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Abstract

The proliferation of videos in recent years has spurred a surge of interest in developing
efficient techniques for automatic video interpretation. The thesis improves the under-
standing of videos by building structured models that use latent information to detect
and recognize instances of actions or abnormalities in videos. The thesis also proposes
efficient algorithms for inference in and learning of the proposed latent structured mod-
els that are appropriate for learning with weak supervision.

An important class of latent variable models is the multiple instance learning where
the training labels are provided only for bags of instances, but not for instances them-
selves. As inference of latent instance labels is performed jointly with training of a
classifier on the same data, multiple-instance learning is very susceptible to overfitting.
To increase the robustness of popular methods for multiple instance learning, the the-
sis introduces a novel concept of superbags (ensemble of bags of bags) that allows for
decoupling of classifier training and latent label inference steps.

In the thesis, a novel latent structured representation is proposed to discover in-
stances of action classes in videos and jointly train an action classifier on them. Action
class instances typically occupy only a part of the whole video that is not annotated
in weakly labeled training videos. Therefore, multiple instance learning is proposed to
find these latent action instances in training videos and jointly train the action classifier.
The thesis proposes a sequential method to multiple instance learning to increase the
robustness of the training.

For the interpretation of crowded scenes, it is important to detect all irregular objects
or actions in a video. However, the abnormality detection is hindered by the fact that the
training set does not contain any abnormal sample, thus it is necessary to find abnormal-
ities in a test video without actually knowing what they are. To address this problem,
the thesis proposes a probabilistic graphical model for video parsing that searches for
latent object hypotheses to jointly explain all the foreground pixels, which are, at the
same time, well matched to the normal training samples. By inferring all latent normal
hypotheses in a video, the model indirectly finds abnormalities as those hypotheses that
are not supported by normal samples but still need to be used to explain the foreground.
Video parsing is applied sequentially on individual video frames, where hypotheses are
jointly inferred by a local search in a graphical model. The thesis then proposes a spatio-
temporal extension of the video parsing, where an efficient inference method based on
convex optimization is developed to find abnormal/normal spatio-temporal hypotheses
in the video.






Zusammenfassung

Die enorme Verbreitung von Videos innerhalb der letzten Jahre hat zu einem gesteigerten
Interesse an der Entwicklung von effizienten Techniken fiir die Interpretation von
Videos gefiihrt. Die Hauptmotivation dieser Dissertation ist es, das Verstindnis von
Videos zu verbessern, indem strukturierte Modelle konstruiert werden, welche latente
Informationen nutzen, um wichtige versteckte Aspekte der sichtbaren Welt zu kodieren.
Diese Dissertation prisentiert Algorithmen fiir effiziente Inferenz in sowie das Erler-
nen der vorgeschlagenen Modelle, die anwendbar sind auf schwach iiberwachte Train-
ingszenarios.

Um die latenten strukturierten Modelle zu trainieren, inferieren wir latente Variablen
und trainieren Instanzklassifikatoren gemeinsam. Die Trainingszielfunktion ist typis-
cherweise sehr anfillig fiir Uberanpassung, wenn das Modell nicht richtig initialisiert
wurde. Eine wichtige Klasse von latent strukturierten Modellen mit einem grof3en Po-
tential fiir die Anwendung in der Bilderkennung ist das Multiple Instance Learning, bei
dem die Problemstruktur Multimengen von Instanzen beinhaltet, sogenannte Bags. Um
die Robustheit der Lernmethoden des Multiple Instance Learning zu verbessern, wird
die Problemstruktur um sogenannte Superbags erweitert. Dies erlaubt die Entkoppelung
von Parameterschitzung und der Inferenz von latenter Information.

In dieser Dissertation werden neuartige latente strukturierte Modelle vorgestellt, um
die semantische Interpretation eines Videos zu verbessern. Um ein Video verstehen zu
konnen, ist es notwendig die Handlungen der Objekte in einer Szene zu kategorisieren.
Typischerweise finden die Handlungen nur in einem Teil des Videos statt. Diese Infor-
mation ist jedoch nicht verfiigbar wihrend des Trainings oder des Testvorgangs. Daher
wird in dieser Dissertation ein strukturiertes Modell vorgestellt, welches Multiple In-
stance Learning nutzt, um den versteckten Handlugsteil des Videos zu erkennen. Um
die Robustheit beim Trainieren der Modelle zu erhohen, schlédgt diese Dissertation einen
sequentiellen Ansatz fiir das Multiple Instance Learning vor, der auf dem Video Trim-
ming beruht.

Um iiberfiillte Szenen zu interpretieren, ist es besonders wichtig alle unregelméBi-
gen Objekte, beziehungsweise Handlungen im Video zu erkennen. Allerdings wird
die Erkennung von UnregelmiBigkeiten durch die Tatsache beeintrdchtigt, dass die
Trainingsmenge keine entsprechenden Beispiele enthilt. Daher ist es notwendig Un-
regelméfigkeiten in einem Test Video zu finden ohne zu wissen was sie sind. Um
dieses Problem zu addressieren, schlédgt diese Dissertation ein probabilistisches Modell
mit latenten Variablen fiir das Video Parsing vor, das nach Objekt-Hypothesen sucht,



um gemeinsam alle Vordergriind-pixel zu erkldren, welche zur gleichen Zeit, gut zu
den normalen Trainingsbeispielen passen. Bei der Inferenz der latent normalen Struktur
eines Videos, erkennt das Model auf indirekter Weise UnregelmifBigkeiten als Hypothe-
sen, die nicht durch normale Beispiele unterstiitzt werden, aber dennoch benutzt wer-
den miissen, um den Vordergrund zu beschreiben. Video Parsing wird sequentiell auf
einzelne Video Bilder angewandt. Dafiir wird eine Lokal-Inferenze-Technik in einem
graphischen Modell genutzt. Diese Dissertation stellt darauthin eine umfangreiche Er-
weiterung des Video Parsing Modells in der rdumlich-zeitlichen Doméne vor, wo neuar-
tige effiziente Inferenzverfahren auf konvexer Relaxation basierend entwickelt werden,
um die latenten raumlich-zeitlichen Hypothesen im Video zu erkennen.
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Chapter 1

Introduction

1.1 Visual Understanding

The world is extraordinarily complex and to be able to survive in it, humans use
sophisticated cognitive functions that help them to interpret the world and formulate
their actions accordingly. Humans perceive the world by their senses that are physical
measurements of the processes that exist in the world. By processing sensory signals in
the brain, a meaningful representation of the world is created. Vision has a prominent
role in human interpretation of the world. Psychological research has indicated that a
large part of the brain known as visual cortex is responsible for processing visual signals
that come from the eyes.

Computer vision aims at processing signals captured by digital cameras to extract
the high-level knowledge that corresponds to the semantic interpretation of the visual
world. Computer vision is one of the core disciplines of artificial intelligence. Many
higher level artificial intelligence functions rely on the world interpretation provided
by computer vision. To comprehend the visual scene, computer vision has to answer
the following questions: who (recognition of objects in the scene), what (recognition
of actions that objects perform), where (recognition of type of the scene), and how
(recognition of attributes of the objects and actions).

Object recognition, which lies at the core of computer vision, has the goal to learn vi-
sual object categories and identify new object instances that belong to these categories.
Although recognition also involves the problem of identifying a particular object in-
stance in a scene, in this thesis we will discuss the broader problem of identifying object
instances that belong to the same semantic class - e.g. pedestrians, cars, motorcycles etc.
There are three standard formulations of the visual object recognition: image classifica-
tion, object detection and semantic segmentation (see Fig. 1.1). In image classification,
the goal is to decide whether an instance of a certain object category is present in an
image. More informative description of a scene is provided by object detection, which
aims at identifying all object instances of a certain class in the scene and simultaneously
finds their locations usually given as bounding boxes around the object instances. Se-
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(a) Image Classification (b) Object detection (c) Semantic segmentation

Figure 1.1: The illustration of three main object recognition tasks: image classification,
object detection and semantic segmentation.

mantic segmentation provides a more insightful view into the structure of a scene than
image classification. More than just tagging an image with a segmentation label as in
image classification, semantic segmentation associates the whole segmentation mask to
each semantic category in an image.

Object recognition was first applied in the late 1960s for optical character recogni-
tion in the post offices of the United States. Subsequent successful use of object recog-
nition methods in industrial applications such as visual inspection of semiconductor
components, paved the way for more advanced applications in the years that followed.
Object recognition quickly spread to other domains, e.g. biometric recognition (such as
finger-print recognition), visual surveillance (e.g. vehicle detection on the street), and
medical imaging (e.g. detection of anatomical structures). Despite a great success of
object recognition techniques in applications with controlled environment, the general
problem of object recognition in unconstrained environments is still elusive, due to high
intra-class variability, sensitivity to occlusion, variable illumination and background
clutter.

In recent years there is a trend of creating many more video clips than images. For
example, more than a billion users visit the YouTube web site each month, and more
than 100 hours of video material is uploaded to YouTube every minute [web14]. Video
captures not only the static aspects of the scene (appearance, color and texture), but
also the motion which is important for understanding actions that objects perform in
the scene. For example, an image of a person in Fig. 1.2 does not tell us if the person
is standing up or sitting down. Only by watching the whole video clip we can see
based on the motion of the person that he is standing up. With respect to the temporal
structure, actions can be divided into atomic (such as getting in the car or handshaking),
and repetitive (such as jogging or eating). Atomic actions consist only of a single phase
of the action, whereas in repetitive actions there are several phases included in the video
clip.

Recognition of atomic actions is also of interest for understanding of complex activ-
ities performed by one or more persons in the scene, because they can be decomposed
into a sequence of atomic actions. For example, a triple jump activity is nothing but a
sequence of three atomic actions: hop, step and jump. Collective activities of a group
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Figure 1.2: Static images cannot answer to some elementary questions about the scene,
for example weather the person in this image is sitting down or standing up?

of people can also be decomposed into atomic actions that persons perform in a co-
ordinated way (such as waiting in a queue where people are all lining up). Action
recognition is also important for the problem of crowd analysis, where a large number
of individual human actions helps in understanding the meaning of a crowd video. As in
the case of object recognition, action recognition is often handicapped by the large intra-
class variation, severe occlusions, clutter, and change of viewpoint between training and
test videos.

The recognition problem in video is often compound with the question: are all ob-
jects or events in a video regular or are there some abnormal instances? Abnormal
instances play a prominent role in interpretation of a video, because abnormality detec-
tion is typically followed by certain measures that aim to minimize the consequences of
the detected abnormality. In many fields we are faced with a need to detect abnormal
instances, such as finding suspicious objects or unusual behavior in surveillance video,
lumps in mammographic images, or defect products in a factory (Fig. 1.3). Therefore,
it is important for a computer vision system to be able to find abnormal instances in a
video.

1.2 Structured Models

The goal of computer vision, as we have already seen, is to automatically find the
semantic interpretation of a scene from images or videos. The observed visual data are
related to a higher-level information by the virtue of a visual model. In a mathematical
sense, visual model is defined by specifying a relationship f that exists between input
data x and output information y,

y = f(r). (1.1

For example, in image classification problem, the bag-of-features (BoF) model uses as
input x a histogram of local features to represent image data, and output is the semantic
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Nl =4

(b) defect product in factory

(c) irregular object in surveillance video (d) unusual behavior in surveillance video

Figure 1.3: Illustration of visual abnormality detection.

label y associated with an image. The model then specifies a relationship that exists
between the input x and output y as discriminative classification rule. A detailed expla-
nation of the BoF model is deferred to Sect. 3.2.

Structured models in general involve a large number of output variables with their
relations and previously mentioned input-output relations. A structured model defines
a mapping f : X — ) between an input domain X and a structured output domain
Y. The mapping f is given in an implicit form, as a result of maximization of an
evaluation function g(z,y) for a given input x € X" over all possible structured output
configurations )/,

y = f(z) = argmax g(z,y). (1.2)
Yy

In probabilistic graphical models, where input z and output y are random vari-
ables, this corresponds to the criterion of maximum a posteriori probability (MAP),
g(x,y) = p(y|z). In structured SVM model, evaluation function is a linear function
g(z,y) = w'®(z,y) of a feature vector ®(x,y), that involves relations between input
and output y variables. The parameter vector w is estimated by learning on the training
set (21,91), -+, (Tn, Yn)-

Structured models are very useful in computer vision. In image segmentation prob-
lem, the goal is to label each pixel in an image as foreground/background. The Markov
random field (MRF) model takes the input image x, and predicts the labels y € {0, 1}"
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(a) Tree-structured model (b) Higher-order cliques (c) Latent variable

Figure 1.4: Different structured models for the pedestrian class. (a) Tree structured
model which can be applied using efficient inference algorithms. (b) Non-tree struc-
tured model that involves higher-order cliques that increase representational power of
the model at the cost of making inference harder than in the tree model. (c) Introduc-
tion of a latent variable z makes the structure of the model simpler than in (b), however
without sacrificing the representational power of the model in (b).

of all pixels jointly. It uses as evaluation function g(z, y) a linear combination of pixel-
wise data terms g;(, y;) and pair-wise interaction terms g; ;(y;, y;) that encourage pixels
i and j to have the same label if they are neighbors (N denotes the set of all neighboring
pairs of pixels),

n

y=f(z) =argmax Y gz, v+ > g1 (1.3)
y'e{0,11" (i) EN

Markov random field models are also useful in other image processing domains, such
as image denoising [PPLAO1], stereo estimation [YHMU12], and optical flow [RB07],
to name a few.

Structured prediction has also been applied in higher-level computer vision tasks,
such as object recognition. The main idea here is to represent an object as a set of
local parts, whose appearance and spatial dependencies are described by a structured
model. This idea dates back to the 1970s when Fischler and Elschlager [FE73] pro-
posed pictorial structures for object detection in images. In year 2005, Felzenszwalb
and Huttenlocher proposed a modification of the original pictorial structure scheme,
where spatial dependencies between parts are defined on a tree graph, because there are
efficient inference methods developed for tree graphs that use dynamic programming.

A tree is a minimal connected graph in terms of number of edges (Fig. 1.4(a)). Ina
tree with n nodes there are n — 1 edges, and one cannot find a connected graph with n
nodes that uses less than n — 1 edges. However, in case of articulated object recognition,
this number of edges in the graph is not sufficient to represent all structural dependen-
cies that exist between parts of an articulated object. Adding more edges to the graph
increases the flexibility of the model, but this comes at the expense of losing computa-



18 CHAPTER 1. INTRODUCTION

tional tractability in inference due to emergence of large cliques (1.4(b)). Better results
can be obtained by designing graphical models with latent variables that efficiently use
the graph structure for computationally feasible inference (Fig. 1.4(c)). As the latent
information is not provided in the training set, it needs to be inferred in the training. A
recent successful example of latent modeling in computer vision is the Felzenszwalb’s
Deformable Part Model [FGMR10]. This model uses latent HOG parts that are spatially
connected as a star graph that has in the center the provided bounding box as a reference
frame. However, individual HOG parts are not provided, but they have to be inferred
during training. Felzenszwalb et al. propose a discriminative training procedure called
Latent SVM to infer the missing labeling information and find HOG-based classifiers.
The score of data x for class y is found by maximizing a linear cost function overall all
latent configurations z in the latent space Z,

g(x,y) = rgleazxwyT(I)y(x, ). (1.4)

In a standard supervised learning, a classifier is trained on the set of training in-
stances where each instance is given as a pair of input data z; and output label y;. The
recognition phase then uses the classifier to predict labels y of new instances based on
their input data x. However, there are applications in which instance labeling is too
costly or simply unavailable. The Multiple-instance Learning (MIL) is a flexible learn-
ing scheme that has been proposed to deal with learning from ambiguous instance labels.
MIL is based on the following paradigm: instead of providing labels for the training in-
stances, labels are provided for the bags (i.e. sets) of instances. A bag is assigned a
certain label if at least one of its instances is labeled with that label. If none of the
instances in a bag has some label, then the label is not assigned to the bag. Therefore,
labels of instances in bags can be considered as latent variables, because they are not
given during training, but they have to be inferred. An illustration of the MIL problem
is given in Fig. 1.5.

The MIL idea was proposed in the machine learning community by Dietterich et
al. [DL97] who worked on the problem of drug discovery. The problem consisted
of predicting properties of molecules based on their shape statistical features. As one
molecule can take multiple distinct shape configurations, and it is unknown which shape
configuration gave rise to the certain property of a molecule, MIL is used to represent
a molecule as a bag of shape instances. Beside the prediction of drug activity, MIL
has also been applied in other disciplines, such as computer vision, e.g. for image
classification [CBWO06], object tracking [BYB11], or object detection [MO12].

In a binary case, the MIL training set consists of bags { By, . . ., B, } with their labels
{Y1,...,Y,}, Y; € {—1,41}. Each bag is a set of instances B; = {zi1,...,Tim},
x;; € X. Typically, all instances are assumed to have a label that is not provided during
training, but has to be inferred while the classifier is trained. For a positive bag, there is
at least one positive instance in the bag, which is typically called a positive witness,
v {+1, if 3 5.8 gy = +1. s)

—1, otherwise.
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Figure 1.5: An illustration of the multiple-instance learning (MIL). Three persons are
responsible for the maintenance of a building. Each person has a key ring with keys that
unlock some of the doors in the building. Jim and John can unlock the emergency door,
while Jack cannot do it. The goal is to predict which of the keys unlocks the emergency
door. Jim’s and John’s key rings are, in MIL terminology, the positive bags and it is thus
necessary to find which key appears on both of these key rings, and, at the same time,
does not appear on the Jack’s key ring (negative bag).

MIL’s latent structure is defined by a relationship between latent instance labels y;; and
a bag label Y,
Y; = maxy;;. (1.6)
j

There are two levels on which a classifier can be trained in MIL. An instance clas-
sifier assigns labels to individual instances based on their value, f : X — ), while
a bag classifier assigns a label to the whole bag, F' : X" — ). However, because
of the relationship that connects bag and instance labels, it is necessary to train only
the instance classifier, as the bag label can be predicted from the instance predictions,
F(B;) = max; f(z;).

1.3 Objective

The main objective of this thesis is to improve video understanding by building
structured models that represent latent action instances and abnormal/normal object in-
stances in a visual scene. As the thesis uses a weakly supervised training setup, latent
instances need to be inferred automatically from training videos. For all latent variable
models proposed in this thesis, efficient inference and learning algorithms need to be
developed.

Video understanding is a very broad topic that underpins many problems in com-
puter vision. However, there are several tasks that are of crucial importance for building
a working video understanding system, such as the object detection and classification,
action recognition or abnormality detection. The goal of this thesis is to advance the
state-of-the-art in the disciplines of action recognition and abnormality detection in
videos. In action recognition, the goal is to enhance the recognition performance by
inferring a part of a video that corresponds to the latent action instance. The goal is
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to develop a robust learning procedure that can find the latent action parts in training
videos and to simultaneously train the action classifier on them.

The thesis also aims at improving abnormality detection, which has a prominent role
in explaining the content of a video. The goal of the thesis is to avoid independent de-
tections of abnormalities in individual image patches or regions, but to build a structural
model that uses latent object hypotheses that jointly explain the foreground information
in a video. Besides sequentially applying the model on successive video frames, the
thesis also investigates extensions to the spatio-temporal domain where more intricate
interactions between object hypotheses are possible thus allowing for a better discerning
of abnormal and normal object instances.

With respect to inference and learning, the thesis aims at improving multiple-
instance learning as a structured representation that deals with ambiguous labeling in
the training set. The thesis investigates the process of simultaneous inference of the
latent instance labels and training the instance classifier to make it more robust by intro-
ducing additional structured concepts in the model. Additionally, efficient techniques
for inference and learning in the proposed graphical models for abnormality detection
are sought after in the thesis.

1.4 Current Challenges in Video-based Recognition

Computer vision continues to be one of the hardest areas of artificial intelligence,
due to the complexity and fuzziness of the visual world that needs to be transformed into
a semantic representation. Of crucial importance is thus to model the structural proper-
ties of the visual world, and to devise efficient algorithms for learning and inference in
such models. We state here some of the most important challenges that are met when
building a working system for video interpretation.

Intra-class variability in the action class: The set of all instances of an action that
participates in the action class is very diverse. People perform the same action in many
different ways. For example, a person has a characteristic walking style that can be used
for identification of that person. Beside differences in motion, appearance is also very
diverse among instances of an action class. For example, a running person can be a
businessman hurrying up for the next business meeting, or it can be a contestant in an
athletic race. The length of action can also vary a lot in different action instances.

Variety of camera conditions: Camera introduces many degrees of freedom in video
understanding process. The position of the camera with respect to an actor induces
view-point changes, that hamper action learning, because there are typically not enough
training samples for all possible camera views. Another artifact is the camera motion,
that introduces a motion bias. Also the low video resolution or compression artifacts
can be a significant hurdle in action recognition or abnormality detection.

Video editing artifacts: We also might not see the complete action because video has
been edited by cropping or cutting. For example, we might see only the face of a person
sitting down, but not the whole vertical motion of the body, in which case it is really
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hard to recognize the action. Another problem is the lack of continuity in recorded video
of an action. For example, a video of a person getting our of car first shows the person
sitting in the car, and then the person already standing nearby the car so the intermediate
moments that capture the action are not recorded.

Occlusion: Sometimes the action is not fully visible because parts of the actions are
occluded by other objects in the scene. In case of actions that consist of coordinated
motion of two actors, one might not see both actors all the time, but only one of them
because the other one is occluded (such as in hugging action). Human motion is also
susceptible to self-occlusion, when body parts occlude each other in the course of action
(e.g. running).

Clutter: Video understanding process is hampered if the action instances are buried
amid less relevant ingredients of a video. The presence of clutter in video can severely
degrade the recognition accuracy because it introduces undesirable features into video
representation that mask the relevant action features. The clutter in video can exist in
both spatial and temporal domain.

1.5 Contributions of the Thesis

This thesis makes the following contributions:

e Action recognition and abnormality detection in videos are improved by intro-
ducing novel latent structured models, that represent unknown action instances or
abnormal/normal object instances in weakly labeled videos as latent hypotheses
that are jointly inferred within the model.

e The robustness of multiple-instance learning (MIL) is increased by introducing
the concept of superbags (ensemble of bags of bags). To avoid overfitting that oc-
curs because the classifier is trained on the same data that are used for inference,
superbags decouple the processes of latent instance label inference and classi-
fier training by performing them on separate superbags. The variance of instance
labels that are inferred by multiple-instance learning is reduced by averaging la-
bel predictions cast by multiple superbag classifiers. The concept of superbags
is easily integrated with a number of popular MIL methods, that yields an im-
proved performance on MIL benchmark datasets and in various computer vision
applications.

e The method for discovery of latent action class instances (action subsequences) in
weakly labeled videos is developed in the thesis. Classification of video into one
of the action categories is improved by combining the predictions of the full se-
quence classifier and action subsequence classifier. Action subsequence classifier
can also be used as an action detector.

e Sequential multiple-instance learning is proposed to train the action subsequence
classifier on weakly annotated videos. The proposed MIL formulation is used to
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jointly find latent action subsequences in training videos and train the action sub-
sequence classifier on them. The proposed training procedure increases the ro-
bustness of the action classifier training. A larger number of action subsequence
hypotheses are generated in each video to increase the recall rate of discovered
action instances and their number and length are gradually decreased. The pro-
posed concept is successfully evaluated on the state-of-the-art dataset for action
recognition and showed good results.

A method for sequential parsing of individual video frames is proposed to de-
tect abnormalities in videos. The parsing model is capable of discovering abnor-
malities in test videos, although the model has not seen any abnormal sample in
training videos. The method avoids a direct search for individual abnormal image
patches or regions.

The sequential video parsing is designed as a Bayesian network where latent ob-
ject hypotheses are mutually competing for explanation of the foreground pixels
in video, and, simultaneously, hypotheses are explained by the normal object ex-
emplars from the training videos. Hypotheses are jointly selected based on the
statistical inference technique of explaining away, where only hypotheses that are
indispensable for explaining of foreground pixels are retained. Abnormalities are
discovered indirectly as those hypotheses which are needed for covering the fore-
ground but which cannot be explained by normal samples. The method achieves
state-of-the-art performance both in abnormality detection and localization, as is
evidenced by testing on the most challenging benchmark set for abnormality de-
tection.

Spatio-temporal video parsing is proposed to jointly parse frames in a video, as
opposed to sequential video parsing that processed frames individually. Spatio-
temporal video parsing allows to resolve both spatial and temporal dependencies
between objects in a scene. The inference process aggregates object evidences
from different video frames and decides about objects hypotheses in the scene that
leads to improved state-of-the-art results in abnormality detection and localization
in videos.

The inference in spatio-temporal video parsing is posed as a convex optimization
problem. Consequently, the inference for video parsing does not depend on the
model initialization and the global optimum can be efficiently found by projected
gradient method.

Video parsing uses spatio-temporal normal shape prototypes, thus abnormalities
can also be inferred by observing how the shape evolves in time. The set of normal
spatio-temporal shape prototypes is learned by alternating between the parsing of
training videos and estimation of the shape prototypes using the results of parsing.
Both the video parsing and estimation of shape prototypes can be formulated as
convex optimization problems, and thus can be efficiently solved.
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1.6 Organization of the Thesis

Chapter 2 first reviews the general problem of multiple-instance learning (MIL),
that has seen many applications in computer vision. Since the MIL problem is prone
to initialization error and overfitting, we explain our solution that introduces suberbags
(ensembles of bags of bags) as a new concept in MIL. Using superbags, the tasks of label
inference and classifier training can be decoupled that leads to a more robust training.
We then show how to integrate superbags with some of the most prominent methods
for MIL. We evaluate the proposed concept on several standard benchmark datasets
for MIL, including also two computer vision datasets and demonstrate the benefit of
introducing superbag concept to MIL.

Chapter 3 deals with the problem of action recognition in video. We first review
prominent approaches to classification of actions in video. We than explain the proposed
approach that uses MIL for the discovery of latent action instances in videos and the
joint training of the action classifier. Sequential MIL method is proposed for greater
robustness of action classifier training. Evaluation is performed on the most demanding
dataset for action recognition, where the proposed sequential MIL approach showed
good results.

Chapter 4 proposes a novel approach to abnormality detection by sequential video
parsing. It first discusses the main aspects of the previous work on abnormality de-
tection in videos, which aim to directly test individual image patches independently
of another. After reviewing background subtraction and probabilistic graphical models
that our video parsing method builds upon, the method for sequential video parsing is
presented. First, the procedure for finding a shortlist of object hypotheses is described
(initialization stage), and then the graphical model for sequential video parsing is ex-
plained. After that, details about inference in a graphical model for video parsing are
given. Finally, results of video parsing on the state-of-the-result dataset for abnormality
detection are shown.

Chapter S describes an improved model for video parsing, where the whole spatio-
temporal volume is parsed jointly, as opposed to Chapter 4 that parses each frame sep-
arately. The method for building a shortlist of spatio-temporal hypotheses is explained,
and then the probabilistic graphical model for spatio-temporal parsing. Inference is
posed as a convex optimization problem which is explained in a separate section. Learn-
ing of normal spatio-temporal prototypes for full video parsing is described afterwards.
Finally, extensive results on state-of-the-art datasets for video parsing are presented in
the experimental section. Results are extensively compared to all recent state-of-the-art
methods for abnormality detection (including the sequential video parsing), both con-
cerning the abnormality detection and pixel-wise localization.

Chapter 6 concludes the thesis with the final discussion.
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Chapter 2

Robust Multiple-Instance Learning
using Superbags

For automatic interpretation of a video, it is necessary to find semantic categories that
the video belongs to. Visual scene can be decomposed into many instances, but not all of
them belong to the semantic category of interest. Thus, the task of video understanding
is not only to predict semantic category for the whole video, but also to find instances in
the video that represent a certain semantic category. However, in a weakly supervised
setting that prevails in practice, there is no information about instances of training videos
that represent semantic classes that training videos belong to. Therefore, semantic in-
stance labels in training videos are considered as latent variables. Training a classifier on
a dataset with latent instance labels can be conveniently formulated as multiple-instance
learning (MIL). In contrast to standard supervised learning where all training instances
are provided with their class labels, MIL discovers latent instance labels during train-
ing of the classifier. MIL setup comes with training instances grouped into bags, with
labels provided only at the bag level. So far, instance labels have been inferred on the
same data that the classifier is trained on, which leads to overfitting. To resolve this
critical issue of multiple-instance learning we introduce an ensemble of bags of bags,
i.e., superbags. This concept decouples classifier training and label inference which are
performed now on different superbags.

2.1 Outline of the Approach

The framework of MIL has been applied in many practical applications because
it provides a powerful mechanism for dealing with latent instance labels that appear
in weakly supervised setups. After initially applying MIL to the drug activity predic-
tion [DL97], the concept has quickly spread to many other disciplines such as text-
categorization [ATHO3] and computer vision. Many authors used MIL for image re-
trieval [ZGO01, VGO8], image categorization [CBWO06] or object detection [MO12]. Ob-
ject tracking has also had a great benefit from the MIL setup [BYB11, LSB10], which
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manages to seamlessly pick among many candidate patches one that best corresponds
to the tracked object and uses it for updating the appearance model.

To train a classifier from instances with unknown labels, most methods for MIL use
an alternating optimization approach which iteratively trains the classifier and finds the
latent instance labels. However, these two steps are performed on the same data, which
renders learning of classifier prone to overfitting and it also increases the variance of
inferred labels.

So how can we resolve these issues and increase the robustness of MIL? First, we
avoid predicting the same instance labels that the classifier is trained upon. Second, we
decrease the uncertainty of inferred instance labels by averaging multiple predictions
from separate classifiers. These goals can be achieved by establishing an ensemble of
bags of bags, that is referred to as superbags. Classifier training and label inference
are decoupled by training a classifier on a superbag, predicting instance labels from
other superbags, and averaging all these predictions. The superbag concept is easy
to integrate with existing MIL approaches, and its results show a consistent gain over
baseline methods that use the same data for training the classifier and predicting the
labels.

2.2 Max-Margin Learning

The most popular MIL approaches are based on the max-margin discriminative
learning concept. Therefore, we give here a brief overview of underlying concepts of the
max-margin learning. The concept of max-margin learning is based on a solid theoreti-
cal ground known as statistical learning theory [Vap95]. In the context of max-margin
learning, we give the basic exposition of the support vector machine (SVM) classifier,
that and show how it can be generalized with kernel functions.

Support Vector Machine

Suppose that we want to train a classifier on the training samples (X1, Y1), - (Xpn, Yn),
where x; € X is the feature vector of training sample 4, and y; € {—1,+1} is a binary
class label of the same training sample. Feature vectors reside in a high-dimensional
feature space X'. Suppose that class samples are linearly separable in the feature space,
so that there are infinitely many hyperplanes that can separate the samples of the two
classes (Fig. 2.1). An important question in machine learning is whether some hyper-
planes generalize better on the test set than others? Vapnik and Chernovenkis [Vap95]
answered this question in their statistical learning theory. According to them, the best
generalization properties has a hyperplane with the largest distance between the closest
training samples of both classes and the hyperplane that is denoted as margin m. The
hyperplane is defined in a feature space X by a linear equation w'x + b = 0. The
training samples of both classes that are closest to the hyperplane satisfy the equation
w ' x + b = %1. The distance between these hyperplanes corresponds to the margin m,
that can be calculated as m = L\I Training samples with label y; = +1 are correctly

lw
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Figure 2.1: Maximum margin classifier finds the separating hyperplane w that maxi-
mizes the distance between the closest samples of both classes and the hyperplane.

classified if they satisfy w'x; + b > 1. For training samples with label 35; = —1, the
correct classification occurs when w ' x; + b < —1. Therefore, training samples of both
classes are correctly classified if they satisfy

yi(w'x; +0) > 1,Vi. 2.1)

Now we can formulate the optimization problem whose solution is the max-margin
classifier,

1 9
] —_— .
min l|w| (2.2)

)

sty (wix; +b) > 1, Vi,

This is a constrained convex optimization problem in which we try to minimize a
quadratic function subject to a set of linear constraints. The constrained optimization
problem can be turned into an unconstrained problem using the method of Lagrangian
multipliers. The optimization problem from Eq. 2.2 becomes

L+ - T
L=5w W—i-;ozi(l—yi(w x; + b)), (2.3)

with nonnegative Lagrangian multipliers «; > 0, V7. To eliminate variables w and b, we
set the gradient of the Lagrangian with respect to these variables to zero,

Vol =w— Zn: ayX; =0=>w= Zn: QG YiX; 2.4)

i=1 =1

VL = Z ay; = 0. (2.5)

i=1
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If we substitute analytical expression for w into the Lagrangian, after some algebraic
transformation, we obtain a dual form of £ whose global optimum can be found by the
quadratic programming (QP),

max L(a) = —% Z Z QO YYX] X+ Z a; (2.6)
i=1

i=1 j=1

S.t. «; Z 0, ialyl = 0.

=1

Once the dual variables «; are found, the hyperplane w of the linear classifier is found
as a linear combination of the training samples x;,

w = Z QG YiX; . 2.7
i=1

Dual variables «; that are equal to zero do not contribute to Eq. 2.7, so the hyperplane w
can then be represented as a linear combination of training samples with nonzero dual
value, that are known as support vectors (SV). Therefore, SVM classifier allows for a
sparse representation of the decision boundary w determined only by support vectors.
Karush-Kuhn-Tucker (KKT) conditions require that

a; >0 (2.8)
yi(w'x; +b)—1>0 (2.9)
ai(ys(w'x; +b) —1) =0 (2.10)

The last condition, known as complementary slackness, implies that if the dual variable
is strictly positive, ;; > 0, then the training sample lies exactly on the maximum margin
hyperplane, y;(w " x; + b) = 1. This explains why such a training sample is denoted as
support vector.

A new test data x is classified by evaluating the sign of SVM decision function

fx)=w'x+b= Z aiyi(x] x) + b. (2.11)

=1

We note that in order to compute SVM score f(x) it is not necessary to know the value
of hyperplane normal vector w, but the score can be calculated from scalar products
x; x of test instance x with all support vectors x;. This idea is used in the development
of kernel methods.

Soft Margin

The condition that training samples need to be linearly separable is sometimes not sat-
isfied by the training data. The classification rule, yi(wTX,; + b) > 1, can be violated
by some training samples. The nonnegative slack variable, & > 0, is used to relax the
classification constraint, yi(WTxi +0b) > 1—¢,. If slack equals zero, &; = 0, the margin
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Figure 2.2: Illustration of the kernel mapping. In this case, the mapping is done ex-
plicitely by the function ¢ : (x1,Xs) — (X1,Xs, X3 + X3). Before kernel mapping
data points are not linearly separable. After kernel mapping data points become linearly
separable.

is not violated. For slacks 0 < & < 1, the margin violation still does not result in
the wrong classification. The miss-classification occurs only when slack is greater than
one, { > 1. Thus the sum of slack variables " | & can be used as an upper bound
of the number of classification errors. Consequently, the classifier training objective
function aims to maximize the margin and at the same time to minimize the number of
miss-classifications. This can be expressed as follows

D S -
min S lw]* + C;@- (2.12)
stoy(wix;+b)>1—6,& >0,V (2.13)

The parameter C' controls the trade-off between margin maximization and training error
minimization. It can be shown ([Bis06]) that the dual problem of the soft margin case
is similar to that of the hard margin,

1 n n n
max L(a) = -3 Z Z aiajyiij:xj + Z o (2.14)
i=1

i=1 j=1
n

s.t. 0 < a; < C,Zaiyi = 0.
=1

The only novelty in the soft margin case is that the dual variables «; are now upper
bounded by the parameter C'. As in the hard margin case, we again have a quadratic
program that can be efficiently solved by off-the-shelf solvers.

Kernel Methods

Training samples x; € X are usually not linearly separable in the input space X’. After
a nonlinear transformation ¢(-), training samples ¢(x;) may be linearly separated in a
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higher dimensional space (Fig. 2.2). Finding a linear classifier in a higher dimensional
feature space is equivalent to finding a nonlinear classifier in the input space of training
samples. However, explicit mapping of input points x; to high dimensional feature
points ¢(x;) can be very costly, and in some cases even not possible, because feature
space can be infinite dimensional. By inspection of Eq. 2.14, it can be seen that training
samples x; always appear only as a scalar product ijxj. Therefore, there is no need to
explicitly calculate the feature mapping ¢(x;), but only to calculate the kernel function

K(xi,%;) = o(x;) " p(x;). (2.15)

The situation where the kernel function K (-, -) is used in training and testing instead of
the explicit feature transformation ¢(-) is known in literature as the kernel trick.

The kernel function is defined as the scalar product between the points in the feature
space, thus it essentially represents a similarity measure between input points. To apply
a kernel trick, it is enough to know an analytical form of the kernel function K(-,-),
i.e. the knowledge of the transformation function ¢(+) is not needed. Some of the most
popular kernel functions are:

e Polynomial function of degree d

K(x;,%x;) = (x; x; + 1)¢ (2.16)
e Radial basis function
K(xi,%x;) = exp(—||x; — x;[|?) (2.17)
e Sigmoid function
K(x;,%;) = tanh(yx, x; + 6) (2.18)

Histogram intersection function between histograms of dimensionality d
K(x;,%;) Z min(z;(k), z;(k)) (2.19)

x? kernel function between histograms of dimensionality d

Kxoxy) = 3 2eh)a(h) (2.20)
19 ,] lxl( +$J ]{:) .

According to Mercer’s theorem [SSO1], a symmetric function K (-,-) can be expressed
as an inner product in some feature space, K (x;,x;) = ¢(x;)' ¢(x;) if and only if
function K (-, -) is positive semidefinite

/K(Xi,Xj)h(Xi)h<Xj)dXide Z O,Vh (221)



2.3. COMMON MIL APPROACHES 31

positive .
positive
oo .
’
’
e . ©
¢ - ®
’
s @
’
’
S e @
¢ ’
negative negative
(a) Supervised learning (b) Multiple-instance learning

Figure 2.3: Illustration of the two types of learning.

After applying the kernel trick, the dual formulation of the SVM training can be
written as the following quadratic optimization program

1 n n n
max L(a) = ~3 Z Z o045y K (x4, %5) + Z Q; (2.22)
i=1

i=1 j=1
n

s.t. 0 S (67 S C,Zaiyi =0.
=1

Recognition of a novel instance x by SVM classifier also uses the kernel trick to avoid
explicit calculation in the feature space. As the max-margin hyperplane in the feature
space is a linear combination of support vectors x; € S,

W= aiio(x), (2.23)

X;ES

the classification score is a linear combination of values of the kernel function

fx)=w'ox)+b= Z iy K (x;,x) + b. (2.24)

x; ES

2.3 Common MIL Approaches

In a standard supervised setting, the training set consists of features and their labels
(x;,9:) € R? x ), and the goal is to learn a classifier [ : R? — ), i.e. a function
that maps features to labels. Multiple-instance learning is dealing with instance labels
in a weakly supervised way (Fig. 2.3). Labels are provided only for sets of instances
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that are called bags. Each bag B; is specified by an index set I C {1,2,...,n}, i.e.
Br = {x; : i € I}. Multiple-instance learning is defined on the finite set of bags
{B1} ;> where family of index sets I C 2{1.2.n} s a subset of the power set of set
{1,...,n}. There are in total m bags in the dataset, i.e. |I| = m. A label Y7 is associated
with each bag Bj, and they are defined in the following way. Instances in the negative
bag all belong to the negative class, Y; = —1 = Vi € I : y; = —1. On the other hand, a
bag with positive label requires that at least one of its instances belongs to the positive
class, Y; =1 = di € I : y; = 1. The goal of MIL is to simultaneously find the latent
instance labels y; and the instance classifier f. Inferred instance labels have to satisfy
MIL constraints that express the relationship between bag labels Y; and corresponding
instance labels y;, i.e. Y; = max;c; y;.

mi-SVM Method

Andrews et al. [ATHO3] proposed mi-SVM and MI-SVM methods for multiple-instance
learning that both maximize the margin of the instance classifier. In both mi-SVM and
MI-SVM methods, learning problem is formulated as a mixed integer problem. In case
of a linear discriminant function f(x) = w ' x-+b, we estimate the weight vector w € R?
and offset b € R, and find integer values y; € {41, —1} that represent latent instance
labels of the training bags

. L,
min £(w. b {&} {vh) = 5wl + 0> 6. (2.25)
1€ el
sLyi(wix+0) >1—-6,&>0,Vi, (2.26)
Yo ; L1ty =11, (2.27)
i€l
y=—1,1fY; = —1. (2.28)

Inferring the latent labels and training jointly the instance classifier is a hard mixed
integer problem that is standardly solved by alternating optimization. It consists of the
two steps: (1) inferring the labels - given the discriminant function, find the integer vari-
ables y; that correspond to the unknown instance labels in training bags, (ii) classifier
learning - given the inferred instance labels from the previous step, find the optimal
parameters (w, b) of the discriminant function. These two steps are performed on the
same training bags simultaneously, which means that the same instances are used for
both training the discriminant function and imputing the missing labels. Inferring the
latent labels with the classifier that is evaluated on the same data it was trained upon
makes the MIL procedure very susceptible to overfitting.

MI-SVM Method

MI-SVM method which is also proposed by Andrews et al. [ATHO3], aims to find the
single most positive instance denoted as witness in each positively labeled bag. The
witnesses are used with all instances from negative bags to train the instance classifier.
However, instances of positive bags that are not selected as witnesses are not used for
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training the classifier. MI-SVM method solves the following non-convex optimization
problem

min £(w b, (&) (€)= s IwP+O( Y &+ X Ya) @)

I:Yr=+1 I:'Yi=—1 i€l
s.t. malx(wai +b) > 1 =&, if Y= +1, (2.30)
1€
wix,+b< —1+&,VielifY;=—1, (2.31)
£r,6 > 0,910 (2.32)

The problem can also be reformulated as a mixed integer program by introducing a
witness selector variable s; € I:

min £(w,b, (&) 6} o)) = sIwP+0( X G+ Y Ye) @)

I:Y;=+1 IY;=—1 i€l
stw X, +b>1—&, if Y =+1, (2.34)
wix, +b< —1+&VielifY; =1, (2.35)

Alternating optimization approach is again applied to find parameters (w, b) of the in-
stance classifier and select witnesses s; in positive bags.

MICA Method

Selection of a single witness s; from a positive bag can be too restricting. Mangasarian
et al. [MWOS5] proposed the MICA method that relaxes witness selection to a convex
combination over all instances in a positive bag. Parameters v; in the convex combina-
tion are all nonnegative and sum up to one.

minc(w,b,{@},{m}):%HWHMC( DG+ > D &) (2.37)

I.Y;=+1 I:'Y=—1 i€l
st v(Wixi+b)>1-§,) vi=1,ifY; =+, (2.38)
el el
wix, +b< —1+&,VielifY; =—1, (2.39)
f[ag’hl/i Z 07VI77/ (240)

Although the resulting optimization problem is continuous, it is not convex, because of
the bilinear function from the margin inequality constraints for positive bags.

Deterministic Annealing

Before we discuss multiple-instance learning algorithms that use deterministic anneal-
ing for optimization [GCO7], we briefly introduce here the general concepts of deter-
ministic annealing (DA) [Ros98]. Deterministic annealing has been applied in various
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discrete optimization problems such as clustering, classification or compression. It de-
scribes a procedure to solve a discrete optimization problem

y = argmin J(y’), (2.41)
y'€{0,1}"
for arbitrary objective function J(-). The main idea of deterministic annealing is to re-
place discrete variables with binary random variables that belong to the space of discrete
probability distributions P. We search for a distribution p € P, so that the expected
value of the objective function .J(-) is minimal,

p=argminE, (J(y)) — T - H(p"). (2.42)
p'eP

The parameter 7' is called temperature, and if it is equal to zero, 7' = 0, we obtain the
global optimum of the original discrete optimization problem in Eq. 2.41. The objective
function is made easier for optimization by adding a convex entropy term —7" - H(p) to
the original objective function. The original problem can be solved through a sequence
of intermediate optimization problems that are obtained for decreased (annealed) tem-
perature values 7y, > 177 > --- > T, = 0, where each problem is initialized with
a solution of the previous problem. There are no theoretical guarantees that DA will
find the global optimum; however, it usually finds a solution close enough to the global
optimum.

AL-SVM Method

Gehler and Chapelle [GC07] proposed a deterministic annealing approach to solve the
mi-SVM problem. They regards latent instance labels y; as binary random variables.
Moreover, they assume that the space P consists only of probability distributions that
can be factorized into a product of marginal probabilities p; = P(y; = +1). All in-
stances in negative bags have a zero-valued marginal probability p; = 0. As each
positive bag B; contains at least one positive instance, the constraint ) ., p; > 1is
introduced:

min £(w, b, {p;}) = [|w|]* + Z Z{C’(pi max(0,1 —w'x; — b)

I€T el
+ (1 — p;) max(0,1 + w'x; + b))

+ T(pi log(p;) + (1 — p;) log(1 — Pz))}

> pi> 1Y =41, (243)
il
pi=0,Viel, ifY;=—1. (2.44)
The non-convex objective function can be minimized in a coordinate descent fashion
(WD ptHDY = argmin £(w, b, p®) (2.45)
w,b

pY = argmin £(w Dy p) (2.46)

p
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The optimization problem in Eq. 2.45 is a quadratic program similar to the SVM dual
problem. The optimization problem in Eq. 2.46 is a convex optimization program with
constraints that can be solved using the Lagrangian multipliers:

min £/(p, \) = L(wD, pt+D), Z /\I<1 = m) Ao

Y= i€l

The solution of the dual problem is p; = o (—(C/T) (max(0, 1—w'x;—b) —max(0, 1+

w'x;+b))+(1/T)A 1) , and the dual variables \; are determined by the Karush-Kuhn-
Tucker conditions.

AW-SVM

The AW-SVM algorithm [GCO7] uses DA to find solution to MI-SVM, which infers
only those latent labels that are witnesses of the class that the whole bag is assigned to.
The AW-SVM method calculates a probability p; that an instance x; is a witness in its
bag. The sum of probabilities in every positive bag has to be one, >, .., p; = 1. For
negative bags, all instances are regarded as witnesses of the negative class, p; = 1, since
their labels are fixed to y; = —1.

L(w,b,p) =[] +CZZ{pZ max (0,1 = Yi(w'x; + b)) + Tp; Ingi},
I€T iel
> pi=1,if Yy =41, (2.47)
i€l
pi=1Viel ifY;=—1. (2.48)

The solution is found by alternating optimization: first SVM parameters (w,b) are
found in a standard SVM training, then p is calculated using the Lagrangian multipliers

and it yields p; = exp(—(C/T) -max(0,1 - Y (w'x; +b)) — (l/T))\[).

ALP-SVM

The mi-SVM algorithm can be initialized by labeling all instances in a positive bag
as positive. As a result, the mi-SVM method overestimates the number of positive
instances in a positive bag and the optimization gets easily trapped in a bad local opti-
mum. However, DA does not label too many instances positively, but it suffers from a
mild MIL constraint requiring at least one positively labeled instance in a positive bag.
Typically, only few instances in a positive bags will be labeled as positive. As a remedy,
Gehler and Chapelle [GCO7] proposed to add a balancing term to the MIL objective,
that penalizes large discrepancy between a number of positively labeled instances in a
bag and their expected number, given as the a;-fraction of the size of a bag /.
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min £(w, b, {p;}) = |w|* + Z Z{Cl (pimax(0,1 — w'x; — b)

I€T icl
+ (1 —py) maX(O, 1+w'x; + b))

+ T(pz- log(p;) + (1 — p;) log(1 — pz))}

+C > (> pi—arll])”. (2.49)

IeT el

2.4 Multiple-Instance learning with Superbags

In multiple-instance learning framework training of the classifier and inference of
latent instance labels are always performed on the same training samples, which ren-
ders MIL algorithms susceptible to overfitting, and increases the variance of predicted
instance labels. In this chapter an approach is proposed that improves the robustness of
multiple-instance learning by decoupling the training of discriminative classifier and the
inference of latent instance labels. Inference and learning steps of MIL algorithm are
performed on separate bags and the results thereof are eventually combined for training
a final classifier. By using separate sets of bags for classifier training and label inference,
the final classifier obtains a lower error in predicting latent instance labels. With respect
to the well-known bias-variance decomposition of the mean squared error, integration
of superbags into MIL decreases the variance of label predictions without increasing the
bias. Superbags slightly prolong the MIL training time, but the testing time stays the
same. In the sequel it is explained how label inference and classifier training steps can
be separated using superbags that are integrated into MIL.

If the instance classifier f(x) = w'x is known', latent instance labels can be pre-
dicted by assigning all instances to positive or negative class based on the sign of the
classification score, y; = sgn f(x;). However, the discriminant function f(x) is not
available, so it needs to be learned from the training instances whose labels are also not
provided. In multiple-instance learning, instance label predictions y;, and the classifier
parameter w are jointly updated. Labels y; € {—1,+1} should agree with predictions
that the classifier f(x) = w'x makes about instances x;. Optimal instance label y;
is thus obtained by minimizing the classification loss function ¢(x;,y;, w). Predicted
labels also have to satisfy the MIL constraints:

41 .
E ; > 1,0 Y = 1, (2.50)
i€l

yi=—1Viel, ifY;=-1. (251

The regularization function 2(w) is used to prevent excessive values of the classi-
fier’s parameter w. Classification errors are measured by the empirical loss func-

1Offset b of the discriminant function is included in the weight vector w.
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tion Remp(w), that is defined as a sum of loss functions for all training instances,
Repp(w) == >0 0(x;,y;, w). The classifier w is obtained by minimizing the sum
of the regularizer (2(w) and the empirical loss function R.,,,(w),

w = argmin Q(w') + C' - Remp(W'). (2.52)

W/

As both the instance labels and the classifier hyperplane are updated on the same data,
the two processes become strongly entangled, which increases the error of label predic-
tions. The mean squared error (MSE) of the label prediction ¢;, given the ground truth
label y;, is defined as M SE = E{(y; — v;)*}, and it can be expressed as the sum of the
squared bias b* = (E{g;} — v;)? and the variance 0> = E{(¢; — E{¢;})?}. The bias
is a measure of systematic error in label prediction and it is larger if the model is less
flexible. On the other hand, the variance measures the variability of predicted labels
around the average prediction. Overly flexible models have a large variance, because
they easily overfit to the training samples.

A natural question is whether overfitting can be avoided by decreasing the variance
of label predictions that will then lead to a more robust model that better generalizes to
new samples. The solution (illustrated in Figure 2.4) is based on two observations: (i)
overfitting can be avoided if the labels are predicted by classifiers that are not trained on
the same training samples, and, (ii) the variance of label predictions can be decreased by
averaging predictions obtained by different instance classifiers. Both of these require-
ments can be satisfied if we randomly separate all training bags into multiple sets of
bags - superbags. A classifier is trained on each superbag and used to predict labels of
instances that belong to other superbags. That way, the training of the classifier and the
inference of latent labels are decoupled. Moreover, for each unknown label predictions
from other classifiers of the ensemble are aggregated, and by their averaging the vari-
ance of the instance label predictions is reduced. We illustrate this in Sect. 2.6.1 that
analyzes the uncertainty of label prediction in MIL.

As mentioned before, superbags are created by randomly sampling the sets of train-
ing bags. The result is an ensemble of superbags {S7}; 4, Where a superbag consists
of a set of bags, St = {B; : I € Z}. The family of superbag indexes 7 C 27 s
a subset of the power set of the bag indexes /. Let k denote the total number of su-
perbags, |f | = k. Superbags are created by sampling bags with replacement, otherwise
classifiers would be trained on too few training bags in superbags. Consequently, su-
perbags might overlap, i.e. superbag index sets Z € 7 are in general not disjoint. The
size of a superbag is set to be the fraction 7 of the total number of bags in the dataset,
ie. VI € T:|Sz| = r-|I|. A separate classifier f7 is trained on each superbag Sz,
i.e. a hyperplane wr is learned only from instances that belong to superbag Sz. The
hyperplane w7 is selected from a set of well-behaved functions that are determined by
the regularizer {2(wz), and it also has to fit well to the training data in the superbag Sz.
This is quantified by the superbag empirical loss function,

Remp(Wz) := ) Y (%3, yi Wr). (2.53)

1€l el
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Superbag classifier is found by minimizing the sum of the regularizer and the superbag
empirical loss function,

wrz = argmin Q(wz) + C' - Repp(Wz). (2.54)
Wz

The goal is to decouple the inference of missing instance labels y; and the training
of the ensemble of classifiers wz. Therefore, ideally label y; of instance x; is predicted
only by classifiers that are trained on superbags which do not contain the point x;.
However, in order to provide numerical stability of the iterative procedure, we also
include predictions made by classifiers that are trained on x;, but these predictions are
given a smaller weight 3, whose value is determined by cross-validation. Consequently,

the labels y; are inferred by the following optimization,

; = argmin Z (x4, y;,wr) + Z 0(Xi, Yi, W1), (2.55)

Vi Tu¢r TieT

subject to the general MIL constraints defined earlier in Eq. 2.50 and 2.51. Note that
standard MIL is a special case of superbag MIL when £ = 1 and » = 1, i.e. when there
is only one superbag which contains all the training bags. In that case, only the second
term remains in Eq. 2.55.

Difference to Co-training and Bagging

Training a classifier with missing labels also appears in semi-supervised learning, where
it is addressed by co-training [BM98]. In co-training, two classifiers are trained on the
same labeled set of points, but with different features. The classifiers then predict labels
of a large unlabeled set of points. Patterns that are confidently labeled by either of the
classifiers are appended to the training set of both classifiers. So the two classifiers are
always updated with the same set of training points. Confident label predictions of one
classifier are used during co-training to resolve ambiguities about unlabeled patterns of
the other classifier. Different from the concept of co-training, the superbag approach
trains the classifiers on the same features, but using different data points. Superbag
classifiers are all trained on the same features, since in many applications finding new
independent features is not feasible. Usually, it is not possible to change the feature
representation of the given data. Training classifiers on the same data, as performed by
co-training, makes the classifiers dependent on each other and their training less robust.
The superbag approach trains the classifiers on different data points which reduces the
variance of inferred labels and increases the robustness of the classifiers. Superbag clas-
sifiers are trained only from weakly labeled points, whereas in co-training the classifiers
are trained initially on the fully labeled set of points.

Classifying data patterns with multiple classifiers is also part of the bagging method
[Bre96]. Bagging makes several training sets by sampling them with replacement from
the original set of points. These sets are then used for training the ensemble of clas-
sifiers, which later jointly classify new test points. However, bagging can be applied
only in the supervised setting, where the labels of training instances are all provided.
In contrast, the superbag ensemble is trained on weakly labeled patterns, where finding
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the missing labels and training the classifiers are performed simultaneously. Besides,
in the superbag approach an ensemble of classifiers is used only during training to ro-
bustly resolve the missing labels, whereas in bagging the ensemble of classifiers is used
in testing. After inferring the latent labels of training instances in the superbag method,
the final classifier is trained to predict labels of novel instances.

2.5 Integrating Superbags into Common MIL Approaches

In this section we show how the concept of superbags can be easily integrated into
some of the most popular instance-level classifiers for MIL that are based upon the stan-
dard soft-margin SVM formulation [ATHO03, GC07]. In particular, we choose the meth-
ods AL-SVM, AW-SVM and ALP-SVM proposed by Gehler and Chapelle [GCO07],
because they generalize the widely employed mi-SVM and MI-SVM methods [ATHO3]
used in many different applications. Sect. 2.5.1 - 2.5.3 show how to integrate the con-
cept of superbags into the methods of AL-SVM, AW-SVM and ALP-SVM, respectively.

2.5.1 AL-SVM with Superbags

The concept of superbags can be easily integrated into the AL-SVM algorithm. An
ensemble of classifiers wy is trained on all patterns from a superbag S7 by minimizing
the regularized empirical loss,

wz = argmin Q(wz) + C - Repp(Wz), (2.56)
w1

with the empirical loss function

Repp(Wz) = Z Z(p,[(xi, yi = +1,wz) + (1 — p)l(x;,y: = —1, WI)). (2.57)
I€T i€l
In contrast to Eq. 2.53 that operates on deterministic label assignments y;, Eq. 2.57
contains the expectation of the empirical loss, because latent labels are now treated as
binary random variables. In case of the quadratic regularizer Q(wz) = 3|[wz||* and the
standard hinge-loss function £(x;, y;, wz) = max (0,1 — y; - (w7 x;)), the optimization
problem becomes a quadratic program (QP), that is solved by standard solvers.
Latent instance labels are inferred by minimizing the sum of empirical losses in-
curred by superbag classifiers,

pi = argminC’(Z (pil(xi, 9 = +1, wr) + (1 — p)l(xi, 9 = —1, wz))+

pi T:i¢T
B Z (il (xs, 95 = +1,w1) + (1 = p)l(xi, i = _17WI)))+ (2.58)
T4eT
T - (pilog(ps) + (1 — p;) log(1 — py)). (2.59)

The probabilities p; can be obtained in a closed form. MIL constraints can be added to
the objective function using Lagrangian multipliers as in the baseline AL-SVM method.
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2.5.2 AW-SVM with Superbags

AW-SVM [GCO07] can be easily integrated with the concept of superbags. A classi-
fier w is trained only on training instances from the superbag Sz, which is achieved by
minimizing the regularized expected empirical loss function,

wz = argmin Q(wz) + C - Repp(Wz), (2.60)

w1

with the expected empirical loss function

Remp WI Zzpz XiyYi = }/}aWI>' (261)

1€T el

For the quadratic regularizer and the hinge-loss function, the optimization in Eq. 2.61
is a standard QP that can be solved by standard solvers.

In the inference step, the superbag-based AW-SVM finds the probabilities p; that
instances x; is a witness by minimizing the expected empirical loss given the general
MIL constraints as before,

pi = argminC’(Z sz(xm Yi = YDWI) + 3 Z pig(xia Yi = YI7WI)> + T'p; log(pi).
pi T¢I T+4eT

(2.62)

The solution of the inference problem can be easily obtained in the closed form by
solving the Lagrangian dual as in the baseline AW-SVM.

2.5.3 ALP-SVM with Superbags

As the balancing term Y, (>°._; p; — a;|I|)* does not depend on the parameters w
of the ensemble of superbag classifiers, the classifiers can be trained in the same way as
in Eq. 2.56. However, the label inference step is changed by adding the balancing term,
and it has now the following form,

p = argmin Z{CI(Z (pil(xi,ys = +1,wz) + (1 = pi)l(xs, i = =1, wz)) +
P i

T:¢T
(2.63)
g Z (Pil(xiyi = +1,wz) + (1 = pi) (i, y: = —1,Wz))>+ (2.64)
Zael
T+ (pilog(p) + (1~ pi) log(1 — pi)) } + 022 > v — a1

el

(2.65)
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Figure 2.5: The workflow of the synthetic experiment.
2.6 Experimental Evaluation

In the experimental section, we evaluate how integrating superbags improves MIL
by decreasing the variance of label predictions and avoiding overfitting. In Sect. 2.6.1
we first analyze the uncertainty of label predictions in a synthetic experiment, and in
Sect. 2.6.2 standard MIL benchmark datasets are used to measure the performance
gains after integrating the ensemble of superbags into some popular MIL methods that
are used as baselines. Finally, in Sect. 2.6.3 we show how performance of the MIL
based image re-ranking system can be improved if the concept of superbags is applied
to it.

2.6.1 Analyzing the Uncertainty of Label Predictions in MIL

A synthetic experiment (Fig. 2.5) is created in order to analyze the uncertainty
of label predictions in MIL. The dataset consists of m = 100 bags, where each bag
has five points sampled from a unit square in the plane. The diagonal of the square
separates the positive and the negative class. 30 bags are sampled strictly from the
negative class (negative bags), while other bags are sampled from both classes. Baseline
MIL algorithm in this experiment is mi-SVM, which infers the missing labels for all
training instances. The mi-SVM algorithm can be obtained from AL-SVM by setting
the temperature 7' to zero. We integrate the idea of superbags into the baseline mi-SVM
method. Ten superbags are created by random sampling, with their size being changed
from r = 10% to r = 100% in an increment of 10%. We note that superbags of the
maximal size » = 100% both train the classifiers and find the missing labels on all the
training data at once, which corresponds to the baseline mi-SVM method. We use linear
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Figure 2.6: Analysis of the label prediction errors in the synthetic experiment. Fig.
(a) shows the mean squared error (MSE) and its two components, variance and squared
bias, when the size of superbags r is changed. All quantities are normalized with respect
to MSE of the baseline mi-SVM method (r = 1). Fig. (b) shows in percents the
reduction of the mean squared error with respect to the baseline mi-SVM method. The
largest decrease of the prediction error (35%) is obtained for superbags of the size r =
0.4.

SVM classifier and fix the hyperparameters to C' = 20 and 3 = 0.5.

The averaged results over five hundred independent runs are given in Fig. 2.6. It
shows the uncertainty of label predictions measured by the mean squared error (MSE),
and its two components, variance and squared bias, that were discussed in Sect. 2.4. All
three quantities are normalized with respect to the mean squared error of the baseline mi-
SVM method. The baseline method is obtained for 7 = 1. The variance quantifies how
much the model is susceptible to overfitting. We see that by decreasing the size of su-
perbags r, the variance of label predictions decreases, because overfitting becomes less
prominent. This is a direct consequence of the decoupling of label inference and clas-
sifer training when the size of superbags is decreased. In this experiment, the changes
of bias are smaller than the changes of variance. This is because the complexity of the
original SVM classifier is not changed. The percent of reduction of MSE with respect
to the baseline performance is shown on the right of Fig. 2.6. We see that the prediction
error is always lower than in the baseline, and the maximal reduction is achieved for the
superbag size of r = 0.4. The error rate in that case drops by approximately 35%.

2.6.2 Evaluation on Benchmark Datasets

In this section, we evaluate the proposed concept of superbags on the benchmark
datasets for MIL. The ensemble of superbags is integrated with the popular AL-SVM,
AW-SVM and ALP-SVM algorithms proposed by Gehler and Chapelle [GCO07], and the
results are compared to their baseline versions that do not use superbags. The benefit
of these classifiers is that they can resolve ambiguous instance labels jointly with bag-
level classification. Moreover, mi-SVM-like classifiers are quite popular in the MIL
literature, and have found a wide use in computer vision. We compare the results also to
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instances

Figure 2.7: The construction of bags and instances in the Corel dataset.

the bag-level classifiers [FRKZ11], which predict only bag labels using rich bag-level
features, but do not infer missing instance labels, and are, thus, not applicable for many
applications.

We use the well-established benchmark sets, MUSK [DL97] (Muskl and Musk?2)
and COREL [ATHO3] (Tiger, Elephant and Fox), for the comparison of MIL algorithms
(Fig. 2.7). We follow the experimental setup of Gehler and Chapelle [GCO7], and use
SVM classifier with RBF kernel whose bandwidth o and parameter C are selected from
the sets o € { 0.500, 09, 200} and C' € {1, 10} by tenfold cross-validation. The value of
oy 1s computed as the median of pairwise distances of all training samples. The balance
term « in ALP-SVM is selected by cross-validation from the set o € {0.1,0.2, ..., 1.0}.
AL-SVM and AW-SVM are performed without annealing, because, as noted by Gehler
and Chapelle [GC07], annealing in their case does not translate into a smaller test error.
Consequently, annealing sequence is only applied to ALP-SVM, where it starts from
the temperature 7' = 10C' and is decreased at the rate of 2/3 per round.

We integrate the idea of superbags into three standard MIL algorithms, AL-SVM,
AW-SVM and ALP-SVM, and compare the results with their baseline versions that do
not use superbags. We sample randomly £ = 10 superbags. We select superbag size r
from the set r € {20%, 50%,80%} and 8 € {0.5, 1,2} by cross-validation. Superbag
size r is the fraction of the total number of bags in the dataset. The best performance is
typically obtained for 5 = 0.5, i.e. instance labels are strongly predicted by classifiers
trained on different superbags.

The results of testing on MIL benchmark datasets are given in the Tab. 2.1. Classi-
fication error of superbag concept integrated into AL-SVM, AW-SVM and ALP-SVM
methods is compared with the baseline version that do not use superbags. It is evident
that the introduction of superbags to the standard MIL methods consistently improves
the their baseline versions. The AL-SVM method achieves the gain of +5% on the Tiger
dataset when superbags are used. The AW-SVM method shows the gain of up to +3.5%
on the Fox dataset. Lastly, the ALP-SVM approach shows an improvement of +3% on
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Table 2.1: The classification error (%) on five different MIL benchmark datasets. We
compare the performance of methods AL-SVM, AW-SVM and ALP-SVM when they
use superbags to their baseline versions that are without superbags. In all cases, a con-
sistent improvement in performance is achieved.

Dataset AW - SVM AL - SVM ALP - SVM

B/L | S-bags | Gain || B/L | S-bags | Gain | B/L | S-bags | Gain
Musk1 14.3 142 | +0.1 || 13.3 13.1 +0.2 || 13.7 12.1 +1.6
Musk?2 16.2 | 13.8 | +24 | 174 | 174 0 13.8 | 134 | +04

Tiger 17 145 | +25 || 21.5| 165 +5 14 14 0
Elephant | 18 17.5 | 40.5 || 20.5 | 17.5 +3 || 16.5 16 +0.5
Fox 36.5 33 +3.5 || 36.5 33 +3.5 || 34 31 +3

Table 2.2: The comparison of the state-of-the-art methods for MIL classification on the
MUSK and Corel benchmark datasets.

Dataset | EMDD | mi-SVM | MI-SVM | MILIS Superbag MIL
[2GO1] | [ATHO3] | [ATHO3] | [FRKZI11]

Musk1 15.2 12.6 22.1 114 12.1

Musk?2 15.1 16.4 15.7 8.9 13.4

Tiger 27.9 21.6 16 - 14.0

Elephant | 21.7 17.8 18.6 - 16.0

Fox 43.9 41.8 42.2 - 31.0

the Fox dataset.

Tab. 2.2 also provides the results of other MIL methods, namely EMDD [ZGO01],
MILIS[FRKZ11], MI-SVM [ATHO3] and mi-SVM [ATHO3]. The integration of the
ensemble of superbags into ALP-SVM achieves the best score on all three COREL
datasets, Tiger, Elephant and Fox. The results on the Tiger dataset are equal to the
baseline ALP-SVM method. The superbags also significantly improve the performance
of baseline methods on the MUSK datasets. On the Musk1 dataset, the performance
of ALP-SVM after integration with superbags is on par (< 1% difference) with MILIS
[FRKZ11], the state-of-the-art method for the MUSK benchmark. Good performance of
MILIS on Musk?2 dataset is due to the rich bag-level features that MILIS as a bag-level
classifier uses. As a consequence, bag-level classifiers are however limited in that they
do not infer missing instance labels. By integrating superbags into the instance-level
classifiers, their bag-level classification performance approaches the performance of the
state-of-the-art bag-level classifiers, which are inferior in terms of the labels they can
infer.
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Figure 2.8: Illustration of the Google dataset [FFFPZ05].

2.6.3 Image Re-Ranking Using Superbag MIL

As the last experiment, we apply the superbag enhanced MIL framework to the
problem of web image re-ranking. Recently, several groups proposed MIL as a ranking
framework [LDXT11, VGO8], that is particularly suitable for the re-ranking of web
image search results.

The Google dataset (Fig. 2.8) was proposed originally by [FFFPZ05] to enhance
the learning of object categories from web image search results. The dataset consists
of about 4000 images divided into 7 categories that have on average 600 images. Since
images are taken from a text based search, only around 30% of images are with a “good”
view of the desired class, 20% are “ok” views, whereas the remaining 50% of images are
considered as "junk" images, as they are completely unrelated to the category. In order
to apply MIL, the images need to be grouped into multiple bags beforehand. Positive
bags are obtained by randomly sampling images that are returned as a search result for
given category. If the group is large enough, it can be assumed that at least one image
in a bag will be positive. Negative images are obtained by sampling only images from
other categories. The seven categories used in the Google dataset are airplane, car (rear),
face, leopard, motorbike, guitar and wrist watch.

In order to build a feature representation for images in the Google dataset, we
densely sample features around edges at multiple scales. Extracted features are rep-
resented by the SIFT descriptor. The method for feature sampling is simpler than
that described in [LDXT11, FFFPZ05], where four interest point detectors are used,
i.e. Kadir&Brady operator, Harris-Hessian detector, difference of Gaussians and Edge-
Laplace detector. SIFT descriptors are quantized into a codebook of 500 visual words.
Each image is represented as a bag of words (BoW), i.e. a histogram of visual words
in that image. We use mi-SVM as a baseline for re-ranking of the Google images and
compare it to the superbag approach that is integrated with the mi-SVM algorithm. In
both cases an SVM with RBF kernel is employed and the kernel bandwidth is set to 4/ A,
where A is the mean squared distance between images. All bags are of the same size
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Figure 2.9: The pipeline of the image re-ranking based on superbag MIL.

of 15 images (Fig. 2.9). We use 5 superbags where each superbag consists of 40 bags.
Following [LDXT11, VGO08] the per-category precision at 15% recall is measured for
performance evaluation. Both “good” and “ok” images are treated as positive samples
in the experimental evaluation.

The results of the per-category and mean precision at 15% recall are provided in Tab.
2.3. Both, baseline mi-SVM and superbag enhanced mi-SVM consistently improve the
results of Google’s original web image search over all categories. We also see that
superbag enhanced mi-SVM achieves significant improvement over the baseline mi-
SVM on four out of seven categories. For airplane category this improvement is highest
and equals approximately 25%. The gain of superbag enhanced mi-SVM in the mean
precision over the baseline mi-SVM is 6.2%. The rest of the table shows the results of
other state-of-the-art methods, i.e. WSMIL [VGO08], Schroff et al. [SCZ11] and PMIL-
CPB [LDXT11]. The superbag enhanced mi-SVM has the second best result of all
compared methods in terms of mean precision, and the gain over Schroff et al.’s method
and WSMIL is 11.3% and 5.8%, respectively. Only PMIL-CPB scores better by 5.1%
than the superbag based approach. This is a consequence of a stronger constraint for
positive bags, which requires that at least a portion of instances in a positive bag is
positive, whereas we use a standard MIL constraint with at least one positive instance
per positive bag. Besides, the concept of superbags can be also integrated with the
PMIL-CPB method to increase its performance.
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Table 2.3: Per-category precision and the mean precision (%) at 15% recall over 7 cat-
egories of the Google dataset. The abbreviations are for the category names: Airplane
(A), Cars-rear (C), Face (F), Guitar (G), Leopard (L), Motorbike (M) and Wrist-watch
(W).

| (A € |F |G [L [M |W [ Mean

Google 70.0 | 69.5 | 43.8 | 56.6 | 66.1 |72.5 | 839 | 66.8
[FFFPZ05]

mi-SVM 507 | 64.1 |86.7 | 843 [64.9 | 835 |93.0 | 753
[ATHO3]

WsMIL [VGO8] | 100 |81 |57 |52 |66 |79 |95 | 757
Schroff [SCZ11] | 58.5 | - - 70.0 | 49.6 | 74.8 | 98.1 | 70.2
PMIL-CPB 100 | 753 | 89.9 | 827 | 86.1 |76.6 |95.7 | 86.6
[LDXT11]

Superbags 76.1 | 719 [83.0 | 827 |78.7 | 805 |97.6 | 81.5

2.7 Discussion

In this chapter a fundamental issue of widely used multiple-instance learning is ad-
dressed. In the underlying optimization algorithm, training of classifier and inference of
latent instance labels are iteratively performed on the same training samples. This leads
to overfitting and increases the variance of the label predictions. To resolve these issues,
the concept of superbags has been introduced, which effectively decouples the infer-
ence and learning processes by performing them on different superbags. Experiments
on standard MIL datasets show that the method consistently improves several widely
used approaches for multiple-instance learning if the superbags are integrated into the
optimization routine.



Chapter 3

Action Recognition by Sequential
Multiple-instance Learning

Action recognition in videos is an important aspect of video understanding with wide
applications ranging from surveillance and security to web-based video sharing (e.g.
YouTube and Google videos). However, it is a difficult problem because videos are
usually unconstrained and instances of action classes exhibit a large intra-class variabil-
ity, there is a camera motion, background clutter, occlusion and change of illumination.
Besides, action class instances typically correspond only to a subsequence of a video,
while the rest of the video is usually the clutter. Detection of actions in videos is ham-
pered by the lack of annotation for the action subsequences in training videos. In this
chapter we describe a method based on multiple-instance learning that jointly discovers
latent action instances (subsequences) in training videos and trains the action classifier
on them. The multiple-instance learning method is extended with a sequential approach
that results in a more robust selection of latent action subsequences and classifier train-
ing.

3.1 Outline of the Approach

Due to the laborious and costly nature of the video annotation process, video datasets
are only weakly annotated. Action label is assigned to a video, if an instance of the re-
spective action class occurs somewhere in video. However, information about the part
of the video that corresponds to the action class is not provided. Consequently, action
recognition approaches so far trained a classifier on the full video sequence represen-
tation to predict an action class of a video. Such methods are typically based on the
bag-of-features (BoF) representation [Lap05, WKSCLI11], i.e. a histogram of local
spatio-temporal descriptors from the whole video sequence is used by discriminative
classifier to predict the action label of the whole video.

As instances of an action class typically occur only in parts of videos, training a sub-
sequence classifier that can detect and recognize which part of video corresponds to the
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action can improve the understanding of the whole video. The subsequence classifier
tests all subsequences of a video and selects the subsequence with the maximal clas-
sification score. The classification scores of the subsequence classifier and the full se-
quence classifier are then fused into a final action classification score. However, training
the subsequence classifier automatically from the weakly labeled training videos whose
subsequence labels are not provided is cumbersome. Multiple-instance learning based
method is proposed to solve the following two problems jointly: i) find the action sub-
sequences in training videos, and ii) train the subsequence classifier using the inferred
action subsequences. Two tasks are cast in the framework of multiple-instance learning
(MIL), so that video sequences become bags, and subsequences in a video become in-
stances of a bag with latent action labels. MIL updates the subsequence classifier from
subsequences detected in the previous round, which is used then to predict action la-
bels for subsequences in the next round of MIL. In baseline MIL, subsequence length
is fixed and only one subsequence (witness) is selected per training video. To improve
the robustness of the MIL method, a sequential MIL approach is formulated that selects
in each training video a number of instances of longer duration, and then sequentially
reduces their number and length until only one subsequence remains as a representative
of the action class. The subsequence classifier is fused with the full sequence classifier
and tested on the difficult Hollywood2 benchmark set where a significant gain over the
baseline is observed. Moreover, a favorable performance of the subsequence classifier
not only in recognition of actions, but also in their detection in videos is evidenced on
two categories of the Hollywood?2 dataset.

3.2 Related Work

Local spatio-temporal features. Action recognition in videos has received lots of
attention in the computer vision community over the last decade. A large body of liter-
ature on action recognition in videos is addressing the question of feature detection and
description in videos. Laptev [Lap05] proposed spatiotemporal interest points obtained
by the Harris detector that has been extended to the spatiotemporal domain. A novel
cornerness measure that combines the Gaussian filter in space and Gabor filter in time
is proposed by Dollar et al.[DRCBO05]. Willems ez al.[WTGO08] proposed to detect spa-
tiotemporal interest points at places where the determinant of the spatiotemporal Hes-
sian matrix is maximal. Recently, Wang et al.[WMGO09] showed that dense sampling
of feature points has better performance than interest point detectors on the challenging
video datasets. These state-of-the-art features are described in the following section.

Bag-of-Features representation. Best results on the challenging action recognition
datasets such as Hollywood2 have been obtained by building the bag-of-features (BoF)
representation of the whole video [SLC04a, WKSCL11]. The video is then classified
with the kernel support vector machine (SVM) using normalized histograms of visual
words. Recently, the BoF representation is extended in the spatio-temporal domain.
Laptev et al.[LMSRO8] proposed to concatenate BoF representations of the subvolumes
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defined on a spatio-temporal grid in video. However, the grid is fixed and does not adapt
to the action contained by the video.

Object-centric approaches. A human-centric approach [KMSZ10] detects and
localizes human actions in challenging videos using the generic human detector and
tracker, and the actions are detected only within the discovered human tracks. However,
the method relies on a generic human detector and tracker that is trained on an external
dataset which is typically not provided. Ommer et al.[OMBO09] develop a generic action
recognition system that combines compositional object segmentation and tracking.

Structural approaches. Gaidon et al.[GHS11] propose a model that uses a se-
quence of atomic action units, termed actoms, to represents the temporal structure of the
action as a sequence of histograms of actom-anchored visual features. The actom model
is trained from the actoms-annotated video clips. Niebles et al.[NwCFf10] propose to
model the complex activities as temporal compositions of motion segments. They train
a discriminative model to find a temporal decomposition of a complex activity. Lan et
al.[LWM11] develop an algorithm for action recognition and localization in videos that
uses a figure-centric visual word representation. Their model is trained on videos that
are annotated with action labels and bounding boxes around the people performing the
action. Hoai and De la Torre [HIT12] propose a max-margin framework for training the
early event detector to recognize partial events. Their method is based on Structured
SVM, that is extended to accommodate sequential data. However, training of the early
event detector is supervised and requires full video annotation.

3.3 Dense Trajectory Features

In this section we explain the extraction of dense trajectories and computation of
descriptors related to the trajectories. The exposition is based on the original paper of
Wang et al. [WMGO09]. Dense sampling of feature points is performed separately for
each level of the multi-resolution image pyramid using the grid of points with spacing
W pixels. All sampled feature points are then tracked throughout the video (Fig. 3.3).
In homogeneous regions of video there is no structure, so feature points that belong to
these regions cannot be reliably tracked. Therefore, all feature points residing in these
regions need to be removed. The dense optical flow field is computed between each two
successive frames /; and /; ;. A tracked point P, is smoothed by the median filter, that is
more resilient to noise than for example the Gaussian filter. The median filter also gives
better estimate of trajectory points in the vicinity of motion edges. Computing optical
flow is a costly operation, but once it is done, feature points can be densely tracked at
no extra cost. Additional benefit of using a dense optical flow is the smoothness that the
optical flow provides, that results in a stable tracking of fast and abrupt motion.

The feature points from subsequent frames are linked by the virtue of displacement
vectors, thereby creating the trajectories. However, if there is no feature point in the
vicinity of a predicted point location, tracking is discontinued and a new feature point
is sampled and tracked. In this way, a well-balanced coverage of the feature points and
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Figure 3.1: Dense trajectories in video are extracted at several scales and they all have
a fixed length L. Local spatio-temporal descriptors are computed along the trajectories.
The size of the spatio-temporal tube is /N x [NV x L, and each tube consists of n, Xn, Xn,
cells. Beside trajectory shape, descriptors also encode the histograms of gradient and
flow (HOG and HOF), as well as motion boundary histograms (MBHx and MBHy).

trajectories is ensured. Since static trajectories do not carry relevant motion information,
they are removed in the post-processing phase, as well as those trajectories that have a
very large displacement between two successive frames.

The shape of each trajectory is described as a sequence of displacement vectors. All
trajectories have the same length L, so the shape descriptor ultimately yields a 2L — 2-
dimensional descriptor vector. Displacement vectors in the trajectory shape descriptor
are then normalized. Each trajectory is also described by other descriptors that are
used to represent various aspects of the local spatio-temporal volume around the fea-
ture trajectory. These descriptors are: HOG (histograms of oriented gradients), HOF
(histograms of optical flow) and MBH (motion boundary histograms). HOG descriptor,
which describes the static appearance, and HOF, which focuses on the local motion pat-
terns, both perform well when they are applied separately as features in the BoF model
for action recognition. MBH descriptor calculates the derivatives separately for hori-
zontal and vertical optical flow components, which then renders it quite successful at
describing the prominent motion details in a video.

To take the dynamics of the video into account, we combine the spatio-temporal
component with a trajectory. This results in a space-time trajectory volume, which
contains relevant motion information. The trajectory volume size is N x N pixels and
L frames in length. Furthemore, we need to get structure information and we do that by
forming a spatiotemporal grid, which divides the trajectory volume into n, X n, X n,
cells. We compute HOG, HOF or MBH descriptors for each cell of the grid, and the
resulting descriptor is obtained by concatenating the computed descriptors. Orientations
for HOG and HOF are quantized into 8 bins, with an additional bin for HOF to cover
pixels with very low optical flow magnitudes. Further on, they are L,-normalized.
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(a) video (b) dense trajectories (c) HOG descriptor
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(d) HOF descriptor (e) MBHx descriptor (f) MBHy descriptor

Figure 3.2: Descriptors extracted from dense trajectories. The orientation and magni-
tude of vectors in HOG, HOF and MBH descriptors are represented by hue and satura-
tion values of pixel’s color.

Optical flow carries a lot of relevant information necessary for action recognition,
but also contains some spurious information, i.e. background or camera motion. MBH
descriptor alleviates some of the deficiencies of optical flow. As opposed to optical flow,
which describes the absolute motion between two consecutive frames, MBH represents
the relative motion between the frames. It calculates the difference between the fore-
ground and background motion, which suppresses the camera motion, and consequently
makes it more suitable for action recognition. Orientation of the MBH descriptor (both
vertical MBHy and horizontal MBHx components) is quantized into 8-bin histograms,
and both histogram vectors are then Ls-normalized. MBH descriptor significantly out-
performs HOF, which comes at no surprise since it efficiently removes the camera mo-
tion component from the action representation. Once the optical flow is computed and
dense trajectories are extracted, all descriptors can reuse the trajectories which makes
the feature extraction process quite efficient.

3.4 Bag of Features Model

An excessive number of local spatio-temporal features in a single video makes a di-
rect comparison of videos based on local features computationally not feasible. There-
fore, it is necessary to aggregate information from local spatio-temporal features into an
intermediate representation of fixed length so that videos can be efficiently compared.
One of the most popular aggregation technique is the Bag of Features (BoF) [CDF*04].
Before local features are aggregated, they first need to be encoded using a codebook that
has a fixed number of visual words. Codewords are typically obtained by unsupervised
learning in a randomly sampled set of local features from training videos (Fig. 3.4).
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Figure 3.3: Standard Bag-of-Features framework for human action recognition.

The samples training features are clustered into k£ codewords using k-means algorithm.
Local spatio-temporal descriptors are usually assigned to their nearest codewords. BoF
representation of a video is obtained by counting how many local features are assigned
to each of the k£ codewords. Final video representation is obtained by concatenating
normalized BoF histogram vectors for each local spatio-temporal descriptor (trajectory,
HOG, HOF, MBHx and MBHy).

Videos are classified into action categories using SVM classifier that combines
different descriptors by a kernel function that couples radial basis function with y2-
distances between BoF vectors:

K(x;,x;) = exp(— Z Vied(Xi gy Xj 1)) 3.1)
k

d(-,-) denotes a x*-distance function, whereas x; . and x; denote BoF vectors for the
k-th descriptor. The normalization constant -y, is calculated as the inverse of the mean
x2-distances between all training BoF vectors for the k-th descriptor.

3.5 Sequential MIL for Action Recognition

To recognize an action in video, we first need to find a subsequence that corresponds
to the potential action in video and then classify it with a subsequence classifier. How-
ever, to train the subsequence classifier we need a set of training subsequences that
correspond to the action. As the subsequences in training videos are not annotated, we
need to solve two problems jointly: i) training of the subsequence classifier, and ii) de-
tection of subsequences from the training videos that correspond to the action. We use
the multiple-instance learning (MIL) to solve these two problems jointly.

In previous chapter we have seen that multiple-instance learning consists of a num-
ber of training bags B;, and each bag is associated with a label Y; € {—1,+1}. Bags
consist of a number of instances By = {x; : i € I} whose labels y; € {—1,+1} are not
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Figure 3.4: An illustration of the proposed joint action detection and classification in
videos by sequential MIL. Subsequence classifier is updated in each iteration ¢ using the
best ngf) subsequences from a positive video and the hardest nt subsequences from a
negative video. The number of positive subsequences and their length decreases during

training. The number of negative subsequences n" is fixed.

provided. Bag B; has a positive label Y; = +1 if at least one of its instances is positive,
ie. 3i € I : y; = +1. If all instances in a bag are negative, Vi € [ : y; = —1, the
bag itself is labeled as negative, Y; = —1. The goal of MIL is now to train an instance-
level classifier from training instances whose labels are not provided and thus have to
be inferred during training.

In the video subsequence classification problem, bag B; corresponds to the full
video sequence, and instances x;,7 € [ are all subsequences of the training video Bj.
For each positive training video Y; = +1, we are looking for a subsequence s; € [
that is an instance of the action class in that video. This can be formulated as the
multiple-instance learning with latent instance selection (MI-SVM approach, Andrews
et al.[ATHO3]) that corresponds to the optimization in Eq. 2.33.

A standard solution to this optimization problem is to perform the following two
steps iteratively: 1) select the witness s; € I in each positive bag B; that corresponds
to an instance x,, with the maximal score of the instance classifier, and ii) re-train the
instance classifier (w, b) using the instances selected in the previous step. The described
MI-SVM approach yields sometimes a bad local optimum of the MIL problem.

We improve the robustness of the MIL training for the task of subsequence classifi-
cation in two ways. First, we select longer subsequences from positive videos in early
rounds of MIL and then slowly decrease their length in later rounds. This allows us
to gradually discover the action related part of the sequence when duration of the ac-
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Figure 3.5: Training and testing pipelines of the proposed action detection and recogni-
tion system.

tion is short. Subsequences from the negative bags have the same length as the positive
subsequences, and thus they are also decreased successively during the MIL training.
The length of subsequences used during MIL training is hence given as a monotonically
decreasing sequence,

19> >0 > > 1D £, (3.2)

Secondly, we increase the recall rate of the positive instances by selecting initially sev-
eral instances per positive bag and then slowly reducing their number until only one
instance is selected per bag. Thus, the number of positive instances that is selected by
the MIL algorithm is a monotonically decreasing sequence,

nO > >l s > all 2o (3.3)

For negative videos, we can train the SVM model with all subsequences that are
extracted from the video. As there is a large number of subsequences in a video, we
actually work only with a small number n'" of hard negative subsequences per bag. The
hard negative subsequences are those that have the least negative score produced by the
subsequence classifier, and thus they define the margin in the max-margin classification
setup. The number of hard negative instances per bag is kept fixed throughout the MIL
training,

—~

n_t) =const., 0 <t <T. 3.4

In short, these are the steps of the algorithm for learning the subsequence classifier:

1. Sample randomly a number of long subsequences from positive and negative
video sequences and train the initial subsequence classifier from them.

2. Use the subsequence classifier to select the best nSf) positive subsequences of

length [® from each positive video.
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Categories Baseline classifier | Fusion classifier
AnswerPhone 28.76% 31.40%
DriveCar 89.13% 89.15%
Eat 61.78% 66.42%
FightPerson 80.47% 82.89%
GetOutCar 49.72% 53.91%
HandShake 30.65% 30.75%
HugPerson 51.25% 55.90%
Kiss 64.04% 65.72%
Run 82.30% 82.71%
SitDown 63.20% 66.25%
SitUp 20.93% 21.46%
StandUp 66.82% 71.09%
mAP 57.42% 59.80%

Table 3.1: The comparison of the full sequence classifier (baseline) and the combination
of the full sequence and subsequence classifiers on all action classes of the Hollywood?2
dataset.
3. Use the subsequence classifier to select the hardest nt negative subsequences of
length I) from each negative video.

4. Re-train the subsequence classifier from the selected positive and negative subse-
quences.

5. Repeat steps 2. - 4. T' times while reducing the length of all subsequences and
the number of positive subsequences, and also keeping the number of negative
subsequences fixed.

We use the standard bag-of-features representation (BoF) for the classification of
videos and their subsequences. The features are obtained as dense trajectories using the
method of Wang et al.[WKSCL11]. Each feature is encoded using the trajectory, HoG,
HoF and MBH descriptors. The non-linear support vector machine is used to predict
the action classes based on the BoF representation. We use the histogram intersection
kernel with non-linear SVM classifier because of good classification performance and
the existence of fast computation method for this kernel (Maji et al.[MBMO08]).

To classify a novel video, we combine the scores of the full sequence and the sub-
sequence classifiers. The full sequence classification score is computed from the BoF
representation of the whole video. The classification score of the subsequence classi-
fier is obtained by applying the subsequence classifier on all subsequences of the same
length as the final-round subsequences of the MIL training. We take the maximal subse-
quence classification score and combine it with the full sequence classification score to
yield the final score for the video. The fusion is performed by a nonlinear support vector
machine that uses the RBF kernel whose bandwidth is optimized on the validation set.
The sketch of the proposed approach is shown in Fig. 3.5.
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(a) Get out of car (c) Eat

(d) Situp

(g) Drive a car (h) Handshake

(j) Answer a phone (k) Stand up (1) Sit down

Figure 3.6: Action categories in the Hollywood2 dataset.

Category Overlap
SitDown 48.6%
GetOutOfCar | 34.4%

Table 3.2: The detection performance of the subsequence classifier on two Hollywood2
categories (SitDown and GetOutOfCar) for which we created the ground truth. The
detection performance expressed as the PASCAL’s overlap (intersection over union)
score.
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Methods Accuracy
Wang et al.(2009) [WUK'09] 47.7%
Taylor et al.(2010) [TFLB10] 46.6%
Ullah et al.(2010) [UPL10] 53.2%
Gilbert er al.(2011) [GIB11] 50.9%
Le et al.(2011) [LZYN11] 53.3%
Wang et al.(2011) [WKSCL11] | 58.2%
Wang et al.(2013) [WKSL13] 59.9%
Fusion classifier 59.8%

Table 3.3: Comparison of the fusion classifier (full sequence + subsequence classifier)
to the state-of-the-art methods on the Hollywood?2 dataset.

3.6 Experimental Results

We evaluate the sequential MIL approach on the state-of-the-art Hollywood2 bench-
mark set for the action recognition (Fig. 3.6). The Hollywood?2 dataset consists of 12
action categories: answering the phone, driving a car, eating, fighting, getting out of a
car, hand shaking, hugging, kissing, running, sitting down, sitting up, and standing up.
The dataset contains 1707 videos that are divided into the training set (823 video clips)
and the test set (884 video clips). All video clips are taken from 69 Hollywood movies
and they contain realistic, unconstrained human actions with large amount of camera
motion. Video sequences vary in length from 5 — 25 seconds, and most of the actions
are only 1 — 2 seconds long. Therefore, the length of the action subsequence is several
times shorter than the length of the whole video. This motivates the subsequence clas-
sification approach which automatically finds and classifies the part of the video that
corresponds to the action. Video sequences in train and test set are taken from differ-
ent movies. We follow the evaluation protocol of Laptev ef al.[LMSRO8] and train the
one-against-all classifier for each action category. Precision-recall (PR) curves are cal-
culated from the classification scores, and per-class performance is based on the average
precision (AP) values computed from the corresponding PR plots. Overall performance
is reported as the mean average precision over all classes (mAP) and it is used for the
comparison with the state-of-the-art.

The full sequence classifier is used as the baseline in our comparison in Table 3.1.
We use the same parameters as in the paper of Wang ef al.[WKSCL11], except for the
choice of the kernel function. We use the intersection kernel because there exists a fast
method for its computation. Wang et al.use x? kernel function that yields 0.8% higher
performance, but at the price of slower computation of the kernel matrix (about 3 times
longer training and test time).

Table 3.1 shows the comparison of the full sequence classifier (baseline) and the
fusion classifier that aggregates the scores of the full sequence and subsequence classi-
fiers. Finding a subsequence in a video that represents the action and classifying it with
the subsequence classifier yields an improvement over the baseline of 1 —5% in average
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Figure 3.7: Detection of the "GetOutOfCar" subsequence for the test video #234. Over-
lap of detected subsequence and the ground truth is 96.7%. The length of the sequence
is 134 frames, and the subsequence is detected from 21th to 80th frame.

N\ . N

Figure 3.8: Detection of the "SitDown" subsequence for the test video #682. Overlap
of detected subsequence and the ground truth is to 94.9%. The length of the sequence is
169 frames, and the "GetOutOfCar" subsequence is detected from 81th to 120th frame.

| ot )

Figure 3.9: Wrong detection of the "SitDown" subsequence in the test video #352. The
length of the sequence is 438 frames, and the ground truth covers from 90th to 110th
frame.

precision for most of the Hollywood2 classes. Largest improvements are for the classes
StandUp, HugPerson and Eat, where the gain is almost 5%. On the other hand, classes
such as DriveCar or Run give only a marginal improvement over the baseline. After av-
eraging all the classes, the fusion of the subsequence and full sequence classifiers yields
2.5% better performance than the baseline (59.8% vs. 57.4%).

Table 3.3 shows the comparison of the proposed method and the state-of-the-art
methods on Hollywood2 dataset. We see that the fusion of subsequence and full se-
quence classifier outperforms almost all of the state-of-the-art results, in spite of using
slightly inferior kernel function than other methods (intersection kernel vs. x?). The
most recent result on the Hollywood2 dataset (Wang et al. 2013) combines the BoF
representation with spatiotemporal pyramids and yields 59.9% mAP. The performance
of the proposed method is only 0.1% weaker than that result, although the proposed
method does not use strong, computationally expensive, pyramidal features.

In Table 3.2 we show the results of detection performance for the subsequence
classifier. We evaluate this performance using the PASCAL overlap (intersection over
union) criterion on two categories of the Hollywood?2 dataset for which we have man-
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ually labeled the ground truth subsequences. The overlap of detected subsequence and
the ground truth for SitDown class is 48.6%, whereas for GetOutOfCar the overlap is
34.4%. We consider these as very good results, because the training of the subsequence
detector is automatic.

Finally in Fig. 3.7 - 3.9 we give some qualitative results of subsequence detection for
two action classes of Hollywood2. Fig. 3.7 and 3.8 illustrate the successful subsequence
detection. In Fig. 3.9 detection failed, most probably because of the large camera zoom
on the main actor’s face, making his body motion hardly visible while he is performing
the "SitDown" action.

3.7 Discussion

In this chapter we described a method that learns an action classifier from auto-
matically discovered subsequences that represent action instances in training videos.
As subsequences are not annotated, the proposed method jointly trains the subsequence
classifier and labels the action subsequences in training videos. Multiple-instance learn-
ing is used to find subsequences that correspond to the action which then allows to train
the subsequence classifier. To obtain a robust solution to the MIL problem, a sequen-
tial algorithm is proposed that consecutively decreases the number of inferred action
subsequences per video and decreases their length until only one action subsequence
remains in a video. The fusion of the automatically trained subsequence classifier and
the full sequence classifier is evaluated on the challenging Hollywood?2 dataset where it
yields a significant performance improvement over the baseline classifier. We also ex-
amined the action detection performance of the subsequence classifier on two categories
of Hollywood2 dataset and notice that it achieves promising results.
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Chapter 4

Sequential Video Parsing for
Abnormality Detection

We have seen so far that video understanding assumes the ability of a computer vision
system to accurately detect and recognize objects and actions in video sequences. The
challenge becomes even greater as soon as atypical objects or unusual behavior appear
in a scene, that then need to be detected. In this chapter we describe a latent structured
model for video parsing, that forgos the standard abnormality detection approach bor-
rowed from object detection field that aims at finding an abnormal instance in a scene
independently of other objects. In contrast to that, this chapter proposes a method for
sequential video parsing which jointly detects all instances in a single video frame and
recognizes abnormalities among them using the context of other object instances in the
scene and from training videos.

4.1 Outline of the Appraoch

In many applications, ranging from industrial product inspection to visual surveil-
lance, discovery of abnormal instances in videos is the paramount goal. Although detec-
tion and classification of normal object or action categories already pose a great hurdle
because of their large within-class variability, in case of abnormality detection there is
an additional problem of endlessly many ways in which an object can appear in un-
usual context (atypical object) or behave abnormally (irregular activity). This renders
the task of learning a model for everything that is anomalous practically unfeasible.
Moreover, training videos for abnormality detection contain only normal visual pat-
terns, thus rendering a discriminative approach to localization of irregularities in video
futile. The following question then arises: how can abnormalities be detected, when
it is not known how they look like? This fundamental problem has been tackled so far
only in the context of independent classification of individual local patches or regions
in video frames [BI0OS, XGO05, ZSV04]. However, as we have already explained, these
local and independent decisions about abnormalities in videos are ill-posed.
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Figure 4.1: The pipeline of the sequential video parsing. To parse a single video frame,
a shortlist of object hypotheses is created, such that they are sufficient for explaining a
foreground mask. By probabilistic inference, video parsing selects a subset of hypothe-
ses that are necessary for explaining the foreground, and simultaneously matches them
to normal training samples. Probability of abnormality is eventually calculated for all
selected hypotheses and foreground pixels.

This chapter proposes a sequential video parsing method that aims at jointly detect-
ing and recognizing instances in a single frame based on their mutual context and normal
object model learned from the training videos. Lots of videos are nowadays recorded
by stationary cameras (e.g. in visual surveillance) in which case efficient background
subtraction algorithms [SG99, WGR™09] offer foreground segmentation mask for each
video frame. Videos parsing method sets off by constructing a shortlist of object hy-
potheses that are sufficient for explaining foreground pixels of a video frame. In video
parsing object hypotheses need to be laid out all over the frame for the foreground mask
to be completely covered, but at the same time protrusion into the background be made
as small as possible. To tackle this challenge, all hypotheses are jointly placed within
the scene and their spatial configuration determined, so that for each hypothesis the best
match in the set of normal training samples is found. Every hypothesis that is needed
to explain the foreground but which cannot be explained by a sample from the set of
normal training samples found in training videos is considered as abnormal. Conse-
quently, by parsing the scene and jointly inferring all necessary object hypotheses, all
abnormalities are indirectly found in video.

Sequential video parsing is formulated as a two-stage approach: In the first stage
a shortlist of object hypotheses in a single frame is computed that has a low false-
negative and high false-positive rate, i.e. a superset of all hypotheses is found that might
be needed later on for parsing a frame. Background subtraction algorithm is used to
discard all hypotheses in the background, and a discriminative background classifier
keeps only those hypotheses for which it is highly unlikely that they belong to the back-
ground. Based on the shortlist of candidate hypotheses, the problem of parsing a video
frame and explaining the foreground mask with object hypotheses becomes a discrete
optimization problem. A subset of the initial hypotheses that are required for covering
all the foreground needs to be discovered. Hence, for all hypotheses it is necessary to
jointly infer their presence and correspondence to the exemplars of normal objects col-
lected in the training videos. Correspondences between hypotheses and normal object
exemplars are set up to capture both the object appearance and the motion that repre-
sents the object action. Due to our probabilistic approach, not only object hypotheses
are labeled as abnormal/normal, but we also infer a per-pixel abnormality probability
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which allows to segment abnormal objects in the scene without actually seeing what the
abnormal objects look like or how do they behave in the training set. The pipeline of
the sequential video parsing is shown in Fig. 4.1.

4.2 Related work

We discuss here the previous work on abnormality detection in videos. The related
problem of object detection and tracking in crowded scenes [BC06, ZNWO08] aims at
recognizing and tracking objects of a known class in a scene, whereas our goal is to
detect abnormalities, all of them being instances of an unknown class. Therefore, object
recognition and tracking are beyond the scope of this thesis and the details on these
topics can be found in [OMB09].

General scene parsing. Previous approaches related to scene parsing are intended
for interpretation of static images. These approaches construct a parametric scene
[TCYZ05, ATO8] or object models [KY09, FLO7, MO12] or a non-parametric exemplar-
based representation for objects [LYT09, MEQ9]. In contrast to these methods, we are
not provided with any training samples for the abnormalities we are searching for but
we can leverage a foreground/background segregation.

Abnormality Detection using Temporal Dynamics. Kratz and Nishino [KN09]
develop a statistical model of local motion patterns in very crowded scenes to find ab-
normalities as local volumes with large motion variation. Benezeth et al. [BJS11] use
low-level motion features to learn the co-occurrence matrix of normal object behavior in
the scene, and apply a Markov random field to find deviating behaviors. The approach
of Adam et al. [ARSROS8] focuses on individual activities occurring only in preselected
parts of a scene. Kim and Grauman [KGO09] detect abnormalities using a Markov ran-
dom field that adapts to abnormal activities in videos. Loy et al. [LXG10] use active
learning methodology to integrate human feedback into the detection of abnormal events
and behaviors. Unsupervised topic models are used for detection of abnormal behav-
ors in [WMGO09, HGX09]. Hospedales et al. [HLGX11] propose a semi-supervised
multi-class topic model to classify and localize the subtle behavior in cluttered videos.

Abnormality Detection using Appearance and Temporal Dynamics. A huge
body of work on abnormality detection relies on the extraction of semi-local fea-
tures from video [Low04, SLC04b, JYTK11, JRL13, SSP"11], that are then be
used to train a normalcy model. Abnormalities are detected if the normalcy model
does not fit the data. Some approaches [DH04, ZSV04] are based on manually
specifying constraints that define the condition of normalcy, whereas other methods
[XGO5, XGOS, BGS08, WMGO07, ZNRC13, YGC13] learn the normalcy model directly
from data in unsupervised way. Cong et al. [CYL11] use sparse reconstruction cost
implemented on a normal dictionary of local spatio-temporal patches to detect local and
global abnormalities. Saligrama et al. [SC12] propose optimal decision rules for detect-
ing local spatio-temporal abnormalities. An efficient sparse coding method that achieves
decent performance in abnormality detection is proposed by Lu et al. [LSJ13]. Mahade-
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van et. al [MLBV10] detect unusual objects in crowded scenes by jointly modeling the
dynamics and appearance with mixtures of dynamic textures. Li et al. [LMV13] use the
mixture of dynamic textures at multiple scales to detect abnormalities in a conditional
random field framework.

In this chapter, a sequential model for video parsing is proposed that exploits only
spatial interactions between object hypotheses in a single frame. Instead of indepen-
dently detecting abnormal local patches or regions in a video frame, sequential video
parsing discovers abnormalities indirectly by establishing a set of hypotheses that pro-
vide a complete explanation of the foreground mask.

4.3 Background Subtraction

Many applications aim at detecting moving objects in video, so that they can later
be analyzed and classified into different object categories. If video camera is placed at
a fixed location in the scene, foreground is segmented by subtracting the background
image. However, to build a robust background model, it is necessary to deal with many
difficulties in practice, such as camera shaking and jitter, time of the day and light
changes, foreground aperture, background motion, waking/sleeping foreground objects
and shadows, to name a few. Methods for background modeling can be pixel-wise
and frame-wise. Pixel-wise methods for background modeling assume that pixels of a
frame are statistically independent and build a separate statistical model in each of them.
The popular pixel-wise background subtraction model of Stauffer and Grimson [SG99]
learns a mixture of Gaussian (MoG) model in each pixel and adaptively updates the
parameters of the mixture over time. On the other hand, frame-wise models represent
background pixels jointly as a vector in a low-dimensional vector space [WGR'09].

4.3.1 Stauffer-Grimson (MoG) Model

MoG model for background subtraction was first proposed by Friedman and Russel
[FR97] for modeling background in a traffic surveillance system. Their model consisted
of three Gaussian components that represented the values of road, vehicle and shadows.
They semantically labeled components of the MoG model using the following rule:
darkest component is labeled as shadow, and of the remaining two component, one with
larger variance is labeled as vehicle and other as road. Foreground pixels are found by
comparing pixel value with each Gaussian component and obtaining the label (vehicle,
road or shadow) of the closest Gaussian component. Pixel-wise MoG model proposed
by Stauffer and Grimson [SG99] is a generalization of Friedman and Russel’s model.
A mixture of K Gaussians is fit to each pixel based on the history of pixel’s recent
values. Typically, each pixel j is represented by the intensity I; in the grayscale or RGB
color space. According to the MoG model, the probability of pixel value is given as a



4.3. BACKGROUND SUBTRACTION 67

weighted average of K" multidimensional Gaussian distributions,
K
P(Ijt') - Zwi,t/\/(f;; ity Dit)- 4.1)
i=1

All K Gaussian components are represented with the following parameters: w;; is a
weight associated with Gaussian ¢ at time ¢, whose mean is y; ; and covariance XJ; ;:

1 1 _
NI pig, Sie) = (2m)12[T, 12 exp(—5 (I} — Mz’,t)TEz’,tl([gt‘ — Hit))- (4.2)

2

In Stauffer and Grimson’s approach [SG99], covariance matrices X;; in RGB color
space are assumed to be diagonal and of the same variance for all color channels:

Sig = o0p,L. (4.3)

The number K of Gaussian components in a mixture is determined by the multi-
modality of the background distribution, and is typically set to 3 to 5. Stauffer and
Grimson use the online EM algorithm to update the weight, mean and covariance pa-
rameters of Gaussian components in the mixture. To find background components in
the MoG distribution, Gaussian components are sorted according to the ratio r; ; = :JZZ
calculated for each Gaussian component. As background components occur more often
than foreground, and their distribution has smaller variance than of the foreground, the
ratio 7; ; of a background Gaussian component is in general larger than of a foreground
component. Therefore, first B Gaussian components whose total weight is greater than
a threshold 7" are labeled as background components,

b
B = argmin wir =>T). “4.4)
gb (1'21 it )

When a new frame at time ¢ arrives, pixels in the frame are compared to each com-
ponent of the MoG distribution. A pixel value I]t- matches the Gaussian component ¢ of
the MoG model if the Mahalanobis distance is less than a threshold:

(It = p1i2) S} (I = piye) < threshold. 4.5)

If a match is found with one of B background components, pixel is labeled as back-
ground, otherwise it is classified as foreground. If there is a match with one of the K
components, the weight of the matched Gaussian component is updated according to
the learning rate

Witr1 = (1 — @)wis + o (4.6)

The remaining parameters of the matched Gaussian (mean and covariance) are updated
with a learning rate p = aN (]]’?; [t Xi¢) that is proportional to the probability that a
pixel value [jt» matches a Gaussian whose mean is ; ; and covariance Y, 4,

Hig+1 = (1— P)Mz‘,t + P[jt‘a 4.7)
Sipr1 == (1= p)Sis + p(I} — pigsr) (I — pigsn). (4.8)
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Unmatched Gaussian components in the mixture retain the same mean and covariance
values as in the previous time instant, but their weights are dampened as follows,

Wit+1 = (]_ - O{)wz‘ﬂf. (49)

If none of the K Gaussian components is matched to the current pixel value, the least
probable Gaussian component is replaced with a new component of low prior weight,
and large covariance and the mean equal to the last pixel value.

Despite a huge popularity of the Stauffer-Grimson method for background subtrac-
tion, in our experiments the algorithm could not provide a reliable foreground/background
segmentation. Quick illumination changes, camera jitter and camera automatic iris cor-
rection could not be resolved by a pixel-wise model. Consequently, we decided to use
frame-wise models that jointly model all pixels in a frame. A very efficient frame-wise
method based on robust principled component analysisf WGR"09] is used.

4.3.2 Robust Principle Component Analysis Model

For videos that are recorded by a static camera, background is constant or changes
slowly over time, and thus can be effectively learned from previous frames. The re-
sulting background model can be applied to detect foreground pixels in the video. The
final foreground/background segmentation of a video frame is represented as a binary
variable f; € {0, 1} for all pixels j.

Background subtraction assumes that each frame I* in a video can be decomposed
into a background model and a sparse foreground. By stacking successive video frames,
image data matrix [ = [I = T t} is obtained. Now, to find foreground pixels in video
we need to search for the smallest rank background matrix B that could have produced
the image data I with sparse foreground matrix F, ||F'||o < k. The problem can be
converted into a Lagrangian dual form:

{B, F} = argminrank(B) + 7| EF|lo, s.t. B+ F = 1. (4.10)
B,F

However, the problem in Eq. 4.10 is non-convex, and an efficient exact solution is not
available. Therefore, Wright et al. [WGR™09] proposed to solve the relaxed problem,
where the /y-norm of matrix F' is replaced by the ¢;-norm, and the rank of matrix B is
replaced by the nuclear norm' || B||. = >, 0:(B). This yields to the following convex
optimization program:

{B,F} = argmin || B|l. + 9| Fl1, st. B+ F =1. (4.11)

B,F

Some recent results [WGRT09] on ¢;-norm regularized sparse solution of under-
determined systems of linear equations, i.e. nuclear-norm regularized low-rank solution
of matrix equations, show that Eq. 4.11 under some mild conditions leads to a perfect

'0;(B) denotes the i-th singular value of matrix B.
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Figure 4.2: a) A directed acyclic graph and b) an undirected graph. Factorization of dis-
tributions that correspond to the graphs are given under each graph. ¢) An example of an
undirected graphical model whose conditional independence properties b 1L c|a, d and
a 1L d|b, c cannot be represented by any directed graphical model (Bayesian network).

recovery of the sparse matrix F and low-rank matrix B. Formally, this means that for
almost every pair of low-rank matrix B and sparse matrix F’, the following holds

{B, F} = argmin || B||, + A| F|\, st. B+ F =B+ F. (4.12)
B,F

This means that for almost any data matrix / = B + F, its low-rank matrix component
B and the sparse matrix component F' can be exactly recovered by solving the convex
program of Eq. 4.12.

4.4 Probabilistic Graphical Models

Probabilistic graphical models (PGM) is a modeling paradigm used for specifying
properties of multidimensional probability distributions. PGM stands at the intersection
of statistics and graph theory. The idea behind PGM is to represent independence prop-
erties of a multidimensional probability distribution in a form of a graph. Independence
assertions implied by the graphical model are used to simplify the statistical computa-
tions performed with high-dimensional probability distributions. In other words, PGM
represents a factorization of a probability distribution into a product of low-dimensional
probability distributions [MCB10].

A central place in the development of a theory of PGM has the concept of indepen-
dence of random variables. Random variables X, and X, are conditionally independent
given random variable X, if the following factorization holds,

p(Tq, Tp|xe) = p(xo|ze)p(Tp|Te). (4.13)
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Figure 4.3: Three possible Bayesian Networks with three nodes, and their implied in-
dependence assertions. The probability distributions the correspond to the Bayesian

networks factorize as: a) p(a)p(bla)p(c|a), b) p(a)p(bla)p(c|b), ¢) p(a)p(b)p(c|a, b)

Conditional independence property can be compactly written as X, 1l X;|X,. Graph-
ical model is a compact way to specify all conditional or unconditional independence
properties that hold for a multidimensional probability distribution p(x).

Applications of probabilistic graphical models can be found in many disciplines,
such as computer vision, machine learning, bioinformatics or digital communications.
In this brief exposition to the theory of probabilistic graphical models we build upon the
following two rules of the probability,

e Product rule:

P(Tq, p) = p(xa|as)p(Th) (4.14)
e Marginalization rule:
p(xa) = p(Ta, 1) (4.15)
Tp

4.4.1 Directed Graphical Models

Starting from the product rule, any probability distribution can be factorized in the

following way

p(x) = [ [ plwiles,), (4.16)

=1

where ; = {1,...,7 — 1} denotes the set of indexes that lexicographically precede the
index ¢. For example, joint probability distribution of four random variables a, b, ¢ and
d, can be factorized as

P(Ta, Ty Tey Ta) = p(xa)p(Tp|2a)p(Xe| 0, 20)D(TalTa, o, 0. 4.17)

Usually a random variable z; does not depend on all previous random variables z,, but
only on a subset of them z,,,, where subset pa;, C m; is referred to as the parents of .
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In that case, we can write the joint probability p(z) as

n

p(x) = [ [ p(zilzya,)- (4.18)

i=1

Factorization in Eq. 4.18 can be represented as a directed acyclic graph (DAG)
where each node X; represents a variable in the original probability distribution X.
To indicate that node X statistically depends only on its parent nodes X, € pa;, a
directed edge is introduced in the graph that goes from X; to Xj, for each j € pa;. An
illustrative example of a directed graphical model is given in Fig. 4.2(a).

In the literature [MCB10], directed acyclic graphs (DAG) that represent probability
distributions are usually called Bayesian networks. For any Bayesian network it is pos-
sible to prove that there is at least one permutation of nodes such that any node appears
in the permutation after its parents. Figure 4.3 shows three possible Bayesian networks
with three nodes.

d-separation

In directed graphical models, d-separation is a generalization of the notion of Markov
blanket, and is used to verify statements about conditional independence of sets of
nodes. In order to verify that sets of nodes X, and X are conditionally indepen-
dent given the set of nodes X in a Bayesian network, it is necessary to show that each
path between X 4 and X is blocked. There are three rules that help to establish that a
certain path in a graph is blocked:

e the path contains a sequence of directed edges X; — X; — X}, where node
X is observed.

e the path contains a sequence of directed edges X; «— X; — X}, where node
X is observed.

e the path contains a sequence of directed edges X; — X; <— X}, where neither
node X; nor any of its descendants is observed.

d-separation is also very useful in a theoretical study of graphical models, because
many useful properties of graphical models can be proved by d-separation. For example,
it can be proved that a probability distribution p(x) that satisfies all conditional indepen-
dence assertions implied by d-separations in a DAG, can be factorized according to Eq.
4.18. The converse statement also holds.

4.4.2 Undirected Graphical Models

Some probability distributions have conditional independence properties which can-
not be represented by any Bayesian network. Therefore another type of graphical mod-
els known as Markov Random Fields (MRF) is used to specify conditional independence
properties in the form of undirected graphs. An example of probability distribution that



72 CHAPTER 4. SEQ. VIDEO PARSING FOR ABNORMALITY DETECTION

(a) Markov blanket in DAG (b) Markov blanket in UG

Figure 4.4: Markov blankets in probabilistic graphical models. a) In directed graphs,
Markov blanket of a node incorporates its parents, children and other parents of its
children. b) In undirected graphs, Markov blanket simply consists of neighbors of a
node.

corresponds to an undirected graph, but whose conditional independence properties can-
not be represented by any Bayesian network is shown in Fig. 4.2(c).

Before we formally define probability distribution of an undirected graph, we first
need to define a clique in a graph. A clique c corresponds to the set of nodes X, in a
graph G = (V, E), such that there is an edge between any two nodes in the set X, i.e.
if X;, X; € X, then (X;, X;) € E. In other words, a clique ¢ corresponds to a fully
connected subgraph of the original graph. If for a clique c there is no other clique ¢/
such that ¢ is a proper subset of ¢/, then the clique ¢ is called maximal.

Now we can express the probability distribution p(z) represented by a Markov ran-
dom field as a normalized product of factors v.(x.) that operate on maximal cliques
c,

pla) = % T ¢etz)- (4.19)
ceC
In Eq. 4.19, the set of all maximal cliques in the graph is denoted by C, the nonnegative
factor of a clique c is denoted by 7., and a normalization constant that provides that
all probabilities sum up to one, > _, p(x) = 1, is denoted by Z. The normalization
constant Z is also called the partition function.

A directed graphical model can be converted to an undirected graphical model by
applying two simple rules: i) each directed edge is replaced by an undirected edge, ii)
for any node X; that has more than one parent, establish an undirected edge between
any two parent nodes X; and Xy, j,k € pa;. These rules are used to transform each
conditional probability p(z;|x,,,) of a Bayesian network to a factor ¢(x;, x,,,) that cor-
responds to a newly established clique {i} U pa;. The inclusion of edges between all
parents of some node is called moralization of a graph.

The transformation from directed to undirected graphical model is not reversible,
and some conditional independence properties of a directed graphical model may be
lost in the resulting undirected graphical model. For example, the directed graphical
model in Fig. 4.3(c) can be converted to a fully connected undirected graphical model
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Figure 4.5: An illustration of graph separation in undirected graphical models. Nodes
{b, ¢} separate node a from the set of nodes {d, e} because any path between a and d,
or a and e must pass either through b or c.

with nodes a, b, ¢, that does not support independence assertion a L b that is satisfied
by the original directed graphical model.

Graphical models represent the conditional independence assertions of the underly-
ing probability distribution. The assertions can be easily formulated using the Markov
properties: In case of directed graphical models (Bayesian networks), each node is inde-
pendent of its non-descendants given its parents. In case of undirected graphical models
(Markov random fields), a node is independent of its non-neighbors, give its neighbors.

Another very useful concept in probabilistic graphical models is the Markov blanket.
Markov blanket of a certain node X; is the minimal set of nodes X,,;,, such that node
X; 1s conditionally independent of any other node X that is not in the blanket, given
the blanket, i.e. X; 1L X;|X,»,,Vj ¢ mb; U {i}. In undirected graphical models,
Markov blanket of a node consists of node’s neighbors. In directed graphical models,
Markov blanket of a node includes node’s parents, children, and also other parents of
its children. An illustration of Markov blankets in undirected and directed graphical
models is given in Fig. 4.4.

In undirected graphical models, graph separation (equivalent of d-separations for
DAG) is defined by the following simple rule: sets of nodes X 4 and X are condition-
ally independent given X if any path in the graph that connects X 4 and X g must pass
through X¢. For example, in Fig. 4.5 nodes {b, ¢} separate the node a from the nodes
{d, e}. According to graph separation, it follows that a 1L {d, e}|{b, c}.

In undirected graphical models, the famous Hammersley-Clifford theorem connects
the graph separation and factorization of the probability distribution: if a strictly positive
probability distribution p(x) satisfies all conditional independence assertions implied
by graph separation in an undirected graph G, then probability distribution p(x) can be
factorized according to Eq. 4.19. The converse statement also holds.
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4.4.3 Inference Techniques in Graphical Models

Let (X4, Xp) be a partitioning of a random variable X into two disjoint sets. Infer-
ence solves the following two basic kinds of problems [Bar12]:

e Marginal probabilities:
plza) = plza,zp) (4.20)
TB

e Maximum a posteriori (MAP) probability:

max p(zg|Ta) (4.21)
TR

Thus, inference in a graphical model involves the computation of marginal probabilities,
or finding values of variables that maximize the posterior probability.

Graphical models allow for efficient computation of marginal probabilities by fol-
lowing the factorization implied by the graphical model and using the distributive law
for multiplication and addition. The basic idea is that instead of naively computing
xy + xz by two multiplications and one addition, we can use distributive law and cal-
culate z(y + z) that contains one multiplication and one addition, i.e. we can save one
multiplication.

Elimination Algorithm

Let us first show on the undirected graphical model of Fig. 4.2(b) how marginal prob-
ability p(d) can be efficiently computed by elimination of variables. Naive calculation
of marginal probability involves explicit computation of the product of factors for all
possible values of marginalized variables,

ple) = Z p(a,b,c,d,e)

a,b,c,d

= 2 3 b (b, dys(e, )il ). (4.22)

a,b,c,d

A significant reduction in computation is obtained if the factors that are constant within
a sum are pulled out in front of the sum,

pe) = 5 3 0a b e)ilb (e, e)uldre).

a,b,c,d
L ST e T Y vla b, @2
d B 3 -

Another example of variable elimination is the computation of the marginal proba-
bility p(z;) in a Markov chain with factorization

pla) = — [ [ (@i vis). (4.24)
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(a) bottom-up phase (b) top-down phase

Figure 4.6: Illustration of the message passing algorithm in the tree-structured graphical
model.

Naive approach to the computation of the marginal probability p(x;) would be:

= Z SIS Hw Tis Tig1)- (4.25)

Ti—1 Tit1 T, =1

The naive procedure would involve O([]'—}' |X;|) multiplication operations. The
number of computations can be significantly reduced if factors are pulled out in front of
the sums,

[Zw Ti—1,T; Zdj Ti9,Ti1) ZT/J 951,1172]

Ti—1 Ti—2

[Zw Lo @inn) Y (Tir1, Tivo) Zw a)] @26)

Tit1 Ti42

With variable elimination, the number of multiplication operations is reduced to
O |Xi||X;11]).  Although variable elimination is efficient for calculating the
marginal probability of one variable, it is not efficient for calculating marginal proba-
bilities of all variables in the graph because operations are repeated. Belief propagation
algorithm resolves this issue by defining messages that nodes in the graph exchange
among each other, which are used for computation of all marginal probabilities in the
graph.

Belief Propagation

The aim of belief propagation is to avoid repetition of intermediate results in calculation
of marginal probabilities in a tree-structured graphical model. The idea is that interme-
diate results are exchanged in the form of messages between neighbor nodes in the tree,
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so that messages can be reused for computation of all marginal probabilities. The algo-
rithm has many forms, but the most popular is the sum-product algorithm [Murl2].

To explain how belief propagation works, we use a tree graph in Fig. 4.6. One node
in the tree is selected as a root, which then induces ordering among other nodes of the
tree. Messages are first sent in bottom-up manner from leaf nodes to their parents in the
tree, then these nodes send messages further towards the root. The bottom-up phase of
message passing ends when all messages arrive at the root. Message sent from node z;
to node x; is obtained by: 1) multiplying all messages that arrived earlier at node x; with
the factor associated with clique (x;, x;), and ii) summing the products over z; creates
a message that is a function of only z;:

m;j(x;) ZQ/JU Ti, T;) H My (). 4.27)

keN (i)\j

After all messages arrive at the root, the top-down phase can begin. The root now sends
messages to its children, who than send messages further down the tree until messages
finally reach the leaf nodes. The marginal probability at any node of the tree is given by
the product of all messages that arrived at that node,

o [T mi(z). (4.28)
JEN(3)

Maximum A Posteriori (MAP) Inference

Belief propagation (i.e. the sum-product) algorithm efficiently computes marginal prob-
abilities in a graphical model. In many applications of PGM, it is of interest to com-
pute values of variables with the maximal probability, known as Maximum A Posteriori
(MAP) estimation. By following the same ideas that led to the sum-product algorithm,
i.e. distributivity of multiplication and addition operations, we note that distributivity
also holds for multiplication and max operation: max(ab, ac) = a - max(b,c),a > 0.
Therefore, MAP inference can be achieved by replacing summation in sum-product al-
gorithm with max operation. The latter is known as the max-product algorithm.

4.5 Abnormality Detection by Joint Scene Explanation

After explaining the basics of probabilistic graphical models, we now return to the
question of abnormality detection in videos, and propose a sequential method for video
parsing that can also be formulated as an inference in a graphical model. In case of
a stationary camera the foreground/background segregation becomes feasible due to
background subtraction. The foreground mask renders it then possible to turn the ab-
normality detection problem into a task of video parsing. The goal is thus to explain all
the foreground using object hypotheses and to explain each hypothesis using a sample
from the set of normal training examples. The underlying statistical inference in a prob-
abilistic graphical model has to be tackled jointly for all hypotheses, since hypotheses
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Figure 4.7: Initialization of the video parsing method involves extraction of object hy-
potheses, segmentation of the foreground pixels using background subtraction and cal-
culation of the optical flow. As a result, a shortlist of object hypotheses is created with
their appearance, location, scale and flow features.

can explain each other away. Abnormalities are then those hypotheses that are required
to explain the foreground but which themselves cannot be explained by normal training
samples.

4.5.1 Initialization

To parse a novel frame in a video, several pieces of information have to be gathered
(Fig. 4.7.). In the first place, background subtraction is performed. This is possible
because we assume the stationary camera model for our videos.

After background model is calculated in Eq. 4.11, foreground pixels j are found,
f; = 1, as pixels that have a large discrepancy between the observation I; and the
background model B;. The probability that a pixel is foreground P(f; = 1) is obtained
by sigmoid transformation of the difference of pixel’s intensity and the background
model,

~1
P(f;=1) = 2(1 +exp(—A|| — Bju)) 1 (4.29)
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Pixels with foreground probability greater than 0.5 are considered as foreground, f; = 1,
and others as background, f; = 0.

Secondly, the optical flow vectors v; are computed by the method [LFAWO0S]. Ve-
locity of an object hypothesis & is then calculated as a weighted average of the optical
flow vectors over the support S, of the hypothesis h

v, = Zjesh, P(f;=1)-v,
h Zjesh P(f] = 1)

To initialize the subsequent parsing and abnormality detection, a shortlist of can-
didate object hypotheses is computed. From a large number of object hypotheses that
could be established in a video frame most hypotheses are not compatible with the fore-
ground mask as they would be located in the background. Now we can efficiently eval-
uate an appearance based classifier on candidate object hypotheses in the foreground
to obtain a shortlist of relevant hypotheses. Since the training data does not contain
abnormal instances but only the background and normal foreground, it is important to
note that this is basically an inverted background detector, i.e., a discriminative SVM
classifier that is trained to distinguish the background from anything else that deviates
from it. A vector of spatiotemporal derivatives

o1, a1, oI,
— (% %% 431
dhn (8:6’ oy’ (9t>jesh “.31)

(4.30)

is used as a feature vector in the SVM classifier. The features capture both the ap-
pearance (spatial patterns) and dynamics (temporal patterns) that is crucial for good
performance in abnormality detection. The SVM classifier uses a linear kernel and pro-
duces a probabilistic output [CL11] as an estimate of the probability of the background
class P(on, = 0|dp,). The classifier is trained in a batch mode on samples from training
videos.

The resulting shortlist of object hypotheses is set to have a high recall and low pre-
cision. This opportunistic pre-filtering retains a reasonable number of hypotheses (on
the order of 10 to 10?) without losing any relevant ones. However, all of these hypothe-
ses have been found independently of each other. Therefore, there will be spurious
hypotheses that can be explained away by others. Moreover, abnormalities can only
be discovered once the foreground has been explained by a set of mutually compatible
object hypotheses. Abnormal hypotheses are then the ones which cannot be described
by the object model that has been learned during training, but which are nevertheless
needed to explain the foreground that cannot be explained by other hypotheses.

4.5.2 Model Formulation

Given the initialization, the task of scene parsing is as follows. Select a subset of
the initial set of hypotheses that explains all the foreground and explain each object
hypothesis using the object model (e.g., which training samples correspond to a particu-
lar query hypothesis) that has been learned during training. The activation/deactivation
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Figure 4.8: A subset of normal object exemplars obtained from the training data.

of candidate hypotheses and their explanation with the object model have to be solved
jointly for all hypotheses since they are mutually competing. The main inference pro-
cess that parsing is based upon is that of explaining away as we will see later. Object
hypotheses are necessary for explaining the foreground if they cannot be explained away
by others. If such a necessary hypothesis fits to the object model that has been learned
from the training videos that only contain normal patterns then this is a normal instance,
otherwise we have found an abnormality. Since the model is inherently probabilistic
a probability of abnormality is provided. The graphical model of the sequential video
parsing approach is shown in Fig. 4.9.

The initialization provides a set of object hypotheses, where each hypothesis has a
location [, € R?, a scale s;, € R, an overall appearance descriptor d;, € D that lives in
feature space D, and a velocity v, € R?. After the initialization, all object hypotheses
are assumed to be required, i.e. the indicator variable o, € {0,1} is initialized as
op, = 1. Our goal is now to find a subset of all hypotheses that is necessary and sufficient
for explaining all pixels of the foreground mask f; € {0,1}. Moreover, we aim at
explaining each hypothesis based on a normal object sample from the training data.
Thus, for each hypothesis & the best exemplar m;, € M from the training data M is
sought ( Fig.4.8). For abnormal objects all exemplars will obviously have high matching
costs. Consequently, the probability that sample m;, is matched to the h-th hypothesis
in a query frame depends on how similar they are in appearance, A(dy,d,,). A is
the distance in the feature space D. Moreover, each visual pattern has a particular
probability to occur at a specific location, e.g. cars are more likely to drive on roads than
on sidewalks, whereas pedestrians are more likely to walk on sidewalks. The probability
that the training sample m; will be matched to the hypothesis h is given by

P(mh|lh, dh) X P(mh|lh) : P(mh|dh) (432)
exp (= lin =Ly ll)  exp( B Ald,dn,))
> Z(ln) ' Z(dp) 7

where Z(+) is the partition function. The probability of hypothesis & being an actual ob-
ject (and not a spurious detection) depends on the observed properties of the hypothesis
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Figure 4.9: Graphical model of the proposed sequential video parsing method for ab-
normality detection.

(descriptor dj, location [, scale sy, and velocity v;,) and is given by

P(Oh = 1|dh, lh, Sh,Uh) XX P(Oh = 1|dh) (433)
X p(lnlon = 1) - p(sulon = 1,1) - p(valon = 1, 1)

Here P(op|dy) is the SVM appearance classifier from Sec. 4.5.1, while p(l|op),
p(snlon, ln) and p(vy|on, 1), for o, = 1, are nonparametric models of location, scale
and velocity of normal objects in the image. Otherwise, if 0, = 0, location, scale and
velocity have uniform distribution.

Finally, we need to estimate the foreground probability of a pixel j. This probability
depends on all hypotheses & that cover the pixel. Let S, be the support of the h-th
hypothesis, i.e., the set of all pixels that are covered by it. Then {h : j € S,} is the
set of all hypotheses that contain pixel j. We assume that the probability the pixel is
background, given all the hypotheses, can be expressed as a product of probabilities
of the pixel being background, given each hypothesis alone. We also account for a
possibility that the pixel is foreground even if all hypotheses claim it is background.
This is modeled by a small probability py. The foreground probability is therefore given
by

P(f; = 1{{on, mn, ln, sn}n:jes,) (4.34)
=1—(1-po) H (1= P(f; = 1lon, mn, ln, sn))
h:j€Sy,

To obtain the foreground probability of a pixel based on a training sample m;,, the
foreground probability map P(f™» = 1) of the training sample is pasted into the query
frame at the location /;,. Thus we have to shift and scale it from the reference frame of
the training sample into that of the current frame and obtain

P(f] = 1|0h,mh, Iy, Sh) = 0p * 1(] € Sh) . P(fsmh = 1) (4.35)

=)
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Here 1(-) is the indicator function and if o, = 0 or j ¢ S, then the hypothesis i does
not explain the pixel j.

4.5.3 Inference by Foreground Parsing

The goal is now to estimate which of the hypotheses are actually needed to explain
the foreground and to find a matching training sample for each hypothesis. For abnormal
hypotheses Eq. 4.33 will yield low probabilities. If foreground f; = 1 is observed and
asserted by the hypothesis h, and no other hypothesis can be found that could explain
the presence of the foreground at that pixel, then the probability of the hypothesis 5
increases. This statistical inference is also called explaining away in the literature, since
for an observed variable f; different hypotheses / that share the same pixel j become
statistically dependent so that the absence of one hypothesis can dictate the presence of
another.

To infer the unknown variables o, and my, we have to find the joint configuration
{0n, my, } that maximizes the posterior probability

{0n, M, }p, = argmax P({on, mp }n|{dn, lh, sn, v }n, { fi };)

{on-mn}n

= argmaXH(P(0h|dh7lha Shy Vn) - P(mp|dp, lh))

X HP(fj’{ofwmh7lhash}h:j68h) (4.36)

J
To solve the given problem we follow an alternating optimization approach. In each
iteration we fix all but one hypothesis h and then maximize over its parameters (oy, my,).
Each iteration is thus a local search in the space {0, 1} x M where the variables (op,, my,)
live

argmax P (o, mu|{dn, thr, Snrs Vb nrs {F5 3 52 {Onrs b Yoot
Op,Mp

= argmax P(op|dn, ln, Sp,vn) - P(my|dy, 1)
OhE{O,l},thM

X H P(fjl{ohlvmhlvlh/a Sh/}h/:jesh/)- 4.37)
JESH

Typically, only few rounds of iterations are needed to converge to a locally optimal
solution.

4.5.4 Detecting Abnormalities

Finally, the h-th hypothesis is an abnormality, a;, = 1 if this hypothesis is necessary
to explain the observed foreground, o, = 1, and if no matching training sample can
be found, i.e., the best estimate 71, for a matching sample (obtained from Eq. 4.36) is
unlikely to explain this hypothesis,

P(ah = 1|0h,mh) = P(Oh = 1|dh,lh7 sh,vh) . P(mh 7é T/th|dh, lh, Sh) (438)
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Figure 4.10: (a) Per-frame abnormality detection results for the Pedl dataset. We
achieve a 7% gain in AUC over the state-of-the-art. (b) Per-frame abnormality detection
results for the Ped2 dataset. We achieve a 7% gain in AUC over the state-of-the-art. The
orange curve illustrates the performance of our approach after the shortlist initialization
(Sec. 4.5.1), whereas the red curve depicts the performance after the explaining away
procedure (Sec.4.5.3).

Similarly, pixel j is part of an abnormal object, a; = 1, if it is in the foreground,
f; = 1, and if any of the hypotheses that extend over this pixel, {h : j € S}, is
abnormal,

P(aj = 1|fj7 {ah}h:jesh) (439)

= P(f; = 1l{on, mn, ln, $n}njes,) - max Plap = 1|op, mp)
h:j€ShH

4.6 Experimental Evaluation

4.6.1 Description of the UCSD Anomaly Dataset

We use the challenging UCSD anomaly datasets ped! and ped2, that were recently
proposed by Mahadevan et al. [MLBV10] for measuring the performance of abnormal-
ity detection algorithms. Both datasets consist of videos recorded in crowded walkway
scenes that also feature lots of challenging abnormal instances which are objects with
unusual appearance or behavior. The UCSD ped! set contains 34 training and 36 test
videos that are all 200 frames long. Due to the low resolution of ped! videos, the pedes-
trians who walk towards and away from the camera are only 10 — 25 pixels high. In the
UCSD ped?2 dataset there are 16 training and 12 test videos that have a variable length
(at most 180 frames). Pedestrians in these videos are about 30 pixels high. Videos from
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Figure 4.11: (a) Pixel-wise abnormality detection for the labeling provided by Mahade-
van et al.. We observe a 32% improvement in the AUC. (b) Pixel-wise abnormality
detection for our fully labeled test set.

both benchmark sets are very crowded, so that object heavily occlude one another.

Abnormalities in the UCSD datasets are not staged but occur naturally in the scene
and can be grouped into: 1) objects that do not fit to the context of the scene, such as a car
on a crowded walkway, or ii) objects that look normal but behave in unusual way, such as
people that cycle or skateboard across the walkway or walk in the lawn. Abnormalities
from the UCSD benchmark sets include also carts and wheelchairs. The training videos
consist only of normal objects and actions, so that a model for abnormalities cannot be
learned from it.

4.6.2 Evaluation Protocol

We use the standard protocol for evaluating abnormality detection results that was
proposed by Mahadevan et al. [MLBV10]. The protocol consists of frame-wise and
pixel-wise criteria. The frame-wise criterion labels a frame as abnormal if it contains at
least one abnormal object detection. The localization accuracy of detected abnormalities
is verified by the pixel-wise criterion that is more rigorous than the frame-wise criterion,
since the detected abnormalities are compared to a pixel-level ground-truth mask. The
pixel-wise criterion requires that at least 40% of all ground-truth abnormal pixels to be
marked as abnormal in order to count a frame as true positive. By calculating the true
positive rate (TPR) and false positive rate (FPR) at different detection thresholds we
obtain the receiver operating characteristic (ROC).

Frame-wise and pixel-wise criteria use the area under the curve (AUC) as a perfor-
mance measure calculated directly from the corresponding ROC curve. For the frame-
wise criterion we calculate also the equal error rate (EER) as a value obtained when
the false positive and false negative rates are equal. For pixel-wise criterion we com-
pute the rate of detection (RD), that is equal to 1—EER. The pixel-wise criterion is ap-



84 CHAPTER 4. SEQ. VIDEO PARSING FOR ABNORMALITY DETECTION

Figure 4.12: Columns show detection results on different frames. Row 1) our initial
shortlist, row ii) hypotheses and abnormality probability a;, row iii) per-pixel proba-
bility a;, row iv) best fitting model 1, row v) result by [MLBV10]. Best viewed in
color.

plied on the partially labeled UCSD ped| dataset originally provided with the pixel-wise
ground-truth annotation. Moreover, in the course of this thesis a pixel-wise ground-truth
annotations for the full datasets is completed and included in the evaluation.

4.6.3 Comparing with the State-of-the-Art

We compare the proposed sequential video parsing (SVP) with the state-of-the-art
abnormality detection methods on the Pedl and Ped2 benchmark datasets. The methods
include the mixture of dynamic textures [MLBV10], the social force model [MOS09],
the mixture of optical flow [KG09], the optical flow monitoring method [ARSROS], and
a combination of [MOS09] and [KGO09] that was investigated in [MLBV10].

In all of the experiments the SVP approach significantly outperforms all the other
approaches. The SVP per-frame labeling on the Ped! dataset (Fig. 4.10(a)) achieves
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Figure 4.13: Rows show additional detection results on various frames. Column 1) our
initial shortlist, column ii) hypotheses and abnormality probability a;, column iii) per-
pixel probability a;, column iv) best fitting model 7. Best viewed in color.

an EER of 18%, which is an improvement of 7% over [MLBV10], and an improvement
of 22% over [KG09]. We also compare the area under the ROC curve (AUC), which is
a more robust measure, as it does not depend on only a single spot on the curve. The
SVP achieves an AUC of 91% compared to 84% of [MLBV10]. Per-frame labeling on
the Ped?2 dataset (Fig. 4.10(b)) yields an EER of 14%, which is an improvement of 11%
over [MLBV10], and it also results in an AUC of 92% compared to 85% of [MLBV10].
Nevertheless, current MATLAB implementation of the SVP approach is approximately
twice as fast in the prediction phase (5-10 secs per frame) as the approach [MLBV10].

In order to estimate the abnormality of pixels, we follow a direct probabilistic ap-
proach where the variables a; are obtained directly by statistical inference. The abnor-
mality masks are then compared to the pixel-level ground truth masks as in [MLBV10].
The SVP approach improves the AUC in this experiment (Fig. 4.11(a)) by 32% achiev-
ing 76% average performance compared to 44% of the approach [MLBV 10]. In that pa-
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per, the detection performance at the point of equal error was also reported where SVP
achieves a 23% gain yielding a detection rate of 68% compared to 45% by [MLBV10].
Note that in the previous experiment [MLBV10] have compared error rates while they
are measuring detection rates. This is why we report the standard and more robust AUC
in all cases. Fig. 4.11(b) reports the detection performance of the fully labeled Ped! test
set that we is assembled as part of this thesis.

Fig. 4.12 compares the abnormality localization of the SVP approach with that of
[MLBV10]. The columns show results on different frames. i) Row one visualizes the
initial shortlist with its spurious detections, ii) row two shows the hypotheses and their
abnormality probability a; (ranging from blue for normal to red for abnormal) after
optimization, iii) row three displays the pixel-level abnormality a;, and iv) row four
explains each hypothesis by the best fitting model m;, and for abnormalities all con-
nected abnormal pixels are grouped. The comparison between SVP’s localization of
abnormalities in row iv) with the approach [MLBV10] in row v) further explains the
significant performance gain SVP achieves in Fig. 4.11(a). Further detection results of
the sequential video parsing approach are shown in Fig. 4.13.

4.7 Discussion

To avoid the ill-posed problem of directly detecting abnormalities and classifying
individual image regions independently from another as 2 abnormal, a sequential video
parsing approach is proposed in this chapter. All object hypotheses that are needed to
explain the foreground of a single frame in video are jointly inferred. At the same time,
each hypothesis seeks to be explained by a normal training example. In the proposed
probabilistic graphical model, sets of hypotheses are jointly explaining the foreground
while they are also able to explain each other away, simultaneously. Thus hypotheses
are not detected individually but their layout is found that jointly describes the scene.
Abnormalities are then discovered indirectly as those hypotheses which are needed to
explain the scene but which themselves cannot be explained by the normal training sam-
ples. The sequential video parsing approach has demonstrated its potential by improving
the state-of-the-art performance on a challenging benchmark dataset.



Chapter 5

Spatio-temporal Video Parsing for
Abnormality Detection

In Chapter 4, a sequential video parsing method for abnormality detection is proposed.
That method parses video frames one after another and considers only spatial interac-
tions between object hypotheses in a single frame. In this chapter, video parsing model
is extended to the spatio-temporal domain where video frames are jointly parsed. The
extension is used to resolve both the spatial and temporal dependencies between object
hypotheses in a video and allows for efficient aggregation of evidences from different
frames. The new convex formulation of the inference process allows the spatio-temporal
video parsing model to find the globally optimal solution.

5.1 Outline of the Approach

As before, we assume that videos are recorded by static cameras (e.g. visual surveil-
lance or industrial inspection). Therefore, robust background subtraction algorithms
[WGR'09] can be used to segregate foreground from background in a video. The goal
is now to find a set of spatio-temporal object hypotheses that jointly explain all fore-
ground pixels in video. This means that normal object hypotheses, which can be learned
from the training data, are now spread over the spatio-temporal volume of a video in or-
der to cover foreground pixels, while protruding into the background as little as possible.
These hypotheses need to explain the appearance and behavior of the underlying objects
in video. As objects are mutually overlapping in crowded scenes, the placement of the
object hypotheses in spatio-temporal domain can only be determined jointly. Thus, the
aim is to simultaneously select spatio-temporal object hypotheses, which are necessary
for explaining the foreground, and identify for each selected hypothesis the best match-
ing instance from the normal object model. Video parsing then jointly infers all neces-
sary spatio-temporal hypotheses, so that abnormalities can be indirectly discovered in a
scene without actually knowing what they look like or how do they behave.

In the first phase of spatio-temporal video parsing, a large number of object can-
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(a) (b)

Figure 5.1: Successive stages of the video parsing: (a) Spatio-temporal object hypothe-
ses found by temporal grouping serve as an input to the video parsing. (b) Subset of
spatio-temporal object hypotheses is selected by video parsing to explain the foreground
pixels.

didates in each frame is detected and grouped temporally into spatio-temporal object
hypotheses. This shortlist of spatio-temporal hypotheses is a superset of all object can-
didates that might eventually be needed for parsing a video. The object candidates in
individual frames are obtained by running a discriminative background classifier and
keeping only those patterns that are very unlikely to be background. Subsequently, ob-
ject candidates in individual frames are linked temporally according to their motion cues
so as to establish the shortlist of spatio-temporal object hypotheses. In the second phase
of video parsing, the goal is to select hypotheses from the shortlist that can explain the
foreground, and to simultaneously find normal object instances that match those hy-
potheses. This is formulated as an inference problem in a graphical model whose goal
is to maximize the probability of the foreground explanation for a video. The inference
problem is cast as a convex optimization problem where the unknown variables indicate
both, the selection of hypotheses from the shortlist and their corresponding normal ob-
ject prototypes learned from the training videos. Correspondences between hypotheses
and normal object prototypes are based upon their shape, location as well as their ap-
pearance and behavior. The probability of abnormality of each hypothesis necessary for
explaining the foreground is then calculated using the results of inference.

5.2 Model for Spatio-temporal Video Parsing

In case of a stationary camera, the foreground/background segregation becomes fea-
sible due to background subtraction. The foreground mask renders it then possible to
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Figure 5.2: Successive stages of the video parsing: (a) Source frame of a video. (b)
Foreground probability map that needs to be explained by video parsing. (c) Object
candidates found by inverted background detector. (d) Normal object prototypes chosen
during video parsing to explain the selected object hypotheses. Best viewed in color.

turn the abnormality detection problem into a task of video parsing. The goal is thus
to explain all the foreground of a video using object hypotheses and to explain each
hypothesis by an object model learned from the set of normal training videos. The un-
derlying statistical inference problem has to be tackled jointly for all hypotheses, since
hypotheses are overlapped and thus can explain each other away. Abnormalities are
then those hypotheses that are required to explain the foreground but which themselves
cannot be explained by any prototype from the normal object model.

Foreground segmentation After calculating the background model B as in Eq.
4.11, it can be used to find all foreground pixels 7, f; = 1, as those that have a large
discrepancy between the observation [ ]t and the background model Bj-. The probability
that a pixel is foreground P( f; = 1) is obtained by the sigmoid transformation of the
difference of pixel’s intensity and background model,

-1
P(fi=1) =2(1+exp(-A|Il = B))  —1. 5.1)

Pixels with foreground probability greater than 0.5 are considered as foreground, f]’? =
1, and others as background, fjt =0.

Shortlist of Object Hypotheses. For parsing a video, we need to specify a list of
spatio-temporal object hypotheses that is sufficient for explaining foreground pixels in
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Figure 5.3: Probabilistic graphical model of the spatio-temporal video parsing. The left
plate contains all spatio-temporal hypotheses h with their descriptors d; and locations
lp. The right plate comprises all pixels j with their foreground labels f; € {0,1}.
By video parsing, we infer the set of hypotheses, o;, € {0, 1}, that are necessary for
explaining the foreground, and jointly explain the selected hypotheses by the normal
object prototypes m;, € {1,..., K}. Finally, for each selected hypothesis i we decide
if it is abnormal, a;, € {0, 1}, and also mark foreground pixels that belong to abnormal
objects, a} € {0,1}.

video. An input to the spatio-temporal video parsing algorithm consists of the most
suitable spatio-temporal object hypotheses for the task of foreground explanation. In
Sect. 5.5 we explain the procedure for creating a shortlist of object hypotheses that has
a high recall, i.e. where the majority of true-positive object hypotheses is included in
the shortlist. However, as the precision rate of the proposed shortlist is low, there will
be many superfluous hypotheses that are then explained away by others during video
parsing.

We assume that hypotheses from the shortlist span a time window {t — 7,...,t}.
Each hypothesis / represents a spatio-temporal tube covering locations [, := (I, 7 ... I}).
This is a trajectory of locations I} = (% y! s!)", which specify the center (z%,y!) and
the scale s}, of a potential object & at time ¢. The scale of an object is its size relative
to the size (W, H) of the object model. The support region of an object hypothesis h at
time ¢ is the bounding box of size (s! W, st H), and the set of all pixels j that belong to
it is denoted by S;.

The goal of video parsing is then to select a subset from the shortlist of hypotheses
that is both necessary and sufficient for explaining the foreground of a test video while,
at same time, finding normal object model’s prototypes to explain the hypotheses of the
subset (Fig. 5.2).

Spatio-temporal object descriptor. A spatio-temporal hypothesis & matches its
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Figure 5.4: The normal object model consist of a set of spatio-temporal shape proto-
types, each being a sequence that captures the temporal evolution of a particular shape.
Prototypes are accompanied by the appearance and motion descriptors.

corresponding normal object model’s prototype both in terms of appearance and motion.
Thus, we need a spatio-temporal descriptor dj, to capture the essence of both appear-
ance and motion of hypothesis 4. We build descriptor d;, by concatenating per-frame
appearance and motion descriptors d!, calculated at each time ¢, d, := (dij . d’,;)T.
Per-frame object appearance is represented by the spatial derivatives of pixel’s intensity
in the support region S}, of hypothesis h. Analogously, object motion is represented by
the temporal derivatives of pixel’s intensity. The appearance and motion representations
are combined into a single feature vector as in Eq. 4.31. Since the overall descriptor
dy, 1s long and redundant, PCA is applied to find a compact representation by projecting
onto an eigen-basis such that most of the signal is preserved (about 95%).

Activating hypotheses needed for parsing. Not all object hypotheses from the
shortlist are needed to explain foreground pixels of video. Video parsing retains only
the indispensable hypotheses that cannot be explained away by other hypotheses. There-
fore, there is an indicator variable o, € {0,1}. To initialize parsing, a discriminative
classifier is trained to distinguish background spatio-temporal patterns from anything
else. This background classifier computes the probability that hypothesis /h is back-
ground, P (o, = 0l|d},), which is then inverted to obtain the foreground probability. A
hypothesis with high foreground probability can still become inactive if it gets explained
away by others during video parsing.

Matching with the object model. Video parsing jointly explains foreground pixels
with object hypotheses, and the selected hypotheses {h : o, = 1} with normal object
model’s prototypes learned from the training data. There are /K normal object pro-
totypes that represent a diversity of shape, appearance, and motion of normal objects.
Video parsing then determines for each selected hypothesis i which of the K prototypes
best explains it. The prototype that video parsing associates with hypothesis £ is indi-
cated by the variable m;, € {1,..., K'}. Sect. 5.4 explains in detail the learning of the
normal object model. For the time being, we assume that K normal object prototypes
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(a)

Figure 5.5: (a) Spatio-temporal tubes illustrate the hypotheses selected by video parsing.
Normal shape contours that explain the hypotheses are shown overlaid. (b) Superfluous
hypotheses are eliminated by the statistical inference of explaining away. The idea is
the following: Object hypothesis (yellow) is used at the beginning of video parsing to
explain the foreground pixel in the middle. Other object hypotheses (red and blue) are
introduced later to explain the top and bottom pixels. However, the pixel in the middle is
also explained by new hypotheses, so that the original (yellow) hypothesis is not needed
anymore and it can be eliminated.

are provided as input to the parsing algorithm.

For each hypothesis & the best prototype m;, € {1, ..., K} from the learned object
model is sought (Fig. 5.4). For abnormal objects all prototypes will obviously have
high matching costs. Consequently, the probability that prototype m; is matched to a
hypothesis & in a query video depends on how similar they are in both appearance and
motion, A(dp, d,,, ). Here, A denotes a distance function that measures the dissimilarity
of spatio-temporal descriptors in the corresponding feature space. Given the spatio-
temporal descriptor dj, of hypothesis h, the probability of matching prototype m; with
the hypothesis 5 is the Gibbs distribution,

P(mh|dh) = exp(—ﬁA(dh,dmh)), (52)

1
Z(dp)

where Z(d},) is the partition function used to normalize the probability distribution.
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Figure 5.6: The distribution of locations of normal object prototypes estimated by the
Parzen windows at multiple scales (represented as horizontal slices).

Moreover, normal objects typically occupy some location in a scene more often than
other, and also tend to move at a certain speed. For example, cars are more likely to drive
on roads than on sidewalks, whereas pedestrians are more likely to walk on sidewalks.
Consequently, the probability of observing hypothesis & that matches the prototype m,
depends on its location % and velocity If — I\,

P(nma) o PEE() - Pkl — 157, (53)

The two distributions P!°¢ and P! are learned for the K model prototypes using Parzen
window density estimation (see Fig. 5.6).

Therefore, the probability that hypothesis & matches to the normal object prototype
mp, is

P(mh|oh, dh, lh) X Op, * P(mh|dh) . P(lh|mh) (54)

Explaining foreground pixels. Video parsing selects hypotheses, {h : o, = 1},
and finds corresponding normal object prototypes my, to explain the foreground. The
foreground probability of a pixel j depends on all hypotheses & that overlap with pixel j.
Given the support regions S} of all hypotheses h, {h : j € S} is the set of hypotheses
that cover the pixel j. The probability that a pixel is background is equal to the product
of background probabilities of the pixel given by each single hypothesis /. Even if all
hypotheses assert a pixel j to be background, P ( fj'? = 0|op, mp, lh) =1, Vh, we allow
for a small probability F > 0 that the pixel is foreground. Thus, foreground probability
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of pixels 7 given all hypotheses is

P(fj = 1[{on, mp, ln}n) =
- (1—P0)H(1—P(f; - 1|0h,mh,lh)>. (5.5)
h

The foreground probability given an individual hypothesis, P(fj = 1|on, ms, ln),
depends on the shape of the normal object prototype m,,. In the training data, the pro-
totype my, covers pixels j with some probability P,,, ( f;, = 1). Thus, the foreground
probability of pixel ;7 under hypothesis / is obtained by taking its corresponding object
prototype m;, and “pasting” the foreground probability of m, at the location of h. The
model now needs to be brought into the reference frame of A by scaling and translating
it, ie. I = s} - 1% + (z} y,)". Then the foreground probability of pixel j given h
becomes

P(fj = 1|on, mn,ly) = o - 1[j € S}]
DY Atk = s 1+ (2 )] P, (fh = 1), (5.6)
j/

Here 1[-| denotes the indicator function. In Eq. 5.6 the foreground probability of pixel
J is set to zero if hypothesis h is inactive, o, = 0, or the pixel j does not belong to the
support region of hypothesis h, j ¢ S;.

5.3 Inference by Foreground Parsing

The goal is now to estimate which of the hypotheses are actually needed for explain-
ing the foreground and to find a matching normal object prototype for each hypothesis.
For abnormal hypotheses Eq. 5.4 will yield low probabilities. If foreground fjt =
is observed and the pixel is covered by a hypothesis A, and no other hypothesis can be
found that could explain the presence of the foreground at that pixel, then the probability
of the hypothesis h increases. This leads to the statistical inference of explaining away.
For an observed variable f; different hypotheses A that share the same pixel j become
statistically dependent so that the absence of one hypothesis can dictate the presence of
another (Fig. 5.5).

5.3.1 Joint Inference by MAP

Based on the foreground segmentation mask f; and the shortlist of hypotheses 5
with spatio-temporal descriptors dj and trajectories [, we need to jointly infer all latent
variables {oy,, my, } in our graphical model (Fig. 5.3). Following a maximum a posteri-
ori (MAP) approach yields a set of hypotheses that best explain the foreground and are
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themselves explained by the normal object prototypes,

{on, mn}n = (Jhax P({on, mn}nl{dn, ln}n, { f;};)
Op, M p s h

(0.8 Hp(f]t‘|{0hamh7lh}h) HP<Oh|dh)P(mh|0hadh;lh)- (57)
J h

Instead of explicitly maximizing the posterior probability, we take a negative loga-
rithm of Eq. 5.7 and thereby obtain the energy function J(-) which is then minimized.
Furthermore, we decompose the energy function J(-) into two terms, J;(-) covering
the explanation of foreground pixels j, and J,(+), which involves the explanation of
hypotheses h by the normal object prototypes,

J({on, mn}n) == — Zlog P(f|{on, mn, ln}n)

N J/

::Jj({;;:mh}h)

_Z(IOgP(Oh|dh) +logP(mh|0h,dh,lh)> . (5.8)
h

[\

=:Jp({on,mn}n)

To find the MAP solution, we introduce a parsing indicator z;, ;, € {0, 1}, that equals
one if hypothesis A is active, o, = 1, and their corresponding normal object prototype
18 mp = k?,

Zhk = Oh'l[mh:]{?]7 Vh, Vl{?E{l,,K} 5.9)
To keep the notation simple, let the vector z,, := (21, .., 2p, K)T denote the parsing
indicators of hypothesis h, and the vector z := {z, },, denote the parsing indicators of all
hypotheses together. The following lemma now states that the hypotheses explanation
Jy(+) can be expressed as a linear function of the parsing indicator z.

Lemma 5.3.1 The hypotheses explanation term Jy,({on, mp}y) in Eq. 5.8 is a linear
function of the parsing indicator z, i.e.

Jh({Oh, mh}h) = bTZ + bo, (510)

where the parameter vector b = {by, i }nx and scalar by do not depend on the parsing
indicator z.

Proof of Lemma 5.3.1 The hypotheses explanation J;({op, mp}n) (Eq. 5.8) can be
written as follows,

Jn({on, k) = S {=(1 = 01) log P(o, = 0/dy)

— oplog P(o, = 1|dp,) + op, - log Z(d},)

+5 on - 1[my = K] -(BA(dh, dy)

k=1 =Zh,k

— log (1) — 1og P! (1, — 1571 ) }.
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By replacing o;, with the sum from Eq. 5.15, we see that the hypotheses explanation
term J;({on, mn}n) can be expressed as a linear function of the parsing indicator z,

Jn(z) = bz + by,
where the parameter vector b = {by, 1, }1,.,, and scalar by are defined in the following way,

bny = —log P(on = 1|dy) + log P(o5, = 0dp)
+log Z(dy) + BA(dn, di,) — log P (1)
—log P (1, = 1)

b= — 3" log Plo, = 0]dy),
h

and they do not depend on the parsing indicator z. [}

To express the foreground explanation term J;(-) as a function of the parsing indi-
cator z, we first define a function ¢ 1t (+) that is parametrized by the foreground value f;
of pixel 7,

q)f;(x) = (1—f;)x—f;~log(1—e’x), x> 0. (5.11)

The introduced function ¢ r (+) is convex as we show in the following lemma.

Lemma 5.3.2 The function ® 1 (), x > 0(Eq. 5.11) is convex for nonnegative values
of the parameter f;.

Proof of Lemma 5.3.2 The second derivative of the function ® 1 (x), x > 0is given as
follows,

—T

() =1} (1_€Tx>z

We see that the second derivative is positive, '/, (z) > 0, if the parameter f; 1S positive,
J

f; > 0, so in this case the function ¢ 1t (x) is strictly convex. If the parameter f; equals
zero, fi = 0, the function ® () is linear, ®:(x) = =, and therefore convex as well.
J J

We also introduce a joint shape prototype vector w := [w] - --w}]" that is obtained
by concatenating all individual shape prototype vectors wy, k € {1,..., K} (c.f. Fig.
5.4). The component wy, j» equals the negative logarithm of the background probability
of pixel j" in the normal shape prototype wy,

wy,; = —log(1 — Pu(f}, =1)). (5.12)

The following lemma establishes a relationship between the foreground explanation
term .J;(z), the parsing indicator z and the joint shape prototype vector w.
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Lemma 5.3.3 The foreground explanation term J;(-) is the sum over all pixels j of
convex functions P I (1) whose argument is a bilinear function of the parsing indicator
z and the joint shape prototype w,

z2) =) Op(w Ciz+c). (5.13)
J

The parameter matrices C; and scalar ¢y do not depend on the parsing indicator z or
Jjoint shape prototype w.

Proof of Lemma 5.3.3 The foreground explanation J;({os, my}x) depends on all hy-
potheses that cover pixel j,

Ji({on, mp}n) =
{0 = 1) log Ps} = Ol o, i)

_ f; ) 1Og(1 — P(fj’? = 0|{oh,mh,lh}h))}
= 2 @ (= log Pf} = O{on,ma, }a).
J

The argument of the function ® ft( ) in the last equation is bilinear in the parsing
indicator z (Eq. 5.9) and the joint shape prototype vector w (Eq. 5.12),

— log P(ﬁ = 0[{on, mn, ln}n)
—log(1 — Fy) — Zlog 1 - f = 1‘0h>mh>lh))

—log(1 — Fp) ZZO" 1my = k] -1[j € S}
—_——

_Zh k
: E 1[l§-:sz-l§,—|—(x2yh) | -log Pe(f} = 0)
~ —,_/
J _.
7.—wk_’j/

= ’lUTCjZ + Co,
where C; is a sparse matrix with following elements,
Cj(k, j'sh,k) = 1[j € S] - 1[I} = s}, - I + (), i) '],

and the scalar ¢, has the value ¢y = —log(1 — F).
Thus, the foreground explanation term J;({os, my, }5) can be written as

Jj(Z,'lU) :Z@f;<wTCJ‘Z+CO>. B
J
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Figure 5.7: Values of the objective function J(z) (Eq. 5.14) that are obtained as part
of the convex optimization procedure that is used to solve the proposed video parsing

problem.

In Lemmas 5.3.3 and 5.3.1 we expressed the foreground and hypotheses explanation
terms .J;(-) and .J,(-) as convex functions of the parsing indicator z. Therefore, the video
parsing objective function J(-) := J;(-) + Ji(-) (Eq. 5.8) is a convex function of the
parsing indicator z. To efficiently solve the optimization problem, we relax the parsing
indicator z to the positive simplex, z, = 0 and 17z, < 1, Vh. The last inequality
follows from Eq. 5.9 and the fact that o;, < 1.

The MAP inference in the spatio-temporal video parsing model is thus equivalent to
the following constrained convex optimization problem,

argmin J(z) = b’z + by + Z (IDf; (wTCjZ + co),
z j

s.t.zp, = 0and 1"z, < 1, Vh. (5.14)

After finding the optimal value of the parsing indicator z, we calculate the hypothesis
indicator o, and the matching normal object prototype my, of hypothesis £, as

K

Op = Z Zh,k» (515)
k=1

my = argmax 2 k. (5.16)

k
5.3.2 Solving the Convex Optimization Problem

In the previous section, we showed that the joint inference of variables {op,, my, }n,
can be achieved by minimizing the MAP objective function J(z) to obtain the parsing
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indicator z (Eq. 5.14), that belongs to the Cartesian product Z = Zj;, X --- X Zy of
positive simplexes,
Zy={zy 2z, > 0and 1"z, < 1}. (5.17)

The function J(z) is convex, smooth and bounded on the set Z. The projected gradient
method [CP11],
z""! = Proj,(z" — ,,V,J(z")), (5.18)

is used to find the global optimum of the convex optimization problem in Eq. 5.14. The
projection Proj,(-) requires each z, to be projected onto the positive simplex Zjy,. The
projection onto the positive simplex is calculated by applying the method of Duchi et
al. [DSSSCO08]. The projected gradient method finds the solution of the video parsing
problem after few tens of iterations (Fig. 5.7).

5.3.3 From Inference to Abnormalities

Video parsing analyses the foreground in a video and identifies objects that have
atypical appearance or behave suspiciously, to label these as abnormal. Abnormalities
can also be localized on the level of pixels, where it leads to a segmentation of regions
in the video that contain irregular spatio-temporal patterns. Subsequently, we see how
both the object-level and pixel-level abnormalities can be detected in video, based on
the inference results of the spatio-temporal video parsing approach.

Object-level abnormalities. A hypothesis h is an abnormal object, a;, = 1, if it is
indispensable for explaining the foreground, 6, = 1, but it does not have a matching
normal object prototype, i.e., the best estimate m;, of a matching prototype is unlikely
to explain the hypothesis (cf. Eq. 5.4),

P(ah = 1|Oh = Op, My} = fnh)

X 5hP(Oh = 1|dh)P(mh 7é mh|0h = 6h7 dh, lh) (519)

X 5hP(0h = 1|dh> (1 — P(mh = mh|dh)P(lh\mh = mh)) . (520)
Pixel-level abnormalities. Similarly, a pixel j is part of an abnormal object, a§- =1,

if it is in the foreground, f; = 1, and at least one of the hypotheses that extend over this
pixel, {h : j € S} }, is abnormal,

P(CL; - 1|fjta {ah}h1j632>
o f; - P(f; =1)- max P(ay = 1|op, mp). (5.2D)
thSfL

5.4 Learning an Object Model for Video Parsing

Parsing query videos for abnormality detection requires an object model. We use
training videos that contain a large number of normal object samples but no abnormali-
ties to train the normal object model that consists of prototypes representing the normal
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object shape, appearance, and motion. As ground truth locations of objects in the train-
ing videos are not provided, we infer them by video parsing. However, for video parsing
we need to know the normal object prototypes. A standard approach for solving such
a problem of mutual dependencies is expectation-maximization (EM) [DLR77]. Given
an initial estimate of the normal object prototypes, we use them to parse the training
videos, i.e. discover hypotheses that best explain the foreground and are matched to
the object prototypes. Thereafter, we update the object prototypes using the matched
hypotheses. We find the object model by iterating these two steps until convergence.

The goal of learning is to estimate the normal object shape prototypes {wy}x. (Eq.
5.12) and their corresponding spatio-temporal descriptors {dy }, k € {1,..., K}. The
objective function for learning is the same as for the inference (Eq. 5.14), except that
it is now minimized jointly in terms of shape prototypes {wy, }, their spatio-temporal
descriptors {dj }1, as well as the parsing indicator z (Eq. 5.9),

argmin J(z, {dy, wi}x) = Jn(z, {di}r) + J;(z, {wi }r),

{dk, Wi} i,z

st.wy =0, Vk, z, = 0and 1"z, < 1, Vh. (5.22)

The hypotheses explanation term .Jy,(-) is a function of the parsing indicator z and
the spatio-temporal descriptors {dy } .,

Jh(Z, {dk}k) = ﬁ Z Z Zh,kA(dha dk) + f)TZ + bo, (523)
h k

where the parameters b and by do not depend on the parsing indicator z or the spatio-
temporal descriptors {dj } (see the proof of Lemma 5.3.1).

From Eq. 5.13 we see that the foreground explanation term .J;(-) depends in a convex
way on both the parsing indicator z and the joint shape prototype vector w.

Procedure for the object prototype learning. We now explain the algorithm used
for solving the optimization problem of Eq. 5.22:

Video Parsing. Given the object prototypes, we parse the training videos to infer the
parsing indicator z (Eq. 5.14) that yields the hypothesis indicator o, for each hypothesis
h, and its corresponding normal object prototype m;, (Eq. 5.15 and 5.16).

Updating object prototypes. We estimate the shape prototypes {wy.}, and their
spatio-temporal descriptors {dj}, from the results of video parsing. As hypotheses
overlap in training videos, the corresponding shape prototypes become mutually depen-
dent and thus need to be learned jointly. We estimate the joint shape prototype vector w
by the following convex optimization,

w = argmin J;(z,w) = Y _ O (w' Cjz + o). (5.24)
w0 F /

The convex optimization problem of Eq. 5.24 can be solved efficiently by the projected
gradient method that we used for solving the MAP inference problem (Eq. 5.18),

w" = ProjR\f\ (w" — a, Vo Jj(z,w")). (5.25)
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Figure 5.8: (a) Frame-wise abnormality labeling on the UCSD ped] dataset. Perfor-
mance measures AUC and EER given in Tab. 5.1 are calculated from the ROC curves.
(b) Frame-wise abnormality labeling for the UCSD ped?2 dataset.

The spatio-temporal descriptors {dx}r, k € {1,..., K} are estimated separately for
each normal object prototype,

dy, = argmin Z 2n kA (dp, Jk) (5.26)
dr, h
In case of a squared Euclidean distance function, A(dy,, dy) = ||d, — di||?, there is a

closed-form solution for dj, given as an average of spatio-temporal descriptors d; of
those hypotheses that are matched to prototype k by video parsing,

d
dy = M (5.27)
Zh Zh,k

The algorithm assumes uniform location and velocity distributions (Eq. 5.3) for normal
object prototypes. However, after the algorithm is converged, we estimate the proto-
type’s location and velocity distributions from matched object hypotheses by the non-
parametric Parzen windows [Bis06].

Initialization. To start the algorithm, we need an initial estimate of the normal ob-
ject model. After background subtraction, some foreground segments correspond to
isolated normal objects that can be used to initialize the spatio-temporal object proto-
types. However, foreground/background segmentation produces also many foreground
segments which correspond to interacting objects (doublets, triplets etc.). These seg-
ments are more complex and can be analyzed only by video parsing. Consequently, we
need to infer which of the training foreground segments correspond to isolated normal
objects and estimate object prototypes based upon them. We observe that isolated nor-
mal objects create compact clusters in the feature space. On the other hand, segments
that are mixtures of two or more objects are diverse and spread out in the feature space.
To detect isolated normal objects, we cluster all the foreground segments and then select
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Table 5.1: Performance measures on the UCSD ped! dataset

frame-wise | pixel-wise partial || pixel-wise full

AUC] EER|| AU RD AU RD

(%) | (%) | (%) (%) ) | (%)
Social force [MOS09] || 67.5 | 31 19.7 21 - -
MPPCA [KGO09] 59 40 || 20.5 18 - -
Social force + MPPCA || 67 32 || 21.3 28 - -
Adam [ARSROS] 65 38 || 13.3 24 - -
Sparse [CYL11] 86 19 || 46.1 46 - -
LSA [SC12] 92.7 | 16 - - - -
SCL [LSJ13] 91.8 | 15 | 63.8 59.1 - -
MDT [MLBV10] 81.8 | 25 | 44.1 45 - -
HMDT CRF [LMV13] - 17.8 || 66.2 64.8 82.7 | 745
SVP [AO11] 91 18 | 75.6 68 83.6 77
STVP 939 | 12.9 || 80.3 75.2 84.2 | 79.5

compact clusters in the feature space that correspond to isolated objects. We use Ward’s
method for agglomerative clustering to minimize the variance of clusters. Normal object
prototypes are then computed as the centers of compact clusters.

5.5 Creating Spatio-Temporal Object Hypotheses

To initialize video parsing, we need a shortlist of spatio-temporal object hypotheses
h (Sect. 5.2). A spatio-temporal hypothesis h consists of a sequence of object candidates
in individual frames that are linked temporally. In this section we explain a method
for producing per-frame object candidates and group them temporally based on their
motion to obtain the shortlist of Sect. 5.2. Thereafter, we explain how to fill-in per-
frame candidates that were missed during temporal grouping.

Temporal grouping of per-frame object candidates. To detect per-frame object
candidates, we apply an inverted background detector that is trained to distinguish back-
ground patterns from everything else. The inverted background detector is trained on
background and normal foreground segments obtained from training videos by back-
ground subtraction. The discriminative appearance-based classifier retains in each frame
the object candidates that are least likely to be background. The standard non-maximum
suppression (NMS) then removes some of the candidates based on the overlap criteria.
The discriminative classifier is trained using a linear SVM [CL11] with per-frame fea-
tures of Eq. 4.31 extracted from background/foreground segments of training videos.

We then employ agglomerative clustering to perform a temporal grouping of can-
didates. This yields spatio-temporal hypotheses h, which are sequences of per-frame
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Figure 5.9: (a) Pixel-wise abnormality prediction evaluated by the partially annotated
UCSD ped] dataset. (b) Pixel-wise abnormality prediction that is evaluated using the
full annotation of the complete UCSD ped! dataset that we have assembled. In all of
these cases the spatio-temporal video parsing significantly improves upon the state-of-
the-art, which can also be seen from the corresponding AUC and RD values provided in
Tab. 5.1 and 5.2.

candidates. As usual, the clustering starts with singleton clusters (each candidate being
a cluster). Then, in each round of the recursive clustering, those groups of per-frame
object candidates which are most similar based on their motion and which do not share
the same frames are grouped. The motion of a candidate is represented by the set of tra-
jectories obtained by tracking the edge points inside the support region of a candidate.
For tracking the feature points we use optical flow vectors that are previously computed
by the method of [LFAWO08]. We now define similarity of two object candidates as the
ratio of the number of feature point trajectories that are shared by two candidates over
the total number of trajectories in two candidates. As the result of temporal grouping,
we obtain a shortlist of spatio-temporal hypotheses h.

Filling-in missing candidates by Kalman filter. The inverted background detector
used for producing object candidates in each frame typically has a number of missed
detections. These are the frames in which none of the object candidates is associated
with a hypothesis h. We fill-in the missed object detections with the contextual help of
other per-frame candidates that belong to the same hypothesis h. Therefore, the location
of a missed object candidate [} at time ¢ is estimated from the available object candidate
locations at times {t1, ts, ... } by a non-causal Kalman filter.

The shortlist of object hypotheses established by temporal grouping has a high recall
at the cost of low precision. By maximizing the recall, the shortlist includes all relevant
hypotheses, while still maintaining a reasonable total number thereof (about one hun-
dred). Since hypotheses are created by bottom-up grouping, there will, however, be
many spurious hypotheses that can only be eliminated by video parsing.
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normal abnormal

Figure 5.10: Rows show results on different frames of the UCSD ped! benchmark.
Column 1) the initialization of the video parsing by a shortlist of object hypotheses,
column ii) hypotheses selected by video parsing with the best matching shape prototype
colored according to abnormality probability P(a}, = 1), column iii) foreground pixel
abnormality probabilities P (az. = 1), column iv) results by the H-MDT CRF approach
[LMV13]. Best viewed in color.

5.6 Experimental Evaluation

We use three standard state-of-the-art benchmark sets for evaluating the spatio-
temporal video parsing approach and comparing its performance to the other state-of-
the-art methods. We first analyze the detection results of the spatio-temporal video
parsing on the UCSD benchmark sets ped! and ped2, then we present additional results
on the UMN benchmark set. We apply the standard evaluation protocol of the datasets.

5.6.1 Evaluation on the UCSD Anomaly Datasets

Fig. 5.10 compares the abnormality localization of our video parsing to the H-MDT
CRF method [LMV13] on UCSD ped] test videos. The first row shows a person riding a
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Table 5.2: Performance measures on the UCSD ped2 dataset

frame-wise pixel-wise
AUC (%) | EER (%) || AUC (%) | RD (%)
Social force [MOS09] 63 42 - -
MPPCA [KGO09] 77 30 - -
1%/})}c):ija(l:Aforce + 71 36 i i
Adam [ARSROS] 63 42 - -
MDT [MLBV10] 85 25 - -
H-MDT CRF [LMV13] - 18.5 - 70.1
SVP [AO11] 92 14 - -
STVP 94.6 10.6 81.1 78.8

bike in a group of walking persons. In the second row there are three abnormalities in the
scene: a person riding a bike, and two persons running along the walkway. The third row
shows a person skateboarding along the walkway, and the fourth row shows an unusual
object (car) in the scene. The columns show: (i) initial hypotheses of video parsing,
(i1) hypotheses selected by video parsing, (iii) abnormality localization results of video
parsing, (iv) abnormality localization results of H-MDT CRF method [LMV13]. Due to
our learned normal shape model used for explaining the foreground, we achieve better
localization of the abnormalities in videos.

In Fig. 5.12 we show more examples of the video parsing on UCSD ped] test videos.
Row 1 shows two persons skateboarding and cycling on a very crowded walkway, row
2 a skateboarder in a group of pedestrians, and row 3 two cyclists and a person walking
across the walkway. By comparing the first two columns one can see that most hy-
potheses from the shortlist are discarded by video parsing because they get statistically
explained away.

We also compare quantitatively the spatio-temporal video parsing approach to
the state-of-the-art methods on the challenging UCSD pedl and ped2 benchmarks
[MLBV10]. The methods used in our comparison are the mixture of dynamic textures
(MDT) [MLBV10], H-MDT CRF [LMV13], social force model (SF) [MOS09], mix-
ture of optical flow (MPPCA) [KGO09], optical flow method (Adam et al.) [ARSROS8],
SF+MPPCA [MLBV10], sparse reconstruction (Sparse), local statistical aggregates
(LSA) [SC12], sparse combination learning (SCL) [L.SJ13], and sequential video pars-
ing (SVP) [AO11] which parses video frames individually, one after another. We denote
by STVP the full spatio-temporal video parsing proposed in this chapter.

Our study shows that video parsing outperforms all other methods in experiments
on both UCSD pedI and ped2 datasets. Fig. 5.8(a) shows ROC curves for the frame-
wise labeling of the UCSD ped] set. Tab. 5.1 gives the performance measures for the
pedl dataset. We see that the inclusion of the temporal component and the improved in-
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Figure 5.11: Analysis of the false positive instances generated by the spatio-temporal
video parsing on the UCSD ped] dataset. Instances are sorted in the decreasing order
of their abnormality score.

ference enables spatio-temporal video parsing to improve upon our previous sequential
video parsing by 2.9% in AUC and 5.1% in EER. From Tab. 5.1 we also see that the
spatio-temporal video parsing improves upon recently proposed powerful methods such
as LSA [SC12] (1.2% gain in AUC and 3.1% in EER) as well as SCL [LSJ13] (2.1%
gain in AUC and EER). All ROC plots for the pixel-wise labeling on ped! are shown in
Fig. 5.9(a) and 5.9(b). For the partial pixel-wise labeling of pedl, the spatio-temporal
video parsing achieves an improvement of 4.7% AUC and 7.2% RD over the sequen-
tial video parsing. We outperform the closest competitor (HDMT CRT [LMV13]) by
14.1% in AUC and 10.4% in RD. For the full pixel-wise labeling of pedl, we achieve an
improvement of 2.5% in RD over the sequential video parsing. The competing HMDT
CRF [LMV13] method we outperform in this case by 1.5% in AUC and 5.0% in RD.

The ROC curves for the frame-wise labeling of UCSD ped?2 are given in Fig. 5.8(b).
The numerical results are given in Tab. 5.2. We observe an improvement in performance
of spatio-temporal parsing over sequential parsing by 2.6% in AUC and 3.4% in EER.
The best method so far, MHDT CRF [LMV13], we improve upon by 6.9% in EER.
For the pixel-wise labeling of ped2 dataset, we outperform the competing HMDT CRF
method by 8.7% RD (AUC values for HMDT CRF are not provided in [LMV13]).
Overall we see that our spatio-temporal reasoning and the convex optimization based
inference yield a significant improvement over the state-of-the-art.

Due to temporal grouping of per-frame object candidates (Sect. 5.5), spatio-
temporal video parsing requires significantly less hypotheses (only about a hundred for
the whole spatio-temporal domain) than sequential video parsing [AO11], which needs
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normal abnormal

Figure 5.12: Additional results of video parsing on the UCSD pedl dataset. Rows
correspond to different examples. The first, third and fourth column correspond to the
first three columns of Fig. 5.10. The second column shows hypotheses that are selected
from the shortlist by video parsing. Other hypotheses are discarded by explaining away
using the selected hypotheses. Best viewed in color.

the same number of hypotheses for representing single frames. Since there remain fewer
hypotheses to process, spatio-temporal video parsing takes less time to execute than
sequential video parsing. Our non-optimized Matlab implementation on a Dual-Core
2.7GHz CPU runs at about 1 fps, whereas our previous sequential video parsing took 5-
10 secs per frame. This is on par with recent H-MDT CRF [LMV13] and Sparse [SC12]
methods, with a notable exception of extremely fast SCL method [LSJ13].

Analysis of False Detections

To get a full understanding of the detection performance of proposed video parsing, we
analyze the false detections on the UCSD ped! dataset. In Fig. 5.11 we see the first 225
false detections sorted in the decreasing order of their probability of abnormality. We
observe several reasons for false detections: i) In many cases, false detections appear as
a result of artifacts in the foreground segmentation. In such cases, wrongly segmented
pixels cannot be explained by the learned shape model and thus they are classified as
abnormal. ii) Large variability of the normal human gait can sometimes be interpreted
in video parsing as abnormal (e.g. running vs. fast walking). iii) Seldom errors in the
provided video annotation cause that correctly detected abnormalities are sometimes
considered as false (e.g. cars or running persons in Fig. 5.11). iv) When the true-
positive hypothesis is missing from the shortlist due to a non-maximal recall, video
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Figure 5.13: Abnormality detection on the UMN dataset: ROC curves for frame-wise
labeling.

parser can select an incorrect hypothesis as a next best fit.

5.6.2 Evaluation on the UMN Anomaly dataset

We additionally evaluate the spatio-temporal video parsing on the UMN dataset that
is widely used for benchmarking abnormality detection. The UMN dataset consists of
three scenes in which periods of normal activity are followed by periods of emergency
that are staged by people in the scene. In normal cases people are walking around alone
or in groups. However, in emergency cases people start in panic to run away. For each
scene several normal and abnormal events are happening one after another. In scene one,
two and three there are two, six and three abnormal events, respectively. The dataset
does not provide pixel-wise ground-truth abnormality maps, so we follow the standard
protocol for this dataset and evaluate the detection results only in a frame-wise manner.
Fig. 5.13 shows ROC curves for the frame-wise labeling. The performance measures
AUC and EER are given in Tab. 5.3. For scene one, our performance is on par with the
best competing methods in terms of AUC (99.5%) and EER(3.2%). For scene two we
achieve 97.5% AUC that is equal to the best performing method (Sparse [CYL11]). For
the scene three we achieve 99.9% AUC that improves upon the best competitor (Sparse
[CYLI11]) by 3.5%. A qualitative comparison of our method to HMDT CRF [LMV13]
on two frames is shown in Fig. 5.14 . We see that our method achieves best localization
of abnormalities that is consistent with findings from earlier experiments on UCSD ped]
and ped?.
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Table 5.3: Performance measures on the UMN dataset
AUC (%) EER (%)

chaotic invariants [WMS10] 99.4 5.3
social force [MOSO09] 94.9 12.6
LSA [SC12] 99.5 34
H-MDT CRF [LMV13] 99.5 3.7
Sparse [CYL11] (scenel) 99.5 -
Sparse [CYL11] (scene2) 97.5 -
Sparse [CYL11] (scene3) 96.4 -
STVP (scenel) 99.5 3.2
STVP (scene2) 97.5 6.2
STVP (scene3) 99.9 1.5

i = B

H-MDT CRF video parsing

Figure 5.14: Abnormality detection on the UMN dataset: Detection results of the H-
MDT CRF [LMV13] (left column) and video parsing (right column). Our approach
exhibits competitive performance as can also be seen from the corresponding AUC and
EER statistics in Tab. 5.3.
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5.7 Discussion

This chapter introduced the full spatio-temporal video parsing. Abnormalities are
detected by searching for a set of spatio-temporal object hypotheses that jointly explain
the video foreground and which are themselves explained by normal training samples.
Video parsing does not independently detect individual hypotheses, but infers their joint
spatio-temporal layout that collectively describes objects in the scene. MAP inference
in a graphical model is transformed to a convex optimization problem and efficiently
solved. The full spatio-temporal video parsing is evaluated on several challenging
benchmark sets, which showed that the proposed method advances the state-of-the-art
both in terms of abnormality detection and pixel-wise localization.



Chapter 6

Conclusion and Discussion

This thesis proposed latent structured representations which significantly improved ac-
tion recognition and abnormality detection in videos and contributed to better video un-
derstanding. The thesis developed latent variable models that represent unknown action
instances or abnormal/normal object instances in video as hypotheses that are jointly
inferred within the model. Multiple-instance learning is used to discover latent action
instances in a set of action subsequence hypotheses extracted from weakly labeled train-
ing videos. For abnormality detection in videos, a set of latent object hypotheses is cre-
ated and by probabilistic inference a subset of hypotheses is found that best explains the
foreground information in videos. Novel methods are developed that increase efficiency
of the latent hypotheses creation and inference and robustness of classifier training in
proposed latent variable models.

In this thesis, a fundamental issue of widely used multiple-instance learning is ad-
dressed. In the underlying optimization algorithm, training of classifier and inference of
latent instance labels are typically performed on the same training samples. That leads
to overfitting and increases variance of label estimates. This is avoided by introducing
the concept of superbags (ensemble of bags of bags). Superbags allow to effectively
decouple the inference and learning processes by performing them on different training
samples. Experiments on standard benchmark sets for multiple-instance learning show
that the concept of superbags consistently improves several widely used approaches to
multiple-instance learning after it is integrated into the optimization routine.

The thesis proposed a method based on multiple-instance learning to automatically
infer the latent action instances as subsequences extracted from weakly labeled train-
ing videos and jointly train an action classifier on them. To increase robustness of
the multiple-instance learning, the thesis proposed a method for creating action sub-
sequence hypotheses in each video whose number and length are sequentially reduced
until only one subsequence remains in a video. The fusion of the automatically trained
subsequence classifier and the full sequence classifiers led to an improvement over the
state-of-the-art in action recognition as evaluated on the challenging Hollywood2 bench-
mark set. The detection of action subsequences is also evaluated on two categories of
the Hollywood2 benchmark set which achieved favorable performance.

A significant part of the thesis dealt with the problem of abnormality detection,
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where sequential and spatio-temporal methods for video parsing were proposed to cir-
cumvent the ill-posed problem of directly searching for abnormalities in individual local
image patches or regions. Abnormalities are detected by searching for a set of latent
object hypotheses that jointly explain the video foreground and which are themselves
explained by normal training samples. All object hypotheses that are needed to explain
the foreground of a video are jointly inferred. At the same time, each hypothesis seeks
to be explained by a normal training example. In proposed probabilistic graphical mod-
els, sets of hypotheses are jointly explaining the foreground while they are also able to
explain each other away, simultaneously. Thus, hypotheses are not detected individu-
ally but their layout is jointly discovered. Abnormalities are then indirectly detected
as hypotheses which are needed to explain the scene but which themselves cannot be
explained by the normal training samples.

In the method for sequential video parsing, a single video frame is processed at
the time. Only spatial interactions between competing hypotheses in a single frame
are exploited to find indispensable hypotheses in the shortlist. Inference is performed
as the standard local search in a graphical model. Video parsing is then extended to
the spatio-temporal domain. The spatio-temporal video parsing method is proposed
to jointly parse of all frames in a video. This methodological extension allowed to
resolve both spatial and temporal dependencies between object hypotheses in the scene.
MAP inference in the video parsing graphical model is used to find all indispensable
object hypotheses in video and it is solved efficiently by convex optimization. The
video parsing approaches are evaluated on several challenging benchmark sets, and they
showed improved performance over the state-of-the-art.

In conclusion, the thesis verified the premise that the use of latent structured models
can significantly improve the performance of action recognition and abnormality de-
tection in videos that is crucial for video understanding. Despite the lack of action or
abnormality instance labels is training videos, the missing information is discovered by
selecting from a larger set of instance hypotheses using inference in latent variable mod-
els. Therefore, techniques for efficient inference and learning in latent structure models
are developed in this thesis in addition to novel latent representations of the actions and
abnormalities that are proposed. In future, the work on latent structured modeling will
be continued in the direction of complex activity or event representations in videos.
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