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Abstract

In past few years, genome-wide RNAi screens have identified many novel genes involved in

diseases for many viruses such as Human Immunodeficiency Virus-1 (HIV-1), Hepatitis C virus

(HCV), West Nile Virus (WNV) and Influenza virus (IV)[1–8]. However, due to difference

in experimental conditions, usage of different viral strains and inherent biological noise, these

screens have shown low number of common or overlapping hits for a virus[9]. Moreover, this

overlap gets poorer for similar studies on viruses of different families. Although these overlaps

are significant, their lower size restricts a comprehensive insight from a comparative analysis.

Thus, a direct comparison of gene hit-lists of RNAi screens may not always give meaningful

results. To address this problem we propose an integrative bioinformatics pipeline that allows

for network based meta-analysis of viral HT-RNAi screens. Initially, human protein interac-

tion network (PIN) generated by collating data from various public repositories, is subjected

to unsupervised clustering to determine functional modules. Those modules that are signifi-

cantly enriched in host dependency factors (HDFs) and/or host restriction factors (HRFs) are

then filtered based on network topology and semantic similarity measures. Modules passing

all these criteria are then interpreted for their biological significance from enrichment analyses.

With our approach we could predict Tankyrase-1 as a potential novel hit within the functional

subnetworks, within the human PIN for Hepatitis C virus (HCV). and Human Immunodefi-

ciency Virus-1 (HIV-1), based on HDFs and HRFs identified in the corresponding genome-wide

RNAi screens of these viruses. Thus, our approach allows for a network based meta-analysis

of genome-wide screens to develop plausible hypotheses for novel regulatory mechanisms in

virus-host interactions based on RNAi screens.



Zusamenfassung

Durch genom-weite RNAi-Screenings konnten in den letzten Jahren viele Gene neu identifiziert

werden, die an Infektionen beteiligt sind, die durch Viren wie das Humane Immundefizienz-

Virus (HIV-I), das Hepatitis C Virus (HCV), das West-Nil-Virus (WNV) und das Influenza-Virus

(IV) hervorgerufen werden [1–8]. Aufgrund unterschiedlicher experimenteller Bedingungen,

der Verwendung verschiedener Erregerstämme und Rauschens in den Daten haben verschiedene

Untersuchungen zu einem Virus jedoch nur wenige gemeinsame Gene hervorgebracht [9]. Die

Anzahl gemeinsamer Treffer sinkt sogar noch weiter, wenn Studien zu Viren unterschiedlicher

Gattungen betrachtet werden. Zwar sind die überlappungen signifikant, doch erlaubt die kleine

Anzahl gemeinsamer Treffer keine tieferen Einblicke, und ein direkter Vergleich der detek-

tieren Gene verschiedener RNAi-Screenings liefert womöglich keine belastbaren Ergebnisse.

Zur Lösung dieses Problems stellen wir einen integrativen Bioinformatik-Ansatz zur netzwerk-

basierten Meta-Analyse viraler HT-RNAi-Screenings vor. Zunächst werden öffentlich verfüg-

bare Daten zusammengeführt und durch unüberwachte Clustering-Verfahren Protein-Interaktions

netzwerke (PIN) generiert. Cluster, die signifikant erhöhte host dependeny factors(HDF) und/oder

host restriction factors(HRF) aufweisen, werden anschließend auf Grundlage von Netzwerk-

Topologie und semantischen ähnlichkeitsmaßen gefiltert. Nach dieser Filterung werden die

verbleibenden Cluster auf ihre biologische Signifikanz untersucht. Mit diesem Verfahren kon-

nten wir Tankyrase-1 als potentiellen neuen Treffer in funktionellen Unternetzwerk, innerhalb

der humanen PIN fuer Hepatitis C und HIV, basierend auf HDFs and HRFs in genom-weiten

RNAi-Screenings dieser Viren detektiert werden. Unser Verfahren erlaubt daher mittels netzwerk-

basierter Meta-Analyse von genom-weiten Screenings die Entwicklung neuer Hypothesen zu

regulativen Mechanismen von Virus-Wirt Interaktionen.
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Chapter 1

Introduction

In the past decade, the advent of high throughput technology and its application in biology

has redefined our understanding of cellular and molecular biology. The completion of the hu-

man genome project in 2003[10, 11] opened the floodgates of data, after which the need to

decipher biology computationally, became obligatory[12, 13]. To tackle the vast amount of

sequence data, numerous algorithms were developed that made extraction of meaningful infor-

mation possible[14].

The parallel discoveries in experimental molecular biology, particularly, that of RNA interfer-

ence (RNAi) allowed researchers to probe molecular systems in an altogether different man-

ner. Instead of determining functions of individual genes through cross-overs and biochemical

techniques, this otherwise "reverse" approach to determine the cell’s phenotype after "shutting

off,knocking down" the expression of particular gene, gained momentum. Scientists could then

envision this process to scale up in order to probe multiple genes in a single experiment in order

to determine cellular fate, roughly mimicking a stress response or a disease state of a cell. This

would prove to be a paradigm shift in the way we understood the cell itself; from complex cel-

lular processes to molecular aspects of disease. This chapter introduces the concept of RNAi, its

application to understand human diseases and experimental/bioinformatics approaches to tackle

problems of this technology.

1.1 RNA Interference

RNA Interference can be defined as a biomolecular process triggered by double stranded RNA

(dsRNA) molecules and controlled by the RNA-induced silencing complex (RISC) which re-

duces the RNA targets of dsRNA in a sequence specific manner. This phenomenon was first
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observed in C.elegans[15, 16]. For this fundamental discovery, both, Craig Mello and Andrew

Fire received the Nobel prize for Medicine in 2006.

The process is triggered by the introduction of dsRNA in the cell. The dsRNA is recog-

nized by RNase III family member(e.g. Dicer in Drosophila) and then cleaved into siRNAs

of 21-23 nucleotides[15, 16]. These siRNAs then form the RNA-induced silencing complex

(RISC) which degrades any mRNA homologous with the incorporated siRNA from the previous

step[17]. Specifically, the target mRNA is cleaved in the centre complimentary to the siRNA

thus resulting into rapid degradation of the target mRNA and subsequently, reduced protein

expression[18].

Over time RNAi has proven to be one of the powerful techniques to interrogate gene function in

cellular systems, tissues and organisms such as Caenorhabditis elegans,Drosophila melanogaster

and plant species like Arabidopsis thaliana. This process was up-scaled for high-throughput

analyses, wherein thousands of genes could be analysed by loss-of-function. Till date there

have been numerous examples highlighting the advantages of this technique in different cellular

systems applied to probe different questions.

1.2 Genome-wide RNAi screens

Applying RNAi to determine gene function pushed researchers to scale up this technology in

order to probe thousands of genes. The rationale behind this approach was to have an unbiased

view of how genes interact with each other in a network to modulate stress response, transmit

signals from receptors to effector molecules and how these networks alter during a pathogen

attack.

1.2.1 Application to viral diseases

Viruses are obligate intracellular parasites which are also causative agents of many human

diseases. These diseases now account for more than 3 million deaths per year worldwide

(http://www.cdc.gov). With their small sized genomes, they rely heavily on the host system

they attack in order to replicate. Thus, such host factors required in the viral life cycle become

indispensable targets for antivirals[19, 20]. However, identifying host factors that are druggable

yet non-lethal to the host is a difficult task. With the advances in RNAi screening technolo-

gies and design of siRNA libraries for majority of genes in the human genome, researchers

could now probe genes in a high-throughput manner to determine their role in viral diseases. It

was easy to set up genome-wide screens in the Drosophila cells as Drosophila melanogaster

genome was completed earlier than the human genome[21] which allowed for synthesising

12



dsRNA libraries[22, 23]. Subsequently, the first genome wide screen performed on viruses

was on Drosophila C virus[24]. This screen had a very simple setup; cells were incubated with a

single RNAi specific to each gene in a 384 well setup and incubated for 3 days with DCV. A day

later, the cells were processed for immunoflourescence against the capsid antigen and subjected

to automated microscopic imaging. The experiment yielded 210 dsRNA species that reduced

the ¯relative number of infected cells by > 40% and were identified by visual inspection. dsR-

NAs targeting these genes were re-synthesised and re-tested for their ability to decrease DCV

infection. This "Validation screening" further identified 112 Host Dependency Factors (HDFs);

66 of them being ribosomal proteins specifically required for translation of DCV polyprotein.

In contrast, these genes were not required by vesicular stomatitis virus whose genome, unlike

DCV, doesn’t contain a ribosomal entry site (IRES) mediating RNA translation in the absence of

a 5’ cap. Thus, the authors concluded that the 66 genes discovered in the 2nd step, are essential

for DCV IRES mediated genome translation.

This approach has now been successfully applied to multiple viruses including Human Immun-

odeficiency Virus (HIV-1) , Hepatitis C virus (HCV), Dengue virus (DV), Influenza virus (IV)

and West Nile Virus (WV) multiple screens to identify host factors for HIV, HCV, Influenza

virus and West Nile virus [1–8, 25–30]. A common factor of all these screens has been that all

these screens were able to detect novel host factors that reduced viral replication upon silencing,

thus called Host Dependency Factors and those that increased viral replication upon silencing,

thus called Host Restriction Factors. Discovery of these novel genes have allowed for designing

novel drugs for these viral diseases.

1.2.2 Current Issues with the technology

As with any technology, RNAi is not without its own limitations. One of the major issues with

RNAi, has been the "Off-target" effect. It refers to the non-specific gene silencing by siRNAs

which often leads to false-positives. Recent studies have enabled scientists to understand the

causes of these effects and eventually, devise strategies to overcome these effects[31]. Off-target

effects can be of two types, namely:

[1] Sequence dependent effects: As the name suggests, these effects arise due to se-

quence homology of the siRNA with multiple targets, including unintended ones. Specif-

ically, siRNAs regulate the expression of certain genes in a sequence-dependent manner

by acting like a microRNA. This occurs when the exogenously introduced siRNA induces

microRNA-like effects by interacting with its target sequences through its seed region; the

5’ region of guide strand of an siRNA or miRNA sequence, extending from nucleotides

2-7 (hexamer) or 2-8 (heptamer)[32–35].
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Sequence independent effects: Introduction of exogenous siRNA or short hairpin RNAs

(shRNAs) may affect cellular physiology in various ways. For instance, exogenous ex-

pression of shRNA can interfere with endogenous processing of microRNAs, as the branches

of siRNA and microRNA pathway converge at the Dicer cleavage stage in the RNAi path-

way. This has been shown to have fatal consequences in mice, possibly due to saturation

of the pathway that is used to export miRNA precursors from the nucleus[36]. A second

manifestation of exogenous siRNA introduction can be that these siRNAs can displace

endogenous microRNAs, which leads to alteration of normal patterns of gene expression.

A bioinformatics analysis of published transcriptional profiling experiments revealed that

the predicted targets of endogenous microRNAs show higher expression after transfec-

tion of a siRNA directed towards silencing of a specific gene[37]. A third type of cellular

change involves activation of the non-specific immune response to the introduced double-

stranded RNA (dsRNA) or from the transfect viruses used to express shRNAs[38, 39].

Either type of these effects influence the final outcome of a RNAi screen, which tends to

misinterpretation of results. In general, it leads to higher false-positives. For instance, in a

screen to identify novel regulators of the HIF-α transcription pathway, the top scoring hits

were obtained through microRNA-like seed-match effects instead of specific knockdown

of their targets[40]. This was also true in the case of a large scale screen to determine mod-

ulators of the TGF-β signaling pathway, where at least 1% of the sequences targeting the

6000 genes of the library showed measurable off-target effects occurring via microRNA-

like regulation, on the upstream pathway components TGF-β receptors 1 and 2 (TGFBR1

and TGFBR2)[41]. The second type, false-negatives, pose another problem. Most of the

time, they are missed due to low coverage of the RNAi library. Booker et al. performed

a meta-analysis to determine false-negative rates in Drosophila screens, where they de-

termined that this rate is at least 8% [42]. These rates are influences by RNAi reagents,

namely, siRNA pools which are different than the endogenous Drosophila cellular dsR-

NAs.

For both scenarios, there are certain common remedial measures. For instance, using

multiple siRNAs for the same gene cancels these error rates to some extent and effec-

tively reducing the occurrences of false-positives and false-negatives. However, there is

always a chance of the inherent error rates of these multiple siRNAs to add up instead

of cancelling each other which may have the exact opposite effect. Thus, this measure

comes with a certain trade-off of its own. Another approach is to complement the results

of a RNAi screen with transcriptome data, where expression levels of strong hits can be

checked in a particular cell-line or tissue [42]. This can, to some extent reduce the number

of false-positives and false-negatives. However, for significant reduction and recovery of

true-positives, additional measures and strategies have to be devised. We discuss these in

the following subsection with emphasis on bioinformatics approaches.
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1.3 Bioinformatics Approaches for analysis of genome-wide RNAi
screens

Parallel to the developments in HT-RNAi technology, statistical and bioinformatics approaches

have also been developed to overcome the shortcomings of this technology. A major focus of

these algorithms has been to improve reliability of the hits and to allow for in-depth of the biol-

ogy of host-virus interactions, with RNAi hits being the starting point. Based on the the method-

ology used, we broadly categorise these studies in 2 classes; "Machine Learning Approaches"

and "Network-based approaches".

1.3.1 Machine-learning approaches

The increase in the number of genome-wide screens to determine novel host factors for viruses

has helped strengthening confidence of theoretical approaches, as the novel host factors serve as

high-confidence positive sets in machine-learning methods to predict novel host factors.

An example of such approach is the SinkSource algorithm by Murali et.al who developed a semi-

supervised machine learning approach to predict novel HIV-1 HDFs using previously identified

ones[1–3, 43]. HDFs identified in these 3 HIV screens were utilised in a classification algorithm

that would learn from these hits and predict novel HDFs. Specifically, the host PPI network was

modelled as a liquid flow network. Each node (protein) in the network acts as a reservoir and

the edge (interaction) connecting them is a pipe. The weight of an edge is directly proportional

to the amount of fluid that can flow through the pipe per unit time. When the liquid attains equi-

librium (amount of liquid flowing in and out remains constant) the height of the node denotes

its confidence of being a HDF. Known HDFs from the screens were assigned a node value of

1 while non-HDFs were assigned a node value of 0. The authors note that their algorithm is

similar to Nabieva et al. which was formulated for functional prediction of genes, except that

SinkSource accepts negative values in the form of non-lethal, non-HDFs[44]. Thus, the non-

lethal, non-HDFs formed the negative set while the HDFs identified in the 3 screens and their

intersections formed the 4 positive sets, which were then used for two-fold cross validation.

Two-fold cross validation involved splitting of each of the positive and negative sets in halves

and each half was used for prediction of genes from the other half. Ultimately, SinkSource

predicted new 1394 HDFs in addition to 908 form the above 3 screens, with an accuracy >

80% based on the above mentioned two-fold cross validation. Combining these HDFs to form a

protein network, dense subgraphs were detected using MCODE[45]. Enriched GO terms from

these subgraphs included;spliceosome, kinetochore and mitochondrion, whereas GTPase medi-

ated signal transduction, DNA replication initiation and MHC protein complex, all relevant to

HIV-1 replication.
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A major advantage of machine learning methods lies in the analysis of hi-dimensional image-

based screens. For e.g. Walter et al. developed an automated classification to classify phe-

notypes in a genome wide screen by time-lapse imaging. They utilised 190 features from hi-

content images to classify nuclei from these images into different stages of mitosis (interphase,

prometaphase, metaphase and anaphase)[46]. They further introduced Event Order Maps, a vi-

sualisation tool for visualising phenotypic dynamics from time lapse RNAi screens, which could

then specifically determine tendencies of causes and consequences of phenotypic classes.

Another important application of supervised classification is to recover false negatives from

genome wide RNAi screens which is extremely difficult or impossible from experimental meth-

ods. Wang et al. developed a network-based phenotype scoring method that considers network

topology and RNAi screening results to identify putative false positives and false negatives

within a RNAi screen[47]. Using 24 genome-wide screens they observed that RNAi hits are

tightly connected to each other in a protein interaction network when compared to random hits.

Thus, they considered network centralities such as direct neighbour, shortest path, diffusion ker-

nel and association analysis-based transformation along with gene similarities and developed a

set of scoring functions called Network RNAi Phenotype (NePhe)[48]. Applying the guilt by-

association principle, Wang et al., hypothesised that FNs should be scored higher by a scoring

function over false positives (FPs), as they are linked by a greater number of true hits. Thus,

an ideal gene classifier would always rank FNs with a higher rank compared to a non-hit. They

applied this scoring function to Wnt and the Hedgehog signaling pathways and the NePhe scor-

ing system could identify all regulators of these pathways which were even missed by follow-up

Drosophila knockdown screens.

1.3.2 Network-based approaches

This section describes how using network data enhances and complements RNAi screens. This

subsection is further subdivided into 3 subsections which describe usage of network data and

network topology, applied for analysing RNAi screens.

1.3.2.1 Using heterogeneous data

The increased throughput in biology has not only developed the amount of data but also its

types. These include genome-wide association studies, gene expression, protein protein in-

teraction, gene regulatory interactions, transcription factor binding site data and so on. They

individually answer specific questions but their combination further helps in improved under-

standing of biological systems. For instance, Zhu et al. combined multiple data types which

included genotypic, expression, transcription factor binding site (TFBS), and protein-protein in-

teraction (PPI) to reconstruct causal gene networks for yeast [49]. From these networks, Zhu
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et al. could identify that this reconstructed network identified knockdown signatures better than

networks constructed using the respective, singular dataset. Reiss et al. reiterate the advantages

of such data combination wherein their algorithm, cMonkey derives biclusters from subsets of

experimental conditions using gene expression data and multiple gene association networks[50].

cMonkey identified additional motifs in the bacteriorhodopsin regulon.

1.3.2.2 Using PPI data

In the past decade, there has been a constant rise in the identification of protein interactions

across all species and the repositories housing them. Among these, repositories with virus-

host protein interactions are an important subset. Virusmint, VirHostNet and the HIV-1 Human

Protein Interaction Database (HHPID) at National Institute of Allergy and Infectious Diseases

(NIAID) are few examples[51–53]. Of late, many approaches have come forth to analyse and

interpret the genome-wide RNAi screens using protein interaction networks and host-virus in-

teraction networks.

Another instance of an integrated network analysis is from Macpherson et al. who used host-

virus protein interaction data from HIV-1 HHPID at NIAID[53, 54]. They identified individual

enriched clusters from the host-virus interaction network using bi-clustering. For obtaining a

hierarchical view of function, these clusters were organised in a functional cladogram where

the distance between 2 clusters was determined by the number of overlaps between the clus-

ters; clusters with more overlapping genes were closer to each other than clusters with fewer

overlaps. GO enrichment analysis of these clusters indicated that 37 host subsystems were po-

tentially important for HIV-1 infection. Moreover, hits from the 3 HIV screens were enriched in

10 of these subsystems and included proteasome core complex, regulation of apoptosis, mRNA

transport, endosome, RNA polymerase activity, peptidase activity, regulation of transcription,

ubiquitin camp-dependent protein kinase complex, and v-akt. The HIV-1 HHPID resource de-

fines how a single viral protein interacts with a single host protein. Although important, it takes

further computations to determine how viral proteins interact with host proteins. To that end,

Macpherson et al. described how viral proteins interact with host subsystems over individual

proteins. This aids the identification of novel hits and mechanisms in a theoretical framework.

The ultimate goal of viral RNAi screens has been to discover novel drug targets. Using drug-

target information in conjunction with protein interaction networks allows to predict or hypothe-

sise drug mechanism and adapt the therapeutic in case there are chances of side-effects. A recent

study by de Chassey et al. used the Drugbank database (http://www.drugbank.ca, pro-

tein interaction networks and 6 Influenza(IFV) virus screens[7, 8, 27, 28, 55–58] to predict drug

targets for Influenza virus. A total of 925 host factors were identified, which the authors termed

as Essential Host Factors (EHFs). Network analysis using the PPI dataset from VirHostNet
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revealed that 17 EHFs are directly targeted by a viral protein[52]. Interestingly, the neighbour-

hood of these directly targeted proteins was equally informative; which included 204 proteins

targeted by at least one viral protein. Secondly, drug molecules interacting with EHFs were

further retrieved from the DrugBank database. From these retrieved molecules, it was found

that 100 EHFs could be targeted by 298 molecules comprising of 204 FDA-approved drugs and

94 experimental drugs. For further confidence, these 100 EHFs were further filtered for the

following three criteria, such that a molecule satisfies at least one of these:

2• EHF was directly targeted by a viral protein.

• EHF was connected to at least another EHF.

• EHF was connected to a non-EHF targeted by the virus.

This filtering yielded 33 EHFs, 32 of which could be targeted by 49 FDA approved molecules

with an exception of HSP90AA1 which also satisfied the first 2 criteria mentioned above.

HSP90AA1 can be targeted by 1 FDA-approved molecule and 5 experimental drugs. Amongst

these experimental drugs, Geldanamycin has been proved to reduce IFV replication by 2 logs in

cell culture[59]. Lastly, the authors suggest that a combination of drugs including Geldanamycin

and Ribafutin(used as 1st line of treatment against tuberculosis) may represent a novel strategy

to identify novel drugs to combat IFV infection.

These studies show that how usage of network data enhance the findings of a RNAi screen.

Moreover, it also helps researchers to realise the ultimate goal of such RNAi screens which is

to determine novel drug targets and suggest alternative therapeutic measures in addition to the

known ones.

1.3.2.3 Using network topology

Integrating network data with RNAi screens and then interpreting screen hits seems a "direct"

approach towards analysing a screen. There has been a complementary or "reverse" approach as

well where researchers have studied network properties of hits targeted by pathogens (including

viruses) and how usage of such properties has helped in interpreting virus-host interactions.

To this end, the most comprehensive study about network topological properties of pathogen

targeted proteins has been published by Dyer et al[60]. The authors studied topological features

of host factors involved in the life cycle of 190 different pathogens partitioned into 54 groups

(35 viral, 17 bacterial, and two protozoan) pooled from 7 public databases[61–67]. The primary

finding from this study has been that pathogens preferentially target Bottleneck or Hub proteins

which indicates targeting central proteins in a network is a common property that is shared by

many pathogens. Another important finding from this study has been that viral targeted host

proteins also play a major role in different cancers, some of which are induced by viral infection
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itself (For e.g., Herpesvirus and Papillomavirus). A similar study, specific to HIV, by van Dijk et

al analysed the HIV-1-Human protein interaction data and reconfirmed that viral proteins attack

Bottlenecks or Hub proteins. Furthermore, they also identified distinct network structures, oth-

erwise known as Network Motifs, which allowed for dynamics interpretation of interactions. For

instance, the 2-node feedback loop found in the HIV-host activation/inhibition network, shows

the inhibitory nature of HIV proteins towards HRFs.

There have also been experimental approaches to study the virus-host interactome of HCV,

DENV and HTLV-1/2[68–70]. A recent study also studied a comprehensive set of genes form-

ing the interactome of 70 viral modulators of the innate immune response from 30 different

viruses[71]. The primary conclusions from these experimental approaches reinstate a key fea-

ture of viral proteins; they target many host proteins that are central to the networks, target

proteins that are key components of many cellular pathways as compared to an average human

protein. Summing up, it is clear that a virus targets a protein that has the following properties:

1. Higher Betweenness and Degree or more central proteins

2. Smaller mean path lengths compared to whole networks

3. Proteins that are closely bound

The results of these studies can then be used to develop a classifier, that can utilise network

topology to theoretically predict potential HDFs for a virus. Moreover, other network topolo-

gies can be probed to determine if they contribute towards a protein being a viral HDF/HRF. For

e.g. Node PageRank centrality has been utilised to predict novel HIV hits using published data

by Jaeger et al.[72]. They used node PageRank to identify 21 surface membrane proteins critical

for HIV-1 infection of which 11 are novel predictions, 3 are confirmed hits (chemokine receptor

CCR1, chemokine binding protein 2 and duffy antigen chemokine receptor). The remaining 7

proteins have been confirmed in other studies. These receptors are involved in different phases

of HIV infection and thus influence progression of AIDS.

From both experimental and computational studies of network topology, it is clear that viral

HDFs/HRFs possess distinct topological features from other proteins in the network. It would

be worthwhile to study other network centralities to see if they too influence a protein being a

viral HDF/HRF. We thus utilised as many as 7 network centralities and 2 semantic similarity

measures to define subnetworks enriched with viral HDF/HRF. The details of their implementa-

tion and interpretation is described at length in the following chapters.
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Chapter 2

Materials and Methods

This chapter gives a detailed description of the methodology developed in this thesis. Since the

methodology involved usage of several scoring functions and enrichment tools, a short descrip-

tion of each of these is provided.

2.1 Defining the problem!

Genome-wide RNAi screens have provided ample opportunities to investigate host-virus inter-

actions and to identify novel host factors, their mechanisms in a high-throughput manner. This

is evident from the many genome-wide screens for viruses such as HIV, Influenza virus, HCV,

WNV. These results have opened possibilities of comparing them and understand similarities-

differences in viral infection. Other data sources such as gene expression, protein interaction

networks, and small molecule or drug screens can also be utilised in tandem to add depth to

such analyses. Thus, the availability of heterogeneous data on one hand and genome-wide RNAi

screens on the other have opened up many avenues for a systems approach of analysing RNAi

screens. However, incorporating this data and utilising it for a comprehensive systems analysis

of RNAi screens, is a challenging task.

Based on this data, we posed 2 key questions;

1 Are there functional regions in the HPIN that are broadly targeted by many viruses and/or

specific to only some viruses?

2 Using network topological properties of such regions, can we predict novel hit proteins or

host-virus mechanisms?

We approached this problem in the following manner:
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1. To identify functional regions within the HPIN, we initially constructed a HPIN using

collated interactions from public repositories.

2. Functional modules were identified using a clustering algorithm, in this case, ClusterOne[73].

3. These modules were filtered in 2 steps:

a. Modules significantly enriched with Hits from a RNAi screen(s). These Hit-enriched

modules were further filtered based on network topology in the next step.

b. Topological filtering of modules, wherein Hit-enriched modules from the previous

step were filtered based on network topology.

4. These doubly filtered modules were then functionally characterised based on pathway and

GO enrichment.

5. Novel host factors were predicted using gene-expression data, virus-host interaction data

and known human protein complexes.

2.1.1 Datasets

The following subsections describe the different types of datasets used for this study.

2.1.1.1 Protein Interaction Networks

To build a comprehensive set of host protein interactions, we downloaded human protein inter-

actions from multiple public resources. Protein interactions were pooled from 10 different pub-

lic repositories that included computationally predicted interactions. These were downloaded

from iRefIndex v9.0[74] that provided unique indices to protein interactions from public repos-

itories; DIP[63], IntAct[61], MINT[62], BioGRID[75], BIND[67], CORUM[76], MPact[77],

HPRD[64], MPPI[65], OPHID[78], summarised in table 2.1. We also included predicted inter-

actions(that constitute 50% of the interactions of the final dataset) from STRING[79] in order

to have enhanced coverage of the network. STRING assigns a score to each protein interac-

tion pair based on the sources from which the interaction is referenced[79]. For interactions

from STRING, we employed a filter by including interactions that had a combined score of

0.75 and above. This resulted in an interaction network from 15383 proteins and 337413 in-

teractions. Hereafter, this network is referred as integrated human protein-protein interaction

network Hu.PPI.

2.1.1.2 RNAi screen Hits

In general, Hits are defined as genes that are at least 2SDs ≥ plate mean, identified in the pub-

lished studies[1–6, 30]. These were either called Host Dependency Factors (HDFs) or Host
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1. Collate Protein Interac�on Network 2. Cluster network to iden�fy modules 3. Map RNAi-hits on these modules, 

determine enrichment

4. Filter subnetworks based on network

topology

gi:1488613
Q96NZ9

P29353−1

Q92959

Q92927

gi:284403

P58505

Q6PKX4

Q8IYN2

O00750
P30273

Q01362

Q8WU20

P42338

Q08345

Q14451

Q9Y4K4

O43639
P56159

A2NI60

P39905

P17041

Q92970

O60542

Q99748

O00451

Q9H706

Q63HR2

P15692

Q6PIZ9Q86WV1

Q12866

Q9H6Q3

Q14393

P01732

P04234

P10966

P20963

P33681

Q9Y3P8

Q9Y2R2

P07766

P42081

A2N8H4

P08575

Q13477

P23470

Q9NWQ8

P23467

Q04759

P16410

P13747
P16471

P60568

Q12913

P31785

P14784

Q05209

P17181
Q13882

P01589

Q6PYX1

Q9UQQ2

P42680

P20936

P07333

O14492

P29350

P51692

P40189

O60674

P42229

P26045

P50542

O15524

P32927

Q06124

P41240

Q07666

Q9UQC2

Q15303

Q14289

Q15464

P20138

Q13588

P07948
P04626

P18031

P30530

P54753

P06239

P08581

P08922

P43403

P06127

P10747

Q14210

Q8WW59
XP_374768

Q5JNZ3

P07949

TREMBL:Q92936

Q504X9

Q5T1S1

Q9Y6X7
TREMBL:Q92937

Q71UZ1

Q5PY61

Q6P3S1

P11912

Q9HCN6

Q13191

O43597

P15391

P29376

P12314

P12319

Q13905

P20827

Q13291

P12318

Q07890

P29317

Q92529

Q9ULH1

Q9GZY6

Q9Y5K6

Q9UN19

P54762

P31994

P43628

Q13322

P21583

O14654

Q99704

P08069

P42684

Q8TEW6

P11274

P20273
P56945

P16284

O00459

Q05397

P19235

P42336

Q92569

P10721

P03956

O15357

Q9UM73

P29353

P46109

Q07889

P09619

P27986

P62993

Q06187

P19174

Q16827

P22681

Q13094
P00533

P06241

P15498

P46108

P08631 P01133

Q9UKW4

P16885

P49763
Q13239

Q08881

O15117
O14786

P04629

P21860

Q13480

P40259

P35968

P07947

P52735

P43405

P09769

P51451

P98077

P78453

Q92918

Q8WV28

O43516

A7KAX9

P21854

Q96B97

Q9UJU6

Q8IWV1

Q9H2V7
Q9UJM3

P50406

P78314

P42768 Q9NP31

P17948

O43561

O75791

Q96N16

P36888

Q7Z6A9

O95297

P24394

P22894

Q14449

Q9Y4H2

Q9UKJ1

P40238
P40225

P01588

Q9NRF2

P08887

P35568

Q99062

P10912

P26951

O60496

O14508

P16234

P23458

P06213

P52333

P48357

Q9NSE2

Q9UGK3

O14543

P29597

Q6GTX8

O75420

Q9UPY6

Q9P104

Q92835

P04040

5. Resultant subnetwork

6a. Enrichment across GO and 

Reactome pathway databases 

6b. Predict �ssue specific novel host factors 

Hit Proteins

Library Proteins

Non-screened Proteins

(DIP, IntAct, MINT, BioGRID, CORUM, MPact, 

HPRD, MPPI, OPHID & STRING)

WNV Hits

HIV Hits

Non-screened Proteins

HCV Hits

Screened Proteins

Common Hits (HCV-HIV)

Common Hits (HCV-WNV)

FIGURE 2.1: The figure summarises the work flow executed in this analysis. 1) In step 1,
we build the Human Protein Interaction Network(HPIN) by collating interactions from public
databases (See Datasets). 2) In this step, we apply ClusterONE on HPIN to identify functional
modules.3) RNAi hits are then mapped to these modules and their enrichment in each of these
modules is determined using Fisher’s exact test. Modules statistically significant at 5%, are
then subjected to topological filtering in the next step. 4) This step further filters the enriched
modules from the previous step, using mean network centralities and semantic similarity scores
(See Filtering subnetworks).5) Subnetworks obtained from these 2 filtering steps are then func-

tionally analysed using, Reactome and GO enrichment.
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Source Version (date)
BIND 2005-05-25
BIND Translation Version 1.0 (2010-12-15)
BioGRID Version 3.1.81 (2011-10-

01)
CORUM 02/12/09
DIP 10/10/10
HPRD Release 9 (2010-04-13)
IntAct 2011-09-29
MINT 21/12/10
MPACT 10/01/08
MPPI 2004-06-01 (from

archive)
OPHID 2006-07-07

TABLE 2.1: IrefIndex ver 9.0 and versions of the included databases. We also used STRING
v9.0 to build the final host protein interaction network (HPIN).

Restriction Factors (HRFs). These hits were further grouped in 2 classes; Virus-specific Hits
and Combined Hits. Virus-specific hits included hits from multiple screens for a virus (of the

same species). For example, HIV hits comprised HDFs and HRFs from the 3 HIV-1 genome-

wide RNAi screens[1–3]. HCV hits were pooled accordingly. Since there was only one screen

for WNV, it was directly used as it was published. On the other hand, Combined Hits in-

cluded hits from all screens, including inter-species(between hit-sets of virus species) or intra-

species(within hit-sets virus species) overlapping hits. The pipeline was run on each of these

hit-sets separately. All these screens used the Dharmacon siGENOME library consisting of

17745 proteins.

2.1.1.3 Tissue-specific Expression Data

Human tissue expression data was downloaded from http://www.proteinatlas.org/

version 10.0 - 2012.09.12, Ensembl version: 67.37. The flatfile consisted of Ensembl gene

identifier ("Gene"), tissue name ("Tissue"), annotated cell type ("Cell type"), expression value

("Level"), the type of annotation (annotated protein expression (APE), based on more than one

antibody, or staining, based on one antibody only) ("Expression type"), and the reliability or

validation of the expression value ("Reliability"). Genes were filtered for moderate to high

expression levels based on the expression value labels - "Medium/Moderate" or "High/Strong".

The same filter was applied to the Reliability field of this dataset, wherein genes with high

support were selected (Reliability values were "High" or "Supportive"). Using these filters we

short-listed moderate-high expressed genes in macrophages (HIV) and liver (HCV) from this

set.
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FIGURE 2.2: Boxplot displaying mean betweenness of subnetworks for all cluster sizes for
all the HCV subnetworks. These values were further utilised to filter these subnetworks for

topological enrichment, detailed in the Parameters section.

2.1.2 Clustering Hu.PPI Network

We used a clustering algorithm that allows for detection of overlapping protein complexes by

neighbourhood expansion, called ClusterONE[73]. The usage of an algorithm that detects over-

lapping complexes was to identify multifunction proteins that play different roles in different

complexes for the same virus as well as in different viruses. Such multifunction proteins can

also help interpret the role of the protein complex, of which they are a part of, in multiple per-

spectives. One of the required input parameters to the algorithm was minimum cluster size.

ClusterONE generates clusters of at least the size specified in the size parameter, so different

clusters of sizes ranging from 25 to 100 were obtained. For values of cluster size 100 and above,

the cluster size and the number of the generated clusters remained constant as shown in Fig 2.2.
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2.1.2.1 ClusterONE algorithm

The algorithm is based on the concept of cohesiveness score and then uses a greedy growth

process to find groups that could potentially be protein complexes. Cohesiveness measures the

likelihood of a group of proteins to form a complex. It is defined as follows. Consider win(V)

as the total weight of the edges contained between the group or proteins V , and let wbound(V)

denote the total weight of the edges that connect the group to the rest of the network. The

cohesiveness of V is given by,

f (V ) =
win(V)

win(V)+ wbound(V )+ p|V|
(2.1)

p|V| is a penalty term that is used to model the uncertainty in the data based on the assumption

that there exist yet undiscovered protein interactions. By allowing values of p ≥ 0, offsets the

boundary weight wbound(V )byp|V |, that implies every protein in V has p additional boundary

connections that could not be identified owing to limitations of experimental procedures. Thus,

the authors suggest that, different values of p can be used for different biological assumptions.

For instance, a well-studied protein can have lower p value as it is highly unlikely that it has

undiscovered interactions. For sake of simplicity, we chose not to alter this penalty term and

used the default value as set by the algorithm. The ClusterONE algorithm works in 5 major

steps:

while v⊂V 6= φ do
Step1 : let V0 = {v0}, t = 0;
Step2 : Calculate cohesiveness for Vt using (2).
Step3 : and let Vt+1 = Vt ;
For every external vertex v on at least one boundary edge, cohesiveness of V ′ = Vt∪ vt. If
f (V ′) > f (Vt+1), let Vt+1 = V ′ ;
Step4 : For every internal vertex v on at least one boundary edge, cohesiveness of
V” = Vt∪ vt. If f (V”) > f (Vt+1), let Vt+1 = V” ;
Step5 : if Vt 6= Vt+1, increase t and return to Step 2.;
Else Vt a locally optimal cohesive group.

end
Algorithm 1: ClusterOne algorithm

An illustration for this greedy cohesive process of group detection is illustrated in figure 2.3.

This graph consists of 12 nodes, marked from node0 to node11. Assuming p = 0, the cohesive-

ness of the shaded set is 7/14. In steps 3 and 4, the algorithm can add either of the following

nodes; node5, node6, node7 and node8. The best choice is to add node 7 as it increases the

internal count by 4 as it converts these boundary edges to internal ones. Thus, the cohesiveness

of the group would be 11/14 while for node8 it would be 10/14, for node6 will be 9/14 and for

node5 it will be 8/14.
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FIGURE 2.3: Illustration of greedy cohesive group detection in ClusterOne. Shaded area is in-
dicated by a shaded area. Thick blue edges are completely internal, dashed edges are boundary

edges and forward slash edges are completely external.

1. In the first step, the algorithm grows groups of proteins with high cohesiveness from se-

lected seed proteins. First, a protein with highest degree is selected as the 1st seed and

a greedy search procedure grows a cohesive group from this protein. When this growth

process ends, the algorithm selects the next seed from the unassigned proteins and repeats

the process. This process continuous till there are no proteins left to consider.

2. In this step, locally optimal cohesive groups are merged. The extent of overlaps between

each group pair is computed and those groups that have the overlaps beyond a certain

threshold(ω > 0.8), are merged.

ω((A,B) =
|A∩B|2

|A||B|
(2.2)

ClusterONE performs these overlaps pair-wise; overlap scores for each group pair is cal-

culated and an overlap graph is constructed where each vertex represents a cohesive group.

Two groups are connected to each other are merged into protein complex candidates. If

a group has no further connections to any other groups, it is then labelled as a protein

complex candidate and no additional merging is performed.

3. In this final step, the predicted groups are pruned for size and density. Specifically, those

groups smaller than 3 and a density δ below a certain threshold are discarded, where δ is
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defined as,

δ =
Σwin(V)

n(n−1)
2

(2.3)

where n is the number of proteins.

2.1.3 Determine RNAi hits enrichment for all clusters

For every cluster generated, a p-value was calculated using the Fisher’s exact test to determine

significant enrichment of hits in a cluster[80]. This was repeated for all hit-sets mentioned above

which resulted in 4 sets of clusters, namely: HIV, HCV, WNV and Combined. The Combined

hit-set consisted of hits pooled for all viruses from all screens. For all subsequent references in

the analysis, a subnetwork will refer to a visual representation of an enriched cluster. Each of

these enriched cluster sets were analysed for network topology in the next step.

We demonstrate hit enrichment in a subnetwork with the following illustration. This is a con-

tingency table used for the Fisher’s exact test, to compute p-values. For the HCV hit-set, we

obtained one of the subnetwork of size 40, of which 38 proteins are from the library of genes

that were screened (in this case the library being Dharmacon siGENOME library which was

common for all the 7 screens). Thus, the contingency table of this subnetwork will be:

Sr.No Hits Non-
Hits

TOTAL

In-
cluster

4 34 38

Not-in-
cluster

0 2 2

TOTAL 4 36 40

TABLE 2.2: An example of RNAi hit enrichment in subnetwork

2.2 Parameters

2.2.1 Network Centralities

In order to understand how a network functions, it is worthwhile to study its structural properties

and how these impacts its function. Intuitively, the manner in which individual components of

the network interact provides a basis for quantifying such structural properties. Formally, these

measures that allow to quantify and characterise network topology are referred to as, Network
Centralities. This term was elaborated by Freeman in his seminal paper titled, "Centrality
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FIGURE 2.4: A sample protein interaction network (PIN), represented as an undirected, un-
weighted graph. The nodes represent proteins and the edges represent interactions between

them.

in social networks conceptual clarification"[81]. Over the years, researchers developed a set of

such centralities that characterise different aspects of a network. For e.g. Betweenness centrality

gives the extent to which the shortest paths pass through a particular node. The higher number

of paths passing through such a node, the higher is its "Betweenness". In protein networks, this

automatically translates to proteins that function as Bottlenecks which are more likely to be

essential proteins and play an important role in gene expression[82, 83].

Before we describe these network centralities, we introduce some basic concepts of graph theory

as defined in the literature, along with their mathematical representation[84].

1. Undirected graph: A graph G can be defined as a pair (V,E) where V is a set of vertices

representing nodes and E is a set of edges representing the connections between the nodes.

A single connection between nodes i and j is defined as E = {(i, j)|i, j ∈ V}, in which case i

and j are neighbours. If the edges connecting the vertices have no direction and numerical

weights assigned to them, then such a graph is called an undirected, unweighted graph.

Protein interaction networks are more often represented as these graphs.

2. Directed graph: A directed graph is defined as an ordered triple G = (V,E, f ), where

f is a function that maps each element in E to an ordered pair of vertices in V . Such

directed pairs of edges are called directed edges, arcs or arrows[85]. In protein interaction

networks, a directed connection usually represents sequential interaction of the elements

and the flow of information in the network. For e.g. signaling networks that consists

of signaling cascades where binding of a receptor triggers a certain pathway which is

followed by their action on final effector molecules, the direction of an edge represents the

flow of such a signal.
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3. Adjacency Matrix: For a graph G = (V,E), the adjacency matrix is represented by |V |x|V |=
nxn matrix A = (ai j) such that ai j = 1 if (i, j) ∈ V or ai j = 0 or otherwise

A =


a11 . . . a1n

...
. . .

...

an1 . . . ann

 ,n = |V |

For the sample PIN listed above 2.4, the matrix will be,

ASampleNetwork =



0 0 0 1 1 0 0 0 0 0

0 0 1 0 1 0 0 0 0 1

0 1 0 1 0 0 0 0 0 1

1 0 1 0 0 1 0 0 0 0

1 1 0 0 0 0 0 0 0 1

0 0 0 1 0 0 1 1 0 0

0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 1 1 0 0

0 1 1 0 1 0 0 0 0 0



,n = 10

In case of undirected graphs, the matrix is symmetric because ai j = a ji. This isn’t true in

the case of directed graphs, as the upper and lower triangle parts of the matrix reveal the

direction of edges.

4. Walk, Path and Trail - A walk is a pass through a specific sequence of nodes (v1,v2, . . . ,vN)

and (v1,v2),(v2,v3), . . . ,(vN−1,vN) ⊆ E. A simple path is a walk with no repeated nodes

while a trail is a path where no edge is repeated.

5. Shortest Path - For a pair of nodes i, j ∈V , the distance δ (i, j) from i to j is the length of

the shortest path from i to j in G. If no such path exists, then δ (i, j) = inf. Shortest path

problem refers to the process to determine a path between two nodes in a graph such that

the sum of the weights of its constituent edges is minimised.

We utilised 7 network centralities and 2 semantic similarity measures to filter subnetworks.

With reference to the sample network in Fig. 2.4, we describe few basic graph theory ter-

minologies and definitions of these measures as follows:

1. Degree centrality - As defined by Freeman, degree of a node denotes the number

of edges incident to a node or emanating from it [81]. For an undirected graph G,

G = (V,E) where V is the set of vertices/nodes and E is the set of edges, the degree
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of a vertex v is denoted by, deg(v). By this definition, the nodes node1, node2, node3,

node4, node5 and node9 of the sample network, have the highest degree, which is

3. Intuitively, higher degree also reflects a node’s importance in a network, in this

case, indicates the multifunction aspect of a protein. Such proteins are also referred

to as Hubs and indeed, are essential for normal cellular function purely due to their

abundant interaction partners[86].

2. Closeness centrality - indicates the extent to which a node is "closer" to other nodes

in the network. It also determines the ability of a node to quickly communicate with

other nodes with respect to flow of information. Mathematically, it is defined as the

inverse of the shortest path between a pair of nodes. For an undirected graph G =

(V,E), closeness centrality of a node i Ccloseness(i) is defined as,

Ccloseness(i) =
1

∑
|V|
j∈V dist(i, j)

(2.4)

where dist(i, j) denotes the distance or the shortest path p between the nodes i and j.

Mazurie et al. showed that, in a metabolic reaction network, a more central node has a

faster rate of transfer of metabolites than the less central ones[87]. Specifically, nodes

with higher closeness aid in faster transfer of metabolites in a metabolite reaction net-

work. They also showed that as distance between metabolic pathways increased, it led

to a consequent decrease in the closeness centrality of metabolites in these pathways

in context of bacterial evolution. In the context of signaling networks, a special class

of PINs, it indicates how a particular signal can transfer within a network.

Using the formula above, closeness centrality of the proteins in the sample network

are as follows:

Centrality node1 node2 node3 node4 node5 node6 node7 node8 node9 node10
CLS 0.0435 0.0526 0.0625 0.0435 0.0555 0.0417 0.05 0.033 0.0435 0.0417
BWN 0.5 10.0 21.0 2.0 18.5 3.5 5.0 0.5 0.5 3.5
PGR 0.106 0.107 0.112 0.108 0.121 0.087 0.077 0.089 0.106 0.087
CC 0.67 0.33 0.0 0.33 0.0 0.0 0.0 0.0 0.67 0.0

TABLE 2.3: Centralities for all nodes in the sample network. The 3-letter abbreviations in the
first column denote centralities; CLS-Closeness, BWN-Betweenness, PGR-PageRank central-

ity and CC-Clustering coefficient.

From the table 2.3, it is clear that "node3" is closer to all other nodes in the network

and thus, can quickly convey a signal from one protein to another.

3. Betweenness centrality - Betweenness of a node indicates the number of shortest

paths passing through that node, for any two nodes in a network[88–90]. Such nodes

thus act as bridging nodes between closely connected regions or communities within
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a network. Removal of such nodes can disconnect these communities and break the

network. These are also referred to as Bottlenecks. For unique nodes, i, j,w ∈V (G),

σi j be the total number of shortest paths between i and j while σi j(w) be the number

of shortest paths between i and j passing through w. Furthermore, for w ∈ V (G), let

V(i) denote the set of ordered pairs, (i,j) in V(G)×V(G) such that i,j,w are distinct.

Then, the Betweenness centrality of w is given by,

CBetweenness(w) = ∑
(i, j)∈V (w)

σi j(w)

σi j
(2.5)

In PINs, proteins with high betweenness(Bottlenecks), alike those with high de-

gree(Hubs) are favoured by many pathogens.

Betweenness centrality values for the proteins in the sample network are mentioned

in 2.3. It is clear from this table that node3 and node5 are the nodes with high be-

tweenness.

4. Mean path length - As mentioned above, the shortest path between a node pair (i,j) in

a graph G is given by, δ (i, j). Thus, the mean or average path length of a graph G is

defined as the average of δ (i, j) taken over all distinct pairs of nodes, i, j ∈ V(G) given

that they are at least connected by one path. Specifically, the average path length of

a network is the mean number of edges between nodes, which must span the shortest

path between a node pair. It is given by,

δ =
2

N(N−1)

N

∑
i=1

N

∑
j=1

δmin(i, j) (2.6)

where δmin(i, j) is the minimum distance between nodes i,j and N is the total number

of nodes in a network. Some of the popular algorithms to determine shortest paths in

a network, are the Dijkstra’s greedy algorithm[91] and Floyd’s algorithm[92].

For the sample PIN listed above 2.4, the shortest path matrix will be represented as,

Thus, using the above formula, the average path length of the sample network is 2.44.

5. PageRank/Eigenvector centrality - It uses the principle that, the importance of a

node is determined by how important its neighbours are. Thus, a node connected to

more important neighbours is ranked higher than a node with lower number of such

neighbours. Mathematically, it is the largest eigenvalue of an adjacency matrix. Such

an implementation was suggested by Bonacich, who deemed that it can be a good

centrality measure[93]. For a graph G(V,E), consisting of vertices V and edges E, let

A be the adjacency matrix for this graph; ai j = 1 if i and j are connected and ai j = 0

otherwise. The matrix A is symmetrical and thus, its eigenvalues are real, its eigen-

vectors orthogonal. The largest eigenvalue of A is then represented by λmax, given

by, λCeiv = ACeiv, where Ceiv is the eigenvector of λmax. Thus, for a undirected graph
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node1 node2 node3 node4 node5 node6 node7 node8 node9 node10
node1 0 1 2 1 3 4 2 5 1 4
node2 1 0 1 2 2 3 2 4 1 3
node3 2 1 0 2 1 2 1 3 2 2
node4 1 2 2 0 3 4 1 5 1 4
node5 3 2 1 3 0 1 2 2 3 1
node6 4 3 2 4 1 0 3 1 4 2
node7 2 2 1 1 2 3 0 4 2 3
node8 5 4 3 5 2 1 4 0 5 1
node9 1 1 2 1 3 4 2 5 0 4
node10 4 3 2 4 1 2 3 1 4 0

TABLE 2.4: Shortest paths matrix for all against all nodes. The diagonal elements of this
matrix are 0 while the upper and lower diagonal elements consists of pairwise distances.

G with its adjacency matrix A with V (G) = {v1, . . . ,vn} and ρ(A) = maxλ∈σ(A) |λ |,
then the eigenvector centrality Ceiv(Vi) of the node vi is given by the ith coordinate xi

of a normalised eigenvector that satisfies the condition Ax = ρ(A)x. This algorithm

has been implemented to efficiently ranking of web pages, notably by Google. Using

this measure, Jaeger et al. identified novel surface membrane receptors of HIV from

a PIN[72].

From table 2.3, node5 has the highest eigenvalue or PageRank value of 0.121 indicat-

ing that it is the most important node in the network.

6. Clustering coefficient - It’s a measure to indicate the connectedness of a vertex to its

neighbours, for the graph in consideration[94]. For an undirected graph G, if i is a

vertex with degree deg(i)=k and the number of edges between the k neighbours of i in

G are e, then the Local clustering coefficient is given by,

C(i) =
2e

k(k−1)
(2.7)

In other words, Ci measures the ratio of the number of edges between the neighbours

of i to the total possible edges, which are k(k− 1)/2 and ranges within 0 ≤ Ci ≤ 1.

The mean clustering coefficient of the whole network is then given by,

Cmean =
1
N

N

∑
i=1

Ei

ki(ki−1)
(2.8)

where, N = |V | is equal to the number of vertices. The closer the value of Cmean is to

1, the greater is its tendency to form a cluster. Table 2.3, shows the local clustering

coefficient values for nodes in the sample network. Using the equation for Cmean, the

mean clustering coefficient of the sample network is 0.273.
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2.2.2 Semantic similarity indices

1. Dice Similarity Coefficient - For an undirected graph, G, such that G = (V,E) where

V is a set of vertices and E is a set of edges; then for a vertex pair, u,v, the Dice

Similarity coefficient for the vertex pair is given by,

Diceu,v =
2C

|Degu|+ |Degv|
(2.9)

Here, C denotes common neighbours of u and v whereas Degu and Degv denotes

degrees of nodes u and v. We iterate this formula over a whole subnetwork and then

obtain the mean Dice similarity coefficient.

2. Wang similarity coefficient - A GO term A can formally be represented as a set of

directed acyclic graph, DAGA = (A,TA,EA), where TA is the set of GO terms in DAGA

including A and all its ancestor terms in the GO graph and EA is the set of edges

connecting the GO terms in DAGA. For a quantitative comparison of GO terms, Wang

defined that the semantic value of GO term A is the aggregate contribution of all terms

in DAGA. In other words, the contribution of term t to the semantics of GO term A is

referred to as the semantic value or the S-value of GO term t related to A. So, for any

of term t in DAGA = (A,TA,EA), its S-value related to term A, SA(t) is defined as:{
SA(A) = 1

SA(t) = max{we×SA(t ′)|t ′ ∈ childreno f (t)}i f t 6= A
(2.10)

where we is the semantic contribution factor for edge e ∈ EA linking term t with its

child term t’. In this function, contribution of term A towards itself is assigned a value

of 1. After computing all S-values for all terms in DAGA, the semantic value of GO

term A, SV(A), is calculated as:

SV (A) = ∑
t∈TA

SA(t) (2.11)

Thus for any given GO terms, A and B, the Wang similarity between A and B,

simWang(A,B), is given by,

simWang(A,B) =
∑t∈TA∩TB SA(t)+ SB(t)

SV (A)+ SV (B)
(2.12)

wherein SA(t) is the semantic or S-value (SV) of GO term t related to term A and

SB(t) is the S-value of GO term t related to term B. Wang’s method determines the

semantic similarity of two GO terms based on both the locations of these terms in

the GO graph and their relations with the ancestor terms. For a group or protein like

the ones in our subnetworks, we utilised the mean of the Wang similarity coefficient,
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FIGURE 2.5: GOSemSim sample calculation

calculated pairwise for each GO term pair for a protein m with another protein n.

Thus, the above equation can then be represented as,

simWang.avg(g1,g2) =
∑

m
i=1 ∑

n
j=1 sim(go1i,go2 j)

m×n
(2.13)

where g1 and g2 are a gene pair and go1i and go2j are their corresponding GO terms,

such that GO1 = {go11,go12, . . . ,go1m} and GO2 = {go21,go22, . . . ,go2n}. For our

subnetwork, we consider a protein pair and all its associated GO terms, for all on-

tologies. We then perform a ontology-wise calculation of the Wang similarity score

for each combination of GO terms for this pair. This is iterated for all possible pairs

within a subnetwork. Finally, we calculate the mean of Wang similarity for each GO

ontology and assign it to the subnetwork. Thus, each subnetwork has 3 values that are

the mean Wang similarity scores for the three GO ontologies. The following exam-

ple shows a sample calculation of semantic similarity scores using the mgoSim and

goSim functions of the GOSemSim package.

2.2.3 Filtering subnetworks

Cluster size is one of the important parameters in any graph based clustering algo-

rithm (in our case, subnetwork size generated from these clusters). The 2 main/re-

quired inputs to ClusterOne [73] are: the network to be subjected for clustering and

the minimum size of predicted complex. There are 11 other input parameters which

are as follows:

1. –input-format - indicates the input format of the file. This can be either an

edge list or simple interaction file (sif)
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2. –output-format - indicates the output format of the file (plain, csv or genepro)

3. –min-density - used to set the minimum density of the complexes to be pre-

dicted.

4. –debug - initiates the debugging mode in the algorithm

5. –fluff - used to fluff the clusters as a post processing step. This parameter

should be used in a case specific manner. The main purpose is to check if the

external boundary nodes of each cluster connect to more than two third of the

internal nodes; if such is the case, these external boundary nodes are added to

the cluster. It must be applied before the size and density filters.

6. –haircut - This parameter is used to apply a haircut transformation as a post-

processing step on the detected clusters. Basically this step removes any dan-

gling nodes from a cluster provided if the total weight of connections from a

node to the rest of the cluster is less than x times the average node weight in the

cluster (where x is the argument of the switch), the node will be removed. The

process is iterated until there are no further nodes to be removed. Alike fluff,

this method is applied before the size and density filters.

7. –max-overlap - indicates the maximum allowed overlapping proteins between

two clusters. This is measured by the match coefficient which takes the size

of the overlap squared, divided by the product of the sizes of the two clusters

being considered, as in the paper of Bader and Hogue[45].

8. –similarity - used to set the similarity function to be used in the merging step.

Specifically, this argument controls which scoring function is to be used to de-

cide whether two complexes overlap significantly or not. This option has the

following possible values:

a. merge calculates the intersection size squared, divided by the product of the

sizes of the two complexes. This is also called the matching score and is the

default value.

b. meet/min or simpson calculates the Simpson coefficient i.e. the intersection

size over the size of the smaller complex.

c. jaccard calculates the Jaccard similarity coefficient i.e. the intersection size

over the size of the union of two complexes.

d. dice calculates the Dice similarity coefficient i.e. twice the intersection size

over the sum of the sizes of the two complexes.

9. –merge-method - specifies the method to be used to merge highly overlapping

clusters. This option has the following values:
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a. single calculates similarity scores between all pairs of complexes and creates

a graph where the nodes are the complexes and the two nodes are connected

if the corresponding complexes are highly overlapping. Complexes in the

same connected component of the graph will then be merged and by its des-

ignation, this is a single-pass method.

b. multi calculates similarity scores between all pairs of complexes and stores

those pairs that have a score larger than a given threshold. The highest

scoring pair is merged and the similarity of the merged complex towards

its neighbours is recalculated. This process is iterated until there are no

more highly overlapping complexes remaining. As its label suggests, this is

a multi-pass method where similarities are recalculated after each merging

step.

10. –penalty - sets a penalty value for the inclusion of each node. For any penalty

value x, ClusterONE assumes that this node has an extra boundary weight of

x when it considers the addition of the node to a cluster. This option can then

be utilised to model the possibility of uncharted connections for each node, so

nodes with only a single weak connection to a cluster will not be added to the

cluster as the penalty value will nullify the benefits of adding the node. The

default penalty value is 2.

11. –seed-method specifies the seed generation method to use. The following val-

ues are accepted:

a. nodes - every node will be used as a seed.

b. unused_nodes - nodes will be tested in the descending order of their weights

(where the weight of a node is the sum of the weights on its incident edges).

If a cluster is found in this search, these nodes will be excluded from the list

of potential seeds. In other words, the node with the largest weight that does

not participate in the clusters found thus far will be selected as the next seed.

c. edges - every edge will be considered once, each yielding a seed consisting

of the two endpoints of the edge.

d. cliques - every maximal clique of the graph is considered as a seed.

e. file(*filename*) - seeds will be generated from the nodes listed in the given

file. Each line must contain a space separated list of node IDs that will be a

part of the seed. If a line contains a single * character only, this means that

besides the seeds given in the file, every node that is not part of any of the

seeds will also be considered as a potential seed on its own.

f. single(*node1*,*node2*,. . . ) - a single seed will be used with the given

nodes as members. Node names must be separated by commas or spaces.
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g. stdin - seeds will be given on the standard input, one by line. Each line must

contain a space-separated list of node IDs that will be a part of the seed. It

may be useful to use this method together with –no-merge if the result of

earlier seedings shouldn’t interfere the result of the later ones.

Among these parameters, only the –merge-method was set to multi, to merge highly

overlapping complexes. For all other parameters, their corresponding default values

were used. We subjected the Hu.PPI network to different values of min.size, starting

from 25 to 100, beyond which the number of clusters obtained didn’t differ in their

size. In order to define optimal size for the clustering, we utilised 6 network centrali-

ties and 2 semantic similarity measures.

The rationale for choosing these measures was 2 fold; firstly, incorporating network

topology in the analysis allows for a topological perspective on the enriched subnet-

works and secondly, the semantic measures to check the quality of clustering. Mean

values of all these measures were calculated for every subnetwork. Initially, subnet-

works significantly enriched with RNAi hits were filtered. From these, those subnet-

works with size identical to their random-hit-enriched counterparts were considered

for difference of mean test. These random-hit-enriched subnetworks were determined

in the following manner. We randomly sampled identical number of hits for each

virus from the HPIN and used them to compute hit-enriched modules in the 2nd step

(see 2.1). Alike their hit-enriched counterparts, mean values of all the 8 network

centrality and semantic similarity measures were computed. These scores were then

utilised to determine topologically significant subnetworks, from within hit-enriched

and random-hit-enriched subnetworks, of identical sizes.

For this purpose, we used the Wilcox test to compute significance of mean between

these 2 sets, for every network centrality. Subnetwork sizes that yielded significant

difference of mean for every network centrality at a significance level of 5%, were

considered for further analysis.

As mentioned before, the analysis was carried out for every hit-set, i.e. individually

for each virus and also by combining hits for all the 3 viruses. Given the stringency

of the criterion, the range of significant subnetwork sizes obtained, were few. Only

subnetworks for HIV of size 52 and 66 passed this criterion(see 2.6). In other cases,

subnetworks significant for most network centralities were chosen. For instance, in

the case of HCV, subnetworks of size 62, 64 were significant for all network measures

and Wang semantic similarity of GO.CC class but not for GO.BP and GO.MF. This

trend was consistent with combined hits. With the exception of GO.MF, subnetworks

of size 46 and 52 were significant for all measures, for the combined hits dataset. For

WNV, none of the subnetworks were significant for any of these measures.

The motivation behind this topology-based filtering was that viruses alike other pathogens
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Centrality Hit enriched subnet-
work

Random-hit-enriched
subnetwork

p-value

Mean-Betweenness 35.279 34.9533 0.0247
Mean-Closeness 0.0092 0.0093 0.0247
Mean-Clust-Coefficient 0.365 0.238 0.0247
Mean-PGR 0.0233 0.0233 NA
Mean-Degree 20.698 21.163 0.0247
Mean-PathLength 2.68 2.66 0.0247
Mean-DiceSim 0.211 0.1882 0.0247
Mean-WangSim-GO.BP 0.221 0.206 0.592
Mean-WangSim-GO.CC 0.489 0.464 0.592
Mean-WangSim-GO.MF 0.385 0.402 0.0497

TABLE 2.5: Wilcox test results for significance of mean between hit-enriched and random-hit-
enriched subnetworks. Both subnetworks are of size 43. As evident from the p-values, not all

p-values are significant. These are highlighted by grey coloured cells.

target centrally located proteins in the HPIN[60, 71, 95]. In order to predict such pro-

teins and more importantly, hotspots within the HPIN that harbour such proteins, we

performed this test of significance for the 6 centrality measures mentioned above. We

discuss the results of these double-enriched that is, subnetworks enriched with hits as

well as topology, in the Results section.

2.2.4 Functional Analysis of filtered subnetworks

All Reactome pathway and GO based enrichments were computed using the Biocon-

ductor packages,"clusterProfiler" and "ReactomePA"[66, 96–98]. Semantic similari-

ties were computed using the "GOSemSim" package[99].

2.3 Novel Hit Prediction

One of the main objectives of this study was to develop a computational basis for

prediction of novel host factors for these viruses. Since the subnetworks are already

enriched with hits and are topologically significant, we employ a simple neighbour-

hood search to predict novel host factors. This step is supplemented with multiple

data sources to put forth plausible hypothesis of the predicted host factors and their

regulation.

2.3.1 Mapping Tissue-specific expression data on filtered subnetworks

As mentioned above, we utilised tissue-specific gene expression data from Human

Protein in association with the enriched subnetworks, for novel hit prediction. In

particular, we selected cell-lines/tissues, favoured by the viruses in consideration and
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filtered for genes with moderate/high expression. These filtered genes were over-

laid on the subnetworks and the overlaps were further assessed for their role in viral

infection/replication. In some cases, the overlaps yielded well-studied proteins like

JAK2(Janus Kinase 2) in case of HCV while others were yet uncharacterised. This

validated our approach in a way and the latter, thus formed "Putative Novel Hits" or

"Predicted Novel Hits"

2.3.2 Mapping virus-host interactions on filtered subnetworks

We used multiple sources to map virus-host interactions for their overlay on subnet-

works. For the HCV subnetworks, we utilised the first experimentally determined

viral protein- host protein interaction network by de Chassey et al.[70]. For the HIV

subnetworks, we used the HIV-1 NIAID database[53]. For WNV, we utilised the

VirHostNet knowledgebase[52]. However, the number of interactions between WNV

proteins and human proteins were quite limited (17) and thus, we didn’t find any

WNV-human protein interactions with any subnetworks. This observation holds true

only for the "Combi" subnetworks as WNV hit-set didn’t lead to any enriched subnet-

works, with the previously described steps.
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Chapter 3

Results & Discussion

This chapter highlights the functional characteristics of all the subnetworks. Based on

enriched pathways, GO ontologies and their interacting partners, we further postulate

novel regulatory mechanisms and putative novel host factors for each virus.

3.1 Functional properties of subnetworks

3.1.1 Enrichment Specificity

From both analyses types (with virus-specific and Combined hit sets), we observed

that all subnetworks showed specificity on the level of enriched pathway and GO

terms. A general observation from these subnetworks is that their the enriched path-

way and GO terms are "functionally specific". In other words, these subnetworks

show enriched pathway terms of a specific biological process when compared to en-

riched terms of their corresponding hit-list. For e.g, The Brass HIV screens’ enriched

Reactome pathways included; Immune System, HIV infection, Gene Expression and

Disease (see Figure 3.3). On the other hand, the enriched Reactome pathways for the

HIV-s52 network included; Transcriptional Regulation of White Adipocyte Differen-

tiation,Developmental Biology, Generic Transcription pathway and SMAD2/SMAD3/SMAD4

heterotrimer regulates transcription and Gene expression. We also observed this trend

in the enrichment analyses of HCV subnetworks, thus indicating that interpreting

these subnetworks over individual hit-lists proves to be more informative.
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(A)

FIGURE 3.1: Reactome Pathway Enrichment: Comparative analysis of enriched Reactome
pathway terms in subnetworks and corresponding screens. The size of data points indicate
the percentage of genes present in a pathway term whereas color shades indicates p-values.

(A)-Pathway enrichment comparisons in all RNAi screens vs. "Combined" subnetworks

3.2 HIV-1 Meta-analysis Results

For HIV, we identified 2 subnetworks, namely, the HIV_s52 and the HIV_s66 subnet-

work. The suffix s is short for subnetwork size while the number denotes the numeri-

cal size of the subnetwork. Each of these subnetworks emphasise different aspects of

HDFs involved in HIV infection. While HIV_s52 subnetwork predominates in tran-

scription, the HIV_s66 subnetwork consists several small complexes that serve dif-

ferent processes during the HIV life-cycle. These are summarised in the enrichment

plots of Reactome pathway and GO terms given below. As compared to individual

screen hit-lists, the filtered subnetworks have specific biological processes/pathways

that are enriched in them. We describe each of these subnetworks in detail, in the

following subsections.
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(B)

FIGURE 3.2: Reactome Pathway Enrichment: Comparative analysis of enriched Reactome
pathway terms in subnetworks and corresponding screens. The size of data points indicate
the percentage of genes present in a pathway term whereas color shades indicates p-values.

(B)-Pathway enrichment comparisons in HIV-1 RNAi screens vs. HIV-1 subnetworks

3.2.1 HIV_s52 Subnetwork

3.2.1.1 Mediator Complex

The HIV_s52 subnetwork consisted primarily genes involved in the transcription,

where Mediator complex subunits were the most dominant (Appendix-I). The Media-

tor complex is a large multi-subunit complex consisting of 26 subunits and weighs 1.2

Mda[100]. A unique feature of this complex is that it is present only in eukaryotes as

evidence for Mediator-like activity in microbes is lacking. Additionally, the general

transcription factors (GTFs) that include TFIIE, TFIIH, and TFIID are also absent

in microbes. The parallel co-evolution of these GTFs along with mediator suggest

that these complexes function coordinately to regulate expression of protein coding

genes. Thus, this complex is a preferred target for viruses. This result is consistent

with the fact that being retrovirus, HIV hijacks and employs the host transcription
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FIGURE 3.3: Reactome pathway and GO enrichment terms comparison between individual
HIV-1 RNAi screens and filtered HIV-1 subnetworks, as obtained from our analysis. Both sub-
networks show functional specificity at the pathway and GO terms, as compared to individual

screen hit-lists.
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A
(a) The HIV_s52 subnetwork.

B

Non-screened Proteins

HIV Hits

Screened Proteins

FIGURE 3.4: A) Mediator complex subunits in the HIV_s52 subnetwork, highlighted in the
red circle. B) The HIV_s52 subnetwork45



machinery for its replication. The Mediator complex subunits were major hits in the

meta-analysis by Bushman et al.[9]. The discovery of Mediator complex as a major

hit in these RNAi screens[2, 3] have provided different hypotheses of its involvement

in HIV infection. Zhou et al. suggest that mediator complex subunits are required for

Tat-activated transcription while Koenig et al. suggest that they may be required in

reverse transcription.

An important submodule within the Mediator complex is the CDK8 submodule which

also contains cyclin C, MED12, and MED13. CDK8 plays a repressive role in tran-

scription wherein CDK-Mediator complex fail to activate transcription while the Me-

diator complex without CDK8 achieved transcriptional activation[100]. The presence

of the CDK8 submodule in our subnetwork implies the repressive mechanism prob-

ably being employed by the host cell as a countermeasure against HIV infection. It

might also be aided by another protein of this subnetwork, namely Cyclin C, which is

known to activate CDK8 and inhibit transcription initiation.

However, the precise and detailed mechanism of how the full Mediator complex is

hijacked by HIV is yet to be studied.

3.2.1.2 Host epigenetic mechanisms during HIV infection

In addition to the mediator complex, our subnetwork also included several other in-

teracting proteins (with the Mediator complex subunits), that might shed more light in

the details of transcription hijack mechanisms of HIV. For instance, the subnetwork

contains a lysine-specific demethylase 4B(KDM4B). This hints to epigenetic regu-

lation in HIV-1 infection. Indeed, recent studies show that methylation at the host

and viral protein levels has been a strategic mechanism employed by HIV-1 for in-

ducing latency. Several studies point out to this process [101–104]. Studies from the

Karn lab demonstrate that histone lysine methyltransferases (HKMTs) play a specific

role in latency of HIV-1 in the Jurkat cells [101]. The authors showed that concurrent

knockdown of EZH2, a key component of the Polycomb repressive complex 2 (PRC2)

silencing machinery, and the enzyme which is required for trimethyl histone lysine 27

(H3K27me3) synthesis lead to induction of upto 40% of the latent HIV proviruses.

In a second study from the same lab, chromatin immunoprecipitation (ChIP) assays

confirm that the levels of HIV-1 Tat are restricted in latently infected cells but they

increase stepwise during reactivation of provirus [102]. Moreover, ChIP assays of

latently infected cells showed that latent proviruses had high levels of deacetylated

histones and trimethylated histones. These levels of trimethylated histone H3 and

HP1-α associated with HIV proviruses reduced rapidly after tumour necrosis fac-

tor alpha(TNF-α) activation. Dimethylation at H3 Lys9 (H3K9) methyltransferase
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G9a[105] and monomethylation at lysine 51 (K51) at the RNA binding domain of Tat

maintains viral latency [106]. Another interesting perspective of the involvement of

long non-coding RNAs(lncRNAs) in transcriptional regulation including the mediator

complexes comes from a recent study by Lai et al. [107]. They show that a special

class of lncRNAs, called ncRNA-activating (ncRNA-a), that activate genes through

a cis-mediated mechanism[108, 109], require subunits of Mediator complex for their

mechanism. Given the highly intricate and complicated intervention by HIV pro-

teins, interaction between mediator subunits could influence the genes regulated by

this mechanism. Broadly speaking, this HIV-specific subnetwork is associated with

transcription directly/indirectly targeted by HIV.

3.2.2 HIV_s66 Subnetwork

The HIV_s66 subnetwork consists of several functional complexes that are involved

in varied biological processes of the HIV life-cycle. Predominant among these are

the heterogeneous ribonuclear proteins (hnRNPs), RNA-binding proteins (RBMPs)

and Serine/Arginine rich splicing factors (SRPs) which co-ordinately regulate RNA

metabolism [110, 111]. Among these, hnRNPs play diverse roles in RNA metabolism;

many hnRNPs participate in pre-mRNA processing such as splicing and influence

mRNA export, localization, translation, and stability[111]. They are associated with

mRNA during its different stages of transport that includes passing through nuclear

pores, ribosomes, hence undergoing nuclear-cytoplasmic shuttling[111]. Being a

retrovirus, it is thus evident why HIV-1 would target these host protein complexes

during its infection course. Alike hnRNPs, the SRPs too have multiple roles in RNA

regulation that profoundly include alternative splicing events and post splicing activi-

ties like mRNA nuclear export, nonsense-mediated mRNA decay and mRNA transla-

tion [112].

Overall, this subnetwork consists of proteins that seem to play a crucial role not only

in RNA metabolism but RNA metabolism during HIV-1 infection.

3.2.2.1 Novel hnRNP subunits and their probable role in HIV infection

Our analysis agrees with Bushman et al. and Murali et al., who also revealed hn-

RNP subunits in their meta-analysis of the 3 HIV screens [9, 43]. Generally, if one

or more subunits of a protein complex (here, hnRNPs) are exploited by the pathogen,

the whole protein complex itself is considered to be vital. For e.g. If "Proteasome"

complex is significant in a genome-wide studies, the interpretation would be that all

subunits of the Proteasome contribute in identical fashion towards the disease state, as

the complex as a whole is significant and the complex has one function i.e proteolytic

degradation. The hnRNPs in our subnetwork may be an exception to this rule. A
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FIGURE 3.5: A The HIV_s66 subnetwork. B The HIV_s66 subnetwork with highlighted
protein complexes; the Heterogeneous ribonucleoproteins (HNRNPs) and the Serine/Arginine

splicing factors (SRSF)
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recent RNAi screen by Lund et al.[113] showed mechanistic details of hnRNP com-

plex subunits and their varied roles in HIV-1 infection. For e.g. they showed that

hnRNP A1 subunit increases the expression of Gag and Env viral proteins but no sub-

sequent increase of HIV-1 RNAs. On the other hand, silencing hnRNP A2 resulted

in an increase of Gag protein expression followed by an increase with HIV-1 RNA.

Furthermore, different isoforms of hnRNP D also play different roles in HIV-1 infec-

tion. Isoform p42, p45 are favourable HIV replication while isoform p37, p40 create a

non-permissive state. However, other hnRNP subunits, namely, A2, E1 and E2 exhibit

antiviral properties[114, 115]. Thus, hnRNP subunits were generally antiviral in na-

ture but a detailed inspection shows that there are exceptions within the complex itself.

For better hypothesis generation, we asked if these hnRNP subunits were expressed in

HIV-1 susceptible tissues(see Materials and Methods), by overlaying tissue-specific

expression data obtained from the Human Protein Atlas[116]. We found that 8 hnRNP

subunits(C1/C2, D0, K, L, M, U, A1, A2/B1) of the subunits were highly expressed

in macrophages. From these 8 subunits, 4 subunits (K, L, M, U) have not been char-

acterised yet with respect to HIV-1 infection and thus, are putative novel hits, based

on our results.

3.2.2.2 RNA-binding motif-proteins & Splicing Factors

This subnetwork also consisted of several RNA-binding proteins (RBM11, RBM41,

RBM42, RBM4B, RBM7) that may have hitherto unexplored, specific roles in mRNA

export during HIV replication. Cellular RNAs are bound to RNA-binding proteins

(RBPs) to form ribonucleoprotein (RNP) complexes. These RBPs govern the struc-

ture and function of RNAs and as such, play a vital role in their biogenesis, stability,

function, transport and cellular localization [117]. They are found in huge numbers in

humans (> 500) and due to their involvement in so many aspects of RNA regulation,

any disruption in their activity leads to complicated diseases [118]. Their dynamic

interactions with RNAs in their coding, untranslated and non-protein-coding RNAs

that comprise the RNPs allows the RBPs to bound stably to the RNA throughout its

journey from synthesis to degradation[118]. Given such broad array of functions of

the RBPs, it is likely that HIV utilises the functions of these RBM proteins for its own

RNA metabolism.

The subnetwork further consists of several Serine/Arginine splicing factors (SRSF3,

SRSF4, SRSF6, SRSF7, SRSF9, SRSF10) of which 3 (SRSF6, SRSF7, SRSF9) have

direct interactions with viral proteins, as listed in the HIV-1 NIAID database[53] (see

Table 3.1). It is clear from the table that despite belonging to the same functional class

of proteins. Moreover, different viral proteins have different type of interactions with

these proteins. The involvement of a splicing factor ASF/SF-2, which is a member of
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Sr.No Viral Pro-
tein

Host Pro-
tein

Interaction

1 Gag,Pr55 SRSF6 SR proteins, particularly SRp40 and SRp55, in-
crease HIV-1 Gag translation from unspliced viral
RNA. The second RNA recognition motif and the
arginine-serine (RS) domain are determinants of SR
protein activity

2 capsid SRSF6 SRp55 induces production of extracellular p24gag
from a rev-defective HIV-1 provirus

3 Tat,p14 SRSF7 HIV-1 Tat synergizes with type I activators, such as
Sp1 and CTF, to enhance transcript elongation and
exon skipping, suggesting Tat function leads to the
inhibition of splicing factors SF2/ASF and 9G8

4 Vif,p23 SRSF4 A novel exonic splicing enhancer (ESE) element
within the 5’-proximal region of HIV-1 mRNA exon
2 facilitates both exon inclusion and Vif expression.
This ESE binds specifically to the cellular SR pro-
tein SRp75

TABLE 3.1: HIV-1 protein interactions with SRSF proteins of the HIV_s66 subnetwork, as
extracted from the HIV-1 Human protein interactions database.

the SR (serine/arginine-rich) family of splicing factors, in HIV-1 infection was iden-

tified by a proteomic approach by Berro et al.[119]. Berro et al. also found p32 and

other proteins preferentially bound to AcTat(acetylated Tat). p32 was recruited by the

HIV genome, that suggest a mechanism by which Tat acetylation may inhibit HIV-1

splicing needed for the production of full length transcripts. Indeed, SR proteins has

essential functions during spliceosome assembly and they interact with RNA regula-

tory sequences on the pre-mRNA as well as with multiple cofactors. Collectively, they

recognise multiple splice sites with broad specificity and are at the core of regulation

pathways that lead to the choice of alternative splice sites [120]. To that end, SRSF3,

SRSF4 and SRSF10 might be involved in similar host-virus protein interactions with

varied yet specific roles, just like the above mentioned members of the same family.

Besides these functional complexes, this subnetwork included several other proteins

(See Appendix-I) that might serve an associative role in the above mentioned pro-

cesses.

3.3 HCV Meta-analysis Results

Similar to the HIV subnetworks, we obtained 2 HCV subnetworks of different sizes;

HCV_s43 and HCV_s66. These networks were also consisted of unique functional

complexes that denote different aspects of cellular hijack during HCV infection.
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FIGURE 3.6: Reactome pathway and GO enrichment terms comparison between individual
HCV-1 RNAi screens and filtered HCV-1 subnetworks, as obtained from our analysis. Both
subnetworks show functional specificity at the pathway and GO terms, as compared to individ-

ual screen hit-lists.
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FIGURE 3.7: Reactome pathway and GO enrichment terms comparison between individual
HCV-1 RNAi screens and filtered HCV-1 subnetworks, as obtained from our analysis. Both
subnetworks show functional specificity at the pathway and GO terms, as compared to individ-

ual screen hit-lists.

3.3.1 HCV_s43 Subnetwork

The HCV_s43 subnetwork primarily consisted of proteins from these functional classes;

Crystallin Proteins (Alpha, Beta & Gamma) Dual specificity protein phosphatase

(Subunits 1, 2, 4, 6, 8-10, 16), Mitogen-activated protein kinases (MAPK-11, 12, 14)

and MAP kinase-activated protein kinase (MAPKAPK-2, 3, 5). A common aspect

of each of the above mentioned proteins, is that their are all associated with hepato-

cellular carcinoma, the end-stage of HCV infection. Each of these proteins had their

unique role in the HCV life-cycle in the host cells, which we describe in the following

subsections.
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3.3.1.1 Intricacies of MAPK signaling during HCV infection

From the protein annotations, it is clear that this subnetwork consists of components of

the Mitogen activated protein kinase (MAPK) signaling cascade (see figure 3.9,3.10).

Mitogen activated protein kinases or MAPKs play an important role in multiple cel-

lular functions, prominently cell growth and proliferation[121, 122]. MAPKs can be

activated in a variety of ways; by hormones (e.g.,insulin), growth factors (e.g.,platelet-

derived growth factor (PDGF), epidermal growth factor (EGF) and fibroblast growth

factor (FGF) inflammatory cytokines of tumour necrosis factor (TNF) family and en-

vironmental stresses such as radiation,osmotic shock and ischemic injury[123]. With

such important association of cellular processes with it, the MAPK signaling path-

way is also a preferred target by HCV. Macdonald et al.[124] showed how NS5A

inhibited the activity of the mitogenic and stress-activated transcription factor acti-

vating protein-1 (AP1). They showed that this inhibition is dependent upon a class

II polyproline motif within NS5A. By combining dominant active and negative mu-

tants of components of the MAPK signaling pathways, selective inhibitors, together

with immunoblotting with phospho-specific and phosphorylation-independent anti-

bodies, Macdonald et al. found that this inhibition is mediated via the ERK signaling

pathway. This observation was consistent in both stable NS5A-expressing cells and

Huh-7-derived cells harbouring subgenomic hepatitis C virus (HCV) replicons.

Ndjomou et al.[125] further showed that MEK/ERK signaling pathway, of which

MAPKs are major players, act as a second line of defence against the virus, paral-

lel to IFN-α signaling. They revealed how MEK/ERK inhibitors and negative mu-

tants enhance HCV replication, RNA and protein syntheses. They also suggest that

since inhibition of MEK signaling leads to up-regulation of HCV replication, usage

of MEK inhibitors in treatment of hepatocellular carcinoma, induced in later stages of

HCV infection, should be carefully monitored.

The downstream components of the ERK signaling cascade consists of ribosomal

protein S6 kinases, two alpha subunits of these kinases are present in this subnetwork

(RPS6KA4, RPS6KA5). Ribosomal protein S6 (rpS6) is a component of the 40s ribo-

some. Phosphorylation signals mitigated through mitogens from this cascade, at sev-

eral Serine residues of the ribosomal protein S6 (rpS6), leads to translation initiation

at the 7-methylguanosine cap complex[126]. However, rpS6 also requires phosphory-

lation at specific Serine residues, Ser235/236, by a specific kinase, namely, ribosomal

S6 kinase (RSK). Thus, a dual phosphorylation signal through the RAS/ERK signal-

ing and the RSK is required for rpS6 function and thus, translation initiation. Roux et

al.[126] also note that this mechanism is independent of the mammalian target of ra-

pamycin (mTOR) pathway that modulate translation initiation. Intriguingly, the HCV

non-structural protein NS5A, up-regulates host cap-dependent translation machinery
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FIGURE 3.8: A The HCV_s43 subnetwork.B The HCV_s43 subnetwork and its protein com-
plexes.
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FIGURE 3.9: MAPK and ERK12 signaling from Metacore pathway maps c© in uninfected cells.
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FIGURE 3.10: MAPK and ERK12 signaling from Metacore pathway maps c© in uninfected
cells.
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in Huh7.5 cells, by simultaneous activation of mTORC1 and eukaryotic translation

initiation factor 4E (eIF4E)[127]. Furthermore, NS5A phosphorylated eIF4E through

the MAPK-MNK pathway. These 2 studies, in the context of our results, suggest 2

mechanisms of translation during HCV infection;

a) According to Roux et al., since rPS6 kinase mediated translation initiation is inde-

pendent of mTOR-based modulation, it is likely that cellular translation is redirected

during HCV infection, as mTOR-based translational initiation pathway is hijacked by

HCV.

b) On the other hand, George et al. show a rather contrasting result, that involves rPS6

kinase itself in mTOR-based translation initiation and this process as up-regulated via

NS5A interaction with 4E-binding protein (4EBP). Moreover, they also suggest a

mTORC2 based activation of translational initiation, again via NS5A.

The HCV_s43 subnetwork consisted of 3 MAPKs, 3 MAPKAPKs, rPS6-kinase-α-4

and rPS6-kinase-α-5 subunit. It can be intriguing to explore which of the above routes

of translation initiation occurs during HCV replication.

3.3.1.2 HCV induced stress induces molecular chaperones

This subnetwork further consisted of heat shock proteins (HSPs) and crystallin com-

plexes, both act as chaperones or proteins that protect, fold or unfold protein substrates

in a context-dependent manner[128–130]. Intuitively, this implies the induction of a

defence mechanism of the cell, responding to the stress initiated from the viral replica-

tion. A couple of independent studies, indeed identified and described how the HCV

viral protein, NS5A modulates Hsp72 levels. Chen et al. identified interacting pro-

teins of NS5A by tandem affinity purification (TAP) from cells expressing NS5A and

from mass spectrometry which included Hsp72[131]. Its association with the HCV

replicase complex, that comprises of NS5A, NS5B and NS3, Hsp72 plays a positive

regulatory role in HCV RNA replication as it increases levels of the replication com-

plex. This was supported by increased stability of the viral proteins in the complex or

to the enhanced translational activity of the internal ribosome entry site of HCV, both

constitutive functions of HSPs. In the second study that identified Hsp72 and its inter-

action with NS5A, Lim et al. showed that NS5A increases levels of Hsp72 through 2

transcription factors, HSF1 and NFAT5[132]. Silencing the expression of the former,

reduces HCV replication and viral release. Our subnetwork consists of several HSPs

(see Appendix I) that may have similar function as Hsp72 in HCV replication.

A second class of HSPs are the crystallin proteins[129, 130].A recent study by Huang

et al. shows that a second route of modulation occurs through the αβ -Crystallin

complexes which subsequently promotes hepatocellular carcinoma (HCC) progres-

sion in vivo and in vitro[133]. αβ -Crystallin forms a complex with 14− 3− 3ζ
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protein and also elevates its basal concentration. This leads to an up-regulation in

ERK1/2 activity and accelerates HCC progression. Furthermore, overexpression of

αβ -Crystallin impairs Sorafenib treatment, a multi-kinase inhibitor which is widely

used in HCC treatment. HCC is triggered in patients at later stages of HCV infection

and thus, αβ -Crystallin complexes are potential targets for reducing HCC progression

and improve survival rates in patients. Our subnetwork also consisted several subunits

of αβ -Crystallin (CRYBAA, CRYBAB, CRYBA1, CRYBA2, CRYBA4, CRYBA1,

CRYBB1, CRYBB2, CRYBB3) which could play similar role as described in this

study.

Either way, the presence of these kinase cascades in this subnetwork warrants a further

detailed study of this cascade, in light of these studies. This specific subnetwork thus

highlights the intricacies in cellular signaling during a viral infection.
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3.3.2 HCV_s64 Subnetwork

The HCV_s64 subnetwork consisted functionally diverse set of proteins that included

Interleukins, Insulin receptor substrates, Suppressor of cytokine signaling (SOCS)

and multiple types of Tyrosine-protein phosphatase non-receptors. Being so diverse

in function, the biological interpretations of this subnetwork were interesting in their

own right.

3.3.2.1 Role of Interleukins in HCV therapies

Interleukins form an integral component of the cellular immune response. By def-

inition, they are secreted proteins that bind to specific receptors and play a role in

leukocyte communication. With such attributed function in cellular immunity, their

role in host defence against infection, viral infection in particular, is of considerable

importance.

This subnetwork predominantly included members of the IL-12 family of interleukins

(See Appendix-I) [134]. IL-12 induces the production of IFN−γ through TH1 and NK

cells and thus mediates development and maintenance of TH1 cells. IFN−γ itself is

a potent inhibitor of HCV replication[135, 136]. In HCV infection and replication,

interleukins play a key role in suppression of infection. For e.g. In patients suffer-

ing from chronic hepatitis C, IL-12 enhances cytokine production by PBMCs in some

patients[137]. Furthermore, T cell immunoglobulin mucin domain protein 3 (Tim-3)

expression has a direct effect on IL-12/IL-23 in human CD14 +monocytes in patients

with chronic HCV infection[138]. In these patients, Tim-3 are highly expressed and

IL-17 is upregulated in CD4+ T cells. Blocking Tim-3 signaling restores normal reg-

ulation of IL-12/IL-23 through STAT3 signaling and reduces the IL-17 levels both ex

vivo and in vitro.

Additional resistance to IL-12 and its antiviral properties comes through the virus

itself. Particularly, HCV core-gC1qR interaction with the cell surface of monocyte/-

macrophages inhibits the production of IL-12p70 upon lipopolysaccharide stimula-

tion. This response is specific to IL-12 as other interleukins, namely IL-6, IL-8 and IL-

1β production were unaffected[139].Other interleukins, such as IL-10, whose block-

ing leads to a favourable balance of CD4+ cells, that enhances their proliferation in

response to HCV antigens[140]. Certain interleukins, like IL-27, have antiviral prop-

erties for multiple viruses. IL-27, which inhibits HIV-1 replication in CD4+ cells, also

inhibits HCV replication in HuH7.5 cell line. This happens via IFN-α like antiviral

response which includes induction of antiviral genes without IFN-α induction[141].

On the other hand, a recent study suggests incorporation of interleukins in IFN-α

therapy. For instance, a recombinant form of human interleukin 28B (rhIL28B) in

combination with IFN-α inhibited HCV production in culture[142]. Inclusive or not,
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(B)

FIGURE 3.11: (A) HCV_s64 subnetwork (B) HCV_s64 with its protein complexes that in-
clude; Interleukin receptors and subunits, Suppressor of cytokine signaling, Insulin receptor

with receptor substrates and Tyrosine protein phosphatase non-receptor
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different family members of interleukins play an important role in eliciting an antiviral

response that can be utilised in different combinations, depending upon the immuno-

logical repertoire of the patient and thus can lead to better therapeutics against HCV.

3.3.2.2 Insulin resistance and HCV

Insulin resistance is an outcome of chronic HCV infection in many patients[143–146].

Insulin resistance primarily affects IFN-α treatment and its associated with major

pathway modulations. For instance, overexpression of the suppressor of cytokine sig-

naling 3 (SOCS3) in liver tissue results in poor treatment outcome in patients with

chronic hepatitis C viral genotype 1[143]. Since, antiviral therapy response is lower

in patients with genotype-1 than those with genotype-2 of the virus, SOCS3 signaling

should be monitored and lowered to basal levels in the former type of patients. This

holds true for SOCS-1, where its silencing enhances IFN-signaling[147]. Contrary

to this, SOCS-2 overexpression inhibits HCV replication in presence of a plant gly-

coside, Saponin which directly increases SOCS-2[148]. Thus, SOCS signaling may

interfere with therapeutic IFN signaling for HCV but some SOCS genes function as

antivirals when modulated by small molecules. This subnetwork includes all the three

SOCS genes described above and thus the subnetwork also points to SOCS as an im-

portant component in affected signaling pathways during HCV.

Another level of insulin resistance occurs through the degradation of insulin recep-

tor substrate 1(IRS-1) in human hepatoma cells (HuH-7) expressing core protein of

HCV genotypes 3a and 1b[144]. This is also associated with upregulation of SOCS7

and downregulation of peroxisome proliferator-activated receptor γ (PPARγ). The

second insulin receptor substrate (IRS-2), the knockdown of which induces insulin

resistance[149]. Similar to IRS-1, the silencing of IRS-2 suppresses IFN-α response.

This increases protein-tyrosine phosphatase (PTP) protein-tyrosine phosphatase 1B

(PTP-1B) activity, which when silenced with Metformin improves the IFN-α re-

sponse. In summary, SOCS signaling (through various SOCS family members), In-

sulin signaling and their regulation by PTPs form a crucial factor in determining the

efficacy of IFN-α treatment.

This subnetwork consists of 4 PTPs (including PTP-1B described above, for others see

Appendix-I), SOCS-1, SOCS-2, SOCS-3 described above) which could be attributed

to similar roles in insulin resistance and IFN-α responses. Overall, this subnetwork

shows tendency towards insulin resistance and how HCV modulates through various

signaling pathways. It remains to be seen how these highly similar proteins, to the

ones investigated in these aspects of HCV infection, play a role in the HCV life cycle

and disease progression.
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3.4 HIV, HCV & WNV Combined, Meta-analysis Results

3.4.1 Combi_s52 Subnetwork

This network is identical to the HIV_s52 subnetwork (see HIV _s52 Subnetwork 3.4).

3.4.2 Combi_s239 Subnetwork

The Combi _s239 Subnetwork is the largest subnetwork found in our analysis and

as such contains many complexes that play specific roles in viral life cycle (see table

A.7). We further split this section on virus specific interpretations, as the number of

complexes found in this subnetwork point to some differential as well as common

aspects of virus infection.

3.4.2.1 Src family of kinases and their role in virus infection

The Src family of kinases (SFKs) have different roles in the life cycles of all the 3

viruses in this study. A common observation is that SFKs are activated or upregulated

in virus infected cells, although the effects of their activation differs between virus

species. For instance, the SFK, c-Yes during WNV infection shows an increase in

its expression[150]. This is followed by a decrease in 2-4 log decrease in viral titers

which indicates that c-Yes activity is required for WNV replication. Inhibition by

chemical inhibition (PP2) and by RNAi mediated silencing showed similar results.

However, PP2 didn’t reduce intracellular levels of either viral RNA or protein imply-

ing that the drug doesn’t influence early stages of replication. Enzymatic digestion of

viral envelope glycoprotein E by endoglycosidase H (endoH) revealed that E doesn’t

localise beyond the endoplasmic reticulum (ER). Electron microscopy of PP2-treated

WNV-infected cells revealed that WNV virions accumulated within ER compartments

as compared to their control counterparts. Thus, c-Yes inhibition didn’t interfere with

virus assembly but restricted transition of virions through the secretory pathway and

it is an important problem in WNV assembly.

In case of HIV, SFKs are differentially activated which is achieved by Nef protein

and in the presence of SFK-negative regulatory kinase Csk[151]. Expression of Fgr,

Fyn, Hck, Lck, Lyn, and Yes as well as c-Src in yeast revealed that each kinase was

active and induced growth expression in yeast. Co-expression of these SFKs with Nef

showed that Nef strongly activated Hck, Lyn, and c-Src but didn’t significantly alter

expression levels of Fgr, Fyn, Lck, or Yes. Nef contains the PXXP motif essential for

SH3 domain binding, mutagenesis of which reduced the effect of Nef on Hck, Lyn,

and c-Src. This occurs due to allosteric displacement of intra-molecular SH3-linker

interactions. Thus these selectively activated SFKs in HIV infected cells can serve as

potential targets for HIV antivirals.
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FIGURE 3.12: Combi_s239 subnetwork

Alike HIV, HCV also recruits more than one SFK at various stages of its life-cycle.

Specifically, the nonstructural proteins, NS5A interacts with many SFKs through

their respective SH3 domains and induces aberrant phosphorylation events[152–154].

Along with these proteins, the Combi_s239 contained several interleukin subunits, re-

ceptor tyrosine-protein phosphatases, receptor tyrosine protein kinases; their biology

and predicted mechanisms have been discussed in subsections above.
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3.5 Putative Novel Hits: Mapping tissue-specific expression
data

One of the complications in secondary screening of RNAi screen hits, is the selec-

tion of "interesting" candidate genes. This is partly because in genome-wide screens,

the number of false-positives is large[155, 156]. Secondly, the novel host factor has

to have therapeutic potential and thus, tissue specificity plays an important role.We

utilised the Human Protein Atlas dataset[116] in conjunction with subnetworks to pro-

pose novel host factors and regulators mechanisms. Specifically, we used moderate-

highly expressing genes from cell-lines/tissues which were attacked by the viruses in

consideration (For e.g. Hepatocytes in case of HCV, macrophages for HIV). These

genes were then overlaid on virus-specific subnetwork to predict novel host factors

and/or mechanisms.

For instance, the intersection between moderate-highly expressed proteins in hep-

atocytes and the HCV_s64 subnetwork yielded three proteins, namely, Tankyrase-

1 (TNKS1), Sarcoplasmic/endoplasmic reticulum calcium ATPase1 (SERCA1) and

Tyrosine-protein kinase (JAK-2), of which TNKS1 and SERCA1 are non-hits (weren’t

identified as hits in any HCV screen). HCV core protein induces endoplasmic retic-

ulum(ER) stress and deregulates cellular apoptosis by modifying the calcium signal-

ing pathway. Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2), an

ATPase of the same class as SERCA1, shows an impairment in its Ca2+ pumping

leading to deregulated calcium uptake from the cytosol to the ER during the HCV-

Core expression. As SERCA1 belongs to the same enzyme family as SERCA2,

it would be interesting to verify SERCA1’s role in similar conditions. HCV Core

protein also modifies Janus kinase-(JAK)-signal transducer and activator transcrip-

tion factor (STAT) pathway after stimulation from interleukin-6 (IL6) and interferon

(IFN)-γ [157]. However, HCV core modifies this signaling cascade in different ways;

it increased phosphorylation of JAK1-2, STAT1 and STAT1 mediated transcription

under IFN-γ stimulation while JAK1-2, STAT3 and STAT3-mediated transcription

were prevented under IL-6 stimulation. Moreover, HCV nonstructural proteins also

induce oxidative stress via STAT3 activation, which is of a constitutive type in HCV

replicon-expressing cells[158]. Amongst these proteins, is Tankyrase-1 which is a

Poly-ADP-ribosyltransferase and its probable mechanisms in relation to HCV infec-

tion, we describe in the subsequent sections.

In the case of HIV, we observed that heterogeneous ribonuclear proteins (hnRNPs)

were expressed in moderate-high levels in macrophages and were also part of the

HIV_s66 subnetwork. As outlined in the subsection above (see figure 3.5), hnRNP

subunits can play diverse roles in HIV-1 replication and infection processes and thus,

need to be tested individually for understanding their involvement. Broadly, hnRNPs
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are involved in mRNA metabolism that includes RNA export, transport among others,

a stage-wise inhibition of these subunits can reduce viral replication in a cell.

3.6 Putative Novel Hits: Mapping CORUM protein com-
plexes

Majortiy of graph based clustering algorithms, focused on protein complex predic-

tion, utilise a gold-standard dataset of protein complexes to test biological relevance

of their clustering[73, 159–161]. We use the human CORUM complexes in a similar

fashion to overlay on these subnetworks to determine putative novel hits and mecha-

nisms relating to the viral infection[76]. We computed the Jaccard index of each com-

plex with each subnetwork and overlaid the complexes with Jaccard index > 0 . As

ClusterOne allowed overlaps between complexes, all subnetworks contained overlap-

ping complexes. For instance, The HCV-s64 subnetwork contained 3 complexes, viz.

TRF1 telomere length regulation complex, TRF-Rap1 complex I, 2MD and Tankyrin

1-tankyrin 2-TRF1 complex (see figure 3.13). Interestingly, TNKS1 belonged to all

three complexes. All these complexes were related to telomere length regulation and

telomere dynamics. This implies that TNKS1 has a probable link in telomere length

regulation and HCV infection.

Another example is the HIV_s66 subnetwork which included 40 CORUM complexes,

majority of those implicating RNA splicing (see table A.8). Many protein from the

subnetwork are heterogeneous nuclear ribonucleoprotein (hnRNP) which also be-

longed to multiple overlaid CORUM complexes. How do hnRNPs and associated

splicing events play a role in HIV infection? Using these cues from these overlaid

complexes, we propose probable mechanisms in the following subsections.

3.6.1 Alternative therapies: Tankyrase & HCV induced Hepatocellular
Carcinoma(HCC)

Tankyrase 1(TANK1) is a human telomeric poly(ADP-ribose) polymerase(PARP) is

a positive regulator of telomere length. By adding ribosyl residues to TRF-1, a telom-

eric DNA-binding protein, TANK1 inhibits the latter’s binding to telomeric DNA, thus

facilitating its elongation by telomerase[162–164].¯ Telomere shortening has been ob-

served in leukocytes of HCV infected patients [165]. More importantly, HCV infected

patients showed shorter telomere lengths than patients in remission. Telomere length

is also associated with poor overall survival rates of patients [166]. Indeed, rela-

tive telomere length has been established as an independent prognostic marker for

HCC patients. Secondly, chronic HCV infection leads to subsequent induction of
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HCC, majority of which is associated with expression of HCV non-structural pro-

teins [167, 168]. Taking these studies into account, it is evident that HCV infection

leads to HCC in advanced stages of the disease. It is thus, important to determine

molecular determinants that accelerate this progression or those that can be modu-

lated to check it. The Wnt signaling pathway has been widely studied in this con-

text, which controls the concentration of β -catenin, a transcriptional activator. β -

catenin is regulated by proteasome-dependent degradation which is under the control

of APC and Axin1[167]. Axin1 gene mutations are reported in ¯substantial portion

of HCCs[169, 170]. Hence Satoh et.al suggest that Axin administration can be an

effective therapeutic molecule to suppress growth of HCC.

A recent chemical genetic screen identified a small molecule, XAV939 which stim-

ulates β -catenin degradation by stabilising axin[171]. XAV939 inhibits the PARP

enzymes, TANK1 and TANK2 which are responsible for ubiquitin mediated degrada-

tion of axin. Inhibition of TANK1/2 results in accumulation of cytosolic axin which

then forms the β -catenin destruction complex along with glycogen synthase kinase

3α/β (GSK3α/β ) and adenomatous polyposis coli (APC). Putting this finding in the

perspective of the overlaid complexes on the HCV_s64 subnetwork (see figure 3.13)

we suggest that TANK1/2 inhibition can be an additional therapeutic alternative to

the IFN-α-ribavarin therapy for HCV patients. Such combined therapies would en-

sure early measures to keep the secondary effects of a viral infection, in this case

HCC, in check.

3.6.2 hnRNPs in the HIV life-cycle

One of the major complexes found in the HIV subnetworks were the heterogeneous

ribonuclear proteins (hnRNPs). As mentioned in previous subsection, hnRNPs were

prominent in the HIV_s66 subnetwork. Their importance is also validated by our

functional analyses involving overlay of tissue-specific gene expression data and CO-

RUM complexes. Despite belonging to the same complex, different subunits of hn-

RNPs have different roles in the HIV life cycle; majority of these are antiviral in

nature while some, like hnRNP-A1 are proviral in nature[113]. Moreover, hnRNP

H subunits also play in important role in mRNA splicing, particularly of viral gene

transcripts. Schaub et al. have shown that hnRNPs H, H’, F, 2H9, and GRSF-1 to

form a multimeric complex by binding at the consensus motif DGGGD (where D can

be either of U, G or A)[172]. This complex is involved in splicing of gene substrate

derived from the HIV-1 tat gene via ATP-dependent spliceosomal complexes. Its im-

portant to note there that hnRNP subunits came up in both the secondary analyses

and in the HIV_s66 subnetwork itself, thus pointing to multiple lines of evidence and
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FIGURE 3.13: Tankyrase-1 is also one of the proteins expressed in hepatocytes and also part
of the 3 CORUM complexes(TRF1 telomere length regulation complex, TRF-Rap1 complex I,

2MD and Tankyrin 1-tankyrin 2-TRF1 complex) overlaid on HCV_s64 subnetwork.
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emphasising their presence in this subnetwork. Hence, it helps in prioritising can-

didate proteins/complexes from the already few, specific subnetworks obtained from

our analysis. In this case, although the hnRNPs have been studied elsewhere, a double

or multiple knockdown of these subunits in macrophage infected HIV cells may lead

to interesting observations.

3.7 Putative Novel Hits: Mapping virus-host interaction data

A third approach to predict novel hits from within these subnetworks is to overlay

virus-host interaction data. If a viral protein interacts with a host-protein that is a

non-hit, such proteins along with hits can be interpreted collectively. The confidence

of such non-hits increases if, from a group of such non-hits, some are hits.

3.7.1 Rev,p19 and its interactions with heterogeneous ribonuclear pro-
teins (hnRNPs)

The HIV viral protein, Rev or otherwise known as p19, is an adaptor protein known

for its function of nuclear export of HIV RNAs. To understand the details of its

mechanisms, Hadian et al.[173] showed how Rev interacts with a a large family of

multifunctional host factors call hnRNPs. Rev utilises amino acids 9-14, specifically

to bind heterogeneous ribonucleoproteins (hnRNP) A1, Q, K, R and U. The HIV-1

NIAID Database [53] even lists several hnRNP subunits that interact with Rev. These

include A/B isoform b, A1 isoform a, A3, D-like isoform a, D0 isoform d, F, H, H2,

H3 isoform a, K isoform a, M isoform a, Q isoform 1, R isoform 2, U isoform b,

A2/B1 isoform A2 and C1/C2 isoform b. The HIV_s66 subnetwork contains almost

all of these subunits, if not the exact isoforms of these genes. We have already dis-

cussed the multifunctional properties of hnRNPs above (see figure 3.5).

3.7.2 Interactions of HCV NS3-4A protein

We utilised the virus-host interactions dataset of de Chassey et al.[70]. When overlay-

ing the host genes detected to be interacting with viral proteins, on the HCV subnet-

works, we found that NS3-4A protein interacted with with 2 proteins; RNA-binding

protein 4 (RBM4) and E3 ubiquitin-protein ligase SMURF2 (SMURF2). Of these 2

proteins, SMURF2 is a hit while RBM4 is a non-hit. HCV nonstructural proteins in-

terfere with TGF-β signaling via SMURF2, which is a negative regulator of this path-

way. As described above, TGF-β stimulation led to an increase of SMAD-dependent

genes[174]. However, this stimulated signaling was suppressed by SMURF2 while
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FIGURE 3.14: HIV_s66 subnetwork with interacting HIV-1 proteins

FIGURE 3.15: HCV_s46 subnetwork with interacting HCV-NS3 proteins

and mimicked upon SMURF2 silencing. Importantly, Verga-Gérard et al. showed

that the ubiquitin ligase activity or NS3-4A protease activity wasn’t required to mod-

ulate TGF-β signaling.
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Chapter 4

Discussion

4.1 Integrative approaches reveal significant biology

Our results illustrate that using various kinds of datasets to analyse a genome-wide

RNAi screens reveal multiple perspectives of underlying biological mechanisms. This

is otherwise not possible from traditional enrichment analyses methods. Our analyses

are one of the many that have used RNAi screen data to understand virus-host interac-

tions and their biology. Noteworthy among these studies are from Bushman et al. who

performed a comprehensive meta-analysis of all the published HIV-1 RNAi screens;

Macpherson et al. who utilised the HIV-1 human protein interaction database (HH-

PID) in conjunction with the published HIV-1 RNAi screens to reveal perturbed host

subsystems[1–3, 9, 53, 54]; Dickerson et al. who utilised the same dataset (HHPID)

to reveal topological features of the most targeted host genes by HIV[175]; Murali et

al. who developed a machine learning approach to predict novel HDFs using protein

interaction network and the published RNAi screens [43] and finally, Schneider et al.

who used a large number of RNAi screens and applied single cell analysis with some

novel statistical functions to illustrate variation in identified hits [176]. Each of these

analyses utilised RNAi screens with more than one data type (except Schneider et al.)

to provide insights within the virus-host interactions. Since none of these studies have

a common algorithmic basis except for the data used, it is not straightforward to com-

pare their results. Particularly, except for Schneider et al., all these studies focus on

HIV-1 screens whereas our analyses encompass HCV and WNV too. However, de-

spite the difference in methodology and its application, if certain biological processes

among these studies converge towards a specific set of biological processes/pathways

for a particular virus, it provides a second level of validation about these processes/-

pathways and helps in confirming their application as novel drug targets/therapeutics.

For instance, our analysis along with Bushman et al. and Murali et al., showed that
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HNRNPs are important HDFs of HIV-1, using the published RNAi screen data. It thus

validates the fact that among other hits identified from these studies, HNRNPs should

be focused for a secondary experimental validation amongst other potentially novel

hits, as they are predicted hits from all these studies. This also applies to the Mediator

complex, again a prominent result from all the above mentioned studies as well as our

analysis. Such multiple validations of certain biological processes/protein complexes

is essential if these hits are to be considered for therapeutic use. Additionally, even

¯from our analysis; tissue-specific expression data and protein complex overlays iden-

tified HNRNPs as a prominent result. This is in contrast when compared exclusively

to the computational studies mentioned above wherein we further highlight the im-

portance of certain hits considering its expression. Theoretical predictions often leads

to multiple hits with a fair chance of false-positives, similar to the experimental coun-

terparts. However, by adjusting the stringency of scoring functions, it is relatively

easy to control the rate of false-positives in such computational predictions. Despite

such measures, more often there are still considerable number of potential novel hits

to tackle with. Herein along with importance of hits their relevance should be con-

sidered, which, is the expression of such hits in a specific tissue. If a hit is highly

expressed in host tissue most susceptible to virus as compared to other, such hit is

more relevant than others in the list. This is where our network-based meta analysis

differs from the other studies. We predicted tissue specific hits that may potentially

have an important role in HCV infection and its progression towards HCC. We also

hypothesize about possible small-molecule drug treatments for one of the identified

enzymes, Tankyrase that might have a role in controlling hepatocytic progression of

HCC.

In summary, multiple lines of evidence show that certain processes/pathways/pro-

tein complexes from within a hit-list of RNAi screen are more important over others.

These may have poor statistical confidence (p≤0.05, yet towards the higher side) but

when analysed with supplementary datasets, their biological relevance and signifi-

cance becomes clearer. Thus, our approach allows for Hit-prioritisation from within

hit-list(s) of a RNAi screen(s).

4.2 Host factors shared between virus species

A unique differentiation of our analysis as compared to others mentioned above, is

comparative analysis of inter-species viral RNAi screens and identification of subnet-

works enriched for HDFs for one or more virus species. Schneider et al. did utilise

multiple screens of different virus species, however, they didn’t point out functional

subnetworks. From our combined analysis of hit-lists from RNAi screens of differ-

ent virus species, we determined common HDFs required by HIV and HCV. In some
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cases, such as the Src family of kinases, encompassing a large number of kinases

with varied functions, our analysis shows that they are required by all three viruses

(considered in our study); HIV, HCV and WNV. Such results open further avenues in

therapeutics and at times are essential when it comes to cases of co-infection. For e.g.

HIV patients co-infected with HCV. Although from different families, both HIV and

HCV are RNA viruses and as such, determining these common HDFs from within

these subnetwork helps in hypothesizing interactions within such patients and subse-

quently, devise unique therapeutic measures for them. Such strategies are otherwise

extremely difficult to determine purely by experimentation and thus, such computa-

tional prediction leverage this task to a great extent .

Determining these common subnetworks becomes even more intriguing in the case

where the viruses in consideration are from the same family. For instance, a particular

subnetwork enriched for HDFs/HRFs for RNAi hits from viral screens of HCV, WNV

an Dengue virus (family Flaviviridae), allows for studying finer level of interaction

mechanisms between the commonly targeted host proteins by all three viruses. Con-

versely, other proteins that are specifically targeted by only one species also helps in

understanding why different virus species of the same family target different proteins

within the same functional subnetwork. Thus, such subnetwork becomes more im-

portant over other statistically significant hits, as identified from classical enrichment

methods.

4.3 Multiple approaches of integrative analyses and results

In data-integrative meta-analyses of RNAi screens, some biological processes/path-

ways/protein complexes are more significant than others (HNRNPs in case of HIV),

irrespective of the underlying methodology. An argument can be made about the

reliability of such processes/pathways, that since such analyses involved protein in-

teraction networks, which are susceptible to a large number of false positives. This

is further marred by the fact that for many predicted interactions, interactions derived

from literature and high throughput studies have ascertainment bias towards certain

proteins over others[177, 178]. Macpherson et al. did account for this bias and ap-

plied a corrective measure in their analysis[54]. A stricter filtering of interactions can

be at the level of interaction detection type wherein only experimentally verified reac-

tions are considered. However, this is a compromise for coverage as such interactions

aren’t comprehensive and are neither mutually exclusive[177]. Furthermore, this also

risks losing out false-negatives from the dataset. We observed this in our analyses too

where we obtained few or no subnetworks using our 2-step filtering process, when
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using experimentally-verified interactions alone. Thus, we chose for broader cover-

age to detect such functional subnetworks and subsequently, "hot spots" within the

human PINs with a risk of having potential false-positives than missing out false neg-

atives. Since we propose these subnetworks for therapeutics the risk of losing out

true-negatives is more than having false-positives in the dataset. In order to enhance

reliability and confidence of the subnetworks, we therefore utilised tissue-specific ex-

pression and known human protein complexes, to interpret these subnetworks. These

steps keep false-positives in check as unrelated interactions and spurious interactions

observed after these steps can then be tested with greater caution

In our methodology, a second possible factor that might influence the resulting sub-

networks is the choice of the clustering algorithm, initially used to cluster the human

PIN. Indeed, different clustering algorithms can lead to different clusters and as a con-

sequence, might change the final resulting clusters. This can indeed be the case when

the initial clustering is performed by an algorithm that doesn’t account for overlaps.

However, as we mentioned earlier, certain hits from a RNAi screen are robust and

thus, despite change in clustering, scoring etc. didn’t alter the results for these hits.

It then becomes interesting to study interaction partners of such robust hits and hy-

pothesize on their interaction mechanisms within the subnetwork that is enriched. On

the other hand, the difference in the subnetworks obtained due to choice of clustering

algorithms would then become a comparative analysis of the algorithms in question,

which is beyond the scope of the thesis.

It also follows that in the topological filtering step in our methodology, larger subnet-

works will have larger mean centrality values (in particular, Degree and Betweenness,

see Appendix I) and thus, will lead to larger subnetworks that are diverse in function.

But their filtering based on these mean centrality measures when compared to non-hit

subnetworks of the same size (see Materials and methods) ensured that we got reason-

ably sized subnetworks. This is reflected in our results as well. With the exception of

Combi_s239, all our subnetworks ranged from 40-64. Given these possible shortcom-

ings, the biological hypotheses deduced from such analysis is evidently multi-faceted.

Each facet of these subnetworks further enhances our understanding of virus-host in-

teractions and provides a computational basis for drug design and effective therapy.

4.4 Applications of the methodology

Our methodology relies on large protein interaction networks and multiple gene hit

lists from a study or gene hit list from multiple studies, aimed towards a biological

process or identifying key determinants of a disease. Thus, practically our method-

ology can be applied to datasets that fulfil these criteria and allow for an integrative
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meta-analysis of such datasets. One prominent application area being identification

of up-regulated/down-regulated subnetworks for different cancer types. The predicted

common subnetworks can then be targeted with specific inhibitor/enhancer molecules

to regulate those cancers for which the subnetworks are common for. On the other

hand, the subnetworks specific to a particular cancer can then be included with the

common subnetworks’ therapy for an even more effective and personalised treatment.

Moreover, as described above, inclusion of multiple, relevant data sources (such as

drug-target interactions, ligand-receptor interactions, expression data) can then be

utilised to delve into further intricacies. Despite some of its shortcomings mentioned

above, such approaches hold the key to utilise big, multiple data sources to understand

biology and more so, develop new-age therapeutics for complex human diseases.

74



Chapter 5

Conclusion

We developed a data-driven, integrative bioinformatics framework for analysing genome-

wide RNAi screens. Genome-wide knockdown screens have accelerated the rate at

which novel host factors of viral diseases are identified. Although such screens are

promising, they pose significant data-specific challenges of their own. In particular,

screens with similar experimental setup for the same virus show relatively poor over-

lap between identified hit-sets. This leads one to infer that these screens aren’t repro-

ducible and are highly noisy. These inferences might be true but integrative statistical

analyses can overcome this problem. Specifically, incorporating network information

with RNAi hits can significantly improve our interpretation and understanding of the

hits.

Initially we built a host protein interaction network collating interactions from pub-

lic repositories. This network consisted of 15383 proteins and 337413 interactions.

We then subject this network to an overlapping complex prediction algorithm, Clus-

terOne, to identify overlapping clusters. We chose an algorithm that predicts overlap-

ping complexes to identify potential multifunction proteins. More so, as we chose to

analyse multiple RNAi screens of different virus species and multifunction, druggable

proteins can serve as drug targets for more than one virus. We included 7 genome-

wide screens consisting of 3 HIV screens, 3 HCV screens and a WNV screen. From

amongst the predicted clusters, we calculated hit enrichment in the clusters in 2 ways;

with virus-specific hit-sets and combining hits from all screens. These clusters were

then subjected to a 2-step filtering; in the 1st step, statistically significant clusters (at

5% significance) were filtered and in the 2nd step, was subjected to topology based

filtering. We utilised 6 network topological measures, technically known as Network
Centralities and 2 semantic similarity measures (Dice and Wang) for this 2nd step

filtering. We calculated mean values for all these measures and used these mean val-

ues to filter subnetworks (i.e. clusters) based on size. Subnetworks of identical sizes,

those enriched with hits and those not enriched with hits, were filtered based on the
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mean values of network centralities and similarity measures using Wilcox test. Thus,

subnetworks filtered in this step were statistically significant in 2 ways; enriched with

hits and significant in topology compared to their non-enriched counterparts.

For further characterisation, GO and pathway enrichment of these subnetworks were

performed to determine the role of these subnetworks in viral infection. We found that,

for virus-specific subnetworks, GO and pathway terms were highly specific. This has

to be attributed to the underlying clustering as well as the topological filtering step,

as these subnetworks not only contained well characterised hits (e.g. hnRNPs in HIV

infection) and identified as hits in RNAi screens but other potentially novel hit candi-

dates in their neighbourhood. Using tissue-specific gene expression data and known

protein complexes allowed for further specific characterisation and confidence for pre-

dicted novel hits. Moreover, it also allowed for hypothesising mechanisms of infection

with known and unknown proteins. This helped to revisit known pathways and com-

plexes for a detailed analysis to elucidate interaction mechanisms of such proteins

in viral infection. In summary, our approach provides a computational, integrative

frame-work for meta-analysis of genome-wide studies.
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Appendix A

Appendix A

A.1 Subnetwork Protein Annotations

Entry Entry name Status Protein names Cross-
reference
GENEID

P54793 ARSF_HUMAN reviewed Arylsulfatase F (ASF) (EC 3.1.6.-) 416

P20807 CAN3_HUMAN reviewed Calpain-3 (EC 3.4.22.54) (Calcium-

activated neutral proteinase 3) (CANP

3) (Calpain L3) (Calpain p94) (Muscle-

specific calcium-activated neutral protease

3) (New calpain 1) (nCL-1)

825

O95319 CELF2_HUMAN reviewed CUGBP Elav-like family member 2

(CELF-2) (Bruno-like protein 3) (CUG

triplet repeat RNA-binding protein 2)

(CUG-BP2) (CUG-BP- and ETR-3-like

factor 2) (ELAV-type RNA-binding

protein 3) (ETR-3) (Neuroblastoma

apoptosis-related RNA-binding pro-

tein) (hNAPOR) (RNA-binding protein

BRUNOL-3)

10659

P49711 CTCF_HUMAN reviewed Transcriptional repressor CTCF (11-zinc

finger protein) (CCCTC-binding factor)

(CTCFL paralog)

10664

Q92499 DDX1_HUMAN reviewed ATP-dependent RNA helicase DDX1 (EC

3.6.4.13) (DEAD box protein 1) (DEAD

box protein retinoblastoma) (DBP-RB)

1653

Q8N1I0 DOCK4_HUMAN reviewed Dedicator of cytokinesis protein 4 9732
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O75319 DUS11_HUMAN reviewed RNA/RNP complex-1-interacting phos-

phatase (EC 3.1.3.-) (Dual specificity pro-

tein phosphatase 11) (Phosphatase that in-

teracts with RNA/RNP complex 1)

8446

Q7Z6M2 FBX33_HUMAN reviewed F-box only protein 33 254170

P35637 FUS_HUMAN reviewed RNA-binding protein FUS (75 kDa DNA-

pairing protein) (Oncogene FUS) (Onco-

gene TLS) (POMp75) (Translocated in li-

posarcoma protein)

2521

P31943 HNRH1_HUMAN reviewed Heterogeneous nuclear ribonucleoprotein

H (hnRNP H) [Cleaved into: Hetero-

geneous nuclear ribonucleoprotein H, N-

terminally processed]

3187

P55795 HNRH2_HUMAN reviewed Heterogeneous nuclear ribonucleoprotein

H2 (hnRNP H2) (FTP-3) (Heterogeneous

nuclear ribonucleoprotein H’) (hnRNP H’)

3188

P07910 HNRPC_HUMAN reviewed Heterogeneous nuclear ribonucleoproteins

C1/C2 (hnRNP C1/C2)

3183

Q14103 HNRPD_HUMAN reviewed Heterogeneous nuclear ribonucleoprotein

D0 (hnRNP D0) (AU-rich element RNA-

binding protein 1)

3184

P52597 HNRPF_HUMAN reviewed Heterogeneous nuclear ribonucleoprotein

F (hnRNP F) (Nucleolin-like protein

mcs94-1) [Cleaved into: Heterogeneous

nuclear ribonucleoprotein F, N-terminally

processed]

3185

P61978 HNRPK_HUMAN reviewed Heterogeneous nuclear ribonucleopro-

tein K (hnRNP K) (Transformation

up-regulated nuclear protein) (TUNP)

3190

P14866 HNRPL_HUMAN reviewed Heterogeneous nuclear ribonucleoprotein

L (hnRNP L)

3191

P52272 HNRPM_HUMAN reviewed Heterogeneous nuclear ribonucleoprotein

M (hnRNP M)

4670

O43390 HNRPR_HUMAN reviewed Heterogeneous nuclear ribonucleoprotein

R (hnRNP R)

10236

78



Q00839 HNRPU_HUMAN reviewed Heterogeneous nuclear ribonucleoprotein

U (hnRNP U) (Scaffold attachment factor

A) (SAF-A) (p120) (pp120)

3192

P48200 IREB2_HUMAN reviewed Iron-responsive element-binding protein 2

(IRE-BP 2) (Iron regulatory protein 2)

(IRP2)

3658

Q5VWX1 KHDR2_HUMAN reviewed KH domain-containing, RNA-binding,

signal transduction-associated protein 2

(Sam68-like mammalian protein 1) (SLM-

1) (hSLM-1)

202559

O75525 KHDR3_HUMAN reviewed KH domain-containing, RNA-binding,

signal transduction-associated protein 3

(RNA-binding protein T-Star) (Sam68-

like mammalian protein 2) (SLM-2)

(Sam68-like phosphotyrosine protein)

10656

Q09161 NCBP1_HUMAN reviewed Nuclear cap-binding protein subunit 1 (80

kDa nuclear cap-binding protein) (CBP80)

(NCBP 80 kDa subunit)

4686

P52298 NCBP2_HUMAN reviewed Nuclear cap-binding protein subunit 2 (20

kDa nuclear cap-binding protein) (Cell

proliferation-inducing gene 55 protein)

(NCBP 20 kDa subunit) (CBP20) (NCBP-

interacting protein 1) (NIP1)

22916

P51513 NOVA1_HUMAN reviewed RNA-binding protein Nova-1 (Neuro-

oncological ventral antigen 1) (Onconeu-

ral ventral antigen 1) (Paraneoplastic Ri

antigen) (Ventral neuron-specific protein

1)

4857

Q86U42 PABP2_HUMAN reviewed Polyadenylate-binding protein 2 (PABP-

2) (Poly(A)-binding protein 2) (Nu-

clear poly(A)-binding protein 1)

(Poly(A)-binding protein II) (PABII)

(Polyadenylate-binding nuclear protein 1)

8106

Q15365 PCBP1_HUMAN reviewed Poly(rC)-binding protein 1 (Alpha-CP1)

(Heterogeneous nuclear ribonucleoprotein

E1) (hnRNP E1) (Nucleic acid-binding

protein SUB2.3)

5093
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Q15366 PCBP2_HUMAN reviewed Poly(rC)-binding protein 2 (Alpha-CP2)

(Heterogeneous nuclear ribonucleoprotein

E2) (hnRNP E2)

5094

P57723 PCBP4_HUMAN reviewed Poly(rC)-binding protein 4 (Alpha-CP4) 57060

P26599 PTBP1_HUMAN reviewed Polypyrimidine tract-binding protein 1

(PTB) (57 kDa RNA-binding protein

PPTB-1) (Heterogeneous nuclear ribonu-

cleoprotein I) (hnRNP I)

5725

Q00577 PURA_HUMAN reviewed Transcriptional activator protein Pur-alpha

(Purine-rich single-stranded DNA-binding

protein alpha)

5813

Q96PU8 QKI_HUMAN reviewed Protein quaking (Hqk) (HqkI) 9444

Q9BTL3 RAM_HUMAN reviewed RNMT-activating mini protein (RAM)

(Protein FAM103A1)

83640

P57052 RBM11_HUMAN reviewed Splicing regulator RBM11 (RNA-binding

motif protein 11)

54033

Q96IZ5 RBM41_HUMAN reviewed RNA-binding protein 41 (RNA-binding

motif protein 41)

55285

Q9BTD8 RBM42_HUMAN reviewed RNA-binding protein 42 (RNA-binding

motif protein 42)

79171

Q9BQ04 RBM4B_HUMAN reviewed RNA-binding protein 4B (RNA-binding

motif protein 30) (RNA-binding motif

protein 4B) (RNA-binding protein 30)

83759

Q9Y580 RBM7_HUMAN reviewed RNA-binding protein 7 (RNA-binding

motif protein 7)

10179

P38159 RBMX_HUMAN reviewed RNA-binding motif protein, X chromo-

some (Glycoprotein p43) (Heterogeneous

nuclear ribonucleoprotein G) (hnRNP G)

[Cleaved into: RNA-binding motif pro-

tein, X chromosome, N-terminally pro-

cessed]

27316

P0DJD3 RBY1A_HUMAN reviewed RNA-binding motif protein, Y chromo-

some, family 1 member A1 (RNA-binding

motif protein 1) (RNA-binding motif pro-

tein 2) (Y chromosome RNA recognition

motif 1) (hRBMY)

5940
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P0DJD4 RBY1C_HUMAN reviewed RNA-binding motif protein, Y chromo-

some, family 1 member C

O75526 RMXL2_HUMAN reviewed RNA-binding motif protein, X-linked-

like-2 (Testis-specific heterogeneous nu-

clear ribonucleoprotein G-T) (hnRNP G-

T)

27288

Q13151 ROA0_HUMAN reviewed Heterogeneous nuclear ribonucleoprotein

A0 (hnRNP A0)

10949

P09651 ROA1_HUMAN reviewed Heterogeneous nuclear ribonucleoprotein

A1 (hnRNP A1) (Helix-destabilizing pro-

tein) (Single-strand RNA-binding protein)

(hnRNP core protein A1)

3178

P22626 ROA2_HUMAN reviewed Heterogeneous nuclear ribonucleoproteins

A2/B1 (hnRNP A2/B1)

3181

Q8TA86 RP9_HUMAN reviewed Retinitis pigmentosa 9 protein (Pim-1-

associated protein) (PAP-1)

6100

P08621 RU17_HUMAN reviewed U1 small nuclear ribonucleoprotein 70

kDa (U1 snRNP 70 kDa) (U1-70K)

(snRNP70)

6625

P31645 SC6A4_HUMAN reviewed Sodium-dependent serotonin transporter

(5HT transporter) (5HTT) (Solute carrier

family 6 member 4)

6532

Q15428 SF3A2_HUMAN reviewed Splicing factor 3A subunit 2 (SF3a66)

(Spliceosome-associated protein 62) (SAP

62)

8175

Q8WXA9 SREK1_HUMAN reviewed Splicing regulatory glutamine/lysine-rich

protein 1 (Serine/arginine-rich-splicing

regulatory protein 86) (SRrp86) (Splicing

factor, arginine/serine-rich 12) (Splicing

regulatory protein 508) (SRrp508)

140890
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O75494 SRS10_HUMAN reviewed Serine/arginine-rich splicing factor 10

(40 kDa SR-repressor protein) (SRrp40)

(FUS-interacting serine-arginine-rich pro-

tein 1) (Splicing factor SRp38) (Splicing

factor, arginine/serine-rich 13A) (TLS-

associated protein with Ser-Arg repeats)

(TASR) (TLS-associated protein with SR

repeats) (TLS-associated serine-arginine

protein) (TLS-associated SR protein)

100996657

10772

P84103 SRSF3_HUMAN reviewed Serine/arginine-rich splicing factor 3 (Pre-

mRNA-splicing factor SRP20) (Splicing

factor, arginine/serine-rich 3)

6428

Q08170 SRSF4_HUMAN reviewed Serine/arginine-rich splicing fac-

tor 4 (Pre-mRNA-splicing factor

SRP75) (SRP001LB) (Splicing fac-

tor, arginine/serine-rich 4)

6429

Q13247 SRSF6_HUMAN reviewed Serine/arginine-rich splicing factor 6 (Pre-

mRNA-splicing factor SRP55) (Splicing

factor, arginine/serine-rich 6)

6431

Q16629 SRSF7_HUMAN reviewed Serine/arginine-rich splicing factor 7

(Splicing factor 9G8) (Splicing factor,

arginine/serine-rich 7)

6432

Q13242 SRSF9_HUMAN reviewed Serine/arginine-rich splicing factor 9 (Pre-

mRNA-splicing factor SRp30C) (Splicing

factor, arginine/serine-rich 9)

8683

Q8IWZ8 SUGP1_HUMAN reviewed SURP and G-patch domain-containing

protein 1 (RNA-binding protein RBP)

(Splicing factor 4)

57794

Q13595 TRA2A_HUMAN reviewed Transformer-2 protein homolog al-

pha (TRA-2 alpha) (TRA2-alpha)

(Transformer-2 protein homolog A)

29896

P62995 TRA2B_HUMAN reviewed Transformer-2 protein homolog beta

(TRA-2 beta) (TRA2-beta) (hTRA2-beta)

(Splicing factor, arginine/serine-rich 10)

(Transformer-2 protein homolog B)

6434
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P67809 YBOX1_HUMAN reviewed Nuclease-sensitive element-binding pro-

tein 1 (CCAAT-binding transcription fac-

tor I subunit A) (CBF-A) (DNA-binding

protein B) (DBPB) (Enhancer factor I sub-

unit A) (EFI-A) (Y-box transcription fac-

tor) (Y-box-binding protein 1) (YB-1)

4904

Q9HA38 ZMAT3_HUMAN reviewed Zinc finger matrin-type protein 3 (Zinc fin-

ger protein WIG-1) (p53-activated gene

608 protein)

64393

O95218 ZRAB2_HUMAN reviewed Zinc finger Ran-binding domain-

containing protein 2 (Zinc finger protein

265) (Zinc finger, splicing)

9406

Q5JQ65 Q5JQ65_HUMAN unreviewed RNA binding motif protein, X-linked

(Fragment)

Q8IYQ9 Q8IYQ9_HUMAN unreviewed Importin subunit alpha 3839

Q5T6W5 Q5T6W5_HUMAN unreviewed Heterogeneous nuclear ribonucleoprotein

K

Q12771 Q12771_HUMAN unreviewed P37 AUF1

Q9H4D4 Q9H4D4_HUMAN unreviewed ZNF143 protein (Fragment)

TABLE A.1: HIV-s66 Protein Annotation and GeneIDs

Entry Entry name Status Protein names Cross-
reference
GENEID

Q96N21 AP4AT_HUMAN reviewed AP-4 complex accessory subunit tepsin

(ENTH domain-containing protein 2)

(Epsin for AP-4) (Tetra-epsin)

146705

Q9BZE3 BARH1_HUMAN reviewed BarH-like 1 homeobox protein 56751

P24863 CCNC_HUMAN reviewed Cyclin-C (SRB11 homolog) (hSRB11) 892

Q9BWU1 CDK19_HUMAN reviewed Cyclin-dependent kinase 19 (EC

2.7.11.22) (CDC2-related protein ki-

nase 6) (Cell division cycle 2-like protein

kinase 6) (Cell division protein ki-

nase 19) (Cyclin-dependent kinase 11)

(Death-preventing kinase)

23097
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P49336 CDK8_HUMAN reviewed Cyclin-dependent kinase 8 (EC 2.7.11.22)

(EC 2.7.11.23) (Cell division protein ki-

nase 8) (Mediator complex subunit CDK8)

(Mediator of RNA polymerase II tran-

scription subunit CDK8) (Protein kinase

K35)

1024

Q6IAN0 DRS7B_HUMAN reviewed Dehydrogenase/reductase SDR family

member 7B (EC 1.1.-.-)

25979

Q9UPW0 FOXJ3_HUMAN reviewed Forkhead box protein J3 22887

Q9H0H0 INT2_HUMAN reviewed Integrator complex subunit 2 (Int2) 57508

Q68E01 INT3_HUMAN reviewed Integrator complex subunit 3 (Int3) (SOSS

complex subunit A) (Sensor of single-

strand DNA complex subunit A) (SOSS-

A) (Sensor of ssDNA subunit A)

65123

Q7L273 KCTD9_HUMAN reviewed BTB/POZ domain-containing protein

KCTD9

54793

O94953 KDM4B_HUMAN reviewed Lysine-specific demethylase 4B (EC

1.14.11.-) (JmjC domain-containing his-

tone demethylation protein 3B) (Jumonji

domain-containing protein 2B)

23030

Q9UBF1 MAGC2_HUMAN reviewed Melanoma-associated antigen C2 (Can-

cer/testis antigen 10) (CT10) (Hepatocel-

lular carcinoma-associated antigen 587)

(MAGE-C2 antigen) (MAGE-E1 antigen)

51438

Q71F56 MD13L_HUMAN reviewed Mediator of RNA polymerase II tran-

scription subunit 13-like (Mediator com-

plex subunit 13-like) (Thyroid hormone

receptor-associated protein 2) (Thyroid

hormone receptor-associated protein com-

plex 240 kDa component-like)

23389

Q9BTT4 MED10_HUMAN reviewed Mediator of RNA polymerase II tran-

scription subunit 10 (Mediator complex

subunit 10) (Transformation-related gene

17 protein) (TRG-17) (Transformation-

related gene 20 protein) (TRG-20)

84246
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Q9P086 MED11_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 11 (Mediator complex subunit

11)

400569

Q93074 MED12_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 12 (Activator-recruited cofac-

tor 240 kDa component) (ARC240) (CAG

repeat protein 45) (Mediator complex sub-

unit 12) (OPA-containing protein) (Thy-

roid hormone receptor-associated protein

complex 230 kDa component) (Trap230)

(Trinucleotide repeat-containing gene 11

protein)

9968

Q9UHV7 MED13_HUMAN reviewed Mediator of RNA polymerase II tran-

scription subunit 13 (Activator-recruited

cofactor 250 kDa component) (ARC250)

(Mediator complex subunit 13) (Thyroid

hormone receptor-associated protein 1)

(Thyroid hormone receptor-associated

protein complex 240 kDa compo-

nent) (Trap240) (Vitamin D3 receptor-

interacting protein complex component

DRIP250) (DRIP250)

9969

O60244 MED14_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 14 (Activator-recruited cofac-

tor 150 kDa component) (ARC150) (Co-

factor required for Sp1 transcriptional ac-

tivation subunit 2) (CRSP complex sub-

unit 2) (Mediator complex subunit 14)

(RGR1 homolog) (hRGR1) (Thyroid hor-

mone receptor-associated protein complex

170 kDa component) (Trap170) (Tran-

scriptional coactivator CRSP150) (Vita-

min D3 receptor-interacting protein com-

plex 150 kDa component) (DRIP150)

9282
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Q9Y2X0 MED16_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 16 (Mediator complex subunit

16) (Thyroid hormone receptor-associated

protein 5) (Thyroid hormone receptor-

associated protein complex 95 kDa com-

ponent) (Trap95) (Vitamin D3 receptor-

interacting protein complex 92 kDa com-

ponent) (DRIP92)

10025

Q9NVC6 MED17_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 17 (Activator-recruited cofac-

tor 77 kDa component) (ARC77) (Cofac-

tor required for Sp1 transcriptional activa-

tion subunit 6) (CRSP complex subunit 6)

(Mediator complex subunit 17) (Thyroid

hormone receptor-associated protein com-

plex 80 kDa component) (Trap80) (Tran-

scriptional coactivator CRSP77) (Vitamin

D3 receptor-interacting protein complex

80 kDa component) (DRIP80)

9440

Q9BUE0 MED18_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 18 (Mediator complex subunit

18) (p28b)

54797

A0JLT2 MED19_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 19 (Lung cancer metastasis-

related protein 1) (Mediator complex sub-

unit 19)

219541
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Q15648 MED1_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 1 (Activator-recruited cofac-

tor 205 kDa component) (ARC205) (Me-

diator complex subunit 1) (Peroxisome

proliferator-activated receptor-binding

protein) (PBP) (PPAR-binding protein)

(Thyroid hormone receptor-associated

protein complex 220 kDa component)

(Trap220) (Thyroid receptor-interacting

protein 2) (TR-interacting protein 2)

(TRIP-2) (Vitamin D receptor-interacting

protein complex component DRIP205)

(p53 regulatory protein RB18A)

5469

Q9H944 MED20_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 20 (Mediator complex sub-

unit 20) (TRF-proximal protein homolog)

(hTRFP)

9477

Q13503 MED21_HUMAN reviewed Mediator of RNA polymerase II tran-

scription subunit 21 (Mediator complex

subunit 21) (RNA polymerase II holoen-

zyme component SRB7) (RNAPII com-

plex component SRB7) (hSrb7)

9412

Q15528 MED22_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 22 (Mediator complex subunit

22) (Surfeit locus protein 5) (Surf-5)

6837

Q9ULK4 MED23_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 23 (Activator-recruited cofac-

tor 130 kDa component) (ARC130) (Co-

factor required for Sp1 transcriptional ac-

tivation subunit 3) (CRSP complex subunit

3) (Mediator complex subunit 23) (Pro-

tein sur-2 homolog) (hSur-2) (Transcrip-

tional coactivator CRSP130) (Vitamin D3

receptor-interacting protein complex 130

kDa component) (DRIP130)

9439
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O75448 MED24_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 24 (Activator-recruited co-

factor 100 kDa component) (ARC100)

(Cofactor required for Sp1 transcriptional

activation subunit 4) (CRSP complex

subunit 4) (Mediator complex subunit

24) (Thyroid hormone receptor-associated

protein 4) (Thyroid hormone receptor-

associated protein complex 100 kDa com-

ponent) (Trap100) (hTRAP100) (Vitamin

D3 receptor-interacting protein complex

100 kDa component) (DRIP100)

9862

Q71SY5 MED25_HUMAN reviewed Mediator of RNA polymerase II tran-

scription subunit 25 (Activator interaction

domain-containing protein 1) (Activator-

recruited cofactor 92 kDa component)

(ARC92) (Mediator complex subunit 25)

(p78)

81857

O95402 MED26_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 26 (Activator-recruited cofac-

tor 70 kDa component) (ARC70) (Cofac-

tor required for Sp1 transcriptional acti-

vation subunit 7) (CRSP complex subunit

7) (Mediator complex subunit 26) (Tran-

scriptional coactivator CRSP70)

9441

Q6P2C8 MED27_HUMAN reviewed Mediator of RNA polymerase II tran-

scription subunit 27 (Cofactor required

for Sp1 transcriptional activation subunit

8) (CRSP complex subunit 8) (Mediator

complex subunit 27) (P37 TRAP/SMC-

C/PC2 subunit) (Transcriptional coactiva-

tor CRSP34)

9442

Q9H204 MED28_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 28 (Endothelial-derived pro-

tein 1) (Mediator complex subunit 28)

(Merlin and Grb2-interacting cytoskeletal

protein) (Magicin) (Tumor angiogenesis

marker EG-1)

80306
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Q9NX70 MED29_HUMAN reviewed Mediator of RNA polymerase II tran-

scription subunit 29 (Intersex-like protein)

(Mediator complex subunit 29)

55588

Q96HR3 MED30_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 30 (Mediator complex subunit

30) (TRAP/Mediator complex component

TRAP25) (Thyroid hormone receptor-

associated protein 6) (Thyroid hormone

receptor-associated protein complex 25

kDa component) (Trap25)

90390

Q9NPJ6 MED4_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 4 (Activator-recruited cofac-

tor 36 kDa component) (ARC36) (Me-

diator complex subunit 4) (TRAP/SMC-

C/PC2 subunit p36 subunit) (Vitamin D3

receptor-interacting protein complex 36

kDa component) (DRIP36)

29079

O75586 MED6_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 6 (Activator-recruited cofac-

tor 33 kDa component) (ARC33) (Medi-

ator complex subunit 6) (hMed6) (Renal

carcinoma antigen NY-REN-28)

10001

O43513 MED7_HUMAN reviewed Mediator of RNA polymerase II tran-

scription subunit 7 (hMED7) (Activator-

recruited cofactor 34 kDa component)

(ARC34) (Cofactor required for Sp1 tran-

scriptional activation subunit 9) (CRSP

complex subunit 9) (Mediator complex

subunit 7) (RNA polymerase transcrip-

tional regulation mediator subunit 7

homolog) (Transcriptional coactivator

CRSP33)

9443

Q96G25 MED8_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 8 (Activator-recruited cofac-

tor 32 kDa component) (ARC32) (Media-

tor complex subunit 8)

112950
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Q9NWA0 MED9_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 9 (Mediator complex subunit

9)

55090

Q9H4Z3 PCIF1_HUMAN reviewed Phosphorylated CTD-interacting factor 1 63935

P24928 RPB1_HUMAN reviewed DNA-directed RNA polymerase II sub-

unit RPB1 (RNA polymerase II sub-

unit B1) (EC 2.7.7.6) (DNA-directed

RNA polymerase II subunit A) (DNA-

directed RNA polymerase III largest sub-

unit) (RNA-directed RNA polymerase II

subunit RPB1) (EC 2.7.7.48)

5430

Q7RTU7 SCX_HUMAN reviewed Basic helix-loop-helix transcription factor

scleraxis (Class A basic helix-loop-helix

protein 41) (bHLHa41) (Class A basic

helix-loop-helix protein 48) (bHLHa48)

100129885,642658

P48436 SOX9_HUMAN reviewed Transcription factor SOX-9 6662

Q9H668 STN1_HUMAN reviewed CST complex subunit STN1

(Oligonucleotide/oligosaccharide-binding

fold-containing protein 1) (Suppressor of

cdc thirteen homolog)

79991

O95379 TFIP8_HUMAN reviewed Tumor necrosis factor alpha-induced

protein 8 (TNF alpha-induced pro-

tein 8) (Head and neck tumor and

metastasis-related protein) (MDC-3.13)

(NF-kappa-B-inducible DED-containing

protein) (NDED) (SCC-S2) (TNF-induced

protein GG2-1)

25816

Q8TB05 UBAD1_HUMAN reviewed UBA-like domain-containing protein 1 124402

Q96K76 UBP47_HUMAN reviewed Ubiquitin carboxyl-terminal hydrolase 47

(EC 3.4.19.12) (Deubiquitinating enzyme

47) (Ubiquitin thioesterase 47) (Ubiquitin-

specific-processing protease 47)

55031

Q70CQ1 UBP49_HUMAN reviewed Ubiquitin carboxyl-terminal hydrolase 49

(EC 3.4.19.12) (Deubiquitinating enzyme

49) (Ubiquitin thioesterase 49) (Ubiquitin-

specific-processing protease 49)

25862
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Q16587 ZNF74_HUMAN reviewed Zinc finger protein 74 (Zinc finger protein

520) (hZNF7)

7625

Q9H2M2 Q9H2M2_HUMAN unreviewed Estrogen receptor alpha

TABLE A.2: HIV-s52 Protein Annotation and GeneIDs

Entry Entry name Status Protein names Cross-
reference
GENEID

O14983 AT2A1_HUMAN reviewed Sarcoplasmic/endoplasmic reticulum cal-

cium ATPase 1 (SERCA1) (SR Ca(2+)-

ATPase 1) (EC 3.6.3.8) (Calcium pump 1)

(Calcium-transporting ATPase sarcoplas-

mic reticulum type, fast twitch skeletal

muscle isoform) (Endoplasmic reticulum

class 1/2 Ca(2+) ATPase)

487

Q99704 DOK1_HUMAN reviewed Docking protein 1 (Downstream of tyro-

sine kinase 1) (p62(dok)) (pp62)

1796

P22413 ENPP1_HUMAN reviewed Ectonucleotide pyrophosphatase/phos-

phodiesterase family member 1 (E-NPP

1) (Membrane component chromosome

6 surface marker 1) (Phosphodiesterase

I/nucleotide pyrophosphatase 1) (Plasma-

cell membrane glycoprotein PC-1)

[Includes: Alkaline phosphodiesterase I

(EC 3.1.4.1) Nucleotide pyrophosphatase

(NPPase) (EC 3.6.1.9)]

5167

O95936 EOMES_HUMAN reviewed Eomesodermin homolog (T-box brain pro-

tein 2) (T-brain-2) (TBR-2)

8320

P10912 GHR_HUMAN reviewed Growth hormone receptor (GH receptor)

(Somatotropin receptor) [Cleaved into:

Growth hormone-binding protein (GH-

binding protein) (GHBP) (Serum-binding

protein)]

2690
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P10144 GRAB_HUMAN reviewed Granzyme B (EC 3.4.21.79) (C11)

(CTLA-1) (Cathepsin G-like 1)

(CTSGL1) (Cytotoxic T-lymphocyte

proteinase 2) (Lymphocyte protease)

(Fragmentin-2) (Granzyme-2) (Human

lymphocyte protein) (HLP) (SECT)

(T-cell serine protease 1-3E)

3002

Q13322 GRB10_HUMAN reviewed Growth factor receptor-bound protein

10 (GRB10 adapter protein) (Insulin

receptor-binding protein Grb-IR)

2887

Q14449 GRB14_HUMAN reviewed Growth factor receptor-bound protein 14

(GRB14 adapter protein)

2888

P42701 I12R1_HUMAN reviewed Interleukin-12 receptor subunit beta-1 (IL-

12 receptor subunit beta-1) (IL-12R sub-

unit beta-1) (IL-12R-beta-1) (IL-12RB1)

(IL-12 receptor beta component) (CD anti-

gen CD212)

3594

Q99665 I12R2_HUMAN reviewed Interleukin-12 receptor subunit beta-2 (IL-

12 receptor subunit beta-2) (IL-12R sub-

unit beta-2) (IL-12R-beta-2) (IL-12RB2)

3595

P78552 I13R1_HUMAN reviewed Interleukin-13 receptor subunit alpha-1

(IL-13 receptor subunit alpha-1) (IL-13R

subunit alpha-1) (IL-13R-alpha-1) (IL-

13RA1) (Cancer/testis antigen 19) (CT19)

(CD antigen CD213a1)

3597

P08069 IGF1R_HUMAN reviewed Insulin-like growth factor 1 receptor

(EC 2.7.10.1) (Insulin-like growth fac-

tor I receptor) (IGF-I receptor) (CD anti-

gen CD221) [Cleaved into: Insulin-like

growth factor 1 receptor alpha chain

Insulin-like growth factor 1 receptor beta

chain]

3480

P29459 IL12A_HUMAN reviewed Interleukin-12 subunit alpha (IL-12A)

(Cytotoxic lymphocyte maturation factor

35 kDa subunit) (CLMF p35) (IL-12 sub-

unit p35) (NK cell stimulatory factor chain

1) (NKSF1)

3592
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P29460 IL12B_HUMAN reviewed Interleukin-12 subunit beta (IL-12B) (Cy-

totoxic lymphocyte maturation factor 40

kDa subunit) (CLMF p40) (IL-12 subunit

p40) (NK cell stimulatory factor chain 2)

(NKSF2)

3593

Q9UHD0 IL19_HUMAN reviewed Interleukin-19 (IL-19) (Melanoma

differentiation-associated protein-like

protein) (NG.1)

29949

Q9NPF7 IL23A_HUMAN reviewed Interleukin-23 subunit alpha (IL-23 sub-

unit alpha) (IL-23-A) (Interleukin-23 sub-

unit p19) (IL-23p19)

51561

Q5VWK5 IL23R_HUMAN reviewed Interleukin-23 receptor (IL-23 receptor)

(IL-23R)

149233

Q13007 IL24_HUMAN reviewed Interleukin-24 (IL-24) (Melanoma

differentiation-associated gene 7 protein)

(MDA-7) (Suppression of tumorigenicity

16 protein)

11009

Q8NEV9 IL27A_HUMAN reviewed Interleukin-27 subunit alpha (IL-27 sub-

unit alpha) (IL-27-A) (IL27-A) (p28)

246778

P15260 INGR1_HUMAN reviewed Interferon gamma receptor 1 (IFN-gamma

receptor 1) (IFN-gamma-R1) (CDw119)

(CD antigen CD119)

3459

P38484 INGR2_HUMAN reviewed Interferon gamma receptor 2 (IFN-gamma

receptor 2) (IFN-gamma-R2) (Interferon

gamma receptor accessory factor 1) (AF-

1) (Interferon gamma transducer 1)

3460

P14616 INSRR_HUMAN reviewed Insulin receptor-related protein (IRR) (EC

2.7.10.1) (IR-related receptor) [Cleaved

into: Insulin receptor-related protein alpha

chain Insulin receptor-related protein beta

chain]

3645

P06213 INSR_HUMAN reviewed Insulin receptor (IR) (EC 2.7.10.1) (CD

antigen CD220) [Cleaved into: Insulin re-

ceptor subunit alpha Insulin receptor sub-

unit beta]

3643

P35568 IRS1_HUMAN reviewed Insulin receptor substrate 1 (IRS-1) 3667

Q9Y4H2 IRS2_HUMAN reviewed Insulin receptor substrate 2 (IRS-2) 8660
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O60674 JAK2_HUMAN reviewed Tyrosine-protein kinase JAK2 (EC

2.7.10.2) (Janus kinase 2) (JAK-2)

3717

Q5VV43 K0319_HUMAN reviewed Dyslexia-associated protein KIAA0319 9856

Q7Z3Y8 K1C27_HUMAN reviewed Keratin, type I cytoskeletal 27

(Cytokeratin-27) (CK-27) (Keratin-

25C) (K25C) (Keratin-27) (K27) (Type I

inner root sheath-specific keratin-K25irs3)

342574

P10721 KIT_HUMAN reviewed Mast/stem cell growth factor receptor

Kit (SCFR) (EC 2.7.10.1) (Piebald trait

protein) (PBT) (Proto-oncogene c-Kit)

(Tyrosine-protein kinase Kit) (p145 c-

kit) (v-kit Hardy-Zuckerman 4 feline sar-

coma viral oncogene homolog) (CD anti-

gen CD117)

3815

Q9UIQ6 LCAP_HUMAN reviewed Leucyl-cystinyl aminopeptidase (Cystinyl

aminopeptidase) (EC 3.4.11.3) (Insulin-

regulated membrane aminopeptidase)

(Insulin-responsive aminopeptidase)

(IRAP) (Oxytocinase) (OTase) (Placen-

tal leucine aminopeptidase) (P-LAP)

[Cleaved into: Leucyl-cystinyl aminopep-

tidase, pregnancy serum form]

4012

Q66K74 MAP1S_HUMAN reviewed Microtubule-associated protein 1S

(MAP-1S) (BPY2-interacting protein 1)

(Microtubule-associated protein 8) (Vari-

able charge Y chromosome 2-interacting

protein 1) (VCY2-interacting protein

1) (VCY2IP-1) [Cleaved into: MAP1S

heavy chain MAP1S light chain]

55201
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Q92569 P55G_HUMAN reviewed Phosphatidylinositol 3-kinase regulatory

subunit gamma (PI3-kinase regulatory

subunit gamma) (PI3K regulatory sub-

unit gamma) (PtdIns-3-kinase regulatory

subunit gamma) (Phosphatidylinositol 3-

kinase 55 kDa regulatory subunit gamma)

(PI3-kinase subunit p55-gamma) (PtdIns-

3-kinase regulatory subunit p55-gamma)

(p55PIK)

8503

P05164 PERM_HUMAN reviewed Myeloperoxidase (MPO) (EC 1.11.2.2)

[Cleaved into: Myeloperoxidase 89 kDa

myeloperoxidase 84 kDa myeloper-

oxidase Myeloperoxidase light chain

Myeloperoxidase heavy chain]

4353

O75420 PERQ1_HUMAN reviewed PERQ amino acid-rich with GYF domain-

containing protein 1 (GRB10-interacting

GYF protein 1)

64599

Q8WWQ0PHIP_HUMAN reviewed PH-interacting protein (PHIP) (IRS-1 PH

domain-binding protein) (WD repeat-

containing protein 11)

55023

P16471 PRLR_HUMAN reviewed Prolactin receptor (PRL-R) 5618

P18031 PTN1_HUMAN reviewed Tyrosine-protein phosphatase non-

receptor type 1 (EC 3.1.3.48) (Protein-

tyrosine phosphatase 1B) (PTP-1B)

5770

P17706 PTN2_HUMAN reviewed Tyrosine-protein phosphatase non-

receptor type 2 (EC 3.1.3.48) (T-cell

protein-tyrosine phosphatase) (TCPTP)

5771

P26045 PTN3_HUMAN reviewed Tyrosine-protein phosphatase non-

receptor type 3 (EC 3.1.3.48) (Protein-

tyrosine phosphatase H1) (PTP-H1)

5774

P43378 PTN9_HUMAN reviewed Tyrosine-protein phosphatase non-

receptor type 9 (EC 3.1.3.48) (Protein-

tyrosine phosphatase MEG2) (PTPase

MEG2)

5780
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Q9HD43 PTPRH_HUMAN reviewed Receptor-type tyrosine-protein phos-

phatase H (R-PTP-H) (EC 3.1.3.48)

(Stomach cancer-associated pro-

tein tyrosine phosphatase 1) (SAP-1)

(Transmembrane-type protein-tyrosine

phosphatase type H)

5794

Q9HD89 RETN_HUMAN reviewed Resistin (Adipose tissue-specific secretory

factor) (ADSF) (C/EBP-epsilon-regulated

myeloid-specific secreted cysteine-rich

protein) (Cysteine-rich secreted protein

A12-alpha-like 2) (Cysteine-rich secreted

protein FIZZ3)

56729

Q9NRF2 SH2B1_HUMAN reviewed SH2B adapter protein 1 (Pro-rich, PH and

SH2 domain-containing signaling media-

tor) (PSM) (SH2 domain-containing pro-

tein 1B)

25970

O15524 SOCS1_HUMAN reviewed Suppressor of cytokine signaling 1

(SOCS-1) (JAK-binding protein) (JAB)

(STAT-induced STAT inhibitor 1) (SSI-1)

(Tec-interacting protein 3) (TIP-3)

8651

O14508 SOCS2_HUMAN reviewed Suppressor of cytokine signaling 2

(SOCS-2) (Cytokine-inducible SH2

protein 2) (CIS-2) (STAT-induced STAT

inhibitor 2) (SSI-2)

8835

O14543 SOCS3_HUMAN reviewed Suppressor of cytokine signaling 3

(SOCS-3) (Cytokine-inducible SH2

protein 3) (CIS-3) (STAT-induced STAT

inhibitor 3) (SSI-3)

9021

P01242 SOM2_HUMAN reviewed Growth hormone variant (GH-V) (Growth

hormone 2) (Placenta-specific growth hor-

mone)

2689

P01241 SOMA_HUMAN reviewed Somatotropin (Growth hormone) (GH)

(GH-N) (Growth hormone 1) (Pituitary

growth hormone)

2688

Q9NRA0 SPHK2_HUMAN reviewed Sphingosine kinase 2 (SK 2) (SPK 2) (EC

2.7.1.91)

56848
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Q14765 STAT4_HUMAN reviewed Signal transducer and activator of tran-

scription 4

6775

Q9H169 STMN4_HUMAN reviewed Stathmin-4 (Stathmin-like protein B3)

(RB3)

81551

Q9C0C2 TB182_HUMAN reviewed 182 kDa tankyrase-1-binding protein 85456

P42680 TEC_HUMAN reviewed Tyrosine-protein kinase Tec (EC 2.7.10.2) 7006

O95271 TNKS1_HUMAN reviewed Tankyrase-1 (TANK1) (EC 2.4.2.30)

(ADP-ribosyltransferase diphtheria toxin-

like 5) (ARTD5) (Poly [ADP-ribose]

polymerase 5A) (TNKS-1) (TRF1-

interacting ankyrin-related ADP-ribose

polymerase) (Tankyrase I)

8658

Q9H2K2 TNKS2_HUMAN reviewed Tankyrase-2 (TANK2) (EC 2.4.2.30)

(ADP-ribosyltransferase diphtheria toxin-

like 6) (ARTD6) (Poly [ADP-ribose] poly-

merase 5B) (TNKS-2) (TRF1-interacting

ankyrin-related ADP-ribose polymerase

2) (Tankyrase II) (Tankyrase-like protein)

(Tankyrase-related protein)

80351

Q9H1D0 TRPV6_HUMAN reviewed Transient receptor potential cation chan-

nel subfamily V member 6 (TrpV6) (CaT-

like) (CaT-L) (Calcium transport protein

1) (CaT1) (Epithelial calcium channel 2)

(ECaC2)

55503

P29597 TYK2_HUMAN reviewed Non-receptor tyrosine-protein kinase

TYK2 (EC 2.7.10.2)

7297

O14599 VCY2_HUMAN reviewed Testis-specific basic protein Y 2 (Basic

charge, Y-linked 2) (Variably charged pro-

tein Y 2)

442867,4428689083

O60595 O60595_HUMAN unreviewed Interleukin 12 (Interleukin 12, P35) (Inter-

leukin 12A (Natural killer cell stimulatory

factor 1, cytotoxic lymphocyte maturation

factor 1, p35)) (Interleukin 12A (Natural

killer cell stimulatory factor 1, cytotoxic

lymphocyte maturation factor 1, p35), iso-

form CRA_a)

3592

Q14620 Q14620_HUMAN Merged into P05019.
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TABLE A.3: HCV-s64 Protein Annotation and GeneIDs

Entry Entry name Status Protein names Cross-
reference
GENEID

Q96F63 CCD97_HUMAN reviewed Coiled-coil domain-containing protein 97 90324

P05813 CRBA1_HUMAN reviewed Beta-crystallin A3 [Cleaved into: Beta-

crystallin A3, isoform A1, Delta4 form

Beta-crystallin A3, isoform A1, Delta7

form Beta-crystallin A3, isoform A1,

Delta8 form]

1411

P53672 CRBA2_HUMAN reviewed Beta-crystallin A2 (Beta-A2 crystallin) 1412

P53673 CRBA4_HUMAN reviewed Beta-crystallin A4 (Beta-A4 crystallin) 1413

P53674 CRBB1_HUMAN reviewed Beta-crystallin B1 (Beta-B1 crystallin) 1414

P43320 CRBB2_HUMAN reviewed Beta-crystallin B2 (Beta-B2 crystallin)

(Beta-crystallin Bp)

1415

P26998 CRBB3_HUMAN reviewed Beta-crystallin B3 (Beta-B3 crystallin)

[Cleaved into: Beta-crystallin B3, N-

terminally processed]

1417

P07315 CRGC_HUMAN reviewed Gamma-crystallin C (Gamma-C-

crystallin) (Gamma-crystallin 2-1)

(Gamma-crystallin 3)

1420

P02489 CRYAA_HUMAN reviewed Alpha-crystallin A chain (Heat shock

protein beta-4) (HspB4) [Cleaved into:

Alpha-crystallin A chain, short form]

1409

P02511 CRYAB_HUMAN reviewed Alpha-crystallin B chain (Alpha(B)-

crystallin) (Heat shock protein beta-5)

(HspB5) (Renal carcinoma antigen NY-

REN-27) (Rosenthal fiber component)

1410

Q9Y6W6 DUS10_HUMAN reviewed Dual specificity protein phosphatase 10

(EC 3.1.3.16) (EC 3.1.3.48) (Mitogen-

activated protein kinase phosphatase 5)

(MAP kinase phosphatase 5) (MKP-5)

11221

Q9BY84 DUS16_HUMAN reviewed Dual specificity protein phosphatase 16

(EC 3.1.3.16) (EC 3.1.3.48) (Mitogen-

activated protein kinase phosphatase 7)

(MAP kinase phosphatase 7) (MKP-7)

80824
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P28562 DUS1_HUMAN reviewed Dual specificity protein phosphatase 1 (EC

3.1.3.16) (EC 3.1.3.48) (Dual specificity

protein phosphatase hVH1) (Mitogen-

activated protein kinase phosphatase 1)

(MAP kinase phosphatase 1) (MKP-1)

(Protein-tyrosine phosphatase CL100)

1843

Q05923 DUS2_HUMAN reviewed Dual specificity protein phosphatase 2 (EC

3.1.3.16) (EC 3.1.3.48) (Dual specificity

protein phosphatase PAC-1)

1844

Q13115 DUS4_HUMAN reviewed Dual specificity protein phosphatase 4 (EC

3.1.3.16) (EC 3.1.3.48) (Dual specificity

protein phosphatase hVH2) (Mitogen-

activated protein kinase phosphatase 2)

(MAP kinase phosphatase 2) (MKP-2)

1846

Q16828 DUS6_HUMAN reviewed Dual specificity protein phosphatase 6 (EC

3.1.3.16) (EC 3.1.3.48) (Dual specificity

protein phosphatase PYST1) (Mitogen-

activated protein kinase phosphatase 3)

(MAP kinase phosphatase 3) (MKP-3)

1848

Q13202 DUS8_HUMAN reviewed Dual specificity protein phosphatase 8 (EC

3.1.3.16) (EC 3.1.3.48) (Dual specificity

protein phosphatase hVH-5)

1850

Q99956 DUS9_HUMAN reviewed Dual specificity protein phosphatase 9

(EC 3.1.3.16) (EC 3.1.3.48) (Mitogen-

activated protein kinase phosphatase 4)

(MAP kinase phosphatase 4) (MKP-4)

1852

P28324 ELK4_HUMAN reviewed ETS domain-containing protein Elk-4

(Serum response factor accessory protein

1) (SAP-1) (SRF accessory protein 1)

2005

Q6PJG2 EMSA1_HUMAN reviewed ELM2 and SANT domain-containing pro-

tein 1

91748

P50549 ETV1_HUMAN reviewed ETS translocation variant 1 (Ets-related

protein 81)

2115
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P04792 HSPB1_HUMAN reviewed Heat shock protein beta-1 (HspB1) (28

kDa heat shock protein) (Estrogen-

regulated 24 kDa protein) (Heat shock 27

kDa protein) (HSP 27) (Stress-responsive

protein 27) (SRP27)

3315

Q16082 HSPB2_HUMAN reviewed Heat shock protein beta-2 (HspB2)

(DMPK-binding protein) (MKBP)

3316

O14558 HSPB6_HUMAN reviewed Heat shock protein beta-6 (HspB6) (Heat

shock 20 kDa-like protein p20)

126393

Q9UBY9 HSPB7_HUMAN reviewed Heat shock protein beta-7 (HspB7) (Car-

diovascular heat shock protein) (cvHsp)

27129

Q9UJY1 HSPB8_HUMAN reviewed Heat shock protein beta-8 (HspB8)

(Alpha-crystallin C chain) (E2-induced

gene 1 protein) (Protein kinase H11)

(Small stress protein-like protein HSP22)

26353

O75676 KS6A4_HUMAN reviewed Ribosomal protein S6 kinase alpha-4

(S6K-alpha-4) (EC 2.7.11.1) (90 kDa ri-

bosomal protein S6 kinase 4) (Nuclear

mitogen- and stress-activated protein ki-

nase 2) (Ribosomal protein kinase B)

(RSKB)

8986

O75582 KS6A5_HUMAN reviewed Ribosomal protein S6 kinase alpha-5

(S6K-alpha-5) (EC 2.7.11.1) (90 kDa ri-

bosomal protein S6 kinase 5) (Nuclear

mitogen- and stress-activated protein ki-

nase 1) (RSK-like protein kinase) (RSKL)

9252

P33241 LSP1_HUMAN reviewed Lymphocyte-specific protein 1 (47 kDa

actin-binding protein) (52 kDa phos-

phoprotein) (pp52) (Lymphocyte-specific

antigen WP34)

4046

P49137 MAPK2_HUMAN reviewed MAP kinase-activated protein kinase

2 (MAPK-activated protein kinase 2)

(MAPKAP kinase 2) (MAPKAP-K2)

(MAPKAPK-2) (MK-2) (MK2) (EC

2.7.11.1)

9261
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Q16644 MAPK3_HUMAN reviewed MAP kinase-activated protein kinase

3 (MAPK-activated protein kinase 3)

(MAPKAP kinase 3) (MAPKAP-K3)

(MAPKAPK-3) (MK-3) (EC 2.7.11.1)

(Chromosome 3p kinase) (3pK)

7867

Q8IW41 MAPK5_HUMAN reviewed MAP kinase-activated protein kinase

5 (MAPK-activated protein kinase 5)

(MAPKAP kinase 5) (MAPKAP-K5)

(MAPKAPK-5) (MK-5) (MK5) (EC

2.7.11.1) (p38-regulated/activated protein

kinase) (PRAK)

8550

Q15759 MK11_HUMAN reviewed Mitogen-activated protein kinase 11

(MAP kinase 11) (MAPK 11) (EC

2.7.11.24) (Mitogen-activated protein

kinase p38 beta) (MAP kinase p38 beta)

(p38b) (Stress-activated protein kinase

2b) (SAPK2b) (p38-2)

5600

P53778 MK12_HUMAN reviewed Mitogen-activated protein kinase 12

(MAP kinase 12) (MAPK 12) (EC

2.7.11.24) (Extracellular signal-regulated

kinase 6) (ERK-6) (Mitogen-activated

protein kinase p38 gamma) (MAP kinase

p38 gamma) (Stress-activated protein

kinase 3)

6300

Q16539 MK14_HUMAN reviewed Mitogen-activated protein kinase 14

(MAP kinase 14) (MAPK 14) (EC

2.7.11.24) (Cytokine suppressive anti-

inflammatory drug-binding protein)

(CSAID-binding protein) (CSBP) (MAP

kinase MXI2) (MAX-interacting protein

2) (Mitogen-activated protein kinase p38

alpha) (MAP kinase p38 alpha) (Stress-

activated protein kinase 2a) (SAPK2a)

1432

Q8NEM7 SP20H_HUMAN reviewed Transcription factor SPT20 homolog (p38-

interacting protein) (p38IP)

55578
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Q07352 TISB_HUMAN reviewed Zinc finger protein 36, C3H1 type-

like 1 (Butyrate response factor 1)

(EGF-response factor 1) (ERF-1) (Protein

TIS11B)

677

P52746 ZN142_HUMAN reviewed Zinc finger protein 142 (HA4654) 7701

O43257 ZNHI1_HUMAN reviewed Zinc finger HIT domain-containing pro-

tein 1 (Cyclin-G1-binding protein 1) (Zinc

finger protein subfamily 4A member 1)

(p18 Hamlet)

10467

Q1RMC8 Q1RMC8_HUMAN unreviewed ROBO1 protein 6091

TABLE A.4: HCV-s43 Protein Annotation and GeneIDs

Entry Entry name Status Protein names Cross-
reference
GENEID

Q96N21 AP4AT_HUMAN reviewed AP-4 complex accessory subunit tepsin

(ENTH domain-containing protein 2)

(Epsin for AP-4) (Tetra-epsin)

146705

Q9BZE3 BARH1_HUMAN reviewed BarH-like 1 homeobox protein 56751

P24863 CCNC_HUMAN reviewed Cyclin-C (SRB11 homolog) (hSRB11) 892

Q9BWU1 CDK19_HUMAN reviewed Cyclin-dependent kinase 19 (EC

2.7.11.22) (CDC2-related protein ki-

nase 6) (Cell division cycle 2-like protein

kinase 6) (Cell division protein ki-

nase 19) (Cyclin-dependent kinase 11)

(Death-preventing kinase)

23097

P49336 CDK8_HUMAN reviewed Cyclin-dependent kinase 8 (EC 2.7.11.22)

(EC 2.7.11.23) (Cell division protein ki-

nase 8) (Mediator complex subunit CDK8)

(Mediator of RNA polymerase II tran-

scription subunit CDK8) (Protein kinase

K35)

1024

Q6IAN0 DRS7B_HUMAN reviewed Dehydrogenase/reductase SDR family

member 7B (EC 1.1.-.-)

25979

Q9UPW0 FOXJ3_HUMAN reviewed Forkhead box protein J3 22887

Q9H0H0 INT2_HUMAN reviewed Integrator complex subunit 2 (Int2) 57508
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Q68E01 INT3_HUMAN reviewed Integrator complex subunit 3 (Int3) (SOSS

complex subunit A) (Sensor of single-

strand DNA complex subunit A) (SOSS-

A) (Sensor of ssDNA subunit A)

65123

Q7L273 KCTD9_HUMAN reviewed BTB/POZ domain-containing protein

KCTD9

54793

O94953 KDM4B_HUMAN reviewed Lysine-specific demethylase 4B (EC

1.14.11.-) (JmjC domain-containing his-

tone demethylation protein 3B) (Jumonji

domain-containing protein 2B)

23030

Q9UBF1 MAGC2_HUMAN reviewed Melanoma-associated antigen C2 (Can-

cer/testis antigen 10) (CT10) (Hepatocel-

lular carcinoma-associated antigen 587)

(MAGE-C2 antigen) (MAGE-E1 antigen)

51438

Q71F56 MD13L_HUMAN reviewed Mediator of RNA polymerase II tran-

scription subunit 13-like (Mediator com-

plex subunit 13-like) (Thyroid hormone

receptor-associated protein 2) (Thyroid

hormone receptor-associated protein com-

plex 240 kDa component-like)

23389

Q9BTT4 MED10_HUMAN reviewed Mediator of RNA polymerase II tran-

scription subunit 10 (Mediator complex

subunit 10) (Transformation-related gene

17 protein) (TRG-17) (Transformation-

related gene 20 protein) (TRG-20)

84246

Q9P086 MED11_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 11 (Mediator complex subunit

11)

400569

Q93074 MED12_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 12 (Activator-recruited cofac-

tor 240 kDa component) (ARC240) (CAG

repeat protein 45) (Mediator complex sub-

unit 12) (OPA-containing protein) (Thy-

roid hormone receptor-associated protein

complex 230 kDa component) (Trap230)

(Trinucleotide repeat-containing gene 11

protein)

9968
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Q9UHV7 MED13_HUMAN reviewed Mediator of RNA polymerase II tran-

scription subunit 13 (Activator-recruited

cofactor 250 kDa component) (ARC250)

(Mediator complex subunit 13) (Thyroid

hormone receptor-associated protein 1)

(Thyroid hormone receptor-associated

protein complex 240 kDa compo-

nent) (Trap240) (Vitamin D3 receptor-

interacting protein complex component

DRIP250) (DRIP250)

9969

O60244 MED14_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 14 (Activator-recruited cofac-

tor 150 kDa component) (ARC150) (Co-

factor required for Sp1 transcriptional ac-

tivation subunit 2) (CRSP complex sub-

unit 2) (Mediator complex subunit 14)

(RGR1 homolog) (hRGR1) (Thyroid hor-

mone receptor-associated protein complex

170 kDa component) (Trap170) (Tran-

scriptional coactivator CRSP150) (Vita-

min D3 receptor-interacting protein com-

plex 150 kDa component) (DRIP150)

9282

Q9Y2X0 MED16_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 16 (Mediator complex subunit

16) (Thyroid hormone receptor-associated

protein 5) (Thyroid hormone receptor-

associated protein complex 95 kDa com-

ponent) (Trap95) (Vitamin D3 receptor-

interacting protein complex 92 kDa com-

ponent) (DRIP92)

10025
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Q9NVC6 MED17_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 17 (Activator-recruited cofac-

tor 77 kDa component) (ARC77) (Cofac-

tor required for Sp1 transcriptional activa-

tion subunit 6) (CRSP complex subunit 6)

(Mediator complex subunit 17) (Thyroid

hormone receptor-associated protein com-

plex 80 kDa component) (Trap80) (Tran-

scriptional coactivator CRSP77) (Vitamin

D3 receptor-interacting protein complex

80 kDa component) (DRIP80)

9440

Q9BUE0 MED18_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 18 (Mediator complex subunit

18) (p28b)

54797

A0JLT2 MED19_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 19 (Lung cancer metastasis-

related protein 1) (Mediator complex sub-

unit 19)

219541

Q15648 MED1_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 1 (Activator-recruited cofac-

tor 205 kDa component) (ARC205) (Me-

diator complex subunit 1) (Peroxisome

proliferator-activated receptor-binding

protein) (PBP) (PPAR-binding protein)

(Thyroid hormone receptor-associated

protein complex 220 kDa component)

(Trap220) (Thyroid receptor-interacting

protein 2) (TR-interacting protein 2)

(TRIP-2) (Vitamin D receptor-interacting

protein complex component DRIP205)

(p53 regulatory protein RB18A)

5469

Q9H944 MED20_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 20 (Mediator complex sub-

unit 20) (TRF-proximal protein homolog)

(hTRFP)

9477
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Q13503 MED21_HUMAN reviewed Mediator of RNA polymerase II tran-

scription subunit 21 (Mediator complex

subunit 21) (RNA polymerase II holoen-

zyme component SRB7) (RNAPII com-

plex component SRB7) (hSrb7)

9412

Q15528 MED22_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 22 (Mediator complex subunit

22) (Surfeit locus protein 5) (Surf-5)

6837

Q9ULK4 MED23_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 23 (Activator-recruited cofac-

tor 130 kDa component) (ARC130) (Co-

factor required for Sp1 transcriptional ac-

tivation subunit 3) (CRSP complex subunit

3) (Mediator complex subunit 23) (Pro-

tein sur-2 homolog) (hSur-2) (Transcrip-

tional coactivator CRSP130) (Vitamin D3

receptor-interacting protein complex 130

kDa component) (DRIP130)

9439

O75448 MED24_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 24 (Activator-recruited co-

factor 100 kDa component) (ARC100)

(Cofactor required for Sp1 transcriptional

activation subunit 4) (CRSP complex

subunit 4) (Mediator complex subunit

24) (Thyroid hormone receptor-associated

protein 4) (Thyroid hormone receptor-

associated protein complex 100 kDa com-

ponent) (Trap100) (hTRAP100) (Vitamin

D3 receptor-interacting protein complex

100 kDa component) (DRIP100)

9862

Q71SY5 MED25_HUMAN reviewed Mediator of RNA polymerase II tran-

scription subunit 25 (Activator interaction

domain-containing protein 1) (Activator-

recruited cofactor 92 kDa component)

(ARC92) (Mediator complex subunit 25)

(p78)

81857
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O95402 MED26_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 26 (Activator-recruited cofac-

tor 70 kDa component) (ARC70) (Cofac-

tor required for Sp1 transcriptional acti-

vation subunit 7) (CRSP complex subunit

7) (Mediator complex subunit 26) (Tran-

scriptional coactivator CRSP70)

9441

Q6P2C8 MED27_HUMAN reviewed Mediator of RNA polymerase II tran-

scription subunit 27 (Cofactor required

for Sp1 transcriptional activation subunit

8) (CRSP complex subunit 8) (Mediator

complex subunit 27) (P37 TRAP/SMC-

C/PC2 subunit) (Transcriptional coactiva-

tor CRSP34)

9442

Q9H204 MED28_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 28 (Endothelial-derived pro-

tein 1) (Mediator complex subunit 28)

(Merlin and Grb2-interacting cytoskeletal

protein) (Magicin) (Tumor angiogenesis

marker EG-1)

80306

Q9NX70 MED29_HUMAN reviewed Mediator of RNA polymerase II tran-

scription subunit 29 (Intersex-like protein)

(Mediator complex subunit 29)

55588

Q96HR3 MED30_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 30 (Mediator complex subunit

30) (TRAP/Mediator complex component

TRAP25) (Thyroid hormone receptor-

associated protein 6) (Thyroid hormone

receptor-associated protein complex 25

kDa component) (Trap25)

90390

Q9NPJ6 MED4_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 4 (Activator-recruited cofac-

tor 36 kDa component) (ARC36) (Me-

diator complex subunit 4) (TRAP/SMC-

C/PC2 subunit p36 subunit) (Vitamin D3

receptor-interacting protein complex 36

kDa component) (DRIP36)

29079
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O75586 MED6_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 6 (Activator-recruited cofac-

tor 33 kDa component) (ARC33) (Medi-

ator complex subunit 6) (hMed6) (Renal

carcinoma antigen NY-REN-28)

10001

O43513 MED7_HUMAN reviewed Mediator of RNA polymerase II tran-

scription subunit 7 (hMED7) (Activator-

recruited cofactor 34 kDa component)

(ARC34) (Cofactor required for Sp1 tran-

scriptional activation subunit 9) (CRSP

complex subunit 9) (Mediator complex

subunit 7) (RNA polymerase transcrip-

tional regulation mediator subunit 7

homolog) (Transcriptional coactivator

CRSP33)

9443

Q96G25 MED8_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 8 (Activator-recruited cofac-

tor 32 kDa component) (ARC32) (Media-

tor complex subunit 8)

112950

Q9NWA0 MED9_HUMAN reviewed Mediator of RNA polymerase II transcrip-

tion subunit 9 (Mediator complex subunit

9)

55090

Q9H4Z3 PCIF1_HUMAN reviewed Phosphorylated CTD-interacting factor 1 63935

P24928 RPB1_HUMAN reviewed DNA-directed RNA polymerase II sub-

unit RPB1 (RNA polymerase II sub-

unit B1) (EC 2.7.7.6) (DNA-directed

RNA polymerase II subunit A) (DNA-

directed RNA polymerase III largest sub-

unit) (RNA-directed RNA polymerase II

subunit RPB1) (EC 2.7.7.48)

5430

Q7RTU7 SCX_HUMAN reviewed Basic helix-loop-helix transcription factor

scleraxis (Class A basic helix-loop-helix

protein 41) (bHLHa41) (Class A basic

helix-loop-helix protein 48) (bHLHa48)

100129885,642658

P48436 SOX9_HUMAN reviewed Transcription factor SOX-9 6662
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Q9H668 STN1_HUMAN reviewed CST complex subunit STN1

(Oligonucleotide/oligosaccharide-binding

fold-containing protein 1) (Suppressor of

cdc thirteen homolog)

79991

O95379 TFIP8_HUMAN reviewed Tumor necrosis factor alpha-induced

protein 8 (TNF alpha-induced pro-

tein 8) (Head and neck tumor and

metastasis-related protein) (MDC-3.13)

(NF-kappa-B-inducible DED-containing

protein) (NDED) (SCC-S2) (TNF-induced

protein GG2-1)

25816

Q8TB05 UBAD1_HUMAN reviewed UBA-like domain-containing protein 1 124402

Q96K76 UBP47_HUMAN reviewed Ubiquitin carboxyl-terminal hydrolase 47

(EC 3.4.19.12) (Deubiquitinating enzyme

47) (Ubiquitin thioesterase 47) (Ubiquitin-

specific-processing protease 47)

55031

Q70CQ1 UBP49_HUMAN reviewed Ubiquitin carboxyl-terminal hydrolase 49

(EC 3.4.19.12) (Deubiquitinating enzyme

49) (Ubiquitin thioesterase 49) (Ubiquitin-

specific-processing protease 49)

25862

Q16587 ZNF74_HUMAN reviewed Zinc finger protein 74 (Zinc finger protein

520) (hZNF7)

7625

Q9H2M2 Q9H2M2_HUMAN unreviewed Estrogen receptor alpha

TABLE A.5: Combi-s52 Protein Annotation and GeneIDs

Entry Entry name Status Protein names Cross-
reference
GENEID

Entry Entry name Status Protein names Cross-

reference

(GENEID)

Q96NW4 ANR27_HUMAN reviewed Ankyrin repeat domain-containing protein

27 (VPS9 domain-containing protein)

84079
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O43307 ARHG9_HUMAN reviewed Rho guanine nucleotide exchange fac-

tor 9 (Collybistin) (PEM-2 homolog)

(Rac/Cdc42 guanine nucleotide exchange

factor 9)

23229

Q9NR48 ASH1L_HUMAN reviewed Histone-lysine N-methyltransferase

ASH1L (EC 2.1.1.43) (ASH1-like pro-

tein) (huASH1) (Absent small and

homeotic disks protein 1 homolog)

(Lysine N-methyltransferase 2H)

55870

Q9P0P8 CF203_HUMAN reviewed Uncharacterized protein C6orf203 51250

Q9NWM3CUED1_HUMAN reviewed CUE domain-containing protein 1 404093

Q7LFL8 CXXC5_HUMAN reviewed CXXC-type zinc finger protein 5 (CF5)

(Putative MAPK-activating protein PM08)

(Putative NF-kappa-B-activating protein

102) (Retinoid-inducible nuclear factor)

(RINF)

51523

Q8TB52 FBX30_HUMAN reviewed F-box only protein 30 84085

P69892 HBG2_HUMAN reviewed Hemoglobin subunit gamma-2 (Gamma-

2-globin) (Hb F Ggamma) (Hemoglobin

gamma-2 chain) (Hemoglobin gamma-G

chain)

3048

P31273 HXC8_HUMAN reviewed Homeobox protein Hox-C8 (Homeobox

protein Hox-3A)

3224

Q9H160 ING2_HUMAN reviewed Inhibitor of growth protein 2 (Inhibitor

of growth 1-like protein) (ING1Lp) (p32)

(p33ING2)

3622

Q96PE3 INP4A_HUMAN reviewed Type I inositol 3,4-bisphosphate 4-

phosphatase (EC 3.1.3.66) (Inositol

polyphosphate 4-phosphatase type I)

3631

Q9Y2U8 MAN1_HUMAN reviewed Inner nuclear membrane protein Man1

(LEM domain-containing protein 3)

23592

Q9ULH7 MKL2_HUMAN reviewed MKL/myocardin-like protein 2

(Megakaryoblastic leukemia 2)

(Myocardin-related transcription fac-

tor B) (MRTF-B)

57496

Q9NXD2 MTMRA_HUMAN reviewed Myotubularin-related protein 10 54893
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Q92886 NGN1_HUMAN reviewed Neurogenin-1 (NGN-1) (Class A ba-

sic helix-loop-helix protein 6) (bHLHa6)

(Neurogenic basic-helix-loop-helix pro-

tein) (Neurogenic differentiation factor 3)

(NeuroD3)

4762

Q8WUA2 PPIL4_HUMAN reviewed Peptidyl-prolyl cis-trans isomerase-like 4

(PPIase) (EC 5.2.1.8) (Cyclophilin-like

protein PPIL4) (Rotamase PPIL4)

85313

P51817 PRKX_HUMAN reviewed cAMP-dependent protein kinase cat-

alytic subunit PRKX (PrKX) (Protein

kinase X) (Protein kinase X-linked)

(Serine/threonine-protein kinase PRKX)

(EC 2.7.11.1) (Protein kinase PKX1)

5613

Q15771 RAB30_HUMAN reviewed Ras-related protein Rab-30 27314

Q9BWF3 RBM4_HUMAN reviewed RNA-binding protein 4 (Lark homolog)

(hLark) (RNA-binding motif protein 4)

(RNA-binding motif protein 4a)

5936

Q6ZNA4 RN111_HUMAN reviewed E3 ubiquitin-protein ligase Arkadia (EC

6.3.2.-) (RING finger protein 111)

54778

Q9NUM3 S39A9_HUMAN reviewed Zinc transporter ZIP9 (Solute carrier fam-

ily 39 member 9) (Zrt- and Irt-like protein

9) (ZIP-9)

55334

O75995 SASH3_HUMAN reviewed SAM and SH3 domain-containing protein

3 (SH3 protein expressed in lymphocytes

homolog)

54440

Q15797 SMAD1_HUMAN reviewed Mothers against decapentaplegic homolog

1 (MAD homolog 1) (Mothers against

DPP homolog 1) (JV4-1) (Mad-related

protein 1) (SMAD family member 1)

(SMAD 1) (Smad1) (hSMAD1) (Trans-

forming growth factor-beta-signaling pro-

tein 1) (BSP-1)

4086

Q99717 SMAD5_HUMAN reviewed Mothers against decapentaplegic homolog

5 (MAD homolog 5) (Mothers against

DPP homolog 5) (JV5-1) (SMAD family

member 5) (SMAD 5) (Smad5) (hSmad5)

4090
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O43541 SMAD6_HUMAN reviewed Mothers against decapentaplegic homolog

6 (MAD homolog 6) (Mothers against

DPP homolog 6) (SMAD family member

6) (SMAD 6) (Smad6) (hSMAD6)

4091

O15105 SMAD7_HUMAN reviewed Mothers against decapentaplegic homolog

7 (MAD homolog 7) (Mothers against

DPP homolog 7) (Mothers against de-

capentaplegic homolog 8) (MAD homolog

8) (Mothers against DPP homolog 8)

(SMAD family member 7) (SMAD 7)

(Smad7) (hSMAD7)

4092

Q9HCE7 SMUF1_HUMAN reviewed E3 ubiquitin-protein ligase SMURF1

(hSMURF1) (EC 6.3.2.-) (SMAD ubiq-

uitination regulatory factor 1) (SMAD-

specific E3 ubiquitin-protein ligase

1)

57154

Q9HAU4 SMUF2_HUMAN reviewed E3 ubiquitin-protein ligase SMURF2

(hSMURF2) (EC 6.3.2.-) (SMAD ubiq-

uitination regulatory factor 2) (SMAD-

specific E3 ubiquitin-protein ligase

2)

64750

P35711 SOX5_HUMAN reviewed Transcription factor SOX-5 6660

Q9BT81 SOX7_HUMAN reviewed Transcription factor SOX-7 83595

Q9Y3F4 STRAP_HUMAN reviewed Serine-threonine kinase receptor-

associated protein (MAP activator with

WD repeats) (UNR-interacting protein)

(WD-40 repeat protein PT-WD)

11171

O95625 ZBT11_HUMAN reviewed Zinc finger and BTB domain-containing

protein 11

27107

Q8NCP5 ZBT44_HUMAN reviewed Zinc finger and BTB domain-containing

protein 44 (BTB/POZ domain-containing

protein 15) (Zinc finger protein 851)

29068

Q9NYG2 ZDHC3_HUMAN reviewed Palmitoyltransferase ZDHHC3 (EC

2.3.1.-) (Protein DHHC1) (Zinc finger

DHHC domain-containing protein 3)

(DHHC-3) (Zinc finger protein 373)

51304

Q9Y2H8 ZN510_HUMAN reviewed Zinc finger protein 510 22869
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P36508 ZNF76_HUMAN reviewed Zinc finger protein 76 (Zinc finger protein

523)

7629

P17098 ZNF8_HUMAN reviewed Zinc finger protein 8 (Zinc finger protein

HF.18)

7554

Q8NAM6 ZSCA4_HUMAN reviewed Zinc finger and SCAN domain-containing

protein 4 (Zinc finger protein 494)

201516

TABLE A.6: Combi-s46 Protein Annotation and GeneIDs

Entry Entry name Status Protein names Cross-
reference
GENEID

Entry Entry name Status Protein names Cross-

reference

(GENEID)

P78314 3BP2_HUMAN reviewed SH3 domain-binding protein 2 (3BP-2) 6452

P50406 5HT6R_HUMAN reviewed 5-hydroxytryptamine receptor 6 (5-HT-6)

(5-HT6) (Serotonin receptor 6)

3362

P42684 ABL2_HUMAN reviewed Abelson tyrosine-protein kinase 2 (EC

2.7.10.2) (Abelson murine leukemia vi-

ral oncogene homolog 2) (Abelson-related

gene protein) (Tyrosine-protein kinase

ARG)

27

Q9UM73 ALK_HUMAN reviewed ALK tyrosine kinase receptor (EC

2.7.10.1) (Anaplastic lymphoma kinase)

(CD antigen CD246)

238

Q9ULH1 ASAP1_HUMAN reviewed Arf-GAP with SH3 domain, ANK

repeat and PH domain-containing pro-

tein 1 (130 kDa phosphatidylinositol

4,5-bisphosphate-dependent ARF1

GTPase-activating protein) (ADP-

ribosylation factor-directed GTPase-

activating protein 1) (ARF GTPase-

activating protein 1) (Development and

differentiation-enhancing factor 1) (DEF-

1) (Differentiation-enhancing factor 1)

(PIP2-dependent ARF1 GAP)

50807
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P56945 BCAR1_HUMAN reviewed Breast cancer anti-estrogen resistance pro-

tein 1 (CRK-associated substrate) (Cas

scaffolding protein family member 1)

(p130cas)

9564

P11274 BCR_HUMAN reviewed Breakpoint cluster region protein (EC

2.7.11.1) (Renal carcinoma antigen NY-

REN-26)

613

P51451 BLK_HUMAN reviewed Tyrosine-protein kinase Blk (EC 2.7.10.2)

(B lymphocyte kinase) (p55-Blk)

640

Q8WV28 BLNK_HUMAN reviewed B-cell linker protein (B-cell adapter con-

taining a SH2 domain protein) (B-cell

adapter containing a Src homology 2 do-

main protein) (Cytoplasmic adapter pro-

tein) (Src homology 2 domain-containing

leukocyte protein of 65 kDa) (SLP-65)

29760

Q06187 BTK_HUMAN reviewed Tyrosine-protein kinase BTK (EC

2.7.10.2) (Agammaglobulinemia tyrosine

kinase) (ATK) (B-cell progenitor kinase)

(BPK) (Bruton tyrosine kinase)

695

Q7Z6A9 BTLA_HUMAN reviewed B- and T-lymphocyte attenuator (B- and T-

lymphocyte-associated protein) (CD anti-

gen CD272)

151888

P04040 CATA_HUMAN reviewed Catalase (EC 1.11.1.6) 847

Q13191 CBLB_HUMAN reviewed E3 ubiquitin-protein ligase CBL-B (EC

6.3.2.-) (Casitas B-lineage lymphoma

proto-oncogene b) (RING finger protein

56) (SH3-binding protein CBL-B) (Signal

transduction protein CBL-B)

868

P22681 CBL_HUMAN reviewed E3 ubiquitin-protein ligase CBL (EC

6.3.2.-) (Casitas B-lineage lymphoma

proto-oncogene) (Proto-oncogene c-Cbl)

(RING finger protein 55) (Signal transduc-

tion protein CBL)

867

P15391 CD19_HUMAN reviewed B-lymphocyte antigen CD19 (B-

lymphocyte surface antigen B4) (Dif-

ferentiation antigen CD19) (T-cell surface

antigen Leu-12) (CD antigen CD19)

930
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P20273 CD22_HUMAN reviewed B-cell receptor CD22 (B-lymphocyte cell

adhesion molecule) (BL-CAM) (Sialic

acid-binding Ig-like lectin 2) (Siglec-2)

(T-cell surface antigen Leu-14) (CD anti-

gen CD22)

933

P10747 CD28_HUMAN reviewed T-cell-specific surface glycoprotein CD28

(TP44) (CD antigen CD28)

940

Q9Y5K6 CD2AP_HUMAN reviewed CD2-associated protein (Adapter protein

CMS) (Cas ligand with multiple SH3 do-

mains)

23607

P20138 CD33_HUMAN reviewed Myeloid cell surface antigen CD33 (Sialic

acid-binding Ig-like lectin 3) (Siglec-3)

(gp67) (CD antigen CD33)

945

P04234 CD3D_HUMAN reviewed T-cell surface glycoprotein CD3 delta

chain (T-cell receptor T3 delta chain) (CD

antigen CD3d)

915

P07766 CD3E_HUMAN reviewed T-cell surface glycoprotein CD3 epsilon

chain (T-cell surface antigen T3/Leu-4 ep-

silon chain) (CD antigen CD3e)

916

P20963 CD3Z_HUMAN reviewed T-cell surface glycoprotein CD3 zeta chain

(T-cell receptor T3 zeta chain) (CD anti-

gen CD247)

919

P06127 CD5_HUMAN reviewed T-cell surface glycoprotein CD5 (Lympho-

cyte antigen T1/Leu-1) (CD antigen CD5)

921

P21854 CD72_HUMAN reviewed B-cell differentiation antigen CD72 (Lyb-

2) (CD antigen CD72)

971

P11912 CD79A_HUMAN reviewed B-cell antigen receptor complex-

associated protein alpha chain (Ig-

alpha) (MB-1 membrane glycoprotein)

(Membrane-bound immunoglobulin-

associated protein) (Surface IgM-

associated protein) (CD antigen CD79a)

973

P40259 CD79B_HUMAN reviewed B-cell antigen receptor complex-

associated protein beta chain (B-cell-

specific glycoprotein B29) (Ig-beta)

(Immunoglobulin-associated B29 protein)

(CD antigen CD79b)

974
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P33681 CD80_HUMAN reviewed T-lymphocyte activation antigen CD80

(Activation B7-1 antigen) (BB1) (CTLA-

4 counter-receptor B7.1) (B7) (CD antigen

CD80)

941

P42081 CD86_HUMAN reviewed T-lymphocyte activation antigen CD86

(Activation B7-2 antigen) (B70) (BU63)

(CTLA-4 counter-receptor B7.2) (FUN-1)

(CD antigen CD86)

942

P01732 CD8A_HUMAN reviewed T-cell surface glycoprotein CD8 alpha

chain (T-lymphocyte differentiation anti-

gen T8/Leu-2) (CD antigen CD8a)

925

P10966 CD8B_HUMAN reviewed T-cell surface glycoprotein CD8 beta

chain (CD antigen CD8b)

926

Q9NSE2 CISH_HUMAN reviewed Cytokine-inducible SH2-containing pro-

tein (CIS) (CIS-1) (Protein G18) (Sup-

pressor of cytokine signaling) (SOCS)

1154

P46109 CRKL_HUMAN reviewed Crk-like protein 1399

P46108 CRK_HUMAN reviewed Adapter molecule crk (Proto-oncogene c-

Crk) (p38)

1398

P07333 CSF1R_HUMAN reviewed Macrophage colony-stimulating factor

1 receptor (CSF-1 receptor) (CSF-1-R)

(CSF-1R) (M-CSF-R) (EC 2.7.10.1)

(Proto-oncogene c-Fms) (CD antigen

CD115)

1436

Q99062 CSF3R_HUMAN reviewed Granulocyte colony-stimulating factor re-

ceptor (G-CSF receptor) (G-CSF-R) (CD

antigen CD114)

1441

P41240 CSK_HUMAN reviewed Tyrosine-protein kinase CSK (EC

2.7.10.2) (C-Src kinase) (Protein-tyrosine

kinase CYL)

1445

P16410 CTLA4_HUMAN reviewed Cytotoxic T-lymphocyte protein 4 (Cyto-

toxic T-lymphocyte-associated antigen 4)

(CTLA-4) (CD antigen CD152)

1493

P58505 CU058_HUMAN reviewed Uncharacterized protein C21orf58 54058
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Q9UN19 DAPP1_HUMAN reviewed Dual adapter for phosphotyrosine and 3-

phosphotyrosine and 3-phosphoinositide

(hDAPP1) (B lymphocyte adapter protein

Bam32) (B-cell adapter molecule of 32

kDa)

27071

Q9UJU6 DBNL_HUMAN reviewed Drebrin-like protein (Cervical SH3P7)

(Cervical mucin-associated protein)

(Drebrin-F) (HPK1-interacting protein

of 55 kDa) (HIP-55) (SH3 domain-

containing protein 7)

28988

Q08345 DDR1_HUMAN reviewed Epithelial discoidin domain-containing re-

ceptor 1 (Epithelial discoidin domain re-

ceptor 1) (EC 2.7.10.1) (CD167 antigen-

like family member A) (Cell adhesion ki-

nase) (Discoidin receptor tyrosine kinase)

(HGK2) (Mammary carcinoma kinase 10)

(MCK-10) (Protein-tyrosine kinase 3A)

(Protein-tyrosine kinase RTK-6) (TRK E)

(Tyrosine kinase DDR) (Tyrosine-protein

kinase CAK) (CD antigen CD167a)

780

Q6P3S1 DEN1B_HUMAN reviewed DENN domain-containing protein 1B

(Connecdenn 2) (Protein FAM31B)

163486

Q99704 DOK1_HUMAN reviewed Docking protein 1 (Downstream of tyro-

sine kinase 1) (p62(dok)) (pp62)

1796

O60496 DOK2_HUMAN reviewed Docking protein 2 (Downstream of tyro-

sine kinase 2) (p56(dok-2))

9046

Q8TEW6 DOK4_HUMAN reviewed Docking protein 4 (Downstream of tyro-

sine kinase 4) (Insulin receptor substrate

5) (IRS-5) (IRS5)

55715

Q9P104 DOK5_HUMAN reviewed Docking protein 5 (Downstream of tyro-

sine kinase 5) (Insulin receptor substrate

6) (IRS-6) (IRS6)

55816

Q6PKX4 DOK6_HUMAN reviewed Docking protein 6 (Downstream of tyro-

sine kinase 6)

220164
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P20827 EFNA1_HUMAN reviewed Ephrin-A1 (EPH-related receptor tyrosine

kinase ligand 1) (LERK-1) (Immediate

early response protein B61) (Tumor necro-

sis factor alpha-induced protein 4) (TNF

alpha-induced protein 4) [Cleaved into:

Ephrin-A1, secreted form]

1942

P00533 EGFR_HUMAN reviewed Epidermal growth factor receptor (EC

2.7.10.1) (Proto-oncogene c-ErbB-1) (Re-

ceptor tyrosine-protein kinase erbB-1)

1956

P01133 EGF_HUMAN reviewed Pro-epidermal growth factor (EGF)

[Cleaved into: Epidermal growth factor

(Urogastrone)]

1950

P29317 EPHA2_HUMAN reviewed Ephrin type-A receptor 2 (EC 2.7.10.1)

(Epithelial cell kinase) (Tyrosine-protein

kinase receptor ECK)

1969

P54762 EPHB1_HUMAN reviewed Ephrin type-B receptor 1 (EC 2.7.10.1)

(ELK) (EPH tyrosine kinase 2) (EPH-

like kinase 6) (EK6) (hEK6) (Neuronally-

expressed EPH-related tyrosine kinase)

(NET) (Tyrosine-protein kinase receptor

EPH-2)

2047

P54753 EPHB3_HUMAN reviewed Ephrin type-B receptor 3 (EC 2.7.10.1)

(EPH-like tyrosine kinase 2) (EPH-like

kinase 2) (Embryonic kinase 2) (EK2)

(hEK2) (Tyrosine-protein kinase TYRO6)

2049

P19235 EPOR_HUMAN reviewed Erythropoietin receptor (EPO-R) 2057

P01588 EPO_HUMAN reviewed Erythropoietin (Epoetin) 2056

P04626 ERBB2_HUMAN reviewed Receptor tyrosine-protein kinase erbB-2

(EC 2.7.10.1) (Metastatic lymph node

gene 19 protein) (MLN 19) (Proto-

oncogene Neu) (Proto-oncogene c-ErbB-

2) (Tyrosine kinase-type cell surface re-

ceptor HER2) (p185erbB2) (CD antigen

CD340)

2064
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P21860 ERBB3_HUMAN reviewed Receptor tyrosine-protein kinase erbB-3

(EC 2.7.10.1) (Proto-oncogene-like pro-

tein c-ErbB-3) (Tyrosine kinase-type cell

surface receptor HER3)

2065

Q15303 ERBB4_HUMAN reviewed Receptor tyrosine-protein kinase erbB-

4 (EC 2.7.10.1) (Proto-oncogene-like

protein c-ErbB-4) (Tyrosine kinase-type

cell surface receptor HER4) (p180erbB4)

[Cleaved into: ERBB4 intracellular

domain (4ICD) (E4ICD) (s80HER4)]

2066

Q9UJM3 ERRFI_HUMAN reviewed ERBB receptor feedback inhibitor 1

(Mitogen-inducible gene 6 protein) (MIG-

6)

54206

Q05397 FAK1_HUMAN reviewed Focal adhesion kinase 1 (FADK 1) (EC

2.7.10.2) (Focal adhesion kinase-related

nonkinase) (FRNK) (Protein phosphatase

1 regulatory subunit 71) (PPP1R71)

(Protein-tyrosine kinase 2) (p125FAK)

(pp125FAK)

5747

Q14289 FAK2_HUMAN reviewed Protein-tyrosine kinase 2-beta (EC

2.7.10.2) (Calcium-dependent tyrosine

kinase) (CADTK) (Calcium-regulated

non-receptor proline-rich tyrosine kinase)

(Cell adhesion kinase beta) (CAK-beta)

(CAKB) (Focal adhesion kinase 2)

(FADK 2) (Proline-rich tyrosine kinase 2)

(Related adhesion focal tyrosine kinase)

(RAFTK)

2185

P12319 FCERA_HUMAN reviewed High affinity immunoglobulin epsilon re-

ceptor subunit alpha (Fc-epsilon RI-alpha)

(FcERI) (IgE Fc receptor subunit alpha)

2205

Q01362 FCERB_HUMAN reviewed High affinity immunoglobulin epsilon re-

ceptor subunit beta (FcERI) (Fc epsilon

receptor I beta-chain) (IgE Fc recep-

tor subunit beta) (Membrane-spanning 4-

domains subfamily A member 2)

2206
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P30273 FCERG_HUMAN reviewed High affinity immunoglobulin epsilon

receptor subunit gamma (Fc receptor

gamma-chain) (FcRgamma) (Fc-epsilon

RI-gamma) (IgE Fc receptor subunit

gamma) (FceRI gamma)

2207

P12318 FCG2A_HUMAN reviewed Low affinity immunoglobulin gamma Fc

region receptor II-a (IgG Fc receptor II-a)

(CDw32) (Fc-gamma RII-a) (Fc-gamma-

RIIa) (FcRII-a) (CD antigen CD32)

2212

P31994 FCG2B_HUMAN reviewed Low affinity immunoglobulin gamma Fc

region receptor II-b (IgG Fc receptor II-b)

(CDw32) (Fc-gamma RII-b) (Fc-gamma-

RIIb) (FcRII-b) (CD antigen CD32)

2213

P12314 FCGR1_HUMAN reviewed High affinity immunoglobulin gamma Fc

receptor I (IgG Fc receptor I) (Fc-gamma

RI) (FcRI) (Fc-gamma RIA) (Fcgam-

maRIa) (CD antigen CD64)

2209

P09769 FGR_HUMAN reviewed Tyrosine-protein kinase Fgr (EC 2.7.10.2)

(Gardner-Rasheed feline sarcoma viral (v-

fgr) oncogene homolog) (Proto-oncogene

c-Fgr) (p55-Fgr) (p58-Fgr) (p58c-Fgr)

2268

P36888 FLT3_HUMAN reviewed Receptor-type tyrosine-protein kinase

FLT3 (EC 2.7.10.1) (FL cytokine re-

ceptor) (Fetal liver kinase-2) (FLK-2)

(Fms-like tyrosine kinase 3) (FLT-3)

(Stem cell tyrosine kinase 1) (STK-1) (CD

antigen CD135)

2322

Q8WU20 FRS2_HUMAN reviewed Fibroblast growth factor receptor sub-

strate 2 (FGFR substrate 2) (FGFR-

signaling adaptor SNT) (Suc1-associated

neurotrophic factor target 1) (SNT-1)

10818

O15117 FYB_HUMAN reviewed FYN-binding protein (Adhesion and

degranulation promoting adaptor protein)

(ADAP) (FYB-120/130) (p120/p130)

(FYN-T-binding protein) (SLAP-130)

(SLP-76-associated phosphoprotein)

2533
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P06241 FYN_HUMAN reviewed Tyrosine-protein kinase Fyn (EC 2.7.10.2)

(Proto-oncogene Syn) (Proto-oncogene c-

Fyn) (Src-like kinase) (SLK) (p59-Fyn)

2534

Q13480 GAB1_HUMAN reviewed GRB2-associated-binding protein 1

(GRB2-associated binder 1) (Growth

factor receptor bound protein 2-associated

protein 1)

2549

Q9UQC2 GAB2_HUMAN reviewed GRB2-associated-binding protein 2

(GRB2-associated binder 2) (Growth

factor receptor bound protein 2-associated

protein 2) (pp100)

9846

Q9H706 GAREM_HUMAN reviewed GRB2-associated and regulator of MAPK

protein (GRB2-associated and regulator of

MAPK1)

64762

Q14393 GAS6_HUMAN reviewed Growth arrest-specific protein 6 (GAS-6)

(AXL receptor tyrosine kinase ligand)

2621

P39905 GDNF_HUMAN reviewed Glial cell line-derived neurotrophic factor

(hGDNF) (Astrocyte-derived trophic fac-

tor) (ATF)

2668

P56159 GFRA1_HUMAN reviewed GDNF family receptor alpha-1 (GDNF re-

ceptor alpha-1) (GDNFR-alpha-1) (GFR-

alpha-1) (RET ligand 1) (TGF-beta-

related neurotrophic factor receptor 1)

2674

O00451 GFRA2_HUMAN reviewed GDNF family receptor alpha-2 (GDNF re-

ceptor alpha-2) (GDNFR-alpha-2) (GFR-

alpha-2) (GDNF receptor beta) (GDNFR-

beta) (Neurturin receptor alpha) (NRTNR-

alpha) (NTNR-alpha) (RET ligand 2)

(TGF-beta-related neurotrophic factor re-

ceptor 2)

2675

P10912 GHR_HUMAN reviewed Growth hormone receptor (GH receptor)

(Somatotropin receptor) [Cleaved into:

Growth hormone-binding protein (GH-

binding protein) (GHBP) (Serum-binding

protein)]

2690

Q9HCN6 GPVI_HUMAN reviewed Platelet glycoprotein VI (GPVI) (Glyco-

protein 6)

51206
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O75791 GRAP2_HUMAN reviewed GRB2-related adapter protein 2 (Adapter

protein GRID) (GRB-2-like protein)

(GRB2L) (GRBLG) (GRBX) (Grf40

adapter protein) (Grf-40) (Growth factor

receptor-binding protein) (Hematopoietic

cell-associated adapter protein GrpL)

(P38) (Protein GADS) (SH3-SH2-SH3

adapter Mona)

9402

Q13588 GRAP_HUMAN reviewed GRB2-related adapter protein 10750

Q13322 GRB10_HUMAN reviewed Growth factor receptor-bound protein

10 (GRB10 adapter protein) (Insulin

receptor-binding protein Grb-IR)

2887

Q14449 GRB14_HUMAN reviewed Growth factor receptor-bound protein 14

(GRB14 adapter protein)

2888

P62993 GRB2_HUMAN reviewed Growth factor receptor-bound protein 2

(Adapter protein GRB2) (Protein Ash)

(SH2/SH3 adapter GRB2)

2885

Q14451 GRB7_HUMAN reviewed Growth factor receptor-bound protein 7

(B47) (Epidermal growth factor receptor

GRB-7) (GRB7 adapter protein)

2886

P08631 HCK_HUMAN reviewed Tyrosine-protein kinase HCK (EC

2.7.10.2) (Hematopoietic cell kinase)

(Hemopoietic cell kinase) (p59-HCK/p60-

HCK) (p59Hck) (p61Hck)

3055

P13747 HLAE_HUMAN reviewed HLA class I histocompatibility antigen, al-

pha chain E (MHC class I antigen E)

3133

P08069 IGF1R_HUMAN reviewed Insulin-like growth factor 1 receptor

(EC 2.7.10.1) (Insulin-like growth fac-

tor I receptor) (IGF-I receptor) (CD anti-

gen CD221) [Cleaved into: Insulin-like

growth factor 1 receptor alpha chain

Insulin-like growth factor 1 receptor beta

chain]

3480

P01589 IL2RA_HUMAN reviewed Interleukin-2 receptor subunit alpha (IL-

2 receptor subunit alpha) (IL-2-RA) (IL-

2R subunit alpha) (IL2-RA) (TAC antigen)

(p55) (CD antigen CD25)

3559
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P14784 IL2RB_HUMAN reviewed Interleukin-2 receptor subunit beta (IL-

2 receptor subunit beta) (IL-2R subunit

beta) (IL-2RB) (High affinity IL-2 recep-

tor subunit beta) (p70-75) (p75) (CD anti-

gen CD122)

3560

P31785 IL2RG_HUMAN reviewed Cytokine receptor common subunit

gamma (Interleukin-2 receptor subunit

gamma) (IL-2 receptor subunit gamma)

(IL-2R subunit gamma) (IL-2RG) (gam-

maC) (p64) (CD antigen CD132)

3561

P60568 IL2_HUMAN reviewed Interleukin-2 (IL-2) (T-cell growth factor)

(TCGF) (Aldesleukin)

3558

P26951 IL3RA_HUMAN reviewed Interleukin-3 receptor subunit alpha (IL-3

receptor subunit alpha) (IL-3R subunit al-

pha) (IL-3R-alpha) (IL-3RA) (CD antigen

CD123)

3563

P32927 IL3RB_HUMAN reviewed Cytokine receptor common subunit beta

(CDw131) (GM-CSF/IL-3/IL-5 recep-

tor common beta subunit) (CD antigen

CD131)

1439

P24394 IL4RA_HUMAN reviewed Interleukin-4 receptor subunit alpha (IL-

4 receptor subunit alpha) (IL-4R sub-

unit alpha) (IL-4R-alpha) (IL-4RA) (CD

antigen CD124) [Cleaved into: Soluble

interleukin-4 receptor subunit alpha (Sol-

uble IL-4 receptor subunit alpha) (Solu-

ble IL-4R-alpha) (sIL4Ralpha/prot) (IL-4-

binding protein) (IL4-BP)]

3566

P08887 IL6RA_HUMAN reviewed Interleukin-6 receptor subunit alpha (IL-

6 receptor subunit alpha) (IL-6R subunit

alpha) (IL-6R-alpha) (IL-6RA) (IL-6R 1)

(Membrane glycoprotein 80) (gp80) (CD

antigen CD126)

3570
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P40189 IL6RB_HUMAN reviewed Interleukin-6 receptor subunit beta

(IL-6 receptor subunit beta) (IL-6R

subunit beta) (IL-6R-beta) (IL-6RB)

(CDw130) (Interleukin-6 signal trans-

ducer) (Membrane glycoprotein 130)

(gp130) (Oncostatin-M receptor subunit

alpha) (CD antigen CD130)

3572

P17181 INAR1_HUMAN reviewed Interferon alpha/beta receptor 1 (IFN-R-

1) (IFN-alpha/beta receptor 1) (Cytokine

receptor class-II member 1) (Cytokine

receptor family 2 member 1) (CRF2-1)

(Type I interferon receptor 1)

3454

P06213 INSR_HUMAN reviewed Insulin receptor (IR) (EC 2.7.10.1) (CD

antigen CD220) [Cleaved into: Insulin re-

ceptor subunit alpha Insulin receptor sub-

unit beta]

3643

P35568 IRS1_HUMAN reviewed Insulin receptor substrate 1 (IRS-1) 3667

Q9Y4H2 IRS2_HUMAN reviewed Insulin receptor substrate 2 (IRS-2) 8660

O14654 IRS4_HUMAN reviewed Insulin receptor substrate 4 (IRS-4) (160

kDa phosphotyrosine protein) (py160)

(Phosphoprotein of 160 kDa) (pp160)

8471

Q08881 ITK_HUMAN reviewed Tyrosine-protein kinase ITK/TSK (EC

2.7.10.2) (Interleukin-2-inducible T-cell

kinase) (IL-2-inducible T-cell kinase)

(Kinase EMT) (T-cell-specific kinase)

(Tyrosine-protein kinase Lyk)

3702

P23458 JAK1_HUMAN reviewed Tyrosine-protein kinase JAK1 (EC

2.7.10.2) (Janus kinase 1) (JAK-1)

3716

O60674 JAK2_HUMAN reviewed Tyrosine-protein kinase JAK2 (EC

2.7.10.2) (Janus kinase 2) (JAK-2)

3717

P52333 JAK3_HUMAN reviewed Tyrosine-protein kinase JAK3 (EC

2.7.10.2) (Janus kinase 3) (JAK-3)

(Leukocyte janus kinase) (L-JAK)

3718

Q96N16 JKIP1_HUMAN reviewed Janus kinase and microtubule-interacting

protein 1 (GABA-B receptor-binding pro-

tein) (Multiple alpha-helices and RNA-

linker protein 1) (Marlin-1)

152789
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Q07666 KHDR1_HUMAN reviewed KH domain-containing, RNA-binding,

signal transduction-associated protein 1

(GAP-associated tyrosine phosphoprotein

p62) (Src-associated in mitosis 68 kDa

protein) (Sam68) (p21 Ras GTPase-

activating protein-associated p62) (p68)

10657

P43628 KI2L3_HUMAN reviewed Killer cell immunoglobulin-like receptor

2DL3 (CD158 antigen-like family mem-

ber B2) (KIR-023GB) (Killer inhibitory

receptor cl 2-3) (MHC class I NK cell

receptor) (NKAT2a) (NKAT2b) (Natural

killer-associated transcript 2) (NKAT-2)

(p58 natural killer cell receptor clone CL-

6) (p58 NK receptor CL-6) (p58.2 MHC

class-I-specific NK receptor) (CD antigen

CD158b2)

3804

P10721 KIT_HUMAN reviewed Mast/stem cell growth factor receptor

Kit (SCFR) (EC 2.7.10.1) (Piebald trait

protein) (PBT) (Proto-oncogene c-Kit)

(Tyrosine-protein kinase Kit) (p145 c-

kit) (v-kit Hardy-Zuckerman 4 feline sar-

coma viral oncogene homolog) (CD anti-

gen CD117)

3815

Q04759 KPCT_HUMAN reviewed Protein kinase C theta type (EC 2.7.11.13)

(nPKC-theta)

5588

P43405 KSYK_HUMAN reviewed Tyrosine-protein kinase SYK (EC

2.7.10.2) (Spleen tyrosine kinase) (p72-

Syk)

6850

Q6GTX8 LAIR1_HUMAN reviewed Leukocyte-associated immunoglobulin-

like receptor 1 (LAIR-1) (hLAIR1) (CD

antigen CD305)

3903

O43561 LAT_HUMAN reviewed Linker for activation of T-cells fam-

ily member 1 (36 kDa phospho-tyrosine

adapter protein) (pp36) (p36-38)

27040
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Q8IWV1 LAX1_HUMAN reviewed Lymphocyte transmembrane adapter

1 (Linker for activation of X cells)

(Membrane-associated adapter protein

LAX)

54900

P06239 LCK_HUMAN reviewed Tyrosine-protein kinase Lck (EC

2.7.10.2) (Leukocyte C-terminal Src

kinase) (LSK) (Lymphocyte cell-specific

protein-tyrosine kinase) (Protein YT16)

(Proto-oncogene Lck) (T cell-specific

protein-tyrosine kinase) (p56-LCK)

3932

Q13094 LCP2_HUMAN reviewed Lymphocyte cytosolic protein 2 (SH2

domain-containing leukocyte protein of 76

kDa) (SLP-76 tyrosine phosphoprotein)

(SLP76)

3937

P48357 LEPR_HUMAN reviewed Leptin receptor (LEP-R) (HuB219) (OB

receptor) (OB-R) (CD antigen CD295)

3953

P29376 LTK_HUMAN reviewed Leukocyte tyrosine kinase receptor (EC

2.7.10.1) (Protein tyrosine kinase 1)

4058

Q14210 LY6D_HUMAN reviewed Lymphocyte antigen 6D (Ly-6D) (E48

antigen)

8581

P07948 LYN_HUMAN reviewed Tyrosine-protein kinase Lyn (EC 2.7.10.2)

(Lck/Yes-related novel protein tyrosine ki-

nase) (V-yes-1 Yamaguchi sarcoma vi-

ral related oncogene homolog) (p53Lyn)

(p56Lyn)

4067

Q92918 M4K1_HUMAN reviewed Mitogen-activated protein kinase kinase

kinase kinase 1 (EC 2.7.11.1) (Hematopoi-

etic progenitor kinase) (MAPK/ERK ki-

nase kinase kinase 1) (MEK kinase kinase

1) (MEKKK 1)

11184

Q9Y4K4 M4K5_HUMAN reviewed Mitogen-activated protein kinase kinase

kinase kinase 5 (EC 2.7.11.1) (Kinase ho-

mologous to SPS1/STE20) (KHS) (MAP-

K/ERK kinase kinase kinase 5) (MEK ki-

nase kinase 5) (MEKKK 5)

11183

Q13477 MADCA_HUMAN reviewed Mucosal addressin cell adhesion molecule

1 (MAdCAM-1) (hMAdCAM-1)

8174
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Q12866 MERTK_HUMAN reviewed Tyrosine-protein kinase Mer (EC 2.7.10.1)

(Proto-oncogene c-Mer) (Receptor tyro-

sine kinase MerTK)

10461

P08581 MET_HUMAN reviewed Hepatocyte growth factor receptor (HGF

receptor) (EC 2.7.10.1) (HGF/SF recep-

tor) (Proto-oncogene c-Met) (Scatter fac-

tor receptor) (SF receptor) (Tyrosine-

protein kinase Met)

4233

P03956 MMP1_HUMAN reviewed Interstitial collagenase (EC 3.4.24.7)

(Fibroblast collagenase) (Matrix

metalloproteinase-1) (MMP-1) [Cleaved

into: 22 kDa interstitial collagenase 27

kDa interstitial collagenase]

4312

P22894 MMP8_HUMAN reviewed Neutrophil collagenase (EC 3.4.24.34)

(Matrix metalloproteinase-8) (MMP-8)

(PMNL collagenase) (PMNL-CL)

4317

O95297 MPZL1_HUMAN reviewed Myelin protein zero-like protein 1 (Protein

zero-related)

9019

O43639 NCK2_HUMAN reviewed Cytoplasmic protein NCK2 (Growth fac-

tor receptor-bound protein 4) (NCK adap-

tor protein 2) (Nck-2) (SH2/SH3 adaptor

protein NCK-beta)

8440

O14786 NRP1_HUMAN reviewed Neuropilin-1 (Vascular endothelial cell

growth factor 165 receptor) (CD antigen

CD304)

8829

Q99748 NRTN_HUMAN reviewed Neurturin 4902

Q9GZY6 NTAL_HUMAN reviewed Linker for activation of T-cells fam-

ily member 2 (Linker for activation

of B-cells) (Membrane-associated adapter

molecule) (Non-T-cell activation linker)

(Williams-Beuren syndrome chromoso-

mal region 15 protein) (Williams-Beuren

syndrome chromosomal region 5 protein)

7462
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P04629 NTRK1_HUMAN reviewed High affinity nerve growth factor receptor

(EC 2.7.10.1) (Neurotrophic tyrosine ki-

nase receptor type 1) (TRK1-transforming

tyrosine kinase protein) (Tropomyosin-

related kinase A) (Tyrosine kinase recep-

tor) (Tyrosine kinase receptor A) (Trk-A)

(gp140trk) (p140-TrkA)

4914

O00750 P3C2B_HUMAN reviewed Phosphatidylinositol 4-phosphate 3-kinase

C2 domain-containing subunit beta (PI3K-

C2-beta) (PtdIns-3-kinase C2 subunit

beta) (EC 2.7.1.154) (C2-PI3K) (Phospho-

inositide 3-kinase-C2-beta)

5287

Q92569 P55G_HUMAN reviewed Phosphatidylinositol 3-kinase regulatory

subunit gamma (PI3-kinase regulatory

subunit gamma) (PI3K regulatory sub-

unit gamma) (PtdIns-3-kinase regulatory

subunit gamma) (Phosphatidylinositol 3-

kinase 55 kDa regulatory subunit gamma)

(PI3-kinase subunit p55-gamma) (PtdIns-

3-kinase regulatory subunit p55-gamma)

(p55PIK)

8503

P27986 P85A_HUMAN reviewed Phosphatidylinositol 3-kinase regulatory

subunit alpha (PI3-kinase regulatory sub-

unit alpha) (PI3K regulatory subunit al-

pha) (PtdIns-3-kinase regulatory subunit

alpha) (Phosphatidylinositol 3-kinase 85

kDa regulatory subunit alpha) (PI3-kinase

subunit p85-alpha) (PtdIns-3-kinase regu-

latory subunit p85-alpha)

5295

O00459 P85B_HUMAN reviewed Phosphatidylinositol 3-kinase regulatory

subunit beta (PI3-kinase regulatory sub-

unit beta) (PI3K regulatory subunit beta)

(PtdIns-3-kinase regulatory subunit beta)

(Phosphatidylinositol 3-kinase 85 kDa

regulatory subunit beta) (PI3-kinase sub-

unit p85-beta) (PtdIns-3-kinase regulatory

subunit p85-beta)

5296
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P16284 PECA1_HUMAN reviewed Platelet endothelial cell adhesion molecule

(PECAM-1) (EndoCAM) (GPIIA’)

(PECA1) (CD antigen CD31)

5175

O75420 PERQ1_HUMAN reviewed PERQ amino acid-rich with GYF domain-

containing protein 1 (GRB10-interacting

GYF protein 1)

64599

P50542 PEX5_HUMAN reviewed Peroxisomal targeting signal 1 recep-

tor (PTS1 receptor) (PTS1R) (PTS1-BP)

(Peroxin-5) (Peroxisomal C-terminal tar-

geting signal import receptor) (Peroxi-

some receptor 1)

5830

P16234 PGFRA_HUMAN reviewed Platelet-derived growth factor receptor al-

pha (PDGF-R-alpha) (PDGFR-alpha) (EC

2.7.10.1) (Alpha platelet-derived growth

factor receptor) (Alpha-type platelet-

derived growth factor receptor) (CD140

antigen-like family member A) (CD140a

antigen) (Platelet-derived growth factor

alpha receptor) (Platelet-derived growth

factor receptor 2) (PDGFR-2) (CD antigen

CD140a)

5156

P09619 PGFRB_HUMAN reviewed Platelet-derived growth factor receptor

beta (PDGF-R-beta) (PDGFR-beta)

(EC 2.7.10.1) (Beta platelet-derived

growth factor receptor) (Beta-type

platelet-derived growth factor receptor)

(CD140 antigen-like family member B)

(Platelet-derived growth factor receptor 1)

(PDGFR-1) (CD antigen CD140b)

5159

Q9NWQ8 PHAG1_HUMAN reviewed Phosphoprotein associated with

glycosphingolipid-enriched mi-

crodomains 1 (Csk-binding protein)

(Transmembrane adapter protein PAG)

(Transmembrane phosphoprotein Cbp)

55824

Q9UKJ1 PILRA_HUMAN reviewed Paired immunoglobulin-like type 2 recep-

tor alpha (Cell surface receptor FDF03)

(Inhibitory receptor PILR-alpha)

29992
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P42336 PK3CA_HUMAN reviewed Phosphatidylinositol 4,5-bisphosphate

3-kinase catalytic subunit alpha isoform

(PI3-kinase subunit alpha) (PI3K-alpha)

(PI3Kalpha) (PtdIns-3-kinase subunit

alpha) (EC 2.7.1.153) (Phosphatidyli-

nositol 4,5-bisphosphate 3-kinase 110

kDa catalytic subunit alpha) (PtdIns-3-

kinase subunit p110-alpha) (p110alpha)

(Phosphoinositide-3-kinase catalytic

alpha polypeptide) (Serine/threonine

protein kinase PIK3CA) (EC 2.7.11.1)

5290

P42338 PK3CB_HUMAN reviewed Phosphatidylinositol 4,5-bisphosphate 3-

kinase catalytic subunit beta isoform

(PI3-kinase subunit beta) (PI3K-beta)

(PI3Kbeta) (PtdIns-3-kinase subunit beta)

(EC 2.7.1.153) (Phosphatidylinositol 4,5-

bisphosphate 3-kinase 110 kDa catalytic

subunit beta) (PtdIns-3-kinase subunit

p110-beta) (p110beta)

5291

P19174 PLCG1_HUMAN reviewed 1-phosphatidylinositol 4,5-bisphosphate

phosphodiesterase gamma-1 (EC 3.1.4.11)

(PLC-148) (Phosphoinositide phospholi-

pase C-gamma-1) (Phospholipase C-II)

(PLC-II) (Phospholipase C-gamma-1)

(PLC-gamma-1)

5335

P16885 PLCG2_HUMAN reviewed 1-phosphatidylinositol 4,5-bisphosphate

phosphodiesterase gamma-2 (EC

3.1.4.11) (Phosphoinositide phospho-

lipase C-gamma-2) (Phospholipase C-IV)

(PLC-IV) (Phospholipase C-gamma-2)

(PLC-gamma-2)

5336

P49763 PLGF_HUMAN reviewed Placenta growth factor (PlGF) 5228

Q96NZ9 PRAP1_HUMAN reviewed Proline-rich acidic protein 1 (Epididymis

tissue protein Li 178) (Uterine-specific

proline-rich acidic protein)

118471

P16471 PRLR_HUMAN reviewed Prolactin receptor (PRL-R) 5618

O60542 PSPN_HUMAN reviewed Persephin (PSP) 5623
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Q13882 PTK6_HUMAN reviewed Protein-tyrosine kinase 6 (EC 2.7.10.2)

(Breast tumor kinase) (Tyrosine-protein

kinase BRK)

5753

Q06124 PTN11_HUMAN reviewed Tyrosine-protein phosphatase non-

receptor type 11 (EC 3.1.3.48) (Protein-

tyrosine phosphatase 1D) (PTP-1D)

(Protein-tyrosine phosphatase 2C)

(PTP-2C) (SH-PTP2) (SHP-2) (Shp2)

(SH-PTP3)

5781

Q05209 PTN12_HUMAN reviewed Tyrosine-protein phosphatase non-

receptor type 12 (EC 3.1.3.48) (PTP-

PEST) (Protein-tyrosine phosphatase G1)

(PTPG1)

5782

P18031 PTN1_HUMAN reviewed Tyrosine-protein phosphatase non-

receptor type 1 (EC 3.1.3.48) (Protein-

tyrosine phosphatase 1B) (PTP-1B)

5770

Q9Y2R2 PTN22_HUMAN reviewed Tyrosine-protein phosphatase non-

receptor type 22 (EC 3.1.3.48)

(Hematopoietic cell protein-tyrosine

phosphatase 70Z-PEP) (Lymphoid

phosphatase) (LyP) (PEST-domain

phosphatase) (PEP)

26191

P26045 PTN3_HUMAN reviewed Tyrosine-protein phosphatase non-

receptor type 3 (EC 3.1.3.48) (Protein-

tyrosine phosphatase H1) (PTP-H1)

5774

P29350 PTN6_HUMAN reviewed Tyrosine-protein phosphatase non-

receptor type 6 (EC 3.1.3.48) (Hematopoi-

etic cell protein-tyrosine phosphatase)

(Protein-tyrosine phosphatase 1C) (PTP-

1C) (Protein-tyrosine phosphatase SHP-1)

(SH-PTP1)

5777

P23467 PTPRB_HUMAN reviewed Receptor-type tyrosine-protein phos-

phatase beta (Protein-tyrosine phos-

phatase beta) (R-PTP-beta) (EC 3.1.3.48)

(Vascular endothelial protein tyrosine

phosphatase) (VE-PTP)

5787
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P08575 PTPRC_HUMAN reviewed Receptor-type tyrosine-protein phos-

phatase C (EC 3.1.3.48) (Leukocyte

common antigen) (L-CA) (T200) (CD

antigen CD45)

5788

P23470 PTPRG_HUMAN reviewed Receptor-type tyrosine-protein phos-

phatase gamma (Protein-tyrosine phos-

phatase gamma) (R-PTP-gamma) (EC

3.1.3.48)

5793

Q12913 PTPRJ_HUMAN reviewed Receptor-type tyrosine-protein phos-

phatase eta (Protein-tyrosine phosphatase

eta) (R-PTP-eta) (EC 3.1.3.48) (Density-

enhanced phosphatase 1) (DEP-1) (HPTP

eta) (Protein-tyrosine phosphatase re-

ceptor type J) (R-PTP-J) (CD antigen

CD148)

5795

Q16827 PTPRO_HUMAN reviewed Receptor-type tyrosine-protein phos-

phatase O (R-PTP-O) (EC 3.1.3.48)

(Glomerular epithelial protein 1) (Protein

tyrosine phosphatase U2) (PTP-U2)

(PTPase U2)

5800

P20936 RASA1_HUMAN reviewed Ras GTPase-activating protein 1 (GAP)

(GTPase-activating protein) (RasGAP)

(Ras p21 protein activator) (p120GAP)

5921

P07949 RET_HUMAN reviewed Proto-oncogene tyrosine-protein kinase

receptor Ret (EC 2.7.10.1) (Cadherin

family member 12) (Proto-oncogene c-

Ret) [Cleaved into: Soluble RET kinase

fragment Extracellular cell-membrane an-

chored RET cadherin 120 kDa fragment]

5979
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A7KAX9 RHG32_HUMAN reviewed Rho GTPase-activating protein 32

(Brain-specific Rho GTPase-activating

protein) (GAB-associated Cdc42/Rac

GTPase-activating protein) (GC-GAP)

(GTPase regulator interacting with TrkA)

(Rho-type GTPase-activating protein

32) (Rho/Cdc42/Rac GTPase-activating

protein RICS) (RhoGAP involved in

the beta-catenin-N-cadherin and NMDA

receptor signaling) (p200RhoGAP)

(p250GAP)

9743

P08922 ROS1_HUMAN reviewed Proto-oncogene tyrosine-protein kinase

ROS (EC 2.7.10.1) (Proto-oncogene c-

Ros) (Proto-oncogene c-Ros-1) (Receptor

tyrosine kinase c-ros oncogene 1) (c-Ros

receptor tyrosine kinase)

6098

Q13905 RPGF1_HUMAN reviewed Rap guanine nucleotide exchange fac-

tor 1 (CRK SH3-binding GNRP) (Gua-

nine nucleotide-releasing factor 2) (Pro-

tein C3G)

2889

P21583 SCF_HUMAN reviewed Kit ligand (Mast cell growth factor)

(MGF) (Stem cell factor) (SCF) (c-Kit lig-

and) [Cleaved into: Soluble KIT ligand

(sKITLG)]

4254

Q9NP31 SH22A_HUMAN reviewed SH2 domain-containing protein 2A (SH2

domain-containing adapter protein) (T

cell-specific adapter protein) (TSAd)

(VEGF receptor-associated protein)

9047

Q9NRF2 SH2B1_HUMAN reviewed SH2B adapter protein 1 (Pro-rich, PH and

SH2 domain-containing signaling media-

tor) (PSM) (SH2 domain-containing pro-

tein 1B)

25970

O14492 SH2B2_HUMAN reviewed SH2B adapter protein 2 (Adapter protein

with pleckstrin homology and Src homol-

ogy 2 domains) (SH2 and PH domain-

containing adapter protein APS)

10603
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Q9UQQ2 SH2B3_HUMAN reviewed SH2B adapter protein 3 (Lymphocyte

adapter protein) (Lymphocyte-specific

adapter protein Lnk) (Signal transduction

protein Lnk)

10019

Q96B97 SH3K1_HUMAN reviewed SH3 domain-containing kinase-binding

protein 1 (CD2-binding protein 3)

(CD2BP3) (Cbl-interacting protein of 85

kDa) (Human Src family kinase-binding

protein 1) (HSB-1)

30011

Q15464 SHB_HUMAN reviewed SH2 domain-containing adapter protein B 6461

P29353 SHC1_HUMAN reviewed SHC-transforming protein 1 (SHC-

transforming protein 3) (SHC-

transforming protein A) (Src homology 2

domain-containing-transforming protein

C1) (SH2 domain protein C1)

6464

P98077 SHC2_HUMAN reviewed SHC-transforming protein 2 (Protein

Sck) (SHC-transforming protein B)

(Src homology 2 domain-containing-

transforming protein C2) (SH2 domain

protein C2)

25759

Q92529 SHC3_HUMAN reviewed SHC-transforming protein 3 (Neuronal

Shc) (N-Shc) (Protein Rai) (SHC-

transforming protein C) (Src homology 2

domain-containing-transforming protein

C3) (SH2 domain protein C3)

53358

Q92835 SHIP1_HUMAN reviewed Phosphatidylinositol 3,4,5-trisphosphate

5-phosphatase 1 (EC 3.1.3.86) (Inositol

polyphosphate-5-phosphatase of 145

kDa) (SIP-145) (SH2 domain-containing

inositol 5’-phosphatase 1) (SH2 domain-

containing inositol phosphatase 1)

(SHIP-1) (p150Ship) (hp51CN)

3635
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O15357 SHIP2_HUMAN reviewed Phosphatidylinositol 3,4,5-trisphosphate

5-phosphatase 2 (EC 3.1.3.86) (Inositol

polyphosphate phosphatase-like protein 1)

(INPPL-1) (Protein 51C) (SH2 domain-

containing inositol 5’-phosphatase 2)

(SH2 domain-containing inositol phos-

phatase 2) (SHIP-2)

3636

Q9Y3P8 SIT1_HUMAN reviewed Signaling threshold-regulating transmem-

brane adapter 1 (SHP2-interacting trans-

membrane adapter protein) (Suppression-

inducing transmembrane adapter 1)

(gp30/40)

27240

Q86WV1 SKAP1_HUMAN reviewed Src kinase-associated phosphoprotein 1

(Src family-associated phosphoprotein 1)

(Src kinase-associated phosphoprotein of

55 kDa) (SKAP-55) (pp55)

8631

Q13291 SLAF1_HUMAN reviewed Signaling lymphocytic activation

molecule (CDw150) (IPO-3) (CD antigen

CD150)

6504

Q13239 SLAP1_HUMAN reviewed Src-like-adapter (Src-like-adapter protein

1) (SLAP-1) (hSLAP)

6503

Q9H6Q3 SLAP2_HUMAN reviewed Src-like-adapter 2 (Modulator of anti-

gen receptor signaling) (MARS) (Src-like

adapter protein 2) (SLAP-2)

84174

Q92959 SO2A1_HUMAN reviewed Solute carrier organic anion transporter

family member 2A1 (Prostaglandin trans-

porter) (PGT) (Solute carrier family 21

member 2)

6578

O15524 SOCS1_HUMAN reviewed Suppressor of cytokine signaling 1

(SOCS-1) (JAK-binding protein) (JAB)

(STAT-induced STAT inhibitor 1) (SSI-1)

(Tec-interacting protein 3) (TIP-3)

8651

O14508 SOCS2_HUMAN reviewed Suppressor of cytokine signaling 2

(SOCS-2) (Cytokine-inducible SH2

protein 2) (CIS-2) (STAT-induced STAT

inhibitor 2) (SSI-2)

8835
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O14543 SOCS3_HUMAN reviewed Suppressor of cytokine signaling 3

(SOCS-3) (Cytokine-inducible SH2

protein 3) (CIS-3) (STAT-induced STAT

inhibitor 3) (SSI-3)

9021

Q07889 SOS1_HUMAN reviewed Son of sevenless homolog 1 (SOS-1) 6654

Q07890 SOS2_HUMAN reviewed Son of sevenless homolog 2 (SOS-2) 6655

Q9H2V7 SPNS1_HUMAN reviewed Protein spinster homolog 1 (HSpin1)

(Spinster-like protein 1)

83985

Q8WW59 SPRY4_HUMAN reviewed SPRY domain-containing protein 4 283377

O43597 SPY2_HUMAN reviewed Protein sprouty homolog 2 (Spry-2) 10253

P42229 STA5A_HUMAN reviewed Signal transducer and activator of tran-

scription 5A

6776

P51692 STA5B_HUMAN reviewed Signal transducer and activator of tran-

scription 5B

6777

Q9UGK3 STAP2_HUMAN reviewed Signal-transducing adaptor protein 2

(STAP-2) (Breast tumor kinase substrate)

(BRK substrate)

55620

Q8IYN2 TCAL8_HUMAN reviewed Transcription elongation factor A protein-

like 8 (TCEA-like protein 8) (Transcrip-

tion elongation factor S-II protein-like 8)

90843

P42680 TEC_HUMAN reviewed Tyrosine-protein kinase Tec (EC 2.7.10.2) 7006

Q63HR2 TENC1_HUMAN reviewed Tensin-like C1 domain-containing

phosphatase (EC 3.1.3.-) (C1 domain-

containing phosphatase and tensin

homolog) (C1-TEN) (Tensin-2)

23371

P40238 TPOR_HUMAN reviewed Thrombopoietin receptor (TPO-R)

(Myeloproliferative leukemia protein)

(Proto-oncogene c-Mpl) (CD antigen

CD110)

4352

P40225 TPO_HUMAN reviewed Thrombopoietin (C-mpl ligand) (ML)

(Megakaryocyte colony-stimulating fac-

tor) (Megakaryocyte growth and develop-

ment factor) (MGDF) (Myeloproliferative

leukemia virus oncogene ligand)

7066

Q6PIZ9 TRAT1_HUMAN reviewed T-cell receptor-associated transmembrane

adapter 1 (T-cell receptor-interacting

molecule) (TRIM) (pp29/30)

50852
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P29597 TYK2_HUMAN reviewed Non-receptor tyrosine-protein kinase

TYK2 (EC 2.7.10.2)

7297

P30530 UFO_HUMAN reviewed Tyrosine-protein kinase receptor UFO (EC

2.7.10.1) (AXL oncogene)

558

P52735 VAV2_HUMAN reviewed Guanine nucleotide exchange factor VAV2

(VAV-2)

7410

Q9UKW4 VAV3_HUMAN reviewed Guanine nucleotide exchange factor VAV3

(VAV-3)

10451

P15498 VAV_HUMAN reviewed Proto-oncogene vav 7409

P15692 VEGFA_HUMAN reviewed Vascular endothelial growth factor A

(VEGF-A) (Vascular permeability factor)

(VPF)

7422

P17948 VGFR1_HUMAN reviewed Vascular endothelial growth factor recep-

tor 1 (VEGFR-1) (EC 2.7.10.1) (Fms-

like tyrosine kinase 1) (FLT-1) (Tyrosine-

protein kinase FRT) (Tyrosine-protein ki-

nase receptor FLT) (FLT) (Vascular per-

meability factor receptor)

2321

P35968 VGFR2_HUMAN reviewed Vascular endothelial growth factor recep-

tor 2 (VEGFR-2) (EC 2.7.10.1) (Fetal liver

kinase 1) (FLK-1) (Kinase insert domain

receptor) (KDR) (Protein-tyrosine kinase

receptor flk-1) (CD antigen CD309)

3791

Q9UPY6 WASF3_HUMAN reviewed Wiskott-Aldrich syndrome protein family

member 3 (WASP family protein member

3) (Protein WAVE-3) (Verprolin homol-

ogy domain-containing protein 3)

10810

P42768 WASP_HUMAN reviewed Wiskott-Aldrich syndrome protein

(WASp)

7454

O43516 WIPF1_HUMAN reviewed WAS/WASL-interacting protein family

member 1 (Protein PRPL-2) (Wiskott-

Aldrich syndrome protein-interacting pro-

tein) (WASP-interacting protein)

7456

P07947 YES_HUMAN reviewed Tyrosine-protein kinase Yes (EC 2.7.10.2)

(Proto-oncogene c-Yes) (p61-Yes)

7525
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P43403 ZAP70_HUMAN reviewed Tyrosine-protein kinase ZAP-70 (EC

2.7.10.2) (70 kDa zeta-chain associated

protein) (Syk-related tyrosine kinase)

7535

Q5JNZ3 ZN311_HUMAN reviewed Zinc finger protein 311 (Zinc finger pro-

tein zfp-31)

282890

P17041 ZNF32_HUMAN reviewed Zinc finger protein 32 (C2H2-546) (Zinc

finger protein KOX30)

7580

Q71UZ1 Q71UZ1_HUMAN unreviewed Interleukin 10 (Fragment)

Q504X9 Q504X9_HUMAN unreviewed MAP1A protein (Fragment) 4130

A2NI60 A2NI60_HUMAN unreviewed BRE (Fragment)

Q92970 Q92970_HUMAN unreviewed Zinc finger protein zfp30 (Fragment)

Q6PYX1 Q6PYX1_HUMAN unreviewed Hepatitis B virus receptor binding protein

(Fragment)

Q9Y6X7 Q9Y6X7_HUMAN unreviewed KIAA0864 protein (Fragment)

Q92927 Q92927_HUMAN unreviewed Small GTP-binding protein (Fragment)

P78453 P78453_HUMAN unreviewed Tyrosine kinase (Fragment) 2268

Q5PY61 Q5PY61_HUMAN unreviewed Ubiquitin C splice variant

A2N8H4 A2N8H4_HUMAN unreviewed TCR Ti gamma-chain V8-J2 region (Frag-

ment)

Q5T1S1 Q5T1S1_HUMAN Deleted.

TABLE A.7: Combi-s239 Protein Annotation and GeneIDs

TABLE A.8: Jaccard indices of HCV subnetworks and CORUM complexes

ComplexName HCV-s43 HCV-s64

SNX complex (SNX1a, SNX2, SNX4,

INSR)

0 0.0149

TRF1 telomere length regulation com-

plex

0 0.0152

TRF-Rap1 complex I, 2MD 0 0.0145

Tankyrin 1-tankyrin 2-TRF1 complex 0 0.0308

IL12A homodimer complex 0 0.0156

IL12A-IL12B complex 0 0.0313

IL12A-IL12B-IL12RB1 complex 0 0.0469

IL12B-IL12RB1-IL12RB2 complex 0 0.0469

IL12A-IL12B-IL12RB2 complex 0 0.0469
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IL12RB1-IL12RB2 complex 0 0.0313

JAK2-IL12RB2 complex 0 0.0313

ITGA1-ITGB1-PTPN2 complex 0 0.0152

Sam68-p85 P13K-IRS-1-IR signaling

complex

0 0.0303

Prolactin (PRL) - PRL receptor

(PRLR) complex

0 0.0154

PRL receptor (PRLR) dimer complex 0 0.0156

JAK2-PAFR-TYK2 complex 0 0.0308

IL-12 heterodimer complex 0 0.0313

IL-12 subunit p40 homodimer complex 0 0.0156

LMO4-gp130 complex 0 0.0147

SRCAP-associated chromatin remod-

eling complex

0.0192 0

BAG3-HSC70-HSPB8-CHIP complex 0.0217 0

ELK1-SRF-ELK4 complex 0.0222 0

TABLE A.9: Jaccard indices of HIV subnetworks and CORUM complexes

ComplexName HIV-s52 HIV-s66

C complex spliceosome 0.000 0.081

Large Drosha complex 0.000 0.062

DGCR8 multiprotein complex 0.000 0.055

Spliceosome 0.000 0.050

TRA2B1-SRp30c-SRp55 complex 0.000 0.045

DCS complex (PTBP1, PTBP2, HN-

RPH1, HNRPF)

0.000 0.045

Emerin complex 52 0.000 0.035

CBC complex (cap binding complex) 0.000 0.030

CBC complex (cap binding complex) 0.000 0.030

HNRPF-HNRPH1 complex 0.000 0.030

SRp30c-SRp55 complex 0.000 0.030

PHAX-CBC complex (cap binding

complex)

0.000 0.030

PGC-1-SRp40-SRp55-SRp75 complex 0.000 0.029

CRM1-RAN-PHAX-CBC complex

(cap binding complex)

0.000 0.029

SRm160/300 complex 0.000 0.029
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12S U11 snRNP 0.000 0.025

Emerin complex 25 0.000 0.025

Nop56p-associated pre-rRNA complex 0.000 0.024

NCBP-NIP1 complex 0.000 0.015

PIN1-AUF1 complex 0.000 0.015

YBX1-AKT1 complex 0.000 0.015

GR-hnRNP U complex 0.000 0.015

CTFC-TAF1 complex 0.000 0.015

CTCF-nucleophosmin complex 0.000 0.015

p23 protein complex 0.000 0.015

SF3A1-SF3A2-SF3A3 complex 0.000 0.015

SMAD3-SMAD4-CTCF protein-DNA

complex

0.000 0.015

Actin-ribonucleoprotein complex

(POLR2A, GTF2F1, HNRNPU)

0.019 0.015

Multiprotein complex (mRNA

turnover)

0.000 0.014

PABPC1-HSPA8-HNRPD-EIF4G1

complex

0.000 0.014

Toposome 0.000 0.014

CTCF-nucleophosmin-PARP-HIS-

KPNA-LMNA-TOP complex

0.000 0.014

H2AX complex, isolated from cells

without IR exposure

0.000 0.013

Emerin complex 24 0.000 0.013

CF IIAm complex (Cleavage factor

IIAm complex)

0.000 0.012

SNW1 complex 0.000 0.012

LARC complex (LCR-associated re-

modeling complex)

0.000 0.012

18S U11/U12 snRNP 0.000 0.011

CDC5L complex 0.000 0.011

17S U2 snRNP 0.000 0.010

TABLE A.10: Jaccard indices of Combi subnetworks and CORUM complexes

Complex Name Combi_s239 Combi_ s52 Combi_s46

Emerin complex 52 0.000 0.000 0.015
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Actin-ribonucleoprotein com-

plex (POLR2A, GTF2F1,

HNRNPU)

0.000 0.019 0.000

TRAP complex 0.000 0.111 0.000

CD28-transactivation complex 0.004 0.000 0.000

RNA polymerase II holoenzyme

complex

0.000 0.013 0.000

RNA polymerase II core com-

plex

0.000 0.016 0.000

CRSP complex 0.000 0.154 0.000

CRSP complex 0.000 0.154 0.000

SMCC complex 0.000 0.132 0.000

NAT complex 0.000 0.135 0.000

Mediator complex 0.000 0.556 0.000

ARC complex 0.000 0.241 0.000

CRSP complex 0.000 0.189 0.000

ARC-L complex 0.000 0.245 0.000

ARC complex 0.000 0.264 0.000

PC2 complex 0.000 0.185 0.000

SMCC complex 0.000 0.278 0.000

TFTC-type histone acetyl trans-

ferase complex

0.000 0.145 0.000

WIP-WASp-actin-myosin-IIa

complex

0.008 0.000 0.000

TRAP complex 0.000 0.236 0.000

SMCC complex 0.000 0.245 0.000

DRIP complex 0.000 0.222 0.000

DRIP complex 0.000 0.222 0.000

IFNB1-IFNAR1-IFNAR2- com-

plex

0.004 0.000 0.000

ASPP1-SAM68 complex 0.004 0.000 0.000

P2X7 receptor signalling com-

plex

0.004 0.000 0.000

CSA-POLIIa complex 0.000 0.015 0.000

RICH1/AMOT polarity com-

plex, Flag-Rich1 precipitated

0.008 0.000 0.000
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TRAP-SMCC mediator com-

plex

0.000 0.192 0.000

hMediator complex (MED23,

CDK8, CCNC, MED7)

0.000 0.077 0.000

hMediator complex (MED23,

CDK8, CCNC)

0.000 0.058 0.000

CDK8-CyclinC-Mediator com-

plex

0.000 0.038 0.000

Mediator complex 1 0.000 0.096 0.000

Mediator complex 2 0.000 0.058 0.000

RET-Rai complex 0.008 0.000 0.000

SHC3-GAB1 complex 0.008 0.000 0.000

ARC92-Mediator complex 0.000 0.226 0.000

CRSP-Mediator 2 complex 0.000 0.170 0.000

CD8A-LCK complex 0.008 0.000 0.000

SNX complex (SNX1a, SNX2,

SNX4, LEPR)

0.004 0.000 0.000

SNX complex (SNX1a, SNX2,

SNX4, INSR)

0.004 0.000 0.000

SNX complex (SNX1a, SNX2,

SNX4, EGFR)

0.004 0.000 0.000

SNX complex (SNX1,1a,2,4,

PDGF receptor)

0.004 0.000 0.000

SMN complex 0.000 0.000 0.016

Integrator complex 0.000 0.032 0.000

DSS1 complex 0.000 0.016 0.000

Integrator-RNAPII complex 0.000 0.048 0.000

EGFR-containing signaling

complex

0.013 0.000 0.000

RNA pol II containing coactiva-

tor complex Tat-SF

0.000 0.018 0.000

Nrp1-PlexinD1 complex 0.004 0.000 0.000

IL4-IL4R complex 0.004 0.000 0.000

IL4-IL4R-IL2RG complex 0.008 0.000 0.000

IL6ST-PRKCD-STAT3 complex 0.004 0.000 0.000

p300-SMAD1-STAT3 complex 0.000 0.000 0.021
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G protein complex (BTK,

GNG1, GNG2)

0.004 0.000 0.000

FAK-beta5 integrin complex,

VEGF induced

0.004 0.000 0.000

ABL2-HRAS-RIN1 complex 0.004 0.000 0.000

IL2-IL2RA-IL2RB complex 0.013 0.000 0.000

SMN-PolII-RHA complex 0.000 0.016 0.000

SMN complex 0.000 0.000 0.018

CPSF6-ITCH-NUDT21-

POLR2A-UBAP2L complex

0.000 0.018 0.000

CPSF6-EWSR1-ITCH-

NUDT21-POLR2A-UBAP2L

complex

0.000 0.018 0.000

CPSF6-ITCH-NUDT21-

POLR2A complex

0.000 0.018 0.000

TGF-beta-receptor-SMAD7-

SMURF2 complex

0.000 0.000 0.042

TGF-beta receptor I-SMAD7-

SMURF1 complex

0.000 0.000 0.043

RNF11-SMURF2-STAMBP

complex

0.000 0.000 0.021

CIN85-CBL-SH3GL2 complex 0.008 0.000 0.000

SH3P2/OSTF1-CBL-SRC com-

plex

0.004 0.000 0.000

LEPR homodimer complex 0.004 0.000 0.000

AXL homodimer complex 0.004 0.000 0.000

STAT5B homodimer complex 0.004 0.000 0.000

STAT5A homodimer complex 0.004 0.000 0.000

JAK2-IL12RB2 complex 0.004 0.000 0.000

BRCA1-BARD1-POLR2A

complex

0.000 0.019 0.000

ITGA6-ITGB4-FYN complex 0.004 0.000 0.000

ITGB6-FYN-FN1 complex 0.004 0.000 0.000

ITGAV-ITGB3-PXN-PTK2b

complex

0.004 0.000 0.000

ITGAV-ITGB3-EGFR complex 0.004 0.000 0.000
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Multiprotein complex

(monoubiquitination)

0.013 0.000 0.000

CIN85-CBL-SH3GL2-EGFR

complex, EGF stimulated

0.013 0.000 0.000

CIN85-SH3GL2 complex 0.004 0.000 0.000

MET-CIN85-SH3GL3-CBL

complex, HGF stimulated

0.013 0.000 0.000

CIN85-SH3GL3 complex 0.004 0.000 0.000

p130Cas-ER-alpha-cSrc-kinase-

PI3-kinase p85-subunit complex

0.008 0.000 0.000

CRKL-PDGFRA-CRK-

RAPGEF1 complex

0.017 0.000 0.000

CIN85 complex (CIN85, CRK,

BCAR1, CBL, PIK3R1, GRB2,

SOS1)

0.029 0.000 0.000

GIPC1-NTRK1-RGS19 com-

plex

0.004 0.000 0.000

NCR3-CD247 complex 0.004 0.000 0.000

ArgBP2a-CBL-PTK2B complex 0.008 0.000 0.000

ZAP70-CRKL-WIPF1-WAS

complex

0.017 0.000 0.000

CRKL-WIPF1-WAS complex 0.013 0.000 0.000

CIN85-CBL complex 0.008 0.000 0.000

ERBB2-MEMO-SHC complex 0.008 0.000 0.000

LAT-PLC-gamma-1-p85-

GRB2-CBL-VAV-SLP-76

signaling complex, C305

activated

0.029 0.000 0.000

Cbl-SLP-76-Grb2 complex, Fc

receptor gamma-R1 stimulated

0.013 0.000 0.000

SLP-76-Cbl-Grb2-Shc complex,

Fc receptor gamma-R1 stimu-

lated

0.017 0.000 0.000

PLC-gamma-2-SLP-76-Lyn-

Grb2 complex

0.017 0.000 0.000
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PKC-alpha-PLD1-PLC-gamma-

2 signaling complex, lacritin

stimulated

0.004 0.000 0.000

BCR-ABL (p210 fusion

protein)-GRB2 complex

0.004 0.000 0.000

HGF-Met complex 0.004 0.000 0.000

EGFR-CBL-GRB2 complex 0.013 0.000 0.000

PLC-gamma-1-SLP-76-SOS1-

LAT complex

0.017 0.000 0.000

PDGFRA-PLC-gamma-1-

PI3K-SHP-2 complex, PDGF

stimulated

0.017 0.000 0.000

p56(LCK)-CAML complex 0.004 0.000 0.000

FGFR2-c-Cbl-Lyn-Fyn complex 0.013 0.000 0.000

p21(ras)GAP-Fyn-Lyn-Yes

complex, thrombin stimulated

0.017 0.000 0.000

CD20-LCK-LYN-FYN-p75/80

complex, (Raji human B cell

line)

0.013 0.000 0.000

CD19-Vav-PI 3-kinase (p85 sub-

unit) complex

0.013 0.000 0.000

Sam68-p85 P13K-IRS-1-IR sig-

naling complex

0.017 0.000 0.000

Sam68-p120GAP complex 0.008 0.000 0.000

RasGAP-AURKA/AURKB-

survivin complex

0.004 0.000 0.000

POLR2A-CCNT1-CDK9-NCL-

LEM6-CPSF2 complex

0.000 0.018 0.000

BRD4 complex 0.000 0.091 0.000

P-TEFb-BRD4-TRAP220 com-

plex

0.000 0.018 0.000

CDK8-MED6-PARP1 complex 0.000 0.038 0.000

CCNC-CDK8-MED1-MED6-

MED7 xcomplex

0.000 0.096 0.000

CCNC-CDK3 complex 0.000 0.019 0.000

HES1 promoter corepressor

complex

0.000 0.018 0.000
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HES1 promoter-Notch enhancer

complex

0.000 0.048 0.000

SMAD1-P300 complex 0.000 0.000 0.021

RNA polymerase II (RNAPII) 0.000 0.015 0.000

BRCA1-core RNA polymerase

II complex

0.000 0.016 0.000

PXN-ITGB5-PTK2 complex 0.004 0.000 0.000

FYB-CARMA1-BCL-10-

MALT1 complex

0.004 0.000 0.000

BRCA1-RNA polymerase II

complex

0.000 0.026 0.000

ING2 complex 0.000 0.000 0.018

CD20-LCK-FYN-p75/80 com-

plex

0.008 0.000 0.000

BCR-ABL (p185 fusion

protein)-GRB2 complex

0.004 0.000 0.000

BCR-ABL (p210 fusion

protein)-GRB2-SOS1 com-

plex

0.008 0.000 0.000

SHC-GRB2 complex 0.008 0.000 0.000

ITGA2b-ITGB3-CD47-FAK

complex

0.004 0.000 0.000

PLC-gamma-2-Syk-LAT-FcR-

gamma complex

0.017 0.000 0.000

PLC-gamma-2-Lyn-FcR-

gamma complex

0.013 0.000 0.000

PLC-gamma-2-SLP-76 complex 0.008 0.000 0.000

PLC-gamma-2-LAT complex 0.008 0.000 0.000

Grb2-Sos complex, Fc receptor

gamma-R1 stimulated

0.008 0.000 0.000

LAT-PLC-gamma-1-p85-

GRB2-SOS signaling complex,

C305 activated

0.021 0.000 0.000

Notch1-p56lck-PI3K complex 0.008 0.000 0.000

LCK-SLP76-PLC-gamma-1-

LAT complex, pervanadate-

activated

0.017 0.000 0.000

146



PLC-gamma-1-LAT-c-CBL

complex, OKT3 stimulated

0.013 0.000 0.000

LAT-GRB2 complex, Fyn-

mLck(KA) or Syk kinase

activated

0.008 0.000 0.000

SMAD1-CBP complex 0.000 0.000 0.021

SMAD1-OAZ-HsN3 complex 0.000 0.000 0.021

SLP-76-PLC-gamma-1-ITK

complex, alpha-TCR stimulated

0.013 0.000 0.000

SLP-76-PLC-gamma-1-VAV

complex, alpha-TCR stimulated

0.013 0.000 0.000

CRK-BCAR1-DOCK1 complex 0.008 0.000 0.000

ITK-SLP-76 complex, anti-TCR

stimulated

0.008 0.000 0.000

ITGA9-ITGB1-VEGFA com-

plex

0.004 0.000 0.000

SMAD7-SMURF2 complex 0.000 0.000 0.043

SMAD7-SMURF1 complex 0.000 0.000 0.043

SMAD7-SMURF1-TGF-beta

receptor complex

0.000 0.000 0.042

RNA polymerase II complex

(RPB1, RAP74, CDK8, CYCC,

SRB7, BAF190, BAF47), chro-

matin structure modifying

0.000 0.071 0.000

RNA polymerase II complex

(CBP, PCAF, RPB1, BAF47,

CYCC, CDK8), chromatin

structure modifying

0.000 0.055 0.000

RNA polymerase II complex, in-

complete (CBP, RPBI, PCAF,

BAF47), chromatin structure

modifying

0.000 0.018 0.000

RNA polymerase II complex,

chromatin structure modifying

0.000 0.060 0.000

RNA polymerase II complex,

chromatin structure modifying

0.000 0.050 0.000
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RNA polymerase II complex,

chromatin structure modifying

0.000 0.066 0.000

RNA polymerase II complex,

incomplete (CDK8 complex),

chromatin structure modifying

0.000 0.053 0.000

ITGA6-ITGB4-SHC1-GRB2

complex

0.008 0.000 0.000

ITGB1-NRP1 complex 0.004 0.000 0.000

Phosphatidylinositol 3-kinase

(PIK3CA, PIK3R1)

0.008 0.000 0.000

MASH1 promoter-coactivator

complex

0.000 0.016 0.000

CAMK2-delta-MASH1

promoter-coactivator com-

plex

0.000 0.017 0.000

Sos1-Grb2 complex 0.008 0.000 0.000

Prolactin (PRL) - PRL receptor

(PRLR) complex

0.004 0.000 0.000

PRL receptor (PRLR) dimer

complex

0.004 0.000 0.000

CIN85 homotetramer complex 0.004 0.000 0.000

CIN85-BLNK complex 0.008 0.000 0.000

CIN85-c-CBL complex 0.008 0.000 0.000

PDGFRA-SHP-2 complex,

PDGF stimulated

0.008 0.000 0.000

GRB2-SHP-2 complex, PDGF

stimulated

0.008 0.000 0.000

Heterodimer complex (CDK9,

IL6ST)

0.004 0.000 0.000

SMN complex (GEMIN6,7,

UNRIP), SMN-independent

intermediate

0.000 0.000 0.021

RIN1-STAM2-EGFR complex,

EGF stimulated

0.004 0.000 0.000

SMURF2-SMAD2 complex,

TGF(beta)-dependent

0.000 0.000 0.021
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SMURF2-SMAD3 complex,

TGF(beta)-dependent

0.000 0.000 0.021

SMURF2-SMAD3-SnoN com-

plex, TGF(beta)-dependent

0.000 0.000 0.021

NRP1-VEGFR2-VEGF(165)

complex

0.013 0.000 0.000

SMAD6-HOXC8 complex 0.000 0.000 0.043

SMAD6-HOXA9 complex 0.000 0.000 0.021

ZO1-(beta)cadherin-

(VE)cadherin-VEGFR2 com-

plex

0.004 0.000 0.000

SH3KBP1-CBLB-EGFR com-

plex

0.013 0.000 0.000

Polycystin-1 multiprotein com-

plex (ACTN1, CDH1, SRC,

JUP, VCL, CTNNB1, PXN,

BCAR1, PKD1, PTK2, TLN1)

0.008 0.000 0.000

JAK2-PAFR-TYK2 complex 0.008 0.000 0.000

TIAM1-EFNB1-EPHA2 com-

plex

0.004 0.000 0.000

CAS-SRC-FAK complex 0.008 0.000 0.000

DDEF1-CTTN-PXN complex 0.004 0.000 0.000

ELMO1-DOCK1-CRKII com-

plex

0.004 0.000 0.000

NGF-TrkA complex 0.004 0.000 0.000

EPOR receptor complex 0.004 0.000 0.000

CRKII-C3G complex 0.008 0.000 0.000

EPO-EPOR complex 0.008 0.000 0.000

Mediator complex 0.000 0.436 0.000

MED18-MED20-MED29 medi-

ator subcomplex

0.000 0.058 0.000

LMO4-gp130 complex 0.017 0.000 0.000

CNTF-CNTFR-gp130-LIFR

complex

0.004 0.000 0.000

LIFR-LIF-gp130 complex 0.004 0.000 0.000

Emerin complex 32 0.000 0.014 0.000

PSD95-FYN-NR2A complex 0.004 0.000 0.000
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FARP2-NRP1-PlexinA1 com-

plex

0.004 0.000 0.000

FARP2-NRP1-PlexinA2 com-

plex

0.004 0.000 0.000

FARP2-NRP1-PlexinA3 com-

plex

0.004 0.000 0.000

FARP2-NRP1-PlexinA4 com-

plex

0.004 0.000 0.000

SEMA3C-PlexinD1-Nrp1 com-

plex

0.004 0.000 0.000

PlexinA1-Nrp1 complex 0.004 0.000 0.000

PlexinA3-Nrp1 complex 0.004 0.000 0.000

PlexinB1-Nrp1 complex 0.004 0.000 0.000

SEMA6D-PlexinA1-NRP1

complex

0.004 0.000 0.000

VEGFA(165)-KDR-NRP1 com-

plex

0.013 0.000 0.000

VEGFA(165)-KDR-NRP1 com-

plex

0.004 0.000 0.000

VEGFA(165)-VEGFR2-NRP1

complex

0.013 0.000 0.000

NRP1-VEGF(165/121) complex 0.008 0.000 0.000

CIN85-SH3GL3-CBL complex 0.008 0.000 0.000

NRP1-VEGFC complex, hep-

arin dependent

0.004 0.000 0.000

NRP1-VEGFD complex, hep-

arin dependent

0.004 0.000 0.000

Pre-initiation complex (PIC) 0.000 0.019 0.000

PlexinA1-NRP1 complex 0.004 0.000 0.000

PlexinA1-NRP1-SEMA3A

complex

0.004 0.000 0.000

PARK2-EPS15-EGFR 0.004 0.000 0.000

¯
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