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Zusammenfassung:

Bildgebung von Di�usionsprozessen in lebenden Zellen

Die Funktion lebender Zellen basiert auf chemischen Reaktionen. Es zeigt sich, dass die Ge-
schwindigkeit dieser Reaktionen durch den Molekültransport in der Zelle limitiert ist und damit
auch wesentlich von der räumlichen Organisation der Zelle abhängt. Zur Untersuchung solcher
Transportprozesse wird häu�g Fluoreszenz-Korrelations-Spektroskopie (FCS) in Verbindung mit
�uoreszenzmarkierten Proteinen angewendet. Hierbei beobachtet man mit Hilfe eines Laser-
mikroskops die Fluktuationen der Fluoreszenz, die aus einem kleinen Untervolumen (∼1µm3)
der Probe emittiert wird. Eine Autokorrelationsanalyse dieser Fluktuationen ermöglicht es, die
Konzentrationen und vor allem den Di�usionskoe�zienten der markierten Teilchen zu vermes-
sen. Üblicherweise wird für FCS ein konfokales Mikroskop eingesetzt, das zu jeder Zeit nur
ein einziges Volumen beobachten kann. In der vorliegenden Dissertation wurde FCS zu einer
bildgebenden Methode weiterentwickelt, indem es mit Lichtscheiben�uoreszenzmikroskopie
(SPIM) kombiniert wird. Diese relativ neue Weitfeldmikroskopietechnik ermöglicht es, gezielt eine
beliebig positionierbare Ebene (1 − 3µm dick) in einer Zelle zu beobachten. Durch Einsatz einer
schnellen elektronenver�elfachende CCD-Kamera (EMCCD) konnte damit die Bewegung auch
relativ kleiner auto�uoreszenter Proteine in lebenden Zellen ortsaufgelöst vermessen werden.
Es wird zunächst der Aufbau eines Lichtscheibenmikroskops beschrieben, das für die Anwendung
auf SPIM-FCS in einzelnen Zellen optimiert wurde. Verschiedene Testmessungen zeigen die grund-
sätzliche Anwendbarkeit von SPIM-FCS in in-vitro-Proben und in allen größeren Kompartimenten
lebender Zellen (Zellkern, Zytoplasma, Zellmembran). Anschließend wird die Eignung verschie-
dener kommerziell erhältlicher Kameras als Bildsensor für SPIM-FCS-Messungen verglichen.
Nach aktuellem Stand bieten EMCCD-Kameras den besten Kompromiss aus Photosensitivität und
erreichbarer zeitlicher Au�ösung (∼500µs). Zusätzlich zu diesen linearen Kameras wird auch
der Einsatz von Bildsensoren aus Einzelphoton-Lawinenphotodioden (SPAD arrays) untersucht.
Diese bieten gegenüber EMCCD-Kameras eine deutlich höhere Zeitau�ösung (1 − 10µs) und
wären damit ideale Detektoren für SPIM-FCS. Allerdings erreichen sie noch nicht die gleiche
Photosensitivität. Zwei verschiedene Sensoren wurden ausführlich charakterisiert und konnten
erfolgreich für erste SPIM-FCS Messungen von gelösten Fluoreszenzfarbsto�en eingesetzt werden.
In einem weiteren Schritt wurde SPIM-FCS um eine Kreuzkorrelations-Analyse erweitert (SPIM-
FCCS), die es zum ersten Mal erlaubt, auch Interaktionen zwischen verschieden markierten,
cytosolischen Molekülen in Zellen zu kartieren. Dazu werden die Fluoreszenz-Fluktuationen aus
zwei unterschiedlichen Farbkanälen einer Kreuz-Korrelations-Analyse unterzogen. Eine messbare
Kreuz-Korrelation ergibt sich nur, wenn zwei unterschiedlich markierte Moleküle in der Probe
eine Bindung eingehen und sich gemeinsam bewegen.
Schließlich konnten die entwickelten Verfahren auf verschiedene zelluläre Systeme angewendet
werden. Durch die Kartierung der Mobilität von inerten Molekülen verschiedener Größe konnte
unter anderem die Viskosität des Mediums in verschiedenen Zellen bestimmt werden. Eine räum-
liche Abhängigkeit der Mobilität konnte nur in Nukleoli nachgewiesen werden. Außerdem wurde
ein wichtiger Schritt im Remodellierungszyklus des Keratin-Zytoskeletts in Zellen untersucht.
Als dritte Anwendung demonstrieren SPIM-F(C)CS-Messungen an verschiedenen Chromatin-
assoziierten Molekülen die Dynamik des Zellkerns. Eine Bildgebung der Mobilität von markierten
Histon-Proteinen ließ Rückschlüsse auf Organisation des Chromatins zu. Außerdem wurde die
Aktivität des nuklearen Rezeptors RXR und eines Transkriptionsfaktors vermessen.

Diese Dissertation wurde zwischen Juli 2008 und Mai 2014 am Deutschen Krebsforschungszentrum
(DKFZ) unter der Betreuung von Prof. Dr. Jörg Langowski und PD Dr. Christoph Garbe erstellt.



Abstract:

Mapping Di�usion Properties in Living Cells

The function of living cells is based on chemical reactions. It has been shown that the velocity of
these reactions is limited by the molecular transport in the cell. Therefore also the spatial organi-
zation of a cell plays a major role. In order to investigate such transport processes, �uorescence
correlation spectroscopy (FCS) is often used in combination with �uorescently labeled proteins.
In FCS a small subvolume of the cell (∼1µm3) is observed with a laser-based microscope. The
�uctuations of the �uorescence, emitted from this subvolume, are acquired. An autocorrelation
analysis of these �uctuations reveals the concentrations and di�usion coe�cients of the labeled
particles. Usually, FCS is implemented using a confocal microscope, which can observe only a
single spot at any time. For this thesis, FCS was extended to an imaging method, by combining
it with light sheet �uorescence microscopy (SPIM). This relatively new wide�eld microscopy
technique allows to observe an arbitrarily positionable, thin plane (diameter: 1 − 3µm) in the cell.
By using a fast electron-multiplying charge-coupled device (EMCCD) camera, the combination
of SPIM and FCS allowed to map the motion also of relatively small auto�uorescent proteins in
living cells.
At �rst, the setup of a light sheet microscope is described. This microscope was designed and
optimized for SPIM-FCS measurements in living cells. Several test measurements show the
applicability of SPIM-FCS to in vitro samples and to all larger compartments of a living cell
(nucleus, cytoplasm, cellular membrane). Afterwards, the usability of several commercially
available cameras as image sensor for SPIM-FCS measurements is assessed. At the time of writing,
EMCCD cameras o�er the best trade-o� between photosensitivity and achievable temporal
resolution (∼500µs). In addition to these linear cameras, also the use of single-photon avalanche
diode (SPAD) arrays is investigated. These o�er a signi�cantly better temporal resolution (1−10µs)
than current EMCCD cameras, which would render them the ideal image sensor for SPIM-FCS.
However, they do not yet reach the photo-sensitivity of EMCCDs. Two di�erent SPAD arrays
were characterized in detail and �rst successful SPIM-FCS measurements of solute �uorescent
molecules could be demonstrated.
In a second step, SPIM-FCS was extended by a cross-correlation analysis (SPIM-FCCS), which
allowed for the �rst time to map the interactions of di�erently labeled cytosolic molecules in
living cells. For this purpose, the cross-correlation function between the �uorescence �uctuations
from two di�erent color channels is analyzed. A non-zero amplitude of this cross-correlation
function is found only, if the di�erently labeled molecules interact and move together.
Finally, the methods developed during this project were applied to di�erent cellular systems.
The mapping of the mobility of inert tracer molecules of di�erent sizes allowed to measure the
viscosity of the cytoplasm in di�erent cells. A position-dependence of this mobility could only
be found in the nucleoli. In addition, an important step in the remodelling cycle of the keratin
intermediate �lament system was investigated. As a third application, SPIM-F(C)CS measurements
of di�erent chromatin-associated proteins demonstrated the dynamics in the cellular nucleus.
Mobility maps of labeled histone proteins revealed the organization of chromatin in interphase
nuclei. In addition, the activity of the nuclear receptor RXR and a transcription factor were
mapped.

This dissertation was conducted under the supervision of Prof. Dr. Jörg Langowski and PD Dr.
Christoph Garbe at the German cancer research center (DKFZ) between July 2008 and Mai 2014.
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1. Imaging transport processes in living
cells

1.1. Eukaryotic cells

All known living organisms consist of one or more cells. The name cell stems from Latin cella meaning
small room or storeroom [1]. This section will give a simpli�ed overview of the eukaryotic cell and
describes the constituents that play a role throughout this thesis. A detailed picture can be found in any
textbook on cellular biology, e.g. Ref. [2]

Figure 1.1 shows a sketch of an eukaryotic cell, as it is e.g. found in all mammals and other higher
organisms. These cells are typically between 10µm and 100µm in diameter. All cells are separated
from their environment by a bio-membrane consisting of a phospholipid double-layer. They are �lled
with the cytoplasm, a dense aqueous solution, which contains several small molecules, such as salt ions,
sugars, lipids and amino acids. Also many biological macromolecules, such as proteins and nucleic
acids are dissolved in the cytoplasm. Some of these macromolecules form large assemblies with speci�c
functions, ranging from macromolecular complexes consisting of a few proteins to complete organelles
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+Na
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Figure 1.1. Sketch of an eukaryotic cell.The insets show (in clock-wise order) the cellular membrane,
the chromatin and a DNA strand wound around a nucleosome and a view of the densely packed
cytoplasm.
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Chapter 1. Imaging transport processes in living cells

of several 100 nm in size.
The cell further contains small compartments, called organelles, which carry out speci�c functions.

All organelles are surrounded by their own single- or double-layered phospholipid membrane, which
allows them to maintain specialized chemical conditions on their inside. For instance, lysosomes
and peroxisomes contain proteins that would be toxic for the cell, if they were free in the cytoplasm.
Mitochondria keep a lower pH value on their inside, than in the cytoplasm. Many forms of membrane
enclosed vesicles are used to store and transport proteins, nutrients and waste.

The membranes, which surround the organelles, as well as the whole cell, are usually interspersed with
a large number of proteins. These membrane-bound and trans-membrane proteins are used for instance
to transport molecules across the membrane. They can also alter and in�uence the structure of the
membrane or take part in directing and transporting the organelles inside the cell. Membrane-associated
proteins also play a major role in sensing the environment. For instance, the presence of certain molecule
in extracellular space is detected by a trans-membrane receptor molecule, which then activates a cascade
of biochemical reactions inside the cell.

The functioning of a cell is based on proteins. These are biological polymers, which consist of a
chain of amino acids and are folded into higher-order structures. They perform diverse tasks, that
range from maintaining the cellular structure with a cytoskeleton, cargo transport and cell motility
with motor proteins to digestion and energy production. Many proteins simply catalyze reactions that
would also take place without their presence, but at a signi�cantly lower rate. Proteins also form the
cellular machines that allow for reproduction and manufacturing of new proteins. The function of many
proteins depends heavily on their 3-dimensional structure and not only on their amino acid sequence.

The cell also contains a system for information storage, processing and transport: the nucleic acid
polymers deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Each DNA molecule consists of
a linear sequence of four di�erent nucleic acids cytosine (C), guanine (G), adenine (A) and thymine
(T). They are connected by a sugar-phosphate backbone. In a cell DNA forms a double-helix of two
complementary strands (dsDNA), which is stabilized by hydrogen bonds between the complementary
nucleic acid pairs C-G, and A-T. A few large DNA molecules with several million basepairs – the
chromosomes – form the central information storage in the cell. Amongst other functions, these
molecules encode the amino acid sequence of every protein, which is present in the cell. During cell
division, a copy of these DNA molecules is produced and transferred to the daughter cell.

The live-span of a cell basically consists of a succession of two phases: during interphase, the cell
follows its basic functions, grows, and �nally replicates the DNA molecule, before it enters the mitosis
phase (M). During mitosis the cell divides into two daughter cells. This cycle is illustrated in Fig. 1.2.
Interphase can be split up into four phases. The major part of interphase is made up by the G1-phase.
Here the cell grows, follows its basic functions. It also accumulates nutrients that are required for cell
division. During the synthesis phase (S-phase), the cell duplicates its chromosomes and the centrioles,
which are protein complexes that organize the micro-�lament network of the cell. After S-phase, a
second growth phase, G2, follows. At the end of G2, the nuclear envelope breaks down and the two
centrosomes move to opposite ends of the cell. Then the chromatin condenses into chromatids, which
are attached to �bers that are connected to the two centrosomes. Finally the centrosomes pull the sister
chromatids apart. To conclude the cell division, cytokinesis divides the remaining constituents of the
cell in equal parts between the two separating daughter cells, which then reform their nuclei.

During interphase, the chromosomes are packed into the cellular nucleus, a large organelle (diameter
about 10µm), which is enclosed by a double-layered phospholipid double-membrane. The chromatin
needs to be compacted into higher order structures in order to �t into the tiny volume of a nucleus. A
single human cell contains DNA molecules with an overall length of around 2 m. The volume of the
molecule itself corresponds to a sphere of approximately 2µm in diameter. Free in solution, such DNA
polymers would form a roughly spherical conformation with a diameter of around 100µm [3]. Further
compaction is prevented by entropic forces and the sti�ness of the polymer. In order to overcome
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Figure 1.2. Illustration of the cell cycle. Cell cycle phases are denoted by letter inside the inner
circle: mitosis (M), growth phases (G1/G2), synthesis phase (S).

these limitations and compress the full genomic DNA into the nucleus, external forces are required.
Eukaryotic cells use a protein-DNA complexes called nucleosome, to perform the �rst stage of this
compaction process (Fig. 1.1, top right inset). They consist of a core structure made up of eight histone
proteins, around which ∼150 basepairs or ∼50 nm of DNA are wound in approximately 1.8 turns. The
complete structure is only around 10 nm in diameter, which is signi�cantly less than the DNA segment
length and its persistence length. In a second step, histones can mediate the formation of higher-order
structures.

Special proteins can read, copy and repair DNA molecules. To synthesize a protein, its amino-acid
sequence is transcribed from the chromatin to an RNA molecule by a protein complex, known as RNA
polymerase. This short RNA molecule is then transported out of the nucleus and into a ribosome. The
latter is a large complex of proteins, DNA and RNA, which �nally translates the amino acid sequence,
encoded on the RNA, into a protein. A group of three nucleic acids encodes for one of the ∼20 di�erent
amino acids that are used to build up all proteins.

The number of proteins of a certain species that are present in a cell, is controlled by the transcription
process. Special proteins e.g. from the group of transcription factors and nuclear receptors, help to
initiate DNA transcription. They can also operate as sensors, that inhibit or stimulate the transcription
machinery. This way a complex network of proteins and protein-protein and protein-DNA interactions is
built up, which controls and regulates the function of the whole cell. The packing state of DNA also plays
a major role in regulation, as DNA can only be transcribed if it can be made accessible by unwrapping
it from nucleosomes. For instance, during interphase, a part of the chromatin is highly compacted
at the periphery of the nucleus. DNA transcription is e�ectively prevented by this hetero-chromatin
conformation.

1.2. Reaction kinetics in living cells

The small volume of a cell allows it to maintain a high concentration of molecules, although each protein
species is only present in a small number. For instance, many proteins exist only as 103 − 106 copies per
cell. Another example is the genomic DNA of a human cell, which consists of only 46 double-helices.
Still the small volume of the cells allows for chemical reactions to e�ciently take place.

A typical mammalian cell has a diameter of dcell = 20µm and a volume of Vcell ≈ 4000µm3 = 4 · 10−12 l.


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protein reaction kr
[
s−1] τr,1/2 [ms]

pepsin Phe−Gly
+H2O
−−−−→ Phe + Gly 0.5 1400

fumarase fumarate
+H2O
−−−−→ malate 8 · 102 0.9

carbonic anhydrase HCO3
– + H+ −−−→ H2O + CO2 4 · 105 0.002

Table 1.1. Examples of reaction rates kr and half-life times τr,1/2 for enzyme-catalyzed reac-

tions. Values taken from Ref. [4].

The concentration c of the reagents typically is 10−12 − 10−6 mol/l, which corresponds to around
2·103−2·109 molecules per cell. The corresponding averaged inter-particle distance is dmm = 0.55·c−1/3

[5, 6], which is in the range of 6600−66 nm. This distance is larger than the typical size of the molecules
(e.g. single-atom ions: 0.2 nm, sugars: 0.5 − 1 nm, proteins: 1 − 10 nm). When modeling chemical
reactions in a cell, therefore also the transport process has to be included. First two (or more) molecules
A, B have to get in close proximity and form a complex [AB]. Then they react to form one or more
products P1, P2, ... [7, 8]:

collision/transport︷              ︸︸              ︷
A + B

kt
−−−⇀↽−−−
k-t

[AB] −−−→
kr

P1 + P2 + · · ·︸                                ︷︷                                ︸
reaction

The transport process is modeled by two rate constants kt and k-t for the formation and dissociation of
the complex [AB]. They quantify the number of formation or dissociation events that take place per
second at given concentrations of the molecules. These reaction rates depend mainly on the transport
properties of the molecules. If two molecules have met and formed a complex [AB], the �nal step of
the reaction may take place, which transforms [AB] into the products P1, P2, ... This is described by a
reaction rate kr. The typical timescale, on which a reaction takes place can be calculated as the reaction
half-life time τr,1/2 = ln(2)/kr . Values for kr and τr,1/2 for typical molecules vary signi�cantly, as shown
in Tab. 1.1. Assuming a constant concentration of the intermediate [AB] (steady-state approximation),
an e�ective reaction rate can �nally be obtained [8]:

ke� =
kt · kr

k-t + kr
. (1.2.1)

In the limiting case that the reaction step is much faster than the transport step, i.e. kr � kt, k-t, the
overall reaction velocity ke� → kt is limited by the transport process. This is called kinetic perfection
and many biological reactions belong to this class [7].

1.3. Transport processes in living cells

1.3.1. Normal di�usion

Three typical transport processes in a living cell are shown in Fig. 1.3. Figure 1.3(a) illustrates the
simplest process, which is the free random Brownian motion (BM) of molecules. It can be pictured as
a drunkard’s walk through the gel-like environment of the cytoplasm and is, in fact, one of the most
important transport processes in the cell. The observed particle is driven by perpetual collisions with
surrounding molecules, mostly water. In each collision a small and random amount of momentum is
transferred to the particle, which slightly changes its direction and velocity. Over longer timescales, this
leads to the quivering motion, shown in Fig. 1.3(a) [9–15].
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free random Brownian
motion of a molecule

directed motion of a motor-protein
 along the cytoskeleton

Brownian motion 
in a crowded environment

(a) (b) (c)

Figure 1.3. Typical transport processes in a cell

The random nature of Brownian motion requires a statistical analysis of the trajectories. A good
quantity to describe the global behavior of the molecules, is the mean squared displacement (MSD). It
can be de�ned using a time average over the trajectory ~r (t) of a single particle:

MSD(τ) := lim
T→∞

1
T
·

T∫
0

��~r (t + τ) − ~r (t)��2 dt . (1.3.1)

The MSD measures the average (squared) distance that a particle travels during a time lag τ. If Brownian
motion takes place in a viscous medium, it gives rise to normal di�usion, which is characterized by a
linear MSD [10]

MSD(τ) = 2d · D · τ. (1.3.2)

Here D is the di�usion coe�cient of the particles, which move in a d-dimensional space. For random
motion, D plays the same role as the velocity for linear motion. Together with Eq. (1.3.2), it de�nes how
far a particle can move (on average) within a given time. If the particles are spherical with hydrated
radius Rh, the di�usion coe�cient has a simple analytical form (“Einstein relation”) [10]:

D =
kB · T

6π · ηvisc · Rh
, (1.3.3)

where kB is Boltzman’s constant, T is the absolute temperature and ηvisc is the dynamic viscosity of the
medium, in which the particles move. Expressions for the di�usion coe�cients of di�erently shaped
particles are summarized in appendix C.5.

With the Einstein relation Eq. (1.3.3), it is possible to give a �rst estimate for transport times of a
typical molecule inside a cell. Table 1.2 summarizes di�usion coe�cients for di�erent particles. The
hydrodynamic radii in this table are typical values for di�erent kinds of particles in living cells. The
viscosity was assumed to be ηvisc,cell ≈ 3 mPa · s, as measurements of ηvisc,cell in cells give values, which
are a factor 2− 10 lower than the viscosity of water [16–19]. The table also contains the average times τ,
which one of these particles needs to cover typical distances r in the cell. These are comparable to
the reaction half-life times in Tab. 1.1, which shows that di�usion is an e�ective transport process for
reactions in living cells.
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average time τ [ms] to travel a distance r
particle Rh [nm] D

[
µm2/s

]
r = 66 nm r = 660 nm r = 10µm

small molecules 0.5 151 0.007 0.7 165
small proteins 2 38 0.03 2.9 661
large proteins 10 7.6 0.14 14 3304
small vesicles 50 1.5 0.72 72 16523
large vesicles 500 0.2 7.2 720 165230

Table 1.2. Transport timescales for the di�usion of several typical particles inside a living

cell over a given distance r . The di�usion coe�cient D is calculated by Eq. (1.3.3) from the
hydrodynamic radius Rh, the temperature T − 273 K = 37 ◦C and the viscosity ηvisc = 3 mPa · s.
The times τ are calculated using τ = r2/(6D) (Eq. 1.3.2).

1.3.2. Anomalous di�usion

The environment in a cell is densely crowded. Figure 1.3(b) shows a particle, which moves through such
a medium. A large part of its surrounding is occupied by other molecules and therefore inaccessible
to the particle. If the fraction Vexcluded/Vcell of excluded volume is large enough, it severely hinders the
random motion of particles. It was demonstrated that in this case the MSD is no longer a linear function,
as in Eq. (1.3.2), but has to be described by a power-law [20–25]:

MSD(τ) = 2d · Γ · τα with 0 < α < 1. (1.3.4)

Here α is the anomaly parameter and Γ is the generalized or anomalous di�usion coe�cient. Note that
Γ inherently depends on α, as its units are [Γ] = m2/sα . Eq. (1.3.4) implies that a crowded environment
does not simply reduce the di�usion coe�cient, but leads to a signi�cantly di�erent behavior of the
particles. Figure 1.4 shows a comparison of the MSD for normal and anomalous di�usion.

Figure 1.5 shows results obtained from a simulation of the movements of tracer particles in a crowded
environment. The crowders occupy a partial volume Vexcluded out of a total volume Vall and their position
does not change over time (“swiss-cheese model”). The simulation procedure is detailed in appendix B.2.
For small crowder concentrations, the trajectory shown in Fig. 1.5(a) samples a large fraction of the
simulational box. For high crowder concentrations the trajectory is strongly con�ned. Figure 1.5(a)
shows MSD(τ) curves obtained from these simulations (solid lines). The excluded volume fraction
Vexcluded/Vall is color-coded from green to light blue. Dashed lines show ideal MSDs for normal (magenta)
and anomalous (red) di�usion. With increasing Vexcluded/Vall, the di�usion on timescales τ > 10−5 s
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Figure 1.4. Mean squared displacements for di�erent types of transport.
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1.3. Transport processes in living cells

changes from normal to anomalous. On faster timescales τ < 10−6 s, the motion is normal for most
examples. Here the particles move inside the pores between the crowders, but do not yet “feel” the
excluded volume.

Anomalous di�usion has been reported for the 3-dimensional motion of many di�erent molecules in
cells and also for the 2-dimensional motion of membrane-bound proteins (e.g. [22, 23, 26–31]). A good
review of theoretical and experimental results is given in Ref. [25]. The anomaly parameters reported for
diverse cellular systems typically range between α = 0.5 and 0.9. Often experiments are not interpreted
in terms of anomalous di�usion. Then typically one or two separate e�ective di�usion coe�cients for
di�erent timescales are reported (e.g. [27, 32, 33]). Also the viscosities ηvisc, that were used for Tab. 1.2,
are such e�ective quantities.

In some cases, the excluded volume fraction is so large, that some particles are trapped in sub volumes,
which they cannot leave at all. On large timescales, the MSD is then limited by the squared characteristic
radius of these subvolumes 〈

r2
c
〉. This kind of di�usive motion is usually called con�ned or corralled

di�usion. The MSD can then be written as [34–36]

MSD(τ) =
〈
r2

c
〉
·

(
1 − A1 · exp

[
−A2 ·

2d · Dτ〈
r2

c
〉 ])

. (1.3.5)

here A1 and A2 are constants that describe the geometry of the con�ning spaces. Figure 1.4 shows how
this MSD model levels o� to 〈

r2
c
〉.
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Figure 1.5. Anomalous transport in an environmentwith a given amount of excluded volume.

(a) Distribution of �xed crowders (gray) and example trajectories of a tracer particles (red). (b) MSD
of tracer particles with diameter 8 nm for di�erent excluded volume fractions Vexcluded/Vall. The
dashed magenta and red lines indicate normal and anomalous di�usion. This plot was created with
the simulation from appendix B.2 using non-moving crowders.
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1.3.3. Directed transport and superdi�usion

A closer look at Tab. 1.2 shows that for larger particles, such as vesicles (diameter: a few 10 nm to a
few 100 nm), di�usion might not be fast enough to transport them to their destination inside the cell
in a su�ciently short time. An example is axonal transport of synaptic vesicles in a nerve cell. Here
neurotransmitter molecules are packaged into small vesicles (diameter: ∼ 50 nm). These have to be
transported from the Golgi network to the synapses of a nerve cell. The latter two are connected by the
axon, which can have a length of a few millimeters up to meters. If this was performed by di�usion
only, transport durations of more than 200 h for 1 mm or 20,000 h for 10 mm would be reached. This
does not su�ce to sustain the functionality of the nerve cell.

Cells use active transport to overcome the described problem. Motor proteins, e.g. from the the
kinesin, myosin or dynein families, move vesicles and even larger organelles, such as mitochondria,
along cytoskeletal �laments [2, 37–39]. The segregation of chromatids during mitosis is also performed
by motor proteins [39]. In plant cells the complete cytoplasm is kept in motion (“cytoplasmic streaming”).
Myosin-coated organelles drag the cytoplasm along, while they move along actin �lament bundles
which are anchored in the cell membrane.

Motor proteins use adenosine triphosphate (ATP) as an energy source and exert forces of a few 10−12 N
per molecule [40]. Resulting transport velocities have been reported to be in the range of 0.1 − 1µm/s
for vesicles in live cells [37, 41, 42]. This is more than a factor 100 faster than normal di�usion (see
timescales in Tab. 1.2). Cytoplasmic streaming even reaches �ow velocities of up to 100µm/s [43].

As mentioned above, active transport is characterized by a velocity v, which directly relates the
traveled distance to the elapsed time τ:

〈
∆r

〉
(τ) = lim

T→∞

1
T
·

T∫
0

[
~r (t + τ) − ~r (t)

]
dt = v · τ. (1.3.6)

Also the mean squared displacement (MSD) of a particle, which undergoes directed motion can be
expressed in terms of v [21]:

MSD(τ) = v2τ2. (1.3.7)

The MSD of normal di�usion (Eq. 1.3.2) and directed transport (Eq. 1.3.7) can both be seen as special
cases of the anomalous MSD: normal di�usion with α = 1 and active transport with α = 2. Motions in
the regime α > 1 are usually called superdi�usive, as the MSD increases faster than in normal di�usion
[21]. In cell biology, superdi�usion has been reported in connection with active transport (see e.g. [44]).
For such cases, it is assumed that periods of directed motion are interspersed with periods of normal or
subdi�usive motion. This can happen, when e.g. vesicles are dragged over certain distances by motor
proteins, then uncouple from them and perform Brownian motion, until they hit the next motor protein.

1.4. Measuring transport in living cells

Several experimental methods exist, that allow to measure the stochastic cellular transport processes
described above. In all these methods, the �rst step consists of labeling the molecules of interest, so
that they can be distinguished from their environment. All the techniques discussed in this thesis use
�uorescent molecules as tags. Therefore �uorescence microscopy is applied to observe the labeled
molecules in the cell.

1.4.1. Single particle tracking

A straightforward approach is single particle tracking (SPT). Here only few particles are labeled, so that
they can be followed independently, as shown in Fig. 1.6(a) [45–48]. SPT is implemented either on a
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(a)

fluorescent
particle

tracked 
trajectory

time t

(c)

scanning 
laser focus

tracked
particle

particle
has moved

increased
fluorescence

center of scanning
circle has moves

(b)

tracked 
trajectory

fluorescent
particle

Figure 1.6. (a) Principle of single particle tracking (SPT). (b) SPT in an image series. (c) SPT

on a laser scanning microscope.

wide�eld microscope with a camera or on a point-scanning device. In the �rst case, shown in Fig. 1.6(b),
a time series of images is recorded and the position of the single labeled particles is identi�ed in each
frame (blue dots). In a second step, the positions are combined to trajectories, by joining positions that
are near to each other in subsequent frames. Finally the trajectories can be used to extract statistical
properties of the random motion, such as the MSD. This approach was used for instance to determine
the motion of membrane-bound receptors [49], the tra�cking of viruses in living cells [50], or chromatin
dynamics during interphase [51]. It was also applied to track whole cells inside a developing zebra�sh
embryo [52]. As in all microscopy techniques, that are based on the localization of single spots, the
spatial resolution of SPT is a factor 2 − 10 better than the optical resolution of the microscope [36, 53].

Newer techniques for SPT use point-scanning (confocal) microscopes, as shown in Fig. 1.6(c). These
microscopes detect only the �uorescence, which is excited in the small focal volume. The focus is then
scanned in a fast circular motion around a single �uorescent particle [47]. If the particle crosses the
circle, a small intensity peak is observed and the focus can be shifted, so the particle is again in its center.
Finally the trajectory is reconstructed from the positions of the focus.

1.4.2. Observing the transition into equilibrium

Apart from SPT, which relies on the resolvability of single particles, it is also possible to measure
di�usion in samples with a higher concentration of labeled molecules. These methods can be classi�ed
into two groups, based on whether the observed system is in an equilibrium or a non-equilibrium state
on the timescale of observation. If the observed organism is in a non-equilibrium state, the concentration
distribution c(~r , t) will show macroscopic changes on larger time and length scales. In a simple case
these changes are described by the di�usion di�erential equation

∂c(~r , t)
∂t

= D · ~∇2c(~r , t), (1.4.1)

which is a direct consequence of the Brownian motion (BM). For more complex cases, other di�er-
ential equations may apply. The concentration c(~r , t) can be directly observed with a microscope,
as the �uorescence intensity is proportional to the concentration: F (~r , t) ∝ c(~r , t). With the help of
Eq. (1.4.1), the di�usion coe�cient and other properties of the random motion can be extracted from
the measured F (~r , t).

The non-equilibrium state may either be of natural origin or it is induced by the experimenter.
Examples for naturally occurring non-equilibria are the redistribution of certain proteins during a
signaling cascade [54], or changes in the structure of the cytoskeleton [55]. A large �eld of application
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Figure 1.7. Illustration of �uorescence recovery after photo bleaching.

is also the observation of Ca2+ waves during stimulus propagation in nerve cells [56–58]. Here a Ca2+-
sensitive �uorescent dye is used to make the distribution of Ca2+-ions visible. Other methods rely on
arti�cially induced non-equilibria. Often the cell is perturbed by bleaching the �uorescent molecules in
a given region and observing, how �uorescence is recovered, when labeled molecules di�use back into
the bleached region [59, 60]. This method, called �uorescence recovery after photo bleaching (FRAP),
is illustrated in Fig. 1.7. It has been applied to measure the di�usion of molecules in the cytosol, the
nucleus and in the cellular membrane [61–63]. FRAP can also be used to measure reaction kinetics
[64]. Several variants of FRAP have been developed, where one monitors the �uorescence loss in the
environment of the bleached region [65, 66], or the bleaching process itself [67].

1.4.3. Fluorescence fluctuation techniques

The methods described so far, need to either discriminate single particles, or extract information from
a transition of the system between a non-equilibrium and an equilibrium state. Such a transition is
shown in Fig. 1.8(a). First the average concentration (dashed red curve) decreases until an equilibrium
concentration 〈

c(~r)
〉
t is reached. In such an equilibrium state, the system does not change anymore and

di�erential equations like Eq. (1.4.1) can no longer be used to determine the parameters of the dynamics.
However, if the system is observed on a shorter timescale (thin red curve), �uctuations δc(~r , t) around
the average intensity 〈

c(~r)
〉
t become apparent:

c(~r , t) =
〈
c(~r)

〉
t + δc(~r , t), with 〈

δc(~r , t)
〉
t = 0. (1.4.2)

These statistical �uctuations δc(~r , t) are caused by the random process, that drives the dynamics of the
system (e.g. Brownian motion). This section describes a class of methods that analyze these �uctuations.
Such methods were also used throughout this thesis. The �uctuations δc(~r , t) are measured by observing
a small subvolume Vobs of the sample (red circle in Fig. 1.8a), which contains only a few 10 to a few 100
particles at any time. The statistical processes, that drive the dynamics of the system, are imprinted
in the statistical properties of δc(~r , t). For instance the number of particles N (t) = c(t) · Vobs in the
observation volume obeys Poissonian statistics. Therefore the average concentration can be extracted
from the variance of the �uctuations, as 〈

δc(~r , t)2〉
t =

〈
c(~r)

〉
t .

While particles move randomly in and out of the observation volume Vobs, they create temporal
correlations in δc(~r , t). If a particle resides in Vobs for a certain time τD, the �uctuations are no longer
statistically independent on that time scale. The retention time τD directly depends on the MSD of the
single particles and the characteristic size wobs of Vobs (e.g. the diameter of the red circle in Fig. 1.8a),
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(b) Illustration of �uorescence correlation spectroscopy

via the equation

MSD(τD) !
= w2

obs =⇒
normal di�usion

τD ∝
w2

obs
D

. (1.4.3)

As shown in Fig. 1.8(b), the time τD can directly be measured as the decay time of the (normalized)
autocorrelation function of the �uorescence intensity �uctuations F (t) =

〈
I
〉
t + δF (t) in Vobs:

g(τ) =
〈
F (t) · F (t + τ)

〉
t〈

F
〉2
t

− 1 =
〈
δF (t) · δF (t + τ)

〉
t〈

F
〉2
t

. (1.4.4)

Here F (t) ∝ c(t) and δF (t) ∝ δc(t). This method is called was invented �uorescence correlation spec-
troscopy (FCS). It was �rst described by Magde et al. in 1974 [68, 69]. Today it is typically implemented
on a confocal microscope (see Fig. 1.9a), which observes a focal volume Vobs = 0.2 − 0.6µm3 with a
typical diameter on the order of wobs = 500 nm [70]. Therefore FCS does not require to average over
larger volumes in the sample, as it was (implicitly) done in SPT and �uorescence recovery after photo
bleaching. single-photon avalanche diodes (SPADs) or photo-multiplier tubes are used as detectors in
the confocal microscope. With suitable data acquisition electronics, they allow to measure F (t) and
g(τ) with a temporal resolution of ∼ 10 − 100 ns. With specialized electronics, g(τ) can be resolved
even on the picosecond timescale [71].

FCS is widely used to determine concentrations and di�usion coe�cients in solution (see e.g. [72] for
a good review) and in di�erent compartments of cells (see e.g. [17, 73–77]). It was also applied to more
complex phenomena, like anomalous di�usion [22, 26, 27], active transport [37, 78] and the internal
motion of polymers [79–83]. As Eq. (1.4.4) will contain contributions from any process that changes
the �uorescence intensity of a particle in Vobs, FCS can be applied to observe photo-physical blinking
processes [84–86], which are present in most �uorescence dyes, or reactions that change the brightness
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Figure 1.9. (a) Confocal microscope. (b) total internal re�ection �uorescence (TIRF) micro-

scope. (c) light sheet �uorescence microscope (LSFM).

of a �uorophore. If the illumination light is linearly polarized the rotation of the dipole vector of a
�uorophore can be observed [87–90].

FCS has been extended to a cross-correlation analysis of the intensities Fg(t) and Fr(t), measured in
two color-channels g and r simultaneously [91–94]:

ggr(τ) =
〈
δFg(t) · δFr(t + τ)

〉
t〈

Fg
〉
t ·

〈
Fr

〉
t

. (1.4.5)

This technique is called �uorescence cross-correlation spectroscopy (FCCS). Typically two molecular
species of interest are speci�cally labeled with two di�erently colored dyes. Then the crosscorrela-
tion amplitude ggr(0) is proportional to the concentration of molecules that carry both dyes. This
technique can be used to measure molecular interactions and binding reactions in vitro and in vivo
(see e.g. [73–76, 93, 95, 96]).

All the FCS variants and implementations mentioned above are limited to measurements on a single
spot. As the cell is a non-uniform, complex environment, several attempts have been made to extend
FCS and FCCS to an imaging method. The �rst approaches used the scanning capabilities of confocal
microscopes to move the focus quickly in a circle [97] or along a line [98]. The repetition rates are
typically on the order of ∼ 1000 s−1. In this way simultaneous measurements on 10 − 100 positions
are possible. In addition, consecutive measurements on several spots in a cell have been used, either
with many pixels and short dwell times [99], or at fewer pixels, but with longer dwell times and
consequently less noisy autocorrelation curves[27, 33]. To achieve simultaneous measurements in
many positions, variants of confocal microscopy were used: line-confocal detection [100, 101] and
spinning-disk microscopy[102, 103]. In these variants cameras were used as �uorescence detectors,
which are generally slower than SPADs. They reach a temporal resolution on the order of 100µs for a
single line or 0.5 − 2 ms for larger areas. To improve the limited temporal resolution, SPAD arrays have
been used [104–107]. These combine between 2 × 2 and 32 × 32 SPADs on a single silicon microchip
with fast readout electronics, which allows for a temporal resolution of 10µs or better. In order to
achieve small observation volumes, multi-confocal setups were used, that create between 2 and 1024
laser foci simultaneously. The �uorescence from the foci is imaged onto the SPAD arrays, so each focus
coincides with a single SPAD. Such systems have just recently (in 2013) been shown to be applicable to
live-cell measurements [107]. The complex optical setup and alignment of these instruments renders
them hard to operate by non-expert users.

An alternative route to imaging �uorescence correlation spectroscopy (imaging FCS) is the use of
wide-�eld microscopes in combination with high-sensitivity cameras. In 2007 Kannan et al. have
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shown that FCS can be performed in an imaging mode on a total internal re�ection �uorescence (TIRF)
microscope [108]. This setup is illustrated in Fig. 1.9(b). An evanescent wave is used to illuminate only
a 100 − 200 nm thin layer above a glass cover slip. This leads to a low background signal, which is
a prerequisite for an FCS analysis. The technique was successfully used to analyze the di�usion in
biological membranes, where τD is on the order of milliseconds [109–116]. The low penetration depth
of an evanescent wave, limits the systems that can be observed with TIRF microscopy mostly to such
membrane systems.

In 2010 Wohland et al. pioneered the use of light sheet microscopy to perform imaging FCS [117]. The
principle of a light sheet �uorescence microscope (LSFM) is shown in Fig. 1.9(c) [118, 119]. A cylindrical
lens is used to form a thin sheet of light, which only illuminates a 1 − 2µm thin slice in the sample.
Detection is done perpendicular to this light sheet with a second microscope objective, that projects the
image onto a fast camera. This wide-�eld microscopy technique has low background and the detection
volumes are small enough to successfully perform an FCS analysis (Vobs = 1 − 2µm3). In contrast to
TIRF microscopy, the light sheet may be placed anywhere in the sample, not just at the interface to a
glass cover slip. Light sheet microscopes are also not as complex as multi-confocal setups and since
2013 they are available commercially. The combination of light sheet microscopy and FCS is usually
termed single plane illumination �uorescence correlation spectroscopy (SPIM-FCS). It was used to study
the dynamics of chromatin associated proteins [120, 121].

In addition to FCS and FCCS that correlate the signals from a single focus in time, also spatial
crosscorrelation has been used to measure di�usion. As the MSD describes how far particles move in a
certain time, also spatial correlations are imprinted on the �uorescence �uctuations δF (~r , t). This can
be exploited by calculating a spatial or spatio-temporal cross-correlation function:

gICS(τ, ~ξ) =

〈
δF (~r , t) · δF (~r + ~ξ, t + τ)

〉
t,~ξ〈

F
〉2
t,~ξ

. (1.4.6)

The averaging is now done over space and in some cases over time, as indicated by the index in〈
·
〉
t,~ξ . Techniques using a spatial correlation like in Eq. (1.4.6) are generally called image correlation

spectroscopy (ICS) methods. As they usually require only a simple post-processing of images or image
series from confocal or wide-�eld microscopes, they have been applied in many variants to several
cellular systems [122–129]. As the camera-based imaging FCS described above, most ICS methods are
limited in their temporal resolution by the used image sensors. Furthermore the spatial cross-correlation
in Eq. (1.4.6) implies an inherent averaging over larger parts of the images. Therefore the spatial
resolution of ICS is generally one order of magnitude lower than that of imaging FCS, as described
above.

1.5. Aim of the thesis

The aim of this thesis project was to develop an instrument, that allows to map molecular mobility and
interactions in living cells. The intended application was to determine the mobility of di�erent inert
tracer molecules, such as oligomers of the enhanced green �uorescent protein (eGFP), nuclear receptors
and transcription factors, as well as chromatin in a live cell. Imaging FCS was chosen as the fundamental
method, as it allows to measure the mobility parameters of these molecules at many positions in the cell
simultaneously and with su�cient spatial resolution. It was implemented on a light sheet microscope,
which can be applied to image any part of a cell. This SPIM-FCS technique was advanced in cooperation
with Thorsten Wohland and co-workers (NUS, Singapore), who published a �rst implementation in 2010
[117].
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1.6. Own Contributions

For this thesis a light sheet microscope was designed, which is optimized for SPIM-FCS measurements in
living cells (see chapter 6). Its optics was tailored to yield a thin light sheet (1/ e2-width: ∼2.5µm) and a
small focal volume over a �eld of view of ∼50µm. The parameters are matched to the approximate size
of living cells (diameter: 10 − 50µm, height: ∼10µm). The microscope is equipped with a fast EMCCD
camera, which allows for SPIM-FCS measurements of most �uorescently labeled proteins in living cells.
The selection of this camera type is based on a thorough comparison of di�erent commercially available
cameras, which was published in

[130]: AP. Singh1, JW. Krieger1, J. Buchholz, E. Charbon, J. Langowski, and T. Wohland. The per-

formance of 2D array detectors for light sheet based �uorescence correlation spec-

troscopy. Opt. Express, 21(7):8652–8668, 2013. doi:10.1364/OE.21.008652.
These results are detailed in section 8.7. They show, that at the time of writing, EMCCD cameras o�er
the best trade-o� between photosensitivity and temporal resolution.

The initially published simple SPIM-FCS theory (see Ref. [117]) was extended to cover di�erent
transport processes, including directed �ow and anomalous di�usion (see chapter 5). Also, a set of
data evaluation methods had to be developed, that allow to evaluate the huge amount of data, that is
recorded in each SPIM-FCS measurement (typically 100,000 frames with 128 × 20 pixels each). These
techniques are described in chapter 7. They need to be su�ciently robust, so that model �ts and all other
tasks can be performed without detailed supervision by the user. All methods were implemented in a
freely available2, user-friendly software �ickFit 3.0. This program also controls the selective plane
illumination microscope (SPIM).

The newly built microscope and SPIM-FCS were applied to several di�erent test systems, in order to
characterize the prospects and limitations of the technique. In this way it could be shown, that SPIM-FCS
is able to measure absolute di�usion coe�cients without requiring an external calibration standard, as it
is customary in confocal FCS [130]. After this fundamental characterization, SPIM-FCS could be applied
to several cellular systems (chapters 10-12). One particular example is the keratin intermediate �lament
system. Here a pool of free �lament precursors could be quanti�ed in living cells (see chapter 11). These
measurements needed to be performed at positions between large and bright �lament bundles, that
are present throughout the whole cell. With single-point confocal FCS this would pose a cumbersome
e�ort, since the cell constantly moves during the measurement. The motion will impair a large fraction
of the consecutive FCS measurements. In SPIM-FCS the data acquisition process is parallelized, since
hundreds or thousands of autocorrelation curves are acquired simultaneously. This way, a large number
of evaluable measurements were left in each cell, even if the pixels that were impaired by cell motions
were excluded.

A second application for SPIM-FCS were measurements on the nuclear receptor RXR. Its function was
investigated in a cooperation with the group of Gyuri Vámosi (university of Debrecen, Hungary). Here
SPIM-FCS was used to show that the interaction of RXR with chromatin seems to be homogeneously
distributed over the whole cellular nucleus. A brief summary of these results can be found in section 12.3.
They were published in:

[121]: P. Brazda, JW. Krieger, B. Daniel, D. Jonas, T. Szekeres, J. Langowski, K. Toth, L. Nagy, and
G. Vamosi. Ligand binding shifts highly mobile retinoid x receptor to the chromatin-

bound state in a coactivator-dependent manner, as revealed by single-cell imaging.

Molecular and Cellular Biology, 34(7):1234–1245, 2014. doi:10.1128/MCB.01097-13.
For most of the SPIM-FCS measurement, shown in this thesis, a fast EMCCD camera was used. It has

a high photosensitivity, but only a limited temporal resolution of 0.33 − 1 ms. This is not fast enough to
resolve the di�usion of small molecules reliably (e.g. of single chemical �uorescent dyes, or �uorescent

1equally contributing �rst authors
2http://www.dkfz.de/Macromol/quick�t
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1.7. Outline of the thesis

proteins in solution). Therefore the use of fast SPAD arrays as image sensors was thoroughly assessed
during this thesis work. These experimental image sensors achieve a temporal resolution of 1 − 10µs,
which is 1-2 orders of magnitude faster than the EMCCD cameras. This way SPAD arrays would allow
for the reliable measurement also of small �uorescent particles. Two di�erent chips were used: Radhard2
and SwissSPAD. Both were designed by the group of Edoardo Charbon (TU Delft/EPFL Lausanne). For
the early model Radhard2, the principal applicability to SPIM-FCS measurements of very bright samples
could be demonstrated. This was characterized and described in two publications: Ref. [130] (see above)
and

[131]: J. Buchholz, JW. Krieger, G. Mocsár, B. Kreith, E. Charbon, G. Vámosi, U. Kebschull, and
J. Langowski. FPGA implementation of a 32x32 autocorrelator array for analysis of

fast image series. Optics Express, 20(16):17767, 2012. doi:10.1364/OE.20.017767.
However, due to its low photosensitivity, the Radhard2 chip could not be applied to �uorescent proteins
or live-cell samples. During the last months of the PhD project, this problem was addressed by the new
chip SwissSPAD, which exhibits a signi�cantly larger array (512 × 128 SPADs), higher photosensitivity
and has microlenses, that concentrate the incident light onto the sensors (see sections 6.4 and 8.8). Using
SwissSPAD, SPIM-FCS measurements of molecules, that are labeled with a single chemical �uorophore
(Alexa-488) became feasible. Nevertheless, an application to auto-�uorescent proteins in live cells could
not be achieved so far.

Within the last two years of the thesis project, the microscope was extended with a second excitation
laser and a dual-view optics. In this way, spatially resolved dual-color FCCS became possible for the
�rst time. This new technique was termed single plane illumination �uorescence cross-correlation
spectroscopy (SPIM-FCCS) and was published in:

[132]: JW. Krieger3, AP. Singh3, CS. Garbe, T. Wohland, and J. Langowski. Dual-color �uorescence
cross-correlation spectroscopy on a single plane illuminationmicroscope (SPIM-FCCS).

Optics Express, 22(3):2358, 2014. doi:10.1364/OE.22.002358.
It allows for the �rst time to simultaneously map molecular interactions and mobilities in a complete
slice of a living cell. In Ref. [132], it was also demonstrated, that SPIM-F(C)CS is not only applicable to
the cytoplasm and the nucleus of living cells, but also to the membrane.

In the course of the thesis work, several simulation programs were developed and some of them are
described in appendix B. Of particular importance was an FCS/FCCS simulation, which was used to
test the SPIM-FCCS models, developed in this thesis. Also the e�ects of several experimental artifacts
were explored using this program. As a side project, it was combined with a Brownian dynamics
simulation of DNA dynamics. This allowed for a deeper understanding of experimental results published
by Shusterman et al. [81]. The �ndings of this study are summarized in:

[82]: T. Wocjan, JW. Krieger, O. Krichevsky, and J. Langowski. Dynamics of a �uorophore

attached to superhelical DNA: FCS experiments simulated by brownian dynamics.

Physical Chemistry Chemical Physics, 11(45):10671, 2009. doi:10.1039/B911857H.

1.7. Outline of the thesis

In the following chapter 2 the �uorescent dyes and labeling techniques are introduced, that were used
throughout this thesis. Fluorescence microscopy and especially light sheet �uorescence microscopy are
described in chapter 3. Chapter 4 gives an overview of the di�erent types of image sensors, that were
used for the measurements. After these basics, chapter 5 details the theory of �uorescence correlation
spectroscopy (FCS) and �uorescence cross-correlation spectroscopy (FCCS), especially the variants used
for SPIM-F(C)CS.

3equally contributing �rst authors
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Chapter 1. Imaging transport processes in living cells

In the second part of this thesis, the experimental realization of SPIM-FCS/SPIM-FCCS is outlined.
At �rst, chapter 6 describes a selective plane illumination microscope (SPIM), which was taylored
for SPIM-FCS measurements in single cells. Here also the basic characterization of the microscope
(resolution, light sheet thickness etc.) is presented. Chapter 7.3 then summarizes the data processing
methods, used to evaluate the measurements. Finally chapters 8 and 9 present several test measurements,
performed with the described setup.In addition, several artifacts are discussed, that can arise in such
measurements. The measurement of concentrations and molecular interactions are also detailed.

The third part of the thesis presents applications of the SPIM-FCS/SPIM-FCCS instrument to live-
cell measurements. Chapter 10 shows measurements on the dynamics of di�erent molecules in the
complex and dynamic environment of a cell. Chapter 11 presents measurements on the dynamics of the
keratin intermediate �lament system and shows a �rst quanti�cation of a free pool of keratin precursor
molecules. Finally, in chapter 12, measurements of the mobility of several chromatin-associated proteins
are described.
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2. Fluorescence labeling techniques
In this thesis all methods used to measure transport processes rely on �uorescence labeling of the
molecules of interest. This allows one to sensitively detect and track only a speci�c species of particles.
The remaining bulk of cellular constituents is rendered virtually invisible for the measurement. This
chapter will give a short introduction into �uorescence and accompanying processes (sections 2.1–2.3).
Three classes of �uorescent dyes are introduced in the last three sections: chemical �uorophores in
section 2.4, �uorescent proteins in section 2.5 and quantum dots in section 2.6.

2.1. Fluorescence

Fluorescence is the emission of a photon by a molecule after its excitation by an incident photon. It
can be understood considering the di�erent energy states of the molecule, represented in a Jablonski
diagram, as shown in Fig. 2.1. The energy spectrum splits up into quantized electronic states Sν of
energy Eν , numbered by the quantum number ν, where S0 is called ground state and S1,S2, ... are called
excited states. Each of these electronic states further splits up into a large set of oscillatory and rotational
substates that di�er only slightly in energy. In complex �uorescent molecules, like the ones used here,
these states are so dense that they seemingly form a continuum.

A photon of wavelength λex (or angular frequency ωex) carries an energy of

Ephoton = ~ωex =
h · c0

λex
, (2.1.1)

where h is Planck’s constant, ~ = h/(2π) and c0 is the speed of light in vacuum. If Ephoton matches the
energy di�erence between two states S0 and S1, an electron in S0 may absorb the photon and is excited
into S1. Typically the electron then resides in a vibro-rotational substate S∗1, which quickly decays
without emission of further photons into the excited ground state S1. The energy is transformed into
heat, e.g. by collisions with solvent molecules. After some time the electron decays back from S1 into a
state S∗0 with ν = 0. The energy di�erence is emitted as a new photon with wavelength λ� > λex. Again
the electron subsequently decays into the ground state S0 without emitting a photon. The di�erence
between the peak excitation and �uorescence wavelengths is called Stokes shift:

∆λStokes = λex − λ�. (2.1.2)

It is typically between 10 nm and 100 nm. The band structure of the energy states leads to broadened
absorption and emission peaks, as shown in the spectra in Fig. 2.1(b).

The timescale of an excitation transition is typically a few femtoseconds, whereas internal relaxation
happens within picoseconds. Both processes are much faster than typical �uorescence lifetimes, which
are in the range of nanoseconds.

After excitation into the state S1, there are two decay channels with associated transition rates: Either
the energy is lost by emitting a �uorescence photon with rate Γ, or by a non-radiative decay with rate
knr (green dashed lines in Fig. 2.1a). These rates are usually summarized into two numbers, speci�c to
each �uorophore: The �uorescence lifetime

τ� =
1

Γ + knr
(2.1.3)
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Figure 2.1. Jablonski diagram of a �uorescent molecule. Sν and Tν denote singlet and triplet
states for the quantum number ν. Solid lines are transitions with absorption or emission of a photon
(horizontal wavy line). Non-radiative transitions are sketched as vertical or inclined dashed lines.

describes the average lifetime of the excited state, whose population nS1 (t) decays exponentially:

nS1 (t) = nS1 (0) · e−τ/τ� . (2.1.4)

The second important property is the quantum yield q�uor, which relates the number of absorbed photons
Nphoton, abs to the number of emitted �uorescence photons Nphoton, �:

q�uor ≡
Nphoton, �

Nphoton, abs
=

Γ

Γ + knr
. (2.1.5)

The absorption process alone is typically characterized by the absorption cross-section σabs of a single
molecule, or by its molar extinction coe�cient εabs = NA · σabs/ ln(10) ([εabs] = 1 M−1m−1). These
quantities describe the loss in intensity I (x) along a path x in a sample containing the molecules at
concentration c:

I (x) = I (0) · exp (−σabs · c · NA · x) = I (0) · 10−εabs ·c ·x , (2.1.6)

where I (0) is the incident intensity and NA is Avogadro’s number. This relation is called “Lambert-Beer
law”.

2.2. Triplet transitions and phosphorescence

So far the spin of the electrons was not taken into account. Initially the molecular ground state S0 is
populated by two electrons with anti-parallel spins. The overall spin is then 0 and the multiplicity is 1.
Therefore the state is called singlet state. The quantum mechanical selection rules for pure electronic
dipole transitions forbid a �ip its spin during the transition. So only other singlet states S1,S2, ... may
be reached.
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2.3. Photobleaching and photoswitching

In addition to the spectrum of singlet states, also a spectrum of triplet states Tν exists, which is
illustrated in Fig. 2.1(a). These have an overall spin of 1~ and a multiplicity of 3, hence the name. Since
in complex molecules the mentioned selection rules do not apply absolutely, transitions between singlet
and triplet states become possible (“intersystem crossing”). Due to the spin-�ip, their probability is lower
than for transitions between two singlet states, which leads to a prolonged lifetime τT of the triplet states.
Typical values for this triplet lifetime τT are on the order of microseconds for the dyes used in this thesis.
The delayed photons emitted by the transition T1 → S1 are called “phosphorescence” to distinguish
them from �uorescence. The phosphorescence emission spectrum is red-shifted, as compared to the
�uorescence spectrum (see Fig. 2.1b). In e�ect, the triplet dynamics will appear as an on-o� blinking of
the �uorescence of each �uorophore on a typical timescale of τT, as no more �uorescence photons are
created, while the �uorophore stays in T1.

2.3. Photobleaching and photoswitching

A fourth decay channel from an excited state of a �uorophore is “photobleaching”. During this process
the chemical structure of the �uorophore changes. These changes are typically non-reversible or very
long-lived and change the spectrum of the �uorophore, rendering it non-�uorescent at a given excitation
wavelength. The �uorophore then seems to be switched o� after the photobleaching has occurred. Such
transitions may also be initiated by the chemical environment of the �uorophore, e.g. by a pH-dependent
protonation reaction of some �uorescent proteins [85, 133]. Such dyes may be used as intra-cellular
sensors, e.g. for the pH. Special �uorescent dyes also can be switched between an on- and an o�-state
by a third illumination wavelength [134].

2.4. Chemical fluorophores

Many molecules, that are �uorescent in the visible spectral range, share the common feature of having a
large system of conjugated π-electrons [137]. These electrons are only weakly bound to the molecule
and visible photons have enough energy to excite them. The binding energy is typically decreasing
with increasing size of the π-system, shifting their absorption and �uorescence into the red spectral
range [137]. A large variety of synthetic dyes are available, that are based on this principle.
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Figure 2.2. Molecular structures (a,b) and absorption and �uorescence spectra (c) of Alexa-

488 and Alexa-594 dyes. The molecular structures and the spectra were taken from [135, 136].
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Chapter 2. Fluorescence labeling techniques

λabs,max λ�,max ∆λStokes εabs q�uor εabs · q�uor
dye [nm] [nm] [nm]

[
M−1cm−1] [%]

[
mM−1cm−1]

chemical �uorphores

FITC 495 519 24 75,000 92 69
Alexa-488 495 519 24 73,000 92 67
Alexa-594 590 617 27 92,000 66 61

�uorescent proteins

wtGFP 395 504 9 25,000 79 20
eGFP 488 507 19 56,000 60 34
eYFP 514 527 13 83,400 61 51
dsRed 556 586 30 35,000 10 3.5
mRFP1 584 607 23 44,000 25 11

quantum dots

QDot-525 — 525 — 130,000a 29 38
QDot-565 — 565 — 290,000a — —
QDot-585 — 585 — 530,000a 21 111
QDot-655 — 655 — 2,900,000a — —

a: at excitation with 488 nm

Table 2.1. Spectroscopic properties of some �uorescent dyes. λabs,max is the wavelength of maxi-
mum absorbtion, λ�,max is the �uorescence maximum, ∆λStokes the Stokes shift, εabs is the exinction
coe�cient and q�uor is the �uorescence quantum yield. The parameter εabs · q�uor is an empirical
measure of the brightness (�uorescence photons emitted from a given solution at given illumination).
Data was taken from Refs. [139–143].

The two dyes Alexa-488 and Alexa-594 were used for many experiments described in this thesis.
Figure 2.2 shows their chemical structure and absorption as well as �uorescence spectra and Tab. 2.1
summarizes their basic spectroscopic properties. Alexa-488 absorbs blue and emits green light, whereas
Alexa-594 absorbs orange and emits red light. The π-electron system is distributed over four C6-rings for
Alexa-488 and six rings for Alexa-594, which demonstrates the red-shifting e�ect of the larger π-system.

These �uorescent molecules are available with diverse side chains, that allow labeling of di�erent
molecules of interest. Some of these sidechains can bind covalently and speci�cally to thiol (−SH)
or amine (−NH2) residues of amino acids. This allows to label speci�c positions in a protein. Also
short single-stranded DNA oligo-nucleotides, that are labeled at one end with a �uorescent dye, are
commercially available. Larger labeled DNA strands can be built from these, if they are used as primers
in a polymerase chain reaction (PCR). A last class of samples used for this thesis are �uorescent
microspheres. They are made of polystyrene or latex, and �uorescent molecules are embedded in their
matrix. For example, the �uorescence of microspheres F8803 produced by Invitrogen with a diameter
of 100 nm is equivalent to around 7400 �uorescein isothiocyanate (FITC) molecules [138]. FITC is a
widely used yellow-green �uorescent dye, which is comparable to Alexa-488.

2.5. Fluorescent proteins

In addition to the synthetic �uorescent dyes discussed in the previous section, a large family of auto-
�uorescent proteins exist [140, 144]. They were derived from wildtype green �uorescent protein (wtGFP)
which was extracted in 1962 from the jelly�sh Aequorea victoria [145]. Later, the original protein was
mutated at a few amino-acids in order to change its color or improve its brightness and photo-stability.
The molecular structure of wtGFP is illustrated in Fig. 2.3(a). It is composed of a barrel of β-sheets,
which is about 4 nm long and 3 nm in diameter. This barrel surrounds and protects the chromophoric
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Figure 2.3. (a) Molecular structure of wtGFP. (b) Absorption and �uorescence spectra of the

�uorescent proteins eGFP, eYFP and mRFP1. The crystal structure of wtGFP was taken from
[148] and rendered with PyMol. Spectra were taken from Refs. [139, 140, 147, 149, 150].

group, which is responsible for the �uorescence. In wtGFP the chromophore is formed by a reaction of
three peptide residues that also interact with other peptide residues in their vicinity [146].

For this thesis, mainly the enhanced green �uorescent protein (eGFP), the enhanced yellow �uorescent
protein (eYFP) and the monomeric red �uorescent protein (mRFP1) were used. Their spectra are shown
in Fig. 2.3 and their spectroscopic properties are summarized in Tab. 2.1. The �rst two dyes were derived
from wildtype green �uorescent protein (wtGFP) and mRFP1 is a monomeric form of the red �uorescent
protein DsRed, which was extracted from the coral Discosoma [147].

Fluorescent proteins have the advantage that they can be transfected into live cells, which subsequently
express (i.e. produce) the �uorophore. Transfection means that the genetic code of the �uorescent
protein is inserted into a DNA plasmid, which also contains promoter sites that initiate the transcription
of the new gene. This technique can also be used to label a speci�c protein inside the cell, if its genetic
code is known. In this case, both genes are positioned one after the other on the plasmid and a short
linker between the two is inserted. After transfection, the cell will express the protein of interest, linked
to the �uorescent label. Care has to be taken to not disturb the function of the labeled protein by the
�uorophore. Typically transfection is only a transient process, i.e. the new gene is not integrated into
the cells genome and the plasmids transfected into a cell will dilute during cell division. Finally the
transfection and thus also the �uorescence is lost after several generations. A stable transfection is in
some cases possible by adding a second gene to the plasmid that contains a resistance against a toxin.
A very small amount of cells will actually incorporate the plasmid DNA into their genome. Using the
resistance, these few cells may selectively proliferate. After some generations they form a new cell
line, which does no longer loose the transfected gene. This process is called “stable transfection” to
distinguish it from the previously described “transient transfection”.

Fluorescent proteins typically show a fast triplet blinking. In addition they often also exhibit an
on-o� blinking of the �uorescence on longer timescales. The �uorophore of eGFP can undergo a
reversible protonation reaction, which changes the absorption spectrum of the dye and renders it dark, if
excited around 488 nm [85]. The distribution of �uorophores in protonated and non-protonated states is
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Chapter 2. Fluorescence labeling techniques

determined by the pH of the surrounding solution. Some red �uorescent proteins also show �uctuations
that depend on the excitation intensity [133]. These are explained by photo-induced, reversible structural
changes in the �uorescent proteins.

2.6. �antum dots

A third class of �uorescent dyes are nanoscale semiconductor quantum dots (QDots). The structure of
the QDots, which were used for this thesis, is shown in Fig. 2.4(a). A CdSe crystal core (∅ = 2−10 nm) is
covered with a layer of ZnS, which isolates it from the environment. For protection, the core is encased
in polymer layer, which may be modi�ed with charged side chains to make the QDots water-soluble
[144, 151–153]. In addition, reactive groups can be attached to the polymer layer, which allow speci�c
labeling of biomolecules, as explained for chemical dyes in section 2.4.

The �uorescence of QDots is based on exciting electrons from the valence band into high-energy
states of the conduction band (see Fig. 2.4b). The broad, unoccupied conduction band gives rise to an
also broad excitation spectrum (see Fig. 2.4c). The excited electron-hole pairs behave like quantum
mechanical particles in a box. The energy of their quantized states Eν decreases with increasing size L
of the box (or QDot), as Eν ∝ 1/L2 [154]. Typically the electron �rst drops non-radiatively to an energy
state near the lower edge of the conduction band. The pair then recombines and emits a �uorescence
photon. As �uorescence transitions only take place between states near the band edges, the emission
spectrum is narrow. The dependence of the exciton energies on the size of the quantum dot can be used
to tune its spectral properties. A CdSe/ZnS dot with a diameter of ∅ = 2.3 nm emits in the blue spectral
range, whereas a larger dot with ∅ = 5.5 nm emits red light [152].

Quantum dots have a very high extinction coe�cient of 105 − 106 M−1cm−1 at blue excitation wave-
lengths. They do not bleach even after hours of excitation [151]. A disadvantage is their very complex
blinking dynamics: intermittent “o�” periods have been observed on timescales between 200µs and
several 100 s [86, 155, 156]. These dark states are believed to be related to surface traps in the QDot. In
contrast to chemical �uorophores or �uorescent proteins, the decay of these dark states was found to
follow a power law. Therefore no �nite lifetimes can be de�ned [86, 155, 156].
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Figure 2.4. Properties of CdSe/ZnS quantum dots. (a) Cross drawing of a typical CdSe/ZnS QDot.
(b) Simpli�ed energy band diagram. (c) Absorption and �uorescence spectrum of Invitrogen QDot525
ITK.
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3. Fluorescence microscopy

As shortly described in section 1.4, �uorescence �uctuations from a small volume of the sample (∼1µm3

in size) are evaluated to yield transport properties. In order to observe such small volumes, microscopic
techniques are necessary. Fluorescence is used to speci�cally label the molecular species of interest.
Section 3.1 gives a general introduction to �uorescence microscopy. Section 3.2 describes confocal
microscopy, which is commonly used for FCS. Finally section 3.3 introduces light sheet microscopy,
which is the main microscopy technique used in this thesis.

3.1. Basic fluorescence microscopy

3.1.1. Principle

All �uorescence microscope can be generally divided into two parts: the excitation beam path and the
detection beam path. In many cases these two parts also share some of their components. Figure 3.1(a)
shows the optical setup of a typical epi-�uorescence microscope. The excitation beam (blue beam in
Fig. 3.1a) is projected through the objective lens into the sample. It is slightly expanded in the object
plane, so that the whole �eld of view is illuminated uniformly. The �uorescence light (red beam in
Fig. 3.1a) is generated in the sample and collected with the same objective lens. It is separated from the
excitation light using a dichroic mirror, which transmits long wavelengths and re�ects short wavelengths.
A detection �lter further narrows the detected band of the light spectrum, so that only the emission of the
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Figure 3.1. (a) Basic setup of an epi-�uorescence microscope and (b) principle of in�nity-

corrected optics.
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Chapter 3. Fluorescence microscopy

�uorophore of interest is detected. Then a tube lens projects the light onto the imaging detector (camera).
Figure 3.1 shows a special con�guration of the detection beam path. Between the objective lens and

tube lens, the detected light is collimated, i.e. focused into in�nity (“in�nity space”). Here additional
optical components, such as �lters, can easily be introduced into the microscope without impairing
its optical properties. Today these in�nity-corrected microscopes are common in most applications.
The principle of such a beam path is illustrated in Fig. 3.1(b) in more detail: two �uorescent molecules
(red and magenta circles) are positioned in the image plane. Due to the fast rotation of most molecules,
their �uorescence light is emitted equally distributed into all spatial directions. A fraction of this light
is collected by the objective lens. As the objective is positioned exactly one focal length fObj from the
object plane, the �uorescence light is collimated by the lens. If the �uorescent molecule is shifted a
distance ∆x from the optical axis of the system, the light is still collimated, but exits the lens under an
angle θ with [157]:

∆x = fObj · tan θ. (3.1.1)

After another distance d∞ the tube lens with focal length fTL focuses the light onto the image sensor,
where the displacement ∆x ′ from the optical axis is given by:

∆x ′ = fTL · tan θ. (3.1.2)

Combining Eq. (3.1.1) and Eq. (3.1.2), the lateral magni�cation of the in�nity-corrected microscope is:

Mxy =
∆x ′

∆x
=

fTL
fObj

. (3.1.3)

3.1.2. Focus properties and resolution

The resolution of optical imaging is limited by di�raction at the apertures of the used lenses. This means
that a point source in the object plane is not imaged into a point in the image plane, but into a small
blurred circle, an “Airy disc”. This general property of optical systems can be described by a convolution
of the �uorophore distribution in the object plane c(~r , t) with the point spread function PSF(~r) of the
system:

I (~r , t) = c(~r , t) ~ PSF(~r). (3.1.4)

Here PSF(~r) describes the 3-dimensional shape of the Airy disc. An analytical approximation of the
point spread function (PSF) is possible, using di�raction theory [158]. With the general principle of
reversibility of optical paths, the problem of calculating the detection PSF is equivalent to calculating
the intensity distribution around the focus of a lens, which focuses an incident plane wave. Applying
Debye di�raction theory the electrical �eld distribution h(~r) around the focus is then expressed as an
integral over plane waves, which converge onto the focus (green lines in Fig. 3.2a):

h(~r) = −
i
λ
· A0 ·

"
Ω

exp
(
−

2π · i
λ
· ~q(Ω) · ~r

)
dΩ. (3.1.5)

Here ~r is the position relative to the focus, A0 is a normalization constant and ~q is the unit vector along
the direction of propagation of the plane wave. The integration is performed over all points Q on the
spherical phase plane in the lens, expressed as the solid angle Ω.

The lens is characterized by its focal length fObj and aperture diameter dObj. From these parameters,
the numerical aperture NA is calculated for a medium of refractive index n:

NA := n ·
dObj

fObj
= n · sin(α) with NA ≤ n. (3.1.6)
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3.1. Basic �uorescence microscopy

Here 2α is the opening angle of the lens. The numerical aperture describes the focussing power of
the lens. The spherical symmetry of the lens implies a spherical symmetry also of the resulting PSF.
Introducing two general coordinates

u ≡ u(z) =
2πNA2

nλ
· z and v ≡ v(x, y) =

2πNA
λ
·

√
x2 + y2. (3.1.7)

the Eq. (3.1.5) becomes [158]:

h(u,v) = −
2πi
λ
·

NA2

n2 · A0 · exp
(

iNA2u
n2

)
·

1∫
0

J0(vρ) · exp
(
−

iuρ2

2

)
· ρ dρ. (3.1.8)

Here J0(·) is the Bessel function of the �rst kind, with order 0. This integral can be evaluated numerically
and the PSF is �nally obtained as the absolute square value of the �eld amplitude h(u,v):

PSF�(~r) = ��h(~r)��2 . (3.1.9)

Some example plots of a PSF calculated with Eq. (3.1.9) are shown in Fig. 3.2(b).
For the special cases of the PSF along a coordinate axis (z-axis: x = y = v = 0, x/y-axis: z = u = 0),

simpli�ed analytical forms can be given [158]:

PSF�(u,0) ∝
[
sin(u/4)

u/4

]2

, PSF�(0,v) ∝
[
2J1(v)

v

]2

. (3.1.10)

From Eq. (3.1.10), the size of the focus can be calculated. It is given as as 1/ e2-half widths w�.,xy,w�.,z of
the central maximum:

w�.,xy ≈ 0.82 ·
λ

NA , w�.,z ≈ 2.80 ·
n · λ
NA2 . (3.1.11)

This de�nition is usually used in literature on �uorescence correlation spectroscopy and will be used
throughout the rest of this thesis.
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Figure 3.2. (a) De�nition of the quantities used to calculate the PSF of a focusing lens. (b)

Point spread function of a �uorescence microscope for di�erent numerical apertures

NA. The images in (b) were plotted by integrating Eq. (3.1.8) numerically, using Matlab (see
appendix B.3). The other parameters were n = 1.33 (water) and λ = 525 nm (green light).
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Chapter 3. Fluorescence microscopy

3.1.3. Multi-color fluorescence microscopy

Figure 3.3 illustrates two possible modi�cations of a �uorescence microscope, that enable it to detect two
di�erent color channels simultaneously. In the Fig. 3.3(a), a dichroic mirror (DC) splits the �uorescence
light onto two image sensors, each equipped with its own tube lens (TL). In Fig. 3.3(b) a special “dual-
view optics” is shown, which images the two color channels side-by-side onto the same image sensor
[159]. This dual-view optics consists of two additional lenses behind the tube lens of the microscope.
They form a second in�nity space, in which the �uorescence light is spectrally split into two collimated
beams by a dichroic mirror (DC). The beams are incident on the �nal lens under di�erent angles that can
be adjusted using two mirrors (AM) in the beam path. According to Eq. (3.1.1), the di�erent incidence
angles of the color channels lead to two laterally shifted images on the image sensor. To prevent the
two color channels from overlapping, an adjustable aperture (AA) is introduced in the image plane of
the microscope, where the camera would usually sit. It limits the image to a size that exactly �lls half of
the image sensor. With the two adjustable mirrors (AM), the two images can be moved independently.

The illumination also needs modi�cation: two light sources are used to excite two di�erent �uo-
rophores, e.g. a laser at λill = 488 nm for eGFP and a second laser at λill = 568 nm for mRFP1. As these
are typically combined to one excitation beam, the (single-band) dichroic mirror needs to be replaced by
a multi-band dichoic mirror, intended for the re�ection of both laser wavelengths.
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Figure 3.3. Two versions of dual-color detection. In (a) the light is split into two image sensors

and in (b) a “dual-view” optics images the two color channels onto one image sensor.

3.2. Confocal fluorescence microscopy

3.2.1. Principle

An epi-�uorescence microscope has a reasonable lateral resolution, but su�ers from bad contrast.
Fluorescence is also excited above and below the focal plane, because the excitation light passes through
the whole sample. Some of this light is collected by the detection objective and appears as a background
signal (“out-of-focus light”). This e�ectively reduces the contrast. The confocal microscope overcomes
this problem by excluding the emitted out-of-focus light with a pinhole. It also has a slightly improved
lateral resolution. The disadvantage of using a pinhole is, that most confocal microscope can only
observe a single point at every time. Therefore images have to be built up sequentially by scanning the
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a pinhole. (c) Modi�cation for dual-color-detection. The schematic in (b) is simpli�ed from
the version in (a), by removing the illumination beam path and the galvanometric scanner.

observed point through the sample. This introduces an inherent time-structure into the images and
limits the maximum frame rate during image acquisition. Figure 3.4(a) shows a schematic of a typical
confocal microscope.

3.2.2. The pinhole in confocal microscopy

Out-of-focus light cannot pass the pinhole, as shown in Fig. 3.4(b). Any �uorescence light, emitted from
points below or above the object plane (blue circle in Fig. 3.4b), will not be focused in the plane of the
pinhole, but will be imaged onto an area, exceeding the size of the pinhole. So only a tiny fraction of
this light will pass the pinhole towards the detectors. In contrast light from the image plane (green
circle in Fig. 3.4b) is focused exactly onto the plane of the pinhole and thus can completely pass on to
the detectors. This resulting suppression of out-of-focus light is often referred to as depth-sectioning or
z-sectioning.

Figure 3.4(c) shows how a confocal microscope can be extended to detect two di�erent �uorophores
simultaneously. A dichroic mirror is added behind the pinhole, which splits the emitted �uorescence
onto two light sensors. As for the multi-color �uorescence microscope, the excitation beam splitter has
to be a multi-band device.

3.2.3. Focus properties and resolution

Collimated excitation light is focused by the objective lens into a small illumination focus, described by
the point spread function PSFill(~r). Only in this tiny volume, �uorophores are excited. The red-shifted
�uorescence photons are collected with the same objective. The focus is now described by a detection
point spread function PSFdet(~r), which will be generally the same as PSFill(~r), but slightly larger due to
the longer wavelength. The �uorescence emission is then separated from the excitation light using a
dichroic mirror and focused onto a tiny pinhole, positioned in the image plane of the tube lens. Only
light, which passes the pinhole is �nally imaged onto a point-detector. Typically photo multiplier tubes
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Figure 3.5. (a) Cut through the PSF of an epi-�uorescence and a confocal microscope in the

focal plane. (b) PSF of an epi-�uorescence and a confocal microscope. The improvement in
resolution is clearly visible. In addition a suppression of the sidelobes can be seen. The functions are
plotted for λill = 488 nm, λ� = 525 nm, NA = 1.0, n = 1.33 (water). The Gaussian approximations
are plotted as a Gaussian function with its 1/ e2-width given by Eq. (3.1.11).

or single-photon avalanche diodes (SPADs) are used to detect the �uorescence light. The sample is
usually scanned with a motorized stage, or better with a galvanometric scanners in the in�nity space of
the microscope. The PSF of the complete system is �nally given by:

PSF(~r) = PSFill(~r) · PSFdet(~r). (3.2.1)

This equation signi�es that �uorescence can only be detected from a position ~r , if a certain probability
exists, that a �uorophore is excited at ~r and that the light emitted at ~r is actually imaged onto the
detector. The two PSFs in Eq. (3.2.1) can be approximated by the PSF of a �uorescence microscope (see
Eq. 3.1.10). If the wavelengths of illumination λill and of �uorescence λ� are averaged into an e�ective
wavelength

λe� =
λill + λ�

2
, (3.2.2)

the confocal PSF can simply be modeled as:

PSFconfocal(~r) = PSF2
�(~r). (3.2.3)

Figure 3.5 compares the PSFs of a confocal and an epi-�uorescence microscope. Using Eq. (3.2.3), the
1/ e2-half width of the PSF of a confocal microscope can be estimated numerically (cf. Eq. (3.1.11) on
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p. 29 for the same estimates for an epi-�uorescence microscope):

wconfocal,xy ≈ 0.61 ·
λe�
NA ≈ 0.74 · w�,xy, wconfocal,z ≈ 2.09 ·

n · λ2
e�

NA2 ≈ 0.75 · w�,z. (3.2.4)

These results are consistent with equations given e.g. in Refs. [160, 161].
The square in Eq. (3.2.3) leads to an e�ective suppression of sidelobes in the PSF, as shown in Fig. 3.5(a).

Therefore the PSF of a confocal microscope can often be approximated by a 3-dimensional Gaussian
function. The improvement in PSF size over a wide�eld �uorescence microscope in Eq. (3.2.4) is
approximately a factor 1/

√
2 ≈ 0.71, which can be derived analytically for a Gaussian approximation of

the PSF: the product of two Gaussian functions with 1/ e2-widths will and wdet, is again a Gaussian with
the 1/ e2-width:

1
w2

sys
=

1
w2

ill
+

1
w2

det
=⇒

will≈wdet
wsys =

will
√

2
. (3.2.5)

3.3. Light sheet microscopy

3.3.1. Principle

Confocal microscopy (cf. section 3.2) leads to an improvement in resolution and the z-sectioning capa-
bility, when compared to wide�eld �uorescence microscopes, but it is unable to perform simultaneous

            detection
objective
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light

illumination 
laser beam

cylindrical lens
for light sheet 

generation
light sheet
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on xyz translation stage
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(a) 3D view
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Figure 3.6. Principle of light sheet �uorescence microscopy in a 3-dimensional view (a) and a

top view (b) and comparison of the illumination schemes of epi-�uorescence microscopy

(c), confocal �uorescence microscopy (d) and light sheet microscopy (e). In (c-e) the red
line marks the image plane of the detection optics; green and blue arrows indicate direction of
illumination and detection.
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Figure 3.7. Examples of the system PSF of a light sheet �uorescence microscope with a nu-

merical aperture NAdet = 1.0 for detection and di�erent numerical apertures NAill ∈

{0.1, 0.3, 1.0} for illumination. For comparison the illumination PSF is shown as insets. White
dotted lines indicate the 1/ e2-width of the detection PSF and yellow dotted lines indicate the
1/ e2-width of the �nal PSF. Yellow numbers give the relative decrease in focus size and thus the
improvement in longitudinal resolution. The illumination light wavelength was λill = 488 nm, the
�uorescence wavelength was λ� = 525 nm and the immersion medium was water (n = 1.33).

measurements in all points of the image plane. Lightsheet �uorescence microscopy can be seen as a
compromise between confocal and epi-�uorescence microscopy. It is a wide�eld illumination-method
that allows measuring all image points simultaneously with a single image sensor. At the same time it
strongly improves z-sectioning, compared to a standard epi-�uorescence microscope.

The principle of light sheet microscopy is shown in Fig. 3.6(a,b). A cylindrical lens is used to focus
light only in one direction, forming a line focus, which is referred to as light sheet. The latter is then
superimposed to the object plane of an in�nity-corrected �uorescence microscope, which is oriented
perpendicular to the light sheet. In contrast to the other microscopy techniques described so far, two
separate lenses are used for illumination and detection. The thickness of the light sheet is typically
chosen to match the z-extent of the detection PSF. In this way excitation of �uorescence above or below
the image plane is avoided (cf. Fig. 3.6e), the z-sectioning is improved and out-of-focus light is not
generated. In contrast, when using epi-�uorescence microscopes or confocal microscopes, the excitation
light travels through the whole thickness of the sample, thereby generating �uorescence above and
below the focal object plane. Thus light sheet microscopy strongly reduces �uorophore bleaching and
photo-damage in parts of the sample that are not imaged. This permits an observation of the same
sample over more than 24 h [118].

As in epi-�uorescence microscopy, dual-color detection can be implemented using a dual-view optics
or two cameras. For dual-color illumination two di�erent lasers are coupled into the same excitation
beam path.

3.3.2. Focus properties and resolution

The system PSF of a LSFM can be calculated again using the results for an epi-�uorescence microscope.
As for the confocal microscope, the PSF of the complete system is the product of an illumination PSF
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(PSFill(~r)) and detection PSF (PSFdet(~r)):

PSF(~r) = PSFill(~r) · PSFdet(~r). (3.3.1)

Both single PSFs are again modeled by Eq. (3.1.8) and Eq. (3.1.9), with 1/ e2-widths will,xy,will,z for
illumination and wdet,xy,wdet,z for detection. Note that these widths are given in the frame of reference
of each objective, but these are perpendicular to each other. Figure 3.7 shows examples of illumination
and detection PSFs, as well as the resulting system PSF in a top-view, as in Fig. 3.6(b). As in Eq. (3.2.5),
the widths of the �nal system PSF can be approximated as:

wLSFM,xy = wdet,xy, (3.3.2)

wLSFM,z =
1√

1/w2
det,z + 1/w2

ill,xy

. (3.3.3)

So the lateral resolution is not improved over that of an epi-�uorescence microscope. In contrast, the
longitudinal resolution wLSFM,z depends on the light sheet thickness will,xy. If will,xy is comparable to
or smaller than wdet,z, the longitudinal resolution is improved. In Fig. 3.7, the relative improvement
is given as yellow numbers. If two objectives of equal numerical aperture are used for detection and
illumination, the improvement in longitudinal resolution is nearly 5-fold (see right column in Fig. 3.7).

A second important �gure in light sheet microscopy is the usable �eld-of-view (FOV). As the illuminat-
ing beam is focused perpendicular to the direction of detection, its depth of �eld or longitudinal extent
will,z limits the range over which �uorescence is exited e�ectively in the image plane. For instance, if the
illumination objective has the same numerical aperture as the detection objective (third case in Fig. 3.7) ,
this leads to a small longitudinal focus size. At the same time, if the detection PSF is shifted by more than
2−3 of its diameters, the illumination intensity has already dropped below 20%, as will,z = 1.82µm. The
�rst two examples are better in that respect: they do not o�er as strong an improvement in z-resolution,
but the FOV is larger and can accommodate a complete sample of considerable size (will,z = 20.2µm
for NAill = 0.3 and will,z = 182µm for NAill = 0.1). In all cases, good z-sectioning is still retained,
as the lateral width of the illumination pro�le (will,xy = 1.3µm for NAill = 0.3 and will,xy = 4µm for
NAill = 0.1) grows slower with numerical aperture than the longitudinal width. In the �rst sample
though, the illumination PSF is so thick, that considerable sidelobe contributions from the detection PSF
are visible. So when designing a LSFM for a speci�c sample, a tradeo� between sidelobes, z-sectioning
and FOV has to be found.

3.3.3. Typical image artifacts in light sheet microscopy

Light sheet microscopy typically su�ers from a speci�c image artifact called stripe artifact. This consists
of several dark stripes, that are visible in the images and are parallel to the direction of propagation of
the illumination light. Figure 3.8(a) shows a schematic illustration and a real example.

As shown in Ref. [162], these stripes can be explained by light scattering from particles distributed
throughout the sample and whose refractive indexes di�er slightly from their environment. Several
structures of live-cells are candidates for such particles: lipid droplets, organelles and vesicles that
contain a di�erent environment than the surrounding cytoplasm, or regions of high protein density,
such as nucleoli. In larger samples, also the complete cellular nucleus can act as a scatterer.

One method to reduce stripe artifacts during imaging is to pivot the light sheet, i.e. to quickly change
its direction of incidence, as illustrated in Fig. 3.8(b). This reduces the shadows behind the scattering
objects to a certain degree [163].
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Figure 3.8. (a) Stripe artifacts in light sheet microscopy. (b) Pivoting of the light sheet, which

is used to reduce stripe artifacts. Note: A di�erent version of this �gure has been created by myself for
the Wikipedia article on light sheet microscopy: https:// en.wikipedia.org/wiki/File:Lsfm_stripes.svg.
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3.3. Light sheet microscopy

3.3.4. A short history of light sheet microscopy

Light sheet microscopy has been reintroduced to biological and bio-physical research within the last
20 years. It is based on the dark �eld microscopy technique called “ultramicroscopy” (German: Spalt-
ultramikroskop), developed around 1902 by Richard Adolf Zsigmondy, an austro-hungarian chemist,
and Henry Siedentopf, a german physicist at the Carl Zeiss company [164]. Here the sample is also
illuminated with a sheet of light. Instead of the �uorescence light, as in an LSFM, the light scattered by
the particles in the sample is observed perpendicularly. R.R. Zsigmondy used this ultramicroscope to
study suspensions of nano-sized particles [165] and received the Nobel prinze in 1925[166]. Also Jean
Perrin used this new ultramicroscope for his observations on Brownian motion [167].

In 1993 Voie et al. published a �rst �uorescence version of the ultramicroscope under the name
orthogonal-plane �uorescence optical sectioning (OPFOS) [168]. The light sheet in an OPFOS setup
is directly formed by a cylindrical lens (cf. Fig. 3.6 and Fig. 3.9a). Only a limited range of cylindrical
lenses are commercially available and these are not very well corrected for optical aberrations, such as
chromatic and spherical errors. There the light sheet width was limited to about 20µm.

In 2004 Huisken et al. replaced the cylindrical lens by a combination of a cylindrical and a standard
microscope objective lens (cf. Fig. 3.9b) [118]. This type of setup is referred to as selective plane
illumination microscope (SPIM). The parameters of the light sheet in this type of microscope are
completely determined by the objective lens PO and do not depend on the cylindrical lens CL [119].
This allows for a resolution on the order of micrometers longitudinally and few hundred nanometers
laterally. This type of setup was also implemented during this thesis and a detailed description is given
in section 6.1.

In a later version, the cylindrical lens was completely removed from the setup by quickly scanning a
round laser beam up and down in the image plane, as shown in Fig. 3.9(c). The scanned beam appears as
a light sheet if the camera integrates over several scanning cycles [52]. Instead of Gaussian laser beams,
also other electro-magnetic �eld modes can be used for scanned light sheets. Gauss-Bessel [169, 170]
and asymmetric Airy beams [171] were shown to improve the usable �eld-of-view of the microscope
by increasing the penetration depth of the light sheet into strongly scattering samples. They can also
provide thinner light sheets in some cases.

Another method to improve the penetration depth of light sheet microscopy is two-sided illumination
using two light sheets as shown in Fig. 3.9(d) [163]. Later it was combined with two-sided detection, as
shown in Fig. 3.9(e) [172, 173]. This allows for faster data acquisition of 3-dimensional multi-view data
sets, as the sample is imaged from two sides simultaneously.

All LSFM variants presented so far are based on the standard planar setup, as illustrated in Fig. 3.6
and Fig. 3.9. Here, the samples are mounted hanging from above. Other geometries have been proposed,
in which the sample is mounted on a horizontal support. Figure 3.10(a) shows an inverted selective
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Figure 3.10. Two LSFM variants with a horizontal support for the samples: (a) inverted selec-

tive plane illumination microscope (iSPIM) and (b) oblique plane microscopy (OPM).
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plane illumination microscope (iSPIM) setup: the whole SPIM has been rotated and positioned on top of
an upright microscope [120, 174, 175]. Figure 3.10(b) shows an oblique plane microscopy (OPM), where
the light sheet is projected by the same objective as used for detection [176, 177]. The excitation light
enters the objective at its periphery and leaves it under a very steep angle ≥ 60◦, illuminating a thin
slice of the sample. All these variants allow to use standard sample mounting techniques. In addition
they allow to extend an existing standard microscope with light sheet microscopy capabilities.
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4. Photodetectors
This chapter introduces the photo sensor used in this thesis. They are divided in two groups. Section 4.1
introduces photon counting detectors. Linear detectors, such as most commercially available digital
cameras, are introduced in section 4.2. Both these parts also contain a discussion of the statistical
properties of the respective detectors. Finally the properties of di�erent image sensor types are compared
in section 4.3.

4.1. Photon counting detectors

4.1.1. Single-photon avalanche diodes

In confocal microscopes single-photon avalanche diodes (SPADs) are frequently used as photo-detectors,
especially when �uorescence �uctuation methods are to be employed. These devices produce a strong
electrical output pulse for each detected photon. An incident photon creates an electron-hole pair
(or excition) in the semiconductor crystal with a certain probability. This pair is then multiplied by
repeated impact-ionization in a strong electrical �eld, which is applied to the detector. Finally a whole
avalanche of secondary electrons reaches the electrodes and creates a current spike for each single
photon [178–180].

Figure 4.1(a) shows a sketch of a typical SPAD built from four di�erently doped layers of semiconductor.
The photons are absorbed and create the �rst exciton in a large and lightly p-doped region (“i(p)” in the
�gure). The electron then drifts towards the ampli�cation region, which consists of a strongly doped
pn-junction. This drifting process is driven by a reverse bias voltage Ubias over the diode and is limited
by collisions of the electrons with the semiconductor lattice. The reverse bias voltage generates a very
high electric �eld | ~E(x) | over the relatively small ampli�cation region, where impact ionization creates
up to millions of secondary electrons.

While the reverse voltage gets higher, the ampli�cation increases, until it gets virtually in�nite if Ubias
rises above the breakdown voltage Ubreak. In this case the avalanche is self-sustaining and the SPAD is
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Figure 4.1. (a) Cross-section of a typical single-photon avalanche diode, showing the charge

distribution in the device. (b) Formation of an avalanche of electron-hole pairs in a single-

photon avalanche diode.





Chapter 4. Photodetectors

Vbias

RL

discriminator
SPAD

detected photons

voltage drop 
over the SPAD

photo-current
spikes

output signal

Vbreak

avalanche
breakdown

Iphot

Iphot

Uout

UoutUSPAD

USPAD

(a) (b)

Figure 4.2. (a) Passive quenching circuit for a single-photon avalanche diode. (b) Signals in

that circuit.

said to operate in Geiger or photon counting mode.After a photon has hit the diode, the output current
increases sharply within nanoseconds. This initial edge of the current de�nes the photon arrival time. It
is measured with an electronic discriminator circuit. As stated above, the avalanche is self-sustaining
in the Geiger mode, i.e. the photo current would stay high after the detection and eventually destroy
the device. Thus the diode has to be “quenched” to stop the avalanche and reset the diode for the next
photon. There are two major ways of quenching:[180]

1. active quenching: An active electronic circuit detects the increase in photocurrent and reduces
the reverse voltage Ubias below Ubreak.

2. passive quenching: Figure 4.2 shows a passive quenching circuit, in which a resistor RL is placed
in series with the SPAD and the reverse bias voltage source. Each photocurrent pulse Iphot leads
to a voltage drop over RL, which reduces the voltage over the diode Ubias − RL · Iphot below Ubreak.
This quenches the avalanche. Afterwards the bias is rebuilt, by recharging the diode capacitance
Cd ≈ 1 pF over RL.

In both cases the reverse bias voltage over the SPAD is reduced below the operation range for a short
time after each detected avalanche. During this “dead time” (typically 100 ns), no further photons can
be detected. To reduce the dead time of passively quenched SPADs, a transistor can be used to short RL
[181, 182]. This technique is called active recharge.

Impurities and other lattice defects can trap charge carriers from an avalanche with a low probability.
These may be released after the avalanche has ended and cause a second avalanche for one incident
photon. This behavior is called afterpulsing and has to be taken into account, when evaluating the
output signals of a SPAD. In some devices this afterpulsing has been reported to follow a power-law
timing [105, 183, 184].

4.1.2. Statistics of photon counting detectors

Single photon detectors, such as SPADs, generate a strong electrical output pulse for most of the incident
photons, but not for all. The detection probability of photons is called quantum e�ciency and is denoted
by ηdet. The output is a series of pulses at times ti : {t0, t1, ...}. These pulses can be either stored and
processed directly, or counted during regularly spaced periods [t, t + ∆texp] to yield an intensity time-
trace Nphoton(t) with arbitrary temporal resolution ∆texp. Assuming a mean photon �ux Φ, the average
number of photons detected by the detector during ∆texp is given by:

〈
Nphoton(t)

〉
t
=

〈 t+∆texp∫
t

∑
i

δδδ(ti − t ′) dt ′
〉
t

= ηdet · Φ · ∆texp. (4.1.1)
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The number of actually detected photons Nphoton obeys Poissonian statistics. The variance of the number
of detected photons then equals the mean photon number:

Var(Nphoton) =
〈
Nphoton

〉
. (4.1.2)

SPADs also have a certain dark count rate, i.e. they �re output pulses although there has not been an
incident photon. These pulses are caused by avalanches that are started by thermal �uctuations and by
afterpulsing. The resulting dark count rate Ṅdark can be reduced by cooling the device. The corresponding
dark count signal is characterized by a Poissonian distribution with mean Ndark = ηdet · Ṅdark · ∆texp and
variance σ2

dark = Ndark. The complete statistical properties of the detected signal is then:〈
Nphoton,det

〉
= ηdet · (

〈
Nphoton

〉
+ Ṅdark · ∆texp), (4.1.3)

Var(Nphoton,det) = Var(Nphoton) + σ2
dark = ηdet ·

(〈
Nphoton

〉
+ Ṅdark · ∆texp

)
. (4.1.4)

4.1.3. Single-photon avalanche diode arrays

In recent years, arrays of SPADs have been developed, that allow for single-photon imaging at high
frame-rates [185–193]. These sensors contain up to 65,536 SPADs on a single complementary metal
oxide semiconductor (CMOS) chip. In some devices quenching and readout electronics is also integrated
on the same chip.

Figure 4.3(a) shows a simple SPAD array with three circular diodes. All connections of each SPAD are
accessible on the outside. Such arrays have been demonstrated with eight SPADs (diameter: dSPAD =
50µm) in a row at a pixel pitch of asensor = 250µm [194, 195]. Readout and quenching completely relies
on external electronics.

From these early devices, imaging detectors were derived, which combine several pixels into a larger
array (see Fig. 4.3b). The SPADs themselves are still circular. Typically the pixels are row-addressable
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and a readout line for every column is provided. It is connected to a computer interface or further
external data processing electronics. The �rst imaging detector of this kind was published in 2005
[196]. It contained a 32 × 32 array of SPADs and the discriminator was integrated into the pixels
(asensor = 58µm, dSPAD = 4µm, see Fig. 4.3(c) for the pixel structure). It was used for 3D time-of-�ight
(TOF) imaging. For this method the arrival times of short light pulses, that are re�ected by the observed
scene, are measured with picosecond accuracy. These arrival times can then be converted into a depth
map. This pulse timing method can also be applied for the measurement of �uorescence lifetimes τ�
(see section 2.1), by illuminating a �uorophore sample with short laser pulses [188]. A histogram of the
delays between the laser pulses and detected �uorescence photons yields τ�.

The SPAD arrays described so far were not designed to read many SPADs simultaneously at high
temporal resolution. In these arrays a single row of pixels is selected before each measurement. To
obtain a full image the selected row is moved slowly over the chip. In order to get rid of the inherent
time structure caused by this method, additional electronics is required, which stores the events in each
pixel between two readouts.

The simplest sensors rely on fast readout and contain only a one bit memory per pixel. The stored
information is, whether there has been at least one photon since the last readout or not (see Fig. 4.3(d)
and Refs. [186, 192, 193]). If two or more photons are detected by the SPAD between two consecutive
readouts, they are still only counted as one. The probability for such missed photons decreases with
increasing readout speed. The SPAD arrays used in this thesis are of this type.

Other high-functionality sensors incorporate a time-to-digital converter (TDC) into each column
[185] or pixel [187]. This is illustrated in Fig. 4.3(e). A TDC is an electronic circuit which can measure
the photon arrival time with picosecond precision, thus the sensor can be used to measure several
arrival-times simultaneously. Tisa et al. reported a sensor, with a TDC and an 8-bit counter in each pixel.
This device can be used either as a camera, which can count more than one photon in each exposure, or
for simultaneous measurements of arrival time [190].

The in-pixel electronics limits the space that is available for the SPAD. Therefore a trade-o� has to be
found between the available functionality and the ratio between sensitive area and the complete pixel
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Figure 4.4. (a) Intensity distribution in a microlens array for an image sensor with low �ll

factor. (b) 3-dimensional illustration of the microlens array and the sensor. The light
intensity distribution in (a) is shown on a clipped logarithmic color scale. It was calculated using
the beam propagation method, detailed in appendix B.4 for a spherical lens of radius r = 80µm and
refractive index n1 = 1.4.
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area. This ratio is called �ll-factor

FF :=
active area
pixel area =

π ·
(
dSPAD/2

)2

a2
sensor

. (4.1.5)

For instance the sensor described in Ref. [190] contains a TDC and a counter in each pixel and has a
round SPAD of diameter dSPAD = 20µm at a pixel size of asensor = 100µm. This results in a �ll-factor
as low as 3.1%. So most of the incident photons never have a chance to be detected by a SPAD. Sensors
with such low �ll factors can be combined with microlens arrays mounted directly on the chip, as shown
in Fig. 4.4. These microlenses focus the light incident on each pixel onto the light-sensitive area. At a
given photon �ux, this increases the number of detected photons by a factor 3 − 10 [197]. Microlenses
are typically produced by applying a non-solidi�ed polymer onto the chip. Then a mold is used to shape
the lenses while the polymer is cured.

4.2. Linear detectors

4.2.1. Introduction

The photon detectors described so far, generate a series of countable pulses. This section will describe
“linear” detectors, which generate a measurable photocurrent Iphot. The latter is (ideally) proportional
to the incident photon �ux Φ and the detector quantum e�ciency ηdet. Such detectors are used e.g. in
charge-coupled device (CCD) cameras and CMOS cameras. Also all simple photodiodes and SPADs
driven below their breakdown voltage belong to this class. The measurement principle of linear detectors
is typically based on separation of electron hole pairs created in the depletion region of a pn-junction in
a semiconductor crystal. These photoinduced charges lead to a directly measurable photocurrent, which
linearly depends on the incident photon �ux:

Iphot = ηdet · Φ · qe, (4.2.1)

where qe is the charge of an electron. A more detailed analysis is given in section 4.2.5. In typical image
sensors, the photoinduced charges are accumulated in a potential well in the device, until they are read
out after an exposure time ∆texp. In that case the number of photoelectrons is given by:

Ne =
Iphot · ∆texp

qe
. (4.2.2)

Comparing this to the previous section, a SPAD can be seen as a linear sensor, which is coupled to an
ampli�er with near-to-in�nite ampli�cation.

4.2.2. CMOS cameras

CMOS cameras1 combine several photodiodes in a 2-dimensional array to form an image sensor (see
Fig. 4.5). Each pixel is separately addressable and readable [198]. In addition to the photodiode, each
pixel also contains additional transistors, which are used to read and amplify the photoelectrons, reset
the photodiode for a new exposure and perform the addressing and readout (“active pixel”). As in
SPAD arrays, the additional electronics in each pixel (typically 3-5 transistors) lower the �ll factor and
microlenses are often used on CMOS camera chips to compensate for this. Another possible solution are
back-illuminated sensors. Here the pixel electronics is stacked above the photodiode and the substrate
is thinned down, so light can penetrate the photodiode from the back.

1The name originates from the complementary metal oxide semiconductor process, these silicon chips are typically
produced in. More accurately the name active pixel sensor should be used.
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Figure 4.5. Structure of a typical CMOS image sensor. The inset shows a simpli�ed electronic
circuit of a single pixel. Figure adapted from Ref. [198].

The readout is typically organized by �rst addressing a single row in the sensor and then reading its
pixels one by one. The photo-induced charges, accumulated in each pixel during exposure, are ampli�ed
during readout. Then they are digitized by an analog-to-digital converter (ADC) and the digital value is
transferred to a computer for further processing. After reading all pixels in a row, they are reset and
a new exposure begins. This typical operation mode of a CMOS sensor is called “rolling shutter”. It
can lead to image artifacts, if fast moving objects cross several rows during a single full-frame read-out
cycle. In modern image sensors an additional transistor is added to each pixel, which transfers the
photoelectrons from the photodiode to a storage gate for subsequent reading [199]. This global shutter
removes the rolling shutter artifacts. However the readout of the full frame needs a certain amount of
time ∆tread during which the sensor has to be inactive to prevent di�erent integration times for di�erent
rows. This limits the number of detectable photons, especially in high-speed applications at low light
levels. Here the rolling shutter mode is advantageous.

In recent years, a new generation of CMOS image sensors have been developed, which are called
scienti�c complementary metal oxide semiconductor camera (sCMOS). These combine large sensors
(4-5.5 million pixels), high-speed and low-noise readout. A modern pixel structure allows for a global
shutter mode in some devices and the use of microlenses leads to a high �ll factor [199, 200]. They are
optimized for low-light scienti�c applications such as �uorescence microscopy.

4.2.3. CCD cameras

A second type of analog linear sensors are charge-coupled device (CCD) cameras. In contrast to
CMOS cameras, these do not contain active pixels, but are a 2-dimensional array of metal-insulator-
semiconductor (MIS) photo gates (see Fig. 4.6a). If a voltage is applied to the metal contacts, a potential
well is formed in the silicon chip, which can be used to accumulate photo-induced electrons. After the
exposure, varying voltage pattern is applied to the MIS gates, that shifts the charges o� the chip (see
Fig. 4.6b). A detailed description of these sensors is e.g. given in Refs. [201, 202].

Simple CCD sensors are organized as shown in Fig. 4.6(c). Here the charges are shifted vertically
into the readout register. The content of the readout register is then shifted horizontally out of the
chip, where it is ampli�ed and digitized with an ADC. Finally the digitized photoelectron counts are
transferred to a computer for further processing. This scheme has the disadvantage, that the image
will smear during transport, as additional photoelectrons are created during the shifting process. This
problem is overcome by interline or frame-transfer sensors (see Fig. 4.6d,e), which store the charges
in additional light-shielded areas. In an interline sensor, the photo charges are �rst shifted from the
photodiodes into vertical, shielded shift registers. Their content is subsequently shifted into the main
readout register. In a frame-transfer sensors, a second shielded CCD array is positioned next to the
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sensitive area. At the beginning of the readout process, the full image is quickly shifted into this storage
area. This minimizes the smear. Then the content of the storage area is read out and digitized, while
the sensitive area accumulates the next frame. Both methods reduce the smear artifacts and allow the
sensor to integrate the next frame during the readout phase, minimizing the non-active period between
frame integrations.
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Figure adapted from Refs. [198, 201, 202].

4.2.4. EMCCD cameras

The sensitivity of CCD image sensors can be enhanced by an on-chip gain mechanism. A second shift
register is inserted between the readout register and the external ampli�er, as shown in Fig. 4.7(a). This
register works like a standard CCD register, but uses higher voltages during part of the shift process (see
Fig. 4.7b). This creates potential wells, which are deep enough to cause a multiplication of the photo
electrons by impact ionization. Therefore it is called electron-multiplication (EM) register and the whole
sensor is called electron-multiplying charge-coupled device (EMCCD). Due to the exponential nature of
the repeated impact ionization process, very high ampli�cation factors can be achieved and even single
photon counting experiments are possible with EMCCD sensors [203].
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4.2.5. Statistics of linear image sensors

This section will discuss the statistics of linear image sensors. As explained in section 4.2.1, the
photocurrent Iphot(t) generated in a pixel is typically accumulated over a period ∆texp and then read out.
The readout process includes a gain mechanism and a quanti�cation of the photo-induced charges by
an ADC. All three steps need to be modeled, in order to understand the statistics of such image sensors.

Photons hit the sensor and are detected with a probability ηdet. Each detected photon is described by
its arrival time tl and generates exactly one photoelectron. In sensors with an ampli�er, this charge
is ampli�ed by a factor Gl . For EMCCD cameras or SPADs, which are driven below their breakdown
voltage, the gain is itself a random variable with average 〈

Gl
〉
= G and variance σ2

G . Then the time
series of photoelectrons, that leave the sensor, can be written as:

Ne,det(t) =
∑
l

Gl · δδδ(t − tl ). (4.2.3)

The accumulation process during the exposure time ∆texp can the be written as

Ne(t) =

t+∆texp∫
t

Ne,det(t) dt ′ =

t+∆texp∫
t



∑
l

Gl · δδδ(t ′ − tl )


dt ′. (4.2.4)

With this de�nitions, the average number of detected photoelectrons in each pixel can be calculated as

〈Ne〉 = G · ηdet · Φ · ∆texp, (4.2.5)

where Φ is the incident photon �ux on a single pixel. Due to the statistical independence of the gain
and photodetection processes, the variance of the random variable Eq. (4.2.4) is �nally given by

Var(Ne) =
〈
N2

e
〉
−

〈
Ne

〉2
= ηdet · Φ · ∆texp ·

〈
G2〉 = ηdet · Φ · ∆texp · F

2 ·
〈
G
〉2. (4.2.6)

In the last step the excess noise factor F 2 was introduced, which is de�ned as [178]:

F 2 :=

〈
G2

〉
〈G〉2

= 1 +
σ2
G

G
2 . (4.2.7)

This factor quanti�es the increase in signal noise by a stochastic gain process over a non-stochastic
ampli�cation. For sensors with a non-stochastic ampli�cation (e.g. an operational ampli�er in front of
the ADC only), the excess noise factor is F 2 = 1, as σ2

G = 0. For EMCCD cameras it is typically F 2 = 2
[205].

A linear analog-to-digital converter (ADC) is used to quantify the photoelectrons. Its output signal
IADC(t) is quantized into 2RADC di�erent values, where RADC = 1,2, ... is the resolution of the ADC in
bits. The output units of an ADC are commonly called analog-to-digital converter units (ADUs). The
digitization is modeled by a conversion factorAADC, which is given in units of ADUs per photo electron:

IADC(t) =
⌊
AADC · Ne(t) +

1
2

⌋
with AADC =

1
Nmax/2RADC

. (4.2.8)

Here b·c denotes rounding to the next lower integer number and Nmax is the number of electrons
represented by the highest ADC value IADC = 2RADC − 1.

Also without incident light, all linear image sensors show a small background signal. It is most often
created by a combination of thermally induced charges and o�set signals in the readout process. This
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background signal is quanti�ed by its mean 〈
Nback

〉 and variance σ2
back. Then Eqs. (4.2.5, 4.2.6) are

rewritten as [206, 207]:

〈Ne〉 =
〈
Nback

〉
+ G · ηdet · Φ · ∆texp (4.2.9)

Var(Ne) = σ2
back + ηdet · Φ · ∆texp · F

2 ·
〈
G
〉2︸                            ︷︷                            ︸

=:σ2
photon

. (4.2.10)

The additive background noise term σ2
back in Eq. (4.2.10) can be separated into several contributions:

1. dark current: Thermally created electron hole pairs are indistinguishable from photo-induced
electrons, so they are subject to the same ampli�cation processes. Their contribution to the image
and noise is:〈

Ndark
〉
= G · Ṅdark · ∆texp, σ2

dark = G
2
· Ṅdark · ∆texp. (4.2.11)

Here Ṅdark is the rate of dark current electrons, which typically decays exponentially with de-
creasing temperature (Boltzman distribution) until a low bias value is reached [198]. Therefore
this noise contribution can be e�ectively reduced by cooling the image sensor.

2. clock-induced charges: In CCD and EMCCD cameras, the shifting process may induce additional
electrons, which are treated like an additional dark current. These can be minimized by careful
design of the readout scheme. The average number of clock-induced electrons is Ncic per readout
cycle. Due to the Poissonian nature of the process, its variance is

σ2
cic = G

2
· Ncic. (4.2.12)

3. readout noise: The readout noise does not depend on the signal level and summarizes the noise
imposed by the readout electronics (external ampli�er etc.). It is characterized by a vanishing
mean and a standard deviation of σread electrons per readout cycle. This contribution is typically
the limiting factor in most image sensors. Only in EMCCD cameras it is of minor importance,
as the on-chip ampli�cation is done before the external electronics and pushes the signal level
above the readout noise level. The readout noise can be reduced by lowering the readout speed of
the sensors, the use of low-noise electronic circuits, or by adding additional averaging �lters. All
these options e�ectively limit the readout speed of the camera.

4. quantization noise: The digitization noise σADC is caused by the limited resolution of the ADC,
which images several input values on the same output value (cf. Eq. (4.2.8)). The maximal error is
typically one least signi�cant bit or 1/AADC electrons. It can be shown that the standard deviation
of this contribution is given (in units of electrons) by[208, 209]

σADC =
1

AADC ·
√

12
. (4.2.13)

Typically the resolution of the ADC is high enough, so that this error is negligible.

All noise contributions can �nally be summarized in the signal-to-noise ratio (SNR), which relates the
background corrected signal intensity to the noise standard deviation:

SNR :=
〈AADC · Ne〉

√
Var(AADC · Ne)

=
AADC · ηdet · Φ · G

AADC ·
√
σ2

photon + σ
2
dark + σ

2
cic + σ

2
read + σ

2
ADC

, (4.2.14)
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Using the di�erent results obtained above, this yields:

SNR =
AADC · ηdet · Φ · ∆texp · G√

A2
ADC · G

2
· F 2 ·

(
Ncic + Ṅdark · ∆texp + ηdet · Φ · ∆texp

)
+ 1/12 +A2

ADC · σ
2
read

(4.2.15)

If the image sensor contains an on-chip ampli�er (e.g. an EM-gain register) and a readout ampli�er in
front of the ADC, the average gain G will be the product of both ampli�cation factors. As the o�-chip
ampli�er typically uses a non-stochastic ampli�cation scheme (e.g. an electronic operational ampli�er),
the excess noise factor F 2 will only be in�uenced by the on-chip ampli�cation. The o�-chip ampli�er
noise is contained in the readout noise.

In addition to the noise of each single pixel, it is important to be aware of the nonuniformity of most
image sensors, which is often called �xed pattern noise. In CMOS sensors, each photodiode and the
transistors in every pixel may have slightly di�erent performance. This leads to a pixel-to-pixel variation
of the detected signal, even at uniform illumination. In CCD and EMCCD cameras, variations in the
performance of the shift registers and MIS photosensors lead to a comparable e�ect [206].

4.3. Comparison of image sensors

An important factor in image sensors for low light applications, such as �uorescence microscopy, is
the quantum e�ciency ηdet. Figure 4.8 shows ηdet of di�erent image sensor types as a function of the
wavelength λ of the incident light. The �gure includes front- and back-illuminated CCD and CMOS
sensors, as well as a SPAD array. Back-illuminated sensors generally reach values above 90%, but are
available only for a few technologies, due to their high production costs. Fluorescent dyes in the green to
red spectral range (λ = 500...700 nm) were used for this thesis. All image sensors have their maximum
ηdet close to the green spectral range and still a signi�cant ηdet for red light.

Another important parameter of image sensors is the signal-to-noise ratio that can be reached with
a given number of incident photons. Figure 4.9 compares the theoretical SNR for di�erent camera
types. For comparison an ideal image sensor is shown as a black dashed line. It is limited only by the
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photon-noise. At high light levels, the performance of all sensor types approaches that of an ideal image
sensor. Only EMCCD cameras (blue line) show a lower SNR in this regime, due to the excess noise,
caused by their stochastic ampli�cation process. At low light levels, only EMCCD, sCMOS cameras
(green line) and SPAD arrays (magenta line) are viable choices. The use of standard CCD sensors (red
line) is precluded by their high readout noise. At very low light levels, close to one incident photon per
exposure, SPAD arrays perform best and EMCCD cameras are a good choice due to their on-chip gain
process. sCMOS cameras are a good choice at slightly higher light levels, as their SNR is not limited by
a stochastic gain process.

In summary SPAD arrays would be the ideal image sensor for low-light applications, such as �uores-
cence microscopy. Their disadvantage is the complex readout and the fact, that SPAD arrays are not yet
available commercially. Also their detection e�ciency for red light is limited. The next best sensors for
low light applications are EMCCD and sCMOS cameras. Normal CCD or CMOS cameras show good
performance only at high light levels or low frame rates. Their advantage is the relatively low price,
compared to sCMOS, EMCCD and SPAD array cameras.
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5. Measuring di�usion: fluorescence
fluctuation techniques

This chapter will present the theory of �uorescence correlation spectroscopy (FCS) and �uorescence
cross-correlation spectroscopy (FCCS) for confocal and light sheet microscopes. Its form is based on
the presentation in Refs. [93, 96] and it was also used in our article Ref. [132]. For the autocorrelation
analysis, this form is a bit more complex than usually seen in FCS publications, but it yields the same
results. Its advantage will be evident in section 5.4: the FCCS auto- and cross-correlation functions can
be written in a compact and uni�ed form.

5.1. Introduction to fluorescence correlation spectroscopy

5.1.1. Single point measurements

As already mentioned in section 1.4, the method of choice to determine protein mobility in living cells
in this thesis work was �uorescence correlation spectroscopy (FCS). It was introduced in 1974 by Magde,
Elson, and Webb in Refs. [68, 69, 78]. As shown in Fig. 5.1, �uorescence is excited and detected in a tiny
subvolume (a few µm3) of the sample containing only few particles N (t) at any time. The measured
�uorescence intensity F (t) is proportional to this particle number. Due to the di�usive motion of the
particles, N (t) is permanently �uctuating around its mean value 〈N〉. This is represented as:

N (t) = 〈N〉 + δN (t) ⇒ F (t) = 〈F〉 + δF (t) with 〈
δN (t)

〉
=

〈
δF (t)

〉
= 0. (5.1.1)

Here δN (t) and δF (t) represent the �uctuations of the particle number and the �uorescence intensity.
Depending on the speed of motion (di�usion coe�cient), the particle number �uctuates “faster” or
“slower”. This can be quanti�ed using an autocorrelation analysis. The normalized FCS autocorrelation
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intensity traces in (b). The decay times τdecay are de�ned by g(τdecay) = g(0)/2.


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function is de�ned as

g(τ) =
〈δF (t) · δF (t + τ)〉

〈F〉2
=
〈F (t) · F (t + τ)〉

〈F〉2
− 1, τ > 0. (5.1.2)

where the averaging operation 〈·〉 is de�ned as a a time average:

〈F (t)〉 = lim
T→∞

1
T
·

T∫
0

F (t) dt . (5.1.3)

The autocorrelation function g(τ) measures the similarity of the signal F (t) to its time-shifted version
F (t + τ). If the �uctuations are completely random white noise, the correlation function is g(τ) ∝ δδδ(τ),
which is 0 for all time lags τ > 0. If F (t) contains a non-random component, the correlation will
be non-zero over a lag-time range, which is characteristic for the non-random process. In FCS the
non-random �uctuations are caused by Brownian motion of �uorescent particles, which implies a typical
dwell time of the particles in the observation volume of (cf. Eq. (1.3.2) (p. 7)):

τD ∝

(
3√Vobs

)2

D
. (5.1.4)

During this time, the presence of a single particle causes a self-similarity in the �uctuations, which
manifests itself as a decay of the autocorrelation function from a zero-lag amplitude g(0) > 0 to
g(∞) = 0. The half-life time τdecay of this decay is approximately given by τD from Eq. (5.1.4).

The zero-lag amplitude g(0) of the autocorrelation function Eq. (5.1.2) yields the average particle
number in the observation volume, as

g(0) =
〈
δF2(t)

〉
〈F〉2

∝

〈
δN2(t)

〉
〈N〉2

=
1
〈N〉

. (5.1.5)

In the last step, the Poissonian nature of the randomly �uctuating particle number N (t) was used, which
dictates that 〈

δ2N (t)
〉
≡ Var(N (t)) = 〈N〉.

5.1.2. Fluorescence correlation spectroscopy on a confocal microscope

Today FCS is typically implemented using confocal microscopes (see section 3.2) with a very small
observation volume (Vobs ≈ 0.2 − 0.6µm3), and �uorescence is detected by single-photon avalanche
diodes (SPADs) (cf. section 4.1). The acquired �uorescence intensity time-trace F (t) is correlated using
either specialized digital electronics or a software correlator. In a �nal step, analytical model functions
are used to determine the average particle number 〈N〉, the di�usion coe�cient D (via the decay time
τdecay) and other properties of the molecular motion, such as �ow speeds, anomalous di�usion exponent,
kinetic reaction rates.

5.1.3. Imaging fluorescence correlation spectroscopy

Confocal FCS measurements are limited to a single detection focus due to the nature of the used confocal
microscope. For this thesis, FCS was implemented on a selective plane illumination microscope (SPIM)
with fast image sensors, such as SPAD arrays and fast EMCCD cameras. This combination allows
to perform imaging �uorescence correlation spectroscopy (imaging FCS) measurements also of fast
di�using molecules. These measurements result in maps of mobility parameters and yield extensive
statistics for each single sample. The new combination of SPIM and FCS, termed single plane illumination
�uorescence correlation spectroscopy (SPIM-FCS), has been introduced by Wohland et al. in 2010 [117]
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Figure 5.2. Illustration of the principle of imaging FCS.

and �rst applications to single cells were reported in [120, 121]. Besides SPIMs, also TIRF microscopes
have been successfully used for imaging FCS [108]. This combination was called imaging total internal
re�ection �uorescence correlation spectroscopy (ITIR-FCS).

The principle of imaging FCS is illustrated in Fig. 5.2. At �rst, an image series is acquired with high
temporal resolution. The frame repetition time ∆tframe should be at least one order of magnitude smaller
than the FCS decay time of the observed particles . To give an example, τdecay ≈ 0.1 − 1 ms for small
and τdecay ≈ 10 ms for large proteins in living cells (see section 8.2). To achieve such high readout rates
of the image sensor, a region of interest (ROI) is typically chosen from the full frame. With EMCCD
and CMOS cameras, frame repetition times in the range of ∆tframe = 0.3 − 1 ms can be achieved. SPAD
arrays are much faster and reach frame repetition times in the microsecond range.

An image stack of ' 50,000 frames is recorded and processed according to Fig. 5.2(b-d). Initially,
artifacts such as an o�set due to a background intensity or the e�ect of �uorophore photobleaching
are corrected for. Then a statistical estimator of the analytical autocorrelation function in Eq. (5.1.2) is
calculated. Finally a non-linear least squares �t is used to extract the parameters of interest (e.g. decay
times, di�usion coe�cients or particle number) from the measured autocorrelation of every pixel. These
parameters can be displayed as parameter maps, showing their spatial variation across the sample. Such
maps can also be used to calculated parameter statistics over the whole sample or regions of interes
(ROIs).

Outline of the chapter

The rest of this chapter will introduce the theoretical framework of FCS as well as of two-color and
pixel-pixel FCCS, which allows not only for the measurement of particle mobility, but also for molecular
interactions and spatial correlations. At �rst, section 5.2 explains how the �uorescence excitation,
emission and measurement in a microscope are modelled. In section 5.3 the full theory of FCS is
developed. It is applied to the case of a confocal and of a SPIM microscope. In section 5.4 the theory is
expanded to 2-focus and 2-color FCCS. The �nal section 5.5 treats typical artifacts in FCS and FCCS,
such as photophysics, background �uorescence and �uorophore bleaching.
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Chapter 5. Measuring di�usion: �uorescence �uctuation techniques

5.2. Modeling fluorescence in a microscope

The theoretical framework of FCS starts from a simpli�ed model of the �uorescence microscope, which
is used to acquire the data. Figure 5.3 illustrates this model. It will be explained in detail throughout
this section.

The sample of volume Vsample contains Nsample, χ particles of species χ that move randomly. The motion
of each particle i = 1...Nsample( χ) is described by its trajectory ~ri (t). The trajectories are typically not
known exactly, but their statistics, such as the mean squared displacement (MSD), is known. Finally, the
local particle concentration distribution of species χ can be written as

cχ (~r , t) =
1

Vsample
·

Nsample, χ∑
i=1

δδδ
[
~r − ~ri (t)

]
. (5.2.1)

The particles are illuminated by some kind of illumination optics (e.g. a confocal microscope or a
SPIM) with an intensity distribution Iγ (~r). The index γ ∈ {g,r, ...} denotes the color channel of the
microscope, e.g. γ = g for excitation at 488 nm and detection in the range of [500...550] nm to observe
eGFP, or γ = r for excitation at 568 nm and detection at [600...700] nm for mRFP1. An absorption
cross-section σabs,γ, χ and a �uorescence quantum yield q�uor,γ, χ is assigned to each species. Then the
amount of �uorescence emitted by a single �uorophore of species χ at position ~r into channel γ can be
written as

Iγ (~r) · σabs,γ, χ · q�uor,γ, χ .

The detection optics is described by a detection e�ciency distribution Ωγ (~r) and a detection e�ciency
ηdet,γ . The latter summarizes any signal loss due to optical surfaces or �lters in the detection beam path.
The distributions Iγ (~r) and Ωγ (~r) are not observable independently, so they are usually combined into
a single function, called molecular detection e�ciency function (MDE):

MDEγ (~r) := Iγ (~r) · Ωγ (~r). (5.2.2)

This function is proportional to the rate of �uorescence photons expected from a �uorophore at position~r .
Its actual form for a given microscopy setup can be calculated from the PSFs of the microscope (see

r (t)i

illumination 
optics

detection
volume

detection/imaging optics detector

particle
trajectories

light
source

I (r)γ Ω (r)γ

σ  ,   qabs,γχ fluor,γχ

ηdet,γ

Figure 5.3. Schematic of the optics model used for the derivation of FCS theory. The illumina-
tion optics focuses light into an intensity distribution Iγ (~r). The detection optics is characterized
by its detection probability distribution Ωγ (~r) and the detection e�ciency ηdet,γ . The sample is
modeled as a set of particles with trajectories ~ri (t). To each species an absorption cross-section
σabs,γ, χ and a �uorescence quantum e�ciency q�uor,γ, χ is assigned.
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5.2. Modeling �uorescence in a microscope

chapter 3). The geometry of the detectors (e.g. square pixels of a camera) also may need to be taken into
account. For confocal setups a 3-dimensional, rotationally symmetric Gaussian function with width wγ
and height zγ is a good approximation, as shown in section 3.2.3:

MDEconfocal,γ (~r) = I0 · exp *
,
−2 ·

x2 + y2

w2
γ

− 2 ·
z2

z2
γ

+
-
. (5.2.3)

In Refs. [117, 130] and section 3.2.3 it is argued, that a properly designed and aligned SPIM has a PSF
with negligible sidelobe contributions. So the PSF can also be approximated by a Gaussian function. Still
the �nite size of the quadratic camera pixel has to be taken into account for the �nal form of the MDE:

MDESPIM,γ (~r) = I0 · (hpixel ~ PSFSPIM,γ )(~r) =

a/2"
−a/2

PSFSPIM,γ (~r − ~r ′) dx ′ dy′, (5.2.4)

where a is the width of the pixel in the object plane, ~ denotes convolution and hpixel(~r) is the charac-
teristic function, describing a camera pixel:

hpixel(~r) = δδδ(z) ·



1 −a
2 ≤ x ≤ a

2 ∧ −a
2 ≤ y ≤ a

2

0 else
. (5.2.5)

The convolution integral in Eq. (5.2.4) can be solved analytically:

MDESPIM,γ (~r) = I0 ·

[
erf

(
a−2x√

2·wγ

)
+ erf

(
a+2x√

2·wγ

)]
·

[
erf

(
a−2y
√

2·wγ

)
+ erf

(
a+2y
√

2·wγ

)]

[
2 · erf

(
a√

2·wγ

)]2 ·exp *
,
−2 ·

z2

z2
γ

+
-

(5.2.6)

As shown in Fig. 5.4, this MDE deviates signi�cantly from a Gaussian function, if a is signi�cantly larger
than the size wγ of the PSF.

Finally, the results of this section can be combined into the �uorescence time trace expected from a
�uorophore concentration cχ (~r , t) (see Eq. 5.2.1):

Fγ (t) =

∞$
−∞

MDEγ (~r) ·
∑
χ∈S

ηdet,γ · σabs,γ, χ · q�uor,γ, χ · cχ (~r , t) dV. (5.2.7)
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Figure 5.4. Plots of cuts through the MDE of a SPIM in Eq. (5.2.6) along one coordinate axis.

For all plots, the PSF width was wγ = 500 nm.
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Chapter 5. Measuring di�usion: �uorescence �uctuation techniques

The factors ηdet,γ , σabs,γ, χ and q�uor,γ, χ are not distinguishable in a FCS experiment, so they are sum-
marized into a single detection e�ciency ηγ, χ of a �uorophore of species χ ∈ S in channel γ:

ηγ, χ ≡ ηdet,γ · σabs,γ, χ · q�uor,γ, χ (5.2.8)

Then Eq. (5.2.7) can be simpli�ed to

Fγ (t) =

∞$
−∞

MDEγ (~r) ·
∑
χ∈S

ηγ, χ · cχ (~r , t) dV. (5.2.9)

As shown in Eq. (5.1.2), the autocorrelation function is written in terms of signal �uctuations δFγ (t)
around a mean intensity 〈

Fγ
〉. These can be expressed in a form analogous to Eq. (5.2.9), if the concen-

tration dynamics cχ (~r , t) is also split into a �uctuation part and an average concentration:

cχ (~r , t) =
〈
cχ

〉
+ δcχ (~r , t). (5.2.10)

Due to the linearity of Eq. (5.2.9), this �nally yields:

δFγ (t) =

∞$
−∞

MDEγ (~r) ·
∑
χ∈S

ηγ, χ · δcχ (~r , t) dV. (5.2.11)

5.3. Theory of fluorescence correlation spectroscopy

5.3.1. The FCS autocorrelation function

For a color channel γ, the FCS autocorrelation function is de�ned as

gγ (τ) =

〈
δFγ (t) · δFγ (t + τ)

〉
〈
Fγ

〉2 . (5.1.2)

Using the results in Eqs. (5.2.9, 5.2.11) this can be rewritten as:

gγ (τ) =

∑
χ∈S

η2
γ, χ

∞#
−∞

∞#
−∞

MDEγ (~r) ·MDEγ (~r ′) ·
〈
δcχ (~r , t) · δcχ (~r ′, t + τ)

〉
dV dV ′( ∑

χ∈S
ηγ, χ ·

∞#
−∞

MDEγ (~r) ·
〈
cχ (~r , t)

〉
dV

)2 . (5.3.1)

Here, the linearity of the integration and averaging 〈
·
〉 was used. Furthermore, it was assumed that the

concentration �uctuations from two di�erent molecular species χ and χ′ are statistically independent,
i.e. 〈δcχ (~r , t) · δcχ′ (~r , t)

〉
= 0.

5.3.2. Zero-lag correlation and particle numbers

The Poissonian nature of the particle number (or concentration) in the focus dictates for τ = 0:〈
δcχ (~r , t) · δcχ (~r ′, t)

〉
≡

〈
δc2
χ (~r , t)

〉
· δδδ(~r − ~r ′) =

〈
c(~r , t)

〉
· δδδ(~r − ~r ′), (5.3.2)

where the factor δδδ(~r−~r ′) signi�es, that single particles are non-interacting and therefore, also statistically
independent. Therefore they are only correlated to themselves and not to other particles nearby. Using
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5.3. Theory of �uorescence correlation spectroscopy

Eq. (5.3.2) and further assuming that the concentration does not change signi�cantly over the observation
volume (described by the MDE), i.e. 〈cχ (~r)

〉
≡

〈
cχ

〉, the zero-lag autocorrelation amplitude becomes:

gγ (0) =

∑
χ∈S

η2
γ, χ ·

〈
cχ

〉
·

∞#
−∞

MDE2
γ (~r) dV( ∑

χ∈S
ηγ, χ ·

〈
cχ

〉
·

∞#
−∞

MDEγ (~r) dV
)2 =

=

∑
χ∈S

η2
γ, χ ·

〈
cχ

〉
( ∑
χ∈S

ηγ, χ ·
〈
cχ

〉)2 ·

∞#
−∞

MDE2
γ (~r) dV(

∞#
−∞

MDEγ (~r) dV
)2 =
S={χ }

1〈
cχ

〉 ·
∞#

−∞

MDE2
γ (~r) dV(

∞#
−∞

MDEγ (~r) dV
)2 . (5.3.3)

In the last step, a single species χ was assumed. Introducing the e�ective volume

Ve�,γ :=

(
∞#

−∞

MDEγ (~r) dV
)2

∞#
−∞

MDE2
γ (~r) dV

(5.3.4)

of the MDE, the zero-lag amplitude of the autocorrelation function can be written in terms of a particle
number 〈

Nχ
〉
=

〈
cχ

〉
· Ve�,γ within this volume:

gγ (0) =

∑
χ∈S

η2
γ, χ ·

〈
cχ

〉
· Ve�,γ( ∑

χ∈S
ηγ, χ ·

〈
cχ

〉
· Ve�,γ

)2 =

∑
χ∈S

η2
γ, χ ·

〈
Nχ

〉
( ∑
χ∈S

ηγ, χ ·
〈
Nχ

〉)2 =
S={χ }

1〈
Nχ

〉 . (5.3.5)

For confocal and light sheet microscopes, the MDEs were de�ned in section 5.2. The integrals in the
e�ective volume in Eq. (5.3.4) can be calculated analytically for these speci�c MDEs:

confocal: Ve�,γ = π
3/2 · w2

γ · zγ , (5.3.6)

SPIM: Ve�,γ =

√
π · a2 · zγ

[
erf

(
a
wγ

)
+

wγ
√
π ·a

(
e−a2/w2

γ −1
)]2 . (5.3.7)

5.3.3. The concentration correlation factor

In the autocorrelation function Eq. (5.3.1) the particle dynamics is fully described by the concentration
correlation factor〈

δcχ (~r , t) · δcχ (~r ′, t + τ)
〉
=: φχ (~r ,~r ′, τ) ≡ φχ (~r − ~r ′, τ). (5.3.8)

It quanti�es the amount of correlation at a time-lag τ between the concentration �uctuations at two posi-
tions ~r and ~r ′. The last equivalence in Eq. (5.3.8) states that φχ (·, ·) only depends on the di�erence in po-
sitions, i.e. the whole system is shift-invariant in space. If the system of interest is furthermore isotropic,
the self correlation function only depends on the length ‖~r −~r ′‖, i.e. φχ (~r ,~r ′, τ) ≡ φχ (‖~r − ~r ′‖, τ). Note
that generally these assumptions are not necessarily true, but on the small scales of FCS measurements
they usually are assumed to apply.
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Chapter 5. Measuring di�usion: �uorescence �uctuation techniques

The concentration correlation factor is (up to prefactors) equivalent to the van-Hove self correlation
function of the particles [25, 212, 213], which is given in terms of single-particle trajectories i = 1,2, ...,N
as [213]:

Pχ (~r ,~r ′, τ) =
1
N
·

〈 N∑
i=1

δδδ(~r ′ − ~r + ~ri (0) − ~r − (~ri (τ) − ~r)
〉
. (5.3.9)

Here, Pχ (·, ·, ·) can be interpreted as the probability to �nd a particle at position ~r ′ at time τ, if it was
initially at position ~r . Speci�c forms of Pχ (·, ·) can be calculated as the Green’s function or propagator
of the partial di�erential equation (PDE), which governs the dynamics of cχ (~r , t). A simple example for
the PDE is the di�usion equation in Eq. (1.4.1) (p. 11). The Green’s function is de�ned as the solution of
the PDE for the initial condition cχ (~r ,0) = δδδ(~r) [214]. It can be used to calculate the solution cχ (~r , τ)
of the PDE for an arbitrary initial condition cχ (~r ,0) at any time τ > 0:

cχ (~r , τ) = cχ (~r ,0) ~ Pχ (~r , τ) =
(

cχ (~r ′,0) · Pχ (~r ,~r ′, τ) ddr ′. (5.3.10)

Here ~ denotes a convolution and d is the dimension of the space, in which the motion takes place.
Finally, the concentration correlation factor is given by

φχ (~r ,~r ′, τ) =
〈
δcχ (~r , t) · δcχ (~r ′, t + τ)

〉
=

〈
cχ

〉
· Pχ (~r ,~r ′, τ). (5.3.11)

With these de�nitions, Eq. (5.3.1) can be slightly rewritten:

gγ (τ) =

∑
χ∈S

η2
γ, χ

〈
cχ

〉 ∞#
−∞

∞#
−∞

MDEγ (~r) ·MDEγ (~r ′) · φχ (~r ,~r ′, τ) dV dV ′( ∑
χ∈S

ηγ, χ
〈
cχ

〉)2

·

(
∞#

−∞

MDEγ (~r) dV
)2 =

=

∑
χ∈S

η2
γ, χGχ

γ (τ)( ∑
χ∈S

ηγ, χ
〈
cχ

〉)2 . (5.3.12)

In this form a non-normalized correlation function

Gχ
γ (τ) :=

〈
δFχ

γ (t) · δFχ
γ (t + τ)

〉
η2
γ, χ ·

(
∞#

−∞

MDEγ (~r) dV
)2 =

=
〈
cχ

〉
·

∞#
−∞

∞#
−∞

MDEγ (~r) ·MDEγ (~r ′) · φχ (~r ,~r ′, τ) dV dV ′(
∞#

−∞

MDEγ (~r) dV
)2 (5.3.13)

of the �uctuations δFχ
γ (t) caused by a single species χ in a channel γ is introduced.

The next subsections will give the exact mathematical form of φχ (~r ,~r ′, τ) and the FCS autocorrelation
functions Gχ

γ (τ) and g(τ) for di�erent situations frequently encountered in FCS measurements.
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5.3. Theory of �uorescence correlation spectroscopy

5.3.4. Normal di�usion

The most common dynamics in FCS is normal di�usion, as introduced in section 1.3.1. Here, the particle
concentration dynamics cχ (~r , t) =

〈
cχ

〉
+ δcχ (~r , t) is governed by the di�usion equation Eq. (1.4.1):

∂
(〈

cχ
〉
+ δcχ (~r , t)

)
∂t

= Dχ · ~∇
2
(〈

cχ
〉
+ δcχ (~r , t)

)
⇒

∂δcχ (~r , t)
∂t

= Dχ · ~∇
2δcχ (~r , t). (5.3.14)

The Green’s function of this PDE is

Pχ (~r ,~r ′, τ) =
1(

4πDχτ
)3/2 · exp

(
−

(~r ′ − ~r)2

4Dχτ

)
. (5.3.15)

With this result and the MDEs in Eqs. (5.3.6, 5.3.7), the FCS autocorrelation function for normal di�usion
can be calculated. The MDEs as well as Eq. (5.3.15) can be separated into three factors that depend
solely on a single direction x, y or z. Therefore, also the autocorrelation function separates into three
directional components:

Gχ
γ (τ) =

〈
cχ

〉
· Gχ

γ,x (τ) · Gχ
γ,y (τ) · Gχ

γ,z (τ). (5.3.16)

Each directional factor is de�ned by

Gχ
γ,x (τ) =

∞∫
−∞

∞∫
−∞

MDEγ,x (ξ) ·MDEγ,x (ξ ′) · φχ,x (ξ, ξ ′, τ)dξdξ ′(
∞∫
−∞

MDEx (ξ)dξ
)2 . (5.3.17)

Here the directional components of MDEγ (~r) and of φχ (~r ,~r ′, τ) are denoted by an additional index x.

Confocal FCS: For a 3-dimensional Gaussian MDE (Eq. 5.2.3), the directional factor in Eq. (5.3.17) is
given for the x and y direction by

Gχ
γ,x (τ) =

1
√
π · wγ

· *
,
1 +

4Dχτ

w2
γ

+
-

−1/2

. (5.3.18)

The factor for the z direction is of the same form, but with wγ replaced by zγ . From this the non-
normalized correlation function is easily calculated:

Gχ
γ (τ) =

〈
cχ

〉
π3/2w2

γ zγ
· *

,
1 +

4Dχτ

w2
γ

+
-

−1

· *
,
1 +

4Dχτ

z2
γ

+
-

−1/2

. (5.3.19)

The �nal FCS normalized correlation function is then given by:

gγ (τ) =
1〈

cχ
〉
· π3/2w2

γ zγ
· *

,
1 +

4Dχτ

w2
γ

+
-

−1

· *
,
1 +

4Dχτ

z2
γ

+
-

−1/2

, (5.3.20)

which can be reformulated to

gγ (τ) =
1〈

Nχ
〉 · (1 + τ

τD, χ

)−1

·

(
1 +

τ

(zγ/wγ )2 · τD, χ

)−1/2

. (5.3.21)
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Figure 5.5. Plots of the autocorrelation function for a confocalmicroscope and 3-dimensional

normal di�usion, as de�ned in Eq. (5.3.20). In (a) the di�usion coe�cient is varied, whereas in
(b) the average particle number changes. In (a) the red lines indicate the di�usion correlation time
τD, χ as de�ned by Eq. (5.3.22) for each of the curves. Fixed parameters: 〈Nχ

〉
= 10, Dχ = 100µm2/s;

MDE parameters: wγ = 250 nm, κγ = 6.

Here 〈
Nχ

〉 is the average number of particles in a focal volume as given by Eq. (5.3.6) and τD, χ is the
di�usion correlation time (cf. Eq. (1.4.3), p. 13) with

τD, χ =
w2
γ

4Dχ
. (5.3.22)

This τD, χ is the average dwell time of particles in the observation volume and also the half decay
time of gγ (τ). Figure 5.5 illustrates the function gγ (τ) for a single species χ for di�erent the di�usion
coe�cients and the particle numbers. The red lines in Fig. 5.5(a) indicate τD, χ for the di�erent cases. They
demonstrate that gγ (τD, χ ) = gγ (0)/2. Figure 5.5(b) illustrates the general dependence gγ (0) = 1/

〈
Nχ

〉
of the zero-lag amplitude on the average particle number 〈

Nχ
〉 in the focal volume.

SPIM-FCS: For a SPIM-MDE as in Eq. (5.2.6) the volume integrals are also separable. Along the z-axis,
the MDE is Gaussian, so the component Gχ

γ,z (τ) is given by Eq. (5.3.18), as in the confocal case. The x-
and y-component are:

Gχ
γ,x (τ) = Gχ

γ,y (τ) =
1
a
·




erf
*..
,

a√
4Dχτ + w

2
γ

+//
-

√
4Dχτ + w

2
γ

a ·
√
π


exp *

,
−

a2

4Dχτ + w
2
γ

+
-
− 1





.

(5.3.23)

So the �nal 3-dimensional result is:

Gχ
γ (τ) =

〈
cχ

〉
√
π · zγ · a2

·




erf
*..
,

a√
4Dχτ + w

2
γ

+//
-
+

+

√
4Dχτ + w

2
γ

a ·
√
π


exp *

,
−

a2

4Dχτ + w
2
γ

+
-
− 1






2

· *
,
1 +

4Dχτ

z2
γ

+
-
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Figure 5.6. Plots of the SPIM-FCS autocorrelation function for 3-dimensional normal di�u-

sion, as de�ned in Eq. (5.3.25). In (a) the di�usion coe�cient was varied, whereas in (b) the
average particle number changes. In (a) the red lines indicate the di�usion correlation time τD, χ for
each of the curves. Fixed parameters: 〈Nχ

〉
= 10, Dχ = 10µm2/s. MDE parameters: a = 400 nm,

wγ = 500 nm, zγ = 1200 nm.

The normalized SPIM-FCS autocorrelation function for normal di�usion of a single species then is:

gγ (τ) =
1〈

cχ
〉
·
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π · zγ · a2
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. (5.3.25)

This is still expressed in terms of absolute concentrations 〈
cχ

〉 and di�usion coe�cients Dχ . Using the
e�ective focal volume Ve�,γ of a SPIM-MDE, as de�ned in Eq. (5.3.7), the absolute concentration can
be replaced by the number of particles 〈

Nχ
〉 within this volume (〈cχ

〉
→

〈
Nγ

〉
/Ve�,γ). Then again the

zero-lag autocorrelation amplitude is simply gγ (0) = 1/
〈
Nχ

〉. De�ning a di�usion correlation time τD, χ
is not as straightforward, as in the confocal case, since the lateral MDE shape is more complex. The
de�nition sometimes used for the SPIM correlation time is [112, 114]

τD, χ =
Ae�,γ

4Dχ
, (5.3.26)

where the e�ective lateral focal area is de�ned as [112]

Ae�,γ =

(
∞!

−∞

MDEγ (x, y,0) dx dy
)2

∞!
−∞

MDE2
γ (x, y,0) dx dy

=
Eq. (5.2.6)

a2

[
erf

(
a
wγ

)
+

wγ
√
π ·a

(
e−a2/w2

γ −1
)]2 . (5.3.27)

This de�nition does not ful�ll gγ (τD, χ ) = gγ (0)/2, but is still a useful quantity describing the time a
particle dwells in the focus. De�ning τD, χ with gγ (τD, χ ) = gγ (0)/2 in an analytically closed form is
not possible. Finally, Fig. 5.6 illustrates the SPIM-FCS autocorrelation function Eq. (5.3.25) for di�erent
parameter combinations.
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Figure 5.7. Plots of the SPIM-FCS autocorrelation function for a two-component system χ =
1,2 with ηγ,1 = ηγ,2, as de�ned by Eq. (5.3.25). In (a) one di�usion coe�cient is �xed to D2 =

1µm2/s and D1 is varied, while 〈
N1

〉
=

〈
N2

〉
= 5. The black line is a one-component model with

〈N1〉 = 10 and D1 = 1µm2/s. The dotted lines represent 1-component �ts to the 2-component
curves. In (b) the di�usion coe�cients are �xed to D1 = 100µm2/s, D2 = 1µm2/s in all curves, but
the particle number fraction ρ1 :=

〈
N1

〉
/(

〈
N1

〉
+

〈
N2

〉
) is varied, keeping 〈

N1
〉
+

〈
N2

〉
= 10. MDE

parameters: a = 400 nm, wγ = 500 nm, zγ = 1200 nm.

Lower-dimensional di�usion: Using the separation of the confocal FCS and SPIM-FCS autocor-
relation functions into directional components, also lower-dimensional di�usion models are easy to
set up. In Eq. (5.3.17) one can easily omit the dimensions, along which no motion takes place. The
concentrations 〈

cχ
〉 then have to be reinterpreted as an areal density, or a line density, depending on

the di�usion model.

Multi-component di�usion: Figure 5.7 shows exemplary autocorrelation curves of a 2-component
SPIM-FCS autocorrelation model. To simplify the situation, the molecular brightnesses of both species
χ = 1,2 are set equal (ηγ,1 = ηγ,2). Figure 5.7(a) shows a 2-component model with di�erent combinations
of di�usion coe�cients (solid lines) and 1-component �ts (dotted line) to these. The 1-component �t
is hardly distinguishable from the 2-component data if the di�usion coe�cients are too close to each
other. If the assumption of equal brightnesses holds in a system, the multi-component di�usion model
is typically written in terms of an overall concentration 〈

call
〉 and relative concentrations ρχ for each

species, with:〈
call

〉
:=

∑
χ∈S

〈
cχ

〉
, ρχ :=

〈
cχ

〉〈
call

〉 and
∑
χ∈S

ρχ
!
= 1. (5.3.28)

With these de�nition, Eq. (5.3.12) can be simpli�ed to:

gγ (τ) =
1〈

call
〉2 ·

∑
χ∈S

Gχ
γ (τ) (5.3.29)

5.3.5. Anomalous di�usion

Anomalous di�usion was introduced in section 1.3.2. In FCS the propagator for such anomalous transport
processes is typically assumed to be a Gaussian function [22, 23, 27, 32]

Pχ (~r ,~r ′, τ) =
1(

4πΓχταχ
)3/2 · exp

(
−

(~r ′ − ~r)2

4Γχταχ

)
, (5.3.30)
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Figure 5.8. Plots of the SPIM-FCS autocorrelation function for single-component anomalous

di�usion, as de�ned in Eq. (5.3.24). The value of the parameter Γχ was chosen, so that the
autocorrelation curves coincide at τ = 10 ms: Γχ = 10µm2/s · τ1−αχ . MDE parameters: a = 400 nm,
wγ = 500 nm, zγ = 1200 nm.

with the anomaly parameter αχ and the generalized di�usion coe�cient Γχ . This propagator can be
used to calculate the confocal non-normalized FCS correlation functions:

Gχ
γ (τ) =

〈
cχ

〉
π3/2w2

γ zγ
· *

,
1 +
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+
-

−1

· *
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γ

+
-

−1/2

. (5.3.31)

Note the similar form of this expression and the corresponding expression for normal di�usion in
Eq. (5.3.19). Also the SPIM-FCS non-normalized correlation function is very similar to its normal
di�usion counterpart in Eq. (5.3.24):

Gχ
γ (τ) =
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. (5.3.32)

In general, both results can be obtained by the simple substitution Dχτ → Γχτ
αχ .

Figure 5.8 shows plots of SPIM-FCS autocorrelation functions for di�erent anomaly parameters αχ .
For subdi�usion (αχ < 1) the curves have a �atter slope than the normal di�usion (αχ = 1). Therefore
they also spread out over a signi�cantly larger lag time range. For superdi�usion (αχ > 1) the correlation
function gets increasingly steeper. This behavior represents the �atter, or steeper slope of the MSD.

5.3.6. Arbitrary mean squared displacement

The propagator Eq. (5.3.30) can further be generalized for a motion with an arbitrary mean squared
displacement MSDχ (τ). Under the assumption, that Pχ (~r ,~r ′, τ) still retains its Gaussian shape, the
following de�nition can be used [80–82, 215]:

Pχ (~r ,~r ′, τ) =
1(

2π ·MSDχ (τ)/3
)3/2 · exp

(
−

(~r ′ − ~r)2

2 MSDχ (τ)/3

)
. (5.3.33)
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For example, the confocal normalized autocorrelation function then reads:

gγ (τ; MSDχ (τ)) =
1〈

Nχ
〉 · *

,
1 +

2
3

MSDχ (τ)

w2
γ

+
-

−1

· *
,
1 +

2
3

MSDχ (τ)

z2
γ

+
-

−1/2

. (5.3.34)

This form can be used to extract MSDχ (τ) from an experimentally determined autocorrelation function
{(τi , ĝi )}i∈N, by (numerically) solving the equation

gγ (τi ; MSDχ (τi )) = ĝi (5.3.35)

for MSDχ (τi ) at every lag time τi . This method was introduced by Shusterman et al. in 2004 to
distinguish the internal and the global motion of �uorescently labeled polymer chains [80].

5.3.7. Sample translation or flow

To describe a directed motion (see section 1.3.3) or �ow of particles through the focus of the microscope,
the advection-di�usion equation is used:

∂cχ (~r , t)
∂t

= −~v · ~∇cχ (~r , t) + Dχ · ~∇
2cχ (~r , t). (5.3.36)

Here the �ow is characterized by its velocity vector ~v = (vx ,vy ,vz )T. The propagator for Eq. (5.3.36) is

P(~r ,~r ′, τ) =
1

(4πDχτ)3/2 · exp
(
−

(~r ′ − ~r − ~v · τ)2

4Dχτ

)
. (5.3.37)

This leads to a non-normalized confocal FCS autocorrelation function, which is extended by an expo-
nential factor as compared to the normal di�usion form [37, 78, 216]:
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2
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. (5.3.38)
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Figure 5.9. Impact of �ow on FCS autocorrelation curves for 3D di�usion in a Gaussian focus.

The correlation time for normal di�usion (black dashed line) is τD ≈ 1.5 ms. Plot parameters:〈
Nχ

〉
= 10, Dχ = 10µm2/s. MDE parameters: wγ = 250 nm, κγ = 6.
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Again, the SPIM-FCS non-normalized autocorrelation function is more complex, but as for normal
di�usion the integrals separate into three direction factors Gχ

γ (τ) =
〈
cχ

〉
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The result for the z-direction is again the same as for a confocal MDE:

Gχ
γ,z (τ) =

1
√
π · zγ

· *
,
1 +

4Dχτ

z2
γ

+
-

−1/2

· exp *
,
−

v2
zτ

2

4Dχτ + z2
γ

+
-
. (5.3.40)

The e�ect of a �ow in the sample can easily be seen in the confocal case, where the exponential term
will lead to a faster decay of the autocorrelation function. In the SPIM case the in�uence is qualitatively
the same, but this is obscured by the complex analytical form of the functions. In both cases, the
dependence of the autocorrelation function on the �ow velocity 

~v

 is strong, whereas the dependence
on the �ow direction ~v/ 

~v

 is very weak or non-existent due to the symmetry of the MDE. Therefore
the �ow direction cannot be determined with single-focus FCS. The methods presented in section 5.4.1
will overcome this problem.

Finally Fig. 5.9 shows exemplary autocorrelation curves for a system with di�usion and �ow. It clearly
shows the faster decay and changing shape of the autocorrelation function with increasing �ow speed.
The impact of �ow is minor, as long as the typical time to pass the focus by �ow

τF =
wγ


~v



(5.3.41)

is smaller than the di�usion correlation time τD.
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5.4. Fluorescence cross-correlation spectroscopy

5.4.1. Measuring directed motion: Two-focus cross-correlation

So far the �uorescence �uctuations from a single observation volume were considered to yield mobility
parameters of the observed particles. As noted in section 5.3.7, this method is limited, when the velocity
and direction of a �ow �eld are to be measured. A way to overcome this limitation is “2-focus �uorescence
cross-correlation spectroscopy (FCCS)”. In this method two observation volumes are used, that are
displaced by ~δ = (δx , δy , δz )T (see Fig. 5.10). Then the �uorescence intensity time traces Fγ (t) from both
foci γ = l,r are measured independently. The autocorrelation functions will be described by the models
from section 5.3.7 and the �ow velocity 

~v

 may be extracted from each focus individually. A closer
look at the �uorescence intensity traces shows, that the trace from the right focus Fr(t) is a delayed
version of the trace from the left focus Fl(t). The delay is given by the time, that the particles need to
move from the left to the right focus. For a �ow velocity ~v, this delay time is given by τF× = ‖~δ‖ · 

~v

.
This feature of the intensities can be quanti�ed by calculating the spatial cross-correlation function
between the two intensity time traces:

gγρ (τ) =
〈
δFγ (t) · δFρ (t + τ)

〉〈
Fγ

〉
·
〈
Fρ

〉 =

〈
Fγ (t) · Fρ (t + τ)

〉〈
Fγ

〉
·
〈
Fρ

〉 − 1, τ > 0, γ, ρ ∈ {l,r, ...}. (5.4.1)

This form includes the autocorrelation as the special case γ = ρ. Therefore the explicit autocorrelation
functions gγγ (τ) and gρρ (τ) are omitted throughout the rest of this chapter.

In order to determine the actual form of these model functions for imaging �uorescence cross-
correlation spectroscopy (imaging FCCS), they are again rewritten in terms of non-normalized cross-
correlation factors Gχ

γρ (τ), analogous to Eq. (5.3.12) in section 5.3.3:

gγρ (τ) =

∑
χ∈S

ηγ, χηρ, χ
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) =

=
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〉) . (5.4.2)
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Figure 5.10. Illustration of two-focus �uorescence cross-correlation spectroscopy. Particles
move from left to right with a velocity v through two foci, that are separated by a distance δ.
The intensity traces are thus shifted by a time τF× ≈ δ · v and the cross-correlation shows a peak at
this time τF×. The �gure shows the idealized case, where v2τ2 � Dτ ∀τ � 0.
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The non-normalized cross-correlation factor Gχ
γρ (τ) is de�ned as:

Gχ
γρ (τ) :=

〈
δFχ

γ (t) · δFχ
ρ (t + τ)

〉
(
ηγ, χ ·

∞#
−∞

MDEγ (~r) dV
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·
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) =

=
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MDEγ (~r) ·MDEρ (~r ′) · φχ (~r ,~r ′, τ) dV dV ′(
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MDEγ (~r) dV
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(
∞#
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MDEρ (~r) dV
) (5.4.3)

In both Eqs. (5.4.2, 5.4.3), the molecular brightnesses ηγ, χ , ηρ, χ and MDEs MDEγ (~r),MDEρ (~r) were
written with di�erent indices. This accounts for any optical di�erences between the two foci. The
siuation is usually simpler, as for both MDEs the same detection �lters, illumination intensities and
optics are used and therefore also the brightnesses can be assumed to be equal. The MDEs then have
the same size, but with a shift ~δ:

ηγ, χ = ηρ, χ and MDEr(~r) = MDEl(~r + ~δ) or MDEr(~r − ~δ) = MDEl(~r). (5.4.4)

Under these assumptions, the non-normalized cross-correlation factor for a confocal microscope is given
by:

Gχ
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(5.4.5)

The normalized cross-correlation function for a single species is then given by
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(5.4.6)

The non-normalized autocorrelation factors for SPIM-FCCS can be written in terms of three direction
factors Gχ

γρ (τ) =
〈
cχ

〉
·Gχ

γρ,x (τ) ·Gχ
γρ,y (τ) ·Gχ

γρ,z (τ). Again, the factors for the x- and y direction are
equal:
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The factor in z-direction is:

Gχ
γρ,z (τ) =

exp
(
−

(vzτ−δz )2

4Dχτ+z
2
γ

)
√
π ·

√
4Dχτ + z2

γ

. (5.4.8)
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Figure 5.11. Impact of �ow on the FCCS cross-correlation curves for 3D di�usion between

two Gaussian foci (Eq. (5.4.6)). Parameters for the plots: 〈
Nχ

〉
= 10, Dχ = 10µm2/s ,

~v = (500,0,0)T µm/s. MDE parameters: wγ = 250 nm, zγ = 1500 nm, δy = δz = 0. Di�u-
sion correlation time: τD ≈ 1.5 ms. The illustration (b) shows the relative position of the foci
(squares on the matrix of the image detector) to the �ow and the central pixel (shaded central
square). The colors correspond to the graph colors in (a).

Figure 5.11 shows examples of the model function in Eq. (5.4.6). The three blue cross-correlation
curves are calculated for an increasing displacement δx in the �ow direction (dark to light blue). They
show the characteristic peak due to the �ow and how it moves towards longer lag times with increasing
focus distance ‖~δ‖. Also the correlation amplitude and the peak height decrease with ‖~δ‖. The green
cross-correlation curve is for a focus displacement ~δ, which is anti-parallel to the �ow vector ~v. Since
in this case, particles from the �rst focus never reach the second by �ow, no peak is formed. The
remaining correlation amplitude is explained by the superimposed di�usive motion only. Compared
to the di�usion-only case (black dotted curve) the half decay time is reduced because the �ow causes
particles to leave the focus faster than solely by di�usion. Finally the red curve shows a cross-correlation
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Figure 5.12. Two-focus FCCS cross-correlation curves for 3D di�usion without �ow

(Eq. (5.4.6)). Plot parameters: 〈
Nχ

〉
= 10, Dχ = 10µm2/s. MDE parameters: wγ = 250 nm,

zγ = 1500 nm.
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curve for a focus displacement perpendicular to the �ow direction. Here the decay time is similar to
that of the autocorrelation curve for di�usion and �ow (red dotted line). So for a given �ow direction,
the cross-correlation curves in four directions di�er signi�cantly. This can be used to estimate the
speed and the direction of the �ow: with two foci, two directions (left/right) may be distinguished.
In imaging FCCS a camera is used as detector (see Fig. 5.11b) and the cross-correlations to the four
directly neighboring pixels can be calculated. A global �t (see section 7.1.4) can be used to optimize the
parameters in �ve model functions simultaneously: one for the autocorrelation curve and one for each
of the four cross-correlation curves between the direct neighbors. Then both planar components of the
�ow velocity vx and vy can be determined. The �ow in z-direction can only be assessed, if additional
foci are available below and above the focal plane, which is not possible in a typical microscopes.

Figure 5.12 shows the 2-focus cross-correlation functions if no �ow is present in the sample (‖~v‖ = 0).
Also in these cases a peak can form, if the displacement ~δ between the foci is su�ciently large. This
peak is related to the time, that particles need to cover the distance ‖~δ‖ by di�usion only.

5.4.2. Measuring molecular interactions: Two-color cross-correlation

A second type of cross-correlation analysis allows to measure molecular interactions between particles,
carrying spectrally distinct �uorophores, for instance either a green (A) or a red (B) �uorophore. This
“2-color �uorescence cross-correlation spectroscopy (FCCS)” method is illustrated in Fig. 5.13. The
cross-correlation analysis is performed between the �uorescence intensities Fg(t) and Fr(t) from two
overlapping foci, from which photons in two distinct spectral ranges are detected (in Fig. 5.13(:) green g
and red r). If the particles interact, some of them move together (depicted as dimer AB in Fig. 5.13a). This
generates a correlation between the signals Fg(t) and Fr(t), which manifests itself as a non-vanishing
amplitude ggr(0) of the cross-correlation function. If no interaction is present (see Fig. 5.13b), the signals
Fg(t) and Fr(t) are statistically independent and the cross-correlation amplitude is 0.

As shown in Fig. 5.13(a), the cross-correlation amplitude ggr(0) depends on the relative concentration

time t

fl
uo

re
sc

en
ce

 F
(t

)
γ

lag time τ

co
rr

. f
un

ct
io

n 
g

(τ
)

γρ

green autocorrelation
red autocorrelation

crosscorrelation

µ1/(c +c )A AB

µ1/(c +c )B AB

(a) 2-color cross-correlation: sample with double-labeled particles ( )

green intensity 

red intensity

time t

fl
uo

re
sc

en
ce

 F
(t

)
γ

lag time τ

co
rr

. f
un

ct
io

n 
g

(τ
)

γρ

green autocorrelation
red autocorrelation

crosscorrelation

(b) 2-color cross-correlation: sample with single-labeled particles only ( ,  )

green intensity 

red intensity

A
B
AB

A
B
AB

Ndimer

N +Ngreen red

~

µ 
cAB

(c +c )(c +c )A AB B AB

increasing rel. con-
centration of   

no   

Figure 5.13. Schematic illustration of two-color �uorescence cross-correlation spectroscopy

(a) Sample with a high fraction of double-labeled molecules. The �uorescence intensity traces show
correlated �uctuations resulting in a high cross-correlation amplitude. (b) Sample with single-labeled
particles only. The �uorescence time-traces are non-correlated and the cross-correlation amplitude
is nearly 0.
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of dimers cAB/(cA + cB + cAB). If only dimers are present, it reaches a maximum level, which is
approximately the average between ggg(0) and grr(0). This dependence is a complicated function, which
is linear only to a �rst approximation. Therefore proper �t models need to be derived, in order to
measure the absolute and relative concentrations of each of the three species A, B and AB with 2-color
FCCS.

In the framework of FCS/FCCS theory, presented in this chapter, the correlation functions are all of the
form given in Eq. (5.4.3). In contrast to two-focus cross-correlation (see section 5.4.1), the constraints in
Eq. (5.4.4) are dropped and for both foci MDEg(~r) and MDEr(~r) may be di�erent. As (mostly chromatic)
aberrations of and misalignment in the optics may lead to an o�set ~δ between the green and the red
focus, the shift ~δ is retained in the model function. Information on the spectral properties of the species
χ ∈ {A,B,AB, ...} allows to impose new constraints on the molecular brightnesses ηg, χ and ηr, χ . As an
example, a simple bi-molecular hetero-dimerization

A + B −−−⇀↽−−− AB,

is used here, although more complex models (including e.g. homo-dimers) may be set up. This model
will be applied to several measurements in the remainder of this thesis. The same labeling scheme as
above is used: A carries a green �uorescent label, B a red �uorescent label and AB both labels. Then the
following set of constraints on the molecular brightnesses may be formulated:

ηg,A ≡ ηg ηg,B = 0 ηg,AB = ηg
ηr,A = κgrηg ηr,B ≡ ηr ηr,AB = ηr + κgrηg.

(5.4.9)

Here the brightness of a green �uorophore (either on A or AB) in the green detection channel is denoted
by ηg and the brightness of a red �uorophore in the red channel (either on B or AB) by ηr. These
quantities can be estimated from the average intensities 〈

Fg
〉 and 〈

Fr
〉 and the particle concentrations〈

cA
〉, 〈cB

〉 and 〈
cAB

〉:
ηg,A ≡ ηg =

〈
Fg

〉〈
cA

〉
+

〈
cAB

〉 and ηr,B ≡ ηr =

〈
Fr

〉〈
cB

〉
+

〈
cAB

〉 . (5.4.10)

The variable κgr in Eq. (5.4.9) denotes the crosstalk between channels g and r, i.e. the fraction of green
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Figure 5.14. Absorption and �uorescence spectra of Alexa-488 and Alexa-594 together with

the excitation laser wavelengths and typical �uorescence emission detection channels.

The spectra were taken from [135, 136].
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5.4. Fluorescence cross-correlation spectroscopy

�uorescence detected in the red channel due to imperfect �lters and broad emission spectra:

κgr =

∞∫
0
ηg(λ) · hr(λ) dλ

∞∫
0
ηg(λ) dλ

, (5.4.11)

where ηg(λ) is the �uorescence spectrum of the green �uorophore and hr(λ) describes the transmission
spectrum of the red detection channel. Figure 5.14 shows the absorption and emission spectra of the
�uorescent dyes Alexa-488 and Alexa-594. The crosstalk is highlighted in yellow. For Alexa-488, the
crosstalk is κgr ≈ 3.5%, if the longpass �lter in the red channel starts transmitting at 600 nm. For eGFP
the crosstalk is κgr ≈ 3.8% in that case. The crosstalk from the red to the green channel is usually
κrg = 0, as the excitation wavelength for the red channel lies above the green detection window.

Using the constraints in Eq. (5.4.9) and the general FCCS cross-correlation function in Eq. (5.4.2), the
normalized FCCS auto and cross-correlation functions can �nally be written as:

ggg(τ) =
η2

gGA
gg(τ) + η2

gGAB
gg (τ)

η2
g · (

〈
cA

〉
+

〈
cAB

〉
)2

(5.4.12)

grr(τ) =
η2

r ·
[
GB

rr(τ) + GAB
rr (τ)

]
+ κ2

grη
2
g ·

[
GA

gg(τ) + GAB
gg (τ)

]
+ 2κgrηrηgGAB

gr (τ)(
κgrηg

〈
cA

〉
+ (ηr + κgrηg) ·

〈
cAB

〉
+ ηr

〈
cB

〉)2 (5.4.13)

ggr(τ) = grg(τ) =
ηgηrGAB

gr (τ) + κgrηgηrGA
gr(τ) + κgrη

2
g · G

AB
gg (τ)(

ηg
〈
cA

〉
+ ηg

〈
cAB

〉)
·
(
κgrηg

〈
cA

〉
+ (ηr + κgrηg)

〈
cAB

〉
+ ηr

〈
cB

〉) (5.4.14)

The parameters ηg and ηr are usually estimated “on-the-�y” using Eq. (5.4.10) and the �uorescence
intensities 〈

Fg
〉 and 〈

Fr
〉 measured during the experiment. They can also be determined with separate

samples that contain only green or only red �uorophores.
The non-normalized cross-correlation factors Gχ

γρ (τ) have a similar form as the results in the last
section 5.4.1. In addition they include the di�erent MDE parameters (e.g. PSF widths wr, wg and PSF
lengths zg, zr). For a confocal MDE and normal di�usion with �ow the result is:

Gχ
γρ (τ) =

〈
cχ

〉
·

√
8
π3 ·

exp
(
−

2(vxτ−δx )2+2(vyτ−δy )2
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2
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2
ρ
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2
ρ

)
(8Dχτ + w

2
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2
ρ ) ·

√
8Dχτ + z2

γ + z2
ρ

, (5.4.15)

where ~δ = (δx , δy , δz )T is the shift between the foci.
For 2-color SPIM-FCCS, the pixels are assumed to have the same size a in both color channels. The

cross-correlation factor is again a product of three directional factors Gχ
γρ (τ) =

〈
cχ

〉
· Gχ

γρ,x (τ) ·
Gχ
γρ,y (τ) · Gχ

γρ,z (τ), with equal expressions for the x- and y direction:
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. (5.4.16)
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The expression for the z-direction is:

Gχ
γρ,z (τ) =

√
2
π
·

exp
(
−

2(vzτ−δz )2

8Dχτ+z
2
γ+z

2
ρ

)
√

8Dχτ + z2
γ + z2

ρ

. (5.4.17)

In all cross-correlation factors above (confocal and SPIM), anomalous di�usion may be introduced by
the replacement Dχτ → Γχτ

α . Lower-dimensional di�usion is implemented by leaving out one or two
of the directional factors. Finally multi-component di�usion can be represented by a sum of two or
more Gγρ (τ), which are parametrized with di�erent di�usion coe�cients.

Figure 5.15(a) shows plots of the two autocorrelation curves ggg(τ), grr(τ) and the cross-correlation
curve ggr(τ) in Eqs. (5.4.12)-(5.4.14) for di�erent relative dimer concentrations. The non-normalized
cross-correlation function Eq. (5.4.15) for a 3-dimensional Gaussian MDE was used. The small cross-
correlation amplitude in the �rst example is caused by the crosstalk, which was assumed to be 5%
in these plots. The di�erent amplitudes of the autocorrelation curves are caused by di�erent MDE
parameters for the two foci. From left to right the relative dimer concentration increases, and so does
the amplitude of the cross-correlation function. Figure 5.15(b) shows a plot of the correlation-function
amplitudes as a function of the relative dimer concentration. It depicts the non-linear dependence of the
cross-correlation amplitude on 〈

cAB
〉. The impact of a crosstalk decreases for increasing relative dimer

concentration. Comparable curves can be obtained from the SPIM-FCCS model function.
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Figure 5.15. (a) 2-color FCCS correlation curves for di�erent concentrations of monomers

(A,B) and dimers (AB). (b) Dependence of the zero-lag amplitudes gγρ (0) of the di�erent

correlation functions on the relative dimer concentration
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〉
= 5 nM and

〈
cA

〉
=

〈
cB

〉
. The system equations (5.4.12)-(5.4.14) were used

together with the model for a 3-dimensional Gaussian MDE in Eq. (5.4.15). Parameters: DA = DB =

DAB = 10µm2/s, wg = 250 nm, zg = 1500 nm, wr = 270 nm, zr = 1620 nm, ~δ = 0, ηg = ηr = 1,
κgr = 5%
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5.5. Artifacts in fluorescence (cross-)correlation spectroscopy

5.5.1. Photophysics

So far the in�uence of the particle motion on the FCS autocorrelation curves was discussed. These
motions lead to changes in �uorescence intensity, which are detected by FCS. As FCS is sensitive to any
process, that causes such intensity �uctuations, also triplet state dynamics (see section 2.2) and other
blinking dynamics in the �uorophores may be detected. Here it is assumed that the blinking results
from kinetics in a two-state system with a �uorescent (bright) state A∗ and a dark state AT:

A∗
kT
−−−⇀↽−−−
k−T

AT.

Here k−T is the backward reaction rate and kT the forward reaction rate. The population dynamics of
such a reaction system is described by a set of two linear ordinary di�erential equations:

dcA∗

dt
= −kT · cA∗ + k−T · cAT and

dcAT

dt
= +kT · cA∗ − k−T · cAT . (5.5.1)

The relative equilibrium population θT of the �uorescent species A∗ can be calculated from dcA∗/dt =
dcAT/dt = 0 and the conservation of particle number cA∗ + cAT = 1:

θT =
k−T

kT + k−T
(5.5.2)

Solving the system of di�erential equations Eq. (5.5.1) with the initial conditions cA∗ (0) = 1 and
cAT (0) = 0 yields the time-dependent concentration of the �uorescent species A∗:

cA∗ (t) =
kT

kT + k−T
+

(
1 −

kT
kT + k−T

)
· e(kT+k−T) ·t = (1 − θT) + θT · exp

(
−

t
τT

)
. (5.5.3)

In the last step, the equilibrium population θT was used and the lifetime τT of the dark state was
introduced:

τT =
1

kT + k−T
. (5.5.4)

In FCS this means that in a system with 〈
Nχ

〉 particles in the focus that may undergo a photophysical
blinking reaction, at any time only θT ·

〈
Nχ

〉 particles are visible. On timescales much larger than τT, this
e�ectively reduces the molecular brightness ηγ, χ with no in�uence on the single-species autocorrelation
curve. In contrast, if the observed lag times τ are of the same order as τT, the triplet dynamics will
show up as an additional exponential decay term in the autocorrelation function. To write this in an
analytical form, the PDEs, which describe the motion of the particles have to be extended with the
reaction dynamics in Eq. (5.5.1). Usually the contributions by molecular motion and by blinking are
separable and an ansatz of the form δcχ (t) · δφχ (t) can be used. Here δcχ (t) describes �uctuations
due to particle motion and δφχ (t) describes �uctuations due to blinking. As δcχ (t) and δφχ (t) are
statistically independent, also the concentration autocorrelation separates into two independent factors〈

δcχ (t) · δcχ (t + τ)
〉
·
〈
δφχ (t) · δφχ (t + τ)

〉
∝ Gχ

γ (τ) · T χ (τ).

The second factor has to ful�ll the boundary conditions T χ (0) = 1/(1 − θT) and T χ (∞) = 1. Together
with Eq. (5.5.3) this �nally yields the following substitution rule to incorporate a blinking process into
an FCS autocorrelation curve [72, 84, 217]:

Gχ
γγ (τ) → Gχ

γγ (τ) · T χ (τ) with T χ (τ) =
1 − θT, χ + θT, χ · exp

[
−τ/τT, χ

]

1 − θT, χ
. (5.5.5)

Figure 5.16 illustrates the e�ect of blinking dynamics on a FCS autocorrelation function. The additional
decay component is easily distinguishable, as long as the blinking and di�usion timescales di�er
signi�cantly.
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Figure 5.16. In�uence of �uorophore blinking on the confocal FCS autocorrelation function

for 3D di�usion. Plot parameters: 〈
Nχ

〉
= 10, Dχ = 50µm2/s, κγ = 6, wγ = 250 nm. In (a):

θT = 0.2 and in (b): τT = 10µs.

5.5.2. Constant background signal

One of the most common artifacts in FCS/FCCS is a constant o�set Fback,γ on the average �uorescence
signal. This is usually caused by the dark count rate of the used detectors, by an arti�cial o�set of a
camera or simply by non-shielded ambient light. When an o�set is present, the measured �uorescence
signal Fmeas,γ (t) can be formally split into three contributions:

Fmeas,γ (t) = Fback,γ + Fγ (t) =
〈
Fγ

〉
+ Fback,γ︸           ︷︷           ︸

=:
〈
Fmeas,γ

〉 +δFγ (t). (5.5.6)

Here Fγ (t) =
〈
Fγ

〉
+ δFγ (t) is the signal emitted by the �uorescing particles and 〈

Fmeas,γ
〉 is the actually

measured o�set. The �uctuations δFγ (t) are not altered by the background signal. In most situations
the background is negligible Fback,γ �

〈
Fγ

〉. But especially at low concentrations and dim �uorophores,
it can have a signi�cant in�uence. The FCCS cross-correlation function gγρ (τ) from Eq. (5.4.1) (p. 66)
can be extended to incorporate Fback,γ . Then it is denoted as the measured cross-correlation function
gmeas,γρ (τ), to distinguish it from the ideal function gγρ (τ):

gmeas,γρ (τ) =
〈
δFγ (t) · δFρ (t + τ)

〉(〈
Fγ

〉
+ Fback,γ

)
·
(〈

Fρ
〉
+ Fback, ρ

) =
=

〈
Fγ

〉
·
〈
Fρ

〉(〈
Fγ

〉
+ Fback,γ

)
·
(〈

Fρ
〉
+ Fback, ρ

)︸                                        ︷︷                                        ︸
background contribution

·

〈
δFγ (t) · δFρ (t + τ)

〉〈
Fγ

〉
·
〈
Fρ

〉︸                      ︷︷                      ︸
ideal cross-correlation gγρ (τ)

. (5.5.7)

Figure 5.17 shows the magnitude of this background contribution in the special case of an autocorrelation
function (γ ≡ ρ). The relative change in correlation amplitude due to the background is less than 2%, if
Fback,γ/

〈
Fγ

〉
< 1%, which is typically not detectable within the measurement error. For Fback,γ/

〈
Fγ

〉
<

5%, this change is < 10% and therefore still negligible.
A correction of the background contribution is possible, if Fback,γ and 〈

Fγ
〉 are known. The background

is typically measured before the actual experiments, using a sample without �uorescent particles. The
�uorescence intensity 〈

Fγ
〉
=

〈
Fmeas,γ

〉
− Fback,γ can be estimated from the average intensity 〈

Fmeas,γ
〉
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Figure 5.17. In�uence of a constant background signal on the FCS autocorrelation ampli-

tude gγγ (0).

measured during the data acquisition. Then Eq. (5.5.7) can be further rewritten:

gmeas,γρ (τ) =
(〈

Fmeas,γ
〉
− Fback,γ

)
·
(〈

Fmeas, ρ
〉
− Fback, ρ

)
Fmeas,γ · Fmeas, ρ

·

〈
δFγ (t) · δFρ (t + τ)

〉〈
Fγ

〉
·
〈
Fρ

〉 . (5.5.8)

In this form, the reduction of the correlation amplitude can be incorporated in any �t model, or it can
be corrected for before the evaluation.

5.5.3. Detector a�erpulsing

Afterpulsing is a common artifact in single photon detectors, such as SPADs or photomultiplier tubes (see
section 4.1.1). In FCS it becomes visible as a fast decay in the �rst few measured lag times τ. In Ref [218]
Zhao et al. propose a theoretical treatment of this artifact. Each incident photon has a certain probability
pAP(τ) to emit an afterpulse after a timespan τ. The function pAP(τ) typically decays very fast on the
timescale of a few microseconds [105, 219]. Then the measured �uorescence intensity Fmeas,γ (t) can be
written as a function of the afterpulse-free intensity Fγ (t) and pAP(τ) [218, 219]:

Fmeas,γ (t) = Fγ (t) +

0∫
−∞

pAP(t − t ′) · Fγ (t ′) dt ′ = Fγ (t) +

∞∫
0

pAP(t ′) · Fγ (t − t ′) dt ′. (5.5.9)

The time-averaged intensity is slightly higher than the ideal intensity:

〈
Fmeas,γ

〉
=

〈
Fγ

〉
+

〈
Fγ

〉
·

∞∫
0

pAP(t ′) dt ′

︸           ︷︷           ︸
=:A

= (1 + A) ·
〈
Fγ

〉
. (5.5.10)

Here A < 1 is the absolute probability that an incident photon generates an afterpulse. It can be shown
that afterpulsing is an additive e�ect on the autocorrelation curve [218]:

g′γ (τ) ≈ gγ (τ) + Ga · pAP(τ) (5.5.11)

Here Ga is a constant with Ga ∝ 1/
〈
Fγ

〉, i.e.at a high number of incident photons, afterpulsing is less
important. In that case other contributions to the correlation function outweigh the correlation by the
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afterpulses. Fit functions, that are often used to describe pAP(τ) are:

pAP(τ) = p0 · exp
(
−
τ

τAP

)
or (5.5.12)

pAP(τ) = p0 · τ
−βAP . (5.5.13)

Here τAP and βAP describe the shape of the decay functions and p0 is the amplitude of the decays. The
latter is usually combined with Ga into a single �t parameter. With Eq. (5.5.11), afterpulsing can be
incorporated into any FCS model function. The decay parameters τAP and βAP can be determined in
an independent experiment with a light source with no inherent intensity correlations (e.g. a �lament
lamp, or light emitting diode (LED)), or from the dark count signal. As the shape pAP(τ) only depends
on detector properties, these parameters may subsequently be used to describe the afterpulsing in an
FCS measurement, which uses the same detector. Then only the amplitude p0 needs to be a free �tting
parameter.

Another method to remove afterpulsing is to split the �uorescence signal onto two detectors. The
autocorrelation function is then estimated as the cross-correlation between these detectors. As the
afterpulsing contributions of the two detectors are statistically independent, they will not appear in
the cross-correlation function. Thus also two-color or two-focus cross-correlation functions are free of
afterpulsing artifacts.

5.5.4. Fluorophore depletion

As mentioned in section 2.3 many �uorophores bleach after a certain lifetime, if they are illuminated
with light of their excitation wavelength. This causes artifacts in FCS/FCCS. Two regimes have to be
distinguished: If particles bleach while they are inside the illuminated focus, the measured di�usion
times τD, χ are reduced and di�usion coe�cients Dχ ∝ 1/τD, χ are overestimated, as particles seem to
dwell shorter the focus. This model can be used as long as the average intensity 〈

Fγ
〉 stays constant over

time. It is e.g. valid, as long as enough non-bleached �uorophores are available in the vicinity of the
focus and the bleaching probability is small. If these condition are not met, the reservoir of �uorophores
is slowly depleted. This leads to a slow decrease of the average intensity 〈

Fγ
〉 with time. In this case,

the autocorrelation analysis is no longer valid, as the intensity time series is no longer stationary. Then
also the average variance is not stationary over the whole time series, as the particle number slowly
decreases. This case is especially common in LSFM based experiments, because not only a small focal
volume, but a whole plane of the sample is bleached.

Ries et al. published a method that can be used to compensate the e�ect of reservoir depletion [96, 98].
Before calculating the correlation functions, the measured intensity time trace Fmeas,γ (t) is corrected
for the bleaching, using a transformation that pins the average intensity to a �xed value and alters the
variance, so that it stays constant over the whole time series. The transformation proposed in [98] is:

F (c)
γ (t) =

Fmeas,γ (t)√
f (t)/ f (0)

+ f (0) ·
(
1 −

√
f (t)/ f (0)

)
, (5.5.14)

where F (c)
γ (t) is the corrected �uorescence intensity and f (t) is a function, which describes the decay

of the �uorescence intensity Fmeas,γ (t). Under the assumption that Fmeas,γ (t) = Fγ (t) · f (t), it can be
shown that the mean and the variance of F (c)

γ (t) equal that of the idealized photon intensity Fγ (t)
without bleaching. For f (t) any suitable function can be chosen that describes the decay in F (c)

γ (t).
When low bleaching rates are encountered, a simple single-exponential function is suitable:

f (t) = f0 · exp (−t/τB) . (5.5.15)
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In FCCS experiments photo-bleaching converts some of the double-labeled molecules into single-
labeled molecules. This changes the balance between the two species. Therefore the measured relative
cross-correlation amplitude will be lower than expected without bleaching. This e�ect is not completely
compensated by the bleach correction proposed above, as Eq. (5.5.14) is used on each color channel
independently. The reduced cross-correlation amplitude has to be taken into account, when interpreting
the �t results [98, 220].

Figure 5.18 shows the application of Eq. (5.5.14) to simulated FCS data. If the �uorescence signal does
not drop by more than 50%, the bleach correction can fully regain the initial curve. If the bleaching is
stronger, the reconstructed correlation amplitude is higher than the ideal amplitude, thus the measured
average particle number in the focus is underestimated. The correct di�usion coe�cients can however
still be extracted from the bleach-corrected autocorrelation curves.
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Figure 5.18. Simulation of SPIM-FCS curves showing a depletion of the �uorophores by

bleaching. (a,b) Fluorescence-intensity time-traces and corresponding autocorrelation curves for
di�erent depletion rates rbleach. (c,d) The same data as in (a,b), but after a bleach correction with
Eq. (5.5.14). Note: The shown autocorrelation curves have a similar noise signature, as they are
all created from the same set of simulated particle trajectories. The FCS simulation software in
appendix B.1 was used.
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6. Hardware setup of the SPIM
During this PhD project, a selective plane illumination microscope (SPIM) for application to imaging
FCS and imaging FCCS was planned and built. Initially the setup was planned for a SPAD array as image
sensor only, but later an EMCCD camera was added. This chapter will describe the complete hardware
setup, including the microscope optics in section 6.1. The SPIM sample chamber and the mounting of
di�erent samples into the microscope is described in section 6.2. Finally section 6.4 introduces the SPAD
arrays used during this thesis, including their readout electronics.

6.1. Optics setup

6.1.1. Overview

An overview of the light sheet microscope, which was built for this thesis, is shown in Fig. 6.1 and
Fig. 6.2. The setup is based on the design published by Greger et al. in Ref. [119]. It was modi�ed to
match single cells as samples and for the use of EMCCD cameras and SPAD arrays with pixel sizes a in
the range of 20− 30µm. The microscope is a simple SPIM, as introduced in section 3.3.4. The light sheet
is shaped by the combination of a cylindrical lens and an air microscope objective. Two laser beams of
di�erent colors are combined for the illumination in a novel way, which allows precise alignment of
two di�erently colored light sheets. A water dipping high-numerical aperture (NA) objective is used to

lasers

beam expanders

gimbal mounted
mirror

sample 
chamber

LED

EMCCD

SPAD array

beam combiner

90
 cm

60 cm

Figure 6.1. Photograph of the SPIM instrument.
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Chapter 6. Hardware setup of the SPIM

detect �uorescence. Two image sensors are available in two parallel detection beam paths: one path for
an Andor iXon X3 860 EMCCD camera and one path for a non-commercial SPAD array. The samples
are mounted on motorized linear positioning stages, which allow full sample translation along the x-, y-
and z axis (see coordinate systems in Fig. 6.2). The sample is immersed in a bu�er solution (e.g. Hank’s
balanced salts solution (HBSS) or deionized water), which �lls a temperature-controlled stainless steel
sample chamber. Most components of the microscope are computer controlled, so data acquisition

computer for
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data acquisition
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SPAD array
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top view
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x 
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Laser
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Laser
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MBC

GMM

L1 L2 CL PO

DO

L1 L2 CL PO

LED
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D

S
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SC

SH SH
CF

ND ND
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z

BC dichroic beam combiner
BE beam expander (telescope)
BS beam splitter
CF  laser clean-up filter
CL cylindrical lens
D ground glass diffusor
DO detection objective

DV2 DualView DV2 (Photometrics)
FW motorized filter wheel
GMM gimbal mounted mirror
L... lens
M mirror
ND neutral density filter
PO projection objective

S sample
SC sample chamber
SH beam shutter
TL tube lens

Figure 6.2. Schematic of the optics and computer control system of the SPIM instrument. The
upper part of the image shows a top view of the instrument. The lower, shaded part shows a
side-view of the illumination beam path. Optical components are labeled with abbreviations that
are explained in the legend. Red lines are signal connection to the control computer. A detailed list
of all used components can be found in appendix Tab. A.1.
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is mostly automated. Detailed descriptions of each part of the optics will be given in the following
subsections and a complete list of the components is available in appendix Tab. A.1.

The microscope has gone through several stages of development with many of the optical components
changing. Here the �nal con�guration is described. Previous versions are mentioned only if they are of
importance to understand measurements described later in this thesis.

6.1.2. Light sheet shaping

Two lasers can be used simultaneously to excite �uorescence in the sample, a diode laser emitting a
maximum output power of 60 mW at 488 nm and a diode-pumped solid state (DPSS) laser emitting a
maximum output power of 25 mW at 561 nm. Until end of 2013 the blue laser was a DPSS laser with a
maximal output-power of 25 mW and a central wavelength of 491 nm. All of these lasers emit a beam
with a clean TEM0,0-mode with a 1/ e2-half width of wLaser = 0.7 mm. The blue laser beam is cleaned up
with a bandpass �lter, as both blue lasers contain a certain amount of green light, which might disturb
measurements. The green laser spectrum is su�ciently narrow and no further cleaning is necessary.
Both lasers are always operated at their speci�ed output-powers, because in this case the output power
and the beam mode are more stable. In order to change the light intensity, the beams are attenuated
separately with neutral density �lters. Each laser beam can be switched using a custom-built laser
shutter consisting of a black anodized aluminum beam dump glued to a model aircraft servo motor.

Before combining the two beams with a dichroic mirror, each beam is expanded 5-fold with a separate
beam expander. This allows for a very �ne control of the focus of each light sheet separately and
ultimately to overlap the two light sheets perfectly. The blue laser beam is used as a reference and
the green is combined with it, using a 2" silver mirror and a dichroic beam combiner plate, which is
mounted on a kinematic mirror mount with piezo-electric �ne adjustment for accurate control. The
piezo actuators on the beam combiner are also crucial to allow for a precise overlay of the two light
sheets.

After beam expansion and combination, the light sheet is formed, as shown in detail in Fig. 6.3. The
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Figure 6.3. Detailed schematic of the illumination beam path: (a) top view and (b) a side view.

The labels of all optical components are the same as in Fig. 6.2. ∆z... : beam shifts in z-direction, hLS:
the height of the light sheet (y-direction) and f l : focal lengths of the lens l. The coordinate systems
are de�ned on the right and are the same as in Fig. 6.2. The green line and rectangle represent the
�eld of view of the detection optics.
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laser beams are de�ected by a gimbal mounted mirror (GMM) and are then relayed via two achromatic
lens doublets L1 and L2 with focal lengths fL1 = 150 mm and fL2 = 250 mm to an assembly consisting
of a cylindrical lens (CL) with focal length fTL = 150 mm and the projection objective (PO). The distance
of the last two lenses is adjusted, so that the focus of the cylindrical lens coincides with the back-focal
point of PO. Viewed from the side, CL and PO form a telescope, which produces a parallel beam. Viewed
from the top, the incident laser beam is not a�ected by the cylindrical lens and the projection objective
focuses the light. This method to form a light sheet is described in detail in Ref. [119]. It allows to use
high-quality microscope objective lenses for light sheet generation, which produce thinner light sheets
with less optical aberrations. In the setup described here, PO is a 10x Nikon microscope objective with a
numerical aperture of NA = 0.3 and a focal length of fPO = 20 mm. The resulting light sheet geometry
is sketched in Fig. 6.4. The minimal width wLS of the light sheet in a sample medium with refractive
index n = 1.33, can then be calculated using Eq. (3.1.11) (p. 29):

λ = 488 nm : wLS ≥ 1.33µm and λ = 561 nm : wLS ≥ 1.53µm. (6.1.1)

The depth of focus, i.e. the longitudinal 1/ e2-half width, is accordingly

λ = 488 nm : dLS ≥ 20.2µm and λ = 561 nm : dLS ≥ 23.2µm. (6.1.2)

The laser beams are initially expanded 5-fold and then by another factor of fL2/ fL1 determined by the
relay telescope consisting of L1 and L2. The cylindrical lens and the projection objective form a �nal
telescope, which determines the height of the light sheet, as viewed from the side:

hLS = 5 × wLaser ·
fL2
fL1
·

fPO
fCL
≈ 0.78 mm. (6.1.3)

These light sheet parameters �t well to the approximate size of a single mammalian epithelial cell, which
is typically about 20µm in diameter and 5−10µm high. If the light sheet is approximated by a Gaussian
beam, its width along the direction of propagation is given by [178]

wLS(x) = wLS ·

√
1 +

(
x

FWHMLS,z

)2

≈
using Eq. (3.1.11)

wLS ·

√
1 +

(
x

1.58 · dLS

)2

. (6.1.4)

At x = ±dLS the width wLS(x) has increased by a factor ∼1.18. As the depth of focus dLS is larger than
a single cell, a thin light sheet is achieved everywhere in the sample.
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Figure 6.4. (a) Geometry of a light sheet. (b) Width (blue) and peak intensity (red) of a light

sheet as a function of the displacement x from the focus (at x = 0). For (b) Eq. (6.1.4) was
evaluated.





6.1. Optics setup

The relay telescope serves for two purposes. As stated above, it increases the beam width in order to
�ll the back aperture of PO. In addition it images the pivot point of the gimbal mounted mirror GMM
into the back focal plane of the projection objective. As indicated in Fig. 6.3(a), the mirror can be used
to move the light sheet in z-direction. If the mirror GMM is tilted by an angle φGMM out of its ideal 45◦

position, the light sheet moves in z-direction by (cf. Eq. (3.1.1))

∆zLS =
fPO · fL1

fL2
· tan(φGMM) ≈

φGMM�90◦
12µm/◦. (6.1.5)

If the pivot point of GMM would not be conjugated to the back-focal point of PO, the shift ∆zLS would
be the same, but the beam would show aberrations. This would lower the symmetry and quality of the
light sheet.

6.1.3. Transmission illumination

In addition to the �uorescence images produced by the light sheet illumination, it is often useful to also
acquire additional images with transmission illumination. To this purpose a high-power light emitting
diode (LED) and a collimating lens have been added to the SPIM setup (see Fig. 6.2a). The light from the
LED is homogenized by a ground glass di�user. This simple setup generates an approximately uniform
illumination of the �eld of view o the camera. Today high power LEDs are typically driven by switched
buck-regulators, which can induce a residual fast blinking of the LED with the switching frequency.
This blinking is typically in the range of 10 kHz − 10 MHz and could show up as an oscillation in the
measured correlation curves. To circumvent this problem, a fully analog constant current sink was
developed and is used to drive the LED. In addition the operating voltage of the circuit is �ltered by a
low-pass �lter.

6.1.4. Detection system

The detection system is shown as an overview in Fig. 6.5 and as a detailed top view in Fig. 6.2(a). A
water dipping objective (DO) with NA = 1.0 and a focal length fDO = 3.33 mm is used to collect the
�uorescence excited by the light sheet illumination. The objective has a magni�cation of 60× and a
long working distance of of 2.8 mm. This gives enough space to mount the samples and to project the
light sheet. The microscope is of the in�nity corrected type, so the collected light is collimated by the
objective (see section 3.1.1). The detection objective DO is �xed to a solid aluminum plate and cannot be
adjusted (see Fig. 6.5). As DO does not move, it can easily be sealed against the sample chamber (see
section 6.2). The alignment of the light sheet is done with the illumination beam path only. Behind DO,
the collected �uorescence light passes a custom-built �lter-wheel, with �lters that limit the transmitted
light to the desired detection range. Outside their transmission window these �lters typically suppress
any light with an optical density OD > 5. In addition, two notch �lters can be mounted that speci�cally
suppress the two laser lines with OD = 4...6. Details of the available �lters are listed in Tab. A.1 in

sensor type format pixel size a2
sensor size a at 60× FOV at 60×

iXon X3 860 EMCCD 128 × 128 24 × 24µm2 3.07 × 3.07 mm2 400 nm 51.2 × 51.2µm2

Radhard2 SPAD 32 × 32 30 × 30µm2 0.96 × 0.96 mm2 500 nm 16 × 16µm2

CHSPAD SPAD 128 × 512 24 × 24µm2 3.07 × 12.29 mm2 400 nm 51.2 × 204.8µm2

Table 6.1. Geometric properties of the image sensors used. The last two columns give the pixel
size and the �eld of view (FOV) in the object plane at a magni�cation of 60×. The magni�cation
is de�ned by the detection objective and the tube lens of the SPIM. Data for the SPAD arrays was
taken from Refs. [186, 192, 193].
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the appendix A.1. Finally the light is refocused onto the image sensor with a tube lens (focal length
fTL = 200 mm). As image sensor either an Andor EMCCD camera iXon X3 860, or one of two available
SPAD arrays are used. The EMCCD camera is water cooled, in order to reduce unwanted shaking due to
the internal fan. A consumer-grade computer water cooling system is fully su�cient to cool the camera.

The basic geometrical parameters of these sensors are summarized in Tab. 6.1 and details on the
SPAD arrays will be given in section 6.4. Again, except for the SPAD array Radhard2, these parameters
perfectly match the typical cell size and the parameters of the light sheet. According to Eq. (3.1.11), the
detection objective with NA = 1 gives an approximate 1/ e2-half width of the PSF of

λ = 525 nm : w�.,xy ≈ 431 nm and λ = 600 nm : w�.,xy ≈ 492 nm.

This matches the pixel size of the sensors in the object plane, which is 400−500 nm for all image sensors
in Tab. 6.1.

As shown in Fig. 6.2(a), the actual setup of the detection optics is more complicated than described
above: The �uorescence light is split into two perpendicular beam paths, which allows to use two image
sensors simultaneously. The splitting is done with a 50 : 50 beam splitter (BS) on a rotation mount. Each
image sensor then has its own tube lens. The beam splitter may also be replaced by a simple mirror, if
only the EMCCD camera is used or it can be completely removed, if only the SPAD array is in operation.
The beam splitters are mounted on magnetic bases that allow a quick and reproducible replacement also
during operation.
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projection objective
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detection 
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beam splitter 
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Figure 6.5. Overview of the detection assembly. The gray area in the background of the �gure
symbolizes the lightproof box.
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All components in the detection beam path are mounted on optical rails that allow to quickly translate
them along their respective optical axis and to easily replace any component. Rather than shielding
ambient light by tubes around the beam paths, the whole construction is mounted inside a black and
lightproof box. This makes alignment and modi�cations easy, as the position of any components is not
limited by tubes. Also the SPAD arrays are simply mounted on top of a printed circuit board without a
surrounding “proper” camera housing.

At the time of writing only the beam path of the EMCCD camera is equipped with a commercial dual-
view device (Photometrics DualView DV2), as described in section 3.1.3. It is �tted with a �lter module
that splits the �uorescence light at 565 nm. Emission �lters further narrow the detection windows for
short and long wavelengths. They are matched to the spectra of eGFP (transmission between 500 nm
and 550 nm) and mRFP1 (transmission above 593 nm) and optimized to produce a minimal crosstalk
of eGFP into the red channel. The DV2 can be switched to a bypass mode, where the incident light is
simply relayed through the whole device. A small loss of a few percent of intensity is still observed, as
the light needs to pass two additional lenses. If the DualView is used, the �lter wheel is typically set to a
488 nm long pass �lter, which does not interfere with the �lter set inside the DV2, but suppresses the
blue excitation light. The notch �lters are still used.

The DualView DV2 needs to be realigned daily to ensure that corresponding pixels in the left and
right color channel are imaging the same volume in the object space. This is accomplished by imaging
an electron microscopy grid using the transmission illumination. Figure 6.6(a,b) illustrate the geometry
of the grids and the adapter used to mount them. The grids are made from a thin copper sheet, that is
laminated onto a transparent plastic foil. Two di�erent grids with hole spacing of 16.9µm and 12.7µm
were used (AGG2785C nd AGG2786C, Agar Scienti�c). Figure 6.6(c) shows an image of a perfectly
aligned grid. Two complementary methods were used to better judge how well the green (left) and red
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Figure 6.6. Illustration of the alignment of the DualView DV2. (a) Geometry of the electron
microscopy grid. (b) Photograph of the sample holder used to mount the grid. (c) Full frame
transmission image of the grid, if the DualView is perfectly aligned. (d) Alignment of the DualView
in four steps. For each step, the left half image is subtracted from the right half image and the image
cross-correlation coe�cient Eq. (6.1.6) is given. All images are shown in false colors.
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(right) half images {L(x, y)} and {R(x, y)} (x = 1...W , y = 1...H) are aligned. During the alignment, the
two half images are subtracted and {L(x, y) − R(x, y)} is displayed on a false color scale, as shown in
Fig. 6.6(d) and the image cross-correlation coe�cient IC is calculated and maximized. The coe�cient IC
is de�ned as

IC =

∑
x,y

(L(x, y) − L) · (R(x, y) − R)

W · H ·
√
σ2

L · σ
2
R

, (6.1.6)

where L and R are the average intensities in the left and right half image and σ2
L and σ2

R are the
variances of intensity:

L =
1

W · H
·
∑
x,y

L(x, y) and σ2
L =

1
W · H

·
∑
x,y

(L(x, y) − L)2. (6.1.7)

With this setup, the two half images are shifted with the mirrors inside the DualView, until IC is
maximized and ideally reaches IC = 100%.

6.2. Sample chamber and sample mounting

6.2.1. Sample Chamber

Finally this section will describe the sample chamber and sample mounting. Both are illustrated in
Fig. 6.7. The sample chamber is made from non-corrosive seawater-resistant stainless steel. It can be
�lled with ∼ 7 ml of sample bu�er or deionized water. On three sides the chamber is closed by glass
windows (∅ = 20 − 22 mm No.1 cover slips, thickness 0.13 − 0.16 mm). The light sheet and the light
from the transmission illumination enter the chamber through these glass windows, therefore they
should be of good optical quality. The glass cover slips are pressed against the chamber using aluminum
plates and soft o-rings in between. For a better seal, the o-rings were coated with a silicone grease
(Baysilicone Paste “low viscous”, GE Bayer Silicones). During longer measurements, a small amount of
precipitations accumulates in the sample chamber and also sticks to the glass surfaces. So the windows
are typically exchanged before every series of measurements.

Finally the chamber is pushed in (−z)-direction against the cone of the water dipping detection
objective, using a manual translation stage. Sealing is again done with a soft o-ring which sits in a notch
in the sample chamber. Only glass, stainless steel, rubber o-rings and the detection objective are in
contact with the liquid inside the sample chamber, preventing any corrosion of the device. If required,
the chamber can easily be cleaned and autoclaved.

The sample chamber went through several revisions. First versions were made from aluminum. It
turned out that this material caused corrosion problems, especially when deionized water and bu�ers
with higher salt concentrations were used. The passivation layer of aluminum oxide is not resistant
enough to protect the material below. Also the sample bu�er was slowly polluted with reaction products
with the aluminum.

A new version of the sample chamber is currently in planning stage. It will exhibit in- and outlets, that
will facilitate the exchange of sample bu�er during operation. This will also allow constant perfusion
with fresh bu�er and an easy control of bu�er properties, such as temperature and pH. Finally this
would permit the study of samples under changing environmental conditions, for example by adding a
drug.

Samples can be mounted in the chamber, hanging from a motorized translation stage. In addition
a manual rotation stage allows for full freedom of positioning. For multi-view imaging this manual
stage could be replaced with a motorized version. A sample mounting adapter is attached to the rotation
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Figure 6.7. (a) 3D view of the sample chamber and the sample mounting assemblies. (b) Ex-

ploded view of the sample chamber.

stage. Di�erent types of sample holders can be �xed to this adapter; a syringe is shown as an example
in Fig. 6.7(a). The di�erent possibilities of sample mounting are discussed in detail in section 6.2.3.

Finally the sample chamber features two access holes (see Fig. 6.7b), which allow to use mixing needles
(∅ = 0.9 mm) to exchange the liquid in the chamber. But also a PT100 temperature sensor (∅ = 1.5 mm)
can be inserted in this way.
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6.2.2. Temperature control

The temperature of the sample chamber can be stabilized with an external temperature control circuit
(PI loop). It uses a resistive heater (resistance: 4.7−10Ω), which exerts a heating power of 1−10 W. The
heater is attached to the base of the chamber. For thermal isolation from the rest of the microscope, the
chamber is mounted on a baseplate consisting of plastic material. Two PT100 sensors are mounted in the
steel base of the sample chamber and immersed in the sample bu�er. Their readout circuits [221] allow
to measure the temperature to a precision of ±0.1 ◦C and an accuracy fully determined by the sensor
speci�cation (typically 0.3 − 0.5 ◦C). The properties of the temperature control system are described in
Fig. 6.8. Figure 6.8a shows the heating and cooling of the sample chamber for a target temperature of
38.5 ◦C in its base. Constant temperatures of (38.1± 0.1) ◦C in the metal base and (37.2± 0.1) ◦C in the
liquid are reached after about 20 min of heating. The temperature drop between the liquid and the base
is clearly noted, as well as the delay of a few minutes between the curves. Long-term measurements
showed that these temperatures stay constant within the given precision for several hours. In Fig. 6.8(a)
the temperature distribution inside the sample chamber is depicted. The samples are mounted in a
region (black circle), where a target temperature of 37 ◦C is well achieved. For this measurement a
small temperature sensor was moved in 2 mm steps through the sample chamber, while the temperature
control circuit was activated. At each position it was allowed to equilibrate with the environment for a
few minutes.
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Figure 6.8. Properties of the temperature control system: (a) Heating curve and stability of

the temperature. (b) Temperature distribution in the sample chamber. The plot in (a) shows
the temperature of the chamber base (red), of the liquid (blue) and the heating power (green), with
and without temperature control (target temperature in the chamber base: 38.5 ◦C, voltage across
the 10Ω heating resistor: 9 V). The data in (b) were obtained by scanning a small temperature
sensor in 2 mm steps through the chamber, with activated temperature stabilization. Before the
temperature was measured at each point, the sensor was allowed to equilibrate for several minutes.

6.2.3. Sample mounting

The construction of the microscope and the sample chamber requires that the samples are mounted
hanging from above. This prohibits to use standard mounting techniques developed for standard
microscopes, where the samples are positioned on a horizontal support. Several mounting techniques
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Figure 6.9. Di�erent methods for sample mounting in a SPIM: (a) samples embedded in a gel

cylinder, (b) adherent cells on a cover slip, (c) sample bags for liquid samples.

for the type of SPIM used in this thesis have been discussed e.g. in Refs. [117, 222–224].
The three major mounting methods used here, are depicted in Fig. 6.9. Larger samples, such as

embryos or cell spheroids, are commonly embedded in a gel cylinder, extruded from a syringe or a thin
capillary. If the gel is prepared from culture medium, cells can easily survive this procedure. Usually
low-melting agarose is used, which solidi�es only at temperature below 40 ◦C. Also products, such as
PhytaGel (P8169, Sigma-Aldrich) or Gelrite (Carl Roth GmbH) are used, which form a very sti� and clear
poly-saccharide gel, if divalent ions (often Mg2+) are present. Here this mounting technique was used for
the determination of the PSF of the microscope with �uorescent microspheres (beads). The microspheres
were embedded in a 0.5% PhytaGel cylinder, supplemented with 0.1% MgSO4. The gel is extruded from
a 1 ml syringe and is scanned in z-direction through the focus (for details, see appendix A.3.29.

Liquid samples, such as �uorophore solutions were mounted in small heat-sealed sample bags (∼

sample chamber (HBSS)

LumoxFolie
(wall of the sample bag)

~10nM Alexa488 HBSS
sample

sample

light sheetimaging
region

sample bag wall
(LumoxFolie)

Figure 6.10. Auto�uorescence of sample bags made from LumoxFolie 25 M. The sample bag
in (a) is �lled with HBSS and the one in (b) with a ∼10 nM solution of Alexa-488. The images
were taken at high laser power (∼200 W/cm2), a moderate EM-gain of 50 and an exposure time of
100 ms using an EMCCD camera. The color scaling is di�erent in both images, as can be seen by
the virtually invisible auto�uorescence on the rhs, if compared to a chemical �uorophore.
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5 × 10 × 2 mm3, see Fig. 6.9c). These bags were prepared from LumoxFolie 25 M (Sarstedt AG & Co,
[225]), which has a thickness of 25µm. Its refractive index resembles that of water (n = 1.33) and
its auto�uorescence is negligibly low (see Fig. 6.10). These properties make the sample bags virtually
invisible to the light sheet and disturb the optical properties of microscope only minimally. LumoxFolie
is also resistant to many chemicals, as its chemical structure is comparable to PTFE/te�on. The foil is
provided with a functionalized surface: hydrophobic on one and hydrophilic on the other. The bags
were heat-sealed using modi�ed soldering tweezers, as described in appendix A.3.1. Each bag was �lled
with 30 − 50µl of the liquid sample and held by self-closing tweezers.

Most of the biologic measurements for this thesis were performed with living and adherent mammalian
cells. These were mounted, as depicted in Fig. 6.9(b) and in more detail in Fig. 6.11. Adherent cells
(often epithelial cells) stick to the surface on which they grow, e.g. a glass cover slip or a petri dish. For
measurements in a SPIM, cells were grown on small pieces of No. 3 glass cover glasses (size: ∼5×10 mm2,
thickness 0.28−0.32 mm. A detailed protocol for this mounting technique is provided in appendix A.3.3).
Cover slips made of di�erent clear plastic materials were also tested. They showed, however, too much
auto�uorescence or were not sti� enough to be mounted properly. The glass slips were held by self-
closing tweezers that were hanging in the sample chamber from the top. The chamber was �lled
with a bu�er, such as HBSS, which sustains the cells over the duration of the measurements (typically
30− 90 min per cover slip). Other cell culture media can also be used, if they are not auto�uorescent and
do not scatter too much. The scattering is e.g. caused by added fetal calve serum. The medium or bu�er
should also be free of phenol-red, which is often used as pH indicator and enter the cells. Its spectral
properties may interfere with accurate �uorescence measurements. For example, phenol red free RPMI
medium has been used successfully for SPIM-FCS measurements. Most of the biologic measurements for
this thesis were performed with living and adherent mammalian cells. These were mounted, as depicted
in Fig. 6.9(b) and in more detail in Fig. 6.11. Adherent cells (often epithelial cells) stick to the surface on
which they grow, e.g. a glass cover slip or a petri dish. For measurements in a SPIM, cells were grown
on small pieces of No. 3 glass cover glasses (size: ∼5 × 10 mm2, thickness 0.28 − 0.32 mm. A detailed
protocol for this mounting technique is provided in appendix A.3.3). Cover slips made of di�erent clear
plastic materials were also tested. They showed however too much auto�uorescence or were not sti�
enough to be mounted properly. The glass slips were held by self-closing tweezers that were hanging in
the sample chamber from the top. The chamber was �lled with a bu�er, such as HBSS, which sustains
the cells over the duration of the measurements (typically 30 − 90 min per cover slip). Other cell culture
media can also be used, if they are not auto�uorescent and do not scatter too much. The scattering is
e.g. caused by added fetal calve serum. The medium or bu�er should also be free of phenol-red, which
is often used as pH indicator and enter the cells. Its spectral properties may interfere with accurate
�uorescence measurements. For example, phenol red free RPMI medium has been used successfully for
SPIM-FCS measurements.

The bond between typical adherent cells (e.g. HeLa cells or Chinese hamster ovary cell (CHO-K1))
and the glass surface is strong enough so they stay in place throughout a measurement of a few minutes
duration. Also the cells consist mostly of water, so the buoyancy partly counteracts a gravitational drag
that may pull the cells down the cover slip. So if cell movement is detected, this is an active cellular
process.

The glass slip is typically positioned under an angle of less than 45◦ with respect to the light sheet.
This way light is not directly re�ected into the detection objective and the cuts through the cells are a
bit larger (see Fig. 6.11a). Compared to a standard (�uorescence) microscope, where cells are typically
cut in parallel to the plane they grow on, the images of a SPIM look unusual. Examples are shown in
Fig. 6.11(b,c). The �rst image shows a cell expressing eGFP, which is distributed throughout the whole
cell. The darker region in the center is the nucleus with the nucleoli. A typical SPIM feature is the �at
interface between cell and the glass cover slip, which is nicely visible due to the angled cut through the
cell. Figure 6.11(c) shows a cell expressing PMT-eGFP, a fusion protein predominantly enriched in the
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Figure 6.11. Details on adherent cells mounted in a SPIM. (a) shows a top view of the SPIM with
the cells mounted in it (not to scale). The light sheet illuminates a thin slice of the cell, which is
depicted in (b) for a cell with �uorescent labels in the cytoplasm and in (c) for a cell with a labeled
membrane. Compared to a standard �uorescence microscope, the images (rhs column) look unusual,
but are explained by the angle under which the cells are sliced.

cellular membranes. Here especially the interface between bu�er and cell sticks out as a thin �uorescent
line.

6.3. Characterization of the optics

For SPIM-FCS and SPIM-FCCS measurements, an exact knowledge of the optical properties of the
used microscope is essential, as these properties are directly used in the model functions described
in chapter 5. The characterization described in this section is repeated every day, as the results may
be in�uenced by the daily alignment. Two distinct measurements are performed: First the light sheet
properties are directly observed and quanti�ed (see section 6.3.1), then the PSF of the microscope is
determined with a z-scan of �uorescent microspheres (see section 6.3.2).

6.3.1. Measuring light sheet properties

The light sheet can be imaged directly with a SPIM, if a mirror is mounted in the sample chamber that
re�ects the incoming light onto the image sensor [226, 227]. This is illustrated in Fig. 6.12(a). The light
sheet can be sampled at di�erent positions in the �eld of view, by moving the mirror in x-direction.
Initially the mirror is positioned in the center of the �eld of view. This is accomplished by illuminating
it with divergent white light through the projection objective. Tiny dirt spots on the mirror surface
can be used to exactly position the mirror center in the center of the �eld of view. Then the blue light
sheet is positioned in that center using the gimbal-mounted mirror GMM. Finally the green light sheet
is superimposed on the blue one, using the piezo-controlled beam combiner.

The light sheet is imaged at equidistant x-positions of the mirror (step width: 1µm). This results
in a series of images, in which the light sheet is at its thinnest in the center and expands as described
in section 6.1.2. Side-lobes are especially strong left of the focus. This was shown to be caused by
the transmission of the light sheet through a strati�ed medium (lens→ air→ cover glass→ sample
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Figure 6.12. Light sheet analysis with a mirror. (a) Principle setup in top-view. (b) Representative
image, made with the mirror and a cut through the image, as marked by the red rectangle. (c)
Di�erent z-cuts through the light sheet as blue and green solid lines for the blue and green light
sheet. Red lines are Gaussian �ts to the blue light sheet data. (d) Sample holder with a 5 × 5 mm2
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medium) [228–231]. To quantify the properties of the light sheet, a Gaussian function

ILS(z) = I0 · exp *
,
−2 ·

(z − z0)2

w2
LS

+
-

(6.3.1)

is �tted to every column in every image of the series, as illustrated in Fig. 6.12(b). Then the parameters
of all �ts to one image (one x-position) are averaged and plotted, as shown in Fig. 6.13(a).

The projection objective can be moved in x direction to ensure that the thinnest part is a few
micrometers left of the center of the �eld of view (x = 25µm in Fig. 6.13a,b). This minimizes the light
sheet width and keeps the side lobe contributions in the central area x = 15...35µm low. Therefore
SPIM-FCS measurements in this thesis were typically performed in this central area. The di�erence
∆z0 = z0,491 nm − z0,561 nm of the center positions z0,491 nm of the blue and z0,561 nm of the green light
sheet can be used to asses how well the laser beams are superimposed. Typically |∆z0 | ≤ 100 nm is
achieved, as shown in Fig. 6.13(b).
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6.3.2. Measuring the molecular detection e�iciency

Also the molecular detection e�ciency function (MDE) of the microscope is determined before every
measurement. After the light sheets have been aligned as described before, a PhytaGel cylinder contain-
ing a small amount of �uorescent microspheres is scanned along the z-direction in steps of 200 nm (see
appendix A.3.2 for details on the gel). Figure 6.14 illustrates this method and shows a typical bead image
obtained with it. In most measurements multi-�uorescent beads (∅ = 100 nm, T7279, Invitrogen) were
used. Their matrix contains a mixture of four di�erent �uorophores and are visible in both detection
channels of the DualView optics.

The bead scan is evaluated using a Matlab script1, which performs the following steps:
1. The beads are automatically detected in the image stack, by searching the few brightest pixels in

every 10th frame. If the DualView was used, the beads are located in the left half image only and
the coordinates are reused for the right half image. The distances between all detected beads in
the stack are summarized in a pair-distance matrix. Using this matrix, points are removed until all
mutual distances are above a given threshold (typically 3 pixels). From any group of points that
are mutually closer than 3 pixels, the brightest point is selected. The remaining points {(xi , yi , zi )}
are used for further analysis.

2. A region of ∼10× 10× 60 pixels around each point {(xi , yi , zi )} is cut from the whole image stack
and several �ts are performed to this data. In a DualView image, the following steps are repeated
for the same position in the red color channel.

a) 1-dimensional Gaussian �ts are performed to cuts along the x-, y- and z-axis, which pass
through the brightest pixel in the region.

b) A 3-dimensional Gaussian �t is performed to the full data set. The Gaussian function has
three di�erent major axes, with (sorted) widths wlarge, wmid and wsmall. The axes may be
tilted and rotated from the basic coordinate axes.

c) A 1-dimensional Gaussian �t is performed to every cut along the x- and y- direction for
di�erent z-positions. This yields widths wx (z) and wy (z). The resulting width curves can
be �t to Eq. (6.1.4).

3. The statistics (averages, standard deviations, histograms, etc.) of the results is calculated. In this
stage beads are also �ltered to exclude outliers and failed �ts. The width and height of any bead
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Figure 6.14. Determination of the MDE of the microscope, using a bead scan. (a) Illustration of
the bead scanning process. (b) xz-cut and (c) xy-cut through the MDE of the SPIM described here.
Cuts along a single axis are shown besides and above the images.

1This script is freely available under the terms of the GNU general public license 3.0 under http://www.dkfz.de/Macromol/
quick�t/beadscan.html.
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has to be in a prede�ned range (e.g. 0.3µm < wlarge < 3µm, or 0.1µm < wsmall < 2µm). For a
stack acquired with the DualView optics, only those beads are used, for which the center-to-center
distance |~δ | of the 3-dimensional Gaussian �ts between the green and red color channel is below
1µm ≈ 3 pixel.

This bead scan is acquired and evaluated before every day of measurements, in order to check the
alignment quality. Also, some parameters of this �t will be used for the later imaging FCS calibration,
described in section 8.1. Figure 6.15(a-c) shows a set of representative histograms of the three widths
extracted from the 3-dimensional Gaussian �t. Also this evaluation quanti�es the overlap of the MDEs
in the green and red detection channels, by directly measuring the focus displacement ~δ = (δx , δy , δz )T.
This is shown in Fig. 6.15(d-f). As the histograms and the averages over the plots show, the displacement
is zero within one standard deviation. Comparable values are reached over a long timespan, as shown
in Fig. 6.16 with bead scan results obtained on 38 days distributed over more than one year.
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Figure 6.15. Typical results of a light sheet analysis. (a-c) Histograms of the smallest width wsmall,
the intermediate width wmid and the largest width wlarge extracted from the 3-dimensional Gaussian
�t. (d-f) Histograms of the displacement~δ = (δx , δy , δz )T between beads in the green and red channel.
The numbers at the top of the graphs give average and standard deviation of the histograms. Number
of beads used for the histograms: 47.





Chapter 6. Hardware setup of the SPIM

(a)

0

500

1000

1500

2000

04/2013 10/2013 04/2014

la
rg

es
tw

id
th

w
la

rg
e

[n
m

]

date

avg.±S.D.: (1224 ± 116) nm

(b)

0

500

1000

1500

2000

04/2013 10/2013 04/2014

sm
al

le
st

w
id

th
w

sm
al

l[
nm

]

date

avg.±S.D.: (649 ± 80) nm

Figure 6.16. Stability of the MDE parameters over a timespan of more than one year. (a) Mean
and standard deviation of the largest and (b) of the smallest width determined in a 3-dimensional
Gaussian �t. The violet bands and numbers in the graphs are average and standard deviation over
all mean values.

6.3.3. Imaging capabilities of the SPIM

Figure 6.17 shows some representative images acquired with the SPIM described in this chapter. Figure 6.17(a)
depicts a mitotic (dying) cell, which expressed a �uorescent dye that is enriched in the cell membrane
(PMT-eGFP). A pro�le along the yellow line demonstrates the resolution of the SPIM. The cellular
membrane is only a few nanometers thick, therefore it appears as a single bright pixel, which is blurred
only slightly by the PSF (pixel size: a = 400 nm, 1/ e2-halfwidth of the MDE: ∼600 nm). Figure 6.17(b,c)
show volume renderings of di�erent cells, that were produced from z-stacks. The stacks were acquired
at a step-width of 400 nm in order to achieve isotropic pixels. Details on the cell culture protocols can
be found in appendix A.2.
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Figure 6.17. Examples of SPIM images of cells. (a) Single frame showing a mitotic (dying) CHO-K1
cell, which expressed PMT-eGFP. (b) Volume rendering of a group of HeLa cells expressing eGFP-4x.
(c) Volume rendering of a HeLa cell during mitosis, expressing H2A-mRFP1. the volume renderings
were produced with the “3D Viewer” plugin of Fiji.
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6.4. SPAD arrays

Measurements shown in this section were performed together with Jan Buchholz (DKFZ, Heidelberg) and in
part with Samuel Burri (EPFL Lausanne). More details on the SPAD arrays, their readout and applicability

to SPIM-FCS will be summarized in Ref. [232].

6.4.1. SPAD arrays used in this thesis

The SPIM described in this thesis is equipped with an EMCCD camera operated at frame rates of
1000 − 5000 fps. The maximal frame rate of EMCCD cameras is mostly limited by the shifting process
and the properties of the camera electronics. To achieve better temporal resolution a second detection
beam path was implemented, in which the �uorescence light is directed onto an array of single-photon
avalanche diodes (SPADs). The structure and operation principle of SPADs and SPAD arrays was
described in section 4.1. Figure 6.18(a) shows a photograph of a SPAD array mounted in the microscope
and a closeup view of the image sensor. The readout rate of such arrays is typically on the order of
100,000 fps and above. This is fast enough to even resolve the FCS autocorrelation curves of small
molecules, like Alexa-488.

In section 4.1.3 di�erent classes of SPAD arrays were introduced, which mainly di�ered in the amount
of in-pixel electronics. Two di�erent SPAD arrays were used during this thesis: An early model called
Radhard2 with 32 × 32 pixels [186] and an advanced array called SwissSPAD with 512 × 128 pixels
[192, 193]. Both devices were designed by and are used in a collaboration with the group of Edoardo
Charbon at the TU Delft and EPFL Lausanne. They are a compromise between complexity and pixel size.
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Figure 6.18. (a) SPAD array SwissSPAD, mounted in the SPIM. (b,c) Pixel circuits of the two

SPAD arrays (b) Radhard2 and (c) SwissSPAD. Figures (b,c) adapted from [186] and [192, 193].
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Each pixel (see Fig. 6.18b,d) contains a SPAD, a passive quenching resistor, a discriminator and a 1-bit
memory, that contains 1 if at least one photon has arrived during the last integration-time cycle and 0
else. The passive quenching resistor is implemented using a MOSFET transistor. A small voltage applied
to the BIAS input signal will change the drain-source resistance of this transistor. In addition, SwissSPAD
contains a transistor, which can be used to gate the SPAD, i.e. switch it quickly between a sensitive and
insensitive state by disconnecting the SPAD from the 1-bit memory. This feature can be used to measure
�uorescence lifetimes, if short windows of sensitivity are placed at di�erent delays from an illumination
pulse [193]. SwissSPAD also contains a recharge transistor in parallel to the quenching MOSFET. This
can be used to shorten the bias resistor for a few nanoseconds and thus reload the SPAD to its operating
reverse bias voltage. This active reset of the SPAD is continuously performed every few 100 ns.

property Radhard2 SwissSPAD

pixels 32 × 32 512 × 128
pixel pitch asensor 30µm 24µm
SPAD diameter dSPAD 4µm 4µm
production process 0.35µm high-voltage CMOS process
�ll factor FF 1.4% 5%
microlenses X

breakdown voltage Ubreak 18.8 V 20.0 V
typical excess bias voltage
Uexcess = Ubias −Ubreak

3.2 V 4 V

maximum quantum e�ciency at typical
Uexcess and λ = 500 nm

40% 34%

median dark count rate at typical Uexcess 95 Hz 171 Hz (at ϑsensor = 34 ◦C)

minimum full-frame integration time 2.66µs 6.4µs
maximum frame rate 376 kfps 156.25 kfps
maximum output-data rate 45.9 MByte/s 1220 MByte/s
maximum usable frame rate 100 kfps 156.25 kfps
maximum readable data rate 12 MByte/s 1220 MByte/s

FPGAs used for readout Xilinx Virtex-II Xilinx Virtex-4

Table 6.2. Properties of the SPAD arrays Radhard2 and SwissSPAD. Data was mostly taken from
Refs. [186, 192, 193]. The readout rates are explained in more detail in section 6.4.2. The breakdown
voltages and dark count rates were measured for this thesis (see section 6.4.3)

6.4.2. Readout

Both arrays – Radhard2 and SwissSPAD– are row-addressable, which means that during readout a single
row is selected and the signals of all 32 or 512 SPADs in that row are connected to output pins on
the chip. In the case of SwissSPAD, there are only 128 output pins, so four neighboring rows share a
single pin, using a 4-to-1 multiplexer. Pixel sizes, readout speed and other properties of both sensors are
summarized in Tab. 6.2.

The structure of the readout system used for the SPAD arrays is shown in Fig. 6.19. Both arrays are
connected to programmable logic chips called �eld programmable gate array (FPGA). They can be used
to implement any logic circuit and provide enough input pins to connect to all signals of the SPAD
arrays. In addition to the basic readout, the FPGAs also perform di�erent tasks of data preprocessing,
like packaging the raw data stream into frames and some basic corrections for broken pixels. A detailed
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Figure 6.19. Structure of the readout circuit used for the two SPAD arrays Radhard2 and

SwissSPAD.

description of these readout systems will be given in Ref. [232].
For the Radhard2 chip, Jan Buchholz implemented a complete autocorrelator-system, which calculates

all 32 × 32 = 1024 autocorrelation functions in real-time and transfers them to a control and storage
computer [131, 232]. The complete raw data is also available via a second universal serial bus (USB)
2.0 connection, which is fast enough for the ∼12 MByte/s data rate sourced by the sensor. This system
reaches frame rates of 100 kfps for the full 1024 pixels. Higher rates are possible, if only a subset of
the pixels is used. The frame rate of 100 kfps is limited by the amount of data that can be processed
by the readout system. The chip itself can be read at up to 375 kfps, so a temporal binning stage has
been implemented in the FPGA. It sums up three consecutive frames, before the data is sent to the
autocorrelators. Transferring the complete raw data set is no longer possible at this frame rate, so
only the autocorrelation functions are available [131]. The readout at 375 kfps signi�cantly reduces the
probability to count two or more photons, which arrive during a single frame exposure time, as only
one.

For SwissSPAD, the data rate is more than a factor 100 higher than for Radhard2. To accommodate
this, the SwissSPAD readout system simply stores the frames in a 4 GByte random access memory (RAM)
module, which is attached to the FPGA. After the measurement the accumulated data set is transferred
via USB 2.0 to a computer, where it is stored to hard disk and the auto- and cross-correlation functions
are calculated.

6.4.3. Characterization of the SPADs

The breakdown voltage Ubreak is an important parameter of SPADs, as they operate in single-photon
mode only, if biased above Ubreak. Also the quantum e�ciency of SPADs directly depends on the amount
of excess voltage Uexcess = Ubias −Ubreak. Figure 6.20 shows this e�ect as an increase in detected photons
at a given illumination intensity for di�erent values of Uexcess.

The breakdown voltage of the SPAD arrays used in this thesis was assessed by a series of dark count
measurements at di�erent levels of Ubias. The probability that a primary electron creates an avalanche
in the SPAD is proportional to Ubias. Thus also the dark count rate depends linearly on Ubias. Avalanches
are created and detected, if Ubias drops below the breakdown voltage Ubreak. Thus a linear �t to the
increase of Ṅdark with increasing Ubias yields an intercept with the Ṅdark = 0 axis, which directly gives
the breakdown voltage (see Fig. 6.21b). Breakdown voltages of 18.8 V and 20 V were determined for
the Radhard2 and SwissSPAD sensors, used in this thesis, respectively. After removing pixels, that were
obviously defunct (see next paragraph), the breakdown voltage is homogeneous over the sensor with a
narrow inter-quartile range of 19.9...20.1 V. Figure 6.21(a) shows a histogram of the breakdown voltages
as determined in this experiment. From these results the excess bias voltages used for every single chip
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Figure 6.20. E�ect of the excess bias voltageUexcess on the quantum e�ciency of a SwissSPAD
chip without microlenses. (a) Count rate versus illumination intensity at di�erent values of
Uexcess. (b) Count rate versus excess bias voltage at the maximum illumination intensity in (a).
Obviously broken pixels were removed from the evaluation. Error bars give average and standard
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is chosen and kept constant for all further measurements. For Radhard2 typically Uexcess = 3.2 V was
chosen and for SwissSPAD typically Uexcess = 4 V.

The dark count rate (DCR) Ṅdark is an important contribution to the measured signal in a SPAD array
and was already used to determine the breakdown voltage. The DCRs were further analyzed at a typical
Uexcess, used for measurements. Figure 6.22 shows two histograms of the measured DCRs for Radhard2
and SwissSPAD. The median DCR was 95 Hz for Radhard2 and 171 Hz for SwissSPAD.

6.4.4. Microlens arrays on SwissSPAD

SwissSPAD is equipped with microlenses that increase the e�ective sensitive area (see section 4.1.3). The
geometry of the microlenses is roughly explained in Refs. [193, 197]. Basically a small lens covers each
pixel of length asensor = 24µm, and focuses the incident light onto the SPAD, which has a diameter of
dSPAD = 4µm. The microlenses have been designed by the company CSEM (Neuchâtel, Switzerland) and
built by Süss Microtec AG (Garching, Germany). They are optimized for collimated incident light, which
is focused onto the SPAD, as shown in Fig. 6.23(a) on the left. If the incident light is not parallel, the focus
will be enlarged at the position of the SPAD and the light concentration e�ciency of the microlenses
decreases. This e�ect has been simulated and measured in Ref [197] for a microlens array, comparable
to the one on SwissSPAD. A raytracing approach was used and a maximum concentration factor of 14
improvement was estimated. In a microscope setup, as shown in Fig. 6.23(b), the image is projected onto
the sensor by a �nal tube lens. This may cause light to hit the sensor not just uncollimated, but also
under an o�-axis angle α. Then the spot on the chip is moved a distance ∆x = fTL · tan(α), as shown in
Fig. 6.23(a) on the right hand side. In the extreme case of this situation, a beam, incident at the upper
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Figure 6.23. Simulation of the light intensity distribution in amicrolens, which is comparable

to the mcirolenses on SwissSPAD. (a) Result of the simulation for incident angles of plane waves
of α = 0◦ (left) and α = 5◦ (right). (b) Sketch on the estimation of the maximum incidence
angle of light on an image sensor. (c) Integrated intensity on the SPAD area as a function of the
incidence angles α. The simulation was performed with the beam propagation method described in
appendix B.4.
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border of the tube lens, is focused onto a point at the lower edge of the image sensor (see Fig. 6.23b).
The maximum incident angle αmax is then given by

tan(αmax) =
dTL/2 + dsensor/2

fTL
, (6.4.1)

where dTL is the diameter of the tube lens of focal length fTL and dsensor is the width of the sensor.
For the SwissSPAD in the SPIM described in here ( fTL = 200 nm, dTL = 25 mm, dsensor = 12.2 mm),
αmax = 5.3◦ is obtained. This angle leads to a focus shift of ∆x ≈ 2.3µm, if a focal length of around
40µm is assumed for the microlenses. The spot center is then shifted outside of the 4µm SPAD. This
situation was simulated for di�erent incidence angles, using the beam propagation method in two
dimensions, as described in appendix B.4. Figure 6.23(c) shows the intensity, integrated over the SPAD
area, as a function of the incidence angle α. It can be seen that already at an angle of α ≈ 2.8◦ only half
of the photons hit the sensitive area. At angles above α = 25◦ the next microlens in the array focuses
a part of its light onto the SPAD. These estimations and simulations may not be completely accurate,
because the exact properties of the microlenses are not known or disclosed. Nevertheless, they show
that the gain due to the microlenses will be considerably reduced in the outer parts of the sensor. In
principle, the microlenses could be shifted to account for the e�ects described here. This is a possible
improvement, planned for the next version of the microlenses, but was not available during this thesis.

6.4.5. Influence of microlenses on the SPAD array performance

When determining the dark count rate and the breakdown voltage, it was mentioned, that “obviously
broken pixels were removed”. This will be explained in further detail in this paragraph. The SPAD array
sensors are experimental chips that are produced in small numbers, so only few chips are available of
each sensor and they cannot be sorted out due to minor problems. Typically these chips have between
0.1% and 2% broken pixels, that output 1 in nearly every exposure (see Fig. 6.24a). These are termed hot
pixels and need to be masked before any evaluation. Also broken contacts between the carrier printed
circuit board (PCB), which contains the sensor chip, and the motherboard with the FPGAs occurred on
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Figure 6.24. (a,b) Hot pixels and broken columns in the same dark frame, acquired with

SwissSPAD for two di�erent gray scales (two di�erent color scales!). (c) A SPIM image

of HeLa cells expressing eGFP tetramers, acquired with SwissSPAD and corrected for bro-

ken pixels with the online correction method described in the text. The exposure time was
∆texp = 419 ms in all images and Uexcess = 3.5 V in (a,b) and Uexcess = 4 V in (c). Hot pixels are
classi�ed as pixels with countrates above 2.3 kHz and dark pixels have a countrate below 24 Hz.
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Figure 6.25. Intensity pro�le along the longer axis of SwissSPAD without microlenses in (a)

and withmicrolenses in (b), at comparable illumination intensities. The data shows the pho-
ton counts detected in all 512 pixels of one row of SwissSPAD at an approximately even illumination.

some occasions (see Fig. 6.24b). These prevent readout of complete columns of the chip. Finally, for each
evaluation the brightest ∼2% of the pixels were removed. Jan Buchholz developed an online correction
for broken pixels [232]. It is implemented in the same FPGA that is also used for the readout. First,
broken pixels are selected either by hand or using a threshold. Then, during each exposure time, the
0 or 1 read from these pixels is ignored and the data from one of the four neighboring pixels is used
instead. Which neighboring pixel is used, is randomly changed for each frame. In this way, the broken
pixel will e�ectively output the average over its four neighbors. This method has the advantage that
even the broken pixels will output a reasonable autocorrelation curve.

The impact of the microlenses, was also assessed (cf. section 6.4.4). A SwissSPAD with and without
microlenses was mounted in the SPIM and the transmission illumination LED was used to illuminate the
sensor (see Fig. 6.2). The light passed the objective lens and the tube lens on its way, thus simulating the
e�ect of �uorescence light, collected by the microscope. A pro�le along the 512 pixel-axis of SwissSPAD
is shown in Fig. 6.25. The intensity on the chip without microlenses varies by about 7% around its
average value of 690 Hz, compared to 61% around an average of 9 kHz with microlenses. The strong
dependence of the count rate in the chip with microlenses is caused by the increasing incidence angles
of the light towards the border of the chip. Therefore, all SPIM-FCS measurements were limited to
the bright central part of the sensor (y = 250...400 pixel), where the in�uence of the microlenses is
negligible. The discrepancy of a factor of ∼13 in average intensity is explained by the gain in detected
photons by the microlenses and an ∼30% lower excess voltage on the sensor without microlenses. In
the central region the gain is ∼18.
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7. Data processing and instrument
control so�ware

This section describes the methods for data evaluation and instrument control, which were developed
during this project. A single program, called �ickFit 3.0, was implemented, which serves both
purposes. First the data evaluation processes used for imaging FCS and imaging FCCS measurements
are described in section 7.1, their implementation in �ickFit 3.0 is subject of section 7.3. In section 7.2,
single-particle tracking is described, which was used for some experiments in this thesis. Finally, the
instrument control for the SPIM is described in section 7.4.

7.1. Imaging FCS/FCCS data evaluation

7.1.1. Overview

The imaging F(C)CS data evaluation process consists of several stages, as illustrated in Fig. 7.1. The
�gure also shows how the extent of data is reduced during the processing. The evaluation starts from
an image series acquired on a SPIM (or any other suitable microscope) with a given temporal resolution.
For measurements in this thesis, that were acquired with an EMCCD camera, each data set typically
consists of a series of 105 − 106 frames with 128× 20 pixels of the �uorescence signal and a second time
series of the background signal with ∼103 frames. If a SPAD array was used for acquisition, the image
size was comparable, but the number of frames was 106 − 108.

Initially, the �uorescence image series is corrected for acquisition artifacts: a background signal, the
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Figure 7.1. Evaluation chain for imaging FCCS. The left column shows the progression from the
raw input data to the statistically analyzed results. The mid column gives typical numbers for the
size of the data set in each step. The processing times for a typical measurement are given in the
column on the right.
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camera o�set (see section 7.1.2) and bleaching of the �uorophores (see section 7.1.2). This is followed
by the calculation of auto- and cross-correlation functions. In addition, a time-averaged “video” with
100− 1000 frames is produced from the corrected raw data, which allows to observe the behavior of the
sample during the measurement (see section 7.1.3). This stage reduces the amount of data by a factor of
approximately 100, or even more for SPAD arrays. For the rest of the evaluation the raw data are no
longer needed and they can be discarded. Finally, the model functions described in chapter 5 are �tted
to the correlation curves and the resulting parameters are stored (see sections 7.1.4 and 7.1.5). These
parameters can be displayed as an image and analyzed statistically.

In the remainder of this chapter, image series acquired on a pixel detector of width W and height H
will be denoted in the form F (x, y; t), where x = 1,2, ...,W and y = 1,2, ...,H are the pixel coordinates.
If not stated otherwise, the time t is given in units of the frame repetition time ∆tframe. Then t is usually
an integer number.

7.1.2. Background and bleach correction

Background correction

Before correlation functions are calculated, a background correction is performed. The e�ect of this
artifact on the FCS and FCCS correlation functions has been described in section 5.5.2. In EMCCD
measurements the background correction also accounts for the constant o�set of typically 100 ADU,
which the camera adds to any frame, in order not to clip noisy signals near 0. For the o�set correction,
the sample illumination is switched o� and a second image series B(x, y; t) of a typical length TB = 2000
is acquired with identical camera settings, as in the acquisition of F (x, y; t). Then the background
correction is performed, by subtracting the averaged background series from the �uorescence time
series F (x, y; t):

F (x, y; t) → F (x, y; t) − B(x, y) with B(x, y) =
1

TB

TB∑
t=1

B(x, y; t). (7.1.1)

Bleach correction

Especially when measuring �uorescent proteins, a certain amount of bleaching, or more exactly depletion
of the reservoir of �uorophores, is observed (see section 5.5.4). As stated there, this e�ect cannot be
incorporated in the �t models, so it is corrected for at this stage, using the correction formula proposed
by Ries et al. in Ref. [98]:

F (x, y; t) →
F (x, y; t)√

f xy (t)/ f xy (0)
+ f xy (0) ·

(
1 −

√
f xy (t)/ f xy (0)

)
. (7.1.2)

Here f xy (t) is a function describing the �uorescence decay observed in the pixel (x, y). For this correction
the background-corrected intensity time trace F (x, y; t) is averaged into a series of 100−300 equidistant
time points F (x, y; t). Then the parameters of the model f xy (t) are optimized to best �t F (x, y; t). The
�t is performed for every pixel separately. Due to the large number of pixels (typically > 1000), a fast
�tting procedure is required, which converges reliably, also without supervision.

For the model f xy (t), several options are appropriate. A simple mono-exponential decay was proposed
in section 5.5.4. It is typically applicable only in samples, in which bleaching causes an intensity drop of
only 10 − 20% over the course of the measurement, such as DNA labeled with chemical �uorophores.
The model function is then of the form

f xy (t) = f0,xy · exp
(
−

t
τB,xy

)
, (7.1.3)
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Figure 7.2. Example of a bleach correction according to Eq. (7.1.2). (a,c,f) Uncorrected intensity
time traces for one pixel (green) with �tted model function f xy (t) (black). Used models: (c) simple
exponential model Eq. (7.1.3), (f) modi�ed model Eq. (7.1.5) with Nf = 2. (d,g) Intensity time traces
after correction. (b,e,h) Autocorrelation functions obtained after the bleach correction, as average
and standard deviation over the curves from 5 consecutive segments of a length of ∼10.5 s each.

with an amplitude f0,xy and a decay time τB,xy . For more complex systems, such as living cells, a
double-exponential model would be more appropriate [109, 233, 234]:

f xy (t) = f0,xy · exp
(
−

t
τB,xy

)
+ f ′0,xy · exp *

,
−

t
τ′B,xy

+
-
. (7.1.4)

An unsupervised �t of this model often does not converge. Therefore an extended mono-exponential
model has been successfully used throughout this thesis:

f xy (t) = f0,xy · exp *.
,
−

1
τB,xy

·


t +

N f∑
i=2

f i,xy · t i


+/
-
. (7.1.5)

Here the mono-exponential function with a single decay time τB,xy has a polynomial of degree Nf

between 2 and 4 as argument. The polynomial coe�cients are denoted as f i,xy .
Fitting was performed in a multi-step scheme to guarantee a reliable convergence: �rst the measured

intensity F (x, y; t) was logarithmized, as the exponential �t then reduces to a simple regression in the
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case of Eq. (7.1.3) and a polynomial �t for Eq. (7.1.5). For the polynomial case, the �t was split into Nf

�ts, where �rst only the mono-exponential parameters were optimized, then these ware taken as starting
values for a �t with a parabola and so forth, until the full degree of the desired polynomial was reached.
A Levenberg-Marquardt non-linear least-squares �tting algorithm was used in all steps [235–237]. The
initial starting parameters were obtained from a robust regression analysis of log

(
F (x, y; t)

) using the
outlier-robust iteratively reweighted least squares (IRLS) algorithm [238].

Figure 7.2 shows an example for bleaching in a SPIM-FCS measurement of a cell expressing eGFP.
The laser intensity was set to a value of approximately 100 W/cm2. Figure 7.2(a) shows the decay
of the measured intensity F (x, y; t) for a single pixel and Fig. 7.2(b) its autocorrelation curve. The
mono-exponential and the modi�ed mono-exponential model (Nf = 2) were used to correct for this
bleaching. Resulting �ts, corrected intensities and autocorrelation curves are shown in the second and
third column of the �gure. The mono-exponential �t already removes most of the bleaching, but there
is still a considerable o�set present in the autocorrelation curve (Fig. 7.2e). It is caused by the U-shaped
corrected �uorescence intensity, see Fig. 7.2(d). The �nal �t with a polynomial of degree Nf = 2 is good
enough to cause a straight �uorescence signal and a smoothely decaying autocorrelation function. The
remaining long-term decay is due to movements of the cell.

7.1.3. Calculation of correlation functions

After correction for background and bleaching, the normalized FCS or FCCS auto- and cross-correlation
functions are calculated. On a pixeled image sensor, the general spatial cross-correlation function can
be de�ned as:

g(τ, δx , δy ; x, y) =

〈
F (x, y; t) · F (x + δx , y + δy ; t + τ)

〉
t〈

F (x, y; t)
〉
t
·
〈
F (x + δx , y + δy ; t)

〉
t

. (7.1.6)

Here τ is the lag time, given in units of ∆tframe, and (δx , δy ) is the shift between the two observation
volumes, given in numbers of pixels. The autocorrelation functions are included by the special case
δx = δy = 0.

Two-color acquisitions are done using a dual-view optics (see sections 3.1.3 and 6.1.4), which images
the two color channels side-by-side on a single image sensor, as shown in Fig. 7.3. The image stack
F (x, y; t) is split into two separated stacks L(x, y; t) (left) and R(x, y; t) (right), as indicated in the �gure.
Finally the two-color cross-correlation functions are de�ned as:

ggr(τ; x, y) =

〈
L(x, y; t) · R(x, y; t + τ)

〉
〈
L(x, y; t)

〉
·
〈
R(x, y; t)

〉 ≡ g(τ,W/2,0; x, y). (7.1.7)

crosscorrelation
g (τ;x,y)gr

green auto-
correlation g (τ;x,y)gg

red auto-
correlation g (τ;x,y)rr

green channel L(x,y;t) red channel R(x,y;t)

cross-correlation with δ =W/2x full frame
height H

full frame width W

Figure 7.3. Illustration of the splitting of a single frame from an FCCS measurement.
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7.1. Imaging FCS/FCCS data evaluation

The last equivalence signi�es, that ggr(τ; x, y) can also be written as a special case of the spatial cross-
correlation (Eq. 7.1.6) of the full image stack. In that case the focus shifts are set to (δx , δy ) = (W/2,0)
or (δx , δy ) = (0,H/2), depending on the orientation of the image splitting optics.

The averages in Eq. (7.1.6) and Eq. (7.1.7) are temporal averages over in�nite times:

〈F〉 = lim
T→∞

T∫
0

F (t) dt . (7.1.8)

As a measurement F (x, y; t) consists of a �nite number TF of frames, only a statistical average of such
averages can be estimated from a measurement:

〈F〉(x, y) =
1

TF
·

TF∑
t=1

F (x, y; t). (7.1.9)

The same is true for the cross-correlation function in Eq. (7.1.6). A good statistical estimator, which was
also used throughout the thesis, is [239, 240]

ĝsym(τ, δx , δy ; x, y) =

1
TF − τ

·

TF−τ∑
t=1

F (x, y; t) · F (x + δx , y + δy ; t + τ)



1
TF
·

TF∑
t=1

F (x, y; t)

·



1
TF − τ

·

TF∑
t=τ

F (x + δx , y + δy ; t)


. (7.1.10)

The special form of normalization in Eq. (7.1.10) is called “symmetric normalization”. Note that the two
averages in the denominator extend over two di�erent ranges, whereas a naïve implementation would
extend the sums in the normalization over the whole image stack:

ĝnaïve(τ, δx , δy ; x, y) =

1
TF − τ

·

TF−τ∑
t=1

F (x, y; t) · F (x + δx , y + δy ; t + τ)



1
TF
·

TF∑
t=1

F (x, y; t)

·



1
TF
·

TF∑
t=1

F (x + δx , y + δy ; t)


(7.1.11)

In this version the three sums extend over the measurement time asymmetrically and the initial part
[1...τ] and the �nal part [TF − τ...TF ] of the measurement have di�erent statistical weights [239, 240].
Schätzel et al. showed that both estimators are statistically biased, but Eq. (7.1.10) is favorable, as it
better accounts for the �nite time series [239].

The expression (7.1.10) can be used to estimate g(τ, δx , δy ; x, y) for an arbitrary value of τ. In FCS and
FCCS the autocorrelation functions typically span several decades (e.g. τ = 10−6...10 s). Therefore, a
linear grid of τ-values is impractical, as it would result in millions of data points. Hence logarithmically
spaced τ-values are used, in order to cover the whole desired lag time range by 100...500 estimates,
which are equally distributed over all decades.

The computational cost of calculating Eq. (7.1.10) for Nτ = 100...500 values of τ is on the order of
O(Nτ · NF ). This results in long run times of the algorithm, because for each τ, large sums over nearly
the whole time series have to be calculated. Therefore the multi-τ algorithm is often used. This algorithm
estimates g(τ, δx , δy ; x, y) for semi-logarithmically spaced lag times τ ≡ τs,p with s = 0...S − 1 and
p = 0..P − 1. The series τs,p consists of S blocks of P linearly spaced lags τs,0...τs,P−1. Initially, the
spacing of the lag times equals the frame repetition time ∆tframe. It is multiplied by an integer number
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m from block s to block s + 1:

τs,p = τs,0 + p · ms · ∆tframe

τs+1,0 = τs,P−1 + ms
∆tframe

τ0,0 = ∆tframe.

Typical parameters are m = 2 and P = 8 or P = 16. The number of blocks S is then chosen in such a
way, that the full desired lag time range is covered by τ = ∆tframe...τmax and τmax < TF . For EMCCD
measurements (∆tframe ≈ 500µs, TF ≈ 60 s) typically S = 8..13 blocks are used. This yields a maximum
lag time of 1..33 s.

The multi-τ algorithm uses a clever scheme to implement the correlation, which continuously reduces
the size of the sums in Eq. (7.1.10): for each linear block s, the algorithm directly calculates the sums
in Eq. (7.1.10) for P lag times τ = τs,0...τs,p . In between blocks the data is reduced by binning m
measurements together: F (x, y; t)+ ...+F (x, y; t+m−1). This e�ectively reduces the length of the time
series by a factor m. Then the next linear block is calculated on this binned time series. It can be shown
that this averaging step with m = 2 allows to perform the calculation of an arbitrary number of blocks
S in the same time that is required to calculate two blocks without averaging. Then the algorithmic
complexity is reduced to O(2P · NF ) for any S ≥ 2 [131]. The argument we made in Ref. [131] to prove
this claim is as follows. The �rst block s = 0 needs a computation time ∆tlin. Then each subsequent
block s needs a computation time ∆tlin/ms+1, and the overall computation time is �nally given by:

1st lin. block︷  ︸︸  ︷
1 · ∆tlin +

2nd lin. block︷   ︸︸   ︷
1
2
· ∆tlin +

3rd lin. block︷   ︸︸   ︷
1
4
· ∆tlin + · · · ≤

∞∑
n=0

1
2n
· ∆tlin = 2 · ∆tlin. (7.1.12)

This algorithm is also ideally suited for implementation in hardware, such as on a �eld programmable
gate array (FPGA). It was used to perform an on-line autocorrelation for all 1024 pixels in the SPAD
array Radhard2 at a maximum readout rate of 105 fps [131]. An optimized implementation allows to
reach the same performance on modern central processing units (CPUs), as these can parallelize several
multiply and accumulate steps [232].

The averaging step in a multi-τ correlator saves a lot of computation time, but also introduces an
additional error in the estimator Eq. (7.1.10). For continuous time series F (x, y; t) the binning step can
be written as a convolution with a rectangular �lter kernel hrect(t; ms · ∆texp) of width ms · ∆texp. The
�lter kernel is de�ned as

hrect(t;∆T ) =
1
T
·




1 |t | < ∆T/2
0 else

. (7.1.13)

The correlation function for any s > 0 is then given by

g′(τ, δx , δy ; x, y) =

=

〈[
F (x, y; t) ~ hrect(t; ms∆texp)

]
·

[
F (x + δx , y + δy ; t + τ) ~ hrect(t + τ; ms∆texp)

]〉
〈
F (x, y; t) ~ hrect(t; ms∆texp)

〉
·
〈
F (x + δx , y + δy ; t) ~ hrect(t; ms∆texp)

〉 . (7.1.14)

The normalization is not a�ected by this averaging, but the correlation factor in the numerator is. As
convolution and correlation are linear operations, they can be interchanged. Finally, the correlation
function in Eq. (7.1.14) can be expressed as a convolution of the true function Eq. (7.1.7) with a triangular
�lter htriangle(t; ms · ∆texp) = hrect(t; ms · ∆texp) ~ hrect(t; ms · ∆texp) [241, 242]:

g′(τ, δx , δy ; x, y) = g(τ, δx , δy ; x, y) ~ htriangle(t; ms · ∆texp). (7.1.15)
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Figure 7.4. E�ect of triangular averaging in a multi-τ correlation on the estimated correla-

tion curve. (a) Autocorrelation curve estimated from a sine signal with di�erent correlators. (b)
Autocorrelation curve estimated from an FCS simulation with di�erent correlators. The upper
graphs show the estimated correlation curves together with the theoretical expectation or a �t (solid
red lines). The lower graphs show the absolute deviation of the estimates ĝ(τ) from the ideal curves
g(τ).

Note that the width of both �lters increases with the block number s, so that the error is larger at longer
lag times. Figure 7.4(a) shows a sine signal that has been correlated either with a multi-τ correlator or
by directly evaluating Eq. (7.1.10). The lower graph shows the absolute error between the calculated
correlation function and the ideal signal. For the direct correlation, the error stays low, whereas it
increases towards 1 for the multi-τ correlator. Figure 7.4(b) shows the same curves as Fig. 7.4(a), however
for a simulated FCS data set. Here the averaging error is of minor importance, because the correlations
have typically decayed towards 0 for large lag times. Details of the FCS simulation are described in
appendix B.1.

Sometimes it is useful to estimate the statistical error, which is introduced by calculating the autocor-
relation function using Eq. (7.1.10). It can for instance be used as a statistical weight in a model �t (see
section 7.1.4). Some theoretical work has been done on the estimation of such errors [240, 242–244].
Koppel proposed an analytical expression, which requires the true correlation function, or �tting model
to be known [243]. A method, that does not required any knowledge about the sample, is to estimate
the statistical error from consecutive measurements directly. For this purpose, complete background-
and bleach-corrected time series F (x, y; t) is then split into Nsegments segments of equal length. These
are then correlated independently. The average and the standard deviation over the segments are �nally
used as estimates for the correlation function and its error, respectively. If the time series is stationary,
this estimate is reliable. If not, the correlation curves for each segment will scatter wildly, causing a large
error and a deformed average. In some cases this can be corrected by excluding some of the segments
from the average. Note that this can be done without recorrelating the image series.
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7.1.4. Model parameter estimation

The �nal step of an imaging FC(C)S analysis is model �tting. The models that were used throughout this
thesis, were introduced in chapter 5. Fitting is performed for each pixel separately. In imaging FCS only
one autocorrelation curve estimate ĝ(τ, δx , δy ; x, y) is available for each pixel. Then the �t parameters
are obtained by solving the least-squares optimization problem

~β∗(δx , δy ; x, y) = arg min
~β

Nτ∑
i=1



ĝ(τi , δx , δy ; x, y) − g(τi , δx , δy ; ~β)
σi (x, y)



2

︸                                                  ︷︷                                                  ︸
=:χ2 (~β)

. (7.1.16)

Here τi is the set of Nτ lag times at which the autocorrelation curve has been estimated The �t
model g(τi , δx , δy ; ~β) depends on the set of parameters ~β that are optimized (e.g. di�usion coe�cients,
particle concentrations etc.). The σi (x, y) are estimates of the statistical error associated with each
ĝ(τi , δx , δy ; x, y) (see last section). Note that the model does not explicitly depend on the coordinate
(x, y) in the data set.

In an imaging FCCS data set, several auto- and cross-correlation functions are available for each pixel:

• for two-color FCCS: two autocorrelations ĝgg(τ; x, y) and ĝrr(τ; x, y) for the green and the red
focus and one cross-correlation ĝgr(τ; x, y) between the two color channels.

• for two-pixel FCCS: one autocorrelation ĝ(τ,0,0; x, y) for the central pixel and any number of
cross-correlations ĝ(τ, δx , δy ; x, y) to neighboring pixels (for four direct neighbors: ĝ(τ,0,−1; x, y),
ĝ(τ,0,1; x, y), ĝ(τ,−1,0; x, y), ĝ(τ,1,0; x, y)).

Typically, the models presented in section 5.4 contain parameters, that reappear in the auto- and
cross-correlation models. For instance, in the 2-color case for a binding reaction A + B −−−⇀↽−−− AB, the
di�usion coe�cients and concentrations of each species contribute to each of the three correlation
curves. Therefore a global �tting approach is used, which �nds the optimum set of parameters, that
minimize the global least-squares problem:

~β∗(x, y) = arg min
~β

∑
(δx,δy )∈
{(0,0), ... }

Nτ∑
i=1



ĝ(τi , δx , δy ; x, y) − g(τi , δx , δy ; ~πδx,δy ( ~β))

σi (δx , δy ; x, y)



2

. (7.1.17)

Here, the curves are parametrized by their shift vector (δx , δy ). The parameter vector ~β comprises all
parameters appearing in any of the �t models g(...), and ~πδx,δy ( ~β) selects the subset of parameters,
that are used for the model for a speci�c value of (δx , δy ). The variant of Eq. (7.1.17) for two-color
cross-correlation is accordingly:

~β∗(x, y) = arg min
~β

∑
γρ∈

{gg,rr,gr}

Nτ∑
i=1



ĝγρ (τi ; x, y) − gγρ (τi ; ~πγρ ( ~β))

σγρ, i (x, y)



2

. (7.1.18)

All optimization problems described in the last paragraph are least-squares problems with a relatively
low number of parameters, typically between 2 and 20. So standard least squares optimization algorithms
can be used. In most cases the Levenberg-Marquardt �t (LM �t) method [235–237] converges su�ciently
well and fast, if good starting values are available. This is true even in the case of thousands of �ts per
data set, which are performed without supervision. Several methods have been used for this thesis to
ensure good convergence of the algorithms:
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• In order to obtain reasonable starting values for ~β, a set of average correlation curves, calculated
from the mean over all useable pixels, is �rst �tted with supervision. Then these �t results are
used as starting values for all single-pixel �ts.

• Typically the �t is repeated 2 − 4 times in each pixel, using the results of the last �t as initial
values for the following one.

• An LM �t often gets stuck in local minima of the χ2( ~β) landscape, if its starting values are far
apart from the ideal solution. Therefore a di�erent optimization algorithm can be applied to �nd
good starting values for the LM �t. For this thesis, a stochastic optimizer was used that implements
the principle of “simulated annealing” [245]. Although it gives good results, it typically has much
longer runtimes, than an LM �t.

• In some cases it also helps to relax the model constraints. For instance, a two-color FCCS
dimerization model may be modi�ed to not enforce the same three di�usion coe�cients DA, DB
and DAB in each of the three correlation curves. Six parameters may be used instead, which
comprise two di�usion coe�cients for each color channel {gg,rr,gr} (see section 12.2.2 for details).
Then these six parameters are not linked over the whole data set. This generally improves the
performance of the �t algorithm, as more degrees of freedom are available. Despite its better
convergence, this method may complicate the interpretation of the �t results.

7.1.5. Maximum entropy data analysis

The software implementation of the maximum entropy method was done by Niko Schnellbächer during an
internship under my supervision.

Often several components χ of di�erent di�usion coe�cients Dχ are present in a sample, and the
relative concentration of each of these components is to be estimated from an FCS measurement. A
simple approach to this problem is to set up a model as in Eq. (5.3.12) (p. 58), which contains one
summand for each anticipated component. As an alternative approach, the maximum entropy data
evaluation (MaxEnt) method can be used. It was modi�ed for application in FCS in Refs. [246, 247].
Instead of writing the autocorrelation function Eq. (5.3.12) as a sum over few components, it can be
formulated as an integral over a probability distribution pMaxEnt(Dχ ) of components χ, each with a
di�erent di�usion coe�cient Dχ :

gγ (τ) =
1〈
c
〉 Dmax∫
Dmin

pMaxEnt(Dχ ) ·
(
Gχ
γ (τ; Dχ )/cχ

)
dDχ . (7.1.19)

The integration is performed over the range of di�usion coe�cients [Dmin...Dmax]. this range also limits
the domain of the distribution pMaxEnt(Dχ ). The term (

Gχ
γ (τ; Dχ )/cχ

) is the correlation factor for a
species of di�usion coe�cient Dχ and a concentration of 1/Ve�. Finally, 〈c

〉 is the overall concentration
of particles in the sample. As described in Refs. [246, 247] this integral equation can be solved using a
numerical method from ref. [248]. This results in an estimate of the distribution pMaxEnt(Dχ ), but this
inversion problem is ill-posed due to the large number of parameters. Therefore a regularization method
is used. MaxEnt maximizes the statistical entropy

S :=

Dmax∫
Dmin

pMaxEnt(Dχ ) · ln
[
pMaxEnt(Dχ )

]
dDχ . (7.1.20)
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of pMaxEnt(Dχ ), while minimizing an least squares “data term” χ2( ~β), as given in Eq. (7.1.16). The entropy
term leads to a preference of smooth distributions, which do not contain narrow spikes. Typically a
regularization parameter allows to balance the data term and the regularization term.

7.2. Single particle tracking

Single particle tracking (SPT) was used as an independent control of di�usion coe�cients measured
with imaging FCS for this thesis (see section 8.2). In an SPT evaluation, the position of single particles
in each frame is determined. As explained in section 3, the particles are not imaged into single bright
pixels on the image sensor, but their image is smeared out due to the point spread function (PSF) of the
microscope. The SPT algorithms determine the peak position of the image of every particle. As usual in
particle-positioning microscopy, this peak position can be determined with higher precision, than the
pixel size. The resolution of particle positions is therefore not limited to the pixel size [36, 53].

After the positions of all spots in every frame have been detected, they are connected to longer
trajectories (

xi (t), yi (t)
) for several particles. Typically two points (

x(t), y(t)
) and (

x ′(t + 1), y′(t + 1)
)

are assigned to the same particle, if they moved only a small distance dmax between two frames. Finally
the mean squared displacement

MSDi (τ) =
1

Ni − τ
·

NF−τ∑
t=1

[
(xi (t + τ) − xi (t))2 + (yi (t + τ) − yi (t))2

]
(7.2.1)

of each trajectory of length Ni is calculated. Then a �t to the MSD for normal or anomalous di�usion
(cf. section 1.3)

MSD(τ) = 4D · τ or MSD(τ) = 4Γ · τα (7.2.2)

is performed, yielding the parameters of the motion.
For SPT the 2D ParticleTracker plug-in [249, 250] for the free image processing software Fiji was

used in this thesis. The MSDs were calculated and di�usion coe�cients were extracted using a Matlab
script. This script also calculates an averaged MSD, from a subset of the trajectories. A set of �lter
conditions is applied to them that are designed to sort out outliers. For instance nonsensically high
or low di�usion coe�cients are sorted out. To �t Eq. (7.2.2), an outlier-robust linear regression (IRLS
algorithm) was used, which is implemented in the Matlab method robustfit().

The accuracy and precision, with which the particle positions are estimated, depend mainly on the
signal-to-noise ratio (SNR) of the input images. For the algorithm used here, Sbalzarini and Koumoutsakos
show, that the positioning accuracy is better than half a pixel, even for low SNRs around 1. For SNRs
bigger than 5, the accuracy is even below 0.1 pixels [249]. The precision was shown to always be
better than 0.5 pixels. For a typical imaging FCS measurement of �uorescent microspheres at a low
concentration, the SNR was 3 or better. Therefore the same image series that are used for an imaging
FCS evaluation can be used for SPT, provided the sample is dilute, so that single particles can actually
be distinguished.

7.3. The data evaluation so�ware �ickFit 3.0

If not noted otherwise, all data evaluation methods were implemented in a software package called
�ickFit 3.0, which was developed during this thesis. It was designed as a data evaluation software for
FCS and imaging FCS techniques and later evolved to include the SPIM instrument control (see next
section)1. The core program provides a project manager that can hold a set of raw data items and a set

1�ickFit 3.0 is available free of charge from http://www.dkfz.de/Macromol/quick�t/.
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7.4. Instrument control for a SPIM

(a) Project management (b) imaging FCS �t plug-in

(c) imaging FCCS results display (d) MaxEnt evaluation plug-in

Figure 7.5. Screenshots of �ickFit 3.0.

of evaluation objects that operate on one or more of these raw data items. The project may be saved to
disk and reloaded later. It contains links to the actual raw data �les and stores all �t results internally.
The raw data �les are never changed. The functionality of raw data and evaluation items is not de�ned
by �ickFit 3.0 itself, but by plug-ins, which are loaded on startup. The open source Qt library was
used for the graphical user interface of �ickFit 3.0. It is completely written in standard C++. Thus the
software runs on all important desktop operating systems (Microsoft Windows, Linux and MacOS).
Figure 7.5 shows a set of screenshots of �ickFit 3.0.

7.4. Instrument control for a SPIM

Later, �ickFit 3.0 was extended with a specialized plug-in, that can control the SPIM described in
chapter 6. Communication with the di�erent hardware components (cameras, shutters, lasers, stages,
etc.) was implemented in separate plug-ins, as shown in Fig. 7.6. In this way, the replacement of old or
addition of new computer-controlled devices is easy, as only a new communication plug-in needs to be
implemented. The main control-plug-in implements di�erent data acquisition schemes:

• Live-view from the camera

• Acquisition of fast image series for imaging FCS and imaging FCCS data evaluation: This acquisi-
tion results in an image series with the principal �uorescence measurement, a set of full-frame
overview images with di�erent illumination modes (e.g. transmission and di�erent �uorescence
modes), a background image series for background correction. In addition, a set of metadata is
stored, which contains user-supplied information about the sample, the complete state of the
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Chapter 7. Data processing and instrument control software

microscope (all �lters, laser powers, etc.) and additional readings (temperature in the sample
chamber, etc.) which were taken during the acquisition.

• Acquisition of arbitrary image stacks: One or more stages are moved and at each position
several images are acquired. There is also a possibility to acquire images with di�erent �lter and
illumination con�gurations for each position.

• Scripted acquisitions: This allows to control the instrument by a small JavaScript program and is
used to perform automated long-term measurements.

All data is typically written in standard �le formats, such as tagged image �le format (TIFF), comma
separated values (CSV) or simple text �les. Therefore the data is readable by most scienti�c software.

SPAD array plugin

EMCCD plugin

QuickFit 3.0
with SPIM control plugin

Ÿ configure microscope
Ÿ provide live-view images
Ÿ acquire image series for  

FCS/FCCS data analysis
Ÿ acquire image stacks
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Figure 7.6. Overview of the SPIM control software and its connections to the microscope.
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8. Evaluation of the SPIM for FCS
measurements

Measurements in this chapter were performed in part together with Jan Buchholz (DKFZ, Heidelberg) and
Anand Pratap Singh (NUS, Singapore).

This chapter recapitulates several test measurements, demonstrating that single plane illumination
�uorescence correlation spectroscopy (SPIM-FCS) works correctly and yields reasonable results. At �rst,
the required alignment and calibration methods are described in section 8.1. Sections 8.2-8.4 then discuss
how well SPIM-FCS can measure absolute di�usion coe�cients, concentrations and the parameters
of anomalous di�usion. Several typical artifacts in SPIM-FCS measurements are summarized in 8.5.
Section 8.6 discusses the applicability of SPIM-FCS to live cell measurements. Finally, di�erent linear
image sensors (section 8.7) and SPAD array sensors (section 8.8) are compared and their usefulness in
SPIM-FCS is discussed.

8.1. Alignment and calibration procedure for FCS measurements

Two requirements have to be ful�lled for single-color imaging FCS applications: the light sheet needs to
overlap with the image plane as well as possible and the �eld of view of the detection microscope has to
be illuminated with the thinnest part of the light sheet (see section 6.3.1 for more details). Only if these
conditions are ful�lled, the microscope can be successfully used for measurements. Therefore a daily
alignment of the light sheet microscope according to section 6.3 has to be performed.

The �tting models used in SPIM-FCS depend on parameters, which describe either the sample
(concentrations, di�usion coe�cients etc.), or describe the molecular detection e�ciency function (MDE)
of the microscope (pixel size a in the image plane, point spread function (PSF) widths wg, zg). The
MDE parameters need to be determined before model �tting, as they may change with the day-to-
day alignment of the instrument. The pixel size a only depends on the camera parameters and the
magni�cation of the microscope, which does not change signi�cantly when the instrument is realigned.
Therefore the nominal pixel size of the camera can simply be divided by the magni�cation Mxy, which
is given by the combination of detection objective and tube lens. An accurate value for the PSF height
zg is obtained from a bead scan, as described in section 6.3.2. Typically the average or median 1/ e2-half
width of the 3-dimensional Gaussian �ts is used. This �t also accounts for a slight tilt of the MDE images
in the bead scan, which may be caused by an imperfectly aligned sample translation stage. Technically
speaking, the bead scan determines the MDE of the microscope, which includes the �nite pixel size, but
in z-direction, the pixel size plays only a minor role, so that the PSF length zg can be determined from
the bead scan.

Finally the PSF width wg is calibrated using an FCS measurement. Due to the dependence of the
bead scan results on the pixel size, wg cannot be obtained from these scan results. The calibration
also ensures that any artifacts due to the shape of the focus are cleared (see also section 8.3). For the
calibration, a SPIM-FCS measurement is performed on an aqueous solution of �uorescent microspheres
(e.g. ∅ = 100 nm: T7279, F8794 or F8786, Invitrogen) or a long, �uorescently-labeled DNA. The di�usion
in the sample should be slow enough to ensure that most of the decay of the autocorrelation curve is
captured by the image sensor with its limited temporal resolution (see section 8.2 for details). Finally,





Chapter 8. Evaluation of the SPIM for FCS measurements

(a)

0

1

2

3

4

5

6

400 800 1200 1600 2000

di
�u

sio
n

co
e�

ci
en

tD
[ µm2 /

s]

binned pixel size b · a [nm]

wg = 800 nm
wg = 600 nm
wg = 400 nm

(b)

0

200

400

600

800

1000

1200

400 800 1200 1600 2000

la
te

ra
lP

SF
w

id
th

w
g
[ nm

]
binned pixel size b · a [nm]

�nal result wg = (602 ± 78) nm

Figure 8.1. Results of an imaging FCS calibration with increasing pixel size. (a) Plot of the
di�usion coe�cient D obtained for di�erent pixel sizes b · a and for several test values for the lateral
PSF width wg. (b) Plot of the �t results wg for di�erent pixel size b · a, where Dref = 2.76µm2/s was
�xed. Data points in both graphs show the average and standard deviation over the whole imaging
FCS measurement. Sample: TetraSpec multi-�uorescent microspheres (∅ = 100 nm), camera: Andor
iXon X3, EMCCD, a = 400 nm, zg = (1138 ± 100) nm

the PSF width wg is determined from a �t, in which zg is �xed to the value from the bead scan and the
di�usion coe�cient D is �xed to a reference value. In a confocal FCS measurement, D is usually taken
from a published reference value, which was obtained with an independent measurement method (e.g.
D20 ◦C,W = 407µm2/s for Alexa-488 [251], or D20 ◦C,W = 317µm2/s for Alexa-568 [252]).

In imaging FCS, the reference value for D can be determined from the very same measurement, as the
known pixel size can be used as a ruler. Therefore no reference value from an independent method is
required. On image sensors, such as EMCCD cameras, nearly the whole quadratic pixel is light-sensitive.
Therefore the SPIM-FCS models from sections 5.2 and 5.3 stay valid, if b × b pixels (b = 1,2,3, ...) are
binned together, before the autocorrelation functions are calculated. The only required change in the
model parameters, is the larger pixel size b · a, which is introduced by the exchange a → b · a. If b · a is
signi�cantly larger than the (yet unknown) width of wg of the PSF, the dependence of the �t model on wg
becomes weak. In those cases the dwell time of particles in the focus mainly depends on the longitudinal
MDE-size zg and the pixel size a, so that the di�usion coe�cient D can be reliably determined without
knowledge of the true value of wg. This value for D is then used in a second step to determine wg in
a data set with b = 1. This method of calibration for imaging FCS was �rst proposed by Bag et al. in
Ref. [114] for ITIR-FCS, and later extended and re�ned for SPIM-FCS in our publications Refs. [130, 132].
An exact protocol for this “pixel-binning method” is as follows [130]1:

1. A bead scan is recorded and evaluated to yield the longitudinal PSF width zg (see section 6.3.2).

2. A SPIM-FCS measurement of the solute test sample in a sample bag is performed. The images
should be at least ∼20 × 20 pixels in size..

3. In the image stack from step 2 is binned into di�erent super-pixels, consisting of b × b camera
pixels (here b = 1,2, ...,5). Autocorrelation functions are calculated for each value of b.

4. The reference di�usion coe�cient Dref is determined by a �t of the SPIM-FCS model Eq. (5.3.25) (p. 61)
to the autocorrelation functions, which were calculated in the last step. In these �ts, the pixel size

1A plugin for �ickFit 3.0 is available, which performs this calibration in a semi-automated fashion.





8.1. Alignment and calibration procedure for FCS measurements

0

200

400

600

800

1000

11/2012 04/2013 10/2013

la
te

ra
lP

SF
w

id
th

w
g

[n
m

]

date

�uorescent microspheres, ∅ = 100 nm
607 bp DNA
Alexa-488

avg.±S.D.: (591 ± 46) nm

Figure 8.2. Lateral PSF width wg overmore than one year and for several di�erent calibration

samples. The results are shown for the green color channel only. Camera: Andor iXon X3 EMCCD,
τmin ≈ 500µs.

b ·a and the PSF length zg are �xed to their established values. The unknown PSF width wg is �xed
to di�erent test values, which approximately surround the expected value of wg. For instance, if
wg ≈ 600 nm is expected, the test values {400, 600, 800} nm could be used for wg. Figure 8.1(a)
shows a plot of the di�usion coe�cients, which are extracted for several values of b · a with this
method. With increasing pixel size b · a, the in�uence of the assumed wg gets smaller and the
curves converge to a common value. Finally Dref is determined to be the average of the di�usion
coe�cients measured at the largest pixel size (b · a = 2000 nm and Dref = (2.76 ± 0.26) µm2/s in
Fig. 8.1a).

5. A �nal �t for the data set with b = 1, yields the calibrated lateral PSF width wg. In that �t Dref
from the last step, zg from the �rst step and the pixel size b · a are �xed, so only the particle
number and wg are free �t parameters. Exemplary results are shown in Fig. 8.1(b). In that case
the calibrated PSF width was wg = (602 ± 78) nm.

A second possible method to determine the lateral PSF width wg was described in Ref. [130]. Instead
of pixel binning, it uses the distance between two cross-correlated pixels as a ruler. The protocol
for this method is nearly identical to the protocol above. Instead of the number of binned pixels
b × b, the shift between the cross-correlated pixels δx = b · a is varied. Since the amplitude of the
cross-correlation function approximately decreases with δx as exp(−δ2

x/w
2
g), the signi�cance of the �ts

decreases accordingly. Therefore the distance δx should not be much larger than the expected PSF width
wg. This “shift method” is especially useful for sensors such as SPAD arrays, where the sensitive area is
a small circle, instead of a rectangular pixel. If such pixels were binned, the validity of the MDE models
in section 5.2 would break down and hence the pixel-binning method cannot be used.

Figure 8.2 shows the stability of the lateral PSF width wg over more than one year. It summarizes the
results of more than 30 calibrations performed for di�erent samples. The values of zg over a comparable
period are shown in Fig. 6.16(a) (p. 98). It can be seen that the average PSF sizes scatter statistically
by about 10%. This is caused by day-to-day variations in the alignment. A daily calibration balances
these deviations and leads to reliable results. The average PSF size over all data points in Fig. 8.2 was
(591± 46) nm. For comparison, the MDE size, obtained from the bead scans directly, was (649± 80) nm
(see Fig. 6.16b). As expected, this value is ∼10% larger than the value from the SPIM-FCS calibration,





Chapter 8. Evaluation of the SPIM for FCS measurements

which determines the size of the PSF only.
Figure 8.2 also shows that it is of minor importance, which sample is used for the calibration. All

samples shown in the graph yielded comparable results. Even the value obtained for Alexa-488 (green
rectangles) agrees with the other results, although only a small part of the decay in the autocorrelation
curve is captured by the EMCCD camera (see next section).

8.2. Determination of absolute di�usion coe�icients

The calibration described in the last section, enables SPIM-FCS to measure absolute di�usion coe�cients.
In order to check this claim, the di�usion coe�cient D of an aqueous solution of �uorescent microspheres
with diameters of 100 nm and 200 nm (F8803 and F8811, Invitrogen) was measured with three di�erent
methods: SPIM-FCS, confocal FCS and single particle tracking (SPT). Assuming that the size estimate
of the manufacturer is correct, the di�usion coe�cient D of these spheres in water at 20 ◦C can be
calculated from Eq. (1.3.3) (p. 7). Also the di�usion correlation time τD can be estimated for the used
SPIM setup:

∅ = 100 nm : D20 ◦C,W = 4.3µm2/s, τD ≈ 76 ms

∅ = 200 nm : D20 ◦C,W = 2.05µm2/s, τD ≈ 160 ms.

The values for τD are signi�cantly larger than the temporal resolution τmin = 330−530µs of the EMCCD
camera (Andor iXon 860), so a large part of the decay of the autocorrelation curves will be acquired in a
measurement. This is illustrated with the blue curve in Fig. 8.3(a). The red curves in the same �gure
show autocorrelation curves from the same sample, obtained however with a confocal microscope. Here
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Figure 8.3. (a) Correlation curves fromSPIM-FCS (blue) and confocal FCSmeasurements (red)

on �uorescent microspheres with ∅ = 100 nm. (b) Averaged MSD and (c) di�usion coe�-

cient distribution obtained with SPT on the same sample. In (b) the average and standard
deviation over 1690 single-trajectory MSDs are shown in red. The blue line is a �t of the model
MSD(τ) = 4Dτ. (c) shows the distribution of di�usion coe�cients, extracted from 2081 single
particle MSD curves (IQR = interquartile range).
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microsphere di�usion coe�cients D20 ◦C,W
[
µm2/s

] , obtained with
diameter SPIM-FCS confocal FCS SPT theory
100 nm (3.8 ± 1.1) (3.0 ± 0.2) (3.09 ± 0.05) 4.3
200 nm (1.9 ± 0.7)∗ (2.10 ± 0.05)∗ (2.05 ± 0.11)∗ 2.15

∗ measurements performed by Anand Pratap Singh (NUS, Singapore) on a comparable SPIM, as the one described here.

Table 8.1. Di�usion coe�cients D20 ◦C,W measured by SPIM-FCS and other methods on two

samples of green �uorescent microspheres of di�erent diameter.

the signi�cantly smaller focus (wg ≈ 250 nm) leads to a decay of g(τ) at smaller lag times. Results of
an SPT evaluation for the microspheres with ∅ = 100 nm are shown in Fig. 8.3(b,c). Due to the limited
accuracy of the SPT algorithm of approximately ±a/2, the MSDs were evaluated only for lag times
τ > 4 ms.

Table 8.1 compares the results obtained from SPIM-FCS, from confocal FCS and from a single particle
tracking (SPT) evaluation (see section 7.2). As shown by the values in this table, SPIM-FCS yields the
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Figure 8.4. (a,b) Normalized SPIM-FCS autocorrelation functions acquired with an Andor
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fusion coe�cients from single SPIM-FCS measurements. In (a,c) 2 × 2 binning was used. (b)
Compares 1 × 1 binning and 2 × 2 binning.
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same di�usion coe�cients (within the errors) as the other two methods. Furthermore, it can be said, that
SPIM-FCS yield absolute di�usion coe�cients, because it does not rely on external calibration standards.
Nevertheless, the theoretical value obtained for the microspheres of ∅ = 100 nm is higher than the
measured values. This might be caused by aggregation and swelling of the beads during storage, which
is backed by the observation that the di�usion coe�cient of �uorescent microspheres from a single
batch decreases slowly over the duration of one year.

In order to check the range of di�usion coe�cients that can be accurately measured with SPIM-
FCS, several samples with di�erent particle sizes and di�usion coe�cients were used (see Tab. 8.2
for a summary of the results). Figure 8.4(a) shows normalized autocorrelation curves obtained for a
variety of samples: microspheres with ∅ = 100 nm, dsDNA with a length of 170 bp (confocal FCS:
D20 ◦C,W ≈ 27µm2/s), eGFP dimers (eGFP-2x, confocal FCS: D20 ◦C,W ≈ 80µm2/s) and free Alexa-488
molecules (confocal FCS: D20 ◦C,W ≈ 390µm2/s). All measurements were performed with an Andor
iXon X3 860 EMCCD camera at frame times of ∆tframe = 330 − 560µs. A 2 × 2 binning was applied to
each measurement, which increases the size of the focus and therefore extends the correlation time τD
of the particles. This e�ect is shown in Fig. 8.4(b) on two examples. It can be seen that especially for the
fast Alexa-488, a larger part of the slope of the autocorrelation curve is obtained. In addition, the noise
on the curves is reduced due to the higher number of photons captured by the larger pixel.

For comparison, Tab. 8.2 also contains the results of confocal FCS measurements for each sample.
Figure 8.5 shows these data as a plot, in which ideally all points would lie on the black dotted line. For
slow samples (D20 ◦C,W < 10µm2/s) the SPIM-FCS and confocal FCS measurements yield the same
values. For faster samples, a bias of the SPIM-FCS results towards lower di�usion coe�cients exists. In
these cases the temporal resolution is not su�cient and only a part of the slope of the autocorrelation
function is captured (see also the examples in Fig. 8.4a). This leads to an underestimation of the di�usion
coe�cient by the model �t.

Finally, a systematic analysis was performed, which elucidates the in�uence of the minimum lag time
τmin on the �tted di�usion coe�cient. A single SPIM-FCS measurement of∅ = 100 nm microspheres was
analyzed by using only lag times τ > τmin. Figure 8.5(b) shows the obtained di�usion coe�cients, as a
function of the ratio between minimum lag time τmin and the di�usion correlation time τD = (110±26) ms.
The value of τD was obtained at the full temporal resolution τmin = ∆tframe = 330µs. The plot shows
the median and the interquartile range (IQR) of the di�usion coe�cients extracted from all pixels. For
τmin < τD/30, the �tted di�usion coe�cient depends only weakly on the temporal resolution and the
relative error is below 6%. Above this threshold, the relative error rises with increasing τmin. Also the
IQR increases, as the noisiness of the autocorrelation curves has a higher impact for low autocorrelation
amplitudes g(τ) near 0. Note however, that all results are still correct within a factor of 2. Sankaran et al.
published comparable results for imaging FCS on a total internal re�ection �uorescence microscope and
for simulations [112]. There the authors suggest to use a minimum lag time of τmin < τD/100 to obtain
reliable di�usion coe�cients.
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di�usion coe�cients D20 ◦C,W
[
µm2/s

] , obtained with
Sample SPIM-FCS confocal FCS theory
dsDNA 28 bp (66 ± 10) (84 ± 4) 83
dsDNA 170 bp (22 ± 3) (27.3 ± 0.8)
dsDNA 607 bp (8.1 ± 5) (12.7 ± 3.8)

green microspheres, ∅ = 40 nm (5.6 ± 1.2) (5.9 ± 1.4) 10.7
green microspheres, ∅ = 100 nm (3.8 ± 1.1) (3.0 ± 0.2) 4.3
multi-colored microspheres, ∅ = 100 nm (3.1 ± 0.2) 4.3
green microspheres, ∅ = 200 nm (1.9 ± 0.7) (2.10 ± 0.05) 2.15
QDot-525 streptavidin ITK (11.4 ± 1.0) (22 ± 3) 20 − 40
QDot-565 ITK (17.7 ± 5.9) (33.1 ± 2.6) 20 − 40

eGFP-1x (69.0 ± 18.5) (102 ± 11) 109
eGFP-2x (50.8 ± 10.7) (79.6 ± 7.9)
eGFP-3x (34.3 ± 8.7) (58.1 ± 0.5)
eGFP-4x (29.1 ± 5.6) (55.8 ± 3.1)

Alexa-488 (270 ± 50) 386
Alexa-594 (158 ± 96) 257

Table 8.2. Summary of di�usion coe�cients measured for di�erent samples using SPIM-FCS

and confocal FCS. Values are given as D20,W at 20 ◦C with water as solvent (see appendix C.4). All
measurements were performed with an Andor iXon X3 860 EMCCD camera with temporal resolution
of 330 − 500µs. Theoretical estimates are given, as explained in appendix C.5 for microspheres
of known diameter and for cylindrical molecules (eGFP-monomers: diameter dcyl = 3 nm, length
lcyl = 4 nm; 28 bp dsDNA: dcyl = 2.5 nm, lcyl = 9.24 nm).
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minimum lag time τmin and di�usion correlation time τD, measured with SPIM-FCS. The
data shown in (a) is the same that is listed in Tab. 8.2. For (b) a SPIM-FCS measurement of green
�uorescent microspheres (∅ = 100 nm) was evaluated taking into account only lag times τ ≥ τmin,
with τD = 110 ms resulting from a �t with τmin = 330µs. Datapoints are the median and errobars
the IQR of the �t results for pixels from the SPIM-FCS measurement.
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Chapter 8. Evaluation of the SPIM for FCS measurements

8.3. Particle concentration measurements in SPIM-FCS

Besides the di�usion coe�cient D, the particle concentration c is the second basic parameter that can
be extracted from FCS measurements. The concentration is represented by the zero-lag amplitude g(0),
to which the autocorrelation function levels o� at small lag times τ (compare also Fig. 5.5(b) on page 60).
Therefore the accuracy of a concentration measurement should depend on how well this plateau is
represented in the measured lag times. In order to quantify this, the in�uence of the ratio τmin/τD on
the measured concentration was analyzed. Results are shown in Fig. 8.6(a), as median and IQR over all
pixels in a SPIM-FCS measurement of an aqueous solution of �uorescent microspheres (∅ = 100 nm,
τD = (110±26) ms). For large ratios τmin/τD, the estimated concentration and its IQR increase. However,
for small minimal lag times τmin < τD/30 the estimated concentration settles, and the relative deviation
from the value at τmin = 330µs is below 10%. Again these results are comparable to the �ndings in
Ref. [112].

To check how well SPIM-FCS performs in concentration measurements, several dilution series were
performed using SPIM-FCS and confocal FCS in parallel. Figure 8.6(b) shows the results for three
di�erent samples: �uorescent microspheres with ∅ = 100 nm (F8803, Invitrogen), QDot-525 streptavidin
ITK (Q10041MP, Invitrogen) and Alexa-488. Each data point represents the mean and standard deviation
over all pixels in a SPIM-FCS measurement and ≥ 6 repeats for confocal FCS. Comparable results
were obtained on several repeated measurements during two years. A linear relationship between
concentration measurements with SPIM-FCS and confocal FCS is obtained over more than three orders
of magnitude. The dashed lines in the �gure are outlier-robust IRLS �ts of a linear function f (x) = β · x.
The resulting slopes were β = 2.995 for microspheres, β = 2.77 for QDots. These values are very close
to each other, as τmin/τD ≈ 3 · 10−3 for microspheres and τmin/τD ≈ 10−2 for QDots (τD = (25 ± 9) ms),
which is well below the given threshold of τmin < τD/30. For Alexa-488, the temporal resolution of
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For (a) a SPIM-FCS measurement of green �uorescent microspheres (∅ = 100 nm) was evaluated
taking into account only lag times τ ≥ τmin, with τD = 110 ms (obtained at τmin = 330µs).
Datapoints are the median and errobars the IQR of the �t results for all pixels from the SPIM-FCS
measurement.In (b) the dashed lines are outlier-robust linear �ts of f (x) = β · x with slopes of
β = 2.995 for microspheres, β = 2.77 for QDots and β = 4.67 for Alexa-488. Errorbars are averages
over several measurements.
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8.3. Particle concentration measurements in SPIM-FCS

the EMCCD camera is not su�cient and τD = (3.0 ± 1.3) ms yields τmin/τD ≈ 10−1, which is above the
given threshold. Therefore the overestimation of the concentration (β = 4.67) is even higher than for
the microspheres.

In all three dilution series, SPIM-FCS yielded a value of the concentration, which was approximately 3
times higher than the value obtained for the same sample with confocal FCS. If the temporal resolution
of the camera is insu�cient (as e.g. for Alexa-488), this factor can be even higher. However, the linear
relation between confocal FCS and SPIM-FCS persists over several orders of magnitude. Therefore
the overestimation can be compensated easily, when a calibration sample of known concentration can
be produced. Its true concentration ought to be determined with an independent method, such as
absorption spectroscopy, or confocal FCS on a carefully calibrated instrument.

In addition to the limited temporal resolution of EMCCD cameras, several other potential reasons for
the described overestimation were identi�ed. They will be explained and analyzed on the next pages.
Nevertheless, no single factor could be found, that completely explains β ≈ 3.

An obvious reason for the overestimation of c is the presence of an uncorrected background signal
(see section 5.5.2). Before each SPIM-FCS measurement, a background frame is acquired, and is used
for background correction. As it is recorded while the illumination is switched o�, it cannot account
for any direct scattering of illumination light onto the image detector. Such scattered light could be
caused for instance by impurities in the sample bu�er, or the sample bags themselves. It was measured
using sample bags, which are �lled with bu�er without �uorescent particles. The average intensity of
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Figure 8.7. (a,c) EMCCD signal F (t) and autocorrelation function measured on a single pixel

of a dark EMCCD camera with the baseline clamp activated. (b,d) The same without acti-

vated baseline clamp. The blue lines and ranges show average and standard deviation over the
displayed data (red). Measurement parameters: EM-gain setting: 300, τmin = 330µs; Evaluation:
autocorrelation without background correction.
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Chapter 8. Evaluation of the SPIM for FCS measurements

scattered light at typical settings for the laser and camera is on the order of 2 − 5 ADU for deionized
water or clean HBSS. This might considerably change the results for dim samples, such as Alexa-488 or
QDots, which exhibited an intensity of 30 − 50 ADU at the lowest concentration, used for the dilution
series above. As shown in Fig. 5.17 on page 75, this would already result in an overestimation of the
concentration by 10 − 20%. For comparison, the �uorescent microspheres had an average intensity of
(180 ± 6) ADU at their lowest concentration. Therefore, the mentioned background signals do not play
a signi�cant role here. Even higher background intensities were observed in live-cell measurements,
because in this case waste-products and remnants from dead cells tend to pollute the bu�er.

A second possible cause for the overestimated concentrations are camera artifacts. EMCCD cameras
typically su�er from a drift of their o�set value and EM gain, which are caused by temperature drifts in
the camera electronics. The Andor iXon X3 860 EMCCD camera, that was used here, compensates these
artifacts by a function called “baseline clamp”. It uses the signal from additional, light-shielded pixels
to measure and correct the drift. Figure 8.7 shows intensity time-traces and autocorrelation functions,
which were measured using a non-illuminated EMCCD camera with and without the baseline clamp
activated. The e�ect of the o�set drift without the clamping is clearly illustrated in Fig. 8.7(b). The
corresponding autocorrelation of the background would be added to the autocorrelation of the particles.
The baseline clamp removes this e�ect completely from the intensity time-trace and the associated
autocorrelation curves (see Fig. 8.7a,c).

Unruh and Gratton suggested in Ref. [253], that the camera gain G and the excess noise factor F 2

might in�uence the measured concentration also in FCS measurements. This e�ect was ruled out by
simulations of FCS measurements with a detector model that includes the camera noise, as described
in section 4.2.5 (see appendix B.1 for details on the simulation). Figure 8.8(a) shows a subset of the
simulation results for di�erent values of G and of F 2. No in�uence of the di�erent detector parameters
on the correlation amplitude was detectable in any of the simulations. This is expected as the camera
noise should be non-correlated over time (see section 4.2.5 and Fig. 8.7). Therefore the noise contributions
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w(z) from Eq. (8.3.1) to this data set.

in�uence the variance of the camera signal, but not its temporal autocorrelation. The only detectable
e�ect on the autocorrelation curves was an increased noise at low lag times, which is due to the read
noise σread of the linear detectors (cf. blue curve in Fig. 8.8). The in�uence of the EM-gain setting of
the camera, which is proportional to G, was also tested experimentally. Several di�erent dilutions of
QDot-565 were measured at EM-gain settings 300 and 500 on an Andor iXon X3 860 EMCCD camera.
Figure 8.8(b) shows the relative deviation between the two measurements for each dilution. The results
do scatter, but on average, no in�uence of G could be detected.

Finally, the focus geometry of the SPIM was analyzed more closely. The MDEs assumed for a SPIM in
chapter 5 are separable into three factors, each depending only only on one coordinate x, y or z. This is
mainly a consequence of the assumed 3-dimensional Gaussian shape of the PSF. This assumption allows
to successfully obtain absolute di�usion coe�cients D. These are measured via the dwell time of particles
in the focus, which mostly depends on the smallest dimension of the MDE wg. The concentration on the
other hand, is sensitive to the full focal volume and thereby on all three parameters wg, zg and a. For
this reason, the bead scans, which were used to determine the focus parameters (see section 6.3.2), were
evaluated in more detail. For each bead image, 1-dimensional Gaussian functions were �tted to cuts
along the x- or y-axis for di�erent z-positions. For the postulated PSF, the lateral width of the MDE (or
PSF) should not depend on the z-position. An example of the 1/ e2-widths ψx (z), as obtained from the
beadscans, is shown in Fig. 8.9 (red crosses). The width ψx (z) signi�cantly increases with increasing
distance from the brightest pixel. This feature of the MDE can be understood, if a Gaussian beam is
used as a more realistic model for the illumination PSF, than a model using a simple Gaussian function.
Such an MDE is de�ned as [178]:

MDE(x, y, z) =
(
w0

w(z)

)2

· exp *
,
−2 ·

x2 + y2

w2
0 (z)

+
-
, with w(z) = w0 ·

√
1 +

(
z
z0

)2

, (8.3.1)

where w0 is the beam waist and z0 is the depth of focus. This function and a simple 3-dimensional
Gaussian with similar focus parameters, are shown as a 1/ e2-isosurface plots in Fig. 8.10. It demonstrates
the large di�erence between the volumes, described by these two functions. In x- and y-direction this
MDE(x, y, z) resembles a Gaussian function with z-dependent 1/ e2-width w(z). The blue curve in
Fig. 8.9 shows a �t of w(z) from Eq. (8.3.1) to the ψx (z) measured in the beadscan. This shows that
Eq. (8.3.1) is in fact a better approximation of the true PSF shape, than the simple 3-dimensional Gaussian
function.

FCS simulations (see appendix B.1) were used to quantify the in�uence of the true MDE on �t results,
which were obtained with a Gaussian model. For this purpose, three focus geometries were set up (see
Fig. 8.11):
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plot of a Gaussian beam as in Eq. (8.3.1). Parameters: (a) wg = 500 nm, zg = 1300 nm; (b)
w0 = 470 nm, z0 = 900 nm

(a) As a reference, a 3-dimensional Gaussian detection PSF Ω(~r) was used together with a Gaussian
light sheet with a 1/ e2-width zLS:

I (x, y, z) = I0 · exp

−2 ·

z2

z2
LS


. (8.3.2)

(b) A Gaussian beam model (see Eq. 8.3.1) for the detection PSF Ω(~r) was combined with a Gaussian
light sheet Eq. (8.3.2).

(c) A Gaussian beam model (see Eq. 8.3.1) for the detection PSF Ω(~r) was combined with a light sheet
with side lobes:

I (x, y, z) = I0 ·

(
sin(π · z/zLS)
π · z/zLS

)2

. (8.3.3)

In all cases the pixel size was in�nitely small, and the confocal FCS �t models from section 5.3.4 were
used for evaluation. The focus parameters wγ and zγ for the �t models were obtained by 1-dimensional
Gaussian �ts to MDE(~r). Table 8.3 summarizes the results for an FCS simulation of particles with
di�usion coe�cient Dreal = 50µm2/s at di�erent concentrations creal. The di�usion coe�cients in
all cases were obtained with a relative error below 13%. For the case of a Gaussian focus, also the
concentrations were retrieved with an error margin of 12%, showing that the simulation works correctly.
For the two other focus shapes, the concentrations were signi�cantly overestimated by 30 − 50%, since
the focal volume is underestimated by its Gaussian approximation. This behavior matches well with the
observations in the SPIM-FCS measurements: the di�usion coe�cient is measured correctly, but the
concentration is overestimated.

The �ndings of the last section suggest to set up SPIM-FCS �t functions, that are modeled around a
Gaussian beam PSF as in Eq. (8.3.1). Such models were already proposed for high-precision D and c
measurements with confocal FCS by Enderlein et al. [254–256]. Their drawback is that the integrals,
that are encountered, when calculating the FCS models, are no longer separable and can no longer be
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8.3. Particle concentration measurements in SPIM-FCS

solved analytically. Numerical integration can be used, when implementing the �t models, but its use
makes the �tting process time-consuming. This is a drawback, when �tting thousands of correlation
curves, as customary in imaging FCS. Furthermore, it was shown above, that concentrations can be
corrected with a simple calibration factor.
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Figure 8.11. Di�erent focus geometries used for FCS simulations. (a,d) A 3-dimensional Gaussian
function is used as detection e�ciency functionΩ(x, z) and a 1-dimensional Gaussian I (x, z) as light
sheet. (b,e) A Gaussian beam is used for Ω(x, z) and again a 1-dimensional Gaussian as light sheet.
(c,f) A Gaussian beam is used for Ω(x, z) and a slit function for I (x, z). (a-c) shows the functions
I (x, z), Ω(x, z) and MDE(x, z) = I (x, z) · Ω(x, z). (d-f) shows cuts along the z axis through these
functions.

concentration focus D[µm2/s] (D − Dreal)/Dreal c[nM] (c − creal)/creal

creal = 0.1 nM Gaussian focus 53.6 7.2% 0.105 5%
Gaussian beam 47.5 −5.0% 0.136 36%
Gaussian beam & sidelobes 48.0 −4.0% 0.141 41%

creal = 0.2 nM Gaussian focus 52.6 5.2% 0.223 12%
Gaussian beam 47.1 −5.8% 0.286 43%
Gaussian beam& sidelobes 48.2 −3.6% 0.295 48%

creal = 0.5 nM Gaussian focus 56.4 12.8% 0.506 1%
Gaussian beam 51.5 3.0% 0.657 31%
Gaussian beam& sidelobes 52.1 4.2% 0.688 38%

creal = 1.0 nM Gaussian focus 48.2 3.6% 1.074 8%
Gaussian beam 47.0 −6.0% 1.339 34%
Gaussian beam & sidelobes 47.1 −5.8% 1.412 41%

Table 8.3. Fit results obtained fromsimulated FCS autocorrelation curveswith di�erent focus

geometries and for particles with Dreal = 50µm2/s.
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Chapter 8. Evaluation of the SPIM for FCS measurements

8.4. Anomalous Di�usion with complex MDE shapes

The discussion of the true shape of the MDE in the last section raises the question, how well anomalous
di�usion parameters can be measured with the 3-dimensional Gaussian model described in section 1.3.2.
In order to check this, an FCS simulation was used with the same set of focus geometries as in the
last section (page 130). In addition, the pixel size was set to a = 400 nm in that simulation. The
focus parameters were tuned to match those of the SPIM, presented in chapter 6. Trajectories with
an anomalous MSD were used as input for these simulations. They were generated for the anomaly
parameters αset ∈ {0.7, 0.8, 0.9, 1.0} by Christian Fritsch (DKFZ, Heidelberg) with the methods de-
scribed in Ref. [257]. Figure 8.12 shows the results of these simulations. It demonstrates that comparable
anomaly parameter α�t is retrieved from �ts to the models in Eq. (5.3.31) (p. 63) for the �rst geometry
and Eq. (5.3.32) (p. 63) for the other geometries. The �gure also shows the anomaly parameters obtained
from the MSDs of the particles directly. The values α from the FCS �ts do recover the values from the
MSD only in one case. This is most probably due to the low number of only 100 trajectories per αset,
that were available for the simulations. Nevertheless, the fact that the same anomaly parameter was
regained, independent of the true focus geometry, con�rms that the model in section 1.3.2 can be used
to measure anomalous di�usion reliably.
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Figure 8.12. Results of anomalous di�usion FCS simulation. Focus geometries are de�ned as
in section 8.3, page 130. Filled magenta squares are the anomaly parameters obtained via a �t of
MSD(τ) = 6Γ · τα to the MSD of the input trajectories.

8.5. Artifacts in SPIM-FCS

8.5.1. Stripe artifacts in SPIM-FCS

As mentioned in section 3.3.3 (p. 35), light sheet microscopy image often contain stripe artifacts. These
are areas of increased or reduced illumination intensity, that are caused by scattering objects in the beam
path of the light sheet. These artifacts also have a severe in�uence on SPIM-FCS measurements and
need to be carefully controlled during experiments. Figure 8.13 shows two examples of stripe-artifacts
in a SPIM-FCS measurement of QDots in a sample bag and of a cell expressing a labeled protein (β-gal
in a rat prostate adenocarcinoma cell (AT-1)). The sample bag had dirt on its plastic foil, which caused
the stripes. In the cell, stripes were caused by regions with a slightly di�erent refractive index. In both
cases the measured mobility parameters (di�usion coe�cient D or di�usion correlation time τD ∝ 1/D)
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8.5. Artifacts in SPIM-FCS

as well as the concentration are severely in�uenced by the stripes.
The facts that especially the concentration is in�uenced and that concentration and mobility are altered

in opposite directions, points to the assumption that the focal volume or its shape is changed in regions,
a�ected by stripe artifacts. This is in agreement with simulations of stripe artifacts that were described
in Ref. [162]. There, light propagation was simulated, assuming a sample with average refractive index
n, which contains a few regions with a slightly altered refractive index n′ = n + δn(x, y, z). Results
from a comparable simulation are shown in Fig. 8.14 (see appendix B.4 for details on the simulation
method). A small change of n by only 1%, already has a severe impact in the light intensity distribution.
At δn/n = 2%, the shadowing (dark stripes) and focusing (bright stripes) e�ects of the scattering objects
are clearly visible. These changes in light distribution lead to the assumed change in focal volume, as the
illumination PSF is severely changed. This in turn, changes the measured concentrations and di�usion
coe�cients, as the focal volume is not correctly represented by the MDE model in the �tting function
and its calibrated parameters.

In live cells, the stripe artifacts can be caused by diverse organelles, or e.g. the nucleolus, which is
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Figure 8.13. Stripe artifacts in (a-f) a SPIM-FCSmeasurement of QDot-565 ITK and (g-i) a cell

expressing a an eGFP tetramer (eGFP-4x). (a,b) Fluorescence intensity images with dark stripes
due to dirt on the sample bag. (c) Map of the di�usion coe�cient D. (e) Plot of D vs. x-coordinate.
(d) Map of the concentration c. (f) Plot of c vs. x-coordinate. The colorbars for (b,d) are placed on
the right of (c,e). (g) Fluorescence intensity image of the cell. (f) Map of the di�usion coe�cient D
in the cell. (g) Map of the concentration c in the cell. A 1-component normal di�usion �t was used
for all samples.
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a region of high protein concentration in the nucleus. The latter case is shown in Fig. 8.13(g-i). From
phase-microscopic measurements, as e.g. in Refs. [258–260], it is known that the refractive index in
cells changes by 2 − 5% between di�erent regions and organelles. This is again in agreement with the
qualitative arguments from the simulation above.
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Figure 8.14. Simulation results of a 2D simulation of light beam propagation in a medium

with n = 1.33, which contains a few circular regions of changed refractive index n′. The
simulation method is described in appendix B.4. Blue arrows indicate direction of light propagation.
Simulation parameters: light wavelength λ = 488 nm, spatial resolution 50 nm, simulation domain
51.2 × 51.2µm2, diameter of the spherical scattering objects (red circles): (2 ± 0.5) µm. After each
integration step, the �eld is normalized, so the contained energy is conserved.

8.5.2. Artifacts due to sample bags

As the last section showed, a small change in refractive index can have large e�ects on the measurements.
Therefore the in�uence of the sample and the sample mounting on a SPIM-FCS measurement was
analyzed. A sample of a 607 bp dsDNA was mounted in a standard sample bag (section 6.2.3 and
appendix A.3.1) and SPIM-FCS measurements were performed at di�erent positions x in the sample bag,
as shown in Fig. 8.15(a). The results are shown Fig. 8.15(b) for the measured di�usion coe�cient D and
in Fig. 8.15(c) for the measured concentration c. Both show a clear and opposing dependence on x. This
is most probably caused by two e�ects, that both alter the focal volume. First, there may be mismatches
in refractive index between the bu�er in the sample chamber, the material in the sample bag and the
sample itself. These could alter the size and shape of the light sheet. Also the shape of the sample bag
might distort the light sheet. Second, the illumination and �uorescence light both have to travel a certain
distance through the sample. During that distance, they may be distorted by absorption and scattering,
which again in�uences the true shape of the MDE. Note that a comparable e�ect could also occur in cells.
Here no perturbing sample bag is present, but there might exist a refractive index mismatch between
the interior of the cell and the bu�er in the sample chamber, which will have a comparable e�ect.

To reduce the in�uence of this artifact, all measurements in sample bags were performed at x =
200 − 500µm distance from the wall of the bag. As Fig. 8.15(b,c) shows, the parameters only weakly
depend on the x in this region. Since also the calibration measurement is performed at this position, the
in�uence of the sample bags on the SPIM-FCS measurement is balanced by this calibration. On the other
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Figure 8.15. In�uence of the sample bags on SPIM-FCSmeasurements. (b) Di�usion coe�cients

and (c) particle concentration from SPIM-FCS measurements of a solution of 607 bp DNA, labeled
with Alexa-488, acquired with an EMCCD camera. Each data point corresponds to one measurement
taken at di�erent positions through the sample bag, as indicated in (a).

hand, the same calibration is used for live cell measurements, where no sample bag is present. Therefore
an additional uncertainty of 20 − 40% (from the variations in Fig. 8.15b,c) should be assigned to the
absolute parameters obtained in cells. Relative measurements though, are not in�uenced by this e�ect.

8.5.3. Changing the thickness of the light sheet

As shown in section 6.3.1, the width of the light sheet changes along the x-axis. Nevertheless, in all
measurements shown so far, it was implicitly assumed, that the MDE does not change over the whole
�eld of view. In order to verify this assumption, an Alexa-488-labeled dsDNA fragment (length: 170 bp)
was measured with SPIM-FCS and a di�usion coe�cient D and a concentration 〈

c
〉 were extracted for all

128×6 pixels in the �eld of view. Figure 8.16 shows average and standard deviation of the measurements
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Figure 8.16. In�uence of the width of the light sheet on SPIM-FCSmeasurements. (a) Di�usion
coe�cient D and (b) concentration 〈

c
〉 as a function of the position x in the �eld of view, measured

from a sample of 170 bp dsDNA, labeled with Alexa-488, acquired with an EMCCD camera. The
data points are average and standard deviation over all measurements in one column. Blue lines are
linear �ts to the data.
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in each column. No signi�cant correlation between these �t parameters and the x-position could be
detected (correlation coe�cients ρx,D = −14% and ρ

x,
〈
c
〉 = 17%). This result is explained by the fact,

that the width of the light sheet depends on the x-position (cf. Fig. 6.13a), but the PSF does not. The focal
volume is given by the MDE, which is a product of the illumination intensity and the PSF. Therefore
the non-changing size of the PSF limits the with of the MDE and the focal volume shows no detectable
dependence on x.

8.6. Applicability to live-cell measurements

Cells for this section were prepared by Gabriele Müller (DKFZ, Heidelberg).

This section will demonstrate the applicability of SPIM-FCS to measurements in living cells. The
results of SPIM-FCS will be checked by comparing them to results from confocal FCS measurements.
As a �rst example, human cervical carcinoma cells (HeLas) were chosen, which transiently express a
monomeric form (eGFP-1x) and a tetrameric form (eGFP-4x) of the enhanced green �uorescent protein
(eGFP)2 (see appendix A.2 for details on transfection and cell culture protocols). Figure 8.17(a) shows a
typical autocorrelation curve for eGFP-4x in a HeLa cell, acquired with confocal FCS. It also contains a �t
to this curve. To account for the crowded environment in live cells, a �t model with two normal di�usion
components was used. The di�usion coe�cient Dfast of the faster component is usually interpreted as
representing the free motion of the protein in a viscous medium. The slow component describes the
e�ect of crowding in this picture. Dross et al. have published an extensive confocal FCS study on eGFP
oligomers in live cells [33], which can serve as a reference for SPIM-FCS measurements. The results
from that study are summarized in Fig. 8.17(b). In Fig. 8.17(a), the red rectangle highlights the lag time
range, which is accessible to SPIM-FCS with an EMCCD camera (τmin ≈ 500µs. This range will have to
su�ce for the SPIM-FCS analysis to yield the correct mobility parameters.

An EMCCD camera with a temporal resolution of τmin = 330 − 560µs was used for all SPIM-FCS
measurements in this section. Each measurement was around 60 s long, which is comparable to typical
measurements on a confocal microscope. The illumination laser intensity was set to 100 − 150 W/cm2

at the center of the light sheet, which is roughly a factor 10 lower than typical intensities, used for
confocal FCS measurements on cells. At this laser power the �uorescence bleached to ∼50% during
the complete measurement, which was corrected by the methods described in sections 5.5.4 and 7.1.2.
The modi�ed exponential model Eq. (7.1.5) (p. 109) was used for bleach correction. The degree of the
polynomial was Nf = 1 − 4, depending on the cell. These parameters were also used for most of the cell
measurements throughout this thesis.

Figure 8.18 summarizes the results of SPIM-FCS measurements on HeLa cells expressing eGFP-1x
and eGFP-4x and shows examplary maps of the di�usion coe�cient Dfast and concentration c for
eGFP-4x. Figure 8.18(a) depicts two typical autocorrelation curves (solid lines) for eGFP-1x and eGFP-4x
together with a two-component normal di�usion �t (dashed line). The �t describes the measured
autocorrelation curves very well and the resulting fast di�usion coe�cients Dfast,20 ◦C (renormalized to
20 ◦C, see appendix C.4) are given in the plot. Figure 8.18(b) shows a distribution of Dfast,20 ◦C from all
pixels in one cell, which expressed eGFP-1x (red) and one cell, which expressed eGFP-4x (blue). The
peaks of two distributions are separated and their average values are compatible (within their errorbars)
with the expected values in Fig. 8.17(b). Note that these distributions were calculated from a single
cell and that cellular FCS measurements typically have a large statistical spread. This is also evident
from the large value ranges in Fig. 8.17(b). Therefore at least 10 − 30 cells should be measured and
evaluated to obtain statistically signi�cant results. The remaining �t parameters were equal for the
monomer and the tetramer. The di�usion coe�cient for the slow component Dslow,20 ◦C was in the

2These constructs were kindly provided by M. M. Nalaskowski (university medical center Hamburg-Eppendorf).
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cient of eGFP-1x and eGFP-4x in the same cells. (c) Fluorescence intensity image of a cell,

expressing eGFP-4x. (d) Map of the fast di�usion coe�cient Dfast and (e) map of the con-
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Figure 8.19. SPIM-FCS measurement of the particle concentration c in a cell, which express-

ing eGFP-4x. (a) Map of c without a background o�set Fback. (b) Fluorescence intensity

(F) image. (c) Map of c with background intensity Fback estimated in the nucleolus (blue

circle in b). (d,e) Correlation plot between c and F from (a) and (b). A SPIM-FCS model for
two-component normal di�usion was �tted to the data. In (d,e) Pearson’s correlation coe�cient
rF,c is given.

range of 0 − 1.5µm2/s and the fraction of this slow component was ρslow = 5 − 15%. Both values are
comparable to typical results in confocal FCS. The autocorrelation curves shown in Fig. 8.18(a) are of
good quality. In many measurements for this thesis, they were a lot noisier, especially when the samples
were labeled with dim �uorophores, such as mRFP1 (see Tab. 2.1, p. 24). In those cases a 2 × 2 binning
proved to be advantageous, as this increases the number of photons detected per pixel, which again
improves the quality of the correlation curves.

The last example demonstrated that it is feasible to measure the di�usion coe�cient of proteins in the
cytoplasm. A closer look needs to be taken to concentration measurements. Figure 8.19 shows the results
of SPIM-FCS measurements of a HeLa cell, expressing eGFP-4x. The data was again evaluated with a
two-component normal di�usion model. Figure 8.19(a) depicts the map of concentrations as it would be
obtained with SPIM-FCS, as described so far. Figure 8.19(c) shows a correlation plot of the �uorescence
intensity F versus the measured concentration c. It shows that the two parameters do not correlate
well (correlation coe�cient rF,c = 11%, see Eq. (C.3.1), p. 224), although they should be perfectly linear.
Especially in the nucleolus the measured concentration is much higher than anywhere else. These
improperly determined concentrations can be explained by an underestimated background intensity
Fback, as it was discussed in sections 5.5.2 and 8.3. In order to check this, an estimate of the background
intensity was obtained from the nucleolus of the cell (blue circle in Fig. 8.19b, Fback = (115 ± 7) ADU),
where only very few eGFP-4x molecules are present. Therefore these pixels should give an estimate
of the background intensity measured in the cell. The �t was repeated, using the background factor
explained in section 5.5.2. The new �t results in Fig. 8.19(c,e) show that now the concentration c and the
intensity have a very high linear correlation of rF,c = 94%. The concentration map also reproduces all
features of the intensity image. However some of the concentrations are mapped close to c = 0, which
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Figure 8.20. (a) SPIM-FCS autocorrelation curves acquired from CHO-K1 cells expressing

PMT-eGFP with an EMCCD camera. (b) Histograms of fast di�usion coe�cient. (c) His-

togram of the fraction ρslow of the slow component. (d) Fluorescence image of the cell. (e)

Map of the fast di�usion coe�cient Dfast. (f) Map of the fraction ρslow of the slow di�u-

sion component. A SPIM-FCS model for two-component normal di�usion was �tted to the data.
Dashed lines in (a) are �ts. The measure ROI is marked with a red rectangle. The red histograms in
(b,c) are over all pixels in the cell and the blue histograms are for the membrane pixels only. These
are marked in blue in (d).

is indicative for an overestimated background. Therefore an alternative estimate for the background
intensity was obtained from the exterior of the cell: Fback = (20±39) ADU. This leads to an intermediate
correlation between F and c (rF,c = 50%) and all concentrations are shifted to value c > 0 (data not
shown). Therefore the true background value is possibly in between the two given estimates. This is
also compatible with measurements of non-transfected cells, that typically still exhibit a �uorescence
signal in the range of 5 − 100 ADU at the same instrument settings as above (data not shown).

In summary these results show that a proper estimate of the background intensity Fback is vital for any
concentration measurement. In cells this increased background can be caused by a distorted MDE and
especially the naturally occurring auto-�uorescence [261]. Since the background signal of whichever
source cannot easily be entangled from the �uorescence signal, a proper estimate is hard to achieve.
However, both proposed variants (a dark part or the exterior of the cell) yield better results than omitting
this background correction. Independent of the chosen estimate for Fback, all �ts returned the same
di�usion coe�cient. It was not correlated with either the intensity or the concentration. Therefore a
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background correction is not that important, if only the di�usion coe�cient is of interest.
Figure 8.20 shows an application of SPIM-FCS to membrane-associated proteins. Chinese hamster

ovary cells (CHO-K1s) were transfected with an eGFP, that is fused to the plasma membrane targeting
sequence (PMT) of the X-linked retinitis pigmentosa protein PR23 [76, 262]. This sequence has a high
a�nity to the cell membrane and anchors most of the eGFPs there. Figure 8.20 shows the results of
a SPIM-FCS measurement on that system. The localization to the membrane is clearly visible in the
�uorescence intensity image in Fig. 8.20(d), in which the membrane is distinguishable as a thin line
around the cell. The interior of the cell is dimmer, but still a signi�cant amount of �uorescence could
be measured there. Figure 8.20(a) shows two example autocorrelation curves from this system. The
red curve was acquired in a pixel in the cytoplasm. It exhibits a comparable shape and comparable
parameters (Dfast ≈ 13µm2/s, Dslow ≈ 0.1µm2/s, ρslow ≈ 7%) to the curves given above for eGFP
oligomers. Therefore it most probably originates from PMT-eGFP proteins that freely di�use in the
cytoplasm.

The red curve in Fig. 8.18(a) in contrast was acquired in a pixel on the membrane. This curve also
exhibits two di�using components (Dfast ≈ 27µm2/s, Dslow ≈ 0.3µm2/s), but the slow component has
a much higher fraction of ρslow ≈ 50%, than in the blue curve. This e�ect is even more apparent in the
histograms of ρslow in Fig. 8.18(c). The blue histogram shows only the membrane pixels and the red
histogram all pixels. The average of the blue histogram is signi�cantly shifted towards a higher fraction.
The same e�ect is visible in the map of ρslow shown in Fig. 8.18(f), where the membrane shows up in red,
but the cytoplasm is generally blue. The reason for this increased slow fraction is, that in such pixels, the
slow fraction represents the di�usion of membrane-bound proteins. In the membrane the di�usion is
generally slower than in the cytoplasm and typical di�usion coe�cients of intermediately sized particles
range between 0.1µm2/s and 5µm2/s [115]. All these SPIM-FCS results are again compatible with
confocal studies on membrane di�usion, as e.g. [76].

In summary these measurements demonstrate that SPIM-FCS is usable for measurements in di�erent
compartments of the cell. Even the motion of membrane-bound proteins can be measured and distin-
guished from that of cytoplasmic proteins. Generally the same di�usion coe�cients, as in confocal FCS
are obtained. These examples also demonstrate that typical �uorescent proteins are compatible with
SPIM-FCS. Therefore the standard labeling techniques of cell biology, i.e. fusion of �uorescent proteins
with the protein of interest (see section 2.5) can also be used for SPIM-FCS measurements. Care has to
be taken when measuring concentrations. A signi�cant background �uorescence in live-cells, which
is hard to quantify, makes concentration measurements in cells hard to interpret. However, at least
the order of magnitude of the concentration can be extracted reliably, if the corrections discussed in
section 8.3 are applied.

3This construct was kindly provided by Thorsten Wohland (NUS, Singapore).
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8.7. Comparison of di�erent linear image sensors

All SPIM-FCS measurements, reported so far, were obtained from an Andor iXon X3 860 EMCCD camera.
This camera is used for most SPIM-FCS measurement described in this thesis. It was chosen due to
its high sensitivity and low noise at the low light-levels, that are usually encountered in SPIM-FCS
measurements (cf. sections 4.2.5 and 4.3). At the time, when this camera was purchased, it was also the
fastest available camera for such low-light applications. sCMOS cameras were still in an early stage of
development and not yet fully applicable. Nevertheless a series of di�erent linear image sensors was
tested for their applicability to SPIM-FCS. The results were published in Ref. [130]. This section will
give a short overview, but does not cover SPAD arrays, as these will be discussed in section 8.8 in more
detail.

In addition to the Andor iXon X3 860, four other cameras representing di�erent technologies, were
tested in the SPIM in Heidelberg, or in a comparable instrument at the NUS in Singapore. Both
instruments are usually equipped with an Andor iXon X3 860. Therefore this sensor was used to cross-
validate the results between the two labs. The basic camera speci�cations are summarized in Tab. 8.4.
The Evolve-512 is an EMCCD camera with a 4 times larger image sensor, but 33% smaller pixels than
the Andor iXon X3 860. Both sensors use back-illuminated sensors, which exhibit a quantum e�ciency
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Figure 8.21. SPIM-FCS autocorrelation curves of green�uorescentmicrospheres (∅ = 100 nm),

obtained with several di�erent cameras. The camera parameters were set, as listed in Tab. 8.4.
The readout speed was the maximum speed that was achievable for the given ROIs. The blue lines
are �ts of Eq. (5.3.25) (p. 61).
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8.7. Comparison of di�erent linear image sensors

of up to 95% in the green spectral range. Therefore both cameras exhibit comparable properties in
terms of sensitivity, but the iXon camera can be read out faster and collects more photons per pixel.
The Photron SA-05 is a high-speed CMOS camera, as it is used for instance in crash tests. It is the
camera with the fastest readout, and reaches frame repetition time as low as ∆tframe = 16.8µs, but at a
signi�cant noise level as it is not optimized for low light applications. This camera also does not directly
spool the data to a computer, but �lls an on-board RAM, which is then slowly transferred to a host
computer after the measurement. The Orca-Flash 4.0 and the pco.edge 5.5 represent the new generation
of sCMOS image sensors. Their noise is signi�cantly lower than on other CMOS cameras, but does
not completely reach the level of an EMCCD. Although at least the pco.edge supports a global shutter
mode, the rolling-shutter is faster and was used for SPIM-FCS measurements on both devices. At the
time of the test, the pco.edge could be read at only ∆tframe = 495µs, whereas the Orca-Flash 4.0 reached
∆tframe ≈ 40µs. The sensor of the Orca-Flash 4.0 is also newer than that of the pco.edge and features a
higher quantum e�ciency in the green spectral range.

A SPIM-FCS measurement of green �uorescent microspheres (∅ = 100 nm, F8803, Invitrogen) was
performed on each camera, in order to check their capabilities. Figure 8.21 shows an representative
autocorrelation curve from each sensor and Tab. 8.4 lists the di�usion coe�cients, that were returned
by the �t with a 1-component normal di�usion SPIM-FCS model function (Eq. (5.3.25), p. 61). All these
di�usion coe�cients are compatible to each other within their errors. Therefore all sensors could be
successfully used for SPIM-FCS on the bright microspheres. The parameters of the MDE, required for
the SPIM-FCS evaluation, were obtained as usual with a bead scan and are also listed in Tab. 8.4. It was
observed that smaller pixels also lead to smaller focal volumes. This can be understood as the small
pixels work like a pinhole, that leads to an improved lateral and especially longitudinal focus size.

On the Andor iXon 860, the pco.edge and the Orca-Flash 4.0, a dilution series of the microspheres
was measured, as described in section 8.3. The results of these dilution series were comparable to
the measurements described in section 8.3. they are reported in Tab. 8.4 as a proportionality factor
β = cmeasured/cset between the measured concentrations cmeasured and the concentration measured on a
confocal microscope cconfocal. Most sensors yield a β close to 3 (cf. section 8.3). Only the Orca Flash 4.0
reached nearly the ideal β = 1, but the reason for this is unclear. Unfortunately the camera was not
available long enough to cross-check the result with a repeat of the experiments.

Finally the pco.edge could also be tested in live-cell measurements. A HeLa cell, which expressed
eGFP-4x (see last section for details) was measured at a slightly higher frame repetition time ∆tframe =
761.5µs than above. Figure 8.22 shows representative correlation curves from this measurement, which
were obtained with di�erent pixel binning. Also the average over the detected �uorescence intensity
during the measurement is shown as images in Fig. 8.22(d-f). It can be seen that the camera images
are relatively noisy at 2 × 2 binning. This has two major reasons. Firstly, the sensor exhibits a higher
background noise, as they are not cooled as low as an EMCCD. Secondly, the pixels are smaller and
the quantum e�ciency is lower than on an EMCCD. In addition the sCMOS cameras do not have an
on-chip gain mechanism, therefore less photoelectrons are detected per pixel.

The autocorrelation curves in Fig. 8.22(a-c) are very noisy for 2 × 2 binning and improve signi�cantly
for higher settings. This is most probably also caused by the low number of detected photons (cf. Fig. 8.8
on page 128). Still the quality of the autocorrelation curves of the Andor iXon EMCCD camera is
signi�cantly better, than that of the pco.edge, even if they are compared at matching (e�ective) pixel
sizes (Fig. 8.22b,e). Fits of the autocorrelation curves at 8 × 8 binning gave the following parameters:
Dfast,20 ◦C = (15± 10) µm2/s, Dslow,20 ◦C = (0.5± 0.4) µm2/s and ρslow = (23± 15)%. The same average
values, but with higher standard deviations, were also obtained for lower binning. The �t parameters
are compatible with the results discussed in section 8.6. In summary, the sCMOS camera pco.edge could
be used for SPIM-FCS also in cells, but its low photon-collection e�ciency limits its usability.

In conclusion di�erent linear image sensors are in principle applicable to SPIM-FCS. Nevertheless the
EMCCD camera Andor iXon X3 860 still seems to be the best compromise between detection e�ciency
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Chapter 8. Evaluation of the SPIM for FCS measurements

and readout speed. The Hamamatsu Orca-Flash 4.0 could pose an alternative, but it could not yet be
tested in live-cell measurements. Its use would trade photon detection e�ciency against increased
readout speed. The next section will test another class of image sensors – SPAD arrays – for use in
SPIM-FCS.
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Figure 8.22. (a-c) Autocorrelation curves from a HeLa cell, expressing eGFP-4x, acquired on

a pco.edge sCMOS camera. (d-f) Intensity images of the same cell at di�erent binning

stages. The plots show di�erent pixel binning settings. 2 × 2-binning was done during acquisition
and additional binning was imposed during the correlation step. Minimum lag time and frame
repetition time were τmin = 761.5µs, exposure time was ∆texp = 500µs. the pixel size a is given
above the plots
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8.8. Using SPAD arrays for SPIM-FCS

8.8. Using SPAD arrays for SPIM-FCS

Measurements shown in this section were performed together with Jan Buchholz (DKFZ, Heidelberg) and in
part with Samuel Burri (EPFL Lausanne). More details on the SPAD arrays, their readout and applicability

to SPIM-FCS will be summarized in Ref. [232].

One goal of this thesis project was to test the applicability of fast SPAD arrays in SPIM-FCS. Two
di�erent sensors, Radhard2 and SwissSPAD, were tested, and the results were partly published in
Refs. [130, 131]. Their basic properties were already introduced in section 6.4. This section shows how
well both sensors perform in SPIM-FCS, at the operation parameters, determined in section 6.4.3.

8.8.1. SPIM-FCS using Radhard2

The �rst sensor, that was tested, was Radhard2. Since the SPADs on this chip are only 4µm in diameter
and it does not contain microlenses, its light collection e�ciency is very low. Therefore the tube lens in
front of the sensor was replaced by a model with a focal length of fTL = 100 nm. This decreases the
magni�cation from 60× to 30×, but at the same time increases the intensity in the image plane by a
factor of 4. The MDE properties are not a�ected by this replacement, because the SPADs are so small,
that the MDE e�ectively equals the PSF of the microscope, which does not depend on the tube lens, but
only on the objective lens. In addition, the laser intensity in the light sheet was typically increased to
200 − 500 W/cm2, which is a factor 2 − 3 higher than in measurements with an EMCCD camera.

Figure 8.23(a) shows two representative autocorrelation curves, that were obtained with Radhard2 for
�uorescent microspheres (∅ = 100 nm) and for QDot-525 streptavidin ITK. The distributions of the �tted
di�usion coe�cients (renormalized to 20 ◦C) is shown in Fig. 8.23(b,c). The averages of these distribu-
tions are compatible with the di�usion coe�cients that were measured for both samples on a confocal mi-
croscope: D20 ◦C,W,confocal(microspheres) = (3.0 ± 0.2) µm2/s and D20 ◦C,W,confocal(QDot-525) = (22 ± 3) µm2/s
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Figure 8.23. (a) SPIM-FCS autocorrelation curves of �uorescent microspheres (∅ = 100 nm)

and QDot-525 streptavidin ITK, obtained with Radhard2. (b,c) Distribution of di�usion

coe�cients, obtained for the two samples. The dashed lines in (a) are �ts of Eq. (5.3.25) (p. 61).
Average and standard deviation of the distributions in (b,c) are given above the graphs.
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(see also Tab. 8.2, p. 125). The di�usion coe�cients for QDots is also closer to the confocal measurement,
than the estimate from the EMCCD camera. Here the measurement pro�ts from the improved minimum
lag time of τmin = 10µs.

For the �ts, the same model function Eq. (5.3.25) (p. 61) as for confocal measurements was used. As
described before, the SPADs are round detectors with a relatively small diameter of only 133 nm in the
image plane (at 30× magni�cation). This diameter is signi�cantly smaller than the typical PSF width of
the microscope. Therefore the MDE can be represented to a good approximation by a 3-dimensional
Gaussian function. This was also checked with bead scans, that were also used to determine the MDE
height zg. The MDE width wg was then again obtained from a calibration, as described in section 8.1,
but with the di�erence that the absolute di�usion coe�cient was either determined with the EMCCD
camera, or from a cross-correlation analysis on the sensor (data not shown).

The autocorrelation curve for the QDots is very noisy, compared to the curve for microspheres. This
is caused by the low photon count rate of only around 4 − 5 kHz of the QDot-525 sample. Therefore the
sensitivity of the Radhard2 is far too low to make it applicable to measurements of chemical �uorophores
or �uorescent proteins. No correlation curves could ever be resolved from these samples.

Also a dilution series of �uorescent microspheres was measured on Radhard2. It showed a linear
relationship between a confocal reference measurement and the Radhard2 measurement. the propor-
tionality factor was β = 4.8, which is even higher than for most linear cameras (see section 8.7). In
addition to the reasons already explained for this e�ect in section 8.3, the Radhard2 sensors su�ers from
some speci�c artifacts, that are only encountered in SPAD arrays. Firstly, the sensor can only count 0
or 1 photons per readout cycle of length ∆tframe = 3µs. If more photons are present, they are still only
counted as 1. This a�ects the amplitude of the �uctuations and the absolute count rate and leads to an
arti�cially lowered autocorrelation amplitude and therefore an overestimated particle concentration.
Also a certain amount of afterpulsing may occur in SPAD arrays, which shows up as an additional
background intensity, which again decreases the autocorrelation amplitude.

8.8.2. SPIM-FCS using SwissSPAD

During the last weeks of this thesis project, a new SPAD array has become available: the SwissSPAD. It is
equipped with microlenses and can be operated at higher excess voltages. In summary this improves the
photon detection e�ciency by more than a factor of 10 as compared to Radhard2. Therefore SwissSPAD
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8.8. Using SPAD arrays for SPIM-FCS

SPIM-FCS: SwissSPAD confocal FCS theoretical
Sample D20 ◦C,W

[
µm2/s

]
D20 ◦C,W

[
µm2/s

]
D(theo)

20 ◦C,W
[
µm2/s

]
dsDNA 28 bp (83 ± 34) (84 ± 4) 83
QDot-525 streptavidin ITK (21 ± 12) (22 ± 3) 20 − 40
QDot-565 ITK (22 ± 9) (33.1 ± 2.6) 20 − 40
green µspheres, ∅ = 100 nm (3.3 ± 0.4) (3.0 ± 0.2) 4.3

Table 8.5. Summary of di�usion coe�cients measured for di�erent samples using the SPAD

array SwissSPAD and comparison to data from an Andor iXon X3 860 and confocal FCS.

Values are given as D20,W at 20 ◦C with water as solvent. Minimum lag time with SwissSPAD was
τmin = 6.4 mus. See Tab. 8.2 for further details on the measurement with the EMCCD camera and
the theoretical estimates.

was also mounted with the standard tube lens ( fTL = 200 nm) and the same laser intensities, as for
an EMCCD camera were used (i.e. 100 − 200 W/cm2). SwissSPAD can be read with a minimum lag
time of τmin = 6.4µs could be achieved. This improved sensor allows to also measure dim samples,
which are labeled with chemical �uorophores, such as Alexa-488. Figure 8.24 shows some representative
autocorrelation curves for �uorescent microspheres, QDot-525 and Alexa-488-labeled dsDNA. Table 8.5
summarizes the di�usion coe�cients that were returned by imaging FCS �ts to the model function
Eq. (5.3.24) (p. 60). In order to account for the steep ascent of the autocorrelation curves at low lag
times, an afterpulsing term was added to the model. This will be discussed in detail in section 8.8.3
below. All di�usion coe�cients could be acquired with good accuracy, as compared to confocal reference
measurements. Also measurements in live cells were attempted, but with no big success, as no evaluable
autocorrelation curves could be acquired so far.

Also two dilution series were measured with SwissSPAD, one for �uorescent microspheres and one for
QDots-525 streptavidin ITK. The results are shown in Fig. 8.25. They demonstrate, that the measured
concentration is proportional to a reference measurement. The proportionality factors were again
around β = 3. The overestimation is again explained by an underestimated focal volume (see section 8.3)
and an increased background due to afterpulsing.
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Figure 8.25. Comparison of concentration measurements with SPIM-FCS with the SPAD ar-

ray SwissSPAD and confocal FCS. The dashed lines are outlier-robust linear �ts of f (x) = β · x
with slopes of β = 1.58 for microspheres, β = 3.07 for QDots. Errorbars are averages over several
measurements.
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Chapter 8. Evaluation of the SPIM for FCS measurements

8.8.3. A�erpulsing in SwissSPAD

All curves in Fig. 8.5 show a steep ascent of the autocorrelation function towards small lag times. This
is caused by a correlating background signal, which is most probably attributed to an afterpulsing in the
SPADs. This e�ect is further analyzed in this section and parameters for its correction are obtained.
Figure 8.26(a,b) shows an autocorrelation analysis of the dark count signal, measured with an occluded
sensor. If this signal would only consists of thermally created avalanches, the autocorrelation would
be �at, as also seen for the dark signal of an EMCCD camera in Fig. 8.7. The decaying autocorrelation
in Fig. 8.26(a,b) contradicts this simple model. It can be explained by additional avalanches that are
caused by afterpulses. As discussed in section 4.1.1, these follow close to their respective causative pulse.
Therefore they cause the more than 100-fold increase in the autocorrelation function between the �rst
two lag times (ĝ(τmin) ≈ 100 · ĝ(2τmin)), which is illustrated in Fig. 8.26(a).

Figure 8.26(b) shows the same data, as in Fig. 8.26(a), but without the �rst lag time channel ĝ(τ). If
all avalanches would occur shortly (within one τmin) after their causative avalanche, at least this curve
should be �at. But also on this smaller scale, a now weaker and slower decay of the autocorrelation
amplitude can be observed. The reason for this decay is not completely clear. A possible explanation
are deeply trapped photoelectrons, that are only released 10 − 100µs after the initial avalanche. Also
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Figure 8.26. Autocorrelation functions from the SPAD array SwissSPAD, that show afterpuls-

ing. Graphs show average and standard deviation over (a,b) all pixels (512 × 4) or (c,d) the central
128 × 4 pixels. Minimum lag time was τmin = 6.4 mus
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8.8. Using SPAD arrays for SPIM-FCS

(a) power-law �t g(τ) = a0 · τ
βAP , χ2 = (0.44 ± 0.09):
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Figure 8.27. Evaluation of afterpulsing in the SPAD array SwissSPAD: (a) with a power-law �t,

(b) with a mono-exponential �t and (c) with a double-exponential �t. First plot in each row:
autocorrelation curves measured on an occluded sensor. Second/third plot: distribution of selected
�t parameters over the central 512 × 4 pixels. The �t quality χ2are average and standard deviation
over all pixels (see Eq. (7.1.16), p. 114). Minimum lag time was τmin = 6.4 mus

a connection to the active recharging in the SwissSPAD pixels was observed in a set of preliminary
experiments. These showed that the amplitude of the decay is in�uenced by the timing and frequency
of the recharge during a single exposure.

Figure 8.26(c,d) show the averaged autocorrelation curves over all pixels in two representative SPIM-
FCS measurements. The e�ect of the afterpulsing is easily distinguished in both curves. For the bright
�uorescent microspheres (Fig. 8.26c), the slow decay from Fig. 8.26(b) is hardly seen and the strong
component increases the �rst value on the autocorrelation curve moderately. For the dimmer quantum
dots, ĝ(τmin) was highly increased and was cut therefore from the curve. Then the weak afterpulsing
component remains as a steep increase of ĝ(τ) towards τ = 2τmin.

As mentioned before, this artifact can be corrected with an additional term in the autocorrelation
functions. The basic theory of detector afterpulsing was already described in section 5.5.3. There it was
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Chapter 8. Evaluation of the SPIM for FCS measurements

shown that an additional summand needs to be added to the FCS model function, which is mostly de�ned
by the afterpulsing probability distribution pAP(τ). Also several possible models for this pAP(τ) were
proposed. To determine the best model, the afterpulsing in Fig. 8.26(b) was analyzed with three di�erent
models: a power-law decay, a mono- and a double-exponential decay. The results are summarized in
Fig. 8.27. For each model, an exemplary �t is shown together with histograms (over all pixels) of the
characteristic parameters of the model. The quality of the �ts is quanti�ed by averaged χ2 values (see
Eq. (7.1.16), p. 114) for each model. All three possibilities for pAP(τ) �t the data equally well. However,
only for the power-law decay, a narrow parameter distribution could be achieved. Therefore this power
law model was used for all SPIM-FCS measurements and the consensus parameter βAP = 1.1 was �xed
in all cases. Then only the amplitude of the decay a0 is added as a �t parameter to the FCS model
functions. As shown in the last section, this method was successfully used to extract correct mobility
parameters with SPAD arrays in a SPIM.

8.8.4. Concluding remarks

In summary the results in this section show that SPAD arrays are promising new image sensors for
imaging FCS. They have a high temporal resolution around 10µs, or even lower if only subregions are
read out, which allows them to measure also fast moving particles with good accuracy. Still, the tested
chips have some remaining problems that should be resolved in the future. It should be possible to
reduce the afterpulsing, which was especially strong in SwissSPAD, by an improved quenching circuitry.
The photon collection e�ciency can be further improved, by optimized microlenses and possibly new
SPADs with a larger active area. Back-illuminated sensors would also be bene�cial, as these can improve
the quantum e�ciency dramatically. In addition to the good properties, that SPAD arrays exhibit for
imaging FCS, they can also be used for other measurement schemes in the same setup. The gating circuit,
present in the pixels of SwissSPAD, allows to perform �uorescence lifetime imaging microscopy (FLIM)
measurements with the very same sensor [193]. Also an application to super resolution microscopy
with methods such as super-resolution optical �uctuation imaging (SOFI) is possible [263–265].

8.9. Summary of the chapter

In summary this chapter shows that SPIM-FCS is a viable method to measure maps of mobility pa-
rameters. It can measure absolute di�usion coe�cients and with additional calibrations also absolute
concentrations. Using modern EMCCD cameras allows for routine application of SPIM-FCS to live cell
measurements for intermediately fast and slow proteins. Standard cell culture protocols and �uorescent
dyes (�uorescent proteins, as well as chemical dyes and QDots) can be used. In order to measure faster
particles, faster image sensors than EMCCD cameras are required. SPAD arrays were shown to be a
promising alternative to EMCCD cameras. They reach a temporal resolution of ∆tframe = 10µs and
faster, but currently available sensors are just on the verge of applicability to live-cell measurements.
Still it can be expected, that the next generation of chips will cross this border. Scienti�c CMOS (sCMOS)
cameras, which have become available during the last years, are also promising candidates for high-speed
detectors, but they are not as versatile as SPAD arrays and also still need to be improved in sensitivity.
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9. Evaluation of the SPIM for FCCS
measurements

Measurements in this chapter were performed in part together with Anand Pratap Singh (NUS, Singapore).

In the last chapter SPIM-FCS was thoroughly tested and characterized. This chapter will show a similar
characterization of single plane illumination �uorescence cross-correlation spectroscopy (SPIM-FCCS).
First the alignment of a SPIM for 2-color imaging FCCS measurements is discussed in section 9.1. The
role of misalignment in this �rst step was explored using FCCS simulations, which are described in
section 9.2. Section 9.3 compares the results of 2-color SPIM-FCCS on several in vitro samples with
confocal FCCS measurements as a standard. The measurement of absolute concentrations in 2-color
SPIM-FCCS is discussed in section 9.4. Section 9.5 discusses the application of 2-color SPIM-FCCS to
live-cell measurements. Finally section 9.6 shows an representative �ow measurement with two-focus
SPIM-FCCS. Most of the results that are summarized in this chapter have been published in Ref. [132].

9.1. Alignment procedure for 2-color FCCS measurements

For SPIM-FCCS measurement the SPIM needs to be aligned for detection of two color channels. This
includes adjusting the light sheets for a good overlay (see sections 6.1.2 and 6.3.1) and aligning the
dual-view optics (see sections6.1.4 and 6.3.2). Finally a beadscan with multi-�uorescent microspheres
(∅ = 100 nm, T7279, Invitrogen, see appendix A.3.2) was performed to validate the alignment and obtain
the displacement ~δ between the MDEs of the two color-channels. For all measurements in this thesis, the
average over each component of ~δ was smaller than 100 nm (see section 6.3.2). If a larger displacement
was obtained in the beadscans, the alignment was repeated.

Just as for SPIM-FCS, a calibration of the MDE parameters is required also for SPIM-FCCS. The
same method, as for SPIM-FCS, was used, but for each color channel separately. The longitudinal
1/ e2 half-widths of the MDE (zg and zr) were obtained from the beadscan. Then a SPIM-FCS mea-
surement was performed with multi-�uorescent microspheres (again: ∅ = 100 nm, T7279, Invitrogen,
see appendix A.3.1), which are visible in both color channels. The SPIM-FCS calibration method from
section 8.1 was applied to each color channel separately to yield the 1/ e2 half-widths of the MDE (wg
and wr). The di�usion coe�cients Dg and Dr obtained for each color channel, were compared as an
additional plausibility check. If Dg and Dr were not similar within their errors, the complete alignment
was repeated.

The values of the MDE parameter (wg, wr, zg and zr) obtained in this alignment procedure, were
comparable to those given for a single (green) focus in section 8.1, i.e. wg, wr were approximately 600 nm
and zg, zr were approximately 1200 nm. For the SPIM-FCCS model functions from section 5.4, also the
pixel size a in the image plane is required. It is given by the size of the pixels on the image sensor and
the magni�cation of the microscope, which is nearly equal in both color channels.

At this point, the setup is aligned for the measurements. As an additional check, the cross-correlation
curve from the calibration measurement was analyzed and the alignment was redone, if the cross-
correlation amplitude was too low. The multi-�uorescent microspheres carry many molecules of each of
their four di�erent dyes and are thus near-perfect FCCS samples, that should consist of double-labeled
particles only. Therefore the amplitude of their cross-correlation function ĝgr(τmin) is expected to be
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Figure 9.1. Examplary SPIM-FCCS autocorrelation (green/red) and cross-correlation curves

(blue) of several test samples. (a) TetraSpec beads, τmin = 0.53 ms, 3 runs. (b) 170 bp dsDNA,
labeled with Alexa-488 and Alexa-594 on opposing ends, τmin = 0.29 ms. (c) 40 bp dsDNA with
2 × 2-binning, τmin = 0.27 ms. The graphs show the correlation functions of a single pixel, or
average and standard deviation over several runs. Dashed lines are �ts to the data. All curves were
acquired with an Andor iXon X3 860 EMCCD camera.

approximately on the level of the autocorrelation amplitudes ĝgg(τmin) and ĝrr(τmin) (see section 5.4.2).
In the following experiments, this is quanti�ed by:

qgr =
ggr(τmin)

min
[
ggg(τmin),grr(τmin)

] . (9.1.1)

Figure 9.1(a) shows representative auto- and cross-correlation curves of multi-�uorescent micro-
spheres. Figure 9.1(b,c) shows the same curves for di�erent double-labeled DNA samples, that can be
produced with the polymerase chain reaction and are often used to calibrate confocal FCCS. Table 9.1
summarizes the relative cross-correlation amplitudes qgr and di�usion coe�cients D20 ◦C,W, that were
obtained with SPIM-FCCS for these samples.

A further important factor in the 2-color SPIM-FCCS �t model is the crosstalk κgr between the green
and the red detection channel (see section 5.4.2). It depends on the �lter set, which is mounted in the
microscope and the used �uorophores. Since κgr is a parameter of the SPIM-FCCS model functions,

sample D20 ◦C,W
[
µm2/s

]
qgr

[
%

]
40 bp dsDNA (36 ± 8) (75 ± 10)
170 bp dsDNA ∗ (22 ± 3) (59 ± 8)
607 bp dsDNA ∗ (6.3 ± 0.9) (46 ± 18)
TetraSpec∗ (3.1 ± 0.2) (104 ± 8)

∗ an average over 6 measurements during two week

Table 9.1. Summary of typical di�usion coe�cients D20 ◦C,W and of the relative cross-

correlation amplitudes qgr obtained with di�erent samples in SPIM-FCCS. Note that the
values for qgr were not corrected for the crosstalk κgr.
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9.2. Simulation of a misalignment in 2-color FCCS

red channel transmission �uorophore κgr
[
%

]
λ > 568 nm Alexa-488 (11.8 ± 1)

eGFP (9.5 ± 1)

λ > 594 nm Alexa-488 (5.4 ± 0.5)
eGFP (3.3 ± 0.5)

Table 9.2. Crosstalk κgr for di�erent �uorophores and �lter sets. The �uorescence was always
split at 565 nm with a dichroic mirror and the green channel was de�ned by a bandpass �lter with
transmission in the range of 500...550 nm. In the red channel a longpass �lter was used, which had
an edge as de�ned in the table.

it needs to be estimated before any �ts can be performed. This was performed with a sample, that
contains the green �uorophore only, either in aqueous solution, or expressed in cells. For both variants
the same crosstalk coe�cients were obtained. They are summarized in Tab. 9.2 for two di�erent �lter
sets in the dual-view optics. The two channels were always split with a dichroic mirror with an edge at
λ = 565 nm and the green channel was always de�ned by a bandpass �lter with transmission in the range
λ = 500...550 nm. For the red channel, two di�erent long-pass �lters were used, that start transmitting
at 568 nm or at 594 nm. The latter �lter was used for most of the measurements, as it minimized the
lower crosstalk, while transmitting enough red �uorescence to obtain evaluable autocorrelation curves.
The measured values for κgr also coincide with the values obtained from the spectra of the �lters and
the �uorophores.

9.2. Simulation of a misalignment in 2-color FCCS

In addition to the six parameters wg, wr, zg, zr, a and κgr, the SPIM-FCCS models from section 5.4.2
also depend on a possible displacement ~δ = (δx , δy , δz )T between the green and the red focus. The
displacements were assessed with beadscans and were routinely smaller than 100 nm (see above), which
is signi�cantly smaller than wγ and zγ . Therefore the displacement was �xed to ~δ = 0 in all �ts in this
thesis, which signi�cantly simpli�es the model functions. In order to justify this assumption and to
estimate the error that it possibly introduces, FCCS simulations were carried out with the software
described in appendix B.1. In these simulations, two foci were set up with a varying displacement δx .
The MDE parameters in the simulation were chosen to match the values obtained for the real microscope.
For each focus pair, di�erent sets of Brownian particles were simulated. Either all particles carried
a green and a red �uorophore, or only a fraction of them. In the latter case, the remaining particles
were equally partitioned between a green-only and a red-only species. These simulations were also
performed for two di�erent values of the cross-talk κgr = 3.5% or κgr = 11.2%, which are in the range
of the experimentally observed cross-talks.

Figure 9.2 shows a set of representative correlation curves obtained from this simulation. For small
displacements δx ≤ 100 nm, the cross-correlation amplitude ggr(τmin) does not change signi�cantly
(horizontal blue lines: ggr(τmin) for δx = 0). For larger displacements δx ≥ 200 nm it drops considerably
and nearly reaches 0 for δx = 1µm. These correlation curves were evaluated with the �t models
described in section 5.4.2 and the global �t, described in section 7.1.4. For each curve δx = 0 was
assumed and the di�usion coe�cients of the three species were linked: DA = DB = DAB. Each such �t
then yielded the concentrations of the three species 〈

cA
〉, 〈cB

〉 and 〈
cAB

〉, from which the relative dimer
concentration was obtained as a function of δx :

p′AB(δx ) =
〈
cAB

〉
(δx )〈

cA
〉
(δx ) +

〈
cB

〉
(δx ) +

〈
cAB

〉
(δx )

. (9.2.1)
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Figure 9.2. Representative results of auto- and cross-correlation curves from an FCCS simu-

lation with di�erent amounts of double-labeled particles and for di�erent displacements

δx of the green and the red MDE. (a) Cuts through the MDEs along the x-axis. (b) Correlation
curves for a 100% double-labeled sample. In (a,b) the blue horizontal line is ĝgr(τmin) at δx = 0.
(c) Correlation curves for a 50% double-labeled sample. The crosstalk for this simulation was
κgr = 11.2%. All simulations were performed with the same trajectories, hence the similar noise
structure on the correlation curves.
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Figure 9.3. Fit results from the simulation in Fig. 9.2, when assuming no shift δx = 0 in the

�t model, given that a shift δx > 0 actually is present in the microscope setup. The graph
shows the relative error, as de�ned by Eq. (9.2.2) at di�erent crosstalk coe�cients κgr and focal
shifts δx (color-coded green-orange or blue-red). The thick orange line marks an error level of 5%
which is still acceptable.
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Here 〈
cχ

〉
(δx ) is the concentration of species χ, obtained from the simulation with focus displacement

δx . The relative error, which is introduced by the assumption δx = 0 in the �t models, can then be
quanti�ed as:

err(δx ) =
���p
′
AB(δx ) − p′AB(0)���

p′AB(0)
. (9.2.2)

Figure 9.3 shows a plot of this error as a function of the true relative dimer concentration of the sample,
which was given by the simulation parameters. The results for the two values of the crosstalk κgr are
approximately similar (color-coded from orange to green for κgr = 11.2% and blue to red for κgr = 3.5%).

From Fig. 9.3 it is now possible to justify, that ~δ = 0 was set in the models. The typical displacement
~δ in the alignment was on the order of 100 nm at the most. Therefore the error, introduced by �xing
~δ = 0 in the models is less than 3%, which is signi�cantly smaller, than the widths of the usually
obtained parameter distributions in SPIM-FCS (see measurements in last chapter). Note that 3% is the
maximum error in the simulations and some runs are sigi�cantly below this value. If an error margin
of err(δx ) < 5% for p′AB is seen as acceptable (blue dashed line in Fig. 9.3), the required precision of
the alignment alignment is only 200 nm. The di�usion coe�cient D, that was obtained from the �ts,
did not show any dependence on the displacement δx , or the crosstalk κgr (data not shown). This is
explained by the facts, that the decay times of the two autocorrelation functions are not a�ected by
these parameters, and that the autocorrelations dominate the objective function χ2(·) of the linked �t.

In summary, these FCCS simulations allowed to de�ne error margins on the e�ect of a misaligned
instrument on the results of SPIM-FCCS �ts. With the alignment precision, that was typically achieved
for the SPIM described in chapter 6, the assumption ~δ = 0 could safely be used for all 2-color SPIM-FCCS
�ts in the remaining thesis. The systematic error, that is introduces by this assumption is less than 3%.

9.3. Comparison with confocal 2-color FCCS

As for SPIM-FCS, the results of SPIM-FCCS were compared to measurements on a confocal microscope
as a reference. For this comparison, di�erent samples of a 607 bp long dsDNA were prepared. The DNA
molecules were single- and double-labeled with Alex-488 and Alexa-594 (see above). Seven samples with
di�erent relative concentrations of the dimers were prepared and measured on a SPIM and a confocal
microscope. The data was evaluated with the global �t described in section 7.1.4 and the models from
section 5.4.2. From the �t results, the relative dimer concentration was quanti�ed with the parameter

pAB =

〈
cAB

〉
min

[〈
cA

〉
,
〈
cB

〉] . (9.3.1)

Figure 9.4(a) shows a plot that compares pAB obtained with SPIM-FCCS and confocal FCCS. Figure 9.4(b)
shows the same plot, but for the relative cross-correlation amplitudes qgr (see Eq. 9.1.1). Both plots are
compatible with linear relationship between the two sets of measurements. For qgr the values are close
to the ideal slope of 1 and for pAB a slope of ∼1.2 was obtained with an outlier-robust regression. This
indicates that the SPIM and the confocal FCCS measurement have about the same dynamic range and
the SPIM-FCCS results are reasonable.

The fact, that in Fig. 9.4(a) the ideal slope of 1 was not reached has several reasons. Firstly, the
correlation curves from the SPIM-FCCS measurement were noisy and the temporal resolution was
lower than in confocal FCCS. Both e�ects increase the uncertainty on the �t results. Also an imperfect
background and bleach correction can in�uence the results. A small amount of photo-bleaching (10−20%
drop in amplitude) had to be corrected before correlating the SPIM measurement, which can impair
the cross-correlation amplitude although the autocorrelation amplitudes are fully reconstructed (see
section 5.5.4). Finally, as discussed in section 8.3, also the di�erence between the true focus geometry
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Figure 9.4. Comparison between confocal and SPIM-FCCS measurements. (a) Relative dimer
concentration pAB. (b) Relative cross-correlation amplitude qgr. The black dashed line represents the
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are average and standard deviation over 7 consecutive runs (30 s each). For SPIM they are average
and standard deviation over all pixels from 3−4 separate experiments. the green line in (a) represent
an outlier-robust linear �t to the data with 2 × 2-binning.

and its model can severely in�uence the results in both the confocal and the SPIM-FCCS measurement.
A detailed analysis of the di�erent factors, that a�ect FCCS measurements in general, can be found in
Ref. [220].

In conclusion, the results from both methods are impaired by several artifacts. Nevertheless, the
relative concentrations measured on a confocal microscope and on a SPIM were very close. Also the
dynamic ranges of both types of instruments were shown to be comparable. Therefore SPIM-FCCS can
be used as a reliable tool for the measurement of molecular interactions, provided a proper alignment
and calibration has been performed.

9.4. Absolute concentration measurements with 2-color FCCS

In the last section, it was shown that SPIM-FCCS and confocal FCCS yield approximately the same
relative concentrations for a sample. In this section, the measurement of absolute concentrations with
SPIM-FCCS will be discussed. To this end, a mixture of single- and double-labeled dsDNA fragments
(�uorophores: Alexa-488 + Alexa-594, length: 170 bp) was prepared and diluted to di�erent degrees. The
di�erent dilutions were then measured with a SPIM and a confocal microscope. Figure 9.5 shows the
results. As for the autocorrelation analysis in section 8.3, the concentrations measured with SPIM-FCCS
depend linearly on the concentrations obtained with confocal FCCS. The proportionality factors were
determined with a robust regression and found to be in the range 8.8−11.2 for this sample. The variation
of the factors around their mean was ±10%, which agrees with the �ndings of the last section, that
relative concentrations can be measured accurately. The absolute values of the proportionality factors
are signi�cantly higher than the ones that were obtained for the autocorrelation analysis in section 8.3,
which were in the range of 3 − 4. In addition to the reasons for an overestimated concentration, that
were discussed for the autocorrelation analysis, the focus geometry might play an even bigger role
in SPIM-FCCS. Here the concentrations depend on the overlap of the two focal volumes, which can
be signi�cantly underestimated by a wrong model for the MDE. Also the temporal resolution of the
EMCCD camera and the relatively dim samples may again impair the results.

Regardless of the di�erent factors that in�uence the results of SPIM-FCCS, the relation between the
concentrations measured with confocal FCCS and with SPIM-FCCS on the same sample was always
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Figure 9.5. Calibration of the SPIM-FCCS concentration against concentrations measured in

a confocal microscope. Concentrations measured in a dilution series of a 170 bp dsDNA sample.
Species A is Alexa-488 single-labeled, species B is Alexa-594 single-labeled and species AB is
double-labeled. Datapoints are averages and standard deviations over �ts to 6 runs (20 s each) in
the confocal case and all pixels in 2 − 4 measurements in the SPIM-FCCS case (τmin = 330µs). A
global �t with DA = DB = DAB was used in both cases. Linear functions (dashed lines) were �t
with robust regression and forced to cSPIM(0) = 0.

linear. In addition the relative concentrations were nearly the same with both methods (factor 1.2
between SPIM and confocal, instead of 1, see last section). Therefore SPIM-FCCS can be calibrated to
yield the same concentrations, as confocal FCCS.

9.5. Applicability of 2-color FCCS in live-cells

Cells for this section were prepared by Gabriele Müller (DKFZ, Heidelberg).

The last sections discussed the applicability of SPIM-FCCS for in vitro samples. Here the method is
tested on living mammalian cells, that express �uorescent proteins. Five di�erent types of cells were
prepared and measured (see appendix A.2 for details on cell culture methods and the plasmids). The �rst
three samples are mono- and dimers of the �uorescent proteins eGFP and mRFP1. They are often used
as controls for confocal FCCS measurements in the cytoplasm or the nucleus (e.g. in refs. [73, 95, 266]):

1. As a negative control, eGFP and mRFP1 monomers were expressed from a single plasmid (pCMV-
eGFP-ires-mRFP1). This ensures that approximately equal amounts of both proteins are present in
every cell, which is hard to achieve if the cells have to be double-transfected with two plasmids.

2. As a �rst positive control an eGFP-mRFP1 dimer was expressed in HeLa cells. In this fusion
protein, the two separate �uorophores are connected by a short linker.

3. As a second positive control an eGFP-P30-mRFP1 dimer with a linker of 30 proline amino acids
(P30) was expressed in HeLa cells. Since the poly-proline linker is relatively sturdy [267], this
fusion protein is larger than the simple dimer (item 2). It is also expected to show less Förster
resonance energy transfer (FRET) between the two �uorophores, due to their larger separation.
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Figure 9.6. SPIM-FCCS measurement of eGFP-P30-mRFP1-dimers and eGFP + mRFP1-

monomers expressed in HeLa cells. (a,b) Representative correlation curves and �ts for the
dimer and monomer sample, horizontal dashed lines are the level of cross-correlation, which is
explained by crosstalk . (c) Histograms of the relative dimer concentration pAB over the two cells.
(d) Histogram of the fast di�usion coe�cient Dfast,20 ◦C over the two cells. (e) Fluorescence Intensity
image (blue circles mark position of the measurements in a,b), (f) Maps of Dfast (at ϑ = 25 ◦C). (g)
Maps of pAB. The �rst row of images in (e-g) shows a cell expressing eGFP-P30-mRFP1 and the
second row a cell expressing eGFP + mRFP1-monomers. (h) Map of the dimer concentration cAB
in the cell, which expresses eGFP-P30-mRFP1-dimer. (i) Map of the monomer A concentration cA
in the cell, which expresses eGFP- and mRFP1-monomers. Acquisition settings: 128 × 20 pixel,
τmin = 530µs.
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In addition to these samples, also the applicability of SPIM-FCCS in cell membranes was assessed:

1. As a negative control, PMT-eGFP and PMT-mRFP1 monomers were expressed in a double-
transfection in HeLa and CHO-K1 cells. The PMT sequence, anchors the single �uorophores to
the membrane (see section 8.6 for details).

2. As a positive control a double-labeled epidermal growth factor receptor (EGFR) (eGFP-EGFR-mRFP1)1
was expressed in HeLa and CHO-K1 cells. The eGFP-EGFR-mRFP1 is a trans-membrane protein,
which carries one �uorophore on the extra-cellular and one on the intra-cellular side [76, 262].

For each of these �ve samples, several cells were measured on di�erent days. The SPIM-FCCS �t
models from section 5.4.2 were used in a global �t (see section 7.1.4) to evaluate the data. Generally a
two-component normal-di�usion model was used. The concentrations 〈

cA
〉, 〈cB

〉 and 〈
cAB

〉 were linked
over the two auto- and the cross-correlation curve. Depending on the sample, the di�usion coe�cients
were treated di�erently.

Figure 9.6 shows representative results of one cell expressing the eGFP-P30-mRFP1 dimer and one cell
expressing eGFP and mRFP1 monomers. The auto- and cross-correlation curves shown in Fig. 9.6(a,b)
are comparable to those published for confocal FCCS studies of the same proteins (see e.g. Ref. [73, 268]).
For the �ts (dashed curves in the �gure) a two-component normal di�usion model was used, which
accounts for the complex environment in the cell. Furthermore, it was assumed that all visible proteins
have the same size and thus also the same di�usion coe�cients. Therefore the three fast di�usion
coe�cients, the three slow di�usion coe�cients and the three fractions of the fast component were each
linked together. This assumption also implies that the three species A, B and AB are only distinguished
by their spectral properties. Figure 9.6(c-i) shows histograms and maps of the di�erent �t results.

The di�usion coe�cient distributions in Fig. 9.6(d) have two distinct peaks at (40 ± 16) µm2/s for
the monomers and (20 ± 16) µm2/s for the dimers (both given at ϑ ≈ 20 ◦C). These values are also
compatible with the di�usion coe�cients listed in Fig. 8.17(b) on p. 137. The fact, that dimers are
signi�cantly slower than the monomers, serves as a control for the correct expression of the proteins.

Figure 9.6(c) shows a distribution of the relative dimer-concentrations pAB. The average and standard
deviation of pAB for the monomers is (0.11 ± 0.13), which is compatible with no dimers (pAB = 0). The
remaining small dimer fraction is explained by an imperfect background, crosstalk and bleach correction,
as well as the noisiness of the correlation curves. Also motions inside the cell can lead to deformed
correlation curves that are interpreted as representing a small dimer fraction.

The distribution of pAB for dimers in Fig. 9.6(c) is signi�cantly di�erent from the distributions of the
monomers. Its mean and standard deviation are (0.6 ± 0.3). In an ideal sample, all proteins would
carry both �uorophores (AB only) and pAB → ∞. This case is never encountered in a real cell. Due
to several reasons, many proteins have only a single functioning �uorophore (species A or B). Firstly,
the maturation time for the two �uorescent proteins in the cell is di�erent, so it is possible, that one
�uorophore is already �uorescent, whereas its partner is not yet in a �uorescent state. Secondly, proteins
are never folded perfectly, so a certain amount of dimers will contain non-�uorescent partners. A
third reason is that each �uorophore in a dimer is bleached independently. Therefore some double-
labeled proteins are always converted to single-labeled proteins during the measurement. However, the
measured relative cross-correlation amplitudes are comparable to those usually obtained from confocal
FCCS, which is expected, since all given reasons for the low dimer concentration also apply to confocal
microscopy.

Figure 9.7 shows representative results for the measurements in the membrane. Figure 9.7(a) il-
lustrates the auto- and cross-correlation curves from a single pixel for the double-labeled EGFR.
Figure 9.7(b) shows the same curves for a cell, expressing PMT-eGFP and PMT-mRFP1. The auto-

1This construct was kindly provided by Thorsten Wohland (NUS, Singapore).
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ĝgr(τ)

(b) single-labeled: PMT-eGFP + PMT-mRFP1

0

0.001

0.002

0.003

10−3 10−2 10−1 100 101

co
rr

el
at

io
n

fu
nc

tio
n
g

(τ
)

lag time τ [
µs

]
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Figure 9.7. SPIM-FCCS measurement of eGFP-EGFR-mRFP1 and PMT-eGFP + PMT-mRFP1-

monomers expressed in CHO-K1 cells. (a,b) Representative correlation curves and �ts for the
EGFR and the PMT sample, horizontal dashed lines are the level of cross-correlation, which is
explained by crosstalk. (c) Histograms of the relative dimer concentration pAB over the two cells.
(d) Fluorescence Intensity image (red circles mark position of the measurements in a,b), (e) Maps of
pAB. Acquisition settings: 128 × 20 pixel, 2 × 2-binning, τmin = 530µs.

and cross-correlation curves are comparable to those shown in section 8.6 and those published for a con-
focal FCCS study on the very same proteins in Ref. [76]. The cross-correlation functions in Fig. 9.7(a,b)
are signi�cantly di�erent. The level of cross-correlation, that can be explained by crosstalk is indicated
by horizontal dashed lines. A comparison of these lines with the cross-correlation function ĝgr(τ) in
Fig. 9.7(b) shows that ĝgr(τ) can be explained by crosstalk.

Membrane-bound proteins pose additional di�culties in the data processing. The membranes tend to
move back and forth by a few 100 nm during the measurements. These motions manifest themselves
as decay components in the correlation curves on very long timescales (τdecay = 1..10 s), which are
misinterpreted as a certain amount of cross-correlation. Therefore only those cells were selected for
further evaluation, in which these membrane motions were negligible. Also a 2 × 2 binning was used,
which increases the size of the MDE and therefore helps reducing the in�uence of membrane motion.

For the SPIM-FCCS evaluation, a model function with two components of 2-dimensional normal
di�usion was combined with the SPIM-FCCS framework from section 5.4.2. A global �t was used to
extract the model parameters (see section 7.1.4) from pixels on the cell membrane (see masks in Fig. 9.7d,e).
In this �t, the concentrations were linked over all curves. Linking also the di�usion coe�cients did
not yield good �ts. Here again the membrane motions seem to impair the �ts. Therefore two separate





9.6. Flow measurements with 2-focus SPIM-FCCS

0

0.5

1

1.5

re
la

ti
ve

 d
im

er
 c

on
ce

nt
ra

ti
on

 p
A

B

eGFP, mRFP eGFP-mRFP eGFP-P30-mRFP PMT-eGFP, 
PMT-mRFP

eGFP-EGFR-mRFP

2

Figure 9.8. Statistical summary of the relative dimer concentrations pAB obtained for di�er-

ent proteins in cells, using SPIM-FCCS. For each protein, the averages and standard deviations
of pAB is shown as small triangles wit error bars. The boxplot illustrates minimum and maximum
(whiskers), the interquartile range (IQR), the median and the mean (circle) of the average values.

di�usion coe�cients (fast & slow) were used per auto- or cross-correlation curve, i.e. altogether six
coe�cients for all three curves. With these settings, good �ts were obtained, as shown with dashed
lines in Fig. 9.7(a,b). Finally Fig. 9.7(c) shows a histogram of the average relative dimer concentrations
pAB obtained for both samples from di�erent cells. The average of the two distributions are (0.2 ± 0.1)
for the PMT-cells and (0.9 ± 0.7) for the EGFR-cells. Again the distributions are signi�cantly di�erent
and the results are comparable to those found in confocal FCCS studies [76].

In summary these measurements have shown that SPIM-FCCS can be used to measure molecular
interactions of proteins, that are localized in the cytoplasm, the nucleus and even the cellular membrane.
The correlation curves that were obtained for a variety of positive and negative control samples are
comparable to those published in confocal FCCS studies. Figure 9.8 summarizes the relative dimer
concentrations pAB measured in a larger set of cells for each of the mentioned samples (10 − 30 cells per
sample). It shows the average and standard deviation of pAB for each single cell as triangles together
with the statistics of these averages as boxplots. Even though the variance between di�erent cells is high,
which is usually observed in in-vivo measurements, the dimer-samples are signi�cantly di�erent from
the monomer samples. For the membrane-bound proteins, the separation is least signi�cant and the
errors are largest. As detailed above, this is mostly caused by membrane motion. These measurements
also show that the constructs used here can serve as good control samples in cellular SPIM-FCCS studies.

9.6. Flow measurements with 2-focus SPIM-FCCS

In section 5.4.1, 2-focus SPIM-FCCS was introduced as a method that allows to determine directed �ows.
To test this, a simple experiment was set up. A sample bag at room temperature was mounted into
the sample chamber, which was heated to 37 ◦C. The temperature di�erence between the bag and the
surrounding bu�er induced a convective �ow in the bag. The �ow lasted for a few minutes, which was
long enough to acquire a SPIM-FCCS measurement.

Figure 9.9 shows a single exposure of the sample with an exposure time ∆texp = 100 ms. Three
aggregates moved through the focus, which are clearly distinguishable as bright stripes. Their length is
approximately 10µm, which leads to a rough estimate of the �ow speed of 

~v

 = 100µm/s.

Figure 9.10 shows the results of the 2-focus SPIM-FCCS measurement. In addition to the autocorrela-





Chapter 9. Evaluation of the SPIM for FCCS measurements

aggregates, used for
velocity estimation

range of SPIM-FCCS
measurement (128x20 pixels)

range of velocity 
vector map 

10µm

Figure 9.9. A single exposure of∆texp = 100 ms of �owingmicrospheres. Three bright aggregates
are marked with blue lines. The pixel range of the SPIM-FCCS measurement is shown as a red
rectangle and the range of the �ow vector map Fig. 9.10(b) is shown in yellow.

tion curve ĝ(τ; 0,0), also the cross-correlation curves ĝ(τ; δx , δy ) to the four directly adjacent pixels
(δx , δy ) ∈ {(−a,0); (a,0); (0,−a); (0,a)} were calculated. These �ve curves are shown in Fig. 9.10(a).
they have the typical shape, as discussed in section 5.4.1. The 2-focus SPIM-FCCS model in Eqs. (5.4.7,
5.4.8) was �tted to these �ve curves with a global �t. the di�usion coe�cient D and the �ow velocities
vx , vy were linked over the curves.

Figure 9.10(b) shows the resulting �ow vector map of (vx ,vy ) for each pixel in the magenta rectangle
in Fig. 9.10. All vectors point in the same direction, as observed in the long exposed frame. Finally
Fig. 9.10(c) shows histograms of the two �ow-vector components vx , vy . Their averages are 〈

vx
〉
=

(73±3) µm/s and 〈
vy

〉
= (6±5) µm/s. This yields a length of the �ow vector of (73±3) µm/s, which is

comparable to the crude estimate of 100µm/s from the aggregates. In order to obtain a better estimate
of the �ow speed, the image series, acquired for the SPIM-FCCS evaluation was also evaluated with
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ĝ(τ; 0,0)
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ĝ(τ; a,0)
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Figure 9.10. Flow of �uorescent microspheres determined with 2-focus SPIM-FCCS. (a) Auto-
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the algorithm of Lucas&Kanade [269], which calculates the planar optical �ow in the image series.
The implementation in the plugin “FlowJ” of the image processing package Fiji was used [270]. This
algorithm yielded velocities of vx ≈ 77µm/s and vy ≈ 5µm/s, which are very close to the results of the
SPIM-FCCS measurement.

The di�usion coe�cient, obtained from this measurement was D20 ◦C,W = (5.1 ± 0.3) µm2/s (renor-
malized to 20 ◦C, see appendix C.4). This is on the same order of magnitude as the value of D20 ◦C,W =
(3.3 ± 0.3) µm2/s, which was obtained during the SPIM-FCCS calibration on the same day. For these
particles the convective �ow is signi�cantly faster than normal di�usion. Therefore the contributions of
the �ow to the correlation curves outweigh the contributions of di�usion.

9.7. Summary of the chapter

2-color SPIM-FCCS: This chapter summarized several results that establish 2-color SPIM-FCCS as
a method for spatially resolved measurements of molecular interactions. Alignment and calibration
methods were developed, that allow to measure the same relative amounts of interaction, as with the
established confocal FCCS technique. Also the dynamic range of both methods is comparable. All the
same as SPIM-FCS, the cross-correlation analysis overestimates absolute concentrations. However a
calibration is possible, because a linear relation was shown to exists between the results of confocal
FCCS and SPIM-FCCS. Finally 2-color SPIM-FCCS was applied to �uorescent proteins, expressed in
the cytoplasm, the nucleus and also the cellular membrane. In all three domains SPIM-FCCS yield
qualitatively and quantitatively the same results as confocal FCCS. With these experiments it was also
established, that standard cell culture techniques and common �uorescent proteins can be used for
SPIM-FCCS analyses in live cells.

2-focus SPIM-FCCS: The last section of this chapter showed that the 2-focus SPIM-FCCS variant
can be used to quantify directed molecular motion. For a simple test measurement, the results from
SPIM-FCCS were successfully compared to an independent determination of the velocity �eld using the
established algorithm of Lucas&Kanade [269].
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10. Macromolecular dynamics in live
cells

The cells for this chapter were prepared by Gabriele Müller (DKFZ, Heidelberg). Details on the cell culture
protocols can be found in appendix A.2.

10.1. Protein mobility in live cells

As shown in sections 1.2 and 1.3, protein mobility in the cytoplasm and in the nucleus is of major
importance to the functioning of living cells. Therefore it has been studied in several publications
over the last years (see e.g. Refs. [16, 23, 25, 27, 33, 61, 99, 100, 102, 107, 271, 272]). In most studies, the
di�usion of inert tracer molecules is observed, since this excludes binding and reaction e�ects, which
could disturb the measurements. These tracers are either �uorescently labeled particles (e.g. dextrans
or gold nanoparticles), that are microinjected into the cytoplasm of a cell, or auto�uorescent proteins
(e.g. eGFP oligomers and diverse fusion proteins), that are expressed by the cells themselves. Such
measurements then form the basis for studies on molecules that are expected to interact with each other
and with structures in the cell (see also chapters 11 and 12). In most of the mentioned publications,
the measurements were performed using confocal �uorescence correlation spectroscopy (FCS) or
�uorescence recovery after photo bleaching (FRAP), because these techniques allow to observe di�usion
over a large range of timescales. Only in a few of these publications, spatially resolved measurements of
protein di�usion are described [27, 33, 99, 100, 102, 107, 120]. Furthermore, simultaneous multi-spot
measurements were reported in live cells only in Refs. [100, 102, 107, 120].

In this chapter, SPIM-FCS is applied to measure the di�usion of di�erent inert tracer particles in
live cells. In some sense, this extends section 8.6, in which the basic applicability of SPIM-FCS to
auto�uorescent proteins was demonstrated. First the di�usion of di�erent tracers in HeLa cells is
studied in section 10.2. Then measurements in di�erent cell lines are compared in section 10.3. These
measurements will form the basis for the interpretation of advanced applications of SPIM-FCS in
chapters 11 and 12.

10.2. Mobility of di�erent inert tracer molecules

10.2.1. Tracer molecules

This section summarizes measurements of diverse �uorescent molecules, that are believed not to interact,
or only to interact weakly, with other particles and structures in the cell (see also Fig. 10.1):

• eGFP-1x monomer (molecular weight: 32.7 kDa, expressed from a plasmid encoding for eGFP-1x
and mRFP1, plasmid description: [268])

• eGFP-mRFP1 dimer (molecular weight: 65.4 kDa, plasmid description: [268])
• eGFP-4x tetramer (molecular weight: 130.8 kDa, plasmid description: [276])
• eGFP-8x octamer (molecular weight: 261.6 kDa, plasmid was newly constructed by Gabriele

Müller)
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• β-gal-eGFP (molecular weight: 149 kDa per subunit, including the eGFP, plasmid description:
[27, 277])

Figure 10.1(a-c) illustrates the crystal structures of the eGFP mono- and oligomers. The oligomers
were constructed by inserting a short linker (5 amino acid for eGFP oligomers and 7 amino acids for
eGFP-mRFP1) between two subsequent molecules [276]. The arrangements of the subunits, shown in
the �gures, is a hypothesis based on measurements of the oligomers in aqueous solutions, using FCS [33]
and analytical ultra-centrifugation [278]. The geometric shape of the octamer eGFP-8x is not known.
β-gal-eGFP is a �uorescently labeled variant of the bacterial protein β-galactosidase (β-gal), that hydrol-
yses β-galactosides into monosaccharids. All proteins, except β-gal-eGFP, were transiently transfected
into HeLa cells. β-gal-eGFP was expressed from stably transfected rat prostate adenocarcinoma cells
(AT-1s). Measurements were performed at room temperature (24 − 26 ◦C) in HBSS. The cells express-
ing eGFP-4x and eGFP-8x were co-transfected with an mRFP1-labeled histone H2A (see sections 1.1
and 12.1). This allows to assess the local chromatin density in the cells during the measurement, using
the dual-view optics of the SPIM.

10.2.2. Measurement protocol

All measurements were performed with an Andor iXon X3 860. For each measurement, 100,000 frames
with 64×20 pixels were acquired at a temporal resolution of τmin = ∆tframe = 530µs. The laser intensity
in the center of the light sheet was in the range of 100 − 200 W/cm2, which is a factor 5 − 10 below
the laser intensities usually used in confocal FCS in living cells. Only those cells were selected for
a measurement, that showed the typical shape of a healthy HeLa/AT-1 cell (no blebs, a recognizable
nucleus, typical elongated shape, etc.), and that were not obviously in mitosis. The acquired data was
corrected for photobleaching with the model in Eq. (7.1.5) (p. 109) with a polynomial degree of Nf = 2...4.
Cells that had moved during the measurement, in which the bleach correction did not work, or that
showed other uncommon artifacts (e.g. large internal rearrangements) were sorted out. This way ∼30%
of the cells were removed from the further evaluations. In the remaining datasets, the cells were masked
by imposing a threshold on the �uorescence intensity. The exact value of the threshold was optimized
for each cell. If necessary, the mask was corrected by hand to include also the nucleoli, or exclude regions
with stripe artifacts (see section 8.5.1). The background intensity for the �ts was then estimated as the
average over all masked pixels for each cell (cf. section 8.6). Finally two SPIM-FCS models were �tted to
the cell data: an anomalous di�usion model (Eq. (5.3.32), p. 63) and a 2-component normal di�usion
model (Eq. (5.3.25) (p. 61) with Eq. (5.3.29), p. 62). These two models are usually used to describe FCS
data from live cells. In a last step, the �t results were checked for proper convergence and sound values.
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Figure 10.1. Di�erent inert probe particles for mobility measurements in live cells.

(a) eGFP-1x, crystal structure taken from Ref. [273, 274]. (b) eGFP-mRFP1. (c) eGFP-4x. (d) β-gal,
crystal structure taken from Ref. [275].
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10.2. Mobility of di�erent inert tracer molecules

During this step, again ∼20% of the cells were sorted out, since a motion of the cells often only become
visible in the �t results.

10.2.3. Results

For each of the �ve di�erent tracer proteins, Fig. 10.2 shows the �t results for one representative cell.
Already the �uorescence images in the �rst row of Fig. 10.2 show, that the ratio between the �uorescence
in the nucleus and the cytoplasm decreases with increasing size of the tracer. This is especially prominent
in the �uorescence images for eGFP-4x and eGFP-8x. The exclusion from the nucleus is caused by the
limited size of cargo that can freely di�use through the nuclear pore complexs (NPCs). These bridge the
nuclear membrane, which separates the nucleus from the cytoplasm, where the proteins are synthesized.
Typically only proteins with a mass of less than ∼60 kDa can freely pass these pores by di�usion. Larger
proteins require a short polypeptide sequence, called nuclear localization sequence (NLS), that initiates
an active transport of the protein into the nucleus [2]. The eGFP constructs, used here, lack this NLS. In
addition, especially eGFP-4x and eGFP-8x are signi�cantly larger than the given limit. Nevertheless,
a relevant concentration of particles was still detected in the nuclei (see 1st and 3rd row in Fig. 10.2).
This is in agreement with earlier publications using the same constructs [33, 276], and it supports the
hypothesis, that the eGFP oligomers are built in a rod-like shape, and therefore still �t through the NPC,
if oriented properly. Nevertheless the number of molecules transported into the nucleus is strongly
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Figure 10.2. Intensity images and �t parameter maps for one representative cell for each of

the �ve inert tracer molecules. The proteins are sorted by increasing molecular mass. Thin red
lines mark the nuclear envelope and thin blue lines the nucleoli. All images have a width of 25.6µm.
The color scales of the parameter maps were optimized for each parameter separately, in order
to make any large-scale structures in the data visible. A comparison of the absolute values of the
parameters can be found in Fig. 10.5.
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Figure 10.3. (a) Representative autocorrelation curves from cells, expressing the di�erent

eGFP oligomers. (b) Histograms of the di�usion coe�cient of the fast component, cal-

culated using all pixels of the respective cell. Autocorrelation curves were averaged over 4− 8
adjacent pixels. Di�usion coe�cients have been recalibrated to ϑ = 20 ◦C (see appendix C.4).
Acquisition parameters: τmin = 530µs, no binning, bleach correction with Eq. (7.1.5) (p. 109) with
Nf = 2 − 4.

reduced for larger proteins.

As stated above, all autocorrelation curves were �tted with two di�erent models. Figure 10.3 shows
four representative autocorrelation curves and the histograms of the di�usion coe�cient Dfast of the fast
component in the normal di�usion �t. Figure 10.3(a) illustrates the increasing decay time with increasing
tracer size. The histograms for Dfast in Fig. 10.3(b) quantify this e�ect. Comparable histograms were
obtained for all parameters from the �ts. In most cases, these histograms contain a certain number of
outliers and often feature broad distributions of the parameters. Therefore, robust statistical measures,
such as the median, were used for any further evaluation.

The two components of the normal di�usion model are usually interpreted in such a way, that the
faster component of the two (Dfast) describes the random motion of the particles in a more or less
viscous medium. The slow component (Dslow) summarizes the e�ects of crowding, of the complex
cellular environment and of internal rearrangements of the cell. An increased impact of crowding is
then usually reported as an increased fraction of the slow component ρslow. Figure 10.4 summarizes the
�t results for these parameters from all measured cells. The �gure shows the medians of the parameter
distribution in each cell (red cross) and the average and the standard deviation over these medians
(blue error bars). It can be seen again, that the fast di�usion coe�cient Dfast decreases with increasing
molecular mass (see Fig. 10.4a). The di�usion coe�cient Dslow of the slow component does not show a
clear dependence on the molecular mass (see Fig. 10.4b), but the fraction of this slow component ρslow
is increased for heavier molecules (see Fig. 10.4c). This can be explained by a stronger hindrance of the
molecular motion with increasing size of the molecules, which has e.g. been observed in simulations
and confocal FCS measurements in Ref. [23].

The values obtained for the di�usion coe�cients can be analyzed more closely. Figure 10.5 shows the
di�usion coe�cients Dfast for the di�erent tracers as a function of the molecular mass (green squares).
For comparison, the same curve is shown for di�usion coe�cients Dfast,W obtained with a confocal
FCS measurement of an aqueous solution of the eGFP oligomers (blue stars). In general, both curves
show the same dependence on the molecular mass, but the di�usion in the cell is signi�cantly slower.
Following the Einstein relation in Eq. (1.3.3) (p. 7), the ratio between the two di�usion coe�cients in the
cell and in water (Dfast,cell and Dfast,W) directly equals the ratio between the viscosities of water ηvisc,W
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Figure 10.4. Summary of �t results for di�erent inert tracer molecules in HeLa cells. (a-c) Fast
and slow di�usion coe�cients (Dfast,20 ◦C and Dslow,20 ◦C) and fractionρslow of slow component from
a 2-component normal di�usion �t. The di�usion coe�cients were recalibrated to ϑ = 20 ◦C (see
appendix C.4). (d) Anomaly parameter α from an anomalous di�usion �t. Red crosses are the
medians of the parameter distribution in each cell and blue error bars show average and standard
deviation over these medians.
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Eq. (C.5.5) (p. 225) for a cylindrical molecule of diameter dcyl = 4 nm and di�erent lengths
lcyl ∈ {7, 12, 24} nm for the oligomers and dcyl = 3 nm, lcyl = 4 nm for the monomer.
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and of the cytoplasm ηvisc,cell:

ηrel :=
ηvisc,cell
ηvisc,W

=
Dfast,W
Dfast,cell

. (10.2.1)

From the eGFP mono- and dimer measurements, a value of ηrel = (3.2 ± 0.6) was obtained, and for
the tetramers and octamers ηrel = (4 ± 1). These values are in agreement with several other published
measurements [16–19]. The increase in viscosity with increasing size of the molecule can again be
explained by the stronger impact of crowding on larger molecules [16, 23].

Figure 10.5 also shows theoretical estimates of the dependence of Dfast on the molecular mass M
(dashed lines). For these curves, spherical particles with a constant mass density were assumed, for
which the hydrodynamic radius scales like Rh ∝

3√M . Then the Einstein relation Eq. (1.3.3) (p. 7) predicts
the scaling of the di�usion coe�cients:

Dfast(M) = DeGFP-1x ·
3

√
MeGFP-1x

M
. (10.2.2)

Here DeGFP-1x and MeGFP-1x are the measured di�usion coe�cient and the molecular mass of the monomer
eGFP-1x. As shown in Fig. 10.5 the function Eq. (10.2.2) does not successfully predict the di�usion
coe�cients of the larger particles. The graph also contains theoretical predictions (red symbols) that
were calculated for cylindrical particles (see Eq. (C.5.5) in appendix C.5) with a diameter dcyl = 4 nm
and di�erent lengths lcyl ∈ {7, 12, 24} nm for the oligomers, as well as dcyl = 3 nm and lcyl = 4 nm for
the monomer. These models were motivated by an approximately cylindrical shape of the oligomers
(Fig. 10.1). The predicted values coincide better with the measured data, than those calculated with the
spherical model in Eq. (10.2.2). These results support the shapes, assumed for the tracer particles, shown
in Fig. 10.1.

The �t results also allow to quantify the anomaly of the molecular motion. This is possible by directly
measuring the anomaly parameter α with an anomalous di�usion �tting model (see Fig. 10.4d). For all
tracers, a value of α = 0.54 − 0.6 was obtained, which is in general agreement with the values obtained
in several other studies (see Ref. [25] for a good overview). For comparison, SPIM-FCS measurements of
aqueous solutions of eGFP-1x and a dsDNA (length 170 bp) were also evaluated using the anomalous
di�usion model. These measurements should yield α = 1, but values of α = 0.85 − 0.9 were obtained.
Confocal FCS measurements on the same samples typically yield values of α = 0.9 − 0.95. These values
of α ≤ 0.9 are possibly due to the limited temporal resolution of the camera, which leads to a prevalence
of any artifacts in the tail of the autocorrelation function (e.g. aggregates and dirt particles in the sample).
Also the inaccuracy of the model for the MDE could play a role (see section 8.3).

As shown by the representative cells in Fig. 10.2, no interpretable large-scale structures could be
observed in the maps of most of the di�erent �t parameters. However, a closer look at the 4th row of
Fig. 10.2 reveals a decrease of Dfast inside the nucleoli of some cells (thin yellow circle in Fig. 10.2). For
the cell expressing eGFP-2x (2nd column), the relative decrease is approximately 50%. This corresponds
to a further increase of the viscosity, which is explained by the high density of proteins in the nucleoli,
that severely hinder the di�usion of the tracers. In order to test whether the density of chromatin
in�uences the tracer di�usion, mRFP1-labeled histones (H2A-mRFP1) were co-expressed together with
eGFP-4x and eGFP-8x. The intensity in the red color channel can then be interpreted as a measure of
the chromatin density (see also section 12.1). However, no correlation between this parameter and any
of the mobility parameters could be found in the measurements. This is in agreement with the earlier
experimental study by Dross et al. and simulations by [33, 279]. In Ref. [279] the authors estimate that
particles with a hydrodynamic radius Rh of less than 20 nm are not in�uenced by the chromatin in
interface nuclei.
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10.3. Di�usion in di�erent cell lines

Most of the measurements in the last section were performed in HeLa cells. In order to evaluate the
in�uence of the cell type, the experiments with transiently expressed eGFP-4x were repeated in di�erent
cell lines

• baby hamster kidney cells (BHKs)
• Chinese hamster ovary cells (CHO-K1s)
• transformed African green monkey kidney �broblast cells (COS-7s)
• human embryonic kidney cells (HEK-293s)
• human breast carcinoma cells (MDA-MB231s)
• human cervical carcinoma cells (HeLas)

For the HeLa cells, the data from the last section was pooled together with additional measurements,
hence their �t results show an increased standard deviation. The data was evaluated as described in
section 10.2. Figure 10.6 summarizes the results of the measurements. As in section 10.2, the plots show
a statistical evaluation of selected �t parameters. The medians of the parameter distributions in each
single cell are shown as red crosses and the blue error bars give the average and standard deviation over
these medians. Generally, the results are comparable to those in Fig. 10.4 and most of the parameters
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Figure 10.6. Summary of �t results for eGFP-4x, expressed in di�erent cell lines. (a-c) Fast and
slow di�usion coe�cients Dfast,20 ◦C and Dslow,20 ◦C and fraction of slow component ρslow from a
2-component normal di�usion �t. The di�usion coe�cients were recalibrated to ϑ = 20 ◦C (see
appendix C.4). (d) Anomaly parameter α from an anomalous di�usion �t. Red crosses are the
medians of the parameter distribution in each cell and blue error bars show average and standard
deviation over these medians. Note that more measurements on HeLa cells were pooled together
here, than for Fig. 10.4.
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cell line ηrel

BHK (2.2 ± 0.4)
CHO-K1 (1.9 ± 0.3)
COS-7 (2.7 ± 0.6)
HEK-293 (2.6 ± 0.4)
MDA-MB231 (2.5 ± 0.3)
HeLa (3.2 ± 1.3)

Table 10.1. Relative viscosities of the cellular medium in di�erent cells, measured with tran-

siently expressed eGFP-4x.

agree within their errors. From the di�usion coe�cients of the fast component, again the relative
viscosity ηrel could be calculated. The values obtained from that clculation are listed in Tab. 10.1. All
values for ηrel were in the range of ηrel = 1.9 − 3.2.

10.4. Conclusions

In this section, several measurements were described, in which the mobility parameters of inert tracer
proteins of di�erent sizes were measured in living cells. The results generally agree with other mea-
surements, published over the last 15 years (see e.g. [16, 23, 25, 27, 33, 61, 99, 100, 102, 107, 271, 272]).
Those measurements were in most cases obtained in few consecutively measured spots (confocal FCS) or
averaged over larger regions (FRAP). Together with the work of Wohland et al. [117] and by Capoulade
et al. [120], the experiments in this section demonstrate for the �rst time a true imaging approach to
FCS measurements of cytoplasmic proteins of di�erent sizes. The fact, that several published results
could be reproduced for normal and anomalous di�usion con�rms the applicability of SPIM-FCS to
these biological systems. The measurements in this section also show that the di�erent artifacts and
properties of SPIM-FCS (see chapter 8) are no obstacle to the applicability of this technique.
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11. Keratin dynamics
The measurements in this chapter were performed in cooperation with Reinhard Windo�er (RWTH Aachen)

and Norbert Mücke (DKFZ, Heidelberg).

11.1. The keratin intermediate filament system

As brie�y mentioned in section 1.1, the shape of a cell is maintained by the cellular cytoskeleton. The
latter consists of three di�erent types of �lament subsystems (see Fig. 11.1a-c), which are each built
up from distinct protein monomers. These subsystems di�er largely in their properties and in their
function in the cell [2, 280]:

1. Actin �laments (also called micro�laments) are two-stranded helical polymers. A single �ber is
5 − 9 nm in diameter and very �exible. Actin �laments form a dense network below the cellular
membrane and are especially enriched near cell protrusions. Since they inteact with myosin motor
proteins, actin �laments are also involved in active cellular transport.

2. Microtubules are hollow protein cylinders with a diameter of around 25 nm. These cylinders are
very rigid and can span the whole diameter of a cell. They are involved in the segregation of the
chromatids during mitosis (see Fig. 1.2, p. 5), and in active cellular transport via the motor protein
families kinesin and dynein.

3. Finally, intermediate �laments (IFs) are rope-like structures with a diameter of around 10 nm
[281]. They are constituted of a large variety of di�erent protein monomers. The keratin family is
the largest sub-group within these. IFs span the whole cytoplasm and give a certain mechanical
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Figure 11.1. (a-c) Filament networks in amammalian cell. (d) Intermediate �lament assembly.

(a-c) Adapted from Ref. [2]. (d) Based on Ref. [280].





Chapter 11. Keratin dynamics

rigidity to the single cells. In epithelial tissue, the IF network can also span the whole space
between two cell-cell junctions, thereby increasing the mechanical strength of the whole tissue.
The lamins are a special group of IFs that form a meshwork on the inside of the nuclear membrane.
This meshwork stabilizes the nucleus and interacts in many ways with nuclear proteins.

In this chapter SPIM-FCS is applied to the keratin intermediate �laments. The keratin network gives
mechanical strength to many epithelial cells, such as keratinocytes. Nevertheless the network remains
�exible and is constantly remodeled in order to adapt to changes in the cell and its environment. A
general assembly mechanism, that explains how cytoplasmic IFs are formed from the protein monomers
is depicted inFig. 11.1(d) [280]. Data published by Lichtenstern et al. suggests that this mechanism also
describes the assembly of keratin �laments [281]. First, two monomers form a dimer with a coiled-coil
structure. These dimers can then laterally assemble into tetramers. Between 8 and 10 of these tetramers
can further assemble to form so-called unit length �laments (ULFs), which have a length of lULF = 43 nm
and a diameter of approximately 10 nm [281, 282]. These ULFs �nally assemble into the longer �laments
by end-to-end annealing [283, 284].

So far the assembly of a �lament was described. In order to remodel and adapt the whole network, a
higher-level process is required. A model for this remodeling process is depicted in Fig. 11.2 [285, 286].
Soluble precursors of the �laments di�use through the cytoplasm. The nature of these precursors is
unknown but candidates are dimers, tetramers, complete ULFs or even longer �laments. Near the
periphery of the cell, the precursors start to assemble into small �lamentous particles. These particles
elongate and grow into larger and larger meshworks and bundles. During this process, they are actively
transported towards the nucleus of the cell. This active transport has been observed with time-lapse
�uorescence microscopy [55, 287]. Its average velocity was found to be in the range of 100−500 nm/min.
When the large �lament bundles arrive at the nucleus, they are either disassembled, or they are integrated
into �xed structures, such as the perinuclear cage, which surrounds the nucleus. The fragments of the
disassembled �laments spread through the cytoplasm by di�usive transport. Thereby they can return to
the periphery of the cell, where the remodeling cycle begins again. This assembly/disassembly cycle
allows the cell to keep the keratin �lament network in a dynamic state. The disassembly of unused
�laments helps the cell to maintain a pool of �lament precursors in the cytoplasm. Therefore only a
minor fraction of the proteins, that are needed to form new �laments, have to be newly synthesized by
the cell.

elongation integration bundling maturation

nucleation
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cytoplasm

periferal keratin network

diffusion

directed            transport
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Figure 11.2. The keratin remodeling cycle. Adapted from Fig. 1 in Ref. [285].
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11.2. The free pool of keratin precursors

The nature of the free precursor molecules, that were mentioned in section 11.1, is not known. In
Ref. [287], �uorescence recovery after photo bleaching (FRAP) was used to estimate a di�usion coe�cient
of Dkeratin,FRAP ≈ 1µm2/s for the �lament precursors in the cytoplasm. In these experiments one half of
the cell was bleached, and subsequently the �uorescence recovery into regions without larger �laments
was assessed. The fact, that the di�usion coe�cient Dkeratin,FRAP is small in comparison to other di�usion
coe�cients measured in cells for this thesis, suggests that the free pool consists of larger particles.

Figure 11.3 shows an estimate of the expected di�usion coe�cients of keratin �laments of di�erent
lengths and a diameter of ∼10 nm. On the upper border of the plot, the number of ULFs in such a �lament
is noted. The persistence length lp of the �laments is also displayed (for keratin: lp ≈ 300 nm [281]). It
corresponds to the length scale on which the �lament behaves like a sti� rod, i.e. the length scale, on
which a cylindrical shape can be assumed. The viscosity of the cytoplasm ηvisc,cytosol was assumed to be
around 3-fold larger than that of water (see sections 10.2 and 10.3). With these preconditions an expected
range of di�usion coe�cients D = 0.8 − 6µm2/s can be estimated from Fig. 11.3. This corresponds to
�lament lengths of 1− 23 · lULF. For keratin monomers, dimers or tetramers, larger di�usion coe�cients
in the range of 7−14µm2/s (at ϑ = 20 ◦C) are expected. From these estimations, the di�usion coe�cient
from the FRAP measurements of ∼1µm2/s would correspond to �laments, which are made up of 10−20
ULFs. However, FRAP does not directly observe single particles, but evaluates how fast �uorescence is
recovered in a larger region (see section 1.4.2). Therefore it cannot easily distinguish between several
species of particles that are characterized by di�erent di�usion coe�cients. In such a case FRAP will
usually report an averaged di�usion coe�cient.

In this chapter, FCS measurements on the dynamics of keratin in a living cell are reported. In contrast
to FRAP, FCS observes only a small volume and can resolve di�erent species. For such FCS measurements,
it is important to position the observation volume between large �lament bundles. A large fraction of
the FCS measurements will have to be sorted out due to �lament bundles that move through the focus.
Therefore confocal FCS measurements on the free pool of keratin precursors are cumbersome. SPIM-FCS
was chosen as a method to circumvent these problems. It allows to record hundreds of positions in a
cell simultaneously. This does not prevent some pixels from being a�ected by large �laments, but even
if these are sorted out, enough points with evaluable measurements remain in every cell.
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Figure 11.3. Di�usion coe�cient D of a cylinder of diameter d = 10 nm and length L. The
di�usion coe�cient is given at ϑ = 20 ◦C for water and for cytosol with viscosity ηvisc,cytosol ≈
3 · ηvisc,water. The di�usion coe�cient of the cylinder was estimated, as described in appendix C.5.
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11.3. SPIM-FCS measurements of the free pool of keratin precursors

Two types of cells were provided by Reinhard Windo�er for the measurements (see also Fig. 11.4):

1. Adrenal cortex carcinoma-derived SW13 cell (SK8/18), stably transfected with Keratin8-CFP and
Keratin18-YFP [288]

2. Humane keratinocyte cell (HaCat B 10), stably transfected with keratin5-YFP [289]

Both were stably expressing a protein from the keratin family, labeled with yellow �uorescent protein
(YFP). The SPIM presented in section 6 is not optimized for this �uorescent protein (see section 2.5
for its spectra), but detection with a long-pass �lter with transmission above 500 nm, together with
excitation at 491 nm worked reasonably well. The cells were measured in a heated sample chamber
at ϑ = (37 ± 0.2) ◦C. For each cell one or more SPIM-FCS measurements were performed with the
Andor iXon X3 860 EMCCD camera set to an EM-gain setting of 100 − 300. Each measurement
comprised 128 × 32 pixels at a temporal resolution of τmin = 700µs. For bleach correction, the model in
Eq. (7.1.5) (p. 109) with a degree of the polynomial of Nf = 4 was used. For the measurements, slices of
the cell with a low density of large �lament bundles were selected, in order to increase the chance of
�nding pixels that lie in between �laments.

Figure 11.5 shows an representative measurement on an SK8/18 cell. The thick �lament bundles can
be seen in Fig. 11.5(a), especially around the nucleus. Still enough pixels were found that were located
between the �lament bundles in this slice of the cell. Figure 11.5(b,d) shows autocorrelation curves and
�uorescence intensity time traces from one of these bundle-free pixels. For a further statistical analysis,
such pixels were selected by an automatic scheme, which is explained below. Figure 11.5(c,e) shows
autocorrelation and �uorescence intensity curves for a pixel near the nucleus, which has to be sorted
out. It is positioned directly on a large �lament bundle. Here the motion of the �laments leads to a
large-scale variation of the �uorescence intensity Fg(t) with time. The long-term decay, caused by this
intensity variation in the autocorrelation curve, outweighs any other contributions.

The autocorrelation function in Fig. 11.5(b) was best described by a 2-component normal di�usion
model (Eq. (5.3.29), together with Eq. (5.3.24), see pages 60-62). It yielded a fast component with a
di�usion coe�cient of Dfast,20 ◦C = 5.7µm2/s, a slow component with Dslow,20 ◦C = 0.06µm2/s and a
fraction of the slow component of ρslow = 53%. The meaning of the parameter ρslow in this context
is discussed in more detail in section 11.4. The fast component can be interpreted as representing the
pool of free precursors. In this interpretation, the slow component summarize two e�ects. Firstly, it
accounts for the complex cellular medium and motions of the whole cell. Secondly, it may be caused by
remaining motions of larger �laments through the focus or in its vicinity.

(a) SK8/18 (b) (c) (d) HaCat B 10 (e)

Figure 11.4. Representative �uorescence images of (a-c) SK8/18 and (d-e) HaCat B 10 cells,

expressing keratin. Image width: 51.2µm. Images are maximum intensity projections of z-stacks
acquired with the SPIM, created with the plugin VolumeViewer of Fiji.
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and �uorescnece intensity time trace of a pixel wihtout contributions from large �laments. (c,e) the
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Chapter 11. Keratin dynamics

The choice of a �t model with 2-component normal di�usion in the data evaluation was checked by
a maximum entropy data evaluation (MaxEnt) analysis (see section 7.1.5). It calculates a distribution
of particles with di�erent di�usion coe�cients, that explain the shape of a given autocorrelation
curve. Figure 11.6 shows its result for the very same pixel as in Fig. 11.5b. The MaxEnt distribution
in Fig. 11.6(a) clearly shows two distinct peaks at approximately the same di�usion coe�cients, as
found by the 2-component �t. If the FCS autocorrelation curve would best be described by a single
anomalous component, the MaxEnt distribution would contain a single, but broadened peak. Therefore
the 2-component model was chosen for all remaining evaluations in this chapter.

For a �nal statistical analysis, a SPIM-FCS �t was performed for every pixel in all cells. Figure 11.7
shows the �t results for the same cell as in Figs. 11.5 and 11.6 as histograms and parameter maps. The
histograms of the di�usion coe�cient Dfast and the fraction ρfast of the fast di�using component show
sharp peaks at the edges of the parameter ranges (Note the discontinued axes in Fig. 11.7b,c) and a
broad distribution in between. From the maps of the parameters, it can be seen that the peaks in the
edges correspond to pixels, that contain large �laments. They are colored dark blue or dark red in the
parameter maps. The other pixels are mostly positioned towards the periphery of the cell, where the
density of �lament bundles is lower. This feature was used to design an automatic selection procedure,
which picks only those pixels, that meet all of the following conditions:

1. The di�usion coe�cient of the fast component should be in a reasonable range, which excludes
the edge peaks in its histograms: Dfast ∈ [1.1...40]µm2/s (at ϑ = 37 ◦C)

2. The edge peaks were also excluded from the fraction of the fast di�using component: ρfast ∈
[0.1...0.9]

3. The measured �uorescence intensity 〈
Fg

〉 in each pixel has to be in the lower third of the intensity
distribution. This e�ectively excludes many of the bright �lament bundles.

4. The molecular brightness 〈
Fg

〉
/N has to be in the main peak of its distribution (N is the particle

number obtained from the measurement). The ranges for 〈
Fg

〉
/N were selected for each cell by

hand, based on the parameter histogram.

This procedure could successfully select only pixels with autocorrelation curves as shown in Fig. 11.5(b).
Figure 11.8 shows the summary statistics (IQR, median, mean) of the �ltered distributions of the

di�usion coe�cient Dfast,20 ◦C for each cell. The mean for most of the cells is signi�cantly higher
than the median. This implies that the distributions are skewed, which could already be seen in the
raw distributions in Fig. 11.7(b). Comparable analyses were performed for several parameters in the
measurements. Finally, a summarizing statistics was computed from the medians of the distributions of
each cell. The median was chosen, because it is robust to outliers and a good measure of peak position
of a skewed distribution. Table 11.1 shows the results. For all mobility parameters, approximately equal
values were obtained in both cell types. They agree with the values shown above for a single SK8/18 cell.

parameter from SK8/18 cells from HaCat B 10 cells
di�usion 〈

Dfast,20 ◦C
〉 coe�cient of fast species (6.1 ± 1.0) µm2/s (6.9 ± 1.8) µm2/s

fraction 〈ρfast〉 of fast species (49 ± 8)% (46 ± 7)%
di�usion 〈

Dslow,20 ◦C
〉 coe�cient of slow species (0.10 ± 0.03) µm2/s (0.10 ± 0.03) µm2/s

number of cells 12 9

Table 11.1. Summary of the SPIM-FCS �t results for SK8/18 and HaCat B 10 cells. The values
in the table are average and standard deviation over the medians of the distributions in each cell.
All di�usion coe�cients were recalibrated to ϑ = 20 ◦C (see appendix C.4).
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Figure 11.8. Fast di�usion coe�cient Dfast,20 ◦C extracted from all SK8/18 cells expressing

Keratin18-YFP. The data was acquired on two consecutive days. The red boxes are the IQR
of the �ltered distribution of Dfast in each cell. The blue lines are its median. Green crosses mark
the average from each cell. Only those pixels matching the mentioned conditions were used to
calculate the statistics. All di�usion coe�cients were recalibrated to ϑ = 20 ◦C (see appendix C.4).
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Chapter 11. Keratin dynamics

11.4. Discussion of the results

The distributions of di�usion coe�cients of the fast di�using component span a large range of values
(see Fig. 11.8). This re�ects the large variability between di�erent measurements in a single cell. The
medians of the distributions are compatible with the di�usion coe�cients estimated theoretically for
small �laments consisting of one or two ULFs (see Fig. 11.3). They also agree with the peak of the
MaxEnt distribution for a single pixel, shown in Fig. 11.6(a).

The di�usion coe�cient of the fast component in the MaxEnt distribution spreads over a range of
D20 ◦C ∈ [2...30]µm2/s. This indicates that the pixels might contain a broad mixture of particles. The
upper fraction of the distribution (between 7µm2/s and 30µm2/s) is compatible with the di�usion
coe�cients that is expected for dimers, or tetramers. The slow fraction of the distribution represents
single ULFs or �laments constituted from a few ULFs. The data shows no indication of particles in the
free pool, that are signi�cantly larger than a few ULFs.

The di�usion coe�cients measured with FRAP (Dkeratin,FRAP ≈ 1µm2/s) are on a timescale between
the two components that were observed in the SPIM-FCS measurements. A possible explanation is that
FRAP measures an average over the two distinct dynamics, that could be resolved with FCS.

The concentration of particles in the free pool cannot easily be extracted from these measurements,
because the autocorrelation function directly depends on the unknown brightnesses of the di�erent
molecules that make up this free pool. In addition, the interpretation of the slow component is com-
plicated. If it is assumed to only describe the complexity of the medium, then the overall particle
concentration 〈

call
〉, measured in the autocorrelation curve, can be interpreted to quantify the molecules

in the free pool. The fraction ρslow can then be ignored. This interpretation seems sound, if the data for
keratin and for inert tracers (chapter 10) is compared. Still, the interpretation of 〈

call
〉 is complicated by

its implicit dependence on the brightness of the particles, which is not uniform in the free pool. Here
longer polymer fragments are brighter than shorter fragments, because they carry more �uorophore
molecules. This is already evident, if the autocorrelation function Eq. (5.3.12) (p. 58) is written for two
species 1 and 2 with arbitrary brightnesses ηg,1 and ηg,2:

gg(τ) =
η2

g,1G(1)
g (τ) + η2

g,2G(2)
g (τ)(

ηg,1
〈
c1

〉
+ ηg,2

〈
c1

〉)2 =

(
ηg,1
ηg,2

)2
· G(1)

g (τ) + G(2)
g (τ)(

ηg,1
ηg,2
·
〈
c1

〉
+

〈
c2

〉)2 (11.4.1)

In simple systems, assumptions on ηγ,1/ηγ,2 can be made, such as ηγ,1/ηγ,2 = 2 for a homo-dimerization
reaction. In the case of keratin, a more sophisticated is required, which will be left to future work on
this project. Note however, that only the correlation amplitudes are a�ected by this brightness issue.
Therefore, the di�usion coe�cients can be measured reliably.
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12. Dynamics and interaction of
chromatin-associated proteins

Most of the cells for this chapter were prepared by Gabriele Müller (DKFZ, Heidelberg). Details on the cell
culture protocols can be found in appendix A.2.

In this chapter SPIM-FCS and SPIM-FCCS measurements on chromatin-associated proteins are de-
scribed. First the dynamics of three histones (H2A, H4, H1) are examined. This forms the basis for the
application of SPIM-F(C)CS to two other functional proteins, namely the transcription factor system
activator protein 1 (AP-1) with its constituents c-Fos and c-Jun (chapter 12.2) and the nuclear receptor
rhetinoid X receptor (RXR) (chapter 12.3).

12.1. Histone Dynamics

Measurements on histones were performed in cooperation with Tabea Elbel.

12.1.1. Introduction

The nucleosome was brie�y introduced in section 1.1 as the basic packing unit of chromatin in a cellular
nucleus during interphase. Figure 12.1(a) depicts the crystal structure of such a nucleosome, which is
composed of a protein core (red/yellow/green/blue) and a stretch of DNA wound around it (gray) [290].
As shown in the �gure, the core structure consists of two copies of four di�erent proteins. H3 (green) and

DNA

2x histone H3

2x histone H4

2x histone H2B

2x histone H2A

wtGFP for 
size comparison

(a)

(c)

histone H1

histone core octamer
(H2A, H2B, H3, H4)

DNA

outer dimer
(H2A + H2B)

inner tetramer 
(2x H3 + 2x H4)

(b)

~10nm

Figure 12.1. (a) Crystal structure of the nucleosome. (b) Schematic drawing of the protein

core of the nucleosome. (c) Interaction of the nucleosome with the linker histone H1.

Crystal structures taken from Refs. [148, 290] and rendered using PyMol. (c) adapted from Ref. [2].
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H4 (blue) form the “inner tetramer”, H2A (yellow) and H2B (red) the two “outer dimers”. The stability of
the nucleosome has been assessed with salt-induced destabilization experiments. There it was shown,
that the H2A/H2B-dimer is evicted at lower salt concentrations, than the H3/H4-tetramer [291, 292].

The histone protein H1 (see Fig. 12.1c) is not a part of the nucleosome core structure. It is however
often bound to the nucleosomes in cells, where it helps to package nucleosomes into higher-order
structures [2, 293]. For this reason it is also called linker histone. As shown in Figure 12.1(c), H1 binds
to the outer part of the nucleosome, where the two DNA-strands leave the core structure. It interacs
with the DNA strands (and to tails of the core histone proteins) and thereby changes the exit angle of
the DNA. This allows for a denser packaging of the chromosomes.

12.1.2. Measurement protocol

The dynamics of three eGFP- or YFP-tagged histone proteins in live cells are investigated. HeLa cells
were transiently transfected with the following protein constructs [294]:

• H2A-eGFP (molecular weight of histone + eGFP: 14.1 kDa + 32.7 kDa = 46.8 kDa)
• H4-eGFP (molecular weight of histone + eGFP: 11.4 kDa + 32.7 kDa = 44.1 kDa)
• H1.0-YFP (molecular weight of histone + eGFP: 20.8 kDa + 32.7 kDa = 53.5 kDa)

All cells were also co-transfected with free mRFP1, in order to label the shape of the cells. SPIM-FCS
measurements were performed in these cells at room temperature (ϑ ≈ 24 ◦C) in HBSS. An Andor
iXon X3 860 EMCCD camera was used to acquire frames with 128 × 20 pixels at a temporal resolution
of τmin = ∆tframe = 530µs. The laser intensity in the center of the light sheet was in the range of
100 − 200 W/cm2. The dual-view optics was used to detect the eGFP/YFP and the mRFP1 signals
simultaneously.

The data selection and evaluation process was comparable to the one described in section 10.2.2.
The bleaching behavior of the slowly moving chromatin is relatively complex. Therefore the model
Eq. (7.1.5) (p. 109) with a degree of the polynomial of Nf = 4 was used in all cases. For the �nal
evaluation, two regions in each cell were selected. The nucleus was masked by a threshold of the
intensity, which was optimized for each cell individually. In some of the cells, a signi�cant part of the
cytoplasm was visible in a measurement. In these case, also a region inside the cytoplasm was selected
in order to measure the abundance and mobility of labeled histones in that compartment. Finally all data
was �tted with a 2-component normal di�usion model (Eq. (5.3.25) with Eq. (5.3.29), p. 62). As described
earlier, moving cells were excluded during the masking stage and after the �tting stage. For each �t
parameter the outlier-robust median of the distribution in each cell was calculated, and then used for
further statistical evaluations.

12.1.3. Results

Figure 12.2 shows the �t results and �uorescence images for three typical cells, expressing the histone
fusion-proteins H2A-eGFP, H4-eGFP or H1.0-YFP. In all cases, the histones were localized mostly in the
nucleus, and the concentrations measured in the cytosol were a factor 10− 20 lower. The distribution of
chromatin can be seen in the �uorescence images (Fig. 12.2f) and, likewise, in the maps of the particle
concentration (Fig. 12.2g). The dependence between measured concentration and �uorescence intensity
was approximately linear in all cases (cf. section 8.6).

The autocorrelation curves were best described by a two-component normal di�usion model in all
cases. Table 12.1 gives a statistical summary of the �t results in the nucleus and the cytoplasm of all cells.
In the cytoplasm, the di�usion coe�cient of the fast component were Dfast,20 ◦C = 11 − 19µm2/s for all
histone variants. These values are in the same range as those obtained for eGFP-mRFP1, β-gal-eGFP and
eGFP-4x in section 10.2.3 (especially Fig. 10.4a). Assuming a relative viscosity of ηrel = 3 for the medium
in the cell (see section 10.2), the di�usion coe�cients Dfast,20 ◦C can be converted to hydrodynamic radii
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Figure 12.2. SPIM-FCCS measurements of di�erent labeled histones (H2A-eGFP, H4-eGFP,

H1.0-YFP) in the nucleus of transiently transfected HeLa cells. (a,b,c) Representative corre-
lation curves (solid lines) and �ts (dashed lines). From each cell one pixel with a high and one pixel
with a low value of ρslow was selected. (d) Fluorescence intensity images. (e) Maps of the fraction of
the slow di�using component ρslow in the green color channel. (f) Maps of the fraction of the slow
component ρslow. In (d-f), the �rst row shows a cell, expressing H2A-eGFP, the second row a cell
expressing H4-eGFP and the last row a cell expressing H1.0-YFP. Acquisition settings: 64× 20 pixel,
τmin = 530µs.
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parameter location H2A-eGFP H4-eGFP H1.0-YFP

Dfast,20 ◦C
[
µm2/s

] nucleus (7.3 ± 2.1) (7.8 ± 4.2) (5.8 ± 1.9)
cytoplasm (18.2 ± 7.1) (19.0 ± 4.8) (11.5 ± 6.7)

Dslow,20 ◦C
[
µm2/s

] nucleus (0.22 ± 0.05) (0.37 ± 0.18) (0.17 ± 0.03)
cytoplasm (0.20 ± 0.10) (0.45 ± 0.26) (0.03 ± 0.03)

ρslow nucleus (0.57 ± 0.08) (0.41 ± 0.07) (0.48 ± 0.08)
cytoplasm (0.28 ± 0.20) (0.22 ± 0.10) (0.32 ± 0.11)

number of cells nucleus 8 13 22
cytoplasm 8 11 9

Table 12.1. Summary of �t results for the labeled histones in HeLa cells. The given values are
average and standard deviation over the medians from each single cell. Di�usion coe�cients were
recalibrated to ϑ = 20 ◦C (see appendix C.4).

in the range of Rh = 6.5 − 3.7 nm. To summarize, the particle mobility in the cytoplasm is compatible
with single tagged histones, or small aggregates of a few histone proteins. The values obtained for
Dfast,20 ◦C were on the same order of magnitude as the values published in Refs. [295, 296].

For di�usion in the nucleus, the fast di�usion coe�cient Dfast,20 ◦C was generally approximately a
factor of 2 smaller than in the cytoplasm. The fraction of the slow component ρslow was signi�cantly
increased from ∼0.2 to 0.4 − 0.5 in the nucleus. The di�usion coe�cient of this slow fraction was on
the order of 0.2µm2/s. Figure 12.2(h) shows maps of ρslow, as they were typically obtained in all cells.
Figure 12.2(a-c) show representative autocorrelation curves obtained from one pixel with a relatively
high value of ρslow and from one pixel with a low value of this parameter. The ρslow-maps demonstrate
that the fraction of the slow component is signi�cantly increased near the periphery of the nucleus for
H2A-eGFP and H4-eGFP. For H1.0-YFP, no comparable large-scale structures could be detected in any
cell. The parameter ρslow never correlated with the �uorescence intensity in the cells. Nevertheless it
showed a signi�cant anti-correlation (Pearson’s correlation coe�cient: |r (ρslow,c) | > 50%) with the
measured concentration within most cells for H2A-eGFP and H4-eGFP. This is also directly visible
in the images in Fig. 12.2(g,h). For H1.0-YFP, no such correlation was observed (Pearson’s correlation
coe�cient: |r (ρslow,c) | < 20%).

The reduced mobility and the increased slow fraction of the di�usion in the nucleus con�rm, that the
labeled histone proteins interact with structures in the nucleus, most probably the chromatin. This is
further backed by the large-scale structures, that are visible in the distribution of the fraction of the slow
component ρslow. This parameter was signi�cantly increased towards the periphery of the nuclei, which
can be explained by heterochromatic regions. Such regions with a high density of silenced chromatin
are usually found near the nuclear lamina [2, 297]. In addition, these distributions are comparable to the
mobility maps of the heterochromatin-binding protein HP-1α, which were also measured on a SPIM-FCS
setup by Capoulade et al. [120]. In that publications, the authors reported patchy structures of slowed
down mobility of HP-1α in an interphase nucleus. The fact that both H2A-eGFP and H4-eGFP exhibit
such patterns, also shows that these proteins are at least in part still functional, although the small
histone proteins are fused to the rather large eGFP/YFP, which could prevent proper formation of the
densely packed histone octamer and of nucleosomes (cf. Fig. 12.1).

For the linker histone H1.0-YFP, a signi�cant slow-down of di�usion in the nucleus was also found
(see values for Dfast,20 ◦C Tab. 12.1). This argues for an interaction of H1.0-YFP with structures in the
nucleus. Nevertheless, no patterns could be observed in the parameter maps. The reason for this �nding
is unclear, as it contradicts other published results (e.g. Refs. [298, 299]).
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12.2. The AP-1 transcription factor system

12.2.1. Introduction

An important group of chromatin-associated proteins are the transcription factors (TFs). These are a
family of proteins, that can bind to speci�c DNA sequences (promoter sites). After binding to the DNA,
they o�er interaction sites for proteins of the RNA polymerase complex. Without such TFs, the RNA
polymerase would not be able to initiate the transcription of a gene (see section 1.1). Since TFs are
required for the binding of the RNA polymerase to nearly all promoter sites in the human genome, they
are also called “general” transcription factors [2].

For this thesis, the activator protein 1 (AP-1) system was examined as an example, since extensive
confocal FCCS studies have already been performed for this protein [73, 95, 268]. These can serve as
reference for the results of SPIM-FCCS measurements. The structure of the transcription factor AP-1 is
illustrated in Fig. 12.3. It consists of two proteins, c-Fos and c-Jun, that bind to each other via leucine
residues in a coiled-coil structure (leucine zipper). This heterodimer then binds to DNA with its two
DNA binding domain (DBD). The interaction with proteins from the polymerase complex is mediated
by the trans-activation domains at the amino-terminal (N-terminal) ends of c-Fos and c-Jun.

The heterodimeric binding of AP-1 is an ideal test system for the SPIM-FCCS methods developed
during this thesis project. Two di�erently labeled fusion proteins, c-Fos-eGFP and c-Jun-mRFP1, were
used for the experiments. They consist of the full length c-Fos or c-Jun protein and an eGFP or mRFP1
�uorescent tag. These proteins are referred to as “wildtype” throughout this section. They are expected
to exhibit a high relative dimer concentration, as shown in refs. [73, 268]. In addition the two deletion
mutants c-FosΔΔ-eGFP and c-JunΔΔ-mRFP1 were measured, in which the DNA binding domain and
the dimerization domains are missing. These proteins are known not to interact and only show a
negligible cross-correlation amplitude.

12.2.2. Measurement protocol

HeLa cells were transiently co-transfected with a combination of c-Fos-eGFP and c-Jun-mRFP1 or with
c-FosΔΔ-eGFP and c-JunΔΔ-mRFP1. The exact cell culture protocols are descried in appendix A.2.
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Figure 12.3. (a) Two views of the crystal structure of the DNA-binding and trans-activation

domains of c-Fos and c-Jun. (b) Structure of the transcription factor pair c-Fos and c-Jun.

Crystal structures taken from Refs. [148, 300] and rendered using PyMol. (b) adapted from Ref. [268].
NLS = nuclear localization sequence
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SPIM-FCCS measurements were performed at room temperature (ϑ = 24 ◦C) in HBSS. The Andor
iXon X3 860 EMCCD camera was used to acquire frames with 128 × 20 pixels at a temporal resolution
of τmin = ∆tframe = 530µs. The laser intensity in the center of the light sheet was in the range of
100 − 200 W/cm2. The dual-view optics was used to detect the �uorescence of eGFP and mRFP1
simultaneously.

Cells were selected for the measurement, as described in section 10.2.2. For the evaluation, the bleach
correction Eq. (7.1.5) (p. 109) with Nf = 3 was su�cient to yield evaluable results. The cells were masked,
using a threshold on the intensity. The background intensities for both color channels were estimated
from the masked pixels. Two auto-correlation curves ĝgg(τ) and ĝrr(τ) and the cross-correlation curve
ĝgr(τ) were evaluated with the global �tting strategy described in section 7.1.4. The crosstalk factor
κgr = (2.9 ± 0.9) between the green and the red color channel was determined on the day of the
measurements, using a solute sample of eGFP. For the interaction, three distinct species A (green
monomers, c-Fos-eGFP), B (red monomers, c-Jun-mRFP1) and AB (dimers, c-Fos-eGFP +c-Jun-mRFP1)
were assumed in the model functions in Eqs. (5.4.12)-(5.4.14) (p. 71). For the non-normalized cross-
correlation factors Gχ

γρ (τ), a two-component normal-di�usion model was chosen. In order to reduce
the complexity of this model (six linked di�usion coe�cients), only the concentrations 〈

cA
〉, 〈cB

〉 and〈
cAB

〉 were linked over all curves. The di�usion coe�cients were speci�c to each detection channel and
not to each species. With this simplifying approximation, Eqs. (5.4.12)-(5.4.14) can be rewritten to:

ggg(τ) =
1〈

cA
〉
+

〈
cAB

〉 · Ggg(τ) (12.2.1)

grr(τ) =
η2

r ·
[〈

cB
〉
+

〈
cAB

〉]
+ κ2

grη
2
g ·

[〈
cA

〉
+

〈
cAB

〉]
+ 2κgrηrηg

〈
cAB

〉(
κgrηg

〈
cA

〉
+ (ηr + κgrηg) ·

〈
cAB

〉
+ ηr

〈
cB

〉)2 · Grr(τ) (12.2.2)

ggr(τ) =
ηgηr

〈
cAB

〉
+ κgrηgηr

〈
cA

〉
+ κgrη

2
g ·

〈
cAB

〉(
ηg

〈
cA

〉
+ ηg

〈
cAB

〉)
·
(
κgrηg

〈
cA

〉
+ (ηr + κgrηg)

〈
cAB

〉
+ ηr

〈
cB

〉) · Ggr(τ) (12.2.3)

where the correlation factor factor Gγρ (τ) for a combination of channels γρ is de�ned as:

Gγρ (τ) := (1 − ρslow,γρ ) ·
Gfast,γρ
γρ (τ)〈
cfast,γρ

〉 + ρslow,γρ ·
Gslow,γρ
γρ (τ)〈
cslow,γρ

〉 . (12.2.4)

The functions Gfast,γρ
γρ (τ) are de�ned by Eqs. (5.4.16, 5.4.17) (p. 71) with the di�usion coe�cient

Dχ ≡ Dfast,γρ . Dividing Gfast,γρ
γρ (τ) by 〈

cfast,γρ
〉, formally removes its explicit dependence on the concen-

tration. The dependence of gγρ (τ) on the particle concentrations is modeled by Eqs. (12.2.1)-(12.2.3). For
the cross-correlation curve, a single-component was su�cient to describe the data, therefore ρslow,gr ≡ 0
and Dfast,gr ≡ Dgr

In the �tting model described above, two di�usion coe�cients Dfast,γρ and Dslow,γρ and a fraction
ρslow,γρ are used to describe the correlation curves for each channel γ ρ by a fast and a slow component.
These cannot be directly assigned to the three species A, B and AB, but for each channel the species of
major in�uence can be identi�ed:

• In the autocorrelation curve from the green channel (gg), only the species A and AB have an
in�uence on the di�usion coe�cients.

• In the autocorrelation curve from the red channel (rr), mainly the species B and AB have an
in�uence on the di�usion coe�cients.

• The cross-correlation curve (gr) measures mainly the di�usion of species AB, if the crosstalk can
be neglected.

The �t results were again treated as described previously. The outlier-robust medians of the distribu-
tions from each cell were calculated and then used for any further analysis.
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Figure 12.4. SPIM-FCCS measurement of wildtypes (c-Fos-eGFP + c-Jun-mRFP1) and double-

deletionmutants (c-FosΔΔ-eGFP + c-JunΔΔ-mRFP1) of AP-1 complex inHeLa cells. (a,b)
Examples of correlation curves (solid lines) and �ts (dashed lines), horizontal dashed lines are the
level of cross-correlation, which is explained by crosstalk. (c) Histograms of the relative dimer
concentration pAB in the two cells. (d) Histogram of the fast di�usion coe�cient Dfast,20 ◦C in the
two cells. (e) Overlay images of the green and red �uorescence intensity. In the upper images,
only the nucleus (nuc) is visible, in the lower images, the nucleus and the cytosol (cyt) are visible.
(f) Maps of the fraction ρslow,gg of the slow di�using component in the green color channel. (g)
Maps of the relative dimer concentration pAB. In (e-g), the �rst column shows a cell, expressing
c-Fos-eGFP + c-Jun-mRFP1 (wildtype) and the second column a cell expressing c-FosΔΔ-eGFP +
c-JunΔΔ-mRFP1 (deletion mutant). Acquisition settings: 128 × 20 pixel, τmin = 530µs.
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12.2.3. Results

Figure 12.4 shows typical results from one cell, expressing the wildtype AP-1 and one cell expressing
the deletion mutant. The histograms in Fig. 12.4(c) demonstrate that the relative dimer concentration
pAB (see Eq. (9.3.1), p. 155) is signi�cantly larger for the wildtype (pAB = (1.7 ± 0.7)) than for the
deletion mutant (pAB = (0.7 ± 0.6)). This is also evident from the auto- and cross-correlation curves
in Fig. 12.4(a,b). The dashed horizontal lines in these plots mark the cross-correlation amplitude that
is explained by crosstalk only. A histogram of the di�usion coe�cient Dfast,gg,20 ◦C of the fast species
in the green channel (recalibrated to ϑ = 20 ◦C, see appendix C.4) is ilustrated in Fig. 12.4(d). It shows
that Dfast,gg,20 ◦C is signi�cantly lower for the wildtype (Dfast,gg = (9 ± 7) µm2/s) than for the deletion
mutant (Dfast,gg,20 ◦C = (18 ± 7) µm2/s). The statistics of all �t parameters over all measured cells are
summarized in Tab. 12.2. They exhibit the same trends, as seen for the two cells in Fig. 12.4.

Figure 12.4(e-g) also shows �uorescence images and maps of the relative dimer concentration pAB, as
well as the fraction of the slow component ρslow,gg in the green channel for two typical cells. For the
deletion mutant (2nd column), no large-scale patterns are observable. Also the �uorescence is evenly
distributed over the cytoplasm and the nucleus. This is exlained by the fact, that the deletion mutants
lack the NLS, which is positioned in the DNA binding domain [301]. In the images for the wildtype (1st

column) however, the �uorescence is limited to the nucleus. The map of ρslow,gg shows the same patchy
structure, as the histone variants H2A-eGFP and H4-eGFP. Again the fraction of the slow component is
increased near the nuclear envelope. A comparison between the values in Tab. 12.2 and the results for
histones in Tab. 12.1 (p. 186) shows that the di�usion coe�cient of the slow component of the wildtype
AP-1 and especially the di�usion coe�cient of the cross-correlation curve Dgr,20 ◦C are compatible with
the slow components for the histones. The additional fact, that only a single di�using component is
required to describe the cross-correlation, indicates that most of the dimerized c-Fos and c-Jun molecules
are also associated to chromatin.

All numeric �t results shown here are compatible with the results published in Refs. [73, 268], which
shows that SPIM-FCCS is applicable to cellular systems beyond the simple �uorophore dimers, presented
in section 9.5. The maps of ρslow,gg, which are available only by applying SPIM-FCCS, support the
interpretation, that also the labeled variants c-Fos-eGFP and c-Jun-mRFP1 bind to the DNA in the
cellular nucleus.

parameter channel wildtype deletion mutant

Dfast,gg,20 ◦C
[
µm2/s

] green (12 ± 4) (16 ± 4)
Dfast,rr,20 ◦C

[
µm2/s

] red (22 ± 5) (25 ± 4)

Dslow,gg,20 ◦C
[
µm2/s

] green (0.4 ± 0.1) (0.4 ± 0.3)
Dslow,rr,20 ◦C

[
µm2/s

] red (0.3 ± 0.1) (0.4 ± 0.2)

ρslow,gg green (0.50 ± 0.12) (0.23 ± 0.09)
ρslow,rr red (0.44 ± 0.10) (0.18 ± 0.07)

Dgr,20 ◦C
[
µm2/s

] cross-correlation (0.7 ± 0.3) (2.0 ± 1.5)

pAB cross-correlation (0.97 ± 0.32) (0.33 ± 0.13)

number of cells 17 12

Table 12.2. Summary of �t results for the AP-1 complex in HeLa cells. The given values are
average and standard deviation over the medians from each single cell. Di�usion coe�cients were
recalibrated to ϑ = 20 ◦C (see appendix C.4).





12.3. Nuclear receptors

12.3. Nuclear receptors

Measurements, described in this section were performed in collaboration with Peter Brázda (university of
Debrecen, Hungary). Additional details can be found in Ref. [121, 302].

12.3.1. Introduction

The last example of a chromatin associated protein that was measured during this thesis project, is the
nuclear receptor rhetinoid X receptor (RXR). Nuclear receptors are a class of proteins that bind to DNA
like transcription factors and can control the transcription of genes (see Fig. 12.5b). They are usually
thought to exist in one out of two distinct states. In the repressed state, a nuclear receptor (NR) binds a
group of corepressor molecules. They inhibit the transcription of the gene, the NR is bound to. If a NR
in a repressed state binds a small, but speci�c ligand molecule, a structural transition switches it to an
active state. It now releases the corepressor molecules and instead o�ers a binding site for coactivator
molecules that help initiating the expression of the gene [2, 303].

In this section, measurements on the nuclear receptor RXR are described. It is a promiscuous NR,
which conducts its function as a heterodimer with one of several partner NRs, such as rhetinoic acid
receptor (RAR). It binds to the hormone response element, a short DNA base pair sequence, which is
present in many genes. RXR is activated by metabolites of vitamin A. The basic structural units of RXR
are illustrated in Fig. 12.5(a). The protein contains a ligand binding domain (LBD) for interaction with its
dimer partner, a DNA binding domain (DBD) and an “activation function”, which contains the binding
sites for the corepressor and coactivator. A nuclear localization sequence (NLS) ensures that RXR is
enriched in the nucleus of a cell.

12.3.2. Measurement protocol

SPIM-FCS measurements were performed on two variants of RXR [121, 302]:

• RXR-eGFP is the full length RXR, fused to eGFP as �uorescent label.
• RXR-LBD-eGFP is a truncated version of RXR, which lacks the DBD but contains the LBD. It is

also fused to eGFP.
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Figure 12.5. (a) Structure of RXR. (b) Model for the functioning of RXR. (a) was modi�ed from
[303].
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Figure 12.6. SPIM-FCS measurement of RXR-eGFP and RXR-LBD-eGFP in HeLa cells with

and without the ligand LG268. (a,c) Average and standard deviation over all autocorrelation
curves in the nucleus of the cells. (b,d) Histograms of the fraction ρslow of the slow component. (e)
Fluorescence intensity images (nuc=nucleus, cyt=cytoplasm). (f) Maps of the fraction of the slow
component ρslow. Acquisition settings: 40 × 40 pixel, τmin = 1150µs.

Both proteins were transiently expressed in HeLa cells. In order to activate RXR, an arti�cial but speci�c
ligand LG268 was used. All SPIM-FCS measurements were performed in phenol red-free RPMI cell
culture medium at room temperature (ϑ ≈ 24 ◦C). Data was acquired with the Andor iXon 860 X3
EMCCD camera (image size: 40 × 40 pixels, τmin = 1150µs). the temporal resolution was lower, due to
the larger number of rows in the image. The laser intensity in the center of the light sheet was in the
range of 100 W/cm2.

The data was treated as described in section 12.1.2. Brie�y, a bleach correction was applied and the
nuclei of the cells were masked by a threshold on the intensity. If necessary, the masks were corrected
by hand. Finally a two-component normal-di�usion �t was used (Eq. (5.3.25) with Eq. (5.3.29), p. 62) to
extract information regarding the mobility of the proteins.

12.3.3. Results

In this study, the SPIM-FCS measurements supplemented confocal FCS, FRAP measurements. A detailed
account of all measurements is given in Ref. [121]. Here mainly the SPIM-FCS results are detailed. FRAP
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measurements showed, that the mobility of RXR on the timescale of several minutes depends on the
presence of the ligand. In both, the full length and the truncated form, the addition LG268 signi�cantly
slowed down the �uorescence recovery, which indicates a stronger binding and slower dynamics of the
receptor.

Comparable results were obtained in confocal and SPIM-FCS on shorter timescales. Figure 12.6
summarizes measurements of four cells, that expressed RXR-eGFP or RXR-LBD-eGFP. For each protein,
two cells are shown: one untreated cell and one cell, which was measured ∼ 10 min after treatment
with LG268. The change in the receptor, which is induced by the ligand, is easily recognized in the
autocorrelation curves in Fig. 12.6(a,c). The blue curves (no ligand) show the typical shape of two-
component di�usion with a low fraction ρslow of the slow component. If the ligand is added, the fraction
of the second component is increased, and the shape of the curve changes signi�cantly. This can be seen
even better in the histograms of ρslow in Fig. 12.6(b,d). As for AP-1 and histones, the slow component can
be interpreted as the motion of RXR (in all cases: Dslow,20 ◦C ≈ 0.4µm2/s), when it is bound to chromatin.
The fast component may be attributed to freely di�using molecules. It was Dslow,20 ◦C = (10 ± 7) µm2/s
for RXR-eGFP without ligand and Dslow,20 ◦C = (8 ± 7) µm2/s for the cell with added ligand. For the
truncated version Dslow,20 ◦C = (13 ± 8) µm2/s and Dslow,20 ◦C = (6 ± 6) µm2/s were found respectively.
In addition it can be seen that the distribution of the truncated RXR is initially homogeneous over the
whole cell. After applying LG268, the receptor molecules start to accumulate in the nucleus (see the two
�uorescence images at the bottom of Fig. 12.6e). In contrast to AP-1 and histones, no nuclear-structure
dependent patterns were observed in the parameter maps.

These results show, that SPIM-FCS can be used to follow the function of a NR molecule in live cells.
The change in binding a�nity to DNA is clearly visible in a change of the shape of the autocorrelation
curves. This change was successfully quanti�ed with a 2-component normal-di�usion model and the
same results were obtained, as in parallel confocal FCS measurements. The results of the imaging FCS
measurements indicate that the mobility parameters are homogeneously distributed over the nucleus.
Therefore, they do not seem to depend on the nuclear architecture.

Interestingly, the general behavior of the truncated and the full-length forms of RXR are equal. This
is expected, since the missing DBD in RXR-LBD-eGFP can be balanced to a great extent by the dimer
partner of the protein. In future work, the interaction of RXR with a dimer will be investigated using
SPIM-FCCS.

12.4. Conclusions

In this chapter, SPIM-FCS and SPIM-FCCS was applied to three di�erent types of chromatin-associated
proteins: histones, the transcription factor pair c-Fos/c-Jun and the nuclear receptor RXR. The results
for RXR were successfully published in Ref. [121]. In all cases, the results were similar to measurements
with the established confocal FCS/FCCS techniques. This again shows the applicability of SPIM-FCS to
di�erent biological problems. All measurements were performed with an EMCCD camera. The limited
temporal resolution of this type image sensor did not impair the application of SPIM-FCS in any of these
cases.

The bene�t of SPIM-FCS/SPIM-FCCS over the traditional confocal FCS is generally two-fold. Firstly,
SPIM-F(C)CS allows to acquire extensive statistics, even in a single cell, in the same measurement
duration that is required to record a single-point confocal FCS/FCCS measurement. Secondly, the
imaging of mobility parameters can reveal additional information that is not accessible to single-point
measurements. This was seen for the large-scale patterns in the fraction of the slow di�using component
in the histones H2A and H4, as well as for c-Fos. These patterns can possibly be attributed to the
chromatin structure.
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13. Summary

SPIM-F(C)CS

Transport processes play a major role in the functioning of living cells. They are often investigated, by
�uorescently labelling the molecules of interest and a subsequent observation with light microscopy
methods. To obtain the mobility of molecules, �uorescence correlation spectroscopy (FCS) is often used.
In FCS the time series of the �uorescence signal from a small subvolume (∼1µm3) of the whole cell is
measured. In equilibrium, this time series exhibits no long-term trends, but shows small �uctuations
around an average intensity. These �uctuations encode the motion of single particles through the
observation volume. The parameters of motion of these particles (e.g. the di�usion coe�cient or �ow
speeds) are �nally extracted using an autocorrelation analysis. The autocorrelation function of the
�uorescence �uctuations decays on a timescale, which is connected to the average dwell time of particles
in the focus, and therefore also to their di�usion coe�cient. In addition, the particle concentration can be
extracted from the amplitude of the �uctuations, because of the Poissonian nature of the particle count
in the observation volume. An extension of FCS is �uorescence cross-correlation spectroscopy (FCCS):
it allows for the measurement of molecular interactions between two di�erently labelled molecules,
by analysing the cross-correlation between two detection channels. In this case, the amplitude of the
cross-correlation function directly depends on the number of dimerized molecules, that carry both
�uorescent tags.

The aim of this PhD project was to develop methods for spatially resolved FCS and FCCS measurements,
with the purpose to investigate the spatial organization of mobility in a cell. FCS and FCCS were
combined with selective plane illumination microscopy (SPIM) and fast image sensors (SPIM-F(C)CS).
This approach is based on initial work on SPIM-FCS by Wohland et al. [117]. The SPIM allows to evenly
illuminate an arbitrarily positioned thin slice of the cell (width: ∼1 − 3µm). This microscopy technique
exhibits good z-sectioning capabilities, while maintaining a very low background signal. The use of a
fast, high-sensitivity electron-multiplying charge-coupled device (EMCCD) camera (temporal resolution
∼500µs) allows to resolve the motion even of relatively small �uorescent proteins (e.g. eGFP) inside
cells. SPIM-FCCS was developed during this thesis and introduced in Ref. [132]. It extends SPIM-FCS
and allows for the mapping of molecular interactions in addition to the mobility parameters.

Theory of SPIM-F(C)CS

The general theory of imaging FCS and imaging FCCS was presented in chapter 5. Usually this theory is
formulated for a confocal microscope, in which the focal volume can be described by a three-dimensional
Gaussian function. Here the theoretic framework is extended to a more realistic model, which takes into
account the �nite, rectangular shape of the camera pixels. Auto- and cross-correlation model functions
were derived for several transport processes: normal di�usion, anomalous di�usion and directed
motion/�ow. In addition, a detailed model for two-color cross-correlation functions was presented,
which allows for the quanti�cation of molecular interactions. A variant, two-focus SPIM-FCCS, also
makes it possible to quantify the direction and absolute value of a planar �ow.
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Chapter 13. Summary

Instrumental setup

During this project, a light sheet microscope has been developed and built. Its design is optimized
for the application of imaging F(C)CS in living cells. This microscope was described and a detailed
characterization was shown in chapter 6. With an NA = 1 detection objective, the microscope realizes
a focal volume with an 1/ e2-diameter of approximately 1.2µm and an 1/ e2-height of approximately
2.4µm. It is equipped with a blue and a green laser, as well as a dual-view optics. With this combination,
two-color cross-correlation measurements can routinely be performed. The alignment of such a two-
color setup was described in detail.

In chapter 7, the data evaluation methods necessary for imaging FCS were detailed. The multi-τ
algorithm used to calculate all auto- and cross-correlation functions for this thesis was described and
analyzed in detail. In addition, a global model �tting strategy was developed, which allows to extract the
mobility parameters from the thousands of pixels in a typical imaging F(C)CS measurement. The devised
strategy converges reliably and within reasonable processing times of a few minutes per measurement.
Finally, a robust model function for the correction of photobleaching in imaging F(C)CS measurements
was proposed, based on work by Ries et al. [98]. It allows for the reliable correction of bleaching in
thousands of pixels without requiring a supervision of the process.

All data evaluation methods, that were developed for imaging FCS and imaging FCCS, were imple-
mented in the extensive and user-friendly software package �ickFit 3.01.

Evaluation measurements

The combination of light sheet microscopy and imaging F(C)CS techniques was evaluated in detail in
chapters 8 and 9. Notably, it was shown that SPIM-FCS is capable of determining absolute di�usion
coe�cients without relying on a calibration standard with a known reference di�usion coe�cient. This
is made possible by using the �xed pixel size and magni�cation of the microscope as a ruler [114, 130].
Also, the measurement of concentrations was discussed in detail. By comparison with confocal FCS
measurements, it was shown, that concentrations, which are measured using SPIM-FCS, are a factor of
3 − 4 too high. Several reasons for this behavior were discussed. The most likely cause is an inaccurate
model for the focal volume. Nevertheless, relative concentration measurements are possible and the
values obtained can be recalibrated by using a concentration standard. Both, for the measurement of
di�usion coe�cients and of concentrations, limits on the required temporal resolution of the image
sensor were derived. The data in section 8.2 and 8.3 show, that the temporal resolution of the image
sensor should be at least a factor of 30 − 100 smaller than the average dwell times of particles in the
observation volume. If this is the case, the mobility parameters can be measured with a systematic error
of less than 10%. If an EMCCD camera is used, this is easily achieved for most �uorescently tagged
proteins in living cells. Comparable evaluation measurements were performed for two-color imaging
FCCS. They demonstrate that the methods yields accurate relative dimer concentrations and di�usion
coe�cients. For the extraction of absolute concentrations, the same limitations as for SPIM-FCS apply.

Finally the applicability of both techniques to live-cell measurements was demonstrated in detail.
There, it was shown that SPIM-F(C)CS cannot only be used in the cytoplasm and the nucleus of live
cells, but it is also applicable to measurements in the cellular membrane [132].

Di�erent image sensors

As shown above, an image sensor with high temporal resolution and high photo-sensitivity is required
for successful imaging F(C)CS measurements. In section 8.7, several commercially available high-speed

1�ickFit 3.0 is available free of charge from http://www.dkfz.de/Macromol/quick�t/.
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cameras were compared. In addition to these linear detectors, arrays of single-photon avalanche diodes
(SPADs) were evaluated during this thesis. These feature a matrix of up to 512 × 128 pixels, which can
be read out every 1 − 10µs. With these speci�cations, they exceed any commercially available high-
sensitivity camera. A disadvantage of such SPAD arrays is however their low �ll factor, which is due to
the electronics, that is required in each pixel in addition to the SPAD. Nevertheless, it was demonstrated
that the SPAD array Radhard2 can successfully be used for accurate SPIM-FCS measurements of bright
�uorescent microspheres.

The problem of low photo-sensitivity in SPAD arrays was approached during the last months of this
thesis by a new sensor (SwissSPAD), which could be operated at higher excess voltages, and that contains
a microlens array [193]. Using this new sensor, it was demonstrated in section 8.8.2, that SPIM-FCS
measurements are feasible also for dim �uorescent samples (e.g. Alexa-488 labeled DNA). Nevertheless,
a successful measurement in living cells was not yet achieved. Details of the applicability of SPAD
arrays and other image sensors to imaging FCS were published in Refs. [130, 131].

In conclusion, EMCCD cameras currently o�er the best trade-o� between speed and photo-sensitivity.
Nevertheless, the next generation of SPAD arrays can be expected to replace them as ideal image sensor
in the near future.

In vivo applications

Finally SPIM-F(C)CS was applied to several cellular systems. Chapter 10 presents several mobility
measurements of inert tracer particles in live cells. They demonstrated the possibility to obtain maps of
the mobility parameters. From these the dynamic viscosity of the cytoplasm and nucleoplasm could be
derived. Also the e�ect of crowding in the cytoplasm was shown. All results obtained in this section
agree well with published results from confocal FCS measurements.

SPIM-FCS was used to quantify the free pool of keratin �lament precursors (see chapter 11). This
pool enables the cell to dynamically remodel its intermediate �lament network. It needs to be measured
at positions in the cell, that lie in between larger �lament bundles. For this, the capability of SPIM-FCS
to measure at thousands of positions in parallel was exploited. In this way, pixels with artifact-free
measurements could be selected after data acquisition. Using a confocal microscope for this task, the
experiments would have taken 10−100 times longer and would still have yielded less statistical relevance.
Earlier FRAP measurements on the same system (see Ref. [287]) could be signi�cantly re�ned with
SPIM-FCS. The range of di�usion coe�cients that were determined with SPIM-FCS could be used to
give an estimate of the particle sizes in the free pool.

Finally in chapter 12, SPIM-F(C)CS was applied to three di�erent chromatin-associated proteins. For
histones, it could be shown, that the chromatin organization can be studied with mobility-parameter
maps, obtained by SPIM-FCS. In addition, the function of the transcription factor system c-Fos/c-Jun
(AP-1) and of the nuclear receptor rhetinoid X receptor (RXR) were successfully measured with these
new approaches. The results on RXR were published in Ref. [121].
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A. Materials and methods

A.1. List of used materials and suppliers

Table A.1. Optical components. This table lists all components used in the experiments, including
their suppliers or manufacturers.

used for component part no. manufacturer

illumination blue DPSS laser λ = 491 nm, P ≤ 25 mW Calypso-25 Cobolt SE
blue diode laser λ = 488 nm, P ≤ 60 mW MLD 488-60 Cobolt SE
blue cleanup �lter ZET 488/10 Chroma
blue beam expander S6ASS2075/067 Sill Optics GmbH
green DPSS laser λ = 561 nm, P ≤ 25 mW Jive-25 Cobolt SE
green beam expander bm.x VIS-YAG 5x Qioptiq
neutral density �lters ∅ = 0.5" NE5xxA Thorlabs
servo motors for beam shutters HS5056MG Hitec
dichroic beam combiner zt488/594rpc Chroma
1st relais telescope lens L1, f = 150 mm AC508-150-A-ML Thorlabs
2nd relais telescope lens L2, f = 250 mm AC508-250-A-ML Thorlabs
∅ = 1" silver mirrors BB1-E02 Thorlabs
∅ = 2" silver mirrors PF20-03-P01 Thorlabs

optomechanics optical rail system SYS65 OWIS
gimbal mount TRANS 65G-D38-MS OWIS
piezo-driven beam combiner mount customized MDI-H Radiant Dyes
2-channel piezo-controller RD2-16020 Radiant Dyes
standard mirror mounts KS1D/M & KS2/M Thorlabs

transmission 1 W LED, warm white (6500 K, 100 lm) W42182/U2 Seoul Semiconductor
illumination ground glass di�usor DG10-1500 Thorlabs

collimation lens Thorlabs

lightsheet cylindrical lens, f = 150 mm LJ1629RM-A Thorlabs
formation alternative cylindrical lens, f = 100 mm CKX18-C Newport

cylindrical lens rotation mount CRM1P/M Thorlabs
objective lens, NA = 0.3, f = 20 mm Plan Fluor 10x/0.3 Nikon
objective lens translation mount SM1Z Thorlabs

detection objective lens, NA = 1.0, f = 3.33 mm CFI Apo-W NIR 60x/1.0W Nikon
beam path tube lens, f = 200 mm MXA20696 Nikon

alternative tube lens, f = 100 mm AC254-100-A-ML Thorlabs
tube lens translation stage 07TXS723 CVI Melles Griot
488 nm/491 nm notch �lter StopLine Notch 488 Semrock
561 nm notch �lter ZET 561NF Chroma

Continued on next page
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Appendix A. Materials and methods

Table A.1 – continued from previous page

used for component order no. manufacturer

50 : 50 beam splitter, 37.5 × 25 mm2

mirror prism
rotation stage WV 40-D25-FGS OWIS

�lter wheel (FW) �lter wheel stepper motor PD3-108-28-SE-485 Trinamic
�lter wheel computer interface USB-RS485-WE-1800-BT FTDI
�lter wheel hall stop switch 55100-3H-02-A Hamlin

FW �lters: neutral density �lter OD = 3 NE30A-A Thorlabs
neutral density �lter OD = 4 NE40A-A Thorlabs
green longpass Edge Basic 488 LP Semrock
green bandpass BrightLine HC525/50 Semrock
red longpass EdgeBasic 561LP Semrock
red bandpass BrightLine 641/75-25 Semrock

DualView dual view assembly DualView DV2 Photometrics
& �lterset beam splitter 565 mm T565lpxr Chroma

green �lter BrightLine HC525/50 Semrock
red �lter Brightline HC 593LP Semrock
alternative red �lter Edge Basic 561LP Semrock
1500 lines electron microscopy grid AGG2785C Agar Scienti�c
2000 lines electron microscopy grid AGG2786C Agar Scienti�c

Camera EMCCD camera iXon X3 860 Andor
water cooling for EMCCD camera PREMIUM XXD Innovatek
sCMOS camera pco.edge 5.5 pco
SPAD array, 32 × 32 pixels Radhard2 — [186]
SPAD array, 512 × 128 pixels CHSPAD — [192]
camera box construction pro�l 5 system Item Industrietechnik GmbH

sample x-, y- & z-translation stage M-112.2DG PI Physik Instrumente
mounting x-, y- & z-translation stage controller C-863 Mercury PI Physik Instrumente

manual rotation stage 124-0315 Opto-Sigma
No. 3 cover slips for adherent cells 16301 Neolab
foil for sample bags Lumox Folie 25 M Sarstedt AG & Co

sample translation stage SHTC 12 Igus
chamber No. 1 cover slips ∅ = 20 mm

No. 1 cover slips ∅ = 22 mm, borosilicate
glass

631-0158 VWR

O rings, MVQ70, 16 × 1.5 HUG Industrietechnik
O rings, MVQ70, 17 × 1.5 HUG Industrietechnik
O rings, MVQ70, 18 × 1.0 HUG Industrietechnik
silicone grease Baysilicone Paste 35 g, low vis-
cous

GE Bayer Silicones

self-clsoing tweezers HSC 516-10 Hammacher, Solingen
�ne tweezers 3c SA Vomm, Solingen
heating resistor 4.7Ω or 10Ω RTO 20 F Vishay
PT100 temperature sensor MR828 32 209 340 Heraeus

Continued on next page
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A.1. List of used materials and suppliers

Table A.1 – continued from previous page

used for component order no. manufacturer

PT100 stainless steel probe, class B, 4-wire,
∅ = 1.5 mm

TMH GmbH

control 6-core Processor Phenom II X6 1090T AMD
computer 16 GB RAM

mainboard M4A785TD-V EVO Asus
graphics card GeForce GTX 550 Ti NVidia
frame grabber for EMCCD CCI-23 Andor

Table A.2. Software used during this thesis work.

software description/used for ...

Autodesk Inventor 2010-2013, Student
License

computer aided design (CAD) software used for design and planning of all
mechanical components

Target 3001! V14 electronics CAD software (schematic entry and printed circuit boards) used to
develop all electronics

Corel Draw X4&X6 creation of �gures for papers and thesis

MatLab 2010-2014 numerical computation, data evaluation and plotting
Mathematica 5 symbolic mathematics

PyMol 1.3 visualization of protein crystal structures

GNU compiler collection 4.4-4.8 C/C++ compiler used for software development on windows and Linux
GNU Scienti�c Library ≤ 1.16 library for scienti�c computation (special functions, optimization, statistics, ...)
LevMar ≤ 2.6 Levenberg-Marquardt least-squares optimization library [304]
LMFit ≤ 5.3 Levenberg-Marquardt least-squares optimization library [235]
Eigen 3.2 open source linear algebra library, http://eigen.tuxfamily.org/
Qt 4.4-4.8 open source widget toolkit http://www.qt-project.org/

Table A.3. Chemicals used during this thesis.

description name part no. manufacturer

Fluorescent Probes

yellow-green �uorescent microspheres ∅ = 200 nm, carboxy-
late modi�ed

FluoSpheres YG F8811 Invitrogen

yellow-green �uorescent microspheres ∅ = 100 nm, carboxy-
late modi�ed

FluoSpheres YG F8803 Invitrogen

yellow-green �uorescent microspheres ∅ = 40 nm, carboxylate
modi�ed

FluoSpheres YG F8795 Invitrogen

yellow-green �uorescent microspheres ∅ = 20 nm, carboxylate
modi�ed

FluoSpheres YG F8787 Invitrogen

Continued on next page
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Appendix A. Materials and methods

Table A.3 – continued from previous page

description name part no. manufacturer

red �uorescent microspheres∅ = 200 nm, carboxylate modi�ed FluoSpheres RT F8810 Invitrogen
red �uorescent microspheres∅ = 100 nm, carboxylate modi�ed FluoSpheres RT F8801 Invitrogen
red �uorescent microspheres ∅ = 40 nm, carboxylate modi�ed FluoSpheres RT F8794 Invitrogen
red �uorescent microspheres ∅ = 20 nm, carboxylate modi�ed FluoSpheres RT F8786 Invitrogen
multi-colored microspheres ∅ = 100 nm TetraSpec T7279 Invitrogen
green quantum dots, strepavidin modi�ed QD525 ITK Q10041MP Invitrogen
yellow quantum dots, carboxyl modi�ed QD565 ITK Q21331MP Invitrogen
orange quantum dots, carboxyl modi�ed QD585 ITK Q21311MP Invitrogen
red quantum dots, carboxyl modi�ed QD605 ITK Q21301MP Invitrogen
deep red quantum dots, carboxyl modi�ed QD655 ITK Q21321MP Invitrogen
other chemicals

transfection reagent FuGENE HD Roche Diagnostics
gel for bead scans Phytagel P8169 Sigma-Aldrich
Bu�ers/cell culture media

DMEM growth medium Invitrogen
Hanks balanced salts solution PAN-Biotech
microsphere dilution bu�er: 10 mM Tris, pH 8.5 —

A.2. Cell culture protocols

Most of the cell culture works for the experiments (growing cells, transfection, plasmid preparations,
cloning) were performed by Gabriele Müller.

A.2.1. Cell growth and transfection

Cell growth conditions: Adherent cells were grown in phenol red-free Dulbecco’s modi�ed eagle
medium (DMEM), supplemented with 10% fetal calf serum and 1% glutamine. The atmosphere in the
incubator was held at a constant level of 5% CO2, humidi�ed and temperature-stabilized to 37 ◦C.

Transfection protocol:

1. The growth medium was removed from the �ask and the cells are washed with 5 ml Hank’s
balanced salts solution (HBSS).

2. Cells were trypsinized, by incubating them for ∼1 min with 5 ml of Trypsin/EDTA solution. In
order to stop the trypsinization process 10 ml of fresh DMEM (supplemented with 5% fetal calf
serum) were added to the cells.

3. The cells were diluted 20-fold in fresh medium, seeded in new cell culture �ask and incubated
for another 24 h. For SPIM measurements the cells were seeded on small glass pieces in a 35 mm
petri dish. For confocal measurements the cells were seeded into 8-well NUNC chambered cover
glasses (No. 155411, Nunc, Rochester).

4. Cells were transfected 24 h after trypsination (step 3). Transfection with mammalian expression
vectors was generally carried out with FuGENE HD transfection reagent, as proposed by the
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A.2. Cell culture protocols

manufacturer. The exact amounts of FuGENE and plasmid are listen in tables Tab. A.4 and Tab. A.5
on the following pages.

5. Before measurement the cells were grown for another 24 − 48 h.
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A.2.2. Cell types

The following cell lines were used for experiments throughout this thesis

• AT-1: rat prostate adenocarcinoma cell
• BHK: baby hamster kidney cell
• CHO-K1: Chinese hamster ovary cell
• COS-7: transformed African green monkey kidney �broblast cell
• HaCat B 10: humane keratinocyte cell [289]
• HEK-293: human embryonic kidney cell
• HeLa: human cervical carcinoma cell (provided by F. Rösl, DKFZ, Heidelberg, Germany)
• MDA-MB231: human breast carcinoma cell
• SK8/18: adrenal cortex carcinoma-derived SW13 cell [288]
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(a) BHK (b) CHO-K1

(c) COS-7 (d) HEK-293

(c) HeLa (d) MDA-MB231

Figure A.1. Combined transmission and �uorescence images of di�erent cell lines, express-

ing eGFP-4x. The image width is 162µm. All images were acquired on an epi-�uorescence
microscope with a magni�cation of 40× on a Lumenera In�nity2-1R CCD camera. The images are
contrast enhanced (power-law rescaling: γ = 0.6) and combined using Corel PhotoPaint.
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Appendix A. Materials and methods

A.3. SPIM sample mounting protocols

A.3.1. Preparation of sample bags for liquid samples

This section describes how the sample bags used to mount liquid samples in the SPIM sample chamber
and brie�y described in section 6.2.3, were made. they consist of LumoxFolie 25 M (Sarstedt AG & Co,
[225]), a 25µm thin plastic foil, which has the same refractive index as water. A soldering tweezer was
modi�ed and temperature regulated to 230 − 250 ◦C for this purpose. Powder-free latex gloves should
be worn throughout the process to keep the foil clean and fat-free. The protocol is illustrated in Fig. A.2
and works as follows:

1. A ∼5 cm long sleeve with the hydrophilic side inside is formed by bending a rectangular sheet
around a 3 mm steel rod and heat-sealing the long, overlapping edge.

2. The sleeves are thoroughly washed with 70% ethanol and deionized water.

3. Each sleeve is heat-sealed at both ends and in the center, forming two independent air-�lled
pockets.

4. If an intermediate from step 3 proves to be airtight, it is cut into four equal pieces of∼5×10×2 mm3

in size, which are closed on three sides and open on the fourth.

5. For a measurement, 30 − 50µl of the liquid sample are �lled in and the last side is heat-sealed. If
properly prepared, these sample bags may be stored and reused for months. At the welded edges
they can be held by a self-closing tweezer and mounted in the sample chamber. Liquid sample

1

1 (heat-sealing)

1 (sheath) 4, 5

5 (mounted bag)

(b) temperature controller(a)

(c) modified soldering tweezers

temperature sensorrounded edges (Cu)

 making a sample bag:

Figure A.2. Illustration of the preparation of SPIM sample bags. (a) shows the actual process
from a sheet of LumoxFolie, which is heat-sealed to form a sheath. Then small sample bags are
formed which may be �lled and held by a self-closing tweezer. (b) shows the controller built to
control the temperature of a modi�ed soldering tweezer, as shown in (c).
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with QDots and microspheres were sonicated for 30 min in a bath sonicator, before they were
�lled into the sample bags. This helps to disperse them properly and reduces the number and size
of aggregates.

A.3.2. Preparation of a gel cylinder for bead scans

For PSF determinations with z-scans, di�erent beads were embedded in an 0.5% PhytaGel. The exact
protocol was as follows:

1. Dissolving 200 mg PhytaGel in 40 ml of deionized water and add 400µl of a 10% stock solution
of MgSO4.

2. Heat in the microwave until the PhytaGel has dissolved. Every few seconds, take the �ask out of
the oven and shake it, so the components mix well.

3. Let cool down to around 40 ◦C and mix with beads (e.g. 5 − 15µl of 100 nm-diameter TetaSpec
Microsphere stock with 1 ml of gel) by vortexing the gel in an Eppendorf tube.

4. Cut the tip of a standard 1 ml syringe (inner diameter 4.6 mm) and draw up ∼400µl of the �uid
gel. Ensure that no air is trapped between the gel and the plug.

5. Let the gel solidify in the refrigerator for 5 min.

A.3.3. Preparation of cover slips for adherent cells

1. No. 3 glass cover glasses (thickness 0.28−0.32 mm) were cut into small pieces (size: ∼5×10 mm2)
with a steel glass cutter.

2. The glass pieces were thoroughly washed in 70% ethanol or acetone to remove any remaining
dirt.

3. In a second step the ethanol/acetone was removed by a second washing step in deionized water.
The glass pieces are left to dry on low-lint cleaning paper.

4. Finally the glass pieces were sterilized before use.
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B. Simulation so�ware

B.1. Fluorescence correlation spectroscopy simulations

This software can simulate FCS and FCCS correlation curves for di�erent focus geometries and is closely
related to the FCS/FCCS theory as presented in chapter 5 and especially the modeling of �uorescence
detection described in section 5.2. It starts from a set of N particle trajectories {~ri (t)}, where i numbers
the particles and t = 1,2, ... numbers the equidistant timepoints with resolution ∆tim. The trajectories
are either read from an external data �le or are created internally by a con�gurable random walk. First
Ni ≥ 1 �uorophores are assigned to each particle, leading to an overall number of �uorophores

F =
N∑
i=1

Ni

�uorophores f , which are each characterized by the following set of properties (the functions i( f ) is
the trajectory ID for every �uorophore f ):

1. a position ~r f (t) = ~ri ( f ) (t) + ∆~r f , where ~ri ( f ) (t) is the position of the particle and ∆~r f is an
arbitrary, but constant shift from this position. In the simplest case there is only one �uorophore
per particle and ∆~r f = 0. Using ∆~r f , 0, moving �nite-sized objects may be simulated that are
e.g. labeled with a set of �uorophores on their surface or in their interior.

2. each �uorophore may be in one of Sf states. Each state may have di�erent spectroscopic properties.
The current state at time t is denoted by s f (t).

3. a wavelength-dependent absorption crosssection spectrum σabs, i (λ).

4. a normalized �uorescence spectrum η�, f (λ) and a �uorescence quantum yield q�uor, f ,s f (t )

5. a dipole orientation vector ~pf (t) with ‖~pf (t)‖ = 1.

The state trajectory s f (t) for each �uorophore either does not change (the default case), is read from an
external �le, or is simulated using a matrix of transition rates and a random decision in each simulation
step. In this way photophysical blinking transitions may be simulated, if e.g. s f (t) ≡ 1 is a bright state
and s f (t) ≡ 2 is a dark state with q�uor, f ,2 = 0. Also a simple bleaching process is implemented, by
switching o� (but never on again) a �uorophore with a certain low probability.

The simulation proceeds in steps of ∆tsim. For each time step and each focus in the simulation, �rst
the expected number of �uorescence photons is calculated:

Nphot(t) =
F∑
f =1

q�uor, f ,s f (t ) · σabs, i (λex) · qdet ·
∆tsim · I (~r f (t))

hc0/λex
· Ω(~r f (t)) · hpol(~pf (t)), (B.1.1)

where h is Planck’s constant, c0 is the velocity of light in vacuum and λex is the excitation wavelength.
The shape of the illumination pro�le is described by the function I (~r) and the respective shape of

photon collection e�ciency by Ω(~r). Several models are implemented for them:
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1. Gaussian: The shapes of I (~r) and Ω(~r) are cigar-like Gaussian functions with equal x- and
y-width w0 and z-width z0:

I (~r),Ω(~r) ∝ exp *
,
−2 ·

x2 + y2

w2
0

− 2 ·
z2

z2
0

+
-

(B.1.2)

2. Gaussian beam: The illumination/detection focus is described by a Gaussian beam, which has a
lateral width w(z) increasing with distance z from the focus and a Laurentzian shape in z-direction:

I (~r),Ω(~r) ∝
(
w0

w(z)

)2

· exp
(
−2 ·

x2 + y2

w2(z)

)
, with w(z) = w0 ·

√
1 +

(
z
z0

)2

(B.1.3)

3. Gaussian light sheet: A simple model for a lightsheet is a Gaussian in z-direction, which does
not depend on x or y:

I (~r) ∝ exp *
,
−2 ·

z2

z2
0

+
-

(B.1.4)

4. Slit pattern light sheet: To model the sidelobes observed in typical light sheets a slit function
can be used:

I (~r) ∝
(

sin(π · z/z0)
π · z/z0

)2

(B.1.5)

The �rst two patterns can be used for both, the illumination and detection foci, whereas the last two are
designed to model the light sheet illumination.

The remaining in�uence of the detection process (signal loss at optical interfaces and �lters, detector
quantum e�ciency, ...) is described by the factor

qdet = qdet,0 ·

λdet,max∫
λdet,min

η�, f (λ) dλ

∞∫
0
η�, f (λ) dλ

, (B.1.6)

summarizing the loss of light due to optics and detector quantum e�ciency qdet,0, as well as the spectral
width of the �uorescence detection window λdet,min...λdet,max. This detection window allows to also
take into account crosstalk between two detection channels. The in�uence of the dipole direction ~pf (t)
and a possible laser polarization is modeled by the factor

hpol(~pf (t)) = (1 − θpol) + θPol ·
(
~εex • ~pf (t)

)2
, (B.1.7)

where • is a scalar product, θPol ∈ [0,1] is the fraction of linear polarization of the excitation light source
and ~εex (with ‖~εex‖ = 1) is the linear polarization direction of this light source.

From the average number of detected photons, the measured number of photons Ndet(t) is calculated,
taking the detector statistics into account. In the simplest case of a photon counting detector, Ndet(t)
is drawn from a Poissonian distribution with mean (and variance) Nphot(t). Other detection statistics
are possible, such as a linear detector, where Ndet(t) is drawn from a Gaussian distribution with mean
G · Nphot(t) and a variance comparable to Eq. (4.2.15):

σ2
det = G

2
· F 2 · Ndet(t) + σ2

read, (B.1.8)
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where G is the average detector gain, F 2 the excess noise factor and σ2
read the read noise variance,

summarizing all contributions, not depending on the number of incident photons. Also artifacts, such
as a background intensity o�set may be included in the detector simulation. Although intermediate
results may be �oating-point numbers, the �nally detected number of photons (or ADU counts in a
linear detector) is always an integer number.

Finally the time series Ndet(t) is post processed to yield count rate traces with arbitrary binning, auto-
and cross-correlation functions (between di�erent foci on the simulation) and other statistical properties.
Also several test data sets are saved by the simulation program, such as particle MSDs, the raw detector
statistics etc.

The complete program is split into modules that may be combined in di�erent ways for a simulation.
All these modules are either trajectory sources or sinks. In each time step �rst all sources generate a
new set of �uorophore properties, e.g. by reading a new data set from a �le or advancing a random walk
simulation. The these new particle properties are forwarded to the sink objects, which simulate the
actual detection process, as described above, or generate MSDs and other trajectory statistics. Every
sink may be connected to several sources, and one source can feed several sinks. This can be used e.g.
for simulations of �uorophore reservoir depletion, as in section 5.5.4, where a single trajectory source is
fed into intermediate objects that simulate di�erent bleaching rates on the same particle positions and
�nally detected by a set of identical sinks, which simulate FCS detection.

This software was initiated in the �rst year of the thesis and extended and improved in the following
years. It was used to simulate di�erent aspects of FCS/FCCS in several publications [82, 130–132].

B.2. Macromolecular crowding

To demonstrate the e�ect of macromolecular crowding on single-particle dynamics, a simple simulation
software (“crowder2d_moleculardynamics”) was implemented in C++. The program was inspired by
Ref. [23]. It integrates the overdamped Langevin equation for a set of spherical particles i with di�erent
radii ri and masses mi with a simple �rst-order Eulerian scheme with time step ∆t and periodic boundary
conditions:

~xi (t + ∆t) = ~xi (t) + ~ξ + ∆t ·
∑
i, j

~Fi j

6πηri
ξk ∼ N (0,2Di∆t). (B.2.1)

Here η is the viscosity of the embedding medium. The vector ~ξ is a random vector, where each spacial
component ξk is independently distributed according to a normal distribution with variance 2Di∆t with
a di�usion coe�cient given by Einstein’s relation at temperature T :

Di =
kBT

6πηri
.

The repelling force ~Fi j between two particles i and j is calculated using a softcore potential with cuto�
radius rc:

~Fi j =




F0 ·

(
1 − ‖

~x j−~xi ‖−ri−r j
rc

)
·

~x j−~xi

‖~x j−~xi ‖
for 


~x j − ~xi




 − ri − r j < rc

0 else
. (B.2.2)

This de�nition leads to a linearly increasing force between any two particles, if their borders are closer
than rc. The force is depicted in Fig. B.1.

The simulation program follows these steps:
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Appendix B. Simulation software

1. The particles are initialized by randomly drawing a mass or a radius from given distributions and
then placing the particle without overlap in the simulation box. If a placement is not possible, a
new mass and radius is drawn.

2. The simulation is equilibrated for a few thousand steps

3. The simulation is run for a given number of steps.

4. Time-averaged MSD curves are calculated from the trajectory of each particle. These are then
averaged over groups of particles with comparable masses or radii.

To achieve good resolution for all numerical calculations, all distances were rescaled to nanometers.
Typical simulation parameters are summarized in Tab. B.1.

The mass of each particle is estimated (in real units) by a reference particle with given mass mref and
radius rref:

mi = mref ·



r2
i /r

2
ref in 2 dimensions

r3
i /r

3
ref in 3 dimensions

. (B.2.3)

Typically, values resembling bovine serum albumin (BSA) were chosen for the reference particles:
mref = 66 kDa and rref = 2 nm.
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Figure B.1. Softcore force between two particles, calculated for parameters rc = 2 nm, r1 =

10 nm and r2 = 2 nm. Particle 1 is �xed at position x1 = 0 and sketched in black. Particle 2 moves
(position x2 on x-axis) and is sketched in red. The critical radius around particle 1 is shown in
orange.
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B.3. Numerical integration for the PSF of a microscope

parameter symbol value

simulation box dimension L 500 nm
time step ∆t 10 ns
viscosity η 5 mPa · s
temperature T 283 K
interaction strength F0 6πη · 10µm2/s
critical interaction radius rc 3 nm
reference particle radius (BSA) rref 2 nm
reference particle mass (BSA) mref 66 kDa
particle radius limits 1 nm ≤ ri ≤ L/5
equilibration steps Ninit 2000
simulation steps Nsim 105..107

Table B.1. Typical parameters for molecular crowding simulations.

B.3. Numerical integration for the PSF of a microscope

As described in section 3.1 and Ref. [158], the PSF of a �uorescence microscope can be estimated as:

PSF(~r) = ��h(~r)��2 ,

with: h(u,v) = −
2πi
λ
·

NA2

n2 · A0 · eiNA2u/n2
·

1∫
0

J0(vρ) · e−iuρ2/2 ·ρ dρ,

u ≡ u(z) =
2πNA2

nλ
· z,

v ≡ v(x, y) =
2πNA
λ
·

√
x2 + y2.

This integral can be solved numerically (up to prefactors) using the Matlab R2013b code below:
function [ out ] = b o r n _ w o l f _ p s f _ i n t e g r a l ( x , y , z , NA, lambda , n )

f = 3 0 0 ;
a= f . ∗NA/ n ;

u =2∗ pi ∗NA∗NA∗ z / lambda / n ;
v =2∗ pi ∗NA∗ sqrt ( x . ^ 2 + y . ^ 2 ) / lambda ;

F=@( rho ) rho . ∗ b e s s e l j ( 0 , v . ∗ rho ) . ∗ exp (−1 i . ∗ u . ∗ rho . ∗ rho . / 2 ) ;
out =abs ( i n t e g r a l ( F , 0 , 1 ) ) . ^ 2 ;

end

B.4. Beam propagation method

The “split step beam propagation method” is used to calculate the solution of the paraxial wave equation
in a medium with an arbitrary refractive index distribution n ≡ n(~r). A detailed description can be
found in Refs. [305, 306]. The skalar wave equation is given by [178]:

∇2U (~r , t) −
n2

c2
0

·
∂2U (~r , t)
∂t2 = 0. (B.4.1)
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One solution of this equation is the monochromatic plane wave with angular frequency ω, wavelength
λ and vacuum wavevector k0 = ω/c0:

U (~r , t) = A(~r) · eiωt · e−ik0z , with k0 =
ω

c0
=

2π
λ
. (B.4.2)

Plugging this solution into Eq. (B.4.1) yields:

~∇2
⊥A +

(
∂2

∂z2 − 2ik0
∂

∂z
− k2

0

)
A + n2k2

0 A = 0 with ~∇2
⊥ =

∂2

∂x2 +
∂2

∂x2 . (B.4.3)

The paraxial approximation demands that the derivative ∂A(~r)/∂z changes slowly over the distance of
one wavelength λ, from which follows [178]:

∂2 A
∂z2 � k0 ·

∂A
∂z
= 2π ·

1
λ
·
∂A
∂z
.

Using this result Eq. (B.4.3) can be further simpli�ed, yielding a di�erential equation, which describes
the propagation of the amplitude distribution A(~r):

∂A
∂z
=

1
2ik0

· ~∇2
⊥A +

n2 − n2
0

2i
· k0 · A. (B.4.4)

The solution of this di�erential equation can formally be written as:

A(x, y, z) = exp
(

z
2ik0

· ~∇2
⊥ +

n2 − 1
2i

· k0z
)

A(x, y,0) =

=

[
exp

(
z

2ik0
· ~∇2
⊥

)
︸                ︷︷                ︸

=:eĤ z

· exp
(

n2 − 1
2i

· k0z
)]

︸                   ︷︷                   ︸
=:eĜz

A(x, y,0). (B.4.5)

As shown by the underbraces, this can be interpreted as the sequential application of two di�erential
operators eĤz and eĜz . As stated in Refs. [305, 306] these operators do not commute, so the order of
application is of importance.

The solution Eq. (B.4.5) can be used directly to propagate an arbitrary initial �eld distribution A(x, y,0)
through an arbitrary refractive index distribution n(x, y, z). In addition using, that derivatives can be
expressed in a simple form in Fourier space (see appendix C.1, especially equation Eq. (C.1.6)), the
following stepping algorithm can be devised [305, 306]:

1. Fourier transform the �eld at z:

Ã(kx , ky , z) = Fx, y
[
A(x, y, z)

] (B.4.6)

2. propagate the plane wave in Fourier space:

Ã(kx , ky , z + ∆z) = Ã(kx , ky , z) · exp *
,

i · (k2
x + k2

y )

2k0
· ∆z+

-
(B.4.7)

3. backtransform the �eld at z + ∆z:

A′(x, y, z + ∆z) = Fx, y
[
Ã(kx , ky , z + ∆z)

]
(B.4.8)
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4. apply the second operator, representing the changing refractive index distribution:

A(x, y, z + ∆z) = A′(x, y, z + ∆z) · exp
(

n2 − 1
2i

· k0 · ∆z
)
. (B.4.9)

5. set:

z ← z + ∆z (B.4.10)

and return to step 1 to calculate the next propagation step.

This algorithm calculates the (scalar) electrical �eld distribution A(x, y, z), from which the full �eld
distribution is given by Eq. (B.4.2). Usually the light intensity distribution I (x, y, z) is of interest, not the
electrical �eld distribution. The intensity can be calculated as

I (~r) = ��A(~r)��2 . (B.4.11)

Note that the method, presented here, can only calculate forward scattering, but not backward scattering.
Still it is useful for cases like scattering cell organelles in a lightsheet illumination setup, as discussed in
section 3.3.3 or intensity distributions in microlenses, as shown in section 4.2.2.

This algorithm was implemented for the 2-dimensional case of the xz-plane using Matlab R2013b:
function [ E , xx , zz ] = beam_propagat ion1d ( n , Nz , E0 , dx , wave length )
%beam_propaga t i on1d ( n , Nz , E0 , dx , wav e l eng th ) p r o p a g a t e an s c a l a r f i e l d
% e l e c t r i c a l d i s t r i b u t i o n a medium o f va r y i n g r e f r a c t i v e i n d e x
% n ( x , z ) : r e f r a c t i v e i n d e x d i s t r i b u t i o n
% Nz : number o f s t e p s t o i t e r a t e
% E0 : i n i t i a l f i e l d d i s t r i b u t i o n
% dx : s t e p s i z e i n x− and z− d i r e c t i o n
% wave l eng th : wav e l eng th i f t h e monochromat i c l i g h t

% vacuum wave v e c t o r
k0 =2∗ pi / wave length ;
% p o i n t i n x− d i r e c t i o n
Nx= length ( E0 ) ;
% k_x wav e v e c t o r s , d e f i n i n g f o u r i e r s p a c e
kvec = ( 2 ∗ pi ∗ l inspace ( − 0 . 5 , 0 . 5 , Nx ) ∗Nx / ( Nx ∗ dx ) ) ’ ;
% x p o s i t i o n s d e f i n i g r e a l s p a c e
xx = ( ( − ( Nx−1) / 2 ∗ dx ) : dx : ( ( Nx−1) / 2 ∗ dx ) ) −1/2∗ dx ;
% z− p o s i t i o n s
zz = ( 1 : Nz ) ∗ dx ;

% i n i t i a t e s c a l a r f i e l d
E= ones ( Nx , Nz , ’ l i k e ’ , 1+1 i ) ;
E ( : , 1 ) =E0 ;
E ( : , 2 ) =E0 ;

% p r o p a g a t e f i e l d
for z = 2 : Nz

n f a c =exp ( −0 . 5 i . ∗ k0 . ∗ ( n ( : , z ) . ^2 −1 ) . ∗ dx ) ;
k f a c =exp ( 1 i ∗ kvec . ^ 2 . ∗ dx . / k0 ) ;
E ( : , z ) = i f f t ( f f t ( E ( : , z −1) ) . ∗ f f t s h i f t ( k f a c ) ) . ∗ n f a c ;

end

end
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C. Formulary

C.1. Fourier transform

Definition: The Fourier transform of a L2 function f (t) is de�ned as

f̃ (ω) = Ft
[

f (t)
]

(ω) :=

∞∫
−∞

f (t) · e−iωt dt . (C.1.1)

f (t) = F −1
ω

[
f̃ (ω)

]
(t) :=

1
2π
·

∞∫
−∞

f̃ (ω) · eiωt dt . (C.1.2)

The Fourier transform has some interesting properties:

• Linearity:

Ft
[
a · f (t) + b · g(t)

]
(ω) = a · f̃ (ω) + b · g̃(ω) (C.1.3)

• Shift:

Ft
[

f (t − τ)
]

(ω) = e−iτω · f̃ (ω) (C.1.4)
Ft

[
eiκt · f (t)

]
(ω) = f̃ (ω − κ) (C.1.5)

• Di�erentiation:

Ft

[
dn f
dtn

]
(ω) = (i · ω)n · Ft

[
f
]

(ω) = (i · ω)n · f̃ (ω) (C.1.6)

Some common Fourier transforms (see e.g. [307]):

Ft

[
e−α ·t

2 ]
(ω) =

√
π

α
· e−ω

2/(4α) (C.1.7)

Ft

[
e−α · |t |

]
(ω) =

2α
α2 + ω2 (C.1.8)

Ft [δδδ(t − t0)] (ω) = e−iωt0 (C.1.9)

C.2. Convolution

Definition: The convolution of two functions f (t) and h(t) is de�ned as:

( f ~ h)(τ) :=

∞∫
−∞

f (t) · h(t + τ) dt . (C.2.1)
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Convolution Theorem: The convolution has a close relation to the Fourier transform, which is
expressed in the convolution theorem:

( f ~ h)(τ) = F −1 [
F

[
f
]
· F [h]

]
. (C.2.2)

C.3. Statistical measures

Pearson’s Correlation Coe�icient: The Pearson’s Correlation Coe�cient is a measure of the linear
dependence between two sets of measurements X and Y . It is de�ned as:

r (X,Y ) ≡ rX,Y =
〈(X − 〈X〉) · (Y − 〈Y 〉)〉
√

Var(X ) ·
√

Var(Y )
, (C.3.1)

where average and variance are de�ned as:

〈X〉 =
1
N

∑
i

Xi and Var(X ) =
〈
(X − 〈X〉)2

〉

C.4. Recalibration of di�usion coe�icients to a di�erent temperature

The Einstein relation Eq. (1.3.3) (p. 7) was used to recalibrate di�usion coe�cients D1 from one temper-
ature and solvent (T1, ηvisc,1) to a di�erent temperature and solvent (D0, T0, ηvisc,0):

D0

D1
=

T0

T1
·
ηvisc,1
ηvisc,0

. (C.4.1)

Often the di�usion coe�cients were recalibrated to the standard conditions of T = 293 K and water as
a solvent. Then D0 is also denoted as D20 ◦C,W. The viscosity of water between 0 ◦C and 100 ◦C can be
approximated by approximations like

ηvisc,W(T ) = A · 10B/(T−C ), with A = 2.41 · 10−5 Pa · s,B = 247.8 K,C = 140 K (C.4.2)

The viscosity of an aqueous solution of known composition can the be estimated as described in Ref. [308]
from tabulated viscosity data (e.g. from [309]).

In many of the live-cell measurements presented in this thesis cases, Eq. (C.4.1) was used to only
recalibrate the temperature. The medium (e.g. the cytosol) was not corrected. This is possible, if it is
assumed, that the general scaling of ηvisc(T ) is proportional to that of water, i.e. ηvisc(T ) = ηrel ·ηvisc,W(T ).
Then Eq. (C.4.1) can be reformulated to:

D0

D1
=

T0

T1
·
ηvisc,W(T1)
ηvisc,W(T0)

, (C.4.3)

which can be evaluated using Eq. (C.4.2).

C.5. Estimation of di�usion coe�icients for particles of di�erent
geometries

In section 1.3.1 the Einstein relation was introduced, which allows to estimate the di�usion coe�cient
of spherical particles of radius Rh in a solvent with viscosity ηvisc at an absolute temperature T :

D =
kB · T

6π · ηvisc · Rh
. (1.3.3)
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Variants of this equation exist, which allow to also estimate D for more complex particle geometries.
These have the general form

D =
kB · T

6π · ηvisc·
·

1
Fp · Re

, (C.5.1)

where Re is an e�ective hydrodynamic radius of the particles and the Perrin factor Fp corrects for the
changed geometry. Relations for Re and Fp have been published for di�erent particle geometries:

• ellipsoids with rotation axis diameter a and perpendicular axis diameter b: Using p = a/b
and q = 1/p the e�ective radius and the Perrin factor are [310–313]:

Re =
(
a · b2)1/3 (C.5.2)

Fp =




√
1 − q2

q2/3 · ln
[(

1 +
√

1 − q2

)
/q

] for p > 1

√
q2 − 1

q2/3 · tan−1
[ √

q2 − 1
] for p < 1

(C.5.3)

• cylinder with diameter dcyl and length lcyl: Using p = lcyl/dcyl and q = 1/p the e�ective
radius and the Perrin factor are [311, 312]:

Re =

(
3

4p2

)1/3

·
lcyl

2
(C.5.4)

Fp = 1.0304 + 0.0193 · x + 0.06229 · x2 + 0.00476 · x3 + 0.00166 · x4+

+ 2.66 · 10−6 · x5, with x ≡ ln
[
p
] (C.5.5)
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Nomenclature
Constants
c0 speed of light in vacuum, c0 = 299792458 m/s [314]
kB Boltzman’s constant kB = 1.3806488 · 10−23 J/K [314]
NA Avogadro’s number NA = 6.02214129 · 1023 mol−1 [314]
qe elementary charge, qe = 1.602176565 · 10−19 C [314]
h,~ = h/(2π) Planck constant , h = 6.62606957 · 10−34 Js [314]
R molar gas constant R = 8.3144621 J/(K ·mol) [314]

Mathematical Notation
( f ~ h)(·) convolution of functions f (·) and h(·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see sec. C.2

|x | absolute value of x

∼123.456 approximately 123.456

N = {1,2, ...},N0 = N ∪ {0} set of positive integer numbers (with or without 0)
δδδ(·) Dirac’s δδδ-distribution
f̂ statistical estimator for the quantity f

O( f ) 3 g The function g(·) grows considerably faster than function f (·) (Landau O-notation)
b·c lower Gaussian brackets: rounding to the next lower integer number

〈·〉 average

〈 f (t)〉t average over variable t, e.g. for time t: 〈 f (t)〉t = lim
T→∞

∫ T

0 f (t) dt



~x

 Euclidean norm (length) of vector ~x
f̃ (ω) = Ft

[
f (t)

]
(ω) Fourier transform of function f (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see sec. C.1

Var(X ) variance of random variable X

~∇ gradient operator ~∇ =
(
∂
∂x ,

∂
∂y , ...

) t
~∇2 Laplace operator ~∇2 =

(
∂2

∂x2 +
∂2

∂y2 + ...
)

f (t) = F −1
ω

[
f̃ (ω)

]
(t) inverse Fourier transform of function f̂ (ω), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see sec. C.1

Jν (x) Bessel function of �rst kind, with order ν, evaluated at x

qp , e.g. q25%, q75% p-quantile of a random number distribution, q25% and q75% are the lower and upper
quartile

r (X,Y ), rX,Y Pearson’s correlation coe�cient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see Eq. (C.3.1)

x ∼ N (x,σ2) random variable x is normally distributed with mean x and variance σ2
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Variables
AADC conversion factor between electrons and analog-to-digital converter values (ADUs) in

units of ADU/electron
Ae�, Ae�,γ e�ective area laterally spanned by a FCS focus (in color channel γ) . . . . . . see Eq. (5.3.27)

pAP(τ) afterpulsing probability after a delay τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see sec. 5.5.3
S set of molecular species in FCS theory
βAP exponent of a power-law afterpulsing decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . see sec. 5.5.3
χ2 (normalized) sum of squared deviations in a model �t . . . . . . . . . . . . . . . . . see Eq. (7.1.16)

κγρ spectral crosstalk between the microscope detection channels γ and ρ . . see Eq. (5.4.11)

dDet half aperture diameter: detection objective
d dimensionality of a random walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see Eq. (1.3.2)

∅ diameter of a circle or sphere
d∞ length of in�nity space in an in�nity corrected microscope
dLS 1/ e2 half depth of �eld of a light sheet
dObj half aperture diameter: any objective
dProj half aperture diameter: light sheet projection objective
dSPAD circular SPAD diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see sec. 4.1.3
dTL half aperture diameter: tube lens
D20 ◦C,W di�usion coe�cient of a substance, dissolved in water at a temperature of 20 ◦C

η�, χ (λ) �uorescence emission spectrum of �uorophore χ

ηdet, ηdet,γ detection e�ciency (in channel γ)
ηγ, χ �uorescence detection e�ciency (of species χ in channel γ)
F 2 excess noise parameter of an analog detector . . . . . . . . . . . . . . . . . . . . . . . . . . see Eq. (4.2.7)

εabs extinction coe�cient
εabs, χ (λ) �uorescence absorption (extinction) spectrum of �uorophore χ

Fback,Fback,γ background signal in �uorescence detection (in channel γ)
fCL focal length: cylindrical lens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see Fig. 6.3
fDO focal length: detection objective
FF �ll factor of an image sensor pixel (active are / pixel area) . . . . . . . . . . . . . . see Eq. (4.1.5)

fL1, fL2 focal length: relay lenses L1 and L2 in the SPIM light sheet shaping . . . . . . . . see Fig. 6.3
fObj focal length: objective lens
fPO focal length: light sheet projection objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see Fig. 6.3
fTL focal length: tube lens
FWHMmicroscope,xy lateral full width at half maximum of the PSF of a given microscope (perpendicular to

optical axis)
FWHMmicroscope,z longitudinal full width at half maximum of the PSF of a given microscope (along optical

axis)
Γ radiative decay rate of the excited state in molecular �uorescence . . . . . . . . see Eq. (2.1.3)

Γ,Γχ generalized di�usion coe�cient in anomalous di�usion(of species χ)
hLS 1/ e2 height of a light sheet





C.5. Estimation of di�usion coe�cients for particles of di�erent geometries

Iphot signal photo current

λe� e�ective wavelength in a confocal microscope . . . . . . . . . . . . . . . . . . . . . . . . . see Eq. (3.2.2)

λ� �uorescence light wavelength

λill illumination light wavelength in a microscope

lp persistence length of a polymer

IC image cross-correlation coe�cient between two images . . . . . . . . . . . . . . . . see Eq. (6.1.6)〈
∆r

〉
(τ) mean displacement at lag time τ

Mxy lateral magni�cation of an optical system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see Eq. (3.1.3)

MSD(τ) mean squared displacement at lag time τ

NA numerical aperture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see Eq. (3.1.6)

Nback background signal in an image sensor

Ndark dark count of an image sensor pixel in electrons

Ṅdark rate of dark photons in an image sensor

OD optical density of a �lter, transmission: T = 10−OD

G average gain of an analog detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see sec. 4.2

pAB describes the relative dimer concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see Eq. (9.3.1)

p′AB alternative relative dimer concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see Eq. (9.2.1)

Φ photon �ux

φχ, χ′ (~r ,~r ′, τ) van-Hove self correlation function of two species χ and χ′, positions ~r and ~r ′ at a time
lag τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see Eq. (5.3.8),(5.3.12)

a pixel size of image sensor in the object plane (a = asensor/M , if M is the magni�cation
of the optics)

PSF(~r) general point spread function of a microscope

PSFdet(~r) detection point spread function of a microscope

PSFill(~r) illumination point spread function of a microscope

q�uor,q�uor,γ, χ �uorescence quantum yield (of species χ in channel γ)

qgr describes the relative cross-correlation amplitude . . . . . . . . . . . . . . . . . . . . . . see Eq. (9.1.1)

RADC resolution of an analog to digital converter in bits

Rh hydrodynamic radius of a particle

asensor image sensor pixel pitch

σabs,σabs,γ, χ absorption crosssection (of species χ in channel γ)

σ2
ADC quantization noise by the ADC in a photodetector . . . . . . . . . . . . . . . . . . . . . see Eq. (4.2.13)

σ2
back variance of the background signal of a photodetector

σ2
cic variance of the clock-induced charges of a CCD image sensor . . . . . . . . . . see Eq. (4.2.12)

σ2
dark variance of the dark current signal of a photodetector

σ2
photon photon shot noise variance in a photodetector

σ2
read variance of the readout noise of an image sensor

SNR signal-to-noise ratio

τAP decay time of an exponential afterpulsing decay . . . . . . . . . . . . . . . . . . . . . . . . see sec. 5.5.3





Appendix C. Formulary

τB (exponential) decay time of a �uorophore bleaching decay . . . . . . . . . . . . . see Eq. (5.5.15)

τD, τD, χ di�usion correlation time (of species χ) . . . . . . . . . . . . . . . . . . . . . . see Eq. (5.3.22) & (5.3.26)

τF �ow correlation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see Eq. (5.3.41)

τ� �uorescence lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see Eq. (2.1.3)

τmin minimum lag time of correlation
τT triplet correlation time
∆texp exposure time
∆tframe frame repetition time of an image sensor
θT equilibrium fraction of particles in a triplet state
∆tread readout time of an image sensor
ϑ = T − 273.15 K temperature in ◦C

Ubias bias voltage of a semiconductor photodetector or (reverse) bias voltage of a SPAD . see
sec. 4.1.1

Ubreak breakdown voltage of a SPAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see sec. 4.1.1
Ve�,Ve�,γ e�ective focal volume in FCS (in color channel γ) . . . . . . . . . . . . . . . . . . . . . . . see Eq. (5.3.4)

Uexcess = Ubias −Ubreak excess bias voltage of a SPAD
ηvisc dynamic viscosity
Vobs observation volume
wLaser 1/ e2 half width of a laser beam
wLS 1/ e2 half width of a light sheet
wobs size (diameter) of the observation volume
B(x, y; t) background image series in an FCS/FCCS measurement . . . . . . . . . . . . . see sec. Eq. (7.1.2)

c(~r , t) particle concentration at position ~r and time t

D,Dχ di�usion coe�cient (of species χ) . . . . . . . . . . . . . . . . . . . . . . . . . see Eq. (1.4.1),(1.3.3),(1.3.2)

f (t) function describing a �uorophore bleaching decay . . . . . . . . . . . . . . . . . . . . . . see sec. 5.5.4
F (x, y; t) full image series in an imaging FCCS data acquisition
Fγ (t), δFγ (t) �uorescence time trace and �uctuations from color channel γ in FCS/FCCS
Fγ (t; x, y), δFγ (t; x, y) �uorescence time trace and �uctuations of a pixel (x, y) from color channel γ in imaging

FCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see Eq. (5.2.9),(5.2.11)

F (c)
γ (t) bleach-corrected �uorescence time trace from color channel γ in FCS/FCCS see sec. 5.5.4

FB background �uorescence signal
g(τ) normalized autocorrelation function in FCS . . . . . . . . . . . . . . . . . . . . . . . . . . . see Eq. (5.1.2)

gγρ (τ; x, y) normalized two-color cross-correlation function of a pixel (x, y) in imaging FCS/imaging
FCCS

hpixel(~r) characteristic function of a camera pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see Eq. (5.2.5)

IADC signal from an image sensor in analog-to-digital converter values (ADUs)
knr non-radiative decay rate of the excited state in molecular �uorescence . . . see Eq. (2.1.3)

L(x, y),L(x, y; t) single left half image and image series acquired with a dual-view optics
Ncic clock-induced charges in a CCD image sensor per cycle/frame . . . . . . . . . . see Eq. (4.2.12)

Ne number of detected photo-electrons in an image sensor
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Ne number of secondary electrons in a photodetector
R(x, y),R(x, y; t) single right half image and image series acquired with a dual-view optics
T absolute temperature
TB number of frames in a background measurement B(x, y; t) for imaging FCCS
TF number of frames in an imaging FCCS acquisition F (x, y; t)

wγ lateral 1/ e2-half width of a Gaussian PSF in FCS theory
zγ axial 1/ e2-half width of a Gaussian PSF in FCS theory







Glossary

β-gal β-galactosidase.

ADC analog-to-digital converter.
ADU analog-to-digital converter unit.
AP-1 activator protein 1.
AT-1 rat prostate adenocarcinoma cell.
ATP adenosine triphosphate.

BHK baby hamster kidney cell.
BM Brownian motion.
BSA bovine serum albumin.

CAD computer aided design.
CCD charge-coupled device.
CHO-K1 Chinese hamster ovary cell.
CMOS complementary metal oxide semiconductor.
COS-7 transformed African green monkey kidney �-
broblast cell.
CPU central processing unit.
CSV comma separated values.

DBD DNA binding domain.
DCR dark count rate.
DMEM Dulbecco’s modi�ed eagle medium.
DNA deoxyribonucleic acid.
DPSS diode-pumped solid state.
dsDNA double-stranded deoxyribonucleic acid.

eGFP enhanced green �uorescent protein.
EGFR epidermal growth factor receptor.
EMCCD electron-multiplying charge-coupled device.
eYFP enhanced yellow �uorescent protein.

FCCS �uorescence cross-correlation spectroscopy.
FCS �uorescence correlation spectroscopy.
FITC �uorescein isothiocyanate.
FLIM �uorescence lifetime imaging microscopy.
FOV �eld-of-view.
FPGA �eld programmable gate array.
FRAP �uorescence recovery after photo bleaching.
FRET Förster resonance energy transfer.

HaCat B 10 humane keratinocyte cell.
HBSS Hank’s balanced salts solution.
HEK-293 human embryonic kidney cell.
HeLa human cervical carcinoma cell.

ICS image correlation spectroscopy.

IF intermediate �lament.
imaging FCCS imaging �uorescence cross-correlation
spectroscopy.
imaging FCS imaging �uorescence correlation spec-
troscopy.
IQR interquartile range.
IRLS iteratively reweighted least squares.
iSPIM inverted selective plane illumination microscope.
ITIR-FCS imaging total internal re�ection �uorescence
correlation spectroscopy.

LBD ligand binding domain.
LED light emitting diode.
LM �t Levenberg-Marquardt �t.
LSFM light sheet �uorescence microscope.

MaxEnt maximum entropy data evaluation.
MDA-MB231 human breast carcinoma cell.
MDE molecular detection e�ciency function.
MIS metal-insulator-semiconductor.
MOSFET metal oxide semiconductor �eld-e�ect tran-
sistor.
mRFP1 monomeric red �uorescent protein.
MSD mean squared displacement.
mSPIM multi-directional selective plane illumination
microscopy.

NA numerical aperture.
NLS nuclear localization sequence.
NPC nuclear pore complex.
NR nuclear receptor.

OPFOS orthogonal-plane �uorescence optical section-
ing.
OPM oblique plane microscopy.

PCB printed circuit board.
PCR polymerase chain reaction.
PDE partial di�erential equation.
PMT plasma membrane targeting sequence.
PSF point spread function.
PTFE polytetra�uoroethylene.

QDot quantum dot.

RAM random access memory.
RAR rhetinoic acid receptor.
RNA ribonucleic acid.
ROI region of interest.
RXR rhetinoid X receptor.
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sCMOS scienti�c complementary metal oxide semicon-
ductor camera.
SK8/18 adrenal cortex carcinoma-derived SW13 cell.
SLM scanning light sheet microscope.
SNR signal-to-noise ratio.
SOFI super-resolution optical �uctuation imaging.
SPAD single-photon avalanche diode.
SPIM selective plane illumination microscope.
SPIM-FCCS single plane illumination �uorescence
cross-correlation spectroscopy.
SPIM-FCS single plane illumination �uorescence cor-
relation spectroscopy.
SPT single particle tracking.

TDC time-to-digital converter.
TF transcription factor.
TIFF tagged image �le format.
TIRF total internal re�ection �uorescence.
TOF time-of-�ight.

ULF unit length �lament.
USB universal serial bus.

wtGFP wildtype green �uorescent protein.

YFP yellow �uorescent protein.
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