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ABSTRACT

The behavior and dynamics of complex systems are the focus of many research

fields. The complexity of such systems comes not only from the number of their

elements, but also from the unavoidable emergence of new properties of the system,

which are not just a simple summation of the properties of its elements. The behav-

ior of dynamic complex systems relates to a number of well developed models, the

majority of which do not incorporate the modularity and the evolutionary dynamics

of a system simultaneously. In this work, we deploy a Bayesian model that addresses

this issue. Our model has been developed within the Random Finite Set Theory’s

framework. We introduced the stochastic evolution diagram as a novel mathematical

tool to describe the evolutionary dynamics of complex modular systems. It has been

shown how it could be used in real world applications. We have extended the idea

of Bayesian network for non-stationary dynamic systems by defining a new concept

”labeled-edge Bayesian network” and providing a Bayesian Dirichlet (BD) metric as

its score function.
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ZUSAMMENFASSUNG

Das Verhalten und Dynamik von komplexen Systemen steht im Fokus von vielen

Forschungsbereichen. Die Komplexitt solcher Systeme hngt nicht nur mit der Anzahl

von deren Elementen zusammen, sondern auch mit der unvermeidbaren Entstehung

neuer Eigenschaften des Systems, welche nicht nur einfache Summation der Eigen-

schaften seiner Elemente sind. Das Verhalten von dynamisch komplexen Systemen

steht mit einer Anzahl von hoch entwickelten Modellen in Verbindung, welche zum

grten Teil, die Modularitt und die evolutionre dynamik eines Systems nicht gleichzeitig

beinhalten knnen. In dieser Arbeit, wir setzen ein Bayesian Model ein, welches sich

mit diesem Problem befasst. Unser Model wurde innerhalb des Random Finite Set

Theorie’s Rahmenwerk entwickelt. Wir stellen die stochastische Evolution Diagram

als eine neue mathematisches Werkzeug vor, um die evolutionre Dynamik von kom-

plex modularen Systemen zu beschreiben. Es wurde auch gezeigt wie es in realen

Applikationen eingesetzt werden koennte. Wir haben die Idee von Bayesian Net-

zwerk fr nicht stationre dynamische Systeme durch Definition eines neuen Konzepts

”labeled-edge Bayesian Network” und ein Bayesian Dirichlet (BD) Metric als dessen

Auswertungsfunktion erweitert.
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CHAPTER 1

INTRODUCTION

The structure and dynamics of complex systems are the focus of many research

areas, e.g. biology, physics, social science, economics, and engineering [7, 8, 16, 27, 60].

The complexity of such systems originates not only in a large number of their building

elements but also in the intricate interplay between their elements that lead to the

emergence of novel system properties. The underlying structure of virtually any

complex system can be represented as a network.

Interacting with each other, elements (nodes) of large networks form smaller, dis-

crete sub-networks or modules, with dense internal connections among nodes within

modules and sparse connections among modules [51]. Importantly, a module can be

assigned an identifiable functional role that separates it from other modules [47, 51].

Examples of functional modules in complex systems are many and varied. They in-

clude protein complexes and signaling/metabolic pathways [66], sets of genes with

common regulatory programs [2, 61], and communities in social networks [22, 38].

Topologies of the large networks representing real complex systems can be consid-

ered stationary only during short periods of time. As time goes, systematic rewiring

in these networks occurs due to either exogenous stimuli or internal developmental

programs [7, 36]. This evolutionary dynamics can manifest itself in transformations
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such as birth of novel modules or the death of the previously existing one. It can also

merge or split the modules.

Understanding a complex system is unfeasible without knowing its structure and

behavior over time under different conditions [36]. However, the reverse engineer-

ing of the evolving non-stationary networks/systems is a major challenge which has

recently been addressed by deploying a host of machine learning techniques. For ex-

ample, traditional clustering algorithms have been extended to evolutionary clustering

[9] based on its smooth cost function [9, 80, 84] or Dirichlet process [4, 6, 19, 70, 79].

Nonlinear non-stationary time series typically generated from observations on com-

plex systems have been tackled by employing hidden Markov models [21] and change

point algorithms [18, 56, 82]. Time series analysis has often been coupled with graph

partitioning techniques employed to reveal either a sequence of dependent networks

[40, 56, 64, 82] or a common network reflecting the structure of shared information

through time [26].

To our knowledge, none of the existing methods explicitly account for network

modularity and historical dependencies among modules when inferring the evolution-

ary dynamics of complex systems. In this thesis, we introduce a novel framework that

addresses this issue by integrating concepts of the hidden set Markov models and sta-

tistical formalism of the theory of random finite sets. Our key assumption within this

framework is that modules of a large network can be considered as random sets of

nodes. Furthermore, at each time point a network with dynamic topology can itself be

considered as a random finite set of such random sets. The dependencies among nodes

and their parents in this network are modeled as conditional probabilities, implying

that in the course of time old dependencies may disappear and new ones may emerge.

2
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Figure 1.1: Examples of emergence, split and merge of modules over time

Taking multivariate time course data as its input, our method allows one to infer

evolutionary dynamics by detecting changes in points of time and the corresponding

network modules which have been affected. In other words, our method addresses

the following questions that can be of great interest for experimenters (Figure 1.1):

• Is there a network module that emerges at some, a priory unknown, time and

exists for a certain period? (Figure 1.1 at left)

• Is there a network module that splits into smaller modules and, if so, how many

smaller modules and when? (Figure 1.1 at middle)

• Are there network modules that merge into a bigger module and, if so, when

does it happen? (Figure 1.1at right)

Answering these questions is facilitated by analyzing the ”stochastic evolution dia-

gram” a tool that we introduce to encapsulate information about evolving modular

systems. Hence, we call our method BASED, which stands for ”BAyesian Stochas-

tic Evolution Diagrams”. In addition to formulating the mathematical essentials

3



of BASED, we validate its plausibility on simulated datasets and demonstrate its

performance in real application by using a publicly available microarray timeseries

dataset that models TGF-beta-induced epithelial-mesenchymal transition in human

lung adenocarcinoma cells [58].

The focus of this research is declared mathematically in chapter 2. Some essential

principles required for this thesis are presented in chapter 3. Chapter 4 describes how

the characteristics of the declared problem can be formulated in the random finite

set framework. Chapter 5 reviews the Bayesian filter as an optimal solution to infer

the state of a dynamic system at a point in time. In chapter 6, two approximation

methods for the Bayesian filter are reviewed in details. In the chapter 7, a new concept

”Stochastic Evolution Diagram (SED)” is defined and have shown how it encapsulates

all the information about an evolutionary dynamic system, also it is shown how one

can generalizes the idea of HMM to SED. Chapter 8 presents an EM algorithm to

identify the SED. Chapter 9 proves how to extend the idea of Bayesian network

for non-stationary dynamics system theoretically by using SED. In chapter 10, the

accuracy of proposed methods and their applicability in a real world application are

tested. Chapter 11 summarizes and discusses about approaches that have addresses

problems about evolutionary dynamics. Chapter 11.4 summarizes the work presented

in this thesis, and potential future works.
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CHAPTER 2

PROBLEM DECLARATION

This chapter is devoted to define precisely the terms complex system, modular

network, evolutionary dynamic system and evolutionary modular system. In this

research, a complex system is understood as a system with a large number of measur-

able features (e.g., thousands of gene expression profiles, stock market rates, moving

objects, etc.), and whose underlying network contains associations between nodes. As-

sociations between nodes may include a similarity function and any mathematically

defined correlation. We are interested in the conditional probability dependencies

between features (Bayesian network). The terms ”complex system” and ”underlying

network” are exchangeable, similarly applied to any ”random variable” and ”node”.

A modular network is a network which is well divided into modules in which there are

dense internal connections between nodes within modules but only sparse connections

between different modules (Figure 2.1). In many real dynamic complex systems the

topology of the underlying network is not static and can evolve over time. In the

case of the probability dependency network, a node does not depend on the state of

its parents permanently, and it is possible that current dependencies disappear and

new dependencies emerge. Figure 2.2 illustrates the evolution of the underlying net-

work’s topology within a complex system, where each network temporarily governs

5
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Figure 2.1: An example of a modular network separated into 3 modules.

the dynamic of the system (a network phase). The bottom part of Figure 2.2 illus-

trates another graphical representation of a time-varying network. In it, the label of

each edge indicates its respective lifetime. A system under this scenario undergoes

evolutionary dynamics.

Assume that a module in such a network is a subset of the set of nodes. Composi-

tion of such a module can vary over time and thus at each point in time this module

can be viewed as a random set of nodes. Then the network itself can be viewed at

each point in time as a random set of random sets. Mathematically, this can be

presented as follows. (It should be emphasized that here we consider only nodes, not

edges until chapter 9)

Consider a network with n nodes, and let X = {x1, . . . , xn} be a set of random

variables (nodes). The power set 2X is the set of all subsets of X, including the empty

set ∅. Loosely speaking, we will consider a random set as a set variable, whose value

is one of the elements of the 2X . The elements of the power set can be taken in such

6
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Figure 2.2: An example of two graphical representations of evolution in topology of
networks.
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Figure 2.3: Changes in topology of a network with 6 nodes represented by random
sets.

a way that it will present propositions concerning the actual state of a module in

a network at a particular time, by containing all and only the nodes in which the

proposition is true. Thus, we can represent a module of the network at time k as a

finite random set. For example, if at time k, Nk
m nodes belong to the mth module

mokm = {xi1 , . . . , xiNkm}, where xij ∈ X, and if there are Mk modules at time k, then

the network can be represented as follows:

Netk = {mok1, . . . ,mokMk} (2.1)

As the topology of the network underlying a complex system evolves in time, the

Netk changes. A change in a random set variable includes changes in size of the

set, and the states of its elements. Figure 2.3 illustrates changes in the topology

of a network with 6 nodes from time k − 1 to time k. Thus, if we were able to

find the most probable sequence of states of the random finite sets Net1, ..., Netk,

we could understand the dynamics of the complex systems. Briefly, the state of a

network at time k shows how many modules exist, and to which module a node

belongs. Theoretically an optimal approach toward module detection, tracking, and

8



identification is the following generalization of the recursive Bayesian filter:

pk|k−1(Netk|Z1:k−1) =

∫
fk|k−1(Netk|net)pk−1|k−1(net|Z1:k−1)δnet (2.2)

pk|k(Netk|Z1:k) =
Lk(Zk|Netk)pk|k−1(Netk|Z1:k−1)∫
Lk(Zk|net)pk|k−1(net|Z1:k−1)δnet

(2.3)

N̂et
MAP

= arg max
net

pk|k(net|Z1:k) (2.4)

N̂et
EAP

=

∫
net pk|k(net|Z1:k)δnet (2.5)

Where Netk is the network hidden state set. Zk is the observation set at time k,

and Z1:k are all the observation sets from time 1 to k. pk|k(Netk|Z1:k) is the network

posterior density function conditioned by the accumulated observation-sets till time

k. pk|k−1(Netk|Z1:k−1) is the prediction of the network posterior. Lk(Zk|Netk) is

the network likelihood function that describes the likelihood of observing Zk given

that the network is in state Netk. fk|k−1(Netk|net) is the Markov transition density

function that reflects the probability of the network’s transition to state Netk given

that it was at state net at time k − 1.

The network filter Equations 2.2 and 2.3 are applicable if one is able to define

effectively the random set value functions fk|k−1, Lk() (the Markov transition density

function and the likelihood function) as well as the differential and integral calculus

for these functions to be able to estimate the network state by means of the expected a

posteriori (EAP) or maximum a posteriori (MAP) estimators recursively (Equations

2.4 and 2.5).

The presented network filter cannot be applied like the classical Bayesian filter for

a single vector variable in a blind fashion. We require tools of the finite set statistics

(FISST) to accommodate set-valued functions, which provide a mathematically con-

sistent and rigorous generalization of the likelihood function and Markov transition

9



function. In the chapters 3, 4, 5, it is reviewed how random set theory provides us

FISST to construct these two functions from random set variables. We use a num-

ber of analogies between random set statistics and classical statistics (random vector

variable) to show the similarities in school of Bayesian thinking in both worlds.

2.1 Motivation and Goals

A systematic understanding of a biological system can be done by study of either

the structure of system including interactions and biochemical pathways, or of dynam-

ics of the system including the system’s behavior over time under different conditions

[36]. In reality, dynamic and structure of a system are dependent on each other. A

change in dynamics may yield a new structure or vice versa. Our motivation is to

show how to analyze a complex system by considering both dynamics and structure.

The hope is that investigation will reveal possible change points of the structure as

well as a time table for functionality.

Modularity is considered to be one of the main structural properties of biological

systems. A biological network module consists of a set of elements (e.g., genes,

proteins) and has distinct function [39]. A biological function can rarely be assigned

to an individual element. In contrast, biological functions are carried out by modules

made up from interaction among many components, and these functions can not easily

be predicted by studying the properties of the isolated components [27, 39, 51, 71].

Indeed, most genes and proteins do not have a function on their own; rather; their

role is realized through a complex network of interactions with other proteins, genes

and molecules [72]. Over the course of a biological process (e.g., cell cycle), the

functionalities of each module are dynamic and context dependent at each time. As a

10



result, it can undergo systematic rewiring, rather than being invariant over time [1].

”Modules can be insulated from or connected to each other. Functional modules need

not to be rigid, fixed structures; a given component may belong to different modules

at different times” [27].

Evolutionary dynamics (time-evolving topology of underlying network) is the main

common dynamical property of most temporal biological processes. The evolutionary

behavior of complex networks can be fitted with a number of well developed models

[30, 37, 40, 53, 56, 63, 64, 65, 79], but an important challenge (which is still an open

question) is how to model temporal large-scale complex networks. As the number of

nodes grows in a network, the number of possible network topologies and dimension

of network parameters will grow exponentially [79], and computational complexity

will be the main challenge.

To our knowledge, none of methods have incorporated explicitly the modularity

property to model evolutionary behavior of complex networks. As a result, the in-

vestigator cannot fully understand a system. This is particulary true when they are

more interested in the global behavior of the nodes in large networks than in the

characteristics of an individual node [79] which is frequent case in biological research

[1, 17, 27, 36, 39, 51, 61, 71, 72]. We have fused modularity property as a prior knowl-

edge into the introduced evolutionary dynamics model to reduce the computational

complexity.

As mentioned before, biological processes can be described as ordered and parallel

occurring events. A Gannt chart can be used to illustrate the start and finish time

of events and also shows responsible elements of each event. Figure 2.4 depicted an

example Gantt chart that it is sorted based on the order of occurring events, and also

11



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Event 1 x1, x2, x3, x4, x5

Event 2 x8, x9

Event 3 x1, x2

Event 4 x4, x5, x6, x7

Event 5 x6, x7, x8, x9

Figure 2.4: A Gantt char example. Events are sorted based on time of occuring

shows the dependencies between events, for example, Event 3 and 4 will be triggered

when Event 1 is done, and Event 5 will be triggered when Event 2 and 4 are done.

Figure 2.5 shows the same example, but sorted base on dependencies between events.

The biological motivation of this research was to introduce a mathematical frame-

work to detect and identify the occurred events and also reconstruction of interaction

of elements responsible for each event. Briefly, we introduced a tool to reconstruct

the Gantt chart underlying a dynamical complex system by having a time series

observation from the system, and also reconstructing temporal interaction between

elements.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Event 3 x1, x2

Event 1 x1, x2, x3, x4, x5

Event 4 x4, x5, x6, x7

Event 5 x6, x7, x8, x9

Event 2 x8, x9

Figure 2.5: A Gantt chart example. Events are sorted based on dependencies
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CHAPTER 3

RANDOM FINITE SETS (RFS)

This section briefly describes some of the fundamental statistical concepts of the

Random Finite Set (RFS) theory used to formulate our model.

3.1 Almost Parallel Worlds Principles

A rigidly accurate stochastic mathematical foundation for random set-related

problems, the point process theory, was formulated several decades ago. However, in

1997 Goodman et al. [24] introduced an “engineering friendly” point process theory

called the finite set statistics (FISST), which has attracted a great interest there-

after. A detailed description of FISST can be found in [45]. The basic idea of the

finite set statistics is to redefine conventional statistical concepts (e.g., derivative, in-

tegral, probability mass function, likelihood, etc.) for a random finite set of variables

(e.g., set derivatives, set integral, etc.), or, in other words, to define a framework

that mathematically transforms the structure of a set of random variables into a bun-

dled single composite variable (random finite set) representing all properties of the

characteristics of the original random variables. This transformation results in the

creation of a new “almost-parallel world” [45]. The Almost-Parallel Worlds Principle

(APWOP) states that almost any concept or algorithm in conventional statistics can,
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in principle, be directly translated into a corresponding concept or algorithm in the

random set world [45].

3.2 Random Finite Set and Belief Mass Function

Let U = {x1, . . . , xn} and n < ∞. Then a random variable which takes its

value from the universal sample space 2U is called a random finite set [45]. A

measure (X : 2U → [0 1]) is defined by definition (,) by assigning probabilities

mx(A) , P (X = A) = PX({A}) directly to each A ∈ 2U , and the belief mass func-

tion for a random set A is defined as βX(A) , P (X ⊂ A) =
∑

B⊂Amx(B). The belief

mass function plays the same role in random finite set statistics as the cumulative

distribution plays in random vector statistics [45].

3.3 Spatio-Temporal Point Processes and Hidden-Set Markov
Model

By definition, module phase is a period of time when the state of a module (a

RFS) does not change, but each elements of the module are allowed to evolve over

this period. Then a module phase transition is defined as an event when new elements

appear or old elements disappear in the module.

Loosely speaking, analogous to a Markov process, a spatio-temporal point process

is a memoryless time-varying RFS process, or p(moki |mok−1
i , . . . ,mo1

i ) = p(moki |mok−1
i ).

Also analogous to the hidden Markov model (HMM), a hidden-set Markov model

(HSMM) is a model in which the system is assumed to undergo a point process with

unobserved (hidden) states. The rest of chapter is organized as follows. Section 3.4

describes the formulation of a module’s motion model and its observation model. In

section 3.5, basic needed principles of finite set statistics (FISST) is reviewed.
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3.4 Motion Model and Observation Model of a Module

As mentioned above, both the state of a module and the observation from a

module are considered as random finite sets (RFS). In this section, we formulate

the RFS motion and observation models of an evolving module by considering the

following two examples:

mok−1
i = {xk−1

1 , xk−1
2 , xk−1

3 }

moki = {xk1, xk2, xk4, xk5} Example.1

Żk = {żk1 , żk2} Example.2

In Example 1, for a given module state mok−1
i each xj ∈ mok−1

i either continues to

survive at time k with a probability ṗkS(xk−1
j ) (e.g., xk−1

1 and xk−1
2 ), or dies with a

probability 1 − ṗkS(xk−1
j ) (e.g., xk−1

3 ). In addition, spontaneous birth of new nodes

(e.g., xk4 and xk5) can occur at time k with the corresponding probability.

Thus, the cardinality of the module as a RFS, as well as the state of its nodes,

are allowed to evolve. Similarly, in Example 2, which considers the observation state

model for a given module moki , each node (e.g. xk1 and xk2) can get detected by the

measurement tools (sensors) that produce observations (e.g., żk1 and żk2 ). The sensor

also can fail to detect the nodes (e.g., xk4 and xk5), producing no measurements.

Figure 3.1 illustrates the state space of a network module and observation space,

whereas Figure 3.2 illustrates the motion model of a module from time k− 1 to time

k. The module observation model is illustrated in Figure 3.3.

Let a module at time k have a state moki . Temporal evolution of the modules

state, which involves motion of each individual nodes, as well as birth and death of
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Figure 3.1: Hidden-Set Markov Model: illustration of state space and observation
space.

nodes, is formulated as follows:

moki =


 ⋃

x∈mok−1
i

Ṡk|k−1(x)


 ∪ Γ̇k (3.1)

where Ṡk|k−1(xk−1
j ) is a RFS model of a node with a previous state xk−1

j , that can take

on either {xkj} or ∅. Γ̇k is a model for new nodes appearing in the module at time k

spontaneously. moki is, therefore, a union of all the survived nodes and all newly born

nodes.

The RFS observation model, which accounts for the detection uncertainty, is for-

mulated as follows:

Żk =
⋃

x∈moki

Θ̇k(x) (3.2)

where Θk(x) is the model for observations that are captured present nodes in the

module. This model takes a value ż if the node is detected and ∅ otherwise.
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mok−1i moki

xk−1
1

xk−1
2

∅

xk
1

∅

xk
3

Survive ṗkS(x
k−1
1 )

Death 1− ṗkS(x
k−1
2 )

Spontaneous Birth

Figure 3.2: Module motion model.

Module State Space Module Observation Space

xk
1

xk
2

żk1

∅

Detection ṗkD(x
k
1)

Missed 1− ṗkD(x
k
2)

Figure 3.3: Module observation model.

3.5 Basic Ideas of the FISST Calculus

The Mahler’s finite set statistics [45] generalizes the Bayesian framework for the

study of random set-valued variables, and provides a means to estimate the state

of a time sequence of random finite sets that are generated from an assumed point

process. In this section, a Bayesian formulation of the module filtering problem is

presented in the RFS framework. The RFS framework is a systematic and rigorous

approach to RFS filtering [41]. The RFS Bayesian recursion is provided as solution

to jointly estimate the cardinality of a module and state of its elements.

Suppose that we recursively observe a dynamic module. The following shows how

to derive optimal formulae in a Bayesian sense to estimate a modules’ cardinality,
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and state of module’s members. To recall, integral transforms are fundamental to

conventional probability, and the ideas of moment generating function and charac-

teristic functions can be used as an alternative route to analytical results compared

with working directly with probability density functions or cumulative distribution

functions, and recover the nth statical moments of a random variable (e.g. Equations

3.3 and 3.4 for random variable A) from them. Also the probability distribution of a

nonnegative integer random variable can be recovered from a probability generating

function (p.g.f) (Equation 3.5 for nonnegative integer random variable J). Similarly,

integral transforms can be generalize into random-set language. The probability gen-

erating functional (p.g.fl) can be regarded as the generalized probability generating

function (p.g.f) to random set statistics.

χA(x) ,
∫ ∞

−∞
eixa · pA(a)da = E[eixA] (3.3)

Ma(x) ,
∫ ∞

−∞
ex·a · pA(a)da = E[xA·x] (3.4)

GJ(x) ,
∞∑

n=0

pJ(n)xn = E[xJ ] (3.5)

A spatial point process is defined as a random set of nodes mo = {x1, x2, . . . , xN}

where xi belongs to a measurable space S such as Rd known as state space. As-

sume probability distribution pmo on measure space S defines the distribution of the

module’s members, and a cardinality distribution pC determines the total number of

nodes and satisfies
∑∞

c=0 pC(c) = 1.

Let pn(yi) be a probability distribution on state space of a node. For any random

set Y = {y1, y2, . . . , yn} where |Y | = n and yi ∈ S, define the module probability

distribution as following:

pmo(Y ) , n! · pC(n) · pn(y1) · pn(y2) . . . pn(yn) (3.6)
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If we assign a Poisson distribution with Poisson parameter λp to pC ( pC =

e−λpλnp/n!), then

pmo(Y ) , e−λp · λnp ·
∏

yi∈Y
pn(yi) (3.7)

This is called multidimensional Poisson point process. Any module having pmo as its

distribution is a RFS Poisson point process.

If h(xi) is a nonnegative real-valued function of xi that has not unit of measure-

ment (usually called a test function), let us define the notations hmo , pmo({x1, x2, . . . , xc})

(random set mo distribution) and set integral as follows:

hmo ,

{
1 if mo = ∅∏

xi∈mo h(xi) otherwise
(3.8)

pmo({x1, x2, . . . , xc}) , c! · p(x1, x2, . . . , xc) (3.9)

∫
f(X)δX , f(∅) +

∞∑

n=1

1

n!

∫
f({x1, x2, · · · , xn)})dx1dx2 · · · dxn (3.10)

Then the probability generating functional (p.g.fl.) ofmo’s probability distribution

function is

Gmo[h] = E[hmo] ,
∫
hY pmo(Y )δY (3.11)

There are two basic properties of p.g.fl. IfNmo is the expected value of |mo| (cardinality

of module) and if σ2
mo is its variance, then [45]

Nmo = G
′

mo(1) (3.12)

σ2
mo = G

′′

mo(1)−N2
mo +Nmo (3.13)

where G
′
mo() and G

′′
mo() are the first and second derivatives of Gmo().

The other properties of p.g.fl are following:
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• Gmo[0] = pmo(∅)

• Gmo[1] =
∫
pmo(Y )δY = 1

• Gmo[h|X] =
∫
h(Y )pmo(Y |X)δY (Conditioning p.g.fl )

A joint probability generating functional of two RFSs X and Y can be defined by

GX,Y [g, h] ,
∫ ∫

gX · hY · pX,Y (x, y)δXδY (3.14)

The p.g.fl. of a module as a Poisson point process is given by [45, page. 373]

Gmo[h] = eλp
∫
h(y)p(y)dy−λp (3.15)

3.6 Module Filtering

The optimal module Bayesian filter propagates the module posterior distribution

pkmo(mo
k|Ż1:k) conditioned on the sets of observations up to time k, Ż1:k, with the

following recursion via module Bayesian prediction and module Bayesian update [45]

pk|k−1
mo (mok|Ż1:k−1) =

∫
fk|k−1
mo (mok|X)pk−1

mo (X|Ż1:k−1)δX (3.16)

pkmo(mo
k|Ż1:k) =

p
k|k−1
mo (mok|Ż1:k−1) · Lkmo(Żk|mok)

∫
p
k|k−1
mo (X|Ż1:k−1) · Lkmo(Żk|X)δX

(3.17)

where f
k|k−1
mo (.|.) and Lkmo(.|.) are the module transition density and module likelihood

respectively. The module Bayesian filter alternatively can be written in terms of
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p.g.fl.s. The p.g.fl. form of the Bayesian filter is given by [45, chapter.14]

Gk|k−1
mo [h|Ż1:k−1] =

∫
G
f
k|k−1
mo

[h|X] · pk−1
mo (X|Ż1:k−1)δX

=

∫ ∫
hY · fk|k−1(Y |X) · pk|k−1

mo (X|Ż1:k−1)δY δX (3.18)

Gk
mo[h] =

δF
δZk

[0, h]
δF
δZk

[0, 1]
(3.19)

=

∫
hY · Lkmo(Żk|Y ) · pk|k−1

mo (Y |Ż1:k−1)∫
Lkmo(Ż

k|X) · pmo(X|Ż1:k−1)δX
δY (3.20)

Here

F [l, h] ,
∫
lY ·Gk[l|X] · fk|k−1

mo (X)δX (3.21)

and

Gk[l|X] ,
∫
lZ · Lkmo(Z|X)δZ (3.22)

where G
k|k−1
mo [h] is p.g.fl. Bayesian prediction, and Gk

mo[h] is p.g.fl Bayesian update.
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CHAPTER 4

NETWORK AS A RANDOM FINITE SET OF MODULES

Thus far, we have shown how to characterize the uncertainty of a module in a

network by modeling the module state and the module measurements as random fi-

nite sets (RFS). We also formulated the corresponding motion model and observation

model, and mentioned that a network itself is a random finite set of modules with its

own dynamics (Figure 2.3). Therefore, understanding the dynamics of a complex sys-

tem that has a dynamic topology underlying network is the problem of characterizing

the uncertainty of the underlying network, or in other words, detecting, identifying,

classifying and estimating (tracking) the states of modules and their nodes at each

time point (Figure 4.1).

4.1 Multiple Hidden Set Markov Model

Analogous to the multivariate HMM, the multiple hidden set Markov model jointly

characterizes the uncertainty of a random finite set of random finite sets [42]. Mahler

[42] has presented a theoretically unified, rigorous, and potentially practical approach

to construct an optimal recursive Bayesian estimation for the multiple hidden set

Markov models. Figure 4.2 illustrates a two-layered stochastic process of the multi-

ple hidden set Markov model, where the network state-space represents a randomly
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Figure 4.1: Example of a sequence of network states in the Network × Time space.
Solid lines are signals that belong to modules.

varying network. The network state space can also have its own motion model (sur-

vival, birth and death) and its observation model (detection, missed-detection, and

false alarms), which are more complex than a module’s dynamic models that were

described in chapter 3.4.
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Figure 4.2: Multiple Hidden-Set Markov Model: illustration of network state space,
module state space, and observation state space.

4.2 Motion Model and Observation Model of a Network

Within our framework, a network is viewed as a random set of modules that them-

selves are random set variables, and the same is true for the observations. However,

the dynamics of a network is more complex than that of a module. Consider the

following two examples:

Netk−1 = {mok−1
1 ,mok−1

2 ,mok−1
3 }

Netk = {mok1,mok2, xk4,mok5} Example.3

Zk = {Ża, Żb, Żc, Żd} Example.4

First, let us define the network phase transition as an event when new modules appear

or old modules disappear in the network. Then the network phase is a period of time

during which no network phase transition occurs, but each element of the network is

still allowed to evolve.
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In Example 3, for a given network state Netk−1 at time k − 1 each mo ∈ Netk−1

either continues to survive at time k with a probability pkS(mok−1) (e.g., mok−1
1 and

mok−1
2 ), or dies with a probability (1− pkS(mok−1)) (e.g., mok−1

3 ). A module dies when

all its elements die and this module becomes empty by time k. Also, a new module

can appear at time k (e.g., mok4 and mok5) with a certain probability of birth. New

modules can arise from three different scenarios, i.e. 1) by spontaneous birth, 2)

spawning from a module at time k− 1 (splitting of a module to smaller modules), or

3) merging of some modules to a bigger module.

Similar to the module observation model described in chapter 3, in the network

observation model for a given network Netk at time k each module can be detected by

the measurement tools that produce observations. The sensors also can fail to detect

the module, producing no measurement. In addition, false alarms in the observation

set are possible. The uncertainty of the network observation model will increase when

there is no information about association between modules and their observations

(Example 4).

Figure 4.2 illustrates the state space of a network and corresponding observation

space, whereas Figure 4.3 illustrates the network motion model from time k − 1 to

time k. The network observation model is illustrated in Figure 4.4.

Let a network at time k have a state Netk. The evolution of the network state,

which involves the motion of each individual module, as well as birth and death of

modules, is formulated as follows:

Netk =

( ⋃

mo∈Netk−1

Sk|k−1(mo)

)
∪
( ⋃

mo∈Netk−1

βk|k−1(mo)

)
∪ Γk (4.1)

where Sk|k−1(mok−1
i ) is a RFS model of a module with a previous state mok−1

i , which

can take on either {moki } or ∅. Γk is a model for new modules appearing spontaneously
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Figure 4.3: Network motion model.

in the network at time k. βk|k−1(mok−1) denotes the RFS of new modules spawned

from mok−1. The idea of merge of an unknown number of modules into one module

at each time step is reflected in Sk|k−1(mok−1
i ). Thus, Netk is a union of all survived

modules and all types of new modules.

The network’s observation model that accounts for the detection uncertainty and

false alarms is formulated as follows:

Zk =

( ⋃

mo∈Netk
Θk(mo)

)
∪Kk (4.2)
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Figure 4.4: Network observation model.

where Θk(mo) is the model for observations captured from the present modules in the

networks. This model takes a value Ż if the module is detected and ∅ otherwise. Kk

is a set of observed false alarms that has its own model.

4.3 Spatio-Temporal Cluster Process and General Cluster
Process

A random cluster approach is widely used to model systems which undergo phase

transitions or, more generally, systems with a graph structure. Cluster processes are

a concept in the theory of point processes, and are described as a superposition of

point processes of a cluster [69].

Let Net = {mo1,mo2, · · · ,moM} where mo1,mo2, · · · ,moM are statistically inde-

pendent cluster processes. The probability density of Net is related to the probabil-

ity density of mo1,mo2, · · · ,moM as follows: (Fundamental convolution formula [45,
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page.385])

pNet =
∑

m1]m2]···]mM=Net

pmo1(m1) · pmo2(m2) · · · pmoM (mM) (4.3)

where the summation is taken over all mutually disjoint modules mo1,mo2, · · · ,moM

of Net such that mo1 ∪mo2 ∪ · · · ∪moM = Net.

Cluster processes are a superposition of cluster centers (an unseen point process,

we refer to them as parent processes), to which are associated a random number of

nodes (a.k.a. daughter processes).

4.4 Network Filtering

The optimal network Bayesian filter propagates the network posterior density

pkNet(Net
k|Zk) conditioned on the sets of observations up to time k, Z1:k, with the

following recursion via network Bayesian prediction and network Bayesian update

[69].

p
k|k−1
Net (Netk|Z1:k−1) =

∫
fk|k−1(Netk|net)pk−1|k−1(net|Z1:k−1)δnet (4.4)

p
k|k
Net(Net

k|Z1:k) =
Lk(Zk|Netk)pk|k−1(Netk|Z1:k−1)∫
Lk(Zk|net)pk|k−1(net|Z1:k−1)δnet

(4.5)

A network can be considered as general cluster processes that are characterized by a

component (a module) process p.g.fl, Gmo, within a parent cluster (a network) center

p.g.fl, GNet, [68].

GNet[Gmo[h|.]] (4.6)

where Gmo[h|.] is the p.g.fl of the daughter process for any particular realization of the

parent processes. Gmo[h|.] is treated as an argument of GNet. We refer to realization

of parent process as virtual leader modeling and it is described in detail in chapter
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5.2. It was shown by Swain and Clark [69], the p.g.fl. forms of prediction and update

formula, p
k|k−1
Net (Netk|Z1:k−1) and p

k|k
Net(Net

k|Z1:k),( Equations 4.4, 4.5) are

G
k|k−1
Net [h] = G

k|k−1
Γ [h]G

k−1|k−1
Net [Φ[h]] (4.7)

G
k|k
Net[h] =

δF
δZk

[0, h]
δF
δZk

[0, 1]
(4.8)

where

G
k−1|k−1
Net [Φ[h]] = GNet[Gmo[Φ[h]|.]] = GNet (sp[Gmo(sd[Φ[h]|.])]) (4.9)

F [g, h] = GNet (sp[Gmo(sd[h.GL[g|.]|.])]) (4.10)

GL[g|.] =

∫
g(z)Lz(.)dz (4.11)

G
k|k−1
Γ [h] is the p.g.fl for the set of newly emerging modules, sp(u) = sk−1|k−1(u)

is the p.d.f for parent processes describing motion model of survived modules, and

sd(w|u) = sk−1|k−1(w|u) is the p.d.f. for the daughter process describing node motion

models. Complete proofs of Equations 4.7 and 4.8 are provided in [69].
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CHAPTER 5

RFS BAYESIAN ESTIMATORS

Estimating the state of a random set is a complex procedure and different sta-

tistical and non-statistical methods have been proposed for this propose. Depending

on the application, different methods have different goals, e.g., realtime response, low

computational cost, or mathematically optimal solution.

An optimal filter propagates the joint probability density of the elements of a

random set given the data. Due to the dynamics of random sets, the conventional

Bayesian filter is not applicable just by concatenating the elements and forming a

random vector variable in a blind fashion and the classical Bayesian optimal state

estimators are not applicable in general random finite set situations; therefore, a

new estimator must be defined and demonstrated its statistical optimality behavior.

In conventional statistics, assuming the prior distribution is unform, the maximum

likelihood estimator (MLE) will be a special case of maximum a posteriori (MAP)

and, as such, is optimal and convergent, but in random finite case is not true [41].

The MLE of a random finite set is defined as follows:

{x̂1, x̂2, · · · , x̂n}MLE , arg max
n,x1,x2,··· ,xn

f(Z|{x1, x2, · · · , xn}) (5.1)

In chapters 3 and 4, it is shown how the optimal Bayesian random finite set filter is ca-

pable of recursive propagation of the RFS p.g.fl. in time. However, it is not practical
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to obtain a sequence of states of RFS due to computational issues. Several compu-

tationally feasible approaches have been proposed as an alternative to approximate

RFS Bayesian recursive estimator such as Marginal Multitarget Estimator (MaME)

and Joint Multitarget Estimator (JoME) [41, 45]. Analogous to the Kalman filter,

which is the most successful approximation method for matching the two first order

moments (mean and covariance) of the Bayesian estimator, the first moment of the

recursive RFS Bayesian estimator is the Probability Hypothesis Density (PHD) [43],

denoted as υk(x) at time k. υk is an intensity function associated with RFS posterior.

∫
S
υk is the expected number of elements of a RFS in the hyper-space S.

The problem of our interest, to some extent is similar to the problem of multi-

group multi-target tracking problem, but we do consider probabilistic associations

between targets. We have used RFS framework to benefit from its mathematical

tools, its flexibility and stay in rigorous framework. Although the classical approaches

for multi-target tracking such as the multiple hypothesis tracker (MHT )[55] and the

joint probabilistic data association filter (JPDAF)[3] could be used to estimate the

simplified version of our problem, and also some multi-target tracking algorithms

consider interacting targets [23].

5.1 Probability Hypothesis Density filter

The intensity function, or probability hypothesis density (PHD), of a point process

is found by taking the functional derivative of the p.g.fl. evaluated at h = 1. For

example PHD of a Poisson point process (Equation 3.15) is

υ(x) =
δ

δx
Gmo[h]|h=1 = λpp(y) (5.2)

where λp is the expectation of cardinality of a module distributed according to p(y)
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As mentioned in chapter 3, the RFS Bayesian recursion (Equations 3.16 and 3.17)

can alternatively be stated in terms of p.g.fl (Equations 3.18 and 3.20). Let υ̇k and

υ̇k|k−1 denote respective intensities (PHD) associated with G
k|k−1
mo [h|Z1:k−1] and Gk

mo[h]

in the module prediction and the update recursive posterior. It has been shown that

the posterior intensity can be propagated recursively in time via the PHD [43]:

υ̇k|k−1(x) = γ̇k(x) +

∫
ṗkS(ζ)ḟk|k−1

mo (x|ζ)υ̇k−1(ζ)dζ (5.3)

υ̇k|k(x) = [1− ṗkD(x)]υ̇k|k−1(x) +
∑

ż∈Żk

ṗkD(x)Lkmo(ż|x)υ̇k|k−1(x)∫
ṗkD(ζ)Lkmo(ż|ζ)υ̇k|k−1(ζ)dζ

(5.4)

where γ̇k() is the intensity of the RFS spontaneous birth of a new node. ṗkS(x) is the

probability that a node still belongs to the module. ṗkD(x) is the probability of having

an observation from a node (detection). f
k|k−1
mo (.|x) is the transition density function.

The PHD filter has been drive from difrent perspectives, a FISST perspective can be

found in [43] and a measure theoretic probability perspective is provided in [74].

A graphical presentation of the PHD filter is depicted in Figure 5.1(a). A random

finite set and the number of its elements are shown as a plate, with the elements num-

ber in the corner of the plate. The shaded circles indicate observable parameters. The

directed edges between variables indicate dependencies between the variables. The

dashed edges indicate dependency between hidden variable and observable variables

in case of detection.

5.2 Bayesian Estimator for Multiple Hidden-Set Markov Model
(MHSMM)

Let us define Level 1 data fusion as a problem of detecting, identifying and tracking

a module (Figures 3.1 and 5.1(a)), and Level 2 data fusion as a problem of detecting,

identifying and tracking a random set of modules (Figures 4.2 and 5.1(b)). Mahler [42]
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has proposed a generalized and computationally tractable strategy for multiple hidden

set Markov model (MHSMM), and has shown that this is a PHD of the RFS of hidden

sets. In other words, the integral over PHD of MHSMM is the expected number of

hidden sets. Swain and Clark [69] have derived the first moment approximation of the

independent multiple hidden-set Markov model (MHSMM) Bayesian filter based on

the concept of PHD filter for the hidden set Markov model. The posterior intensity

can be propagated recursively in time via the PHD [69]:

υk|k−1(µ, x) = γk|k−1(µ, x) +

∫ ∫
υk−1|k−1(m,n)pS(m,n)fk|k−1(µ, x|m,n)dmdn

(5.5)

where

γk|k−1(µ, x) = the intensity function of the network, which describes

spontaneously emerging modules at time k (5.6)

υk−1|k−1(m,n) = intensity function of the network at time k − 1 (5.7)

pS(m,n) = the joint probability a node n survival in a module m (5.8)

fk|k−1(µ, x|m,n) = the Markovian transition density for a node state x in module µ

given node state w in module state u at time k (5.9)

υk|k(µ, x) =
∑

P∈P(Zk)

ωP

∑

W∈P

s1(µ)Lmo(W |µ)

s1[Lmo(W )]
︸ ︷︷ ︸

intensity update for virtual leader

intensity update for node︷ ︸︸ ︷∑

ż∈W

s2(x|µ)Lż(z|x, µ)

s2[Lż|µ]
(5.10)

where

ωP =
|P|!ρµ(|P|)ΠW∈Ps1[Lmo(W )]∑

Q∈P(Z) |Q|!ρµ(|Q|)ΠW∈Qs1[Lmo(W )]
(5.11)

Lmo(W |µ) = |W |!ρx(|W ||µ)Πż∈W s2[Lż|µ] (5.12)
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and

Lż = a node likelihood for individual measurements ż ∈ W
(5.13)

s1(µ) = sk|k−1(µ) = p.d.f of parent (virtual)process (5.14)

s2(x|µ) = sk|k−1(x|µ) = p.d.f of daughter (node) process (5.15)

ρµ, ρx = predicted cardinalities of parent and daughter processes
(5.16)

A partition of a observation set Zk is defined as set of subsets of Zk such that those

subsets have not any intersect and the union of all is equal to Zk. P(Zk) in Equation

5.10 is the set of all partitions of the observation set Zk.

5.3 Simplified MHSMM

The first moment density of the network Bayesian update (Equation 5.10) is pre-

sented under assumption of no false alarm and missed detection. Considering the

false alarm and missed detection cases increases the complexity of the problem and

computationally will be very expensive. If the problem is only to detect, estimate,

and identify hidden sets and their elements, but not to precisely estimate the states

of elements of the hidden sets, then MHSMM will be simplified to a HSMM, but

still will preserve its dynamics (birth, split and merge). Figure 5.1(c) illustrates the

plate notation of the simplified version of RFS Bayesian estimator for MHSMM. This

simplification is based on a hypothetical proposition that any module of a network

can be parameterized mathematically.

A group of elements (e.g., a module composed of network nodes) unavoidably

develops properties which are not a simple summation of the properties of its elements

(a phenomenon widely known as emergence). Hypothetically, the nodes of a module
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are coordinated. The way they are coordinated can change over time, and can be

described with the help of a ”virtual leader”. A wide variety of parameters can

be used as virtual leaders, for instance geometric centroid [12] or parameters of the

probability distribution of nodes of a module (Figure 7.1). Given that definition of a

virtual leader can be formulated, one can apply the PHD filter between the network

state space and the module space (the upper and the middle levels in Figure 4.2).

Let us assume that nodes of a module belong to a Gaussian distribution, {xi ∼

N (µj, σ
2
j )|xi ∈ moj}. Then we can use µj and σj as the virtual leader of moj. Consider

υk and υk|k−1 as the respective intensities (PHD) associated with pk|k−1(Netk|Zk−1)

and pk|k(Netk|Zk) in the prediction and the update recursive posterior (Equations

4.4 and 4.5). The posterior intensity can be propagated recursively in time via the

PHD:[75]

υk|k−1(µ) =

∫
pkS(ζ)fk|k−1(µ|ζ)υk−1(ζ)dζ +

∫
βk|k−1(µ|ζ)υk−1(ζ)dζ + γk(µ) (5.17)

υk(µ) = [1− pkD(µ)]υk|k−1(µ) +
∑

z∈Zk

pkD(µ)gk(z|µ)υk|k−1(µ)

κk(z) +
∫
pkD(ζ)gk(z|ζ)υk|k−1(ζ)dζ

(5.18)

where κk is the intensity of the false alarm. The difference between υ̇k(x) (Equations

5.3 and 5.4) and υk(µ) (Equations 5.17 and 5.18) comes from the difference in motion

and observation models of a module and a network (Figures 3.2, 3.1, 4.3, 4.4). Also

it is required to have an tranformation function that transform nodes’ observation to

virtual leaders’ observation. In following, an example shows a transformation.

Z = {ż1, ż2, ż3, ż4, ż5, ż6, ż7, ż8} partition−−−−−→ W = {{ż1, ż4, ż7}, {ż3, ż5}, {ż2, ż6, ż8}}Ex.5

transform−−−−−→ Z = {z1, z2, z3} (5.19)

To have virtual leaders observation set Z, one can partition off nodes observation set

with any proper clustering algorrithm (e.g.W in Example 5) then uses the computed
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clustering parameters as representors of partion’s elements (e.g.Z in example 5). For

example, a part in a partition can be transform to a virtual leader’s observation by

assigning it to a distribution, or computing its mean, or median.
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ṗS

∫
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(a) Level 1 Data Fusion

υk(mo)

υ̇k(x)
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ż

pS

ṗS
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υk

∫
υ̇k

pDṗD
c

(b) Level 2 Data Fusion

υk(mo)

µ

z

pS

∫
υk

pD
c

(c) Simplified version of Level 2

Figure 5.1: Plate model of the PHD filter.
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CHAPTER 6

IMPLEMENTATION

This chapter discusses how the two main methods used for approximation of the

PHD filter ( SMC-PHD filter [76] and Gaussian Mixture PHD filter (GM-PHD) [75])

are applied as an solution for estimation of a random finite set state. We used the RFS

framework to benefit from its rigorous mathematical tools and its flexibility. As it is

mentioned before, the problem of inferring the state of a random finite set given its

dynamic is, to some extent, similar to the problem of multi-target tracking problem.

Although modified versions of classical approaches for multi-target tracking such as

the multiple hypothesis tracker (MHT )[3] or the joint probabilistic data association

filter (JPDAF)[3], could potentially be used to solve our problem,

6.1 Gaussian Mixture PHD Filter

The GM-PHD is a closed form solution for the PHD filter (Equestions 5.17 and

5.18) under the following assumptions [75]:

• Virtual leaders have linear Gaussian motion model and observation model dur-

ing their life time.

• The intensity function of the spontaneous and spawned births of modules are

Gaussian mixtures.
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• There is state independent probability of survival and detection.

These assumptions are formulated for the problem of our interest as follows:

fk|k−1(µ|ζ) = N (µ;Fζ,Qk−1) (6.1)

Lk(z|µ) = N (z;Hµ,Rk) (6.2)

pkS = pS (6.3)

pkD = pD (6.4)

where µ is a module’s virtual leader state, F is the state transition matrix, Qk−1 is

the process noise covariance, H is the observation matrix, and Rk is the observation

noise covariance. The intensities of the spontaneous and spawned births are assumed

to be Gaussian mixtures of the form

γk(µ) =

Jkγ∑

i=1

ωkγ,iN (µ;mk
γ,i, P

k
γ,i) (6.5)

βk|k−1(µ|ζ) =

Jkβ∑

j=1

ωkβ,jN (µ;Fβζ + dβ,j, Q
k
β,j) (6.6)

where Jkγ is the number of new virtual leaders spontaneous births and ωkγ,i, m
k
γ,i,

P k
γ,i are the weight, the mean, and the covariance of their intensity, respectively.

mk
γ,i, i = 1, . . . , Jkγ correspond to the Jkγ highest concentration. The covariance matrix

P k
γ,i determines the spread of the birth intensity around mk

γ,i, and ωkγ,i is a weight given

to the new virtual leader originated from mk
γ,i [75]. Similarly, Jkβ , ωkβ,j, Fβ, dk−1

β,j , and

Qk−1
β,j determine the shape of the spawning intensity of a virtual leader with a previous

state ζ [75]. Spawned virtual leaders at time k are an affine function (Fβζ + dβ,j) of

a virtual leader (parent) at state ζ at time k − 1 [75]. The general form of GM-PHD

filter can be found in [75] in details.
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6.1.1 GM-PHD Prediction

Given the assumptions listed above, the predicted intensity from time k − 1 to

time k is a Gaussian mixture [75]:

υk|k−1(µ) = υ
k|k−1
S (µ) + υ

k|k−1
β (µ) + γk(µ) (6.7)

where

υ
k|k−1
S (µ) = pkS

Jk−1∑

j=1

ωk−1
j N (µ;m

k|k−1
S,j , P

k|k−1
S,j ) (6.8)

m
k|k−1
S,j = F k−1mk−1

j (6.9)

P
k|k−1
S,j = Qk−1 + F k−1P k−1

j F k−1T (6.10)

υ
k|k−1
β (µ) =

Jk−1∑

j=1

Jkβ∑

l=1

ωk−1
j ωkβ,lN (µ;m

k|k−1
β,(j,l), P

k|k−1
β,(j,l) ) (6.11)

m
k|k−1
β,(j,l) = F k−1

β,l m
k−1
i + dk−1

β,l (6.12)

P
k|k−1
β,(i,j) = Qk−1

β,l + F k−1
β,l P

k−1
β,j (F k−1

β,l )T (6.13)

6.1.2 GM-PHD Update

The posterior intensity at time k is also a Gaussian mixture [75]:

υk(µ) = (1− pkD)υk|k−1(µ) +
∑

z∈Zk
υkD(µ; z) (6.14)
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where

υkD(µ; z) =
Jk|k−1∑

j=1

ωkj (z)N (µ,m
k|k
j (z), P

k|k
j ), (6.15)

ωkj (z) =
pkDω

k|k−1
j qkj (z)

κk(z) + pkD
∑Jk|k−1

l=1 ω
k|k−1
l qkl (z)

(6.16)

qkj (z) = N (z;Hkm
k|k−1
j , Rk +HkP

k|k−1
j HkT ) (6.17)

m
k|k
j (z) = m

k|k−1
j +Kk

j (z −Hkm
k|k−1
j ) (6.18)

P
k|k
j = [I −Kk

jH
k]P

k|k−1
j (6.19)

Kk
j = P

k|k−1
j HkT (HkP

k|k−1
j HKT +Rk)−1 (6.20)

6.2 Merge of Modules

Merging of modules occurs when they get so close (similar) to each other. Vo and

Ma [75], introduced a heuristic pruning algorithm ro reduce the number of Gaussian

components propagated to the next time step. In theory, it approximates some of the

close Gaussian component by a single Gaussian component.

Let Ik indicate indices of modules at time k, and I ⊂ Ik indicate indices of modules

that have got closed together. These modules can be approximated with one Gaussian

component as follows [75]:

ω̃kl =
∑

i∈I
ωki (6.21)

m̃k
l =

1

ω̃kl

∑

i∈I
ωkim

k
i (6.22)

P̃ k
l =

1

ω̃kl

∑

i∈I
ωki (P k

i + (m̃k
l −mk

i )(m̃
k
l −mk

i )
T ) (6.23)
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6.3 State Estimation

For a RFS Netk with a probability distribution p, the integral of υk|k over the

network state space gives the expected number of modules of Netk. Hence, M̂k =

∫
υ(µ)∂µ. The local maxima of the intensity υk|k are the highest local concentration

of the modules, and hence the [M̂k] highest peaks from the intensity function can

be selected as the estimation of the state of each module’s virtual leader ([.] means

rounded number).

Given the Gaussian mixture intensities υk|k−1 and υk|k, the corresponding expected

number of virtual leaders (number of modules) M̂k|k−1 and M̂k can be obtained by

summing up the appropriates weights [75]:

M̂k|k−1 = M̂k−1|k−1


pkS +

Jkβ∑

j=1

ωkβ,j


+

Jkγ∑

j=1

ωkγ,j (6.24)

M̂k|k = M̂k|k−1(1− pkD) +
∑

z∈Zk

Jk|k−1∑

j=1

ωkj (z) (6.25)

In parametric state estimation, state of virtual leaders are represented as mix-

ture of Gaussian models with parameters mean, covariance and mixing proportions

(weights). Theoretically, the M̂k highest components are the locations of the virtual

leaders, but since each peak also is described by the weight and covariance, it is pos-

sible that a peak correspond to a Gaussian component with a weak weight but a large

height, a better alternative is to first filter out the Gaussian components with small

weight first [75];

One of the main criticisms of the PHD filter is that there is no means of associating

the same virtual leader between time frames. But this is of advantage for our problem,
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because our main goals are the number and the locations of virtual leaders. It is trivial

to identify the trajectories of different virtual leader by tracking their members.

6.3.1 Gaussian Mixture Implementation of PHD Recursion

The steps of GM-PHD filter implementation is described in Algorithm 1 as given

in [75]

Data: {ωk−1
i ,mk−1

i , P k−1
i }Jk−1

i=1 and Zk

Result: {ωki ,mk
i , P

k
i }J

k

i=1

Step 1. prediction for birth modules;
i = 0;
for j = 1 to Jkγ do

i := i+ 1;

ω
k|k−1
i := ωkj,γ, m

k|k−1
i := mk

j,γ, P
k|k−1
i := P k

j,γ;

end
for j = 1 to Jkβ do

for ` = 1 to Jk−1 do
i := i+ 1;

ω
k|k−1
i := ωkj,β × ωk−1

l ;

m
k|k−1
i := dk−1

j,β + F k−1
j,β ×mk−1

l ;

P
k|k−1
i := Qk−1

j,β + F k−1
j,β × P k−1

l × (F k−1
j,β )T ;

end

end
Step 2. prediction for existing modules;
for j = 1 to Jk−1 do

i := i+ 1;

ω
k|k−1
i := pS × ωk−1

j ;

m
k|k−1
i := F k−1 ×mk−1

j ;

P
k|k−1
i := Qk−1 + F k−1 × P k−1

j × (F k−1)T ;

end

Jk|k−1 := i %Jkγ + Jβ + Jk−1 ;

%Continue...;

Algorithm 1: Psedocode for GM-PHD Filter
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%Continue from previous page;
Step 3. construction of PHD update components;

for j = 1 to Jk|k−1 do

η
k|k−1
j := Hm

k|k−1
j ; Skj := Rk +HP

k|k−1
j (Hk)T ;

Kk
j := P

k|k−1
j (Hk)T [Skj ]−1; P

k|k
j [I −Kk

jH
k]P

k|k−1
j ;

end
Step 4. update ;

for j = 1 to Jk|k−1 do

ωkj := (1− pkD)ω
k|k−1
j ;

mk
j := m

k|k−1
j ; P k

j := P
k|k−1
j ;

end
l := 0;
foreach z ∈ Zk do

` := `+ 1;

for j = 1 to Jk|k−1 do

ωk
`Jk|k−1+j

:= pDω
k|k−1
j N (z; η

k|k−1
j , Skj );

mk
`Jk|k−1+j

:= m
k|k−1
j +Kk

j (z − ηk|k−1
j );

P k
`Jk|k−1+j

:= P
k|k
j ;

end

for j = 1 to Jk|k−1 do

ωk
`Jk|k−1+j

:=
ωk
`Jk|k−1+j

Kk(z)+
∑Jk|k−1

i=1 ωk
`Jk|k−1+i

;

end

end

Jk := (`+ 1)Jk|k−1;

Algorithm 2: Psedocode for GM-PHD Filter (continued)

6.4 Sequential Monte Carlo Implementation of PHD Filter

The sequential Monte Carlo implementation of PHD filter [76] was proposed as

a practical suboptimal alternative to the optimal PHD filter. Briefly, the sequential

Monte Carlo (SMC) propagates particles in the prediction stage using a prior dis-

tribution, dynamic model and noise process of the system, then each particle will
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be assigned a weight calculated based on likelihood of particle (statistical distance

of particle to the set of observation). The weighted particles are representation of

the PHD and the sum of weight gives the estimated cardinality. For any k ≥ 1,

let {ω̈ki , ẍki }J̈
k

i=1 be the particle representation of intensity function (υk). Algorithm

3 summarizes SMC implementation of PHD filter as given in [76]. The particle are

sampled from two importance (or proposal) densities qk(.|ẍk−1
i , Zk) and qkb (.|Zk). J̈kb

denotes new particles arise from the birth process. φk|k−1 is the survived and spawned

intensity function and γk() is the spontaneous birth intensity function.

At time k ≥ 1;
Step 1. Prediction;

for i = 1 to J̈k−1 do

Sample ˜̈xki ∼ qk(.|ẍk−1
i , Zk);

˜̈ω
k|k−1
i =

φk|k−1(˜̈xki ,Z
k)

qk(˜̈xki |ẍ
k−1
i ,Zk)

ω̈k−1
i ;

end

J̈kb = J̈kγ + J̈kβ ;

for i = J̈k−1 + 1 to J̈k−1 + J̈kb do

Sample ˜̈xki ∼ qkb (.|Zk);

˜̈ω
k|k−1
i = 1

J̈kb

γk(˜̈xki )

qkb (˜̈xki |Zk)
;

end
Step 2. Update ;
foreach z ∈ Zk do

Ck(z) =
∑J̈k−1+J̈kb

j=1 pkD(˜̈xkj )L
k(z|˜̈xkj )˜̈ω

k|k−1
j ;

end

for i = 1 to J̈k−1 + J̈kb do

˜̈ωki = [(1− pkD(˜̈xki )) +
∑

z∈Zk
pkD(˜̈xki )Lk(z|˜̈xkj )

κk(z)+Ck(z)
] ˜̈ω
k|k−1
i ;

end
Step 3. Resampling ;

M̂k|k =
∑J̈k−1+J̈kb

j=1 ω̃kj ;

Resample { ˜̈ωki
M̂k|k , ˜̈xki }

J̈k−1+J̈kb
i=1 to get { ω̈ki

M̂k|k , ẍ
k
i }J̈

k

i=1;

Multiply the weights by M̂k|k to get {ω̈ki , ẍki }J̈
k

i=1;

Algorithm 3: Psedocode for SMC-PHD Filter
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6.5 Smoothing Algorithms for the PHD Filter

As forward-backward algorithm (a.k.a smoother) is an inference algorithm in

HMM to improve the estimation result, one can extended it for the PhD filter to

correct the unexpected changes on the state estimations. This inference task is usu-

ally called smoothing. Briefly the idea of smoother is computing p(Netk|Z1:T ) instead

of p(Netk|Z1:k), where Z1:T means observations up to time T and Z1:k means obser-

vations up to time k and T > k.

Nandakumaran et al. [48, 50] has proposed approximate backward PHD filter

smoothers under Poisson assumption and applied it on sonar data [49]. Mahler et al.

[46] derived the backward PHD smoother recursion mathematically and Vo et al. [77]

proposed a closed form solution to the PHD filter under linear Gaussian assump-

tion. Also Hernández [29] has derived two smoothing algorithms and provided their

sequential Monte Carlo implementations.

Clark and Vo [13] have proven the GM-PHD filter maintains a suitable approxima-

tion error in each time step, and its error converges to zero uniformly as the number

of Gaussian components tends to infinity. Also Clark and Bell [11] have provided

mathematical proofs for SMC-PHD filter and bounds for the mean square error.

In case of PHD filter, the sensor noise and uncertainty of a RFS’s cardinality

propagate in time. In order to improve these limitations, Mahler [44] derived a

generalization of the PHD recursion known as the cardinalized PHD (CPHD) filter

by relaxing the first order assumption on the cardinality of a RFS. CPHD filter jointly

propagates the intensity function and the cardinality distribution.
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CHAPTER 7

STOCHASTIC EVOLUTION DIAGRAM (SED)

The trajectory of each virtual leader can be projected on a d-dimensional coordi-

nate space (d is the number of parameters which represent coordinates of a virtual

leader). For example, assume that virtual leaders are 1-dimensional, the footprints

in Figure 7.1 show the states of such modules.

Similar to the multivariate Markov model of time series that reconstructs Markov

chains, the multiple hidden set Markov model reconstructs the stochastic evolution

diagram. We introduce this term to denote a collection of Markov chains, of which

some chains are tied together at certain time points.

A Markov chain can be considered as a directed spatiotemporal graph where each

vertex represents the state of the system at a particular time. Defined formally,

the stochastic evolution diagram is a directed spatiotemporal graph where each node

belongs to the R|d|×T space, R is the real number space, |d| is the dimension of coor-

dinates of virtual leader, and T is the time space. The vertices of this graph represent

states of each module of the system. If the indegree or outdegree of a vertex is not

one, it is a change-point (network phase transition) and the edges represent a Markov

chain of the estimated states of the modules’ virtual leaders. A schematic example

of a stochastic evolution diagram for 1-dimensional virtual leaders is illustrated in
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Figure 7.2. The stochastic evolution diagram visualizes all information about the

state of the system, such as lifetime of modules (birth, death, split and merge time),

members of modules and number of modules at each time. Consider the following
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Figure 7.1: Schematic illustration of a stochastic evolution diagram, where the bold
blue lines are trajectories of modules’ virtual leaders. The footprints are projections
of virtual leaders on the coordinate system.

Markov chain from Figure 7.2

{x2, x3, x4, x5} split−−→ {x1, x2, x3} split−−→ {x1, x2} (7.1)
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Figure 7.2: The Stochastic Evolution Diagram (only vertices that are change-points
are shown by bold blue circles).

This expression shows that, before the network phase transition at time 5 there was

a module with four elements, but at time 5 the module split into two modules, and

a new element x1 became a new member. After the phase transition the module was

following steady rules for its dynamics up to the next network phase transition at

time 12. Although two network transitions happened at time 9 and 10, they did not

affect on that module. Also, one can examine the features of the system individually
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Hidden State: x1 x2 · · · xk−1 xk xk+1 · · · xn−1 xn

z1 z2 · · · zk−1 zk zk+1 · · · zn−1 zn

Figure 7.3: HMM.

and track their effective time (a feature is effective when it belongs to a module) .

For example, x6 only belongs to the underlying network from time 2 to 17.

7.1 Generalization of HMM Step by Step

In this section, I will explain the generalized model of the Hidden Markov Model. I

use a multi-target tracking example and present how to generalize the hidden Markov

model step by step. In this research, a model generalization means introducing a new

model which has fewer limiting assumptions than the old one. In conventional HMM,

there are two assumptions. Here is a simple object tracking example:

Suppose the HMM is used to track objects. In such a model one needs to assume

that:

1. Each target always exists in the space (probability of survival (pS) is one)

2. The sensor always detects the objects in the space and has a noisy observation

(probability of detection (pD) is one).

These two assumptions result in a Markov chain (Figure 7.3).

The first-step generalization of the HMM is as follows:
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Hidden State: x1 x2 · · · xb−1 xb xb+1 · · · xd−1 xd xd+1 · · · xn−1 xn

z1 z2 · · · zb−1 zb zb+1 · · · zd−1 zd zd+1 · · · zn−1 zn

Figure 7.4: Appearing and disappearing a target. Black circles and green circles in
the hidden state space represent state of the target when it is out of field of view and
in the field of view respectively.

1. There is a possibility of disappearing of the object in the space at any time

(pS 6 1), and there is a possibility of new objects to appear at any time.

2. It is possible that an object exists in the space but the sensor doesn’t detect

the object because of its temporary defection (pD 6 1).

The two assumptions above yield a segmented Markov chain or, in other words, a

Markov chain which is disjointed at some time points (phase transition times; Figures

7.4 and 7.5). Black circles and green circles in the hidden state space represent state of

the target when it is out of field of view and in the field of view respectively. For the

second-step generalization, consider the multi-target tracking scenario, where each

target not only can appear and disappear, but also targets can merge into a single

target (Figure 7.6). Conversely, a target can split to some smaller target (Figure 7.7).

Figures 7.4, 7.6 and 7.7 are probability graphical representations of Figure 1.1.
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CHAPTER 8

IDENTIFICATION OF THE STOCHASTIC EVOLUTION
DIAGRAM (SED)

We begin this chapter with a review of hidden Markov model (HMM) elements and

focus on the three fundamental problems for HMM design and identification. Briefly

these are the problems, 1) evaluation of the probability of an observed sequence given

a specific HMM, 2) inferring the highest probable sequence of hidden state variables,

3) how to learn model parameters to maximize the likelihood function.

8.1 HMM Elements

Let h = {x1, · · · , xT} and O = {z1, · · · , zT} construct a HMM depicted in Figure

7.3 and xi ∈ S and zi ∈ O represent hidden state variables and observation variables.

S is the state space and O is the observation space. An HMM is characterized by the

following:

1. The state transition function f(.), that returns probability of reaching from one

state to another one in a single step.

2. The observation function Lk(.), that returns probability of observing a partic-

ular value when a hidden variable is in a particular state.
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3. The initial state p1.

An HMM identification requires to specify S,O, f(),L(), p1. For convenience the

compact variable λ = {f(),L(), p1} is defined. In the next section, a brief review of

the three fundamental problem for HMM identification is presented. In the section

8.2, it is shown how one can extend these problems for SED identification.

8.1.1 Evaluation of an Observation Sequence Probability

The first problem is how to compute the probability of an observation sequence,

O = {z1, · · · , zT}, given λ?

Consider h ∈ H where H is the all possible state sequence space. The probability

of O given λ is computable by marginalizing joint probability over state sequence

space H.

p(O|λ) =
∑

h∈H
p(O, h|λ) =

∑

h∈H
p(O|h, λ)p(h|λ) (8.1)

where

p(O|h, λ) =
T∏

k=1

Lk(zk|xk) (8.2)

p(h|λ) = p1(x1)
T∏

k=2

f(xk|xk−1) (8.3)

8.1.2 Inferring Optimal State Sequence

Depending on the definition of the optimal state sequence, there are several ways

of finding an optimal sequence. One possible definition is to find a state sequence,

which is maximizing p(h,O|λ).

ĥ = arg max
x1,··· ,xT

p(h,O|λ) (8.4)
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There are various filtering algorithms for estimating highest probable sequence ĥ.

Veterbi algorithm [73] and Kalman filter [33] are two well developed methods applied

in many real world applications.

8.1.3 Maximum Likelihood Estimation (Learning λ)

The third problem is about how to choose λ such that its likelihood, L(λ|O),

is maximized. Generally, there is no analytical solution , however one can use it-

erative procedures (e.g.expectation-maximization (EM) [15]) or gradient techniques.

Ghahramani and Hinton [20] have proposed an EM algorithm for linear dynamic sys-

tems, and Roweis and Ghahramani [57] have proposed an EM algorithm for nonlinear

dynamic systems. The EM algorithm for linear systems is described in details in the

section 8.4.

8.2 Stochastic Evolution Diagram (SED) Identification

In this section, it is shown how to identify stochastic evolution diagram (SED). All

parameters and variables of SED as a model are divided into three compact variables.

Let θ = {pS, pD, c} indicates the probability of survival, detection, and false alarm

rate (Figures 4.3, 4.4 and 5.1(c)). λ = {f(),Lk()} indicates all the other parameters of

motion and observation models, and S indicates all hidden variables which represents

structure of the stochastic evolution diagram (hidden states of virtual leaders). Let
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h = {S, θ}, and denote the stochastic evolution diagram model as Ψ = {h, λ}. Then,

Ψ = {h, λ} (8.5)

h = {S, θ} (8.6)

θ = {pS, pD, c} (8.7)

S = {µki |i < M̂k, 1 ≤ k ≤ T} (8.8)

λ = {f(),L()} (8.9)

Analogous to HMM, for our model, we aim to solve the following three problems:

1) what is the probability of an observation sequence Z1:T given λ, p(Z1:T |λ) ; 2)

what is the most probable SED state given Z1:T and λ, p(S|λ,Z1:T ); and 3) how can

one learn λ to maximize the likelihood L(λ|Z1:T ).

We wish to calculate the log likelihood function of an observation sequence,

L(λ|Z1:T ). It can be done by marginalizing joint probability distribution of Z1:T

and h in following way:

L(λ|Z1:T ) = ln

∫

H
p(h,Z1:T |λ)∂h (8.10)

where H is the evolution diagram space (h ∈ H) . Typically it is difficult to compute

analytically the marginal likelihood. Below we describe the solution for the introduced

problems and show how to maximize the log likelihood function. We followed the same

approach that [57] used for identification of nonlinear dynamic systems.
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Assume Q(h) is the distribution of the hidden variables h. Using concavity prop-

erty of the log function and Jensen’s inequality, we will have:

ln

∫

H
p(h,Z1:T |λ)∂h = ln

∫

H
Q(h)

p(h,Z1:T |λ)

Q(h)
∂h (8.11)

>
∫

H
Q(h) ln

p(h,Z1:T |λ)

Q(h)
∂h (8.12)

=

∫

H
Q(h) ln p(h,Z1:T |λ)∂h−

∫

H
Q(h) lnQ(h)∂h (8.13)

= F(Q, λ) (8.14)

We apply the expectation-maximization algorithm [15] to maximize F as a lower

bound of log likelihood function L. In the EM algorithm, the objective function has

two compact variables (h and λ) and the method alternates between two steps to

maximize the objective function with respect to the two compact variables, respec-

tively, by holding the other one fixed. The algorithm starts from a initial parameter

λ0 and iteratively applies the following steps:

E-step: Qi+1 ← arg max
Q
F(Q, λi) (8.15)

M-step: λi+1 ← arg max
λ
F(Qi+1, λ) (8.16)

The following subsections describe calculating each of these.

8.3 E-step: Learning the Structure (h)

The function F is at its maximum in E-step whenQ(h) = p(h|Z1:T , λ) = p(S, θ|Z1:T , λ)

[57]. In stationary dynamic systems, the problem of estimating the state of hidden

variables to maximize the E-step of EM algorithm corresponds exactly to the smooth-

ing or filtering problems [57]. If we assume that θ is given, one can apply filtering to

60



infer S. Due to dependency of S on θ, we have

p(S, θ|Z1:T , λ) = p(S|θ,Z1:T , λ)× p(θ) (8.17)

By applying model selection methods and searching in space Θ, where θ ∈ Θ,

one can maximize Q by maximizing the products on the right side of Equation 8.17.

In section 8.3.2 three model selection criteria are provided. In contrast to the EM

algorithm for identification of dynamic systems that the E-step is just an inference

problem, here in our case it is a model selection problem that includes inferring the

structure of the evolution diagram as well.

Consider S = Net1:T = {Net1, . . . ,NetT}. We should emphasize again that al-

though variable Net stands for a network, but it denotes a random finite set of

modules’ virtual leaders and just considers nodes. In the next chapter, it is shown

how to include the edges in the model. Here, we just show how to estimate number

of modules and their members at each time step. Given λ and θ, finding the fittest

structure S that has generated the observation, has serval solutions. But first the

optimality criteria should be declared. We wish to find a sequence of network state

that maximizes p(Net1, · · · ,NetT |Z1:T , λ, θ):

N̂et1:T
= {Net1:T | arg max

Net1,··· ,NetT
p(Net1, · · · ,NetT |Z1:T , λ, θ)} (8.18)

8.3.1 Inferring the Stochastic Evolution Diagram’s Structure

The problem of inferring the stochastic evolution diagram’s structure given λ and

θ is the problem of estimating fittest sequence of a random finite set state. This

problem is discussed in details in chapters 5 and 6. The main two methods used

for approximation of the PHD filter are the SMC-PHD filter [76] and the Gaussian
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Mixture PHD filter (GM-PHD) [75]. Both methods can be applied as an approximate

solution for estimation of the structure S of the evolution diagram.

For a RFS Netk with a intensity function (PHD) υ, the integral of υk over the

network state space gives the expected number of modules. Hence, M̂k =
∫
υk(µ)∂µ

(M̂k denotes estimated number of modules at time k). The local maxima of the

intensity υ are the highest local concentration of the modules, and hence the [M̂k]

highest peaks from the intensity function can be selected as the estimation of the

state of each module ([.] means rounded number).

Given the Gaussian mixture intensities υk|k−1 and υk, the corresponding expected

number of virtual leaders (number of modules) M̂k|k−1 and M̂k can be obtained by

summing up the appropriates weights [75]:

M̂k|k−1 = M̂k−1


pkS +

Jkβ∑

j=1

ωkβ,j


+

Jkγ∑

j=1

ωkγ,j (8.19)

M̂k = M̂k|k−1(1− pkD) +
∑

z∈Zk

Jk|k−1∑

j=1

ωkj (z) (8.20)

The PHD filter gives the expected location of the virtual leaders. One of the main

criticisms of the PHD filter is that there is no means of associating the same virtual

leader between time frames. But this is an advantage for our problem, because

our main concerns are the number of virtual leaders and their states. It is trivial

to identify the trajectories of different modules by looking into overlaps between

modules’ members.

Thus far, we have shown how to estimate the structure of the evolution diagram.

To summarize, the structure is the life time of parameters of a network, and the

corresponding virtual leader. Life-time parameters of a network such as the module’s
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birth time, death time, spawning and merging times are considered as change points.

The SMC-PHD and GM-PHD filter implementations are described in chapter 6.

8.3.2 Learning θ

We followed a model selection approach to find θ that maximizes locally the log

likelihood function given λ. Any information criterion techniques applicable for mix-

ture models [59, 62, 83] such as BIC, AIC and DIC can be employed to penalize the

model complexity. For example, assume AICk is an defined AIC score function for

mixture of modules at time k. The score assigned to a structure for a specified θ can

be obtained by averaging AICk over the entire time.

8.4 M-step: Learning Model Parameters (λ)

The structure of an evolution diagram is a directed graph, which is decomposable

to its pathes SE. A path q ∈ SE is a Markov chain from a root to a leaf. Roots

are nodes with zero indegree, and leaves are nodes with zero outdegree. In other

words, roots are birth times of modules (tb) and leaves are death times (td). A path

q is a sequence of hidden states of the virtual leaders of modules. For example,

q = {µtb , µtb+1, . . . , µtd}. It has discussed in section 8.1.3 a likelihood function for a

Markov chain such as q = {µtb , µtb+1, . . . , µtd} if there are an observation from each

hidden variable (pD = 1). So, if we consider the missed observation case (pD ≤ 1)

63



the likelihood function for a Markov chain will be generalized as follows:

Lq(λ|Z1:T ) = ln


p(µtb,q)

td,q∏

k=tb,q+1

f(µkq |µk−1
q )

td,q∏

k=tb,q

Lk(Zk|µkq)


 (8.21)

Lq(λ|Z1:T ) = ln


p(µ

tb,q
q )

td,q∏

k=tb,q+1

f(µkq |µk−1
q )

td,q∏

k=tb,q

Lk()︷ ︸︸ ︷
(

∏

xki ∈oq(mok)

L̇k(żk|xki ))
ηk


 (8.22)

Lq(λ|Z1:T ) = ln


p(µtb,qq )

td,q∏

k=tb,q+1

f(µkq |µk−1
q )

td,q∏

k=tb,q

(
∏

xki ∈oq(mok)

L̇k(żk|µkq))
ηk


 (8.23)

Lq(λ|Z1:T ) = ln


p(µtbq )

td,q∏

k=tb,q+1

f(µkq |µk−1
q )

td,q∏

k=tb,q

Lk(H|oq(mok))


 (8.24)

Lq(λ|Z1:T ) = ln(p(µtb,q)) +

td,q∑

k=tb,q+1

ln(f(µkq |µk−1
q )) +

td,q∑

k=tb,q

ln(Lk(H|oq(mok)) (8.25)

A virtual leader’s observation model (Lk()) is defined as the average of nodes’ log-

likelihoods for all those nodes which are detected and also belong to the module

that is leaded by the virtual leader µkq (Equation 8.22). The equation 8.22 is the

likelihood function when we are interested in to estimate the virtual leaders’s state

and nodes’s state both, ηk = 1/|oq(mok)| is a normalization factor, function oq(mo
k)

returns elements with available observations, which belong to a module on path q at

time k. |.| returns the cardinality of a set. As we simplified the problem in section 5.3,

we don’t estimate nodes’ state, and just approximate them by their virtual leader’s

state (xki ' µkq), so the Equation 8.22 will be simplified to Equation 8.23.

If we assume that the node’s observation is a linear Gaussian (in case of detection),

it is possible to replace L̇k() by Equation 6.2. Lk(H|oq(mok) in Equation 8.24 denotes
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the virtual leader’s observation model.

Lk(H|oq(mok) = (
∏

xki ∈oq(mok)

L̇k(żk|xki ))
ηk

(8.26)

L̇k(ż|x) ' N (ż;Hµkq , Rk) (8.27)

Assume L̂ is the likelihood function of the stochastic evolution diagram.

L̂(λ|SE,Z) = E[Lq(λ|Z)] =
∑

q∈SE
Lq(λ|Z)fλ(q) (8.28)

L̂(λ|SE,Z) =
∑

q∈SE
fλ(q)




td,q∑

k=tb,q+1

ln(f(µk|µk−1)) +

td,q∑

k=tb,q

ln(Lk(H|oq(mok))) + ln(p(µtb,q))




(8.29)

It is defined as expectation of SED all pathes’ likelihood. In simpler words, it is

weighted sum of all pathes’ likelihood. fλ(q) is a probability distribution associated

with each path:

fλ(q) =
‖ q ‖∑

qi∈SE ‖ qi ‖
(8.30)

‖ qi ‖ returns the longevity of the life time of path qi.

Based on Equations (6.1) and (6.2), one can drive the conditional densities for the

transition, observation and initial state as follows:

ln(f(µk|µk−1)) = −d
2

ln(2π)− 1

2
ln(|Q|)− 1

2
[µk − Fµk−1]

′
Q−1[µk − Fµk−1]

(8.31)

ln(Lk(H|oq(mok))) = p(zk|µk) = −d
′

2
ln(2π)− 1

2
ln(|R|)− 1

2
[zk −Hµk]′R−1[zk −Hµk]

(8.32)

ln(p(µtb)) = −d
2

ln(2π)− 1

2
ln(|Ptb|)−

1

2
[µtb − Fµ0]

′
P−1
tb

[µtb − Fµ0] (8.33)

Ghahramani and Hinton [20] have shown how to estimate F,H,Q,R and V for a

linear dynamic system by setting to zero the corresponding partial derivative of the
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expected log likelihood. It is assumed that each path is a linear dynamic system,

hence we have:

∂Lq
∂H

= −
td,q∑

k=tb,q

R−1Zkµk
′
+

td,q∑

tb,q

R−1HP k = 0 (8.34)

Ĥq =




td,q∑

k=tb,q

zkµk
′






td,q∑

k=tb,q

P k



−1

(8.35)

=




td,q∑

k=tb,q

ηk
∑

xki ∈oq(mok)

żkµkq
′






td,q∑

k=tb,q

P k



−1

(8.36)

ĤSE =
∑

q∈SE
Ĥqfλ(q) (8.37)

where Ĥq is the new estimated observation matrix based only path q. µ
′

denotes µ

transpose. ĤSE is the new estimated observation matrix based on the structure of

SE. We can follow the same fashion for ∂Lq
∂R−1 ,

∂Lq
∂F

and ∂Lq
∂Q−1 :

R̂q =
1

td,q − tb,q

td,q∑

k=tb,q

(zkzk
′ − Ĥqµ

k
qz

k ′) (8.38)

R̂SE =
∑

q∈SE
R̂qfλ(q) (8.39)

F̂q =




td,q∑

k=tb,q+1

P k|k−1






td,q∑

k=tb,q+1

P k−1



−1

(8.40)

F̂SE =
∑

q∈SE
F̂qfλ(q) (8.41)

Q̂q =
1

td,q − tb,q − 1




td,q∑

k=tb,q+1

P k − F̂q
td,q∑

k=tb,q+1

P k|k−1


 (8.42)

Q̂SE =
∑

q∈SE
Q̂qfλ(q) (8.43)
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One can directly take partial derivative from L̂

L̂(λ|SE,Z) =
∑

q∈SE
fλ(q)

td,q∑

k=tb,q+1

ln(f(µkq |µk−1
q )) +

∑

q∈SE
fλ(q)

td,q∑

k=tb,q

∑

xki ∈mokq

ln(Lk(zk|µkq))+

∑

q∈SE

td,q∑

k=tb,q

ln(ηk)fλ(q) +
∑

q∈SE
ln(p(µtb,q))fλ(q) (8.44)

In the next two following chapters, theoritical and practical application of stochastic

evolotion diagram (SED) will be dicussted. In chapter 9, it is shown how teoritically

extend idea of Bayesian network for non-stationary dynamical system. In chapter

10, direct application of SED in high dimentional nonstationary dynamical systems

is presented.
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CHAPTER 9

EVOLUTION OF BAYESIAN NETWORKS
UNDERLYING COMPLEX SYSTEMS

Several methods have been recently proposed to infer dynamic topology of different

types of networks (Bayesian network, Gaussian Graphical Models, etc.). Depending

on the assumptions about the system of interest, and also the type of the network,

one can have different models. Herein, we show how to reconstruct the sequence of

the Bayesian networks from a time series produced by an underlying random cluster

processes system.

Before describing how to reconstruct the underlying Bayesian networks, one needs

to answer the following question: what is the relationship between the finite set

statistics (FISST) and the conventional probability? The importance of this question

is determined by the fact that the FISST is based on the belief mass function.Vo et al.

[76] have shown that ”the set derivative of a belief mass function of a RFS is closely

related to its probability density”. This relationship allows us to factorize the belief

mass function of a RFS to its Bayesian network form.
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9.1 Preliminaries

A Bayesian network (BN) describes a unique joint probability distribution over a

fixed number of variables of a static system. The mathematical representation of a

Bayesian network B given the graph G and parameters Θ is as follows:

p(x1, · · · , xn) =
n∏

i=1

p(xi|π(xi)) (9.1)

where X = {x1, · · · , xn} denotes the set of variables, p denotes joint probability

distribution, G is a Directed Acyclic Graph (DAG) whose nodes correspond to X

components, π(xi) is the set of parents of xi, and Θ represents the set of parameters

that quantify the graph. Formally, a BN for X is a pair B = (G,Θ).

The Dynamic Bayesian network (DBN) is the extension of BN to model temporal

processes. To present the idea of Bayesian networks for time series data, we should

obtain the joint probability distribution over the random variables {X1 ∪ · · · ∪XT},

where Xk = {xk1, · · · , xkn} and T is the number of time samples; in other words, we

need to factorize p(x1
1, · · · , xTn ). Apparently, such a distribution is high-dimensional

and extremely complex.

By assuming that the temporal process is the first order Markovian, p can be factor-

ized in the following way:

p(X1, · · · , XT ) =
T∏

k=1

p(Xk|Xk−1) (9.2)

It also is assumed that the process is stationary, which means that ∀k1, k2 6 T p(Xk1|Xk1−1) =

p(Xk2|Xk2−1). Under this condition, p(Xk|Xk−1) can also be decomposed into the

Bayesian network form:
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p(Xk|Xk−1) =
n∏

i=1

p(xki |π(xki )) (9.3)

We then obtain a DBN model from equations (9.2) and (9.3) in the form:

p(x1
1, · · · , xTn︸ ︷︷ ︸

n×T variables

) =
T∏

k=1

n∏

i=1

p(xki |π(xki )) (9.4)

where π(x1
j) = φ. The term ”dynamic” in DBN does not mean that the topology

of BN evolves over time. Instead, it only emphasizes that the underlying Bayesian

network of a dynamic system is under assumptions of stationarity and the first order

Markovian process.

9.2 The Fittest Sequence of BNs

Assume an unknown non-stationary process that generates a multivariate time

series data Z of n random variables for T discrete time points. In this context,

the term ”non-stationary process” means that the conditional dependency between

random variables is partially stationary and changes over time. The researcher

aims at learning a sequence of Bayesian networks G = {Net1 · · ·NetΦ}, not only one

Bayesian network. Let us assume that Netφ can be replaced by Netφ+1 if a network

phase transition occurs. As was described in chapter (4.2), when a network phase

transition happens in a system, it can affect only some modules of the network or

even all of them, and then we can expect to have topology change only in the affected

modules. A sequence of networks can have two graphical representations: first, as a

sequence of Bayesian networks, where each network represents the topology of BN in

one specific phase; second, as one network with labeled edges, where the label of each
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Figure 9.1: An example of two graphical representations of evolution in topology of
networks.

edge represents the lifetime of that edge. Figure 9.1 demonstrates the evolution of a

simple Bayesian network using these two approaches.

9.3 Modeling

Just as we have extended the BN for Markovian and stationary dynamic systems

to the DBN, in this section we extend the BN for non-stationary time series produced

from complex systems. To do this, we generalize the first order Markov process as-

sumption to random cluster processes, and instead of reconstructing the multivariate

Markov chains, we reconstruct multiple set Markov chains (chapter 7). Then we can
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factorize the complete joint probability distribution of all variables and the phase as:

p(x1
1, · · · , xTn , phase|Z) = p(x1

1, · · · , xTn |phase, Z)p(phase|Z) (9.5)

where p(phase|Z) is the phase distribution. The stochastic evolutionary diagram

which is defined in chapter 7 is able to provide the phase distribution.

According to the definition of complex systems, the joint probability distribution can

be factorized to components of a complex system as follows:

p(x1
1, · · · , xTn |phase, Z) =

Nc∏

l=1

p(Cl) (9.6)

where Nc is the total number of random cluster processes. Cl is the set of all random

variables that belong to the lth random cluster process. In other words, Cl = {xk′i′ |1 6

i′ 6 n, 1 6 k′ 6 T, xk
′

i′ ∈ mok
′

l }, and by assuming that each component (process) is a

random cluster process, we will have:

p(Cl) =
T∏

k=1

p(mokl |mok−1
l ) (9.7)

Then from Equations (9.6) and (9.7)

p(x1
1, · · · , xTn |phase, Z) =

T∏

k=1

Nc∏

l=1

p(mokl |mok−1
l ) (9.8)

Also, if we assume that each random cluster process is stationary during its life time,

p(Cl) can be factorized in the Bayesian network form:

p(Cl) =
T∏

k=1

n∏

i=1

pl(xki |πl(xki )) (9.9)

where

pl(xki |πl(xki )) =

{
p(xki |πl(xki )) xki ∈ mokl
1 otherwise

(9.10)
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and πl(xki ) ⊂ mo
σ1(l)
k−1 , where σ1(l) is an index function; it returns the index of a module

at time k which belongs to the lth random cluster process. πl is a subset of the parent

configuration of xki .

Equation (9.9) is similar to Equation (9.4) but stands for a random cluster process.

For all the random cluster processes, we will have

p(x1
1, · · · , xTn |phase, Z) =

T∏

k=1

Nc∏

l=1

n∏

i=1

pl(xki |πl(xki )) (9.11)

=
T∏

k=1

M̂k∏

m=1

∏

xki ∈mokm

p(xki |πl(xki )) (9.12)

where M̂k is the number of alive modules at time k (as defined in the section 6.3).

Equations (9.11) and (9.12) are equal, but the Equation (9.12) is computationally

more efficient. In a special case, when there is no phase transition and all random

variables belong to a module, Equation (9.12) will be equal to Equation (9.4). This

shows that a Markovian and stationary dynamic system is a simplified version of

our complex systems of our interest, and the presented way of factorizing the joint

probability distribution generalizes the DBN.

9.4 Bayesian Dirichlet (BD) Metric

Figure 9.1 shows that it is possible to present a sequence of Bayesian networks

by a labeled-edge Bayesian network. Let the triple G = (GT , GP ,Ψ) parameterize

a labeled-edge Bayesian network, in which GT is a DAG denoting the Bayesian net-

work topology, and GP is a vector whose values denote the conditional probability

assignments associated with the Bayesian network topology GT [14]. Ψ contains all
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information encapsulated in the stochastic evolution diagram. In this section, simi-

lar to works of [28] and [14], we present a metric for evaluating the probabilities of

different DAGs given the discrete data and the stochastic evolution diagram.

Suppose the variables X = {x1
1, . . . , x

T
n} is a set of n discrete features observed

during T time samples, where a feature xi can have si possible states or values:

{vi,1, . . . , vi,si}. Let D denote discretized Z and wi denote a list of the unique instan-

tiations for parents of xi as seen in D, and wij denote the jth unique instantiation of

πi relative to D, and there are qi such unique instantiations of πi (we are following the

notation of [14]). Let πli be a set of elements of πi, which also belong to the cluster

process l; then πli ⊂ πi, and let wlij denote the instantiation of πli. N
l
ijs is defined as a

number that is proportionate to cases in the time series in which the feature xi ∈ Cl

holds on the value vi,s, and πli is instantiated as wlij. N
l
ijs is formulated as follows:

N l
ijs =

1

|πi|
T∑

k=2

∆k (9.13)

where

∆k =

{
|wlij| πli = wlij
0 otherwise.

(9.14)

and |.| means the cardinality of the set. The expression πli = wlij means that πli is

instantiated as wlij.

If we are able to obtain p(GT ,D|Ψ), we can rank the probabilities of different topolo-

gies. A BD metric of the likelihood function p(D|GT , GP ) can be proved by marginal-

izing p(GT , GP ,D|Ψ) as follows:

p(GT ,D|Ψ) = p(GT |Ψ)

∫
p(D|GT , GP )f(GP |GT ,Ψ)dGP (9.15)
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The closed form expression for the BD metric is obtained as:

p(D|GT ,Ψ) =
Nc∏

l=1

∏

xi∈Cl

qi∏

j=1

Γ(αij)

Γ(N l
ij + αij)

si∏

s=1

Γ(N l
ijs + αijs)

Γ(αijs)
(9.16)

where N l
ij =

∑si
s=1 N

l
ijs, αijss are Dirichlet hyper-parameters of prior probability

distribution of the DAG topology, αij =
∑si

s=1 αijs, and Γ(.) is a gamma function.

The proof is provided in appendix A
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CHAPTER 10

RESULTS ON SIMULATED AND REAL DATASETS

In this chapter, we examine the applicability, accuracy, and performance of the

presented identification method of the stochastic evolution diagram. The proposed

methods in chapter 8 to infer and learn model parameters are tested on simulated

examples. The method was applied first to a simple example of a simulated complex

system with 150 features over 400 time steps, then the performance evaluated on 100

randomly generated scenarios. Furthermore, inferring the structure of the evolution

diagram given the parameters θ and λ also applied to a time course gene expression

data set obtained from a cell culture model of TGF-β-induced epithelial-mesenchymal

transition (EMT) [58]

I would like to emphasize that the main goal of this work was to formulate the

framework for evolutionary dynamics of complex systems, show how to identify the

system theoretically by defining the inference and learning problems and show that

the stochastic evolution diagram is obtainable mathematically.

10.1 Simulated Dataset

The ith feature at time k has been defined by a state vector xki = [ski , v
k
i ], where

ski ∈ {active, inactive}×[0, 100] space (a feature is active when it belongs to a module)
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and vki ∈ [0, 2] represents a kinetic variable (e.g., velocity). The measurement has been

denoted by zki ∈ {∅ ∪ [0, 100]} ( ∅ means there is no measurement from the feature).

For simplicity, I assume there is a maximum one spawning module birth, and four

spontaneous module births at each time step. The birth process for actual modules

is a Poisson RFS with a Gaussian mixtures intensities. The false alarm rate for

observations is modeled as a Poisson RFS Kk with intensity κk(z) = λcV u(z), where

u(.) is the uniform density over [0, 100] space, and λc = 10 × 10−2 is the average

number of detected false alarm modules per unit per observation that relates to 10

false alarms returned over the observation space. V = 100 is the volume of the

observation space.

Figure 10.1 (top left) shows true trajectories of modules’ virtual leaders . Figure

10.1 (down left) illustrates some signals that cause birth of a module at time 150

(emergence), and Figure 10.1 (top right) shows signals that split from a module to a

smaller module at time 100 and then die at time 250. A signal is plotted in two colors,

green color means the feature belongs to a module and it is active, and gray color

means the feature is inactive. Figure 10.1 (down right) shows a noisy observation

from some features.

As the number of components in the posterior intensity (in GM-PHD filter) can

increase without limit, it is necessary to define some threshold to make the algo-

rithm computationally faster. I defined a truncation threshold T to discard Gaussian

components with weak weights and also have set a threshold Jmax for maximum al-

lowable number of Gaussian terms in the posterior intensities. Moreover, I introduced

a threshold r to use as a radius of a region where components should be merged to a

single component. The threshold MS is the minimum number of elements of a set to
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Figure 10.1: Example scenario examined in the simulation study (top left). Emer-
gence of a module (bottom left). Split and death of a module (top right). Observation
signals (bottom right). Green color shows that a signal is active, while grey color
shows that it is not. Blue lines are trajectories of virtual leaders. Red line represent
noisy observed data. The horizontal axis is time and the vertical axis is the state
space.

consider it as a module. In this example thresholds are set as T = 10−5, Jmax = 20,

r = 5, and MS = 20.

Features and also virtual leaders follow the linear Gaussian dynamics (Equation

6.1) and the observation model (Equation 6.2) with

F =

[
1 ∆
0 1

]
, Q =

[
0.06 0.12
0.12 0.25

]
, H =

[
1
0

]
, R = 4 (10.1)
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where ∆ = 1 is the sampling period. For simplicity, I limit the probability of survival

and probability of detection to the discrete [0.9, 1] space and fixed the false alarm

rate.

Figure 10.2 shows the results of detecting, tracking, and identification of virtual

leaders. The method successfully detected spontaneous births, spawned births, and

merged modules. It also detected some unexpected short trajectories that appeared

due to the random generation of signals. I set a threshold to filter out trajectories

shorter than 10 time steps. Parameters of the transition model and of the observation

Figure 10.2: Estimated trajectories of the module virtual leader after filtering out the
short trajectories. The green lines are true trajectories and black lines are estimated
state of trajectories. The horizontal axis is time and the vertical axis is the state
space.
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model were learned as follows:

F̂ =

[
1.022 0.984
0.002 0.990

]
, Q̂ =

[
0.080 0.108
0.108 0.212

]
, Ĥ =

[
0.988
0.002

]
,

R̂ = 5.764, PS = 0.98, PD = 0.94 (10.2)

10.2 Evaluation of Different Scenarios

In this section, we evaluated the performance of our method using 100 randomly

generated scenarios. The experimental settings are the same as in the previous ex-

ample (section 10.1), but scenarios are not fixed. The wasserstein metric has been

used to capture the state estimation errors and cardinality errors. The wasserstein

metric provides a tool for measuring the distance between two nonempty finite sets,

as described in [31].

Let X̂k and Xk be finite sets of the estimated state and true state of the system

at time k, respectively. Standard performance evaluation methods such as the mean

square distance-error are not applicable to estimate the state of a random set. Figure

10.3 shows the expectation of the wasserstien L∞ distance [31] for 100 experiments run

with setting that were described in section 10.1. Given a weighted complete bipartite

graph G = (Xk ∪ X̂k;Xk × X̂k), where edge xix̂j has weight c(xix̂j), Wasserstein

distance is the solution for finding a matching M from Xk to X̂k with a minimum

weight, or in other words, it is the solution for generalizations of optimal assignment

problems. The Wasserstein distance is defined as follows [10]:

dW∞(Xk, X̂k) = inf
C

max
xi∈Xk,x̂j∈X̂k

C̃ijdp(xi, x̂j) (10.3)
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where dp(x, y) is the order p Euclidian distance (Minkowski distance), C̃ij = 1 if

Cij > 0 and C̃ij = 0 if Cij = 0, and C is an |Xk| × |X̂k| matrix {Cij} such that

∀i = 1 · · · |Xk|,∀j = 1 · · · |X̂k| :
|Xk|∑

i=1

Cij =
1

|X̂k|
,

|X̂k|∑

i=1

Cij =
1

|Xk|

Figure 10.4 shows the E[||X̂k| − |Xk||].

Figure 10.3: Averaged (±σ) Wasserstein metric (c=15, p=1) for each experiment in
the simulation study.

10.3 Application to a Real Dataset

In this section I demonstrate the performance of BASED in application to a real

dataset. We used publicly available microarray time series data that model transform-

ing growth factor beta-induced epithelial-mesenchymal transition (EMT) in a human

lung cancer cell line [58]. During EMT, epithelial cells acquire migratory phenotype

typical of cancer cells due to de novo expression of mesenchymal-specific proteins.

TGF-beta has been shown to play a key role in this transition by triggering certain
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Figure 10.4: Average number of modules and its estimation in each simulated experi-
ment (top). Absolute Errors of the estimates of module numbers in each experiment,
and their variation (±σ) (bottom)

signaling pathways leading to down-regulation of epithelia-specific proteins [34, 35].

Sartor et al. [58] have explored in details the timing of cell-type transition, and there-

fore their dataset represents a very suitable model system for testing our method.

Gene expression data were downloaded from the NCBI’s Gene Expression Omnibus

(accession number GSE17708). The data were already preprocessed as described in

[35] and thus could be directly fed into BASED. However, to reduce the amount of

noise we filtered genes with the lowest variance, resulting in 6320 genes entering the

analysis. The thresholds used for reconstruction of the evolution diagram were the

same as in simulation experiments described in section 10.1. A total of 9 time points
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were available, including control (no TGF-beta added to the cell culture) and 0.5, 1,

2, 4, 8, 16, 24, and 72 hour post treatment. As it can be seen from the reconstructed

evolution diagram (Figure 10.5), the experimental system was in a steady state until

2 h after treatment with TGF-beta. However, a considerable rewiring in the network

representing gene associations occurred from 2 to about 16 hour post treatment,

leading the system to a new steady state. This dynamics reconstructed with the help

of BASED corresponds to the cell’s epithelial-mesenchymal transition and is in full

agreement with timing discussed in the original work by [58] (e.g., see Figure 3 in

their paper). This result demonstrates the ability of our method to detect critical

time-resolved events in complex systems described with thousands of variables.

Figure 10.5: Stochastic evolution diagram reconstructed from the data of [58].
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10.4 From Time Series to Gannt Chart Workflow

In particular, biological processes often represent a complex sequence of paral-

lel events and sub-processes. Localizing these events in time and constructing the

corresponding temporal maps can generate many interesting hypotheses for further

testing, such as transcriptional regulatory events. I have shown how to reconstruct the

underlying Gantt chart of epithelial-mesenchymal transition by using the stochastic

evolution diagram.

Microarray
Data

Reconstruction
of Stochastic
Evolution

Diagram (SED)

Functional
gene ontology
annotation

Reduction of
ontology terms

Reconstruction
of Gantt chart

Figure 10.6: Workflow of the experiment
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The Figure 10.6 shows the designed workflow that I followed. First I applied

our method on time series gene expression profiles obtained from TGF-beta-induced

epithelial-mesenchymal transition (EMT) in human lung cancer cells with 9 time

samples over course of 72 hours [58], then filtered out genes with low-variance expres-

sion levels. In the second step,I reconstructed the evolution diagram and removed the

small and short lifetime modules (less than three consecutive time step), then divided

it to segments in such a way that each segment is a collection of all genes that belong

to a path between two consecutive critical points (i.e. birth, death, split, and merge).

In Figure 10.7, ellipses show four segments of SED (stochastic evolution diagram )for

example.

In the third and fourth, I have annotated each segments with functional GO terms

by DAVID [32], reduced redundant GO terms by REViGO [67], and then I picked

top significant GO terms with p-value less than 0.05.

Finally, as I have mentioned before, biological processes can be described as or-

dered and synchronized events. A Gannt chart can be used to illustrate the start and

finish time of events and shows assigned elements of each event. Figure 10.8 shows

the Gannt chart that summarizes the generated hypothesis about lifetime of each

function. Numbers on the green bars are segments numbers, i.e. the corresponding

function is linked to genes that belong to the respective segments.
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Figure 10.7: Obtained evolution diagram and four segments of it.
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1 2 3 4 5 6 7 8 9

negative regulation of cellular process 1 4

cellular amino acid metabolic process 1 3

regulation of cell death 2

hemopoietic or lymphoid organ development 2

amine metabolic process 3

amine metabolic process 4

mitotic cell cycle 10 8

organelle fission 10 12

organelle fission 8

organelle fission 13

cellular response to stress 8

regulation of cell migration 9

response to wounding 15 23 9

response to DNA damage stimulus 10 12

positive regulation of cellular process 10 11 14

cell cycle process 12 14

cell cycle process 13 14

cellular catabolic process 12

Figure 10.8: Reconstructed Gannt Chart of gene expression data (part one). A
number is assigned to each group of genes (numbers written on green segments).

87



1 2 3 4 5 6 7 8 9

phosphorus metabolic process 15 16 25 14

regulation of developmental process 15 23 9

actin cytoskeleton organization 15 23

cytoskeleton organization 16 18

cellular component movement 16 2

cell-substrate adhesion 16 2

regulation of anatomical morphogenesis 16 22

response to organic substance 14

system development 27 29

cell-cell signaling 27 29

positive regulation of biosynthetic process 30

Figure 10.9: Reconstructed Gannt Chart of gene expression data (part two). A
number is assigned to each group of genes (numbers written on green segments).
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CHAPTER 11

DISCUSSION

As the name suggests, stationary systems are always governed by a constant set

of rules. In contrast, systems undergoing evolutionary dynamics are controlled by

non-constant sets of rules over the duration of development. This second type of

complex systems was the focus of the present thesis. In this chapter, I provide a brief

overview over the methods that have been used to infer the evolutionary dynamics

of non-stationary systems. Figure 11.1 has summarized the three main domains that

have modeled complex systems and their relations to our model, BASED.

11.1 Clustering

Clustering is a fundamental approach in machine learning and statistical data

analysis. Traditional clustering algorithms have recently been extended to ”evolution-

ary clustering”, which considers a complex system as composed of evolving collections

of objects. The goal of the evolutionary clustering is to detect, identify, classify, and

track these collections over time [9]. The following two groups of approaches used for

evolutionary clustering seem to be particularly important.
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Ways of System’s
Representation

& Analysis

Modularity/
Community/
Clustering/
Grouping

Evolutionary
Clustering

Hidden-
Set

Markov
Model

Modularity
in Networks BASED

Network/
Graph

Bayesian
Network

Time Series
Analysis

Evolutionary
Dynamic

Non-
statinary

DBN

Stationary
Systems

DBN

HMM

Figure 11.1: Three main domains of models that describe complex systems, and the
relation of our method, BASED, to these domains.
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11.1.1 Smooth Function Approaches

Several algorithms have introduced temporal smooth functions reflecting the tra-

jectories of clusters (but not individual members of the clusters). In the method of

Chakrabarti et al. [9], the smoothness is constrained in the sense that the numbers

of clusters are not allowed to evolve dramatically. The cost function is optimized

with regard to the the snapshot quality and history quality, which are the measures of

how well the data are clustered at a specific time point and how smooth the current

clustering configuration is as compared to the configurations at adjacent time points,

respectively. Conceptually similar extensions have been made to the the k-means

algorithm [9, 80, 84], agglomerative hierarchical clustering [9, 80], Gaussian mixture

and multinomial mixture models [84], and spectral clustering of time series [80].

11.1.2 Approaches Based on the Dirichlet Process

The Dirichlet process mixture model (DPM) is able to learn the number of com-

ponents of a mixture distribution from the observations. It has been extended to

address the evolutionary clustering problem in several ways. The latent Dirichlet

allocation (LDA) has been proposed by [6] to model a known number of topics in a

body of text, and later to capture the evolution of topics in a sequentially organized

corpus of documents [5]. Similar LDA-based methods can be found in studies by [25]

and [78].

Teh et al. [70] have proposed a hierarchical nonparametric Bayesian solution to

model a sequence of mixture models such that the mixtures’ components are allowed

to be shared in the sequence.
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Many authors attempted to extend the idea of hidden Markov model (HMM) for

infinite number of states. Beal et al. [4] have defined a non-parametric Bayesian HMM

by a two-level hierarchical Dirichlet process and have introduced the infinite hidden

Markov model (iHMM), also called HDP-HMM. Xu et al. [81], Teh et al. [70], Fox

et al. [19] and Ni et al. [52] have modified and developed the iHMM to have more

effective and efficient learning from the data.

11.2 Time Series Analysis

Time series generated from a natural system are typically non-linear and non-

stationary, and the idea of probabilistic time series analysis is the presentation of hid-

den switching Markov model for time series, which is a generalization of both State

Space Model (SSM) or stochastic linear dynamics systems [21]. These approaches seg-

ment the data into some regimes. A wide range of statistical methods is applicable for

non-linear non-stationary time series produced by complex systems. In a series of his

publications on time-series segmentation (a.k.a. change-point detection), Fearnhead

[18] has demonstrated that, in comparison to an earlier approach of Punskaya et al.

[54], his dynamic programming algorithm based on Bayesian inference improves the

accuracy of computation of the posterior distribution for the number and location of

change-points in time-series. Xuan and Murphy [82] have further extended Fearn-

head’s algorithm [18] for decomposable multivariate time-series (change-points occur

for all components of the multivariate vector at the same time) by estimating the

graph structure for each segment. Robinson and Hartemink [56] have generalized the

problem and considered the change-point effects for subsets of variables, and have

used rjMCMC to estimate a joint posterior probability over all networks.
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11.3 Networks and Graph-Based Methods

Representation of the system under study by a network which shows the asso-

ciations between variables (nodes) has attained particularly attention in studies of

high-dimensional complex systems. There are two main categories of network analy-

sis. In the first category the topology of the network is known and the goal is to study

the network by applying network-related statistical methods. In the second category,

the constructed underlying network can be used as a prior knowledge to analyze the

system.

Since 2000, a number of network models have been used to reveal either a se-

quence of dependent networks [40, 56, 82] or a common network that would reflect

the structure of shared information through time [26]. The paper by Robinson and

Hartemink [56] provides a summary of the related works on reconstructing a sequence

of networks.

11.4 Conclusion and future work

The behavior of complex systems can be fitted with a number of well developed

models. However, these models tend to either consider only the modularity of a

system, ignoring the evolution of the modules, or describe the dynamics of the system

without taking its modularity into account. As a result, the investigator cannot fully

understand the structure and dynamics of the system. To address this issue, I used

the framework of Random Set Theory and developed a model that allows to describe

the dynamics of complex systems more realistically by reconstructing their stochastic

evolution diagrams. This generalized model can be applied in various research fields
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that deal with complex systems. In particular, we tested our model on simulated

data as well as real dataset that contains time series of gene expression levels.

In this work, we attempted to examine an evolving complex system as a dy-

namic system of dynamic systems, and the general idea was to consider all random

variables of a complex system as elementary particles with unknown lifetime. The

dynamic behavior of the systems was modeled by considering both their modularity

and evolutionary characteristics. In the Random Set Theory’s framework I developed

a corresponding model and defined a few new concepts such as the hidden set Markov

model and the multiple hidden sets Markov model, and used the concept of random

cluster processes in the finite set statistics (FISST). I introduced the concept of the

stochastic evolution diagram, and also derived a BD metric to score a labeled-edge

Bayesian network (a sequence of Bayesian networks). Using this novel model, an

investigator can reconstruct the stochastic evolution diagram and find the highest

probable labeled-edge Bayesian network to understand the structure and dynamics

of complex systems. The stochastic evolution diagram and the labeled-edge Bayesian

network models can be applied in various research fields that deal with time series

with a large number of random variables.
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APPENDIX A

PROOF OF BD METRIC FROM CHAPTER 9

A.1 Problem Definition

It is possible to present a sequence of Bayesian networks by a labeled-edge Bayesian

network (Figure 9.1). Let the triple G = (GT , GP ,Ψ) parameterize a labeled-edge

Bayesian network, where GT is a DAG denoting the Bayesian network topology, and

GP is a vector whose values denote the conditional probability assignments associated

with Bayesian network topology GT [14]. Ψ is all information encapsulated in the

stochastic evolution diagram. In this section, similar to works of Heckerman et al. [28]

and Cooper and Herskovits [14], we present a metric for evaluating the probabilities

of different DAGs given the discrete data and the stochastic evolution diagram.

Suppose the variables X = {x1
1, . . . , x

T
n} be a set of n discrete observed features

during T time samples, where a feature xi can have si possible states or values:

{vi,1, . . . , vi,si}. Let wi denote a list of the unique instantiations for parents of xi as

seen in D, and wij denote the jth unique instantiation of πi relative to D, and there

are qi such unique instantiations of πi (we have followed the notation of Cooper and

Herskovits [14]). Let πli to be a set of elements of πi which also belong to the cluster

process l, then πli ⊂ πi, and let wlij denotes instantiation of πli. N
l
ijs is defined as a
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number which is proportionate to cases in the time series in which the feature xi ∈ Cl

holds on the value vi,s and the πli is instantiated as wlij. N
l
ijs is formulated below:

N l
ijs =

1

|πi|
T∑

k=2

∆k (A.1)

where

∆k =

{
|wlij| πli = wlij
0 otherwise.

(A.2)

and |.| means the cardinality of the set.

If we are able to obtain the p(GT ,D|Ψ), we can rank the probabilities of differ-

ent topologies. We have proven a BD metric of likelihood function p(D|GT , GP ) by

marginalizing p(GT , GP ,D|Ψ) as follows:

p(GT ,D|Ψ) = p(GT |Ψ)

∫

GP

p(D|GT , GP )f(GP |GT ,Ψ)dGP (A.3)

We have obtained the closed form expression below for the BD metric:

p(GT ,D|Ψ) = p(GT |Ψ)
Nc∏

l=1

∏

xi∈Cl

qi∏

j=1

Γ(αij)

Γ(N l
ij + αij)

si∏

s=1

Γ(N l
ijs + αijs)

Γ(αijs)
(A.4)

where N l
ij =

∑si
s=1N

l
ijs, αijss are Dirichlet hyper-parameters of prior probability

distribution of the DAG topology, αij =
∑si

s=1 αijs, and Γ(.) is the gamma function.

A.2 Proof

To derive the equation A.4, I followed Cooper and Herskovits’s [14] procedure:

p(GT , D|Ψ) =

∫

GP

p(D|GT , GP )f(GP |GT ,Ψ)p(GT |Ψ)dGP (A.5)
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Here f(.) is the conditional probability density function over GP given GT .

p(GT |Ψ) is a constant within equation A.5, we can move it outside of the integral.

p(GT , D|Ψ) = p(GT |Ψ)

∫

GP

p(D|GT , GP )f(GP |GT ,Ψ)dGP (A.6)

By assuming the undergoing process is random cluster process

p(GT , D|Ψ) = p(GT |Ψ)

∫

GP

[
Nc∏

l=1

K∏

k=2

p(Rk|GT , Np,Ψ)

]
f(GP |GT )dGP (A.7)

where Rk = molk ∪molk−1, we can write p(Rk|GT , Np,Ψ) in its Bayesian network form

as:

p(GT , D|Ψ) =p(GT |Ψ)

∫

GP



Nc∏

l=1

K∏

k=2

∏

xi,k∈molk

p(xi,k = di,k|πli = wli,σ2(i,k−1), GP ,Ψ)


×

f(GP |GT )dGP (A.8)

di,k denotes the value assigned to the xi,k in D. σ2(i, k − 1) is an index function such

that the initiation of πli at time k − 1 is the σ2(i, k − 1)th element of wli.

By grouping the terms, we can rewrite the inner product in equation A.8 as:

p(GT , D|Ψ) =p(GT |Ψ)

∫

GP

[
Nc∏

l=1

∏

xi∈Cl

qi∏

j=1

si∏

s=1

p(xi = vi,s|πli = wlij, GP ,Ψ)N
l
ijs

]
×

f(GP |GT )dGP (A.9)

N l
ijs in equation (A.9) can be interpreted as the prior observation count for events

governed by p(xi = vi,s|πli = wlij, GP ,Ψ). An important point is the random variable

xi,k in equation(A.8) which is changed to the feature xi in equation(A.9) because of

the stationarity assumption during the life time of each random cluster processes.

Let θijs = p(xi = vi,s|πli = wlij, GP ,Ψ), then the (θij1, . . . , θijsi) is a list of probabil-

ities. Let f(θij1, . . . , θijsi) denote the probability density function over {θij1, . . . , θijsi}.
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The function f(.) is called a second-order probability distribution because it is a prob-

ability distribution over a probability distribution [14].

f(θij1, . . . , θijsi) is independent of the distribution f(θi′j′1, . . . , θi′j′si) for 1 6 i, i′ 6

n, 1 6 j 6 qi, 1 6 j′ 6 qi′ , and ij 6= i′j′, because we are indifferent regarding which

numerical probabilities to assign to the Bayesian network with topology GT . Then

f(GP |GT ) =
Nc∏

l=1

∏

xi∈Cl

qi∏

j=1

f(θij1, . . . , θijsi) (A.10)

By substituting θijs for p(xi = vi,s|πli = wlij, GP ,Ψ) in equation A.9, and substi-

tuting equation A.10 into equation A.9, we obtain:

p(GT , D|Ψ) = p(GT |Ψ)

∫
. . .︸︷︷︸
θijs

∫ [ Nc∏

l=1

∏

xi∈Cl

qi∏

j=1

si∏

s=1

θ
N l
ijs

ijs

]

[
Nc∏

l=1

∏

xi∈Cl

qi∏

j=1

f(θij1, . . . , θijsi)

]
dθ111, . . . , dθn,qn,sn (A.11)

p(GT , D|Ψ) = p(GT |Ψ)
Nc∏

l=1

∏

xi∈Cl

qi∏

j=1

∫
. . .︸︷︷︸
θijs

∫ [ si∏

s=1

θ
N l
ijs

ijs

]
f(θij1, . . . , θijsi)dθij1, . . . , dθijsi

(A.12)

We assume f(θij1, . . . , θijsi) has a Dirichlet distribution:

f(θij1, . . . , θijsi) =
Γ(αij)∏si
s=1 Γ(αijs)

θ
αij1−1
ij1 × · · · × θαijsi−1

ijsi
(A.13)

where αij =
∑si

s αijs. By substituting equation (A.13) in equation (A.12)

p(GT , D|Ψ) = p(GT |Ψ)
Nc∏

l=1

∏

xi∈Cl

qi∏

j=1

Γ(αij)∏si
s=1 Γ(αijs)

∫
. . .

∫ [ si∏

s=1

θ
N l
ijs+αijs−1

ijs

]
dθij1, . . . , dθijsi

(A.14)
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The multiple integral in equation (A.14) is a Dirichlet integral, and has the following

solution:

p(GT , D|Ψ) = p(GT |Ψ)
Nc∏

l=1

∏

xi∈Cl

qi∏

j=1

Γ(αij)∏si
s=1 Γ(αijs)

×
∏si

s=1 Γ(N l
ijs + αijs)

Γ(N l
ij + αij)

(A.15)

By re-formulating the equation (A.15):

p(GT , D|Ψ) = p(GT |Ψ)
Nc∏

l=1

∏

xi∈Cl

qi∏

j=1

Γ(αij)

Γ(N l
ij + αij)

si∏

s=1

Γ(N l
ijs + αijs)

Γ(αijs)
(A.16)

Or:

p(D|GT ,Ψ) =
Nc∏

l=1

∏

xi∈Cl

qi∏

j=1

Γ(αij)

Γ(N l
ij + αij)

si∏

s=1

Γ(N l
ijs + αijs)

Γ(αijs)
(A.17)

�
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APPENDIX B

SYSMBOLS

Notation Description

k time index (always superscript)
i, j a feature or a module index (always subscript)
T time sample length
T time space
xi ith feature
x̂i ith feature state estimation
xki ith feature at time k
X a set of random variables
2X power set of set X
∅ empty set
mo a random finite set that represents a module
moki ith module at time k
Net a random finite set that represents a network
net a RFS state variable belongs to network state space
Netk state of the network at time k
p(.) probability distribution

pk|k−1(.) predicted probability distribution form time k − 1 to k

pk|k(.) updated probability distribution at time k
pn(.) a node probability distribution
pmo a module probability distribution
Z observation set
Zk observation at time k
Z1:k observations from time 1 to k
Z̄ a modules’ observation set
ż a nodes’ observation
z a virtual leaders’ observation set
Z virtual leaders observation
P(Z) the set of all partitions of set Z
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Notation Description

Nk
m number of nodes that belong to module m at time k

N̂k
m estimated number of nodes that belong to module m at time k

Mk number of modules in the network at time k

M̂k estimated number of modules in the network at time k

fk|k−1(.) Markov transition density function

f
k|k−1
mo (.) a modules’ Markov transition density function
Lk(.|.) network likelihood function
Lkmo(.|.) modules’ likelihood function
pkS() a modules’ probability of survive from time k − 1 to k
ṗkS() a nodes’ probability of survive from time k − 1 to k
pkD() a modules’ probability of detection
ṗkD() a nodes’ probability of detection
R real number
Rd d dimensional Euclidean space
pC() a cardinality distribution
π(xi) set of xi’s parent in a Bayesian network
h() a test function
E[] expectation operator
cmo module cardinality expected value
σmo

2 module cardinality variance
Gmo[h] p.g.fl of a modules’ probability distribution function

G
′
mo() first derivative of Gmo[]

G
′′
mo() second derivative of Gmo[]

GX,Y [g, h] a joint p.g.fl of two RFSs

βk|k−1 spawned birth model of a module
Γ spontaneous birth model of a module
Γ̄ spontaneous birth model of a node

Sk|k−1 survival model of a module

S̄k|k−1 survival model of a node
Θk detection model of a module
Θ̄k detection model of a node
Kk false alarm model
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Notation Description

υk|k−1() a network probability intensity function (PHD) prediction

υ̇k|k() a module probability intensity function (PHD) update

υ̇k|k−1() a module probability intensity function (PHD) prediction
γk() intensity of a new module spontaneous birth
γ̇k(x) intensity of a node spontaneous birth
S SED state
S HMM state space
O HMM observation space
H all possible state sequence space
H all possible SED state space
L likelihood function
Lq likelihood of Markov chain q
Lk likelihood at time k

L̇k a node’s log-likelihood at time k
λp Poisson parameter
Ψ stochastic evolution diagram
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