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Abstract

The possibility to study the structure of polyatomic gas-phase molecules by pho-
toelectron di�raction is investigated with the goal of developing a method capa-
ble of imaging ultrafast photochemical reactions with femtosecond temporal and
sub-Ångström spatial resolution. The �uorine 1s-level of adiabatically laser-aligned
1-ethynyl-4-�uorobenzene (C8H5F) molecules was ionized by X-ray pulses from the
Linac Coherent Light Source Free-Electron Laser, and the angular distributions of
photoelectrons with kinetic energies between 30 and 60 eV were recorded by ve-
locity map imaging. Comparison with density functional theory calculations al-
lows relating the measured distributions to the molecular structure. The results
of an IR-pump, X-ray-probe experiment on aligned 1,4-dibromobenzene (C6H4Br2)
molecules are presented to explore the potential of photoelectron di�raction for
time-resolved imaging. The in�uence of the alignment laser pulse on the pumping
and probing step is discussed. Laser-alignment is contrasted with determination of
the molecular orientation by photoelectron-photoion coincidences for an exemplary
data set on 1-ethynyl-4-�uorobenzene molecules recorded at the PETRA III syn-
chrotron. Both methods are evaluated with respect to their applicability to record
time-dependent snapshots of molecular structure. The results obtained in this work
indicate possible future avenues for investigating ultrafast molecular dynamics using
X-ray Free-Electron Lasers.

Zusammenfassung

In dieser Arbeit wird untersucht, inwieweit die geometrische Struktur mehratomiger
Moleküle in der Gasphase mittels Photoelektronenbeugung bestimmt werden kann.
Das Ziel ist es, eine Methode zu �nden, die eine Zeitau�ösung von wenigen Fem-
tosekunden und eine räumliche Au�ösung von unter einem Ångström bietet, um
schnell ablaufende chemische Prozesse auf atomarer Ebene abzubilden. 1-Ethinyl-
4-�uorbenzol (C8H5F) Moleküle wurden mit einem Laserpuls adiabatisch ausge-
richtet und die Fluor 1s-Schale durch einen Röntgenpuls des Linac Coherent Light
Source Freie-Elektronen-Lasers ionisiert. Die Winkelverteilungen der resultierenden
Photoelektronen mit kinetischen Energien von 30 bis 60 eV wurden mit der Velocity-
Map-Imaging Technik gemessen und mit Hilfe von Dichtefunktionaltheorie mit der
Molekülstruktur verknüpft. Auÿerdem werden Resultate eines Pump-Probe Ex-
perimentes diskutiert, in dem ausgerichtete 1,4-Dibrombenzol (C6H4Br2) Moleküle
zunächst mit einem infraroten Laserpuls dissoziiert und anschlieÿend die Brom 2p-
Schale von einem Röntgenpuls ionisiert wurde. Es wird gezeigt, dass der Laserpuls,
der für die Molekülausrichtung benutzt wird, sowohl den Pump-, als auch den Probe-
prozess beein�ussen kann. Der Laserausrichtung wird als Alternative eine an der
Synchrotronquelle PETRA III durchgeführte Elektronen-Ionen Koinzidenzmessung
gegenübergestellt und die Methoden werden hinsichtlich ihrer Eignung zum Unter-
suchen von Molekülgeometrie beurteilt. Die Resultate zeigen Konzepte auf, wie
zukünftig Moleküldynamik untersucht werden könnte.
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About Trotting Horses

In October 1878, Scienti�c American published an article on a new technique to
visualize motion by taking multiple snapshot photographs with only two millisecond
exposure time, invented by Eadweard Muybridge [1]. These photographs would later
become famous as the �rst movie ever taken, answering the question whether, at
any point in time, all four feet of a trotting horse are o� the ground at the same
time. In this article, it is stated:

The most careless observer of these �gures will not fail to notice that
the conventional �gure of a trotting horse in motion does not appear in
any of them, nor anything like it. Before these pictures were taken no
artist would have dared to draw a horse as a horse really is when in
motion. [...]
[The photographs] not only make a notable addition to our stock of

positive knowledge, but must also e�ect a radical change in the art of
depicting horses in motion. [...] However truthful, an artist's work cannot
have the convincing force of a photograph.

Today, more than a century later, these statements are still true, demonstrating the
necessity for the development of new techniques to look at processes that already
seemed commonly understood with a new precision, from a new perspective, and
thereby revealing new, unexpected insights. Only the direct observation of an object
in motion can provide full understanding of how it functions. Even if, a priori, it may
not be clear what to expect from this new technique, history shows that almost every
time a more precise observation became technically possible, something surprising
was found.

Macroscopic mechanical and biological processes have been extensively studied and
much is known already about microscopic chemical processes, for example in living
cells. Now the question of how does this work? has reached the fundamental level
of the movement of single nuclei and electrons. Complex macroscopic processes, like
photosynthesis, could suddenly become fundamentally better understood if it was
possible to watch every step of it on an atomic length and time scale. The presented
work is meant to take a small step forward in this direction.
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Systematic observation of nature and understanding of its underlying concepts is
the most fundamental driving force behind all natural sciences. Every time a new,
more precise observation method is developed, a leap of insight usually follows. The
revelation that all matter consists of a limited number of atoms changed our percep-
tion of the world radically � but to resolve the structure of an object on the atomic
level is not enough to comprehend how it functions. In order to fully understand
a process, such as photosynthesis, the underlying dynamics are essential. To see
nature in action, on the atomic level, a tool needs to be developed that can resolve
the movement of single atoms, and thus record real-time movies of the forming and
breaking of chemical bonds.

1.1 Introduction to Femtochemistry

Traditionally, chemical reactions are studied in a before-after-fashion. Reactants
and products are often well-characterized, but what happens in between, on the
atomic level, usually remains unobserved. Figure 1.1 illustrates the photoelimination
reaction of a 1,2-diiodoper�uoroethane molecule after absorption of a UV photon.
Both iodine atoms are dissociated from the molecule, but it was long unknown
through which of the two predicted reaction intermediates the transition proceeds [2].

Photochemistry is omnipresent in everyday life, as nearly every organism requires
sunlight to survive. Through photoabsorption, it is possible to promote a molecule
to a desired �nal state by tuning the photon energy to a speci�c transition. Re-
cent research activities even aim at manipulating the probability of speci�c reaction

?

Figure 1.1: Schematic of the photoelimination reaction in 1,2-diiodoper�uoroethane (C2F4I2).
The equilibrium geometry of the molecule is depicted on the left, and the �nal state after absorption
of a UV photon on the right. Two possible reaction intermediates have been predicted (middle).
For a direct measurement of the intermediate structure, see section 1.2.2.
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(a) (b)

Figure 1.2: (a) Schematic illustration of the ground (blue) and excited state (yellow) of a molecule
that form a conical intersection. The excited-state reaction pathway and two ground-state reaction
pathways are shown. The �gure is taken from reference [3]. (b) Di�erent reaction pathways of
�uorobenzene (C6H5F) upon UV absorption. The dissociation to the end products C6H4+HF can
occur via di�erent transition states TS1, TS2, TS3. The �gure is taken from reference [4].

pathways by tailoring the light pulse to special temporal shapes [5�7]. An example
of molecular potential energy surfaces in two dimensions is shown in Fig. 1.2(a).
Here, the ground and the excited states form a conical intersection. The system
that has been promoted to the excited state follows the reaction pathway indicated
by the black arrows and then relaxes to the ground state through a radiationless
transition. It can either return to its original con�guration via the pathway shown
in red, or form a new con�guration via the pathway indicated in blue. These tran-
sitions can occur very fast, and are responsible for important biological processes
such as the stability of DNA molecules with respect to UV radiation [8]. Another
example in Fig. 1.2(b) illustrates the evolution of a �uorobenzene molecule after
absorption of a UV photon. Conventionally, the reaction coordinate is plotted that
leads smoothly from the initial state to the �nal state and follows the path along
the largest gradient of the potential [9]. Di�erent reaction pathways are shown that
represent trajectories on multi-dimensional potential energy surfaces. Along these
pathways, saddle points can be encountered; the molecular con�guration at this
point is called a transition state. The investigation of such ultrafast processes in
molecules is referred to as femtochemistry, for which the Nobel Prize in chemistry
was awarded to Ahmed Zewail in 1999 �for his studies of the transition states of
chemical reactions using femtosecond spectroscopy� [10].
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Directly imaging the motion of single atoms in space and time is challenging and
has been hardly achieved yet due to the molecular dimensions and the reaction
time scales. The typical bond distance between two atoms in a molecule is on
the order of 1Ångström (10−10m) and rearrangement of atoms can happen on a
time scale faster than 100 femtoseconds (100× 10−15 s). Unlike Muybridge's trotting
horses, molecules have to be treated as quantum objects that are subject to the
uncertainty relation, thus the position of a nucleus at a given point in time has to
be described by a probability density rather than by an absolutely sharp location.
Still, in certain cases, the achievable resolution is high enough to obtain information
on transient structures, for example to distinguish between the two intermediate
structures depicted in Fig. 1.1 [11]. An important prerequisite for a quantum concept
of atomic motion that comes close to classical dynamics is the excitation of the
molecule to a coherent superposition of excited states, giving rise to a wave packet
that is localized within the dimension of interest [12].

In order to probe the time-dependent probability density of the nuclei, one measure-
ment at a given instant of time is not su�cient. Instead, the same measurement
has to be repeated on many identical molecules, yielding di�erent snapshots of the
probability density. This means that it is fundamentally impossible to `see' a single
quantum mechanical horse run by taking snapshot images at di�erent points in time,
but it is necessary to let the horse run multiple times, take many snapshots at a
given time, and then place the camera at di�erent positions. In this way, one probes
the time-dependent evolution of the wave packet. An illustrative example where
the wave function of an H2 molecule is directly imaged by cold target recoil-ion
momentum spectroscopy is given in reference [13].

The objective of this work is to investigate whether imaging of an ultrafast photo-
chemical reaction on isolated gas-phase molecules with atomic resolution can be
achieved with photoelectron di�raction. Small to medium-sized molecules with less
than twenty atoms are considered here, but the goal is to develop a method that
can also be extended to larger systems. Particularly interesting is the option to
image a speci�c part of an extended target, for example the movement of a cer-
tain atom or group of atoms within a large protein. Admittedly, most of everyday
chemistry happens in solution, but studying isolated molecules is a necessary �rst
step to disentangle phenomena that are absent in the gas phase, such as anomalous
�uorescence [14], from the single-molecule response.

The following section shortly describes existing methods for investigating ultrafast
photochemistry and for imaging single molecules, and concludes by explaining the
method of femtosecond photoelectron di�raction that is used in this work.
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1.2 Experimental Approaches to Molecular

Imaging

A large variety of experimental observables can yield information on processes follow-
ing photoabsorption in molecules, such as ultrafast dissociation mechanisms. Such
measurements do not necessarily have to be time-resolved. For example, when the
lifetime of a core-excited molecular state is similar to the timescale on which dis-
sociation starts, Doppler splitting can be observed in Auger electron spectroscopy
that allows to draw conclusions about the dissociation dynamics on the timescale of
a few femtoseconds, despite the use of synchrotron light pulses with picosecond du-
ration [15]. Another example is the fragmentation of methylselenol molecules after
absorption of intense X-ray pulses of femtosecond duration [16]. Here, the kinetic
energy of two ionic fragments measured in coincidence allows to draw conclusions
about the onset of the dissociation process that happens on a similar timescale. In
some cases, the detection of end products proves that a reaction intermediate must
have been present prior to the dissociation. For instance, linear acetylene molecules
(HCCH) that absorb a photon in the soft X-ray regime can result in methylene (CH2)
fragments that can be detected microseconds after the actual interaction with the
light pulse [17]. The mere existence of this fragment shows that one hydrogen has
to have migrated from one end of the molecule to the other, temporarily form-
ing a vinylidene (CCH2). A similar process is found for 1-ethynyl-4-�uorobenzene
molecules in this work, see chapter 4.1.

In order to systematically study such molecular dynamics, it is however preferable
to trace the atomic movement on its natural time scale, rather than to deduce
information indirectly from the end products. This can be achieved by �rst pumping,
i. e. exciting the molecule with a light pulse, thus initiating atomic motion, and then
probing the emerged geometry with a second pulse after a certain time delay. Two
main requirements need to be ful�lled in order to resolve atomic motion:

• The time it takes to sample the molecular structure has to be short compared
to the time it takes the atoms to move, otherwise di�erent structures are
probed simultaneously. The typical speed of atomic motion is 1 km/s, thus
pulses as short as 10 fs are needed to resolve changes of 0.1Å in position [12].

• The absolute timing between the initialization of the reaction and the sampling
of the structure has to be known with the same precision. If this is not the
case, the single photographs may be put together in the wrong order and no
consistent movement can be seen.

Modern lasers making use of mode-locking schemes can readily provide pulses with
durations of a few femtoseconds today, which meet the �rst requirement. A typical
pump-probe measurement is carried out by splitting the femtosecond laser pulse
into two pulses with a beam splitter, and delaying one of the pulses by increasing
the path length that it has to travel to the interaction region. Both pulses are
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then spatially overlapped on the target, and as they are created from the same
initial pulse they are intrinsically synchronized, thus ful�lling the second criterion.
Di�erent observables can be analyzed after the probing to gain information on the
ultrafast processes, some examples are given in the following.

In time-resolved absorption spectroscopy, the spectrum of light that is transmitted
through the sample is recorded for di�erent time delays between pump and probe
pulse. Initial and �nal states, as well as potential intermediate geometries can
have di�erent absorption spectra, thus the delay-dependent absorption can yield
information on the time scale of a reaction. Laser-induced �uorescence is a closely
related technique that relies on the probe pulse being absorbed by an intermediate
geometry, resulting in an excited state that decays via �uorescence. The energy of
the emitted photon is characteristic for the created excited state.

Moreover, electrons and ionic fragments can be detected which are created if the
probe pulse ionizes the molecules. In time-resolved electron spectroscopy, one ionizes
the molecule with the probe pulse, and the energy spectrum of the emitted pho-
toelectrons [18] or Auger electrons is recorded. Information can also be extracted
from pump-probe mass spectrometry, as some ionic fragments may be created only
from molecules that have a structure close to the equilibrium geometry or only when
part of the molecule is already fragmented. However, it is usually necessary to make
use of ion-ion coincidence techniques, from which speci�c fragmentation channels
can be directly identi�ed. When combined with ion momentum imaging, three-
dimensional momenta of individual ionic fragments and electrons can be recorded
by using time- and position-sensitive detectors. In this way, more detailed informa-
tion can be collected, in certain cases up to kinematically complete experiments [19].
For the previously mentioned acetylene isomerization reaction, an XUV pump-probe
experiment making use of ion momentum imaging revealed that the rearrangement
takes place within 52±15 fs [20].
The methods mentioned above provide di�erent approaches to the detection of short-
lived, intermediate states. Although information about timescales of dynamics can
be obtained from these experiments, it is often di�cult to extract information about
the intermediate molecular structure. The aim of this work is to develop a method to
image the time-dependent geometry as directly as possible, in the sense of recording
a real-time movie that minimizes the room for interpretation. Di�erent approaches
to molecular imaging are brie�y described in the following.

1.2.1 X-Ray Di�raction

In order to obtain a sharp image of an object, it is necessary to illuminate it with
radiation whose wavelength is comparable to the size of the object or smaller. To
resolve a typical molecular bond distance of 1Ångström with electromagnetic radia-
tion, a photon energy of E = hc/λ = 12.4 keV is thus required, corresponding to the
spectral range of hard X-rays. Since their discovery in 1895 [23], X-rays have been
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Figure 1.3: X-ray di�raction images. (a) Single-shot image of a photosystem I nanocrystal
irradiated by 1.8 keV photons. The �gure is taken from reference [21]. (b) Integrated X-ray signal
for diiodobenzonitrile (C7H3I2N) molecules for 5× 106 pulses of 2 keV photons. The �gure is taken
from reference [22].

extensively applied for studying structure. When X-rays are scattered from atoms
or molecules that are arranged in a periodic crystal lattice, sharp intensity maxima,
so-called Bragg-peaks arise at certain scattering angles that correspond to directions
of constructive interference between neighboring scatterers. From the location of
these peaks, the crystal structure can be derived [24]. In principle, the periodicity
of the lattice is not needed for structure determination though. Every object scatters
X-rays to a continuous intensity pattern that is related to the structure by Fourier
transformation. However, for single, small objects these signals are very weak, thus
for a long time it has only been possible to infer structures of samples that can be
crystallized to large arrays.

With the advent of fourth generation light sources in the X-ray regime, the X-ray
Free-Electron Lasers (XFELs), it has become possible to image particles that are not
crystallizable or form only small crystals with the very short, very intense pulses [25]
in a 'di�raction before destruction' approach [26]. Femtosecond X-ray di�raction
has been implemented for large biomolecules and nano-objects with great suc-
cess [21, 27�30]. Figure 1.3(a) shows an exemplary single-shot image for a pho-
tosystem I nanocrystal that is imaged with X-rays of 6.9Å wavelength; individual
Bragg peaks are clearly visible. When summing over several thousands of such
patterns, after determining the crystal orientation for each individual image, the
structure of photosystem I can be determined with a resolution of 8.5Å. However,
single-shot imaging of non-reproducible objects with atomic resolution, one of the
major driving forces for the development of XFELs, has not been achieved yet.

For small, gas-phase molecules, X-ray di�raction su�ers from the fact that elastic
photon scattering contributes at most 10% to the total cross section at a pho-
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ton energy of around 10 keV [31] and for light atomic constituents as typical for
biomolecules, which makes it hard to achieve su�ciently good signal-to-noise ratios.
Figure 1.3(b) shows the integrated di�raction signal from an aligned ensemble of
diiodobenzonitrile molecules after 9 hours of data taking [22]. No clear di�raction
rings are visible and most of the signal is caused by helium background. A possible
way to overcome the problem of low elastic scattering cross sections is to image the
molecules with electrons instead of photons.

1.2.2 Electron Di�raction

Electron beams are routinely used for determination of structure with atomic res-
olution, for example in transmission electron microscopes that image thin, solid
samples. The de Broglie wavelength λ of an electron with a kinetic energy Ekin is

λ =
h

p
=

h√
2Ekinme

⇒ λ[Å] =
12.26√
Ekin[eV]

(1.1)

where h is the Planck constant, p is the nonrelativistic electron momentum, andme is
the electron mass. An electron with Ekin=100 eV thus has a wavelength of λ=1.2Å,
which is on the order of typical bond distances in molecules. An X-ray with the same
wavelength has an energy of 10.3 keV, but its elastic scattering cross section on an
atom is about nine orders of magnitude lower than the electron elastic scattering
cross section at 100 eV [31, 32]. Electron sources with energies of around 30 keV,
corresponding to λ = 0.07Å are readily available today.

Electron di�raction can not only be applied to solids, but also to small, gas-phase
molecules [33�36]. When an ensemble of randomly oriented molecules is imaged by a
pulse of electrons, the di�racted signal shows rings of di�erent radii, called a powder
pattern, see Fig. 1.4(a). From these radii, all inter-atomic distances in the molecule
can be reconstructed, provided that all atoms contribute to the scattering. If a pump
laser triggers a photochemical process before the electron pulse arrives, it is possible
to observe the changes in inter-atomic distance in the powder pattern. The di�er-
ence radial distribution function ∆f(r) between the equilibrium geometry and the
reaction intermediate is shown in Figs. 1.4(b) and 1.4(c). For comparison, the the-
oretical predictions of ∆f(r) for the two di�erent transient structures of C2F4I2 are
shown. With this measurement, the reaction intermediate in the photodissociation
could be identi�ed as the classical structure depicted in Fig. 1.4(c) [11]. The powder
pattern from randomly oriented molecules yields only information on inter-atomic
distances, thus ambiguities about the structure can however occur when many sim-
ilar distances exist. The time-dependent variation in the signal may in this case
be superimposed with a strong, constant background. Recently it has been shown
that if molecules are spatially aligned, for example by a laser �eld, it is possible
to retrieve the full three-dimensional structure of small molecules directly from the
data, with the only input being the atomic constituents [37].
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(a) (b) (c)

Figure 1.4: Electron di�raction on C2F4I2 molecules. (a) Di�raction signal on the detector for
the equilibrium geometry, recorded at an electron energy of 30 keV. (b) and (c) Di�erence between
the radial distribution functions f(r) of the equilibrium geometry and the structure after a 5 ps
time delay between pump and probe pulse (blue). The comparison with calculations (red) for two
di�erent reaction intermediates is shown. All �gures are taken from reference [11].

These results represent a big step forward towards the goal of single molecule movies.
The major remaining issue is the achievable temporal resolution. What is called ul-
trafast electron di�raction in reference [11] refers to the picosecond time scale. How-
ever, many interesting dynamics such as isomerization reactions can happen much
faster. As stated earlier, two factors limit the temporal resolution in a pump-probe
experiment: the duration of pump and probe pulses and their relative synchro-
nization. It is di�cult to compress electrons to short, intense pulses because of
space charge e�ects, but it has been demonstrated recently that pulse durations
below 100 fs can be achieved for pulses of 106 electrons [38]. The synchronization
between the arrival time of the pump laser pulse and electron pulse is uncritical
when laser-driven photocathodes are used to create the electron bunches. However,
in a laser-pump electron-probe experiment on gas-phase molecules, a di�erent issue
e�ectively limits the achievable synchronization: the laser pump-pulse travels at the
speed of light, but the electrons have a �nite mass and thus travel with lower veloc-
ity. This causes a velocity mismatch between the pump and the probe pulse for the
case of an extended interaction region, meaning that the time delay between pump
and probe pulse for a single shot varies throughout the sample. This has so far lim-
ited the achievable overall temporal resolution to > 850 fs [11, 34, 37]. Relativistic
electron guns are developed at the moment, which operate at electron energies of a
few MeV and shall achieve pulse lengths of a few ten fs [39�41]. This can improve
the temporal resolution, as the electrons travel almost at speed of light, however,
the elastic scattering cross section for high energies decreases by about three orders
of magnitude, and electron impact ionization can become dominant, see Fig. 2.7.

An alternative approach is to create the electrons that are used for imaging directly
inside of the molecule, thus avoiding the problem of velocity mismatch. Two di�erent
approaches that make use of this imaging from the inside are laser-induced electron
di�raction and photoelectron di�raction.
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1.2.3 Laser-Induced Electron Di�raction

Strong laser �elds can be used to remove a valence electron from a molecule through
tunneling ionization. The electron is strongly accelerated by the oscillating electric
�eld, and depending on where in the cycle it is liberated, it either escapes from
the nucleus or is driven back to the molecule. If it recombines with the nucleus, a
photon is emitted. This process is called high harmonic generation (HHG) [42�44];
it can yield information on the initial state of the electron, the molecular valence
orbital [45]. If no recombination takes place, the returning electron can scatter on
the molecule, this is referred to as laser-induced electron di�raction (LIED). Imag-
ing a molecule with its own recolliding electrons is an interesting option because it
combines advantages of conventional electron di�raction imaging with a potentially
very high spatiotemporal resolution below 1Å and 1 fs [46, 47]. The maximum �nal
kinetic energy of a rescattering electron is proportional to the intensity and to the
square of the laser wavelength [46]. As the intensity can only be chosen moderately
high in order not to destroy the molecules, high electron energies require the use of
laser �elds with long wavelengths in the near-infrared regime. Electron recollision en-
ergies of up to 110 eV created from a 2.3µm laser �eld have been demonstrated [48].

In order to extract time-dependent information from LIED, two di�erent approaches
can be chosen [46]. In a laser-pump, LIED-probe experiment, the rescattered elec-
tron is created by a second laser pulse, in this case the temporal resolution is limited
by the same factors as in a conventional pump-probe experiment. A second possibil-
ity is to use the ionization step of LIED as a pump, and the recolliding electron as
a probe, which has the bene�t of sub-cycle temporal resolution [48]. However, the
initialization of molecular dynamics is in this case limited to wavelengths and �eld
strengths that can be used for LIED. Delay times of more than a few femtoseconds
are di�cult to achieve, and for every delay a di�erent laser wavelength is required.

For extracting a di�raction signal, monoenergetic electrons are selected from the
continuous spectrum by time-of-�ight or momentum imaging techniques. Even if
statistics allow to select a narrow band of electrons, retrieval of molecular bond
distances from the observed electron distribution is far from trivial. The returning
electron wave front in LIED is treated as a plane wave over the molecular dimensions,
which is a strongly idealized assumption that is reasonably valid only for small
molecules, e�ectively limiting the method to small, non-dissociating molecules. Up
to now, only diatomic molecules have been imaged with LIED [48, 49] and the
applicability of the method to larger structures is questionable. Experimentally,
further di�culties arise from the fact that in order to extract structural information
from the scattered electrons, the molecules need to be �xed-in-space. Moreover, in
the theoretical model that is used for extraction of the bond length, single scattering
is assumed that is hardly applicable at electron kinetic energies of 27-38 eV as were
used in reference [49]. Another principle limitation of LIED is that all molecular
dynamics as well as probing of the structure happens in the presence of a strong laser
�eld that usually strongly modi�es the reaction dynamics and is hard to calculate.
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Figure 1.5: Concept of photoelectron di�raction. A photoelectron wave is created from the
F(1s) core level in a C8H5F molecule. The direct wave can undergo intra-molecular scattering from
carbon or hydrogen atoms, resulting in additional waves. In the far �eld, the interference between
direct and scattered waves is recorded that contains information on the molecular structure.

1.2.4 Photoelectron Di�raction

A di�erent way of creating an electron directly inside of the molecule is by inner-shell
photoionization. Photoelectron di�raction is a well-established method for structure
determination of solids and surfaces [50�52], and has also been applied to molecules
adsorbed on surfaces [53, 54]. In this thesis, photoelectron di�raction is employed
to study gas-phase molecules; the working principle is illustrated in Fig. 1.5. A
photoelectron wave is emerging from a localized core level of a speci�c atom in-
side a molecule by X-ray absorption. The electron kinetic energy is determined by
the photon energy and the electron binding energy, and the shape of the emitted
wave is de�ned by the initial state of the electron and the X-ray polarization, see
section 2.2. The outgoing wave can be scattered by other atoms within the same
molecule, resulting in additional waves with their respective origin at the location
of the scatterers. The resulting interference pattern between direct and scattered
waves contains information on the molecular structure that has been encoded by
intra-molecular scattering [55�61]. In order to be able to interpret the observed
photoelectron distribution in terms of di�raction, it is crucial to create the direct
photoelectron wave from a localized orbital of a unique atom within the molecule to
assure a well-de�ned origin of the direct wave with respect to the molecular frame.
Therefore, core levels are chosen, as valence orbitals can be de-localized, for example
in benzene. In this sense, the approach presented here is complementary to recent
experiments that study the time-dependent evolution of molecular valence orbitals
with high-harmonic sources [62, 63]. The interference structure arises in the molec-
ular frame, thus in order to record it in the laboratory frame, the molecules have to
have a �xed orientation with respect to the detector, see also section 2.4.

The term photoelectron holography is also used sometimes [64, 65, 50�52]. Usually,
holography is regarded as a special case of di�raction where direct and scattered
wave are superimposed on the detector. In this case, it is, under certain conditions,
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possible to retrieve the three-dimensional structure of the illuminated object, be-
cause the phase information is not lost [64, 66]. In X-ray and electron di�raction,
the di�racted signal is usually recorded outside of the direct beam, such that no
holograms are measured. For the case of photoelectron di�raction though, the di-
rect wave emerges in the complete solid angle and is, thus, always superimposed
with the scattered wave. The di�raction pattern can therefore be interpreted as a
hologram [64, 65] from which the molecular structure can be directly reconstructed
if higher-order scattering can be neglected [59].

Photoelectron di�raction makes use of the high elastic scattering cross sections of
low-energy electrons as compared to X-rays, while at the same time avoiding the
problem of velocity mismatch in conventional electron di�raction by e�ectively using
two light beams for pumping and probing. The achievable spatial resolution is given
by the kinetic energy of the photoelectron and by the degree of molecular alignment
that can be obtained experimentally. The temporal resolution is determined by the
durations of the pump and probe pulses and their respective synchronization. When
a polyatomic molecule is irradiated with an X-ray pulse, photoelectrons are emit-
ted from di�erent atoms and electronic levels. The photoelectrons from a speci�c
orbital of a speci�c atom of interest can, however, be easily identi�ed by their char-
acteristic kinetic energy. In addition, to create the majority of the photoelectrons
at the desired emitter, the element-speci�city of the photoionization process can be
exploited, see section 2.1.1.

In contrast to X-ray or electron beam di�raction, where the impinging waves are
described by plane waves, the amplitude of a photoelectron wave decreases as a
function of radius, thus atoms close to the source always contribute stronger to the
di�raction. On the one hand, this means that atoms further away from the source
are di�cult to image. On the other hand, this opens up the possibility of imaging
only the local environment of an emitter, if an atom that serves as the source of
a photoelectron wave can be introduced on purpose at the desired position in an
extended molecule. For example, in a large biomolecule, only the part where a
structural change takes place could be imaged.

In the following, a short introduction to the basic processes involved in photoelectron
di�raction is given in chapter 2, the experimental set-up and data processing is
explained in chapter 3. Experimental results on two di�erent molecules are presented
in chapters 4 and 5, followed by a critical discussion of opportunities and obstacles
of using femtosecond photoelectron di�raction for imaging of ultrafast structural
changes in molecules in chapter 6. A conclusion is given in chapter 7.





2 Fundamentals of Photoelectron

Di�raction

In this chapter, basic physical processes involved in photoelectron di�raction are
brie�y discussed. First, the creation of photoelectrons from an atom or molecule is
described, afterwards their angular distribution in the laboratory and in the molec-
ular frame is investigated, and �nally the principle of laser-alignment of molecules
is explained.

2.1 Photoionization

For photon energies between 10 eV and 10 keV, the dominating process in the inter-
action between an atom and a photon is the photoelectric e�ect [31]. The photon is
absorbed, and its energy is transfered to excitation or ionization of an electron. For
higher photon energies, inelastic Compton scattering and pair production become
important, but in this thesis only photon energies considerably lower than 10 keV
are used. The term photoe�ect is most often associated with the absorption of a
single photon with an energy of Eγ = h̄ω by an atom, resulting in the emission of
an electron with a kinetic energy of

Ekin = h̄ω − Eb (2.1)

where Eb is the binding energy of the electron. This process is depicted in Fig. 2.1(a).
The minimum energy that is required to remove an electron from an atom in the
ground state is referred to as the ionization energy Ei. If the photon energy is
higher than Ei, the electron can be directly ionized into the continuum. If the
photon energy is lower than the binding energy, it can still be possible to liberate
an electron by multi-photon ionization, see Fig. 2.1(b), if the light intensity is high
enough. The behavior of an atom or a molecule in a strong laser �eld depends on the
intensity and the wavelength, and can be classi�ed in accordance with the Keldysh
parameter

γ =

√
Ei

2Up
with Up =

I

4ω2
(2.2)

where Up is the ponderomotive potential and I is the intensity [67].
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Figure 2.1: Di�erent photoionization mechanisms for an atom. Orange arrows depict energies
of a single photon.

Multi-photon ionization can occur in the region γ� 1. For higher intensities or
longer wavelengths, in the region of γ > 1, the electron can absorb more photons
than needed to overcome the ionization threshold. This case is referred to as above-
threshold ionization (ATI), and is illustrated in Fig. 2.1(c). Both, multi-photon and
above-threshold ionization represent interactions of one atom with several photons
simultaneously. At very high laser intensities it is no longer convenient to consider
photons with discrete energies, and strong-�eld ionization is a more appropriate
picture. As is illustrated in Fig. 2.1(d), for γ� 1 the electric �eld of the laser pulse
is in this case strong enough to disturb the atomic potential, such that electrons
can be removed by tunneling through the �nite barrier, or because the barrier is
decreased below the binding energy. Although this intuitive distinction in di�erent
regimes is commonly used, it should be noted that these processes are simpli�cations
that only describe certain intensity regimes reasonably well. In a laser experiment,
the data often contain di�erent contributions due to focal averaging over di�erent
intensity regions along the beam direction and in the focal plane.

The electrons resulting from di�erent ionization processes have di�erent character-
istics. In single-photon ionization, the kinetic energy of the electron has a discrete
value that is determined by Eq. 2.1, which can be freely chosen if a source with a
tunable photon energy is used. The emission direction of the electron depends on
its initial state and on the photon polarization, as is described in section 2.2. In
ATI, the electrons can have several discrete energy values, depending on the num-
ber of photons that are absorbed above the ionization threshold. The most probable
electron energy is usually the lowest. The angular distributions of electrons created
in above-threshold or strong-�eld ionization are in general complex, but often more
electrons are emitted along the photon polarization direction, especially for higher
electron energies. For the case of strong-�eld ionization, the �nal electron kinetic
energy strongly depends on when in the laser cycle the electron is emitted.
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Figure 2.2: Partial absorption cross sections for di�erent atomic levels as a function of photon
energy. The data are taken from reference [68].

2.1.1 Photoabsorption Cross Sections

The photoabsorption cross section of an atomic species depends on its electronic
structure and on the photon energy. Two general rules describe the evolution of the
total absorption cross section σtot and the partial ionization cross section σnl [69]:

• The total absorption cross section is larger for heavier atoms, it rises approx-
imately as σtot∼Z5 where Z is the atomic number.

• For a given electronic level (nl), the partial ionization cross section is highest
for photon energies just above the ionization threshold, for high energies it
decreases as σnl∼ 1/E

7/2
γ .

The combination of both statements implies that for su�ciently high photon en-
ergies, the heaviest atom in a molecule is usually most likely to absorb a photon.
Photoabsorption cross sections of di�erent atomic species can be very di�erent at
a given photon energy, thus the energy can sometimes be chosen such that almost
exclusively one atomic species in the molecule absorbs the photon. This is referred
to as the element speci�city of photoabsorption. Figure 2.2(a) shows the partial
absorption cross sections for all levels of atomic �uorine. The decrease for higher
energies is clearly visible. The second statement suggests that for a given electronic
con�guration and a given photon energy, the photon is most likely to be absorbed by
lowest-lying orbital (nl) that it can ionize. However, although the absorption prob-
ability for each electron decreases for higher angular momentum, the s-subshells are
populated with only two electrons, whereas p- and d-shells contain up to six and ten
electrons, respectively. Therefore, the total absorption cross section can be higher
for higher-lying orbitals. This is shown for the example of bromine in Fig. 2.2(b).
σ3 is larger than σ4 but σ3s is smaller than σ3p and σ3d.
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Figure 2.3: Direct inner-shell photoionization and second-order processes that decrease the
energy of the photoelectron.

2.1.2 Second-Order Processes in Photoionization

If an inner-shell electron is removed from an atom, as depicted in Fig. 2.3(a), its
kinetic energy is given by Eq. 2.1. The corresponding spectral line has a certain
width, ∆E, which depends on the lifetime of the core-ionized state ∆t according to
the uncertainty relation

∆E∆t ≥ h̄

2
⇒ ∆E [eV] ≥ 0.66

∆t [fs]
(2.3)

Typical values for the 1s linewidth for 6 ≥ Z ≥ 10 are 0.1 -0.25 eV [70], corresponding
to lifetimes of 3 -7 fs. However, the fact that an atom is a multi-electron system can
in�uence the photoelectron energy, when inelastic second-order interactions of the
photoelectron with other electrons of the same atom occur. In a shake-up process,
as depicted in Fig. 2.3(b), a valence electron is excited to an unoccupied orbital,
such that the photoelectron loses a discrete amount of energy. The corresponding
sub-structure lines of the photoelectron spectrum are called satellites. For a photon
energy of Eγ ≥ Eb + Ei, a shake-o� can occur, see Fig. 2.3(c), where the valence
electron is ionized and, thus, two electrons are emitted. Here, the energy of the
photoelectron is no longer discrete, as the energy sharing of the two electrons results
in a continuous spectrum.

After the photoelectron has left the atom, a core-ionized ion results. This is an
instable state which usually decays by �lling the core hole with an electron from
a higher orbital. Two main mechanisms exist to liberate the additional energy:
in �uorescence, a photon is emitted whose energy corresponds to the di�erence in
binding energies between the two involved levels, see Fig. 2.4(a). On the other
hand, the energy can be transferred to another electron via Coulomb interaction
that is ionized to the continuum. This non-radiative decay process is called Auger
decay, see Fig. 2.4(b). One decay results in a doubly charged ion, but in heavy
atoms or molecules, decay cascades can occur, resulting in multiply charged ions.
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Figure 2.4: Decay processes for a core-ionized atom. In (a) a photon is emitted, whereas (b) to
(d) depict multi-electron processes.

The relative probability for �uorescence and Auger decay depends on the atomic
number. For atoms with atomic numbers Z≤ 10 the probability for �uorescence
is ≤ 5% [31] and Auger decay is the dominant process when energetically possible.
Additional interactions with the valence electrons can occur during the Auger decay.
Figures 2.4(c) and 2.4(d) illustrate combined Auger decay and shake processes. If
the atom is bound in a molecule or a cluster, inter-atomic e�ects can occur in
addition [71�73].

2.1.3 Molecular Photoionization

If an atom is not free, but bound in a molecule, the electronic structure of the
atom is modi�ed by the neighboring atoms. The electrons move in the electric
�eld of all nuclei and all electrons, thus the resulting potential is no longer spheri-
cal. Molecular orbitals can be constructed from a linear combination of the atomic
orbitals (LCAO) [74] that may result in very di�erent shapes as compared to the or-
bitals of the individual atoms. Valence orbitals can become delocalized over several
atoms, or even the complete molecule, such that electrons can move almost freely
between atoms.

The core levels of an atom that is bound in a molecule, however, remain localized
at the atomic site. Thus, they can often, to good approximation, be described by
atomic orbitals, except for a shift in the binding energy. This is referred to as the
chemical shift in photoelectron spectroscopy. The molecular energy levels depend on
the internuclear distance, thus potential energy curves arise. If a potential curve has
a minimum, the state is stable and the molecule remains bound, which is always the
case for the ground state of a molecule. If the molecule is electronically excited, for
example by photoabsorption, the system is promoted to a higher potential energy
curve that may not have a minimum. This is called a dissociative state which causes
fragmentation of the molecule into two or more parts.
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Figure 2.5: Atomic orbitals for di�erent values of the quantum numbers (l,m). The �gure is
taken from reference [75].

2.2 Laboratory-Frame Photoelectron Angular

Distributions

For single-photon ionization of an atomic orbital, the resulting photoelectron angular
distribution (PAD) is determined by the initial state of the photoelectron and by the
light polarization. Atomic orbitals are characterized by quantum numbers (n, l,m)
where n is the principal quantum number, l ≤ n − 1 is the angular momentum
quantum number, and the magnetic quantum number m is the projection of l. The
probability of �nding an electron at a position (θ, φ) in a spherically symmetric
potential, where θ and φ are the azimuthal and the polar angle respectively, can be
described by the square of spherical harmonics |Y m

l (θ, φ)|2 [76]. These are de�ned
by

Y m
l (θ, φ) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ, (2.4)

where Pm
l are the associated Legendre polynomials [77]. Figure 2.5 shows the atomic

orbitals for l ≤ 3 and all possible projectionsm. Partial photoelectron waves that are
created in photoionization can be characterized by the same angular shapes, and are
referred to as s-, p-, d-, and f-waves, respectively. The photon transfers its angular
momentum lγ = 1 to the electron, thus the �nal photoelectron angular momentum is
lf = l±1 where l is the angular momentum of the initial state. For linearly polarized
light, mγ = 0, thusmf =m. For circularly polarized light, mγ =±1, thusmf =m±1.
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Figure 2.6: Di�erential photoionization cross sections with di�erent values of the asymmetry
parameter β. The distributions are cylindrically symmetric around the light polarization direction
that is indicated by the arrow.

For the ionization of an s-orbital with linearly polarized light, only lf = 1, m= 0
can result, and the emitted electron wave can be described by a pure p0-wave, see
Fig. 2.5. For all other initial states with l 6= 0, a superposition of di�erent waves is
created. For example, ionization of a p-orbital by linearly polarized light results in a
superposition of s-, d0-, d-1-, and d1-waves. However, Cooper minima can arise for
ionization of orbitals with l <n− 1, if the contribution of one partial wave vanishes
for a certain photon energy [78]. The photoelectron angular distribution arising from
the single-photon ionization of an atom by linearly polarized light is a superposition
of all allowed partial waves and can be described by

dσ

dΩ
=
σtot
4π

[1 + βP2(cos θ)] with P2(cos θ) =
3

2
cos2 θ − 1

2
, (2.5)

where dσ/dΩ is the di�erential cross section, P2 = P 0
2 is the Legendre polynomial for

l = 2, β is the asymmetry parameter, and θ is the angle between the symmetry axis,
here the light polarization, and the electron emission direction [79]. From Eq. 2.5 it
follows that −1 ≤ β ≤ 2, as dσ/dΩ ≥ 0. Figure 2.6 shows di�erential cross sections
with di�erent asymmetries. β = 0 corresponds to an s-wave, β = 2 to a p-wave.
For circularly polarized light, the PAD can be expressed by Eq. 2.5 as well, when
replacing β by

βcirc = −1

2
β (2.6)

for both left and right circularly polarized light [80, 81]. θ is measured with respect
to the symmetry axis which is the photon propagation direction for the case of
circular light. The asymmetry parameter can be expressed explicitly as a function
of the electron initial state l, of the partial ionization cross sections σl+1 and σl−1
and of the phase shift between the partial waves δl+1 and δl−1 [79]. This phase shift,
and thus the asymmetry parameter for the ionization of a certain atomic orbital,
is a function of the photon energy [78]. For example, for the ionization of rare
gases, β(E) converges to 1.5 for ionization of p-orbitals and to 1.0 for ionization of
d-orbitals in the high-energy limit [82], but can vary strongly for lower energies.
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If an atom is bound in a molecule, the photoelectron angular distribution is mod-
i�ed by the surrounding atoms, see the next section. However, it was shown
that for single-photon ionization of a randomly oriented ensemble of molecules,
the laboratory-frame PAD can be described by Eq. 2.5 [83], but the asymmetry
parameter β in a molecule is di�erent from the value for a free atom. For molecu-
lar photoionization, the angular momentum l is not a conserved quantum number,
therefore the outgoing electron wave that was restricted to lf = l ± 1 in the atomic
case can here contain contributions with higher angular momentum. This may also
be explained by scattering of the photoelectron on other atoms within the same
molecule, from which additional angular momentum can be gained [55]. The scat-
tering changes as a function of electron energy, see also the next section, thus the
asymmetry parameter β(E) varies as a function of electron energy.

The distribution β(E) is characteristic for a molecule, for example, close to the
ionization threshold the asymmetry parameter is in�uenced by shape resonances.
A semiempirical relationship between the position of the shape resonance and the
bond lengths has been discussed [84]. Studying photoelectron angular distributions
in the laboratory frame can sometimes even provide information on dynamics of
molecular structure when complemented with calculations [78, 85], for example on
nonradiative transitions [86, 87]. However, the information content of β(E) alone is
limited, and detailed structural information cannot be obtained.

2.3 Molecular-Frame Photoelectron Angular

Distributions

When changing the perspective from the laboratory frame to the molecular frame,
it becomes clear that the asymmetry in the laboratory-frame PAD can be ascribed
to rotational averaging of a much more structured angular distribution that arises
in the frame of the molecule. The molecular-frame photoelectron angular distribu-
tion (MFPAD) can be described by

dσ

dΩ
=

2lmax∑
l=0

∑
m

Aml Y
m
l , (2.7)

where lmax is the largest orbital momentum component of the photoelectron am-
plitude [83]. In principle, lmax =∞, but practically the expansion can often be
terminated after the �rst few terms. In contrast to the PAD in the laboratory frame
that is given by Eq. 2.5, even and odd harmonics contribute to the MFPAD. Odd
terms arise from interference of photoelectron partial waves of opposite parity and
occur only when the initial or the �nal state do not have well-de�ned parity [83].
No odd terms contribute to the MFPAD when the molecules are only aligned but
not oriented in space, see also Fig. 2.10. For single-photon ionization of cylindri-
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Figure 2.7: Electron scattering cross sections as a function of the kinetic energy of the electron.
The data in (a) are taken from reference [88], the data in (b) are taken from reference [89].

cally symmetric molecules with their axes parallel to the linear photon polarization
direction, Eq. 2.7 simpli�es to

dσ

dΩ
=

2lmax∑
l=0

AlPl(cos θ). (2.8)

The laboratory-frame PAD converges to the MFPAD for molecules that are per-
fectly �xed in space. To establish the connection of the MFPAD to the molecular
structure, the experimentally obtained photoelectron angular distributions of �xed-
in-space molecules are compared to calculated MFPADs. In the following, di�er-
ent approaches to calculate MFPADs are introduced. First, general characteristics
of MFPADs are described in a very simple model for the example of a diatomic
molecule, afterwards single scattering and density functional theory calculations are
presented.

2.3.1 A Simple Man's Approach

The generally complex shape of a molecular-frame photoelectron angular distribu-
tion is di�cult to understand intuitively. In this section, an attempt is made to
illustrate basic features of MFPADs by assuming that they arise from single scatter-
ing of the photoelectron on other atoms within the same molecule. The cross sections
for elastic scattering of an electron on a nucleus, σel, and for electron-impact ion-
ization of a carbon atom, σimp, are shown in Fig. 2.7. σel has a maximum of about
2000Mb between 5 and 10 eV electron kinetic energy, the maximum of σimp of about
230Mb lies between 50 and 100 eV. For high energies, the cross sections evolve as

σel ∼
1

E
, σimp ∼

ln(E)

E
⇒ σel

σimp
∼ 1

ln(E)
. (2.9)
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Figure 2.8: (a) Principle of photoelectron di�raction for 1s ionization of an oxygen atom in a CO
molecule by a linearly polarized X-ray photon. (b) Angular positions of interference maxima φn as
a function of photoelectron kinetic energy calculated for CO with a bond distance of d = 1.43Å.
φ is the scattering angle as de�ned in (a).

Above ∼ 10 eV, the ratio between elastically and inelastically scattered electrons is
thus higher for lower electron energies.1 In impact ionization, the photoelectron loses
at least as much energy as is required to ionize the atom it scatters on (Ei=11 eV
for a carbon atom [91]). The two resulting electrons can share the available kinetic
energy variably, the most probable case however is that the incident electron loses
only the ionization energy and the second electron is emitted with almost no kinetic
energy [92]. This implies that the direction of the incident electron is usually not
altered signi�cantly, as a large change in angle corresponds to a large momentum
transfer.

For illustrative purposes, inelastic scattering is neglected in this model and elastic
scattering of the electrons on point-like nuclei is assumed. No scattering phase shifts
and no angle- or energy-dependent scattering cross sections are taken into account.
The most simple test case is the single-photon ionization of a diatomic molecule by
a linearly polarized photon, see Fig. 2.8(a). For inner-shell ionization, the location
of one nucleus can be regarded as the origin of the photoelectron wave and only one
scatterer exists. Part of the direct wave can be scattered on the neighboring atom,
resulting in a second, spherical wave originating from this nucleus. Constructive
interference between direct and scattered wave arises for scattering angles φn, for

1 Scattering of an electron on a carbon atom: [32, 90]
E=50 eV: σel=469Mb, σimp=224Mb
E=100 eV: σel=294Mb, σimp=221Mb
E=1000 eV: σel=54Mb, σimp=60Mb
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Figure 2.9: MFPADs calculated for a CO molecule for di�erent orientations of the photon
polarization with respect to the molecular axis. Blue: photoelectrons with 50 eV kinetic energy.
Red: photoelectrons with 500 eV kinetic energy. The distributions are calculated for A = B = 1.

which the path length di�erence d + d cosφ equals a multiple n of the electron
wavelength λ that is given by Eq. 1.1.

d+ d cosφ = nλ ⇒ φn = arccos

(
n

d

12.26√
Ekin[eV]

− 1

)
(2.10)

The angular positions of the interference maxima φn thus depend on the kinetic
energy of the electron, as is shown in Fig. 2.8(b). The individual maxima shift to
larger scattering angles for higher energies, and more interference maxima arise with
every multiple of the wavelength. This means that, in general, the electron angular
distribution is more structured for higher electron kinetic energies. The intensity
I(φ) as a function of the scattering angle can be calculated from the interference
between direct and scattered wave. If an s-wave with amplitude A is assumed as a
source, the �nal intensity distribution is given by

I(φ) = [A+B cos η(φ)]2 with η(φ) =
2πd

λ
(1 + cosφ), (2.11)

where B is the amplitude of the scattered wave and η(φ) is the phase di�erence
between direct and scattered wave. The resulting MFPADs for electrons of 50
and 500 eV kinetic energy are shown in Fig. 2.9(a). The positions of maximum
interference as expected from Fig. 2.8(b) can be identi�ed. For the case of 1s-
ionization, a p-wave results, see section 2.2. This can be taken into account by
introducing two additional factors in Eq. 2.11

I(φ) = [A |cos (φ+ α)|+B cos η(φ) |cos (α)|]2 . (2.12)
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The term |cos (φ+ α)| describes the angle-dependent amplitude of the direct p-wave,
and |cos (α)| decreases the amplitude of the spherical scattered wave accordingly. α is
the angle between the molecular axis and the light polarization vector as indicated
in Fig. 2.8(a). The resulting angular distribution for linear polarization parallel to
the molecular axis is shown in Fig. 2.9(b), it is signi�cantly altered as compared
to the MFPAD in Fig. 2.9(a). The intensities of maxima close to φ= 90/270◦ are
reduced, and additional maxima arise at positions where destructive interference
completely cancels the intensity for the case of an s-wave. For a non-spherical initial
wave, the MFPAD depends on the angle α between the molecular axis and the light
polarization, two examples for α = 45◦ and α = 85◦ are shown in Figs. 2.9(c)
and 2.9(d). When the polarization is perpendicular to the molecular axis, a pure
p-wave results, as no intensity is emitted in the direction of the point-like scatterer.
For a more detailed discussion refer to section 6.1.2.

2.3.2 Scattering in the First Born Approximation

The simple calculations in the previous paragraph cannot be expected to reproduce
experimental results correctly, as atoms are treated as point-like particles and not as
potentials. To obtain a more realistic result, the scattering model by Krasniqi et al.
is considered [59]. The starting point is a pure p-wave of photoelectrons, resulting
from ionization of an atomic s-orbital. All other atoms in the molecule are treated
as Yukawa potentials V (r) with an e�ective range a ∼= a0/Z

1/3 that is estimated
based on the Thomas-Fermi model. a0 is the Bohr radius and Z is the atomic
number. The intra-molecular elastic scattering of the photoelectron is described by
a sum over individual scattering amplitudes f(φ), where |f(φ)|2 = dσ/dΩ(E, φ) is
the energy- and element-dependent di�erential scattering cross section.

The scattering amplitudes are calculated in the �rst Born approximation, which
holds for the case that the amplitude of the scattered wave is much smaller than the
amplitude of the incident wave, corresponding to weak scattering. The criterion for
the validity of the Born approximation can be expressed as |V0|a/h̄ve � 1, where |V0|
is the strength of the potential and ve is the velocity of the electron [93]. The �nal
electron spatial distribution recorded on a two-dimensional detector is given by the
square of the wave function. As the scattering amplitude is the Fourier transform
of the potential on which the electron scatters, the recorded image is a hologram in
the sense of Gabor [66]. Fourier transform of the hologram yields real space images
of the scatterers, that correspond to the positions of the nuclei.

In this model, it is assumed that the scattering potential has an e�ective range much
smaller than the distance between the source and the scatterer. This is only valid
if the electron scatters predominantly on a potential that is localized at the atomic
cores and not on delocalized valence orbitals. For lower electron energies, this may
however not be an appropriate description. Roughly speaking, an electron of lower
energy penetrates less deep into the potential before scattering on it, and thus is
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more sensitive to the shape of the potential at larger distances from the nuclei.
Therefore, the actual molecular potential needs to be taken into account for the
scattering at lower energies that can be very di�erent from the sum of independent
Yukawa potentials. Comparison with results of density functional theory calculations
suggests that scattering within the �rst Born approximation may already be a valid
description for electrons of a few hundred eV kinetic energy, see section 6.1.3.

2.3.3 Density Functional Theory

An alternative approach to obtain molecular-frame photoelectron angular distri-
butions that is suitable for low electron energies is the calculation of bound-state
and continuum electron wave functions within the framework of density functional
theory (DFT). Details of the method that was used by P. Decleva and M. Stener
to calculate the partial photoionization cross sections and the MFPADs that are
compared to the experimental data in this work are described in references [94�96].

In principle, the exact solution of the electron wave function has to be obtained
from solving the multi-particle Schrödinger equation. The movement of one electron
within a multi-electron system of interacting particles can be approximated by the
movement in an e�ective potential that results in the same electron density. In DFT,
the Kohn-Sham approach derives the density from the solution of a single-particle
hamiltonian, hKS, that is itself a functional of the ground state electron density ρ.

hKSϕi = Eiϕi (2.13)

hKS = −1/2∇2 + VN + VC(ρ) + VXC(ρ) (2.14)

Here VN is the attractive potential of the nuclei, VC(ρ) is the repulsive Coulomb
potential of the electrons, and VXC(ρ) is the exchange correlation potential. In this
work, the LB-94 potential [97] has been used for VXC which takes into account the
correct Coulombic behavior of the potential at large distances from the molecule.
Many di�erent basis sets can be chosen for a numerical solution of these equations.
The expansion of the molecular orbitals is performed in an LCAO multicenter ap-
proach that is suitable for deep core holes [95]. The radial part of the total wave
function is described by B-splines [94] and the angular part is given by spherical
harmonics that are adapted to the molecular symmetry. B stands for basis here,
and a spline is a polynomial function that is de�ned piecewise and allows to draw
a smooth curve through individual points. Spline basis functions are thus de�ned
only for a limited range. Within that range, a sequence of knot points is de�ned
through which a smooth curve is to be found.

This approach requires to con�ne the problem to a sphere of a given maximum
radius. This sphere in general needs to be chosen much larger than the object of
interest. For example, to calculate the energy of the hydrogen (1s) level correctly
that has a radius of 0.8Å, the cut-o� radius has to be chosen larger than 16Å in order
to obtain the proper energy [94]. For the description of a photoionization process, not
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only the initial bound state but also the �nal continuum state of the photoelectron
needs to be calculated. To achieve a reasonable accuracy for these states is one of the
major issues in the theoretical description of photoionization. The use of B-spline
basis functions allows to implement the boundary conditions for unbound continuum
states, which cannot be obeyed when conventional basis functions are employed.
Although B-splines are computationally more demanding than conventional basis
sets, it is possible to extend the formalism to a time-dependent description (TDDFT)
that is required for the calculation of molecular dynamics.

Up to now, MFPADs have mostly been calculated for molecules with only a few
atoms and for electron energies of ≤ 100 eV. The molecules used in this work are
among the largest ones that have, so far, been treated in this formalism, but it is
shown that MFPADs can be calculated for electron energies up to 500 eV, facilitating
a comparison with the results obtained within the �rst Born approximation, see
section 6.1.3. Computational limits of the DFT approach could arise when MFPADs
for energies high above the ionization threshold are calculated for large molecules,
as for higher electron energies, more angular momenta need to be included in the
continuum wave function.

Alternative approaches to describe the molecular states in the continuum include
a description of the orbital as spherical, non-overlapping atomic potentials [98],
as overlapping spherical potentials (CMS-Xα) [99], as mu�n-tin potentials (EDAC)
[100, 101] or as full non-spherical potentials [102]. CMS-Xα is usually applied to elec-
tron energies < 30 eV, whereas EDAC is appropriate for energies > 50 eV. Both meth-
ods approximate the molecular potential rather crudely. The use of non-spherical
potentials is probably the best description of the real molecular potential within
multiple scattering theories, but is currently only applicable to diatomic molecules.

2.4 Alignment of Molecules with Strong Laser

Pulses

Recording a molecular-frame photoelectron angular distribution in the laboratory
frame requires �xing the molecular frame with respect to the laboratory frame.
Di�erent categories of �xing a molecule in space can be distinguished, as is illustrated
in Fig. 2.10. Naturally, an ensemble of gas-phase molecules is randomly oriented.
In one-dimensional alignment, one axis of the molecule is �xed in space, while the
molecule can still freely rotate about that axis. Three-dimensional alignment is
achieved if in addition a second axis of the molecule is �xed. If not only the direction
of the axes but also the head-tail orientation of the molecule is de�ned, one- or three-
dimensional orientation is realized.
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(a) random

laser

(b) 1d-alignment

laser

(c) 3d-alignment

laser E‐field

(d) 1d-orientation

laser E‐field

(e) 3d-orientation

Figure 2.10: Di�erent types of molecular alignment, illustrated for the example of C8H5F
molecules. Polarization directions of an alignment laser and a static electric �eld are indicated.
The most polarizable axis of the molecule lies along the F-C bond, the second most polarizable
axis is perpendicular to that, parallel to the plane of the benzene ring. See text for details.

Experimentally, one possibility to �x molecules in space is to determine the orien-
tation of the molecule after the photoionization by recording the momentum vector
of one or more characteristic ionic fragments in coincidence with the photoelec-
tron [55, 56, 58, 103�105], see also section 4.1. The molecules are automatically
oriented if only one possibility exists to create the recorded fragment from the
molecule. Under certain conditions, a high degree of one-dimensional orientation
can be achieved with this technique, see section 6.2.2. Achieving three-dimensional
orientation is more complicated as two-fold ion-ion coincidences are required.

Another option to �x the molecular frame with respect to the laboratory frame is by
actively aligning the molecules in space before the photoionization using strong laser
pulses. The underlying principles of adiabatic laser-alignment are brie�y described
in the following2, and a short introduction to nonadiabatic alignment is given. For
a discussion about which method is better suited for imaging structural changes in
polyatomic molecules with photoelectron di�raction, refer to section 6.2.

2.4.1 One-Dimensional Laser-Alignment

The electric �eld ε of a linearly polarized, continuous-wave laser is described by

ε = ε0 cos(ωt) (2.15)

where ε0 is the amplitude and ω is the frequency. The linear polarization direction
de�nes a �xed axis with respect to the laboratory frame. When a linear, or a
symmetric top molecule is exposed to this �eld, two potentials Vµ(θ) and Vα(θ)

2 This part is based on [106�109].
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Figure 2.11: Potentials for alignment and orientation of molecules by a strong ac laser �eld and
a weak dc electric �eld.

act on the molecule that depend on the angle θ between the polarization and the
molecular axis.

Vµ(θ) = −µε cos θ (2.16)

Vα(θ) = −1

2
ε2(α‖ cos2 θ + α⊥ sin2 θ) (2.17)

Here µ is the permanent dipole moment along the molecular axis, α‖ is the polariz-
ability of the molecule parallel to that axis and α⊥ is the polarizability perpendicu-
lar to that axis [106]. For a �nite pulse duration T and for nonresonant frequencies
ω � 1/T , the pulse has many cycles and a temporal average over Eq. 2.16 results
in 〈cos(ωt)〉 = 1/2. This reduces Eqs. 2.16 and 2.17 to an e�ective potential of

Vac(θ) = Vα = −1

4
ε20
[
(α‖ − α⊥) cos2 θ + α⊥

]
(2.18)

that depends only on the polarizability of the molecule. Alignment in one dimen-
sion can thus be realized for all molecules that have an anisotropic polarizability.
Vac∼− cos2 θ has the shape of a double well with minima at θ = 0◦ and θ = 180◦

for α‖ > α⊥, as is illustrated in Fig. 2.11(a). If the �eld is strong enough, Vac(θ)
thus con�nes the molecular axes along the �eld direction in the potential minima.
Quantum-mechanically, this situation can be described by pendular states [106]. If
the pulse duration is long compared to the rotational period of the molecule, the con-
�nement happens adiabatically. The maximum alignment is achieved in the peak of
the intensity, upon turn-o� the molecules return to their initial random orientation.

The degree of alignment for an ensemble of molecules is given by the angular distribu-
tion of the molecular axes ρ(θ) with respect to the space-�xed axis. Experimentally,
this can be evaluated by photodissociating the molecules, see also sections 3.1.5, 4.2
and 5.1. In principle, the distribution ρ(θ) needs to be described by an expansion in
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even Legendre polynomials, however, in the high-�eld limit it can to a good degree
be approximated by a Gaussian [106]. The maximum degree of alignment that can
be achieved depends on the strength of the electric �eld and on the rotational tem-
perature of the molecular ensemble. It increases for increasing �eld strengths and for
lower rotational temperatures. Moreover, the ideal characteristics of the alignment
pulse are di�erent for di�erent molecules. In general, for equal pulse energies, heav-
ier molecules require longer pulses with lower intensity, whereas lighter molecules
need shorter pulses with higher intensity [107]. Molecules with a higher polarizabil-
ity need less intensity to align. The maximum intensity that can be applied to the
target is limited by the onset of nonresonant ionization, see section 2.1.

2.4.2 One-Dimensional Mixed-Field Orientation

A purely alternating (ac) electric �eld that was described in the previous paragraph
can only align molecules in space, as the potential in Fig. 2.11(a) is symmetric
around 90◦. A static (dc) �eld on the other hand de�nes not only an axis, but also
a direction in space. If a relatively weak, static electric �eld ~E is added that has
a non-zero component E‖ parallel to the laser polarization direction, an additional
potential acts on the molecule

Vdc(θ) = −µE‖ cos θ (2.19)

that is proportional to the permanent dipole moment µ. This causes a relative shift
of the two potential minima of the double well that favors θ = 0◦ over θ = 180◦, see
Fig. 2.11(b). As a result, the molecular ensemble becomes oriented with respect to
the space-�xed axis as is illustrated in Fig. 2.10(d).

2.4.3 Three-Dimensional Alignment and Orientation

A linear molecule is fully �xed in space when it is one-dimensionally oriented. A
non-linear molecule however, can still freely rotate about the �xed axis. Alignment
in three dimensions can be realized if a second double-well potential is introduced
that acts on this rotation angle. This can be achieved by using elliptically polar-
ized laser pulses. The potential energy in this case is minimized when the second
most polarizable axis is aligned along the minor axis of the light polarization, as is
shown in Fig. 2.10(c) [108]. The eccentricity of the ellipse can be tailored to match
the anisotropic polarizability of a speci�c molecule, which maximizes the degree
of three-dimensional alignment. For the case of an asymmetric top molecule, the
polarizabilities along all three axes, αxx, αyy, and αzz need to be considered [107].
Three-dimensional orientation can be achieved by adding a static electric �eld, see
Fig. 2.10(e).
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2.4.4 Nonadiabatic Laser-Alignment

Adiabatic laser-alignment has the disadvantage that experiments have to be carried
out under the in�uence of a laser �eld, as the alignment disappears as soon as the
pulse is turned o�. An alternative approach is to align the molecules with very short
laser pulses with picosecond to femtosecond durations [109]. The short pulse imparts
a sudden `kick' to the molecules that can transfer large angular momentum values,
upon which they align after the laser turn o�. Quantum mechanically, many rota-
tional states are coherently excited, forming a rotational wavepaket which evolves
in time, such that the prompt alignment is followed by temporal alignment revivals
with a certain periodicity that depends on the rotational constant of the molecule.
This process is referred to as nonadiabatic, dynamical, impulsive or �eld-free align-
ment. The latter stresses the fact that experiments under �eld-free conditions are
possible, if the probe pulse arrives at an instant of time where alignment revival
occurs. Nonadiabatic alignment in three dimensions as well as orientation can be
achieved, however, the degree of alignment that can be obtained is typically less
than for the case of adiabatic alignment [110].

In recent years, several e�orts have been made to maximize the achievable degree of
alignment as well as towards methods that enable �eld-free experiments on aligned
and oriented molecules. The possibility of combining adiabatic and non-adiabatic
alignment by simultaneous use of a picosecond and a nanosecond pulse has been
investigated to achieve higher degrees of alignment [111]. Similarly, an adiabatic rise
combined with a rapid turn-o� of the pulse has been shown to induce revivals of the
alignment, thus enabling measurement under laser-�eld free conditions [112]. Pulse-
shaping techniques may potentially be able to achieve higher degrees of alignment as
compared to the adiabatic limit [113]. Moreover, it was demonstrated recently that
a certain degree of molecular orientation can be achieved by using a two-color laser
�eld in the adiabatic regime [114] as well as completely �eld-free with non-adiabatic
techniques [115].



3 Velocity Map Imaging of

Photoelectrons

This chapter describes the set-up that was used for the photoelectron di�raction ex-
periments in this thesis. Similar layouts were employed in one synchrotron and two
Free-Electron Laser experiments, modi�cations are indicated in the respective para-
graphs. Additional experimental parameters can be found in appendix A.3. After a
general overview, the individual experimental components are brie�y described and
in the second part, the data acquisition and data processing procedure is explained.

3.1 Experimental Set-Up

All three experiments presented in this thesis were carried out in the CFEL-ASG
MultiPurpose (CAMP) endstation [116], the general set-up is depicted in Fig. 3.1.
Molecules were delivered to the interaction region as a supersonic molecular beam
after passing through two skimmers and an electrostatic de�ector. A neodymium-
doped yttrium aluminum garnet (YAG) laser adiabatically aligned the molecular
ensemble, which was �rst pumped by a titanium-sapphire (TiSa) laser and after-
wards probed by an X-ray pulse. The resulting photoelectrons and fragment ions
were extracted towards two micro-channel plate (MCP) detectors by the inhomo-
geneous electric �eld of a double-sided velocity map imaging (VMI) spectrometer.
Phosphor screens were placed behind the MCPs that were read out from outside
of the vacuum chamber by collecting the light with two CCD cameras. For the
synchrotron experiment, delay-line anodes were used instead of phosphor screens.
In the following, each aspect of the experimental set-up is addressed in more detail.

3.1.1 X-ray Lightsources

The centerpiece of the photoelectron di�raction approach in this work is the creation
of a photoelectron from a core-level of a speci�c atom by single-photon ionization, as
has been explained in section 1.2.4. Core-level binding energies range from 13.6 eV
in hydrogen to 115 keV in uranium [31], thus a tunable lightsource with photon
energies larger than 10 eV is desirable for this kind of experiments. Synchrotron
facilities can provide photon energies of 10 eV to about 300 keV, at repetition rates
of several MHz, making them an obvious choice.

31



32 Chapter 3. Velocity Map Imaging of Photoelectrons

(YAG)
(TiSa)

X-rays

x

y

z

θ
VMI spectrometer

MCP + phosphor screen or
MCP + delay-line anode

MCP + phosphor screen or
MCP + delay-line anode

Figure 3.1: Set-up in the CAMP chamber for photoelectron di�raction experiments. Components
labeled in brackets have only been used for one or two of the experiments presented in this thesis.

Static photoelectron angular distributions can be measured at a synchrotron by
employing electron time-of-�ight spectrometers and photoelectron-photoion coinci-
dence techniques. Experiments that require temporal resolution in the femtosecond
regime however, cannot be carried out with a standard synchrotron pulse, since
it has a pulse duration on the order of 50-100 ps. Shorter pulses with durations
of around 100 fs can be made available by applying slicing techniques [117]. Here,
about 0.1% of the electron bunch is shaped by a femtosecond laser pulse in a way
that this part can be separated from the rest of the bunch, such that ultrashort
X-ray pulses are available. However, this technique reduces the emitted number of
photons per pulse drastically, which is often acceptable for solid-state experiments,
but hampers signi�cantly the amount of statistics that can be collected on a dilute
gas-phase target.

Today, intense X-ray pulses with durations of only a few femtoseconds are available
at Free-Electron Lasers (FELs). Currently, two FELs are operating in the hard
X-ray regime, the Linac Coherent Light Source (LCLS) [120], and the SPring-8
Ångström Compact Free-Electron Laser (SACLA) [121]. FELs provide short, very
bright pulses with 1012− 1013 photons per pulse at repetition rates of up to 120Hz.
The number of photons per second at a synchrotron, distributed in ∼ 106 pulses, is
roughly the same as in a single FEL pulse. This dramatic di�erence in light intensity
of about 106 has signi�cant in�uence on the design of an experiment for the respec-
tive lightsource. An FEL is based on a linear electron accelerator in which very
short, very intense electron pulses are created that leave the accelerator with an en-
ergy of a few GeV. The bunch then enters undulators, a periodic array of alternating
dipole magnets, see Fig. 3.2(a). The magnetic �eld forces the relativistic electrons
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(a) (b)

Figure 3.2: (a) Electron trajectories and emitted light in an undulator of a Free-Electron Laser.
The �gure is taken from reference [118]. (b) Typical temporal structure of a single FEL shot. The
�gure is taken from reference [119].

on an oscillating trajectory that causes them to spontaneously emit synchrotron
radiation in a narrow cone around their propagation direction. The radiation emit-
ted from di�erent electrons in the bunch adds up incoherently, thus the number
of emitted photons is proportional to the number of electrons in the bunch [118].
Coherent light emission that scales quadratically with the number of electrons is
achieved if electrons within one bunch are equidistantly spaced, with the distance
between them being equal to the photon wavelength. This is called microbunching,
which is the working principle of an FEL. It can be achieved by the interaction of
the electron bunch with its own emitted X-ray �eld in very long undulator arrange-
ments, as schematically illustrated in Fig. 3.2(a). The X-ray emission from such
micro-bunches is referred to as self-ampli�ed spontaneous emission (SASE).

The creation of ampli�ed light pulses from spontaneous emission of radiation in an
FEL has a signi�cant in�uence on the pulse characteristics as compared to pulses
that arise from stimulated emission, for example in an optical laser. In general,
shot-to-shot variations of the mean photon energy, the pulse energy, and the arrival
time of the FEL pulse occur, which has to be taken into account in the analysis of
experimental data. Moreover, two FEL pulses are never identical, as the temporal
and spectral structure of the SASE pulses is stochastic and contains many sharp
spikes, as is shown for an exemplary FEL pulse in Fig. 3.2(b). The photon energy
spectrum within a single pulse can be broad, and highly non-Gaussian. The average
width of this spectrum is called bandwidth and is on the order of 0.2 - 1.0% of the
nominal photon energy for the regime of soft X-rays at the LCLS [120]. A practical
drawback arises from the fact that although an FEL is a tunable lightsource, every
photon energy requires electron pulses of di�erent energy. Therefore, changing the
photon energy at an FEL can take up to several hours, as compared to a synchrotron
where this can be achieved within seconds, by varying the gap in the undulator.
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390 12 Experimentelle Techniken in der Molekülphysik

Beispiel

Mit den Zahlenwerten b = 1 mm und d = 100 mm wird tanϑ = 5 · 10−3, d. h. die
Dopplerbreite wird bei λ = 500 nm von ihrem typischen Wert von 1 GHz auf 50 MHz
reduziert. Damit wird natürlich auch die spektrale Auflösung um diesen Faktor besser.

Der zweite Aspekt der Spektroskopie in Molekularstrahlen betrifft die Abkühlung
der Moleküle in Überschallstrahlen. Wenn ein Gas vom Druck p0 im Reservoir
durch die Düse A ins Vakuum expandiert, tritt eine adiabatische Abkühlung ein, weil
die Expansion so schnell vonstatten geht, dass kaum ein Wärmeaustausch mit der
Umgebung stattfinden kann. Die Energie E = Ekin + Epot des Gases im Reservoir
bei der Temperatur T0 wird in gerichtete Strömungsenergie 1/2mu2 der Gasmoleküle
umgewandelt. Dabei bleibt die Enthalpie erhalten. Es gilt also

f

2
kT0 + p0V = 1

2
mu2 + (Etrans + Erot + Evib) , (12.39)

wobei f die Zahl der Freiheitsgrade der Moleküle angibt und der erste Term in der
Klammer auf der rechten Seite die relative kinetische Energie der Moleküle in einem
System, das sich mit der Geschwindigkeit u bewegt. Er ist sehr klein gegen 1/2mu2.
Das bedeutet: Die ,,Translations-Temperatur“ der Moleküle, gemessen im System,
das sich mit der Strömungsgeschwindigkeit u bewegt, ist sehr klein [12.20].

Man kann sich diese Abkühlung in einem einfachen molekularen Bild verdeutlichen
(Abb. 12.32): Die schnellen Moleküle stoßen mit den vor ihnen laufenden langsamen
Molekülen. Bei einem zentralen Stoß gleichen sich dadurch die Geschwindigkeiten
an, bis die Relativgeschwindigkeit so klein wird, dass keine Stöße mehr vorkom-
men. Bei nichtzentralen Stößen werden beide Stoßpartner aus der Strahlrichtung

N
N = No e-

N
v2

2KT1
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N = No e- (vz - u)2
2KT2
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Abb. 12.32: Verringerung der Relativgeschwindigkeiten bei der adiabatischen Expansion eines
Überschallstrahls [12.20].

Figure 3.3: Principle of a supersonic molecular beam. Initially, N molecules of mass m have a
stochastic velocity v at a temperature T1. After supersonic expansion, behind a skimmer, a cold
beam with a temperature T2 is created and the velocity of the molecules is directed along the beam
propagation direction z. The �gure is taken from reference [124].

An alternative to accelerator-based lightsources is the creation of X-ray pulses from
recolliding electrons in strong laser �elds via high harmonic generation (HHG), as
was brie�y introduced in section 1.2.3 [42�44]. The resulting pulses can be very
short, well below one femtosecond, but typically the number of emitted photons is
low, as the yield of HHG decreases strongly for high photon energies.

The experiments shown in this thesis were performed at the Variable Polarization
XUV Beamline P04 [122] at the PETRA III synchrotron at DESY in Hamburg
in December 2013 (chapter 4.1), and at the Atomic, Molecular and Optics (AMO)
beamline [123] of the LCLS in May 2010 and June 2011. Additional measurements
were carried out at the DORIS III synchrotron at DESY.

3.1.2 Supersonic Molecular Beams

A gas-phase molecular ensemble of high density and low temperature is required for
the photoelectron di�raction experiment. This is created by supersonic expansion,
as is illustrated in Fig. 3.3. A volume V1 of an ideal gas of atoms with mass m with
a pressure p1 (here p1≥ 102mbar) is connected to a volume V2 of lower pressure p2
(here p2 ≤ 10−4mbar) through a small hole, a nozzle. The gas expands through
the nozzle, and for p1/p2 > 2 the velocity of the particles is larger than the speed
of sound [125]. In this case, the expansion happens adiabatically. Conservation of
energy requires that

U1 + p1V1 +
1

2
mv2 = U2 + p2V2 +

1

2
mu2, (3.1)

where U1 and U2 are the internal energies, and v and u the collective velocities of the
ensemble of atoms before and after expansion, respectively [126]. Initially, the gas
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with a temperature T1 is in thermal equilibrium, thus v= 0. Moreover, as p2� p1,
it can be assumed that p2≈ 0. This results in

U1 + p1V1 = U2 +
1

2
mu2 (3.2)

3

2
kBT1 + kBT1 =

3

2
kBT2 +

1

2
mu2, (3.3)

where kB is the Boltzmann constant. Upon expansion, the enthalpy H = U1 + p1V1
of the gas is converted to a directional movement by inter-atomic collisions, resulting
in a mean collective velocity u along the expansion direction. This implies that the
gas cools down, thus the distribution of velocity components narrows, see Fig. 3.3.
In the ideal case T2 = 0K, resulting in a velocity

u =
√

5kBT1/m. (3.4)

Typical values for rare gases at room temperature are u= 1700m/s for helium,
u= 550m/s for argon and u= 300m/s for xenon. However, under experimental
conditions, the internal energy is not fully converted into directional movement, and
T2 ≥ 0K. The molecular beam can be characterized by the speed ratio [127] that is
de�ned as

S =

√
mu2

2kBT2
. (3.5)

The speed ratio is a function of the product of the diameter d of the nozzle and
p1. The dependence of S on p1d for a helium beam can for example be found in
reference [127]. The beam of isolated atoms resulting from supersonic expansion is
then collimated by one or multiple skimmers, which cut out the central, coldest part
of the beam. Here, two skimmers are used that are shaped like an inverse funnel,
see Fig. 3.1.

In contrast to rare gases, larger molecules are often not in the gas phase at room
temperature and under normal pressure conditions. The necessary temperatures
to bring them into the gas phase can be very high and the desired target densi-
ties after expansion may not be achieved simply by heating the reservoir before
expansion. Also, due to cooling during expansion, dimers or clusters of molecules
may form [125]. Moreover, at high temperatures, the molecules may disintegrate.
Instead, of rising the temperature, the pressure can be lowered in order to bring
the molecules into the gas phase. A liquid sample can be �lled into a reservoir, a
so-called bubbler and a carrier gas is �oated either above the surface or directly
through the sample. The gas �ow picks up sample molecules and delivers them to
the interaction region. Alternatively, a solid sample can be stored in a �lter paper
which is directly transmitted by the carrier gas. During expansion, the temperature
of the molecules decreases, as the energy is distributed equally between molecules
and carrier gas through collisions. The �nal temperature is typically a few Kelvin,
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leaving the molecules in the electronic and vibrational ground state. To select the ro-
tationally coldest molecules, an electrostatic de�ector can be used in addition [128].
Sending a beam of polar molecules through a strong, inhomogeneous electric �eld
spatially separates the molecules according to their rotational quantum state by ex-
ploiting the Stark e�ect. This can also be used to separate the molecules from the
carrier gas or to separate di�erent conformers of one molecular species [129].

For the two LCLS experiments, molecules were applied to a �lter paper and then
were introduced into the CAMP chamber by supersonic expansion with helium as
the carrier gas. A pulsed Even-Lavie valve [130] was used in order to reduce the
total gas �ow, and the polar molecule 1-ethynyl-4-�uorobenzene in chapter 4 was
sent through a de�ector between the skimmers, see Fig. 3.1. For the synchrotron
measurement, a di�erent, continuous beam without a de�ector was employed and
the molecules were �lled into a reservoir and heated to about 60◦C.

3.1.3 Velocity Map Imaging

When an X-ray pulse crosses the molecular beam and ionizes a molecule, electrons
and molecular fragments are created. In order to collect them, an electrostatic �eld
is applied to the interaction region that accelerates electrons and ionic fragments to
opposite sides, where position-sensitive detectors are placed, see section 3.1.4. In
this work, an inhomogeneous electric �eld was applied to focus the charged particles.
This is referred to as velocity map imaging and was �rst introduced by Eppink and
Parker [131]. They used three electrodes which, for properly chosen voltages, form
electrostatic lenses that project all particles with the same initial momentum to the
same spot on the two-dimensional detector. The resulting radius on the detector is,
in very good approximation, proportional to the square root of the kinetic energy
and the proportionality factor can be obtained from calibration, see section 3.2.6.
Collection e�ciency for the full 4π solid angle can be achieved for electrons with
moderately low �eld strengths when using such inhomogeneous �elds.

Moreover, in velocity mapping, the position at which the charged particle hits the
detector is relatively insensitive to the exact location of the origin of the charged
particle, which is an important property for experiments using extended, gas-phase
targets. A molecular beam from supersonic expansion typically has a diameter on
the order of a few mm in the interaction region, given by the distance to the last skim-
mer and the divergence of the molecular beam, de�ned by the skimmer diameters
and the distance between them. Single-photon ionization, as used for photoelec-
tron di�raction, can arise anywhere along the path of the light beam through the
molecular ensemble, thus creating an extended interaction region of a few mm.1 The
resulting uncertainty in the origin of the created electron or ionic fragments directly

1 At the P04 beamline at PETRA, the X-ray beam was unfocused in the direction along the
molecular beam at the time of the experiment, thus an interaction region of about 3× 3mm was
created in this case.
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(a) Electrostatic potential on the electron side

(b) 100 eV electrons

(c) 10 eV F+ ions

Figure 3.4: (a) Electrostatic potential on the electron side of the spectrometer for operation
voltages of L1e: 1 kV, L2e: 3 kV, DTe: 7 kV and voltages of opposite polarity on the ion side. The
third conical electrode is connected to the drift tube. (b) and (c) Trajectories of electrons and ions
on opposite sides of the VMI spectrometer. Colors correspond to di�erent ejection angles with
respect to the spectrometer axis from 0 to 90◦ with 10◦ spacing. The �ve di�erent particles of the
same color have di�erent origins between -2 and +2mm o�set from the spectrometer axis.

translates into a blurring of the recorded hit position, if homogeneous electric �elds
are used. This blurring can be avoided to a large extent when using appropriate
focusing �elds as usually applied in velocity map imaging.

In the original design by Eppink and Parker, either positive or negative particles
can be detected, a coincidence measurement, however, requires recording electrons
and fragment ions at the same time. Experiments on laser-aligned molecules also
pro�t from simultaneous imaging of ions and electrons, therefore a double-sided VMI
spectrometer was used in this work that is shown in Figs. 3.1 and 3.4. Details of
the design have been described in reference [132]. On both sides, three electrodes
create electrostatic lenses, see Fig. 3.4(a), followed by a �eld free drift region inside
a cylindric tube that is terminated by a copper grid with about 78% transmission.
Electrons and ions are detected on micro-channel plate detectors, see section 3.1.4,
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in front of which a second grid is placed. The unusual shape of the electrodes was
designed for measurements where an additional pnCCD photon detector was located
outside of the spectrometer to collect di�racted photons and �uorescence [116]. In
order to minimize shadows on the detector, the shape of the electrodes was chosen
conical, with di�erent angles, each pointing at the interaction point.

Figures 3.4(b) and 3.4(c) show the focusing properties of the VMI spectrometer on
the electron and ion side, respectively, as simulated with the program SIMION [133].
The voltages can be chosen such that photoelectrons and fragment ions with kinetic
energies of up to 100 eV are collected in the full 4π solid angle. Shortening of the
�eld-free drift region on the right hand side of Fig. 3.4(b) from 127mm to 50mm
allowed for detection of electrons with kinetic energies of up to 250 eV in the PE-
TRA experiment. All charged particles with the same initial momentum are imaged
to the same radius, almost independent of their exact origin. The position of the
focal point along the spectrometer axis is however slightly radius dependent, as is
best seen in the electron trajectories. This arises from the particular design of the
spectrometer and could probably be avoided by using ring electrodes [134]. In the
existing spectrometer, the focusing voltages should be chosen such that best focusing
is achieved for the radius region of interest, usually at large radii for recording pho-
toelectrons. The choice of voltages also depends on the experimental conditions, for
example on the exact position of the X-ray beam with respect to the spectrometer,
and thus have to be tuned for each experiment until optimal imaging is achieved. For
the LCLS experiment on 1-ethynyl-4-�uorobenzene molecules, a cylindrical µ-metal
shield was placed around the spectrometer (not shown), with the idea to shield the
electrons from external magnetic �elds. A µ-metal shields a volume from magnetical
�eld lines due to its high magnetic permeability. However, it was not tested whether
this had a signi�cant impact on the electron images as the µ-metal was not removed
during the experiment.

3.1.4 Electron and Ion Detection

The spectrometer extracts ions and electrons in opposite directions and focuses
them onto two micro-channel plates. These two-dimensional electron multipliers,
are penetrated by many isolated channels with a diameter of 25µm that are tilted
with respect to the detector surface. To increase the sensitivity and the charge
multiplication, two plates are stacked such that the tilted channels form a V -shape.
Impinging particles or photons that enter such a channel create electrons that are
then accelerated by a positive high voltage that is applied between the front and the
back side of the plate. The signal is thus multiplied within the channel, such that a
cloud of electrons can be detected at the exit. The corresponding drop in the MCP
voltage together with an absolute trigger provides the time of �ight of the particle to
the detector. As the electron cloud is created locally in one channel in the �rst plate,
and then spreads out into only few channels in the second plate, information on the
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of an ion can be measured in two ways from the
delay-line-anode (for example x-direction):
1. Through measuring the time di�erence on the

delay line between the two x-signals obtained
from opposite ends of the delay line.

2. Through measuring the time of a signal from
one end of the x-delay-line relative to the abso-
lute time of the event signal from the MCPs.
In order to obtain a position resolution better

than 0.1 mm, a time resolution better than 50 ps is
required in measuring the time of the signals on
the ends of the delay-lines. This was achieved by
applying di�erent voltages to the p-signal wire
(+700 V) and the n-signal wire (+500 V). The
di�erence of the electronic signals from the wire
ends of each pair of the delay line in one dimension
is ampli®ed using a fast di�erential preampli®er. A
time resolution better than 50 ps was obtained
from the signals at each end of the x- and y-delay-
lines using di�erential ampli®ers. The total delay
time over the whole delay-line structure was about
30 ns. Thus for 50 mm diameter active detection
area a position resolution better than 0.1 mm is
feasible.

Since only Time to Digital Converters (TDCs)
with a single-hit capability were used, it was nec-

essary to insert a fast switch device which directs
signals consecutive in time from one output to
separate TDC-stop inputs. Thus a delay-gate sig-
nal is created from the ®rst pulse (5 ns delay and 1
ls gate). The direct signal and the delayed gate
signal are created from the ®rst pulse. The direct
signals and the delayed gate signal are fed into a
logical ``And'' gate ``overlap coincidence''. From
this unit one obtains a timing-signal for the second
pulse. More similar circuits can be added to allow
the processing of a third and fourth multi-hit. The
time to resolve two consecutive signals is presently
limited to 5 ns. This limit comes from the limited
pulse length because of the electronic modules
used.

The delay-line detector and the delay-line wire
system can in principle detect and separate the
signals of two recoil-ions impacting the detector in
a very short time di�erence within the limited time
resolution of the system (50 ps) if they impact at
di�erent positions. Whether the TOF and position
for both fragments can be determined, depends
only on the electronics used. With commercially
standard fast timing modules we were able to
separate recoil impacts, which were separated by a
time delay of more than 5 ns.

If two recoil-ions hit the detector within 30 ns
(i.e. the total signal processing time on the delay
line), the x- and y-delay-line signals of the two
particles interfere with each other. However, the
sum of the corresponding arrival times for each
ion on opposite ends of a delay-line is constant for
a true event, because the delay line has always a
constant length for each signal pair. This infor-
mation can be used to sort the signals of all the
particles according to their arrival time and thus
their position on the detector can be identi®ed.

A schematic of the electronic set-up of the
multi-hit-detector-system is shown in Fig. 3 for the
detection of the two Nq�-fragments in a triple
coincidence with the He0-projectile. The signal
from the MCPs is processed by a fast timing am-
pli®er and a constant fraction unit providing the
digital signal of the arrival time of an ion on the
detector. A ``coincidence signal'' of the ®rst recoil-
ion with the projectile provides the start signal of
the data processing. The position of an ion is
obtained by measuring the time di�erence between

Fig. 2. Two position planes and the function principle of the

delay-line-anode. The delays is obtained just from the length of

the wire turns. The Clocks represent time measurements.
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Figure 3.5: Principle of a delay-line-anode. The �gure is taken from reference [135].

spatial position of the particle hit can be obtained when the charges are detected
by a two-dimensional, position-sensitive detector placed directly behind the MCP.

Di�erent read-out techniques can be used, depending on the experimental require-
ments. Often it is desired to image only a single ionization event in every readout
cycle in a photoelectron-photoion coincidence mode [19]. For this purpose, a delay-
line-anode [135] can be used, its working principle is illustrated in Fig. 3.5. Two
pairs of wires are wound such that they form a square grid that acts as an anode,
the spacing between the windings is 0.5mm. A voltage of about 50V is applied to
both ends of each wire, usually one wire is put on a positive voltage, and the other
one is negative, two wires for each dimension form a Lecher line. The electron cloud
that is created by the MCP induces a current pulse in both wires that propagates
to both ends of each wire pair. The di�erence in arrival times Tx1−Tx2 and Ty1−Ty2
between the two ends of one wire pair encodes the information on the position: For a
hit in the center of the detector, both delay times are equal, whereas an event on the
edge of the detector produces one long and one short delay. In a hexagonal version
of the detector, three pairs of wires are used instead of two to improve the multi-hit
capacity by recording redundant information. The signals are ampli�ed, digitized by
a constant fraction discriminator, and then saved as a list of arrival times that can
be translated into time-of-�ight and position information, and, thus, momentum of
each individual particle. For the experimental settings used here, three-dimensional
momenta can only be retrieved for ions. For electrons, the total time of �ight is very
short, such that the resolution in z-direction is low and only the two components
px, py of the momentum parallel to the detector plane are measured.

Delay-line anodes are very well suited if only a few particles are created per readout
cycle, with high repetition rates. These detectors are thus often used in synchrotron
experiments. For an experiment at a Free-Electron Laser, however, where ∼ 1012

photons are contained in a single shot, at repetition rates of ≤120Hz, it is often
desired to record hundreds of particles per readout cycle. For example, in the ex-
perimental data presented in chapter 5, up to 700 electron hits were created from a
single pulse. For such conditions, a phosphor screen can be placed behind the MCP.
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Each impinging electron cloud causes luminescence on the screen that persists for
4ms (P20 phosphor), and all light spots created for one X-ray pulse are imaged
by a CCD camera from outside of the vacuum chamber through a window �ange.
The number of detectable and distinguishable detector hits per shot is in this case
only limited by the overall size and the density of the individual spots. When using
a phosphor screen, usually the information about the time of �ight of the particle
at a certain position is lost, as the camera records the integrated image for each
FEL shot. In order to image only the spatial distribution of ionic fragments with
a certain mass-to-charge ratio, the ion detector is gated by fast switching of the
high voltage on the MCP. To record a time-of-�ight spectrum, see section 3.2.1, the
temporal gate has to be removed. The electron detector is gated also, to suppress
stray electrons and high-frequency feedback from the gating of the ion detector. For
this work, P20 phosphor screens with CCD cameras were used at the LCLS, whereas
two delay-line anodes were used in the PETRA experiment.

It has been shown recently that a new event-triggered monolithic pixel detector,
the Pixel Imaging Mass Spectrometry (PImMS) camera [136], in combination with
a P47 phosphor screen that decays within 100 ns, can record time-of-�ight spectra
with a temporal resolution of 12.5 ns, while at the same time retaining the spatial
position information of all ionic fragments [137]. This is a very interesting alternative
for future experiments of this kind, if delay-line anodes cannot be used due to too
high count rates per readout cycle.

3.1.5 Laser Set-Up

For the photoelectron di�raction experiment, it is necessary to �x the molecular
frame with respect to the laboratory frame. In the LCLS experiments, where multi-
ple molecules are ionized in every X-ray pulse, this was achieved by adiabatic laser-
alignment of the molecules, see section 2.4. Here, a 1064 nm (1.17 eV) neodymium-
doped yttrium aluminum garnet laser with a pulse duration of 10 ns and an intensity
of about 5×1011W/cm2 was used. The intensity is chosen low enough such that
strong-�eld ionization of the molecules by the alignment laser alone is prevented.

In order to assure that all molecules that are ionized are well aligned, the focus size
of the YAG was chosen about a factor of 4 larger than the FEL focus. The FEL and
YAG pulses were synchronized in time, such that the X-ray pulse hit the molecules
in the peak of the alignment. The relative timing was found based on optimum
alignment as determined from the ion-fragment distribution. The YAG laser oper-
ated at a repetition rate of 30Hz, and the LCLS at 120Hz (60Hz in 2010). As the
molecular beam was operated at a repetition rate of 60Hz, aligned and randomly
oriented molecules were measured alternately, and, in addition, background data
were recorded simultaneously. Linearly or elliptically polarized pulses were used
that induce one- and three-dimensional alignment respectively.
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For the pump-probe data in chapter 5, additionally an 800 nm (1.55 eV) titanium-
sapphire laser was used that induced fragmentation of the molecules. The pulse
duration was 70 fs and the intensity was set to about 5×1014W/cm2 in order to
create predominantly singly-charged fragments. The focus size of the TiSa was
chosen about a factor of 3 larger than the FEL focus size and about a factor of
2 smaller than the YAG focus size. The temporal overlap between FEL and TiSa
was found by �rst monitoring the arrival times of both light pulses with a fast
photodiode that can achieve a precision of about 20 ps, and afterwards tuning on a
delay-dependent signal in the electron image, see section 5.2.4.

3.2 Data Processing

This section describes basic techniques that were employed to analyze the electron
di�raction and the corresponding ion data. Data in the PETRA experiment were
acquired and pre-analyzed with the software package COBOLD [138], data from the
LCLS with the CFEL-ASG Software Suite (CASS) [139]. Final analysis of all data
was performed with ROOT [140].

Unless otherwise noted, all data presented in this thesis follow the convention in
Fig. 3.1. The light-propagation direction lies along the x-axis, the molecular beam
propagates along y, and the z-axis is the time-of-�ight axis. Detector images show
the particle momentum components px in horizontal direction and py in vertical
direction; px = py = 0 lies in the center of the image. All detector images for one
experiment show the same (x, y) range, and all images in one �gure are plotted with
the same color scale. Electron angular distributions in the (x, y) plane are plotted
as polar plots and the angle φ lies in the detector plane with φ = 0 corresponding
to the light propagation direction. For ions, the symbol θ2D is used instead of φ, in
accordance with common nomenclature in molecular alignment literature.

3.2.1 Ion Time-of-Flight Spectra

The starting point of a photoionization experiment is often to characterize the ionic
fragments that are created by recording a time-of-�ight spectrum. The time T it
takes a particle to pass a length L in a constant electric �eld E is proportional to
its mass-to-charge ratio m/q

qE =
mv2

2
=
mL2

2T 2
⇒ T =

√
L2

2E

m

q
, (3.6)

under the assumption that the initial kinetic energy is small compared to the energy
that the particle gains from the electric �eld. Thus, the amount of charge that is
deposited on an MCP as a function of time characterizes the relative abundance of
ionic fragments that are created.
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Figure 3.6: (a) Example of a time-of-�ight spectrum for neon, recorded with velocity map
imaging voltages at a photon energy of 893 eV at DORIS. Peaks marked in red are copies of real
peaks that are shifted to shorter �ight times (see text). (b) The time of �ight is plotted as a
function of

√
m/q to verify the calibration. Real peaks are shown in blue, copies of real peaks in

red. A linear �t through the points is also plotted.

The measured spectrum can be calibrated by �educated guessing�, in the sense that
two peaks are assumed to correspond to certain ratios m/q. Often the peak with
the shortest time of �ight stems from protons and the peak with the longest time
of �ight stems from the singly charged atom, or the intact molecule that is referred
to as the parent ion. The resulting calibration is cross-checked with other �ight
times in the spectrum, to ensure that all of the peaks can be assigned to an m/q
ratio. An exemplary time-of-�ight spectrum of neon atoms recorded at a photon
energy of 893 eV is shown in Fig. 3.6(a). Predominantly the Ne(1s) level is ionized,
which leads to an Auger decay in almost all cases, see also section 2.1, thus the
most probable ion to be created is Ne++. The calibration is done by plotting T
over

√
m/q, as shown in Fig. 3.6(b). The �ight times can also be calibrated by

recording the spectrum for a rare gas and comparing it to literature results or by
simulating the ion trajectories for the given spectrometer voltages, for example in
SIMION [133].

With the VMI spectrometer used in this work, time-of-�ight spectra can either be
recorded by applying constant voltages on all electrodes, for example +1 kV on the
electron side and −1 kV on the ion side, or with the typical velocity map imaging
voltages. However, in the VMI mode additional peaks arise in the time-of-�ight
spectrum, marked in red in Fig. 3.6(a). This can be explained by the following
scenario: An ionic fragment is accelerated to a kinetic energy of several keV by
the extraction �eld of the spectrometer. Typically, a negative voltage of ≥ 3 kV is
applied to the drift tube on the ion side, and to the attached grid, see Fig. 3.4(a).
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Behind the drift tube, the electric �eld changes its direction, as about -2.6 kV are
applied to the second grid in front of the MCP, such that the ions are decelerated
before hitting the detector. The grid at the end of the drift tube has a transmission
of only about 78%, therefore the ion can impinge on the grid instead of passing
through it, thereby creating electrons. These electrons are then accelerated towards
the ion detector, and are thus detected with a time of �ight that is somewhat shorter
than the time of �ight of the corresponding ion, due to the smaller mass of the
electron. This means that for time-of-�ight spectra recorded under velocity-map-
imaging conditions, each ion peak is accompanied by an additional, smaller peak
that is shifted to shorter �ight times and that does not correspond to the �ight time
of an ionic fragment. The height of each `copy' peak is scaled down with respect to
the corresponding ion peak, such that the `copy' peaks are particularly visible for
strong ion peaks. The time-of-�ight di�erence between the real peak and the `copy'
peak is not constant, but it scales with the mass of the ion, as heavier fragments
need more time to traverse the region between the grid at the end of the drift tube
and the MCP detector, while the created electrons travel at the same speed.

The �ight times of two or more ions that are recorded in coincidence are often plot-
ted in a two-dimensional representation, a photoion-photoion coincidence (PIPICO)
map. Here, the �ight time of the �rst detected ion is plotted on the x-axis and the
�ight time of the second ion on the y-axis. The resulting lines contain detailed in-
formation on the molecular fragmentation. For example, channels corresponding to
the break-up into two charged fragments generally produce sharp diagonal lines as
a result of momentum conservation, whereas when three or more charged fragments
are created that each carry a signi�cant amount of momentum, the corresponding
line is washed out [141]. A PIPICO map is shown in section 4.1.

3.2.2 Data Sorting and Filtering

The analysis of photoelectron di�raction data requires integration of events over
a rather long period of time, typically more than one hour. For a quantitative
analysis, it is thus important that the experimental parameters are kept constant
for all events that are analyzed together. However, as FEL pulses are generated from
the stochastic SASE process, see section 3.1.1, nominal values such as the photon
energy can �uctuate signi�cantly. At the LCLS, beam parameters are monitored
on a shot-to-shot basis, for example the electron-beam energy, the electron peak-
current, and the integrated electron-beam charge. In order to remove outliers, for
example electron pulses that did not produce SASE, from the data, broad �lters
are de�ned on these three parameters before proceeding with the data analysis.
The photon energy cannot be monitored directly, but can be calculated from the
measured electron energy and undulator parameters as

λ =
λu
2γ2

(
1 +

K2

2

)
with γ =

E

mec2
and K =

eBuλu
2πmec

, (3.7)
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Figure 3.7: LCLS beam parameters for one set of data. (a) Distribution of the mean photon
energy. (b) Distribution of the mean pulse energy.

where λu is the undulator period, E is the electron energy, and Bu is the peak
magnetic �eld in the undulator [142]. Figure 3.7(a) shows a typical distribution
of the X-ray energy. It �uctuates with a full width at half maximum (FWHM)
of 5 eV around the center at 743 eV, corresponding to a variation of 0.7%. The
photon energy directly determines the kinetic energy of the photoelectrons, thus it
is important to restrict it as good as possible to obtain sharp photolines. This can
be achieved by �ltering the data, for example such that only events with a photon
energy in a window of ± 2 eV around the maximum of the distribution are analyzed.
This corresponds to a variation of 0.27%, which is of the same order as the lower
limit of the bandwidth of each pulse of 0.2% [120], such that it is not reasonable to
narrow it down further.

It turned out during the experiment that constant monitoring of all parameters is
not only necessary for a quantitative data analysis, but also important to check for
systematic, arti�cial changes in beam parameters. In the 2011 LCLS experiment, the
photon energy sometimes experienced a systematic shift with a 30Hz frequency, and
as the YAG laser operates at the same frequency, this meant that photoelectrons of
di�erent kinetic energies were created for aligned and randomly oriented molecules.
This shift could not be corrected by �ltering, thus these data could not be analyzed.
For later measurements, the shift was corrected by optimizing machine parameters.

In addition to the �ltering based on beam parameters, the data need to be sorted
according to di�erent experimental settings: The LCLS operated at 120Hz (60Hz
in 2010), the YAG alignment laser at 30Hz and the molecular beam was chosen to
run at 60Hz. This results in three data sets for the 2011 experiment: a quarter of
the events corresponds to aligned molecules, another quarter to randomly oriented



3.2. Data Processing 45

molecules and half of the shots are background shots. In 2010, no background could
be recorded. A photodiode monitored the YAG laser signal, and all shots in which
the laser pulse was detected are regarded as `YAG-on' shots. All events are classi�ed
in the pre-analysis step using CASS, and the number of events in each category is
tracked, such that the resulting images can be normalized accordingly.

3.2.3 Hit Finding

The CCD cameras on the ion and on the electron side are read out for every FEL
shot, and the image is saved with a resolution of 1024×1024 pixels. Part of a typical
single-shot image on the electron detector is shown in Fig. 3.8(a). The electron
clouds that are created by the MCP show up as bright spots on the phosphor screen.
The overall size of the spot and the signal height depend on the statistical electron
multiplication in the MCP, and on how many channels of the second MCP are
hit by the electron cloud created in the �rst MCP. Moreover, the total energy of
the post-accelerated particle, and the local MCP, phosphor, and CCD sensitivities
in�uence the signal. The signal height cannot be exploited in the analysis. Thus it
is preferable to reduce each hit to a single position information, to remove arti�cial
sensitivity variations and to improve the spatial resolution.

First, a threshold value has to be de�ned that reliably separates signal from noise.
This can best be done by plotting the distribution of signal heights per pixel in the
image for the complete set of data, see Fig. 3.8(d). The distribution consists of two
di�erent contributions: the vast majority of signals per pixel (2×1010) lie between 0
and 40 in arbitrary detector units, which correspond to noise. It can be removed from
the image by de�ning a threshold of 40 arb. u., resulting in the image in Fig. 3.8(b).
Most of the data, however, were recorded with a lower voltage applied to the MCP
detector that gives rise to the signal-height distribution in Fig. 3.8(e). The reduced
ampli�cation results in two di�erent contributions that both correspond to particle
hits, but in di�erent regions of the detector. The central part of the MCP is less
sensitive than the outer part, because it had previously su�ered from damage e�ects
due to intense signal, resulting in lower signal heights. The noise distribution in this
case is not completely separated from the signal of pixels that contain a real signal,
such that it is unavoidable to lose some of the weaker hits in the center.

After applying the threshold, the images are processed with the hit-�nding algorithm
of CASS [139]. The original method was developed to identify photon hits on the
CAMP pnCCD detector, on which one hit covers at most 4 pixels. For every pixel
in the image, the signal height is compared to the signal in the 8 nearest neighbor
pixels. If this signal is higher than in all surrounding pixels, the pixel is recognized
as a hit. However, electron and ion hits on the phosphor screen spread out over
many more pixels (> 20 for most hits). Thus it can happen that wrong double
hits are produced when a local maximum is mistaken for a global maximum. The
algorithm has therefore been modi�ed such that also the next 16 surrounding pixels
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Figure 3.8: Top: single shot electron detector image, zoomed in to 200×200 pixels in the center
of the image. Bottom: distribution of signal heights per pixel on the electron detector for two
di�erent voltages applied on the back side of the MCP. Thresholds to separate signal from noise
are indicated by the red dashed lines.

are taken into account in the comparison. It has been found that this successfully
avoids arti�cial hits in almost all cases. The result of the hit-�nding algorithm on
Fig. 3.8(b) is shown in Fig. 3.8(c). Another problem arises if two adjacent pixels
have the exact same signal height, which starts to become a problem for low absolute
signal height values, for example in Fig. 3.8(e). The original algorithm counts two
hits in this situation, whereas the modi�ed code counts zero; one of these occurrences
can be found in the upper right corner of the image in Fig. 3.8. Both cases are
obviously not ideal, thus the implementation of a center-of-mass calculation would
probably be bene�cial. This would also further improve the spatial resolution, as
the pixel with the maximum signal height does not necessarily correspond to the
exact center of the position.

For the following analysis, all hits that were identi�ed in the single shot images
are summed up for a sub-set of data with identical experimental parameters. An
example of such an integrated electron image is shown in Fig. 3.9(a). It looks noisy
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(a) result of hit �nding (b) rebinning 4×4 pixels (c) smoothing over 5×5 pixels

Figure 3.9: Comparison of rebinning and smoothing of a typical integrated electron detector
image. (c) is rotated by 10◦ with respect to (a) and (b), correcting for a slight rotation of the
camera with respect to the detector. The `hole' in the lower right quadrant corresponds to an
insensitive area on the phosphor screen that had previously been damaged by too intense signal.

at this maximum resolution, and a �ne, arti�cial structure can be identi�ed that is
most probably caused by the two grids that were placed in front of the MCP. In order
to average over these e�ects, the number of pixels can be reduced by rebinning, in
this case adjacent pixels are merged to one bigger pixel and the signals are added up.
Rebinning the image in Fig. 3.9(a) by a factor of 4 results in Fig. 3.9(b). Another
possibility is to employ a two-dimensional smoothing algorithm that is implemented
in ROOT, and which interpolates between the signals of neighboring pixels instead
of only summing them up, while preserving the original image resolution. When
comparing the resulting Fig. 3.9(c) with Fig. 3.9(b), it is found that the smoothing
removes the arti�cial structure more e�ciently, which is probably because it has
a periodicity of several pixels. Therefore, the two-dimensional images have been
smoothed after converting them to polar coordinates.

3.2.4 Image Conversion and Correction

In order to extract photoelectron angular distributions from the two-dimensional
detector image, it is converted from cartesian (x, y) to polar coordinates (r, φ). This
allows to obtain angular distributions by projecting a certain radial range, and to
easily correct for an experimental o�set angle by shifting the (r, φ) histogram along
the φ axis. For the coordinate transformation, the correct center of the photoelec-
tron distribution has to be determined. In velocity map imaging, the point on the
detector to which particles with zero initial kinetic energy are projected does not
necessarily de�ne the center of the photoelectron distribution at larger radii. Thus,
the question arises how to �nd the correct center to evaluate the photoelectron an-
gular distribution. In �rst approximation, this can be done by simple geometric
considerations, but it is di�cult to achieve a precision of better than a few pixels.
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To improve the result, two methods have been used. One possibility is to de�ne a
center and then to compare the radial distribution of electrons that are obtained
for the four di�erent quadrants of the image. If the rim of the projected photoline
is found at the same radius for all four quadrants, the center is correctly chosen.
A second method is to cut out a ring from the image that contains the rim of the
projected photoline. This ring is then mirrored on one axis and the signals of both
resulting rings are multiplied pixel-by-pixel and added up. If the center is chosen
correctly, the integrated signal obtained in this way is maximized.

The conversion of the image to polar coordinates is achieved by de�ning an equidis-
tant lattice with points (ri, φj), whose origin is located at the center of the photoelec-
trons. The spacing between the grid points needs to be chosen small enough, such
that even for the largest radius each cartesian pixel contains at least one point of the
polar lattice. For the CCD images that contain 1024× 1024 pixels, a polar lattice
with 512 radial points and 1800 angular points has been used. The photoelectron
count rate N(ri, φj) in each bin of the polar lattice is given by

N(ri, φj) = riN(x, y) (3.8)

with x = ri cosφi, y = ri sinφi. Here, N(x, y) is a two-dimensional interpolation
of the counts in the four surrounding cartesian pixels (x1, y1), (x1, y2), (x2, y1) and
(x2, y2)

N(x, y) =N(x1, y1)(x2 − x)(y2 − y) +N(x2, y1)(x− x1)(y2 − y)

+N(x1, y2)(x2 − x)(y − y1) +N(x2, y2)(x− x1)(y − y1). (3.9)

After the detector image is converted to polar coordinates, angular distributions are
easily obtained by projecting the two-dimensional (r, φ) plots to the φ-axis for a
certain radial region of interest (rmin, rmax). In the same way, radial distributions
can be obtained from projections of a certain range of angles. Note however that
this introduces an additional factor of r due to the conversion dx dy = r dr dφ that
enforces N(r = 0) = 0. All radial distributions from non-inverted detector images
shown in this thesis therefore are not electron energy spectra. In the projected
image, the information on the third momentum component is missing. To obtain an
energy spectrum from a VMI image, it has to be inverted, see section 3.2.5, which
results in a cut through the three-dimensional distribution for pz =0. The radius on
the detector can then be directly translated to the electron kinetic energy Ekin as

Ekin =

√
p2x + p2y
2me

= ar2 (3.10)

where px, py are the momentum components and me is the electron mass. The
conversion factor a has to be determined from detector calibration, for example
from an ATI spectrum, see section 3.2.6.
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Figure 3.10: The rim of a projected photoelectron distribution on the detector in polar coordi-
nates. The radial region of interest for evaluating the photoelectron angular distribution is marked
by the white lines. The bottom row shows the radial positions of maximum photoelectron signal
in blue and the function that is used for correcting the image in red (see text).

After converting the image to polar coordinates, it is found that the photoelectrons
are not projected to a perfect circle, see Fig. 3.10(a). The radial positions of maxi-
mum intensity can be found by taking cuts of the image at each angle, and determin-
ing the radius of maximum signal by �tting the sum of a Gaussian and a constant
function to the distribution. The mean of the Gaussian is taken as the radial position
of maximum intensity, which is shown in Fig. 3.10(c). The resulting distribution is
not �at, but at 90◦ the electrons are projected to larger radii as compared to smaller
and larger angles. This can occur due to imperfect focusing properties of the VMI
spectrometer, causing the radius to which a particle is projected to slightly depend
on the angle. This interferes with the analysis of the photoelectron angular distri-
bution in a radial region of interest, marked by the lines in Fig. 3.10(a). Less counts
are taken into account for angles further away from the maximum, thus the angular
distribution appears to have a narrower maximum. Moreover, inversion algorithms
as described in section 3.2.5 assume perfect symmetry, thus an elliptically distorted
photoline can potentially cause wrong reconstructions. Therefore, an algorithm has
been implemented in order to correct for this distortion.

The distribution of radial positions in Fig. 3.10(c) is �tted by the sum of a cos2 and
a constant function. This �t is used to correct the radial position of each pixel in
the image. The maximum of the photoline at 45 degrees is de�ned as the nominal
radius, and all pixels with φ ≤ 45◦ are shifted to larger radii, whereas all pixels with
φ > 45◦ are shifted to smaller radii. The absolute value of the shift is assumed to
scale linearly with the radius, such that the pixel in the center is not moved and
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pixels at larger radii are moved more strongly. The process is repeated, until the
cos2 function has an amplitude of only one pixel. The resulting image is shown
in Fig. 3.10(b), and the corresponding distribution of radial maxima is plotted in
Fig. 3.10(d). The corrected distribution is not completely �at, but exhibits a slight
slope. Reasons for this can be distortions from external magnetic �elds, or small
non-dipole e�ects in the photoionization process. Moreover, low-energy electrons
can have a di�erent center on the detector, introducing further asymmetries. VMI
images are often mirrored around the symmetry axis, or only part of the image is
processed for the analysis. Here, it has been investigated whether separate analysis
of the four quadrants of the image produces qualitatively di�erent results, and it
has been found that the results are not identical, for example the values of the
asymmetry parameter β deviate by up to 0.1. As it is not obvious why any one of
the quadrants should be the �best� choice, it has been decided to use the full data
set of all four quadrants for the �nal analysis in order to average over these e�ects.

3.2.5 Inversion of VMI Images

VMI images represent two-dimensional projections of three-dimensional distribu-
tions. The projection of electrons with a given kinetic energy has a sharp cut-o� at
rmax∼Ekin, but electrons with a non-zero momentum pz along the spectrometer axis
are projected to smaller radii. The radius on the detector is thus only proportional
to the px, py components of the particle momentum parallel to the detector surface,
the third component is unde�ned. If the process that is studied has cylindrical
symmetry, and the symmetry axis lies parallel to the detector surface, it is however
possible to obtain a cut trough the three-dimensional distribution from the projected
image analytically, provided that all electrons are captured (4π acceptance).

Di�erent algorithms exist to perform the inversion of the image. Here the pBasex
algorithm has been used [143], which takes advantage of the fact that the three-
dimensional distribution can be described by an expansion in Legendre polynomials,
see Eq. 2.8. After inverting the image, the electron energy spectrum can be obtained
which is not possible from the projection. Moreover, the inversion is bene�cial if
electrons of di�erent kinetic energy are present, for example from ionization of two
di�erent orbitals. In this case, the electrons from both channels overlap at smaller
radii and the angular distribution of a single channel cannot be obtained.

For the molecules used in this work, only one signi�cant photoline is observed.
Additional high-energy Auger electrons and low-energy electrons from secondary
processes occur, but these contribute to the image only for rather small radii. Under
these conditions, an inversion provides not much additional information about the
photoelectron angular distribution and bears the risk of introducing artifacts, for
example from assuming a perfectly symmetric image. However, the inversion is
needed for obtaining the electron spectrum and as inverted images are commonly
shown for VMI data, the inverted results are also given in chapter 4 for comparison.
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(a) raw image (b) inverted image

Figure 3.11: Raw and inverted electron detector image obtained from above-threshold ionization
of argon by an 800 nm laser.

3.2.6 Energy Calibration with ATI

To obtain an electron energy spectrum from the inverted image, it is necessary to
retrieve the calibration factor a in Eq. 3.10. This can be achieved by simulating
the energy-dependent electron trajectories in the spectrometer, for example with
SIMION, or by calibrating the detector with electrons of known kinetic energy.
The latter can be done by using above-threshold ionization of a rare gas target by
the TiSa laser, see also section 2.1. Here, argon was introduced into the vacuum
chamber through a needle valve. The ionization energy of argon is 15.76 eV [91],
and the photon energy of the TiSa laser is 1.55 eV. Thus, if one atom absorbs more
than ten photons, an electron is emitted. The resulting detector image is shown
in Fig. 3.11(a). A distinct ring structure can be seen and each subsequent ring
corresponds to absorption of an additional photon with 1.55 eV energy. Inversion of
the image, as described in the previous section, results in the electron distribution
in Fig. 3.11(b) that is used for the energy calibration.

The radial projection for a narrow angular region around the intensity maximum
at 90◦ in Fig. 3.11(b) is shown in Fig. 3.12(a). The individual peaks can be clearly
identi�ed. The calibration of radius to kinetic energy according to Eq. 3.10 can
be achieved by assuming that two subsequent peaks have an energy di�erence of
1.55 eV. Radial positions of intensity maxima used for the calibration are marked
by the red triangles. When plotting E as a function of r2, see Fig. 3.12(b), the
identi�ed peaks lie on a straight line and �tting yields the factor a= 2.98×10−4. The
�rst peak cannot be easily identi�ed. Thus the absolute number of photons that
have been absorbed for each of the peaks is still unknown, but with the additional
input E(r= 0)= 0, the calibration curve in Fig. 3.12(c) can be obtained for this
set of voltages. The resulting photoelectron energy spectrum for the entire image
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Figure 3.12: (a) Radial distribution of the photoelectrons for 80 ≤ φ ≤ 100. Identi�ed peaks are
marked by the red triangles. (b) Linear �t for determination of the factor a. (c) Calibration of the
radius to kinetic energy. (d) Energy spectrum obtained from the inverted image for 0 ≤ φ ≤ 360.

is shown in Fig. 3.12(d). The number of electrons decreases strongly for higher
kinetic energies, as the probability to absorb n photons is larger than to absorb
n+ 1 photons. However, at kinetic energies between ∼ 17 and 25 eV, a plateau can
be seen that is caused by rescattering of the electron by the ionic core [144]. The
energy spacing between a peak in this region and a peak at low electron energies
does not necessarily correspond to an integer number of photons, thus these peaks
have been omitted for the calibration.



4 Photoelectron Angular Distributions of

Fixed-in-Space Molecules

This chapter describes photoelectron angular distributions obtained from F(1s) ion-
ization of 1-ethynyl-4-�uorobenzene molecules (pFAB, C8H5F), see Fig. 4.1. In
section 4.1, data are shown that were obtained from a coincidence measurement at
the PETRA III synchrotron at DESY in December 2013, the remaining part of the
chapter presents results of an experiment on laser-aligned molecules at the LCLS
Free-Electron Laser in June 2011. Parts of the results are shown in reference [145]
and [146]. Details of the image processing and conventions for detector images and
polar plots of angular distributions are given in section 3.2.

4.1 Electron-Ion Coincidence Experiments

In order to test whether photoelectron angular distributions of �xed-in-space pFAB
molecules can be recorded with photoelectron-photoion coincidences, an experiment
was carried out at the Variable Polarization XUV Beamline P04 [122] at PETRA III.
At the time of the experiment, only circularly polarized X-rays were available at this
beamline.

4.1.1 Ion-Ion Coincidences

In a coincidence experiment, the orientation of the molecule with respect to the lab-
oratory frame can be established by recording the momentum of characteristic ionic
fragments and relating it to the molecular frame, see also section 2.4. Therefore, �rst
the fragmentation channels of the molecule following the inner-shell photoionization

Figure 4.1: Equilibrium geometry of the 1-ethynyl-4-�uorobenzene molecule (pFAB, C8H5F).

53
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Figure 4.2: Time-of-�ight spectrum of pFAB recorded under velocity map imaging conditions
at PETRA with circularly polarized X-rays at a photon energy of 765 eV. For heavy fragments, the
individual peaks with a mass di�erence of 1 amu cannot be fully resolved, thus these contributions
are labeled with Hx. Contributions containing oxygen arise from ionization of residual water in
the chamber and the iodine peak stems from residual CH3I molecules in the injection system. The
H+ peak with a maximum of 3.4×106 has been cut for better visibility. Peaks that are not labeled
correspond to electrons that are created on the grid at the end of the spectrometer drift tube on
the ion side, see section 3.2.1.

are studied by recording a time-of-�ight spectrum, which provides information on
the resulting ionic fragments and their relative abundance. The time-of-�ight spec-
trum of pFAB shown in Fig. 4.2 was recorded at a photon energy of 765 eV. The
F(1s) binding energy in pFAB is assumed to be identical to the binding energy in
�uorobenzene, which is 692 eV [147], thus the chosen photon energy lies 73 eV above
this threshold. Relevant photoionization cross sections at this photon energy are
350 kb for �uorine, 90 kb for carbon, 0.03 kb for hydrogen, and 0.9 kb for the helium
carrier gas [68]. Thus, statistically, one out of three absorbed photons is absorbed by
the �uorine, and the remaining two are absorbed by one of the eight carbon atoms.

Overall, the spectrum shows many di�erent fragments, and the peak corresponding
to the parent ion C8H5F+ is very small. This is expected for inner-shell ionization,
as the vacancy typically decays very fast via Auger processes, which create at least
one additional charge that usually results in the fragmentation of the molecule. The
F+ and the F++ peaks are also comparably small, leading to the conclusion that
often the �uorine remains bound to at least one carbon atom, which is supported
by several CxHxF+ peaks in the spectrum. Another possibility is that the �uorine
is emitted as a neutral fragment.

A more detailed picture about the fragmentation of pFAB molecules can be obtained
when considering the photoion-photoion coincidence (PIPICO) map in Fig. 4.3.
The molecules often do not fragment into only two parts, as can be seen from the
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Figure 4.3: Photoion-photoion coincidence map of C8H5F+, recorded at a photon energy of
765 eV. As the spectrometer was operated under velocity map imaging conditions, two smaller
copies of each structure can be found upon close inspection. The structures are shifted to shorter
�ight times of both, the �rst and the second ion.

relatively weak population of two-body break-up channels. Even for cases where one
or more hydrogens are missing to the strict two-body break-up, the lines are rather
sharp, indicating that the momentum of the hydrogen does not in�uence the rather
heavy fragments much. The most probable fragments to be detected in coincidence
are C3H+

x and C5H+
x , as well as CF

+ and C5H+
x . Coincidences between the smaller

fragments C2H+
x and C3H+

x are also frequent, but more than two of these fragments
can be created from a single molecule. In general, coincidences between fragments
of roughly the same mass are more abundant than break-ups into one heavy and
one light fragment.



56 Chapter 4. Photoelectron Angular Distributions of Fixed-in-Space Molecules

Two particularly interesting features of the coincidence map are highlighted in the
insets in Fig. 4.3. The �rst line corresponds to the coincidence between CH+

3 and
C7H2F+ fragments, which is the strongest coincidence channel of the C7H2F+ frag-
ment. The second inset shows the coincidence between CH2F+ and C7H+

3 fragments.
When recalling the geometry of the molecule in Fig. 4.1, it becomes clear that neither
the CH+

3 nor the CH2F+ fragments can be created by simple bond-breaking. In or-
der for these fragments to occur, two hydrogens have to migrate to the CF+ and the
CH+ fragment, respectively. Such isomerization reactions have been brie�y intro-
duced in section 1.2 for the example of acetylene. The C7H+

3 + CH2F+ line exhibits
a pronounced tail towards longer �ight times of the lighter fragment and shorter
�ight times of the heavier fragment that can be traced for more than 150 ns. Such a
feature can occur if metastable ionic fragments are created that are accelerated by
the electric �eld of the spectrometer before they decay into the products [148]. In
this case, initially probably a doubly charged parent ion is formed. A hint of such a
line can also be seen for the C3H+

3 + C5H2F+ and the CH+
3 + C7H2F+ coincidence

channels.

In order to retrieve photoelectron angular distributions of �xed-in-space molecules,
the molecular frame needs to be �xed with respect to the laboratory frame. In
particular, the angle between the light polarization direction and the molecular axis
has to be known. In a coincidence experiment, this is achieved by assuming that the
emission direction of a characteristic ionic fragment monitors the orientation of the
molecule. For a diatomic molecule, this is ful�lled if the molecule dissociates fast,
such that no rotation occurs before the ion has left the molecule. This is referred to
as axial recoil approximation [149, 150]. For the case of pFAB, the straightforward
fragment to choose for aligning the molecular axis is F+. The time-of-�ight spectrum
in Fig. 4.2 shows however that this fragment is not detected frequently, and in the
PIPICO map in Fig. 4.3 it becomes obvious that the molecule almost never breaks
up into F+ +C8H+

5 . F+ is mostly detected in coincidence with smaller fragments
such as C2H+

x and C3H+
x , and all channels involving F+ (except for the very weak

two-body break-up) exhibit rather washed-out lines, suggesting that at least three
charged fragments were created. The lines of the C3H+

x +C5H+
x channel on the

other hand are rather sharp, indicating that the missing �uorine atom carried no
charge. Overall, only about 2% of all electrons are detected in coincidence with
an F+ ion, which considerably reduces the number of events that can be used for
the determination of the photoelectron angular distribution. For a more detailed
discussion on the advantages and disadvantages of coincidence measurements for
recording photoelectron angular distributions see also section 6.2.2.

The PIPICO map shown here elucidates only part of the complex fragmentation
pattern of the molecule, as only two charged fragments are taken into account.
More information could be obtained from analyzing coincidences between three or
more fragments. However, this reduces the statistics drastically and still does often
not provide the complete information, as fragments that remain neutral cannot be
detected.
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Figure 4.4: Spatial distribution of ions on the detector for two di�erent time-of-�ight windows
around the center of the F+ peak. Regions of interest for the analysis of photoelectron angular
distributions are marked by the white rectangles. (b) is scaled by a factor of 5 with respect to (a).

The use of delay-line-anodes allows to examine the spatial distribution of ionic frag-
ments on the detector for any desired time-of-�ight window. The spatial distribution
of ions that are detected in a 38 ns window around the time-of-�ight of F+ is plotted
in Fig. 4.4(a). When narrowing the window to 6 ns around the central maximum of
the time-of-�ight peak, only those F+ ions that initially had (almost) zero momen-
tum along the spectrometer axis remain, see Fig. 4.4(b). Two di�erent contributions
of ions with di�erent kinetic energies can be identi�ed, a ring at larger radii and a
contribution in the center of the detector. These plots can be exploited to analyze
only those events for which the F+ is emitted parallel to the X-ray polarization direc-
tion, along the y-axis, by de�ning an additional condition in the (x, y) coordinates
that is illustrated by the white rectangles in Fig. 4.4. Ideally, only those events for
which an F+ ion is detected in coincidence with a C8H+

5 ion would be used, but this
reduces the statistics for the electron analysis too drastically. The non-linear pFAB
molecule is still free to rotate about the F-C axis as long as only one fragment is
used to de�ne the molecular frame, corresponding to the case of one-dimensional
orientation as de�ned in section 2.4.

4.1.2 Photoelectron Angular Distributions

In coincidence with the ionic fragments, electrons are recorded on the opposite side
of the VMI spectrometer. The three-dimensional electron momentum cannot be
retrieved in this case, as the total �ight time of an electron in the spectrometer
is only a few nanoseconds. However, a window is de�ned around one peak in the
electron time-of-�ight spectrum that corresponds to photoelectrons created by the
X-ray pulse, thus reducing background signals in the image.
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Figure 4.5: (a) Image on the electron detector for ionization of argon at a photon energy of
321 eV, resulting in photoelectrons of 73 eV and Auger electrons of 235 eV kinetic energy. Only
electrons detected in coincidence with Ar++ are selected. The rim of the projected photoline is
marked by the white circles. (b) Calibration of the photoelectron angular distribution obtained
from (a). Blue: raw data, red: corrected data. Each ring corresponds to 25×103 counts. Statistical
errors are smaller than the data points.

To remove detector inhomogeneities before analyzing the photoelectron angular dis-
tribution, a calibration is needed. This can be achieved with the help of argon
photoelectrons, whose angular distribution is well-known. An electron detector im-
age for ionization of argon at a photon energy of 321 eV is shown in Fig. 4.5(a). Here,
only electrons that are detected in coincidence with an Ar++ ion are selected. At
this energy, predominantly the Ar(2p3/2) level is ionized, resulting in photoelectrons
of 73 eV kinetic energy. The rim of this projected photoline is marked by the white
circles; the region of interest de�nes an azimuthal opening angle of 37◦. The second
electron line that is visible at larger radii corresponds to the argon Auger electrons
with a kinetic energy of about 235 eV. The detector image contains arti�cial lines
that are caused by individual windings of the delay-line anode. Moreover, very
inhomogeneous detection e�ciencies and a distortion of the circular shape of the
photoline are visible1. The low e�ciency on the right hand side is probably caused
by improper settings of the constant fraction discriminator. The photoelectron an-
gular distribution can be obtained from the radial region of interest in Fig. 4.5(a) as
described in section 3.2, the result is plotted in Fig. 4.5(b) as blue dots. At a kinetic
energy of 73 eV, the asymmetry parameter of argon is βcirc = −1

2
β = 0.48 [151]. A

calibration curve can be de�ned which scales the value of each angular bin such that
the correct angular distribution results that is shown as red dots. The same calibra-
tion function can be applied to all photoelectron angular distributions measured at
the same kinetic energy and for the same spectrometer voltages.

The electron detector image for ionization of pFAB molecules at a photon energy of
765 eV is shown in Fig. 4.6(a). Only electrons that are measured in coincidence with

1 Due to a short circuit in one of the wires of the hexagonal delay-line anode, only two of the three
layers on the electron side could be used.
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Figure 4.6: (a) Image on the electron detector for ionization of pFAB at a photon energy of
765 eV, resulting in photoelectrons of 73 eV and C(1s) Auger electrons of ∼280 eV kinetic energy.
Only electrons detected in coincidence with F+ are selected. The rim of the projected photoline is
marked by the white circles. The region of interest de�nes an azimuthal opening angle of 37◦. (b)
Raw electron angular distribution (blue) as obtained from (a) and the corrected curve (red). Each
ring corresponds to 103 counts. Statistical errors are small as compared to the systematic errors.
(c) Angular distributions of electrons recorded in coincidence with F+ ions that are detected in
the upper rectangle (blue) and the lower rectangle (red) in Fig. 4.4(a). Each ring corresponds to
50 counts. The distribution for randomly oriented molecules from (b) is shown as a dashed black
line, scaled by a factor of 0.05.

an F+ are selected. The F(1s) photoelectrons have a kinetic energy of 73 eV. The
second signal at larger radii corresponds to the C(1s) Auger electrons with a kinetic
energy of ∼ 280 eV. The systematic artifacts in the electron angular distribution
resulting from inhomogeneous detector e�ciencies can be removed from the raw
angular distribution by applying the bin-by-bin scaling obtained from the argon
calibration. The raw as well as the corrected angular distribution are shown in
Fig. 4.6(b). The correction works reliably, except for the fact that the arti�cial
intensity maximum in the lower left quadrant was not completely removed.

In order to obtain the angular distribution of �xed-in-space molecules, only those
events are selected for which an F+ ion is detected in one of the two rectangles in
Fig. 4.4(a).2 These de�ne a polar opening angle of ±5◦ in the (x, y) plane, and an
azimuthal opening angle of ±36◦ for the emission direction of the F+ ion. About
2.5% of the electrons in Fig. 4.6(a) are recorded in coincidence with one of these
F+ ions, and as only 2% of the electrons are detected in coincidence with a F+, only
0.05% of all ionization events can be used for this purpose. A possibility to exploit
all events is to expand the photoelectron angular distribution in the molecular frame
in F-functions [152�154]. However, this requires knowledge of all three momentum
components of the photoelectron which cannot be determined well in the current
VMI set-up.

2 The additional narrow time-of-�ight window as shown in Fig. 4.4(b) reduces the statistics signif-
icantly and did not improve the results. It is thus omitted.
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The resulting angular distribution of photoelectrons recorded in coincidence with
F+ ions in the two opposite rectangles are plotted in Fig. 4.6(c). The distribution
for randomly oriented molecules is shown for comparison. The angular distribution
becomes slightly more pointed in one direction and broader in the other direction,
thus a certain relation of to the emission direction of the F+ ion exists, but the
structures are rather broad. One reason for this might be that the �uorine atom is
not emitted strictly along the F-C bond direction, as was indicated by the broad
coincidence lines involving F+ in the PIPICO map. For a more detailed discussion,
refer to section 6.2.

4.2 Laser-Aligned Molecules

An alternative approach to �x the molecular frame with respect to the laboratory
frame is to actively align a whole ensemble of molecules by using a strong laser pulse.
This is advantageous for an experiment at the short-pulsed LCLS Free-Electron
Laser that has a repetition rate of only 120Hz, as in this way many molecules can
be ionized in every X-ray pulse.

The time-of-�ight spectrum of pFAB, obtained at a photon energy of 743 eV at
the LCLS is plotted in Fig. 4.7.3 The spectrum that was recorded at a photon
energy of 765 eV at PETRA is also shown for comparison. Several ten eV above all
ionization thresholds, the fragmentation is assumed to be rather insensitive to the
exact photon energy. Overall, the two spectra are rather similar, demonstrating that
multi-photon processes are only minor contributions to the overall fragmentation.
The most noticeable di�erence is the large He+ peak in the LCLS spectrum (the
maximum of 4.8×106 has been cut for better visibility), that is nearly absent in
the PETRA spectrum. This is due to the fact that at PETRA helium carrier gas
at a relatively low pressure of a few hundred millibars was used for the continuous
molecular beam, whereas at the LCLS the pulsed beam was operated with 50 bar
of helium, see also section 3.1.2. A second di�erence is observed in the large parent
ion peak that is present in the LCLS spectrum, but is very small in the PETRA
spectrum. The fact that this peak is rather broad indicates that the parent ions are
produced with substantial kinetic energy. In molecular fragmentation, kinetic energy
stems from Coulomb repulsion between two (or more) charged fragments, thus the
broad C8H5F+ peak suggests that clusters of pFAB molecules were produced in the
molecular beam. This is con�rmed by the peak corresponding to the singly charged
pFAB dimer that is shown in the inset. This peak is also not narrow, showing that
the dimers are probably created from the break-up of larger clusters. The presence
of molecular clusters in the beam is of particular importance for the analysis of
photoelectron distributions of aligned molecules, since the molecules that are bound

3 The high number of ions detected per shot at the LCLS did not allow to use a software constant
fraction discriminator on the MCP trace to identify individual ion hits, thus the averaged MCP
signal is shown which exhibits a slightly rising baseline towards longer �ight times.
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Figure 4.7: Time-of-�ight spectrum of pFAB recorded at a photon energy of 743 eV at the LCLS
(without alignment laser). The spectrum from Fig. 4.2 recorded at PETRA is also shown for com-
parison. The LCLS spectrum has been scaled and shifted such as to provide direct comparability
with the PETRA data.

in clusters are, most likely, not aligned by the YAG alignment laser. Consequently,
they can produce a background of unaligned molecules. The recorded ion data does
not provide an unambiguous way of determining how many clusters were created,
but as this is of importance for the electron analysis, it has been attempted to
estimate a lower limit based on hints in the available data, see appendix A.1 for
details.

After recording the time-of-�ight spectrum, the MCP was gated to record only ions
that arrive in a time window of 168 ns around the F+ peak. For the spectrometer
voltages that were used in velocity map imaging, the F+ peak (19 amu) could not be
fully separated from the H2O+ peak (18 amu), as can be seen in the time-of-�ight
spectrum in Fig. 4.17, thus ionized water molecules are also visible. Figure 4.8(a)
shows the ion detector image that is recorded when the molecular beam is turned
o�. The line that is visible corresponds to ionization of residual water along the
X-ray beam. In principle, all ions should be focused to the center in VMI, but the
focusing does not work properly for ions that are created very far away from the
spectrometer center. When the molecular beam is turned on, the distribution in
Fig. 4.8(b) results; F+ ions with an isotropic spatial distribution can be seen. They
have a small o�set along y with respect to the ionized residual water, caused by the
momentum of the supersonic molecular beam that propagates along y. The signal
from residual water dominates the image, however, as the background was continu-
ously recorded at a repetition rate of 60Hz, it can be subtracted well, resulting in
the image in Fig. 4.8(c). The remaining sharp dot in the center of Fig. 4.8(c) stems
from water molecules in the molecular beam.
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(a) FEL, no target (b) FEL, pFAB (c) 4.8(b) minus 4.8(a)

(d) FEL, YAG, pFAB (e) 4.8(d) minus 4.8(a) (f) 4.8(e) minus �t (see text)

Figure 4.8: Images on the ion detector for a gate around the time-of-�ight peak of F+; the
X-ray energy is 723 eV. Ionization of residual gas creates a background (a) that needs to be sub-
tracted from the images recorded for ionization of pFAB molecules without (b) and with (d) the
YAG alignment laser. The subtracted images are shown in (c) and (e), the contribution of isotropi-
cally distributed F+ ions in (e) is subtracted by �tting a two-dimensional Lorentz function resulting
in (f). The polarization directions of the FEL and the YAG laser lie along y. (d) and (f) are scaled
by a factor of 2 with respect to (e).

When the YAG alignment laser is added, the distribution in Fig. 4.8(d) arises, the
image after background subtraction is shown in Fig. 4.8(e). Partly, the �uorine ions
are emitted along the polarization direction of the YAG alignment laser, but an
additional strong ion signal arises in the center of Fig. 4.8(e) that is isotropically
distributed and has a smaller radius. This feature is ascribed to F+ ions created
from pFAB clusters or cluster fragments that can be ionized or dissociated by the
YAG pulse after inner-shell ionization from the X-ray pulse. For a more detailed
explanation refer to Fig. A.1 in appendix A.1 and section 4.4. This isotropic signal
overlaps with the F+ ions emitted from aligned pFAB molecules, making it unfeasible
to determine the degree of molecular alignment from this image. The distribution
in the center was thus �tted by a two-dimensional Lorentz distribution and then
subtracted from the image. The resulting distribution of F+ ions from aligned
molecules is shown in Fig. 4.8(f).
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Figure 4.9: Detector images obtained from ionization of pFAB molecules of two di�erent ori-
entations by X-rays with a photon energy of 743 eV. The YAG polarization is rotated out of the
(x, y) plane. Isotropic background has been subtracted by a two-dimensional Lorentz �t (see text).

When comparing Figs. 4.8(c) and 4.8(f), it can be concluded that the linearly polar-
ized YAG laser pulse aligns the F-C axis of pFAB along its polarization direction,
and that the F+ ions can be used to monitor the alignment of the F-C axis. The
achieved degree of molecular alignment can be quanti�ed by the ensemble-averaged
expectation value of cos2 θ2D, where θ2D is the angle between the projection of the
F+ ion momentum vector on the detector plane and the YAG laser polarization
direction. It can be calculated from the image in Fig. 4.8(f) as

〈cos2 θ2D〉 =

∑
i,j I(Ri, θ2D,j) cos2 θ2D,j∑

i,j I(Ri, θ2D,j)
, (4.1)

where I are the counts at the radius Ri, measured from the center of the distribution,
and at the angle θ2D,j. This results in 〈cos2 θ2D〉=0.89; as discussed in section 6.2
this is one of the limiting factors for the recorded photoelectron angular distributions.

In order to explore, whether orientation of pFAB molecules can be achieved by
the combined static electric extraction �eld ~E of the spectrometer and the laser-
alignment �eld, the latter has to have a component along ~E, as was described in
section 2.4. Rotation of the polarization by ±45◦ yields such a component and, at
the same time, allows to observe the result in the (x, y) detector plane. Since the
dipole moment of pFAB is directed along the F-C axis, pointing from the �uorine
to the benzene, the �uorine atom preferentially points away from the ion detector.
Figures 4.9(a) and 4.9(b) show the resulting F+ ion distributions when the polariza-
tion direction of the YAG laser is turned by +45◦ or -45◦ with respect to the (x, y)
plane. The F+ ion images show a clear asymmetry. The molecular orientation can
be quanti�ed by the ratio

∆N =
N(F+

up)

N(F+)
, (4.2)
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Figure 4.10: Electron detector image recorded for ionization of pFAB molecules by the LCLS
at a photon energy of 743 eV, without (a) and with (b) the YAG alignment laser. The photon
energy has been �ltered to ±2 eV and the background from ionization of residual gas has been
subtracted. The polarization directions of FEL and YAG lie along y. The rim of the projected
F(1s) photoline with a kinetic energy of 51 eV is marked by the white circles. The di�erence image
in (c) is scaled with respect to (a) and (b) by a factor of 17, no background has been subtracted.
The photoelectron angular distributions in (a) and (b) are shown in (d) and (e). Green: as
obtained from the indicated region of interest. Black: background at larger radii. Blue: PAD with
subtracted background. Each ring corresponds to 104 counts. The di�erence angular distribution
obtained from (c) is plotted in (f) Blue: negative di�erence. Red: positive di�erence. Each ring
corresponds to 2% di�erence.

where N(F+) is the integral of the whole detector image and N(F+
up) is the integral

in the upper half [155]. This results in ∆N = 0.61 and ∆N = 0.39 for Figs. 4.9(a)
and 4.9(b), respectively.

4.3 Photoelectron Angular Distributions

Simultaneously to the ions, electrons are imaged on the opposite side of the ve-
locity map imaging spectrometer. Figure 4.10(a) shows the electron detector image
recorded for ionization of pFAB molecules by the LCLS at a photon energy of 743 eV.
The rim of the projected F(1s) photoline with a kinetic energy of 51 eV is marked
by the white circles. It shows a pronounced angular anisotropy that is expected for
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(a) inversion of 4.10(a) (b) inversion of 4.10(b) (c) 4.11(b) minus 4.11(a)

Figure 4.11: Inversion of the electron detector images in Fig. 4.10, obtained by applying the
pBasex algorithm [143]. (c) is scaled with respect to (a) and (b) by a factor of 17.

single-photon ionization of an s-orbital. A second, strong electron signal is observed
in the center of the image, corresponding to electrons with lower kinetic energies.
These electrons are most likely created by multi-electron processes such as Auger
cascades, shake-up or shake-o�, see section 2.1, or by inelastic scattering of pho-
toelectrons or Auger electrons inside the molecule. The low energy electrons are
however to a good degree separated from the rim of the photoline, such that they
should not signi�cantly in�uence the angular distribution in the region of interest.
The `hole' in the lower right quadrant corresponds to an insensitive area on the phos-
phor screen that had previously been damaged by too intense signal. High-energy
electrons created from C(1s) and valence ionization, as well as �uorine and carbon
KLL-Auger electrons have kinetic energies of > 240 eV, and are thus collected only in
a small solid angle around the emission direction towards or away from the detector
for the chosen spectrometer voltages, contributing a small, almost �at background.
The electron detector image that is recorded when the YAG alignment laser is added
is plotted in Fig. 4.10(b). At �rst sight, very little structure can be seen and the
di�erence to the image recorded without the YAG laser is not obvious.

The corresponding photoelectron angular distributions (PADs) in the radial regions
of interest are shown in green in the bottom row of Fig. 4.10. In order to account
for the background of high-energy electrons, a narrow radial region of interest di-
rectly outside of the photoline is evaluated and then subtracted from the raw PAD.
The resulting photoelectron angular distributions are shown in blue. Upon close
inspection it can be seen that the PAD that is recorded with the YAG laser is a
little narrower than the one obtained without the alignment laser. To visualize the
di�erence between data recorded with and without the YAG laser, the alternately
recorded images are normalized according to the respective number of events and
subtracted. The resulting di�erence image is shown in Fig. 4.10(c), the correspond-
ing di�erence photoelectron angular distribution (∆PAD) is plotted in Fig. 4.10(f).
Here, the angular rearrangement of photoelectrons can be clearly seen. An increase
of photoelectron intensity along the YAG polarization direction and a decrease at
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Figure 4.12: Photoelectron angular distributions of pFAB at an electron energy of 50 eV, cal-
culated from density functional theory. (a) perfect one-dimensional orientation. (b) perfect one-
dimensional alignment. (c) folding (b) with the experimental degree of alignment (σ = 20◦). (d)
random orientation (β= 1.55). (e) perfect alignment minus random orientation. Blue contributions
denote negative signal. (f) experimentally achieved alignment minus random orientation. (g) as
(f) but including molecular clusters as well as experimentally determined ionization probabilities,
see text. (g) is scaled by a factor of 10 with respect to (f), all other distributions are plotted on
the same absolute scale. The integral of (a) to (d) is identical, the integral in (e) to (g) is zero.

larger angles is detected, corresponding to a narrower photoelectron angular distri-
bution for the data recorded with the YAG laser. Moreover, a large di�erence signal
is found in the center of Fig. 4.10(c) that can be attributed to additional low-energy
electrons that are created by the YAG. This aspect is discussed in section 4.4.

Inversions of the electron detector images in Fig. 4.10 are shown in Fig 4.11, ob-
tained with the pBasex algorithm [143]. A cut through the three-dimensional dis-
tribution can be retrieved if cylindrical symmetry is given, which is the case for
one-dimensionally aligned molecules with the axis of alignment parallel to the de-
tector plane. Artifacts due to the �tting of radial basis functions arise in the form
of sharp ring structures, but apart from this the resulting two-dimensional cuts look
similar to the raw detector images.

The magnitude of the e�ect that is visible in the di�erence photoelectron angular
distribution in Fig. 4.10(f) corresponds to maximum ±4% of the intensity in the
photoelectron angular distribution in Fig. 4.10(e). One reason for this could be the
imperfect experimental molecular alignment, which averages out possible interfer-
ence structure of the photoelectron angular distribution in the molecular frame. The
degree of alignment can be well characterized from the ion image in Fig 4.8(f), and
results in 〈cos2θ2D〉 = 0.89, averaging over the molecular axes distribution with a
width of σ= 20◦. To illustrate the in�uence of the degree of alignment on the pho-
toelectron angular distribution, Fig. 4.12 shows distributions for di�erent molecular
alignment, calculated with density functional theory (DFT). The angular distribu-
tion that is expected for a perfectly, one-dimensionally oriented pFAB molecule is
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Figure 4.13: Photoelectron angular distribution di�erences of pFAB for di�erent photoelectron
kinetic energies. Raw data are shown as dots, inverted data as shaded areas and calculated ∆PADs,
shifted by +10 eV (see text), as lines. Blue: negative di�erence. Red: positive di�erence. All
distributions are plotted on the same radial axis, each ring corresponds to 2% di�erence.

plotted in Fig. 4.12(a), the up-down symmetrized distribution that results for perfect
one-dimensional alignment is shown in Fig. 4.12(b). The experimentally achieved
degree of molecular alignment can be accounted for in the calculations by averaging
over a two-dimensional Gaussian, resulting in the PAD in Fig. 4.12(c). The angular
structure is completely washed out. However, when comparing the distributions
in Fig. 4.12(c) and the calculated distribution for randomly oriented molecules in
Fig. 4.12(d) to the experimentally obtained PADs in Figs. 4.10(d) and 4.10(e), it
becomes clear that the di�erence in the experiment is much smaller than expected,
even when accounting for the experimental degree of molecular alignment.

A second reason for the small observed di�erence in the experiment can be the sig-
ni�cant amount of signal from clusters in the molecular beam, which are most likely
not aligned by the YAG laser. They contribute photoelectrons originating from
ionization of an unknown amount of randomly aligned pFAB molecules to the data
that is recorded with the alignment laser, which can signi�cantly decrease the mag-
nitude of the e�ect in the di�erence angular distribution. Moreover, the ionization
probabilities of aligned and randomly oriented molecules are di�erent, as discussed
below. Therefore, even the shape of the di�erence photoelectron angular distribu-
tion can change when randomly oriented molecules are assumed to contribute to
the image recorded with the YAG laser. A more detailed description and calculated
distributions for a variable amount of molecular clusters is given in Fig. A.3 and
appendix A.1. Figure 4.12(g) shows the modeled ∆PAD that results when assum-
ing that 90% of the ionized molecules in the data recorded with the YAG laser were
actually randomly oriented, and when the di�erence in ionization cross sections is
taken into account. The distribution is scaled by a factor of 10 with respect to
Figure 4.12(f). The shape of the experimental ∆PAD in Fig. 4.10(f) is reproduced.

The dependence of the di�erence angular distribution on the photoelectron kinetic
energy has been investigated by varying the photon energy. The corresponding
results obtained from raw, and inverted detector images for �ve di�erent electron
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Figure 4.14: Cross section ratio between aligned and randomly oriented molecules as a function
of energy. Blue: calculated from DFT. Full line: as calculated. Dashed line: shifted by +10 eV to
account for the energy o�set between calculations and experimental data. Red: experimental data
points as obtained from Eq. 4.3. Statistical errors are smaller than the data points.

energies between 31 eV and 62 eV are shown in Fig. 4.13. Except for the case of 31 eV
kinetic energy4, the distributions of the raw (dots) and the inverted (shaded areas)
data agree well within the statistical uncertainties, con�rming that, in general, for
these experimental conditions the PAD obtained from a narrow radial region of
interest in the raw, projected detector image is a good approximation. Pronounced
angular structures are visible which vary strongly as a function of electron energy.

A prominent change is found in the integrated di�erence, which is positive for 46 eV
but negative for all other photoelectron energies. A non-zero integral could be
explained by a di�erence in the partial photoionization cross sections for molecules
aligned parallel to the X-ray polarization direction as compared to randomly oriented
molecules. Figure 4.14 shows the calculated ratio between the partial ionization cross
section for molecules that are perfectly aligned with the molecular axis parallel to
the X-ray polarization direction, and the total ionization cross section. For the
individual cross sections, see Fig. A.2. The ratio varies from 0.7 to 1.1 within
an energy range of only 50 eV, which stands in contrast with the fact that the
photoionization cross section is often assumed to be rather independent of the angle
between the molecular axis and the light polarization for inner-shell ionization far
above the threshold. Also shown are the experimental ratios

% =
IYAG on

IYAG o�

, (4.3)

4 For this lowest energy, the photoelectrons are least separated from the contribution of low-energy
electrons, which may introduce artifacts in the inversion.
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Figure 4.15: ∆PADs for oriented pFAB molecules recorded at an electron energy of 51 eV. Blue:
negative di�erence. Red: positive di�erence. Each ring corresponds to 2% di�erence. The YAG
polarization is rotated out of the (x, y) plane by ± 45◦. The data sets are the same as for the ion
images in Fig. 4.9.

where I denotes the integrated number of counts in the radial region of interest that
is considered for the photoelectron distribution. In the experiment, the molecules
are not perfectly aligned, and molecules in clusters are randomly oriented. Thus, the
ratio varies less strongly as compared to the calculation, but the trend as a function
of photoelectron energy is reproduced, except for the data point at 62 eV. Based
on this comparison, the calculated energies have been shifted to higher energies by
10 eV, see Fig. 4.14. This is motivated by the fact that the LB94 exchange correlation
potential that was used in the DFT calculations is known to be too attractive,
causing a shift of the calculated cross sections to lower binding energies [97, 156].

The second contribution to the change in the ∆PADs arises from the energy-depen-
dent interference structure in the photoelectron angular distribution. Much of the
structure is washed out due to the rotational averaging, as was seen in Fig. 4.12, but
a small e�ect remains. Overall, the dominant feature that is visible for all energies
in Fig. 4.13 is a stronger con�nement of the electron emission towards the direc-
tion of the nearest-neighbor atom, which is situated along the aligned molecular
axis. This is commonly referred to as the `forward scattering peak' in photoelectron
di�raction [53, 54, 157].

To establish the connection between the shape of the ∆PADs and the molecular
structure beyond these qualitative arguments, ∆PADs obtained from density func-
tional theory calculations are also shown as lines in Fig. 4.13. They are calculated
by subtracting the photoelectron angular distributions for aligned and randomly
oriented molecules after normalizing them to the respective integrated number of
counts in the experimental data. The calculated `YAG-on' distribution is assumed
to be a sum of the calculated PAD for the experimentally achieved degree of align-
ment and a variable contribution of the PAD for randomly oriented molecules, for
details see appendix A.1. The resulting calculated distributions agree well with the
data within the statistical error bars, for all energies except 31 eV.
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The link of the ∆PAD to the molecular geometry can be seen even more clearly
when the molecules are oriented in space instead of only being aligned. When
the molecules are oriented such that the �uorine atom points either in positive or in
negative y-direction, see Fig. 4.9, the corresponding di�erence photoelectron angular
distribution is clearly mirrored, as is shown in Fig. 4.15. An inversion of the VMI
image for the case of oriented molecules cannot be performed, as the cylindrical
symmetry is broken when the molecular axis is no longer parallel to the detector
surface.

4.4 E�ects of the Alignment Laser

For the previous analysis of the electron data, it has been implicitly assumed that
the alignment laser has no e�ect besides �xing the molecular axes in space. It has
been veri�ed experimentally that the YAG laser pulse alone does not ionize the
molecules, however, in adiabatic alignment the laser pulse is present during and
after the X-ray ionization, and, therefore, two-color e�ects can occur.

The in�uence of the alignment laser on the fragmentation of pFAB molecules after
inner-shell ionization was investigated by recording time-of-�ight spectra with and
without the alignment laser, as shown in Fig. 4.16. All large ionic fragments, in-
cluding the broad parent ion peak, disappear when the YAG laser is present, the
heaviest fragment that is found in the presence of the YAG laser pulses at full in-
tensity is C4H+

x . A possible explanation for this observation could be that the heavy
fragments are produced in excited electronic states in the inner-shell photoioniza-
tion, or as intermediates in the following Auger decay. The YAG laser pulse may
in this case be able to dissociate or ionize the excited states, with a single or a
few photons, thereby producing smaller fragments. This is supported by the fact
that the yield of the C3H+, CF+, C+

2 , and especially C+ ions increases when the
YAG laser is present. Similar e�ects have been observed in pump-probe experi-
ments on small molecules [158, 159] and on xenon atoms [160]. The fragments with
the largest masses, especially C8H5F+, are however produced by X-ray ionization
of pFAB clusters, thus this e�ect may occur less strongly, or not at all for single
molecules.

To investigate the dependence of the fragmentation on the intensity of the alignment
laser, time-of-�ight spectra have been recorded for di�erent laser intensities that are
shown in Fig. 4.17. They were recorded under velocity map imaging conditions,
which for the experimental conditions at the LCLS decreased the mass resolution.
Already at the lowest measured intensity, the parent ion peak starts to decrease,
while the lighter fragments CF+, C2H+

x , and CH+
x are largely unaltered. When the

intensity is increased, these peaks start to grow, while the parent ion has already
completely disappeared. This suggests that the latter process requires more YAG
photons than the former.
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Figure 4.16: Time-of-�ight spectra of pFAB recorded at the LCLS at a photon energy of 743 eV,
with constant voltages on all spectrometer electrodes, with (red) and without (blue) the YAG
alignment laser that has an intensity of ∼5×1011W/cm2. The peaks for m/q < 12 are identical.
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(a) without YAG (b) with YAG (c) 4.18(b) minus 4.18(a)

Figure 4.18: Zoom-in to the central part of the electron detector images in Fig. 4.10. The electron
energies of the two features that are visible in (b) and (c) correspond to ∼0.11 and ∼1.12 eV. (c)
is scaled by a factor of 2 with respect to (b).

Overall, the changes in the time-of-�ight spectrum indicate that the YAG laser
induces further fragmentation of the larger ionic fragments. Ionization of excited
fragments by the alignment laser should result in the creation of additional electrons.
When looking at the zoom-in to the central part of the electron detector images in
Fig. 4.18, it becomes clear that two additional contributions of low-energy electrons
emerge when the YAG laser is present. This is con�rmed by the corresponding
energy spectra in Fig. 4.19, obtained from inversion of the detector images5 with
the pBasex algorithm. The two features correspond to energies of approximately
0.11 and 1.12 eV, as calibrated with above-threshold ionization in argon, see sec-
tion 3.2.6. The energy di�erence between the two contributions is close to the YAG
photon energy of 1.17 eV, which may suggests that the two channels result from
ionization by n and n+ 1 YAG photons. However, if these electrons were created
from ionization of electronically excited molecules, molecular clusters, or fragments,
one would expect a broad distribution of electron energies originating from di�erent
close-lying Rydberg states. The observed spectrum indicates that, instead, one or
two states with a well-de�ned potential energy are ionized. Moreover, similar fea-
tures of two low-energy electron contributions are also observed for dibromobenzene
molecules, and when only residual gas is ionized by either the FEL or the TiSa laser,
see Figs. 5.4 and 5.6. This may suggest that these electrons are not created from
ionization of molecular fragments but from residual gas, although the changes in the
fragmentation pattern of pFAB indicate that additional electrons should be created
from the target molecules.

The photoelectron line at around 51 eV in the electron spectrum in Fig. 4.19 is rather
broad, due to the LCLS bandwidth that is on the order of 1.5 - 7.5 eV at a photon
energy of 743 eV [120], see also section 3.1.1. This uncertainty is not removed by

5 Some electron hits in the center of the detector are lost due to reduced detection e�ciency at the
applied MCP voltage of 2.2 kV, see section 3.2.3. The absolute height of the low-energy electron
peak may thus be slightly underestimated.
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Figure 4.20: Photoelectron energy spectra recorded with (red) and without (blue) YAG align-
ment laser in a cone of 10◦ around the laser polarization direction. The data are the same as in
Fig. 4.19.

selecting only those events for which the mean photon energy was in a ±2 eV window
centered around the maximum, as it has been done for Fig. 4.19. A possible in�uence
of the YAG on the photoelectrons is the formation of sidebands [161�163]. When the
X-ray and the infrared laser pulses are present at the same time, the photoelectron
can absorb or emit one or multiple YAG photons in addition to the X-ray photon in
a process referred to as two-color above-threshold ionization. Each YAG photon can
increase or decrease the nominal electron kinetic energy Ekin by 1.165 eV, resulting
in a splitting of the photoline into multiple sub-lines, which is strongest for electron
emission parallel to the YAG polarization direction. Due to the X-ray bandwidth,
individual sidebands cannot be resolved in this case, but nevertheless, a slight broad-
ening of the photoline is observed when the energy spectrum is analyzed within 10◦

around the laser polarization direction, see Fig. 4.20. This broadening and its an-
gular dependence can also be seen in the detector di�erence image in Figs. 4.10(c)
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and 4.11(c). For IR and XUV pulses with durations on the order of 10 fs, the overall
width ∆E for which sidebands can be observed for photoelectrons of a given kinetic
energy Ekin can be described by

∆E = 2E0/ω
√

2Ekincosχ, (4.4)

where E0 is the maximum electric �eld of the IR laser, ω is its frequency, and χ is the
angle between the electron emission direction and the (parallel) linear polarization
directions or the light [164].6 The occurrence of sidebands is thus strongest for
electron emission along the polarization direction. For the present experiment, the
intensity of the 10 ns IR pulse was about 5×1011W/cm2 and the wavelength 1064 nm,
which would result in a width of ∆E = 8.7 eV for χ = 0 and Ekin = 51 eV. This is
consistent with the observed width and is of the same order as the LCLS bandwidth,
although it has to be noted that Eq. 4.4 is not explicitly speci�ed for IR pulses of
ns duration. Still, sidebands have been observed experimentally also for long IR
pulses [163]. For the analysis of the photoelectron angular distributions in section 4.3
it has been assumed that the creation of sidebands does not signi�cantly a�ect the
photoelectron angular distribution as long as the photoelectron intensity is radially
integrated over all sidebands.

6 Eq. 4.4 is given in atomic units.



5 Pump-Probe Experiments on

Laser-Aligned Molecules

In this chapter, the results of a �rst proof-of-principle study at the LCLS in May 2010
are discussed that aimed at investigating the feasibility of time-resolved photoelec-
tron di�raction experiments on laser-aligned molecules at a Free-Electron Laser.
1,4-dibromobenzene (DBB, C6H4Br2) molecules, see Fig. 5.1, were adiabatically
laser-aligned, and dissociated by a femtosecond titanium-sapphire (TiSa) laser pulse,
before ionizing the Br(2p) level with the LCLS X-ray pulse. Static photoelectron an-
gular distributions at electron kinetic energies of 20 and 35 eV have been recorded,
and pump-probe measurements have been carried out with 20 eV photoelectrons.
This chapter concentrates on the pump-probe aspect of the experiment. Results of
the static measurements are described in reference [165].

The experimental set-up was identical to the pFAB experiment, except for small
modi�cations. The TiSa laser was propagated through the chamber collinearly to
the YAG alignment laser. A phosphor screen was mounted on the electron side of
the VMI spectrometer, whereas on the ion side a slit with a width of 1mm was
inserted on the �rst electrode, to select only ionic fragments with px ≈ 0 that were
created in the laser focus. This allowed to record ion time-of-�ight spectra simul-
taneous to the electron measurement, using a delay-line anode. In order to probe
the molecular alignment, the polarity of the applied voltages had to be switched
such that Br+ fragments were imaged on the phosphor screen on the opposite side.
Details of the image processing and conventions for detector images and polar plots
of angular distributions are given in section 3.2.

Figure 5.1: Equilibrium geometry of the 1,4-dibromobenzene molecule (DBB, C6H4Br2).

75
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5.1 Ionic Fragments

In the previous chapter it was shown that the YAG alignment laser can in�uence
the molecular fragmentation after inner-shell photoionization. In a pump-probe ex-
periment on adiabatically laser-aligned molecules, the combination of three di�erent
light pulses gives rise to a variety of e�ects. To characterize the fragmentation of
dibromobenzene, time-of-�ight spectra are recorded on the ion side of the VMI spec-
trometer simultaneously to the photoelectron measurement. The slit inserted in the
spectrometer introduces a limited acceptance for ions with non-zero kinetic energy,
which changes as a function of the ion momentum. Therefore, the spectra allow
for qualitative investigation of the fragmentation, but the yield of fragments with
higher kinetic energies may be signi�cantly underestimated.

The time-of-�ight spectra for all possible combinations of light pulses are shown in
Fig. 5.2 for two di�erent polarization directions of the TiSa laser. The X-ray energy
of 1570 eV lies 20 eV above the Br(2p3/2) level but below the Br(2p1/2) level. The
photoabsorption cross sections at this photon energy are 527 kb for bromine, 12 kb
for carbon, and 0.003 kb for hydrogen [166], thus 98% of the absorbed photons
are absorbed at the bromine. The FEL alone creates mostly Br+ ions and a few
Br++ ions, as well as some smaller CxH+

x fragments. A very small, narrow parent ion
peak is also detected, which probably results from �uorescent decay of the core-hole
or from valence ionization. This is di�erent from what has been found in the pFAB
data, where a large, broad parent ion peak has been observed that was attributed
to molecular clusters. The TiSa laser pulse creates signi�cantly more parent ions;
the peak in the time-of-�ight spectrum shows a triple structure due to the two
di�erent bromine isotopes of 79 and 81 amu with almost equal natural abundance.
Accordingly, fragments that contain one bromine show a double peak structure.
A small amount of doubly charged DBB is found also, but mostly the molecules
decay further into smaller fragments, most prominently Br+. When the TiSa laser
pulse arrives after the FEL pulse, the resulting spectrum looks very similar to the
spectrum that is recorded with only the TiSa laser. This can be explained by the
fact that the focus of the TiSa laser was chosen larger than the FEL focus, to ensure
that all molecules probed by the X-rays were also in the focus of the pump laser.
The spectrum is thus dominated by molecules that have only been ionized by the
TiSa laser.

When the X-rays ionize molecules that are adiabatically aligned by the YAG laser
instead of randomly oriented, the spectrum changes slightly. The Br+ and the C+

peaks become more pointed in the center when the YAG laser pulse is present, and a
little more Br++ ions are created. The very small peaks corresponding to C6H4Br+2
and C6H4Br++

2 disappear. In the pFAB data in the previous chapter, several large
fragments were created by the FEL pulse alone that disappeared when the YAG
laser pulse was added. The reason for this qualitative di�erence may be that no
molecular DBB clusters are created, indicating that the e�ect of the YAG on the
pFAB fragmentation may be dominated by ionization or dissociation of molecular
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Figure 5.2: Time-of-�ight spectra of dibromobenzene recorded at the LCLS at a photon energy
of 1570 eV for di�erent combinations of light pulses, normalized to the number of events. Top:
FEL, YAG and TiSa laser polarization lie along y. The TiSa pulse arrives 0.5 ps after the FEL
pulse. Bottom: FEL and YAG laser polarization lie along y, the TiSa laser polarization lies along z.
The TiSa laser pulse arrives 1 ps before the FEL pulse. The YAG pulse alone is non-ionizing. The
�rst 3µs of the spectrum are heavily disturbed by high-frequency pickup from the high-voltage
switching of the electron detector on the opposite side, thus only fragments with m/q >12 are
shown. Unlabeled peaks are copies of their right-hand neighbor that arise from the velocity map
imaging conditions, see section 3.2.1. The traces beyond 3.8µs are scaled up by a factor of 3, and
the traces beyond 6.4µs are scaled up by a factor of 6 for better visibility.
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clusters. When the strong-�eld ionization of the TiSa laser is combined with adia-
batic alignment, the changes in the spectrum are signi�cant. If the TiSa polarization
lies parallel to the direction of the molecular alignment, as shown in the top spec-
trum in Fig. 5.2, the Br+, Br++, C2H+

x and the C+ peaks are strongly enhanced
as compared to ionization of randomly oriented molecules. This demonstrates that
molecules that are aligned with their major axis along the TiSa polarization direc-
tion are ionized more e�ciently. When the TiSa polarization is rotated such that it
is perpendicular to the YAG polarization, see the bottom spectrum in Fig. 5.2, the
peak of Br+ is smaller as compared to ionization of randomly oriented molecules,
con�rming that molecules aligned perpendicular to the TiSa laser polarization di-
rection are less e�ciently ionized. The C2H+

x and the C+ peaks rise, but the increase
is smaller than for the parallel polarization. Br++ is absent in this spectrum.

Moreover, when the TiSa and the YAG laser interact with the molecular ensemble,
all ions heavier than Br+ disappear, independent of the TiSa laser polarization di-
rection. This may be explained by the fact that, in general, electronic transitions
happen on a timescale much faster than the nuclear motion, and usually the internu-
clear distances in a valence ionized molecule are larger than in the molecular ground
state. Therefore, a vertical Frank-Condon transition can result in a superposition of
highly vibrationally excited states, such that the molecule may have a dissociation
or ionization energy that is low enough to be overcome by a single or a few YAG
photons. Molecular dynamics initiated by a femtosecond pump laser pulse may thus
be signi�cantly in�uenced by an additional nanosecond YAG laser pulse. When the
X-ray pulse is added to the TiSa and the YAG laser pulses, the spectrum is not
altered signi�cantly due to the larger focus of the TiSa laser beam.

To characterize the molecular alignment, the polarity of all voltages was changed
and the phosphor detector was gated for 400 ns to image Br+ ions. The alignment
can be probed either by the FEL or the TiSa laser pulse. As the ionization prob-
ability in strong-�eld ionization is in general enhanced along the laser polarization
direction, the TiSa polarization direction was rotated such that it was perpendicular
to the detector plane, along the z-axis, to remove the e�ect of so-called geometric
alignment. For inner-shell ionization by the FEL far above the ionization threshold,
the absorption cross section is usually nearly independent of the angle between light
polarization and the molecular axis, making X-rays a less biased probe for molecular
alignment [167]. When randomly oriented molecules are ionized, by either the FEL
or the TiSa laser pulse, the resulting Br+ fragments are isotropically distributed on
the detector, see Figs. 5.3(a) and 5.3(b). When the FEL ionizes DBB molecules, a
ring of Br+ is found, demonstrating that the Br+ ions are emitted with signi�cant
kinetic energy. A second, weak contribution can be identi�ed in the center of the
image, which probably corresponds to triply charged DBB ions that have nearly
the same time of �ight as singly charged bromine ions. When DBB is ionized by
the TiSa laser, most Br+ fragments are emitted along the polarization direction, re-
sulting in a maximum in the center of the image and additional contributions with
higher kinetic energy at larger radii.
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(a) FEL, DBB (b) TiSa, DBB

(c) FEL, YAG, DBB (d) TiSa, YAG, DBB

Figure 5.3: Detector images for Br+ fragments, resulting from ionization of dibromobenzene
molecules (DBB). Top row: ionization of randomly oriented molecules by the FEL and the TiSa
laser. Bottom row: ionization of aligned molecules by the FEL and the TiSa laser. The TiSa laser
polarization direction is along z, perpendicular to the detector plane. The FEL polarization lies
along y. The YAG laser is elliptically polarized with a ratio of 1:7, the major polarization axis lies
along y and the minor axis along z. (a) is scaled by a factor of 2 with respect to (c).

When an elliptically polarized YAG laser pulse is added, the Br+ distributions are
con�ned along the major axis of the YAG laser polarization direction, see Figs. 5.3(c)
and 5.3(d). Three di�erent fragmentation channels resulting from ionization by the
TiSa can be distinguished in Fig. 5.3(d). They correspond to fragmentation of parent
ions with increasing total charge, leading to Br+ ions with increasing kinetic energies.
For inner-shell ionization with FEL pulses, di�erent fragmentation channels often
strongly overlap in energy [16, 168], thus they cannot be as clearly distinguished
in Fig. 5.3(c). The contribution of triply charged DBB ions with very little kinetic
energy has disappeared, con�rming that the YAG laser pulse leads to fragmentation
of intact DBB ions. The contribution in the center of Fig. 5.3(d) on the other
hand probably corresponds to Br+ ions that have a neutral fragmentation partner.
When comparing the Br+ distributions in this experiment with the F+ distributions
from pFAB, see Fig. 4.8, it can be noted that no background from ionization of
residual gas is present, and no additional contribution from molecular clusters arises,
thus no background subtraction is necessary. The degree of molecular alignment of
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(a) FEL, no target (b) FEL, YAG, no target (c) 5.4(b) minus 5.4(a)

Figure 5.4: Electron detector images for ionization of residual gas by the FEL at a photon energy
of 1570 eV. The FEL polarization direction lies along y. In (b), an elliptically polarized YAG pulse
with a ratio of 1:7 is added, the major axis of the polarization direction lies along y and the minor
axis along z.

the Br-Br axis can be obtained from Figs. 5.3(c) and 5.3(d) by employing Eq. 4.1,
resulting in 〈cos2θ2D〉 = 0.78 and 〈cos2θ2D〉 = 0.75, respectively. For the elliptically
polarized YAG laser pulse, the plane of the benzene ring should in principle have
been �xed in the (y, z) plane, which could have been probed by additional monitoring
of hydrogen or carbon ions [169] but has not been done in this experiment.

5.2 Photoelectron Distributions

In a laser-pump, FEL-probe experiment on adiabatically laser-aligned molecules,
three light pulses are present at the same time. In order to extract delay-dependent
photoelectron angular distributions, the respective photoelectrons have to be iso-
lated from other electrons that are created by any one of the three light pulses. As
will be seen in the following, this can be di�cult to achieve. This section will �rst
describe the results obtained for ionization of laser-aligned molecules by only the
FEL and only the TiSa laser pulse, afterwards the combination of all three light
pulses is shown and possible time-dependent multi-color e�ects are discussed.

5.2.1 X-ray Photoionization

In 2010, the LCLS, the TiSa laser and the data acquisition system operated at 60Hz,
and the YAG laser has a repetition rate of 30Hz, thus simultaneous recording of
background while measuring aligned and randomly oriented molecules was not pos-
sible. Therefore, separate data sets without the molecular beam and for di�erent
combinations of light pulses were recorded. Figure 5.4(a) displays the signal from
ionization of residual gas by only the FEL at a photon energy of 1570 eV. As ion-
ization events occur not only in the center of the VMI spectrometer but anywhere
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(a) FEL, DBB (b) FEL, YAG (y), DBB (c) 5.5(b) minus 5.5(a)

(d) FEL, DBB (e) FEL, YAG (z), DBB (f) 5.5(e) minus 5.5(d)

Figure 5.5: Electron detector images for ionization of DBB by the FEL at a photon energy of
1570 eV that has been �ltered to ± 1 eV. The background from residual gas has been subtracted.
Di�erent polarization directions of the elliptically polarized alignment laser with a ratio of 1:7 are
shown. Top row: the major axis of the YAG polarization lies along y. Bottom row: the major axis
of the YAG polarization lies along z. The rim of the projected photoline is marked by the circles.
Image di�erences are taken without background subtraction and without photon energy �lter.

along the FEL beam path, the electrons are not well focused, resulting in the arti-
�cial, asymmetric projection. When the YAG laser pulse is present in addition to
the FEL, two additional, contributions of low-energy electrons can be identi�ed in
the image in Fig. 5.4(b) and in the di�erence image in Fig. 5.4(c) that have energies
of less than ∼ 1.5 eV. These images provide the background for all measurements
of dibromobenzene molecules that are aligned along the y-axis. For measurements
with alignment along z, a second set of background images was recorded.

Figure 5.5 shows electron detector images for ionization of dibromobenzene molecules
by FEL pulses with a photon energy of 1570 eV, which is 20 eV above the Br(2p3/2)
level at 1550 eV [31] but below the Br(2p1/2) level at 1596 eV, thus only one photoline
is expected. The resulting photoelectrons with an almost isotropic angular distribu-
tion can be seen best in the region marked by the circles. They are, however, not well
separated from low-energy electrons that are most likely created by multi-electron
processes or by inelastic electron scattering. Moreover, signi�cant electron inten-
sity is found at radii outside of the photoline. The initial vacancy in the Br(2p3/2)
level decays predominantly via LMM- and MNN-Auger decays (similar as in kryp-
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(a) TiSa, no target (b) TiSa, YAG, no target (c) 5.6(b) minus 5.6(a)

Figure 5.6: Electron detector images for ionization of residual gas by the TiSa laser. The TiSa
and the YAG polarization lie along y. (c) is scaled by a factor of 7.5 with respect to (a) and (b).

ton [170]), resulting in electrons with kinetic energies of > 1200 eV and < 100 eV,
respectively [31]. The latter contribute a signi�cant number of electrons everywhere
on the detector, also outside of the photoline. Compared to the electron detector
images for pFAB in Fig. 4.10, here the photoelectrons are less separated from the
low-energy electrons due to the lower photoelectron kinetic energy. Moreover, for
ionization of a 2p level, the emitted photoelectron wave is generally less asymmet-
ric than for ionization of a 1s orbital. This implies that more photoelectrons are
projected to the center of the image, see section 6.1.

The electron detector image for X-ray ionization of adiabatically aligned DBB
molecules is shown in Fig. 5.5(b). No signi�cant di�erence can be seen in the
photoelectron distribution, but again additional low-energy electrons are created.
As the background image in Fig. 5.4(b) has been subtracted, these electrons either
originate from a di�erent process involving DBB molecules, or from residual gas that
is present in the molecular beam. When subtracting the distribution of randomly
oriented molecules, the di�erence image in Fig. 5.5(c) results. In this image it can
be clearly seen that the photoelectron angular distribution is more pointed along the
Br-Br axis when the molecules are spatially aligned, resulting in a positive di�erence
along the y-axis and a negative di�erence along th x-axis.

The bottom row of Fig. 5.5 shows the same images for molecular alignment per-
pendicular to the detector plane. As expected, no angular dependence is found
in the photoelectron distribution, but for aligned molecules less photoelectrons are
created. This suggests that the Br(2p) photoionization probability may slightly de-
crease when the molecules are aligned with the Br-Br axis perpendicular to the FEL
polarization direction. This is qualitatively consistent with an observed decrease of
the total electron count rate of about 10% for this geometry. However, since the
overall electron count rate includes not only the photoelectrons, this number can-
not be interpreted straightforwardly as a quantitative measure of the molecular axis
dependence of the photoionization cross section.
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(a) TiSa (y), DBB (b) TiSa (y), YAG, DBB (c) 5.7(b) minus 5.7(a)

(d) TiSa (z), DBB (e) TiSa (z), YAG, DBB (f) 5.7(e) minus 5.7(d)

Figure 5.7: Electron detector images for ionization of DBB by the TiSa laser with a photon
energy of 1.55 eV. The polarization direction of the linearly polarized YAG laser lies along y. Top
row: the TiSa laser polarization direction lies along y. Bottom row: the TiSa laser polarization
direction lies along z. The region of interest for the rim of the 22 eV photoline is marked by the
circles. (c) is scaled by a factor of 4 with respect to (a) and (b). (f) is scaled by a factor of 7.5
with respect to (d) and (e).

5.2.2 Infrared Photoionization

The infrared TiSa laser with a photon energy of 1.55 eV cannot ionize dibromo-
benzene or residual gas in the chamber directly by single-photon ionization, as
ionization energies are 8.9 eV for DBB and 15.6 and 12.6 eV for nitrogen and wa-
ter, respectively [171]. In order to dissociate DBB, the TiSa intensity was set to
2× 1014W/cm2, such that multi-photon ionization occurs. Figure 5.6 shows a back-
ground measurement at this intensity without the molecular beam for horizontal
TiSa polarization. Rings from above-threshold ionization are visible which probably
stem from water. When the YAG laser is added, also in this case additional low-
energy electrons are created. However, in Fig. 5.6(c) the outer feature is enhanced
as compared to the case of ionization of residual gas by the FEL in Fig. 5.4(c) and
the angular distribution is slightly di�erent.

If the molecular beam is turned on, the detector image in Fig. 5.7(a) arises when
the TiSa laser polarization is parallel to the detector plane, along the y-axis. An
elongated distribution of electrons created by strong-�eld ionization is visible, how-
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ever, in contrast to the background measurement for dibromobenzene no individual
rings can be distinguished. Dibromobenzene has a lower ionization energy than the
residual gas, thus probably at the given intensity the tunneling regime of strong-�eld
ionization is already reached for DBB, whereas for the residual molecules the ATI
structure can still be resolved. When the molecules are not randomly oriented, but
aligned parallel to the TiSa laser polarization direction, more electrons are created,
see Fig. 5.7(b). This can be explained by the fact that strong-�eld ionization is
more likely to occur for molecules that are aligned parallel to the laser polariza-
tion direction. Additional low-energy electrons are created by the YAG laser that
are visible in the center of the image. When normalizing both images to the same
number of events and subtracting them, the image in Fig. 5.7(c) emerges. It re-
veals that the non-isotropic di�erence in electron intensity reaches out to the radial
region of interest for the Br(2p) photoline created by the X-rays, indicated by the
circles. Therefore, it is necessary to remove this electron contribution from images
that investigate changes in the photoelectron angular distributions.

When the TiSa laser polarization is rotated such that it is perpendicular to the de-
tector plane, the created electrons are preferentially emitted along the spectrometer
axis and are thus projected to the center of the image, see Fig. 5.7(d) and 5.7(e).
The YAG laser polarization remains parallel to the detector surface. Thus, here
less electrons are created for molecules aligned perpendicular to the TiSa laser po-
larization as compared to randomly oriented molecules. This results in a negative
di�erence, see Fig. 5.7(f), which in this case is almost isotropic in the detector plane
and is more con�ned to the center of the image.

5.2.3 Two- and Three-Color E�ects

The idea of the infrared-pump, X-ray-probe experiment is to �rst dissociate aligned
dibromobenzene molecules with the TiSa laser pulse, and then to probe them with
the FEL pulse that arrives with a certain time delay. One of the major di�cul-
ties in any pump-probe experiment is to establish an e�cient pumping process and
to extract a delay-dependent signal from the mixture of pumped and un-pumped
molecules. As was demonstrated in the last section, strong-�eld ionization is en-
hanced when the major molecular axis coincides with the laser polarization direction.
Therefore, to achieve e�cient pumping of the aligned molecules, it is straightforward
to chose the polarization directions of the YAG and the TiSa laser parallel. How-
ever, the alignment-dependent contribution of electrons that are created by the TiSa
laser, see Figs. 5.8(a) and 5.8(b), needs to be removed from the images for randomly
oriented and aligned molecules separately before their di�erence is calculated. Oth-
erwise the structure in Fig. 5.7(c) overlaps with the di�erence photoelectron angular
distribution.
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(a) FEL, TiSa (y), DBB
minus 5.7(a)

(b) FEL, TiSa (y), YAG,
DBB minus 5.7(b)

(c) 5.8(b) minus 5.8(a)

(d) FEL, TiSa (z), DBB
minus 5.7(d)

(e) FEL, TiSa (z), YAG,
DBB minus 5.7(e)

(f) 5.8(e) minus 5.8(d)

Figure 5.8: Electron detector images for ionization of DBB by the TiSa laser and the FEL at a
photon energy of 1570 eV. The polarization direction of the linearly polarized YAG laser lies along
y. Top row: the TiSa laser polarization direction is along y, and the TiSa pulse arrives 2.5 ps after
the FEL. Bottom row: the TiSa laser polarization is along z, and the TiSa pulse arrives roughly
at the same time as the FEL. The background from ionization of DBB by only the TiSa laser has
been subtracted. The rim of the projected photoline is marked by the circles. (c) is scaled by a
factor of 12 with respect to (a) and (b). (f) is scaled by a factor of 50 with respect to (d) and (e).

Figures 5.8(a) and 5.8(b) show the resulting distributions for randomly oriented and
one-dimensionally aligned DBB molecules, respectively, after subtracting the signal
obtained without the FEL. Although the images are normalized to the same number
of events before subtraction, the electron signal from strong-�eld ionization by the
TiSa is not removed e�ciently. Too little signal is subtracted at larger radii, whereas
in the image center too much intensity is subtracted. This suggests that the TiSa
intensity may have been slightly lower during the background measurement, which
seems possible as the background images were recorded 3 hours after the pump-probe
data. A decrease in the intensity of the TiSa laser changes the electron spectrum in
a non-uniform way: high-energy electrons are suppressed more strongly than low-
energy electrons. This e�ect cannot be removed in retrospect, and it overlaps with
the di�raction structure of the photoelectrons, as can be seen in the broad positive
di�erence along the y-axis in Fig. 5.8(c).
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(a) TiSa 1 ps before FEL (b) TiSa 3 ps after FEL (c) 5.9(a) minus 5.9(b)

Figure 5.9: Electron detector images for two di�erent settings of the delay stage and their
di�erence image. The TiSa laser polarization direction lies along y and the intensity has been
decreased such that the TiSa laser alone is non-ionizing. The absolute calibration of the delay
value is determined from Fig. 5.10. (c) is scaled by a factor of 2 with respect to (a) and (b). The
white lines indicate regions of interest for the plots in Fig. 5.10.

When the TiSa laser polarization is rotated such that it is perpendicular to the
detector plane, the images in the bottom row of Fig. 5.8 result after the background
without the FEL has been subtracted. The negative di�erence in the center of
the image that stems from electrons created by the TiSa alone, see Fig. 5.7(f),
is not completely removed, con�rming that probably the TiSa intensity was lower
when the background was recorded. Still, a faint structure can be identi�ed in the
di�erence photoelectron distribution that shows a positive di�erence along y and a
negative di�erence along x, similar to what was observed for ionization by only the
FEL, see Fig. 5.5(c). This suggests that it may be possible to see delay-dependent
e�ects of this angular distribution. However, the TiSa laser dissociates the molecules
much less e�ciently if its polarization direction is perpendicular to the molecular
alignment, thus it is questionable which fraction of the aligned molecular ensemble
is dissociated in this experimental geometry before being ionized by the FEL.

5.2.4 Delay-Dependent E�ects

In order to carry out a pump-probe experiment, �rst the spatial and temporal overlap
between all laser pulses has to be established. The synchronized arrival time on the
target is referred to as T0 in the following. The coarse synchronization of the TiSa
laser pulse to the FEL pulse was found by monitoring the arrival times of both pulses
with a fast photodiode that can achieve a precision of about 20 ps. Afterwards, �ne
adjustment needs to be achieved with the help of a signal that changes depending
on which of the laser pulses arrives �rst. Here, this has been done by rotating the
TiSa laser polarization direction along the y-axis, and decreasing the TiSa intensity
until no molecules were ionized by the TiSa alone, corresponding to 82% of the
intensity that was used to record the pump-probe data. The delay between TiSa
and FEL pulses was varied by moving a mechanical stage. The electron detector
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Figure 5.10: Measurements to �nd the temporal overlap T0 between the TiSa laser pulse and
the FEL pulse (without the YAG laser). Shown are electron intensities projected to the radius in
the angular region of interest marked in Fig. 5.9, see also section 3.2.4. Three di�erent settings of
the delay stage are shown, normalized to the number of FEL shots. The second measurement in
(b) was necessary after a `jump' in the arrival time of the TiSa laser pulse had occurred.

images for two di�erent settings of the delay stage with a temporal spacing of 4 ps
are shown in Fig. 5.9(a) and 5.9(b).1 The di�erence image in Fig. 5.9(c) shows a
pronounced negative structure in the center of the image, corresponding to electron
kinetic energies of ≤ 1.5 eV. This indicates that these electrons are created by post-
ionization of excited molecular states by the TiSa laser, similar to the low-energy
feature that appears in all images recorded with the YAG laser. If the TiSa pulse
arrives earlier than the FEL pulse, the molecules are still in the ground state and
cannot be ionized by the TiSa.

In order to determine T0, the projections of the electron intensity onto the radius on
the detector are plotted in Fig. 5.10(a) for the angular regions of interest marked in
Fig. 5.9. A third setting of the delay stage is plotted also. A rise of the low-energy
electron signal at around r= 50 can be clearly identi�ed when the TiSa pulse arrives
later than the FEL pulse, whereas the intensity in the rim of the projected photoline
at around r= 170 stays almost constant. In principle, the ionization probability of
the TiSa laser should be a step function that is zero if the TiSa pulse arrives before
the FEL. However, it needs to be taken into account that the arrival time jitter
between the FEL and the TiSa pulses is about 0.2− 0.3 ps, which smears out this
sharp rise and prohibits to pinpoint the temporal overlap exactly. This leads to an
averaged signal between TiSa pulses arriving before and after the FEL at T0, as

1 The relative delay in femtoseconds is given by subtracting the respective values of the LCLS
LAS:FS1:Angle:Shift:Ramp:Target parameter and multiplying them by 100.
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Figure 5.11: Radial projections of electron intensities for the region of interest marked in Fig. 5.9,
see also section 3.2.4. The distributions are normalized to the signal on the edge of the detector
at r= 320. Pump-probe data for two di�erent settings of the delay stage (blue, red) are shown as
well as reference curves for only the TiSa laser (green) and only the FEL present (magenta). The
sum of the reference measurements is plotted for comparison (black).

is seen for the red curve in Fig. 5.10(a). This setting is de�ned as T0. Recording
data at more closely spaced delay stage settings could maybe have helped to settle
T0 more precisely. By now, X-ray-optical cross-correlation methods are available
that allow to correct for the arrival time jitter [172�174], such that the temporal
resolution of an IR-pump, X-ray-probe experiment is only limited by the respective
pulse durations [175].

After successful determination of the temporal overlap, the TiSa polarization was
rotated back, parallel to the z-axis, and the intensity was set back to the original
value. For this setting, three pump-probe data sets were recorded, at the nominal
zero delay T0 and for two delays of ± 1 ps, respectively. Figure 5.11 shows radial
projections of electron detector images for the case when the TiSa pulse arrives 1 ps
before the FEL pulse, and 1 ps after the FEL pulse. The angular region of interest is
the same as in Fig. 5.9. Reference measurements taken with only the TiSa and with
only the FEL, as well as their sum are also shown for comparison. When comparing
these two reference distributions, it becomes clear that roughly 50% of the total
electron intensity is created by strong-�eld ionization from the TiSa. Their high-
energy tail overlaps with the rim of the photoline at around r= 170, even in this
case where the TiSa laser polarization direction was perpendicular to the detector
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surface. Electron intensities at r ≥ 220, with higher kinetic energies than the direct
photoelectrons are created only by the FEL. These are most likely bromine MNN-
Auger electrons with kinetic energies of < 100 eV. Figure 5.11 leads to the conclusion
that the photoelectrons are superimposed with the electrons created by the pump
pulse at all radii, which makes correct a subtraction of the low-energy electron peak
indispensable.

If the TiSa laser pulse interacts with the molecular ensemble after it has been ionized
by the FEL, the Br(2p) photoelectrons should not be a�ected much. The electrons
from strong-�eld ionization on the other hand can be enhanced by the preceding
FEL pulse, as has been seen in the procedure for �nding the temporal overlap.
When comparing the red and the black curves in Fig. 5.11, it can be seen that their
general shape is very similar, but the peak at small radii is larger when the FEL
pulse ionizes the molecules before the TiSa pulse arrives, which is consistent with the
e�ect that was seen in the T0 determination. However, when the TiSa pulse arrives
earlier than the FEL pulse, the peak in the blue curve is only slightly lower than in
the red curve and signi�cantly higher than for the reference measurement. Another
possible reason for changes in the peak at smaller radii is a drift in the TiSa laser
intensity between the di�erent measurements. Strong-�eld ionization depends non-
linearly on the laser intensity, thus small �uctuations can have signi�cant e�ects.
As the reference spectrum with only the TiSa pulse has been recorded twelve hours
after the pump-probe data, a small decrease in the laser intensity within that time
seems possible. Unfortunately, the TiSa intensity was not monitored during the
data taking, no reference measurements were recorded in between the di�erent data
sets and simultaneous background recording was not possible as the LCLS data
acquisition operated only at 60Hz in 2010. An additional problem can arise if the
arrival time of the TiSa with respect to the FEL changes. The T0 determination
process was not repeated within the three hours of data acquisition, and considering
that a temporary laser set-up at an accelerator-based light source is usually less
stable than in a laboratory under optimized conditions, it seems not unlikely that
the arrival time of the TiSa pulses may �uctuate 0.5-1 ps within three hours. This
makes it very di�cult to investigate systematic di�erences between di�erent delays,
and no delay-dependent electron angular distributions could be extracted from this
set of data.

However, upon closer inspection of Fig. 5.11, a di�erence between the two delay
settings can be identi�ed: when the TiSa pulse arrives before the FEL pulse, the
maximum of the photoline at around r= 150 is slightly decreased, and a small rise
in the region around r= 110− 140 can be detected. An explanation for this could be
a change in the Br(2p3/2) binding energy after the ionization by the TiSa laser. For
comparison, the krypton (2p3/2) binding energy is 1678 eV for the neutral atom [31]
but 1690 and 1704 eV for the singly and doubly ionized atom, respectively [176],
which corresponds to an increase of 0.7 and 1.5%, respectively. Bromine is only
1 amu lighter than krypton, thus these ratios can be considered for a rough estimate.
For an isolated Br(2p3/2) with a ground state binding energy of 1550 eV, this would
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result in binding energies of 1561 and 1574 eV for the singly and doubly charged
atom, respectively. As the photon energy is only 1570 eV this would mean that the
ionization of an isolated Br+ results in photoelectrons with only 9 eV and Br++ could
not be ionized at all.

As the arrival time of the TiSa laser sometimes experienced random `jumps' by about
1 ns or more during the experiment, it was necessary to re-calibrate T0 after recording
of the three data sets described above. The second calibration measurement is shown
in Fig. 5.10(b). In comparison with Fig. 5.10(a) it can be seen that two delay-stage
settings correspond to TiSa pulses arriving after the FEL and one to the TiSa pulse
arriving before the FEL. The averaged red curve from Fig. 5.10(a) that was de�ned
as T0 is not reproduced here, but it is assumed to be centered between the two
settings resulting in the blue and the green curve in Fig. 5.10(b). In the following,
�ve di�erent pump-probe delays between 0 and 2.5 ps were recorded for vertical TiSa
polarization and two delays for horizontal TiSa polarization, but no data was taken
with the TiSa pulse arriving before the FEL pulse. As no delay-dependent e�ects
in the Br(2p) photoelectrons are expected when the TiSa arrives after the FEL, and
as no other delay-dependent signal was found, this second, larger data set is not
shown.



6 Critical Discussion

This chapter discusses advantages and disadvantages of di�erent experimental con-
ditions in the view of the obtained results, and suggests potential improvements
for future experiments aimed at retrieving time-dependent information on changing
molecular geometries with photoelectron di�raction.

6.1 Electron Energy and Initial State

For a given molecule, the molecular-frame photoelectron angular distribution is de-
termined by the initial electronic state, the light polarization and the �nal photo-
electron kinetic energy. It is di�cult to answer in general, which energy and which
initial state are the �best� choices for imaging molecular structure with photoelec-
tron di�raction, as this depends, for example, on the geometry of the molecule, the
electron detection set-up, the respective photoabsorbtion and elastic electron scat-
tering cross sections, and the available photon energies. Nevertheless, some general
remarks can be made that could help planning a future experiment with an exper-
imental set-up similar to the one presented in this work. The optimum electron
energy and initial state are �rst considered from the viewpoint of the laboratory
frame and the molecular frame respectively, and �nally in the light of available
theoretical approaches.

6.1.1 From the Viewpoint of the Laboratory Frame

From an experimental point of view, in order to obtain clean information on photo-
electron angular distributions, it should be taken care that the photoelectron signal
is separated as good as possible from all other electrons that contribute to the im-
age on the detector. The presented data on two model systems, dibromobenzene
and pFAB with 12 and 14 atoms, respectively, demonstrate that inner-shell ioniza-
tion of polyatomic molecules creates a considerable amount of secondary electrons.
These result from shake-o�, shake-up or inelastic intra-molecular scattering events,
and have a continuous energy spectrum that has a maximum at zero energy and
decreases slowly towards higher energies, see Fig. 4.19. Moreover, above-threshold
or strong-�eld ionization of a laser pump-pulse may create electrons with energies
of 20 eV or more, see Fig. 5.11. This sets a lower limit to the applicable photoelec-
tron kinetic energy. For the pFAB data in chapter 4, the separation was achieved
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(a) β=0.0 (b) β=1.0 (c) β=2.0

Figure 6.1: Simulated photoelectron distributions with di�erent asymmetry parameters β, pro-
jected onto a two-dimensional detector. The light polarization direction lies along y.

reasonably well, although increasing the photoelectron energy by some ten eV prob-
ably would have helped to accomplish a cleaner distinction. In the dibromobenzene
experiment in chapter 5 however, the photoelectrons with 20 eV kinetic energy were
hardly distinguishable from the low-energy electrons. Here, higher kinetic energies
would surely have been bene�cial, but the spectrometer could not be operated at
higher voltages at the time, thus limiting the maximum kinetic energy of the elec-
trons that could be collected in full solid angle.

Moreover, Auger electrons are created after inner-shell ionization. For light elements
such as �uorine and carbon, they have kinetic energies of several hundred electron
volts [31]. In the presented data on pFAB, they were thus only collected in a small
solid angle, creating a small background everywhere on the detector that has an
isotropic angular distribution. For heavier elements with Z≥ 20 on the other hand,
for example for bromine, MNN-Auger electrons can have energies below 100 eV,
thus creating a signi�cant background in the radial region of the photoelectron line
at 20 eV kinetic energy, see Fig. 5.11. These considerations imply that either the
photoelectron kinetic energy has to be chosen far away from all Auger lines, or,
alternatively, the Auger electrons could be captured in the complete solid angle. In
this case, an inversion of the image would allow to separate the contributions with
di�erent kinetic energies, see section 3.2.5. The choice of the photoelectron energy
may however be limited by the energy acceptance of the spectrometer and by the
decreasing photoionization cross sections for energies high above the threshold, as
well as by the available photon energies that determine the achievable photoelectron
kinetic energy for a given atomic level.

For the data shown here that contain only one photoline, the inversion did not yield
a notable advantage and might even introduce artifacts due to the continuous dis-
tribution of low-energy electrons that may not be �tted well by the basis functions
used in the pBasex algorithm [143]. It is thus desirable to separate the photoelec-
trons from the low-energy continuum as good as possible in the projected detector
image. This separability is not only in�uenced by the photoelectron kinetic energy,
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Figure 6.2: (a) Cuts parallel to the y axis through the center of the images in Fig. 6.1. (b) Radial
projections of the images in Fig. 6.1, see also section 3.2.4. The simulated electron kinetic energy
has a Gaussian distribution centered at r= 200 pixels with a width of σr = 5 pixels.

but also by the initial electronic state, which a�ects the shape of the initial pho-
toelectron wave. To illustrate this, Fig. 6.1 shows projections of three-dimensional
photoelectron distributions onto a two-dimensional detector for di�erent asymme-
try parameters β, see Eq. 2.5. For all cases, a large fraction of the photoelectron
intensity is contained in the rim of the projected photoline, close to the maximum
radius on the detector, but this fraction varies depending on the asymmetry of the
photoelectron wave. This is further elucidated by plotting cuts parallel to the y
axis, through the center of the images, as shown in Fig. 6.2(a), and by projecting
the electron intensity to the radius on the detector, as shown in Fig. 6.2(b). The
center of the image contains less intensity for distributions with larger asymmetry.

A typical radial region of interest for the evaluation of the polar angular distribution
of the photoelectrons is depicted in Fig. 6.1 by the white circles and in Fig. 6.2(b)
by the black lines. The range of 180 ≤ r ≤ 230 de�nes an azimuth opening angle
of ±26◦ for the central energy corresponding to r= 200 pixels. This radial region
contains 43% of the total intensity for β = 0, 52% of the intensity for β = 1 and
60% of the electrons for β = 2. In this sense, an angular distribution with a large
asymmetry is favorable in order to better separate photoelectrons from low-energy
electrons in the projected detector image. The largest anisotropy can be achieved
by ionization of an s-orbital by linearly polarized light, which is the only case for
which a pure p-wave is created (for atoms), see section 2.2. In general, all other
cases result in a less anisotropic photoelectron wave. This di�erence can be seen
when comparing the photoline resulting from F(1s) photoionization of pFAB in
Fig. 4.10(a), to the Br(2p) photoline of DBB in Fig. 5.5(a), which shows an almost
round laboratory-frame electron distribution.
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6.1.2 From the Viewpoint of the Molecular Frame

The previous considerations referred to the experimental determination of the elec-
tron angular distribution in the laboratory frame. However, more importantly, the
photoelectron energy also determines the molecular-frame photoelectron angular
distribution for a given molecular geometry. In general, for higher electron kinetic
energies more interference maxima and minima can arise, see Fig. 2.8(b). Moreover,
the MFPAD of a more complicated molecule contains contributions of many atomic
constituents and, thus, is more structured already at lower energies. This situation
is further complicated by the fact that not all interference maxima that are present
according to simple geometrical considerations can be observed experimentally. This
becomes clear when taking into account that in directions with very little intensity
of the initial wave, the intensity cannot be maximized by interference. It can be seen
in Fig. 2.8(b) that independent of the energy, most intensity maxima are located at
scattering angles in the range of 40◦ to 140◦. If the p-wave is rotated parallel to the
molecular axis, only little intensity of the direct wave can be found in this region
due to the node at 90◦, as can be seen in Fig. 2.9(b). For the case of 50 eV electrons,
the maxima at 80◦ and 280◦ are strongly reduced. If enough statistics could be
collected, these angles may however still be exploited, and for photoelectron holog-
raphy on surfaces it has even been argued that more structural information can be
obtained close to a node of the direct photoelectron wave [65, 52]. However, for the
experiment on dilute, gas-phase pFAB molecules, three hours of data recording did
not result in statistically signi�cant intensity in the node of the photoelectron wave,
as can be seen in Fig. 4.10.

One way to overcome this problem may be to use a more symmetric photoelectron
wave. A spherical s-wave cannot be created exclusively in photoionization, but an
approximately spherical wave can result from interference of di�erent partial waves
for certain initial electronic states and electron energies. For example, ionization
of the Br(2p3/2) orbital in dibromobenzene at a photon energy of 1570 eV results in
an almost spherical wave, see Fig. 5.5. However, this adds an additional level of
complexity to the interpretation of the resulting photoelectron angular distribution,
as theoretical calculations that involve di�erent partial waves are challenging and
appropriate photon energies may not be easy to identify. Alternatively, for ioniza-
tion of an s-orbital, the X-ray polarization direction can be rotated such that the
molecular axis lies close to the node in the resulting p-wave. In this case, depicted in
Fig. 2.9(d), only two of the six interference maxima for the case or 500 eV electrons
are lost, however, in this con�guration only very little intensity of the direct wave
is emitted in the direction of the scatterer, resulting in very low scattered intensity.

A compromise can be to chose the light polarization direction neither parallel nor
perpendicular, but at an intermediate angle to the molecular axis, for example at
α=45◦ as shown in Fig. 2.9(c). In this case, the interference structure is largely
preserved, while at the same time more intensity of the direct wave is emitted in
the direction of the scatterer. The angle between the axis and the light polariza-
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tion could be tuned depending on the given electron angular distribution and the
scattering probabilities. However, this geometry breaks the mirror symmetry of the
experiment. On one hand, this is an advantage, as in this case the two nodes in
the direct wave suppress di�erent interference maxima, such that for the case of a
mirror symmetric molecule the information that is lost at an angle φ is preserved at
φ+180◦. On the other hand, this complicates the experimental set-up: in order to be
able to interpret the projected photoelectron angular distribution on the detector,
the molecular axis and the light polarization direction should both lie in the detec-
tor plane. For an experiment on laser-aligned molecules, this requires the detector
plane to be perpendicular to the light propagation direction, thus the X-ray and
the alignment laser would have to penetrate through a hole in the detector. The
photoelectron angular distributions of oriented pFAB molecules in Fig. 4.15 have
been recorded at an angle of 45◦ between the light polarization direction and the
molecular axis, but here the molecular axis was rotated out of the detector plane.
It is thus di�cult to judge from the projected distribution whether the angular dis-
tribution in the plane of the molecule shows more structure. Moreover, when the
electric �eld of the spectrometer is used to induce the orientation, the molecules
cannot be oriented while being aligned parallel to the detector surface.

In summary, there is no simple answer to the question which photoelectron kinetic
energy produces the �best� molecular-frame photoelectron angular distribution un-
der experimental conditions. Preferably, the angular positions of interference max-
ima in the MFPAD should be located neither at the minimum nor at the maximum
of the unscattered wave. To achieve this, it can be bene�cial to chose an experi-
mental geometry where the polarization direction is not parallel to the molecular
axis or an initial wave that does not contain a node. In addition, when choosing the
initial electronic state and the electron kinetic energy, the availability of a reliable
theoretical model should be taken into account, as will be discussed in the following.

6.1.3 Theoretical Modeling of MFPADs

Ideally, the molecular structure would be directly reconstructed from the recorded
data, for example by interpreting them as a hologram [66, 64]. It has been suggested
that this can be achieved for gas-phase molecules [59] when using high-energy pho-
toelectrons. From a theoretical point of view, it would thus be bene�cial to use
high electron energies for the photoelectron di�raction experiment, for which mul-
tiple scattering events can be neglected and scattering can be described within the
�rst Born approximation, see section 2.3.2. However, for several reasons that have
been discussed in the previous paragraphs, very high electron energies may not be
achievable or desirable from an experimental point of view. Therefore, an important
open question is, at which electron energies the approximation of single scattering
becomes valid. Up to now, suitable data sets were missing that would allow for
a systematic comparison between experimental results and theoretical predictions
over a wide energy range, especially for high energies, and for di�erent molecules.
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Figure 6.3: Comparison of MFPADs for perfectly three-dimensionally oriented pFAB molecules,
calculated within the �rst Born approximation (blue) and with density functional theory (red) for
di�erent kinetic energies of the photoelectron. The �uorine atom points towards the bottom. The
distributions are normalized to the same maximum.

The validity of the �rst Born approximation for lower energies can however be tested
by investigating in which energy regime density functional theory converges to the
same results. DFT can be regarded as a complementary theoretical approach, which
takes into account the full molecular potential and is thus also suitable for lower
electron energies, see section 2.3.3. The calculations for complex molecules and high
electron energies can become computationally demanding, but it was found that
nevertheless for pFAB molecules, calculations of up to 500 eV electron energy can be
performed in a reasonable time frame. The resulting MFPADs for di�erent electron
kinetic energies between 100 and 500 eV are plotted in Fig. 6.3, together with results
obtained with the single scattering model by Krasniqi et al. [59]. For the cases of 100
and 200 eV electrons, very little similarities can be seen for the di�erent calculations.
However, in the region from 300 to 500 eV, the distributions clearly start to look more
alike. For the case of 500 eV electrons, the structure of the MFPADs is very similar,
except for a small di�erence in the angular position of the maxima and the width
of the most prominent peak. In general, the DFT calculations show some �ner
structure, especially for the highest energy, as compared to the single scattering
results.

Neither the FEL nor the synchrotron data shown in this thesis are of a quality
that allows unambiguous veri�cation or falsi�cation of a theoretical model, but the
experimentally obtained di�erence photoelectron angular distributions of pFAB are
well reproduced by DFT calculations, see Fig. 4.13. During the experiment at PE-
TRA, several smaller molecules with �ve to eight atoms have also been investigated
at multiple electron energies up to 250 eV. This data set is currently under analysis
and will hopefully provide the basis for a systematic comparison between theory and
experiment in the near future.
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6.2 Fixing Molecules in Space

For the above considerations it has been implicitly assumed that molecular-frame
photoelectron angular distributions could be measured for molecules that are per-
fectly �xed in all three spatial coordinates and 100% oriented, but unfortunately
this is not possible. This section discusses the in�uence of the �nite molecular
alignment on the photoelectron angular distributions and considers advantages and
disadvantages of laser-alignment and electron-ion coincidence measurements.

6.2.1 Laser-Alignment of Molecules

Adiabatic laser-alignment con�nes the axes of the molecular ensemble to an approx-
imately Gaussian distribution that is centered around the polarization direction
of the alignment laser and has a standard deviation (σφ, σθ), see section 2.4.1. φ
and θ are the polar and azimuthal angle respectively, measured with respect to the
alignment-laser polarization direction. Here, the Gaussian is assumed to be cylindri-
cally symmetric, thus σφ =σθ =σ. The width σ determines the degree of alignment,
〈cos2 θ2D〉, and can be characterized experimentally by monitoring ionic fragments
that are emitted along the direction of the molecular axis, projected onto a two-
dimensional detector, see Eq. 4.1. The relation between these two quantities can be
obtained from simulating such projected distributions of fragment ions that result
from a Gaussian axes distribution, and then calculating the alignment parameter
for that image. Figure 6.4 shows simulations of such projections for di�erent de-
grees of molecular alignment. The image in Fig. 6.4(a) corresponds to the value of
〈cos2 θ2D〉= 0.97 that was reported for alignment of iodobenzene molecules in refer-
ence [155], whereas Figs. 6.4(b) and 6.4(c) illustrate the degree of alignment that
was achieved for pFAB and dibromobenzene molecules in the data presented here.1

It is obvious that in both experiments the alignment was not perfect. The relation-
ship between the width σ and the alignment parameter 〈cos2 θ2D〉 can be found in
Tab. 6.1 and in Fig. 6.4(d). Small deviations from the ideal value of 〈cos2θ2D〉 = 1.0
correspond to a fast increase in the width of the molecular axis distribution.

σ [◦] 0 5 10 15 20 25 30 35 40 45
〈cos2 θ2D〉 1.00 0.99 0.97 0.94 0.89 0.84 0.79 0.74 0.69 0.65

σ [◦] 50 55 60 65 70 75 80 85 90 95
〈cos2θ2D〉 0.61 0.58 0.56 0.54 0.53 0.52 0.51 0.51 0.51 0.50

Table 6.1

1 The shape of the projected ion distribution also depends on the kinetic energy of the ions. Here, a
Gaussian radial distribution around a nominal radius R with a standard deviation of σr = 0.05R
has been assumed. The resulting values of 〈cos2 θ2D〉 are independent of the choice of σr.
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(a) 〈cos2θ2D〉 = 0.97, σ = 10◦ (b) 〈cos2θ2D〉 = 0.89, σ = 20◦ (c) 〈cos2θ2D〉 = 0.78, σ = 31◦
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Figure 6.4: Top: Simulated ion distributions for molecular ensembles with di�erent degrees of
molecular alignment. The linear polarization of the alignment laser lies along y. All images contain
the same number of ions and the kinetic energy is the same for all images. (b) is scaled by a factor
of 2 and (c) is scaled by a factor of 4 with respect to (a). Bottom: Relation of the standard
deviation σ of the Gaussian axes distribution to the alignment parameter 〈cos2θ2D〉.

The non-perfect molecular alignment results in an uncertainty in �xing the molecular
frame with respect to the laboratory frame that directly in�uences the measurement
of a molecular-frame photoelectron angular distribution. To illustrate this, the MF-
PADs of CO as obtained from the simple man's model in section 2.3.1 are averaged
over a Gaussian distribution of angles between the molecular axis and the light po-
larization. For a linear molecule, the MFPAD is cylindrically symmetric, and it
is su�cient to average over only one angle. The angle α in Eq. 2.12 is replaced
by α′ = α + αrdm, where αrdm has a Gaussian distribution with a standard devi-
ation σ that determines the molecular alignment, see Tab. 6.1. The evolution of
the photoelectron angular distributions in the molecular frame for di�erent degrees
of molecular alignment is shown in Fig. 6.5 for two di�erent photoelectron ener-
gies. The top row shows PADs obtained from an initial s-wave. From Fig. 6.5(a)
to Fig. 6.5(b), almost no change is observed for electrons of 50 eV kinetic energy,
whereas the distribution for 500 eV electrons looks already very di�erent from the
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Figure 6.5: Simulated MFPADs for oriented CO molecules for di�erent degrees of molecular
alignment, given by the width of the Gaussian axes distribution, σ, and for di�erent source waves.
Top row: s-wave, bottom two rows: p-waves with di�erent angles α between the light polarization
direction and the molecular axis. Blue: 50 eV electron energy, red: 500 eV electron energy. All
distributions are plotted on the same radial scale.

one for perfectly aligned molecules. The four maxima between 60 and 130◦ are al-
most inseparable. This can be explained by the fact that for 500 eV electrons, the
spacing between two neighboring maxima is about 10◦, as can be seen in Fig. 2.8(b).
This corresponds to the standard deviation of the Gaussian axis distribution for this
degree of alignment. When the degree of alignment is decreased further, the distri-
butions in Figs. 6.5(c) and 6.5(d) arise. The two maxima in the PAD for 50 eV can
still be distinguished, while the angular distribution of 500 eV electrons shows no
clear structure.

The second row of Fig. 6.5 shows the PADs obtained from a p-shaped source wave
when the light polarization direction is parallel to the molecular axis. It can be seen
in Fig. 6.5(f) that due to the node in the direct wave, the intensity maxima are
already small for a degree of alignment of 〈cos2θ2D〉 = 0.97. When the alignment
is decreased further, see Figs. 6.5(g) and 6.5(h), all structure disappears. When
the light polarization direction is rotated by 45◦, as depicted in the bottom row of
Fig. 6.5, much more structure can be seen for all degrees of alignment. Even for the
case of 〈cos2θ2D〉 = 0.79, in Fig. 6.5(l), the 50 eV electrons still show one maximum
in the upper left corner that would be su�cient for the retrieval of the CO bond
length.
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Even from these very simple calculations for a diatomic molecule, it becomes clear
that the quality of the laser-alignment is of great importance for recording molecular-
frame photoelectron angular distributions. In general, measuring MFPADs with
�ner structure requires better alignment, thus higher electron energies or more atoms
in the molecule complicate the situation. As a rule of thumb, it can be stated that
the molecular axes need to be �xed with at least the same precision that is required
for resolving the individual maxima of the MFPAD. In other words, if the MFPAD
contains maxima that are spaced more closely than 10◦, it is not possible to re-
solve them in an experiment on laser-aligned molecules with the degree of alignment
that was achieved up to now. However, a degree of alignment of about 〈cos2θ2D〉 =
0.97 should be su�cient to resolve photoelectron angular distributions that contain
structural information about the molecule, if the individual maxima in the electron
angular distribution are not too close. A possibility to improve the degree of molecu-
lar alignment can be to employ electron-ion coincidence measurements, as discussed
in the following paragraph.

6.2.2 Electron-Ion Coincidence Experiments

Instead of actively aligning the molecules in space, their orientation can, in certain
cases, be determined in retrospect by recording the momentum vector of one or more
characteristic ionic fragments in coincidence with the photoelectron, see section 4.1.
An advantage of this method is that any alignment geometry with respect to the
detector plane and the light polarization can be chosen. Moreover, the molecules are
automatically not only aligned, but oriented, provided that the recorded fragment is
unique. For three-dimensional orientation, three-fold coincidences between the pho-
toelectron and two characteristic ionic fragments would be required. Disadvantages
of the coincidence method can be that a suitable fragment to �x the molecular frame
to the laboratory frame may not exist, especially not for large molecules, and that
it can be challenging to collect su�cient data in the time frame of one experiment.
This paragraph shortly discusses both requirements.

The determination of the molecular frame based on an ionic fragment requires that
its momentum vector re�ects the direction of the molecular axis at the time of the
photoionization. This implies that the molecule has to dissociate fast, such that no
rotation occurs before the ion has left the molecule, which is referred to as axial recoil
approximation [149, 150]. Moreover, if more than two charged fragments are created
in the break-up of the molecule, which can easily happen after inner-shell ionization,
the momentum of the ionic fragments is determined by the three-body Coulomb
repulsion, and is thus not necessarily directed along the initial bond direction. The
PIPICO map of pFAB in Fig. 4.3 reveals that all fragmentation channels involving
F+ ions exhibit rather broad lines (except for the two-body break-up), suggesting
that �uorine ions mostly result from break-up channels that involve more than
two charged fragments. The emission direction of the �uorine atom may thus not
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strictly re�ect the direction of the F-C axis.2 Furthermore, no rearrangement of
the molecular structure must take place during the dissociation, in order for the
above assumption to be valid, which is not always ful�lled. For example, it was
shown in section 4.1 that some ionic fragments are created in the dissociation of
pFAB molecules which can only occur if rearrangement of hydrogen atoms takes
place during the dissociation.

If a fragment ion can be identi�ed that de�nes the direction of the molecular axis,
a very high degree of molecular alignment can in principle be achieved with the
coincidence technique when narrowing the condition on the ion momentum. A major
practical limitation is however the amount of statistics that can be collected in this
way. If 95% of the shots shall contain only one photoionization, the mean number
of ionization events per shot needs to be smaller than 0.35 according to Poisson
statistics [177]. Assuming a typical detection e�ciency of about 50%, this means
that the mean number of detected photoelectrons should be smaller than 0.17. In
addition, this electron needs to be recorded in coincidence with the fragment ion
that de�nes the molecular frame. Depending on the fragmentation channels, this
can considerably reduce the number of usable events. For large molecules, a variety
of fragmentation channels exists, as is illustrated by the PIPICO map for pFAB
in Fig. 4.3, and only few of them may result in the desired, characteristic ionic
fragment that can provide the information about the orientation of the molecule.
For the pFAB experiment at PETRA, only 1.5% of the detected electrons were
recorded in coincidence with an F+ ion.

To collect su�cient data is especially challenging if the experiment is carried out
at a Free-Electron Laser. At the moment, the highest repetition rate available
at an FEL is the multi-bunch mode of FLASH [178] that currently achieves an
e�ective repetition rate of 1 kHz. Here, a mean number of 0.17 electrons per readout
cycle corresponds to a maximum electron count rate of 170Hz. For pFAB, only
1.5% of the electrons were detected in coincidence with F+, which would result
in a usable count rate of 2.5Hz.3 These photoelectrons stem from ionization of
a randomly oriented molecular ensemble. If only molecules are selected that are
aligned within a 10◦ opening angle around an arbitrary axis, the number of electron
counts is decreased by another factor of ∼ 10−3, to 0.0025Hz. For comparison, in
the presented LCLS experiments with laser aligned molecules, the mean number
of electron hits per shot was 300 in the dibromobenzene experiment and 140 in
the pFAB experiment. Assuming that about half of those are photoelectrons, and
considering that the YAG alignment laser operates at 30Hz, this corresponds to
a photoelectron count rate of 4.5 and 2.1 kHz, for pFAB and DBB respectively.
This is about six orders of magnitude larger than what can currently be achieved

2 However, the fact that �uorine fragments from laser-aligned pFAB are con�ned to the polarization
direction of the alignment laser implies that a certain relation of the emission direction to the
molecular axis is preserved.

3 Note that FLASH does not provide photons with energies that are high enough to ionize the
F(1s) level.
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in a coincidence mode. When using a di�erent molecule with a more favorable
fragmentation, at most about one order of magnitude can be gained. Once the
European XFEL starts operation at a repetition rate of 27 kHz, the statistics could be
increased by a factor of 30. Another interesting possibility would be to combine laser-
alignment with a coincidence measurement to increase the number of molecules that
are aligned along a given axis. This could be achieved by using the 1 kHz multi-bunch
mode of the TiSa available at FLASH for nonadiabatic alignment. Nevertheless, the
collection of enough data in a photoelectron-photoion coincidence experiment will
remain very challenging.

6.3 Pump-Probe Experiments

Once good experimental conditions for the static measurements have been found,
the goal is to record molecular-frame photoelectron angular distributions of changing
molecular geometries. To this end, it is necessary to trigger a reaction, and the best
way to do this highly depends on the particular reaction to be studied. Here, only
photochemical reactions are considered that can be triggered with a short-pulsed
laser.

In this work, an 800 nm titanium:sapphire laser pulse has been used that populates
various excited and valence-ionized states of dibromobenzene, among them disso-
ciative states. However, the absorption of a single photon, with an energy that is
tuned to an electronic transition would be better suited to trigger a speci�c reaction
in a given molecule. For example, the absorption of a single UV photon in pFAB is
expected to dissociate the molecule via one or a few pathways that proceed through
transition states, see chapter 7. Another complication of a pumping step that is
based on multi-photon processes is the strong dependence on the laser intensity.
Small �uctuations can signi�cantly change the electron spectrum, as was shown in
Fig. 5.11, and possibly also the relative population of di�erent fragmentation chan-
nels. This requires a laser set-up that can provide a very stable intensity over an
extended period of time. Moreover, multi-photon processes can be sensitive to the
orientation of the molecule with respect to the laser polarization direction. Dibromo-
benzene molecules that are aligned parallel to the TiSa polarization are ionized more
strongly than molecules aligned perpendicular to that axis, as has been shown in
Fig. 5.2. This may be exploited to pump aligned molecules more e�ciently, but it
may also interfere with other experimental requirements. Furthermore, averaging
over intensities in di�erent regions of the laser focus cannot be avoided.

Another di�culty in pump-probe photoelectron di�raction experiments is the fact
that the binding energy of a core level can increase considerably when a (valence)
electron is removed from the molecule, see also section 5.2.4. This has implications
for pump-probe experiments in which an ionized molecule is created in the pumping
step. The energy of the photoelectron is decreased, for example by about 10 eV
for the Br(2p) level after the ionization. The MFPAD of the ionized molecule may
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thus be altered, not because of changing molecular structure but simply due to the
di�erent electron kinetic energy. It was shown for pFAB molecules that a 10 eV
change in the photon energy, corresponding to a 10 eV change in electron kinetic
energy, changes the di�erence photoelectron angular distribution considerably, see
Fig. 4.13. Furthermore, the evaluation of di�erence images between data recorded
with the pump pulse arriving before and after the probe pulse cannot be easily in-
terpreted because the radius of the photoline on the detector changes. A way to
overcome this problem is to take as a reference not the distribution for negative
time-delays, but the MFPAD that occurs at zero time delay, directly after the ion-
ization took place but before nuclear motion starts, but this requires a very good
temporal resolution. A second possibility is to trigger a photochemical reaction in
which the molecule remains neutral. This may however be di�cult to achieve, and
complications can arise from the fact that the neutral fragments cannot be detected
easily before probing them by a second pulse.

Finally, it has to be taken into account that in an experiment on adiabatically laser-
aligned molecules, the pump as well as the probe process takes place in the presence
of an additional, strong electric �eld of the alignment laser. It was demonstrated
in sections 4.4 and 5.1 that this can alter the fragmentation of the molecule and
cause multi-color e�ects, also in the photoelectrons. A possibility to avoid this is
to use �eld-free alignment, see section 2.4.4. In general, the degree of molecular
alignment that can be achieved with this method is however signi�cantly lower than
for adiabatic alignment [110]. Considering that a high degree of alignment is crucial
for the photoelectron di�raction approach, as was discussed in section 6.2, impulsive
alignment does not appear to be an attractive alternative at the moment.





7 Conclusion

The objective of this thesis was to investigate the possibility of imaging molecu-
lar structure by recording photoelectron angular distributions of polyatomic, �xed-
in-space molecules. The goal of recording a molecular movie with photoelectron
di�raction is certainly not yet achieved, and the discussion in the previous chap-
ter makes clear that several questions remain only partly answered. Nevertheless,
important insight is gained from the studies presented here. Most of the di�cul-
ties that prevented, up to now, the recording of a delay-dependent photoelectron
angular distribution were particular to the experiments described in this work and
may be avoided in the future, although even with careful preparation, a temporary
experimental set-up at an accelerator-based light source always bears the risk to
encounter instabilities and unforeseen problems.

Ensembles of gas-phase 1-ethynyl-4-�uorobenzene (pFAB) molecules were adiabati-
cally laser-aligned and mixed-�eld oriented, and the angular distributions of photo-
electrons resulting from ionization of the �uorine 1s level by an ∼ 80 fs X-ray pulse
were recorded for �ve di�erent photoelectron energies between 30 and 60 eV. Despite
the fact that a signi�cant amount of molecular clusters were present in the molec-
ular beam, a clear dependence of the di�erence photoelectron angular distribution
on the electron energy and the molecular orientation can be observed that is well
reproduced by density functional theory calculations. The inter-atomic distances in
pFAB range from 1.2 to 7.6Å, and the chosen electron energies correspond to wave-
lengths of 1.6 to 2.2Å, thus an interpretation of this e�ect in terms of intra-molecular
scattering of the photoelectron wave is suggested. Interference e�ects depend on the
wavelength, as well as on the geometry of the scattering object, thus the change of
the angular distribution for decreasing wavelengths gives an indication for changes
that could be expected when a molecule with increasing internuclear distances is
imaged at a �xed wavelength. In this sense, the results of this experiment indicate
that photoelectron di�raction is sensitive to the molecular structure, and may be
interpreted as `freeze frames' of a molecular movie, taken with an X-ray FEL.

In a second step, it was investigated to what extent this technique can be uti-
lized to record snapshots of changing molecular structure by evaluating data from
an IR-pump, X-ray-probe experiment on laser-aligned 1,4-dibromobenzene (DBB)
molecules. Here, an 800 nm laser pulse was used to dissociate the molecules before
the Br(2p3/2) level was ionized by the X-ray pulse, resulting in photoelectrons of
20 eV kinetic energy. Although the e�ect of the molecular alignment on the photo-
electron angular distribution can also be observed in the presence of all three light
pulses, no dependence of this signal on the delay between the laser pulse and the
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X-ray pulse is found. Reasons for this are the temporal resolution of the experiment
that was limited to about 300 fs due to the arrival time jitter between the laser pump
and the X-ray probe pulse, the comparably low degree of molecular alignment, and
the fact that only one data set could be recorded for which the pump pulse arrived
at the target signi�cantly earlier than the probe pulse.

Both experiments involving adiabatically laser-aligned molecules demonstrate that
the alignment laser pulse signi�cantly in�uences the fragmentation of the molecule
in the pumping and the probing steps, and can also a�ect the photoelectrons due
to two-color e�ects. Alternatively, the molecules can be �xed in space by the
photoelectron-photoion coincidence technique. Photoelectron angular distributions
from ionization of the �uorine 1s level in pFAB were recorded in coincidence with
F+ ions. When the �uorine ions are emitted in opposite directions, the electron
angular distributions are mirror images of each other, however, they look similar to
the distribution measured for randomly oriented molecules. The photoion-photoion
coincidence map illustrates that many fragmentation channels exist, and that only
few of them involve the emission of an F+ ion. These channels exhibit rather broad
lines in the PIPICO map, indicating that more than two charged fragments have
been created.

All experiments reveal that recording a molecular-frame photoelectron angular dis-
tribution of a polyatomic molecule is challenging, with the major issue being to
align the molecules accurately in space. A degree of alignment of 〈cos2 θ2D〉= 0.97
is expected to improve the angular resolution of the photoelectron angular distribu-
tion signi�cantly, and has already been successfully demonstrated for adiabatically
laser-aligned, state-selected iodobenzene molecules [155]. Although the coincidence
method can, in principle, achieve a high degree of alignment, the fragment ions are
not always strictly emitted along the direction of the molecular bond, for example
if more than two charged fragments are created, or when structural rearrangement
takes place during the dissociation, setting a principle limit to the achievable align-
ment. Imaging a changing molecular structure, for example during an isomeriza-
tion reaction, is only possible with this method if the marker atom does not move.
Moreover, the variety of fragmentation channels for molecules that contain more
than a few atoms can make it di�cult to �nd ionic fragments that are suitable to
�x the molecule in space. In contrast, the laser-alignment technique is applicable to
all molecules with an anisotropic polarizability, and moreover o�ers the possibility
of aligning the molecules in three dimensions without losing many of the events.
However, in this case the contributions of all di�erent fragmentation channels are
summed up. Moreover, the molecular alignment may be in�uenced if the polariz-
ability of the molecule changes during the reaction.

When designing a future photoelectron di�raction experiment, several choices should
be carefully considered. The optimum photon energy and the electron initial state
which determine the energy and the shape of the initial photoelectron wave de-
pend on the particular molecule and reaction to be studied. In general, the energy
should be high enough to separate the photoelectrons from low-energy electrons.
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Increasing the electron energy up to a regime where the scattering can be described
within the �rst Born approximation would signi�cantly simplify the interpretation
and the theoretical prediction of photoelectron angular distributions. Comparison
of density functional theory calculations and calculation within the �rst Born ap-
proximation indicate that this regime may already be reached for energies of a few
hundred eV. By now, photoelectron angular distributions have been recorded for
several molecules with kinetic energies as high as 250 eV with a very similar experi-
mental set-up at the PETRA synchrotron facility, which should enable a systematic
comparison between data and di�erent theoretical predictions. Benchmarking a
theory which can make reliable predictions of experimental photoelectron angular
distributions of polyatomic molecules would tremendously help to identify the op-
timum experimental conditions in advance of an experiment. Moreover, it may be
bene�cial to change the set-up such that the alignment direction of the molecule can
be rotated within the detector plane. In addition, using a more symmetric initial
wave circumvents the problem of information loss due to the node in the initial wave,
however, the theoretical description of the superposition of di�erent partial waves is
generally more complicated.

In general, a stable experimental set-up and a good control of all experimental
parameters is crucial, especially in a pump-probe experiment aiming at imaging
changing molecular structure. The molecular beam should be well characterized, to
ensure that the molecules are rotationally cold and preferably state-selected, and
that no molecular clusters are created. The properties of the laser pulse and the
FEL pulse have to be well controlled, or, if this is not possible, be recorded on
a shot-to-shot basis. The arrival time jitter between laser-pump and X-ray-probe
pulse that limited the temporal resolution to about 300 fs in 2010 can now be cor-
rected for by employing cross-correlation techniques [173, 174, 172]. Moreover, the
pulse durations of FEL and laser pulse are constantly shortened and should enable
an overall temporal resolution of about 10 fs in the near future. Furthermore, the
intensities of table-top X-ray sources exploiting high-harmonic generation continu-
ously increase, thus they may soon become an attractive alternative to experiments
at accelerator based lightsources, avoiding the problem of the arrival time jitter be-
tween pump and probe pulses. Triggering a photochemical reaction with a single
photon, for example in the UV range, with an energy tuned to a speci�c transition is
expected to have several advantages over using a multi-photon process. Fewer excess
electrons are created, the process is less sensitive to small �uctuations in the laser
intensity, and ideally the molecule remains neutral which facilitates the comparison
to photoelectrons from molecules in the ground state.

To illustrate the results that may be expected in a successful time-resolved pho-
toelectron di�raction experiment, Fig. 7.1 shows calculated molecular-frame pho-
toelectron angular distributions for di�erent molecular geometries of pFAB which
are predicted to occur within less than 1 ps after photoexcitation by a UV pho-
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Figure 7.1: Photoelectron angular distributions of perfectly one-dimensionally aligned pFAB
molecules with di�erent intermediate geometries, obtained from DFT calculations at a photoelec-
tron kinetic energy of 35 eV. Transition state 2 is followed by transition state 3, see also Fig. 1.2(b).
The �uorine and the hydrogen atom are located out of the molecular plane in (c) and (d), and the
benzene ring is slightly distorted [179, 180].

ton [4, 145, 179, 180], see also Fig. 1.2(b)1. The resulting MFPADs are clearly
di�erent when the molecules are perfectly aligned, suggesting that it could be pos-
sible to image the reaction pathway through one of these intermediate geometries
in a UV-pump, FEL-probe experiment even with non-perfect molecular alignment.
However, a transition state is by no means a static geometry in which the molecule
remains, but a saddle point in the reaction coordinate through which the change in
molecular structure proceeds, often very fast. Moreover, the molecular wave packet
may spread out considerably, such that several di�erent intermediate geometries are
populated at the same time, which could not be distinguished even if the experiment
had an in�nitely good temporal resolution. It is therefore not obvious, whether it
would be possible to directly image the di�erent predicted transition states, but for
certain cases it may be possible to distinguish di�erent pathways.

In summary, if the above discussed problems can be overcome, time-resolved pho-
toelectron di�raction and holography can o�er a complementary approach to time-
resolved X-ray and electron di�raction. It holds the potential to image the geo-
metric structure of gas-phase molecules with few-femtosecond temporal and sub-
Ångström spatial resolution, at photon energies only a few hundred eV above a
given inner-shell threshold. Using electrons as opposed to X-rays for imaging has
the advantage of much higher elastic scattering cross sections, which is particularly

1 Transition state 4 is referred to as transition state 1 in Fig. 1.2(b) that is taken from reference [4].
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important for targets containing lighter atoms such as carbon, nitrogen, or oxygen
that do not scatter X-rays e�ciently. Using photoelectrons instead of an electron
beam has the additional bene�t of avoiding the problem of velocity mismatch in
laser-pump electron-probe experiments on gas-phase targets. Due to the element
speci�city of X-ray photoionization it is possible to launch the photoelectron wave
from a speci�c atom within an extended molecule, o�ering the opportunity to create
a localized source and to image only the local environment of the emitter. An up-
coming experiment at FLASH as well as a proposal for a future LCLS experiment
aim at recording time-resolved photoelectron angular distributions, implementing
the insights obtained in this work.





A Appendix

A.1 Estimate of the Number of pFAB Clusters

The time-of-�ight spectrum of pFAB recorded during the LCLS experiment con-
tained a large, broad parent ion peak, as well as a broad peak of singly ionized
pFAB dimers and dimers that miss a �uorine atom, as shown in Figure 4.7. These
ions are attributed to the presence of molecular clusters, and the fact that these
peaks are broad demonstrates that the ions possess kinetic energy and, thus, are
probably created from break-up of trimers or larger clusters. These clusters are,
most likely, not aligned by the YAG laser pulse, which is of particular importance
for the analysis of photoelectron angular distributions of aligned molecules. The
recorded ion data do not provide an unambiguous way of determining the ratio of
isolated molecules and molecules in clusters in the molecular beam, but several hints
are taken into consideration to provide a rough estimate.

Figures A.1(a) and A.1(b) show typical distributions of F+ fragments on the ion
detector after ionization of pFAB by the LCLS pulse, recorded with and without
the YAG alignment laser. Both images contain the same number of events. It is
obvious that additional F+ ions are created when the YAG laser is added, which have
a lower kinetic energy and are isotropically distributed, in contrast to the ions with
higher kinetic energy that are emitted along the YAG laser polarization direction.
It was shown in reference [181] that the kinetic energy of iodine fragments created
by UV absorption of iodomethane molecules decreases when two to three molecules
are bound in a molecular cluster, and that their angular distribution becomes more
isotropic as compared to single molecules, which is attributed to collisions of the
iodine ion within the cluster. This suggests that in the present case, the additional
ions result from ionization of excited, randomly oriented pFAB molecules by the
YAG pulse that are bound in a molecular cluster.

To estimate the degree of alignment that was achieved for single molecules, the low-
energy peak that is superimposed with the signal of aligned molecules is removed
from the image. The central peak can be �tted by a two-dimensional Lorentz distri-
bution, and then be subtracted, resulting in the distribution in Fig. A.1(c). These
ion images not only enable the determination of the degree of alignment, but also
provide limited information about the fraction of unaligned clusters in the molec-
ular beam. When assuming that the additional, low-energy ions with an isotropic
distribution originate from unaligned molecular clusters, the ratio
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Figure A.1: Ion detector images for ionization of pFAB molecules by the LCLS, recorded at
a photon energy of 723 eV with and without the YAG alignment laser. The detector is gated to
the time-of-�ight peak of F+. The polarization directions of FEL and YAG laser lie along y. The
integrated number of detector hits is doubled when the YAG laser is present. A two-dimensional
�t of a Lorentz function to the central peak in (b) has been subtracted, resulting in the image in
(c). These are the same data as presented in Figs. 4.8(c) to 4.8(f).
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Ekin [eV] with without %1 outer central %2
YAG laser YAG laser peaks peak

31 11270 5310 0.47 1916 7098 0.27
36 3626 2085 0.58 830 2166 0.38
46 3781 2321 0.61 555 2308 0.24
51 4928 4316 0.86 - - -
62 9215 5349 0.58 1689 5793 0.29

Table A.1: Number of ion hits on the detector divided by 103, with and without the YAG
alignment laser, and in the central and the outer peaks in the image recorded with the YAG laser.
The background from residual water in the chamber has been subtracted. For the case of 51 eV
electrons, the high voltage on the drift tube on the ion side of the spectrometer broke down during
the measurement, thus the central peak could not be �tted well and the number of detector hits
may not be fully reliable.

%1 =
number of detector hits without YAG laser
number of detector hits with YAG laser

(A.1)

as obtained from the images in Figs. A.1(a) and A.1(b) can provide an estimate of
the fraction of molecular clusters. Table A.1 summarizes the results for the �ve data
sets recorded at di�erent kinetic energies of the photoelectron Ekin. Alternatively,
the ratio

%2 =
number of detector hits in outer peaks with YAG laser
number of detector hits in central peak with YAG laser

(A.2)

can be evaluated, the resulting values are also given in Tab. A.1. According to
the values of %1, about 40− 50% of the detector hits stem from F+ fragments that
originate from ionization of molecular clusters, according to %2 even 60− 80% of the
hits. It is however not known, how the fragmentation of a pFAB cluster after inner-
shell ionization di�ers from the fragmentation of a free molecule. The emission of a
singly charged �uorine atom from an ionized cluster may be less likely than emission
from an isolated molecule, as within the cluster more possibilities exist to transfer
the charge to other atoms. The numbers given in Tab. A.1 therefore can only provide
a qualitative estimate and should be interpreted as a rough upper limit for the ratio
of free molecules to molecules bound in clusters.

Moreover, not only the ion images but also the simultaneously recorded photoelec-
trons can be exploited to extract information on the number of molecular clusters,
when complemented with DFT calculations. The calculated photoionization cross
sections of aligned pFAB molecules, σal, and of randomly oriented molecules, σrdm,
are di�erent in the energy range investigated here, as was shown in the ratio in
Fig. 4.14 and is shown for the partial cross section in Fig. A.2. When unaligned
molecular clusters are present, the overall ionization probability for the data recorded
with the YAG laser thus does not correspond to the calculated cross section for
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Figure A.2: Calculated photoionization cross sections for the F(1s) level in pFAB. For the
partial ionization cross sections, the molecules are assumed to be perfectly three-dimensionally
aligned. The X-ray polarization direction is along y. a1 corresponds to pFAB molecules in the
(x, y) detector plane with the major molecular axis along y, b1 corresponds to pFAB molecules in
the (x, y) plane with the major molecular axis along x, and b2 corresponds to pFAB molecules in
the (x, z) plane with the major molecular axis along x.

aligned molecules, but results from the sum of aligned and randomly oriented ion-
ization cross sections with unknown relative contributions. The number of aligned,
single molecules, n, and the number of unaligned molecules in clusters, ncl deter-
mine the total number of electron hits in the photoline, referred to as Non for data
recorded with the YAG laser, and No� for data recorded without the alignment laser.

Non = σal n+ σrdm ncl (A.3)

No� = σrdm n+ σrdm ncl. (A.4)

The ratio between single molecules and molecules bound in clusters can then be
derived as

%3 =
n

ncl
=
No� σrdm −Non σrdm
Non σrdm −No� σal

. (A.5)

All relevant numbers for the di�erent recorded photoelectron energies are listed in
Tab. A.2.1 For the case of 46 eV electrons, the calculated cross section ratio is < 1 but
the experimental ratio is > 1, and for the case of 62 eV electrons the data does not
match the calculation, see also Fig. 4.14, thus the resulting ratios %3 are unphysical.
The remaining values suggest that 50− 80% of the molecules that are photoionized

1 As the aligned molecules are not perfectly �xed in space, σal is not the value of a1 as derived from
Fig. A.2, but it was recalculated with DFT for the experimentally achieved degree of alignment
for the �ve measured energies.
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Ekin [eV] Non No� Non /No� σal σrdm σal / σrdm %3 %4
31 2592 2742 0.945 309.4 380.5 0.8133 0.41 0.11
36 1630 1765 0.923 290.9 370.7 0.7849 0.55 0.30
46 862 853 1.010 404.3 412.3 0.9804 -0.35 0.10
51 1774 1801 0.985 344.9 385.5 0.8946 0.17 0.10
62 1883 1924 0.978 390.8 390.9 0.9996 -1.02 0.05

Table A.2: Number of electron hits in a radial region of interest around the outer edge of
the photoline, divided by 103, recorded with and without the YAG alignment laser. Calculated
ionization cross sections are given in kb.

when the YAG laser is present are in fact randomly oriented. It is however unclear,
whether it is valid to assume that σrdm is identical for free molecules and molecules
in clusters.

Finally, the shape of the experimentally obtained di�erence photoelectron angular
distributions (∆PADs, see section 4.3) can be used to determine the number of
randomly oriented molecules. The experimental PADs, recorded with and without
the YAG, Ion(φ) and Io�(φ), result from the sum of aligned and randomly oriented
PADs, Ial and Irdm, depending on the number of free molecules n and molecules
bound in clusters ncl.

Non Ion(φ) = n Ial(φ) + ncl Irdm(φ) (A.6)

No� Io�(φ) = n Irdm(φ) + ncl Irdm(φ) (A.7)

When comparing the experimentally obtained ∆PADexp = Non Ion(φ) − No� Io�(φ)
to calculations, the calculated PADs are normalized to the experimentally obtained
number of hits Non, No� and then subtracted. When the contribution of clusters is
not taken into account, this would result in a calculated ∆PADideal = Non Ial(φ) −
No� Irdm(φ), which signi�cantly overestimates the magnitude of the expected di�er-
ence and can even alter the shape of the ∆PAD. Instead, ∆PADcalc = Non Ion(φ)−
No� Io�(φ) needs to be calculated. Figure A.3, demonstrates the evolution of the
calculated ∆PADs for the �ve di�erent electron energies when varying the ratio

%4 =
n

ncl
(A.8)

from (n=1, ncl=0) to (n=0.1, ncl=0.9) in steps of 0.1. The resulting ratios that
are plotted in Fig. 4.13 for comparison with the experimental data are listed in
Tab. A.2. They suggest that 70− 90% of the molecules are randomly oriented.
In summary, it can be stated that although the ratios obtained with the di�erent
methods di�er, and the considerations are not expected to produce reliable absolute
values, overall they all suggest that a signi�cant number of molecules were bound
in molecular clusters.
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A.2 Results of Density Functional Theory

Calculations

Additional, non-averaged molecular-frame photoelectron angular distributions cal-
culated from density functional theory for di�erent photoelectron energies are shown
in Figs. A.4 and A.5. Figure A.4 shows MFPADs for ionization of the �uorine 1s
level in perfectly oriented pFAB molecules for di�erent photoelectron kinetic en-
ergies. The results of symmetrizing these distributions, corresponding to perfectly
aligned molecules, are plotted in Fig. A.5. Also shown are results of averaging over
a Gaussian axes distribution with a width of σ= 20◦.
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Figure A.4: Calculated MFPADs for F(1s) ionization of pFAB for di�erent electron kinetic
energies. Blue: 3d-orientation, red: 1d-orientation. The �uorine is located on the bottom.

0

45

90

135

180

225

270

315(a) 10 eV

0

45

90

135

180

225

270

315(b) 20 eV

0

45

90

135

180

225

270

315(c) 30 eV

0

45

90

135

180

225

270

315(d) 40 eV

0

45

90

135

180

225

270

315(e) 50 eV

0

45

90

135

180

225

270

315
(f) 60 eV

0

45

90

135

180

225

270

315
(g) 70 eV

0

45

90

135

180

225

270

315
(h) 80 eV

0

45

90

135

180

225

270

315
(i) 90 eV

0

45

90

135

180

225

270

315
(j) 100 eV

Figure A.5: Calculated MFPADs for F(1s) ionization of pFAB for di�erent electron kinetic
energies. Blue: 3d-alignment, red: 1d-alignment, green: 1d-alignment with 〈cos2θ2D〉 = 0.89.
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A.3 Experimental Parameters

Additional technical parameters are given for the three di�erent experiments pre-
sented in this thesis. In section A.3.2 only parameters are listed that are di�erent
from the ones given in section A.3.1. Details for individual data sets are given in
Tab. A.3

A.3.1 LCLS Experiment on pFAB Molecules, 2011

LCLS

• repetition rate: 120Hz

• photon energy: 723 - 754 eV

• pulse length: ∼ 80fs

• pulse energy: 0.7 - 1.3mJ

• spot size: 50x50µm2 FWHM

• bandwidth: 0.2 - 1.0% [120]

Nd:YAG Alignment Laser

• model: Spectra Physics Quanta Ray
Pro 270-50

• repetition rate: 30Hz

• photon energy: 1.17 eV

• wavelength: 1064 nm

• pulse length: 10 ns

• pulse energy: 500mJ

• spot size: 70x70µm2 FWHM

• intensity: ∼ 5× 1011W/cm2

Molecular Beam

• 1-ethynyl-4-�uorobenzene, C8H5F

• carrier gas: helium, 50 bar

• repetition rate: 60Hz

• length of de�ector: 24 cm

Other

• phosphor screen: Photonis APD 2 PS
75/32/25/8 D 60:1 NR P20

• MOSFET push-pull switch: Behlke
HTS 31-03-GSM

• CCD camera: Adimec Opal-1000

• gate length ions: 168 ns

• gate length electrons: 168 ns

A.3.2 LCLS Experiment on DBB Molecules, 2010

LCLS

• repetition rate: 60Hz

• photon energy: 1572 eV, 1587 eV

• pulse length: 100 fs

• pulse energy: 3mJ

• beam waist: ω0 = 30µm
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Nd:YAG Alignment Laser

• pulse energy: 300mJ

• beam waist: ω0 = 65µm

• intensity: ∼ 3× 1011W/cm2

Ti:Sapphire Pump Laser

• repetition rate: 60Hz

• photon energy: 1.55 eV

• wavelength: 800 nm

• pulse length: 70 fs

• pulse energy: ∼ 2mJ

• beam waist: ω0 = 50µm

• intensity: ∼ 1014W/cm2

Molecular Beam

• 1,4-dibromobenzene, C6H4Br2,
Sigma-Aldrich, 98% purity

• carrier gas: helium, 50 bar

• repetition rate: 60Hz

• nozzle diameter: 150µm

• nozzle opening time: 10µs

• nozzle temperature: 55 ◦C

• skimmer: BeamDynamics model 50.8,
diameter 4 and 2mm

Other

• delay line anode: Roentdek DLD-80

• gate length ions: 400 ns

• gate length electrons: 900 ns

• width of slit on bottom side of
spectrometer: 0.5mm

• extraction �eld: 260V/cm

A.3.3 PETRA Experiment on pFAB Molecules, 2013

PETRA

• repetition rate: 125MHz

• photon energy: 765 eV

• spot size: ∼ 50µm× 3mm

Molecular Beam

• 1-ethynyl-4-�uorobenzene, C8H5F

• carrier gas: helium, 200mbar

• repetition rate: continuous
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