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Zusammenfassung

Im letzten Jahrzehnt hat die graphtheoretische Analyse der Netzwerkarchitektur des
menschlichen Gehirns, das sogenannte Konnektom, zunehmend an Interesse gewon-
nen. In dieser Arbeit erweitern wir Netzwerk Indizes, die für andere Anwendun-
gen entwickelt wurden, um zusätzliche medizinische Informationen in Betracht zu
ziehen. Anschließend evaluieren wir diese erweiterten Indizes auf einem Kollektiv
von Autismuspatienten. Wir vergleichen die vorgeschlagenen Indizes mit anderen,
traditionell in der Literatur benutzten, und zeigen, dass sie ein wirkungsvolles neues
Werkzeug in der Analyse des Konnektoms sein können. Wir unterziehen sie dann
ein weitergehenden Analyse um ihre Leistung in Abhängikeit der Netzwerkdichte
einschätzen zu können und den Dichtebereich zu ermitteln in dem sie die besten
Informationen liefern.
Unser Ziel ist es durch so eine umfassende Analyse die Zahl der willkürlich gewählten

Parameter in der Analyse des Konnektoms weiter zu reduzieren und zu helfen die
Vergleichbarkeit verschiedener Studien zu erhöhen.

Abstract

Using graph theory to analyse the architecture of the human brain, the connectome,
has gained increasing interest in the last decade. In this work we extend graph mea-
sures, which have previously been developed for other applications, to include prior
medical information. These extended measures are then evaluated on a collective of
Autism Spectrum Disorder patients. Examining their performance in comparison to
other traditionally used measures we show, that they are a valuable new tool in the
analysis of the human connectome. We then further evaluate their performance over
a range of network densities in order to determine the range at which they supply
the most valuable information.
By doing an in depth evaluation of these measures we aim to reduce the amount

of guesswork in choosing variables in the analysis of the connectome and help to
improve the comparability of different studies.
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1 Introduction

1.1 Motivation

In the past decade the use of graph analysis to describe the architecture of the human
brain has become more and more common. By using graph theoretical techniques
known from other applications to examine these brain networks, called connectomes,
a rich field has opened up which promises to yield new insights in the brain and the
changes due to a variety of diseases.
This new technique offers up exciting possibilities, however there are many chal-

lenges still to be resolved. In contrast to many traditional applications of graph
theory the connectomes that are currently used in research tend to be far smaller
in scale, only having between less than a hundred and a few thousand nodes. At
the same time the brain is an organ, which has long fascinated mankind and has
a long history of medical research. Moving the connectome from a purely abstract
description of the connectivity of different points in space and incorporating medical
information can lead to a better understanding of the nature of the connectome and
how to accurately represent and read it [55].
At the same time a lot of the research has been exploratory in nature as often

happens when a new field opens up [87]. Using this groundwork to find applications
which can potentially benefit the medical practice and provide new diagnostic tools
is an important part of the continuing scientific progress.
By studying the research done on the changes in diseased connectome [45] the

possibilities of adapting previous methodology to fit the situation in the human
brain becomes apparent. By applying these new techniques to actual patient data it
is possible to examine their performance and identify the possibilities and limitations
in their use.

1.2 Objectives

The main objective of this work is to improve the understanding of the human con-
nectome and examine the suitability of using a range of network indices for diagnostic
purposes. A secondary objective is to supply researchers with a working open-source
solution for a pipeline from the original data to the analysed connectome.
In order to achieve the main objective there are multiple avenues that are pursued

in this work.

1. We try to establish a baseline of the diagnostic quality of existing measures,
especially the commonly used ones. This is important in order to compare any
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new measures developed in this work to pre-existing ones.

2. We want to improve upon the state of the art by extending existing graph the-
oretical measures to incorporate prior anatomical and disease symptomatology
specific information.

3. Any new measure should be thoroughly investigated to understand its prop-
erties and judge its applicability.

The second objective is served by integrating the pipeline developed in this work
with the Medical Imaging Interaction Toolkit [35], providing an easy-to-use open
source implementation.
The evaluation of our work on a collective of Autism Spectrum Disorder (ASD)

patients serves the idea of connecting symptoms with unknown causes with changes
in the connectome. A new measure developed on the basis of these symptoms and
showing the changes potentially responsible for this will advance our understanding
of ASD.

1.3 Outline

Chapter 2 provides the technical and medical background necessary for this work.
In it we introduce the concept of diffusion weighted Magnetic Resonance Imaging
and detail the processes taking place between the acquisition of the data and the
work detailed in this document. Additionally we provide a quick overview of the
terminology and concepts of graph theory that are required for this work.
Chapter 3 gives an overview of the current state of the art regarding the construc-

tion of the connectome and its analysis. With a focus on the structural connectome
we give an overview of current techniques and problems.
The methods developed as part of this work are described in chapter 4. We

describe the global graph indices used for a baseline evaluation of current global
techniques as well as the methods used to establish a diagnostic significance us-
ing classification. We then continue on to describing a new regional approach to
network measures using prior anatomical knowledge. Lastly we examine the pro-
posed regional approach in detail and examine some of the problems arising from
the different methods for connectome construction and their impact on our proposed
measures.
The results of these investigations are presented in chapter 5 and discussed in

detail in chapter 6. We then continue to detail the impact of our work and suggest
future courses of investigation based on our results.
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2 Background

2.1 Medical Background

In this section we will give a short introduction into the human brain and Autism
Spectrum Disorders (ASD) in order to set this work into a medical context.

2.1.1 The Brain

The human brain is the main information processing organ of the human body. It
collects information from the various senses, integrates this information, sets it into
context depending on previously made experiences, provides feedback and controls
the movement of the various muscles of the body. In order to carry out its task its
architecture provides it with significant processing power and data storage facilities.
It is responsible for up to twenty percent of the bodies energy consumption.
The processing power is provided by billions of specialized cells, the neurons,

which comprise the brain and are active concurrently. A neuron consists of three
distinct parts. The branching dendrites receive information from other neurons.
They can form a complex tree extending hundreds of micrometers and connecting
to up to a thousand other neurons. The cell body or soma houses the organelles
of the cell and continues into the axon, which can extend from a few millimetres
to metres, depending on the role of the neuron. The axon propagates the signal to
other neurons and can reach up to a thousand other neurons. Figure 2.1 shows a
sketch of a neuron. This dense web of interconnecting neurons is responsible for the
complex calculations the human brain is capable of.
Figure 2.2 shows a cross-section of the human head. An easily recognizable dif-

ference in the tissue of the human brain is the division into two distinctly coloured
tissue types. The grey matter, making up the outer shell of the brain, is where the
dendrites and cell bodies are located. The axons make up the inner white matter,
they are densely packed in bundles connecting different areas of the grey matter.
This dense packing is believed to be the main reason for the directional dependency
of water diffusion in the white matter as water molecules can move along these tracts
but not across the axon walls.

2.1.2 Autism Spectrum Disorder

Autism Spectrum Disorders (ASD) encompasses a range of conditions which are
classified as neurodevelopmental disorders [37]. While the specific symptomatology
of these conditions can be different, they have a range of symptoms in common.
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Figure 2.1: A schematic image of a neuron. Taken from Wikipedia (original author
BruceBlaus)

Patients suffering from any of these disorders typically suffer from social deficits,
reduced communicational capacity, repetitive behaviour and potentially cognitive
delays [71, 44].
Specific causes for ASD are currently not known, resulting in the definition being

based mainly on the symptoms. Using new techniques to gain a better understanding
of these disorders will therefore be important as about 1 in 88 children in the US
suffer from ASD and as many as 1.5 million Americans are believed to have some
form of ASD [3].

2.2 MR Diffusion Imaging

The analysis of the human connectome is the last step in a long and complex pipeline.
Our work is solely focussed on the last steps of this pipeline, namely the construction
of the connectome and the analysis thereof. In this section we give an overview of
the prior pipeline in order to place our work in context.

2.2.1 Acquisition

In contrast to Computer Tomography (CT), that is based on the absorption of
gamma radiation by the tissue of the body, Magnetic Resonance Imaging (MRI) is
a non invasive method based on the measurement of the response of non zero spin
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Figure 2.2: A cross section of the human head. The differences in the texture of the
grey and white matter are easily visible. Image taken from Wikipedia(
released to the public domain by the US government )

atoms to an external magnetic field. The most abundant such atom in the human
body is the hydrogen atom. It is comparatively so much more abundant, that the
main signal in the body will be due to 1H atoms, unless specific contrast agents are
introduced. We will henceforth consider only the 1H atom, which can have a spin
of either m = +1/2 or m = −1/2.

Spins in a Magnetic Field

Without an external magnetic field both spin states have the same energy and the
spins will be equally distributed. By inserting a tissue sample or patient in a large
electro-magnet, the Magnetic Resonance Tomograph, an external magnetic field is
applied. This splits the spin states and introduces an energy difference between
them.
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The energy of a magnetic moment ~µ in an external magnetic field ~B0 is given by:

E = −~µ · ~B0 (2.1)

by choosing our coordinate system so the z-axis is aligned along ~B0 this simplifies
to:

E = −µzB0 = −γ~mB0 (2.2)

γ being the gyromagnetic ratio.
The energy difference between the two states is therefore equal to:

∆E = γ~B0 (2.3)

Biasing the distribution of spin states towards the lower energy one.
The magnetic moment of the atoms will precess around the external field due

to the torque exerted by it. This Larmor precession will happen at an angular
frequency of

ω = γB0 (2.4)

Magnetic Resonance Imaging

If the external magnetic field is applied for a long enough time the net magnetization
of all spins will be parallel to the magnetic field. Applying a radio frequency (RF)
pulse of a frequency matching the resonance (Larmor) frequency will cause some of
the spins to absorb the photons and flip to an excited state. This will reduce the
longitudinal magnetization, while at the same time, due to phase coherence, estab-
lishing a magnetization perpendicular to the external magnetic field. The length of
the RF pulse can be chosen to flip the magnetization by 90 ◦ in which case we speak
of a 90 ◦ pulse. A pulse twice as long will flip the magnetization by 180 ◦ and is
known as 180 ◦ pulse.
Given a long enough time the spins will return to the thermal equilibrium. The

mean time for this to happen to an individual spin is designated T1 and the process
called T1 relaxation. The length of T1 is dependent on the strength of the magnetic
field, but for our purposes can be seen as somewhere between 800 ms and 1 s.
The second relaxation process, called T2 relaxation is due to molecular interactions
and leads to a decoherence of the spins and an exponential decay of the transverse
magnetization with a time constant of T2. The T2 relaxation is in most circumstances
the faster process with T2 being in the order of 200 ms.
Inhomogeneities of the magnetic field lead to differences in B0 depending on the

location of the spin and lead to an even faster decoherence of the spins with a time
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constant of T ∗2 . By applying a 180 ◦ pulse some time after the 90 ◦ pulse the position
of the spins will be switched, with faster processing ones now lagging behind in phase
and after the same time interval the spins will be briefly in phase again leading to
a spin-echo. This can be measured by receiver coils placed close to the patient.
In order to create a 3D image from 2D image slices an additional magnetic gradient

can be applied so that the Larmor frequency will be dependent on the location of
the spins along the gradient. This way only spins on one plane will be excited by a
specific frequency. The thickness of this slice will depend on the bandwidth of the
RF pulse and the magnitude of the field gradient.
Similar to the slice selection the readout of specific voxels uses additional gradi-

ents. The slices are in the x-y-plane and additional gradients Gx and Gy can be
applied. Using this method each spin has a location dependent Larmor frequency
and will acquire a phase Θ as follows:

Θ(x, y) = 2π(kxx+ kyy) (2.5)

with

ki = γ

∫
Gi(t)dt (2.6)

for i = x and i = y respectively.
The resulting net magnetization across an excited slice can then be represented

as a function f(x, y). The signal s(t) measured in the receiver coil is the integrated
signal from all spins:

s(t) ∝ F (kx, ky) =

∫
f(x, y)ei2π(kxx+kyy)dx dy (2.7)

Equation 2.7 is a fourier transformation and f(x, y) can be reconstructed using
an inverse fourier transformation, given enough samples of kx and ky.

Diffusion Weighted Magnetic Resonance Imaging

In 1994 a method was presented for using diffusion weighted Magnetic Resonance
Imaging (dMRI) to estimate anisotropic diffusion of water along axons [6]. This
opened a way to non-invasively examine the micro-structure of the human brain
in-vivo. Using this information it became possible to quantify information about
the fiber tracts in the brain, which previously had been done mainly in autopsies
and using tracer experiments on monkeys.
The premise of diffusion-weighted imaging (DWI) is similar to MRI. It is an

extension of the latter using information about the diffusion characteristics of water
at a location to infer the micro-structure limiting the diffusion at the same location.

14



As has been noted previously applying a magnetic gradient during the MRI mea-
surement will cause the gradients to loose coherence (see Eq. 2.5). If a reversed
gradient is applied for the same amount of time the spins will then rephase. This
however only works if the spins did not move between the gradients, otherwise the
rephasing will not be perfect and the echo will be reduced. When this was first
noted in an inhomogeneous magnetic field it was suggested that it could be used
to measure the diffusion coefficient of a solution [48]. This idea was later taken to
suggest a modification of the standard spin-echo sequence [15]. A refinement of this
technique, called pulsed gradient spin-echo (PGSE), no longer applies the gradient
during the entire acquisition, but instead uses two distinct gradient pulses [92]. The
advantage is that this does allow a clear distinction between the encoding time δ
and the time separating the two gradient pulses ∆. Varying the strength of the
gradients allows for varying sensitivity to diffusion. The so called b-value reflects
the gradient strength:

b = q2

(
∆− δ

3

)
= γ2G2δ2

(
∆− δ

3

)
(2.8)

q is here the product of the strength and the length of the gradient pulses.
The first pulse takes place between the excitation pulse and the refocussing pulse,

the second between the refocussing pulse and the spin echo. If we assume δ to be
too short for diffusion to take place during the pulse the difference in phase will be
a function of the location during the first pule x1 and the second pulse x2:

Φ2 − Φ1 = q(x2 − x1) (2.9)

If the particles remained stationary between the pulses they will rephase and the
difference will be zero. If they moved however the rephasing will not be perfect and
the signal will be reduced.
The signal attenuation is calculated by dividing the observed signal using diffusion

weighting S(q) by the signal without diffusion weighting S0:

E(q) =
S(q)

S0

=

∫
ρ(x1)

∫
P (x1, x2,∆)e−iq(x2−x1)dx2dx1 (2.10)

Where ρ(x1) is the spin density at x1 during the application of the first gradient
pulse. For most applications this will be set to 1. P (x1, x2,∆) is the diffusion
propagator and depends on the used diffusion model. It describes the likelihood of
a particle at location x1 during the first pulse to be at location x2 during the second
one. In the case of free diffusion this will be a Gaussian. e−iq(x2−x1) is the Fourier
kernel used for the frequency response of a time-dependent signal.

If we assume free diffusion equation 2.10 simplifies to

E(q) = e−q
2D(∆− δ

3
) = e−bD (2.11)
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Which can be used to quickly calculate the diffusion coefficient from MRI mea-
surements. As the diffusion is hindered in the brain the resulting diffusion coefficient
will be lower than the free diffusion coefficient in water.
In the white matter the diffusion will usually depend on the direction of the

diffusion encoding gradient. This is due to the packing of axons, which will hinder
diffusion in certain directions, while allowing it in others.

2.2.2 Preprocessing and Modelling

Modelling the Diffusion

In the case of anisotropic diffusion the diffusion can no longer be expected to be
a simple coefficient as it is direction dependent. Instead we can use a tensor to
describe the diffusion.Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (2.12)

The orthogonal elements of the tensor represent the diffusivity along the axes of
the laboratory (scanner) frame of reference. The off-diagonal elements represent the
correlation of the displacements along the axes. Figure 2.3 represents the diffusion
tensor as ellipsoid in different cases.
The diffusion tensor is symmetric and as such has six independent variables. In

order to calculate the tensor at least six different gradient directions have to be
acquired in addition to an image without diffusion weighting.
Using the diffusion tensor we can describe regions of high anisotropy which are

likely to contain densely packed axons. This model holds only true if the voxel
contains a single fibre. It can however not distinguish between regions with lower
anisotropy and those with a high anisotropy in multiple directions, such as crossings
of densely packed fibres. Advanced techniques to more accurately describe such
situations have been developed. One example is Q-ball imaging which uses the
Funk-Radon Transform to represent the diffusivity in many directions [94]. The
disadvantage is however the need to acquire more gradient directions, leading to
longer acquisition times.

Artefact Correction

When working with dMRI data there are several pitfalls that should be considered
in order to avoid artefacts due to the acquisition technique [57].
The most notable artefacts are induced eddy-currents due to the changing mag-

netic field during acquisition. These lead to a mis-registration as the image can be
shifted or sheared, depending on the direction of the eddy-current. Given a long
enough time constant eddy-current artefacts can be reduced by slice-by-slice global
affine transformations of the image to compensate for the distortions.
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Figure 2.3: (a) Free diffusion: The diffusion ellipsoid is spherical. (b) and (c)
Anisotropic diffusion: The diffusion ellipsoid is cigar shaped. In (b) the
eigensystem of the tensor and the laboratory frame of reference align, in
(c) they do not. Reused from [63]

Another common cause of artefacts is due to the movement of the subject during
image acquisition. This becomes more pronounced the longer the acquisition takes
and is especially notable in sequences which include a lot of gradients or repeat
the same gradients in order to improve the signal to noise ratio. Possible solu-
tions include registering the diffusion weighted images to the non-diffusion weighted
image. Another option is to intersperse the diffusion-weighted images with multi-
ple non-diffusion weighted images and interpolating a transformation based on the
registrations of the non-diffusion weighted images. This second approach has the
advantage of using a simpler metric for the registration.
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2.2.3 Tractography

Diffusion-weighted images give an indication of the direction of axon walls in the
white matter at a certain voxel. This information can be used to estimate the path
of axon packages across longer distances in the brain. The methods used for this
purpose are collectively known as tractography methods and the resulting image of
fibres in the brain is known as tractogram.
The simplest method to trace a fibres path in the brain is by starting at a random

seed point in the white matter and following the principal diffusion direction of the
voxel until a voxel border is encountered. The direction is then changed to the
principal direction of the new voxel and the process repeats until the anisotropy of
the voxel drops below a threshold value. The result of this process is one continuous
path from one low anisotropy voxel to another, which can be assumed to correspond
to a densely packed bundle of axons in the brain. If this process is repeated for
a large number of seed points we can expect to have a good representation of the
principal fibre tracts in the human brain [21]. This process is very fast and delivers
deterministic results, but due to the nature of the algorithm the resulting fibres are
not able to cross regions with a lower anisotropy, such as crossing axon bundles.
Also in regions where axon bundles split the smaller bundle has a high chance of
being missed, as fibre will follow the stronger direction.
More complex approaches have been developed to deal with this problem [60,

81]. One of these algorithms is the Gibbs tracking. In contrast to the streamline
approach it will distribute small fibre elements, usually cylinders, within the image.
A fibre in this case consists of a link of many of these elements, which do not
change their own location. By rotating these elements and linking them together
an entire path is created which is then assigned an energy. This energy consists
of an external part, which evaluates how well the proposed fibre conforms to the
underlying image data, and an internal part which measures how well the proposal
conforms to an internal model of what a fibre should look like. The internal model
tries to ensure properties observed in anatomical fibre tracts, such as a smooth path,
avoiding sharp turns which are not present in the brain. Using this method together
with an optimisation approach, such as simulated annealing, will result in a fibre
configuration with the lowest possible energy, which ideally conforms well to the
image data and is biologically plausible. These fibres can bridge gaps in otherwise
high anisotropy paths as the overall fibre will still represent a low energy solution.

2.3 Graph Theory

A graph in its simplest form is a number of points with lines connecting them. More
formally correct it is a ordered triple (V(G), E(G), ψG) of a non-empty set V(G) of
vertices or nodes, a set E(G) of edges and an incidence function ψG that associates
an edge with a pair of vertices [10].
Historically graphs have been used to model a variety of objects and their relations.
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From modelling the bridges in Königsberg [29] to the social interactions of people on
on-line platforms [103]. The analysis of these graphs using graph theory has led to a
large variety of tools that can be used to understand the architecture of a graph and
the underlying principles of the data. As a review of the entire field is far beyond
the scope of this work we limit ourselves to listing the measures relevant for this
work.
Generally graph or network indices can be divided into two categories, global

indices which provide a single value for an entire network and local indices which
can be calculated for every single node or edge.
We introduce some terminology relevant for the understanding of these indices.

Neighbour
A neighbour to a node n is a node connected to n by an edge.

Neighbourhood
The neighbourhood of a node n is the set of all neighbours of n.

Shortest Path
The shortest path connecting two nodes n andm is the lowest possible number
of edges which form a consecutive link from n tom. It is not necessarily unique
as several combinations of the same number of edges can form a path.

Isolated Node
A node not connected to any other node by an edge.

Leaf Node
A leaf or end node is a node, that has only a single neighbour.

Connected Component
A set of nodes in which each node can be reached by any other node in the
set by following a combination of edges.

Disconnected Graph
A graph with more than one connected components between which there is no
connecting edge.

Central Point
A node with an eccentricity equal to the radius of the network.

Degree Matrix
A n× n matrix D where each diagonal element di,i is the degree of node i and
each non-diagonal element is 0.

Adjacency Matrix
A n× n matrix A

A =

a1,1 ... a1,n

... ... ...
an,1 ... an,n

 (2.13)
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where ai,j is equal to 1 if the nodes i and j are connected and 0 otherwise.

Laplacian Matrix
The laplacian matrix is the difference of the degree matrix and the adjacency
matrix.

L = D − A (2.14)

2.3.1 Local Measures

Degree
The degree of a node is the number of neighbours of the node kn.

Clustering Coefficient
The clustering coefficient or clustering coefficient C of a node can be calculated
by dividing the number of connections between neighbours of that node by the
number of possible connections between them.

C =
2En

kn(kn − 1)
(2.15)

Where En is the number of edges in neighbourhood of the node n.

Clustering Coefficient D
In contrast to the clustering coefficient C this includes connections between
the nodes in the neighbourhood of n and n itself.

C =
2(kn + En)

kn(kn + 1)
(2.16)

Eccentricity
The eccentricity of a node is the longest shortest path connecting this node to
any other node in the network.

Betweenness Centrality
The betweenness centrality of a node is the number of shortest paths between
any two nodes in the network this node is part of.

2.3.2 Global Measures

For each local measure there is a global measure corresponding to the average of all
local measures. We do not list these separately.

Number of Nodes
The number of nodes in the network.

Number of Edges
The number of edges in the network.
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Clustering Coefficient E
The average of the clustering coefficient C disregarding isolated nodes.

Diameter
The maximum of all node eccentricities.

Radius
The minimum of all node eccentricities.

Average Path Length
Average shortest path between any pair of nodes in the network. In the case
of disconnected graphs this value is infinite.

Efficiency
The inverse of the average path length. This value has the advantage of being
defined for all graphs as it always remains between 0 and 1.

Small-Worldness
The small-worldness ω of a graph compares the average path length Lg and
clustering coefficient Cg of a network to a random network [52]. It is defined
as:

ω =

Cg
Crand
Lg

Lrand

(2.17)

21



3 State of the Art

In the past two decades the way different areas in the brain are connected, the
connectome, has been increasingly studied. Using graph theoretical analysis to
understand the architecture of the brain and the changes in the connectome as-
sociated with diseases has yielded new insights into the human brain. The two
main approaches to characterize this connection have been using structural, diffusion
weighted imaging to identify connections based on the micro structural properties of
the white matter, and functional, identifying connections due to correlated changes
in activity in different areas [7, 12, 13, 87].

We focus mostly on the structural approach, using tractographies to determine
the connections between areas. Our results are therefore not directly transferable
to functional networks, as connections in the functional connectome do not nec-
essarily require a connection in the structural connectome and vice versa. Recent
research however points to a complex relationship between structural and functional
connectivity [46, 87, 102].

Structural connectomics has since been used to examine a variety of changes in
the human brain, ranging from the effect of ageing to diseases such as Alzheimer’s
disease, schizophrenia, epilepsy and Autism Spectrum Disorders [23, 45, 69, 95, 102].
An increase in the research activity of this field was spurred by the establishment
of the Human Connectome Project [27] a research initiative designed to produce a
large database of open data available for analysis [28, 72] until 2015.

The last years have also seen the development of a number of tools to facilitate
the research on the human connectome. The lack of unified tools hinders the ability
of others to reproduce a group’s research. One of these tools is the Connectome
Mapper [22] which provides a python based framework for the more commonly used
diffusion imaging acquisition schemes (DTI, QBI and DSI). Other tools include the
DTI focussed java based tool by Gray et al [43], the Nypipe [41] framework and the
LONI pipeline [25], of which the latter two provide the ability to combine modules
from commonly used diffusion imaging tools, such as FreeSurfer1, FSL2 and the
diffusion toolkit3. While these tools have been recently presented, none of them has
gained a real foothold in the research community yet and most researchers still use
their own solutions.

1surfer.nmr.mgh.harvard.edu
2www.fmrib.ox.ac.uk/fsl
3www.trackvis.org/dtk
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3.1 Graph Construction

The quality of a connectome and the information content for a specific hypothesis
depend to a large part on the choice of methods for its construction. The two main
decisions in this are the choice of parcellation scheme, represented by the nodes of
the network, and the methods for determining the connections between different
areas in the brain, represented by the edges in the network.

3.1.1 Parcellations

The choice of parcellation scheme depends on the subject under consideration. Dif-
ferent studies have opted for either atlas based parcellations which add anatomical
information or randomly generated parcellations, which offer a finer parcellation
scheme. Additional methods that have been used are functional definition of nodes
and voxel-based approaches [32, 45, 59].
Subdividing the brain in anatomical areas provides several benefits. Due to the

anatomical label associated with each node comparison across different networks is
possible, as the same node can be identified in each of them. At the same time
the atlases typically have between 60 and 200 nodes, ensuring a low computational
burden. Furthermore this approach is easily reproducible as rerunning the same
parcellation will generally produce the same results, making the observed differences
in network architecture more easily repeatable [32]. Two of the more commonly
used tools for the anatomical parcellation of the human brain are the Automated
Anatomical Labelling package of the SPM package [77, 96] and FreeSurfer with its
assorted atlases [24, 31].
The disadvantages of anatomical parcellations are mostly due to the origin of the

anatomical atlases, which were created with a different focus, such as changes in the
staining behaviour of tissue due to differences in the cytoarchitectural properties of
neurons [11]. The nodes are generally not of the same size and very large compared to
other methods. This can introduce artefacts where certain connections are selected
for. If both connected nodes are large they can be expected to have larger than
average numbers of connecting fibres, even using a completely random placement of
fibres.
Random parcellations of the brain offer the option to choose a resolution most

suited to the matter at hand. Depending on the parcellation method used this
has the additional advantage of ensuring very uniformly sized nodes, eliminating
most problems associated with due to their size inherently more prominent nodes.
Depending on the chosen resolution the network properties of a network can vary
considerably. A study of the variation of network properties for different resolutions
found that common topological measures, such as the small-worldness, can differ by
∼ 95% for the same individual when comparing a low resolution parcellation (90
nodes) to a high resolution one (4000 nodes) [32, 105]. Having to choose a resolution
for the random parcellation adds another variable to the experiment, which can not
easily be defended, as no number of nodes is inherently advantageous compared to
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another. One possible answer to this problem is to repeat the experiments using
different parcellation methods and at different resolutions [47]. This does however
not guarantee that the observed changes remain stable across the range of tested
resolutions. By only considering results who do appear at every resolution, possible
real differences at a certain scale can be overlooked.
A further disadvantage of random methods lies in the fact that the nodes no

longer correspond to each other. This raises several issues. Firstly the borders of
the random nodes will not correspond to any borders due to anatomical or functional
differences in the brain, if changes in the network are due to very defined changes
in the function of certain areas the resulting changes in the network might be less
than in an anatomical one. Secondly using a random parcellation allows only the
comparison of global network properties across individuals. As individual nodes do
not longer correspond to each other, any information about local changes in the
network is lost.
Using a functional definition of nodes means to derive the nodes from the available

data itself. This is a fairly recent technique, which has been used for the functional
and structural connectome both. The idea is to define nodes based on DWI measures
and node-specific connectivity fingerprints [2, 56, 76]. The ability to define the
properties of nodes based on the hypothesis of the study allows for very specific
node definitions which can be even more relevant for the issue in question than
anatomical parcellations. At the same time the size of the nodes can be constrained
very accurately. The parcellation method can also be chosen for reproducibility and
nodes can potentially be identified between subjects based on their properties.
This method is however better suited for functional networks than for structural

networks. Defining the nodes based on activation criteria lends itself very well to
this approach. Diffusion data on the other hand needs more complex parameters.
Additionally this approach can result in very specific node definitions for each study,
potentially voiding any comparability between different studies. Depending on the
chosen method there can be areas of the brain which do not belong to any node,
excluding them from scrutiny.
Lastly using a voxel-based approach defines each voxel as its own node. This

offers the highest possible resolution at a very high computing cost. Again this
approach lends itself comparatively well to functional connectivity data [98], while
for the tractogram based connectivity a very large percentage of voxels will not be
connected at all, as the number of fibres is in most cases orders of magnitude lower
than the number of voxels.
Similar to the random networks the nodes are not identifiable across patients and

this approach allows mostly measurement of global properties.

3.1.2 Connections

Connectivity can be derived differently from the various modalities. The main defi-
nitions are structural connectivity, based on DWI and tractography, and functional,
based on correlation between the activations of different areas in functional MRI
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data [34, 32].
Additional methods of deriving structural connectivity information include cor-

relation of differences in morphometric parameters of brain regions across patients,
such as analysing the change in cortical thickness or grey matter volume [32, 49, 64],
but these methods can not be used to construct a whole brain network for an indi-
vidual subject.
We focus on structural connectivity using fibre tractography in this work. In con-

trast to functional connections, structural connections are generally undirected and
homogeneous. They are undirected as the connectivity information using tractogra-
phies is based on the assumption, that water can more easily diffuse along densely
packed neurons than across, this process is independent and indeed ignorant of
the direction of travel of electrical impulses along the neuron. The information is
homogeneous as the fibre tracts do not provide any additional properties beyond
the number of fibres to distinguish between different types of connections, such as
inhibitory or excitatory neurons.
The choice of tracking algorithm has a large influence on the resulting connec-

tome [9]. The tractographies provided by global approaches tend to perform better
than local alternatives. The global optimization approaches deal better with noisy
image data and are able to cross intersections of fibres, where the local approaches
terminate due to decreased anisotropy.
Not every edge in the connectome represents the same connection strength. As-

signing a specific value to the connection strength allows a more detailed analysis
of the architecture of the connectome. Currently there are two main methods for
deriving the strength of a given connection using structural connectivity [32].
The first method is based on the number of fibres connecting different areas.

While the exact number of fibres is an artefact of the tracking algorithm and does
not represent single axons connecting the two areas, the assumption is that areas that
are connected by more axons will be connected by more fibres as well. Additionally
corrections can be made for the different grey matter volumes or distances of the
regions in order not to favour large areas and short connections [53]. Beside the
general assumption that more fibres translate to more axons there is currently no
way to determine how much stronger one connection is than another based on this
approach. Depending on the tractography algorithm noise, length of the fibres and
crossings have an unknown, but potentially large influence on the exact number
generated by the algorithm. The second approach tries to take the integrity of
the overall fibre into account. Local measures of individual voxels along the fibre
tract are integrated and taken as a measure for the connection capacity of the fibre.
Possible measures for this are for example the fractional anisotropy or the mean,
radial or axial diffusivity. A variant of this approach is to treat the measure as a
bottleneck and assign a fibre the lowest value along the tract. Similar to the fibre
count these measures are sensitive to image noise and the used diffusion model for
the image [58].
Recent research has suggested using additional information to estimate the con-

nection strength between different areas. One possible method is using a custom,
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time consuming, DWI sequence and a four compartment model to determine axon
diameter and density [1]. Other ideas include information from several modalities to
calculate additional tissue properties of the white matter [32, 97]. These methods,
while promising, however usually include longer acquisition times, which limit their
usefulness.
Additional research in order to accurately determine the quantitative value of

the connection strength of direct structural connections remains one of the great
challenges of the field.

3.2 Global Network Assessment

When the idea of translating the graph theoretical treatment of social and biolog-
ical systems to the connections in the human brain was first applied the general
organisation of the brain architecture was one of the earliest properties to be ex-
amined. The early studies suggested that the brain was organized in small-world
fashion [51, 86, 88, 89, 90]. It shares this property with several networks developed
by biological or social processes, as these networks, combining a high clustering co-
efficient with a good efficiency, tend to perform well and be relatively robust for
comparatively little cost. For the brain network this means that local processing
can be as fast as possible due to high local interconnections, while keeping infor-
mation flow between distant regions at an acceptable level with a limited number
of available axons. Full connectivity allows for even faster information processing,
but is not practical, as each axon requires space, consumes nutrients and produces
waste, making the maintenance of a fully connected connectome extremely costly.
The small-world nature [101] of the connectome is very well accepted in the liter-

ature by now. The same can be said for the scale-free properties [19] of the network.
However the exact nature of the graph model best used for representing the connec-
tome is still a matter of research [67]. Determining the model most closely resembling
the nature of the connectome will be important to understand changes in a variety
of illnesses as well as judging their impact on the network as a whole.
Beyond understanding the general architecture of the human brain the early re-

search focussed on observing changes of global network properties in case of disease.
Many studies support the idea, that the efficiency [62] and dis-connectivity of the
network can be used as an indication for pathological changes [16]. A recent study
reviews the findings of the last decade as pertains to the change in network efficiency
and clustering coefficient [45]. For high functioning autism spectrum disorders recent
studies suggest increased characteristic path length, resulting in decreased efficiency
and decreased clustering coefficient [4, 5, 54, 66].
To the best of our knowledge there has however not been an encompassing com-

parison of different global network indices for their capability to distinguish between
the healthy and the diseased connectome, aside from the one presented in this work
and previously published at a workshop [39]. Recent studies have suggested using
some global and local characteristics to classify individuals based on sex and age
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[26, 40].

3.3 Local and Regional Network Assessment

During recent years studies have increasingly examined the change of local network
indices in addition to global indices. A recent review collected studies examining
global and local indices for a variety of diseases [45].
One study showed that the local clustering coefficient and local characteristic path

length of nodes correlate with the oral language skill in high functioning autism
spectrum disorders [66]. This is in line with a prior study which found impaired
micro-structure in the language pathways of tuberous sclerosis patients with autism
spectrum disorders [65]. It has however been noted, that there are very few studies
concerning themselves with the changes in specific areas in ASD in comparison to
other diseases [82]. A reduction of regional efficiency has been found in multiple
sclerosis patients [50].
Another avenue that has been increasingly pursued recently is the identification of

hub nodes in the connectome [74] and the identification of sub-networks responsible
for certain functions [18].

3.4 Influence of Density

There are two main techniques to examine the connectome by employing the differ-
ent strength of connections to better understand it. Most studies either threshold
the network, removing all edges below a certain strength, or employ weighted mea-
sures. Historically the early research was done exclusively using the thresholding
approach, while in recent years the focus has shifted more to using weighted mea-
sures. The analysis of thresholded binary networks remains however an important
part of current research [32]. Generally the use of weighted network metrics has
been more commonly used in functional connectomics, as a reasonable definition of
weight poses a greater problem in structural connectomics.
In the past there have been two main approaches to thresholding the connectome.

The first method is to define an threshold t and delete all edges with a strength
less than the threshold (e.g.[17, 30, 83, 84]). The exact value of t will depend on
the strength distribution of the connections in the network and the measure used
to define the strength of an edge. The assumption behind this approach is that the
measured network will consist of the "true" sparse connectome and spurious edges
due to noise and image or tractography artefacts. This approach has later lost in
popularity, due to numerous flaws associated with it.
The problem with this approach is that many of the network measures depend on

the number of nodes and edges of the network. Thresholding for a specific value will
lead to different number of edges for different patients, resulting in possibly spurious
results, which are due to thresholding artefacts rather than genuine difference in the
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network architecture [99]. Advanced techniques for this approach include ensuring
that the entire network remains connected by not deleting the strongest edge which
ensures that a node or group of nodes remains connected to the rest of the network
[8].
Rather than thresholding a specific threshold for all patients later studies have

increasingly employed a target density κ, ensuring that all networks are comparable
regarding node and edge count (e.g. [100]). The advantage of this is, that the
network indices of different networks can be expected to have a similar value and
differences in this are more likely due to changes in the actual network architecture.
On the other hand this approach will potentially disregard a great number of con-

nections in a network with a very high connectivity before thresholding and include
spurious connections in one with a very low connectivity. This could potentially
disregard differences in the resulting tractography which are actually symptoms of
the disease. Also, depending on the choice of κ removing strong edges can poten-
tially change the topology of the network for networks with a high connectivity.
Techniques have been developed to reduce the disadvantages of this approach while
keeping the advantage of comparable network index values. The network can be
thresholded at different density values (e.g. [61]) to ascertain that effects persists
over a range of densities. This can even be extended to a very high resolution, where
the network index is eventually integrated over the density [36]. This however yields
its own share of problems, as there is no reason, that the effect persists at all den-
sities, especially at high densities where more and more spurious connections are
included in the connectome. This technique further requires the random removal
of edges if several edges have the same weight, which has been shown to bias the
network indices towards random networks [99].
Using weighted network indices has recently become more popular (e.g. [47, 83,

91]). These try to avoid the need for thresholding by using the full continuous
strength information of the connections. The advantage of this approach lies mainly
with the removal of arbitrary threshold values and it has been shown that the results
are qualitatively similar to unweighted network analysis [68, 78]. Weighted network
indices have shown some promise and additional research in this area will be a very
important part of future connectomics.
However the problem of assigning a reasonable and meaningful weight to a con-

nection and understanding what that weight represents in comparison to another
connection of a different weight is one of the main obstacles, especially for structural
connectomics [55]. Additionally the use of weighted network indices does not alle-
viate the problem of networks of inherently different connectivity. It is, at least in
theory, possible to ascertain, that in a given study the networks will have comparable
mean connection weights. When comparing different studies or data from different
sources however, the mean connection weight can differ significantly and differences
in the network architecture, that would appear when using binary networks, could
be eclipsed by the difference in weighted statistics due to this weight difference.
One of the great challenges of this field remains to understand the meaning of

different network measures in relation to the function of the human brain [55]. An

28



important step in this direction is to understand at which densities differences in
architecture appear due to pathological changes associated with diseases and to
determine which densities are therefore relevant for diagnostic purposes [36].
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4 Methods

4.1 Graph Construction

This section gives an overview over the overall pipeline for generating networks
representing the human connectome as used in this work. It can broadly be divided
in developing the pipeline leading up to graph creation and graph construction and
analysis. While this work relies on several third party tools and developments for the
first part the most development work has taken place in the second part. Figure 4.1
gives a general overview of the graph construction pipeline.

4.1.1 Pre-Processing

Analysis of the human connectome is the last step in a long and complex pipeline
starting with the raw data acquisition as described in section 2.2.1 and the subse-
quent artefact reduction and modelling as described in section 2.2.2.
In order to build a network of the human brain it is necessary to define the nodes

and edges comprising the network.

Parcellation

There are several possible choices what nodes may represent. In this work we con-
centrate on using anatomical divisions of the human brain for defining nodes.
This has the advantage of dividing the entire brain in discrete areas. Every voxel

and by extension every point in the image belongs to exactly one specific area.
One way of defining an anatomical parcellation of the brain is by registering

to an atlas defined by medical professionals. We use a third party tool for this
purpose. FreeSurfer and the atlas by Destrieux [24, 31, 85] are widely used in the
literature. FreeSurfer provides an automatic pipeline which will perform motion
correction, registration to a common atlas, skull stripping and application of several
parcellations to the T1 image. For the definition of our network nodes we use the
mapping of the cortical labels to the segmentation volume based on the atlas by
Destrieux.

Registration

Due to long acquisition times in diffusion-weighted images the presence of head
motion and other artefacts such as described in section 2.2.2 can noticeably reduce
the quality of the images. In order to reduce these effects we perform eddy-current-
and head-motion correction using FSL.
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Figure 4.1: Preprocessing pipeline. 1. Registration of the b0 image and the T1
weighted image and brain masking 2. Motion correction and fibre trac-
tography in the area defined by the brain mask 3. FreeSurfer parcellation
of the brain 4. Registration of the parcellation to the diffusion weighted
images by the transformation found in (1.). The parcels are used for the
network nodes 5. Calculation of the connections between nodes based
on the fibre image

As T1 images and the diffusion-weighted images do not necessarily occupy the
same image coordinates they need to be registered in order to combine the infor-
mation inherent in both images. The images used in this work have been acquired
on the same day, allowing us to assume that they can be brought into alignment
using only rigid transformations. We calculate the rigid transformation matrix for
registering the extracted b0 image to the T1 image using ANTs and a mutual in-
formation metric. We then apply the inverse of this transformation matrix to the
parcellation image in order to bring it into diffusion coordinate space.
We transform the parcellation image to diffusion image space in order to avoid

transformation of all diffusion tensors, which would be necessary otherwise. This
way we reduce the possible loss of information. All further processing steps happen
in diffusion space.
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Table 4.1: Tractography settings for feasibility study

Parameter Value
Iterations 107

Particle Length 3.4 mm
Particle Width 1.2 mm
Particle Weight 0.0018

Start Temperature 0.1
End Temperature 0.001
Energy Balance 0

Minimum fibre Length 19 mm
Curvature Threshold 45 ◦

Table 4.2: Tractography settings for global classification and regional classification
studies

Parameter Value
Iterations 108

Particle Length 3.7 mm
Particle Width 0.1 mm
Particle Weight 0.0015

Start Temperature 0.1
End Temperature 0.001
Energy Balance 0

Minimum fibre Length 20 mm
Curvature Threshold 45 ◦

4.1.2 Tractography

After modelling the diffusion-weighted images as described in section 2.2.2 we use
Gibbs tracking to create a tractography image of the brain. Gibbs tracking uses a
global optimization approach to find possible fibre configuration solutions which fit
the image data as well as an internal model of the brain. It seeds the brain with
many fibre elements, small cylinders, which can be connected to form long chains of
elements and finally fibres.
Depending on the experiment we choose different settings for the tractography

algorithm.
Table 4.1 shows the settings used for the feasibility study, see section 5.3. The

tractographies were generated on the entire brain mask, grey and white matter. The
resulting tractographies were then directly used for the creation of the connectome.
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Table 4.1 shows the settings used for the global classification, see section 5.2 and
the study on the influence of density on classification, see section 5.4. By reducing
the particle width and increasing the number of iterations when compared to the
feasibility study (Table 4.1) we get tractograms with considerably more fibres (10x-
20x) at the expense of considerably longer run time. On the used computer (Quad-
Core i5) it took roughly 15 hours per tracking for a single core. To reduce noisy
surface fibres in the grey matter due to low anisotropy we used a white matter mask
generated from the parcellation image to mask the tracking volume.

In order to get more fibres we performed the tracking four times independently
with the same parameters for each patient and combined the four separate trackings
to get a combined tractogram. Figure 4.2 shows an example for the difference in the
resulting tractogram depending on the settings.

Figure 4.2: Example of the resulting tractogram for the different settings. Top
left/right: Front and side view of a tractogram used for the feasibil-
ity study (10,054 fibres) Bottom left/right: Front and side view of the
combined tractogram for the same patient (652,701 fibres)
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Table 4.3: Information contained in the connectomics networks as implemented in
the Connectomics module of MITK.

Section Information per Element
Image geometry
List of nodes Node position

Node id
Node label

List of edges Connected nodes
Edge id

Number of fibres

4.1.3 Network Implementation

We decided on basing our network implementation on the adjacency list implemen-
tation of the Boost Graph Library. The algorithms and data structures have been
implemented as part of the Connectomics module of the open source toolkit MITK
(Medical Imaging Interaction Toolkit) and are available in binary form in the MITK
Diffusion release.
Information contained in the MITK connectomics networks is summarized in Ta-

ble 4.3.

4.1.4 Network Creation

There are several strategies for creating a network from the anatomical information
given by the tractogram and the parcellation image. This section describes the
approaches used in this work. For the creation of the network we iterate over all
fibres of the tractogram.
Nodes are defined by the parcellation image. We use two options for determining

the locations of nodes. Nodes are either positioned at the centre of mass of their
respective label segmentation or at the first point where a fibre is encountered cross-
ing into the label segmentation. The second option is used primarily if the labelling
scheme is not known.
As diffusion anisotropy tends to be lower closer to the grey matter there is a dis-

tinct likelihood for fibres in the tractogram ending before encountering grey matter.
For the FreeSurfer parcellation used in this work we implemented a search algorithm
in order to catch these prematurely ending fibres and extending them if possible.
If a fibre end point is located in a volume whose label belongs to white matter as
defined by the FreeSurfer atlas we try to extend it linearly for up to 20 mm. If
during this extension no grey matter volume is encountered the fibre is discarded
and will not be used.
Conversely a fibre might extend through the grey matter into the background. In
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this case the fibre is retracted along its path until grey matter is encountered. If
this retraction is unsuccessful the fibre is discarded.
If a fibre connects a grey matter label to itself it is discarded as well. We avoid

self-connected nodes.
A labelled volume is added as a node if at least one fibre connects it to another

node.
An edge is added to the network if a fibre connects two nodes which do not already

have a connection. If a connection between the nodes already exists the fibre count
for that connection is increased by one.

4.2 Global Network Assessment

Using connectomics for diagnostic purposes requires the understanding of how differ-
ent network indices are affected by mental illnesses. In order to decide which network
indices provide the best diagnostic potential we have to evaluate their individual
performance in distinguishing between the healthy and the diseased connectome.

4.2.1 Extraction of Connectome Features:

We extracted 32 features for each patient’s connectome. These features quantify
the compactness, clustering, and spatial uniformity of the hypothesized connections
within the brain. Graph features and their explanations are given in Table 4.4.

4.2.2 Classification and Validation:

Support vector machine (SVM) classification was employed for the feature selection
and the resulting classification of the two groups. Though alternate supervised
learning techniques may also be utilized, as we shall see in the next section, SVM
classifier yielded the highest classification accuracy among the other well known
candidates. We used radial basis function, also referred to as Gaussian kernel, in the
form of K(xi,xj) = exp(− |xi−xj |

2

2σ2 ) to transform the increase in the dimensionality
of the data for better separability. We performed a parameter search to identify σ
that achieves the highest classification accuracy. We sought σ in the set of candidate
values that varied from 1.0 to 6.0 with 0.1 steps and determined that σ equalling
3.6 achieved the best performance in the identification of the patient’s state.
The data is normalized so that the features have zero mean and unit variance to

reduce the scale differences within different features. In order to obtain unbiased
performance estimates, patient-based leave-one-out cross-validation was performed.
The feature set was first divided into 32 disjoint partitions for each patient’s data.
For each patient, a classifier was trained with the remaining 31 patient’s data and
then tested on the retained data. The results for each patient were then combined
to find the overall classification accuracy.
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Table 4.4: Extracted graph features and their descriptions.

Feature Name Description
Number of Nodes Number of regions in brain
Number of Edges Number of hypothesized communications
Average Degree Number of edges per node
Clustering Coefficient C Ratio of total number of edges among the neighbours of the node to the total

number of edges that can exist among the neighbours of the node per node
Clustering Coefficient D The average of the ratio of the links a node’s neighbours have in between to the

total number that can possibly exist
Clustering Coefficient E Ratio of total number of edges among the neighbours of the node to the total

number of edges that can exist among the neighbours of the node per node
excluding the isolated nodes

Average Eccentricity Average of node eccentricities, where the eccentricity of a node is the maximum
shortest path length from the node to any other node in the graph

Diameter Maximum of node eccentricities
Radius Minimum of node eccentricities
Average Path Length Average distance between the nodes of a graph, where the distance between two

nodes is the number of edges in the shortest path that connects them
Average Betweenness Average of node betweenness, where the betweenness of a node is the number of

shortest paths from all nodes to all others that pass through that node
Giant Connected Component Ra-
tio

Ratio between the number of nodes in the largest connected component in the
graph and total the number of nodes

Number of Connected Components Number of clusters in the graph excluding the isolated nodes
Average Connected Component
Size

Number of nodes per connected component

Percentage of Isolated Points Percentage of the isolated nodes in the graph, where an isolated node has a
degree of 0

Percentage of End Points Percentage of the end nodes in the graph, where an end node has a degree of 1
Number of Central Points Number of nodes within the graph whose eccentricity is equal to the graph radius
Percentage of Central Points Percentage of nodes within the graph whose eccentricity is equal to the graph

radius
Spectral Radius Largest valued eigenvalue of adjacency matrix
Second Largest Second largest values eigenvalue of adjacency matrix
Adjacency Trace Sum of the eigenvalues of adjacency matrix
Adjacency Energy Sum of the squares of eigenvalues of adjacency matrix
Spectral Gap Number of 0 valued eigenvalues of adjacency matrix
Laplacian Trace Sum of the eigenvalues of laplacian matrix
Laplacian Energy Sum of the squares of eigenvalues of laplacian matrix
Number of 0s Number of eigenvalues that are equal to 0 in normalized laplacian matrix
Number of 1s Number of eigenvalues that are equal to 1 in normalized laplacian matrix
Number of 2s Number of eigenvalues that are equal to 2 in normalized laplacian matrix
Lower slope The slope of the line fitted for the eigenvalues of the normalized laplacian matrix

that are between 0 and 1 when sorted
Upper slope The slope of the line fitted for the eigenvalues of the normalized laplacian matrix

that are between 1 and 2 when sorted
Normalized Laplacian Trace Sum of the eigenvalues of normalized laplacian matrix
Normalized Laplacian Energy Sum of the squares of eigenvalues of normalized laplacian matrix
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4.3 Local and Regional Network Assessment

While global network indices show overall changes in the network they can not
show the changes in particular areas. By only using these global changes we do not
incorporate information about the responsibility of different anatomical regions in
the brain which is provided by the medical sciences.
Different areas have been identified as being mainly involved in certain tasks and

we can reasonably expect pathological changes in these areas to affect the capability
of the brain for these tasks. Conversely it is possible to identify possible areas
which might be impaired by observing the changes in behaviour and capability of
the patient.
Applying this knowledge to the connectome we expect certain illnesses to affect the

role of certain nodes in the connectome more than the global network architecture.

4.3.1 Local Network Indices

There is a variety of network indices which can be calculated on an individual
node basis. A lot of these indices however are not independent of each other. We
examine a selection of those indices which are commonly used in the literature and
additionally use the betweenness centrality, which has not been extensively used in
examining the connectome.

Degree

The degree of a node is the number of other nodes it connects to. These nodes are
called the neighbouring nodes, or the neighbourhood. A node with a high degree is
likely a central node of the network and is commonly called a hub.

Clustering Coefficient

The clustering coefficient cc of a node measures the tendency of the neighbourhood
to form a clique. It is defined as the percentage of nodes in the neighbourhood of
the node which are also neighbours of each other.

cc(n) =
2En

kn(kn − 1)
(4.1)

Where En is the number of edges in the neighbourhood of node n and kn is the
number of nodes in the neighbourhood of node n.
A high clustering coefficient indicates that the node is part of a tightly knit clique

and implies a possible high segregation of the network.
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Betweenness Centrality

The betweenness centrality bc is a measure for how important a given node is for
the efficiency of the network. It quantifies how many shortest paths between any
two nodes a and b pass through a given node n [33]:

bc(n) =
∑
a6=n6=b

σab(n)

σab
(4.2)

where σab is the number of shortest paths from node a to node b and σab(n) the
number of those that pass through node n.
While a high degree likely corresponds to a high betweenness centrality the reverse

is not true. A node with a high betweenness centrality and a low degree is likely an
important link for the network.
We believe that the betweenness centrality has been under appreciated in the

study of the human connectome in the literature. It is well suited to detect a
changed role of an area in the overall connectome.

4.3.2 Regional Network Indices

Calculating the local network indices for each node can give important information
about changes in a specific location of the brain, whose size is determined by the
resolution of the used parcellation. It does not however wholly respect the way infor-
mation is processed in the brain. Different anatomical locations might be involved
in the processing of certain information. These areas can, but not necessarily do,
neighbour each other. This is especially noticeable if the same area in the left and
right hemisphere is involved in a certain task. In these cases merging the areas in
the atlas is impractical, as they are not physically close and the same area might
work with different areas for different tasks.
To take this into account we define these sub-networks involved in a certain task

as a region and expand the local network indices to regional ones. We do this by
averaging the local network indices of all nodes which are part of the region.

Ireg =
∑
ri∈R

Iri
n

(4.3)

Where Ireg is the regional network index, R is the set of nodes r1, ..., rn contained
in the region and n is the cardinality of R.

4.3.3 Lateralization of Indices

The connections in the human brain are typically not symmetrical. As the different
hemispheres perform slightly different roles in the processing of information and
abstract thought a perfect symmetry is not expected.
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Changes in the asymmetry of the brain might result in some of the symptoms
associated with different diseases. In the case of ASD several studies have reported
marked changes in the lateralization of the brain when compared to typically de-
veloped controls [14, 42, 93]. As our previous definition of regional network indices
spans areas in both hemispheres it is important to test whether changes in the
regional network indices are only due to the changes in lateralization.
We define the lateralization index of a network index I as

Ileft
Iright

(4.4)

and compare the differences in the lateralization index to the differences in the
regional network index. Ileft represents the averaged local indices of all nodes located
in the left hemisphere and Iright of those in the right hemisphere.
If changes in the regional network indices are solely due to changes in the later-

alization we expect the lateralization index to have a higher significance than the
regional network indices.

4.3.4 Experimental Validation

In order to evaluate the proposed regional we examine the data described in sec-
tion 4.5. Given the symptomatology of ASD, especially the reduced capability for
communication we focus on areas involved with language processing. We examine
three regions consisting of several nodes:

Wernicke’s Area
Wernicke’s Area’s role in communication is to build meaningful sentences and
extracting meaning from sentences. As the inability to easily understand
speech is one possible symptom for ASD we expect this area to be less in-
tegrated into the connectome. In our set-up Wernicke’s Area contains four
nodes in the right hemisphere and four in the left hemisphere.

Broca’s Area
Broca’s Area’s role in communication is the motor control of language, it is
responsible for pronunciation and articulation. As these capabilities are not
typically reduced in ASD we do not expect a large change in this area relevance
for the network. In our set-up it consists of two nodes in the right hemisphere
and two in the left hemisphere.

Motor Cortex
The Motor Cortex is responsible for general motor control. While some repet-
itive behaviour such as flapping can occur in ASD generally the motor control
is not severely impaired. As such this area is used as an internal control. We
expect no change to be visible. In our set-up it is comprised of one node in
the right hemisphere and one in the left hemisphere.
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It should be noted, that the above description of the areas’ purpose is a simpli-
fication. We are focusing solely on the roles of these areas as are relevant for our
hypothesis. We expect Wernicke’s Area to be a good marker for ASD, whereas the
other two areas are not expected to provide much information in that regard.

4.4 Influence of Density

In section 5.3 we found that regional network indices differ between ASD patients
and typically developed controls. These experiments however were performed with
a low number of fibres and showed mainly the feasibility of such an approach. In
order to better understand the relevancy of these changes it is important to repeat
the experiments with different parameters and study the effect at different densities.
As described in section 4.1.2 we performed four additional tractographies per sub-

ject and added all fibres together to get a tractogram with more than 500,000 fibres
per patient. Using these larger tractograms it is possible to create connectomes with
a significantly higher density. These connectomes in turn can be used to examine
the observed the effects and their changes across different densities.

4.4.1 Thresholding

In order to create a binary network from a weighted network thresholding needs to
be performed. There are several ways to threshold a network, for the purpose of
this work we use the following:

Threshold Weight
This method removes all edges from the network which have a fibre count
lower than the specified one.

Smallest threshold below density
This method selects the smallest threshold which will result in a connectome
with a density below the specified one. All fibres below a certain fibre count
are removed. The fibre count is incremented until the connectome density is
below the target density.

Random removal
In this method a target density is specified. It works similar to the smallest
threshold below density. The only difference is in the last increment, instead
of removing all fibres of the last fibre count, fibres of that fibre count are
randomly removed until the target density is reached.

Many network indices, global, local and regional, are dependent on network prop-
erties such as node and edge count. The nodes for our networks are given by the
used parcellation, the edge count however can vary. Due to this only networks of
similar density should be compared to each other. We choose the three thresholding
methods to ensure we compare compatible networks.
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Network Index 0% density 100% density
Global Clustering Coefficient * 1
Global Betweenness Centrality 0 0
Average Degree 0 n
Efficiency 0 1
Small Worldness * 1
Regional Clustering Coefficient * 1
Regional Betweenness Centrality 0 0
Degree 0 n

Table 4.5: Borderline values for different network indices for a network with n nodes.
Values marked as * are not defined.

The "smallest threshold below density" (STB) and "random removal" (RR) meth-
ods ensure a similar density for the networks to be comparable.
On the other hand given that the data for all subjects is acquired the same way

and tractography is performed using the same settings it can reasonably be argued
that the different density of the networks can be viewed as an inherent property due
to pathological changes in the case of illness which lead to a reduced fibre count in
the tractogram.
To pursue this avenue the "threshold weight" (TW) method creates all binary

networks with the same settings, disregarding possible differences in the resulting
density.

4.4.2 Performance Across Density and Threshold

In order to better understand which network indices can be used to differentiate
between the impaired and the healthy connectome it is important to understand
how the regional network indices differ across a range of densities and thresholds.
The border conditions for the different network indices are summarized in table 4.5.
At these border conditions all networks will have the same values for these indices,
whereas the value in between will change depending on the configuration of the
network. The main purpose of our experiment is to evaluate how they change in
case of ASD compared to healthy controls.
Analysing the density area where the connectome differs the most between ASD

patients and controls will give us an indication at which densities we can expect our
regional networks indices to be useful tools in diagnosing possible illnesses. At the
same time the width of this area as well as how quickly diagnostic value drops off
will give us an indication how sensitive these measures are to the inclusion of noise.
As at lower threshold values we can expect more spurious fibre connections to be
included.
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4.5 Experiments

As mentioned in the previous sections we evaluated the the proposed methods on
medical image data. This section will describe the study and used acquisition tech-
niques. All evaluations share the same original image data.

4.5.1 Participants

The ASD group comprised 18 right handed children with a mean (SD) chronological
age of 9.7 (2.1) years (range 6.1 - 12.8). Participants were recruited through outpa-
tient clinics of the University departments of Mannheim, Heidelberg and Frankfurt.
A diagnosis of ASD (Asperger Syndrome or High Functioning Autism) was estab-
lished using the Autism Diagnostic Interview-Revised (ADI-R) [70], the Autism
Diagnostic Observation Schedule (ADOS) [71] and supported by expert clinical di-
agnosis using ICD-10 criteria. The Social Responsiveness Scale (SRS [20]) was used
to assess severity of social impairment and screening for social difficulties in control
children. All participants had a Nonverbal IQ higher than 70 based on the Raven’s
Colored Progressive Matrices Test [80] and had fluent language skills, based on di-
rect observation during the Autism Diagnostic Observation Schedule, Module 3 for
participants with fluent language abilities. Control subjects were 18 normally de-
veloping children (mean age 9.7; SD 1.9; range 6.5 - 12.2). ADOS scores were not
determined for the control subjects.
Controls and ASD children were matched rigorously and pairwise for age, sex

and IQ (Tab. 4.6). Handedness was assessed by the Edinburgh Handedness Inven-
tory [75]. Exclusion criteria for autistic participants and healthy comparison sub-
ject included: associated disorder, such as fragile-X syndrome or tuberous sclerosis,
and presence of evidence of birth asphyxia, head injury, seizure disorders or other
structural brain abnormalities. Potential control participants were also screened by
experienced clinicians to exclude those with a family history of autism, develop-
mental cognitive disorder, learning disability, affective disorder, anxiety disorder,
schizophrenia, obsessive compulsive disorder, or other neurological or psychiatric
disorder.
The study was approved by the Ethics committee of the University of Heidelberg.

All parents gave written informed consent, children gave assent for participation in
the study [79].

4.5.2 Data Acquisition

Data acquisition was done using a 1.5 T scanner (Siemens Avanto). T1 images
for parcellation were taken with the following settings: MPRAGE TR/TE/TI/α =
1.9 s/4 ms/1.1 s/8 ◦ , FOV = 256 × 256 mm2, matrix = 256 × 256, scan time 6
min). Diffusion weighted imaging was performed using single-shot EPI with a dual
bipolar diffusion gradient and a double spin echo for reduction of eddy currents with
the following parameters: TR/TE 4700/78, FOV 192 mm, data matrix of 96 × 96
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ASD TD
Characteristics Group (n,18) Group (n,18)

Mean (SD) Mean (SD)
Sex 16 m/ 2 f 16 m/ 2 f
Age 9.7 (2.1) 9.7 (1.9)
IQ 111.0 (14.4) 112.8 (14.9)
SRS 107.7 (26.7) 16.1 (5.7)
ADOS Scores
Interaction 7.1 (2.2)
Communication 3.4 (2.4)
and Language

ADI-R Scores
Interaction 18.3 (7.2)
Communication 11.6 (4.0)
and Language
Repetitive behaviour 6.8 (2.7)

Table 4.6: Subject characteristics, taken from [79]

yielding an in-plane resolution of 2.0 mm, 50 axial slices with a thickness of 2.0 mm
and no gap, with 6 gradient directions (b=1000 s/mm2) and a b=0 image. This
scheme was repeated 15 times.
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5 Results

5.1 Graph Construction

We implemented a fully functional pipeline for the construction and evaluation of the
human connectome. An example for a connectome created the presented methods
can be seen in figure 5.1. The code is freely available as part of the Medical Imaging
Interaction Toolkit1.

Figure 5.1: An example network created using our pipeline.

5.2 Global Network Assessment

We generated brain connectome networks as described previously for 32 patients
each of which with four independent trackings. We then characterized the graphs
using the 32 features described in Table 4.4 and using SVM classifier with RBF
kernel we discriminated ASD patients from TD control with leave-one-patient-out
cross-validation.

5.2.1 Classification Based on the Number of Features

Given the large number of features, we performed feature selection based on t-
statistic to identify the most discriminative features. For a given feature i, the

1http://mitk.org
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Figure 5.2: Influence of the number of discriminative features selected for classifica-
tion on the classification accuracy. Highest grading accuracy achieved
either the top four or five features selected.

t-statistic to test whether the population means are different is calculated as

t(i) =
|µ1(i)− µ2(i)|√

σ2
1(i)

N1
+

σ2
2(i)

N2

(5.1)

where µk(i), σk(i), and Nk are the sample mean, standard deviation, and size of
the kth class (k ∈ {1, 2}) for ith feature, respectively. The features with high
discriminative power get a higher score. We tested the grading accuracy of the
feature sets constituted by the first M most discriminative features. We varied
M from 1 to 32, and report the grading accuracy in Fig. 5.2. It is seen that a
classification accuracy of 86.72% can be achieved using the top four or five features.
When we investigated the results of this case, it is seen that 9 out of 64 ASD
trackings were identified as TD control and eight out of 64 TD control trackings
were classified as ASD, and the rest of the trackings were classified accurately.

5.2.2 Best Performing Learning Methods

In order to compare our result to our earlier study that only considered the between-
ness centrality of speech related locations in the brain [38], we also performed clas-
sification using the average betweenness centrality alone. Our result showed 78.9%
classification accuracy can be achieved using this feature alone. It is clear that
considering additional features improved the classification accuracy significantly.
Independent of the learning method, we could achieve a consistent classification

accuracy over 80%. Table 5.1 compares the classification accuracies of different
classification methods. It is clear that SVM classifier achieves the highest overall
accuracy in identifying the patient’s neurological state. This is not unexpected as
SVM classifiers are known to be highly successful in biomedical applications [104].
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Figure 5.3: Receiver operating characteristics for the SVM classifier with RBF ker-
nel. The area under the curve is 0.9067.

Table 5.1: Classification accuracy for different learning methods. SVM with RBF
kernel yields the highest classification accuracy.

Learning Method Classification Accuracy (%)
Support Vector Machines (RBF Kernel) 86.72
Support Vector Machines (Linear Kernel) 85.16

Linear Discriminant Analysis 84.38
Naïve Bayes Classifier 78.13

AdaBoost (Decision Stumps) 81.25
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Table 5.2: Histogram of highest discriminative features where the frequency shows
the number of times the feature was in the top five discriminative features
according to t-statistic for a link threshold (N) ranging from 14 to 30.

Feature Frequency
Giant Connected Component Ratio 17
Clustering Coefficient D 16
Normalized Laplacian Trace 15
Average Connected Component Size 11
Normalized Laplacian Energy 10
Second Largest Eigenvalue Adjacency 7
Clustering Coefficient C 4
Average Betweenness Centrality 1

Figure 5.4: Classification performance across different thresholds using a well per-
forming classifier.

5.2.3 Feature Performance Across Thresholds

We then investigated how often a feature was in the top five of features for classifica-
tion for a range of thresholds where the discriminative influence of each feature was
given by t-statistic. Table 5.2 shows the frequency of discriminative features that
appear in the top five feature for different thresholds. The Giant Connected Compo-
nent Ratio was consistently a discriminative feature for every threshold in the range.
For threshold N = 26, with the highest classification accuracy the top five features
with the highest t-statistics were Clustering Coefficient D, Giant Connected Compo-
nent Ratio, Average Connected Component Size, Normalized Laplacian Trace, and
Normalized Laplacian Energy.

Classification performance varied across different thresholds. Figure 5.4 shows the
performance of a classifier.
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Network Index p-value
Global Clustering Coefficient <0.05?
Global Efficiency <0.05?

Clustering Coefficient (Wernicke) <0.05?
Clustering Coefficient (Broca) <0.05?
Clustering Coefficient (Motor Cortex) 0.15
Betweenness Centrality (Wernicke) <0.001??
Betweenness Centrality (Broca) 0.27
Betweenness Centrality (Motor Cortex) 0.71

Table 5.3: P-values for the separation between ASD patients and TD for the global
efficiency and the average clustering coefficient of the network as well
as the clustering coefficient and the betweenness centrality of Wernicke’s
area, Broca’s area and the primary motor cortex. Values with a ? are
statistically significant (p < 0.05) and those with ?? have a p-value below
0.001.

5.2.4 Best Classification using Global Indices

Finally, we give the receiver operating characteristics (ROC) to evaluate the perfor-
mance of the classification. ROC curve plots the sensitivity against the 1−specificity
at different threshold settings. For the SVM classifier, we used the distance from
the maximum-margin hyperplane as the decision threshold. Figure 5.2 shows the
ROC curve for our classifier. The area under the curve (AUC) is 0.9067, which is
considered as a well-discriminating classifier.

5.3 Local and Regional Network Assessment

5.3.1 Feasibility and Internal Validation

To ascertain whether regional differences in general and the regional betweenness
centrality in particular can be used to differentiate between ASD patients and typ-
ically developed controls (TD) we tested differences in regional areas for different
regions and compared them to differences in global indices. As this was done to
test for general possibility of using the indices we did not correct for changes in the
found number of fibers, we did however test whether statistical difference existed
even with the number of fibers as covariate, see section 5.3.2.
Tables 5.3 and 5.4 show the found statistical differences. It should be noted, that

the motor cortex does not show significant changes in the regional parameters, this
conforms to its role as internal validation area, as we did not expect changes in its
embedding in the overall network.
The global efficiency as well as the global clustering coefficient is reduced in ASD

patients compared to TD (Fig. 5.5). While the local clustering coefficient shows
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Network Index ASD TD
Global CC 0.404 (0.051) 0.462 (0.064)
Global Eff 0.494 (0.026) 0.527 (0.039)
CC (Wernicke) 0.436 (0.093) 0.524 (0.071)
CC (Broca) 0.466 (0.058) 0.541 (0.041)
CC (Motor Cortex) 0.389 (0.033) 0.418 (0.064)
BC (Wernicke) 16.7 (6.7) 35.2 (6.8)
BC (Broca) 32 (17) 26 (11)
BC (Motor Cortex) 138 (56) 147 (57)

Table 5.4: Mean and standard deviation of each network index for ASD patients
and typically developed subjects. Local and global clustering coefficient
and global efficiency have a theoretical range between 0 and 1. The
betweenness centrality is not normalized.

reduction in Broca’s area as well as Wernicke’s area (Fig. 5.6), the betweenness
centrality is reduced only in Wernicke’s area (Fig. 5.7).

Figure 5.5: Global clustering coefficient and global efficiency in typically developed
subjects (TD) and in patients suffering from ASD. The efficiency rep-
resents the inverse average shortest path length between nodes in the
network. The global clustering coefficient describes to what extent the
network forms clusters in which all nodes are interconnected. Global
efficiency (p = 0.01) and the global clustering coefficient (p = 0.013) are
significantly reduced for ASD patients.

5.3.2 Best Classification using Regional Indices

The discriminative power of the local indices was analyzed by means of ROC analysis
(Fig. 5.8). With an area under curve of 0.97 the betweenness centrality of Wernicke’s
area outperforms the clustering coefficient of the same area with an area under curve
of 0.77.
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Figure 5.6: Local clustering coefficient of Wernicke’s area (comprehension of speech),
Broca’s area (motor control of speech) and the motor cortex, comparing
typically developed subjects (TD) and patients suffering from ASD. The
clustering coefficient measures how many nodes in the neighborhood of
a given node are connected to each other. It is significantly reduced for
Wernicke’s area (p = 0.01) and Broca’s area (p = 0.002), but not for the
primary motor cortex (p = 0.15) in ASD.

No significant difference between ASD patients and TD subjects can be found in
the lateralization coefficients for the betweenness centrality of Wernicke’s area (p =
0.79) and Broca’s area (p = 0.07) or the clustering coefficient of Wernicke’s area (p
= 0.68) and Broca’s area (p = 0.48).
Tractography results for the ASD group as described by the number of fibers

(SD) are, at 6100 (1700), lower and more variable than for the control group at 7970
(770), though the difference is not significant (p = 0.14). The control average does
not include a single outlier at 56089 fibers, which was included in the evaluation and
produced centrality measures similar to the rest of the group. To ascertain that the
observed differences in the betweenness centrality are not due to this difference in
the number of fibers, a statistical analysis was performed with the number of fibers
as covariate and showed that the observed significant differences persist (t = 6.7, p
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< 0.001).

5.4 Influence of Density

5.4.1 Different Thresholding Methods

When thresholding different connectomes with a given weight, differences in classifi-
cation accuracy can be due to the chosen method for thresholding. Two thresholding
schemes used in this work are density based, whereas the last one is based on the
number of fibres represented by a single connection. While density based thresholds
can reasonably be assumed to not differ between ASD networks and TD networks
the same is not necessarily true for thresholding based only on weight, as the number
of fibres might be different in each case.
Figure 5.9 shows the change in density when thresholding is based on edge weight.

As can be seen the density for a specific threshold seems to be consistently lower in
case of ASD, suggesting a generally lower weight of connections in this case. To get
a baseline for the performance of different network indices as base for classification
we performed a classification based on this difference. The results for this can be
seen in figure 5.10.
As can be seen in the figure it should be noted, that the classification accuracy

based solely on the density for a given threshold remains relatively stable across a
wide range of thresholds and below 0.8 for all tested thresholds. This gives us a
minimum desired classification accuracy of 80 % for more complex network indices
which should show a change in actual network architecture for weight threshold
based approaches.
It should be noted again, that this only applies to classification based on a specific

threshold weight, not classification based on a specific threshold density.

5.4.2 Changes in Classification Accuracy

Figures 5.11, 5.12, 5.13 and 5.14 show how well classification of ASD networks works
for different thresholding strategies and different networks indices.
Figure 5.11 shows that global network indices can be reasonably used to classify

between ASD and TD networks. It is especially noticeable, that the average be-
tweenness centrality of all nodes proves to be a better classifier at low densities and
perform significantly worse at high densities. This is to be expected as at high den-
sities the expected betweenness centrality of all nodes will be very low as shortest
paths tend to be very short, one or two steps as most. As such few nodes will actu-
ally lie on such paths. Interestingly the small worldness of the networks as well as
the clustering coefficient perform relatively stable over a far larger range of densities
suggesting differences at multiple scales.
For weight based thresholding the clustering coefficient is the only acceptable

classifier, the betweenness centrality as well as the small worldness can not be rea-
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sonably used as classifiers in this case. This is most likely due to the differences in
density shown in figure 5.9.
Figure 5.12 shows the performance of the regional network indices for Broca’s

area. They do perform slightly better than chance ranging mostly from 0.5 to 0.8.
It should be noted that all three indices perform similarly to each other and relatively
stable over a wide range of densities.
In figure 5.13 we see the classification based on the regional indices for the motor

cortex. The result here is similar to figure 5.12. Performance is relatively stable
over a large range of densities and no classifier performs very well. It should be
noted however, that not all three identifiers perform similarly well in this case, the
clustering coefficient performs consistently worse than the other two.
Figure 5.14 in turn shows the performance for regional indices in Wernicke’s area.

It should be noted, that the classifier perfomance is significantly better than in any
other presented cases. While the clustering coefficient results are comparable to the
other areas the average degree and the betweenness centrality can reach classification
accuracies above 0.9 . Also the dependency of classification accuracy on density is
far more marked for these indices in Wernicke’s area than in any other area. It
should also be noted that the betweenness centrality performs consistently as good
as or better than the average degree.
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Figure 5.7: Betweenness centrality of Wernicke’s area (comprehension of speech),
Broca’s area (motor control of speech) and the primary motor cortex
(general motor control), comparing typically developed subjects and pa-
tients suffering from ASD. The betweenness centrality represents how
integrated the corresponding area is in the connectome by quantifying
the number of shortest paths traversing the area. The betweenness cen-
trality for Wernicke’s area is significantly reduced in ASD (p < 0.001),
whereas it is not in Broca’s area (p = 0.27) and the motor cortex (p =
0.71)
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Figure 5.8: Receiver operating characteristic when classifying ASD patients and TD
based on the betweenness centrality (BC) or based on the clustering
coefficient (CC) of Wernicke’s area. Classification based on BC performs
considerably better than based on CC.

Figure 5.9: Resulting densities for different threshold values for autism spectrum
disorder (ASD) patients and typically developed (TD) controls.
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Figure 5.10: Classification based on the resulting density for a given threshold. It
should be noted classification accuracy stays always below 80 % .
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Figure 5.11: Classification based on global network indices. Top left: Smallest
threshold resulting in a density below the target one. Top right: Ran-
dom removal of weakest edges to reach target density. Bottom: Thresh-
old based on edge weight.
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Figure 5.12: Classification based on local network indices for Broca’s area. Top
left: Smallest threshold resulting in a density below the target one.
Top right: Random removal of weakest edges to reach target density.
Bottom: Threshold based on edge weight.
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Figure 5.13: Classification based on local network indices for the motor cortex. Top
left: Smallest threshold resulting in a density below the target one.
Top right: Random removal of weakest edges to reach target density.
Bottom: Threshold based on edge weight.
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Figure 5.14: Classification based on local network indices for Wernicke’s area. Top
left: Smallest threshold resulting in a density below the target one.
Top right: Random removal of weakest edges to reach target density.
Bottom: Threshold based on edge weight
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6 Discussion

6.1 Graph Construction

We have proposed a pipeline for the creation of connectome networks from structural
DWI data and T1 images. While structural connectomes have been created before,
we provide an easy to use open-source solution, that ties in with the Medical Imag-
ing Interaction Toolkit. In addition to manual use we implemented an automated
solution for batch processing.
Our solution has the further advantage of being able to use additional informa-

tion about the used parcellation to reduce the problem of prematurely stopping
fibres. This allows the user to concentrate on the fibre tractography in the high
anisotropy region of the white matter and extrapolating from these results into the
low anisotropy grey matter regions.
We have used the presented solution in our experiments and have found it to

provide connectomes which can be potentially be used for diagnostic purposes with
a reasonable reliability. At the same time our pipeline remains highly modular
and allows the replacement of the different tools used for separate processing steps.
Depending on the used parcellation, prediction of grey matter areas can be switched
on or off. At the same time the used tractography method can easily be changed.

6.2 Global Network Assessment

We have analysed a wide range of network indices for their capability for classifying
the connectome of children suffering from ASD. While several of these features
perform reasonably well as classifiers no one feature stands out as singly important.
Instead we note, that using a combined classifier taking into account more than one
feature performs considerably better at a classification accuracy of about 90%. This
exceeds the single feature classification based on the average betweenness centrality
by 10%.
We also found that the classification accuracy does not continue to increase when

including more and more features. Instead the optimal performance was reached
when using 5 features for our classifier and dropped sharply after that. Together with
our analysis of the number of times features were part of the top performing classifier
for different thresholds this suggests that the best features for classification are Giant
Connected Component Ratio, Clustering Coefficient D, Normalized Laplacian Trace,
Average Connected Component Size and Normalized Laplacian Energy.
We used the same settings and automated pipeline for all networks including

thresholding them at the same level to remove spurious connections. As can be
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seen in figure 5.4 the thresholding does affect the performance of the classifier. At
the same time we included the number of overall edges as possible feature and it
did not perform well enough to be included in the top five features classifiers. This
indicates that the difference in network architecture is due to a change in network
configuration rather than a possible artefact due to a global change in anisotropy
the resulting difference in fibre count.
The classification performance remains within four percent points of 82% for a

large range of thresholds. While this is an acceptable accuracy it poses the problem
of finding the optimal threshold for classification performance in a clinical setting. In
such a setting it is not practicable to redo the analysis over a wide range of thresholds.
Especially as the exact value of the threshold will depend on the acquisition and
tractography settings, which are not necessarily available at the network analysis
step. Additional noise and spurious fibres will reduce the classification accuracy as
it can not necessarily be determined at which thresholding level they start to drop
off.
A further limitation of this approach in a general diagnosis setting lies in the fact,

that it detects a general change in network architecture rather than a more disease
specific one. This might be used to support a possible prior diagnosis but will be of
reduced help in a setting where a scan available due to other factors might be used
to screen for potential other problems. More specific hypothesis driven approaches
could ideally also result in a higher classification accuracy.
Our analysis also tries to alleviate the fact that we have a low number of unique

subjects (32) compared to a large set of features (32) by creating four networks per
patient from independent tractography runs. We believe that this technique helps
reduce over fitting as during leave-one-out cross validation the four runs for each
patient were left out together and not always assigned the same class, even though
the likelihood of networks of one patient being classed together was higher than
chance. Ideally the described analysis should be run across a significantly larger
study to strengthen the indications found by us.
Despite its limitations we believe our work shows the need to consider additional

networks measures, no only the most commonly used ones, when trying to analyse
the changes in the human connectome due to disease and create diagnostic tools
based on them.

6.3 Local and Regional Network Assessment

We have build on the concept of local network indices and expanded it to encompass
anatomical regions which encompass several nodes. By introducing the concept of
regions and focussing our statistical analysis on differences in certain regions we
allow for a new prior knowledge based approach. In contrast to many classical
networks, such as networks representing friendship of different persons, the nodes in
the human connectome are not intrinsically similar. We know a priori that different
nodes and groups of nodes are likely to be involved in certain tasks and we know at
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the same time which tasks are affected in a disease.

Approaching the analysis of the human connectome from this angle opens two
main ways to proceed. Firstly we can compare known symptoms of a disease to
changes in the connectome and try to find their relevance. Secondly we can try to
analyse the differences in the diseased connectome and try to profile a disease based
on these differences.

While the second approach has a higher diagnostic value as it can give a completely
new insight into an illness, it has its drawbacks as well. Due to the multitude of
network indices and possible regions that can be looked at it needs a very large
data sample to avoid over fitting the data and a high number of false positives.
Furthermore this approach needs a solid base of studies of the first type to set the
found differences in relation and compare them to known changes. Slowly more
works of this kind become part of the body of literature, but many of them still
suffer from the fact that the ground is not adequately prepared.

This work follows the first approach and starts from a clear hypothesis, to under-
stand the known symptom of reduced communicational capability in ASD patients,
and uses our new method to observe possible changes in language related regions of
the brain. This experiment has been designed to show the basic feasibility of this
method and contrast the changes in regions expected to show differences to those
were we expect no such changes based on prior knowledge. At the same time we
want to find network indices beside the most commonly used ones that can be used
as an indicator of such differences.

The results are very promising and indicate that a diagnostic classification based
on the regional betweenness centrality might be used to distinguish between the
healthy connectome and the connectome of ASD patients. Of special interest is
that we deliberately avoided fine tuning of tracking and network parameters. This
is at the same time a strength and weakness of this experiment. On the one hand
it is an approach that subjects potentially different data to an identical pipeline
with the same settings, which is likely what will happen in a clinical setting, and
tries to classify based on the results of the process. On the other hand this risks
that any differences in the regional network indices are nothing more than artefacts
of differences earlier in the pipeline, such as a generally lower anisotropy and a
resulting lower fibre count. While this is fine from a purely diagnostic viewpoint,
as the classification accuracy remains the same, it does not preclude the possibility
that the network analysis step is superfluous and a classification of similar accuracy
can be achieved at an earlier step in the pipeline.

This possibility was examined in a different part of this work and is discussed in
section 6.4. There we examine how changes in the network parameters affect the
classification accuracy.

By focusing on specific areas of the brain and not comparing all nodes across all
patients, we try to avoid the multiple testing problems inherent with comparing
such a large number of variables [73].
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6.3.1 Medical Relevance

With the given unoptimized and unadjusted settings we achieved an area under
curve of 0.97 for the classification based solely on the regional betweenness centrality
of Wernicke’s Area, which can be considered a very good classifier, albeit on a
relatively small sample size (13 ASD, 15 TD) so it should be taken as an indication
of the quality of the classifier only. It should be pointed out, that the subjects were
rather old, 9.7 ± 2.1 years, an age, were ASD will usually have been detected by
conventional means, such as questionnaires. This pipeline is however potentially
applicable to the infant brain as well, although for very young children, less than a
year, a different parcellation scheme should be used. Even though very promising
results for older children do not guarantee similarly good results on younger children
we believe that the presented method might be a useful technique.
However as ASD subjects and controls were matched for IQ our ASD subjects

consisted of High Functioning Autism and Asperger patients only, which work com-
parably well in society. If used for diagnostic screening the differences could poten-
tially be more pronounced for the average ASD patient and thus be even more easily
distinguished.

6.4 Influence of Density

We have examined the limitations described in section 6.3 and tried to address the
issues raised there to evaluate the performance of our suggested regional network
indices across a range of settings. By using three different ways to get binary net-
works from weighted networks we try to cover both approaches to evaluating the
performance of our method.
Firstly we remove all edges representing less than a given fibre count. This thresh-

olding approach is methodically closest to the evaluation discussed in section 6.4.
The entire pipeline is run with the same settings not correcting for possible differ-
ences in overall fibre count potentially introduced in a prior step.
Secondly we choose an individual threshold for each network to be as close as

possible below the target density. This approach tries to correct for differences in
fibre count while avoiding possible changes by random deletion.
Lastly we use an individual threshold to be as close as possible above the target

density and then randomly remove the weakest links until a given density is reached.
This way introduces randomness as a trade-off for having well comparable networks.

6.4.1 Classification Based on Threshold

In order to understand the differences prior to regional network analysis we calcu-
lated the density as a function of threshold and found that on average the ASD
networks had a lower resulting density for the same threshold weight. This implies
that the ASD connectomes have more weaker edges. This is not necessarily due to
the corresponding tractograms having correspondingly less fibres, but instead can
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also be due to a steeper fibre count distribution, where a larger number of fibres is
accounted for by the "thickest" edges, or a larger number of fibres being discarded
as they could not be correctly extrapolated.
As such a classification based on the density after thresholding still takes ad-

vantage of the presented framework, albeit not the regional network indices. It,
however, gives us a reasonable classification accuracy that a classifier based on a
network index should exceed in order to be considered to contain additional infor-
mation. We can in turn consider any classifier below 80 % classification accuracy to
not contain any additional information and be a bad classifier for our purposes.

6.4.2 Global Network Indices Across Densities

In addition to containing more information than the fibre count histogram, we expect
a good regional network index to be better suited for classification than the global
network indices. In order to compare the performance we examined three of the
most commonly used global network indices.
We found that the classification accuracy using an universal threshold is rela-

tively stable across a range of thresholds. This leads us to assume that the changes
in network indices due to the different density dominate the classification as this
difference is relatively stable. At the same time the area under curve is close to 0.8
or 0.2 respectively which we have identified as threshold for a good classifier based
on the thresholding accuracy due to the density difference.
In contrast we can see a marked difference in the classification accuracy as a

function of the target density. While classification accuracy for high densities does
not exceed the 80 % mark we find that global classifiers based on the betweenness
centrality and the clustering coefficient exceed this threshold for low densities. The
best classification accuracy for the clustering coefficient is between a density of 0.1
and 0.3. The optimum for the betweenness centrality is below 0.1.
Both achieve a top performance of roughly 90 % which is a good classification

accuracy. This in turn gives us a new threshold which we expect to exceed for our
regional network index based classifiers.

6.4.3 Regional Network Indices Across Densities

We then tested our regional network indices to test whether our previous, promising
results can be confirmed. We tested two commonly used network indices, the local
degree and the clustering coefficient, as regional network indices, as well as the
betweenness centrality, which we believe to be more useful in this context.
Our preliminary results suggested changes in the importance of Wernicke’s Area

and little to no change in the role of Broca’s Area and the Motor Cortex. Our study
seems to confirm these results.
Both Broca’s Area and the Motor Cortex remain considerably below the 0.8

threshold for accuracy we set as minimum bar for additional information contained
in the classifier. Especially the Motor Cortex based classifiers remain close to the
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0.5 mark, which is an interesting result in itself. It suggests that the role of the
Motor Cortex remains essentially the same and its embedding in the network does
not change at all. This seems to confirm our original idea of using the Motor Cortex
as internal validation for our method due to its unchanged importance. The only
classifier deviating from this is the average degree in the weight based threshold case,
which is most likely due to the difference in densitiy which is directly proportional
to the difference in average degree as both are a direct function of the number of
connections. The deviation for high densities could point to a higher percentage of
"noisy" connections, if edges representing only few fibres are included.
Broca’s Area based classifiers are not as close to random, but remain well below

the 0.8 mark and can be discarded as adding additional information.
For Wernicke’s Area based classifiers the situation is different. While here as well

the weight threshold based classifiers remain relatively stable and close to the 0.8
mark, most likely again due to the difference in density, the density based classifiers
show a different picture. The clustering coefficient remains below the mark and
can be discounted as a useful classifier in this case, but the average degree and the
betweenness centrality are markedly above the 0.8 mark for a range of densities and
even exceed the 0.9 mark of the global classifiers for densities of about 0.05 to 0.15.
The change in average degree at the same overall number of edges indicates that
Wernicke’s Area is relatively worse connected in ASD. The reduced betweenness
centrality could be due to this reduction in connections, as fewer short shortest
paths inherently run through a less well connected node, but the classifier based on
the betweenness centrality consistently outperforms the one based on the average
degree, indicating that it reflects a more global change in the role of Wernicke’s Area
than the purely local average degree.

6.4.4 Clinically Relevant Densities

Part of this experiment was to evaluate at which densities the analysis of the human
connectome is clinically relevant. This question goes beyond the problem of edges
introduced by noise and how to avoid them, although this is an important issue,
and is relevant even for a completely noise-less connectome. At very high densities,
close to 1, the binary connectome will trivially not contain useful information as in
these boundary cases the network indices will have the same value for all networks.
The same is true at very low densities, close to 0, where the network will be mostly
disconnected.
However the question at which densities changes in the network due to illnesses

are most pronounced can not trivially be answered. This question is linked to the
question which kind of connections change the most in an illness, the very prominent
ones, which can be easily found by fibre tractography and will be present with
thousands of fibres, or the subtle ones, which represent only a few fibres and might
be drowned by noise. We can not clearly answer this question, as it can be expected
that our tractographies, and consequently connectomes, are not noise-free, but we
at the very least give indications whether even prominent connections are altered in
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Table 6.1: Density ranges of best classification performance for different classifiers.
Top are global indices, bottom are regional indices of Wernicke’s Area.
Densities below 0.05 were not evaluated. Only network indices exceeding
85 % classification accuracy are listed.

Network Index Density Range
Clustering Coefficient 0.1-0.3
Betweenness Centrality < 0.1

Average Degree < 0.15
Betweenness Centrality < 0.15

diseased connectomes.
We have found, that the optimum classification window differs for different kinds

of network indices. Table 6.1 shows the areas of best classification for different
network indices.
Given that the acquisition protocol for ASD patients and TD subjects is identical

we can assume that the acquisition process itself does not differentiate between the
two groups. If the main difference between the two groups is due to an overall change
in anisotropy we would assume that the fibre tractography results differ especially
in the subtle connections and less in the main connections as these tracts can easily
be found even if the anisotropy is slightly decreased. Instead we find that the main
difference between the groups affects the top third of connections. While noise could
potentially mask the differences in subtle connections, our findings suggests that the
differences in the connectome are not due to some global change in anisotropy, but
instead organizational changes.
The global clustering coefficient indicates that even at relatively high densities

the network tends to form fewer tightly knit cliques in the case of ASD. Instead the
connections are more evenly distributed. In conjunction with the reduced classifi-
cation accuracy for lower densities we get an image, where both ASD patients and
TD subjects form cliques of nodes that are strongly connected, but whereas these
cliques are expanded by weaker connections in the healthy connectome to form larger
cliques this is not the case in ASD, where these weaker connections tend to be more
between different cliques.
In contrast to this the difference in the regional average degree as well as the

regional and global betweenness centrality becomes more pronounced at lower den-
sities. This suggests that the organization of the strong connections determines the
main role of different areas in the network. While an area might be equally well
connected with weaker links the reduction in strong links limits seems to limit the
capability of these areas.
Our results suggest that for diagnostic purposes the involvement of a region at
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low densities gives the best indication of a possibly reduced capability.

6.4.5 Changes in Autism Spectrum Disorders

In line with our earlier preliminary results these expanded experiments indicate
that the reduced capability for oral communication in ASD reflects in the regional
betweenness centrality of Wernicke’s Area, whereas other regions are less affected.
By focussing on specific regions of the brain we gain a specificity which the global
measurements lack. We did only measure changes in certain regions of the brain in
the scope of this work. The methods we implemented however can easily be adapted
for other diseases and could be a useful tool for diagnosing diseases based on the
affected regions.

6.5 Summary

We have presented, implemented and evaluated a new method to incorporate prior
anatomical information into graph indices by adding an additional region layer be-
tween the local and global network indices. This work applies this technique to use
the betweenness centrality of Wernicke’s Area to classify ASD patients and typically
developed controls.
Using this approach we have shown on a small set of patients that this regional

betweenness centrality has a good diagnostic value and surpasses a purely global
classification, even using more complex classifiers and learning approaches, as well
as other indices traditionally more commonly used in current research.
Looking back to our original objectives we have fulfilled our goals. Incorporating

anatomical and medical information into the region layer yields an improved index,
which aligns well with the observed symptoms. At the same time the reduced
centrality of Wernicke’s Area points to a change in the network architecture which
furthers our understanding of the changes in the role of different areas in ASD.
Especially in combination with no apparent change in Broca’s Area this points to a
possible change in the development of the pathways in the brain.
Furthermore we incorporated our research into an openly accessible tool set, which

has been designed to combine the power and modularity of C++ with the ease of
use of binary releases for medical professionals.

6.6 Outlook and Further Work

The framework provided during the course of this work is easily applicable to cover
other diseases. The primary result will be the answer to the narrow question of
identifying regional indices which are well suited for describing a specific disease.
But by extending our data pool to multiple diseases a secondary question that can
be pursued is to identify regional indices which are unique to a certain disease.
Contrary to the artificial lab environment a diagnostic tool in the clinic will not
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have to decide whether a patient is suffering from a disease A or not, but instead
will have to discriminate between a large number of possible diseases. Supplying
such a tool with a fingerprint of expected changes in the brain associated with a
disease is therefore of a high priority.
On the medical side extending our approach to younger children or infants suffer-

ing from ASD would provide a more useful diagnostic tool, as having an objective
and quantifiable assessment is clinically more important at a younger age. By in-
creasing the sample size and correcting for multiple tests a more complete analysis
of different regions can discover associations to other symptoms.
Lastly using the established techniques to define a baseline accuracy for different

techniques a more thorough investigation of using different weighting methods would
provide a theoretically more grounded framework for estimating real edge weights
from the image data and tractograms in the absence of ground truth.
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