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Zusammenfassung
In dieser Arbeit untersuchen wir die Erzeugung fermionischer Teilchen außerhalb des

Gleichgewichts mittels moderner Gittermethoden. Die vorgestellten Anwendungen re-
ichen vom Preheating nach der kosmologischen Inflation im frühen Universum über Prä-
Thermalisierungsdynamik in Schwerionenkollisionen bis hin zur Paarerzeugung und Stri-
ngbrechung in einem niedrigdimensionalen Modell der Quantenchromodynamik.

In Instabilitäten aufweisenden skalaren Modellen beobachten wir eine stark erhöhte
Fermionproduktion in Anwesenheit bosonischer Überbesetzung. Als mögliche Szenarien
fürs Preheating nach der Inflation untersuchen wir parametriche Resonanz und tachyonis-
che Instabilität. Wir finden, dass sowohl die qualitativen als auch die quantitativen Eigen-
schaften der resultierenden Fermionverteilung weitgehend von einem effektiven Kop-
plungsparameter bestimmt werden.

Um Fermionen in drei räumlichen Dimensionen simulieren zu können, wenden wir
einen effizienten, stochastischen Gitter-Algorithmus an, welchen wir durch einen Ver-
gleich mit exacten Gitterrechnungen und mit auf einer Kopplungsentwicklung basierten
funktionalen Methode verifizieren.

Im massiven Schwinger-Modell analysieren wir die Erzeugung von Fermion/Antiferm-
ion Paaren durch homogene und inhomogene elektrische Felder und beobachten den Auf-
bau von Strings zwischen den Ladungen. Nachfolgend studieren wir die Dynamik der
Stringbrechung und beschreiben einen Zwei-Phasen-Prozess, welcher aus der anfänglich-
en Teilchenproduktion sowie der folgenden Ladungsseparation und Abschirmung besteht.

In Quantenchromodynamik liegt unser Fokus auf den Eigenschaften des Quarksektors
während der turbulenten bosonischen Energiekaskade sowie auf der Isotropisierung der
Quarks und Gluonen, ausgehend von unterschiedlichen Anfangsbedngungen.



Abstract
In this thesis we investigate non-equilibrium production of fermionic particles using

modern lattice techniques. The presented applications range from preheating after infla-
tion in the early Universe cosmology to pre-thermalization dynamics in heavy-ion col-
lisions as well as pair production and string breaking in a lower-dimensional model of
quantum chromodynamics.

Strong enhancement of fermion production in the presence of overoccupied bosons is
observed in scalar models undergoing instabilities. Both parametric resonance and tachy-
onic instability are considered as scenarios for preheating after inflation. The qualitative
and quantitative features of the resulting fermion distribution are found to depend largely
on an effective coupling parameter.

In order to simulate fermions in three spatial dimensions we apply a stochastic low-cost
lattice algorithm, which we verify by comparison with an exact lattice approach and with
a functional method based on a coupling expansion.

In the massive Schwinger model, we analyse the creation of fermion/anti-fermion pairs
from homogeneous and inhomogeneous electric fields and observe string formation be-
tween charges. As a follow-up we study the dynamics of string breaking and establish
a two-stage process, consisting of the initial particle production followed by subsequent
charge separation and screening.

In quantum chromodynamics, our focus lies on the properties of the quark sector during
turbulent bosonic energy cascade as well as on the isotropization of quarks and gluons
starting from different initial conditions.
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Chapter 1.

Introduction

Modern physics is a success story. On length scales ranging from billions of light years
to fractions of an attometer, general theory of relativity and the Standard Model of parti-
cle physics provide an almost complete description of the laws of nature. Extraordinary
experimental effort is being made to push our observational limits even further and test
existing theoretical models in new and extreme regimes. Two of such front lines of mod-
ern physics have enjoyed a rising attention during the last years, from theoreticians and
experimentalists alike. These are on the one hand the investigations of strongly interact-
ing nuclear matter and its main properties, while on the other hand it is the early history
of our Universe from the Big Bang to the emission of the cosmic microwave background
(CMB) radiation.

In cosmology a detailed analysis of the angular distribution of the CMB and its polar-
ization pattern has become possible due to new satellite missions, foremost the Planck
space observatory, and ground based instruments like BICEP (Background Imaging of
Cosmic Extragalactic Polarization). They could be able to verify the proposed inflation-
ary phase during the early time periods after Big Bang or even shed some light onto
microscopic origins of inflation. For theoreticians, some of the major challenges lie in
determining the shape of the potential for the inflaton field and establishing a connection
between various epochs in the cosmological time evolution, e.g. the transition from the
inflationary phase to the process of primordial nucleosynthesis.

In high-energy nuclear physics we find a rather different picture, there the focus of the
scientific community has shifted towards improved understanding of macroscopic and
long range properties of quantum chromodynamics (QCD), the microscopic theory of
strong interactions. These properties include the confinement of colour charges and in
particular the exploration of the phase diagram of QCD. Both topics are deeply intercon-
nected, because one of the most striking features of the presumed phase diagram is the
appearance of a deconfined phase. In this thermodynamic regime of high temperatures
and pressures the constituents of strong interacting matter, quarks and gluon, dominate a
state of matter named quark-gluon plasma (QGP). The main experimental tools employed
for studies of the QCD phase diagram are the relativistic heavy-ion colliders at CERN and
Brookhaven National Laboratory, LHC (Large Hadron Collider) and RHIC (Relativistic
Heavy Ion Collider). In these facilities atomic nuclei are smashed into each other in order
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Chapter 1. Introduction

to create a hyper-dense and ultra-hot medium. From the subsequent particle shower in-
formation about the behaviour of the fireball in time and as a function of collision energy
is extracted.

Remarkably, studies of cosmology after the inflationary phase and of QCD matter
shortly after a heavy-ion collision have a lot in common [1, 2]. Most importantly the
fact that in both situations we are considering physical systems which have been pushed
into a non-equilibrium state initially. To be specific, in inflation it is the rapid expansion
and in heavy-ion collisions the initial impact, which brings out of equilibrium processes
into play. Another similarity is that ultimately the matter and radiation produced after
inflation as well as the remnants of the QCD fireball apparently approach thermal equilib-
rium. In cosmology this is implied in particular by models of subsequent nucleosynthesis
[3], which correctly 1 describe the abundances of chemical elements created in the early
Universe. For heavy-ion collisions the thermalization is indicated by the successfully ap-
plied description of the fireball evolution by means of relativistic hydrodynamics [5], a
framework assuming local thermal equilibrium. However, the path towards thermal equi-
librium remains unclear for heavy-ions and inflationary cosmology alike.

If we want to make theoretical predictions for the outcome of both scenarios, then we
are forced to solve the corresponding initial value problems and study their time evolution
in the framework of non-equilibrium quantum field theory [6]. Originally, the develop-
ment of quantum field theory was driven by the requirement to calculate cross-sections
and decay rates for processes occurring in vacuum at vanishing temperature. The most
prominent example is surely the perturbation theory, a coupling expansion around free
field solutions. Tools designed for studying thermodynamics of quantum fields have been
developed somewhat later. From the point of view of computational complexity these
are already a step harder than standard vacuum techniques. Unfortunately, the methods
of quantum field theory applicable to non-equilibrium situations are even more involved.
Their development is still an ongoing research topic in which tremendous progress has
been made during the last years.

In the course of this work we will present some of these methods, with an emphasis on
real-time lattice simulations. Having contributed to the development of lattice techniques
specifically designed to study time evolution of fermionic fields in out-of-equilibrium
situations [7], we will concentrate on the topic of fermion production in three different
applications: the post-inflationary epoch, for the early stages of heavy-ion collisions and
from ultra-intense laser beams.

We proceed as follows: In the next section we will briefly describe cosmological infla-
tion and the subsequent phase of preheating. Afterwards, a short description of dynamics
and theoretical challenges in relativistic heavy-ion collisions will follow. An introduc-
tion to non-equilibrium quantum field theory and typical applications is given in Chap.
2. In Chap. 3 the relevant methods for this work applied to non-equilibrium problems

1Up to the isotope Lithium-7, the so-called Lithium problem [4].
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1.1. Preheating after inflation

in quantum field theory are presented. A detailed description of fermions on a real-time
lattice can be found in Chap. 4. Chap. 5 consists of results obtained in scalar theories
with fermions relevant for both QCD dynamics (especially Sec. 5.1) and preheating after
inflation (Sec. 5.2), together with associated discussions. Fermion production in gauge
theories is the topic in Chap. 6, there we will start from pair production in lower dimen-
sional models of QCD (Sec. 6.1), proceed with a detailed study of string breaking (Sec.
6.2) and finally arrive at the topic of quark production in a non-Abelian gauge theory (Sec.
6.3). We will conclude and give a short outlook on future projects in Chap. 7.

Our results from Sec. 5.1 have been obtained in collaboration with Jürgen Berges and
Dénes Sexty and already published in

J. Berges, D. Gelfand and D. Sexty, Phys. Rev. D 89 (2014) 025001.

Investigations done in Secs. 6.1 and 6.2 have been lead by Florian Hebenstreit. He un-
dertook the implementation of our cooperatively developed application of fermion lattice
techniques for Abelian gauge theories. The results are contained in the following publi-
cations:

F. Hebenstreit, J. Berges, and D. Gelfand, Phys. Rev. D 87 (2013) 105006.

F. Hebenstreit, J. Berges, and D. Gelfand, Phys. Rev. Lett. 111 (2013) 201601.

Forthcoming publications about the studies presented in Secs. 5.2 and 6.3 of this the-
sis are in progress.

1.1. Preheating after inflation
Inflation is a proposed period in the early history of our Universe after the Big Bang. It
is marked by an exponential growth of distances and length scales, parametrized by the
scale factor a(t), such that distances at later times d(t) are given by d(t) = a(t)d0. This
concept of an expanding geometry should be considered in the context of a Friedmann-
Robertson-Walker (FRW) metric

ds2 = dt2 − a2(t)
[

dr2

1 − Kr2 + r2dθ2 + r2 sin2 θdϕ2
]
, (1.1)

describing a homogeneous and isotropic universe. This particular form of metric is for-
mulated here in spherical coordinates with K parametrizing the curvature of space.

Inflation was introduced [8, 9] in order to explain some of the key cosmological ob-
servations which stood in conflict with the standard Hot Big Bang scenario. These are
the high degree of spatial flatness found in our Universe as well as the homogeneity and
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Chapter 1. Introduction

isotropy that are observed on large scales. Inflation solves this puzzle with its faster than
the speed of light growth of a(t), pushing causally connected patches of space far away
from each other. In this way, measuring strong similarities between spatial regions which
are separated by distances larger than the age of the Universe today poses no contradic-
tion to the principles of relativity. Additionally, inflation paradigm also delivers the seeds
for subsequent structure formation, by stretching the tiny vacuum fluctuations of the in-
flaton field into macroscopic scales. These original vacuum fluctuations are ultimately
responsible for the primordial density perturbations, which for their part created the in-
homogeneities in the CMB, our so far best observational window to the early Universe
[10].

One of the strengths of inflationary paradigm is its simplicity. To realize an inflationary
stage in a microscopic theory one requires a classical homogeneous inflaton field φ(t)
moving in a potential V(φ) in such a way that its potential energy exceeds its kinetic
energy, V � T . This can be easily understood from Friedmann equations, which are the
equations of motion of gravitation for the special case of the FRW metric (1.1):

H2 =
8π

3M2
Pl

E −
K
a2 , (1.2)

ä
a

= −
4π

3M2
Pl

(E + 3P) , (1.3)

where we introduced the Hubble parameter H = ȧ
a , Planck mass MPl, the energy density

E and the pressure P. The dots will be used here and in all other parts of this thesis to
signify a partial derivative w.r.t. time. These equations can be solved for a given equation
of state, connecting the pressure to the energy density of a physical system. Typical
equations of state are P = E/3 for radiation and P = 0 for cold, non-relativistic matter.
For our classical homogeneous field the energy density is the sum of kinetic and potential
energies, 1

2 φ̇
2 +V(φ), while the pressure is their difference, 1

2 φ̇
2 +V(φ). Considering a case

in which the potential energy dominates, we arrive at a new equation of state, P = −E.
Plugging this relation into the Friedmann equations we arrive at the inflationary solution
of an exponentially increasing scale factor, a(t) = eHt.

How does the requirement V � T influence the time evolution of the classical field?
Or, conversely, how should a classical field behave in order to trigger inflation? The
answer to these questions lies in the equation of motion for the field itself

φ̈ + 3Hφ̇ +
∂V
∂φ

= 0 . (1.4)

Here 3Hφ̇ acts like a friction term in classical mechanics, causing the field φ(t) to roll
slowly towards the minimum of its potential, keeping the kinetic energy small compared
to the potential energy V(φ). From the equations presented here one can formulate formal
slow-roll conditions [11], constraining the shape of the potential.
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1.1. Preheating after inflation

What happens when a system undergoes inflationary expansion? The contribution of
the curvature to the first Friedmann equation, K/a2, diminishes very fast, making the
Hubble factor H a function of just the energy density. The latter can in general be de-
composed into contributions coming from the field itself as well as the matter and the
radiation components. Obviously, at the start of an inflationary period the classical field
should dominate the total equation of state. But how will the mixture of energy contri-
butions change during the expansion? The energy density of the homogeneous field has
the remarkable property to stay constant, Ėφ = 0, because the field fills the whole spatial
volume by definition. Cold non-relativistic matter, often referred to as dust, is diluted
by an expanding metric. Its contribution to the energy density is inversely proportional
to the total volume, Em = a−3. For all ultra-relativistic particles, summarized under the
category of radiation, the dilution is accompanied by the red-shift, resulting in an even
more rapidly declining energy density Er = a−4.

These facts mean that when the potential energy becomes smaller than the kinetic term
(in other words when slow-roll conditions are violated) and the period of exponential
growth terminates, the energy content of the now exponentially enlarged Universe is com-
pletely dominated by the classical inflaton field φ. Particles or radiation which may have
been present before the inflation become absolutely negligible. Since our present Universe
contains a significant amount of matter (including dark matter) and radiation a process of
particle creation from the inflaton field must have taken place after the inflationary phase.
The process of energy transfer from the inflaton field to massive and massless particles at
the end of inflation is called reheating. The name already implies that at the end of re-
heating a thermally equilibrated state of matter is formed, characterized by the so-called
reheating temperature. A reason for the assumption of thermalization is the success of
primordial or Big Bang nucleosynthesis [3]. This theory describes the abundances of
light elements starting from temperatures on the MeV scale in a framework of nuclear
reactions occurring in an expanding thermal medium [12].

Contrary to older models of reheating, in which the energy transfer was handled by
comparably slow perturbative decay of the inflaton field [13], modern understanding
implies that first a nonperturbatively fast process lead to a rapid creation of particles
[14, 15, 16, 17, 18]. Later on, scattering processes should evolve the originally non-
thermal particle distribution towards thermal equilibrium. The first, nonperturbative phase
of reheating, has been called preheating after inflation. It is assumed that during this early
stage the inflaton field undergoes a non-equilibrium instability, with parametric resonance
and tachyonic instability being the two most favoured candidates [14]. In Sec. 2.2 we will
discuss the general properties of these preheating scenarios.

These instabilities are known to lead to exponential growth of inflaton occupation num-
bers in long wavelength modes on time scales much shorter than the asymptotic thermal
equilibration time. This is followed by a turbulent phase with different universal scaling
regimes for nonperturbative long wavelength modes [19] and perturbative higher mo-
menta [20].
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Chapter 1. Introduction

Conventionally, the phenomenon of preheating is described using classical approxi-
mations for the bosonic inflaton field [16]. Their validity for macroscopic occupation
numbers has been verified explicitly in quantum field theory [17]. Much less is known
about fermion dynamics in the nonperturbative regime of high Bose occupation numbers.
Since identical fermions cannot occupy the same state, their quantum nature is highly rel-
evant and a consistent quantum theory of fermion production after inflation is of crucial
importance.

So far, preheating dynamics with fermions has been mainly investigated based on semi-
classical descriptions using the Dirac equation with coupling to a homogeneous inflaton
field [21]. Also backreaction of fermions onto inflaton dynamics has been included. Fur-
ther inclusion of quantum corrections is complicated by a secular perturbative time evo-
lution which becomes rapidly invalid.

In an earlier work [7], we consistently included quantum corrections to next-to-leading
order (NLO) in the Yukawa coupling between the inflaton field and massless fermions
in the framework of a two-particle irreducible (2PI) effective action. Even for weak
couplings this turned out to change semiclassical or leading-order (LO) results so dra-
matically that we considered a complementary nonperturbative method for comparison.
It is based on lattice simulations following the techniques of Ref. [22], which we will
present here in Sec. 4.1. This method treats the fermions exactly, but the inflaton dynam-
ics remains classical-statistical. In 3 + 1 dimensions this is computationally expensive
and became feasible with the implementation of ”low-cost” fermion algorithms [23], dis-
cussed in Sec. 4.2. Remarkably, higher-order corrections turned out to leave the NLO
results practically unchanged for the considered range of weak couplings. In this thesis,
we will extend our investigations and present new insights into fermion production during
preheating.

1.2. Thermalization and string breaking in
QCD

Quantum chromodynamics is the quantum field theory of strong interaction, which is
responsible for binding of quarks and gluons into hadrons and the existence of atomic
nuclei. Most of the mass constituting the currently observable ”non-dark” matter in the
Universe is generated by strong interactions. As a theoretical concept, QCD has been
thoroughly tested in many collider experiments [24], revealing a rich spectrum of bound
states including baryons and mesons. Studies of jets in deep inelastic scattering (DIS)
[25] allowed the detection of the microscopic degrees of freedom in QCD, quarks and
gluons. The fact that these particles are not directly detectable sheds light on one of
the two most exciting properties of QCD, the confinement. It manifests itself as a linearly
rising potential between colour charges, preventing any isolation of quarks or gluons from
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1.2. Thermalization and string breaking in QCD

each other. The strong interaction between a pair of these particles creates a tube-formed
gluonic field configuration, also known as a QCD string. The energy content of this string
is proportional to its length, thus increasing the energy cost for separation of two charges
proportional to their distance.

Many model calculations consider the simplified scenario of a confining potential be-
tween external colour charges. The string formation between an external static quark
and an antiquark is an important manifestation of the physics of confinement in QCD. In
general, in theories with dynamical fundamental charges the confining string can break
because of the creation of charge-anticharge pairs which screen the static sources [26,
27, 28, 29, 30, 31]. In particular, quantum electrodynamics (QED) in one spatial dimen-
sion shares the nonperturbative phenomenon of string breaking by dynamical fermion-
antifermion pair creation with strong interactions in three dimensions. In QCD, the sepa-
ration of a quark/anti-quark pair beyond a critical distance ultimately leads to creation of
another pair, enabling two mesonic bound states to be formed.

Our current understanding of string breaking mainly concerns static properties obtained
from equilibrium lattice Monte Carlo simulations. These equilibrium calculations can be
based on a Euclidean formulation, where the time variable is analytically continued to
imaginary values. However, in real time this phenomenon can be a process far from
equilibrium with a hierarchy of time scales, which is not amenable to a Euclidean formu-
lation. Recently, the prospect of constructing quantum simulators for gauge theories with
fermions using ultra-cold atoms in an optical lattice [32, 33, 34] boosted the interest in
the real-time dynamics of string breaking. First computations in this context concentrate
on quantum link models [32, 35] and it is an important task to extend these investigations
to QED and QCD.

The other exciting property of QCD is the asymptotic freedom [36]. By this we mean
the weakening of the gauge coupling of QCD at short distances and high energies. A
consequence of asymptotic freedom is that at high energies and momenta (usually several
GeV) one can use perturbation theory for QCD calculations. On the other hand, long
range and low energy effects like confinement naturally require non-perturbative treat-
ment.

For the thermal behaviour of strongly interacting matter, asymptotic freedom implies
that at high temperatures quarks and gluons are liberated from their hadronic bound states.
Above this deconfinement phase transition, a new state of matter is formed, the quark-
gluon plasma. Theoretically, the deconfinement transition at vanishing chemical potential
has been calculated to be a cross-over and to occur in the region of T = 150 − 160MeV
by several groups [37]. This was done by applying Euclidean lattice Monte-Carlo simula-
tions, an ab-initio non-perturbative approach for numerical calculations in thermal equi-
librium, to QCD. Switching on the chemical potential, the cross-over phase transition is
predicted to become of the first order by running through a critical point first. However,
these predictions have been obtained in less rigorous effective models [38, 39, 40]. Lattice
Monte-Carlo simulations fail in this parameter region because of the famous sign problem
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Chapter 1. Introduction

[41].
The best way to experimentally probe the phase diagram of QCD are studies of matter

produced by colliding heavy ions at different collision energies. Such relativistic heavy-
ion collider experiments are currently taken place at RHIC (BNL) and LHC (CERN). In
future similar facilities will operate at FAIR (GSI) in Darmstadt. These experiments have
provided strong evidence for the existence of QGP [42, 43], while the search for the crit-
ical point of QCD is still ongoing [44]. The observation that relativistic hydrodynamics
is capable of describing the space-time evolution of QGP for a significant period of time
has let to the suggestion, that this exotic state of matter behaves as an almost perfect fluid
due to strong interactions between its constituents, quarks and gluons [45].

Our current understanding of heavy-ion collisions [1] divides their time evolution into
four subsequent phases:

1. Initial collisions of partons inside of overlapping ions. Happens on proper time
scales of τ ∼ 0.1 f m/c. Generation of initial conditions for the following time
evolution.

2. Non-equilibrium time evolution of quarks and gluons ultimately leading to a (at
least) partially thermalized state. May be characterized by plasma instabilities and
non-thermal fixed-points. Lasts up to τ ∼ 1 f m/c and the establishment of QGP.

3. Longer period of fireball expansion describable by relativistic viscous hydrody-
namics. The system is believed to proceed from the QGP phase to a gas of hadrons
by crossing a phase transition, incorporated into hydrodynamical calculations by
a change in the equation of state. Ends at τ ∼ 10 f m/c with kinetic freeze-out,
releasing a tremendous number of baryons and mesons.

4. Free streaming of isolated particles to the detectors, happens on entirely different
time scales of τ ∼ 1m/c.

The knowledge about the details of heavy-ion collisions is based on the detection of
particles emitted by the fireball. For our investigations focused on the second, pre-
equilibrium phase, electromagnetic observables are especially relevant. The reason is
that they are emitted during the whole time evolution, while hadrons mostly capture the
physics at freeze-out (end of the third stage). Unfortunately, existing facilities can only
measure particle multiplicities integrated over the entire lifetime of a collision, severely
constraining experimental capabilities for time resolution of undergoing processes.

For the initial phase of heavy-ion collisions, the colliding partons can be described in
the limit of weak gauge couplings in the ”Colour Glass Condensate” (CGC) framework
[46]. It results in a non-equilibrium state of QCD matter dominated by coherent classical
colour fields and gluonic overoccupation of the long-wavelength modes. We will refer to
these findings for the case of defining our initial conditions at the beginning of QCD time
evolution.
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1.2. Thermalization and string breaking in QCD

Current understanding of the second, pre-equilibrium phase, concentrates on the ex-
istence of plasma instabilities and universal turbulent fixed-points in an anisotropically
expanding, weakly-coupled system [47, 48, 49, 50, 51, 52, 53, 54]. Many studies have
considered the non-expanding (at a fixed spatial volume) dynamics of non-Abelian gauge
fields far from equilibrium [55, 56, 57, 58, 59]. Less is known for the dynamics of
quarks [60, 61] and for more realistic values of the gauge coupling [62]. In this work,
our focus rests on quark production and gluon dynamics in non-expanding scenarios. Of
course, further going studies will also incorporate the longitudinal expansion. An addi-
tional difficulty lies in the uncertainty about the degree of anisotropy and other deviations
from thermal equilibrium, which can be reconciled with subsequent hydrodynamical de-
scriptions and experimental data [63]. For this purpose, a deepened understanding of the
non-equilibrium dynamics during early evolution of the strongly interacting fireball is a
necessary requirement for an interpretation of heavy-ion collisions as probes of the QCD
phase diagram.
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Chapter 2.

Non-equilibrium Quantum Field
Theory
In the following chapter key aspects of quantum fields out of equilibrium are discussed.
We present the formalism and tools which can be employed to describe the time evo-
lution of such many-particle systems. Important applications for the chosen formalism
include studies of quantum fields undergoing instabilities (2.2.1), the evolution towards
thermal equilibrium (thermalization) and the existence of metastable nonthermal fixed
points (2.2.2).

2.1. General formalism
The central part of every quantum theory is its inherently probabilistic nature which
allows us to precisely calculate probabilities but limits the predictive power for single
events. This is why quantum field theory relies on statistical treatment of quantum fields
and focuses on determination of correlation functions and their properties. An object
containing information about all of the correlation functions is the density operator ρD(t),
known also as the density matrix. Any expectation value or any n-point function O(t) can
in principle be extracted from it by taking

〈O(t)〉 = Tr
[
ρD(t)O

]
. (2.1)

To allow an interpretation of ρD(t) as a probability distribution we impose a normalization
condition Tr

[
ρD(t)

]
= 1 on the density operator at all times. The time evolution of ρD(t)

itself is governed by the von-Neumann equation

i
∂ρD(t)
∂t

=
[
H(t), ρD(t)

]
, (2.2)

which is the quantum generalization of the classical-statistical Liouville equation and
consists primarily of the commutator 1 between the density operator and the Hamiltonian

1As usual the commutator is defined as [A, B] = AB − BA.
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t0 
C+ 

C- 

Figure 2.1.: Sketch of the closed time path contour with both positive and negative
branches.

of the system. Here and in the following we use natural units with ~ = c = kB = 1 and the
metric tensor gµν = diag(1,−1,−1,−1). Space-time variables are denoted by x = (t, x),
while in cases where four-momentum p = (p0, p j) is defined we use x = (x0, x j) as well
for clarity. Performing actual computations in the operator formalism turns out to be
impractical for our purposes. To tackle the time evolution in quantum field theory more
efficiently we apply path integral quantization, enabling us to use c-numbers instead of
operators. However before doing this we first introduce the concept of a closed time path
(CTP) using unitary time evolution operators

U (t, t0) = T̂ expi
∫ t

t0
dt′H(t′)

, (2.3)

where T̂ and H are time ordering and Hamilton operators respectively. Some of the im-
portant properties of this object are U(t0, t′)U(t′, t1) = U(t0, t1) and U(t, t) = 1. Now we
can formally solve Eq. (2.2)

ρD(t) = U(t, t0)ρD(t0)U(t0, t) , (2.4)

such that Eq. (2.1) becomes

〈O(t)〉 = Tr
[
ρD(t0)U(t0, t)OU(t, t0)

]
. (2.5)

What changes is that instead of determining ρD(t) we can now evolve the operator itself
first forwards and then backwards in time along the CTP and make the statistical average
according to the initial density matrix ρD(t0). A graphical sketch of the new time ordering
is presented in Fig. 2.1.

2.1.1. Generating functional for correlation functions
In this subsection we introduce the path integral representation of non-equilibrium quan-
tum ensembles by considering the simplified case of a one-component scalar bosonic

12
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field theory. At first we consider the standard generating functional (corresponding to the
partition function in a purely statistical framework)

Z[J,R] =

∫
Dϕ exp

[
iS[ϕ] +

∫
x

J(x)ϕ(x) +
1
2

∫
x,y
ϕ(x)R(x, y)ϕ(y)

]
, (2.6)

which depends on linear and quadratic sources J(x) and R(x, y). To extract correlation
functions it is more convenient to use the connected generating functional W[J,R] defined
by Z[J,R] = exp[iW[J,R]]. By making functional derivatives of W[J,R] with respect to
sources we are able to extract correlation functions like the one-point function φ(x) and
the two-point function (propagator) G(x, y):

δW[J,R]
δJ(x)

= φ(x) ,
δW[J,R]
δR(x, y)

=
1
2

(G(x, y) + φ(x)φ(y)) . (2.7)

For initial value problems the generating functional has to be modified in order to incor-
porate the initial density operator ρD as well as the closed time path C. The resulting path
integral [6]

Z[J,R, ρD] =

∫
[dϕ1

0][dϕ2
0]〈ϕ1

0|ρD(t0)|ϕ2
0〉

ϕ2
0∫

ϕ1
0

Dϕ ×

× exp

iS C[ϕ] +

∫
x,C

J(x)ϕ(x) +
1
2

∫
x,y,C

ϕ(x)R(x, y)ϕ(y)

 , (2.8)

consists of a functional integral over fluctuating fields on both time branches which are
initially distributed according to ρD(t0). This density operator is not restricted to any
particular form, making the here presented path integral formulation a very general tool
capable of describing initial conditions ranging from the lowest energy state of a theory,
the vacuum, to the thermal state of maximized entropy at a given temperature, by consid-
ering the corresponding density operator. For systems in thermal equilibrium the density
operator is given by ρD,eq ∼ e−H/T with the Hamilton operator H and the temperature T .
In this case, the density operator can be included into the path integral by extending the
time integration along the imaginary time axis from 0 to −i/T , which is an efficient way
to dynamically construct ρD,eq [6].

So far we have seen that the major step involved in tackling general non-equilibrium
systems with path integrals is the time evolution of the fields forwards and backwards
along the closed time path. For many practical purposes this procedure is replaced by
going back to a simple time integration but simultaneously doubling the number of fields,
introducing ϕ+ and ϕ− fields. These degrees of freedom represent fluctuating quantum
fields on the positive C+ and negative C− time branches respectively (see Fig. 2.1). To

13



Chapter 2. Non-equilibrium Quantum Field Theory

clearly separate between classical-statistical fluctuations on one side and genuine quantum
fluctuations on the other side a basis transformation is applied:(

ϕ̄
ϕ̃

)
=

(1
2

1
2

1 −1

)
×

(
ϕ+

ϕ−

)
. (2.9)

The new field ϕ̄ represents the average of the original fields while the field ϕ̃ stands for
the difference between them. The new path integral

Z[J,R, ρD] =

∫
[dϕ̄0][dϕ̃0]〈ϕ̄0+ϕ̃0/2|ρD(t0)|ϕ̄0−ϕ̃0/2〉

∫
ϕ̄0,ϕ̃0

Dϕ̄Dϕ̃ exp
[
iS[ϕ̄, ϕ̃] + sources

]
,

(2.10)
where the sources were omitted for simplicity, will be used in the following subsection to
clarify the difference between quantum and statistical effects.

2.1.2. Quantum vs. classical-statistical field theory
The generating functional introduced in Eq. (2.10) contains field fluctuations of both
quantum and classical-statistical origin. To disentangle both types of fluctuations we
consider as an example a simple scalar bosonic toy model, specified by its action

S [ϕ] =

∫
x

1
2
∂µϕ∂

µϕ −
1
2

m2ϕ2 −
λ

4
ϕ4 , (2.11)

with integration running over the whole space but only the forward time branch C+ from
t0 to t. In a classical theory this action leads to an equation of motion for the fields(

�x + m2 + λϕ2
cl(x)

)
ϕcl(x) = 0 . (2.12)

It can be expressed in terms of a functional Fourier transform:∫
DϕDχ exp

i
∫
x

χ
(
�x + m2 + λϕ2

)
ϕ + sources

 . (2.13)

Here the functional integration over auxiliary field χ is employed as a representation of
the Delta functional δ[

(
�x + m2 + λϕ2(x)

)
ϕ(x)]. Its role is to constrain the subsequent ϕ

integration to trajectories which are a solution of the classical equation of motion (2.12).
To make the comparison with quantum fields more visible we associate in the following χ
with ϕ̃ and ϕ with ϕ̄. What is still missing are the initial conditions. We include them via
ρW[ϕ̄0, ˙̄ϕ0], a Wigner transform of ρD[ϕ̄0 + ϕ̃0/2, ϕ̄0− ϕ̃0/2]. In the end, and after dropping
boundary terms, the classical-statistical partition function is given by

Zcl[J,R] =

∫
[dϕ̄0][d ˙̄ϕ0]ρW[ϕ̄0, ˙̄ϕ0]

∫
Dϕ̄Dϕ̃ exp

i
∫
x

ϕ̃
(
�x + m2 + λϕ̄2

)
ϕ̄ + sources

 .
(2.14)
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Therefore, the action in the path integral reads

S [ϕ̄, ϕ̃] =

∫
x

ϕ̃
(
� + m2

)
ϕ̄ − λϕ̃ϕ̄3 . (2.15)

On the other hand, for a quantum field theory on the closed time path action (2.11) would
be S ±[ϕ+, ϕ−] = S [ϕ+] − S [ϕ−], while in terms of ϕ̄ and ϕ̃ we obtain

S [ϕ̄, ϕ̃] =

∫
x

ϕ̃
(
� + m2

)
ϕ̄ − λϕ̃ϕ̄3 −

λ

4
ϕ̃3ϕ̄ , (2.16)

where we used that ϕ+ = ϕ̄ + ϕ̃/2 and ϕ− = ϕ̄ − ϕ̃/2. Comparing Eqns. (2.15) and (2.16)
we observe that, assuming identical initial conditions, quantum and classical-statistical
theories are almost the same. Indeed the only difference is the additional interaction term
in the action:

∆S qm[ϕ̄, ϕ̃] =

∫
x

λ

4
ϕ̃3ϕ̄ , (2.17)

which is missing in a classical-statistical framework. In a general bosonic theory (de-
scribing fields with integer spin) the terms of purely quantum origin are terms nonlinear
in the difference field ϕ̃. As a consequence treating a system in a classical-statistical ap-
proximation means ignoring these contributions to the path integral [64, 65, 66]. Such a
procedure should be understood as an expansion of S [ϕ̄, ϕ̃] in ϕ̃ truncated at linear order.
For practical applications it is more convenient to judge the applicability of this truncation
based on correlation functions, especially two-point functions. It turns out that quantum
fluctuations are negligible as long as |〈ϕ̄(x)ϕ̄(y)〉|2 � |〈ϕ̄(x)ϕ̃(y)〉−〈ϕ̃(x)ϕ̄(y)〉|2 or, in terms
of the original fields [64, 65]:

F(x, y) =
1
2
〈{ϕ(x), ϕ(y)}〉 � i〈

[
ϕ(x), ϕ(y)

]
〉 = ρ(x, y) . (2.18)

Here we introduced the spectral function ρ(x, y) and the statistical function F(x, y). The
former contains information about the spectrum of a theory while the latter tells us how
strongly each of the available states is populated. For systems in which classical macro-
scopic fields are present the classicality condition is slightly modified to

|F(x, y) + φ(x)φ(y)|2 � |ρ(x, y)|2 . (2.19)

In cases in which we are able to define a (quasi-)particle number in momentum space,
n(t, p), the criterion for the validity of the classical-statistical approximation simplifies to
n(t, p) ≥ 1.

Stated differently, this concerns the large field or large occupancy limit, which is rel-
evant for important phenomena such as non-equilibrium instabilities, particle creation
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from large coherent fields or wave turbulence. The description breaks down once the
typical field occupancies become of order unity. In particular, this is the case in thermal
equilibrium. For an introductory review see Ref. [6].

Finishing our discussion we should note that the initial density operator itself in general
also includes quantum effects, making it possible to evolve a quantum system in time
solely with statistical methods. For purely Gaussian bosonic systems, e.g. free non-
interacting theories, such time evolution would be trivial and exact, as long as the initial
conditions are a known eigenstate of the theory. In our work we will take advantage of
this issue and start our time evolution of interacting systems with initial conditions based
on analytically known Gaussian eigenstates of non-interacting theories.

2.2. Applications
Having laid out the basic ingredients and properties of non-equilibrium quantum field the-
ory in the previous section, we now focus on its typical applications. Of course there is
a great amount of possible transient time-dependent states of matter, however the atten-
tion of the scientific community is to a large extent concentrated on some very specific
challenges. In principle they can be sorted into three distinct categories:

1. Fast time evolution of unstable states going along with changes of the major prop-
erties of a particular system, e.g. particle content, typical energy scale, pressure,
temperature etc. Such processes are often triggered by either a change in external
parameters or a symmetry explicitly broken by initial conditions. In the next sub-
section we will discuss different initial conditions leading to exponentially growing
modes (instabilities), a classical example of fast non-equilibrium physics.

2. Approach towards and small deviations from thermal equilibrium. The latter topic
is usually considered under the assumptions of linear response theory and/or ex-
pansions around equilibrium, e.g. in hydrodynamics. For larger deviations from
equilibrium, the questions of thermalization time and the final temperature of a
medium become increasingly important. Interestingly, complete or partial thermal-
ization of a closed quantum system is itself a controversial research topic acquiring
great interest from both experimentalists and theoreticians. Here we will discuss
thermalization primarily in the contexts of cosmology and heavy-ion collisions.

3. Finally there is a possibility that a system arrives at a nonthermal fixed point. This
concept implies that time evolution drives a medium from an initial state not di-
rectly towards thermal equilibrium but first to a different nonthermal attractor. Of
course a trajectory has to begin sufficiently far from the thermal state in order to
be drown to the alternative fixed point. In driven macro- and microscopic systems
there is a plethora of such phenomena, most prominent examples being lasers and
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turbulence. In closed systems such fixed points are inherently unstable, since fi-
nally every statistical ensemble will maximize entropy and equilibrate. However,
before it happens the medium can remain in the nonthermal state for arbitrarily long
periods of time, an effect occurring e.g. in glasses.

2.2.1. Instabilities and vacuum decay

Instabilities in quantum field theory arise when correlation functions exhibit exponential
growth over a finite period of time. In the following we will concentrate on one- and
two-point functions and present scalar and plasma instabilities relevant for this work. We
will also mention vacuum decay in gauge theories by Schwinger pair production.

Parametric resonance

The phenomenon of parametric resonance is well known from classical physics, where
it appears when the length of an oscillating pendulum varies periodically in time. If the
external frequency matches the internal frequency of the pendulum the amplitude starts
to grow exponentially and finally the pendulum makes a loop. It is striking that such a
simple scenario from classical mechanics can, at least at leading order in the amplitude,
be exactly matched into an initial value problem in quantum field theory [14, 16, 17]. To
make this transition, we first come back to our simple scalar bosonic model in Eq. (2.11)
with the potential V = 1

2m2ϕ2+ λ
4ϕ

4 and consider only the one-point function (also referred
to as a macroscopic field) φ(t) = 〈ϕ〉 and the statistical two-point function F(x, y), which
encodes the magnitude of field fluctuations. The mapping between the two physical situ-
ations connects the external frequency of the change in the pendulum length in classical
mechanics to the periodically oscillating macroscopic field. To trigger these oscillations,
the field has to be initialized with a sufficiently high amplitude (Fig. 2.2), otherwise
the signal of parametric resonance would be suppressed w.r.t. vacuum fluctuations. The
unstable pendulum amplitude in classical mechanics is correspondingly identified with
quadratic field fluctuations F(x, y). In a purely Gaussian state these fluctuations can be
directly interpreted as particle numbers. Hence the overshooting of the pendulum trans-
lates into exponentially enhanced particle production in quantum field theory.

Of course this rapid growth of fluctuations cannot be sustained for infinitely long pe-
riods of time. The linear approximation of the full dynamics breaks down as soon as the
amplitude of fluctuations ceases to be negligible in comparison to the macroscopic field.
At this point, non-linear effects come into play. They first change the growth pattern of
fluctuations and ultimately stabilize the system. In this work, we will consider the impact
of parametric resonance on fermion production in the context of preheating after inflation.
For this purpose, the macroscopic field driving the instability is the inflaton field, while
the unstable modes translate into inflaton excitations.
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)(V



Figure 2.2.: Sketch of initial conditions for parametric resonance, the field begins at a high
value and performs damped oscillations in the convex potential.

Spinodal decomposition

The second instability relevant for our studies is the spinodal decomposition, also known
as tachyonic instability in cosmological context. It manifests itself as a consequence of
a double well potential with two global minima and an unstable local maximum. Such
potentials arise naturally during phase transitions in which matter in a symmetric phase is
cooled down and exhibits symmetry breaking. Tachyonic instabilities are also a popular
model for preheating after inflation, especially if one considers more than one scalar field.
In such models one field is responsible for slow-roll during inflation while the second
”waterfall” field plays the dominant part in preheating by exhibiting a tachyonic instability
after the first field reached its potential minimum.

To realize spinodal decomposition in our model from Eq. (2.11), the potential has to
change its form by switching the sign in front of the mass term, V = −1

2m2ϕ2 + λ
4ϕ

4, a
process often called ”quench”. In contrast to parametric resonance here the macroscopic
field starts in the local maximum at φ = 0, where it becomes unstable against small
perturbations after the quench (Fig. 2.3). However, the main effect is the instability
of low-momentum scalar fluctuations. Instead of usual plain-wave solutions exp±iωpt,
where ωp =

√
|p|2 − m2 is the dispersion relation, these excitations exhibit exponentially

damped and growing solutions e±γpt with γp =
√

m2 − |p|2. So in the linear regime all
modes with momenta lower than the mass will be amplified. In the non-linear regime a
pattern similar to the one known from parametric resonance arises, leading to secondary
growth of higher momentum modes and finally to saturation [67].
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Figure 2.3.: Sketch of initial conditions for spinodal decomposition, the region around the
origin becomes concave making the original vacuum unstable.

Schwinger mechanism

It has already been pointed out in the early days of quantum physics that the vacuum of
quantum electrodynamics (QED) becomes unstable against the formation of many-body
states in the presence of strong external electromagnetic fields. This manifests itself as
the creation of electron-positron pairs by the Schwinger mechanism [68, 69, 70]. Nev-
ertheless, this fundamental quantum effect has not been experimentally observed so far
as it has not been possible to generate the required electromagnetic field strengths in a
laboratory. However, due to the rapid development of laser technology during the last
decades, an experimental verification of electron-positron pair production in the focus of
high-intensity laser pulses comes into reach.

Vacuum pair production in an applied uniform electric field of strength E0 may be
viewed as a quantum process in which virtual electron-positron dipoles can be separated
to become real pairs once they gain the binding energy of 2m. For this homogeneous
scenario without any backreaction of produced fermions onto the original field, the pair
production rate per volume has been determined analytically by Schwinger:

ΓS chwinger =
(eE0)2

4π3

∞∑
n=1

1
n2 exp

(
−

nπm2

eE0

)
. (2.20)

Here n is the number of pairs which tunnel simultaneously from the vacuum and e is
the coupling of QED. This linear regime of pair production is strongly modified as soon
as the backreaction becomes sizeable and begins to damp the homogeneous field, thus
reducing the effective production rate. However, there will be strong spatial and tem-
poral inhomogeneities of the electromagnetic field in realistic situations as envisaged in
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upcoming high-intensity laser experiments. Thus numerical studies of Schwinger pair
production which go beyond the homogeneous case and naturally incorporate inhomo-
geneities become necessary. It is important to emphasize that Schwinger pair production
is not limited to QED but is expected to occur in other gauge theories as well, particularly
in QCD. In the context of heavy-ion collisions, this mechanism is believed to contribute to
the decay of flux-tubes. These are gauge field configurations appearing in the framework
of Color Glass Condensate (CGC) containing coherent chromoelectric fiels in longitudi-
nal direction. Clearly such field configurations could decay via Schwinger mechanism
making studies of this effect relevant for an even wider range of physical phenomena.

Nielsen-Olesen plasma instability

In non-abelian gauge theories various instability types are known, mostly arising from
anisotropies in initial conditions. One of them is the magnetic Nielsen-Olesen instability
generated by the presence of a homogeneous chromomagnetic field. Such field configu-
rations with the field chosen to point in one spatial and one colour direction,

Ba
i = δ1aδziB , (2.21)

change the dispersion relation of gluonic excitations. Their low-momentum modes be-
come exponentially enhanced with a typical growth rate of γp =

√
gB − p2

z , with g being
the gauge coupling. In analogy to spinodal decomposition there is a typical scale, here
√

gB, separating stable and unstable regions of phase space. Since enabled through ini-
tial anisotropy, this instability will tend to bring the system closer to the isotropic state
[71, 72]. In 6.3 we will provide more details for initializing Nielsen-Olesen instabilities
in SU(2) gauge theory and show how the isotropization emerges numerically.

2.2.2. Nonthermal fixed points and thermalization
All of the instability mechanisms described in previous subsections have something in
common, namely the fact that for a wide range of parameters they lead to a state of mat-
ter dominated by infrared fluctuations. This naturally happens since these are the modes
that exponentially increase during both linear and non-linear phases of the particular in-
stability, while high momentum modes can only be populated by slower scattering and
coalescence processes. We call such infrared enhanced states ”overpopulated” because
their infrared dominance can be translated into high occupation numbers at low momenta,
easily exceeding the occupancies of a thermalized system by orders of magnitude.

But how can we build any realistic expectations about the thermalized state? This
can be achieved by exploiting one of the basic conservation laws valid for the systems
studied in this work, the energy conservation. We are exclusively focused on closed, non-
dissipative systems undergoing unitary time evolution. This means that the initial energy
density is also the final energy density of the thermal state.
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A caveat at this point lies in the fact that a perfectly unitary time evolution is reversible
by construction, strictly prohibiting real thermalization since the entropy of such systems
has to be conserved. Properties of matter in full thermal equilibrium should also be com-
pletely independent of any details of initial conditions, a memory loss which is technically
impossible for the problems treated here. To circumvent these formal obstacles, we will
apply a cruder definition of thermalization by comparing a finite set of correlation func-
tions out of equilibrium with those computed in equilibrium. In fact we will concentrate
on one- and two-point functions (Gaussian observables) in order to compare particle dis-
tributions, instead of comparing the whole probability distribution containing all n-point
correlation functions.

What is the physical interpretation for measuring thermalization of only lower n-point
correlators for matter undergoing unitary time evolution? One can talk in this context of
an apparent thermalization during which lower n-point functions are being driven towards
the equilibrium fixed point determined exclusively by conserved quantities, while all the
details of the initial state are being preserved in higher correlators. Of course, this picture
can only make sense as long as the contribution of all non-Gaussian correlators to the
probability distribution is negligibly small w.r.t. the Gaussian part.

Comparison with thermal equilibrium on the level of (quasi-)particle distributions (con-
structed from Gaussian observables) is done by considering Bose-Einstein distribution
for bosons, nBE(ωp) = Nb/(e(ωp−µb)/T − 1) and Fermi-Dirac distribution for fermions,
nFD(ωp) = N f /(e(ωp−µ f )/T + 1). Here T is the temperature, µb/ f the bosonic/fermionic
chemical potential and ωp the dispersion relation, while Nb and N f stand for the number
of degrees of freedom for bosons and fermions respectively. It is useful to mention at this
point that the Bose-Einstein distribution in the classical limit of (ωp − µ) � T takes on
the Rayleigh-Jeans form: nRJ(ωp) = NbT/(ωp − µ). A useful physical system to compare
with is that of a non-interacting gas of massless bosonic and fermionic particles without
any chemical potentials. In this simple case we can analytically determine the integrated
energy density ε (Stefan-Boltzmann law):

ε =
π2

30

(
Nb +

7
8

N f

)
T 4 . (2.22)

Taking advantage of this relation, we are able to estimate the final temperature of a system
just by means of its conserved energy density and counting the number of bosonic and
fermionic degrees of freedom. E.g. for Dirac fermions N f = 4 · # f lavours, for photons
Nb = 2, for S U(Nc) gauge theory Nb = 2(N2

c − 1) and for a O(N) symmetric scalar model
Nb = N.

Coming back to the bosonic overpopulation after instability, we realize that in order
to reach thermal equilibrium, the system has to transport energy from low momenta to
short length fluctuations. It was observed in previous studies of weakly coupled scalar
and non-abelian gauge theories that in such cases a turbulent cascade emerges, accompa-
nied by diverging time scales and self-similar scaling of statistical and spectral two-point
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functions F(x, y) and ρ(x, y) [73]. Switching from space-time to frequency-momentum
regime by Wigner transformation, the equal-time scaling relations are

F(ω,p) = s2+κF(szω, sp) , ρ(ω,p) = s2−ηF(szω, sp) , (2.23)

where momentum and frequency are defined w.r.t. relative coordinates x − y and rescaled
by an arbitrary number s. We introduced here the dynamical scaling exponent z, anoma-
lous dimension η and scaling exponent κ. The latter governs the scaling behaviour of the
particle number distribution n(p) ∼ |p|−κ. For a non-interacting or a weakly interacting
theory the anomalous dimension is expected to vanish or be much smaller than one while
the dynamical exponent z is mostly determined by the dispersion relation, making it one
for a relativistic and two for a non-relativistic theory [73, 74].

So far studies of turbulence in non-expanding relativistic quantum field theories re-
vealed a different behaviour for scalar and gauge fields. In O(N) symmetric scalar field
theories overpopulation has been shown to evolve towards a double cascade, consisting
of an energy cascade towards the ultraviolet and an additional particle cascade to the in-
frared. The energy cascade takes place in the regime where 1/λ � n(p) � 1 and the
corresponding exponent has been evaluated perturbatively to the value of κ = 3/2, in ac-
cordance with numerical simulations [58]. The particle cascade on the other side usually
takes place where the occupation numbers are non-perturbatively high, n(p) ≥ 1/λ. In
this region the scaling exponents have been determined using a 1/N expansion to next-to-
leading order (NLO) for variable spatial dimensionality [73]:

κ = −η + z + d . (2.24)

For three spatial dimensions κ3d = 4. The reason for this nontrivial fixed point in the
infrared momentum region is that inelastic scattering processes are suppressed compared
to elastic scattering, so that the system is unable to get rid of the over-abundance of par-
ticles. This results in an inverse particle cascade, also known as strong turbulence, trans-
porting particles towards the infrared. Finally these particles condense in the zero mode
and contribute to the build-up of a transient non-equilibrium analogue of Bose-Einstein
condensate. The condensate survives for parametrically long times before decaying via
inelastic processes before the system equilibrates.

For gauge fields inelastic and elastic scattering are equally efficient, such that only a
single cascade can be maintained. The value for critical exponent κ is 3/2 for earlier and
4/3 for late times. These values have been found numerically and are supported by the
analysis of dominant matrix elements in the framework of Boltzmann equations [59, 58].
Earlier gauge dynamics, characterized by κ = 3/2, may be influenced by condensation
of ultra-soft gluon modes, similar to the scalar case. However this remains a controver-
sial proposal since any condensate would be a gauge dependent and thus unobservable
quantity. A recent work [75] suggests that at even later times the critical exponent could
become indistinguishable from the classical equilibrium, namely κ = 1.
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Methods

In the previous chapter we introduced the basic concepts of non-equilibrium quantum field
theory in the path integral formulation and named some physical applications relevant for
this work. In the following we present some computational techniques and truncations
which can be used to evaluate the path integral numerically and to compute the time evo-
lution of correlation functions. First of all the method of classical-statistical lattice field
theory will be explained, which is one of the central tools we use to obtain our results.
Afterwards we focus on the two-particle irreducible effective action and Kadanoff-Baym
equations of motion, also mentioning possible truncation schemes in this framework. Fi-
nally, we will shortly discuss kinetic theory, its derivation from the path integral approach
and Boltzmann equations.

3.1. Lattice
There is a significant class of problems where the dynamics of bosonic quantum fields
can be accurately mapped onto a classical-statistical system. This is the case whenever
anti-commutator expectation values for bosonic fields are much larger than the corre-
sponding commutators [64], as we have already stated in 2.1.2. This limit has been
studied extensively for scalar field theories [16, 64, 20, 76, 74] as well as pure gauge
theories [55, 56, 57, 58, 59, 47]. In this limit, observables can be obtained as ensemble
averages of solutions of classical field equations. To motivate this numerically advanta-
geous procedure, we go back to Eq. (2.14),

Zcl =

∫
[dϕ̄0][d ˙̄ϕ0]ρW[ϕ̄0, ˙̄ϕ0]

∫
Dϕ̄Dϕ̃ exp

i
∫
x

ϕ̃
(
�x + m2 + λϕ̄2

)
ϕ̄

 , (3.1)

and perform the integration over ϕ̃ analytically. By doing this, we make a step backwards
from the path integral formulation towards the original classical formulation in terms of
equations of motion for classical fields (see Eq. (2.12)). After this functional Fourier
transform we arrive at an expression dominated by a Delta functional, here written for the
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computation of an expectation value (since we are usually interested in expectation values
of an operator and not the generating functional itself):

〈O〉 =

∫
[dϕ0] [dϕ̇0] W[ϕ0, ϕ̇0]

∫
DϕO(ϕ) δ[ϕ − ϕcl(ϕ0, ϕ̇0)] . (3.2)

Here ϕcl(ϕ0, ϕ̇0) is the solution of the classical field equation (2.12) with initial conditions
ϕ0 and ϕ̇0, later we will refer to it as a particular trajectory of the system. We consider
canonical field variables at initial time t0, i.e. ϕ0(x) = ϕcl(t0, x) and ϕ̇0(x) = ∂tϕcl(t, x)|t=t0
for the classical field ϕcl(x). The values for the canonical field variables at initial time are
distributed according to a normalized phase-space density functional W[ϕ0, ϕ̇0], such that
the external functional integration in (3.2) are realized numerically by an arithmetic aver-
age over trajectories [64, 77]. Ensemble averages at initial time are taken to correspond
to the respective quantum expectation values for the fields, emphasizing once more the
crucial importance of quantum effects in the initial conditions.

One of the most important advantages of classical-statistical simulations is field val-
ues are available at every point in time and space, while most of the other methods are
truncated to a sub-set of lower correlation functions. In particular, the evolution of all
higher bosonic n-point correlation functions can be easily constructed by averaging over
products of ϕcl and ϕ̇cl such as 〈ϕcl(x)ϕcl(y)ϕcl(z) . . .〉. In principle the results for these and
all other observables have to be obtained after averaging over infinitely many trajectories.
In practice the number of simulations needed to achieve convergence (up to the desired
level of accuracy) is finite and can be further reduced by the volume average for spatially
homogeneous ensembles.

Numerical simulations in the classical-statistical framework are carried out using a
leap-frog algorithm1 on a d +1 dimensional space-time lattice with a real time coordinate.
The simulated spatial volume is V = (Nas)d with spatial lattice spacing as and number
of lattice points N in each direction, where periodic spatial boundary conditions are used.
The momentum resolution is determined by N and as, with the highest possible lattice
momentum proportional to 1/as and the lowest one to 1/(Nas)2. The time direction is
discretized using a lattice spacing at and length tmax = Ntat.3

First- and second-order derivatives on the lattice are discretized using symmetric finite

1This algorithm reduces computer memory requirements because only variables for the previous ti−1 and
the current ti timesteps are saved. The fields at the next timestep ti+1 are calculated from this two sets of
information using equations of motion and immediately overwrite the fields at ti−1 in memory. Finally
the memory addresses of the two sets of variables are switched, since for the next step ti takes on the
role previously played by ti−1.

2On the lattice momentum integrals are replaced by sums:
∫ d3 p

(2π)3 −→
1

N3a3
s

∑
p.

3There is no (anti-)periodicity in real time employed, as is typically the case for Euclidean lattice formu-
lations.
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3.2. Two-particle irreducible effective action

difference approximations

f ′(x) =
f (x + ai) − f (x − ai)

2ai
,

f ′′(x) =
f (x + ai) + f (x − ai) − 2 f (x)

a2
i

. (3.3)

Here ai with i = s, t denotes either the spatial or temporal lattice spacing. For the calcula-
tion of second-order bosonic spatial derivatives an alternative higher-order discretization
can be applied, which is slightly more accurate for larger lattice spacings:

f ′′(x) =
16 f (x + ai) + 16 f (x − ai) − f (x + 2ai) − f (x − 2ai) − 30 f (x)

12a2
i

. (3.4)

To remain consistent with the lattice version of derivatives, it is necessary to define lat-
tice momenta. This is achieved by applying discrete derivatives to plane-wave solu-
tions (typically spanning the basis of solutions for free non-interacting fields), such as
∂xeipx =

[
(eipas − e−ipas)/(2as)

]
eipx. The corresponding lattice momentum definitions are

p̄i =
sin(pias)

as
, i = 1, 2, 3 (3.5)

for a first order spatial derivative as appearing in a Dirac equation for fermions, or

p2
lat =

1
a2

s

3∑
i=1

4 sin2
( pias

2

)
(3.6)

for second-order spatial derivatives as ones appearing in a Klein-Gordon equation with
pi = 2πni/(Nas) and ni = 0, ...,N − 1. For scalar bosonic theories we can also use the
higher-order discretization (3.4), which leads to

p2
lat =

1
a2

s

3∑
i=1

[
2.5 −

8
3

cos (pias) +
1
6

cos (2pias)
]
. (3.7)

Typically the stability of a leap-frog algorithm requires that temporal lattice spacings are
significantly smaller than the spatial ones. In our simulations, this criterion is fulfilled by
choosing as/at ≥ 20.

3.2. Two-particle irreducible effective action
Classical-statistical lattice simulation techniques described in 2.1.2 and 3.1 provide a
powerful tool for many nonequilibrium applications, they have been successfully used
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to describe instabilities [78, 17] and to explore properties of nonthermal fixed points in
scalar and gauge theories [79, 80, 81, 82, 55, 56, 57, 58, 59, 47]. But despite all of these
advantages there are still many problems lying out of the range of validity of classical-
statistical methods. In particular the thermalization process inherently involves lowering
of typical occupation numbers, down to the order of unity and below, invalidating basic
assumptions of the lattice approach. Therefore it is often necessary to employ different
techniques which have their strength where lattice simulations start to fail. An important
tool for real-time problems in quantum field theory is the two-particle irreducible (2PI)
effective action, a functional method sharing some similarities with Dyson-Schwinger
equations. Here we will briefly introduce this approach, for a more thorough introduction
and derivation we refer to [6] and references therein.

Let us start with the generating functional on the closed time-path (Eq. (2.8)) and the
respective connected generating functional W[J,R, ρ] = −i ln(Z[J,R, ρ]). Our first step is
to switch functional variables from external sources J(x) and R(x, y) to internal correlation
functions of the system. To achieve this, we perform a double Legendre transform w.r.t.
to linear and bilinear sources:

Γ2PI[φ,G] = W −
∫
x

δW
δJ(x)︸︷︷︸
=φ(x)

J(x) −
∫
x,y

δW
δR(x, y)︸   ︷︷   ︸

= 1
2 (G(x,y)+φ(x)φ(y))

W(x, y) . (3.8)

The resulting 2PI effective action depends on the macroscopic field φ(x) and the propaga-
tor G(x, y), as defined in Eq. (2.7)4. Most importantly, the propagator here is a ”dressed”
two-point correlator of an interacting system and not the explicitly known bare propa-
gator G0(x, y) as usually encountered in perturbation theory. For simplicity we assumed
that the density operator is a Gaussian object and has been incorporated into linear and
bilinear sources at initial time, although a procedure to incorporate non-Gaussian density
operators in 2PI computations has also been developed [83]. The effective action for the
non-interacting part of a bosonic theory is exactly given by

Γ0
2PI[φ,G] = S [φ] +

i
2

Tr ln G−1 +
i
2

G−1
0 G , (3.9)

where we took advantage of a compact notation writing product of functions, logarithm
and trace over all internal and space-time indices in the functional sense. Effective action
for the non-interacting part of a fermionic system looks very similar

Γ0
2PI[Gψ] = −iTr ln G−1

ψ − iG−1
0,ψGψ , (3.10)

the only major change being the absence of a purely classical part like S [φ] for bosons,
since there is no macroscopic fermion field, 〈ψ(x)〉 = 〈ψ̄(x)〉 = 0.

4If we had chosen to make a triple or even higher Legendre transform we would arrive at 3PI or even nPI
effective action depending on n-point correlation functions. Such higher Legendre transforms may be
relevant for certain quantum field theories.
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3.2. Two-particle irreducible effective action

For interacting theories the effective action is modified in two ways. A minor effect is
the possibility that both bosonic and fermionic bare propagators may now depend on the
macroscopic field φ. But the main difference comes from completely new terms in the
effective action, Γ2PI = Γ0

2PI + Γ2. In the full nonlinear theory Γ2 would take into account
interactions between quantum fields to all orders in any expansion, however for realistic
applications we are forced to apply an appropriate expansion for every physical problem
and truncate it at finite order. In the diagrammatic picture Γ2 is a sum of closed loop
diagrams, with lines being propagators, vertices being proportional to coupling constants
and every closed loop associated with an integration over space-time or four-momentum.
This picture is especially useful when considering a loop expansion, a coupling expansion
in the number of loops in a Feynman graph. But contrary to standard perturbation theory,
the lines in these graphs are not just bare but consistently dressed propagators, meaning
that a single 2PI loop diagram resums infinitely many orders of perturbation theory. In the
2PI approach the number of loop diagrams at each order is significantly smaller than in
perturbation theory or the 1PI effectve action approach [6], because only those diagrams
which can not be separated by cutting two propagator lines are contributing. Another
advantage of 2PI is the absence of secularities in the time evolution, a problem which
prevents successful utilization of standard perturbative or 1PI expansions for real-time
problems. Loop expansion of the 2PI effective action has been applied to bosonic and
fermionic theories in and out of equilibrium [84, 85, 86], one of its early successes was
the first numerical example of thermalization in quantum field theory [84].

Since many exciting problems in modern physics are posed for the regime of strong
coupling or parametrically high occupation numbers, an alternative expansion scheme
is required. The reason is that loop expansion breaks down whenever diagrams with
many loops become more or equally important than those with few loops. This naturally
occurs for couplings ≥ 1 or in regimes of bosonic overpopulation. In models with N
either bosonic or fermionic fields interacting exclusively via quartic self-interaction, a
non-perturbative 1/N expansion is available [78]. This expansion reorders processes as a
series in the number of fields with leading order (LO) proportional to N1, next-to-leading
order (NLO) proportional to N0, next-to-next-to-leading (NNLO) to N−1 etc. The leading
order in these models is the collisionless meanfield or Hartree approximation, in which
every particle interacts only with an averaged background field. In the case of a O(N)
theory the 1/N expansion has been efficiently resummed and after truncating at NLO
compared to classical-statistical lattice simulations [74]. The comparison showed that
for moderate number of fields (N = 4) the NLO 1/N results reproduce non-perturbative
behaviour at strong coupling as well as parametrically strong fluctuations and exhibit good
agreement with lattice simulations.

A core strength of the 2PI effective action approach is its thermodynamic consistence,
meaning that in this method the energy conservation is preserved for all times up to the
level of numerical accuracy5. The reason for this advantage is that all truncations are

5This fact also allows calculations of thermodynamic observables, e.g. pressure, in thermal equilibrium
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made on the level of the effective action Γ2PI and not just in equations of motion.
After choosing a certain truncation e.g. by using an expansion of Γ2 in a small dimen-

sionless parameter, we have to derive equations of motion from the now fixed form of
effective action. Having a 2PI action which depends on bosonic and fermionic correlators
in a symmetric phase (φ = 0), we obtain equations of motion for them by

δΓ[φ,G,Gψ]
δG(x, y)

= 0 ,
δΓ[φ,G,Gψ]
δGψ(x, y)

= 0 . (3.11)

After this variation we get an analogue of Dyson-Schwinger equations presented here in
a compact form with self-energies Σ(x, y) and Σψ(x, y):

G−1(x, y) = G−1(x,y)
0 − Σ(x, y) , Σ(x, y) = 2i

δΓ2

δG(x, y)
, (3.12)

G−1
ψ (x, y) = G−1

0,ψ(x, y) − Σψ(x, y) , Σψ(x, y) = −i
δΓ2

δGψ(x, y)
. (3.13)

For real-time numerical computations we decompose the propagators and the self-energies
into their local, statistical and spectral parts, here presented for the bosonic scalar toy
model from 2.1.2:

G(x, y) = F(x, y) −
i
2
ρ(x, y) sgn(x0 − y0) , (3.14)

Σ(x, y) = Σlocal(x)δ(x − y) + ΣF(x, y) −
i
2

Σρ(x, y) sgn(x0 − y0) . (3.15)

Thus we arrive at the Kadanoff-Baym equations of motion for two-point functions:

[
�x + M2(x)

]
F(x, y) = −

x0∫
0

dz Σρ(x, z)F(z, y)

+

y0∫
0

dz ΣF(x, z)ρ(z, y) ,

[
�x + M2(x)

]
ρ(x, y) = −

x0∫
y0

dz Σρ(x, z)ρ(z, y) . (3.16)

Here M2(x) is the local effective mass, changed by interactions at meanfield level due to
tadpole contributions contained in the local part of the self-energy, Σlocal(x)δ(x − y)6. For

[86].
6There is also a contribution to the effective mass coming from symmetry breaking in scalar models.
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gauge fields and fermions the right-hand side of these equations remains identical while
the left-hand side changes according to the form of the inverse bare propagator in these
theories. These Kadanoff-Baym equations of motion are very general, since every possi-
ble truncation scheme would only influence the self-energies on the right-hand side of the
equations. For the case of a non-vanishing macroscopic field these equations are supple-
mented by an evolution equation for φ. The final set of equations is then usually Fourier
transformed in relative spatial coordinates to spherical momentum space and discretized
in time and absolute values of momentum using standard techniques.

A central property of Kadanoff-Baym equations is the occurrence of memory integrals
on the right-hand side of Eq. (3.16): The integration runs over the whole history of
the system. By the virtue of this memory effect we are able to take into account non-
Markovian processes during the time evolution. However, this feature comes along with
a massive computational drawback, namely the need to store the complete time history in
computer memory. The consequence is that the amount of memory which 2PI computa-
tions require scales quadratically with the number of simulated timesteps, making studies
of long time scales incredibly hard.

3.3. Kinetic theory
In the previous two sections we have covered two very distinct methods for real-time cal-
culations in quantum field theory, both of them relied on a description in terms of quantum
fields and their correlation functions. But for many applications a more accessible (but
potentially less rigorous) approach is desirable. One of such methods will be introduced
in this section.

Here we will cover the kinetic approach to non-equilibrium problems, designed for
small deviations from thermal equilibrium and for dilute and weakly interacting gases of
quantum (quasi-)particles with well-defined dispersion relations. The strongest simplifi-
cation done in kinetic equations is the assumption that all of the relevant phenomena are
included in a time and phase-space dependent particle distribution n(x, p, t). This is equiv-
alent to enforcing a Gaussian state at all times, in contrast to 2PI or lattice simulations.
Another caveat lies in the fact that phase-spaces in quantum theories are not well defined.
Uncertainty relations prevent spectators from exact and simultaneous determination of a
particle’s location and momentum. Nevertheless, one is able to formulate an equation
of motion for a phase-space distribution which we will refer to as Boltzmann equation,
although many scientist contributed to its development in the modern form. The general
form of a Boltzmann equation is[

∂

∂t
+ v · ∇x + F · ∇p

]
n(x, p, t) = C[n(x, p, t)] , (3.17)

where v is the velocity associated with a particle with momentum p and F a possible exter-
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nal force acting on it. The left-hand side of this equation consists of the time derivative,
a drift term proportional to the spatial gradient and appearing only in inhomogeneous
systems and a term describing the change of a particle’s momentum due to an external
force. Such interactions with external forces are especially relevant for particles moving
in coherent Abelian and non-Abelian gauge fields, since their trajectories are modified by
the Lorentz force (e.g. Vlasov equations [87]). The right-hand side is determined by the
collision term C[n(x, p, t)] describing inter-particle scattering processes in which the total
energy and momentum of participants are conserved. There are two possible types of col-
lision events, elastic and inelastic. The former additionally conserve the total number of
particles while the latter change this quantity. A common notation for different scattering
processes is m→ n, where m is the number of incoming and n of outgoing participants.

What is the typical explicit form of a collision integral? To give an example, we will
explain here the structure of C2→2[n(p, t)], an elastic process with few participants for a
spatially homogeneous problem:

C2→2[n(p1, t)] =

∫
d3 p2

(2π)32ω2

d3 p3

(2π)32ω3

d3 p4

(2π)32ω4

1
2ω1
|M12→34|

2(p1, p2, p3, p4)(2π)4 ×

×δ4(p1 + p2 − p3 − p4) [n1n2(1 + n3)(1 + n4) − (1 + n1)(1 + n2)n3n4] .
(3.18)

Obviously energy and momentum conservation are enforced by the Delta function while
the collision integral runs over all momenta of participants except for the external mo-
mentum p1. The other parts include products of distribution functions for all involved
momenta contributing to the quantum-statistical part of C2→2[n(p, t)] and the matrix el-
ement |M12→34|

2(p1, p2, p3, p4). The latter object holds the entire information about the
vacuum cross-section of involved particles and is the only part that explicitly depends on
the microscopic theory. E.g. the cross-section for 2 → 2 gluon scattering in QCD is
fundamentally different from the 2 → 2 scattering in scalar field theories, nevertheless
both processes can usually be described by an almost identical Boltzmann equation. So
the typical procedure to set-up a Boltzmann computation is, besides choosing suitable
initial conditions for n(x, p, t), to identify important processes which have to be included
and then to calculate or look up the corresponding matrix elements. One common way to
obtain these matrix elements is by perturbative calculations up to a desired order in the
coupling.

Another exciting feature of this Boltzmann equation lies in the fact that we can easily
distinguish between terms which would dominate in the classical regime and those impor-
tant for genuine quantum calculations. We already introduced a similar classification for
quantum fields in 2.1.2 in order to establish the assumptions behind the classical-statistical
approximation. Concentrating on the statistical part of Eq. (3.18), we are able to identify

30



3.3. Kinetic theory

two types of contributions[
n1n2(1 + n3)(1 + n4) − (1 + n1)(1 + n2)n3n4

]
=

[
n1n2n3 + n1n2n4 − n1n3n4 − n2n3n4

]
cl

+

+
[
n1n2 − n3n4

]
qm
,

(3.19)

those cubic and quadratic in powers of the distribution functions. If we remind ourselves
that the classical-statistical limit is approached for n � 1, we come to the conclusion
that in this limit only cubic terms would contribute to the scattering. As a consequence,
achieving quantum thermalization would require to take into account cubic as well as
quadratic terms7.

Having covered some specifics of Boltzmann equations, we would like to finish this
discussion by outlining the connection between 2PI effective action and kinetic theory [6].
We will show which assumptions are needed to derive the Boltzmann equation for particle
distributions from the Kadanoff-Baym equations 3.16 for correlators [88]. Our first step is
a Wigner transformation of F(x, y) and ρ(x, y) from x and y coordinates to relative s = x−y
and center X =

x+y
2 coordinates. Afterwards, we subtract the Hermitian conjugate of 3.16

(in the new coordinates) from 3.16 itself and expand the result in gradients w.r.t. the center
coordinates, ∂X. Only the leading terms are kept. The lower limit of the memory integrals
is sent to −∞. Thus we assumed that initial conditions are defined in the remote past
and that the time evolution is sufficiently slow to justify a gradient expansion. The latter
assumption already gives us a hint that Boltzmann equations are not capable of describing
fast processes like instabilities. Equations we get by these manipulations are already local
in center time X0:

2kµ∂XµF(X, k) = Σρ(X, k)F(X, k) − ΣF(X, k)ρ(X, k) , (3.20)
2kµ∂Xµρ(X, k) = 0 . (3.21)

Here a Fourier transformation in relative coordinates s was performed so that k is the
corresponding momentum. A nice benefit of starting from an action is visible at this point,
since we are able to insert any set of formerly closed loop diagrams into spectral and
statistical components of the self-energy, automatically generating perfectly consistent
matrix elements and statistical factors. Additionally restricting ourselves to homogeneous
problems, we may drop the dependence on the spatial center coordinates Xj, realizing that
the spectral function at this order in the gradient expansion is strictly static, ∂X0ρ(X, k) = 0.
Now we are able to switch from describing dynamics of correlators to that of particle

7Here we discussed the limit of classical wave dynamics, the (long wavelength) infrared limit of every
quantum theory. There exists also the opposite ultraviolet limit of classical (short wavelength) point-
particles. In this limit the cubic terms are dropped in favour of the quadratic contributions, since in the
ultraviolet n � 1.
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numbers by the means of a generalized fluctuation-dissipation relation:

F(X0, k) =

[
1
2

+ n(X0, k)
]
ρ(k) . (3.22)

In thermal equilibrium this relation would be exactly fulfilled and the distribution function
would be the Bose-Einstein distribution. For the non-equilibrium case this generalized
fluctuation-dissipation relation defines the time-dependent particle number. In order to
arrive at a familiar form for Boltzmann equations, we need a few more steps. First, we as-
sume a (quasi-)particle picture with on-shell energies for the in- and outcoming particles.
This yields a specific form for the spectral function, typical for stable on-shell particles.
The last step is to integrate out the relative frequency k0, leaving an effective (momentum
dependent) particle density n(X0, k). To summarize, we restate the assumptions required
to derive a Boltzmann equation:

1. Gradient expansion to leading order.

2. Sending the initial time to the infinitely remote past.

3. Specific (quasi-)particle form of the spectral function.

4. Generalized fluctuation-dissipation relation.

Finally we remark that higher order truncations of the gradient expansion can be utilized
to obtain kinetic equations beyond Boltzmann.
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Lattice Fermions
So far our focus in the chapters on lattice techniques and the classical-statistical approx-
imation in Secs. 2.1 and 3.1 lied on calculations in purely bosonic theories. Here we
will extend this discussion towards including fermionic degrees of freedom in a non-
perturbative fashion. For this sake we use our toy model from 2.11 and couple it to a
quadratic fermion sector, S [ϕ, ψ̄, ψ] = S B + S F with

S F[ϕ, ψ̄, ψ] =

∫
x,C

ψ̄
(
i ∂µγµ − m

)
ψ − hψ̄ϕψ , (4.1)

with the real-time contour C, and S B remaining in the same form as in 2.11. The partition
function without source terms is now given by

Z =

∫
[dϕ0][dψ̄0][dψ0]ρ[ϕ0, ψ̄0, ψ0](t0)

∫
DϕDψ̄Dψ eiS B[ϕ]+iS F [ψ̄,ψ,ϕ] . (4.2)

We restrict ourselves to fermions appearing quadratically in the action because they re-
semble the fermionic contributions to the Standard Model, in particular both QCD and
QED are quadratic in fermion fields. Additionally, we assume that also the initial density
operator is quadratic in ψ and ψ̄. However, this assumption is less strict and could be
avoided by altering the time integration path.

Exploiting the rules for Gaussian Grassmann-valued integration, we integrate out ferm-
ions in the partition function and arrive at

Z =

∫
[dϕ0]ρ[ϕ0](t0)

∫
Dϕ det

[
i ∂µγµ − m − hϕ

]
eiS B[ϕ] . (4.3)

This procedure is similar to the one applied in Euclidean lattice QCD although the nu-
merical implementation in real-time is different. For instance in the following sections
the evaluation of the fermion determinant will be accomplished by solving Dirac-like
equations of motion for two-point correlators [22].

After having integrated out fermion fields, we are left with a bosonic path integral albeit
our new action has an additional nonlinear term

det
[
i ∂µγµ − m − hϕ

]
eiS B[ϕ] = eiS B[ϕ]+Tr log[i ∂µγµ−m−hϕ] = eiS e f f

B [ϕ] . (4.4)
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In spite of having now a rather complicated form of bosonic self-interaction, we can eas-
ily repeat all of the steps made in Sec. 2.1, especially the introduction of ϕ̄ and ϕ̃ fields.
Finally, to have a self-consistent description, we solve the new effective path integral
using classical-statistical lattice simulations. Formally it corresponds to an expansion
of S e f f

B [ϕ] in powers of ϕ̃ up to the linear order. The approximation involved in ignor-
ing infinitely many terms with higher powers of ϕ̃ remains the same as in 2.1.2 and is
only valid for sufficiently high bosonic occupation numbers[66]. Comparing the emer-
gent classical-statistical action to the one known from purely bosonic theory without the
fermion determinant, we can immediately associate the additional terms linear in ϕ̃ with
the backreaction of the fermionic sector onto the dynamics of bosons. For scalars, the
corresponding equation of motion reads(

�x + m2
)
ϕcl(x) +

λ

6
ϕ3

cl(x) = −Jψ , (4.5)

with the backreaction Jψ. Its explicit form will be determined later in the course of this
work for various physical models including those based on gauge symmetry.

4.1. Mode functions
We will describe two numerical methods for the time evolution of fermionic two-point
correlation functions. In this section, we begin with a method that despite being com-
putationally expensive is an exact solution without any additional approximations [22].
But before explaining in details the mode function approach let us first clarify which cor-
relators are really required to describe time evolution of a mixed boson-fermion system.
We begin with the equation of motion for classical-statistical scalar fields in our already
introduced toy model with fermions(

�x + m2
)
ϕcl(x) +

λ

6
ϕ3

cl(x) + h〈ψ̄(x)ψ(x)〉 = 0 . (4.6)

Apparently the backreaction of fermions onto scalar dynamics is contained in 〈ψ̄ψ〉. It
turns out that this expectation value, which is nothing else but the local fermion mass
density, can be written in terms of the statistical propagator Fψ(x, y) = 1

2〈[ψ(x), ψ̄(y)]〉 via

〈ψ̄(x)ψ(x)〉 = −Tr
[
Fψ(x, x)

]
, (4.7)

where the trace runs over all possible internal degrees of freedom. Since statistical propa-
gators encode the information about occupation numbers, their time evolution is of central
interest for studies of particle production. Therefore, we will concentrate on the compu-
tation of Fψ(x, y). However, the method applied here could also be used to determine how
the spectral propagator ρψ(x, y) = i〈{ψ(x), ψ̄(y)}〉 evolves in time. Our starting point is
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4.1. Mode functions

the field operator ψ(x), an object which is unobservable itself but which can be used to
derive equations of motion for correlators. In presence of classical or classical-statistical
bosonic fields the field operator fulfils the Dirac-like equation[

i∂µ,xγµ − hϕ(x)
]
ψ(x) = 0 , (4.8)

which is the operator equation of motion from canonical quantization in the limit of clas-
sical (not operator-valued) bosonic fields. By multiplying from the right with ψ̄(y) we
can continue to construct the evolution equation for the fermion commutator. Since the
fermion fields only appear quadratically in the Lagrangian (giving rise to the linearity of
Eq. (4.8)), one obtains a Dirac-like equation of motion for the expectation value Fψ(x, y):[

i∂µ,xγµ − hϕ(x)
]

Fψ(x, y) = 0 . (4.9)

To derive this result, we took advantage of the fact that the classical field ϕ(x) as well as
the derivative operator commute with fermion operators. The conjugate field ψ̄(y) also
fulfils a similar equation of motion

− i∂µ,yψ̄(y)γµ − hϕ(y)ψ̄(y) = 0 . (4.10)

Multiplying this equation with ψ(x) from the left completes the time evolution of Fψ(x, y)
by determining the behaviour of y coordinates.

The starting point of the mode-function expansion is a Fourier expansion of the fermi-
onic field operator,

ψ(t, x) =

∫
d3 p

(2π)3

∑
s

(
bs(p)Φu

s(t, x,p) + d†s (p)Φv
s(t, x,−p)

)
. (4.11)

The fermionic ladder operators bs(p) for particles and ds(p) for antiparticles are used here
in the framework of canonical quantization, where the spinor index s runs from 1 to 2.
These operators are characterized by their anti-commutators{

bs(p), b†s′(q)
}

= (2π)3δss′δ(p − q) , (4.12){
ds(p), d†s′(q)

}
= (2π)3δss′δ(p − q) , (4.13)

while all other possible anti-commutators (e.g. of the form {b, b}, {b†, b†}, {b†, d} or
{b, d†}), vanish. The expectation values for the non-vanishing commutators of the lad-
der operators are parametrized as〈[

bs(p), b†s′(q)
]〉

= (2π)3δss′δ(p − q)
(
1 − 2ns

+(p)
)
, (4.14)〈[

ds(p), d†s′(q)
]〉

= (2π)3δss′δ(p − q)
(
1 − 2ns

−(p)
)
. (4.15)
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Here ns
±(p) denote initial occupation numbers of particles and antiparticles of a given

spin and spatial momentum. The central part of the expansion are the time-dependent
mode-functions Φu

s(t, x,p) and Φv
s(t, x,p), which have to be initialized with

Φu
s(t0, x,p) = us(p)e−ipx , Φv

s(t0, x,p) = vs(p)e−ipx . (4.16)

The eigenspinors us(p) and vs(p) represent particle and antiparticle eigenstates of the
Dirac operator. Substituting (4.11) into the equation of motion for ψ(x) (Eq. (4.8)), one
observes that every mode function has to satisfy[

i∂µγµ − hϕ(x)
]
Φu/v

s (x,p) = 0 . (4.17)

After the time evolution of Φ
u/v
s (x,p) has been calculated, observables can be constructed

using the expansion (4.11). For the evaluation of the expectation values one has to use
properties of the initial state such as〈

b†i (p)bi(p)
〉

= nu
i (t = 0,p) , 〈bs(p)〉 = 0 , 〈b†s(p)〉 = 0 , (4.18)

and similarly for di.
The statistical two-point function reads in terms of mode functions

Fψ(x, y) =
1
2

∫
d3 p

(2π)3

∑
s

( 〈
bib
†

i − b†i bi

〉
Φu

s(x,p)Φ̄u
s(y,p)

+
〈
d†i di − did

†

i

〉
Φv

s(x,p)Φ̄v
s(y,p)

)
=

∫
d3 p

(2π)3

∑
s

(
1
2
− nu

in,s(p)
)
Φu

s(x,p)Φ̄u
s(y,p)

+

∫
d3 p

(2π)3

∑
s

(
nv

in,s(p) −
1
2

)
Φv

s(x,p)Φ̄v
s(y,p).

(4.19)

Here the subscript ”in” stresses the fact that the particle numbers appearing here are eval-
uated at the initial time. Similarly, we can also calculate the fermion contribution to the
energy density of the system 〈HD(x)〉 with the Dirac Hamiltonian HD = −iγ0γi∂i + γ0m
and any other observable O(x) of interest by a summation over the mode functions:∑

i FiΦ̄iO(x)Φi, where the index i represents the momentum, spin and charge of the mode,
the summation over the index i represents the momentum integral as well as the sum over
spin and charge modes, and Fi depends on nu

in,i and nv
in,i, similarly to (4.19).

The advantage of this method is that it is exact without further approximations and
involves no additional ensemble average as needed for the male/female approach, which
will be presented in the next section. The great disadvantage, which so far had limited
its applicability to lower-dimensional systems, is the requirement to simulate a mode
function for every possible combination of space and momentum. If implemented on a
lattice, as is described in the following, the mode-function method leads to prohibitively
high computational costs on bigger lattices.
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4.2. Male/female fermions

4.2. Male/female fermions
In the following, we concentrate on a stochastic approach which is a low-cost alternative
to the mode functions expansion introduced before. For a lattice computation in d spatial
dimensions and N lattice sites in every direction there are in total N2d mode functions
that have to be simulated. This means that e.g. in three spatial dimensions the update
of the fermionic spinor fields at every time step as well as the readout of quantities like
energy or particle number are decelerated by the huge memory requirement (scaling like
N6) and the need for large loops over all momenta and grid points. The core idea of the
male/female method is to reduce these difficulties by decreasing the amount of functions
which are evolved in time [23]. In practice, instead of simulating all momenta at every
point in space, we use a stochastic ensemble which should correctly reproduce the relevant
elements of the full original ensemble consisting of mode functions. We start again with
the initial field ψ(t0, x) at initial time t = t0 and write it for isotropic and homogeneous
initial conditions as

ψ(t0, x) =

∫
d3 p

(2π)3

∑
s

(
bs(p)us(p)e−ipx + d†s (p)vs(−p)eipx

)
. (4.20)

Here bs(p) and ds(p) are the annihilation operators at initial time as defined in Sec. 4.1. In
order to evaluate Fψ(x, y) without treating these operators explicitly, we utilize the ideas
proposed in [23] to rewrite the statistical propagator using a stochastic approach in terms
of so-called ”male” and ”female” spinor fields ψM(x) and ψF(x):

Fψ(x, y) = 〈ψM(x)ψ̄F(y)〉sto = 〈ψF(x)ψ̄M(y)〉sto. (4.21)

This procedure of expressing the time evolution of Fψ(x, y) in terms of ψM(x) and ψF(y),
is applicable since the equations of motion for the fermions are linear [23, 7, 89, 90, 91], a
property we already used to derive equations of motion for the statistical propagator in the
last section. The last equation shows that the roles of ”male” and ”female” fields are in-
terchangeable. The notation 〈. . .〉sto emphasizes that in this case the average is performed
with respect to a stochastic ensemble of male/female pairs. Additionally, one requires
that both of the stochastic spinors obey the Dirac-like equation of motion in accordance
to (4.8): [

i∂µγµ − hϕcl(x)
]
ψg(x) = 0. (4.22)

The index g (gender) distinguishes here between M (male) and F (female) fields. To re-
produce the initial configuration of Fψ(x, y) in terms of ψM and ψF the latter are initialized
as

ψM,F(t0, x) =

∫
d3 p

(2π)3

e−ipx

√
2

∑
s

(ξs(p)us(p) ± ηs(p)vs(p)) . (4.23)

So the only difference between ”male” and ”female” spinors is the sign in front of the an-
tiparticle component. Here ξs(p) and ηs(p) are random numbers coming from a Gaussian

37



Chapter 4. Lattice Fermions

distribution which are used to simulate the expectation values of products of the ladder
operators bs(p) and ds(p). Their non-vanishing correlators are linked to initial occupation
numbers

〈ξs(p)ξ∗s′(q)〉sto = (2π)3δss′δ(p − q)
(
1 − 2ns

+(p)
)
, (4.24)

〈ηs(p)η∗s′(q)〉sto = (2π)3δss′δ(p − q)
(
1 − 2ns

−(p)
)
. (4.25)

To realize these correlations in a numerical simulation, one has to average over many
pairs of ”male” and ”female” fields, but of course each of them has to be evolved in
time separately. If the number of pairs is sufficiently large, the result will converge to
the physical correlator. Later we will discuss how many male/female pairs are actually
required in practice.

Bilinears such as Fψ(x, y) are computed by combining spinors of both genders. It is
illustrative to compute the initial Fψ(x0, y0,p)|x0=y0=t0 in terms of operator-valued fields
ψ(x) at initial time and the same quantity from ψM and ψF . Since both approaches are
consistent, both calculations yield the same result, which reads for symmetric occupation
numbers n±(p) = n±(−p):

Fψ(x0, y0,p)|x0=y0=t0 =
1
2

∑
s

[ (
1 − 2ns

+(p)
)

us(p)ūs(p) −
(
1 − 2ns

−(p)
)

vs(p)v̄s(p)
]
. (4.26)

4.3. Discretization
Lattice discretization of fermions is considerably more problematic than that of bosons.
Here we will mention the cause of the inherent problems and describe some commonly
applied solutions relevant for our applications. In real-time simulations the difference
between bosonic and fermionic discretization lies in the order of derivatives appearing
in the action. Instead of second-order for bosons we are now dealing with a symmetric
first-order derivative. One should restrain from using forward or backward discretizations
of the first-order derivatives inside the fermionic equations of motion because this would
violate the hermiticity of the corresponding Hamiltonian. In 3.1 the finite difference ap-
proximations for derivatives have been listed together with the corresponding lattice mo-
mentum definitions. For fermionic degrees of freedom the straightforward discretization
with

ψ′(x) =
ψ(x + ai) − ψ(x − ai)

2ai
(4.27)

and corresponding lattice momenta p̄i =
sin(pias)

as
(remember, pi = 2πni/(Nas) and ni =

0, ...,N − 1) is known to cause so-called fermion doublers [92]. This issue can be easily
understood by looking at the free relativistic dispersion relation in terms of discretized
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fermionic momenta:

ωψ(pi) =

√√
m2
ψ +

3∑
i=1

p̄2
i =

√√
m2
ψ +

1
a2

s

3∑
i=1

sin2(pias) . (4.28)

Setting for a moment all n2 and n3 to zero, we see that in the now one-dimensional dis-
persion relation the boundaries of our Brillouin zone would lie at p1 = π and p1 = −π,
representing positive and negative lattice momenta with the highest absolute value. Based

on the one-dimensional continuum dispersion ω(p1) =
√

m2
ψ + p2

1 we would expect that

ω(p1 = ±π) > ω(p1 = 0) = mψ . (4.29)

But because of the periodicity of p̄i the discretized dispersion relation does not distinguish
between pi = 0 and pi = ±π, assigning all of them the lowest possible energy value

ωψ(p1 = ±π) !
= ωψ(p1 = 0) = mψ . (4.30)

The conclusion is that in a naive fermionic discretization particles with high lattice mo-
menta receive low energy values, contrary to the behaviour in the continuum theory. In
Fig. 4.1 the occurring situation is presented graphically. Since every energy minimum
is associated with a pole in the fermion propagator, it becomes obvious that in every
space-time direction the number of degrees of freedom is doubled such that in a numer-
ical simulation we get 2d+1 fermions instead of intended one. Included in this counting
are also the temporal doublers which arise in a similar manner because high frequency
oscillations become associated to low energy values in this type of discretization. A way
to address this problem, similar to the one commonly employed in Euclidean lattice gauge
theory, is to introduce a spatial Wilson term W into the equation of motion (4.22):[

i∂µγµ + W − hϕ(x)
]
ψg(x) = 0 . (4.31)

A standard choice would be

Wψg(x) =
ras

2
4x ψg(x) , (4.32)

where we set r = 1 from now on and use the following discretization of the Laplacian:

4x ψg(x) =

3∑
i=1

ψg(x + ai) + ψg(x − ai) − 2ψg(x)
a2

s
. (4.33)

This leads to a momentum-dependent contribution to the fermionic dispersion relation:

ω(p) =

√
m2
ψ + p̄i p̄i + asmψp2

lat +
a2

s

4
p4

lat . (4.34)
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p

p
0 

Fermion doublers 

Figure 4.1.: Sketch of the lattice dispersion relation for naive fermion discretization.

This ensures that only low-momentum excitations show a low-energy dispersion relation
[22, 7]. One observes that the additional contributions from the Wilson term vanish in the
continuum limit as → 0. However, we find that a faster approach to the continuum limit
is achieved by replacing W → WPS defined as

WPSψg(x) = iγ5
ras

2
4x ψg(x). (4.35)

Here the subscript PS means pseudoscalar in contrast to the standard scalar Wilson term.
The pseudoscalar Wilson term also leads to a (modified) momentum dependent contribu-
tion to the fermionic dispersion relation

ω(p) =

√
m2
ψ + p̄i p̄i +

a2
s

4
p4

lat. (4.36)

This illustrates that WPS eliminates the O(as) contribution to the dispersion relation, which
will be particularly advantageous for our out-of-equilibrium setup where the effective
fermion mass will be time-dependent.1 Contrary to the scalar Wilson term, WPS ensures
in such cases that the only time-dependent contribution to the dispersion relation remains
m2
ψ. In App. C we give the lattice form of the Dirac eigenspinors corresponding to this

additional term, they are used for all 3 + 1 dimensional computations presented in this
work. We do not include a temporal Wilson term as this would turn a Dirac equation into
a second order differential equation in time. The temporal doublers are avoided if only

1A related construction used in lattice gauge theory is known as twisted mass fermions [93].
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the physical modes are initialized and if the temporal lattice spacing is chosen to be much
smaller than the spatial lattice spacing at � as [22, 23, 89, 90, 91].
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Chapter 5.

Scalar Bosons with Fermions

In this chapter, we will start our investigations of fermion production from two distinct
instability scenarios in scalar bosonic theories. At first, we study the real-time dynamics
of fermions coupled to scalar fields in a linear sigma model, which is often employed in
the context of preheating after inflation or as a low-energy effective model for quantum
chromodynamics. We find a dramatic amplification of fermion production in the presence
of highly occupied bosonic quanta for weak as well as strong couplings. For this, we
consider the range of validity of different methods: lattice simulations with male/female
fermions [23], the mode functions approach [22] and the quantum 2PI effective action [85]
with its associated kinetic theory. For strongly coupled fermions we find a rapid approach
to a Fermi-Dirac distribution with time-dependent temperature and chemical potential
parameters, while the bosons are still far from equilibrium.

In the second study, we concentrate on tachyonic preheating in a model with Yukawa
interactions between fermions and scalar fields. We make an explicit comparison with
previously obtained analytic predictions for production of fermions with dynamically
generated mass and show that bosonic fluctuations drastically increase the number of
particles produced during the first stages of (p)reheating. Our numerical results indicate
that leading order approximations fail to capture the effects responsible for production
of massive fermions even at moderate values of the effective coupling. We discuss the
features of emergent particle distributions and comment on the relevance of these results
for cosmological applications.

5.1. Amplified fermion production from
bosonic overpopulation

We start with the presentation of our results for fermion production from instabilities in a
3 + 1 dimensional scalar linear-sigma model. Taking advantage of various computational
we discuss their range of applicability in detail. As our main result, we confirm the
dramatic amplification of fermion production in the presence of highly occupied bosons
that was first pointed out in Ref. [7]. This amplification is discussed in terms of the
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emerging effective coupling ξ while the results are extended to the strong coupling regime.
It turns out that the efficient male/female lattice approach accurately converges to the

exact mode functions result for the available lattice sizes. Our study shows the strength
of the male/female method to address physical questions for large volumes [7, 94, 95,
89, 90, 91], where the mode function approach becomes computationally intractable. For
weak couplings, we find that the lattice simulation results agree well with those obtained
from the quantum 2PI effective action, emphasizing the ability of the lattice approach to
describe genuine quantum phenomena.

Applying an improved lattice discretization with a pseudoscalar Wilson term, we ac-
curately resolve for the first time the high-momentum behavior of particle number dis-
tributions. For weak couplings this reveals a power-law behavior above a characteristic
momentum. For strongly coupled fermions, we find a rapid approach to a quasi-thermal
Fermi-Dirac distribution with time-dependent temperature and chemical potential param-
eters. Remarkably, this happens while the bosons are still showing turbulent behavior far
from equilibrium.

We proceed as follows: In Sec. 5.1.1 and 5.1.2 we describe the model we use to
simulate fermion production and elaborate on details of our lattice formulation, our choice
of initial conditions and renormalization procedure. In Sec. 5.1.3 we demonstrate the
convergence of the male/female method towards the exact mode functions results. In Sec.
5.1.4 consequences of neglecting higher-order quantum fluctuations as well as details
of our 2PI implementation are discussed. Moreover, we present numerical evidence for
applicability of 2PI and the degree of agreement between 2PI and lattice simulations. In
Sec. 5.1.5 and 5.1.6 we finally arrive at our results for fermion production from parametric
resonance at strong and weak coupling. We summarize and conclude in Sec. 5.1.7.

5.1.1. Model and initial conditions

We consider a relativistic quantum field theory of coupled bosonic and fermionic degrees
of freedom. It describes a generic linear sigma model for a Ns = 4 component scalar field
(σ,~π) with self-coupling λ. The scalars interact via a Yukawa coupling g with N f = 2
flavors of massless Dirac fermions ψi with flavor index i. The Lagrangian density is given
by

L =
1
2

(
∂µσ∂

µσ + ∂µ~π ∂
µ~π

)
−

1
2

m2
(
σ2 + ~π2

)
−

λ

4!Ns

(
σ2 + ~π2

)2
+ ψ̄

(
i ∂µγµ

)
ψ −

g
N f
ψ̄

(
σ + iγ5~τ · ~π

)
ψ,

(5.1)

with Dirac matrices γµ (µ = 0, . . . , 3), γ5 = γ5 = iγ0γ1γ2γ3 and ψ̄ ≡ ψ†γ0. We denote here
the Pauli matrices by ~τ.
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5.1. Amplified fermion production from bosonic overpopulation

The equal-time anti-commutation relations for the fermions are encoded in the spectral
function

ρψ,i j(x, y) ≡ i〈{ψi(x), ψ̄ j(y)}〉 (5.2)

as
γ0ρψ,i j(x, y)|x0=y0 = iδ(x − y) δi j (5.3)

with {A, B} ≡ AB + BA. Correspondingly, the boson commutation relations are encoded
in

ρσ(x, y) ≡ i〈[σ(x), σ(y)]〉 (5.4)

with
∂x0ρσ(x, y)|x0=y0 = δ(x − y) (5.5)

for [A, B] ≡ AB − BA. Equivalently, one can define spectral functions for the ~π fields,
with vanishing commutators between different fields. The brackets 〈A〉 ≡ tr(%0A) denote
the trace over a normalized initial density matrix %0, which specifies the initial conditions
at time t0. Here we will choose Gaussian initial conditions, where %0 is completely deter-
mined by one- and two-point correlation functions at t0. This class of initial conditions
will allow us to study, in particular, particle production from non-equilibrium instabili-
ties as will be discussed below. We emphasize that a choice of initial conditions does
not represent an approximation to the dynamics and irreducible higher n-point correlation
functions will build up for times larger than t0 because of the interactions in (5.1). We
restrict ourselves to spatially homogeneous initial conditions such that we can Fourier
transform with respect to spatial variables. With 〈ψi(x)〉 = 0 the one-point function for
the σ-field

φ(x0) ≡ 〈σ(x)〉 (5.6)

at initial time is specified by an initial field amplitude φ0 as

φ(t0) = φ0 , ∂x0φ(x0)|x0=t0 = 0 . (5.7)

For the initial ~π fields we take

〈~π(x)〉|x0=t0 = 0 , 〈∂x0~π(x)〉|x0=t0 = 0 . (5.8)

It remains to specify the two-point correlation functions. Apart from the above spectral
functions, whose initial conditions are fixed by the equal-time relations at initial time,
we also have to give the respective commutator expectation values for the fermions and
anti-commutators for the bosons. These so-called statistical two-point functions are [6]

Fψ,i j(x, y) ≡
1
2
〈[ψi(x), ψ̄ j(y)]〉 , (5.9)

Fσ(x, y) =
1
2
〈{σ(x), σ(y)}〉 − 〈σ(x)〉〈σ(y)〉 (5.10)
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and, similarly, the anti-commutator expectation value Fπ(x, y) for each of the ~π compo-
nents. Their spatial Fourier modes at initial time are chosen as

Fψ,i j(x0, y0,p)|x0=y0=t0 =
mψ − /p
ωψ(p)

(
1
2
− nψ(p)

)
δi j . (5.11)

with ωψ(p) =
√

m2
ψ + p2. Here the effective fermion mass mψ is given by gφ0/2 at initial

time and nψ(p) = 0 for vacuum initial conditions. For the initial boson correlators we take

Fσ(x0, y0,p)|x0=y0=t0 =
1

ω(p)

(
1
2

+ n(p)
)
,

∂x0 Fσ(x0, y0,p)|x0=y0=t0 = 0 ,

∂x0∂y0 Fσ(x0, y0,p)|x0=y0=t0 = ω(p)
(
1
2

+ n(p)
)

(5.12)

with ω(p) =
√

m2 + p2 and n(p) = 0. We choose the same initial conditions for Fσ and
for Fπ. Initial two-point functions involving different fields are taken to vanish. The above
completely specifies the initial value problem for our model.

To extract information about particle numbers from numerical simulations it is conve-
nient to define bosonic and fermionic effective particle numbers, both of which are in gen-
eral not conserved for an interacting system out of equilibrium.1 For bosons the particle
number is associated to the equal-time statistical propagator Fσ(t, t,p) and quasi-particle
energy εσ(t,p) according to [6]

εσ(t,p) =

√
∂t∂t′Fσ(t, t′,p) |t=t′

Fσ(t, t,p)
,

nσ(t,p) = Fσ(t, t,p)εσ(t,p) −
1
2

(5.13)

and equivalently for the ~π fields. Plugging the above initial values into these definitions
confirms that the vacuum we start from contains no particles according to this definition.

To discuss properties of Fψ(t,p), we consider its scalar, pseudoscalar and vector com-
ponents:

FS (t,p) =
1
4

Tr
(
Fψ(t, t,p)

)
, (5.14)

F i
V(t,p) =

1
4

Tr
(
γiFψ(t, t,p)

)
, (5.15)

1Of course, there is no unique definition of particle number in an interacting theory if the number is not
conserved. It is also nowhere needed in our calculations and only used for interpretation of the results.
We use standard definitions that are typically employed to connect to discussions in the context of
Boltzmann equations.
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5.1. Amplified fermion production from bosonic overpopulation

FPS (t,p) =
1
4

Tr
(
γ5Fψ(t, t,p)

)
, (5.16)

where the trace acts in Dirac space. The flavour indices are omitted here, because we
restrict ourselves to initial conditions which are diagonal in flavour space and thus con-
sider only flavour-averaged quantities. Each of these quantities can be used to define an
effective particle number, enabling us to construct nψ(t,p) from different combinations of
FS (t,p), FPS (t,p) and F i

V(t,p). Here we follow [7, 85, 96] and employ

nψ(t,p) =
1
2
−

piF i
V(t,p) + mψ(t,p)FS (t,p)√

p2 + m2
ψ(t,p)

. (5.17)

The time dependence of the effective fermion mass results from the dynamical macro-
scopic field φ(t).

5.1.2. Real-time lattice approach
Fermions are never largely occupied and are, in this respect, genuinely quantum. How-
ever, fermions appear quadratically in the Lagrangian (5.1) as is also the case for theories
like quantum chromodynamics or electrodynamics.2 Therefore, their dynamics can be
solved without further approximations for given classical bosonic field configuration.

The procedure is to integrate out the fermions from the path integral to get the classical
evolution equation for the bosons. This equation then depends on the fermion currents,
represented by fermion two-point correlation functions. The evolution for these fermion
correlation functions is obtained from the original Lagrangian, where the fermion fields
appear quadratically. This gives a Dirac-like equation for the fermion correlation func-
tions, which is coupled to inhomogeneous classical Bose fields. The description is very
suitable for initial value problems and, below, we will find that it accurately describes the
quantum dynamics including loop corrections for very non-trivial situations where the
latter can be computed using 2PI effective action techniques.

The above model (5.1) leads to the equations of motion(
�x + m2

)
σcl(x) +

λ

4!

(
σ2

cl + ~π2
cl

)
σcl(x) −

g
2

Tr
(
Fψ(x, x)

)
= 0 (5.18)

and (
�x + m2

)
~πcl(x) +

λ

4!

(
σ2

cl + ~π2
cl

)
~πcl(x) −

ig
2

Tr
(
Fψ(x, x)γ5

)
= 0 (5.19)

for classical bosonic fields σcl(x) and ~πcl(x). Here the trace acts in flavour and Dirac
space. These evolution equations depend on the fermion two-point correlator (5.9). For

2For all practical purposes, it can always be achieved that the fermions appear quadratically in the La-
grangian at the expense of introducing extra bosonic field degrees of freedom.
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given classical bosonic fields, the equation of motion for the spinor field ψi(x) reads:[
i∂µγµ −

g
2

(
σcl(x) + iγ5~τ~πcl(x)

)]
ψi(x) = 0. (5.20)

By multiplying from the right with ψ̄ j(y) we obtain the evolution equation for the fermion
commutator in the linear sigma model. Similar to Eq. (4.9) the Dirac-like equation of
motion for the expectation value of the commutator (5.9) is given by:[

i∂x,µγ
µ −

g
2

(
σcl(x) + iγ5~τ~πcl(x)

)]
Fψ,i j(x, y) = 0 . (5.21)

In the male/female approach both of the stochastic spinors obey the same Dirac-like equa-
tion of motion in accordance to (5.20) and (4.8):[

i∂µγµ −
g
2

(
σcl(x) + iγ5~τ~πcl(x)

)]
ψg(x) = 0. (5.22)

As already mentioned, the bosonic fields are treated in the classical-statistical approx-
imation, where the fields are evolved in time and space according to (5.18) and (5.19)
for initial conditions that are sampled to give the initial values (5.7), (5.8) and (5.12) on
average . For each run the coupled system of equations including the one for the fermion
two-point function (5.21) with initial condition (5.11) is solved.

Initial conditions on the lattice

At the beginning of each simulation initial conditions have to be specified. For the bosons
one has to specify the initial classical fields and derivatives according to (5.7), (5.8) and
(5.12) to obtain quantum-like vacuum initial conditions. They are initialized in momen-
tum space from a Gaussian probability distribution centered around zero with standard
deviation of

(
2
√

m2 + p2
)−1/2

for the fields and
( √

m2 + p2/2
)1/2

for the time derivatives
of the fields. In order to realize parametric resonance in quantum field theory the average
initial field is homogeneous with amplitude

φ(t = 0) = σ0

√
6N
λ
, (5.23)

where the parameter σ0 sets the overall scale for our simulations.
Another important property in momentum space is σ(−p) = σ∗(p) and similarly for ~π,

which is required to get real-valued fields in position space. This is achieved by multiply-
ing the real field amplitudes with a random phase factor eiα(p) with α(p) = −α(−p) and
α = 0 for pi = 0 and pi = π/as. The same procedure using another random phase factor
eiβ(p) is applied to get real-valued field derivatives w.r.t. time in position space. Due to
the fact that in our approach the scalar fields are classical-statistical we try to minimize
possible effects of UV divergent contributions by initializing the quantum-like vacuum

48



5.1. Amplified fermion production from bosonic overpopulation

correlators only up to a finite momentum Λ < |p|max
lat , with Λ being higher than all of the

momentum modes which become relevant during the simulated time.
For the male/female fermion approach, initial values are given in terms of ψM(x) and

ψF(x) at t = t0 = 0. They are directly linked to complex random numbers, which have to
fulfill correlator relations of the fermionic ladder operators (4.24). To start with vacuum
initial conditions we set all particle numbers to zero. These correlator relations are imple-
mented numerically through complex valued ξs(p) = As(p)eiϕs(p) and ηs(p) = Bs(p)eiθs(p)

with real amplitudes As(p) and Bs(p) coming from a Gaussian distribution and random
phases ϕs(p) and θs(p) to ensure that all mixed correlators vanish. Having chosen a sym-
metric finite difference approximation for the first time derivative, we have to specify
ψM(x) and ψF(x) not only at t = 0 but also at t = −at, which is done by an evolution of
the free fields according to

ψM,F(t = 0,p) = e−iγ0ω(p)atψM,F(t = −at,p). (5.24)

The initial statistical propagator Fψ(x, y)|x0=y0=0, which solves the free Dirac equation at
t = 0, reads on the lattice in the presence of the employed Wilson term as follows:

Fψ(x0 = 0, y0 = 0,p) =
mψ − γ

i p̄i − iγ5
as
2 p2

lat

2ω(p)

(
1 − 2nψ(p)

)
. (5.25)

Likewise, the fermion occupation number (5.17) is given by

nψ(t,p) =
1
2
−

p̄iF i
V(t,p) + mψ(t,p)FS (t,p) + ias

2 p2
latFPS (t,p)√

p̄i p̄i + m2
ψ(t,p) +

a2
s

4 p4
lat

. (5.26)

Renormalization

To obtain physically relevant information from our numerical simulations, we have to en-
sure that the results are insensitive to changes of the finite lattice cut-off ∼ 1/as. In prac-
tice the variation of the cutoff-scale in simulations barely exceeds one order of magnitude.
Here we consider the leading divergences perturbatively, which we explicitly verified to
lead to cutoff insensitive numerical results for a variation of the spatial lattice spacing in
the range asσ0 = 0.1 – 1. For our model this concerns the quadratically running scalar
mass terms, where the relevant contributions are coming from the one-loop scalar self-
energy corrections displayed in Fig. 5.1. Because of our choice of initial conditions with
a non-zero σ-field amplitude (5.7), the dressings of σ and ~π masses through vacuum fluc-
tuations are in general different. For given renormalized mass squared m2, we compute
the mass parameters m2

0,σ/π self-consistently from

m2
0,σ/π + Σ0,σ/π(m2

0,σ,m
2
0,π) = m2 (5.27)

49



Chapter 5. Scalar Bosons with Fermions

k = 0k = 0

Figure 5.1.: Left: Scalar tadpole. Right: Fermion loop with vanishing external
momentum.

using the analytical form of the self-energies displayed in Fig. 5.1:

Σ0,σ =
λ

48
1

N3a3
s

∑
p

 3√
m2

0,σ + p2
lat

+
3√

m2
0,π + p2

lat


− g2 1

N3a3
s

∑
p

p̄i p̄i +
a2

s
4 p4

lat(
p̄i p̄i + m2

ψ +
a2

s
4 p4

lat

)3/2 , (5.28)

Σ0,π =
λ

48
1

N3a3
s

∑
p

 1√
m2

0,σ + p2
lat

+
5√

m2
0,π + p2

lat


− g2 1

N3a3
s

∑
p

p̄i p̄i + m2
ψ(

p̄i p̄i + m2
ψ +

a2
s

4 p4
lat

)3/2 . (5.29)

At the beginning of each simulation of the real-time dynamics, these equations are first
solved by iteration starting with m2

0,σ/π = m2 until convergence is achieved. Then m2 is
replaced by m2

0,σ in equation (5.18) and by m2
0,π in (5.19).3

5.1.3. Comparison of male/female and mode functions approach
The male/female method described above has to converge to the results of the mode func-
tion expansion in the limit where the number of male/female pairs is sufficiently large. In
practice, the convergence depends on parameters such as the dimension d of space, the
number of lattice points N or the value of couplings. In general, simulations employing
the mode function expansion are limited to relatively small lattices because the number

3The Lagrangian (5.1) describes massless fermions. A non-zero mass parameter for the fermions in the
Lagrangian would lead to a divergent linear contribution to the bosonic potential requiring an additional
renormalization.
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Figure 5.2.: Occupation number of three momentum modes as a function of time and the
convergence with increasing number of male/female pairs.

of mode functions increases like Nd for every lattice point. Therefore, the total cost of
the simulation increases as N2d. In contrast, the cost for male/female fermion simulations
is expected to scale as Nd times the number of male/female pairs. As a consequence, in
one spatial dimension the male/female method has no particular advantage over the mode
functions approach, as the needed number of pairs is not significantly smaller than the
number of mode functions per lattice point. The situation is different in two or three di-
mensions, where one typically observes reasonable convergence for a much lower number
of pairs as compared to the requirements of the full mode function expansion.

To give an explicit example, we compare the time-evolution on a small 163 lattice using
the full mode function expansion and the male/female method for a varying number of
pairs. In the remainder of this work the latter method will then be used on larger lattices
to compute results for the analysis of the underlying physics. In Fig. 5.2 the fermion
occupation number (5.26) is shown as a function of time for different values of the spatial
momentum p. The underlying physical processes will be discussed in detail below. The
number of male/female pairs is varied from 5 to 600 for this plot. We clearly observe
that both approaches agree to very good accuracy for a sufficiently large number of pairs.
The convergence is typically faster for low momentum modes, in agreement with the
expectation that self-averaging (which works as an angle average in momentum space) is
more efficient for low momenta since the involved characteristic volume is larger.
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Figure 5.3.: Number of male/female pairs required to achieve convergence as a function
of number of lattice sites N in each direction.

For the employed small lattice size in this example we required a relatively high num-
ber of pairs. This is expected to change for larger lattices due to enhanced self-averaging.
Since a direct comparison with mode function results is impractical for larger lattices,
we further investigated the convergence of results as the number of male/female pairs is
increased for a given lattice size. Fig. 5.3 shows the number of male/female pairs that
are required to achieve convergence of momentum dependent particle spectra with all
other parameters, such as simulation time, lattice spacing etc., fixed. One observes that
for increasing lattice size the number of pairs can be reduced. Convergence of momen-
tum independent observables like energy density can usually be reached with even lower
statistics, because of the full employment of self-averaging for these observables. In gen-
eral, we find that a larger ultraviolet cutoff or stronger coupling worsen the convergence
making, in particular, the study of strongly correlated fermions computationally more
expensive than weakly correlated systems.

5.1.4. Validation against quantum field theory

In the previous part we described lattice methods that give a fully non-perturbative de-
scription of the dynamics in their range of validity for large bosonic field amplitudes or
occupancies. In principle, there are no further approximations in the fermion sector and

52



5.1. Amplified fermion production from bosonic overpopulation

the lattice description includes the physics of fermion loop corrections to infinite order.
However, there are additional procedures to suppress fermion doublers on the lattice us-
ing Wilson fermions. It is, therefore, illustrative to validate the lattice description against
(continuum) quantum field theory at least in the weak-coupling limit, where this is possi-
ble since suitable approximations exist for the latter. The quantum description we employ
is based on a resummed large-N expansion to next-to-leading order (NLO) for the bosonic
sector and a resummed loop expansion for the fermionic sector of our model [78, 85].

The resummation is efficiently formulated in terms of the two-particle irreducible (2PI)
effective action in Minkowski space-time [6]

Γ[φ,G,Gψ] = S [φ] +
i
2

Tr ln
(
G−1

)
+

i
2

Tr
(
G−1

0 (φ)G
)

(5.30)

− iTr ln
(
G−1
ψ

)
− iTr

(
G−1

0,ψGψ

)
+ Γ2[φ,G,Gψ] ,

which includes all quantum corrections if the two-particle irreducible part Γ2 is known.
Here, φ(x) denotes the field expectation value (5.6) while G = diag{Gσ, ~Gπ} and Gψ denote
the full boson and fermion propagators, which are taken to be diagonal in field index
space. The traces involve the sum over field indices as well as space-time integrals. The
fields live on a closed time path or Schwinger-Keldysh contour C, which runs forth and
back along the real-time axis starting at a given initial time t0 [6]. The classical part of the
action reads

S [φ] =

∫
C

dt
∫

d3x
(
1
2
∂µφ ∂

µφ −
1
2

m2φ2 −
λ

4!Ns
φ4

)
, (5.31)

while the classical propagators are

iG−1
0,σ(x, y; φ) =

δ2S
δφ(x)δφ(y)

= −

(
� + m2 +

λ

2Ns
φ2(x)

)
δ(x − y) ,

iG−1
0,π(x, y; φ) = −

(
� + m2 +

λ

6Ns
φ2(x)

)
δ(x − y) ,

iG−1
0,ψ(φ) =

(
i∂µγµ −

g
2
φ(x)

)
δ(x − y) . (5.32)

The real-time quantum evolution equations for φ, G and Gψ are obtained from (5.31) by
variation

δΓ[φ,G,Gψ]
δφ(x)

= 0 ,
δΓ[φ,G,Gψ]
δG(x, y)

= 0 ,
δΓ[φ,G,Gψ]
δGψ(x, y)

= 0 . (5.33)

They are solved numerically by discretizing the equations on a sphere in spatial momen-
tum space using standard techniques. In particular, this description requires no Wilson
term to remove fermion doublers inherent in the above lattice approach.
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Figure 5.4.: Expansion of Γ2 to NLO in 1/N for the bosonic sector. Solid lines are full
boson propagators while external legs correspond to insertions of the macro-
scopic field φ. The dots indicate that we sum up an infinite series of diagrams,
with every next diagram having one additional loop in the bubble ring.

Figure 5.5.: Expansion of Γ2 to two loops in the fermion sector. A dashed line represents
a full fermion propagator.

Our approximation for Γ2 is depicted graphically in Figs. 5.4 and 5.5. The employed
1/N expansion to NLO in the bosonic sector corresponds to summing an infinite series
of diagrams [78], while the fermion corrections are taken into account at two-loop order.
We will call this approximation ”NLO 2PI” in the following. For the comparison, we
employ weak couplings λ � 1 and g � 1. The 1/N expansion can describe even non-
perturbatively large occupancies of order 1/λ, which will be relevant for the dynamics in
the bosonic sector, whereas the occupancies in the fermion sector are strictly limited by
Fermi statistics. Of course, the loop expansion of Γ2 in the fermion sector is not expected
to be valid for strong couplings. As a consequence, the quantum results can be used to
validate the lattice approach for weak couplings only.

The comparison of quantum and classical-statistical lattice results has been performed
in great detail for purely bosonic theories in the past [64, 77]. Here, we concentrate on
the fermion sector extending our earlier results [7]. We decompose the propagators into
their respective statistical and spectral components as [6]

Gσ/π(x, y) = Fσ/π(x, y) −
i
2
ρσ/π(x, y) sgn(x0 − y0) , (5.34)

Gψ(x, y) = Fψ(x, y) −
i
2
ρψ(x, y) sgn(x0 − y0) . (5.35)
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Figure 5.6.: Time evolution of fermion occupation numbers for three different momenta
at effective coupling strengths in the range ξ = 0.1 − 2.0.

The statistical two-point functions Fσ/π(x, y) and Fψ(x, y) as well as the corresponding
spectral functions are the ones defined in 5.1.1. In particular, we employ the same defini-
tions for extracting the time evolution of particle numbers.

In Fig. 5.6, we plot the fermion number nψ(t, |p|) as a function of time for three different
momentum modes |p| = 0.25σ0, 0.5σ0 and σ0. Since we expect our approximation of the
2PI effective action for the quantum evolution to break down at strong coupling, we give
the results for different values of the effective coupling ξ = g2/λ and compare them to
the respective lattice simulation results. One observes from Fig. 5.6 that for ξ = 0.1
the agreement between quantum and lattice approach is almost perfect. It worsens with
increasing coupling as expected, but even at ξ = 1.0 infrared modes seem to be quite
accurately reproduced. However, at ξ = 2 the coupling expansion seems to finally break
down.

In Figs. 5.7 and 5.8, we present the full spectrum at fixed time tσ0 = 50 for two differ-
ent couplings. We observe a rather good agreement between both methods, reproducing
characteristic features in the shape of the distribution. However, there is a clear discrep-
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Figure 5.7.: Comparison between fermion spectra computed with 2PI and on the lattice at
ξ = 0.1.

ancy in the high-momentum part of the spectrum building up for the larger ξ = 0.25. In
general, we find good agreement between both methods at sufficiently small ξ as expected
while the agreement worsens for larger ξ. The level of agreement for small ξ is also re-
markable since the comparison involves two very different procedures: The results from
the quantum 2PI effective action approach are obtained from a single run of the time evo-
lution equations for correlation functions, while the lattice results are computed from a
statistical average of many different runs of the corresponding lattice evolution equations.
Already because of the Wilson term for the lattice description, it is rather difficult to get
precisely the same initial conditions realized in both cases.

These results confirm that possible dicretization and statistical errors on the lattice are
under control. On the other hand, they show that for not too strong coupling a loop approx-
imation beyond lowest order is sufficient to describe fermion production accurately. This
has to be confronted with standard semi-classical (LO) descriptions of fermion produc-
tion, which employ the solution of a Dirac equation in the presence of a time-dependent,
but spatially homogeneous background field neglecting fluctuations [21]. In this case, the
evolution equation for the fermion statistical two-point function reads[

iγµ∂x,µ −
g
2
φ(t)

]
Fψ(x, y) = 0 . (5.36)
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Figure 5.8.: Comparison between fermion spectra computed with 2PI and on the lattice at
ξ = 0.25.

In contrast, our employed NLO 2PI approximation includes one-loop self-energy correc-
tions to this equation. From the point of view of the lattice approach, a crucial difference
concerns the spatial dependence of the fluctuating fields appearing in (5.21). Sampling
with respect to these fluctuations leads to the generation of loop corrections for ensemble
averages, which are missing in (5.36). In the next section, we will present numerical evi-
dence that a semi-classical approximation fails to describe the dynamics and may only be
applied for very short times of the initial evolution.

5.1.5. Fermion production from parametric resonance

The initial conditions described in 5.1.1 lead to the well-known phenomenon of para-
metric resonance in the scalar sector (described in 2.2.1) which we summarize here as
follows: Small initial quantum fluctuations grow exponentially in time. At early times
this growth occurs in a compact momentum range with p2 ≤ σ2

0/2. As time proceeds, the
exponentially growing modes induce non-linear behaviour and secondary instabilities for
higher momentum modes with even faster growth rates occur. As a consequence, there is
a fast rise in the occupation numbers nσ,π(t, |p|) for a broad momentum range. Figs. 5.9
and 5.10 show the behavior of the field φ(t) and the occupancies of transverse modes

57



Chapter 5. Scalar Bosons with Fermions

nπ(t, |p|), respectively. The rapidly oscillating field decreases its amplitude with time,
while the occupancies grow. After the fast initial growth period of occupation numbers,
the time evolution of the now highly occupied scalar field modes slows down consid-
erably, and can be described in terms of turbulent flows of energy and particle number
[79, 80, 81, 82]. The subsequent evolution becomes self-similar and the corresponding
power-law behavior with nπ(|p|) ∼ 1/|p|4 is clearly visible from Fig. 5.10.
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Figure 5.9.: Time evolution of the macroscopic field.

In the following, we will analyze the behavior of the fermions, which is the main topic
of our work. To this end, it is useful to compare our lattice simulation results with standard
semi-classical approximations based on Eq. (5.36). For this comparison we distinguish
the weak-coupling regime, where ξ = g2/λ � 1, and the strongly coupled case with
ξ of order one. Fig. 5.11 shows the fermion occupation number distribution for ξ =

0.1 at the time tσ0 = 250 after the initial instability has ceased. The lattice simulation
results (circles) show a low-momentum range for |p| ≤ σ0, where the distribution is rather
flat. For higher momenta one observes a power-law behavior whose exponent agrees
well with the scaling exponent found for the bosonic occupancies as shown in Fig. 5.10.
While bosons can support a 1/|p|4 dependence also at low momenta, the fermion number
distribution has to level off in the infrared because of the Pauli exclusion principle of
course [85, 96]. For this weak-coupling case we observe corresponding results also in
the quantum theory based on the 2PI effective action at NLO, in accordance with the
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Figure 5.10.: Spectra of transverse scalar occupation numbers at different times.

discussion of Sec. 5.1.4. However, the lattice results including fluctuations clearly show
significant differences to the semi-classical approximation results (squares), which neglect
all fluctuations. In fact, the observed differences are so pronounced only after the bosonic
fields become highly populated. This enhancement of fluctuations, which is missing in
standard semi-classical approximations, will be discussed in detail below.

A similar snapshot of occupation number spectra for the strongly coupled case (ξ = 1),
shown in Fig. 5.12, reveals a rather different picture. Here, the lattice simulation exhibits a
distribution without any power-law behaviour. Remarkably, the distribution can be nicely
fitted to a Fermi-Dirac distribution with time-dependent temperature and chemical poten-
tial parameters. At the time tσ0 = 250 employed for Fig. 5.12 they are T/σ0 = 1.15
and µ/σ0 = 0.13. The similarity to the Fermi-Dirac distribution is non-trivial at this
stage, since the bosons are still far from equilibrium showing the characteristic ∼ 1/|p|4
behavior in the infrared. The Fermi-Dirac distribution also requires the specification of
a dispersion relation or ωp and we approximate it here by the free dispersion relation for
massless fermions with a pseudoscalar Wilson term as discussed in (4.36). It should be
emphasized that the total charge in our simulations is zero such that the number of parti-
cles and antiparticles is equal. As a consequence, the chemical potential vanishes for true
thermal equilibrium. Here we find that µ(t) is oscillating, which is not surprising in view
of the oscillating Yukawa fermion mass term at this stage, and its absolute value turns out
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Figure 5.11.: Lattice simulation results for the occupation number distribution of weakly
coupled fermions with ξ = 0.1 are compared to the standard semi-classical
approximation.

to be much smaller than the temperature for all considered times. The time-dependence
of the fitted temperature parameter is shown in Fig. 5.13. It is seen to approximately rise
linearly in time, after performing an average over periods of 4t = 5/σ0 in order to smooth
oscillations due to φ(t). To get a simple estimate of how much this time-dependent tem-
perature parameter deviates from the value of the equilibrium temperature, we compute
the temperature of a corresponding gas of non-interacting massless bosons and fermions
having a continuum dispersion relation:

Teq = σ0

 45Ns

π2
(
Ns + 7

2 N f

)
λ


1
4

' 2.02σ0 . (5.37)

Here, we used the initial energy density, which for parametric resonance is given in terms
of φ(t = 0) and the self-coupling λ (here and throughout this section λ = 0.1). This
estimate indicates that the observed time-dependent temperature parameter is still far from
the asymptotic equilibrium value. The observed linear rise of the temperature parameter
would lead to the above estimate for the equilibrium temperature after a time teq ' 103/σ0.
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Figure 5.12.: Lattice simulation results for the occupation number distribution of strongly
coupled fermions with ξ = 1 are compared to the semi-classical approxima-
tion. Shown is also a Fermi-Dirac distribution with time-dependent temper-
ature and chemical potential parameters.

In order to study in more detail the similarities and deviations from a Fermi-Dirac dis-
tribution, it is instructive to consider the ’inverse slope parameter’ ln

(
n−1
ψ − 1

)
. Fig. 5.14

shows this quantity for ξ = 1 as a function of ωp at four different times. For a thermal
equilibrium distribution it would be a time-independent straight line. For a vanishing
chemical potential in thermal equilibrium this line would go through the origin. One
observes from the figure that an approximately stable inverse slope is established rather
quickly for low momenta around |p| . 1.5ωp/σ0. This is due to the fact that already
at early times many low-momentum bosonic quanta are occupied, making it possible for
fermions to scatter off them and redistribute momentum and energy. In contrast, there
are almost no high-momentum bosons present at early times, preventing a more efficient
transfer of energy and particles to the UV. Around tσ0 = 250 one observes again the high
level of agreement with a Fermi-Dirac distribution with fitted temperature and chemical
potential parameter at that time.
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5.1.6. Understanding amplified fermion production
The above lattice simulation results for fermion production from parametric resonance
revealed a dramatic difference compared to standard semi-classical estimates. The latter
includes for instance fermion decay from a homogeneous background field, but neglects
fluctuations or scattering effects. Scattering processes can become strongly enhanced
if the participating modes are highly occupied. Correspondingly, the observed differ-
ences between lattice simulations and the semi-classical treatment are pronounced once
the bosons become strongly occupied.

In the following, we analyze the impact of scattering processes on the dynamics in more
detail. To this end, we consider the NLO 1/N approximation for the quantum 2PI effec-
tive action of 5.1.4 in the weak-coupling regime with ξ = 0.1. As discussed above, the
NLO 2PI approximation is found to accurately reproduce the full lattice simulation result
in this regime. In particular, we will use this approximation to derive kinetic equations
that explain the relevant underlying processes. The power counting will be based on an
expansion in the coupling g in the presence of large occupancies with parametric depen-
dence nσ,π(t, |p|) ∼ 1/λ for λ � 1 and g2/λ � 1. We also emphasize that the observation
of an amplified fermion production in the presence of large bosonic occupancies is not
specific to the phenomenon of parametric resonance, however we will continue to con-
sider this example. For the main points of the following analysis one could equally well
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Dirac distribution with fitted temperature and chemical potential at tσ0 =

250, having the same values as in Fig. 5.12.

consider other non-equilibrium instabilities leading to – or even directly starting from –
large occupancies.

Counting powers of the coupling g, direct scattering appears at order g2 according to
5.1.4, whereas the semi-classical approximation based on equation (5.36) is restricted to
processes at order g. Fig. 5.15 compares the total number of produced fermions at order
g2 (NLO 2PI, solid line) to results from the semi-classical approximation (dashed line).
In the figure, we also give an analytic estimate for the production rate from kinetic theory
(dotted line), which will be explained below. While for very short times the order g and
g2 results agree rather well, after the end of the parametric resonance regime, i.e. when
the occupancies become large, the order g2 corrections are seen to dominate the fermion
production by far. Apparently, highly occupied bosons act as a very efficient amplifier for
genuine quantum corrections to the fermion dynamics.

This phenomenon can be understood from the NLO approximation of the 2PI effec-
tive action described in 5.1.4. In order to make analytic progress, we consider a standard
gradient expansion to lowest order in derivatives following Ref. [97] and already intro-
duced in Sec. 3.3. It employs for two-point functions, such as Fφ(x, y) given by (5.10)
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production rate from kinetic theory (dotted line), which is shifted to account
for the initial semi-classical fermion production until tσ0 ' 10.

and Fψ(x, y) defined in (5.9), the introduction of relative coordinates x − y and center
coordinates (x+y)/2. For the considered spatially homogeneous systems, a Fourier trans-
formation with respect to the relative coordinates leads to Fσ,π(t, k) and Fψ(t, k) with four-
momentum k and the time coordinate t ≡ (x0 + y0)/2. The general form of the equation
for the boson two-point function to lowest order in derivatives with respect to the center
coordinate is

2k0∂tFσ,π(t, k) = Σρ(t, k)Fσ,π(t, k) − ΣF(t, k)ρσ,π(t, k) , (5.38)

where the ”collision term” on the right hand side encodes the ”gain” minus ”loss” struc-
ture in terms of the statistical (ΣF) and spectral (Σρ) parts of the self-energy. At order g2

the spectral and statistical components of the self-energy displayed on the right of Fig. 5.1
read

ΣF(t, k) =
g2

2

∫
d4 p

(2π)4 Tr[Fψ(t, k + p)Fψ(t, p) −
1
4
ρψ(t, k + p)ρψ(t, p)] ,

Σρ(t, k) =
g2

2

∫
d4 p

(2π)4 Tr[Fψ(t, k + p)ρψ(t, p) − ρψ(t, k + p)Fψ(t, p)] .
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The physical content of these expressions can be further clarified by setting the fermion
spectral function ρψ(t, k) on shell and introducing occupation numbers nφ(t, k) and nψ(t, k)
for bosons and fermions, respectively, with

Fσ,π(t, k) =

[
1
2

+ nφ(t, k)
]
ρσ,π(t, k) ,

Fψ(t, k) =

[
1
2
− nψ(t, k)

]
ρψ(t, k) . (5.39)

The (anti-)symmetry of the (spectral) statistical correlation functions translates into

nφ(t,−k) = −
[
nφ(t, k) + 1

]
, nψ(t,−k) = −

[
nψ(t, k) − 1

]
. (5.40)

The time-independent on-shell spectral functions are given by

ρσ,π(k) = 2πsgn(k0)δ(k2 − m2) , (5.41)
ρψ(k) = 2πkµγµsgn(k0)δ(k2) , (5.42)

for the considered case of massless fermions. After performing traces in spinor and
flavour space as well as some of the integrals and projecting onto positive frequencies
we arrive at

∂tnφ(t,k) = πg2
∫

d3 p
(2π)3

∫
d3q δ(k − p − q) δ(ωk − |p| − |q|)

1
ωk

(
1 −

pq
|p||q|

)
×

×
[(

nφ(t,k) + 1
)

nψ(t,p)nψ(t,q) −nφ(t,k)
(
nψ(t,p) − 1

) (
nψ(t,q) − 1

)]
.

(5.43)

Here ωk =
√

k2 + m2 is the free bosonic dispersion relation. Along the same lines one can
obtain the corresponding kinetic equation for the fermion occupation number,

∂tnψ(t,k) = πg2
∫

d3 p
(2π)3

∫
d3q δ(k + p − q) δ

(
|k| + |p| − ωq

) 1
ωq

(
1 −

kp
|k||p|

)
×

×
[(

nψ(t,k) − 1
) (

nψ(t,p) − 1
)

nφ(t,q) − nψ(t,k)
(
nψ(t,p) − 1

) (
nφ(t,q) + 1

)]
.

(5.44)

From these expressions we observe that

∂t

(
Nφ(t) + Nψ(t)

)
=

∫
d3k

(2π)3∂t

(
nφ(t,k) + nψ(t,k)

)
= 0 (5.45)

reflecting total number conservation of bosons and fermions, Nφ + Nψ, in this approxi-
mation. Total number changing processes would enter the kinetic description at higher
order in g. However, they are crucial for the approach to thermal equilibrium at late

65



Chapter 5. Scalar Bosons with Fermions

times [85, 98], these processes turn out not to be important for the time of enhanced
fermion production in the weak-coupling regime.

It is instructive to consider (5.43) for nψ = 0, which is approximately realized at suffi-
ciently early times. The equation can then be written as

∂tnφ(t,k) ' −Γφ→ψψ̄(k) nφ(t,k) (5.46)

with

Γφ→ψψ̄(k) = πg2
∫

d3 p
(2π)3

∫
d3q δ(k − p − q) δ (ωk − |p| − |q|)

1
ωk

(
1 −

pq
|p||q|

)
. (5.47)

For k = 0 one obtains the standard vacuum decay rate for the production of massless
fermions with momenta ±m/2, i.e. Γφ→ψψ̄(0) = g2m/(8π). Taking the number conservation
(5.45) into account, we can write for the change in the total fermion number

∂tNψ(t) '
∫

d3k
(2π)3 Γφ→ψψ̄(k) nφ(t,k) . (5.48)

To get a parametric estimate for the right hand side, we may approximate nφ(t,k) '
Θ(|k| − σ0)/λ around the time after the parametric resonance regime ends. The crucial
ingredient here is the enhancement by a factor of 1/λ, which for the considered weak-
coupling case encodes the amplification of ∂tNψ from being order g2 to order g2/λ ≡ ξ
for parametrically large Bose occupancies. As a consequence, one expects an approxi-
mately linear rise in the total fermion number with slope proportional to ξ as shown in
Fig. 5.15 for ξ = 0.01. Because of the non-zero fermion occupation numbers building
up with time, this linear rise is diminished by the Pauli suppression due to the presence
of already produced fermions. We can also use (5.43) to estimate the magnitude of the
backreaction of fermions onto the bosonic sector. To this end, we compare the bosonic
gain term ∼ nψ(t,p)nψ(t,q) to the loss term ∼ −nφ(t,k)(1 − nψ(t,q) − nψ(t,k)). The latter
is enhanced by the macroscopic occupation of scalars while the former is strictly ≤ 1
and we find it to be even ≤ 1/4 at later times during our simulations. The minor role of
fermionic backreaction in the weak-coupling regime agrees well with our findings from
the full simulation data.

The above kinetic description provides a detailed understanding of the weak-coupling
case with ξ � 1. It is expected to fail to describe the physics for strong couplings, where
higher order processes are no longer suppressed. This is also what we find by comparing it
to the nonperturbative lattice simulation results in accordance with the discussion of 5.1.4.
It is a characteristic property of the above kinetic description that typical fermion and
boson momenta are similar. In Fig. 5.16 on the left we show the occupancies of bosons
and produced fermions for ξ = 0.1, where the highest momenta with a non-vanishing
occupation number lie in the same region for both species. The right graph shows the
same quantities for ξ = 1, where one observes the tendency for fermions to extend their
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Figure 5.16.: Lattice simulation results for occupation number distributions of fermions
and bosons at tσ0 = 50 for ξ = 0.1 (left) and ξ = 1 (right).

distribution to higher momenta than it is the case for bosons. Even though the fermion
occupancy per mode is limited by the exclusion principle, they quickly populate higher
momentum modes in the nonperturbative regime. This contribution becomes essential for
strong enough coupling since the high-momentum part carries most of the energy.

5.1.7. Conclusions
In this section we have studied non-equilibrium production of fermions from parametric
resonance in 3 + 1 dimensions for a generic linear sigma model. As our main result,
we confirmed the dramatic amplification of fermion production in the presence of highly
occupied bosons that was first pointed out in Ref. [7] and extended the results to the strong
coupling regime.

We compared different real-time techniques – lattice simulations with male/female
fermions, mode functions approach and quantum 2PI effective action with its associated
kinetic theory – and discussed their range of applicability. It turned out that the efficient
male/female lattice approach accurately converges to the exact mode functions result for
the available lattice sizes. The study shows the strength of the male/female method to ad-
dress physical questions for large volumes, where the mode function approach becomes
computationally intractable. For weak couplings we found that the lattice simulation re-
sults agree well with those obtained from the quantum 2PI effective action, emphasizing
the ability of the lattice approach to describe genuine quantum phenomena.

Applying an improved lattice discretization with a pseudoscalar Wilson term, we were
able to accurately resolve the high-momentum behaviour of particle number distributions.
For weak couplings this revealed a power-law behavior above a characteristic momentum.
For strongly coupled fermions, we found that a quasi-thermal Fermi-Dirac distribution is
approached, with time-dependent temperature and chemical potential parameters. This
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happens while the bosons are still showing turbulent behavior far from equilibrium [99].
In the employed model, the coupling to the fermions and the bosonic self-coupling can

be separately chosen to represent the weak-coupling (ξ � 1) and the strong-coupling
regime (ξ & 1). This allowed us to validate the lattice simulation techniques in the weak-
coupling regime by comparing it to alternative, quantum techniques. Another interesting
application of these methods are investigations of theories where ξ � 1 cannot be real-
ized. An important class of such theories concerns non-Abelian gauge theories, where
the bosonic self-coupling and the coupling to the fermion sector are given by the same
coupling such that the relevant ratio is ξ = 1.

5.2. Massive fermions from tachyonic
preheating

In the last section, we discussed the phenomenon of enhanced production of fermions
during parametric resonance. An aspect of these investigations was a time-dependent
Yukawa mass. The oscillating macroscopic field caused a damped oscillation of the ef-
fective mass term, so that the particles were constantly switching between a massless and
a massive state. While the initial conditions described massive fermions, it is clear that
for infinitely late times the massive state would have disappeared since the field would
eventually have come to rest in the minimum of the symmetric potential. In this section,
we will consider a case in which fermions remain massive even after thermalization. Con-
trary to the previous study we will start from a state with a vanishing or negligible mass,
however, early stages of time evolution will lead to an exponentially increasing m2

ψ. After
these early stages the field and simultaneously the Yukawa mass will saturate at a finite
value.

Investigations of both types of fermion dynamics should complement each other be-
cause a mutual comparison may allow us to disentangle production mechanisms for light
and heavy fermions. A feature parametric and tachyonic scenarios have in common is
the existence of essentially two channels of fermion production involved in both of them,
namely the decay of bosonic fluctuations and direct production from the time-dependent
homogeneous fields. A clean way to separate the impacts of these production channels is
to combine lattice simulations of fully interacting system with leading-order calculations.
This recipe was used in the previous section and we will return to it here as well.

To realize tachyonic instability in quantum field theory we perform a quench at the
beginning of the time evolution, by changing the sign in front of m2 after vacuum initial
conditions, similar to the ones introduced in the last section, have been set. This procedure
leads to the emergence of a double-well potential characteristic for spontaneous symmetry
breaking with a concave shape around the origin.

Starting from such initial conditions leads to the emergence of exponentially growing
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scalar occupation numbers. This can be seen by looking at the equation of motion for
Fφ(t, t′,p) at early times [

∂2
t + p2 − m2

]
Fφ(t, t′,p) = 0 , (5.49)

where all contributions from fluctuations, which are not relevant during these early stages,
have been omitted. The macroscopic field is also rolling down towards the minimum of
the double-well potential exhibiting a typical growth rate of γ0 = m (with m =

√
|m2|),

according to the linearized equation of motion[
∂2

t − m2
]
φ(t) = 0 . (5.50)

Scalar occupation numbers grow with a momentum dependent rate

γ (p) = 2
√

m2 − p2 . (5.51)

which is maximal for |p| = 0 and represents the equal-time behaviour of the statistical
propagator Fφ(t, t′,p) ∼ e

√
m2−p2(t+t′). Obviously, the unstable modes are confined to the

low momentum region |p| < m. This initial growth pattern changes with time as self-
energy contributions become important. In particular, one observes secondary instabilities
at higher momenta which start at later times, but grow with multiples of the maximal
primary growth rate. Finally, primary as well as secondary growth breaks down as soon
as fluctuations become parametrically of the order 1/λ, meaning that this stage cannot be
described in any perturbative approach relying on an expansion in powers of λ.

5.2.1. Implementation and results
Fermion production during tachyonic preheating is tightly connected to the dynamics of
bosons, as has been shown in [96]. To assess the enhancement of fermion production from
symmetry breaking for a range of effective couplings, we consider a simplified model
which is of major relevance to cosmological studies of reheating in the early universe.
Here, we restrict ourselves to one scalar bosonic field interacting with itself and coupled
to one flavour of Dirac fermions via a standard scalar Yukawa coupling:

L =
1
2
∂µφ ∂

µφ −
1
2

m2φ2 −
λ

4!
φ4 + ψ̄

(
i ∂µγµ

)
ψ − hψ̄φψ. (5.52)

When simulating the scenario of spinodal decomposition in this model, we do not single
out any direction for the macroscopic field. This means that the field φ(t) itself remains
zero while the modulus of the field |φ(t)| =

√
φ2(t) grows exponentially in time until

it saturates in the new minimum of the potential. A very similar model, in which an
additional bosonic sector was also coupled to the tachyonic field, has been considered
in [100]. Since we will compare our numerical results to the analytical estimates made
in this work, we will allow ourselves to repeat some of the key statements made there.
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Figure 5.17.: Time dependence of the modulus of the macroscopic field. Mind the initial
oscillations and subsequent relaxation to the new potential minimim.

The authors in [100] have considered fermions coupled to a time-dependent macroscopic
field which undergoes symmetry breaking via spinodal decomposition. The analytical
expression for the rolling down of the field without subsequent oscillations was given as

|φ|(t) =
v
2

(
1 + tanh

m(t − t∗)
2

)
, (5.53)

where t∗ is the time at which the macroscopic field reaches the new potential minimum
for the first time. We confirmed that this formula agrees with our numerical results at
early times. In Fig. 5.17, we see that in our simulations the field modulus indeed rises
exponentially in the beginning so that the rolling field increases even beyond the new
minimum. Then, the field rolls back and oscillates for a period of time until it finally
comes to rest. Since fermions acquire an effective Yukawa mass via m2

ψ = h2φ2 they are
driven to become massive after symmetry breaking. Taking into account only the classical
double well potential, the final fermion mass should be mψ =

√
6 h
√
λ
m =

√
6ξm. Based

on solving the Dirac equation for a time-dependent Yukawa mass the authors in [100]
derived an analytical estimate for the time evolution of fermionic fluctuations. We will
compare our results mainly to the expression for the shape of the spectrum after the end
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of the instability:

nψ(|p|,
√
ξ) =

cosh
[
2π

√
6ξ

]
− cosh

[
2π(

√
p2 + 6ξm2 − |p|)/m

]
2 sinh

[
2π|p|/m

]
sinh

[
2π

√
p2 + 6ξm2/m

] , (5.54)

as well as to their results for the total number of produced Dirac fermions and the share
of total energy ρ0 = 3m4

2λ which was transfered into fermionic particles:

Nψ(
√
ξ) = 1.44 × 10−3m3

√
6ξ + 0.64 − 0.8√

6ξ
, (5.55)

ρψ/ρ0 = 1 × 10−3λ(
√

6ξ + 0.64 − 0.8) . (5.56)

The factors of 6 appearing here come from the fact that we use a different definition for
the scalar self-coupling λ as as the case in [100]. To see how fermions are produced
during symmetry breaking we simulated the system for a range of effective couplings,
0.05 <

√
ξ < 1. For both weak and strong couplings a similar time pattern arises, which

is depicted in Fig. 5.18. Four stages of fermion production can be observed:

1. In the first, very short stage fermions are produced while the field modulus and fluc-
tuations are initially increasing. Simultaneously, the Yukawa mass rises exponen-
tially, terminating this stage as soon as fermion production becomes kinematically
suppressed. This first phase lasts until t ' 8/m in Fig. 5.18.

2. In the second stage of production, the field modulus oscillates back towards zero,
making fermions lighter and therefore immediately lifting kinematical constraints.
Additionally, the bosonic fluctuations are already exponentially enhanced at this
point and free to decay into fermions, allowing a strong boost in the fermion pro-
duction rate. This boost is very pronounced in Fig. 5.18 for 8/m . t . 22/m. The
combination of these two factors leads to an overabundance of fermions, which is
only reduced in the following phase.

3. Finally the field goes back to its new minimum, so that a large portion of the now
considerably heavier and overabundant fermions decay, as seen in Fig. 5.18 after
t ' 22/m. The resulting spectrum marks the amount of fermions produced during
the nonperturbative stage of symmetry breaking.

4. The longest phase begins after symmetry breaking, where massive fermions are
produced by scattering and decay of bosonic particles. For sufficiently small values
of ξ this processes may be described in the framework of a kinetic description with
lowest-order matrix elements. If the fermion occupancies at this stage remain low
(nψ � 1/2) despite all of the previous processes, we may disregard the non-linear
Pauli suppression and would expect, similar to 5.1.6, a linearly rising total fermion
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Figure 5.18.: Total number of produced fermions as a function of time for
√
ξ = 0.15 and

√
ξ = 0.75. The time pattern seems to be similar while stronger coupling

leads to an increase in the overall output of fermionic particles.

number. Excitingly, this is exactly the behaviour we observe in Fig. 5.18 for
√
ξ =

0.75 starting from t ' 40/m, while for
√
ξ = 0.15 the slope of the increasing

total fermion particle number flattens over time. Further below we will link this
observation to details of fermion spectra after the non-perturbative phase.

It appears that for stronger couplings the four stages are more distinctive, primarly be-
cause the mass plays a stronger role in the dynamics. Although both weakly and strongly
coupled scenarios exhibit the same overall time pattern, the resulting spectra are clearly
different, which is demonstrated in Figs. 5.19 and 5.20. In both cases, lattice results show
that more particles are produced than could be expected based solely on leading-order
arguments. The Pauli principle also ensures that the vast number of additional fermions
occupy states with higher momenta, making them more relativistic. An interesting obser-
vation is that the particle numbers in the infrared are lower at stronger coupling, which is
compensated by larger occupation of high momentum modes.

This can be explained by the fact that the height of a thermal Fermi-Dirac distribution
for a vanishing chemical potential is determined by the mass, with higher masses leading
to a lower occupation in the infrared. Since the fermion mass in our model is proportional
to the coupling, it is clear that stronger couplings would indeed lower the typical occupa-
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Figure 5.19.: Comparison between lattice results and analytical leading-order predictions
for fermion spectra after symmetry breaking for

√
ξ = 0.15. The effective

fermion mass for this coupling is mψ ' 0.4m.

tion number for low momenta. Because occupation numbers for strong couplings remain
relatively low compared to 1/2, we may neglect the Pauli blocking and by applying this
approximation additionally explain the linearly rising total fermion number in Fig. 5.18
for later times.

Summarizing, the fermion spectrum at strong couplings is closer to the thermal distri-
bution and is marked by lower occupation numbers. The weak coupling fermion spectrum
in Fig. 5.19 is concentrated at low momenta, hence making Pauli suppression highly rel-
evant and explaining the slope flattening over time of the total fermionic particle number
in Fig. 5.18.

Another difference between lattice results and analytical estimates of a potentially phe-
nomenological relevance is the already mentioned relativistic nature of fermion fluctua-
tions. So far the leading-order results suggested that fermions produced after a tachyonic
instability are non-relativistic. However our simulations indicate that this is not the case.
A closer look at the lattice spectra in Figs. 5.19 and 5.20 reveals that for both weak and
strong coupling there is a non-negligible share of fermions with momenta larger than their
effective mass, thus invalidating possible non-relativistic approximations.
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Since a disagreement between analytical leading order and lattice results has become
apparent already in Figs. 5.19 and 5.20 we did a direct comparison between these two
approaches for a range of effective couplings in order to further quantify the differences.
In Figs. 5.21 and 5.22 we plotted the total number as well as the total quasiparticle energy
of fermions after symmetry breaking (third stage) as a function of

√
ξ. In both figures,

we see the failure of the leading order approach, which underestimates the presented
bulk quantities by up to three orders of magnitude for the strongest coupling presented.
The errorbars are due to limited statistics, an issue which can be addressed in the future
by averaging over more classical-statistical trajectories, but which has no effect on the
qualitative behaviour of the system. We conclude that to correctly analyze production of
massive fermions from the early stages of a bosonic instability a numerical investigation,
which consistently includes effects of bosonic fluctuations, is indispensable.

5.2.2. Conclusions

What did we learn from this study of fermion production during tachyonic preheating? A
primary and most astonishing result is the enhancement of fermion output by orders of
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Figure 5.21.: Comparison between lattice results and analytical leading order predictions
for the total number of fermions produced after symmertry breaking. Note
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magnitude compared to leading-order analytic predictions. We observed that the ampli-
fication is much stronger than after the initial stages of parametric resonance for similar
values of the effective coupling, although both types of instabilities lead to parametrically
high bosonic occupation numbers. Another consequence of the Pauli principle and the
increased number of fermions is that contrary to analytic expectations the typical mo-
mentum of produced particles becomes comparable to their mass, putting in question
the validity of current non-relativistic approaches to fermion dynamics after preheating.
These findings may prove their relevance for early Universe cosmology in future studies
of particle abundances during reheating after inflation.

Of course, computational and numerical limitations allowed us to explore only a win-
dow of the available parameter space in the chosen model of preheating. Since recent
experimental observations [101] promise to shed some light onto the microscopic details
of inflation and constrain available inflationary models, we believe that they could put
some boundaries on the physically relevant set of parameters in the future. In this case,
new studies of preheating for alternative combinations of masses and couplings or entirely
different models would be appropriate.
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Chapter 6.

Gauge Theories with Fermions
The most successful current physical theory, the Standard Model, is a gauge theory. Two
of its main ingredients, QED (quantum electrodynamics) and QCD (quantum chromody-
namics), are gauge theories as well. These examples should illustrate the importance of
studying particle production in theories with a local gauge symmetry. In the next chapter
we will consider fermion production in a lower dimensional version of QED and in the
two color version of QCD. First two sections will be dedicated to studies of Schwinger
effect in 1 + 1 dimensions, this theory exhibits confinement, a property usually associ-
ated with full QCD in 3+1 dimensions. We will investigate the non-perturbative decay of
electric fields into fermions and the build-up of electric strings between separated charges.
A consistent picture for the dynamical process of string breaking will be presented and
extended towards multiple string breaking scenarios. In two color QCD we will con-
centrate on studies of quark production during early pre-equilibrium stages of heavy-ion
collisions. Here three different models of initial conditions will be considered, ones that
are dominated by instabilities and those starting immediately from an overpopulated glu-
onic state. Evidence for the existence of a universal isotropic scaling solution for quarks,
accompanying the turbulent gluonic energy cascade, will be presented.

6.1. Schwinger model
In the following section we present real-time dynamics of particle production in the mas-
sive Schwinger model. The theoretical description of the non-perturbative phenomenon
of Schwinger pair production in quantum field theory out of equilibrium is a demand-
ing task and very little is known so far for realistic scenarios. Most current approaches
assume the electromagnetic field as being an external one with a one-dimensional in-
homogeneity, so that the problem of particle production can be mapped onto a one-
dimensional quantum mechanical scattering problem [102, 103]. This approach neglects,
in particular, the backreaction of the created fermion–anti-fermion pairs on the electro-
magnetic field. This is closely related to kinetic descriptions in terms of a momen-
tum dependent distribution function of pairs in collisionless (Vlasov) approximations
[104, 105, 106, 107, 108, 109]. For multi-dimensional inhomogeneities, more advanced
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approaches such as semi-classical approximations of the vacuum effective action [110]
or the Dirac-Heisenberg-Wigner phase space formulation [111, 112] have been applied.
However, to describe strongly inhomogeneous field configurations including the full back-
reaction of the produced particles remains a theoretical challenge. In view of the potential
experimental applications it is crucial to devise new theoretical methods which can deal
with this situation.

This is done here by the already introduced real-time lattice simulations with fermions.
In this non-perturbative approach the full quantum dynamics of fermions is included while
the gauge field dynamics can be accurately represented by classical-statistical simulations
for relevant field strengths. As the inclusion of dynamical fermions can become numeri-
cally very expensive, the real-time evolution of fermions is taken into account by means
of a low-cost fermion algorithm [23].

Instead of going directly to full 3 + 1 dimensional QED we decided to apply these tech-
niques to QED in 1 + 1 dimensions – the massive Schwinger model [113, 114] first, in
order to compare with established continuum results and to develop and improve gauge
theory specific numerical applications of the lattice fermion approach. Introducing a lat-
tice generalization of the Dirac-Heisenberg-Wigner function, we show that the simula-
tions accurately reproduce the results described by the Schwinger formula in the limit of
a static background field. We discuss the decay of the field due to the backreaction of the
created fermion–anti-fermion pairs and apply the approach to strongly inhomogeneous
gauge fields. For these fields we compute for the first time the backreaction of the created
pairs on the gauge fields. Most strikingly, we find that a self-consistent electric field be-
tween the produced fermion and the anti-fermion bunch builds up for times exceeding the
initial pulse duration. The two bunches consisting of particles and anti-particles act as a
capacitor, creating a homogeneous electric field between them, which can be represented
in terms of a linear rising potential.

This section is organized in the following way: In Sec. 6.1.1 we briefly review the low-
cost fermion algorithm and derive the real-time lattice equations of motion for the mas-
sive Schwinger model. Additionally, we construct a lattice generalization of the Dirac-
Heisenberg-Wigner function which is subsequently used as a read-out tool for fermionic
distributions. In Sec. 6.1.2 we first apply this formalism to a static electric background
field and compare to the Schwinger formula. We then discuss the decay of the back-
ground field due to the backreaction of the created fermion–anti-fermion pairs. As a
second example, we investigate the pair creation process in the presence of a space- and
time-dependent electric field. In Sec. 6.1.3 we conclude and give an outlook. Some less
important computational details have been moved to the appendices A and B.
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6.1. Schwinger model

6.1.1. Real-time lattice gauge theory
Continuum formulation

We consider QED in 1 + 1 dimensions, which is defined in the continuum by the action

S =

∫
d2x

(
ψ̄[iγµDµ − m]ψ −

1
4
F µνFµν

)
, (6.1)

with the covariant derivative Dµ = ∂µ+ieAµ ensuring gauge invariance of the action under
local U(1) transformations

ψ→ ψeieΛ , Aµ → Aµ − ∂µΛ . (6.2)

Here µ = 0, 1 as space-time is only two-dimensional with x0 ≡ t and x1 ≡ x. The field
strength tensor F µν = ∂µAν − ∂νAµ possesses only one non-trivial component which is
regarded as the electric field:

F 10 = −F 01 = E(x, t) . (6.3)

We will frequently consider temporal axial gauge withA0(x, t) = 0 and simply denote the
spatial component of the vector potential as A(x, t).1 One observes that the electric field
E(x, t) is the canonical momentum conjugate toA(x, t).

The Dirac algebra is composed of two Dirac gamma matrices only:

{γµ, γν} = 2gµν with (γµ)† = γ0γµγ0 , (6.4)

with gµν = diag(1,−1). This algebra may be represented in terms of the first two Pauli
matrices γ0 ≡ σ1 and γ1 ≡ −iσ2. Moreover, the chirality matrix

{γµ, γ5} = 0 with (γ5)† = γ5 , (γ5)2 = 1 , (6.5)

can be defined in terms of the third Pauli matrix γ5 ≡ σ3. As a consequence, the spinors
ψ and ψ̄ are two-component field operators, obeying the equal-time anticommutation re-
lation:

{ψ(x, t), ψ̄(y, t)} = γ0δ(x − y) . (6.6)

Time evolution equations

As introduced before (2.1.2), in the classical-statistical theory observables are calculated
as ensemble averages of solutions of Maxwell’s equation

∂µF
µν(x, t) = 〈 jν(x, t)〉 (6.7)

1We note that this incomplete gauge choice leaves a residual gauge invariance under time-independent
gauge transformations.
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starting from different canonical field variables at initial time t0, here At0(x) = A(x, t0)
and Et0(x) = E(x, t0). The values for the canonical field variables at initial time are
distributed according to a normalized phase-space density functional W[At0 , Et0], such
that an observable 〈O〉 is given by [64, 65]:

〈O〉 =

∫
DAt0 DEt0 W[At0 , Et0] Ocl[At0 , Et0] . (6.8)

Here Ocl[At0 , Et0] =
∫

DAO[A] δ(A−Acl[At0 , Et0]), whereAcl[At0 , Et0] is the solution
of the classical field equation (6.7) with initial conditions Acl = At0 and Ecl = Et0 at
initial time t0. Ensemble averages at initial time are taken to correspond to the respective
quantum expectation values for the gauge fields. Similar to our toy model in 2.1.2 the
gauge field dynamics in the classical-statistical approximation is accurately described in
the presence of sufficiently high occupation numbers or fields, which is in general the case
for the relevant field strengths for pair production. It breaks down once the typical gauge
field occupancies become of order unity.

The subsequent time evolution then follows from (6.7) with

〈 jν(x, t)〉 =
e
2
〈
[
ψ̄(x, t), γνψ(x, t)

]
〉 , (6.9)

where the expectation value is taken with respect to the initial state of the spinor field. We
will restrict ourselves to the Dirac vacuum within the current investigation. The equations
of motion for the spinors read:

iγµDµψ(x, t) = mψ(x, t) , (6.10a)
iD∗µψ̄(x, t)γµ = −mψ̄(x, t) . (6.10b)

Since the fermions appear only quadratically in the action (6.1) these equations are exact
for given classical gauge field configuration.

Equivalently, the above equations can be conveniently expressed in terms of the equal-
time statistical propagator

F(x, y; t) ≡
1
2
〈
[
ψ(x, t), ψ̄(y, t)

]
〉 , (6.11)

which yields the closed system of equations:

iγµDx,µF(x, y; t) = mF(x, y; t) , (6.12a)
iD∗µ,yF(x, y; t)γµ = −mF(x, y; t) , (6.12b)

∂µF
µν(x, t) = −e Tr

[
γνF(x, x; t)

]
. (6.12c)

We note that the gauge field dynamics in 1 + 1 dimensions is special since it is governed
by the fermionic backreaction only. Therefore, we do not consider sampling over initial
gauge field configurations in this work.
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Initial conditions and low-cost fermions

We have to solve the Cauchy problem (6.12) in order to calculate fermion–anti-fermion
pair production. Accordingly, we need to provide an initial value for the statistical propa-
gator at t0 = 0. To this end, we consider an asymptotic Dirac vacuum – corresponding to
zero particle number and vanishing gauge field – and employ the framework of canonical
quantization in 1 + 1 dimensions:

ψ(x, t) =

∫
dp
2π

eipx[u(p)a(p)e−iωt + v(−p)b†(−p)eiωt] , (6.13)

with ω =
√

m2 + p2 and anti-commuting creation and annihilation operators

{a(p), a†(p′)} = {b(p), b†(p′)} = 2π δ(p − p′) , (6.14)

whereas all other anti-commutators vanish. An explicit representation of the eigenspinors
is given by

u(p) =
1√

2ω(ω + p)

(
ω + p

m

)
, (6.15a)

v(p) =
1√

2ω(ω + p)

(
ω + p
−m

)
, (6.15b)

fulfilling the orthogonality relations:

u†(p)u(p) = 1 = v†(p)v(p) , u†(p)v(−p) = 0 . (6.16)

Because of the fact that the asymptotic Dirac vacuum is homogeneous in space and time,
we obtain the initial value

F(x, y; t0) =

∫
dp
2π

eip(x−y) m − pγ1

2ω
, (6.17)

which is, up to differences because of dimensionality, same as in scalar theories consid-
ered in previous chapters.

In the massive Schwinger model the description of fermion dynamics may be based on
a mode function expansion [22]. This treatment can be well suited for low dimensional
systems but becomes computationally too expensive in higher dimensions. In view of
later applications of our approach to 3 + 1 dimensional non-Abelian gauge theory, we
perform a stochastic integration of an equivalent set of equations with the male/female
method 4.2. To this end, we introduce ensembles of classical stochastic spinors male
ψM(x, t) and female ψF(x, t) spinor fields. Given these c-number spinors, we define:

Fsto(x, y; t) ≡
〈
ψM(x, t)ψ̄F(y, t)

〉
=

〈
ψF(x, t)ψ̄M(y, t)

〉
, (6.18)
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where here 〈...〉 is understood as an ensemble average. The requirement

Fsto(x, y; t) !
= F(x, y; t) (6.19)

is met provided that the stochastic spinors ψg(x, t), with the gender index g = {M, F}
both satisfy the Dirac equation (6.10a) and Fsto(x, y; t) takes the initial value (6.17). This
second requirement is achieved by initializing the stochastic spinors according to

ψg(x, t0) =

∫
dp
2π

eipx 1
√

2
[u(p)ξ(p) ± v(−p)η(p)] , (6.20)

with complex random variables ξ(p) and η(p). Note that the male and female spinors
only differ by the sign of the antiparticle component. In order to reproduce the initial
value (6.17), the random variables are sampled according to〈

ξ(p)ξ∗(p′)
〉

=
〈
η(p)η∗(p′)

〉
= (2π)δ(p − p′) , (6.21)

whereas all other correlators vanish.
In an actual simulation employing male/female fermions, the closed system (6.12) is

solved in the form:

iγµDµψg(x, t) = mψg(x, t) , (6.22a)
∂µF

µν(x, t) = −e Tr
[
γνFsto(x, x; t)

]
. (6.22b)

The stochastic spinors ψg(x, t) are evolved in time independently and the ensemble aver-
age 〈...〉 appearing in the definition (6.18) is approximated by an average over a sufficiently
large number Nsto of pairs of male/female spinors. While the computational cost of the
mode function approach scales with the volume of the phase space, i.e. N2 in our case,
the resource requirements of male/female fermions are proportional to just N × Nsto.

6.1.1.1. Lattice formulation

We solve the equations of motion (6.22) on a 1 + 1 dimensional space-time lattice. For
the spatial sublattice, we define:

Λ =

{
l
∣∣∣∣∣ x
as
∈ {0, ...,N − 1}

}
, (6.23)

with the spatial lattice spacing as and the total number of spatial lattice sites N. A point on
the space-time lattice is then denoted by x ≡ (l, j) with the temporal lattice spacing at such
that t = at j. We employ periodic boundary conditions in the compactified spatial direction
whereas no periodicity assumptions apply for the non-compact temporal direction. The
lattice action governing the dynamics is then composed of a pure gauge part as well as
part describing the fermions, including their interaction with the gauge field.
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6.1. Schwinger model

Pure gauge part

In order to put the gauge fields on the lattice, we use the compact formulation of a gauge
theory with U(1) symmetry. The parallel transporter Uµ(x) is associated with the link
from a lattice point x to a neighboring point x + µ̂ in the direction of the space-time lattice
axis µ = 0, 1:

Uµ(x) = eieaµAµ(x) . (6.24)

The link variable obeys U∗µ(x) = U−1
µ (x) and we use the definition U−µ(x) = U∗µ(x − µ̂).

The continuum gauge transformation (6.2) translates to

ψ(x) → Ω(x)ψ(x) , (6.25a)
Uµ(x) → Ω(x)Uµ(x)Ω∗(x + µ̂) , (6.25b)

with Ω ∈ U(1). Given the gauge-dependent link variable, we define the gauge-invariant
plaquette variable:

Uµν(x) = Uµ(x)Uν(x + µ̂)U∗µ(x + ν̂)U∗ν(x) . (6.26)

Disregarding higher order terms in the lattice spacings aµ, we find:

Uµν(x) = eieaµaνFµν(x) . (6.27)

Accordingly, the pure gauge part of the action can be written as

Sg[U] =
1

e2asat

∑
x

Re [1 − U01(x)] . (6.28)

Moreover, the electric field (6.3) is given by

E(x) =
1

easat
Im [U01(x)] . (6.29)

Dirac and interaction part

Using a symmetric finite difference approximation for the first derivatives, the naive dis-
cretization of the fermionic part is given by

S
(0)
f [ψ, ψ̄,U] = atas

∑
x

ψ̄(x)
[
iγµ

Uµ(x)ψ(x + µ̂) − U−µ(x)ψ(x − µ̂)
2aµ

− mψ(x)
]
, (6.30)

where the gender index is omitted for simplicity. This expression is gauge-invariant under
lattice gauge transformations (6.25), however, it also gives rise to unphysical fermion
doublers 4.3.
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The spatial doublers, corresponding to high-momentum excitations showing a low-
energy dispersion relation, are conveniently suppressed by adding a gauge-invariant Wil-
son term in the action:

−
as

2

∫
d2x ψ̄D1D1ψ , (6.31)

which vanishes in the continuum limit as → 0. This additional term ensures that only
low-momentum excitations show a low-energy dispersion relation. In the lattice imple-
mentation, this corresponds to adding one more term to the action:

S
(W)
f [ψ, ψ̄,U] = atas

∑
x

ψ̄(x) ×
[U1(x)ψ(x + 1̂) − 2ψ(x) + U−1(x)ψ(x − 1̂)

2as

]
. (6.32)

We do not include a temporal Wilson term as this would turn the Dirac equation into a
second order differential equation in time. The temporal doublers are avoided provided
that we initialize only the physical mode and choose the temporal lattice spacing to be
much smaller than the spatial lattice spacing at � as [22, 23, 89].

The construction of the stochastic spinor ensemble on the space-time lattice follows the
same lines as in section 4.3 with appropriate definition of lattice momenta. Here the mass
term is modified due to the scalar spatial Wilson term

m̃ = m +
2
as

sin2
(
πq
N

)
, (6.33)

while the complex random variables ξ(q) and η(q) are sampled by applying same tech-
niques as in 4.3.

Lattice equations of motion

To simplify simulations afterwards, we use the gauge freedom and employ the lattice
equivalent of the temporal axial gauge: U0(x) = 1 for the equations of motion. Stationar-
ity of the lattice action

S[ψ, ψ̄,U] = Sg[U] + S
(0)
f [ψ, ψ̄,U] + S

(W)
f [ψ, ψ̄,U] (6.34)

with respect to the temporal link U0(x) results in the discretized version of the Gauss law:

E(x) − E(x − 1̂) =
eas

2
ψ̄(x)γ0ψ(x + 0̂) + c.c. (6.35)

This equation is a constraint which is fulfilled during the time evolution for the considered
initial conditions.
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The stationary condition of the action with respect to the spatial link U1(x), on the other
hand, results in the equation of motion:

E(x) − E(x − 0̂) = −
eat

2
ψ̄(x)[γ1 − i]U1(x)ψ(x + 1̂) + c.c. (6.36)

Finally, the stationarity condition of the action with respect to the Dirac field ψ̄(x) gives:

ψ(x + t̂) = ψ(x − t̂) − 2iatmγ0ψ(x) −
at

as
γ0γ1

[
U1(x)ψ(x + 1̂) − U†1(x − 1̂)ψ(x − 1̂)

]
+

iat

as
γ0

[
U1(x)ψ(x + 1̂) + U†1(x − 1̂)ψ(x − 1̂) − 2ψ(x)

]
. (6.37)

The set of equations (6.35)–(6.37) is the lattice version of (6.22) in temporal axial gauge
including a spatial Wilson term.

In order to solve the Cauchy problem, we have to provide the following initial values
at t0 = at j0 = 0:

E(x0 − 0̂) , U1(x0) , ψ(x0 − 0̂) , ψ(x0)

with x0 = (l, j0) for all l ∈ Λ. Most notably, we have to choose initial values for the
spinors at j0 − 1 and j0, which is a consequence of the chosen leapfrog algorithm. To be
able to initialize them we assume a free field evolution at initial times.

The algorithm, which is a variant of the one introduced in [115], can then be summa-
rized in the following way:

1. Electric field evolution: Given E(x− 0̂), U1(x) and ψ(x) we evolve the electric field
to E(x) according to (6.36).

2. Dirac field evolution: Given ψ(x − 0̂), ψ(x) and U1(x) we evolve the Dirac field to
ψ(x + 0̂) according to (6.37).

3. Temporal plaquette: We evaluate the temporal plaquette U01(x) according to (6.27):

U01(x) = eieasatF01(x) = eieasatE(x) . (6.38)

4. Spatial link evolution: The link variable U1(x + 0̂) is calculated from the temporal
plaquette U01(x) in temporal axial gauge according to (6.26):

U1(x + 0̂) = U01(x)U1(x) . (6.39)

5. Reiterate the steps 1 – 4.

85



Chapter 6. Gauge Theories with Fermions

6.1.1.2. Gauge-invariant correlation functions

In order to compare our simulation results with typical discussions using the Dirac-
Heisenberg-Wigner phase-space approach [111, 112, 116, 117, 118, 119, 120], we define
suitable gauge invariant two-point correlation functions on the lattice.

Continuum Wigner function

Starting from the continuum expression for the statistical propagator (6.11), a gauge-
invariant generalization may be defined as:

F̃(x1, x2; t) = exp
(
ie

∫ x1

x2

dxA(x, t)
)

F(x1, x2; t) . (6.40)

The Wilson line factor ensures gauge invariance under local U(1) transformations. The
Fourier transformation with respect to the relative coordinate defines the Wigner function:

W(x, p, t) ≡ −
∫

dye−ipyF̃ (x + y/2, x − y/2; t) , (6.41)

with x = (x1 + x2)/2 and y = x1 − x2. The Wilson line factor in (6.40) is not unique, how-
ever, a physical sensible interpretation of p as kinetic momentum forces the integration
path to be chosen along the straight line. Equivalently to (6.41), we may also write:

W(x, p, t) = −

∫
dze2ip(x−z)F̃(z, 2x − z; t) + γ.c. (6.42)

with the abbreviation:
D + γ.c. ≡ D + γ0D†γ0 . (6.43)

As the Wigner function is in the Dirac algebra and fulfillsW† = γ0Wγ0, one can decom-
pose it in terms of its Dirac bilinears:

W =
1
2

[
s + iγ5p + γ0

v0 − γ
1
v

]
, (6.44)

where all its irreducible components can be chosen to be real. Regarding the Dirac vac-
uum, which is described by the statistical propagator (6.17), the only non-vanishing com-
ponents are given by:

svac(x, p, t) = −
m
ω

, vvac(x, p, t) = −
p
ω
. (6.45)

In terms of these components the total charge Q and the total energy E can be expressed
as phase-space integrals:

Q = e
∫

dΓv0(x, p, t) , (6.46a)

E =

∫
dΓ[ms(x, p, t) + pv(x, p, t)] +

1
2

∫
dxE2(x, t) , (6.46b)
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with the phase-space volume element dΓ = dxdp/(2π). The integrands ε(x, p, t) =

[ms(x, p, t) + pv(x, p, t)] and %(x, p, t) = v0(x, p, t) are regarded as energy pseudo-distri-
bution and charge pseudo-distribution, respectively. We may define further quantities
such as the particle number pseudo-distributions:

n±(x, p, t) =
ε(x, p, t) − εvac(x, p, t) ± ωv0(x, p, t)

2ω
, (6.47)

which may be associated to the density of particles and anti-particles, respectively. Of
course, in the interacting quantum theory the interpretation of these phase-space pseudo-
distributions, collectively denoted as m(x, p, t), has to be taken with care. We emphasize
that our approach is not based on these quantities and we use them only for read-out
and comparison with literature results. We will frequently consider also the partially
integrated position space and momentum space marginal distributions:

mX(x, t) ≡
∫

dp
2π

m(x, p, t) , (6.48a)

mP(p, t) ≡
∫

dx m(x, p, t) , (6.48b)

or the fully integrated quantities:

m(t) ≡
∫

dΓ m(x, p, t) , (6.49)

instead of the pseudo-distributions m(x, p, t).

Lattice Wigner function

In order to adjust the above continuum treatment to the lattice, we have to account for the
periodicity of the spatial lattice properly. Our approach is an extension of previous work
on the discrete Wigner function in the context of signal processing [121].

We first define the gauge invariant generalization of the lattice statistical propagator
according to:

F̃(l1, l2; j) = U(l1, l2; j)F(l1, l2; j) , (6.50)

where U(l1, l2; j) is the lattice analogue of the Wilson line factor along the straight line
path. However, since the straight line path between two lattice points is not unique due
the periodicity of the lattice, we choose to define it such that properties of the above
standard continuum interpretation apply. It turns out that this requires taking the shortest
path between two lattice points. Accordingly, for ∆l = l1 − l2 > 0 we employ:

∆l ≤
N
2

: U =

l1−1∏
l=l2

U1(x) , (6.51a)

∆l >
N
2

: U =

N−1∏
l=l1

U∗1(x) ×
l2−1∏
l=0

U∗1(x) . (6.51b)
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On the other hand, for ∆l < 0 we use:

∆l > −N
2 : U =

l2−1∏
l=l1

U∗1(x) , (6.52a)

∆l ≤ −N
2 : U =

N−1∏
l=l2

U1(x) ×
l1−1∏
l=0

U1(x) . (6.52b)

More precisely, we utilize the following Wigner lattices:

ΛW =

{
l
∣∣∣∣∣ 2x

as
∈ {0, ..., 2N − 1}

}
, (6.53a)

Λ̃W =

{
q

∣∣∣∣∣ Lp
π
∈ {−N, ...,N − 1}

}
, (6.53b)

which have the same extent as the original ones Λ and Λ̃, however, each with twice as
many grid points. We then define the lattice Wigner function according to

W(l, q, j) ≡ −
as

2
eπilq/N

×
∑
k∈Λ

e−2πikq/N F̃(k, [l − k]N; j) + γ.c. (6.54)

with l ∈ ΛW and q ∈ Λ̃W. We account for the periodicity of the lattice by taking the
module operation in the second argument of the statistical propagator:

[l − k]N = (l − k) mod N . (6.55)

This definition is such that we reproduce the above continuum expressions for the marginal
distributions, as shown in Appendix A. Moreover, the lattice Wigner function (6.54) again
fulfillsW† = γ0Wγ0 so that the decomposition in terms of its Dirac bilinears (6.44) is
possible.

In complete analogy to the continuum, we may then again define various pseudo distri-
butions:

%(l, q, t) = ev0(l, q, t) , (6.56a)
ε(l, q, t) = [m̃s(l, q, t) + q̃v(l, q, t)] , (6.56b)

n±(l, q, t) =
ε(l, q, t) − εvac(l, q, t) ± ω̃v0(l, q, t)

2ω̃
, (6.56c)

corresponding to charge, energy and particle/anti-particle number, respectively. Given
these pseudo-distributions m(l, q, t), the marginal distributions are defined via

mX(l, j) ≡
1

2L

∑
q∈Λ̃W

m(l, q, j) , (6.57a)

mP(q, j) ≡
as

2

∑
l∈ΛW

m(l, q, j) , (6.57b)
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whereas the fully integrated quantities are given by

m( j) =
1

2N

∑
q∈Λ̃

∑
l∈ΛW

m(l, q, j) . (6.58)

Here one should note the summation order in the last expression: The sum over l ∈ ΛW
yields the marginal distribution mP(q, t) which is non-vanishing for even q only. Accord-
ingly, the subsequent sum is just taken over q ∈ Λ̃.

6.1.2. Pair production simulations
We now come to the results which are based on the lattice approach presented in the
previous section. As a first example, we consider a static electric background field, disre-
garding the backreaction of created fermion–anti-fermion pairs. This configuration can be
solved analytically such that we can compare our lattice simulations with well established
continuum results. Subsequently, we also include the backreaction of created fermion–
anti-fermion pairs and discuss the decay of the gauge field which shuts pair production
off after a characteristic time.

As a second example, we investigate the pair creation process in the presence of a
space- and time-dependent electric field. Neglecting backreaction in a first step, we
can compare to and complement previous investigations based on the continuum Dirac-
Heisenberg-Wigner approach [119, 122]. Subsequently, we solve the full lattice evolution
and compare.

6.1.2.1. Spatially homogeneous gauge field

We consider a static electric background field E(x, t) = E0 in temporal axial gauge A0 =

0, represented by the vector potential

A(t) = E0t . (6.59)

Within the compact lattice formulation, this corresponds to a trivial temporal link U0(x) =

1 and the spatial link
U1(x) = eieatasE0 j (6.60)

disregarding higher order terms in the lattice spacing. Moreover, we introduce the dimen-
sionless field strength parameter

ε =
E0

Ec
, (6.61)

with the critical Schwinger field strength Ec = m2/e. For all subsequent numerical results
we employ e/m = 0.3. In Appendix B we briefly review some analytic results, which are
used for comparison in the following.
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Figure 6.1.: Time evolution of the total particle number n+(t) for different values of ε. The
parameters are Nsto = 103, at = 0.00125/m, as = 0.025/m, Ns = 1024 such
that L = 25.6/m.

Particle production without backreaction

In this section we disregard the backreaction of created fermion–anti-fermion pairs on the
electric field. This corresponds to neglecting the fermionic contributions in the gauge field
equation of motion (6.36). Starting with the vacuum initial conditions for the fermions,
this amounts to evolving the fermion equation (6.37) with a sudden switching-on of the
electric field at initial time.

In Fig. 6.1 we show the time evolution of the total number of produced particles, n+(t),
for various values of the dimensionless field strength parameter ε. Most notably, we
observe two different regimes: At early times there is a transient oscillatory behavior
superimposed which can be attributed to the sudden switching-on of the electric field. For
ε = 1 we estimate this oscillation to be exponentially damped with a characteristic rate
γ ' 1/m, leading to a purely linear growth to very good accuracy after times of a few γ−1.

The slope of the linear rise of n+(t) strongly depends on the value of ε. In order to
extract its functional dependence, we perform a linear fit. For this we measure the change
in the total number of particles ∆n+ which are produced during the time interval T = 10/m
for times large compared to γ−1. In Fig. 6.2 we compare the slope for different values of
ε with the analytical result from Appendix B:

∆n+

T Lm2 =
ε

2π
exp

(
−
π

ε

)
. (6.62)
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Figure 6.2.: Comparison of the analytical results (6.62) with the numerical fit for L =

25.6/m and different lattice spacings as. The remaining parameters are Nsto =

103 and at = as/20.

We emphasize that for this analytical result the initial time is sent to the remote past such
that it cannot reproduce the transient oscillatory regime. However, both the simulation
and the analytical result should accurately agree for large enough times.

The lattice results are shown in Fig. 6.2 for different spatial lattice spacings as keeping
the volume L = asN constant, thus increasing N accordingly. One clearly observes that
the simulation and the analytical result (6.62) fall nearly on top of each other for small
enough as, indicating that we are close to the continuum limit in that case. As a matter
of fact, we find that temporal discretization errors are quite negligible for at . as/20.
This corroborates that the real-time lattice simulation is in fact capable of reproducing the
analytic results in the continuum limit to very good accuracy.

In Fig. 6.3 we show the normalized particle number marginal distribution n+
P

(p, t)/L,
corresponding to the momentum spectrum of created particles (B.2), and compare it to the
continuum value f (p). In comparison to the integrated particle number shown above, the
spectrum is not smooth but shows fluctuations due to the sampling of low-cost fermions.
As a matter of fact, these fluctuations can be systematically reduced by taking Nsto larger.
We find that it suffices to take the number Nsto of the order of 103 in order to accurately
calculate integrated quantities such as n+(t). This is in contrast to the momentum spec-
trum n+

P
(p, t) where the number Nsto needed to be at least of the order of 104 to suppress

the statistical fluctuations sufficiently and obtain sensible results. In contrast to the one-
dimensional case considered here, the convergence is expected to be even better for three
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Figure 6.3.: Comparison of the continuum expression f (p) (solid line) with the normal-
ized particle number marginal distribution n+

P
(p, t)/L (dashed line) for ε = 1

at t = 50/m. The parameters are Nsto = 105, at = 0.00125/m, as = 0.025/m,
N = 1024 such that L = 25.6/m.

space dimensions where self-averaging plays a major role [7].
The established interpretation of f (p) is such that electric field energy is taken and

transformed into virtual fermion–anti-fermion pairs, showing up as the distinctive peak
around momenta p = 0. If the applied field strength E0 is large enough, i.e. of the order of
Ec, these charged excitations can be separated over the Compton wavelength and become
real fermion–anti-fermion pairs. These real particles are then further accelerated in the
background electric field and achieve higher and higher momenta up to p→ ∞.

We observe good agreement of simulation and analytical results regarding the virtual
fermion–anti-fermion peak around p = 0 as well as the overall magnitude of n+

P
(p, t)/L.

However, we observe a qualitatively different behavior for large momenta. This is due to
the fact that the analytic result assumes an electric field which has existed for all times
such that all momenta up to p → ∞ are already occupied whereas we solve an initial
value problem on the lattice. Accordingly, we observe a transient effect corresponding
to the peak at high momenta propagating to higher and higher momenta during the time
evolution.

Particle production with backreaction

We now include the backreaction of created fermion–anti-fermion pairs on the electric
field. As a consequence, particle creation comes with a simultaneous decrease of the
electric field due to energy conservation. This energy transfer from the gauge sector to
the fermion sector finally results in a decay of the electric field.
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In Fig. 6.4 we compare the time evolution of the total particle number n+(t) for simu-
lations with and without backreaction. We have already seen in the previous section that
the particle number grows eventually linearly if we disregard the backreaction of created
fermion–anti-fermion pairs on the electric field. However, this changes drastically if we
include the backreaction mechanism: Following the transient regime at early times, the
pair production rate immediately slows down once the pair creation process kicks in and
the electric field is weakened. Eventually, this is getting to a point where the fermion–anti-
fermion production process effectively stops and n+(t) levels off. This process happens on
rather short time scales of the order of ∆t ∼ 25/m.

To see the long-time behavior, in Fig. 6.5 we show the particle number n+(t) and the
electric field E(t) for times up to 800/m. Most notably, we observe the occurrence of
plasma oscillations in accordance with previous investigations [104]: Starting from t0 = 0,
the magnitude of the electric field decreases due to the creation of fermion–anti-fermion
pairs. Due to the backreaction mechanism, an internal electric field builds up so that the
field eventually changes sign and grows until a first local minimum is achieved. The elec-
tric field then increases again, changes sign, reaches a local maximum and so forth. The
oscillation frequency Ω increases with the number of produced fermions, in accordance
with the expected parametric dependence.

The behavior of the particle number n+(t) follows from the oscillatory behavior of the
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Figure 6.5.: Time evolution of the electric field E(t) (dashed line) and the total particle
number n+(t) (solid line) for an initial value ε = 1 for a much longer time
period. The parameters are as in Fig. 6.4.

electric field: Particle creation effectively terminates when the magnitude of the field
strength drops below ∼ 0.5Ec, corresponding to the approximate plateaus in n+(t). How-
ever, at those instants of time at which the electric field reaches local extrema, fermions
are created again. Due to the fact that the envelope of the electric field decreases with time,
the particle number n+(t) assumes the shape of a staircase with decreasing step height.

We emphasize that the classicality condition 〈AA〉 � 1 [64] is well fulfilled also after
the backreaction effectively terminates the pair production: For an electric field amplitude
E with characteristic oscillation frequency Ω the classicality condition reads E2/Ω2 � 1.
In our case E ' Ec/2 = m2/2e during these times such that with Ω ' πm/50 for the
employed coupling e/m = 0.3 we have E2/Ω2 ' 700.

Moreover, in Fig. 6.6 we demonstrate that the energy transfer from the gauge sector to
the fermion sector is in agreement with energy conservation.

Finally, in Fig. 6.7 we compare the normalized particle number marginal distributions
n+
P

(p, t)/L for simulations with and without backreaction prior to the onset of plasma
oscillations. We observe two major modifications if we include the backreaction:

First, the high-momentum peak is shifted to lower momenta. This is due to the fact
that acceleration in an electric field is proportional to its field strength. Accordingly,
particles are less accelerated and achieve lower momenta if the electric field is decreasing
gradually.

Second, the overall magnitude of n+
P

(p, t)/L declines in the low-momentum regime.
Again, this can be attributed to the decay of the electric field as the decrease of the field
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Figure 6.6.: Energy transfer between the fermionic sector (solid line) and the gauge sector
(dashed line) for an initial value ε = 1. The dotted line shows the total energy,
with the fermion vacuum contribution being subtracted. The parameters are
as in Fig. 6.4.

strength is accompanied by a drop in the pair production rate. Consequently, this gradual
decrease of the pair production rate shows itself as a decreasing amplitude of n+

P
(p, t)/L.

This simple picture changes rather drastically at late times because of the occurrence
of plasma oscillations. In Fig. 6.8 we show the normalized particle number marginal
distribution n+

P
(p, t)/L at different times. Due to the fact that the electric field changes its

sign again and again, the fermions are accelerated back and forth in momentum space over
and over again. The shaking of the fermions by the electric field has several implications:

In contrast to the wedge-shaped spectrum at early times, this results in a peaked margi-
nal number distribution at late times. It has to be emphasized, however, that this peaked
distribution still oscillates around p = 0 in accordance with the electric field. Moreover,
owing to the ongoing creation of fermion–anti-fermion pairs at times when the electric
field reaches its local extrema, the overall magnitude of n+

P
(p, t)/L increases as well.

6.1.2.2. Space- and time-dependent field

As a further example we consider an inhomogeneous electric background field which is
localized in space and time:

E(x, t) = E0 sech2(ωt) exp
(
−

x2

2λ2

)
, (6.63)
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Figure 6.7.: Normalized particle number marginal distribution n+
P

(p, t)/L with (solid line)
and without (dashed line) backreaction for an initial value ε = 1 at t = 50/m.
The parameters are Nsto = 105, at = 0.00125/m, as = 0.025/m, N = 1024
such that L = 25.6/m.

where ω and λ determine the duration and spatial extent of the pulse, respectively. Stud-
ies based on the continuum Dirac-Heisenberg-Wigner function only recently started to
address such inhomogeneous configurations, disregarding the backreaction of created
fermion–anti-fermion pairs [119, 122]. Here we are for the first time able to take this
fermionic backreaction into account using our lattice techniques. This will allow us to
discuss the striking phenomenon of a linear rising potential building up between produced
fermion bunches for times exceeding the pulse duration.

Particle production without backreaction

In a first step, we solve the problem without taking into account backreaction. Con-
sequently, we do not evolve the electric field according to (6.36) as it does not fulfill
Maxwell’s equation. We rather force the electric field to be given according to (6.63) at
every space-time point and investigate the fermion–anti-fermion production in this given
background field.

In Fig. 6.9 we show the position-space marginal distributions n±
X

(x, t) for three different
times, with the electric field parameters ε = 1, ω = 0.1m and λ = 5/m. One observes two
qualitatively different regimes, corresponding to early times (’creation regime’) and late
times (’propagation regime’).

The fermion–anti-fermion pair creation process takes place at early times, when charged
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Figure 6.8.: Normalized particle number marginal distribution n+
P

(p, t)/L for simulations
with backreaction at different times for an initial value ε = 1. The parameters
are Nsto = 104, at = 0.0025/m, as = 0.075/m, N = 512 such that L = 38.4/m.

excitations are created in a space region where the electric field acts. The creation process
also comes with a polarization effect, separating positive from negative charges. It has to
be emphasized, however, that n+

X
(x, t) and n−

X
(x, t) still overlap at these early times.

This changes in the propagation regime: Owing to the acceleration by the electric field,
one bunch of excitations with positive charge propagates into the positive x-direction
whereas another bunch of excitations with negative charge propagates into the opposite
direction. Asymptotically, these bunches can be identified with particles and antiparticles,
respectively.

In Fig. 6.10 we show the total number of created particles n+(t) for t → ∞ as a function
of the spatial extent λ. The result without backreaction corresponds to the dashed line.
One clearly observes the termination of the fermion–anti-fermion creation process for
small values of λ: The pair creation process terminates if the work done by the electric
field over its spatial extent is too small to provide the rest mass energy of the fermion–
anti-fermion pair. This observation is in perfect agreement with previous studies [110,
119, 123, 124]. For large values of λ we find a linear growth of the particle number,
which reflects the scaling of the available electric field energy that grows with λ.

Particle production with backreaction

We now consider the numerical solution of the full lattice problem including backreaction.
The solid line in Fig. 6.10 shows the full result for the total number of created particles
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Figure 6.9.: Position space marginal distributions n−
X

(x, t) (solid line) and n+
X

(p, t) (dashed
line) for ε = 1 at different times t = 0 (top), t = 0.6/ω (middle) and t = 1.2/ω
(bottom). The parameters are Nsto = 105, at = 0.01/m, as = 0.22/m, N = 256
such that L = 56.32/m.

n+(t → ∞) as a function of the spatial extent λ. In accordance with the previous discussion
we find that the backreaction mechanism tends to decrease the number of created parti-
cles since the electric field is weakened by the pair-production. For large enough spatial
extent of the pulse, such that the pair-production is significant enough for backreaction to
become important, this eventually decreases the slope of the curve growing linearly with
λ for large spatial extent.

The dashed curve in the upper part of Fig. 6.11 shows the position-space marginal
distribution n±

X
(x, t) at time t = 6/ω. At this time the duration of the initial electric
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Figure 6.10.: Total number of created particles n+(t → ∞) for ε = 1 as function of the
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at = 0.00125/m, as = 0.22/m, N = 512 such that L = 112.64/m.

field pulse and the corresponding pair creation regime is long over. The electric field
parameters are ε = 1, ω = 0.2m and λ = 5/m.

The acceleration by the electric field leads to one bunch of excitations with positive
charge propagating into the positive x-direction whereas another bunch of excitations with
negative charge is propagating into the opposite direction. Most strikingly, we find that
a self-consistent electric field E(x, t) between the two fermion bunches builds up in the
absence of any external field (6.63) at these times. The two bunches consisting of particles
and anti-particles act as a capacitor [125], creating a homogeneous electric field between
them whereas there is no field outside them. This electric field is shown in the lower part
of Fig. 6.11. Owing to the description of the fermionic degrees of freedom in terms of
low-cost fermions, we observe some small fluctuations in the electric field on top of this
homogeneous field. Again, these fluctuations decrease with increasing Nsto.

The homogeneous electric field between the fermion bunches can be represented in
terms of a linear rising potential. For larger values of the initial field strength E0 or the
coupling e, we expect that secondary particle creation due to the self-consistent electric
field takes place. This mechanism would result in the depletion of the electric field remi-
niscent to the effect of string-breaking. This will involve further studies with supercritical
initial field strengths which is beyond the scope of the present work and deferred to a
future publication.
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Figure 6.11.: Self-consistent electric field E(x, t) (solid line) and position space marginal
distributions n±

X
(x, t) (dashed line) at t = 6/ω for ε = 1, ω = 0.2m and λ =

5/m. The arrows indicate the propagation direction of the particle and anti-
particle bunch, respectively. The parameters are Nsto = 106, at = 0.0075/m,
as = 0.22/m, N = 512 such that L = 112.64/m.

6.1.3. Conclusions

We investigated fermion–anti-fermion pair production in 1 + 1 dimensions based on real-
time lattice simulations. To this end, we discussed the lattice equations of motion using
the low-cost fermion algorithm to solve them. In order to define gauge-invariant fermi-
onic distributions corresponding to charge, energy or particle/anti-particle number, we
derived the lattice analogue of the continuum Dirac-Heisenberg-Wigner function. In the
continuum formulation, gauge invariance of these distributions is achieved by a Wilson
line along the straight line. On the lattice, however, the straight line path is not unique
due the periodicity of the lattice. We showed that correspondence with established results
is achieved by replacing the straight path in the continuum by the shortest path on the
lattice.

Investigating the field-strength dependence of the fermion–anti-fermion production rate
in a static background field we accurately reproduced the Schwinger formula. We then
discussed the decay of the field due to the backreaction of the created fermion–anti-
fermion pairs. For the case of inhomogeneous gauge fields we computed for the first
time the full problem taking backreaction into account. Most notably, we could show that
the two bunches consisting of particles and anti-particles create a homogeneous electric
field between them whereas there is no field outside them. In subsequent work we will
extend these studies to supercritical initial field strengths, which is expected to lead to

100



6.2. Dynamics of string breaking

striking pair creation phenomena reminiscent of string breaking.

It should be emphasized that the real-time lattice simulations are considerably cheaper
from a computational point of view than continuum approaches such as based on the
Dirac-Heisenberg-Wigner function. In view of potential experimental applications it is
crucial that strongly inhomogeneous configurations can be well described. Strong inho-
mogeneities are a challenge for alternative approaches based on derivative expansions
underlying effective kinetic descriptions. Here the lattice approach, which is based on
ensemble techniques using inhomogeneous configurations, is particularly powerful.

We employed a low-cost fermion algorithm in our 1 + 1 dimensional simulations even
though a mode-function expansion of the spinors would have been the more direct way.
One reason for our choice was that we are aiming at investigations of QED and QCD
in 3 + 1 dimensions since then the application of the mode function expansion becomes
impracticable. Possible investigations of QED in 3 + 1 dimensions will show several
major differences compared to the massive Schwinger model. Most notably, the gauge
degrees of freedom are dynamical in contrast to 1 + 1 dimensions where the dynamics of
the electric field is governed only by the fermionic backreaction.

6.2. Dynamics of string breaking

In this section we present a detailed space-time picture of string breaking in QED in one
spatial dimension. This is possible since in this case the quantum dynamics of string
breaking can be accurately mapped onto a classical problem, which can be rigorously
solved on a computer using lattice gauge theory techniques [22, 7, 94].

For the case of two external static charges we establish a two-stage process: Exceeding
a critical distance between the external charges quickly leads to spontaneous creation of
fermion–antifermion pairs. However, the dynamical charges are produced on top of each
other and, therefore, initially do not screen the external charges. We find that it takes a
much longer time to separate the dynamical charges such that the string can finally break.

Strikingly, it turns out that most of the energy content of the string goes into the work
that is required for the process of charge separation, and only a small fraction is spent on
pair creation. This has a significant impact on the estimate of the critical charge separation
for string breaking, and we give a simple model that explains our simulation results. We
then exploit the rich phenomenology that becomes accessible in a real-time treatment of
string formation and subsequent breaking. For this purpose, we discard external charges
and consider the physical situation of dynamical charges only. This allows us to establish
the phenomenon of multiple string breaking from dynamical charges flying apart.
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6.2.1. Two stages of string breaking
The vacuum of QED is unstable against the formation of many-body states in the presence
of strong electric fields. The creation of electron-positron pairs in a uniform electric field
may be viewed as a quantum process in which virtual electron-positron dipoles can be
separated to become real pairs once they gain the binding energy of twice the rest mass,
2m, where we use the convention with a speed of light equal to one. This Schwinger pro-
cess is exponentially suppressed unless a critical field strength determined by the electron
mass m and the electric charge e is reached [68, 69, 70]:

Ec =
m2

e
. (6.64)

For a confining string connecting two external static charges, the energy content of
the string rises linearly with the distance between the charges. For the case of QED in
one spatial dimension with N0 external charges ±eN0 that are separated by a distance d,
Gauss’ law ∂xE = eN0 [δ(x + d/2) − δ(x − d/2)] results in a homogeneous electric field
Estr = eN0 between the two charges. Accordingly, the potential energy rises linearly with
the separation d:

Vstr =
1
2

∫ d/2

−d/2
dx E2

str =
e2N2

0d
2

. (6.65)

In the absence of dynamical fermions, this equation holds for arbitrary separations d.
However, in the interacting theory fermion–antifermion pairs will be created sponta-
neously once the energy content of the string becomes large enough for distances ex-
ceeding a critical distance dc. As a dynamical process, string breaking can be defined
to happen at the time when the total screening of the external charges by the dynami-
cally created pairs occurs such that the corresponding electric field vanishes. For this it
is necessary to produce at least N0 fermion–antifermion pairs. Due to the exponential
suppression of the Schwinger mechanism, this is expected to occur efficiently only for
Estr & m2/e according to (6.64). Therefore, we consider e/m = 1/

√
N0 in the following

such that Estr = Ec. Below we will discuss also more general sets of parameters in the
context of multiple string breaking.

We compute this process from first principles using real-time simulation techniques for
lattice QED with Wilson fermions following Refs. [22, 7, 94]. In this nonperturbative
approach the full quantum dynamics of fermions is included while the gauge field dy-
namics is accurately represented by classical simulations for relevant field strengths. The
real-time simulations are performed on a spatial lattice with the number of sites ranging
from 1024 up to 4096 and lattice spacings between as = 0.05/m and 0.1/m, with tem-
poral steps at/as = 0.0125 – 0.04. We carefully checked the insensitivity of our results
to volume and lattice spacing variations. Observables such as the charge density ρ(x, t)
or the fermion density n(x, t) are calculated from gauge-invariant correlation functions in
a standard way [94]. Here the fermion density n(x, t) is related to the fermion energy
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density so that fermions and antifermions contribute with the same sign. As these observ-
ables are defined from the quantum expectation value of correlation functions, quantities
like the average number of fermion–antifermion pairs N(t) =

∫
dx n(x, t)/2 can take on

non-integer values. First, we consider the case N0 = 1 such that e/m = 1. In Fig. 6.12 the
space-time evolution of the fermion density n(x, t) is shown for two external static charges
±e separated by d = 28/m, along with the electric field E(t) at x = 0 as well as the av-
erage number of pairs N(t) as a function of time. From the simulations we find that the
employed separation of external charges just lies above the required critical distance dc for
string breaking. At early times, the fermion density n(x, t) between the external charges
increases due to the Schwinger mechanism on rather short time scales of tprod ' 1/m. At
the same time, we find that the charge density still vanishes, ρ(x, t) = 0: Fermions and
antifermions are initially produced on top of each other and, accordingly, the dynamically
created charges do not screen the electric field Estr yet. After the first stage, fermion–
antifermion production has ceased and the average number of pairs N(tprod) ' N0 stays
practically constant. At the same time, the remaining electric field separates the dynam-
ically created charges, which is a much longer lasting process with a separation time
tsep ' 20/m. Due to the continuous separation process, the external charges are gradually
screened so that E(t) → 0 in the end. This screening process shows a linear behavior
in time since the dynamically created charges move apart from each other close to the
forward light cone. Remarkably, only a rather small fraction of the initial electric field
energy is expended on the rest mass energy, Vstr > 2m, whereas the largest fraction is used
for separating the charges.

We have also simulated the system in the weak coupling regime e/m = 1/
√

N0 with
N0 = 2, 3, 4, 5 such that still Estr = Ec. The picture of a two-stage process is seen also in
these cases with the critical distance showing the dependence dc ' 26/e = 26

√
N0/m.

We now give a simple dynamical picture providing, in particular, semi-quantitative
estimates for dc as well as the charge separation work W. To describe the fermion–
antifermion production, we employ a model which is based on the Schwinger formula
in one spatial dimension, which is typically applicable even for slowly varying electric
fields:

Ṅ(t) = d
eE(t)

2π
exp

(
−
πm2

eE(t)

)
, (6.66)

with N(0) = 0. For t . tprod � d, the electric field E(t) decreases with time due to the
production of fermion–antifermion pairs as well as the gradual screening of the external
charges. In this regime, the field can be approximately described by

E(t) '

√
e2N2

0 −
4mN(t)

d
−

eN(t)
d

t . (6.67)

Solving the differential equation (6.66) with (6.67), such that N(tprod) → N0, results in a
numerical estimate for the critical distance dc ' 28.5/e = 28.5

√
N0/m, which is in good

agreement with the values we find in our real-time lattice simulations.
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Figure 6.12.: Space-time evolution of string breaking for external static charges ±e (de-
noted by 	 and ⊕) with e/m = 1 separated by d = 28/m. Top: Fermion
density n(x, t). The vertical ovals represent the charge density ρ(x, t) accord-
ing to our model (6.68) for charge separation. The charge density vanishes
in regions where positively and negatively charged ovals overlap. Middle:
Time-dependence of the electric field E(t) at x = 0. Bottom: Average num-
ber of fermion–antifermion pairs N(t).
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Moreover, we give an estimate of the charge separation work W which is based on the
simple model that two homogeneous regions of positive and negative charge density are
produced on top of each other at some time t = 0. These charges are then accelerated by
the electric field and move apart from each other close to the forward light cone:

ρ±(x, t) = ±
eN0

dc

[
Θ

(
x ∓ t +

dc

2

)
− Θ

(
x ∓ t −

dc

2

)]
, (6.68)

with the average charge
∫

dxρ±(x, t) = ±eN0 and Θ(x) = 1 for x > 0 while being zero
otherwise. For this model, by applying Gauss’ law, the electric field E(x, t) is obtained
analytically. The work done by the electric field on the positive and negative charges upon
separating them over a distance dc/2, such that the electric field is completely screened at
x = 0, is then given by

W± = ±
eN0

dc

∫ dc/2

−dc/2
dxi

∫ xi±dc/2

xi

dxE(x, t) =
5e2N2

0dc

24
, (6.69)

where the integral is over the time-dependent paths x(t) = xi + t. Plugging dc into the
expression for the work (6.69) one obtains:

W = W+ + W− =
5e2N2

0dc

12
' 12mN3/2

0 . (6.70)

This confirms our findings that the total work for charge separation well exceeds the rest
mass energy 2mN0.

The two-stage process of fermion–antifermion production and charge separation de-
scribes the early-time behavior of the system well. At later times, however, the picture
becomes more involved due to the dynamics of the created fermion–antifermion pairs
coupled to the electric field. Here, we want to mention two effects which can be observed
at later times: screening of external charges and propagating charge-neutral states.

In Fig. 6.13 the charge density ρ(x, t = 100/m) is shown at late times for N0 = 1 sepa-
rated by d = 10/m in the strong-coupling regime with e/m = 2, such that Estr = 4Ec. At
early times, we again observe the two-stage process of pair production and charge sep-
aration. However, due to the particular choice of d and Estr there are more than one but
rather N(tprod) ' 5 fermion–antifermion pairs produced. Accordingly, only one fermion
and antifermion are subsequently used to screen the external charges ±e. For this config-
uration we find for its spread ' 3/m. This behavior resembles the screening of external
charges in the Schwinger model, corresponding to the limit e/m→ ∞ [126]. The remain-
ing 4N(t)/5 ' 4 fermion–antifermion pairs, however, bunch to composite charge-neutral
states which propagate freely since the external charges are totally screened. A detailed
description of this effect is deferred to a future investigation.
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Figure 6.13.: Screening of external charges. The charge density ρ(x, t = 100/m) is shown
for external static charges ±e (denoted by 	 and ⊕) separated by d = 10/m
for e/m = 2.

6.2.2. Multiple string breaking

So far we considered string breaking for two external static charges. We now generalize
the above setup by simulating two oppositely charged bunches of dynamical fermions
moving apart from each other, i. e. we no longer include external static charges. These
bunches can be either produced by an external field pulse, or, more directly, one can
initialize the fermion fields according to a given distribution [119]. Here we employ
Gaussian distributions around x = 0 with a width of σx = 5/m in real-space and σp =

4.6m in momentum-space. We initialize two fermion bunches with relativistic momenta
in opposite direction with an initial number of pairs N(0) = 24 and given coupling e/m =

0.35.
In order to visualize the time evolution, we display in Fig. 6.14 the electric field E(x, t)

(upper left panel) and its value at x = 0 (lower left panel). Moreover, we also show the
charge density ρ(x, t) (upper right panel) and the average number of pairs N(t) (lower
right panel). Due to the initial relativistic momenta of the fermions and antifermions,
they move apart from each other with a velocity close to the speed of light. In the current
configuration, fermions with negative/positive charge move into the positive/negative x–
direction. Upon separating from each other, an electric field string is formed between
them.

For the chosen initial conditions the maximum achieved field strength is much larger
than Ec. The time at which this maximum is reached is indicated by the first dashed line
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6.2. Dynamics of string breaking

Figure 6.14.: Space-time evolution of multiple string breaking from dynamical charges
flying apart. Top left: Electric field E(x, t). Bottom left: Central electric
field E(0, t) in units of Ec. The dashed lines indicate the times at which
E(0, t) is extremal. Top right: Charge density ρ(x, t). Bottom right: Av-
erage number of fermion–antifermion pairs N(t). The dashed lines indicate
the times at which E(0, t) becomes extremal.

in Fig. 6.14. Around this time, efficient fermion production sets in such that the average
number of pairs N(t) rises significantly. In complete analogy to the above discussion,
the newly created charges still sit on top of each other such that the electric field is not
screened yet.

In order to screen the initial bunches, the newly created charges need to be separated.
As a consequence, the electric field performs work and drops linearly with time and fi-
nally even changes sign. At that time, two new bunches of fermions have formed which
are oppositely charged compared to the initial ones, and again move apart from each other
(primary string breaking). This results in a secondary electric string with a maximum
field strength of the order of −Ec, indicated by the second dashed line. As a consequence,
fermion production sets in again, however, less efficient than before because of the lower
maximum field strength. Charges are again created on top of each other and are subse-
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quently separated, resulting in a rise of the electric field including a sign change. As a
consequence, the formation of two new fermion bunches can be observed, again oppo-
sitely charged compared to the previous ones (secondary string breaking). The following
extremum of the electric field, as indicated by the third dashed line in the corresponding
figures, is already below the critical field strength such that fermion production effectively
stops and the average number of pairs becomes asymptotically constant.

6.2.3. Conclusions

To conclude, our results provide unprecedented insights into the real-time dynamics of
string formation and breaking from first principles. The described phenomenon of string
breaking in QED is intimately related to a one-dimensional geometry, which poses strong
constraints on possible experimental realizations. However, ultracold atoms in an optical
lattice could provide a perfect laboratory for this type of physics, in particular, since they
are very suitable to access low-dimensional geometries. For the specific case of QED
in one spatial dimension, one can use angular momentum conserving atomic scattering
processes to directly implement the U(1) gauge symmetry without the need to construct
low-energy effective theories [33]. In this context, our calculation serves as an important
validator for quantum simulators using cold atoms.

6.3. Quark production and gluon dynamics in
QCD

In this section we will explore how quarks are produced in QCD starting from initial
conditions relevant for the early pre-equilibrium phases of heavy-ion collisions. Earlier
studies of purely gluonic dynamics in heavy-ion collisions have established a turbulent
regime with an energy cascade towards the ultraviolet. The purposes of our investigations
are to determine the overall scale of quark production and to get an insight into spectral
properties of non-equilibrium fermionic distributions. Special emphasis will be placed on
the role of bosonic turbulence for their late time behaviour. Furthermore, we are interested
in a comparison between different initial scenarios concerning their impact on the quark
sector.

6.3.1. QCD on a real-time lattice

To study real-time dynamics of QCD in 3 + 1 dimensions, we apply methods of lattice
gauge theory similar to those introduced for 1 + 1 dimensional QED in Sec. 6.1. In lattice
gauge theory, the action is formulated in terms of so-called unitary link variables Uµ(x)
instead of the original gauge fields Aa

µ(x). The connection between these formulations is
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straight forward:
Uµ(x) = eigaµAµ(x) = eigaµAb

µ(x)σb
. (6.71)

Here aµ is the lattice spacing in spatial or temporal direction (no summation over µ is
implied), g is the gauge coupling and σ b are the N2

c − 1 generators of the relevant gauge
group S U(Nc). We will restrict ourselves to the S U(2) gauge group where the traceless
and Hermitian generators are proportional to the standard Pauli matrices τa

σa =
τa

2
, (6.72)

with

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (6.73)

Since our goal is to formulate the QCD action in terms of local gauge-invariant quantities,
we construct closed loops from neighbouring link variables, the so-called plaquettes

Uµν(x) = Uµ(x)Uν(x + µ̂)U†µ(x + ν̂)U†ν (x) . (6.74)

The notation µ̂ used here implies moving to the next lattice point in µ direction. These
objects contain information about the field-strength tensor Fµν = Fa

µνσ
a. Its components

can be extracted to the leading order in lattice spacings via

Fa
µν(x) =

−2i
gaµaν

Tr
[
σaUµν(x)

]
. (6.75)

Particularly important are the local chromoelectric and chromomagnetic fields, E j(x) and
B j(x):

Ea
j (x) =

−2i
gatas

Tr
[
σaU0 j(x)

]
(6.76)

Ba
j(x) =

i
ga2

s
ε jklTr [σaUkl(x)] . (6.77)

Now we have all of the ingredients for the gluonic part of the lattice action, S g[U]:

S g[U] =
4
g2

∑
x

as

at

∑
j

[
1 −

1
2

TrU0 j(x)
]
−

at

as

∑
j<k

[
1 −

1
2

TrU jk(x)
] , (6.78)

where we sum over all lattice points x and the three spatial directions j. The above
expression is nothing else but the lattice version of the standard gauge action S gauge =
1
2

∫
x
(E2(x) − B2(x)). In the total action for our two-colour version of QCD, S [U, ψ̄, ψ] =
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S g[U] + S 0
ψ[U, ψ̄, ψ] + S W

ψ [U, ψ̄, ψ], the quark contribution consists of the standard fermi-
onic term with a gauged central derivative S 0

ψ[U, ψ̄, ψ] and a pseudoscalar Wilson term
S W
ψ [U, ψ̄, ψ], similar to the one employed in Chap. 5:

S 0
ψ[U, ψ̄, ψ] = ata3

s

∑
x,µ

ψ̄(x)

iγµUµ(x)ψ(x + µ̂) − U†µ(x − µ̂)ψ(x − µ̂)
2aµ

− mψ(x)

(6.79)

S W
ψ [U, ψ̄, ψ] = ata3

s

∑
x, j

ψ̄(x)

iγ5
U j(x)ψ(x + ĵ) + U†j (x − ĵ)ψ(x − ĵ) − 2ψ(x)

2as

 .(6.80)

Mind that also the derivatives in the Wilson term have been consistently gauged with
gluonic link variables. For the time evolution we take advantage of the gauge freedom
and apply the temporal axial gauge, meaning that A0 = 0 and correspondingly U0 = I.
But before making such simplification we derive the equations of motion for our theory.
We do it by variation of the action w.r.t. the fermion fields and the link variables. The
discretized fermionic equation of motion is given by

ψ(x + t̂) = ψ(x − t̂) − 2iatmγ0ψ(x) −
at

as
γ0

∑
j

γ j
[
U j(x)ψ(x + ĵ) − U†j (x − ĵ)ψ(x − ĵ)

]
−

at

as
γ0γ5

∑
j

[
U j(x)ψ(x + ĵ) + U†j (x − ĵ)ψ(x − ĵ) − 2ψ(x)

]
.

(6.81)

This equation will govern the time evolution of stochastic spinor fields in the framework
of male/female method, as described in Sec. 4.2. Variation of the action w.r.t. the spatial
links leads to a dynamical equation for the chromoelectric field

Ea
j (x) = Ea

j (x − t̂) +
2iat

ga3
s

∑
k, j

[
Tr(σaU j(x)Uk(x + ĵ)U†j (x + k̂)U†k (x))

+ Tr(σaU j(x)U†k (x + ĵ − k̂)U†j (x − k̂)Uk(x − k̂))
]

+
gat

4

∑
j

[
〈ψ̄(x)γ jσaU j(x)ψ(x + ĵ)〉sto + 〈ψ̄(x + ĵ)γ jU†j (x)σaψ(x)〉sto

+ 〈ψ̄(x)γ5σaU j(x)ψ(x + ĵ)〉sto − 〈ψ̄(x + ĵ)γ5U†j (x)σaψ(x)〉sto

]
.

(6.82)

Here we already included the stochastic average over an ensemble of male/female pairs
for the backreaction of fermions onto gauge fields. Similarly, a variation w.r.t. temporal
links produces the so-called Gauss constraint:

a2
s

g

∑
j

[
Ea

j (x) +
2i

gatas
Tr(σaU†j (x − ĵ)U0 j(x − ĵ)U j(x − ĵ))

]
+ (6.83)

a3
s

4

[
〈ψ̄(x)γ0σaψ(x + t̂)〉sto + 〈ψ̄(x + t̂)γ0σaψ(x)〉sto

]
= 0 . (6.84)
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As long as this constraint is fulfilled by initial conditions it remains conserved by the time
evolution, up to numerical rounding errors. In our simulations with male/female fermions,
we fix the Gauss law numerically with an iterative method and monitor its violation during
runtime. Having derived equations of motion for chromoelectric fields and quarks, we
need to find an equation for the spatial link variables U j(x) in order to complete the set of
equations of motion for our system. To achieve this we reverse Eq. (6.76) and construct
the temporal plaquette U0 j(x) from Ea

j (x). In this and all other situations in which a S U(2)
object is constructed, we take advantage of an exact formula for this gauge group:

U = cos
( √

caca

2

)
I +

2i
√

caca
sin

( √
caca

2

)
caσ

a , (6.85)

with ca being the coefficients for all N2
c − 1 gluon components. In temporal axial gauge

U0 j(x) can be used to determine the spatial link U j(x) at the next timestep

U j(x + t̂) = U0 j(x)U j(x) , (6.86)

so that we have a closed system of equations for link variables and chromoelectric fields
acting as their conjugate momenta. To calculate bosonic expectation values in this frame-
work, we apply classical-statistical sampling as described in 2.1.2. In order to define
physically relevant particle numbers we will have to perform gauge transformations of
the lattice fields. Local gauge transformations of link variables are defined by

U′µ(x) = G(x)Uµ(x)G†(x + µ̂) , (6.87)

where G(x) is a S U(2) transformation matrix. Fermions are transformed by a group
rotation with G(x):

ψ′(x) = G(x)ψ(x) . (6.88)

Initial conditions and particle numbers
We perform simulations of quark production starting from three distinct initial scenarios.
The common property of all of them is the absence of any quarks in the initial state. We
also assume the perturbative quark vacuum to be diagonal in colour and flavour. An-
other similarity is that we explicitly take initial conditions which guarantee large field
amplitudes or large fluctuations of the gluon fields, a necessity dictated by our use of
classical-statistical aproximation for bosonic dynamics.

The quantities which define a Gaussian initial condition in the gluonic sector are chro-
momagnetic and chromoelectric one-point functions, 〈Ba

j(x, t0)〉 and 〈Ea
j (x, t0)〉, as well as

their two-point correlators 〈Ba
j(x, t0)Bc

k(y, t0)〉 and 〈Ea
j (x, t0)Ec

k(y, t0)〉. Note that in tempo-
ral axial gauge the chromomagnetic fields are completely determined by the spatial gauge
fields Aa

j(x, t) via Ba
j(x, t) = ∇x × Aa

j(x, t). We initialize the gauge field fluctuations such
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that they represent a gas of spatially transversal particles in Coulomb gauge, very similar
to a non-interacting photon gas in QED with additional internal group indices. The form
of the corresponding correlators is set by a proper choice of chromoelectric and gauge
fields in spatial momentum space for homogeneous and isotropic gluonic fluctuations at
initial time:

Aa
j(k, t0) =

√
na

g(|k|, t0) + 1
2

|k|

1,2∑
λ

[
ba
λ,kελ, j,k + ba,∗

λ,−kε
∗
λ, j,−k

]
(6.89)

Ea
j (k, t0) = i

√
|k|

(
na

g(|k|, t0) +
1
2

) 1,2∑
λ

[
ba
λ,kελ, j,k − ba,∗

λ,−kε
∗
λ, j,−k

]
. (6.90)

Here λ is the polarization index and ελ, j,k are the components of normalized polarization
vectors orthogonal to the propagation momentum k. We choose this vectors to be real
valued and construct them numerically for each spatial momentum by first taking cross
product of a random vector with the incoming momentum and then building a second
cross product between the normalized resulting vector and the particle momentum. The
complex stochastical random numbers ba

λ,k are drawn in the same fashion as in 5.1.2 such
that the only non-vanishing connected (denoted by 〈...〉con) correlators between Aa

j(k, t0)
and Ea

j (k, t0) read

〈Aa
j(p, t0)Ab

k(q, t0)〉con =
1
|p|

(
na

g(|p|, t0) +
1
2

) (
δ jk −

p j pk

|p|2

)
δ(p + q)δab (6.91)

〈Ea
j (p, t0)Eb

k (q, t0)〉con = |p|
(
na

g(|p|, t0) +
1
2

) (
δ jk −

p j pk

|p|2

)
δ(p + q)δab . (6.92)

The disconnected parts have been omitted here, but they are initialized as macroscopic
classical fields in some of our scenarios. More precisely, we start our computations ei-
ther from a saturated state of overpopulated gluons or from anisotropic classical fields
undergoing a rapid decay due to instabilities and particle production. The overpopulation
scenario is realized by an initial distribution for gluonic occupation numbers

ng(|p|, t0) =
1
g2 Θ(|p| − Qs) , (6.93)

where the Heavyside function ensures that gluons populate all infrared modes up to the
saturation scale Qs with a parametrically high occupancy of 1/g2. Because of the typical
form of the initial spectrum we will refer to this scenario as ”Fluctuation” IC (initial
condition). Note that this gluon distribution is isotropic in momentum space and in all
colour indices. The approach to thermal equilibrium from such kind of initial conditions
is marked by the transport of energy and particles to short length scales and by an overall
reduction in the total number of gluons. The latter assumption can be justified by a short
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6.3. Quark production and gluon dynamics in QCD

parametric estimate valid in the limit of g2 � 1. Simple integration over ng(|p|, t0) yields
the total quasi-particle energy of the initial state, ε ∼ Q4

s/g
2 and the total particle number

Ng ∼ Q3
s/g

2. Energy conservation determines the final temperature of the thermal gluon
gas to be T ∼ Qs/

√
g, meaning that the number of particles in the thermal ensemble

should be N th
g ∼ T 3 ∼ Q3

s/g
3/2. As a consequence we see that Ng > N th

g for small gauge
couplings.

In the next section, the evolution of the overpopulated initial state will be compared to
a system where overpopulation is dynamically generated by a Nielsen-Olesen magnetic
plasma instability. This instability is triggered by an initial chromomagnetic field in lon-
gitudinal direction, 〈Ba

i 〉 = δ1aδziB, where B is the classical field strength. To realize such
a configuration we initialize our simulations with macroscopic gauge fields

〈A2
x〉 = 〈A3

y〉 =

√
B
g
. (6.94)

These initial fields cause the longitudinal field B(t) to perform damped oscillations in
time, with the damping being provided by interactions with exponentially growing gluon
fluctuations. The momentum dependent growth rate of these fluctuations in the linear

regime is γp =

√
gB̄ − p2

z , with B̄ being the time averaged absolute value of the chromo-
magnetic field2. In our figures this type of initial conditions is refered to as ”Condensate”
IC (initial conditions).

In the color glass condensate description of the early phase of heavy-ion collisions [46]
the initial coherent colour fields form so-called flux-tubes. These are regions of space
in which both chromoelectric and chromomagnetic fields are aligned in the longitudinal
direction. It turns out that a single flux-tube resembles the initial conditions for Nielsen-
Olesen instabilities with an additional macroscopic field 〈Ea

i 〉 = δ1aδziE. This macro-
scopic chromoelectric field also exhibits damped plasma oscillations and simultaneously
creates gluons and quarks via Schwinger mechanism. In a certain sense a flux-tube is a
combination of Nielsen-Olesen instability with Schwinger effect in QCD. We will show
in the following section how the longitudinal flux-tubes dissipate into fluctuations and
discuss the emergent quark and gluon spectra.

To consider particle spectra in a theory with local gauge symmetry, we first need to
define appropriate occupation numbers. Since our initial conditions are transversal in
spatial momentum space, we choose to enforce this property also in the readout procedure.
For this purpose we transform the gluonic and fermionic correlators by a unitary gauge
transformation Gt(x) onto a Coulomb-like spatially transversal gauge. In short, we impose

2As has been shown in [71], for these initial conditions the Nielsen-Olesen instability is accompanied
by parametric resonance. But because the latter contributes much less to the total particle yield, we
skip the discussion of its specifics and refer the reader to the original publication and our discussion of
parametric resonance in 2.2.1.
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two independent gauge conditions, A0 = 0 and

∇x · A(x, t) = 0 . (6.95)

These conditions eliminate two of the four gluonic degrees of freedom, so that we are
left with only two transversal polarizations per gluon, in accordance with our initial fluc-
tuations. However, in contrast to standard Coulomb gauge, our transformation is time
dependent, since we need to calculate the transformation matrices every time when we
measure particle spectra. Numerically it is done by a stochastic overrelaxation algorithm
described in [127]. The transformation matrices Gt(x) computed with this algorithm are
then used to transform link variables, temporal plaquettes (which represent local chromo-
electric fields) and male/female spinor fields

UCG
j (x) = Gt(x)U j(x)G†t (x + ĵ) (6.96)

UCG
0 j (x) = Gt(x)U0 j(x)G†t (x) (6.97)

ψCG(x) = Gt(x)ψ(x) . (6.98)

The abbreviation CG stands here for Coulomb-like gauge. The definition of the fermionic
occupation number is essentially identical to the one employed in Eq. (5.26), the only
differences being the usage of gauge transformed correlators averaged over colour and
flavour indices3. Gluonic particle numbers are defined as following

ng(|p|, t) =

√
Tr

[
〈Ab

i (|p|, t)Ac
j(| − p|, t)〉CG

]
Tr

[
〈Eb

i (|p|, t)Ec
j(−|p|, t)〉CG

]
(N2

c − 1)(d − 1)
−

1
2
. (6.99)

The trace acts here in both colour and polarization space, the resulting particle number is
an average over all internal degrees of freedom.

6.3.2. Isotropization and quark production
In the previous part we presented the types of initial conditions relevant for early-time
dynamics in heavy-ion collisions that we decided to study using our lattice methods. A
clear distinction between initial gluonic overpopulation and flux-tube or Nielsen-Olesen
instabilities is the difference between isotropic and anisotropic states. Plasma instabili-
ties and Schwinger pair production drive an initially highly anisotropic system towards
isotropy and then further to thermal equilibrium, while the overpopulation scenario is
isotropic from the very beginning. It is a priori not clear if any connection can be made
between these very different scenarios and if each of them should be treated separately.

3So far we have not discussed different flavours in QCD, for our purposes the flavour is an internal degree
of freedom. In this work we simulate two flavours of quarks with equal masses, which should represent
the two light quarks in real QCD.
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Figure 6.15.: Time evolution of the chromomagnetic field B(t) during the Nielsen-Olesen
instability.

To measure the evolution of the anisotropy with time we first present here results from
Nielsen-Olesen and flux-tube simulations focusing on quantities which either determine
the anisotropy of a system or are clear measures of it.

In the following we consider results for weakly coupled (g2 = 10−2), two colour QCD
with two degenerate light quark flavours. The numerical results have been obtained on
a 643 spatial lattice. Simulating at weak coupling guarantees that we are well inside the
region of validity of classical-statistical approximation. Our main focus lies on gluon dy-
namics and its impact on quark production as well as on the properties of quark particle
distributions. The backreaction of quarks onto the dynamics of gluons is parametrically
O(g2) and is expected to become more important only at stronger couplings. We never-
theless include the backreaction for the reasons of consistency and have checked that the
total energy is conserved during our simulations.

We begin our discussion with the time evolution of the chromomagnetic field B(t). This
field can be easily calculated from the rescaled macroscopic gauge field Ā(t) defined by
inverting Eq. (6.94):

Ā(t) =
1
2

(
〈A2

x(t)〉 + 〈A
3
y(t)〉

)
. (6.100)

Initially Ā(t = 0) =
√

B/g according to 6.94. To get rid of the explicit coupling depen-
dence we plot not Ā(t) but rather B(t) =

√
gBĀ(t). Note that B is an input parameter
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Figure 6.16.: Oscillations of longitudinal gauge fields in a flux-tube and their subsequent
decay.

quantifying our energy density while B(t) is a dynamically measured quantity. In Fig.
6.15 we see that the field, which starts at a high amplitude, exhibits damped oscillations
and finally goes down to zero. At this point all of the energy originally contained in the
one-point function has been transformed into higher correlation functions in the gluonic
and fermionic sectors. This picture of initially oscillating but later vanishing macroscopic
fields repeats itself in the simulations of a decaying flux-tube as presented in Fig. 6.16,
where, additionally to the chromomagnetic field, a macroscopic chromoelectric field is
initialized.

Here we plot the longitudinal chromoelectric field 〈E1
z 〉 together with the chromomag-

netic field B(t). Both macroscopic fields undergo damped oscillations and are reduced
by non-linear interactions and particle production. While the magnetic field destabilizes
gauge fluctuations and causes exponentially rising solutions for infrared modes [71, 72],
the electric component directly produces quarks and gluons [128] and accelerates them via
the non-Abelian Lorentz force. For both scenarios we observe that the initial configura-
tion dominated by the anisotropic fields is almost completely depleted after t ' 50/

√
gB.

During the flux-tube decay (in Fig. 6.16), the chromoelectric field vanishes even ear-
lier, around t ' 30/

√
gB, suggesting that the energy transfer from the electric sector to

particles is more efficient. This observation may be interpreted analogous to the Lorentz
force in classical electrodynamics, where electric fields are capable to change the absolute
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value of a point particle’s momentum. Magnetic fields on the other hand only influence
the direction of the total momentum.

A natural question arising from this observation is whether the anisotropy is maintained
by two- and higher n-point correlators or whether the decay of either the flux-tube or the
chromomagnetic field alone coincides with the isotropization of the system. To answer
this question, we choose to measure the anisotropy as a function of time with gauge-
invariant diagonal elements of the energy-momentum tensor. We define transversal and
longitudinal pressure components on the lattice as

〈PT 〉(t) =
1

N3

∑
x

[
Ea

z (x)Ea
z (x) + Ba

z (x)Ba
z (x)

−
i

4as

1,2∑
j

〈ψ̄(x)γ jU j(x)ψ(x + ĵ)〉sto − 〈ψ̄(x)γ jU
†

j (x − ĵ)ψ(x − ĵ)〉sto

]
〈PL〉(t) =

1
N3

∑
x

[
Ea

x(x)Ea
x(x) + Ba

x(x)Ba
x(x) + Ea

y (x)Ea
y (x) + Ba

y(x)Ba
y(x)

−
i

2as
〈ψ̄(x)γ3U3(x)ψ(x + ẑ)〉sto − 〈ψ̄(x)γ3U†3(x − ẑ)ψ(x − ẑ)〉sto

]
.

(6.101)

Note that in thermal equilibrium pressure is an isotropic quantity related to the energy
density by the equation of state, e.g. for a massless gas ε = 3P where P = PL = PT . In Fig.
6.17 the ratio of longitudinal and transversal pressure components, PL/PT , is measured
for different initial conditions as a function of time. At early stages of the time evolution
this ratios are strongly oscillating but parallel to the vanishing of the macroscopic fields
(in Figs. 6.15 and 6.16), the ratios reach the isotropic fixed point at PL/PT = 1. The
isotropization proceeds faster in a decaying flux-tube, which we attribute to the more
rapid decay of the longitudinal chromoelectric field. Our conclusion is that both flux-tube
and Nielsen-Olesen initial conditions ultimately lead to isotropization on times scales
easily accessible in lattice simulations.

This observation allows us to compare total particle yields and spectra obtained af-
ter plasma instabilities with those evolved from initial gluonic overpopulation, since in
both cases we are dealing with largely isotropic states at later times. To make a proper
comparison, we simulated both Nielsen-Olesen and overpopulation scenarios with an al-
most identical energy density, the same gauge coupling and same lattice parameters like
the simulated volume, time discretization, lattice spacing etc. Instead of measuring bulk
properties or homogeneous macroscopic fields, we are now interested in the details of
particle distributions both for gluons and quarks. To get a better understanding of the dy-
namical changes in gluon distributions we present in Fig. 6.18 particle spectra at an early,
intermediate and late time for Nielsen-Olesen and fluctuation dominated (overpopulation)
initial conditions.
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Figure 6.17.: Dynamics of pressure isotropization after Nielsen-Olesen instability and
flux-tube decay.

At early times (t = 3/Qs) the two spectra are clearly distinct. Nielsen-Olesen instability
is unfolding, raising infrared occupancies at a considerably higher rate than in the ultra-
violet. The original form of the fluctuation dominated initial condition with its ”knee”
at |p| = Qs is still recognizable, although occupancy at somewhat higher momenta are
beginning to rise. At intermediate times (t = 30/Qs) the Nielsen-Olesen instability has
dramatically increased the typical occupation numbers, especially for low momenta. On
the other side overpopulation of modes with |p ≤ Qs in the ”Fluctuation IC” scenario has
decreased while particles and energy have been transported to short length scales (high
momentum modes). This process holds on even at late times (t = 210/Qs), the particle
spectrum is now exhibiting a power-law distribution with exponent κ = 3/2. This par-
ticular value of the exponent has been already found in [58] at comparable time scales.
For much later times the power-law exponent should slightly decrease and approach first
κ = 4/3 [56, 59] and even later become indistinguishable from the classical thermal ex-
ponent κth = 1 [75].

Astonishingly, at the latest times shown here, the Nielsen-Olesen spectrum has become
almost identical to the spectrum of the initially overpopulated state. Both distributions
share the turbulent power-law exponent κ, the remaining differences between them may
be explained by a small variation in the total energy density or significant variations in
the particle yields for quarks. A direct consequence of these observations is that at later
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Figure 6.18.: Universal isotropic turbulent attractor for gluons. Two different initial con-
ditions (gluonic overpopulation and a Nielsen-Olesen instability) indepen-
dently converge to the same scaling regime.

times the gluon dynamics becomes apparently universal and follows the trajectory of an
isotropic and overpopulated turbulent regime.

Can the same universality be found in properties of fermions or is the pattern of quark
production during Nielsen-Olesen instability entirely distinct from the production driven
by initial overpopulation? This issue is addressed in Fig. 6.19, where the total number of
quarks 4 is plotted as a function of time for both types of initial conditions. We observe
that in both cases the quark number jumps at very early times. For the Nielsen-Olesen
instability this is an effect caused by the sudden switching-on of the macroscopic gauge
field, which is not contained in the fermionic vacuum state. In the case of overpopulated
initial conditions this fast increase proceeds smoothly. We interpret this as fast produc-
tion of low momentum quarks from gluonic scattering and decay. The rapidity of initial
production is most probably due to an almost vanishing quark mass (here mψ ≤ 10−2Qs)
and the effective absence of Pauli suppression at very early times.

From early on Nielsen-Olesen instability has lead to a higher total particle number of
quarks. This is also recovered in the corresponding particle spectra at early times, de-
picted in Fig. 6.20. The Nielsen-Olesen spectrum overshoots the one resulting from ini-

4Defined by Nψ(t) =
∫ d3 p

(2π)3 nψ(p, t)
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Figure 6.19.: Time evolution of the total quark particle number starting from gluonic over-
population and a Nielsen-Olesen instability.

tial overpopulation for the whole available momentum range, confirming our conclusions
from Fig. 6.19 for early time dynamics. However, the subsequent time evolution marked
by steady fermion production tends to narrow the gap between the two scenarios. How
does this difference in the total number of quarks translate into the momentum dependent
particle spectra? In Fig. 6.21 quark spectra at late times (t = 210/Qs) are compared to
each other. Although there are obviously more quarks present after the Nielsen-Olesen
instability, the spectra are remarkably similar. The most distinctive feature of both distri-
butions is a power-law in the middle and high momentum range. The measured exponents
are very close to each other, suggesting that both trajectories are following a similar path
in their time evolution. What is the nature of this power-law? It could be for instance
an example of quantum turbulence caused by energy transport to the ultraviolet via the
emergence of quarks with higher momenta or a phenomenon completely determined by
the gluonic sector. The latter explanation is supported by the fact that the value of the
fermionic power-law exponent, κψ ' 1.7 − 1.75, is close to κ = 3/2, found for the gluon
turbulent attractor on same time scales.

This similarity also holds for the quark content produced in the flux-tube scenario. In
Fig. 6.22 we combined gluonic and quark spectra at intermediate times. For both species
a power-law regime is established on these timescales. Astonishingly, quarks seem to
continue the gluonic power-law to higher momenta albeit at much lower amplitude. The
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Figure 6.20.: Quark particle spectra at early times for gluonic overpopulation and a
Nielsen-Olesen instability.

agreement between exponents for bosons and fermions suggests that there is a causal con-
nection between them. Since the energy content of the whole system at these small values
of the gauge coupling and for not too late times is dominated by gluonic fluctuations,
it is plausible to assume that the specific features of the quark distribution, particularly
the power-law shape at higher momenta, are determined by gluonic decay and scatter-
ing processes. In a sense quarks are inheriting the spectral properties of bosonic particle
distributions, an effect we already observed for scalar fields in Sec. 5.1.

6.3.3. Conclusions

We have studied gluon dynamics and quark production in two colour QCD with two
light quark flavours. We limited our discussion to the weakly coupled regime in order to
guarantee the applicability of the classical-statistical approximation for the gluon sector,
while we simulated the quark dynamics in a stochastic approach without further approxi-
mations. In future studies we plan to increase the gauge coupling and to explore the range
of applicability of our lattice methods at stronger couplings. Having considered three
types of initial conditions, we confirmed the universality of the non-thermal fixed point
existing in overpopulated gluonic systems and demonstrated how the turbulent regime is
approached by trajectories of time evolution, although all of them start from very different
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Figure 6.21.: Emergence of a power-law in the quark sector from two different initial
conditions (gluonic overpopulation and a Nielsen-Olesen instability).

initial states. The power-law exponents we found in the gluonic sector are in agreement
with earlier investigations of turbulence in classical-statistical Yang-Mills simulations.

Most importantly for the gluon dynamics, we showed that anisotropic initial conditions
leading to chromomagnetic plasma instabilities and Schwinger pair production in QCD
isotropize rather quickly and that their subsequent approach to thermal equilibrium via
energy cascade to short length scales can be described in an entirely isotropic framework.

The mentioned universality of the gluon dynamics has a profound effect on quark pro-
duction. Although very different at early stages, the total numbers of quarks produced
from magnetic instabilities and gluonic overpopulation tend to approach each other at later
times. The corresponding spectral distributions of quark particle numbers for all three
types of initial conditions acquire a universal shape marked by an unsuspected power-law
at intermediate momenta. Surprisingly, the values of the fermionic power-law exponent
turn out to be very close to the ones appearing in the gluonic sector via the energy cascade.
This observation suggests that the spectral properties of the quark particle distribution at
the coupling strengths considered here are to a large degree determined by the behaviour
of the non-thermal turbulent fixed point existing in the gluon sector.

We believe that our observations will complete the prevailing picture of turbulence in
the non-Abelian gauge theory [56, 59, 57, 58] by adding information about dynamics of
quark production in overoccupied QCD matter.
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Chapter 7.

Conclusions and Outlook
The purpose of this thesis was to study fermion production for three different applica-
tions across the wide area of non-equilibrium phenomena in quantum field theory: the
post-inflationary epoch, in the early stages of heavy-ion collisions and from ultra-intense
laser beams. This goal was accomplished by applying modern computational lattice tech-
niques, which have been advanced and tested in the course of this work. In this chapter
we intend to recapture the essential results and conclusions drawn from our studies and
give an outlook for directions of future research in these and adjacent areas.

In Chap. 5 we continued the line of investigations of fermion production during pre-
heating after inflation building on our earlier work which began in [7]. Having coupled
a 3 + 1 dimensional linear-sigma model undergoing parametric resonance to fermions
in Sec. 5.1, we confirmed our previous findings of the strong enhancement of fermion
production occurring in presence of highly occupied bosonic fields. We were able to im-
prove our analytic understanding of this phenomenon based on kinetic Boltzmann equa-
tions, with matrix elements evaluated at leading order in perturbation theory. To check
the reliability of these findings, we compared the well established two-particle irreducible
(2PI) effective action approach and two different real-time lattice methods (mode func-
tions and male/female fermions). We observed a high degree of agreement between 2PI
and classical-statistical lattice simulations with fermions at weak effective couplings. In
this regime we also found an unpredicted ultraviolet power-law distribution of fermions,
which builds up when the bosonic sector is trapped in a nonthermal fixed-point marked
by turbulent cascades.

Before investigating stronger coupled scenarios, we tested the stochastic low-cost ap-
proach of simulating fermions on a real-time lattice (male/female fermions, Sec. 4.2)
against a more rigorous but also computationally far more expensive methd, the mode
functions expansion (Sec. 4.1). We showed that the stochastic lattice computations suc-
cessfully converge to the exact results for a realistically achievable number of male/female
pairs. By using lattice simulations with male/female fermions for parametric resonance
at stronger effective couplings, we observed that fermions tend to take on a quasi-thermal
Fermi-Dirac distribution. From this we were able to extract the time-dependent tempera-
ture parameter and register the heating of the fermion sector.

A different preheating scenario, marked by a tachyonic instability, was investigated
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in Sec. 5.2. There we utilized a simple scalar model with fermions which become and
remain massive during the instability. Our choice of a particular model of tachyonic
preheating was motivated by the availability of analytic predictions for the total fermion
output during this type of initial dynamics after inflation. However, our numerical com-
putations indicate that the mentioned leading-order results underestimate the number of
produced fermions for a wide range of couplings by several orders of magnitude. In
particular, the enhancement w.r.t. to the leading-order approximations is much more pro-
nounced than in the case of parametric resonance. Another consequence of the increased
total fermion number is that, contrary to existing analytical expectations, the emergent
fermionic distribution is far from the non-relativistic limit.

Both of our studies of preheating with fermions have shown that existing expectations
for the magnitude of fermion production have to be significantly raised. This finding
could become crucial for calculations of baryogenesis and generation of gravitational
waves during preheating. The steady improvement of lattice techniques may soon allow
us to directly compute the reheating temperature for a given model of inflation. This
would be a great contribution to the quest for the microscopic foundations of inflation.

In Chap. 6 we turned our attention to fermion production in gauge theories. At first
we investigated in Sec. 6.1 the Schwinger pair production of fermion/anti-fermion pairs
in a 1 + 1 dimensional Abelian gauge theory (massive Schwinger model). Applying our
lattice techniques and concentrating on gauge-invariant observables we successfully re-
produced the analytically known pair production rate predicted by the famous Schwinger
formula. After this first test we went beyond the linear regime and included the backre-
action of the produced fermions onto the homogeneous electric field. Thus we were able
to numerically describe plasma oscillations and damping of the field due to interaction
with fermions. Considering external field profiles resembling single laser pulses which
are inhomogeneous in space and time, we were able to consistently solve the initial value
problem for such a system for the first time including backreaction effects. Most remark-
ably, we observed the creation of oppositely charged bunches of particles flying apart after
the duration of the pulse and converting their kinetic energy into a constant electric field
between them. This emergence of a constant field strength between separated charges is
analogous to the formation of a string between fundamental colour charges in QCD.

We devoted Sec. 6.2 to a detailed study of this exciting phenomenon resembling the
confinement property of strong interactions. Therefore we initialized our simulations with
two separated external charges of opposite sign and increased the distance between them
until pair production became efficient enough to break the string. Our real-time lattice
approach allowed us to resolve this process in time and distinguish its two stages. In the
first stage, spontaneous pair production slightly reduces the original field strength in the
string and places both positively and negativity charged fermions on top of each other.
As it happens their total charge at every point along the string remains zero and is unable
to screen the field of the external charges. The second stage, which depletes the energy
content of the string, sets in when the produced particles and anti-particles are accelerated

126



into opposite directions. This process of charge separation, which lasts much longer than
the first stage, screens the external charges from each other and is ultimately responsible
for the string breaking.

These findings imply that the traditional picture of instantaneous string breaking ne-
glects the energy needed for screening of the charges and has to be revised. Additionally,
we provided a simple model for estimations of the critical string length. The insight into
the time resolved string breaking process that we gained might be used to improve our
understanding of the decay and dynamical properties of quarkonia.

Finally, in Sec. 6.3 we simulated two colour QCD with light quarks for three differ-
ent types of initial conditions (overpopulation, Nielsen-Olesen instability and flux-tube
decay), all of them expected to be relevant for the early stages of heavy-ion collisions
at sufficiently high energies. Our studies have been conducted in the regime of weak
gauge couplings and large occupancies, ensuring the validity of the classical-statistical
approximation in this non-perturbative regime. For anisotropic initial states we observed
a fast isotropization accompanied by the decay of initial macroscopic fields, allowing us
a direct comparison with isotropic initial conditions. Such a comparison was made by
keeping the energy density fixed for both Nielsen-Olesen and overpopulated states. Both
trajectories converged to the same non-thermal fixed point, characterized by a turbulent
energy cascade towards short length scales with an intermediate value of the scaling expo-
nent κ = 3/2. Remarkably, the quark sector was found to exhibit universality as well. This
was detected by realizing that fermion spectra from these two types of initial conditions,
being very diverse at initial times, approach each other in the long time limit. Even more
surprising was the appearance of power-laws in the quark particle spectra at intermediate
momenta, reminding us of the similar effect that we found in Sec. 5.1. The measured
exponents for the simulated periods of time agreed rather well with those occurring in the
gluonic sector, suggesting a connection between these two phenomena.

Our first results for quark production in the early phase of heavy-ion collisions exhibit
once again the universality of the isotropic turbulent attractor at weak gauge couplings.
The properties of this non-thermal fixed-point have been extended to incorporate the be-
haviour of the quark sector. The peculiar copying of bosonic scaling solutions by fermions
needs further investigations, it could be a universal phenomenon detectable e.g. in exper-
iments with ultra cold quantum gases.

For both heavy-ion experiments and early Universe cosmology an extension of the
available lattice fermion techniques towards isotropically and anisotropically expanding
geometries seems desirable. For cosmological applications we envision to apply our
methods to models of preheating most compatible with recent experimental observations
[101]. Concerning the appearance of fermionic power-law distributions in scalar and
gauge theories, we intend to make analytic progress in understanding the nature of this
effect. In QCD there are many possible directions of further research, one of them would
be to increase the values of the gauge coupling in our simulations in order to come closer
to the realistically expected values at the energy scales of modern heavy-ion colliders.
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However, on this path we are limited by the classical-statistical approximation, which is
prone to fail at strong coupling. To cure this problem an inclusion of quantum fluctuations
into existing lattice methods would be required, which may be approximately achieved by
using inhomogeneous 2PI techniques described in [129].
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Appendix A.

Marginal distributions for Schwinger
model
The definition of the lattice Wigner function (6.54) is such that we reproduce the contin-
uum expressions for its marginal distributions:

WX(x, t) = −F(x, x; t) , (A.1a)

WP(p, t) = −

∫
dx1dx2e−ip(x1−x2)F̃(x1, x2; t) . (A.1b)

Regarding the position space marginal distribution on the lattice, we consider:

WX(l, j) =
1

2L

∑
q∈Λ̃W

W(l, q, j) . (A.2)

Upon performing the summation over q, we encounter:∑
q∈Λ̃W

eπi(l−2k)q/N = 2Nδ2k,l . (A.3)

The Kronecker delta indicates thatW(l, j) is only non-vanishing for even l:

WX(l, j) = −F(l, l; j) , (A.4)

with l ∈ Λ.
Regarding the momentum space marginal distribution on the lattice, we consider:

WP(q, j) =
as

2

∑
l∈ΛW

W(l, q, j) . (A.5)

Due to the fact that we used the module operation in (6.54), we obtain:
2N−1∑
l=0

eπilq/N F̃(k, [l − k]N; j) =

(
1 + eiπq) N−1∑

l=0

eπilq/N F̃(k, [l − k]N; j) . (A.6)
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Appendix A. Marginal distributions for Schwinger model

The factor (1 + eiπq) shows thatW(q, j) is only non-vanishing for even q. Accordingly, if
we redefine the summation indices:

l1 = l ∈ Λ and l2 = [l − k]N ∈ Λ , (A.7)

we reproduce the analogue of (A.1b):

WP(q, j) = −a2
s

∑
l1∈Λ

∑
l2∈Λ

e−2πiq(l1−l2)/N F̃(l1, l2; j) , (A.8)

with q ∈ Λ̃.
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Appendix B.

Analytic results for pair production in
electric fields
We briefly review some analytic results for the static background field [112]. As a matter
of fact, the Dirac equation is analytically solvable for E(x, t) = E0 in terms of parabolic
cylinder functions Dν(z). Accordingly, it is also possible to computeW(x, p, t) explicitly.

The pseudo-distributions m(x, p, t), which have been introduced in Sec. 6.1.1.2, are then
given by:

%(x, p, t) = 0 , (B.1a)
ε(x, p, t) = [2 f (p) − 1]ω , (B.1b)

n±(x, p, t) = f (p) . (B.1c)

The function f (p) is usually denotes as the single-particle momentum distribution:

f (p) =
1
2

e−π/4ε
[

1
2ε

(
1 −

p
ω

)
D1(p) +

(
1 +

p
ω

)
D2(p) −

m
√

2ε ω
D3(p)

]
, (B.2)

with

D1(p) =
∣∣∣D−1+i/2ε( p̂)

∣∣∣2 , (B.3a)

D2(p) =
∣∣∣Di/2ε( p̂)

∣∣∣2 , (B.3b)

D3(p) = eiπ/4Di/2ε(p̂)D−1−i/2ε( p̂∗) + c.c. , (B.3c)

and

p̂ = −

√
2
ε

p
m

e−iπ/4 . (B.4)

We note that f (p) is independent of the time variable t. It can be shown that f (p) vanishes
for small momenta and approaches a non-vanishing constant for large momenta:

lim
p→−∞

f (p) = 0 , (B.5a)

lim
p→∞

f (p) = exp
(
−
π

ε

)
. (B.5b)
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As the expressions (B.1) are spatially homogeneous, they are trivially related to the
momentum space marginal distributions mP(p, t):

m(x, p, t) =
mP(p, t)

L
, (B.6)

in the infinite volume L→ ∞. Most notably, the rate at which particles and anti-particles
are created is a constant, so that the total number of particles and anti-particles, respec-
tively, which are created per volume L and time T is given by:

∆n±

LT
=

eE0

2π
exp

(
−
πm2

eE0

)
=

m2ε

2π
exp

(
−
π

ε

)
. (B.7)
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Appendix C.

Gamma matrices and lattice definitions
of Dirac eigenspinors
The use of a pseudoscalar Wilson term determines the explicit form of the Dirac eigen-
spinors on the lattice:

u1(p) =

√
E+m
2E


1
0

pz−
iras

2 (p)2
lat

E+m
px+ipy

E+m

 u2(p) =

√
E+m
2E


0
1

px−ipy

E+m
−pz−

iras
2 (p)2

lat
E+m



v1(p) =

√
E+m
2E


−pz−

iras
2 (p)2

lat
E+m
−px−ipy

E+m
1
0

 v2(p) =

√
E+m
2E


−px+ipy

E+m
pz−

iras
2 (p)2

lat
E+m
0
1



(C.1)

The standard definition of Gamma matrices is:

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 γ2 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0



γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 γ5 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


(C.2)
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