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Abstract

This thesis treats optimum experimental design for the parameter estimation problem
of mobility parameters in charge transport models of organic semiconductors. The
models consist of the van Roosbroeck system, a quasi-electrochemical potential
defining equation, and the Extended Gaussian Disorder Model and the Extended
Correlated Disorder Model both describing the mobility. The arising problems are
very ill-conditioned. The essential points of this work are:

• The robust numerical solution of the model equations w.r.t. varying parameters,
control parameters, boundary values and initial guesses for iterative methods.

• The computation of exact derivatives up to order two, which are necessary for
the optimum experimental design problem. This includes derivatives of the
model functions and implicitly given derivatives of the solution.

The Scharfetter-Gummel scheme is applied to the spatial discretization in one di-
mension, whereas in two dimensions bilinear finite elements are used. The numerical
simulation of the discretized equations is done by a hybrid simulation method con-
sisting of Gummel’s method with a special, problem-adapted stabilization term, a
contraction based damping strategy, and a full step Newton method in the end for
quadratic convergence near the solution. These strategies are independent of the
spatial discretization and are applied to the simulation of a polymer nano-chain
attached to the cathode. The simulation of the one dimensional problems are used
for the optimum experimental design. The derivatives are computed with automatic
differentiation exactly up to machine precision. Therefor we use software tools for
the computation of the derivatives of the model functions and solve tangential and
adjoint equations of the problem for the parameters and control parameters. With
optimum experimental design we plan experiments for newest organic materials, like
NRS-PPV and α-NPD. The confidence region of the parameters are reduced by a
factor of 100 for NRS-PPV.
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Zusammenfassung

Diese Arbeit behandelt die optimale Versuchsplanung zur Parameterschätzung von
Mobilitätsparametern in Ladungstransportmodellen von organischen Halbleitern. Die
Modelle bestehen aus dem van Roosbroeck System, einer quasi-elektrochemischen
Potential definierenden Gleichung und den Mobilitätsmodellen Extended Gaussian
Disorder und Extended Correlated Disorder. Die auftretenden Probleme sind sehr
schlecht konditioniert. Die wesentlichen Punkte dieser Arbeit sind:

• Das, gegenüber variierender Parameter, Steuerungen, Randwerte und An-
fangswerte der iterativen Verfahren, robuste numerische Lösen der Modell-
gleichungen.

• Die Berechnung der, für die Versuchsplanung benötigten, exakten Ableitungen
bis zur Ordnung zwei. Dies beinhaltet die Berechnung von Ableitungen der
Modellfunktionen und der implizit gegebenen Ableitungen der Lösung.

Für die Ortsdiskretisierung wird in einer Dimension das Scharfetter-Gummel Schema
verwendet, wohingegen in zwei Dimension auf bilineare finite Elemente zurückgegrif-
fen wird. Das numerische Lösen der diskretisierten Gleichungen erfolgt durch eine
hybride Simulationsmethode bestehend aus der Gummel Methode versehen mit einem
speziellen, auf obige Probleme zugeschnittenen Stabilisierungsterm, einer kontrak-
tionsbasierten Dämpfungstrategie und einem nachgeschalteten Newton Verfahren zur
rapiden Konvergenz nahe der Lösung. Diese Strategien sind unabhängig von der
Ortsdiskretisierung und werden auf die Simulation einer, der Kathode angelagerten,
Polymer-Nano-Kette in 2D angewendet. Die 1D Probleme werden für die Versuchs-
planung benützt. Die Ableitungen werden automatischer Differentiation exakt bis auf
Maschinengenauigkeit berechnet. Dabei werden Software Tools für die Berechnung
der Modellfunktionen verwendet und tangentiale, sowie adjungierte Gleichungen der
Probleme für Parameter und Steuerungen gelöst. Mit der Versuchsplanung werden
Experimente zu neuesten organischen Materialien, wie NRS-PPV und α-NPD ge-
plant. Für NRS-PPV wird das Konfidenzgebiet der Parameter um einen Faktor 100
reduziert.
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Introduction

In 1936 Destriau discovered the electroluminescence, i.e. the emission of light from
a solid due to an applied voltage. Almost two decades later, the team of Bernanose
found similar behavior in organic material. Those discoveries were the first steps in a
development which e.g. has resulted in organic solar cells and organic light emitting
devices (OLED), used in displays of modern electronic devices like mobile phones,
televisions, computer monitors, and lighting. Organic light emitting devices have
major advantages compared to crystalline light emitting devices (LED) namely, they
can be lightweight and flexible, they have an improved brightness and power efficiency,
they can be very thin and have a short response time. On the other hand, the organic
material is susceptible to degradation effects which means that the material gets
destroyed under repeated excitations by an electric field. The degradation of the
organic material is still an open problem and its analysis and understanding is a
current research topic. The degrading process of the organic material is very slow
and macroscopic effects like the loss of conductivity, disturbances in the color balance
only emerge after years. Therefore the simulation of the degradation process is a
highly desired topic, where the time can be scaled down. A crucial element of the
degradation is the charge transport taking place in the organic material. Modern
state-of-the-art models for the charge transport through organic semi-conducting
material are the Extended Gaussian/Correlated Disorder Model (EGDM/ECDM)
developed by Coehoorn et al. at Eindhoven consisting of the van Roosbroeck system,
a stationary system of strongly coupled, highly nonlinear partial differential equations.
Our simulation methods are based on Gummel’s method, a derivative-free fixed-point
iteration suited for the van Roosbroeck system. We extend the method by a quasi
electrochemical potential defining equation. The solution method is tuned by a
corrected stabilization term corresponding to the generalized Einstein relation, which
is part of the EGDM and ECDM, and by using an adaptive damping scheme which
forces contracting step lengths far away from the solution.

The drawback of the models EGDM and ECDM are unknown parameters, which
cannot be measured. A common technique to identify those parameter values is the
parameter estimation based on an inverse process. Experiments are performed to
measure the electric current at different temperatures, voltages, and device thicknesses
resulting in measurement data to which models are fitted. This is done with a least
squares formulation corresponding to the minimization of a Likelihood function.
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Every physical measurement process is afflicted with random errors which cause
uncertain parameter estimates. The parameter uncertainty is quantified by the
variance-covariance matrix which contains derivatives of a measurement function w.r.t.
the parameters. Optimum experimental design is the minimization of a functional
of the variance-covariance matrix over control parameters constrained by the model
equations and possibly other control constrains. With the new control parameters,
additional experiments are performed extracting more information out of the system.
We solve the optimum experimental design problems with the sequential quadratic
programming method on a reduced system.

Results of the thesis

In this work we develop robust numerical solution methods for simulating the charge
transport in organic materials modeled by the EGDM and the ECDM w.r.t. varying
parameters, control parameters, boundary values and initial guesses for the iterative
methods. We use an adaptive approach based on Gummel’s method including
stabilization and damping techniques. In optimum experimental design mixed second
order derivatives are required. To avoid accumulated numerical errors, we compute the
derivatives with automatic differentiation efficiently and accurately. In the late 1990s
Körkel developed the software package VPLAN, which offers interfaces to a variety of
software tools, like ADIFOR for automatic differentiation, PARFIT for parameter
estimation, and SNOPT for solving optimum experimental design problems. For the
numerical computation of our solution method, we have written a software package,
which not only simulates the problem, but also provides the required derivatives for
the parameter estimation and the optimum experimental design, i.e. up to mixed
second order derivatives of the solution w.r.t. the parameters, control parameters,
and both. This software has been coupled to VPLAN interchanging solutions of the
model equations, derivative information, parameters, and control parameters. Thus
sensitivity analysis, parameter estimation and optimum experimental design problems
can be computed. We apply optimum experimental design to reduce the uncertainty
of the EGDM and ECDM parameters significantly.

Thesis overview

The chapters are arranged as follows. We first develop the van Roosbroeck system
from basic physical equations as the basis of our semiconductor model in chapter 1.
We extend the model to the EGDM and ECDM respectively to model the charge
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transport in organic semiconductors. At the end we discuss the questions of existence,
uniqueness and stability of the obtained system. In chapter 2, we discretize the
spatial derivatives and show that our problem is very ill-conditioned. We present
our alternative solution method, which consists of an extended Gummel method
provided with a contraction based damping strategy and a full step Newton method
to achieve quadratic convergence close to the solution. Finally we apply our method
to a 2D problem and show that the solution method can solve 2D problems as
well. Simulation results of a self-assembled nano-chain attached to the cathode are
presented. An overview of the parameter estimation considered for the optimum
experimental design is given in chapter 3. We derive the optimization problem
from basic statistical concepts, show how to compute the variance-covariance matrix
and define the linearized confidence region. We also formulate the Gauss-Newton
method for solving parameter estimation problems. Chapter 4 finally treats the
optimum experimental design problem. We assemble basic optimization results to
guarantee the solvability and present an SQP method on the reduced problem to
solve the constrained optimization problem. Optimum experimental design results
are presented for the organic materials NRS-PPV and α-NPD. At the end, we discuss
robust optimum experimental design and a sequential experimental design ansatz for
the example of NRS-PPV with EGDM.
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1 Organic semiconductor modeling

In this chapter we derive the models that are considered in this thesis starting from the
involved physics for the thermally assisted transport of electrons through disordered
organic media under the influence of an applied external field. We consider the
Extended Gaussian Disorder Model (EGDM), cf. Pasveer et al. [75] for modeling large
polymers and the Extended Correlated Disorder Model (ECDM), see Bouhassoune et
al. [20] for modeling smaller molecules. The basis of the models is the stationary van
Roosbroeck system, a set of coupled stationary partial differential equations for the
electric potential and the electron charge density. The system gained great success by
modeling the charge transport through crystalline semiconductors. Models for the
“hopping” transport of electrons through organic material is well described by the
master equation. Solving the master equation can be very slow, cf. the 3D simulations
of Holst et al. [87]. A different approach is to fit the previously mentioned models
to solutions of the master equation and thus find a nonlinear mobility dependent on
the temperature, organic material parameters, the electric potential, and the electron
charge density.

We start with a section about the physics and equations describing the charge transport
of electrons through semi-conducting materials in general and move on to a section
about altered models, which match the properties of organic materials. The equations
are normalized by scaling with typical quantities. In the end we give a brief overview
of the theory proving existence, uniqueness, and stability results of similar systems.

1.1 Physics of semiconductor devices

We define a semiconductor following Ashcroft [4]:
Definition 1.1.1. Semiconductors are solids, that are insulators at zero temperature
T . Their energy gap Eg is so small, that thermal excitation of electrons is leading to
measurable conductivity below the melting point. With the conduction level EC and
the valence level EV , the energy gap is defined by Eg := EC − EV .

In the presence of an applied external field E in V/m and a carrier density gradient,
i.e. Fick’s law, the electric current density is given by a sum of drift and diffusion
current

j = −e (µnE +D∇n), (1.1)
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1 Organic semiconductor modeling

in A/m2, with the carrier density n in m−3, the mobility µ in m2/(V s), the diffusion
coefficient D in m2/s, and the elementary charge e in As. By convenience, we will
always take e as a positive number. With the space variable x in m the units match,
which can be seen by

A

m2 = As

(
m2

V s

1
m3

V

m
+ m2

s

1
m4

)
.

In this work, we will only consider unipolar, i.e. electron-only transport layers. In the
absence of hole carriers, we do not have recombination of holes and electrons and the
conservation of charge carriers is described by the continuity equation

e
∂n

∂t
= −∇ · j.

In steady-state, which is our basic interest, this reduces to

0 = −∇ · j. (1.2)

The electric potential φ, measured in V , is defined by

E = −∇φ and φcathode = 0, (1.3)

with φcathode the boundary value of φ at the cathode contact. The electric potential
φ and the carrier density n are related through Poisson’s equation

−∆φ = −e
ε
n, (1.4)

with the permittivity ε = ε0εr in As/(V m), the product of vacuum permittivity ε0
and relative permittivity εr. Again we check, that the units match

1
m2V = As

V m

As

1
m3 .

The boundary condition of φ at the anode contact is obtained from the relation∫
C

E dx = Vapp − Vbi,

where C is an arbitrary path connecting cathode and anode, Vapp is the applied
voltage and Vbi is the built-in voltage which is defined by the difference of the energy
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1.1 Physics of semiconductor devices

levels of the adjacent metals

Vbi := Eanode − Ecathode.

On the other hand we have with (1.3)∫
C

E dx = φanode − φcathode = φanode

resulting in
φanode = Vapp − Vbi. (1.5)

Boundary values for the continuity equation (1.2) are provided by the values of the
carrier density at the electrodes ncathode and nanode.

1.1.1 Quasi chemical potential

According to Kittel [57], the Fermi energy EF is defined as the energy of the topmost
level in the ground state, i.e. T = 0, of a multi electron system. In the context of
semiconductor physics it coincides with the terminology of the chemical potential η,
spatially constant. In agreement with Ashcroft [4], we define a position-dependent
electrochemical potential ηe(x) by

ηe(x) = η + eφ(x),

as the combination of chemical potential η and electric potential energy eφ(x). In
degenerated semiconductors, which have a distribution of states in forbidden energy
areas, one sometimes defines the electron quasi chemical potential η̃(x), which is space
dependent. Accordingly we mean with quasi electrochemical potential the quantity
defined by

η̃e(x) = η̃(x) + eφ(x).

This generalization also holds for the non-degenerated case, which is why we drop the
tilde in the following notation.

7



1 Organic semiconductor modeling

1.1.2 Generalized Einstein relation

Assuming no explicit space dependence of the carrier densities

n(x) = n(ηe(x)),

the carrier density gradient transforms to

∇n = ∂n

∂ηe
(∇ηe + e∇φ).

If we consider the thermal equilibrium case, i.e. no current flow j = 0 at zero
temperature T = 0 and η(x) ≡ η, we have

0 = −e (−µn∇φ+D∇n) = −e
(
− µn∇φ+D

∂n

∂ηe
e∇φ

)
=
(
µn−D ∂n

∂ηe
e∇φ

)
e∇φ

and hence the generalized Einstein relation

D = µ
n

e ∂n∂ηe
. (1.6)

This relation is assumed to be valid for the non-equilibrium case, too. With Maxwell-
Boltzmann statistics

n = ni exp
(
− EC − η

kBT

)
,

with ni the intrinsic density, the relation (1.6) simplifies to the classical Einstein
relation

D = µ
kBT

e
, (1.7)

discovered by Einstein and Smoluchowski [32] in their analysis of the Brownian motion.
Here kB is the Boltzmann constant in eV /K.

1.2 Organic mobility models

In an overview article of Bässler et al. [23] the first principles of modeling disordered
semi-conducting organic materials were assembled. The charge transport is regarded
as a hopping process between localized sites, which are conjugated polymer chain
segments. Physically spoken, the charge transport is a thermally assisted tunneling
process. On-site energies are assumed to be Gaussian distributed, due to disorder, cf.

8



1.2 Organic mobility models

[51],

exp
(
− E2

2σ2

)
. (1.8)

Pasveer et al. [75] and Mensfoort et al. [88] presented the Extended Gaussian Disorder
Model, EGDM, which proceeds on the assumption, that the on-site energies have
no spatial correlation. For materials, where the energies are spatially correlated,
Bouhassoune et al. [20] developed the Extended Correlated Disorder Model, ECDM.
Both approaches determine the mobility from the numerical solution of the stationary
master equation representing the hopping of charge carriers on a regular cubic lattice
of sites with lattice constant a, see also [96]. The master equation is given by∑

i 6=j

[
Wijpi(1− pj)−Wjipj(1− pi)

]
= 0

with the probability pi that site i is occupied by a charge, only one charge carrier can
occupy one site, and assuming Miller-Abraham [67] transition rates

Wij =

ν0 exp[−2αRij − εj−εi
kBT

], εj ≥ εi,
ν0 exp[−2αRij ], εj < εi,

with ν0 an intrinsic rate, Rij := |Rj − Ri| the distance between site i and site
j, α = 10/a the inverse localization length of the localized wave functions under
consideration, and εi the on-sites energy of site i which are assumed to be Gaussian
distributed with width σ. The maximal hopping is considered to be

√
3a.

1.2.1 Extended Gaussian disorder model – EGDM

With the solution of the master equation the velocity of the particles is calculated by

v =
∑
i,j

Wijpi(1− pj)(Rj −Ri),

and the mobility then is
µ := v

nEV
,

with electric field E = −∇φ, the system volume V , and the electron density n =
< pi >/a

3. The fitted functions dependent on the carrier density n and the electric
potential φ appeared in Pasveer et al. [75] the first time. We rewrite them here, with

9



1 Organic semiconductor modeling

the extensions made in [88]. With

σ̂ = σ

kBT
and δG(σ̂) = 2log(σ̂ − σ̂2)− log log 4

σ̂2

the mobility is given by

µG(φ, n, σ,Nt, T ) = µ0 g0(σ, T ) gG1 (n, σ,Nt, T ) gG2 (φ, σ,Nt, T ),

g0(σ, T ) = exp
{
−c0 σ̂

2
}

gG1 (n, σ,Nt, T ) = exp

1
2(σ̂2 − σ̂)

(
min

{2n
Nt
, 0.2

})δG(σ̂)
 ,

gG2 (φ, σ,Nt, T ) = exp
{

0.44(σ̂
3
2 − 2.2)

}
√√√√√1 + 0.8

min
{
e|∇φ|
Nt

1
3σ
, 2
}2

− 1

 .
The standard deviation of the Gaussian distribution (1.8) σ, in eV , and the site
density denoted with Nt, in m−3, are the main characteristic material parameters
of the mobility. Their (exact) measurement is not possible, but their value most
desirable, which is why a parameter estimation is applied for which we compute
optimum experimental designs. Other parameters are the dimensionless factor c0,
the zero-temperature mobility µ0 in m2/(V s), and the boundary values φcathode and
φanode.

1.2.2 Extended correlated disorder model – ECDM

In 2009 Bouhassoune et al. proposed another model, which assumes a spatial correla-
tion of on-site energies [20]. This is the case for smaller molecules. Like for the EGDM
their strategy is to fit the mobility to results of the master equation for different
parameters σ, Nt and T . The mobility is separated in a high- and low-field dependent
part

µC(φ, n, σ,Nt, T ) =
[
µClow(φ, n, σ,Nt, T )q(σ̂) + µChigh(φ, n, σ,Nt, T )q(σ̂)

] 1
q(σ̂)

with
q(σ̂) = 2.4

1− σ̂

10



1.2 Organic mobility models

and

µClow(φ, n, σ,Nt, T ) = µ0 c1 g0(σ, T ) gC1 (n, σ,Nt, T ) gC2 (φ, n, σ,Nt, T ),

µChigh(φ, n, σ,Nt, T ) = c2
Ered

µ0

(
1− n

Nt

)
,

where
c1 = 10−9,

c2 = 2.06 · 10−9,

Ered = eN
− 1

3
t E

σ
.

For the low field we have

gC1 (n, σ,Nt, T ) = exp

(0.25σ̂2 + 0.7σ̂)
(

2 min
{ n
Nt
, 0.025

})δC ,
gC2 (φ, n, σ,Nt, T ) = exp

[
h(Ered)

(
1.05− 1.2

(
n

Nt

)r(σ̂))
(σ̂

3
2 − 2)(

√
1 + 2Ered − 1)

]
,

with
δC = 2.3log(0.5σ̂2 + 1.4σ̂)− log(log(4))

σ̂2 ,

r(σ̂) = 0.7
σ̂0.7 .

The low field regime is further split into three areas regarding the function h

h(Ered) =


4
3
Ered
0.16 , 0 ≤ Ered < 0.08,

1− 4
3

(
Ered
0.16 − 1

)2
, 0.08 ≤ Ered < 0.16,

1, 0.16 ≤ Ered.

For the ECDM, we will also consider the generalized Einstein relation, cf. (1.6).

1.2.3 Generalized Einstein relation for Gaussian disorder models

Roichman, Preezant, and Tessler [79], [77] showed that the generalized Einstein
relation (1.6) holds for organic materials, too. A quasi electrochemical potential η
is considered, assuming a non-degenerated semiconductor, i.e. η ≤ 0. The electron
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1 Organic semiconductor modeling

density n and the quasi electrochemical potential η are related through

n = Nt√
2πσ2

∞∫
−∞

exp
(
− E2

2σ2

) 1
1 + exp

(
E−η
kBT

) dE. (1.9)

The integral is a superposition of the Gaussian distribution of the energies and the
Fermi-Dirac term

1
1 + exp

(
E−η
kBT

) .
The system of continuity (1.2) and Poisson’s equation (1.4) is augmented by the
equation (1.9).
Remark 1.2.1. The Gauss term is centered around the conductivity level EC which is
set to zero by convenience. Thus, in a non-degenerated semiconductor η ≤ 0 holds.
By integral transformation, this leads to

n ≤ Nt√
2πσ2

∞∫
−∞

exp
(
− E2

2σ2

) 1
1 + exp

(
E
kBT

) dE = Nt√
π

∞∫
0

exp (−E2) dE = Nt

2 ,

where we used

0∫
−∞

exp (−E2) 1
1 + exp

(√
2σE
kBT

) dE =
∞∫
0

exp (−E2) 1
1 + exp

(
−
√

2σE
kBT

) dE,

and

1
1 + exp(−x) + 1

1 + exp(x) = exp(x)
exp(x) + 1 + 1

1 + exp(x) = 1, for x ∈ R.

The derivative of the carrier density n w.r.t. η is derived from the relation (1.9) leading
to

∂n

∂η
= 1
kBT

Nt√
2πσ2

∞∫
−∞

exp
(
− E2

2σ2

) 1(
1 + exp

(
E−η
kBT

))2 dE.

The generalized Einstein relation (1.6) then reads

D(φ, n, σ,Nt, T ) = kBT

e
µ(φ, n, σ,Nt, T ) g3(n, η, σ,Nt, T )

12



1.2 Organic mobility models

with

g3(n, η, σ,Nt, T ) = 1
kBT

n
∂n
∂η

=

∞∫
−∞

exp
(
− E2

2σ2

)
1

1+exp
(
E−η
kBT

) dE

∞∫
−∞

exp
(
− E2

2σ2

)
1(

1+exp
(
E−η
kBT

))2 dE
.

Mensfoort and Coehoorn [88] proposed a cutoff for this function by claiming that for
n > Nt/2 the function is the constant value of g3

(
Nt/2, η, σ,Nt, T

)
. In the following

we will always denote the constantly extended function with g3.

1.2.4 Boundary conditions

We consider three different kind of boundaries describing the cathode Γcathode, the
anode Γanode and insulating material Γn. The index n corresponds to boundary
conditions where normal derivatives are involved. It is only used as an index to avoid
confusion with the charge density n. The boundary conditions that we apply can be
separated into two classes, the Dirichlet-type boundary values imposed on the cathode
and anode and Neumann-type boundary values imposed on insulating materials. For
Poisson’s equation, we already have seen the Dirichlet-type boundary values in (1.5):

φcathode = 0 and φanode = Vapp − Vbi.

The carrier density is either prescribed directly as real numbers ncathode and nanode,
in case of “Ohmic” boundary conditions, or indirectly computed by

nelectrode = Nt√
2πσ2

∞∫
−∞

exp
(
− E2

2σ2

) 1
1 + exp

(
E−Eelectrode

kBT

) dE,

for given energy levels Ecathode and Eanode of the adjacent metal in the case of
“thermionic” boundary conditions. For insulating material, we want the normal
component of the electric current to vanish, i.e. jn = 0. We achieve this by imposing
the Neumann-type boundary conditions

∂nφ = 0 and ∂nn = 0.

13



1 Organic semiconductor modeling

Barrier lowering

Scott et al. [83] observed the effect of barrier lowering due to the applied electric field
extending the ideas of Emtage et al. [33]. The injected electrons form a Coulomb
potential at the interface and the effective potential Eeff is the sum of the energy
barrier to the metal, the energy caused by the applied external field, and a Coulomb
term

Eeff = Ecathode − eEx−
e2

16πεx.

We assume a constant field E. In fact we use |∇φ| evaluated at the cathode contact
for E. Hence Eeff has a maximum at

xmax =
√

e

16πεE

and the lowered energy barrier at the cathode is

Ẽcathode = Ecathode − e

√
eE

4πε.

Thus the boundary condition of the electron density n at the cathode is

ncathode = Nt√
2πσ2

∞∫
−∞

exp
(
− E2

2σ2

) 1

1 + exp
(
E−Ẽcathode

kBT

) dE.

1.3 Scaling

For the purpose of comparing the different physical quantities in the system and in
anticipation of numerical simulations, we scale the equations by introducing normalized
quantities. Our choice of scaled variables is similar to the existing scaling schemes for
crystalline semiconductors, cf. [22].

x → x

xscal
,

φ → φ

φscal
,

n → n

nscal
,

14



1.3 Scaling

with
xscal = L

φscal = Vapp,

nscal = max{ncathode, nanode},

where L is the length of the device in nm. We found it convenient to make an
exception by not taking SI units in this case. With this scaling the full model reads:

In the considered domain:

−φscal
x2
scal

∆φ = −nscal
e

ε
n,

j = e nscal
xscal

, µ(n, φ)
(

n

e∂n∂η
∇n− φscal n∇φ

)
,

0 = − 1
xscal

∇ · j,

n = Nt

nscal

1√
2πσ2

∞∫
−∞

exp
(
− E2

2σ2

) 1
1 + exp

(
E−η
kBT

) dE.

On the boundary of the domain:

φ|Γcathode
= 0 n|Γcathode

= ncathode
nscal

,

φ|Γanode
= 1 n|Γanode

= nanode
nscal

,

∂nφ|Γn = 0 ∂nn|Γn = 0.

We abbreviate the scaling factors and the physical constants with

λ2 = φscal
x2
scal nscal

ε

e
and ν = kBT

φscal
. (1.10)

The factor λ is known as the dimensionless minimal Debeye length. The chemical
potential defining equation is shortly noted with

G(η) := γ

∞∫
−∞

f(η,E) dE, (1.11)

15



1 Organic semiconductor modeling

where

γ = Nt

nscal
and f(η,E) = 1√

2πσ2
exp

(
− E2

2σ2

) 1
1 + exp

(
E−η
kBT

) .
With the new notation the system of equations read in compact form

λ2 ∆φ = n, (1.12a)

j = µ(n, φ)
(
ν g3(n, η)∇n− n∇φ

)
, (1.12b)

0 = ∇ · j, (1.12c)
n = G(η), (1.12d)

with boundary conditions for φ and n and the mobility µ is either modeled by the
EGDM µG or the ECDM µC .

1.4 Mathematical analysis

To our knowledge, no analysis concerning existence, uniqueness or stability has ever
been done before to the system (1.12). However, there is a lot of work treating the
classical van Roosbroeck system, i.e. (1.12a) - (1.12c), with the classical Einstein
relation and assuming constant mobility, which was first stated by van Roosbroeck [90].
The first results go back to Jerome [52] and Mock [69], who analyzed existence and
stability for the stationary van Roosbroeck system assuming the (classical) Einstein
relation and constant diffusion and mobility. The existence proof follows the steps:

• The equations are decoupled and formulated iteratively. An overall map is
formed from one iterate to the other. In the literature this map is often called
Gummel map.

• Existence is shown for the separate equations.

• Contraction is shown of the overall map.

• Schauder’s fixed point theorem is applied, see [41].

A crucial part is to choose the right function space on which the map is defined. The
works of Markowich et al. [64], [61] and Kerkhoven [56] show existence results with
a more applied approach. They focus on boundary conditions and realistic device
geometries. We also refer to the books of Markowich et al. [62] and Mock [70] for
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1.4 Mathematical analysis

summary discussions. Considering the classical van Roosbroeck system with mobilities
based on Fermi-Dirac statistics is analyzed in Gajewski [36]. Jerome [53] also shows
existence and uniqueness for the instationary problem

λ2 ∆φ = n,

j = D∇n− µn∇φ,
0 = e ∂tn+∇ · j,

where no Einstein relation is assumed. However he only assumes diffusion and mobility
to be dependent on the electric field. Díaz et al. [31] treat problems with nonlinear
diffusion of the form

λ2 ∆φ = n,

j = ∇ϕ(n)− b(n)∇ϕ,
0 = e ∂tn+∇ · j,

where ϕ is a so-called pressure function and b is a nonlinear function. The existence
of a solution of the stationary problem with a special pressure function is proved by
Wu [94] by combining the two previous works.

A detailed analysis of our system with elaborated proofs goes beyond the scope of
this work. However, we think, one can adapt the ideas of the previous mentioned
papers to the system obtained by reducing the variable η.

1.4.1 Treatment of the chemical potential defining equation

The aim of this section is to reduce the system (1.12) by the chemical potential
defining equation (1.12d) and the variable η. We start defining an auxiliary function
g by

g : R → R

y 7→ γ

∞∫
−∞

f(y,E) dE.

Since the Fermi-Dirac term of the integrand function f is bounded

0 < 1
1 + exp

(
E−y
kBT

) < 1 for all (y,E) ∈ R2, (1.13)
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1 Organic semiconductor modeling

the convergence of the improper integral is dominated by the Gaussian integral.
Moreover the convergence is uniform w.r.t. y ∈ R as one can see by

∥∥∥∥∥
E∫
−E

f( . , E′) dE′ −
∞∫
−∞

f( . , E′) dE′
∥∥∥∥∥
∞
≤
∞∫
E

‖f( . , E′)‖∞ dE′ +
−E∫
−∞

‖f( . , E′)‖∞ dE′

≤ 1√
2πσ2

( ∞∫
E

exp
(
− E′2

2σ2

)
dE′ +

−E∫
−∞

exp
(
− E′2

2σ2

)
dE′

)
→ 0, (E →∞).

(1.14)
It also follows that g is differentiable, see i.a. Gerhardt [39], and its derivative is

g′(y) = γ

∞∫
−∞

∂f

∂y
(y,E) dE

with
∂f

∂y
(y,E) = 1

kBT

1√
2πσ2

exp
(
− E2

2σ2

) exp
(
E−η
kBT

)
(

1 + exp
(
E−η
kBT

))2 .

Moreover with similar arguments as used in (1.14) one can show that g′ is continuous.
Since

g′(y) > 0, for all y ∈ R,

g is strictly monotone and hence injective. On every compact interval [α, β] ⊂ (0, γ),
g−1 is continuous and strictly monotone. Hence for a continuous function n defined
on the closure of a bounded domain Ω ⊂ Rd, d = 1, 2, 3 with range in (0, β), g−1 is
continuous and monotone on the (compact) range of n. With the composition

η := g−1 ◦ n

we have found a continuous η defined on Ω for which holds

n = G(η).

We are also able to show that G is a diffeomorphism on the Banach space of continuous
functions

C(Ω)

by applying a corollary of the inverse function theorem. The extension to the
appropriate Sobolev spaces required for the analysis of system (1.12) can be done by
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1.4 Mathematical analysis

an approximation argument. We use the theory of Nemytskii operators to transfer the
properties of g to G, cf. (1.11). For the space of continuously differentiable functions
on an open subset X of a Banach space E with range in a Banach space F we write

C1(X,F ).

The function G is formally defined by

G : C(Ω) → C(Ω),

η 7→ γ

∞∫
−∞

f(E, η) dE.

From Amann and Escher [2] we cite the following theorem unproved
Theorem 1.4.1. Let T be a compact metric space, E and F Banach spaces, and X
an open subset of E. For ϕ ∈ C1(X,F ) the function ϕ\ defined by

ϕ\ : XT → Y T ,

u 7→ ϕ(u(.)),

belongs to C1 (C(T,X), C(T, F )
)
and[

∂ϕ\(u)h
]

(t) = ϕ′(u(t))h(t), t ∈ T,

for u ∈ C(T,X) and h ∈ C(T,E).

In our case the spaces are T = Ω and X = E = F = R. We have shown earlier that
g ∈ C1(R) and hence it holds for the Nemytskii operator

G ∈ C1
(
C(Ω), C(Ω)

)
. (1.15)

This is the first requirement of the corollary of the inverse function theorem we want
to use, cf. [40]:
Theorem 1.4.2. Let E, F be Banach spaces, X an open subset of E, and f ∈
C1(X,F ) injective. If ∂f(x) is a topological isomorphism for all x ∈ X, i.e. linear,
continuous, bijective from E to F , and with continuous inverse, then f is open and
a diffeomorphism from X to f(X), i.e. f−1 exists and is continuously differentiable
from f(X) to X.

With X = E = F = C(Ω) we have to show that G ( =f) is injective and that ∂G(η) is
bijective and has a continuous inverse for all η in C(Ω). For η 6= η′, there is a x ∈ Ω,
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1 Organic semiconductor modeling

such that η(x) 6= η′(x). W.l.o.g η(x) < η′(x) and with the strict monotonicity of g it
follows, that

G(η)(x) < G(η′)(x) =⇒ G(η) 6= G(η′)

and thus G is injective. The (Fréchet) derivative of G is defined by
[
∂G(η)h

]
(x) = g′(η(x))h(x), x ∈ Ω.

This and the fact that

g′(η(x)) 6= 0, for all η ∈ C(Ω), x ∈ Ω

leads to both injectivity:
[
∂G(η)h

]
(x) = 0 ⇒ h(x) = 0 for all x ∈ Ω,

and surjectivity:
For given n ∈ C(Ω), there is a function h ∈ C(Ω) defined by

h(x) := n(x)
g′(η(x)) , for all x ∈ Ω,

such that [
∂G(η)h

]
(x) = n(x), for all x ∈ Ω.

With a corollary of the open mapping theorem, see [40], it follows that ∂G(η) has a
continuous inverse.
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2 Numerical simulation of organic
semiconductors

The models presented in the previous chapter are very ill-conditioned as we will see in
Section 2.2. This causes naive chosen methods to fail, if they are not preconditioned.
Instead of preconditioning, which is a non-trivial task, we present an alternative,
problem adapted method, namely an extended Gummel method with a special
damping technique as the globalization strategy for Newton’s method. The chapter
is arranged as follows. We first discuss the Scharfetter-Gummel scheme applied to
the one dimensional problem and introduce Gummel’s method extended by the quasi
electrochemical potential defining equation with a contraction based damping strategy.
For the later purpose of optimization, we study the robustness of the solution method
via sampling over a cut of the control parameter space. Finally, we present the
discretization of higher dimensional problems with the finite element method. We
apply the extended Gummel method with contraction based damping strategy to 2D
simulations of self-assembled nano-chains attached to the cathode.

2.1 Scharfetter-Gummel discretization scheme

First of all, we have to choose a discretization scheme to approximate the infinite
dimensional problem (1.12) by a finite dimensional one. Scharfetter and Gummel
[80] developed an exponentially fitted difference formula, which provides a locally
constant current j and an upwind stabilized solution. Therefor we choose a mesh with
N − 1 subintervals [xi, xi+1], i = 1, . . . , N − 1 of constant size h := (xN −x1)/(N − 1),
N ∈ N. For solving the continuity equation, cf. (1.12c),

∂xj = 0,

in all inner mesh points xi, i = 2, . . . , N − 1, we take central finite differences to
approximate the derivative of j:

∂xj(xi) ≈
ji+ 1

2
− ji− 1

2

h
.
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2 Numerical simulation of organic semiconductors

The values ji± 1
2
are given by the Scharfetter-Gummel scheme

ji+ 1
2

= µ∂xφ
ni+1 exp

(
− ∂xφh

ν g3

)
− ni

exp
(
− ∂xφh

ν g3

)
− 1

, (2.1a)

ji− 1
2

= µ∂xφ
ni exp

(
− ∂xφh

ν g3

)
− ni−1

exp
(
− ∂xφh

ν g3

)
− 1

, (2.1b)

where ni+1, ni, and ni−1 are approximations to the electron density n at the points
xi+1, xi, and xi−1 respectively. To motivate the formulas in (2.1) we assume the
functions

j, µ, g3, and ∂xφ

to be constant on the interval (xi, xi+1]. For an arbitrary x ∈ (xi, xi+1] we then have
with (1.12b):

−j exp
(
− (x− xi) ∂xφ

ν g3

)
= µ (ν g3 ∂xn− n∂xφ) exp

(
− (x− xi) ∂xφ

ν g3

)
= µ ν g3 ∂x

(
n exp

(
− (x− xi) ∂xφ

ν g3

))
.

Remember that ν, g3 > 0. Now we integrate on both sides over [xi, xi + h]

−j
xi+h∫
xi

exp
(
− (x− xi) ∂xφ

ν g3

)
dx = µ ν g3

(
ni+1 exp

(
− h ∂xφ

ν g3

)
− ni

)
.

For the integration we extended the constant functions to the left point xi continuously.
Integration on the left hand side yields

j
ν g3
µ∂xφ

(
exp

(
− ∂xφh

ν g3

)
− 1

)
= ν g3

(
ni+1 exp

(
− ∂xφh

ν g3

)
− ni

)
. (2.2)

The mobility µ > 0 and for ∂xφ we assume that it is unequal to zero, since otherwise
the current is set to zero which is consistent with the formula (2.1a). We solve (2.2)
for j and end up with the Scharfetter-Gummel scheme (2.1a) for the value ji+ 1

2
, if

we interpret the constant j as an approximation to the current density at the point
xi+ 1

2
:= xi + h

2 . By exchanging [xi, xi + h] with [xi− h, xi] one obtains (2.1b) for ji− 1
2
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2.1 Scharfetter-Gummel discretization scheme

analogously. In the following Lemma we show that the Scharfetter-Gummel scheme
coincides asymptotically with standard finite difference formulas in convection and
diffusion dominated regimes respectively.
Lemma 2.1.1. The Scharfetter-Gummel scheme (2.1) provides asymptotically an
upwind stabilization in form of one sided differences and converges to central finite
differences in diffusion dominated regimes where the field ∂xφ vanishes:

i)
ji+ 1

2
− ji− 1

2

h
' µ∂xφ

ni − ni−1
h

for ∂xφ→∞

ii)
ji+ 1

2
− ji− 1

2

h
' µ∂xφ

ni+1 − ni
h

for ∂xφ→ −∞

iii)
ji+ 1

2
− ji− 1

2

h
→ −µ ν g3

ni+1 − 2ni + ni−1
h2 for ∂xφ→ 0

Proof. i) We have to show that the left hand side divided by the right hand side
converges to one if ∂xφ→∞:

ji+ 1
2
− ji− 1

2

h

(
µ∂xφ

ni − ni−1
h

)−1

= µ∂xφ

h

ni+1 exp
(
− ∂xφh

ν g3

)
− ni

exp
(
− ∂xφh

ν g3

)
− 1

−
ni exp

(
− ∂xφh

ν g3

)
− ni−1

exp
(
− ∂xφh

ν g3

)
− 1

 1
µ∂xφ

h

ni − ni−1

=
ni+1 exp

(
− ∂xφh

ν g3

)
− ni − ni exp

(
− ∂xφh

ν g3

)
+ ni−1(

exp
(
− ∂xφh

ν g3

)
− 1

)
(ni − ni−1)

→ 1 for ∂xφ→∞.

The difference formula is appropriate for drift dominated regimes, because
“information” from upwind only is taken.

ii) Analogously we get the second result by expanding the fraction in (2.1a) and
(2.1b) by

exp
(
∂xφh

ν g3

)

and taking the limit ∂xφ→ −∞ of the fraction of
j
i+ 1

2
−j

i− 1
2

h and µ∂xφ ni+1−ni
h .

iii) Here we have to use L’Hospital’s rule, which gives us

lim
∂xφ→0

∂xφ

exp
(
− ∂xφh

ν g3

)
− 1

= lim
∂xφ→0

1
− h
ν g3

exp
(
− ∂xφh

ν g3

) = −ν g3
h
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2 Numerical simulation of organic semiconductors

and hence
ji+ 1

2
→ −µ ν g3

ni+1 − ni
h

,

ji− 1
2
→ −µ ν g3

ni − ni−1
h

,

and finally
ji+ 1

2
− ji− 1

2

h
→ −µ ν g3

ni+1 − 2ni + ni−1
h2 .

The resulting difference formula is appropriate for diffusion dominated regimes.

We are left with discretizing the derivatives acting on the electric potential φ, for
which we take central difference formulas for first order derivatives

∂xφ
(
xi+ 1

2

)
≈ φi+1 − φi

2h

and second order derivatives

∂2
xφ(xi) ≈

φi+1 − 2φi + φi−1
h2 .

Hence the equations from (1.12a) to (1.12c) result in

0 = µ

h

 φi+1 − φi
h

ni+1 exp
(
− φi+1−φi

ν g3

)
− ni

exp
(
− φi+1−φi

ν g3

)
− 1

− φi − φi−1
h

ni exp
(
− φi−φi−1

ν g3

)
− ni−1

exp
(
− φi−φi−1

ν g3

)
− 1


(2.3)

and
λ2 φi+1 − 2φi + φi−1

h2 = ni.

Dirichlet boundary conditions are applied through the right hand side. For Poisson’s
equation this means

λ2 φi+1 − 2φi + φi−1
h2 = ni for i = 3, . . . , N − 2,

λ2 φi+1 − 2φi
h2 = ni −

φcathode
φscal

1
h2 for i = 2,

λ2 −2φi + φi−1
h2 = ni −

φanode
φscal

1
h2 for i = N − 1.

(2.4)

Analogously ncathode/nscal and nanode/nscal are applied through the right hand side of
the discretized continuity equation (2.3).
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2.1 Scharfetter-Gummel discretization scheme

2.1.1 Upwind conformal averaging

In our models, EGDM and ECDM respectively, the mobility µ and the diffusion
enhancement factor g3 are density dependent functions. In drift dominated regimes,
one has to be careful not using information from downwind in the discretization
formulas, which would result in numerical, unphysical oscillations. We adapted the
idea of the Scharfetter-Gummel scheme to average the respective terms. A “smooth
switch” is given by the function

θ(y) =
1− exp

(
y
2

)
1− exp (y) .

It holds

θ(y) →

1, for y → −∞,
0, for y →∞.

With the argument y = ν (φi+1 − φi), we average as follows

f(ni+ 1
2

)
= θ(y) f(ni+1) + (1− θ(y)) f(ni),

with f equal to µ or g3. The argument y is chosen to be similar to the one used in the
Scharfetter-Gummel scheme but neglecting the additional g3 influence here. Thus the
flux is numerically stabilized. A different approach with the use of streamline-diffusion
techniques is analyzed by Jiang [54].

2.1.2 Error analysis

For the Scharfetter-Gummel scheme Markowich et al. [63] analyzed error estimates
for the electron density n dependent on the Debeye length λ, cf. (1.10),

max
1≤i≤N

|n(xi)− ni| ≤ C(h2 + λ|λ|), (2.5)

with the analytical solution n and the approximated values at the mesh points ni.
We denote the boundary values ncathode and nanode with n1 and nN respectively. C
includes upper bounds of n and φ and bounds of the derivatives of n and φ up to
order three, cf. Markowich et al. [63]. For standard finite differences for the second
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2 Numerical simulation of organic semiconductors

order derivatives, we can estimate the error of Poisson’s equation as∣∣∣∣∣φi+1 − 2φi + φi−1
h2 −∆φ(xi)

∣∣∣∣∣ ≤ Ch2 for all i = 2, . . . , N − 1,

where C includes fourth order derivatives of the analytical solution φ. Furthermore a
unique discrete solution exists and with the help of a discrete maximum principle the
error can be represented as

max
1≤i≤N

|φ(xi)− φi| ≤ Ch2, (2.6)

where C again includes fourth order derivatives of φ. For the details, we refer to
Grossmann and Roos [46]. We run simulations of the EGDM (with ECDM similar
results are obtained) on a sequence of refined meshes with mesh size parameter
h, h/2, h/4, . . . . Assuming the error of an approximation uh propagates like

uh = u+O(hp)

and hence
uh

2
= u+O

(
hp

2p

)
,

the order of convergence rates should behave like

p = log

hp
hp

2p

 / log(2) ≈ log

 uh − u
uh

2
− u

 / log(2). (2.7)

For the simulations we have developed a C++ program using the LAPACK QR
decomposition. The previous explained Scharfetter-Gummel discretization scheme
and in anticipation the later introduced iterative extended Gummel method, cf.
Section 2.2, have been implemented. We compute solutions on the scaled domain
(0, L/xscal) = (0, 1), cf. the scaling in Section 1.3. As initial values we take

n0(x) = (1− x) ncathode
nscal

+ x
nanode
nscal

, φ0(x) = x, for x ∈ (0, 1). (2.8)

For the discretization of G, i.e. approximating the integral, we use the trapezoidal
rule on a fixed interval with enough evaluation points, that the error is not dominant.
Alternatively one could follow Paasch et al. [73] considering an analytical expression
for the integral. A benchmark with the commercial software setfos 3.2, cf. [35], has
been performed ensuring that deviations of the solution are less than 1% measured in
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2.1 Scharfetter-Gummel discretization scheme

the Euclidean norm. Our parameter setup of choice is displayed in Table 2.1. For
the units we refer to Chapter 1. In Table 2.2 we show the norm of the errors and

V L T µ0 σ Nt Ecathode Eanode c0

5 100 300 4.5 · 10−6 0.13 2 · 1027 0.0 0.0 0.29
Table 2.1: Parameter configuration

the order of convergence rates computed with the formula (2.7). The approximation
values φi, ni, and ηi, i = 1, . . . , N with included boundary values are assembled in
vectors φh, nh and ηh ∈ RN respectively. The exact solution is not known, therefore
we compute a reference solution ū = (φ̄, n̄, η̄) on a mesh with 6400 points. The orders

N ‖φ̄− φh‖2 p ‖n̄− nh‖2 p ‖η̄ − ηh‖2 p

50 2.324 - 7.360 - 1.827 -
100 1.791 0.37 4.253 0.79 0.817 1.15
200 1.256 0.51 2.019 1.07 0.288 1.50
400 0.745 0.75 0.677 1.57 0.083 1.79
800 0.334 1.16 0.151 2.15 0.035 1.21

1600 0.107 1.64 0.036 2.04 0.013 1.44
3200 0.025 2.09 0.010 1.82 0.003 1.99

Table 2.2: Errors and orders of convergence rates p of the approximations φh, nh
and ηh compared to reference solutions φ̄, n̄ and η̄ for different numbers
of mesh points N .

of convergence rates of φh and nh approach the value 2 when N gets large as expected,
cf. (2.6) and (2.5). The quasi electrochemical potential is related to n through the
equation (1.12d). For the error of ηh we can write

‖η − ηh‖2 ≈ ‖G−1(n)−G−1(nh)‖2 ≈ C‖n− nh‖2, (2.9)

if one can show that G−1 is Lipschitz continuous. This could explain the decay of the
order of convergence rate of ηh approaching 2. In Figure 2.1 we show the decrease
of the norm of the errors of the solution components. We add a reference plot for
the convergence of second order in h. Above N = 1000 the slopes are quite the same
according to the expected asymptotical quadratic convergence of φh, nh, and ηh, cf.
(2.6), (2.5), and (2.9). We are interested in solutions which are stable and can be
computed fast. In the optimization later on we have to simulate a couple of 1000
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Figure 2.1: Errors of the solution and a reference function plotted against the number
of mesh points.
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2.2 Solution methods

times. For that we make a trade-off and fix from now on the number of mesh points
N to 100 for all 1D computations.

2.2 Solution methods

The spatial discretization leads to a nonlinear system of equations for the vectors
φh, nh, and ηh. In this section we omit the index h because we only treat the finite
dimensional problems. We rewrite the nonlinear discretized version of the system
(1.12) with applied boundary conditions for the vectors φ, n, and η ∈ RN as follows

Aφφ = bφ(n),
An(φ, n, η)n = bn(φ, n, η),

n = G(η),
(2.10)

where Aφ ∈ RN×N is a constant matrix and bφ a nonlinear function with values in
RN resulting from the finite differences (2.4). The nonlinear matrix-valued function
An with values in RN×N and the nonlinear vector-valued function bn mapping to RN

arise from (2.3) with the applied boundary values. The integral in G is approximated
with the trapezoidal rule on a fixed interval with enough evaluation points, that
the error is not dominant. The discretized version of G is also denoted with G. If
nothing else is said we denote with ‖.‖ the Euclidean norm in RN . We also frequently
abbreviate (2.10) with

F (u) = 0, (2.11)

where u := (φ, n, η) ∈ R3N .

2.2.1 Ill-conditioned problem

According to Deuflhard [29] the condition of a nonlinear problem describes the
amplification of the relative error, i.e. for an ill-conditioned problem like ours, small
relative disturbances of the input cause huge relative errors of the output. To analyze
the condition of our nonlinear problem (2.11), we fix an exemplary iterate uk close to
the solution and perform a line search along a steepest descent direction

pk = −F ′(uk)TF (uk)
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2 Numerical simulation of organic semiconductors

of the classical merit function
1
2‖F (uk)‖2.

That means we want to solve the following unconstrained optimization problem

min
α

1
2
∥∥fcl(α)

∥∥2

with
fcl(α) := F (uk + αpk) .

In Figure 2.2 the dependence of the objective w.r.t. α is shown for the configuration
given in Table 2.1. The picture shows a very narrow valley in which acceptable values

1
2‖fcl‖

2
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Figure 2.2: Exemplary line search valley.

for α lie, i.e. values of α which fulfill the Wolfe conditions, cf. [71]. Small disturbances
on the input α leads to drastic changes in the output, here in terms of the objective
function.
Remark 2.2.1. Instead of taking the EGDM similar results of the line search would
have been obtained by taking the ECDM.

On the other hand, for the linearized problems of (2.11)

F ′(uk) δuk = −F (uk),

30



2.2 Solution methods

arising in Newton’s method, cf. Section 2.2.4, we can compute the matrix condition
number of the Jacobian F ′(uk) ∈ R3N×3N , which is defined by

cond
(
F ′(u)

)
:=
∥∥∥F ′(u)

∥∥∥ ∥∥∥F ′(u)−1
∥∥∥ .

In the case of the spectral norm ‖.‖2 this is

cond
(
F ′(u)

)
= |λmax(F ′(u))|
|λmin(F ′(u))| .

Well-conditioned problems should have a condition number around one. The condition
in our case however is

cond
(
F ′(u)

)
= 5.57 · 1015.

This number shows that we have a very ill-conditioned problem. The performance
and stability of algorithms are substantially determined by the condition, e.g. the
convergence of iterative methods to solve systems of linear equations depends directly
on the condition.

We use Gummel’s method which decouples and linearizes the problem at once. We
will see that the decoupling reduces the condition number drastically.

2.2.2 Classical Gummel method

For the classical van Roosbroeck system (1.12a) - (1.12c) with constant mobility and
diffusion and classical Einstein relation, Gummel proposed a fixed point iteration,
see [47]. In our notation for an unipolar layer, i.e. only electron transport, the
algorithm is given in Algorithm 1. On the right hand side of the Poisson equation we
add a stabilization term which is a common technique to improve the convergence
behavior of the method, cf. Selberherr [85]. The multiplication “∗” is to be understood
pointwisely. In the continuity equation, the Matrix An does not depend on the states
n and η, because the mobility is constant for the classical van Roosbroeck system
and there is no quasi electrochemical potential, because the classical Einstein relation
holds, cf. (1.7). The advantage of this decoupling algorithm is, that it transforms one
nonlinear problem into two linear ones of half size. On the other side the fixed point
iteration has to be contractive to guarantee convergence. First convergence results
were made by Mock [68]. See the cited literature in Section 1.4 for further discussions
of the contraction of Gummel’s map. Other approaches to solve the van Roosbroeck
system are e.g. to consider the coupled instationary equations following Pflumm et al.
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2 Numerical simulation of organic semiconductors

Algorithm 1 Algorithm for Gummel’s classical fixed point iteration.
1: Let u0 := (n0, φ0) ∈ R2N be given and choose δu0 ∈ R2N such that ‖δu0‖2 � TOL

with a given error tolerance TOL > 0. Set i = 0.
2: while ‖δui‖2 > TOL do
3: With ni solve

Aφ φ
i+1 = bφ(ni) ∗

(
(1, . . . , 1)T + φi+1 − φi

ν

)

for φi+1.
4: With φi+1 solve

An(φi+1)ni+1 = bn(φi+1)

for ni+1.
5: Set ui+1 := (ni+1, φi+1) and δui+1 := ui+1 − ui.
6: i← i+ 1
7: end while

[76] or Mello [27]. A continuum approach is presented by Bonham et al. [18] and [19]
for simulating single layer devices.

2.2.3 Extended Gummel method

In the case of EGDM and ECDM, where the mobility is nonlinear and the generalized
Einstein relation applies, An also depends on the electron density n and the electro-
chemical potential η and we have the additional η defining equation. We extend the
stabilization term of the Poisson equation by the g3 factor [86]. The algorithm is
given in Algorithm 2. With the same configuration used before, see Table 2.1, we
compute the condition numbers of the Gummel subsystems obtaining the values in
Table 2.3. With respect to the condition we see that Gummel’s decoupling is sensible.
For the classical Gummel decoupling method the effect of reducing condition numbers

cond(G′(ηi+1)) 291.22
cond(Aφ) 1.07 · 105

cond(An) 5.08 · 108

cond(F ′(u)) 5.57 · 1015

Table 2.3: Condition numbers of the Gummel subsystems and the Jacobian of F .

due to decoupling is analyzed in Ascher et al. [3]. A similar quasi linearization of the

32



2.2 Solution methods

Algorithm 2 Algorithm for Gummel’s fixed point iteration expanded by the quasi
electrochemical potential defining equation and a derivative-free linearization.

1: Let u0 := (n0, φ0, η0) ∈ R3N be given and choose δu0 ∈ R3N such that ‖δu0‖2 �
TOL > 0 with a given error tolerance TOL. Set i = 0.

2: while ‖δui‖2 > TOL do
3: Solve

ni −G(ηi+1) = 0

for ηi+1 with Newton’s method started with ηi+1
0 = 0.

4: Solve
Aφ φ

i+1 = bφ(ni) ∗
(

(1, . . . , 1)T + φi+1 − φi

ν g3(ni, ηi+1)

)
for φi+1.

5: With ni, φi+1 and ηi+1 solve

An(φi+1, ni, ηi+1)ni+1 = bn(φi+1, ni, ηi+1) (2.12)

for ni+1.
6: Set ui+1 := (ni+1, φi+1, ηi+1) and δui+1 := ui+1 − ui.
7: i← i+ 1
8: end while
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2 Numerical simulation of organic semiconductors

continuity equation (2.12) is suggested by Gajewski [37].

Generalized Einstein relation in Poisson stabilization

We give a brief motivation for the appearance of the g3 factor in the stabilization term
of Poisson’s equation in Algorithm 2. Therefor we have to mention that there are
different types of variable sets in which the van Roosbroeck system can be formulated.
A different choice than ours, i.e. (φ, n), is to use dependent variables (φ, v), cf. [85],
where φ is the electric potential and v given by

n = v exp
(φ
ν

)
. (2.13)

Inserted in Gummel’s method with different Gummel iteration indices for φ and v
yields for the Poisson equation

λ2 ∆φi+1 = vi exp
(
φi+1

ν

)
.

If we reinsert the expression (2.13) for vi, we end up with

λ2 ∆φi+1 = ni exp
(
φi+1 − φi

ν

)
.

Linearization of the exponential function and discretization leads to the stabilized
Poisson equation in Algorithm 1. One can derive the expression (2.13) from the
thermal equilibrium case, i.e. j = 0 at zero temperature T = 0. In case of the extended
models EGDM and ECDM ν is enhanced by the factor g3 due to the generalized
Einstein relation. Hence (2.13) changes to

n = v exp
(
φ

ν g3

)
and the resulting nonlinear Poisson equation is

λ2 ∆φi+1 = ni exp
(

φi+1 − φi

ν g3(ni, ηi+1)

)
.

The occurrence of the g3 factor has positive impact on the convergence behavior
especially for highly doped materials which occur in form of a scalar number Cdoping
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2.2 Solution methods

on the right hand side of Poisson’s equation

λ2 ∆φi+1 = ni exp
(

φi+1 − φi

ν g3(ni, ηi+1)

)
+ Cdoping.

In Figure 2.3 the results for the electron density, electric potential and quasi elec-
trochemical potential can be seen for different choices of doping intensity. They are
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Figure 2.3: Solution components of the extended Gummel method for different
doping intensities.

computed with the EGDM using the parameters given in Table 2.4, with the units
declared in Chapter 1. The results are similar to the ones computed with the ECDM

V L T µ0 σ Nt Ecathode Eanode c0

1 100 233 4.5 · 10−6 0.13 2 · 1027 0.1 0.1 0.29
Table 2.4: Parameter configuration

in Stodtmann et al. [86]. The effect on the convergence behavior is visualized in
Figure 2.4, where the black lines correspond to Cdoping = 0.01 and the blue lines to
Cdoping = 0.0. The increment of Gummel’s algorithm measured in the Euclidean norm
‖δui‖2 is plotted against the iteration number. We observe the two nice effects, that
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2 Numerical simulation of organic semiconductors

Cdoping = 0.0
Cdoping = 0.0, g3-stabilized
Cdoping = 0.01 (diverged)

Cdoping = 0.01, g3-stabilized
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Figure 2.4: Effects of g3 factor in Poisson stabilization on convergence behavior.

the enhanced stabilization causes

i) accelerated convergence, cf. blue lines in Figure 2.4

ii) convergence at all, cf. black lines in Figure 2.4.

This extends the method presented in Knapp et al. [58].

2.2.4 Gummel as the globalization strategy for Newton’s method

When Gummel gets close to the solution, the convergence speed stays only linear
for high injection profiles, cf. for example [72]. We therefore use Gummel as the
globalization strategy for Newton’s method. For a twice continuously differentiable
mapping F : D → Rn with D ⊂ Rm convex Newton-type methods compute steps

δui = −M(ui)F (ui) (2.14)

where M is an approximation to the inverse of the Jacobian of F . For the local
convergence we have the local contraction theorem of Bock [15].
Theorem 2.2.2. Assume that for all v, w ∈ D, θ ∈ (0, 1] with w − v = −M(v)F (v)
it holds:

• There is an ω <∞ such that∥∥∥M(w)
(
F ′(v + θ(w − v))− F ′(v)

)
(w − v)

∥∥∥ ≤ ω θ ‖w − v‖2. (2.15)
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2.2 Solution methods

• There is a κ(v) ≤ κ < 1 such that∥∥M(w)R(v)
∥∥ ≤ κ(v)‖w − v‖

with the residual R(v) := F (v)− F ′(v)M(v)F (v).

For the initial guess v0 assume that

%0 := κ+ ω

2 ‖δv
0‖ < 1,

with
%k := κ+ ω

2 ‖δv
k‖, δvk := −M(vk)F (vk),

and that B(v0, %0) ⊂ D.
Then the iterates vk+1 = vk + δvk are well defined, remain in B(v0, %0), and converge
to a solution v∗ ∈ B(v0, %0). Moreover, the following error estimates hold

‖vk+j − v∗‖ ≤
%jk

1− %k
‖δvk‖

‖δvk+1‖ ≤ %k‖δvk‖ = κ‖δvk‖+ ω

2 ‖δv
k‖2.

Proof. See [15].

For exact Newton methods with M = (F ′)−1 we have quadratic convergence since
κ = 0. Additionally we can make a statement about a sequence of nonlinear equations

Fj(uj) = 0, j = 0, 1, . . .

where Fj is the finite dimensional approximation of a partial differential equation
corresponding to the jth level of an hierarchical grid, see for the details Deuflhard
[30]. If ωj are the affine covariant Lipschitz constants related to Fj , defined by (2.15),
we get the asymptotical result

ωj ≤ ω + ξj , lim
j→∞

ξj = 0,

where ω is the affine covariant Lipschitz constant of the infinite dimensional problem
analogously defined to (2.15). For the proof we refer to Deuflhard [28]. Hence
the local convergence of Newton’s method is asymptotically grid independent. For
Gummel’s method this does not hold. With the configuration given in Table 2.4 the
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2 Numerical simulation of organic semiconductors

correspondence of the number of iterations and the number of discretization points
is shown in Figure 2.5. We stop Gummel’s method, when ‖δui‖ falls below 10−7.
Figure 2.5 confirms that Gummel’s method is not grid independent. To use Gummel
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Figure 2.5: Number of iterations of Gummel’s method over the number of discretiza-
tion points N .

as the globalization strategy for Newton’s method we have to switch at a certain
point from Gummel to Newton.
Remark 2.2.3. Performing Newton steps is much more expensive than performing
Gummel steps. Each Newton step is the solution of (2.11), i.e. a 3N times 3N coupled
block system. Whereas Gummel solves each sub-equation of (2.11) separately, i.e.
solving 3 equations of size N times N . We therefore suggest to use a sharp switching
point instead of a homotopy from Gummel to Newton. We state the heuristic to
perform Newton steps only within the contraction ball B(u0, %0), cf. Theorem 2.2.2.
The quadratic convergence then compensates the more expensive steps.

We are interested in solutions for a wide range of parameters and control parameters.
By trial and error we have found that we can switch, if for the Gummel steps hold

‖δui‖2 < 10−3. (2.16)

We claim that this switching point is independent for all parameters, control parame-
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2.2 Solution methods

ters, and boundary values we consider in this work.
Remark 2.2.4. For damped Newton methods there are several tests like the restrictive
monotonicity test (RMT), cf. [17], to approximate the affine covariant Lipschitz
constant ω and hence the radius of the contraction ball %0. This directly provides a
criterion when to switch to full step Newton or not. Because the steps we perform
are Gummel steps and not Newton steps, we are not able to apply such tests.
Remark 2.2.5. Because of the grid dependence of Gummel’s method the switching
point might also depend on the number of discretization points N . However we have
not noticed any influence on the switching point (2.16) in our calculations.

A comparison of Gummel’s method only and Gummel as the globalization strategy
for Newton’s method with highly doped material is shown in Figure 2.6.

Gummel alone
Gummel and Newton
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Figure 2.6: Gummel method coupled with full step Newton method.

Remark 2.2.6. We have seen in Section 2.2.1 that the matrix F ′ has a bad condition.
For larger problems one would use iterative methods to solve the linear subproblems
arising in Newton’s method. The convergence behavior of iterative methods like
GMRES strongly depends on the condition. For our comparably small problems we
use direct methods to decompose the matrix. These methods are less sensitive to the
condition.

As already mentioned in Remark 2.2.3 Newton steps are much more expensive than
Gummel steps. However the overhead of Newton’s method is justified when we
compare the computational time. In Table 2.5 are displayed the computational times
for performing Gummel and Newton steps starting from the switching point for a
different number of mesh points.
Remark 2.2.7. When it comes to optimization, we have to perform hundreds of
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simulations. The switching to Newton’s method can save hours of computational
time.

N CPU time
Gummel Newton

50 0.4 sec 0.05 sec
100 1.3 sec 0.24 sec
200 12.3 sec 2.1 sec
400 125 sec 22.5 sec
800 1386 sec 186 sec

Table 2.5: Computational time comparison between Gummel’s and Newton’s method
for a different number of mesh points.

In Figure 2.7 we visualize the paths of Gummel’s and Newton’s method, first combined
and later separated. We assembled NG Gummel steps, which are vectors in R3N

into a matrix Z ∈ R3N×NG . Then we compute a QR decomposition with pivoting
of Z yielding matrices Q ∈ R3N×3N and R ∈ R3N×NG , where the absolute values
of the diagonal entries of R are decreasing with increasing row number. For a two
dimensional projection, we define the projection matrix P as the submatrix of Q

P :=
(
q1,1 q1,2 . . . q1,3N
q2,1 q2,2 . . . q2,3N

)
.

The circles and crosses in Figure 2.7 are the Gummel and Newton iterates ui respec-
tively, obtained by projection with P :

ui2 = Pui ∈ R2.

The background color is achieved by sampling the two dimensional area with points
x2 ∈ [−7.5,−5]× [−2, 1] and mapping them to the values

log ‖F (P Tx2)‖2.
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Figure 2.7: Projected Gummel and Newton paths with zoom-in close to the solution.

2.2.5 Contraction based damping strategy

Optimization algorithms are not restricted on always taking physically reasonable
parameter values. However we assume, that the limit of the optimization is physically
reasonable. On the other hand we allow the path, i.e. the iterates the optimization
procedure produces, to lie in infeasible regions. For values lying in those regions we
want that the simulation converges and that information is given back about how to
proceed . In this sense, we have to robustify our method against such infeasible path
methods. For example, if we take the configuration of Table 2.6, with a relatively
high σ = 0.21eV , we see that neither Gummel nor Newton’s method does converge,
see Figure 2.8. To achieve convergence the method has to be damped. Damping

V L T µ0 σ Nt Ecathode Eanode c0

3 100 300 4.5 · 10−6 0.21 2 · 1027 0.0 0.0 0.42
Table 2.6: Parameter configuration

means in our context to find a damping parameter αi+1 such that a new iterate is
computed by

ũi+1 := ui + αi+1 δui+1.

The old iterate is ui and the old the step is calculated by

δui+1 = ui+1 − ui,
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Figure 2.8: Failure of Gummel and Newton method for extreme configuration.

cf. Algorithm 2. Finding “the right” merit function and performing a line search is
one possibility to get a damping parameter. But with the bad experience we have
made with line searches, cf. Section 2.2.1, we rather consider a different approach. We
introduce a contraction based damping strategy by adapting the idea of the restrictive
monotonicity test (RMT), cf. Bock et al. [17], which does not try to minimize the
classical merit function

1
2‖F‖

2

but rather tries to reduce the step lengths to get contracting steps. For Newton’s
method this leads to the natural level function. In our case, we just define the damping
factor by

αi+1 := min
{

max
{

(1− ε) ‖δu
i‖2

‖δui+1‖2
, αmin

}
, 1
}
,

dependent on parameters ε and αmin. With the αmin it is guaranteed, that the steps
do not get too small and the switch in (2.16) still makes sense. In experiments we
have found satisfactory values for αmin around 10−4. We observe successive behavior
of Gummel’s algorithm, if the steps are only slightly non-contracting. This is why
we insert the parameter ε for which we suggest values around 10−2. The successive
damping is compared to the extreme configuration case of Figure 2.8 in Figure 2.9. In
Figure 2.10 we show that our method provides converged solutions for a whole area of
control parameters. A box of 100 times 100 points of temperature and length values
is sampled. We set the maximum number of iterations to 660 and assign a dark red
color to it. No simulation that converged reached the maximum number of iterations
in Figure 2.10. So only diverged solutions correspond to the dark red pixels. One
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Figure 2.9: Gummel damping with switching to Newton compared Figure 2.8.

Figure 2.10: Comparison of Gummel convergence behavior for a sampled control
parameter region with and without the contraction based damping
strategy.
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can imagine, that an optimization algorithm would follow a path through the dark
red domain, where the method without damping did not converge. In this sense the
solution method is robustified against infeasible path methods. Our method now is
satisfactory robust for all applications under consideration.

Throughout the section we used 1D simulations, but our solution method consisting of
Gummel’s method with the g3 stabilization term and the damping strategy together
with Newton’s method are independent of the dimension. At least up to minor changes
of the heuristic damping parameters ε, αmin, and the switching point to Newton’s
method. The system (1.12) is already formulated for dimensions up to three and we
are left with choosing an adequate discretization.

2.3 Finite element ansatz

In this section we want show how to use the simulation method presented in the
previous section to simulate 2D problems based on the equations (1.12). We apply
the finite element method (FEM), which is superior in complex geometries and does
allow a profound mathematical analysis. We use deal.ii, cf. [6], a FEM library, which
has gained great impact in the community of scientific computation as a research
software. For an introduction to FEM calculus see e.g. Braess [21] or Grossmann [46].
We start with a regular, quadrilateral triangulation T of Ω consisting of elements
T . We want to use isoparametric bilinear finite elements and denote the underlying
polynomial space with

Q1(T ) = span{1, x1, x2, x1x2}.

The bilinear elements have their support points in corners of the cells T . We take an
H1-conform finite element ansatz

Vh = {ϕh ∈ H1(Ω) : ϕh|T ∈ Q1(T ), T ∈ T , ϕh continuous in corners of T and

ϕh = 0 on Γcathode ∪ Γanode}.

for the state charge density n, the electric potential φ and the quasi electrochemical
potential η. We recall the partitioning of the boundary, cf. Section 1.2.4,

∂Ω = Γcathode
.
∪ Γanode

.
∪ Γn.
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2.3 Finite element ansatz

Only on that parts of the boundary where Dirichlet-type boundary conditions are
imposed, Γcathode and Γanode, the ansatz functions ϕh are set to zero. On the part Γn
Neumann-type boundary conditions are imposed. Our equations (1.12) in weak form
lead to the problem:
Find (φh, nh, ηh) ∈ u∂ + V 3

h , such that

λ2
∫
Ω

∇φh · ∇ϕh dx+
∫
Ω

nhϕh dx = 0 for all ϕh ∈ Vh
∫
Ω

µ(φh, nh)
(
nh∇φh − ν g3(nh, ηh)∇nh

)
· ∇ϕh dx = 0 for all ϕh ∈ Vh,

∫
Ω

(
nh −G(ηh)

)
ϕh dx = 0 for all ϕh ∈ Vh.

(2.17)

u∂ is assumed to be a function in H1(Ω) which trace on the boundary coincides with
the boundary data of φ and n. With N the dimension of Vh and the nodal basis
{ϕ1

h, . . . , ϕ
N
h } the solutions have the representation

φh =
N∑
j=1

φjϕ
j
h, nh =

N∑
j=1

njϕ
j
h and ηh =

N∑
j=1

ηjϕ
j
h.

We insert these representations into our system and test with all basis functions ϕih
i = 1, . . . , N . The differential operators ∇ and ∇· act only on the space dependent
ansatz functions ϕih, for which the derivatives are known exactly. Dirichlet-type
boundary conditions are applied by manipulation of the system matrix and the right
hand side. The degrees of freedom on the boundary are removed and the solution is
set to the applied value. For homogenous Neumann-type boundary conditions nothing
has to be done, because they are imposed naturally via the weak formulation in (2.17).
We apply the extended Gummel method with the contraction based damping strategy
as the globalization scheme for Newton’s method here as well. However the equations
in the Gummel steps in (2) are weakly formulated in this case.

2.3.1 Cathode attached self-assembled nano-chains – 2D simulation

We conclude this chapter with a simulation study to evince that our method can
help solving 2D problems for a relevant physical example. Zhao et al. [97] showed
that the molecules in organic materials can assemble nano-chains connected with
H-bonds. In such fibers electrons are transported very rapidly. We want to simulate
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2 Numerical simulation of organic semiconductors

the case, where fibers tie on the injection electrode building a spatially inhomogeneous
boundary. We consider a simple mathematical model by taking the unit square (0, 1)2

and cut out a slit (0, 1/2] representing a nano-chain of molecules. Thus our domain is
Ω = (0, 1)2 \ (0, 1/2], see also Figure 2.11. In comparison to the thickness of the device,

nano chain

Γn

Γn

Γanode

ΩΓcathode

Figure 2.11: Domain and boundary description.

the molecule chain is almost infinitely thin. We therefore model it as a simple line.
In 1D we have used the Scharfetter-Gummel scheme for upwind stabilization. There
are extensions to 2D of the Scharfetter-Gummel scheme, cf. Selberherr [85]. Similar
properties has the finite volume scheme of Bank et al. [7] and the Markowich-Zlámal
finite element [65]. With the software deal.ii at hand which offers techniques for local
grid refinement we rather stick to bilinear elements and resolve the boundary layers
with locally refined grids. We start with a pre-refined grid based on the knowledge,
that huge gradients occur near the electrodes (and the nano-chain here). The grid is
given in Figure 2.12 and has 22750 cells corresponding to 73023 degrees of freedom
for the bilinear element. On the grid appear hanging nodes, i.e. nodes on the edge of
coarser cells to finer cells. To guarantee the continuity of the solution on these nodes
too, constraints are added to the degrees of freedom corresponding to the hanging
nodes. Similar to applying Dirichlet-type boundary conditions the constrained degrees
of freedom are eliminated from the system and the appropriate values are distributed
to the unconstrained degrees of freedom. We simulate with a configuration given in
Table 2.7. For the linear algebra, we use the sparse direct solver of UMFPACK, cf.
[26]. After each Gummel step, i.e. solving all three equations sequentially, we refine
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2.3 Finite element ansatz

V L T µ0 σ Nt Ecathode Eanode c0

1 100 300 22 · 10−6 0.14 2 · 1026 0.0 0.0 0.42
Table 2.7: Parameter configuration

our mesh based on the new solution obtained. The refinement is done with the Kelly
error indicator [55]. It approximates the error per cell by integrating over the jump
of the gradient of the solution along the faces of each cell. One can see, that close to
the electrodes and the nano-chain respectively, where the density has huge gradients,
the mesh is strongly refined. We follow the strategy to refine a fixed fraction of the
cells, namely 10%. The refined mesh is displayed in Figure 2.13 and has 228058 cells
corresponding to 703164 degrees of freedom. With the Kelly error indicator we use a

Figure 2.12: Starting grid with refined cells near the electrodes and nano-chain.

rather simple criterion for adaptive refinement. There are several works for “energy
norm” based adaptive mesh refinement. See for example the surveys of Ainsworth
and Oden [1], and Babuška and Strouboulis [5]. “Goal-oriented” error estimation
with respect to a certain functional of interest goes back to Eriksson et al. [34]. In
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2 Numerical simulation of organic semiconductors

Figure 2.13: Resulting grid, adaptively refined.

our example the functional could be the current flow over the anode contact∫
Γanode

n · j ds.

Becker and Rannacher [9], [10] introduce the Dual Weighted Residual (DWR) method.
We also refer to the papers of Schmich and Vexler [81] and Meidner and Vexler
[66], who treat parabolic optimal control problems with adjoint based derivative
computation.

The solutions for electron density n, electric potential φ and quasi electrochemical
potential are shown in Figure 2.14. The nano-chain forms an inhomogeneity in the
y-direction. The effective length of the device is reduced for electrons leaving the top
of the chain at x = (1/2, 1/2).
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2.3 Finite element ansatz

Figure 2.14: Electron density, electric potential, and quasi electrochemical potential
of 2D simulation.
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3 Parameter estimation

One of the most common application for model based optimization is the parameter
estimation problem, also called parameter identification problem. When it comes to
modeling physical processes, the underlying principles might be well understood but
lack exact parameter values, which might not be measurable. One wants to determine
parameters by fitting a model to measurement values. For given measurements zi,
i = 1, . . . ,M and model responses hi, i = 1, . . . ,M that means to adjust parameters
p ∈ RNp such that the distance

d
(
(hi(p))Mi=1, (zi)Mi=1

)
is minimized. In our case the functions hi are defined by

hi(p) := h(ui(p), p)

where the states ui with values in R3N are determined by solving the model equations,
cf. (2.11),

Fi(ui(p), p) = 0. (3.1)

We recall that Fi : R3N ×RNp → R3N , cf. the previous Chapter 2. With the index i
of F we mean that the configuration, e.g. the control parameters, are the same as in
the experimental setup for obtaining zi. We consider a reduced parameter estimation
problem, i.e. in each step of an optimization algorithm we solve the model equations
(3.1) up to a given tolerance. If we would solve the entire optimization problem
at once, we would only approximately solve the model equations. With regard to
the ill-conditioning of our problems, cf. Section 2.2.1, this is not appropriate. The
output of the experiments, i.e. the experimental data z := (zi)Mi=1 is physically spoken
an observation, which is always afflicted with a measurement error. By assuming a
statistical distribution of the error, the resulting parameters are random variables.
To quantify the randomness, we introduce the variance-covariance matrix, which
quantifies the uncertainty of the parameters, cf. the next Chapter 4. We start this
chapter by giving a statistical derivation of the parameter estimation problem followed
by an overview of the Gauss-Newton method for solving the computational parameter
estimation problem. In this chapter we are not presenting any calculations but do use
the solution method for the sequential experimental design, cf. Section 4.6.2. We also
introduce automatic differentiation as the technical concept we use for the derivative
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3 Parameter estimation

computation. The derivatives with respect to the parameters are used for optimum
experimental design, too.

3.1 Statistical foundations

In this section, we derive the parameter estimation problem and show how to compute
the variance-covariance matrix. For the fundamental statistical details, we refer to
Seber et al. [84]. Similar approaches like our derivation are made in [91], [16], [59] and
[15]. Let M measurements zi be given and denote with h(ui(p∗), p∗), i = 1, . . . ,M , a
measurement function h evaluated at true parameters p∗. The measurement errors

εi := zi − h(ui(p∗), p∗) i = 1, . . . ,M (3.2)

are assumed to be normally distributed

εi ∼ N (0, s2
i ) i = 1, . . . ,M. (3.3)

In estimation theory, one searches for an adequate estimate p̂ for the true parameters
p∗. For such an estimate, we assume that

p̂(ε)→ p∗ when ‖ε‖2 → 0.

The measurement errors εi are concatenated to the vector ε ∈ RM . If we expand p̂(ε)
in a Taylor series, we get

p̂(ε) = p∗ + ∂p∗

∂ε

∣∣∣∣∣
ε=0

ε+O(‖ε‖2). (3.4)

Thus p̂ is normally distributed up to first order, because ε is. One obtains for the
mean in first order approximation

E[p̂] = p∗ + ∂p∗

∂ε
E[ε]︸︷︷︸
=0

= p∗. (3.5)

We extend the assumption of εi to be distributed normally to all parameters p in a
neighborhood of the true parameters p∗. The probability density function for εi is

fp(εi) = 1√
2πs2

i

exp
(
−(zi − h(ui(p), p))2

2s2
i

)
i = 1, . . . ,M.
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3.1 Statistical foundations

For measurement realizations zi, i = 1, . . . ,M , and corresponding errors ε = (ε1, . . . , εM )
the likelihood function of the parameters p is

L(p|ε) =
M∏
i=1

fp(εi).

3.1.1 Parameter estimation problem

The method of maximum likelihood is to maximize the likelihood function L(p|ε) over
the parameters p to find the most likely parameters p̂, given measurements ε.

p̂ = argmaxp∈RNp L(p|ε)

= argmaxp∈RNp logL(p|ε)

= argmaxp∈RNp log
M∏
i=1

fp(εi)

= argmaxp∈RNp
M∑
i=1

log fp(εi)

= argmaxp∈RNp −
1
2

M∑
i=1

(zi − h(ui(p), p))2

s2
i

+
M∑
i=1

1√
2πs2

i︸ ︷︷ ︸
independent of p

= argminp∈RNp
1
2

M∑
i=1

(zi − h(ui(p), p))2

s2
i

.

This is a least squares estimator, weighted with the variances s2
i . We define the

residuals

R(ui(p), p, εi) := zi − h(ui(p), p)
si

= εi + h(ui(p∗), p∗)− h(ui(p), p)
si

i = 1, . . . ,M

and denote the vector of residuals with

R(u(p), p, ε) :=
(
R(ui(p), p, εi)

)M
i=1 (3.6)

dependent on u(p) := (u1(p), . . . , uM (p)) and ε = (εi)Mi=1. We rewrite the resulting
unconstrained optimization problem as

min
p

1
2 ‖R(u(p), p, ε)‖2, (3.7)
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For fixed parameters p the states ui are obtained by solving the model equations

Fi(ui(p), p) = 0, i = 1, . . . ,M.

The optimality conditions, namely the KKT conditions for (3.7) are

G(p, ε) := J(u(p), p)TR(u(p), p, ε) = 0. (3.8)

With the same abbreviation used in (3.6) we denote with J(u(p), p) ∈ RM×Np the
Jacobian with entries

J(u(p), p)ij := dR

dpj
(ui(p), p, εi) = − 1

si

dh

dpj
(ui(p), p). (3.9)

Assuming enough regularity we can apply the implicit function theorem to G and
obtain for the true parameters p∗ = p(0):

∂G

∂p
(p∗, 0) ∂p

∂ε

∣∣∣∣∣
ε=0

= −∂G
∂ε

(p∗, 0)

⇐⇒ JT (u(p∗), p∗)J(u(p∗), p∗) ∂p
∂ε

∣∣∣∣∣
ε=0

= −JT (u(p∗), p∗)∂R
∂ε

(u(p∗), p∗, 0).
(3.10)

Note, that the Jacobian J does not depend on the measurement errors ε explicitly
and the residuals R vanish at ε = 0

R(u(p∗), p∗, 0) = 0.

We compute the variance-covariance matrix of our estimates p̂ using (3.4) and (3.5)
in first order approximation

C := E[(p̂− p∗)(p̂− p∗)T ] = E


 ∂p∗

∂ε

∣∣∣∣∣
ε=0

ε

 ∂p∗

∂ε

∣∣∣∣∣
ε=0

ε

T


= ∂p∗

∂ε

∣∣∣∣∣
ε=0

E[εεT ]︸ ︷︷ ︸
=diag(s2

i ,i=1,...,M)

∂p∗

∂ε

∣∣∣∣∣
T

ε=0

=
(
JTJ

)−1
JTJ

(
JTJ

)−1
=
(
JTJ

)−1
.

(3.11)
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3.1 Statistical foundations

The arguments of the Jacobian J are neglected for reasons of clarity. In the second
last sept we used (3.10) and exploited that

∂Ri
∂εj

(u(p∗), p∗, 0) = δij
1
si
.

3.1.2 Confidence region

A nonlinear confidence region for the treated case is given by

GN (α, p) := {p ∈ RNp : ‖R(u(p), p, ε)‖22 − ‖R(u(p∗), p∗, 0)‖22 ≤ γ2(α)},

where γ2(α) is the quantile of the χ2
Np

(1− α)-distribution with error probability α
and Np degrees of freedom. The bound is chosen in such a way, that a parameter,
distributed normally, with mean p∗ and variance-covariance matrix C =

(
JTJ

)−1

lies in the region with a probability 1− α. For the later purpose of computing the
confidence regions, we also introduce the linear confidence region

GL(α, p) := {p ∈ RNp : ‖R(u(p∗), p∗, 0)+J(u(p∗), p∗)(p−p∗)‖2
2−‖R(u(p∗), p∗, 0)‖2

2 ≤ γ2(α)}.

With the fact that R(u(p∗), p∗, 0) vanishes it follows immediately that

GL(α, p) = {p ∈ RNp : (p− p∗)T (JTJ)(p− p∗) ≤ γ2(α)}. (3.12)

Because the real parameters p∗ are unknown, we compute the confidence region
with the estimate returned by the parameter estimation p̂. Useful estimates for the
confidence intervals are given by the following theorem.
Theorem 3.1.1. The linearized confidence region lies in a cuboid:

GL(α, p) ⊆ [p1 − θ1, p1 + θ1]× · · · × [pNp − θNp , pNp + θNp ]

with
θi := γ(α)

√
Cii, i = 1, . . . , Np. (3.13)

Proof. The proof can be found in Bock [15].

We rewrite the parameter estimation problem which we derived in this section:
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min
p

1
2 ‖R(u(p), p, ε)‖22,

where Fi(ui(p), p) = 0, i = 1, . . . ,M.
(3.14)

Remark 3.1.2. We have linearized the confidence region and the objective function.
The variance-covariance matrix is evaluated at the parameter estimate instead of
the real parameters. For enough regularity and not too nonlinear problems, this is
appropriate, according to Bock [15].

3.2 Gauss-Newton method

In this section we deal with the numerical solution of the parameter estimation
problem (3.14) although we do not show computational results. We solve the least-
squares problems with the Gauss-Newton algorithm where “Gauss” stands for solving
regression problems and “Newton” for solving linearized problems. This method
has the advantage that it only converges to statistically reasonable parameters, cf.
κ-theory of Bock [15]. We start with an initial value for the parameters p0 and solve
in every iteration i the linearized unconstrained parameter estimation problem

min
δp
‖R(u(pi), pi, ε) + J(u(pi), pi)δp‖22.

If JTJ is positive definite, these partial problems are solvable with the solution

δpi = −
(
JTJ

)−1
JTR(u(pi), pi, ε).

With
M =

(
JTJ

)−1

this method is a Newton-type method for solving

JTR = 0,

cf. Section 2.2.4. The local contraction Theorem 2.2.2 guarantees local convergence
with

‖δpk+1‖ ≤ κ‖δpk‖+ ω

2 ‖δp
k‖2.
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For a globalization of the convergence the next iterate is computed by

pi+1 = pi + αiδpi

with a damping parameter αi, which can be determined by the RMT for example,
see for the details Bock [15]. The iteration is stopped when e.g. ‖δpi‖2 falls below a
sufficient small error tolerance. In each step we also solve

Fj(uj(pi), pi) = 0, j = 1, . . . ,M

with the solution method presented in Chapter 2.

3.3 Computing the Jacobian

In this section we show how to compute the Jacobian, defined in (3.9), required for
the parameter estimation problem and the later purpose of optimum experimental
design. We need derivatives of the model response h and of our model equations F
w.r.t. states u and parameters p

∂uh, ∂ph, ∂uF, ∂pF.

In anticipation of the optimum experimental design problems, where higher order
order derivatives are involved, we choose automatic differentiation (AD) as the method
to compute the derivatives. AD has the two main advantages compared with symbolic
differentiation or using finite differences:

i) The evaluation is done efficiently, i.e. already computed expressions are not
evaluated twice.

ii) No numerical truncation error occurs.

3.3.1 Automatic differentiation

We follow Griewank [44] for a brief introduction to AD. Therefor we consider a
continuously differentiable function f defined on a domain D ⊂ Rn

f : D → Rm

x 7→ y.
(3.15)
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We assume that f can be decomposed in a sequence of elemental functions (ϕi)i=1,...,l.
The ϕi are basic arithmetical operations like addition, subtraction, multiplication,
division, or elementary function calls like exp(.), log(.), √.. According to Griewank
the evaluation of f at an argument x can be represented in the general procedure
given in the three-part form in Table 3.1. With vj≺i we denote only those vj which

Initialization vi−n := xi i = 1, . . . , n
Computation vi := ϕi(vj≺i) i = 1, . . . , l
Result ym−i := vl−i i = m− 1, . . . , 0

Table 3.1: General evaluation procedure.

ϕi depend on for i < j. One distinguishes between the forward mode and the reverse
mode for differentiating f via the elementary operations in Table 3.1. The forward
mode is commonly used for directional derivatives like

ẏ = df

dx
ẋ (3.16)

with a tangential direction vector ẋ ∈ Rn. The schematic differentiation of Table 3.1 is
displayed in Table 3.2. For achieving further efficiency one can save effort in evaluating

Initialization vi−n := xi i = 1, . . . , n
v̇i−n := ẋi

Computation vi := ϕi(vj≺i) i = 1, . . . , l
v̇i :=

∑
j≺i

∂ϕi
∂vj

v̇j

Result ym−i := vl−i i = m− 1, . . . , 0
ẏm−i := v̇l−i

Table 3.2: Tangent recursion for the general evaluation procedure.

the derivative and the function at the same time. For the reverse mode final results
are differentiated w.r.t. intermediate results. It is applied to derivatives given as linear
combinations like

x = y
df

dx
(3.17)

with y ∈ Rm. The reverse mode requires a forward sweep of the function evaluation
like in Table 3.1. The intermediate results are saved and the derivative computation
follows the adjoint evaluation procedure of Table 3.3.
Remark 3.3.1. From Griewank [44] we cite some results of the complexity analysis of
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Initialization vi := 0 i = 1− n, . . . , l −m
vl−i := ym−i i = 0, . . . ,m− 1

Computation vj := vj + vi
∂ϕi
∂vj

for all j ≺ i, i = l, . . . , 1

Result xi := vi−n i = n, . . . , 1
Table 3.3: Incremental adjoint recursion.

AD:

i) The evaluation of the derivative of an arbitrary elemental function is a fixed
multiple of the evaluation of the elemental function itself, e.g. for the division
we have: (

a

b

)′
= a′ · b− a · b′

b2
, (3.18)

which is five times more expensive than evaluating simply a/b.

ii) The whole complexity for the computation of f is the sum of all complexities of
the elemental functions.

iii) The effort of the forward mode grows linearly with the number of tangential
directions, i.e. ẋ in (3.16).

iv) The effort of the reverse mode grows linearly with the number of the adjoint
directions, i.e. y in (3.17).

We conclude, that the forward mode is more sensible, if the number of dependent vari-
ables, i.e. m in (3.15), is larger than the number of independent variables, i.e. n. The
reverse mode is preferable, if n is bigger than m, although more memory consumption
is required because of the forward sweep. For the computational implementation of
AD there are the two possibilities:

i) Operator overloading, implemented in software packages like ADOL-C (C/C++)
[45], CppAD (C/C++) [11], or Algopy (Python) [92].

ii) Source code transformation, used by the software packages ADIFOR (Fortran
77) [12] [14] [13], and TAPENADE (C/C++, Fortran 77, Fortran 95) [48].

3.3.2 EGDM/ECDM derivatives

For the parameter estimation problem we need to assemble the whole Jacobian, i.e.
differentiating h in every unit direction of RNp . To determine Np parameters without

59



3 Parameter estimation

regularization one needs at least Np measurements. With M ≥ Np we conclude that
in general the forward mode of automatic differentiation is appropriate for parameter
estimation problems, cf. Remark 3.3.1. Coming back to our problem of a discretized
stationary partial differential equation, cf. (1.12), we however observe that using the
reverse mode can save effort. For parameters p we have to compute solutions ui of
(1.12) for different configurations corresponding to model responses hi, i = 1, . . . ,M .
Hence the complexity has to be regarded separately for every hi. This changes the
argumentation, because now Np is equal to or greater than one and using the reverse
mode is more efficient, cf. Remark 3.3.1.
Remark 3.3.2. Similar considerations are made in Schmidt [82] related to local pre-
accumulation of Jacobian matrices.

The application of the reverse mode on the computation the derivative of hi w.r.t.
the parameters p results in

dhi
dp

=
(
λTi
∂Fi
∂p

+ ∂hi
∂p

)
for i = 1, . . . ,M,

where λi ∈ R3N are the solutions of the adjoint equations(
∂Fi
∂u

)T
λi +

(
∂hi
∂u

)T
= 0, (3.19)

see i.a. [50]. With Fi we denote the model equations for different configurations
corresponding to hi.
Remark 3.3.3. In the reverse mode of automatic differentiation the expression λTi ∂Fi∂p

occurring in (3.3.2) is computed efficiently and not as a product of a vector with a
matrix.
Remark 3.3.4. Because the equations (3.19) are linear, we do not need to solve them
in every Gummel and Newton step respectively but just in the solution for one
time. If one is interested in the derivatives at intermediate iterates, Gummel’s and
Newton’s method have to be differentiated. We refer to Christianson [25] for further
investigations.

The equations (3.19) have a similar shape as the linear subproblems of Newton’s
method, cf. (2.14),

F ′(ui) δui = −F (ui). (3.20)
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We use direct methods to solve these subproblems, e.g. the LU decomposition

(
F ′(ui) =

) ∂Fi
∂u

= LU,

with a lower triangular matrix L and an upper triangular matrix U . Equation (3.20)
transforms into the system

Ly = −F (ui),
Uδui = y,

which is solved by forward and back substitution. If we save the LU decomposition in
the last step of Newton’s method, we can reuse it for solving the adjoint equations,
too, because (3.19) transforms to the system

UT y =
(
∂hi
∂u

)T
,

LTλi = y.

Since L and U are triangular matrices, LT and UT are triangular.

Applying the forward mode instead of the adjoint mode to calculate the derivative of
hi w.r.t. the parameters p results in

dhi
dp

=
(
∂hi
∂u

up,i + ∂hi
∂p

)

where up,i ∈ RN×Np , i = 1, . . . ,M , are matrices obtained by solving the tangential
equations

∂Fi
∂u

up,i + ∂Fi
∂p

= 0. (3.21)

These equations are also called variational differential equations.

61





4 Optimum experimental design

In the last chapter, we have introduced the variance-covariance matrix C, see (3.11),
to parameterize the linearized confidence region in the parameter space. In nonlinear
models, the Jacobian, see (3.9), often depends on control parameters q ∈ RNq . The
control parameters are quantities which can be controlled, e.g. the temperature at
which the measurements are taken. By varying the control parameters, one can plan
experiments whose measurement values allow a more significant estimation of the
parameters. Optimum experimental design tries to find optimal control parameters
which allow the most significant identification of the parameters. In principle, we follow
the approaches of Lohmann [60] and Bauer et al. [8]. For the computation we use
the software package VPLAN developed by Körkel, cf. [59], which offers interfaces to
ADIFOR for automatic differentiation, PARFIT for parameter estimation and SNOPT
for solving optimization problems with SQP methods. The strength of VPLAN lies
in the efficient exploitation of multi-experiment structures, which is crucial for our
application problems and the efficient evaluation of all required derivatives. The
chapter starts with stating the optimum experimental design problem we consider
in this work. We introduce an SQP method on the reduced problem as our solution
method for the optimum experimental design problem. As in the chapter before we
show how to compute the gradient of the objective with automatic differentiation.
Numerical results are computed for the modern organic semi-conducting materials
NRS-PPV and α-NPD with both the EGDM and the ECDM. We close with a
robustness study w.r.t. varying parameters in a sequential experimental design for
NRS-PPV.

4.1 Criteria

The objective function of the optimum experimental design problem is called “criterion”.
It is a function which maps the variance-covariance matrix to a scalar function.
Statistically spoken, an information function φ is applied to the variance-covariance
matrix. The classical criteria, cf. [78], are

i) A-criterion:
φA(C) = 1

Np
trC. (4.1)
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4 Optimum experimental design

ii) D-criterion:
φD(C) = det(C)

1
Np .

iii) E-criterion:
φE(C) = max{µ : µ eigenvalue of C}.

iv) M-criterion:
φM (C) = max{

√
Cii, i = 1, . . . , Np}.

A visualization of the criteria with the confidence ellipsoid can be seen in Figure 4.1.
Remark 4.1.1. The criteria are not invariant regarding possible parameter scaling.
If all parameters are of comparable interest, the parameters should be scaled to the
same values.
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Figure 4.1: Visualization of the optimum experimental design criteria taken from
Walter [91].

4.2 Optimum experimental design problem

With φ being any of the previous criteria, the objective has the form

φ

(
C

(
dh

dp
(u(p, q), p, q)

))
= φ

(
λ(p, q), u(p, q), p, q

)
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4.2 Optimum experimental design problem

with the solutions λ of the adjoint equations (3.19) dependent on parameters p
and control parameters q, the states u dependent on p and q. We use the same
abbreviated notation as in Section 3.1.1 writing the arguments of the objective
φ(λ(p, q), u(p, q), p, q) as

λ(p, q) := (λ1(p, q), . . . , λM (p, q)) and u(p, q) := (u1(p, q), . . . , uM (p, q)).

Remark 4.2.1. For evaluating the objective function a parameter set is required. If the
parameters are obtained by a parameter estimation, the objective function depends
on measurement values indirectly through the estimate.

We keep the parameter dependence in mind, but neglect the argument p in the
following. The optimum experimental design problem is stated as a constrained
nonlinear optimization problem:

min
q

φ(λ(q), u(q), q)

s.t. ci(q) = 0, i ∈ E ,
ci(q) ≥ 0, i ∈ I,

where Fj(uj(q), q) = 0,(
∂uFj(uj(q), q)

)T
λj(q) +

(
∂uhj(uj(q), q)

)T = 0,
for j = 1, . . . ,M.

(4.2)

E is the index set of equality constraints and I the index set of all inequality constraints.
The control constraints are of two kinds:

• Equality constraints, i.e. ci for i ∈ E : In a multi experiment setup, we want
equal starting values for the control parameters, like the length of the device, to
be equal in the end of the optimization. We therefor only need linear constraints.

• Inequality constraints, i.e. ci for i ∈ I: The ranges of control parameters are
bounded due to physical boundaries, e.g. for high temperatures the material
breaks down, or experimental doability, e.g. high costs for performing very low
temperature experiments. These constraints are linear box constraints.

The dependence of the states uj and the control parameters q is given by the model
equations

Fj(uj(q), q) = 0, j = 1, . . . ,M.
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4 Optimum experimental design

Remember that we think of Fi as our discretized system of equations with

Fj : R3N ×RNq → R3N , uj : RNq → R3N and q ∈ RNq ,

where Nq is the number of control parameters and N the number of discretization
points.

4.3 Solving the optimum experimental design problem

We recite the most important results to guarantee the unique existence of a solution
of (4.2) following the presentation of Nocedal and Wright [71] for solving constrained
nonlinear optimization problem. By assuming continuously differentiable uj and λj
w.r.t. q our problem (4.2) can be written in the standard form of nonlinear optimization
problems

min
q

φ(q)

s.t. ci(q) = 0, i ∈ E ,
ci(q) ≥ 0, i ∈ I,

(4.3)

with continuously differentiable functions φ and ci.
Definition 4.3.1. We define the active set as

A(q) := E ∪ {i ∈ I : ci(q) = 0}.

The inequality constraint i ∈ I is said to be active if ci(q) = 0.

To guarantee that a solution of (4.3) exists, we have to define a condition on the
active constraints.
Definition 4.3.2. The linear independence constraint qualification condition (LICQ)
holds, if the set

{∇ci(q) : i ∈ A(q)}

is linearly independent.

With the Lagrange function defined by

L(q, l) = φ(q)−
∑
i∈E∪I

lici(q)

with the Lagrange multiplier l = (li)i∈E∪I . We state the first-order necessary condi-
tions.
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4.3 Solving the optimum experimental design problem

Theorem 4.3.3. If q∗ is a local solution of (4.3), φ and ci are continuously differen-
tiable, and LICQ holds at q∗ then there is a Lagrange multiplier l∗ = (l∗i )i∈E∪I such
that the following conditions are satisfied

∇qL(q∗, l∗) = 0,
ci(q∗) = 0, for all i ∈ E ,
ci(q∗) ≥ 0, for all i ∈ I,

l∗i ≥ 0, for all i ∈ I,
l∗i ci(q∗) = 0, for all i ∈ E ∪ I.

(4.4)

The conditions (4.4) are also known as the Karush-Kuhn-Tucker (KKT) conditions.
With the set of feasible linear directions

F(q) := {d : dT∇ci(q) = 0, for all i ∈ E and dT∇ci(q) ≥ 0, for all i ∈ A(q) ∩ I}

and the critical cone

C(q∗, l∗) := {w ∈ F(q∗) : ∇ci(q∗)Tw = 0, all i ∈ A(q∗) ∩ I with l∗i > 0}

we also give second-order sufficient conditions for twice continuously differentiable
functions φ and ci:
Theorem 4.3.4. Suppose the KKT conditions (4.4) are fulfilled with q∗ and l∗. If
also

wT∇2
qqL(q∗, l∗)w > 0, for all w ∈ C(q∗, l∗), w 6= 0

holds, then q∗ is a local solution (4.3).

4.3.1 Sequential quadratic programming (SQP)

We solve problem (4.2) with an SQP method on the reduced problem, since our
model equations are ill-conditioned, cf. Section 2.2.1 and the argumentation in the
introduction of Chapter 3. In Algorithm 3, we give a basic overview of the numerical
method. The idea is to solve problem (4.3) iteratively with a sequence of quadratic
subproblems and solve the model equations and adjoint equations in every step. When
the exact Hessian is taken the method is locally equivalent to Newton’s method and
therefore converges local quadratically. A popular approximation strategy of the
Hessian is the BFGS, named after Broyden, Fletcher, Goldfarb, and Shanno, which
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4 Optimum experimental design

Algorithm 3 SQP method on the reduced problem (4.2).
1: Start with q0, l0, H0. Set k = 0.
2: while convergence test is not satisfied do
3: Solve the model equations

Fj(uj(qk), qk) = 0, j = 1, . . . ,M,

for uj(qk) and solve the adjoint equations(
∂uFj(uj(qk), qk)

)T
λj(qk) +

(
∂uhj(uj(qk), qk)

)T
= 0, j = 1, . . . ,M,

for λj(qk).
4: if k > 0 then
5: With ∇φ(qk−1), ∇φ(qk), pk−1 and Hk−1 compute an approximation Hk of

the Hessian of the Lagrange function.
6: end if
7: Set Hk ≈ ∇2

qqL(qk, lk).
8: Solve

min
p

1
2p

THkp+∇φ(qk)T p

s.t. ci(p) = 0, i ∈ E ,
ci(p) ≥ 0, i ∈ I,

for pk and l̃k (Lagrange multiplier).
9: Find an acceptable step size αk and define new iterates

qk+1 := qk + αk pk,

lk+1 := lk + αk (l̃k − lk).
(4.5)

10: k ← k + 1
11: end while
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4.4 Derivatives

is a rank two update formula with superlinearly convergence properties. We use
the software package SNOPT 7.2-9 (Jun 2008) [43], see also [42], which implements
an SQP method with a limited memory BFGS, where past iterates are neglected
from time to time, together with an active set method for handling the inequality
conditions. For the theory of active set methods we refer to the literature [71]. An
alternative to active set methods are the interior penalty methods, which are realized,
e.g. in IPOPT [95]. For the application of line search methods for the globalization,
i.e. finding αk in (4.5), we refer to the literature [71] and [38]. As a stopping criterion
one can take the KKT conditions, cf. (4.4).

4.4 Derivatives

With an approximation of the Hessian of the Lagrange function, we are left with
computing the gradient of the objective φ and the gradient of the functions appearing
in the constraints ci, i ∈ E ∪ I of problem (4.2). We take the formulas for the
directional derivatives of φ from Körkel [59]. A directional derivative is defined by

dφ

dx
δx := lim

h→0

φ(x+ hδx)− φ(x)
h

.

For the criteria of the optimum experimental design problem dependent on the
variance-covariance matrix C ∈ RNp×Np the derivatives in the direction δC ∈ RNp×Np
are

i) A-criterion:

dφA
dC

δC = 1
Np

d trC
dC

δC = 1
Np

∑
i,j

d trC
dCij

δCij = 1
Np

∑
i,j,k

dCkk
dCij

δCij

= 1
Np

∑
i,j,k

δkiδkjδCij = 1
Np

∑
k

δCkk = 1
Np

tr δC.

ii) D-criterion: With

d

dC
det(C)δC =

∑
i,j

det(C)(C−1)ijδCij
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4 Optimum experimental design

we have
dφD
dC

δC = d

dC

(
det(C)

) 1
Np δC

= 1
Np

(
det(C)

) 1
Np
∑
i,j

(
C−1

)
ij
δCij .

iii) E-criterion: If the largest eigenvalue is single and its corresponding normalized
eigenvector is denoted with z, then, cf. [59],

dφE
dC

δC = d

dC
max{µ : µ eigenvalue of C}δC = zT δCz.

iv) M-criterion: The problem of minimizing

φM (C) = max{
√
Cii, i = 1, . . . , Np}

is transformed to the auxiliary problem

min φ0

s.t. φ0 ≥
√
Cii, i = 1, . . . , Np.

The constraints are added to the inequality constraints ci, i ∈ I in (4.2). The
derivative is given by

d

dC

(√
Cii
)
δC = 1

2
√
Cii

δC.

For the derivative of the variance-covariance matrix itself, we need the following
lemma.
Lemma 4.4.1. For a regular matrix A ∈ RNp×Np and δA ∈ RNp×Np it holds

dA−1

dA
δA = −A−1δAA−1.

Proof. Define F : RNp×Np ×R→ RNp×Np as

F (B, h) := (A+ hδA)B − INp×Np .

F is continuously differentiable and it holds

i) F (A−1, 0) = 0,
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4.4 Derivatives

ii) ∂F
∂B (A−1, 0) = A is regular.

By applying the implicit function theorem we end up with a continuously differentiable
function B with

i) B(h) = (A+ hδA)−1,

ii) B′(h) = −
(
∂F
∂B (B(h), h)

)−1
∂F
∂h (B(h), h) = −(A+ hδA)−1δAB(h).

Hence it follows

dA−1

dA
δA = lim

h→0

B(h)−B(0)
h

= B′(0) = −A−1δAA−1.

With this lemma the derivative of the variance-covariance matrix

C =
(
JTJ

)−1

in the direction δJ is

dC

dJ
δJ = d(JTJ)−1

dJ
δJ = −(JTJ)−1(δJTJ + JT δJ)(JTJ)−1.

Since the Jacobian is given by

J(u(q), q)ij = − 1
si

dh

dpj
(ui(q), q),

cf. (3.9), the gradient of the objective φ is assembled by the derivatives

d

dq

(dhi
dp

)
= d

dq

(
λTi ∂pFi + ∂phi

)
=

N∑
j=1

λi,j∂
2
quFi,j uq,i + ∂2

puhuq,i + (λq,i)T∂pFi +
N∑
j=1

λi,j∂
2
qpFi,j ,

in unit directions δq = INq×Nq . The occurring derivatives uq,i are given by the
tangential equations

∂uFi uq,i + ∂qFi = 0. (4.6)
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4 Optimum experimental design

The sensitivities of second order λq,i are given by second order adjoint equations

N∑
j=1

λj∂
2
uuFi,j uq,i + ∂2

uuhi uq,i + (∂uFi)Tλq,i +
N∑
j=1

λj∂
2
quFi,j + ∂2

quhi = 0, (4.7)

with known λi and uq,i.
Remark 4.4.2. Note that in (4.7) and (4.6) the matrix ∂uFi has to be inverted. Hence
only one decomposition is required when using direct methods, cf. Section 3.3.2.
Remark 4.4.3. According to Griewank [44] using the reverse mode twice for second
order derivatives (not directionally), is the same as using the reverse mode followed
by the forward mode as we have done here.

We compute the derivatives of the model functions

∂uh, ∂ph, ∂qh, ∂
2
uuh, ∂

2
quh, ∂

2
uph, ∂

2
qph,

and
∂uF, ∂pF, ∂qF, ∂

2
uuF, ∂

2
quF, ∂

2
upF, ∂

2
qpF,

together with the derivatives of the constraints

∇ci

directionally with the automatic differentiation tool ADIFOR.

4.5 Application of optimum experimental design to
organic semiconductors

Experimenters, cf. [93], proceed in the following way. Devices of different lengths L
are produced by evaporating the organic material on a supporter with contacts for
the cathode and anode. At different temperatures T , they apply voltages Vapp and
measure the corresponding electric current j.
Definition 4.5.1. One choice of L, T and a series consisting of several applied
voltages Vapp we call one experiment subsequently.

To complete the measurement model, we also have to set the standard deviation of
the model response j, cf. (3.3). We model the standard deviation as

si = 0.1 · ji, i = 1, . . . ,M
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4.5 Application of optimum experimental design to organic semiconductors

i.e. 10% of the measured current j, cf. [93]. We treat two different organic semi-
conducting materials:

i) A random copolymer poly[4’-(3,7-dimethyloctyloxy)-1,1’-biphenylene-2,5-vinylene]
(NRS-PPV) for which Bouhassoune et al. [20] found parameters by fitting
current-voltage characteristics with the EGDM and the ECDM, see Figure 4.2
and cf. [74].

O

O

O

0.5

0.5

Figure 4.2: NRS-PPV, a random copolymer.

ii) Mensfoort et al. [89] studied EGDM and ECDM parameters for N,N’-bis(1-
naphthyl)-N,N’-diphenyl-1,1’-biphenyl-4,4’-diamine (α-NPD), see Figure 4.3.

N N

Figure 4.3: α-NPD
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4 Optimum experimental design

4.5.1 NRS-PPV

The parameters Bouhassoune et al. [20] analyzed are

i) site density Nt,

ii) width of Gaussian distribution σ,
iii) zero-temperature mobility µ0,

iv) factor c0 occurring in the mobility enhancement term g0.

(4.8)

They considered both the EGDM and the ECDM. We will compute optimum experi-
mental designs for both models with the parameters they already have identified.

EGDM

Taking their parameter values for the EGDM providing a satisfactory fit of current-
voltage characteristics, we take the configuration given in Table 4.1. Bouhassoune et al.

µ0 σ Nt Ecathode Eanode c0

2.5 · 10−7 0.14 0.171 · 1027 0.0 1.1 0.44

Table 4.1: Configuration for EGDM simulations of NRS-PPV according to Bouhas-
soune et al.

took one device of length L = 560 and measured the electric current at four different
temperatures K = 233, 252, 272 and 298 for voltages Vapp = 1, 2, . . . , 29, 30. We
have recalculated their current-voltage characteristics with our simulation program,
cf. Section 2.1.2. The results are shown in Figure 4.4. We observe that taking
fewer voltages but take more measurements leads to similar confidence intervals and
objective value, cf. Table 4.2, where we took the voltages Vapp = 1, 5, 10, 20, 25, 30
with weights w = 5 instead of w = 1. The value of the objective of the optimum
experimental design problem is taken for the A-criterion, cf. (4.1). We use this
criterion in all our computations. For the optimum experimental design problem, we
consider two devices with lengths 500 and 600. The combination of all lengths and
temperatures lead to eight experiments according to Definition 4.5.1. We scale all the
parameters to one, cf. Remark 4.1.1. The optimization variables are left unscaled,
because they are already the same order of magnitude. Note that the unit of L is nm
and the unit of T is K, cf. Section 1.3. The whole setup is displayed in Table 4.3.
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Figure 4.4: NRS-PPV current-voltage characteristics for Bouhassoune parameters
computed with the EGDM.

M = 30, w = 1 M = 6, w = 5 error
A-criterion 0.011085 0.011679 0.000593
θ1/p1 0.583202 0.603773 0.020571
θ2/p2 0.051508 0.054149 0.002641
θ3/p3 0.277156 0.272985 0.004171
θ4/p4 0.033447 0.035103 0.001656

Table 4.2: Comparison of relative radii of the confidence intervals.
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We choose bounds to the lengths, temperatures, applied voltages and measurement

length L temperature T voltages Vapp weights w
exp. 1 500 233 1,5,10,20,25,30 5,5,5,5,5,5
exp. 2 500 252 1,5,10,20,25,30 5,5,5,5,5,5
exp. 3 500 272 1,5,10,20,25,30 5,5,5,5,5,5
exp. 4 500 298 1,5,10,20,25,30 5,5,5,5,5,5
exp. 5 600 233 1,5,10,20,25,30 5,5,5,5,5,5
exp. 6 600 252 1,5,10,20,25,30 5,5,5,5,5,5
exp. 7 600 272 1,5,10,20,25,30 5,5,5,5,5,5
exp. 8 600 298 1,5,10,20,25,30 5,5,5,5,5,5

Table 4.3: Setup for the optimum experimental design with EGDM and Bouhassoune
parameters.

weights according to the practicability of experiments and the validity of the model,
cf. ci, i ∈ I in (4.2),

400 ≤ L ≤ 800,
200 ≤ T ≤ 350,
0.5 ≤ Vapp ≤ 35,

0 ≤ w ≤ 10.

Note that these are implemented as inequality constraints, cf. (4.2). We want to end
up with two devices, i.e. two lengths, for which we take measurements at different
temperatures and applied voltages. We apply equality constraints to the lengths that
equal initial values stay equal throughout the optimization. Another constraint is
that we do not want to increase or decrease the number of measurements carried out.
This can be realized by constraining the sum over all weights to be a fixed number

6∑
i=1

wi = 30.

In Table 4.4 we assemble the solution of the optimum experimental design problem.
We cleared the voltages for which the optimal weights are zero. As constrained before,
we end up with 30 measurements for each experiment and only two devices, i.e. two
different lengths. For realizing the new experiments, we have to interpret the decimal
numbers of weights. One possibility is to apply rounding techniques like Körkel
discussed in [59]. We simply round to the next integer number, which means for
experiment 5 that we take nine measurements at voltage 0.5 and one measurement
at voltage 35. We observe that many parts of the solution lie at the borders. This
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4.5 Application of optimum experimental design to organic semiconductors

length L temperature T voltages Vapp weights w
exp. 1 414.1 201.7 0.506, 0.521, 35 10,10,10
exp. 2 414.1 200 0.537, 35 10,20
exp. 3 414.1 350 0.5, 35 20,10
exp. 4 414.1 350 0.5 35 10,20
exp. 5 596.9 200 0.5, 0.511, 0.636, 35 9.044, 10, 10, 0.955
exp. 6 596.9 276.2 0.5, 1.244 20,10
exp. 7 596.9 350 0.5 30
exp. 8 596.9 350 0.5, 35 10, 20

Table 4.4: Optimum experimental design results for NRS-PPV with Bouhassoune
parameters and EGDM.

is a typical behavior of optimum experimental design because it seeks for extreme
cases which gain the most information. Table 4.11 shows a comparison of the relative
confidence intervals of the parameters before and after the optimization. In the third
column “before & after”, we show the results by taking all experiments, i.e. the 30
old ones and the 30 new ones, into account. If the “old” experiments are already
performed, we would insert them in a following parameter estimation to achieve
a better and more validated fit. In Figure 4.7, we visualize the two dimensional

before after before & after
A-criterion 0.01167 0.00010 0.00010
θ1/p1 0.60377 0.05752 0.05831
θ2/p2 0.05414 0.00421 0.00320
θ3/p3 0.27298 0.02815 0.02584
θ4/p4 0.03510 0.00268 0.00252

Table 4.5: Relative radii of the confidence intervals before and after the optimization,
computed by (3.13) for the parameters (4.8).

projections of the four dimensional ellipsoid, i.e. the linearized 95%-confidence region
(3.12). The projections are moved to the origin with the difference

δpi = pi − p̂i.

Remark 4.5.2. In the software VPLAN the computation of multiple experiments can
be done in parallel with Open MP. On a computer with at least eight threads the
computational time for evaluating the Jacobian for eight experiments is almost the
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Figure 4.5: Projections of the four dimensional ellipsoid of the linearized 95%-
confidence regions before (light part) and after (dark part) the optimiza-
tion. Computed with EGDM for Bouhassoune parameters for NRS-PPV,
cf. Table 4.1, scaled to one.
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4.5 Application of optimum experimental design to organic semiconductors

same as for one experiment.

ECDM

The ECDM parameters of Bouhassoune et al. are displayed in Table 4.6 and our
recalculated current-voltage characteristics are shown in Figure 4.6. We made a

µ0 σ Nt Ecathode Eanode c0

3.8 · 10−7 0.18 37.037 · 1027 0.0 1.7 0.27

Table 4.6: Configuration for ECDM simulations of NRS-PPV according to Bouhas-
soune et al.
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Figure 4.6: NRS-PPV current-voltage characteristics for Bouhassoune parameters
computed with the ECDM.

similar study about reducing the number of voltages and increment the number of
weights instead. Unlike before, we found, that this technique even decreases the
objective in terms of the A-criterion, see Table 4.7, where the number M = 10
stands for the voltages Vapp = 1, 3, 6, 10, 13, 16, 20, 23, 26, 30 and M = 3 stands for
Vapp = 1, 15, 30. The weights w are equal to 30/M , such that each experiment
comprises 30 measurement values. Again we consider the two lengths 500 and 600,
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M = 30, w = 1 M = 10, w = 3 M = 6, w = 5 M = 3, w = 10
A-criterion 0.001106 0.000797 0.000716 0.000805
θ1/p1 0.175812 0.144451 0.139155 0.148205
θ2/p2 0.010908 0.006801 0.005737 0.005564
θ3/p3 0.104361 0.096420 0.088017 0.092243
θ4/p4 0.008869 0.008005 0.007782 0.008294

Table 4.7: Comparison of relative radii of the confidence intervals.

which result in eight experiments by combination with the four lengths. We change
the setup for the optimum experimental design by fixing the weights

w ≡ 1

and therefore take 30 voltages. The setup is displayed in Table 4.8. The ECDM is

length L temp. T voltages Vapp
exp. 1 500 233 1,2,. . . ,29,30
exp. 2 500 252 1,2,. . . ,29,30
exp. 3 500 272 1,2,. . . ,29,30
exp. 4 500 298 1,2,. . . ,29,30
exp. 5 600 233 1,2,. . . ,29,30
exp. 6 600 252 1,2,. . . ,29,30
exp. 7 600 272 1,2,. . . ,29,30
exp. 8 600 298 1,2,. . . ,29,30

Table 4.8: Setup for the optimum experimental design with ECDM and Bouhassoune
parameters.

more restrictive w.r.t. to the control bounds. The bounds of the control parameters
here are

400 ≤ L ≤ 800,
230 ≤ T ≤ 320,

1 ≤ Vapp ≤ 30.

Like in the EGDM case, we apply equality constraints that the lengths which are
equal in the beginning are equal in the end of the optimization. It turns out that for
the optimal control parameters the temperature constraints are all active. For each
length we get out the two temperatures 230 and 320. Thus the number of experiments
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4.5 Application of optimum experimental design to organic semiconductors

reduces to four as displayed in Table 4.9. In Table 4.10, we assemble the solution

T�L 498.3 619.4
230 exp. 1 exp. 3
320 exp. 2 exp. 4

Table 4.9: Lengths and temperatures defining four combined experiments.

voltages for the four combined experiments. With the weights fixed to one, we end up

voltages Vapp
exp. 1 1 (× 15), 1.85, 2.35, 2.38, 2.42 , 2.57, 2.95, 3.09, 3.19, 3.4 (× 2), 3.59,

4.13, 10.69, 10.84, 12.14, 15.25, 24.68, 28.88, 30 (× 27)
exp. 2 1 (× 7), 2.15, 2.53, 4.6 (× 2), 6.1, 6.35, 7.29, 7.46, 7.99, 8.03, 8.7, 10.09,

11.58, 11.97, 13.21, 14.16, 15.06, 17.14, 19.63, 20.36, 23.79, 23.97, 24.61,
27.29, 29.1, 29.56, 30 (× 27)

exp. 3 1 (× 27), 1.89, 2.19, 2.57, 2.62, 2.87, 4 (× 2), 6.29, 6.82, 7.65, 8.62 (× 2),
11.75, 13.46, 14.1, 14.3, 22.71, 29.32, 30 (× 15)

exp. 4 1 (× 7), 1.1, 2.65 (× 2), 3.03, 3.9, 4.93, 5.83, 6, 6.56, 6.74, 7, 8, 8.19, 9,
9.85, 10, 11.23, 11.85, 12.48, 13.5, 13.75, 14.41, 15.31, 15.79, 16.83, 18.47,
18.02, 20.23, 20.35, 22.44, 22.71, 23.08, 25.15, 27.52, 29.62, 30 (× 18)

Table 4.10: Optimum experimental design results for NRS-PPV with Bouhassoune
parameters and ECDM.

with 60 measurements in each combined experiment. Table 4.11 shows a comparison
of the relative confidence intervals of the parameters before and after the optimization
in this case. In Figure 4.7, we visualize the two dimensional projections, moved to
the origin, of the four dimensional ellipsoid for this case. The optimization did not
yield such an improvement as in the EGDM case. This is explained by the more
limiting bounds. The ranges of the control parameters are more restrictive that higher
sensitivities cannot be obtained and the uncertainty cannot be reduced further.

4.5.2 α-NPD

Mensfoort et al. [89], the reference work for our second study took the same parameters
as Bouhassoune et al. and augmented them by the energy levels at the cathode Ecathode
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before after before & after
A-criterion 0.00110 0.00038 0.00026
θ1/p1 0.17581 0.09905 0.08220
θ2/p2 0.01090 0.00484 0.00396
θ3/p3 0.10436 0.06886 0.05623
θ4/p4 0.00886 0.00475 0.00401

Table 4.11: Relative radii of the confidence intervals before and after the optimiza-
tion, computed by (3.13) for the ECDM parameters of Bouhassoune, cf.
Table 4.6.

Figure 4.7: Projections of the four dimensional ellipsoid of the linearized 95%-
confidence regions before (light part) and after (dark part) the optimiza-
tion. Computed with ECDM for Bouhassoune parameters for NRS-PPV,
cf. Table 4.6, scaled to one.
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4.5 Application of optimum experimental design to organic semiconductors

and the anode Eanode.

i) site density Nt,

ii) width of Gaussian distribution σ,
iii) zero-temperature mobility µ0,

iv) factor c0 occurring in the mobility enhancement term g0,

v) charge density boundary value at cathode Ecathode,

vi) charge density boundary value at anode Eanode.

(4.9)

Again, we will compute optimum experimental designs for both the EGDM and the
ECDM.

EGDM

The parameters they used are displayed in Table 4.12. They took much smaller

µ0 σ Nt Ecathode Eanode c0

22 · 10−6 0.14 0.2 · 1027 0.4 1.9 0.42

Table 4.12: Configuration for EGDM simulations of α-NPD according to Mensfoort
et al.

devices as Bouhassoune et al. with L = 100 and 200. For such device lengths the
voltage has to be smaller too, in order to not overheat the device. The recalculated
current-voltage characteristics, computed with our simulation program are shown
in Figure 4.8. In this example the voltages per experiment, cf. Definition 4.5.1, are
distinct, see Table 4.13. The measurement weights are fixed to one as before and the
bounds to the lengths and temperatures are given by

80 ≤ L ≤ 300,
180 ≤ T ≤ 350.

The bounds to the voltages are chosen length dependent.

exp. 1 - 6 1.1 ≤ Vapp ≤ 10,
exp. 7 - 12 1.1 ≤ Vapp ≤ 20.
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Figure 4.8: α-NPD current-voltage characteristics for Mensfoort parameters com-
puted with the EGDM for 100 nm (left-hand side) and 200 nm (right-
hand side).

length L temperature T voltages Vapp
exp. 1 100 189 2, 2.4, 2.9, 3.5, 4.3, 5.3, 6.4, 7.9
exp. 2 100 215 2, 2.4, 2.7, 3, 3.4, 4, 4.5, 5.2, 5.9, 6.7
exp. 3 100 233 1.8, 2, 2.5, 3, 3.5, 4, 4.5,5,5.5
exp. 4 100 255 1.6,1.8,2,2.3, 2.6,2.9, 3.3, 3.7, 4.1, 4.7
exp. 5 100 272 1.6, 1.8, 2, 2.3, 2.6, 2.9, 3.2, 3.6
exp. 6 100 295 1.4, 1.5, 1.6, 1.9, 2.2,2.5,2.8,3
exp. 7 200 192 1.9, 2.7, 3.7, 5.4, 7.1, 9.4, 11.6, 13.8
exp. 8 200 213 1.8, 2.5, 3.4, 4.6, 6.2, 8.2, 10.4, 13.7
exp. 9 200 232 1.5, 2, 2.8, 3.7, 4.9, 6.4, 8.6, 10.9
exp. 10 200 254 1.4, 1.8, 2.4, 3.4, 4.5, 5.8, 7.5, 9.9
exp. 11 200 273 1.3, 1.5, 2.1, 3, 4, 5, 6, 7.1
exp. 12 200 297 1.2, 1.3, 1.6, 2.2, 3, 3.7, 4.5, 5.4

Table 4.13: Setup for the optimum experimental design with EGDM and Mensfoort
parameters.
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4.5 Application of optimum experimental design to organic semiconductors

Again we constrain the device thicknesses to stay equal, where they have been equal
at the beginning of the optimization. For the resulting lengths, we assume that they
are near 100 nm and 200 nm, respectively, so that the voltage bounds are appropriate
for the optimum experimental design solution as well. In Table 4.14 the results
of the optimization are displayed. Note, that we have again the same number of

length L temperature T voltages Vapp
exp. 1 98.9 182.5 3.4, 4.6, 4.7, 4.9, 5, 5.3, 5.5, 10
exp. 2 98.9 180 1.1,2, 3.6,4, 4.2,4.3,4.5,6,10
exp. 3 98.9 232.8 1.8,2,3.7,4.1,4.4,4.6,4.9,5.4,9.8
exp. 4 98.9 255.3 1.9,2,3.4,4,4.3,4.4,4.5,4.6,4.8,8.6
exp. 5 98.9 273.2 1.5, 4, 4.7, 4.8, 4.9
exp. 6 98.9 298.2 5.3, 5.4 5.5, 5.6, 5.8
exp. 7 200.3 180 1.1, 2.0, 4.9, 7.3, 10.5, 14.9, 20
exp. 8 200.3 213.5 1.1, 4.9, 5.8, 6, 9.4, 10.7, 13.3, 20
exp. 9 200.3 231.1 1.1, 2, 2.2, 3.1, 6.5, 10, 10.4, 13.9
exp. 10 200.3 252.3 1.1,1.4,1.5,3.5,5.5,5.8,8.2,11.5
exp. 11 200.3 272.5 1.2,1.9,3.9,4.3,5,5.4,6.6,7.8
exp. 12 200.3 299.4 1.1, 2,3.6,4.6, 5.2, 5.8, 6.5

Table 4.14: Optimum experimental design results for α-NPD with Mensfoort pa-
rameters and EGDM.

measurements as in the beginning. Table 4.15 shows a comparison of the relative
confidence intervals for this case. In Figure 4.9 selected two dimensional projections
of the six dimensional 95%-confidence ellipsoid are displayed. The parameter values
are moved to the origin.

before after before & after
A-criterion 0.0060 0.0029 0.0017
θ1/p1 0.5923 0.4204 0.3227
θ2/p2 0.0403 0.0266 0.0206
θ3/p3 0.3066 0.1964 0.1581
θ4/p4 0.0198 0.0112 0.0095
θ5/p5 0.1084 0.0570 0.0471
θ6/p6 0.0151 0.0080 0.0065

Table 4.15: Relative radii of the confidence intervals before and after the optimiza-
tion, computed by (3.13) for the parameters (4.9) for the EGDM.
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4 Optimum experimental design

Figure 4.9: Selected projections of the six dimensional ellipsoid of the linearized
95%-confidence regions before (light part) and after (dark part) the
optimization. Computed with EGDM for Mensfoort parameters for the
α-NPD, cf. Table 4.12, scaled to one.
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4.5 Application of optimum experimental design to organic semiconductors

ECDM

The parameters for the ECDM are given in Table 4.16. The device lengths are again

µ0 σ Nt Ecathode Eanode c0

0.5 · 10−6 0.1 3.7 · 1027 0.4 1.9 0.34

Table 4.16: Configuration for ECDM simulations of α-NPD according to Mensfoort
et al.

L = 100 and 200. The recalculated current-voltage characteristics, computed with
our simulation program, are shown in Figure 4.10. The same voltages as for the
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Figure 4.10: α-NPD current-voltage characteristics for Mensfoort parameters com-
puted with the ECDM for 100 nm (left-hand side) and 200 nm (right-
hand side).

EGDM are applied, see Table 4.13. As before we choose bounds to the lengths and
temperatures

80 ≤ L ≤ 300,
180 ≤ T ≤ 350,

and also for the voltages

exp. 1 - 6 1.1 ≤ Vapp ≤ 10,
exp. 7 - 12 1.1 ≤ Vapp ≤ 20.

The results of the optimization are displayed in Table 4.17. In Table 4.18 the
comparison of the relative confidence intervals is shown for this case and the projections
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4 Optimum experimental design

are displayed in Figure 4.11.

length L temperature T voltages Vapp
exp. 1 98.9 180 1.7 (3 ×), 6.7, 6.8 (3 ×), 7.5
exp. 2 98.9 218.4 1.7 (2 ×), 3.2, 3.4 (4 ×), 5, 10 (2 ×)
exp. 3 98.9 231.8 1.7 (2 ×), 3.4 (4 ×), 5.3, 5.7, 10
exp. 4 98.9 255 1.6,1.8,2,2.3, 2.6,2.9, 3.3, 3.7, 4.1, 4.7
exp. 5 98.9 272 1.6, 1.8, 2, 2.3, 2.6, 2.9, 3.2, 3.6
exp. 6 98.9 295 1.4, 1.5, 1.6, 1.9, 2.2, 2.5, 2.8, 3
exp. 7 200 192 1.9, 2.7, 3.7, 5.4, 7.1, 9.4, 11.6, 13.8
exp. 8 200 213 1.8, 2.5, 3.4, 4.6, 6.3, 8.2, 10.4, 13.7
exp. 9 200 232 1.5, 2, 2.8, 3.7, 4.9, 6.4, 8.6, 11
exp. 10 200 254 1.4, 1.8, 2.4, 3.4, 4.5, 5.8, 7.5, 9.9
exp. 11 200 273 1.3, 1.5, 2.1, 3, 4, 5, 6, 7.1
exp. 12 200 297 1.2, 1.3, 1.6, 2.2, 3, 3.7, 4.5, 5.4

Table 4.17: Optimum experimental design results for α-NPD with Mensfoort pa-
rameters and ECDM.

before after before & after
A-criterion 0.0067 0.0027 0.0017
θ1/p1 0.5153 0.3247 0.2614
θ2/p2 0.1183 0.0609 0.0532
θ3/p3 0.4246 0.2995 0.2284
θ4/p4 0.1434 0.0698 0.0625
θ5/p5 0.1612 0.0814 0.0716
θ6/p6 0.0293 0.0158 0.0135

Table 4.18: Relative radii of the confidence intervals before and after the optimiza-
tion, computed by (3.13) for the parameters (4.9) for the ECDM.
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4.5 Application of optimum experimental design to organic semiconductors

Figure 4.11: Projections of the six dimensional ellipsoid of the linearized 95%-
confidence regions before (light part) and after (dark part) the opti-
mization. Computed with ECDM for Mensfoort parameters for the
α-NPD, cf. Table 4.16, scaled to one.
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4 Optimum experimental design

4.6 Parameter dependence of the nonlinear optimum
experimental design problem

In our case of nonlinear optimum experimental design, the objective not only depends
on the control parameters q but also on the parameters p. The parameters are
uncertain, which was our main assumption in the first place. As Körkel discussed in
his thesis [59], there are the two approaches:

• Consider a robustified objective.

• Make a sequential ansatz.

4.6.1 Robustified optimum experimental design objective

The idea is to exploit a pre-known distribution of the parameters. With an initial
value for the mean p0 and for the variance-covariance matrix C0 the confidence region
is given by

{p ∈ RNp : ‖p− p0‖2C−1
0
≤ γ(α)2},

cf. (3.12). The robust objective is given by the consideration of a worst-case-design

min
q∈RNq

max
‖p−p0‖C−1

0
≤γ
φ(λ(p), u(p), p). (4.10)

This problem is semi-infinite, which makes it hard to solve, cf. the survey article of
Hettich et al. [49]. One rather regards a linearization of the function φ around the
point p0

φ(λ(p), u(p), p) ≈ φ(λ(p0), u(p0), p0) + d

dp
φ(λ(p0), u(p0), p0)(p− p0).

This linearization leads to the problem

min
q∈RNq

φ(λ(p0), u(p0), p0) + γ

∥∥∥∥∥ ddpφ(λ(p0), u(p0), p0)
∥∥∥∥∥
C0

,

independent of p, see Körkel [59] for further details. The downside is that one has
to compute an additional derivative order w.r.t. the parameters p of the objective,
which can be a huge effort.
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4.6.2 Sequential optimum experimental design

An alternative of the robustified objective is to consider a sequential ansatz, where
optimum experimental design, measurement generation, and parameter estimation are
performed alternately, cf. Figure 4.12. For sequential optimum experimental design

controls

Generate measurements

parameters

measurements

Parameter estimation

Optimum experimental design

Figure 4.12: Schematic sequential optimum experimental design.

the steps are given in Algorithm 4 in more detail. The termination condition can

Algorithm 4 Algorithm of the sequential optimum experimental design.
1: Start with an initial parameter guess p0 and set k = 0.
2: while a termination condition is not satisfied do
3: With optimum experimental design plan Mk+1 additional experiments corre-

sponding to control parameters qk+1 while taking into account the previous
M0 + · · ·+Mk−1 experiments, if available.

4: Generate new measurement values from Mk+1 new experiments.
5: Perform a parameter estimation with all measurement values. This yields a

new iterate pk+1.
6: k ← k + 1
7: end while

depend on the available budget and the quality of the parameter estimation. For
convergence results we refer to Chaudhuri et al. [24].
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Sequential approach for NRS-PPV with EGDM

We observe that our problems are intrinsically robust against parameter perturbations.
For the example of NRS-PPV with the EGDM we show that a sequential ansatz reduces
the uncertainty of the parameters already after a few iterations down to a satisfactory
quantity. We start with the same configuration, i.e. parameters, control parameters,
etc., as in the EGDM part of Section 4.5.1, i.e. we consider eight experiments with 30
measurements per experiment. At the beginning we plan eight new experiments with
optimum experimental design taking the eight “old” experiments into account. After
that we generate new, artificial measurement values for the real parameters, perturbed
with a random number according to the assumed distribution. Then we perform a
parameter estimation with the additional measurement values to get a new estimate
for the parameters and start over again. We run two cycles to get the A-criterion
reduced to roughly 2% of its value. The intermediate deviations of the parameters and
the value for the A-criterion are shown in Table 4.19. The first column corresponds
to a simulation, i.e. computation of the variance-covariance matrix, with the initial
guess of the parameters and the initial experimental setup. We see that the variations

Sim OED PE OED PE
A-criterion 0.05839 0.00363 0.00313 0.00083 0.00098
θ1/p1 1.35008 0.32726 0.32478 0.16271 0.17322
θ2/p2 0.12108 0.02415 0.02399 0.00862 0.00980
θ3/p3 0.61041 0.17244 0.17543 0.09785 0.10504
θ4/p4 0.07849 0.02354 0.02376 0.00756 0.00739

Table 4.19: Relative radii of confidence intervals computed at the beginning and
after optimum experimental design (OED) and parameter estimation
(PE) resp.

of the parameters caused by a parameter estimation neither worse the confidence
intervals nor the A-criterion significantly. This means that the control parameters
found by optimum experimental design are robust against parameter uncertainties.
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5 Conclusion

We found an efficient robust numerical simulation method for Gaussian disorder
modeled organic semiconductors, consisting of an extended Gummel method with
linearized continuity equation and corrected stabilization term in Poisson’s equation,
a contraction based damping strategy and the full step Newton method. The method
yields simulation results for a wide range of parameters, control parameters, and
boundary values. In few instances the method converges, where commercial software
failed to converge.

Optimum experimental design was successfully applied by computing exact derivatives
with automatic differentiation and solving tangential and adjoint equations, which
has never been done before for Gaussian disorder modeled organic semiconductor
devices. The parameter uncertainty of the EGDM applied to NRS-PPV was reduced
by a factor of 100 in terms of the A-criterion.

Within the scope of this work we developed a simulation software, in which the above
mentioned method is realized as well as the derivative computation of implicitly
given derivatives of the solution w.r.t. the parameters, control parameters and both.
A previous version of the software was implemented in MATLAB as a prototype.
This was handed out to the industry partner, where it is successfully used for the
simulation of organic semiconductors and the estimation of Gaussian disorder mobility
parameters.

For simulating and optimizing higher dimensional problems, our 2D simulation study
can be enhanced with a coupling of deal.ii and VPLAN. For larger problems iterative
solvers have to be applied, which require preconditioning. To find adequate precondi-
tioners for the subproblems of Gummel’s method is a future challenge.

In this thesis only electron transport layer models were considered. For simulating
full organic light emitting devices (OLEDs) a multi-layer model is required with both
electron and hole transport layers. Also recombination terms and trap densities have
effects on the current flow. Enhancing the models with such extensions and apply
optimum experimental design following our pattern can be tasks for future work.
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