et al., 2012). 

Finally, genetic variants of LRRTM3 were found to be associated with a risk for late-onset 

Alzheimer’s disease: five single-nucleotide polymorphisms in the promoter region and in 

intron 2 were found to correlate with the disease (Reitz et al., 2012). 
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III. Aim of the Study 

 

Both activity-regulated gene expression and synaptic cell adhesion molecules are areas of 

intense research that made major contributions to our understanding of how the brain 

works.  However, despite the in-depth knowledge in these fields, little is known about their 

interaction and reciprocal influence. While it is obvious that synapses –and thus, synaptic 

cell adhesion molecules– are required to induce activity-dependent gene expression, it is 

less apparent how this regulated gene expression influences the synapse and its 

components. Therefore I want to study one possible mechanism of how activity-dependent 

gene expression might contribute to synapse function: by regulating the genes encoding 

synaptic cell adhesion molecules. Lrrtm1 and Lrrtm2 belong to this group of molecules and 

are important proteins for the integrity of basal synaptic transmission in early postnatal life. 

I want to find out whether and how neuronal activity regulates their corresponding genes, 

Lrrtm1 and Lrrtm2, and explore the function of their activity-responsiveness. Thereby I 

want to contribute to both the understanding of the function of activity-regulated gene 

expression and of synaptic cell adhesion molecules.  
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Material and Methods 

 
Cell culture 

 

Hippocampal neurons from new-born C57Black mice were plated on poly-D-lysin/laminin 

(PDL/LA; Sigma)-coated culture dishes (diameter 35mm) at a density of 0.39 hippocampi 

per 1ml Neurobasal media (NBA; Invitrogen) containing 1% rat serum and B27 

(Invitrogen). For inhibition of glial cell growth cytosine-1-β-D-arabinofuranose [2.7μM] 

(Sigma) was added to the culture medium at day in vitro 3. At day in vitro 8 medium was 

changed to Transfection medium (TM) containing Salt Glucose Glycine solution (SGG; 

[140.1mM NaCl, 5.3mM KCl, 1mM MgCl2, 2mM CaCl2, 10mM HEPES, 1mM glycine, 

30mM glucose, and 0.5mM sodium pyruvate]) (Bading et al., 1993) supplemented with 

Minimum Essential Medium (MEM, with Earle’s salt, without L-glutamine) (Invitrogen), 

Insulin-transferrin-sodium selenite media supplement [6.3µg/ml-5.7µg/ml-7.5µg/ml] 

(Sigma), and Penicillin/Streptomycin solution [1:200] (Sigma) unless otherwise stated. 

Following the medium change on day in vitro 8, half of the medium was changed every 

second day to provide a continuous supply of growth and trophic factors. 

 

Pharmacological treatments, RNA isolation and quantitative PCR 

 

Pharmacological treatments were done after a culturing period of 10 to 12 days in vitro 

during which hippocampal neurons express functional glutamate receptors 

(NMDA/AMPA/kainate) and develop a rich network of synaptic contacts (Bading et al., 

1995; Hardingham et al., 2001b). Action potential bursting in hippocampal neurons was 

induced at day in vitro 10 by supplementing the medium with the GABAA receptor 

antagonist Bicuculline [50μM] (Alexis) for 1h to 16h (Arnold et al., 2005). For the 

pharmacological inhibitor experiments, neurons were treated for 2h to 4h with Bicuculline 

either with or without a 45min pretreatment with the pharmacological inhibitors MK 801 

[10μM] (Sigma), PD 98059 [20µM] (Calbiochem), SB 203580 [10µM] (Calbiochem), or 
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KN 62 [5µM] (Calbiochem), FK 506 [1µM] (Axxora) and Cyclosporin A [1µM] (Sigma-

Aldrich), and Anisomycin [20µg/ml] (Applichem). 

Cells were harvested in RLT Lysis Buffer (Qiagen) and RNA was isolated using RNeasy 

Mini Kit (Qiagen) according to manufacturer’s instructions, with additional on-column 

DNase digestion during RNA purification. cDNA was synthesized from 1µg to 2μg of total 

RNA using High Capacity cDNA Reverse Transcription kit (Applied Biosystems) 

according to manufacturer’s instructions. 

RT-qPCR (reverse transcriptase quantitative reverse transcriptase PCR) was done on an 

ABI7300 thermal cycler using universal qPCR master mix with TaqMan Gene Expression 

Assays (Applied Biosystems) for the following genes: Gusb (Mm00446953_m1), c-fos 

(Mm00487425_m1), Atf3 (Mm00476032_m1), Lrrtm1 (Mm00551337_g1) and Lrrtm2 

(Mm00997210_g1). The expression levels of the target genes were normalized to the 

relative ratio of the expression of the housekeeping gene Gusb. For analyses of statistical 

significance t tests (two-sample assuming equal variances) were performed. Data for 

Lrrtm1 and Lrrtm2 represent mean values ± SEM (standard error of the mean) from three 

independent experiments. Data for c-fos and Atf3 were log-transformed and autoscaled; 

means and standard deviations (SDs) were calculated and t tests for analyses of statistical 

significance were performed (two-sample assuming equal variances) (Pruunsild et al., 

2011). For graphical representation, the data were back-transformed to the original scale. 

Error bars represent upper and lower limits back-transformed as mean ± SD. Data from 

three independent experiments are shown. 

 

Calcium imaging 

 

Imaging of Bicuculline-induced calcium signals was done with mouse hippocampal 

neurons plated on PDL/LA-coated cover slips. After a culturing period of 10 to 12 days in 

vitro neurons were loaded with Fluo-3 [3.8µM] (Invitrogen) for 45 min in CO2-

independent Salt Glucose Glycine solution (SGGind; [140.1mM NaCl, 5.3mM KCl, 1mM 

MgCl2, 2mM CaCl2, 10mM HEPES, 1mM glycine, 30mM glucose, and 0.5mM sodium 

pyruvate]) (Bading et al., 1993). Following the incubation period, cells were washed 5x 

with SGGind and kept in SGGind for 45min in the presence of KN 62 [5µM]. Action 
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potential bursting was induced by Bicuculline [50µM]. Calcium signals were detected 

using a Leica SP2 confocal microscope and imaging software (Leica). Calcium 

concentrations were expressed as a function of the Fluo-3 fluorescence [(F-Fmin)/(Fmax-F)] 

using Ionomycin [50µM] (Sigma) and saturated MnCl2 solution to obtain Fmax and Fmin. 

 

Immunodetection 

 

For immunoblot analysis, untreated or pharmaceutically treated cells were harvested in 

sample buffer (9% SDS, 187.5mM Tris, 30% glycerol, 10mM DTT, 33mM EDTA, 

bromphenol blue) and stored at –20°C until usage. Gel electrophoresis and immunoblotting 

of protein samples were performed with a wet blotter system using two-layer acrylamid 

gels (3.75%, 12%) according to standard western blot procedures. For visualization of 

immunoblots, HRP-based secondary antibodies (Sigma) were used followed by 

chemiluminescent detection on film (GE Healthcare Limited). Antibodies (ab) to the 

following proteins were used: α-MeCP2 (rabbit polyclonal ab, 1:1000; Millipore), α-

phosphoMeCP2 (rabbit polyclonal ab, 1:1000; a kind gift from M.E. Greenberg (Zhou et 

al., 2006)), α-Tubulin (mouse monoclonal ab, 1:400000; Sigma). Immunoblots were 

quantified using ImageJ Software; phosphoMeCP2 signal was normalized to the signal of 

total amount of MeCP2. The ratios were set relative to the signal of day in vitro 3 of the 

first experiment. Three independent experiments were performed. Data represent mean 

values ± SEM. 

 

Luciferase assay 

 

Cloning. A 356bp long sequence of the Lrrtm2 promoter region was amplified from mouse 

genomic DNA with the PyroStart Fast PCR Master Mix (Fermentas) using the following 

primers: sense, 5’–CTCGAGAGCTCTCACACGCATTAGAA–3’; 

antisense, 5’–AGATCTCAGCATGAGTGCATTTACTG–3’ 

and cloned into pGL4.10[luc2] (Promega) in front of the firefly luciferase coding sequence 

(Lrrtm2WT-luc). The CRE sites were mutated from CGTCA to CcaCA and from 
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TGACGTCA to TGtgGTCA (Lrrtm2ΔCRE-luc) by overlap extension PCR using Phusion 

High Fidelity DNA Polymerase (New England Biolabs) and the following primers:  

sense, 5‘–ACAAAAGACACcaCACCCGGTGtgGTCAGC–3’; 

antisense, 5’–GCTGACcaCACCGGGTGtgGTGTCTTTTGT–3’. 

The accuracy of the promoter regions was verified by sequencing. 

Cell culture, transfection, and pharmacological treatments. Rat hippocampal neurons from 

newborn Sprague Dawley rats (Charlers River) were plated on PDL/LA-coated culture 

dishes at a density of 0.25 hippocampi per 1ml NBA containing 1% rat serum and B27 

(Invitrogen). Transfection was done on day in vitro 10 with Lrrtm2WT-luc and 

Lrrtm2ΔCRE-luc, respectively, using Lipofectamine 2000 (Invitrogen) according to 

manufacturer’s instructions. pGL4.29[luc2P/CRE/Hygro] (Promega), a plasmid containing 

a CRE site as reporter gene-driving element, was included as positive control. For 

normalization of the luciferase assays, pGL4.83[hRlucP/Puro] (Promega) containing the 

promoter of human EF1α (elongation factor-1α; a kind gift from P. Pruunsild and M. Sepp 

(Sepp et al., 2012)) was used at a ratio of 10:1 (promoter : normalizer). Transfection was 

performed using 1µg plasmid DNA plus 1µl Lipofectamin 2000 in a final volume of 250µl 

NBA medium. The neurons were pretreated with APV (2-amino-5-phosphonovaleric acid) 

[20µM] (Biotrend) over night and stimulated on day in vitro 11 with Bicuculline [50µM] 

and 4-AP (4-aminopyridine) [250µM] (Sigma) for 8h.  

Measurement. The luciferase assay was performed using the Dual-Glo Luciferase Assay 

System (Promega) according to manufacturer’s instructions. Chemiluminescence was 

measured by GloMax Luminometer and Software (Promega and Turner Biosystems). 

Induction values were considered when the positive control reached  ൒ 100-fold relative 

luciferase units. For presentation of the relative luciferase activity data, the background 

signals from untransfected neurons were subtracted from signals obtained from transfected 

cells. For analyses of statistical significance t tests were performed (two-sample assuming 

equal variances). Data represent mean values ± SEM from four independent experiments, 

each performed in triplicates. 
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AAV vector cloning, virus production and infection  

 

Cloning. The wild-type coding sequence of MeCP2 was amplified from a template plasmid 

(a kind gift from M.E. Greenberg (Zhou et al., 2006)) with the PyroStart Fast PCR Master 

Mix (Fermentas) using the following primers:  

sense: 5’–CGCGGATCCATGGTAGCTGGGATGTTAGGGCTCA–3’, 

antisense: 5’–CTAGCTAGCGCTAACTCTCTCGGTCACGG–3’, 

and cloned into a WPRE- and polyA-sequence-containing rAAV (recombinant adeno-

associated virus) plasmid under the control of a 1.3kbp fragment of the mouse CaMKII 

promoter (a kind gift from P. Seeburg) (MeCP2WT). A non-phosphorylatable form of 

MeCP2 at serine 421 was cloned by creating a serine-to-alanine exchange (TCA>gCA; 

MeCP2S421A) through overlap extension PCR using Phusion High Fidelity DNA 

Polymerase (New England Biolabs) and the following primers:  

sense: 5‘–CCTGAGAGCTCTGAGGACCCCATCAGCCCC–3’,  

antisense: 5’–CTAGCTAGCGCTAACTCTCTCGGTCACGG–3’;   

overlap extension sense: 5’–ATGCCCCGAGGAGGCgCACTGGAAAGCGAT–3’; 

overlap extension antisense: 5’–ATCGCTTTCCAGTGcGCCTCCTCGGGGCAT–3’. 

The expression vector for VP16-MeCP2 was cloned by inserting wild-type MeCP2 into a 

rAAV plasmid containing a CMV/CBA promoter (Klugmann et al., 2005) and the coding 

sequence of VP16 (VP16-MeCP2). 

The shRNA (short hairpin RNA) sequences for Lrrtm1 and Lrrtm2 were generated using 

Dharmacon siDesignCentre (Thermo Scientific). The oligomers were annealed and cloned 

into a rAAV expression vector under the control of the U6 promoter. As reporter gene, the 

vector carried the coding sequence for mCherry under the control of the CaMKII promoter. 

For Lrrtm1, three shRNA sequences were designed and cloned. For Lrrtm2, two sequences 

were designed and a third was taken from the literature (de Wit et al., 2009). The following 

sequences were cloned: 

shLrrtm1-a: 5’–GCAGCAGCAAAGTGAGACA–3’ 

shLrrtm1-b: 5’–GGACACGAATGGCAGGCGT–3’ 

shLrrtm1-c: 5’–ACTCCAAGGTGGCTTCGAT–3’ 

shLrrtm2-a: 5’–TGCTATTCTACTGCGACTC–3’ (de Wit et al., 2009) 
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shLrrtm2-b: 5’–GGGCACAGAAAACAGGAAA–3’ 

shLrrtm2-c: 5’–GAACTAACAGCTGCGGGAA–3’ 

In order to clone expression vectors for Lrrtm1 and Lrrtm2 (rAAV-Lrrtm1 and rAAV-

Lrrtm2), the coding sequence for Lrrtm1 and Lrrtm2 was generated by PCR using Phusion 

High Fidelity DNA Polymerase (New England Biolabs) with cDNA as template-DNA and 

the following primers: 

Lrrtm1, sense: 5’–CGCGGATCCATGGATTTCCTGCTACTCGG–3’ 

Lrrtm1, antisense: 5’–CTAGCTAGCCACCTCGCATTCCCTCGCAG–3’ 

Lrrtm2, sense: 5’–CGCGGATCCATGGGCTTACATTTCAAGTG–3’ 

Lrrtm2, antisense: 5’–CTAGCTAGCTACTTCACATTCTTTGTATG–3’ 

The PCR product was cloned into a rAAV expression vector under the control of a 

CMV/CBA promoter. 

For the Lrrtm1 rescue experiment, three different rAAV plasmids were constructed: 

rAAV-unc-Lrrtm1 (unc, universal control), rAAV-shLrrtm1-mCherry, and rAAV-

shLrrtm1-Lrrtm1. A rAAV plasmid containing two expression cassettes for unc and 

mCherry controlled by a U6 promoter (unc) and a CaMKII promoter (mCherry), 

respectively, was obtained from H. E. Freitag. To create rAA-shLrrtm1-mCherry, the 

shLrrtm1-a sequence was inserted downstream of the U6 promoter in place of the unc 

sequence. To obtain rAAV-unc-Lrrtm1, the coding sequence for Lrrtm1 was generated by 

PCR using Phusion High Fidelity DNA Polymerase (New England Biolabs) with cDNA as 

template-DNA and the following primers: 

Lrrtm1, sense: 5’–CCGAGTACCGGTATGGATTTCCTGCTACTCGG–3’ 

Lrrtm1, antisense: 5’–CCGAGTGATATCCACCTCGCATTCCCTCGCAG–3’ 

The PCR product was cloned into rAAV-unc-mCherry downstream of the CaMKII 

promoter in place of the mCherry sequence. To create rAAV-shLrrtm1-Lrrtm1, the 

shLrrtm1-a sequence was inserted into rAAV-unc-Lrrtm1 downstream of the U6 promoter 

in place of the unc sequence. The integrity of the plasmids was verified by sequencing.  

Virus production. The procedure of AAV production has been described previously 

(During et al., 2003; Hauck et al., 2003). In brief, human embryonic kidney 293 cells were 

transfected with the rAAV expression plasmid and the adeno helper plasmids pFδ6 (179), 

pH21 (180) for AAV capsid 1 protein expression, and pRV1 (181) for AAV capsid 2 

protein expression (Hauck et al., 2003; Klugmann et al., 2005) by standard calcium 
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phosphate transfection. 72h after transfection, cells were harvested and the virus was 

purified using HiTrap Heparin Columns (GE Healthcare). The following rAAVs were 

produced: rAAV-mCherry-NLS (rAAV-mCherry-NLS plasmid was a kind gift from 

H. E. Freitag), rAAV-MeCP2WT, rAAV-MeCP2S421A, rAAV-VP16-MeCP2, rAAV-

shLrrtm1 (a-c), rAAV-shLrrtm2 (a-c), rAAV-Lrrtm1, rAAV-Lrrtm2, and rAAV-shLrrtm1-

Lrrtm1. 

Infection. Cultured mouse hippocampal neurons were infected on day in vitro 3 to 7 by 

addition of the virus to the medium. The following rAAVs were used: rAAV-mCherry-

NLS, rAAV-CaMBP4-mCherry (a kind gift from D. Lau), rAAV-E1A, rAAV-E1AΔCR1 

(both a kind gift from D. Mauceri (Mauceri et al., 2011)), rAAV-MeCP2WT, 

rAAV-MeCP2S421A, rAAV-VP16-MeCP2, rAAV-shLrrtm1, rAAV-shLrrtm2, rAAV-

Lrrtm1, rAAV-Lrrtm2, and rAAV-shLrrtm1-Lrrtm1. 

MeCP2 data represent mean values ± SEM from three independent experiments. Data for 

CaMBP4 and E1A were log-transformed and autoscaled; means and standard deviations 

were calculated and t tests for analyses of statistical significance were performed (two-

sample assuming equal variances) (Pruunsild et al., 2011). For graphical representation, the 

data were back-transformed to the original scale. Error bars represent upper and lower 

limits back-transformed as mean ± SD from three independent experiments. 

 

Chromatin immunoprecipitation 

 

Chromatin immunoprecipitation. The chromatin immunoprecipitation was performed using 

Magna ChIP Chromatin Immunoprecipitation Kit (Millipore) according to manufacturer’s 

instructions. In brief, 3 dishes (diameter 6cm) of cultured mouse hippocampal neurons, day 

in vitro 11 to 12, were treated with Bicuculline [50µM] for 0.5h to 4h and then fixed by 

addition of freshly prepared paraformaldehyde [1%]. Cells were harvested, and lysed in a 

total volume of 300µl Nuclear Lysis Buffer (Millipore). Chromatin was sheared to 

fragments of 200bp to 1000bp by applying 8 pulses of 5sec duration and 20% power 

output using a Branson Digital Sonifier. 50µl of sonicated DNA per immunoprecipitation 

were incubated with 2µg α-CREB or 8µg α-c-Jun antibody and magnetic protein A/G 

beads (Millipore) over night at 4°C. Protein/DNA complexes were eluted in 100µl Elution 
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Buffer (Millipore) and DNA was purified using QIAquick PCR Purification Kit (Qiagen). 

The following antibodies were used: α-CREB (rabbit monoclonal ab, Cell Signaling 

Technology), α-c-Jun (rabbit polyclonal ab, Santa Cruy Biotechnology), rabbit IgG (Santa 

Cruz Biotechnology). 

qPCR analysis. Purified DNA was diluted 1:10 for analysis. The immunoprecipitated DNA 

was analysed by quantitative PCR using Power SYBR Green PCR Master Mix (Applied 

Biosystems) and the following promoter-specific primers with an annealing temperature of 

55°C:  

pc-fos sense: 5’–AGATGTATGCCAAGACGGGGG–3’, 

antisense: 5’–CAGTCGCGGTTGGAGTAGTAG–3’;  

pMef2c sense: 5’–CACTTGAGCACACGCGTACA–3‘, 

antisense: 5’–ACCCACACAGAACCTTCAAAGTC–3’; 

pCcrn4l sense: 5’–CGGAACGCCTCTCTAACGAA–3’, 

antisense: 5’–GGACCGTCTGGATCAGTGAC–3’; 

pJun sense: 5’–GGAGCATTACCTCATCCCGT–3’, 

antisense: 5’–ATTGGCTTGCGTCGTTCTCA–3’ 

pLrrtm1 sense: 5’–TCGAGCCCCGAGTTTGGAGTT–3’, 

antisense: 5’–TGCTTCTCGCCTTCCTGCCT–3’;  

pLrrtm2 sense: 5’–CGCCCCTGACACTGTTACAA–3’, 

antisense: 5’–CCGAGAAACGGCACAAGAAT–3’. 

Four independent experiments were performed (α-c-Jun: two), and each sample was 

measured in triplicate with primers detecting the gene-specific regions. The amount of 

immunoprecipitated DNA is presented as ‘percent of input’ and ‘fold enrichment over 

IgG’, respectively. Statistical significance was assessed by t test; the data represent mean 

values ± SEM. 

 

Morphological analyses 

 

For the analyses of spine density, cultured mouse hippocampal neurons grown on 

PDL/LA-coated cover-slips were infected with rAAV-shLrrtm2 or a control virus, rAAV-
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shScramble at day in vitro 7. At day in vitro 10-11 neurons were transfected with rAAV-

EGFP to visualize individual neurons. One to two days after transfection, neurons were 

fixed and counterstained with Hoechst 33258. Single neurons were imaged using a Leica 

SP2 confocal microscope and imaging software (Leica). A z-stack projection of on average 

10 sections was created. In each independent experiment, at least four neurons were 

imaged per condition. The spines of at least two 20µm sections of a secondary dendrite 

were counted manually for each neuron using ImageJ software (ImageJ 1.43u, Wayne 

Rasband, NIH). All analyses were performed blind. 

 

AMPA receptor trafficking 

 

Life cell imaging. Imaging of AMPA receptor trafficking was done with mouse 

hippocampal neurons plated on PDL/LA-coated cover slips. After a culturing period of 10 

to 12 days in vitro neurons were transfected with pCl-SEP-GluR2 (addgene). Two days 

after transfection the cells were kept over night in no-glycine medium (NoG; [114mM 

NaCl, 26mM NaHCO3, 5.3mM KCl, 2mM CaCl2, 10mM HEPES, 30mM glucose, 0.5mM 

sodium pyruvate, 1M MgCl2], supplemented with Minimum Essential Medium (MEM, 

with Earle’s salt, without L-glutamine) (Invitrogen), Insulin-transferrin-sodium selenite 

media supplement [6.3µg/ml-5.7µg/ml-7.5µg/ml] (Sigma), and Penicillin/Streptomycin 

solution [1:200] (Sigma)). The following day the cells were placed in a perfusion chamber 

and stimulated for 3min with chemical LTP using conditioned medium (CM; 114mM 

NaCl, 26mM NaHCO3, 5.3mM KCl, 3mM CaCl2, 10mM HEPES, 30mM glucose, 

0.5mM sodium pyruvate, 200μM glycine, and 50μM Bicuculline) at room temperature. 

SEP-GluR/pHluorin signals were detected using a Leica SP2 confocal microscope and 

imaging software (Leica) and are plotted as raw fluorescence signal from dendritic regions 

of interest (ROIs) of transfected neurons over time. In addition, a second experimental 

setup was used with cultured hippocampal neurons plated on coverslips secured by a 

platinum ring in a perfusion chamber. The setup included heated in-line perfusion at 37°C. 

The extracellular solution was artificial cerebrospinal fluid (ACSF; [125mM NaCl; 

3.5 KCl,;, 1.3mM MgCl2, 1.2mM NaH2PO4, 2.4mM CaCl2, 10mM glucose, 

26mM NaHCO3, gassed with 95% O2 and 5% CO2]). Neurons were viewed on a wide field 
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upright microscope (BX51WI, Olympus) equipped with a digital camera (sCMOS, Andor, 

BFi OPTiLAS) connected to a computer monitor through a PC interface using Andor IQ2 

software. 

Live cell staining. Prior to stimulation, the cells were kept over night in no-glycine medium 

(NoG; [114mM NaCl, 26mM NaHCO3, 5.3mM KCl, 2mM CaCl2, 10mM HEPES, 

30mM glucose, 0.5mM sodium pyruvate, 1M MgCl2], supplemented with Minimum 

Essential Medium (MEM, with Earle’s salt, without L-glutamine) (Invitrogen), Insulin-transferrin-

sodium selenite media supplement [6.3µg/ml-5.7µg/ml-7.5µg/ml] (Sigma), and 

Penicillin/Streptomycin solution [1:200] (Sigma)). To cover existing AMPAs, neurons were 

incubated with anti-GluA1 antibody (oncogene, 1:5) at 4°C for 45min, followed by incubation with 

a cold secondary antibody at 4°C for 45min. Cells were then either left untreated or stimulated for 

3min with conditioned medium (CM; 114mM NaCl, 26mM NaHCO3, 5.3mM KCl, 3mM CaCl2, 

10mM HEPES, 30mM glucose, 0.5mM sodium pyruvate, 200μM glycine, and 50μM Bicuculline) 

at room temperature. Following the stimulation with CM, neurons were kept for further 15min in 

NoG at room temperature. After the procedure, all cells were fixed in 

4% sucrose/ 4% paraformaldehyde solution and incubated with the same primary antibody as 

before, anti-GluA1 ab, followed by incubation with an DyLight488- or Cy3-conjugated secondary 

antibody (both Dianova) in order to visualize the newly externalized AMPA receptors. 

Fixed cell staining. Mouse hippocampal cultures were transfected with pCL-SEP-GluR2 

(addgene) on day in vitro 10-12. One to two days after transfection, neurons were either 

left untreated or stimulated with 50μM Bicuculline for 10min. Neurons were then fixed in 

4% sucrose/ 4% paraformaldehyde solution for 15min. Following washing with PBS (3x), 

cells were blocked in blocking solution (10% NGS, 2% BSA in 0.1% PBST). Without 

washing, cells were incubated with the primary antibody (rabbit-anti-GFP (Invitrogen), 

1:500 in blocking solution) over night at 4°C. Subsequently the cells were washed with 

PBS (5x) for 1h and then incubated with a secondary antibody (A) (anti-rabbit-Cy3 

(Dianova), 1:500 in PBS) for 45min at room temperature. Afterwards the cells were 

washed with PBS (5x) for 1h and then permeabilized with 0.1% TritonX 100 for 45min at 

room temperature. Following washing with PBS (2x), cells were blocked in blocking 

solution for 45min at room temperature. Subsequently the cells were again incubated with 

the same primary antibody (rabbit-anti-GFP, 1:500 in blocking solution) over night at 4⁰C 

and then washed with PBS (4-5x) for 1h. Afterwards the cells were incubated with a 

secondary antibody (B) (anti-rabbit-DyLight488 (Dianova), 1:500 in PBS) for 45min at 



 Material and Methods 

30 
 

room temperature. The cells were then washed once with PBS, incubated in Hoechst 33258 

(Sigma, 1:10000) for 3min, washed again with PBS (4x) and mounted in Moviol. 

 

Microelectrode array recordings 

 

Except for virus production, this method was performed by H. E. Freitag. Hippocampal 

neurons from new-born Sprague-Dawley rats were plated onto MEA dishes containing a 

grid of 60 planar electrodes (Multi Channel Systems). Recordings were acquired with a 

MEA-60 amplifier board (10Hz–35 kHz, gain 1200, sampling frequency 20 kHz, Multi 

Channel Systems). The cultures were infected on day in vitro 4 with rAAV-MeCP2WT, 

rAAV-MeCP2S421A, rAAV-shLrrtm1, rAAV-shLrrtm2, rAAV-Lrrtm1, rAAV-Lrrtm2, and 

rAAV-shLrrtm1-Lrrtm1, respectively. Recordings were started after a culturing period of 7 

days. Spikes were detected with the integrated spike detector of the MC Rack software 

(Multi Channel Systems). Burst analysis was done with Neuroexplorer (NEX 

Technologies). All results are given as mean ± S.E.M. 
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Results 

 
Activity-dependent expression of Lrrtm1 and Lrrtm2 

 

The Lrrtm family has recently been identified as a group of proteins that is able to induce 

synaptic differentiation (Linhoff et al., 2009). Their mRNA levels were shown to be 

developmentally regulated, with increasing expression during embryogenesis and a peak 

level at the day of birth that persists into adulthood (Lauren et al., 2003). As many 

mechanisms that are important during development might occur in a similar fashion during 

neuronal activity and synaptic plasticity, I investigated whether Lrrtm1 and Lrrtm2, the 

two most studied members of the Lrrtm family, are regulated by neuronal activity. In order 

to study their activity-induced expression, a network of cultured hippocampal neurons was 

exposed to the GABAA receptor antagonist Bicuculline. GABAergic interneurons, which 

represent about 10% of the neuronal population, impose a tonic inhibition onto the 

neuronal network (Arnold et al., 2005). Removal of GABAAergic inhibition with 

Bicuculline leads to action potential bursting (Arnold et al., 2005), which stimulates 

calcium entry through synaptic NMDA receptors, induces nuclear calcium-dependent 

transcription, and activates a variety of gene programmes (Hardingham et al., 2001b; Lee 

et al., 2005; Papadia et al., 2005; Zhang et al., 2009). A time course analysis using 

Bicuculline treatment to induce action potential bursting between 1h and 16h revealed a 

peak induction of Lrrtm1 and Lrrtm2 mRNA at 4h and 2h, respectively (Figure 1A). The 

induction was detected using quantitative reverse transcriptase PCR and showed an about 

two fold increase in Lrrtm1 and Lrrtm2 mRNA levels. Similar to c-fos, a classic neuronal 

activity- and calcium-regulated gene (Bading et al., 1993; Curran and Morgan, 1995), this 

induction of Lrrtm1 and Lrrtm2 by synaptic activity could be blocked by application of 

MK 801, a selective non-competitive NMDA receptor antagonist that prevents the 

Bicuculline -induced calcium entry into the neuron (Figure 1B). Further, Lrrtm1 and Lrrtm2 

are classic immediate-early genes, since their induction is independent of on-going protein 

translation, which could be shown by inducing neuronal activity in the presence of 

Anisomycin, a protein synthesis inhibitor (Figure 1C). The superinduction of Lrrtm1 and 
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Figure 1. Activty-dependent regulation of Lrrtm1 and Lrrtm2 requires the activation of NMDA
receptors and follows an immediate-early expression pattern. 
A, Primary mouse hippocampal neurons were used for studying Lrrtm1 and Lrrtm2 regulation in response
to neuronal activity modelled by Bicuculline stimulation, a GABAA receptor antagonist that removes
inhibitory synaptic activity, giving rise to action potential bursting. Neurons (day in vitro 10) were treated
with 50μM Bicuculline for the time indicated and endogenous Lrrtm1 and Lrrtm2 mRNA levels were
measured by RT-qPCR using gene-specific primers. mRNA levels are shown as fold induced levels of
Lrrtm1 and Lrrtm2 over levels in untreated neurons. B, C, Neurons as in A were used for analysis of Lrrtm1
and Lrrtm2 mRNA expression after treatment with Bicuculline for the time indicated in the presence or
absence of either 10μM MK 801, a selective non-competitive NMDA receptor antagonist that prevents the
Bicuculline-induced calcium entry into the neuron (B), or Anisomycin (20μg/ml), a protein synthesis
inhibitor (C). Lrrtm1 and Lrrtm2 mRNA levels were measured by RT-qPCR using gene-specific primers and
are shown as fold induced levels over levels in untreated neurons. The data in A-C were obtained from
three independent experiments with duplicate measurements and normalized to Gusb expression. Lrrtm1
and Lrrtm2 data are mean values ± SEM, c-fos and Atf3 data are mean values ± SD. Statistical significance
was assessed by t test (* p < 0.05; ** p < 0.005). Ø, unstimulated; AP, action potential; n.s., not significant. 
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Lrrtm2 expression in the presence of Anisomycin is a phenomenon regularly detected 

under the usage of protein synthesis inhibitors (Mahadevan and Edwards, 1991) and was 

also apparent for Atf3, a control gene that was analysed in parallel. Collectively, these data 

show that Lrrtm1 and Lrrtm2 are classic immediate-early genes that are induced and 

tightly controlled by synaptic activity through an NMDA receptor-dependent mechanism.  

 

Signalling pathways involved in activity-induced expression of Lrrtm1 
and Lrrtm2 
 

The four major neuronal calcium signalling pathways implicated in transcriptional 

regulation are controlled by CaM kinases, calcineurin, p38 MAP kinases, and 

MAPK/ERK. In order to identify the pathways that execute the signalling from the synapse 

to the nucleus in the regulation of Lrrtm1 and Lrrtm2, I used pharmacological inhibitors of 

these signalling pathways. I found that neither inhibition of MAPK/ERK kinases, 

p38 MAP kinases nor calcineurin using PD 98059, SB 203580, or FK 506 plus 

Cyclosporin A, respectively, compromised the observed increase in Lrrtm1 and Lrrtm2 

expression after Bicuculline-induced action potential bursting (Figure 2). In contrast, 

blockade of the CaM kinases using KN 62 completely abolished the activity-induced 

increase in Lrrtm1 and Lrrtm2 mRNA levels (Figure 3). Atf3, a gene also controlled by 

neuronal activity, was analysed in parallel and served as positive control. In the promoter 

of Atf3 are a CRE and a MRE site, which confer responsiveness to the transcription factors 

CREB and MEF2, respectively (Zhang et al., 2011). While CREB is mainly activated by 

ERK and CaM kinase IV (Chawla et al., 1998; Sgambato et al., 1998), MEF2 is controlled 

by p38 kinases (Mao et al., 1999), CaMK II (McKinsey et al., 2000; Linseman et al., 2003) 

and calcineurin, which enhances MEF2 DNA binding activity (Mao and Wiedmann, 1999). 

Consequently, Atf3 expression in response to neuronal activity is compromised by 

inhibition of each of these four pathways (Figure 2, 3A). The blockade of CaM kinases has 

the most prominent effect, most likely due to the inhibition of both the CREB and the MEF 

pathway (Figure 3A).  

Since there is a known inhibitory effect of KN 62 on voltage-gated calcium channels that 
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Since there is a known inhibitory effect of KN 62 on voltage-gated calcium ________ 

Figure 2. Activty-dependent regulation of Lrrtm1 and Lrrtm2 is independent of MEK1, p38 and
CaM/cacineurin signalling. 
A-D, Primary mouse hippocampal neurons were used for studying Lrrtm1 and Lrrtm2 regulation by
activity-dependent intracellular signalling pathways. Action potential bursting was induced for the time
indicated by stimulation with 50μM Bicuculline either in the presence or absence of the denoted
inhibitors. mRNA expression of endogenous Lrrtm1 and Lrrtm2 was measured by RT-qPCR using gene-
specific primers and mRNA levels are shown as fold induced levels of Lrrtm1 and Lrrtm2 over levels in
untreated neurons. A, Inhibition of the MEK/ERK signalling pathway by the MEK1 inhibitor PD 980598
(20μM). B, Inhibition of p38 by SB 203580 (10μM). C, Inhibition of CaM/calcineurin signalling by the
calcineurin inhibitors FK 506 (1μM) plus Cyclosporin A (1μM).  D, Inhibition of the calcium/calmodulin-
dependent kinase pathway by KN 62 (5μM). The data in A-D were obtained from three independent
experiments with duplicate measurements and normalized to Gusb expression.  Lrrtm1 and Lrrtm2 data
are mean values ± SEM, Atf3 data are mean values ± SD. Statistical significance was assessed by t test (* p
< 0.05; ** p < 0.005). AP, action potential; n.s., not significant.
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might affect the generation of action potential bursting (Sihra and Pearson, 1995; Gao et 

al., 2006), I performed calcium imaging experiments to ensure that KN 62 application did 

Figure 3. Activity-dependent regulation of Lrrtm1 and Lrrtm2 requires CaMKs signalling. A,
Inhibition of the calcium/calmodulin-dependent kinase pathway by KN 62. Primary mouse hippocampal
neurons were used for studying Lrrtm1 and Lrrtm2 regulation by CaMKs. Action potential bursting was
induced for the time indicated by stimulation with 50μM Bicuculline either in the presence or absence of
KN 62 (5μM). mRNA expression of endogenous Lrrtm1 and Lrrtm2 was measured by RT-qPCR using gene-
specific primers and mRNA levels are shown as fold induced levels of Lrrtm1 and Lrrtm2 over levels in
untreated neurons. Data were obtained from three independent experiments with duplicate
measurements and normalized to Gusb expression.  Lrrtm1 and Lrrtm2 data are mean values ± SEM.
Statistical significance was assessed by t test (* p < 0.05). B, Neurons as in A were used to ensure
unaltered bursting activity in the presence of 5μM KN 62. Neurons were loaded with the calcium
indicator Fluo-3 and stimulated with Bicuculline at the indicated time point. Grey lines represent the
measured Fluo-3 signal of individual cells; the mean signal is depicted as black line. Representative traces
from three independent experiments are shown. AP, action potential. 
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not interfere with activity-induced calcium influx into the neuron. I found that in the 

hippocampal culture system, KN 62, when used at a concentration of 5µM, did not 

compromise Bicuculline-induced calcium transients (Figure 3B). 

Taken together, the pharmacological experiments revealed that neither MAPK/ERK 

kinase, p38 MAPK, nor calcineurin are critically involved in regulating the Bicuculline-

induced increase in Lrrtm1 and Lrrtm2 mRNA levels. However, synaptic activity-induced 

expression of both Lrrtm1 and Lrrtm2 is specifically regulated by a CaM kinase-dependent 

pathway. 

 

Nuclear calcium signalling regulates the induction of Lrrtm1 and 
Lrrtm2 
 

The involvement of CaM kinases in the activity-dependent regulation of Lrrtm1 and 

Lrrtm2 directed my focus on the study of nuclear calcium signalling as a possible inducer 

of CaM kinases and subsequent Lrrtm1 and Lrrtm2 expression. Nuclear calcium is a 

known activator of nuclear-localized CaM kinases, such as CaMK II and CaMK IV, 

 

Figure 4. Nuclear calcium regulates Lrrtm1 and Lrrtm2 expression.
Primary mouse hippocampal neurons were used for studying Lrrtm1 and Lrrtm2 regulation by nuclear 
calcium signalling. Neurons (day in vitro 4) were infected with rAAV-CaMBP4-mCherry, or a control virus, 
rAAV-mCherry. Action potential bursting was induced by 50μM Bicuculline on day in vitro 10 for the time 
indicated. Expression levels of endogenous Lrrtm1 and Lrrtm2 mRNA were measured by RT-qPCR using 
gene-specific primers and are shown as fold induced levels of Lrrtm1 and Lrrtm2 over levels in untreated 
neurons. Data represent mean values ± SD from three independent experiments with duplicate 
measurements and normalized to Gusb. Statistical significance was assessed by t test (* p < 0.05; ** p < 
0.005; *** p < 0.0005). AP, action potential. 



  Results 

37 
 

both of which are important factors in mediating activity-induced genomic responses 

(Westphal et al., 1998; Impey et al., 2002; Wheeler et al., 2008; Zhang et al., 2009; 

Buchthal et al., 2012). In order to study the function of nuclear calcium signalling in the 

regulation of Lrrtm1 and Lrrtm2, I used CaMBP4, a nuclear protein that contains four 

repeats of the M13 calmodulin binding peptide from the skeletal muscle myosin light chain 

kinase; it binds to and inactivates the nuclear calcium/CaM complex (Wang et al., 1995). 

CaMBP4 has previously been used to identify nuclear calcium-regulated genes that are 

important for neuroprotection and memory consolidation (Limback-Stokin et al., 2004; 

Zhang et al., 2009; Mauceri et al., 2011; Zhang et al., 2011). Primary mouse hippocampal 

neurons were infected with a recombinant adeno-associated virus (rAAV) containing an 

expression cassette for CaMBP4 (rAAV-CaMBP4-mCherry). To induce action potential 

bursting, the cultures were exposed to Bicuculline, giving rise to periodically occurring 

action potential bursts, each of which is associated with an increase in the cytoplasmic and 

nuclear calcium concentration. In uninfected cultures this induced an about two-fold 

upregulation of Lrrtm1 and Lrrtm2 mRNA levels after 4h and 2h respectively. This 

upregulation was blocked in neurons infected with rAAV-CaMBP4-mCherry, but not in 

neurons infected with a control virus, rAAV-mCherry (Figure 4). This indicates that 

nuclear calcium signalling is required for synaptic activity-dependent regulation of Lrrtm1 

and Lrrtm2. 

 

The role of CBP in Lrrtm1 and Lrrtm2 expression 

 

In order to identify putative binding sites of transcription factors that are activated 

downstream of nuclear calcium signalling, I performed an on-line database search of a 

2000bp-long upstream region of Lrrtm1 and Lrrtm2 genes using Transcription Element 

Search System (TESS; http://www.cbil.upenn.edu/cgi-bin/tess) to recognize transcription 

regulatory elements. The search retrieved a list of possible binding sites for numerous 

transcription factors in the promoter regions of Lrrtm1 and Lrrtm2, including AP1 complex 

(activator protein 1), CREB, SP1 (specificity protein 1), USF (upstream stimulatory factor) 

and NFAT (nuclear factor of activated T-cells). CBP is a transcriptional co-activator that 

interacts with a variety of transcription factors (Shiama, 1997), including factors with 
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putative binding sites in the Lrrtm1 and Lrrtm2 promoters. Also, like the expression of 

Lrrtm1 and Lrrtm2, nuclear calcium and CaM kinases control CBP activity (Chawla et al., 

1998). Therefore I investigated the role of CBP in the regulation of Lrrtm1 and Lrrtm2 

expression using a rAAV coding for the adenovirus protein E1A. E1A binds to CBP via its 

amino terminal-conserved region 1 (CR1) and disrupts CBP function (Arany et al., 1995; 

Bannister and Kouzarides, 1995). Mouse hippocampal neurons were infected with either 

rAAV-E1A or rAAV-E1AΔCR1, a control virus expressing E1A that lacks CR1 and fails to 

interact with CBP (Arany et al., 1995; Bannister and Kouzarides, 1995). To induce action 

potential bursting, the cultures were exposed to Bicuculline, which induced an about two-

fold increase of Lrrtm1 and Lrrtm2 mRNA levels after 4h and 2h, respectively, in 

uninfected cultures. This increase was reduced in neurons infected with rAAV-E1A, but 

not in neurons infected with the control virus, rAAV-E1AΔCR1 (Figure 5). This 

demonstrates that interference with CBP function compromises the activity-induced 

upregulation of Lrrtm1 and Lrrtm2 expression. 

 

 

Figure 5. CBP regulates Lrrtm1 and Lrrtm2 expression.
Primary mouse hippocampal neurons were used for studying Lrrtm1 and Lrrtm2 regulation by CBP.
Neurons (day in vitro 4) were infected with rAAV-E1A, or a control virus, rAAV-E1AΔCR1. Action potential
bursting was induced by 50μM Bicuculline on day in vitro 10 for the time indicated. Expression levels of
endogenous Lrrtm1 and Lrrtm2 mRNA were measured by RT-qPCR using gene-specific primers and are
shown as fold induced levels of Lrrtm1 and Lrrtm2 over levels in untreated neurons. Data represent means
± SD from three independent experiments with duplicate measurements and are normalized to Gusb.
Statistical significance was assessed by t test (* p < 0.05; ** p < 0.005). AP, action potential. 
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Lrrtm1 and Lrrtm2 expression and CREB 

 

An on-line database search of a 2000bp-long upstream region of Lrrtm2 using 

Transcription Element Search System (TESS; http://www.cbil.upenn.edu/cgi-bin/tess) 

retrieved two CREs in the immediate vicinity of the transcription start site of Lrrtm2. Since 

CRE functions as a nuclear calcium response element (Hardingham et al., 1997), its 

presence in the Lrrtm2 promoter might confer nuclear calcium responsiveness to this gene. 

The CRE is bound by CREB, a transcription factor which together with CBP forms a 

prototypical nuclear calcium-controlled transcription regulating complex (Chawla et al., 

1998; Hardingham et al., 1999; Hardingham et al., 2001b). In a previous experiment I 

found that interference with CBP function impairs the activity-induced expression of 

Lrrtm2 (see Figure 5). This impairment might be attributed to a disruption of CREB/CBP 

signalling; in this case, the activity-induced increase in Lrrtm2 expression would depend 

on intact CRE sites in the promoter of Lrrtm2. In order to study the role of the CREs in the 

promoter of Lrrtm2, I constructed two Lrrtm2 promoter-containing reporter plasmids. The 

wild-type reporter (pLrrtm2WT-FLuc) consists of a firefly luciferase (FLuc) reporter gene 

driven by a 356bp-long sequence of the mouse Lrrtm2 promoter region harbouring a 

TATA box as well as a half and a full CRE site (Figure 6A, upper panel). Mutations were 

introduced into both CREs to generate a reporter construct that lacks the binding sites for 

CREB (pLrrtm2ΔCRE-FLuc) (Figure 6A, lower panel). These constructs were transfected 

into hippocampal neurons and tested for their regulation by Bicuculline-induced neuronal 

activity. In preliminary experiments, no activity-induced increase in the reporter signal 

could be detected (data not shown). Yet, since the endogenous activity-dependent 

induction of Lrrtm2 is comparatively low, one reason for this could be an insufficient 

sensitivity of the luciferase reporter system. In order to test this possibility, the neurons 

were cultured over night at low concentrations of APV, a selective NMDA receptor 

antagonist, followed by stimulation with Bicuculline in the presence of 4-AP, a reversible 

potassium channel blocker which increases the Bicuculline-induced bursting frequency in 

the neurons (Hardingham et al., 2002). This stimulation generated an induction that 

allowed monitoring of the increase in luciferase levels. In these experiments, I found that 

action potential bursting lead to a 1.5fold induction of the firefly reporter signal generated 
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by the wild-type promoter, pLrrtm2WT-FLuc (Figure 6B). This induction could not be by 

Figure 6. CREB binds to the CRE-containing promoter of Lrrtm2.
A, B, Primary rat hippocampal neurons were used for studying the CRE sites in the promoter of Lrrtm2 by
transfecting the neurons (day in vitro 10) with either wild-type (pLrrtm2WT-FLuc) or mutant (pLrrtm2ΔCRE-
FLuc) pGL4.10-based firefly luciferase (FLuc) reporter constructs (A) and an EF1α promoter-dependent
humanized Renilla luciferase (hRLuc) construct. Following incubation with APV over night, action potential
bursting was induced in transfected neurons on day in vitro 11 by Bicuculline (50μM) plus 4-AP (250μM) for
8h. Luciferase activities were measured and are represented as fold induced promoter activities over
Lrrtm2 wild-type promoter activities (B). Data represent mean values ± SEM from four independent
experiments with triplicate measurements normalized to hRluc activities. Statistical significance was
assessed by t test (* p < 0.05). C, left panel, Primary mouse hippocampal neurons were used to study CREB
binding to the promoter of Lrrtm1 and Lrrtm2. The binding was detected with anti-CREB ab in cell lysates
from neurons treated with Bicuculline (50μM) for 30min. The data are represented for each indicated
target gene as percent of input DNA determined by qPCR using promoter-specific primers. C, right panel,
The same data as before are represented as fold enrichment of anti-CREB-immunoprecipitated DNA over
IgG control for the respective target gene. The data represent mean values ± SEM from four independent
experiments measured in triplicates and normalized to the levels of the respective target in the input DNA.
Statistical significance was assessed by t test (** p < 0.005, *** p < 0.0005). AP, action potential; n.s., not
significant.    
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by the wild-type promoter, pLrrtm2WT-FLuc (Figure 6B). This induction could not be 

observed with the firefly reporter driven by the mutant promoter, pLrrtm2ΔCRE-FLuc 

(Figure 6B). Comparison of the reporter signals also revealed that the expression of the 

mutant promoter plasmid Lrrtm2ΔCRE-FLuc lead to a reduced basal firefly signal compared 

to wild-type, Lrrtm2WT-FLuc (Figure 6B). This indicates that, under these conditions, the 

CRE sites are important elements in both the basal and activity-induced regulation of 

Lrrtm2 expression. 

In the next step, I performed chromatin immunoprecipitation experiments to investigate 

whether CREB binds to the genomic regions adjacent to the transcription start sites of 

Lrrtm1 and Lrrtm2, respectively. Binding of endogenous CREB to the Lrrtm1 and Lrrtm2 

regulatory regions was detected by immunoprecipitation of sheared chromatin from 

cultured hippocampal neurons using an antibody to CREB. The amount of 

immunoprecipitated DNA was measured by qPCR, with primers specific for the regulatory 

regions of Lrrtm1 (pLrrtm1) and Lrrtm2 (pLrrtm2). I observed a robust enrichment of the 

regulatory region of Lrrtm2, but not of Lrrtm1 (Figure 6C). c-fos, a gene known to be 

regulated by CREB (Ofir et al., 1991; Bonni et al., 1995), was analysed in parallel and 

served as a positive control (pc-fos). As expected, the promoter of c-fos was enriched in the 

immunoprecipitated DNA (Figure 6C). In contrast, no significant enrichment could be 

measured for the promoter of Mef2c, an unrelated gene that was used as a negative control 

(pMef2c; Figure 6C). These results show that CREB specifically binds to the analysed 

regulatory region of Lrrtm2, but not to the one of Lrrtm1. 

 

The role of c-Jun in Lrrtm1 and Lrrtm2 expression 

 

c-Jun is a transcription factor that interacts with CBP (Bannister et at., 1995) and according 

to the on-line database TESS it has putative binding sites in the promoter regions of Lrrtm1 

and Lrrtm2. c-Jun forms part of the AP-1 complex and is generally regarded as 

transcription factor activated in response to stress signals (Kyriakis et al., 1994). In 

addition it was shown that c-Jun initiates transcription as a result of an increase in the 

intracellular calcium concentration mediated by L-type voltage-gated calcium channels 

(Cruzalegui et al., 1999). The c-Jun-mediated transcription required CBP and CaM kinase 
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signalling (Cruzalegui et al., 1999), both of which were shown here to regulate the 

expression of Lrrtm1 and Lrrtm2. Accordingly, there is the possibility that c-Jun mediates 

the activity-induced upregulation of Lrrtm1 and Lrrtm2 mRNA. In order to test this 

hypothesis, I performed chromatin immunoprecipitation to detect endogenous c-Jun 

binding to the regulatory regions of Lrrtm1 and Lrrtm2, respectively (pLrrtm1 and 

pLrrtm2). The experiment showed no enrichment of pLrrtm1 and pLrrtm2 in the 

immunoprecipitated DNA (Figure 11). This suggests that under these conditions, c-Jun is 

not binding to the regulatory regions of Lrrtm1 and Lrrtm2, respectively. However, there 

was also no enrichment of pJun, the promoter region of the Jun gene, which was 

previously shown to be autoregulated by its product, c-Jun (Angel et al., 1988). 

Consequently, until the provision of an adequate positive control for the binding of c-Jun, 

Figure 7. Chromatin immunoprecipitation using an antibody to c-Jun.
Primary mouse hippocampal neurons were used to study c-Jun binding to the promoter of Lrrtm1 and 
Lrrtm2. The binding was detected with anti-c-Jun ab in cell lysates from neurons treated with Bicuculline 
(50μM) for four hours. The data are represented for each indicated target gene as percent of input DNA
determined by qPCR using promoter-specific primers. The data represent mean values ± SEM from two
independent experiments measured in triplicates and normalized to the levels of the respective target in
the input DNA. Statistical significance was assessed by t test. n.s., not significant. 
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no statement can be made in regard to its role in the transcriptional regulation of Lrrtm1 

and Lrrtm2. 

 

Lrrtm1 and Lrrtm2 expression and MeCP2 

 

MeCP2 is an abundant protein in the nucleus of neurons (Skene et al., 2010), and is 

phosphorylated upon neuronal activity (Zhou et al., 2006; Buchthal et al., 2012). Zhou et 

al. hypothesised that this activity-induced phosphorylation leads to a de-repression of 

target genes (Zhou et al., 2006). Further, a microarray analysis of hypothalamic RNA from 

MeCP2-null and MeCP2-overexpressing mice, respectively, indicated that MeCP2 

regulates a vast amount of genes; these included Lrrtm1 and Lrrtm2, which were 

downregulated in the hypothalamus under MeCP2 overexpression conditions (Chahrour et 

al., 2008). In a developmental profile-experiment I could show that in cultured 

hippocampal neurons Lrrtm1 and Lrrtm2 mRNA levels continuously rise from the day of 

plating to day in vitro 21 (Figure 8A). Correlating with this rise is the amount of 

phosphorylated MeCP2 (Figure 8B). In order to further explore the role of MeCP2 and its 

activity-dependent phosphorylation in Lrrtm1 and Lrrtm2 expression, I infected 

hippocampal neurons with rAAVs expressing either wild-type MeCP2, MeCP2WT, or 

MeCP2S421A, a serine 421 non-phosphorylatable mutant form of MeCP2 (Figure 9). Both 

overxpression of wild-type and mutant MeCP2 lead to a decrease in basal expression of 

Lrrtm2 (Figure 10A). However, the neuronal activity-induced upregulation of Lrrtm2 

mRNA levels was compromised neither by overexpression of MeCP2WT nor of 

MeCP2S421A (Figure 11A). Lrrtm1 mRNA levels did not change in either condition 

(Figure 10B, 11A). Similarly, mRNA expression of Grin2a, a gene previously shown to be 

regulated by MeCP2 in the mouse hypothalamus (Chahrour et al., 2008), was also not 

changed (Figure 10C). To further explore the connection of Lrrtm2 and MeCP2 and the 

presumptive role of MeCP2 as transcriptional repressor, I cloned a rAAV coding for a 

MeCP2-fusion protein, VP16-MeCP2. The VP16 (viral protein 16) transcriptional activator 

domain renders fused proteins constitutively active; i.e. in case of a transcription factor 

acting as repressor, this would constitutively activate its target genes (Zhang et al., 2011). 

However, infection of cultured hippocampal neurons with rAAV-VP16-MeCP2 had no 
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significant effect on Lrrtm2 expression (Figure 11B). Therefore, no statement can be made 

whether and by which mechanism MeCP2 influences Lrrtm2 expression.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  8. Developmentally regulated expression of Lrrtm1 and Lrrtm2 correlates with the amount
of phosphorylated MeCP2. 
A, Primary mouse hippocampal neurons were used to study the age-dependent basal expression of Lrrtm1
and Lrrtm2 over a period of three weeks. Endogenous Lrrtm1 and Lrrtm2 mRNA expression levels were
measured on the indicated day in vitro by RT-qPCR using gene-specific primers. The expression level is
expressed as fold increase of Lrrtm1 and Lrrtm2 mRNA levels over the levels measured on day in vitro 3. B,
Neurons as in A were used for studying the age-dependent level of MeCP2 phosphorylation at serine 421
(pMeCP2) under basal conditions over the same period of time as in A. Neurons were harvested on the
indicated day in vitro and the amount of total MeCP2 and pMeCP2 was determined by western blot. The
left panel shows a representative western blot image of MeCP2 and pMeCP2 protein levels on the days in
vitro indicated. The right panel demonstrates a quantification of the pMeCP2 signal normalized to the
signal of total MeCP2; the signals are shown as fold increase of phosphorylated MeCP2 relative to the
amount determined on day in vitro 3 of the first experiment. Data from three independent experiments
are represented as mean values ± SEM. DIV, day in vitro.   
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Figure  9. Expression of MeCP2 wild-type (WT) and mutant MeCP2 (S421A) in hippocampal
neurons. 
Primary mouse hippocampal neurons were infected on day in vitro 4 with rAAV-MeCP2WT or rAAV-
MeCP2S421A leading to overexpression of the respective protein. Action potential bursting was induced by
Bicuculline (50μM) on day in vitro 10 for the time indicated, followed by cell harvest and western blot 
analysis using antibodies to MeCP2 and phosphorylated MeCP2 at serine 421 (pMeCP2).   

Figure 10. Overexpression of MeCP2 downregulates basal expression of Lrrtm2, but not of Lrrtm1.
A-C, Primary mouse hippocampal neurons were used for analysing the role of MeCP2 in the expression of
Lrrtm1 and Lrrtm2. A, Neurons were infected on day in vitro 3 with rAAV-MeCP2WT and rAAV-MeCP2S421A, 
respectively, or a control virus (mCherry) and the age-dependent basal expression of Lrrtm2, Lrrtm1 and 
Grin2a was analysed over a period of three weeks. Endogenous Lrrtm2 (A), Lrrtm1 (B) and Grin2a (C) 
mRNA expression levels were measured on the indicated day in vitro by RT-qPCR using gene-specific 
primers. The expression level is expressed as fold increase of Lrrtm2, Lrrtm1 and Grin2a mRNA level 
respectively, over the levels measured on day in vitro 3. Data represent mean values ± SEM from two 
independent experiments with duplicate measurements and are normalized to Gusb. 
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Influence of Lrrtm2 knock-down on spine density 

 

The members of the Lrrtm protein family are capable of inducing presynaptic 

differentiation in neurons (Linhoff et al., 2009). Lrrtm2 shows the most potent 

synaptogenic capacity (Linhoff et al., 2009). As Bicuculline, via the activation of CREB, 

induces an increase in spine density (Papa and Segal, 1996) I hypothesised that the 

Bicuculline-induced, CREB-dependent upregulation of Lrrtm2 might be responsible for the 

increase in spine density. This hypothesis was supported by the finding that overexpression 

of Lrrtm2 in mature neurons increases spine density (Linhoff et al., 2009), while shRNA 

(short hairpin RNA)-mediated knock-down of Lrrtm2 mRNA was shown to lead to a 

decrease  in  spine  density (de Wit et al., 2009).  In order  to interfere with  the Bicuculline- 

Figure 11. Overexpression of MeCP2 does not influence Lrrtm1 and Lrrtm2 mRNA induction upon AP
bursting. 
A, B, Primary mouse hippocampal neurons were used for analysing the role of MeCP2 in the expression of
Lrrtm1 and Lrrtm2. A, In neurons infected with rAAV-MeCP2WT and rAAV-MeCP2S421A respectively, action
potential bursting was induced on day in vitro 10 using Bicuculline (50μM) for the time indicated.
Expression levels of endogenous Lrrtm1 and Lrrtm2 mRNA were measured by RT-qPCR using gene-specific
primers and are shown as fold induced levels of Lrrtm1 and Lrrtm2 mRNA over levels in untreated neurons.
Data represent mean values ± SEM from six independent experiments with duplicate measurements and
are normalized to Gusb. B, Neurons infected with rAAV-VP16-MeCP2 or a control virus, rAAV-VP16-EGFP
were harvested on day in vitro 10 and endogenous Lrrtm2 mRNA levels were determined as described in A
and are expressed as fold induced Lrrtm2 mRNA level over the level under control conditions (control
virus). Data represent mean values ± SEM from three independent experiments. DIV, day in vitro; AP,
action potential. 
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Figure 12. AP bursting and knock-down of Lrrtm2 mRNA have no effect on spine density. 
A, B, Primary mouse hippocampal neurons were used for determining spine density under different
conditions. A, upper panel, Representative pictures of neurons that were either left untreated or subject to
AP bursting using Bicuculline stimulation for 16h. A, lower panel, Quantification of spine density from
neurons treated with Bicuculline to induce AP bursting for 0-32h. B, upper panel, Representative pictures
of neurons that were infected with rAAV-shLrrtm2 or a control virus, rAAV-shScramble. B, lower panel,
Quantification of spine density from neurons infected with rAAV-shLrrtm2 or a control virus, rAAV-
shScramble. For visualization of individual cells, neurons were transfected with an expression vector for
hrGFP. Data in lower panels are represented as spine density/20μm dendrite normalized to untreated
neurons. AP, action potential. 



  Results 

48 
 

induced upregulation of Lrrtm2 mRNA, but not with basal levels, I aimed at creating 

shRNA sequences that resulted in a partial knock-down of the gene. I constructed three 

Lrrtm2 knock-down vectors expressing different shRNA sequence targeting Lrrtm2 

mRNA. Among them was the Lrrtm2 knock-down sequence previously published (de Wit 

et al., 2009) and a scrambled shRNA as control (Mauceri et al., 2011). Cultured mouse 

hippocampal neurons were infected with a rAAV carrying the Lrrtm2 shRNA. For the 

visualisation of individual neurons, the cells were transfected with an expression vector 

coding for EGFP. In parallel, I analysed the spine density of hippocampal neurons before 

and after the induction of AP bursting using Bicuculline. Surprisingly, I could not detect a 

difference between the spine density of neurons that had been subject to AP bursting and 

untreated neurons (Figure 12A). Neither could see a significant difference in spine density 

between the neurons infected with the scrambled shRNA and the shRNA targeting Lrrtm2 

mRNA published by de Wit et al. (de Wit et al., 2009) (Figure 12B). At the same time, the 

group of Thomas Südhof presented data showing that Lrrtm1, Lrrtm2, Neuroligin1 and 

neuroligin3 are partially redundant and that a simultaneous knock-down of all four genes is 

necessary to reduce synapse numbers (Ko et al., 2011; Soler-Llavina et al., 2011). They 

attributed the previously observed effect on spine density by single knock-down of Lrrtm2 

(de Wit et al., 2009) to off-target effects of this specific shRNA sequence. Why these off-

target effects did not occur under the conditions I applied remains elusive. The new data 

further suggested that Lrrtms fulfil a task in the function of the synapse rather than in their 

formation (Ko et al., 2011; Soler-Llavina et al., 2011; Soler-Llavina et al., 2013). 

Consequently, I did not further pursue experiments on spine density, but directed my focus 

to the role of Lrrtm1 and Lrrtm2 in neuronal network activity.  

 

Influence of Lrrtm1 and Lrrtm2 knock-down on network activity 

 

For the following experiment I collaborated with Dr. H. E. Freitag, a specialist in 

microelectrode array (MEA) recordings. To investigate whether Lrrtm1 and Lrrtm2 

influence neuronal network activity we infected rat hippocampal cultures with rAAV 

expressing shRNA targeting Lrrtm1 (rAAV-shLrrtm1), Lrrtm2 (rAAV-shLrrtm2) or a 

control virus, rAAV-shScramble  (Mauceri et al., 2011). We could observe that the number  
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of bursts as well as the mean burst durations of cultures infected with rAAV-shLrrtm1 was 

reduced compared to cultures infected with rAAV-shScramble (Figure X). The reduction 

caused by rAAV-shLrrtm1 could be rescued by overexpression of Lrrtm1 protein (Figure 

13). The decrease in network activity caused by infection with rAAV-shLrrtm1 was first 

observed at day in vitro 10-11 (Figure 13), coinciding with the onset of robust Lrrtm1 

mRNA expression in vitro (see Figure 8A). Infection of hippocampal cultures with rAAV-

shLrrtm2 had similar effects on burst number and duration (Figure 14) and the reduction 

initially occurred at day in vitro 10, when Lrrtm2 mRNA is strongly expressed (see Figure 

8A). 

Interestingly, neurons overexpressing wild-type MeCP2 (MeCP2WT) or mutant MeCP2 

(MeCP2S421A) showed a similar change in the activity pattern, i.e. reduced spike activity. In 

a previous experiment I could show that overexpression of MeCP2WT lead to a decrease of 

Lrrtm2 mRNA levels. Together these findings propose that reduction of Lrrtm2 mRNA is 

responsible for the network changes in neurons that overexpress MeCP2WT. To test this 

hypothesis we performed a double infection of hippocampal neurons with MeCP2WT and 

an expression vector for Lrrtm2. However, Lrrtm2 protein failed to rescue the MeCP2WT-

associated changes in network behaviour (Figure 15). 

 

Lrrtm1 and Lrrtm2 and AMPA trafficking 

 

Arnold et al. have shown that stimulation of cultured hippocampal neurons with the 

GABAA receptor antagonist Bicuculline leads to synchronisation of the neuronal network 

activity (Arnold et al., 2005). It leads to an increase in bursting activity as well as an 

increase of the number of spikes within one burst (Arnold et al., 2005). The changes in 

network activity are persistent for at least 24h and depend on gene transcription, as 

treatment of the neurons with Actinomycin D, a potent inhibitor of gene transcription, 

abolishes the stable change in network activity (Arnold et al., 2005). Accordingly, in order 

to sustain the alteration in network behaviour after Bicuculline treatment, gene transcription 

is required. However, it remains elusive which gene(s) is necessary for the maintenance of 

the network changes. Lrrtm1 and Lrrtm2 are potential candidates for the following reasons;  
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using a confocal microscope detecting GFP, and a continuous flow of medium at room 

temperature. However, chemical LTP did not induce an increase in GFP fluorescence but 

contrariwise lead to a drop of the fluorescence signal (Figure 16). To exclude the 

possibility that room temperature is the preventive factor, I used a different microscopic 

setup with a continuous flow of medium at 37°C and Bicuculline stimulation to 

synchronise the network activity. Nonetheless I was still unable to detect an increase in the 

GFP fluorescence signal after stimulation (Figure 17). To rule out the possibility that the 

transfected pCl-SEP-GluR2 is not functional, I used ACSF (artificial cerebrospinal fluid) at 

a pH of 6 to quench the fluorescence signal, as well as NH4Cl to collapse pH gradients 

resulting in a bright fluorescence signal. The pH-dependency of the pHluorin was clearly 

visible (Figure 17). In order to circumvent the pH-dependency of the transfected 

GluR2/GFP-pHluorin fusion protein I fixed the transfected cells and used antibodies to 

GFP to determine the ratio of surface to total AMPA receptors before and 15min after 

Figure 18. Staining of AMPA receptors before and after Bicuculline treatment. 
Primary mouse hippocampal neurons were used for determining the amount of total- and surface-AMPA 
receptors under different conditions. Representative pictures of pCL-SEP-GluR2 transfected neurons that 
were either left untreated or subject to AP bursting using Bicuculline stimulation for 15min are shown. 
Neurons were stained before and after permeabilisation using an antibody to GFP and different
fluorescent-labelled secondary antibodies to distinguish surface AMPAR fluorescence from total AMPAR
fluorescence. AMPAR, AMPA receptor. 
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treatment with Bicuculline using two different methods, live cell staining and fixed cell 

staining. However, neither under these conditions was an increase in the relative surface 

AMPA receptor amount after stimulation with Bicuculline detectable (Figure 18). 

Consequently, either Bicuculline and chemical LTP stimulation of cultured hippocampal 

neurons do not induce trafficking of AMPA receptors to the neuronal surface under these 

conditions, or a more sensitive method to detect the fluorescence signal is required. 
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Discussion 

 
The results of this study reveal several new findings about the recently identified synaptic 

cell adhesion molecule genes Lrrtm1 and Lrrtm2. First, Lrrtm1 and Lrrtm2 expression is 

regulated by neuronal activity; they both are immediate-early genes whose activity-

dependent increase in mRNA requires the activation of CaM kinases, CBP and nuclear 

calcium signals. Second, the induction of Lrrtm2 expression depends on intact CRE sites 

immediately upstream of the gene, and its promoter region is bound by CREB. Third, 

knock-down of Lrrtm1 and Lrrtm2, respectively, influences neuronal network activity. 

Finally, MeCP2 overexpression compromises basal mRNA expression of Lrrtm2, but not 

of Lrrtm1. 

 

Physiological significance of activity-induced Lrrtm1 and Lrrtm2 
expression 

 

In this study, I analysed the neuronal activity-dependent regulation of Lrrtm1 and Lrrtm2 

transcription in primary mouse hippocampal cultures and demonstrated that Lrrtm1 and 

Lrrtm2 mRNA levels increase about two fold upon Bicuculline-induced action potential 

bursting. My results show a slight difference in the time course of upregulation, with 

Lrrtm2 mRNA levels having a peak induction after two hours, while Lrrtm1 mRNA levels 

peak after four hours. To the best of my knowledge, this shows for the first time that 

neuronal activity regulates the gene expression of synaptic cell adhesion molecules.  

To date, knowledge about the functions of Lrrtm1 and Lrrtm2 in neurons includes a role in 

AMPA-mediated excitatory synaptic transmission and subtle effects on behaviour and 

memory performance in knock-out animals (Soler-Llavina et al., 2011; Takashima et al., 

2011; Voikar et al., 2013). In humans, polymorphisms of LRRTM1 could be linked to 

schizophrenia (Francks et al., 2007; Ludwig et al., 2009), and microdeletions affecting 

LRRTM2 have been found associated with mild cognitive impairment and developmental 

delay (Kleffmann et al., 2012). The studies on Lrrtm1 and Lrrtm2 function that have been 

described in the literature so far have not taken into account the possibility that expression 
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of Lrrtm1 and Lrrtm2 could be regulated by neuronal activity. The results of my study 

show that Lrrtm1 and Lrrtm2 expression is developmentally regulated in neuronal cell 

cultures and that their expression is induced by synaptic activity. It is possible, but not 

mandatory, that Lrrtm1 and Lrrtm2 have different functions under basal and active 

conditions in neurons. In the following, three possible functions of the latter, the activity-

induced upregulation of Lrrtm1 and Lrrtm2, are discussed. 

(1) The concept of an analogy between neuronal and immune synapses was first 

established by M.A. Norcross (Norcross, 1984). It is based on structural as well as 

functional parallels, in that they both can be described as ‘a stable adhesive junction 

between two cells across which information is relayed by directed secretion’ (Dustin and 

Colman, 2002). The activation of T cells by antigen presenting cells requires an antigen-

specific interaction between the T cell receptor and the MHC molecule on the surface of 

the antigen presenting cell (Janeway, 2001). It additionally requires a co-stimulatory signal 

mediated by molecules expressed on the membrane of T cells and antigen presenting cells 

(Janeway, 2001). The co-stimulatory signal increases the effectiveness of the T cell 

interaction in that it lowers the number of binding-triggered T cell receptors which is 

necessary for the activation (Viola and Lanzavecchia, 1996). A classic co-stimulatory 

interaction is CD28-CD80 (Bromley et al., 2001b; Bromley et al., 2001a), and there is also 

an inducible co-stimulatory molecule, ICOS (Hutloff et al., 1999). In drawing parallels to 

the neuronal synapse, a co-stimulatory signal may similarly exist to support synaptic 

transmission. Lrrtm1 and Lrrtm2 are possible candidates for a co-stimulatory signal, as 

they are inducible, and their induction depends on a preformed synaptic contact and 

synaptic activity. Since knockdown of Lrrtm1 and Lrrtm2 does not abrogate, but lower 

synaptic transmission (Soler-Llavina et al., 2011) one may reason that they enhance 

synaptic transmission, similar to the enhancement of T cell activation by co-stimulation. 

 (2) In a review on memory, Barco et al., discuss a model in which memory formation 

involves several distinct molecular mechanisms whose respective location moves from the 

synapse to the nucleus and then back to the synapse (Barco et al., 2006). These include 

neurotransmitter release, activation of kinases and phosphatases, chromatin alterations, 

initiation of transcription factors and gene expression, synaptic capture of newly 

synthesised gene products and formation of new synapses (Barco et al., 2006). 

Involvement of activity-dependent expression of Lrrtm1 and Lrrtm2 in memory formation 
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would fit with such a model. Initiated by glutamate release and activation of NMDA 

receptors, the signal moves from the synapse to the nucleus via calcium signalling and 

CaM kinases, where it results in CREB-dependent gene transcription and possibly 

chromatin alterations mediated by CBP, resulting in upregulation of Lrrtm1 and Lrrtm2 

mRNAs. From here the signal returns to the synapse by the translation of Lrrtm1 and 

Lrrtm2 mRNAs into proteins that are localized in the postsynaptic membrane, allowing the 

formation of new synapses, as has been shown by Linhoff et al. (Linhoff et al., 2009). 

Barco et al. further suggest that the molecular basis of memory persistence are self-

perpetuating mechanisms that enable the neuron to maintain long-term changes which 

outlast the half-life of proteins (Barco et al., 2006). Examples of these mechanisms are 

prions, autophosphorylating kinases and AMPA receptor trafficking. They are based on the 

idea that a signal sustains itself by maintaining or reinforcing its source, similar to a 

perpetual motion machine or, more realistically speaking, a positive feedback mechanism. 

When applied to Lrrtm1 and Lrrtm2, synaptic activity could be envisioned as source of the 

self-perpetuating system, and the Lrrtm genes and proteins as its tools. Thus, synaptic cell 

adhesion molecules could either be seen as a new example of a self-perpetuating 

machinery, or as part of the above mentioned mechanisms. Indeed, double knock-down of 

Lrrtm1 and Lrrtm2 during early postnatal life was found to selectively impair AMPA-

mediated synaptic transmission (Soler-Llavina et al., 2011). This raises the possibility that 

the activity-induced expression of Lrrtm1 and Lrrtm2 partakes in inserting or stabilizing 

AMPA receptors in the postsynaptic membrane in response to LTP-inducing stimuli. This 

is supported by the finding, that Lrrtms are important for the maintenance of LTP (Soler-

Llavina et al., 2013) Taken together, the characteristics of Lrrtm1 and Lrrtm2 make them 

very suitable for a role in memory, which will be interesting to explore. 

(3) The groups of R.C. Malenka and T.C. Südhof both performed detailed experiments on 

the function of Lrrtm1 and Lrrtm2 using RNA interference-mediated loss of function 

approaches (Ko et al., 2011; Soler-Llavina et al., 2011). They could show that concurrent 

knock-down of neuroligin1, neuroligin3, Lrrtm1 and Lrrtm2 is required to reduce synapse 

numbers in hippocampal neurons in vitro (Ko et al., 2011). Most intriguing was the finding 

that this reduction depended on synaptic activity and CaM kinase signalling (Ko et al., 

2011). Based on these results they proposed a model in which synapses are continuously 

eliminated and reformed in an activity-dependent manner as a proofreading mechanism, 
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and that the continuous elimination and reformation of synapses requires neuroligins and 

Lrrtms (Ko et al., 2011). The finding of this study that Lrrtm1 and Lrrtm2 are regulated by 

synaptic activity and CaM kinase signalling would fit with such a proofreading model. 

Further, it was recently shown that neuronal activity induces cleavage of neuroligin1, the 

postsynaptic ligand of neurexin (Peixoto et al., 2012; Suzuki et al., 2012). This mechanism 

might be an explanation for the finding that the elimination of synapses due to neuroligin 

and Lrrtm knock-down required activity (Ko et al., 2011). This is in line with the 

proofreading model postulated by Ko et al., and suggests that neuroligin is constantly 

produced and cleaved at active synapses, creating a perpetual turnover at the synapse. The 

balance of formation and elimination might be disrupted by excitotoxic conditions such as 

seizures, resulting in an excess cleavage of neuroligin1 which results in depression of 

synaptic transmission (Peixoto et al., 2012). The increased level of neuroligin1 cleavage 

and loss of synaptic transmission could either be a negative, toxic effect of 

overstimulation, or a cellular mechanism of protection against excitotoxicity. The activity-

dependent cleavage of neuroligin1 was shown to require NMDA receptor activation and 

CaM kinase signalling (Peixoto et al., 2012; Suzuki et al., 2012), both of which are also 

involved in the activity-dependent regulation of Lrrtm1 and Lrrtm2. Lrrtm1 and Lrrtm2 are 

further able to bind neurexin (de Wit et al., 2009; Ko et al., 2009; Siddiqui et al., 2010); 

this raises the possibility that Lrrtm1, Lrrtm2 and neuroligin1 act synergistically to 

maintain normal synaptic transmission. A model could be envisioned in which Lrrtm1 and 

Lrrtm2 serve as placeholders in the postsynaptic membrane for cleaved neuroligin1 to 

sustain neurexin clusters at the presynaptic side. The activity-dependent upregulation of 

Lrrtm1 and Lrrtm2 expression could serve as backsignal to the preceding neuron, 

conferring the information that a functional contact is formed and maintained, in line with 

the proofreading model. 

 

Regulation of genetic modules through the signalling cascade of 
neuronal activity–nuclear calcium–CREB 
 

The results of this study demonstrate that neuronal activity induces the expression of 

Lrrtm1 and Lrrtm2. The upregulation of Lrrtm1 and Lrrtm2 mRNA requires intact function 
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of CaM kinases and nuclear calcium signalling. This pathway is one of the four major 

neuronal activity-controlled and gene-inducing signalling cascades, which comprise the 

MEK/ERK, p38, calcineurin and CaM kinase pathway. The latter, specifically CaMKIV 

signalling, requires nuclear calcium signals and has previously been shown to regulate the 

expression of distinct genetic programmes through the activation of the transcription factor 

CREB (Zhang et al., 2009; Zhang et al., 2011). CREB, in turn, was found implicated in 

many functions of the central nervous system, particularly in neuronal survival, memory 

formation, addiction, and neurogenesis (Carlezon et al., 1998; Impey et al., 1998; Pittenger 

et al., 2002; Zhu et al., 2004; Zhang et al., 2009; Zhang et al., 2011). In this study I found 

that the expression of Lrrtm2 requires nuclear calcium signalling, and the promoter of the 

gene is bound and controlled by CREB. Consequently, one may speculate whether Lrrtm2 

contributes to one of the known roles of CREB in the central nervous system or is part of a 

new CREB-mediated function in neurons. The finding that mutations in the genes 

encoding Lrrtms have comparatively subtle effects in humans (Kleffmann et al., 2012; 

Rocca et al., 2012), or in knock-out animals (Takashima et al., 2011; Voikar et al., 2013), 

gives rise to the notion that Lrrtms fulfil a task in the fine-tuning of synapses (Francks et 

al., 2007). This might represent an as yet unexplored function of CREB in the brain, and 

requires an understanding of possible functions of Lrrtm1 and Lrrtm2 on the synaptic level, 

some of which I discussed in the preceding section.  

 

The role of the co-activator CBP and the modifier MeCP2 in Lrrtm1 
and Lrrtm2 transcription 
 

In this study I show that the mRNA levels of Lrrtm1 and Lrrtm2 depend on intact CBP 

function. Expression of E1A, a viral protein that binds to and interferes with normal 

function of CBP (Arany et al., 1995; Bannister and Kouzarides, 1995), led to a decrease in 

basal expression of Lrrm1 and Lrrtm2 mRNA and compromised their activity-induced 

upregulation. CBP is a transcriptional co-activator that interacts with a variety of 

transcription factors (Shiama, 1997), including factors with putative binding sites in the 

Lrrtm1 and Lrrtm2 promoters. CBP has histone acetyltransferase activity (Kalkhoven, 

2004) and is implicated in posttranslational modification of histones during learning 
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(Korzus et al., 2004). Also, like the expression of Lrrtm1 and Lrrtm2, nuclear calcium and 

CaM kinases control CBP activity (Chawla et al., 1998). The finding that interference with 

CBP function influences both the basal and activity-induced expression of Lrrtm1 and 

Lrrtm2 raises the possibility that CBP regulates Lrrtm1 and Lrrtm2 expression either by 

cooperating with different transcription factors under basal and active conditions; or that 

the basal state of neurons, in which they are spontaneously active, is sufficient to stimulate 

CBP-dependent transcription. A transcription factor known to cooperate with CBP is 

CREB (Chrivia et al., 1993), whose binding to the promoter of Lrrtm2 I could show in this 

study. CREB and CBP form a prototypical neuronal activity-controlled transcription 

regulating complex (Chawla et al., 1998; Hardingham et al., 1999; Hardingham et al., 

2001b), which makes it likely that the disturbance of activity-induced Lrrtm2 mRNA 

upregulation in the presence of the CBP inhibitor E1A is due to a failed interaction of CBP 

and CREB. The finding that in the presence of E1A the basal expression of Lrrtm2 is 

reduced by 50% may suggest that CREB is also regulating transcription under basal 

conditions, in which neurons are never fully silent (see Figure 2E). This may also explain 

the developmentally regulated increase of Lrrtm2 expression, which I could show in this 

study. 

The finding that CBP plays a role in the regulation of Lrrtm1 and Lrrtm2 raises the 

possibility that they are implicated in the aetiology of Rubenstein-Taybi syndrome, a rare 

but severe disorder that is caused by mutation of the CBP gene (Rubinstein and Taybi, 

1963). Some of the symptoms of this syndrome, for example the difficulties in learning, 

could be explained by synapse dysfunction due to the aberrant regulation of Lrrtm1 and 

Lrrtm2. 

A disease whose symptoms partly overlap with those of Rubinstein-Taybi syndrome is a 

disorder caused by mutations in the transcription factor gene MECP2, Rett syndrome (Rett, 

1966; Amir et al., 1999). In this study I could show that overexpression of wild-type 

MeCP2 compromises the developmentally regulated increase of Lrrtm2 mRNA, but not the 

one of Lrrtm1. The selective influence of MeCP2 on gene expression suggests a direct or 

indirect connection between MeCP2 and Lrrtm2 executed by several possible mechanisms. 

First, an indirect link could be the impairment of basal activity; neurons overexpressing 

MeCP2 show a lower bursting frequency and the bursts occur less coordinated in the 

neuronal network (see Figure 15). Assuming that the development of the neuronal network 
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is paralleled by increasing spontaneous bursting activity, and that this regulates the 

increase in Lrrtm2 mRNA, the impact of MeCP2 overexpression on activity could explain 

its effect on Lrrtm2 expression. However, the fact that Lrrtm1 is likewise controlled by 

neuronal activity but does not change its mRNA level upon the expression of MeCP2, 

suggests that additional factors play a role in the regulation of Lrrtm1 or in that of Lrrtm2, 

or both. Second, the results of this study show that in hippocampal cultures the 

phosphorylation of MeCP2 continuously rises during the first two weeks after plating. 

Correlating with this rise is the increase in Lrrtm1 and Lrrtm2 mRNA expression. This 

suggests the possibility that phosphorylation of MeCP2 plays a part in the regulation of 

Lrrtm1 and Lrrtm2. The finding that overexpression of MeCP2 impairs the increase of 

Lrrtm2 mRNA could be based in a dominant negative function of MeCP2, sequestering the 

kinase activities responsible for the phosphorylation of MeCP2. However, this study also 

shows that overexpression of MeCP2S421A, a mutant form of MeCP2 which cannot be 

phosphorylated at serine 421, still compromises the expression of Lrrtm2, suggesting that 

this phosphorylation site of MeCP2 has no function in the supposed regulation of Lrrtm2. 

Yet, since MeCP2 has several phosphorylation sites (Tao et al., 2009; Gonzales et al., 

2012), this finding does not rule out a role of MeCP2 phosphorylation in the regulation of 

Lrrtm2. Finally, another possible direct link between MeCP2 and Lrrtm2 might be CREB. 

MeCP2 was proposed to regulate transcription via interaction with CREB (Chahrour et al., 

2008). As I have shown that CREB binds to the promoter of Lrrtm2 (see Figure 6), the 

overexpression of MeCP2 might interfere with a normal function of the MeCP2-CREB 

interaction, resulting in an impaired expression of Lrrtm2. Taken together, the finding that 

high amounts of MeCP2 compromise the expression of Lrrtm2 suggests that aberrant 

levels of Lrrtm2 contribute to the symptoms of Rett syndrome, which in some individuals 

is caused by a dublication mutation of MECP2 (Das et al., 2013). 

 

Experimental considerations 

 

I would like to discuss several aspects of the experimental condition of this study. 
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First, an important question which was not addressed here is whether the observed 

upregulation of Lrrtm1 and Lrrtm2 mRNA translates to protein level. This could not be 

achieved due to the lack of good antibodies for Lrrtm1 and Lrrtm2. 

Second, the Luciferase reporter assay required an enhancement of Bicuculline-induced 

action potential bursting in order to detect the Firefly luciferase signal. This raises the 

possibility that, in addition to CRE, there are other transcription factor binding sites in the 

promoter of Lrrtm2 that contribute to the Bicuculline-induced upregulation of Lrrtm2 

mRNA in vitro which reside in a part of the promoter that was not included in the 356bp 

fragment cloned in the reporter vector. However the finding that Bicuculline stimulation in 

the presence of 4-AP lead to an induction of the firefly luciferase signal by 1.5 fold shows 

that the regulatory sites present in the cloned promoter fragment are sufficient for an 

induction of Lrrtm2. In addition the assay shows that the two CRE sites in the promoter 

fragment are necessary for the induction, as their mutation lead to an abrogation of the 

activity-induced signal. 

Third, the signals detected in the qPCR analyses of immunoprecipitated DNA in the 

chromatin immunoprecipitation experiment correspond to gene-specific primers. Since 

there is a CRE site (CGTCA) in the untranslated region of exon1 of Lrrtm1, the primers 

that were used in the qPCR analyses to detect DNA bound by CREB are specific for this 

region. This means, however that they do not directly bind to the region which is 

commonly seen as promoter region, but a sequence approximately 350bp downstream. As 

the fragments of sheared chromatin constitute of around 500-1000bp, this still allows 

detection of the proximal promoter. However, in order to correctly compare the CREB 

binding to the promoters of Lrrtm1 and Lrrtm2, primers specific for this region should be 

used. Another issue that was encountered in the chromatin immunoprecipitation 

experiment is that I was unable to find an adequate positive control gene for the binding of 

c-Jun. This is due to the fact that c-Jun is commonly seen as transcription factor induced by 

stress signals (Kyriakis et al., 1994). Consequently most of the target genes shown to be 

regulated by c-Jun so far are probably not targeted under the conditions that were applied 

in this experiment, namely synaptic activity. Due to the lack of the positive control gene I 

cannot rule out the possibility that the c-Jun antibody used in this experiment does not 

work and therefore the binding of c-Jun to Lrrtm1 and Lrrtm2 could not be detected, but 

actually is there. 
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Fourth, I was unable to find a positive control gene for the fusion construct VP16-MeCP2, 

which is supposed to constitutively activate MeCP2 target genes. I tested Grin2a and Bdnf, 

two genes previously shown to be regulated by MeCP2 (Zhou et al., 2006; Chahrour et al., 

2008), but both did not show altered expression in VP16-MeCP2 overexpressing neurons 

(data not shown). This is either due to a non-functional VP16-MeCP2 construct or protein, 

respectively, or the genes are not targeted by MeCP2 under the conditions of the 

experiment. The latter is supported by the finding that Grin2a mRNA expression did also 

not change upon the overexpression of wild-type MeCP2, which raises the possibility that 

this gene is differentially regulated in the hippocampus and the hypothalamus, the region 

which was analyzed by Chahrour et al. (Chahrour et al., 2008). 

Fifth, detection of the AMPA receptor trafficking proved to be very difficult. To persue 

this experiment, it would be necessary to set up reliable conditions to detect AMPA 

receptor trafficking, first by using an established stimulation protocol and then by 

Bicuculline stimulation. However, the setups available in our laboratory were not optimal 

for this purpose.  

 

Future directions 

 

The results of this study reveal a mechanism that links synaptic cell adhesion molecules to 

neuronal activity, both of which are important elements in synapse function. More work is 

needed to understand this connection and its contribution to normal brain function. It will 

be interesting to explore the physiological role of activity-induced expression of Lrrtm1 

and Lrrtm2, and to investigate their involvement in sustained adaptive changes in neurons 

and neuronal networks. This may help us to understand their part in the development of 

cognitive disorders and will add one little piece to the understanding of how our brain 

works. 
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Abbreviations 

 
4-AP   4-aminopyridine 

5q   chromosome 5, long arm  

AAV   adeno-associated virus 

ab   antibody 

AMPA   α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid 

AMPAR  α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor 

APV   2-amino-5-phosphonovaleric acid 

Atf3   activating transcription factor 3 

BDNF   brain-derived neurotrophic factor 

bp   base pair  

Btg2   B cell translocation gene 

CA   cornu ammonis 

CaM   calcium/calmodulin 

CaMBP  calcium/calmodulin binding peptide 

CaMK   calcium/calmodulin-dependent kinase 

cAMP   cyclic adenosine monophosphate 

CASK   calmodulin-dependent serine protein kinase 

CBA   chicken beta actin 

CBP   CREB-binding protein 

Ccrn4l   carbon catabolite repression 4-like 

cDNA   copy DNA 

c-fos   FBJ osteosarcoma oncogene 

ChIP   chromatin immunoprecipitation 

Jun   jun oncogene 

CMV   cytomegalovirus 

CR1   conserved region 1 

CRE   cAMP/calcium response element 

CREB   cAMP/calcium response element-binding protein 
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Dlg1   Drosophila disc large tumor suppressor 

EF1α   elongation factor-1α 

Eph   ephrin receptors 

EPSC    evoked excitatory postsynaptic current 

ERK   extracellular regulated MAP kinase 

Fc   fragment, crystallizable  

FLuc   firefly luciferase 

GABA   γ-Aminobutyric acid 

GADD45  growth arrest and DNA damage-inducible protein 45 

GEFs   guanine nucleotide exchange factors 

Gusb   glucuronidase, beta 

HRP   horseradish peroxidase 

ICOS   inducible T-cell co-stimulator 

Ifi202b   interferon activated gene 202B 

IgG   immunoglobulin G 

IP3   inositol triphosphate 

PAK   p21 activated kinase 

LA   laminin 

Lrrtm   leucine-rich repeat transmembrane 

LTP   long-term potentiation 

MAP   mitogen-activated protein 

MAPK   mitogen-activated protein kinase 

MeCP2  methyl CpG binding protein 2 

Mef2c   myocyte enhancer factor 2C 

MHC   major histocompatibility complex 

MINT   Munc 18 interacting protein 

mRNA   messenger RNA 

NBQX   2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione 

NCAM  neural cell adhesion molecule 

NFAT    nuclear factor of activated T-cells 

NFĸB   nuclear factor ĸB 

NGLs   netrin-G-ligands 
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NMDA  N-methyl-D-aspartate 

Npas4   neuronal PAS domain protein 4 

Nr4a1   nuclear receptor subfamily 4, group A, member 1 

P   postnatal 

PCR   polymerase chain reaction 

PDL   poly-D-lysin 

PDZ   PSD95, post synaptic density protein, Dlg1, zo-1 

PSD95   post-synaptic density protein 95 

qPCR   quantitative PCR 

rAAV   recombinant adeno-associated virus 

RNAi   RNA interference 

RT-qPCR  reverse transcriptase quantitative PCR 

SALMs  synaptic adhesion-like molecules 

SD   standard deviations 

SEM   standard error of the mean 

Serpinb2  serine peptidase inhibitor, clade B, member 2 

SNP   single nucleotide polymorphism 

SP1    specificity protein 1 

SynCAM  synaptic cell adhesion molecule 

Tiam   T cell lymphoma invasion and metastasis 

TrkB   Tyrosine-related kinase B 

USF    upstream stimulatory factor 

VGLUT1  vesicular glutamate transporter 1 

VP16   viral protein 16 

WPRE   woodchuck posttranscriptional regulatory element 

WT   wild-type 

zo-1   zonula occludens-1 proteinCMV 
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