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µ Micro 

µg Microgram 

µl Microliter 

mM Millimolar 

aa Amino acid 

AAV Adeno-associated virus 

Ad5 Adenovirus type 5 

ATP Adenosine triphosphate 

bp Base pair 

BSA Bovine serum albumin 

cDNA Complementary DNA 

ddH2O Double-distilled water 

DMEM Dulbecco’s modified Eagle medium 

DNA Deoxyribonucleic acid 

dNTP Deoxynucleoside triphosphate 

DRG Dorsal root ganglion 

E. coli Escherichia coli 

EDTA Ethylendinitrilo-N, N, N’, N’-tetraacetate 

FBS Fetal bovine serum 

g Relative centrifugal force 

h Hour(s) 

ITR Inverted terminal repeat 

kb Kilobases (unit for DNA and RNA - 1000 nucleotides) 

kDa Kilo Daltons (unit for protein mass) 

LB media Lysogeny broth media 

M Molar 

mA Milliampere 

MCS Multiple cloning site 

mg Milligram 

min Minute(s) 

miRNA microRNA 

ml Milliliter 
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mM Millimolar 

MOI Multiplicity of infection 

mRNA Messenger ribonucleic acid 

NEAA Non-essential amino acids 

nt Nucleotide 

o.n. Over night 

OD Optical density 

oligo Oligonucleotide 

ORF Open reading frame 

P/S Penicillin/streptomycin 

PAGE Polyacrylamide gel electrophoresis 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PEI Polyethyleneimine 

PFA Paraformaldehyde 

qRT-PCR Quantitative real-time PCR 

rAAV Recombinant AAV 

RNA Ribonucleic acid 

RNAi RNA interference 

rpm Revolutions per minute 

RT Room temperature 

scAAV Self-complementary AAV 

SDS Sodium dodecyl sulfate 

sec Seconds 

ss single-stranded 

ssAAV single-stranded AAV 

ssDNA single-stranded DNA 

TBS Tris buffered saline 

TBST Tris buffered saline + Tween 

TEMED Triethylmethylethyldiamine 

Tris Tris (hydroxymethyl) aminomethane 

UV Ultraviolet 

V Volt 

wt Wild type 

α Anti 
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Summary 

The success of human gene therapy - the treatment of hereditary or acquired diseases with a genetic 

cause - depends on potent, safe and specific gene delivery vectors. Amongst the large variety of 

currently available non-viral or viral vectors, those derived from Adeno-associated viruses (AAV) are 

particularly attractive due to a unique combination of assets: the virus/vector is apathogenic, poses 

little risk of insertional mutagenesis, has a broad host and cell range, and can easily be modified and 

produced in large quantities. However, no natural AAV fulfills all the requirements for clinical use in 

humans, raising a need for new technologies and strategies to engineer synthetic “designer” vectors.  

Accordingly, the central aim of this work was to improve and apply two fundamental methods for 

molecular AAV vector evolution, DNA family shuffling and peptide display. The first technology relies 

on fragmentation and homology-based recombination of capsid genes from closely related AAV 

serotypes, resulting in libraries of AAV chimeras from which capsids with desired properties can be 

enriched via subsequent selection. Here, we initially assessed and optimized the key steps for AAV 

shuffling, culminating in a robust and standardized new protocol for AAV library generation. Next, we 

used this protocol to shuffle AAV2, 8 and 9, and exploited the resulting library to analyze two major 

parameters for AAV selection - helper virus and anti-AAV-antibodies. Interestingly, we found that 

AAV capsids selected in the presence of a helper virus give stronger gene expression, implying that 

their intracellular processing is enhanced. Moreover, comparative analyses of AAVs isolated under 

various conditions with human antisera showed that the degree of negative selection pressure 

determines the balance between infectivity and immunity of the viral particles. Finally, we also 

performed a helper virus-free in vivo biopanning with a library comprising AAV1, 5, 6, 8 and 9 in 

murine pancreas. Intriguingly, gene expression from the single clone emerging after three selection 

rounds was low, supporting our conclusion that the presence of a helper virus is key for potent AAV 

vector evolution.   

Unlike shuffling, AAV vector improvement through peptide display starts with a single viral serotype 

(traditionally AAV2) whose capsid is expanded by insertion of 7-9 aa into an exposed loop, with the 

aim to alter vector tropism towards desired target cells. Here, we extended this strategy to 11 

alternative AAV serotypes and demonstrate their tremendous, previously unrecognized potential as 

scaffolds for viral peptide display. Therefore, we first implemented a simple PCR protocol for rapid 

cloning of peptide-encoding sequences into AAV capsid genes, which replaces the original stepwise 

mutagenesis. We then used our new approach to insert 6 distinct peptides into all 12 AAV serotypes, 

resulting in a collection of 84 YFP-encoding vectors (12 wildtypes & 72 mutants). While screening this 

panel in a large array of human and non-human cell lines and primary cells, we made three 
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important observations: i) AAV vector transduction is not determined by the peptide alone but 

largely depends on the capsid context; ii) alternative AAV serotypes with certain peptides frequently 

outperform the AAV2 prototype and its peptide derivatives; and iii) some serotype-peptide 

combinations even allow to transduce cells previously considered refractory to AAV infection. 

Subsequent analysis of further peptides showed that a common motif, NxxRxxx, is enriched in the 

best performing candidates and particularly enhances AAV1, 7-9 and rh.10. Based on these findings, 

we assembled a “Master panel” of vectors including the superior serotype-peptide combinations 

from our various screens, and used it in collaborative studies to select potent new AAV vectors in 

clinically relevant cell types, such as myeloid cell lines, primary human myeloma cells, or dorsal root 

ganglia and proprioceptive neurons. 

As a whole, the work in this thesis makes a number of essential contributions to the fields of AAV 

biology, AAV vector development and human gene therapy. First, it resulted in optimized protocols 

and tools that substantially simplify, standardize and accelerate the future generation of tailored AAV 

capsids for vector engineering. Second, it also yielded a wide variety of new AAV variants - either in 

the form of shuffled libraries or as panels of specific capsid-peptide combinations - that can now be 

screened in further cell lines, primary cells or even directly in vivo. Third, the data obtained in this 

thesis with the various wildtype, shuffled or peptide-modified capsids greatly improve our knowledge 

of fundamental steps in cellular AAV infection. Most importantly, our results consistently exemplify 

that the function of AAV capsids is not determined by single residues, but rather results from very 

complex interactions of different regions that are dispersed throughout the viral shell. Altogether, 

the present thesis fuels the belief that AAV is one of the most versatile, powerful and robust viral 

vector systems available today and that it provides unique benefits for clinical translation in humans.  
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Zusammenfassung 

Der Erfolg humaner Gentherapie - die Behandlung angeborener oder erworbener Erkrankungen mit 

genetischen Ursachen - hängt ab von wirksamen, sicheren und spezifischen Vektoren zum Transport 

von „fremdem“ genetischem Material. Unter den gegenwärtig verfügbaren nicht-viralen und viralen 

Vektoren erweisen sich solche basierend auf Adeno-assoziierten Viren (AAV) dank einer einzigartigen 

Kombination günstiger Eigenschaften als besonders attraktiv: Virus und Vektor sind apathogen, 

haben ein geringes Risiko für Mutationen durch Integration, zeigen ein breites Wirtszell-Spektrum, 

sind leicht modifizierbar und in großem Maßstab produzierbar. Allerdings erfüllt kein natürlich 

vorkommendes AAV alle Bedingungen für die klinische Anwendung im Menschen, weshalb neue 

Technologien und Strategien für die Entwicklung synthetischer „Designer“- Vektoren notwendig sind.  

Zentrales Ziel dieser Arbeit war demgemäß die Optimierung und Anwendung zweier prinzipieller 

Methoden zur molekularen AAV-Vektor-Evolution, „DNA-Family-Shuffling“ und „Peptid-Display“. Die 

erste Technologie basiert auf der Fragmentierung und homologen Rekombination von Kapsidgenen 

verwandter AAV-Serotypen, gefolgt von der Selektion von Kapsiden mit gewünschten Eigenschaften 

aus den resultierenden Bibliotheken chimärer AAVs. In dieser Arbeit wurden zunächst die wichtigsten 

Schritte des Shuffling-Prozesses ermittelt und optimiert, um basierend darauf ein neues, robustes 

und standardisiertes Protokoll festzulegen. Nach dessen Verwendung zum „Shuffling“ der Serotypen 

AAV2, 8 und 9 wurden anhand der erzeugten Bibliothek zwei wichtige Aspekte der AAV-Selektion 

studiert - Helfervirus und anti-AAV-Antikörper. Interessanterweise konnte gezeigt werden, dass in 

Anwesenheit des Helfervirus selektierte AAV-Kapside eine stärkere Genexpression vermitteln, was 

auf bessere intrazelluläre Prozessierung hinweist. Weiterhin zeigte die vergleichende Untersuchung 

von AAV-Isolaten nach Selektion unter verschiedenen Bedingungen in Anwesenheit von humanem 

Antiserum, dass das Ausmaß des negativen Selektionsdrucks das Verhältnis zwischen Infektiösität 

und Immunogenität bestimmt. Abschließend wurde eine Bibliothek aus den Serotypen AAV1, 5, 6, 8 

und 9 in Abwesenheit von Helferviren im Pankreas von Mäusen selektioniert. Überraschenderweise 

zeigte der nach drei Selektionsrunden angereicherte Klon eine geringe Expression, was unsere These 

unterstützt, dass eine erfolgreiche AAV-Vektor-Evolution die Anwesenheit von Helferviren erfordert. 

Anders als beim Shuffling startet die AAV-Vektor-Optimierung durch Peptid-Display mit nur einem 

Serotyp (meist AAV2), dessen Kapsid durch den Einbau von 7-9 Aminosäuren in eine exponierte 

Region verändert wird. Ziel ist dabei die Anpassung des Vektor-Tropismus an einen gewünschten 

Zelltyp. Diese Strategie wurde hier auf 11 weitere Serotypen erweitert, was zur Entdeckung ihres 

enormen, bisher unbeachteten Potenzials als Gerüst für Peptid-Display geführt hat. Hierzu wurde 

zuerst ein PCR-Protokoll etabliert, das die schnelle und einfache Klonierung Peptid-kodierender 
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Sequenzen in AAV-Kapsidgene ermöglicht und das die bisherige schrittweise Mutagenese-Strategie 

ersetzt. Dieser Ansatz wurde nachfolgend zum Einbau von sechs definierten Peptiden in alle 12 AAV-

Serotypen verwendet, was zu einer Kollektion von 84 YFP-kodierenden Vektoren geführt hat (12 

Wildtypen & 72 Mutanten). Das ‘Screening‘ dieser Kollektion auf einer Vielzahl humaner und nicht-

humaner Zelllinien und primären Zellen ergab drei wichtige Befunde: i) AAV-Vektor-Transduktion 

wird nicht nur durch das Peptid bestimmt, sondern hängt stark vom Kapsid-Kontext ab; ii) alternative 

Serotypen mit bestimmten Peptiden übertreffen häufig den AAV2-Prototyp und davon abgeleitete 

Derivate; und iii) einige Serotyp-Peptid-Kombinationen erlauben sogar die Transduktion von Zellen, 

die bisher als resistent gegenüber AAV galten. Die Analyse dieser und weiterer Peptide führte zur 

Identifikation des Motivs NxxRxxx, das in den effizientesten Peptiden angereichert ist und besonders 

AAV1, 7-9 und rh.10 verbessert. Aufgrund dieser Ergebnisse wurde ein ‘Master Panel‘ (MP) erstellt, 

welches die besten Serotyp-Peptid-Kombinationen aus den verschiedenen Screens umfasst. Dieses 

MP wurde in Kooperation mit anderen Gruppen verwendet, um potente neue AAV-Vektoren in 

diversen klinisch relevanten Zellen zu identifizieren, darunter myeloide Zelllinien, primäre humane 

Myelomzellen, sowie neuronale Zellen der dorsalen Wurzelganglien und propriozeptive Neuronen.  

Zusammengefasst leistet die vorliegende Arbeit wichtige Beiträge für das Feld der AAV-Biologie, der 

AAV-Vektor-Entwicklung und der humanen Gentherapie. Erstens erlauben die optimierten Protokolle 

und Konstrukte künftig die einfachere, standardisierte und rapidere Generierung maßgeschneiderter 

AAV-Vektoren. Zweitens erbrachte die Arbeit vielfältige neue AAV-Varianten - in Form chimärer 

Bibliotheken oder spezieller Kapsid-Peptid-Kombinationen - die nun in weiteren Zelllinien, primären 

Zellen oder in vivo getestet werden können. Drittens haben die in dieser Arbeit mit verschiedenen 

natürlichen, chimären oder Peptid-modifizierten AAV-Kapsiden erzielten Daten unser Verständnis 

fundamentaler Schritte der zellulären AAV-Infektion erweitert. Eine zentrale Erkenntnis war, dass die 

Funktion von AAV-Kapsiden nicht durch einzelne Aminosäuren bestimmt wird, sondern durch 

komplexe Interaktionen verschiedener verteilter Regionen. Insgesamt unterstützt die vorliegende 

Arbeit die Ansicht, dass AAV eines der vielseitigsten, leistungsfähigsten und robustesten viralen 

Vektor-Systeme ist, welches einzigartige Vorteile für die klinische Anwendung im Menschen bietet. 
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1 Introduction 

Over four decades ago, the term “gene therapy” was coined to describe the fundamental concept to 

treat human disorders by correcting the underlying genetic defect(s). For the first time in the history 

of medicine, it promised the option to tackle hereditary diseases at their core, i.e., the genes that are 

either mutated or missing in pathologically altered cells. Accordingly, the first gene therapies aimed 

at introducing functional versions of these genes into a patient’s cells ex or in vivo, in order to 

reconstitute an intact genome and to restore proper expression of the affected protein. Immediately 

it became clear, however, that pivotal to the success of any such strategy is the availability of gene 

delivery vehicles, so-called vectors that can potently, safely and specifically transfer the therapeutic 

nucleic acids into the target cells. Moreover, it also soon became evident that mere delivery of 

ectopic DNAs (or RNAs) would not suffice to treat all variants of human disorders with a genetic 

component. This is because many of these are caused by an inherent over-abundance of disease-

associated genes, exemplified by pathogen infections or many cancers, creating a need to extend 

gene therapies to strategies that also suppress or eliminate nucleic acids, rather than adding them.  

Fortunately, the past decade has yielded a flurry of new developments and powerful technologies 

that nowadays make the realization of clinical gene therapy likelier than ever. Most crucial advances 

include the discovery that RNA interference (RNAi), an endogenous process of gene silencing through 

short double-stranded RNAs, is active in human cells and can be harnessed for deliberate knockdown 

of disease-associated gene expression [1]–[5]. Together with the latest generations of designer 

nucleases (zinc finger nucleases, TALEns or, most recently, the CRISPR system) that provide potent 

and specific modalities for gene/genome engineering [6], these novel technologies now offer 

unprecedented possibilities to treat human diseases not only by gene over-expression, but also by 

suppression or repair of underlying genetic defects. In parallel, vector systems for delivery of 

therapeutic cassettes have undergone steady and substantial improvement, culminating in today’s 

availability of a collection of non-viral or viral tools many of which are under extensive clinical 

evaluation. Amongst these, most notable candidates are vectors derived from Adeno-associated 

viruses (AAV), due to a unique combination of beneficial features such as their inherent 

apathogenicity and their amenability to genetic engineering. These vectors were also in the center of 

the present thesis, whose essential aim it was to devise and validate novel approaches to enhance 

the efficiency and specificity of AAV gene therapy vectors through molecular engineering and 

stringent selection.  
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Before describing the results of this work, the following chapters will provide a more profound 

overview over gene therapy and the vectors used thus far, and then focus on AAV biology as well as 

on the presently available techniques for AAV vector optimization through directed evolution.                

1.1 Gene Therapy - targets and vectors 

To date, over 2000 clinical trials - from phase I to IV - have been conducted world-wide to assess the 

concept of gene therapy in human volunteers and patients. According to the database at 

www.abedia.com/wiley/index.html, the vast majority of these trials - roughly two thirds - took place 

in the United States, whereas a quarter was centered in Europe and 4.2% in Germany (Figure 1A-B).  

 

Figure 1: Overview over gene therapy trials conducted until 2013. Shown are the geographical distribution of all world-
wide gene therapy trials by continent (A) or country (B), as well as the indications studied (C) and genes delivered (D) thus 
far. The four panels were taken from the freely accessible gene therapy database at www.abedia.com/wiley/index.html. 

 

Of all these trials, about two thirds tackled cancers, while the rest focused on a large variety of 

hereditary or acquired human diseases (Figure 1C). Equally diverse is the list of therapeutic or 

reporter/marker genes that have been transferred in all these trials thus far (Figure 1D). 

Because the individual approaches and trials have already been discussed in great detail in the 

literature (e.g., [7], [8]), and because the focus of the present thesis was on the vector aspect of 

human gene therapy, it should suffice to highlight a few hallmark studies in the following. Particularly 

notable are early attempts which triggered serious adverse events but nonetheless significantly 

A) B)

C) D)
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advanced our knowledge. These include one unfortunate fatality during a 1999 gene therapy trial 

aimed at curing ornithine transcarbamylase deficiency (an X-linked genetic liver disease). The 18-year 

old patient who died had been treated with a high dose of a recombinant Adenovirus vector 

expressing a correct version of the defect gene, which resulted in a rapid and massive immune 

response and multiple organ failure [9]–[12]. Additional concern over the safety of gene therapy 

arose when multiple children that had received genetically modified cells to treat X-linked severe 

combined immunodeficiency (X-SCID) developed leukemia-like conditions (that were treatable by 

conventional means) [13], [14]. For obvious reasons, these and other adverse events during the early 

days of gene therapy not only resulted in halts of the corresponding clinical trials, but also provided 

major setbacks for the entire field.  

Fortunately, the continuous improvements in the safety and specificity of gene therapy vectors (see 

below) have recently allowed numerous impressive clinical successes which have now renewed the 

interest in this promising technology. One example are gene therapies for hemophilia B, a potentially 

fatal blood clotting disorder caused by defects in, or the absence of, human factor IX. In a remarkable 

study that is widely recognized in the gene therapy field, Nathwani and colleagues infused six 

hemophilia B patients with a single dose of an optimized AAV serotype 8 vector encoding factor IX 

[15]. Strikingly, as presented in detail at the 2013 annual meetings of the American or European 

Gene & Cell Therapy Societies, respectively, all six patients continue to express detectable factor IX 

over two years after gene therapy vector administration, in the absence of serious adverse events. 

Another important group of human disorders where gene therapies were highly successful are 

inherited blinding diseases of the eye, such as Leber’s congenital amaurosis (LCA, caused by defects 

in the RPE65 gene). A series of high-profile papers from the past few years have reported safe 

improvements in the vision of LCA patients treated with AAV vectors encoding a correct version of 

the mutated gene [16]–[18]. Finally, yet another example highlighting the increasing success rates of 

gene therapies are two recent Science papers describing very promising clinical data from children 

treated with lentiviral vectors, who originally suffered from metachromatic leukodystrophy or 

Wiskott-Aldrich syndrome [19], [20]. 

As noted, all these latest breakthroughs in human gene therapy trials were only made possible by the 

steady improvements in vector design that have alleviated multiple safety concerns, by increasing 

the efficiency and specificity of gene delivery, by reducing the immunogenicity and by advancing the 

options to control vector gene expression within the treated cell. In general, currently used vectors 

for gene therapy can broadly be segregated into non-viral or viral vectors. Non-viral vectors comprise 

e.g. complexes of cationic polymers or lipids with the DNA or RNA that has to be delivered. The 

negative charge of nucleic acids allows binding of the cationic polymers and lipids, resulting in so-
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called polyplexes or lipoplexes that have still a positive net charge and bind anionic cellular surface 

receptors, such as heparan sulfate proteoglycans (HSPG). Cellular uptake of these complexes is 

mediated by endocytosis or, more specifically, by phagocytosis [21]–[27]. Inside the cell, the DNA is 

then released from the endosomes either by destabilization of the endosomal membrane by the 

complexed lipids [28], or by rupture of the endosomal membrane by the cationic polymers [29]. 

Major advantages of these polyplexes or lipoplexes are that they can be formed with DNA/RNA of 

any size and can be easily produced in large scale, and that they have a low immunoreactivity [30]. 

However, the latter is only true for very plain complexes that lack cellular ligands and that are thus 

also unable to mediate efficient and specific cell binding. More advanced recent formulations instead 

typically contain moieties that allow their targeting to desired cells, which increases their specificity 

and thus in vivo applicability. Yet, it also complicates their production and provides epitopes for 

immune recognition, and hence counteracts two of the main advantages of non-viral vectors.  

In contrast, viral vectors have the genuine advantage that viruses have already naturally evolved the 

ability to potently and specifically enter cells through receptor ligands on their capsid or lipid surface. 

Moreover, viruses and thus also vectors derived thereof are inherently efficient at intracellular 

processing and expression of their genes. As depicted in Figure 2 and briefly described below, a large 

variety of viruses have already been engineered as recombinant gene therapy vectors, including 

Lentivirus, Adenovirus and AAV [31], [32]. 

 

Figure 2: Vector types used in gene therapy trials until 
2013. The chart was taken from the freely accessible gene 
therapy database at www.abedia.com/wiley/index.html. 

 

 

Lentiviruses belong to the family of Retroviridae and comprise viruses like HIV or SIV (human or 

simian immunodeficiency virus, respectively). They have a nucleocapsid that is enveloped by a lipid 

bilayer harboring the envelope glycoproteins (Env proteins) which mediate viral attachment to 

cellular receptors. Upon receptor binding, the envelope fuses with the cellular membrane to release 

the nucleocapsid into the cytosol (albeit other uptake mechanisms are also discussed [33], [34]). The 

tropism of lentiviral vectors can be modified because the lipid bilayer is accessible to incorporation of 

selected glycoproteins as new receptor ligands [35], [36]. Other notable features are that lentiviruses 
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can transduce quiescent cells and can integrate their genome to mediate long-term gene expression; 

however, this can be associated with a risk of insertional mutagenesis. Additional drawbacks of the 

lentiviral vector system are the complex genome structure, the rather inefficient protocols for vector 

production, as well as safety concerns about reversion of vectors to replication-competent viruses. 

Adenoviruses used in gene therapy belong to the family of Adenoviridae and the genus 

Mastadenoviruses. They are non-enveloped viruses with an icosahedral capsid comprising a double-

stranded DNA genome. The capsid consists of 240 homotrimeric hexons and 12 pentons from which 

trimeric fiber proteins extend; their C-terminal domain mediates binding to cellular receptors [37], 

[38]. Accordingly, modification of the hexons and fibers allows to re- or de-target virions to or from 

specific cell types, respectively [37], [39]–[41]. Obstacles in the use of Adenovirus as gene therapy 

vector are related to pre-existing immunity against the virus, cytotoxicity, and, akin to lentiviruses, 

the general nature of wildtype Adenovirus as a disease-causing pathogen. Adeno-associated viruses 

(AAV) are non-enveloped viruses with an icosahedral capsid and a single-stranded DNA genome. 

Because they are in the center of the present thesis, their biology as wildtype viruses or recombinant 

vectors will be described in more detail in the following paragraphs. Here, it should already be 

mentioned that AAV is one of the leading vector systems for gene therapy due to numerous inherent 

assets, and that it forms the basis for the first and so far only gene therapeutic that was approved in 

Europe (EMEA/H/C/002145, 2012, European Medicines Agency London). The specific vector 

underlying this product (“Glybera”, uniQure biopharma, Amsterdam, Netherlands) is derived from 

AAV serotype 1 and is intended to deliver an intact lipoprotein lipase gene (LPL) to muscle cells of 

patients with lipoprotein lipase deficiency (LPLD) upon local administration. 

 

1.2 Adeno-associated Virus 

1.2.1 AAV classification and genome structure 

Adeno-associated viruses (AAV) are members of the family Parvoviridae and the sub-family 

Parvovirinae. This sub-family further segregates into Amdoviruses, Bocaviruses, Dependoviruses, 

Erythroviruses and Parvoviruses. AAV is a replication-defective virus from the genus Dependovirus 

which - as the names implies - depends on functions provided by “helper” viruses to complete its 

replication cycle [42]. The fact that AAVs were first discovered as a contaminant of Adenovirus 

preparations [43], [44] gave AAV its name and reflects that Adenoviruses represent potent AAV 

helpers (their early gene products facilitate AAV gene expression and replication). Still, helper 

functions can also be provided by other viruses, e.g. Herpes simplex virus type 1 (HSV-1) [45]–[47].  
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Typical for Parvoviruses, AAV has a single-stranded (ss) DNA genome with a length of only about 4.7 

kb. During viral replication, both plus and minus strands are packaged with comparable efficiencies. 

The genome comprises two open reading frames (ORF) flanked by two T-shaped palindromic 

sequences, the so-called inverted terminal repeats (ITR). The ITRs are the only (partially) double-

stranded parts of the genome and function in cis as origin of replication, are required for genome 

packaging and are important for viral integration into the host genome in the absence of helper virus 

functions [48], [49]. Expression of AAV genes is driven from three promoters within the viral genome, 

p5, p19 and p40, named according to their relative map position in AAV serotype 2 (the entire 

genome is divided into 100 map units; 1 map unit corresponds to roughly 47 nt). The rep ORF 

encodes four non-structural proteins (Rep), termed Rep78, Rep68, Rep52 and Rep40 based on their 

apparent molecular weight in SDS-polyacrylamide gels. The mRNAs encoding Rep78 and Rep52 are 

transcribed from p5 or p19, respectively, while Rep68 and Rep40 are generated by splicing of a single 

intron from the mRNAs for Rep78 or Rep52. Rep proteins function in genome replication, as well as 

in transcriptional control and packaging of AAV genomes. In the absence of a helper virus, Rep 

proteins also play a critical role in AAV integration into the host genome (in the case of AAV2, the 

long arm of chromosome 19) [50]–[54]. The cap ORF encodes the structural proteins VP1 (90kDa), 

VP2 (72kDa) and VP3 (62kDa) (sizes are given for AAV2) that form the viral capsid. The fact that all 

three proteins originate from the single p40 promoter is explained by the use of three different start 

codons combined with alternative splicing. Notably, a fourth protein - the assembly-activating 

protein AAP - has recently been discovered that is also encoded in the cap ORF and that is essential 

for efficient capsid assembly [55], [56]. 

 

Figure 3: AAV genome structure. Top: The 
4.7 kb genome comprises the two rep and 
cap ORFs that are flanked by ITRs. Below: 
Four non-structural Rep proteins are 
encoded by the rep ORF, and three VP 
proteins as well as AAP by the cap ORF. 
Also shown are the various alternative 
start codons (either consensus AUG or 
weaker ACG/CUG) and the central intron 
(indicated by the caret; the two different 
sizes imply the use of two alternative 
splice acceptor sites). 
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1.2.2 AAV capsid structure  

AAV has a small icosahedral and non-enveloped capsid of approximately 18-25 nm in diameter that 

encapsidates a single copy of the genome (plus or minus strand, as noted). The capsid is composed of 

60 copies of the structural proteins VP1, VP2 and VP3 in a ratio of about 1:1:10. All VP proteins share 

the same C terminus but have unique N-terminal ends (see Figure 3 above). VP1 contains a 

conserved phospholipase-A2 (PLA2) domain in its N-terminal part that is important for endosomal 

escape and infection [57]. In the N-terminal part that is common to VP1 and VP2, several nuclear 

localization signals have been identified [57]–[60]. Neither VP1 nor VP2 are essential for capsid 

assembly, but particles lacking VP1 are non-infectious [61]–[63]. VP3, which constitutes roughly 90% 

of the protein content of the capsid, mostly forms the outer part of the capsid with loops and 

variable regions (see below) that are important for cell and antibody binding [64]. In addition to the 

nucleotide and protein sequences of numerous AAV isolates (>100, [65]), the three-dimensional 

structures of nine AAV serotypes, AAV1 to AAV9, have been determined either by cryo-electron 

microscopy or X-ray crystallography, or by both [64], [66]–[78]. However, only the C-terminal part 

common to all VP proteins (except for the 15aa at the N terminus of VP3) has been found ‘stable’ and 

can be visualized (Figure 4). These amino acids comprise the outer part of the capsid, while the 

remaining residues including the entire VP1 and VP2 sequences are located within the capsid. 

According to data aquired with AAV2 - the best characterized serotype to date in any respect - the 

basic capsid structure consists of one α-helix and nine ß-barrel motifs named ß-A at the N terminus, 

to ß-I at the C-terminal end. The ß-barrels starting from ß-B on are connected by loops that are 

named according to the ß-barrels they connect (e.g., the HI-loop connects barrels H and I). Located 

within these loops, especially those in the C-terminal VP part, are the aforementioned variable 

regions that constitute the largest sequence differences between the serotypes. Through sequence 

comparisons between AAV2 and AAV4 (one of the most unique AAV serotypes), a total of nine so-

called hypervariable regions (VR-I to VR-IX, Figure 4) were identified [66]. Mostly, these 

hypervariable regions determine cellular receptor binding and antibody recognition (see also the 

following chapter 1.2.3).  

Through interactions of VP monomers at two-, three- and five-fold axes, the AAV capsid assumes the 

structure of a T=1 icosahedron (Figure 5A) [79]. While the conserved α-helix and the last loop after ß-

I form the two-fold axis, the BC-, EF- and GH-loop are all part of the three-fold axis. The GH-loop, 

which is the largest loop, forms a protrusion that surrounds a depression at the three-fold axis. 

Variable regions cluster at the tip of these protrusions, such as VR-VIII which comprises the primary 

receptor binding site in AAV2. The five-fold axis is composed of the HI-loop that forms depressions 

around a pore built by the DE-loop (Figure 5B-D). The pore constitutes a channel between the inside 

and the outside of the capsid, and functions in genome packaging and PLA2 activation [80] [79].  
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Albeit the description above refers to AAV2, the basic structure with ß-barrels and connecting loops 

is similarly conserved in all AAV serotypes whose structure has been analyzed and resolved thus far.  

 

 

Figure 4: Overview over the C-terminal part of the AAV capsid. The lower part shows a linear alignment of the C-terminal 
amino acids that are shared by all three VP proteins. Numbers indicate amino acids based on the AAV2 VP1 sequence. 
Indicated on the left is the start of the VP3 protein as well as the beginning of the 3D crystal structure. Black and white 
arrows mark loops (BC to HI) in the capsid or intermediate ß-sheets (A to I, labels were omitted for clarity), respectively. 
Black diamonds indicate hypervariable regions within the capsid (I to IX). The black triangles show binding sites of different 
polyclonal and monoclonal antibodies of nonhuman origin or of antibodies from polyclonal human sera (IVIG) [81]–[86]. 
Antibody binding sites are described in more detail by Bartel et al. [87]. The upper part depicts the 3D crystal structure of 

the VP3 protein. -sheets are shown in dark blue, while the alpha helix (αA) is shown in light blue. That αA-helix is 
conserved among parvoviruses. Highlighted in green and linked to the linear alignment are six of the seven loops, with their 
hypervariable regions marked in red. Note that the loops CD and FG do not contain hypervariable regions (not shown 
because of its small size of only 2-3 aa), and that the C-terminal VR-IX is located outside all loops. 

 

 

 

Figure 5: AAV capsid structure. A) Depth-cued surface representation of the AAV2 capsid crystal structure. Indicated are 
the two-fold (2F) and three-fold (3F) depressions, the 3F protrusion, the five-fold (5F) pore/channel and the HI-loop. B)-D) 
Coil diagrams of VP3 from AAV2. Shown are the VP3 monomers with the reference monomer (Ref) in blue and the related 
monomers 2F, 3F and 5F, respectively. The interaction sites at the icosahedral two-fold (black oval), three-fold (black 
triangle), and five-fold axes (black pentagon) are indicated. The loops that invade the neighboring monomer at the 2F axes 
and the protruded HI loop (dashed circles) are also labeled. (taken from: [79])  

 

1.2.3 Receptors and tropisms of AAV serotypes 

The AAV capsid proteins mediate cellular receptor binding and determine the serological properties 

of the particle that in turn define the AAV serotype. Today, at least 12 distinct AAV serotypes and 
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more than one hundred isolates (usually only the cap gene) are known, all of which have been found 

in vertebrates. According to their capsid genome homology and similarity, these serotypes and 

isolates were grouped into clades (Figure 6) [65]. Moreover, AAV serotypes can be segregated based 

on their species origin. Serotypes AAV2, 3, 5 and 6 are isolates from human tissue, whereas 

serotypes AAV1, 4, 7, 8, 10-12 and AAVrh10 originate from non-human primates. AAV9 is identical to 

AAVhu.14 and was found in both humans and non-human primates [65], [88]. AAV1 and AAV6, both 

part of clade A, differ in only 16 nucleotides and 6 amino acids from each other [89], and it is 

believed that AAV6 is actually a recombinant between AAV1 and AAV2. AAV4 and AAV5, which have 

not yet been assigned to a particular clade, have the least similarity to one another (around 60%) and 

to the other serotypes (around 65%). In contrast, all other known AAV serotypes show sequence 

similarities between 75% and 99% [65], [88], [90]–[92].   

Interestingly, even these relatively small sequence differences produce unique receptor binding 

properties and tropisms (i.e., cell/tissue specificities). Heparan sulfate proteoglycan (HSPG) was the 

first primary receptor identified for AAV [93], more specifically, for AAV2, AAV3 and AAV6 [89], [94]. 

Still, our knowledge of the exact HSPG binding motif(s) is largely restricted to AAV2 where amino 

acids at positions R484, R487, K532, R585 and R588 (R, arginine; K, lysine) were found to be critical 

[81], [95]–[97]. Among these, R585 and R588 are most essential, as mutation of each ablates HSPG 

binding. Both are located at the very tip of the GH-loop in VR-VIII (see also Figure 4 above) [95], [96]. 

Comparisons of AAV2 with the HSPG binder AAV6 and the HSPG non-binder AAV1 permitted to 

identify the AAV6 HSPG binding site at a position relative to that of AAV2 [73], [98]. Another common 

attachment receptor for AAV is sialic acid which is recognized by AAV1 and AAV6 that both bind α2-

3- and α2-6-N-linked sialic acid. In contrast, AAV5 only attaches to α2-3-N-linked sialic acid, and AAV4 

specifically to its 3-O-linked conformation [98], [99]. Accordingly, AAVs can also be grouped based on 

their primary receptor: AAV2, AAV3 and AAV6 bind HSPG, while AAV1, AAV4, AAV5 and AAV6 bind 

sialic acid (in various conformations). While AAV9 is the only known isolate which binds N-terminal 

galactose, the primary receptors for AAV7, AAV8, AAV10, AAVrh10, AAVpo.1, AAV11 and AAV12 

remain unknown. In addition to primary receptor attachment, virus uptake requires binding to 

secondary receptors. For AAV2, the following co-receptors have been proposed: αvß5 and α5ß1 

integrin, fibroblast growth factor receptor 1, hepatocyte growth factor receptor and laminin R 

receptor [100]–[104].  

All known primary and secondary receptors are also summarized in Table 1, together with the 

tropisms (i.e., cell specificities) resulting from these different virus-receptor interactions and selected 

clinical studies in which these tropisms have already been exploited.  
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Figure 6: Phylogenetic tree of primate AAVs according to the VP1 sequence. Taxa are named either by serotype or 
according to the species from which they were isolated (hu, human; rh, rhesus macaque; cy, cynomolgus macaque; bb, 
baboon; pi, pigtailed macaque; ch, chimpanzee; numbers indicate the order in which they were sequenced). Different taxa 
are grouped in clades and named A, B, or D-F, and additionally according to a typical representative of the clade. This figure 
is modified from [65]. The AAV2-AAV3 hybrid clade C from the original figure is not shown here. In addition, serotypes 
AAV12 and AAVpo.1 were added. The green boxes highlight the serotypes that were used in our experiments. 
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Table 1: AAV receptors and tropisms 

Serotype 
Receptor 
(Glycan) 

Co-receptor  

Tropism  
(on local delivery, 
unless otherwise 

mentioned) 

Origin References Clinical studies 

AAV1 
α2,3/α2,6 N-

linked sialic acid 
not known 

SM, CNS, Retina, 
Pancreas 

NHP (Rhesus 
monkey) 

[43] 
Heart failure, 

A1ATD, 
LGMD2D, LPLD 

AAV2 HSPG 

FGFR1, HGFR, 
LamR, CD9 

tetraspanin, 
αVß5/α5ß1 

VSMC, SM, CNS, 
Liver, Kidney 

human [44] 

Alzheimer, 
Batten, 

Canavan, 
Parkinson, LCA, 
Inflammatory 

arthritis, 
hemophilia B, 

CF, A1ATD 

AAV3b HSPG 
FGFR1, HGFR, 

LamR, 
Hepatocarcinoma, 

SM 
human [44]   

AAV4 
α2,3 O-linked 

sialic acid 
not known CNS, Retina 

NHP (African 
green 

monkey) 
[105]   

AAV5 
α2,3 N-linked 

sialic acid 
PDGFR 

SM, CNS, Lung, 
Retina 

human  [106]   

AAV6 
HSPG, α2,3/α2,6 

N-linked sialic 
acid 

EGFR 
SM (also i.v.), Heart, 

Lung 
human [107]   

AAV7 not known not known SM, Retina, CNS 
NHP (Rhesus 

monkey) 
[88]   

AAV8 not known LamR 
Liver, SM, CNS, 

Retina, Pancreas, 
Heart 

NHP (Rhesus 
monkey) 

[88] Hemophilia B 

AAV9 
N-linked 
galactose 

LamR 

Liver, Heart (i.v.), 
Brain (i.v.), SM (i.v.), 

Lung, Pancreas, 
Kidney (i.v.) 

human [65]   

AAVrh10 not known not known not known 
NHP (Rhesus 

monkey) 
[88]   

AAVPo.1 not known not known not known pig [108]   

AAV12 not known not known not known 
NHP (African 

green 
monkey) 

[109]   

The column ‘origin’ names the species from which the respective serotype was isolated. The column ‘clinical studies’ refers 
to diseases for which clinical studies were conducted using the respective AAV serotype. NHP, non-human primate; i.v., 
intravenous; CNS, central nervous system; EGFR, epidermal growth factor receptor; FGFR1, fibroblast growth factor 
receptor 1; HGFR, hepatocyte growth factor receptor; HSPG, heparan sulfate proteoglycan; PDGFR, platelet-derived growth 
factor receptor; SM, skeletal muscle; VSMC, vascular smooth muscle cell. The shown information was gathered from 
various original literature as well as from publications [110] and [111].  
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1.2.4 AAV infection and intracellular processing 

As just noted, the AAV capsid determines the first step in viral infection which is attachment to cell 

surface receptors. Interestingly, AAV serotypes also differ in the subsequent steps of internalization 

and intracellular processing, which are complex mechanisms that are again best understood for the 

AAV2 prototype. For this isolate, it was shown that binding to the primary HSPG receptor triggers a 

conformational change that allows capsid interaction with co-receptors that further facilitate 

structural rearrangements and ultimately mediate virus uptake (so-called “click-and-fit” mechanism 

[71], [100]). For AAV2 and most other serotypes studied thus far, this uptake requires clathrin-coated 

pit formation and is dynamin-dependent [112]. Still, AAV2 can also enter cells in a clathrin-

independent manner through carriers/GPI-enriched endocytic compartments (CLIC/GEEC) [113]. 

Moreover, for AAV5, caveolin-dependent internalization was described [111], [114], [115]. Once 

internalized, AAV particles are transported along microtubules and microfilaments in endosomal 

compartments. Data with AAV2 suggest a predominant virion release from early endosomes, albeit it 

was also reported to occur in late endosomes, recycling endosomes or in the trans-Golgi network 

[114]–[122]. In addition to the influence of the viral serotype, the compartment from which AAV 

finally escapes may also be dose-dependent and/or cell type-specific [118], [123]. In any case, a 

crucial step is the acidification of the compartment that leads to a conformational change in the AAV 

capsid. For AAV2, a low pH was shown to trigger conformational changes of side chains of the capsid 

and exposure of the N terminus of VP1 that carries the PLA2 domain [57], [58], [124]. The same 

process is further described in more detail in the context of AAV8. Here, transitions during 

endosomal trafficking at the exterior surface close to the icosahedral 2-fold depression leads to a 

release of the PLA2 domain of VP1 [125]. This PLA2 release is important for endosomal escape and 

AAV infectivity in general [57], [126]–[128].  

Once released from the endosome, the virions are further processed in ways that have also not been 

fully resolved thus far. To some extent, AAV capsids are subject to ubiquitination and degradation, as 

evidenced by findings that inhibition of the proteasome enhances cell transduction with several AAV 

serotypes  [121], [129]–[134]. Moreover, mutation of tyrosines at exposed capsid positions in AAV2 - 

Y444, Y500 and Y730 - was shown to result in decreased phosphorylation and concurrently increased 

transduction. The improvements were 10-fold in HeLa cells and 30-fold in murine hepatocytes in 

vivo, even at a 10-fold lower vector dose as compared to wildtype AAV2 [135]. Likewise, tyrosine 

mutation in AAV6 at amino acid position 445 (Y445F) led to an improvement of transduction of 

skeletal muscle after intramuscular injection. Compared to a wildtype (wt) AAV6 vector, an 8-fold 

increase in luciferase activity in living mice and a 6-fold higher abundance of viral genomes in muscle 

sections were achieved when delivered with AAV6Y445F. Comparable results were obtained with an 

AAV8 tyrosine mutant (Y733F). Subretinal injection of mice with AAV8Y733F carrying a gene to 
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correct a mutation of the ß-subunit of rod cGMP-phosphodiesterase restored visual acuity and 

contrast sensitivity to normal levels. The effect with AAV8Y733F was visible six months post-

infection, whereas treatment with AAV5 and AAV8 vectors had almost no effect even in long-term 

follow-ups. In contrast, a single tyrosine mutation at position Y447F or Y733F in AAV8, or Y446F or 

Y731F in AAV9, respectively, was found insufficient to improve gene delivery to skeletal muscle and 

heart as compared to wtAAV8 and wtAAV9 vectors [136]–[138].  

Capsid uncoating as the next step in AAV infection/transduction is again a complex and multifaceted 

process whose details remain unclear. In addition to the previously described conformational change 

at the exterior surface, changes at the interior surface at the icosahedral 3-fold axis likely trigger 

genome uncoating [125]. Certain proteins were also reported to interact with the AAV capsid to 

further mediate uncoating. For instance, cleavage by cathepsins B and L was found essential for 

AAV2 as well as AAV8 cell transduction [139]. Although many studies suggest encapsidated genomes 

in the nucleus, it still remains debatable to date whether the capsids uncoat in the cytoplasm or at a 

perinuclear region, or whether they enter the nucleus intact. Evidence for the latter is that AAV2 

capsids within the nucleus have been observed by several groups [116], [117], [119], [123], [140], 

[141]. Still, others postulated that uncoating occurs before or during nuclear entry [140], [142]. It is 

furthermore uncertain whether the nuclear pore complex (NPC) is involved in AAV transduction [58], 

[123], [143]. While the discovery of nuclear localization signals in the N terminus of VP1 and VP2 

supports a NPC-dependent mechanism, mutation of NPC-unrelated domains in the N-terminal region 

impairs nuclear transport [60], [62]. 

The single-stranded (ss) AAV DNA genomes must be converted into double-stranded (ds) DNA prior 

to transcription. This is achieved by either synthesis of the complementary strand or by annealing of 

one plus and one minus strand in cells infected with multiple virions. Together with the process of 

uncoating, i.e. the release of the genome from the capsid, this conversion step was found rate-

limiting for AAV infection which has consequences for the use of AAV vectors [144], [145]. In the case 

of AAV8, viral genomes are released quickly and ss genomes can anneal rapidly to form expression-

competent ds DNA. Therefore, transduction with AAV8 is more potent in murine liver in vivo as 

compared to AAV2, whose uncoating occurs at a much slower rate. Evidence for the latter is that 

AAV2 genomes remain DNase-resistant for longer periods in the nuclei of transduced hepatocytes, 

implying that they were encapsidated even six weeks after administration to the mice. Consequently 

the kinetics of capsid uncoating determine the fate of the viral genomes. Slow uncoating leads to 

degradation of the genomes that persist as single strands, which could readily explain the relatively 

inefficient liver transduction with AAV2, as compared to the more rapidly uncoating AAV8 [142]. 
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Finally of note is that several steps in AAV infection, replication and gene expression are governed by 

the presence or absence of helper virus functions. In a latent infection in the absence of a helper 

virus, dsAAV genomes concatemerize and form circular episomes or integrate into the host genome 

(at very low frequencies). In contrast, during a lytic helper virus co-infection, AAV is actively 

transcribed and replicates, resulting in production and release of progeny particles.  

In summary, the AAV capsid sequence influences every step in virus infection, from cell attachment, 

co-receptor binding and virus uptake, to endosomal release, virion processing and finally nuclear 

transport and uncoating. This broad relevance of the AAV capsid explains why major efforts in the 

AAV vector field aim at modifying the capsid sequence and structure, as described in the following 

chapters, and why the central goal of the present thesis was to improve the underlying technologies.    

 

Figure 7: Postulated entry and intracellular trafficking of AAV vectors. Bound and clustered AAV particles enter the cell via 
different pathways. Internalization via macropinocytosis (MP) is strongly affected by the Rac1 GTPase [116]. Endocytosis via 
the clathrin-independent carriers/GPI-enriched endocytic compartment CLIC/GEEC is characterized by a GTPase Regulator 
Associated with Focal Adhesion Kinase 1 (GRAF1) dependency [113]. Clathrin-dependent endocytosis (CCP) is another 
possibility of AAV uptake. Internalization via caveolar (CAV) mediated endocytosis leads to transcytosis. CCP and CAV both 
involve dynamin (Dyn). Except for the CAV pathway, internalized AAV capsids traffic through early endosomes (EE) followed 
either by late endosomes, by perinuclear recycling endosomes (PNRE), or by both, and are transported to the trans-Golgi 
network. From LE, AAV particles can also be degraded in lysosomes (LY). Different compartments are characterized by 
distinct members of the family of RAS-related GTP-binding proteins (Rab5, 7, 9, 11). Conformational capsid changes due to 
acidification (see text) lead to cytoplasmic release from the Golgi apparatus or the ER, and nuclear import via the nuclear 
pore complex (NPC) (the pH of the lumen is indicated by color code; release of the PLA2 domain is indicated by spikes). 
Once in the nucleus (Nuc), intact capsids accumulate in the nucleolus (No) followed by genome release in the nucleoplasm 
(NP). Figure taken from [111]. 
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1.2.5 Recombinant AAV (rAAV) vectors  

For use in gene therapy, AAV provides a unique combination of advantages that make it highly useful 

as recombinant vector system. A first important asset is that AAV is entirely non-pathogenic in 

humans and replication-defective (in the absence of a helper virus), which offers an unmatched 

degree of safety. The latter is further increased by the fact that the only cis-acting elements within 

the AAV genome that are required for replication and packaging are the ITRs (Figure 8). Accordingly, 

for AAV vector production, the complete viral genome between the ITRs including rep and cap genes 

can be replaced by the desired transgene. As rep and cap products are still needed for recombinant 

particle production, however, they as well as Adenovirus helper functions must be provided in trans. 

Typically, Hek293T cells that stably express the Adenovirus E1 gene (another important helper 

function) are therefore triple-transfected with plasmids containing 1) rep and cap genes, 2) the 

remaining Adenovirus helper genes (E2A, VA RNA and E4orf6) and 3) the desired transgene flanked 

by ITRs [146]–[148]. Because the resulting recombinant AAV vector is gutless, i.e., devoid of all viral 

genes, it has a maximal packaging capacity for foreign DNA sequences of roughly 5 kb (Figure 8). This 

is less than that of other viral vector systems used in gene therapy (e.g., 30 kb for gutless 

Adenoviruses), but still enough for the vast majority of therapeutically relevant sequences, especially 

for RNAi or CRISPR cassettes.  

Another key feature of AAV vectors is the ability to be packaged as “self-complementary” genomes 

that overcome the rate-limiting step of ssDNA to dsDNA conversion in the nucleus (see chapter 1.2.4 

above). To understand their design and function, it is essential to point out that once the 

complementary DNA strand has been synthesized during AAV replication, the original strand is 

cleaved at a “terminal resolution site” (trs) within the ITR. This allows separation of the two strands 

(which would otherwise remain joined at one ITR) and thus permits the replication cycle to continue. 

To create self-complementary genomes, the trs in one of the two ITRs is mutated, yielding a 

concatemer of two complementary sequences that can directly fold back onto each other to form a 

double-stranded genome which gives rapid and potent gene expression in the infected cell. While a 

drawback of the self-complementary vector design is the reduction of the packaging capacity to half 

of that of single-stranded vectors (roughly 2.2 kb, Figure 8), the substantial gain in efficiency over 

conventional AAV vectors usually outweighs this limitation [149], [150].  



Introduction 

[29] 
 

 

Figure 8: AAV wildtype virus and recombinant vectors. Shown is a direct side-by-side comparison of wildtype AAV (left) 
with conventional ssDNA- (center) or self-complementary dsDNA-containing (right) AAV vectors. The numbers underneath 
the genomes indicate the maximum size of foreign sequences that can be packaged in the different configurations. (Figure 
adapted from [151].  

 

Moreover beneficial is that recombinant AAV vectors rarely ever integrate into the host genome 

since they lack expression of the Rep proteins which are required for this step. This alleviates 

concerns about genotoxicity (which are particularly prominent with retro/lentiviral vectors) but it 

also implies that the vector will be lost in dividing cells. Nonetheless, in clinically relevant cells and 

tissues that do not undergo frequent cycling, such as hepatocytes/livers, AAV vectors can persist as 

extra-chromosomal episomes and yield long-term and safe transgene expression. 

Most important in the context of the present thesis is yet another advantage of AAV vectors, namely, 

the wealth of naturally occurring AAV serotypes and isolates to choose from. This is critical since this 

variety of capsids offers a huge range of receptor binding abilities and thereby tropisms as well as 

intracellular processing efficiencies (see also Table 1). Fortunately, the rep genes and ITRs from 

serotype AAV2 function in conjunction with any cap gene, independent of its origin [146], [148], 

[152]–[154]. Hence, transgenes flanked by ITRs from AAV2 can easily be packaged into virtually all 

available AAV capsids (serotypes, isolates or mutants), by simply encoding the desired cap gene on 

the AAV helper plasmid. Because the viral capsid mediates all functions in transduction (see chapters 

1.2.3 and 1.2.4 above), the resulting so-called pseudotyped vectors then display all the properties - 

specificities and efficiencies - of the serotype from which the capsid originates. Notably, vector 

behavior can be further modulated through a variety of parameters, such as the dose or route of 

administration [155]. For many pseudotypes, the most frequently infected organ after intravenous 

injection into small animals is the liver [155]–[160]. In fact, the liver is the main target for AAV2 

4.7kb max. 5kb 2.2kb
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(>90% of peripherally injected vector ends up there), and also AAV8 and AAV9 transduce this organ 

robustly after tail vein injection of mice [155], [161]. Unlike AAV2 though, AAV9 also potently infects 

skeletal muscle, and together with AAV4, AAV6, AAV7 and AAV8, it has the highest transduction rate 

in the heart after systemic application [155], [162]–[164]. Intraperitoneally injected AAV8 can even 

pass the blood-brain-barrier, infect muscle and heart as well as dorsal root ganglia and lower motor 

neurons; besides, it is also very efficient in the pancreas [165]–[167]. Other serotypes, such as AAV1 

and AAV6, are highly potent in skeletal muscle upon local administration [168]–[170]. The same 

serotypes, AAV1 and AAV6, are also efficient at heart transduction [171]–[173]. Likewise, AAV5 was 

found to be efficient in the CNS including the brain upon targeted delivery [174]–[177]. Serotype 

AAV5 together with AAV4 further has the potential to infect the eye [178]–[180]. Other, less 

commonly used serotypes like AAVrh10 and AAV12 are also capable of infecting organs such as brain, 

lung or muscle [92], [181], [182]. 

Notably, many of these findings were not only obtained in small animals (mice or rats) but also 

confirmed in larger species (dogs and monkeys). For example, AAV1, AAV2 as well as AAV6, AAV8 

and AAV9 were shown to lead to long-term transgene expression after transfer to the liver and 

muscle in dogs [183]–[187]. In a study from 2010 that compared the efficiency of serotypes AAV1, 5 

and 8 in neuron transduction in monkeys, AAV1 and AAV5 outperformed serotype 8 [188]. Systemic 

injection of AAV9 in macaques led to transduction of glia cells within the brain and dorsal root 

ganglia in the CNS [189]. Moreover, serotype AAV4 was shown to display tropism towards the retinal 

pigmented epithelium in the eye of dogs at efficiencies comparable to AAV2 [190].  

While all these data (and many others that were omitted for space reasons) are highly promising, 

there are also a few remaining limitations of the AAV vector system that still hamper the direct 

translation of results from animal studies into humans and that thus need to be overcome. A first 

major problem is the high prevalence of some AAV serotypes in the human population and the 

ensuing abundance of pre-formed neutralizing antibodies (nAB) [191]–[194]. In fact, more than 80% 

of the human populations are seropositive for AAV2, closely followed by AAV1. Also, pre-formed nAB 

against some of the most potent (in mice) and thus most promising serotypes, like AAV7, AAV8 and 

AAV9, have been detected in humans [192], [193]. The potential issue of pre-existing immunity 

against AAV vectors was clearly exemplified by observations in a clinical trial using AAV2-based 

vectors, where patients with hemophilia B showed a CD8+ T-cell response that was most likely 

mediated by T-memory cells [18], [195]–[199]. A second related problem is that even if a patient 

lacks nAB to a certain serotype, she/he will become nAB-positive after a single AAV dose and thus 

resistant to the same sero-/pseudotype.  
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In addition to concerns about pre-existing or induced anti-AAV immunity, there are uncertainties 

about the comparability between data in cell culture, animals and humans. In fact, some of the most 

potent serotypes in vivo (small or large animals), such as AAV8, are almost inert in cell culture. Vice 

versa, while AAV2 transduces many cultured cells very potently, it mostly infects the liver after in 

vivo application, and rather inefficiently (as compared to other serotypes). Together, this largely 

hampers the thorough pre-clinical evaluation of novel AAV capsid variants. It is also because of these 

discrepancies (and because of general safety considerations) that in most clinical applications to 

date, AAV vectors are administered locally, e.g., to the liver or muscle as in the hemophilia B 

patients, or to the eye for therapy of Leber’s congenital amaurosis [200]–[202]. Likewise, the 

aforementioned AAV1 gene therapy product Glybera is intended for direct application into the 

muscle, rather than for systemic delivery.  

As a whole, these restrictions which result from the limitations of naturally occurring AAV capsids 

define the aims for the development of newer and improved clinical AAV vectors, namely, increases 

in specificity and efficiency, and concurrent decreases in immunogenicity. The final chapter of this 

Introduction will describe the main approaches that have been pursued thus far to reach these goals, 

before the advanced strategies that were implemented and validated in this thesis will be presented. 

 

1.3 Molecular AAV vector evolution 

Towards the aim to refine the specificity of AAV vectors, two basic experimental means to alter AAV 

cell binding can be distinguished in the literature - 1) biochemical crosslinking of AAV to cellular 

receptors, or 2) direct genetic modification of the AAV capsid sequence. Examples for the first 

category include biotinylation of AAV which links the capsids to streptavidin-tagged proteins with 

defined cell binding abilities [203]. Another example are bi-specific antibodies that function as 

adapters between the AAV capsid and moieties on the cell surface. For instance, such an antibody 

was used to re-target AAV2 to αIIBß3-integrin on cells that were inherently resistant to AAV2 [204]. 

Further approaches combined adapter molecules with genetic capsid modification, such as in a study 

where adapter-antibodies mediated binding of CD29, CD117 and CXCR4 to an IgG binding domain. 

The latter was genetically inserted into the AAV2 capsid, thereby permitting transduction of hard-to-

infect cells of hematopoietic origin [205]. Problems with the techniques described so far are their low 

efficiency, poor stability of the agents in vivo and the difficult production of sufficient vector titers. 

Moreover, adapter molecules introduce yet another target for humoral or cellular immune 

responses.  
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For all these reasons, direct genetic engineering of the AAV capsid may be a more promising strategy 

to achieve AAV vector (re-)targeting. Again, one can distinguish numerous approaches in the past 

literature, including the generation of mosaic capsids that consist of parts from different serotypes 

and combine the binding abilities of the parental viruses [206]–[210]. One way to create these 

mosaic viruses is through rational domain swapping as already reported for a small number of 

serotypes and domains [211]. However, this technique is hampered by the limited knowledge of the 

function of AAV domains and of their relationship with each other during the various steps in AAV 

infection. A similar, but more powerful and versatile approach is AAV capsid DNA shuffling, whereby 

the cap genes of multiple AAV isolates are first fragmented and then re-assembled into chimeras that 

ideally combine numerous assets of the parental capsids. This technology, which was first introduced 

into the AAV field in a seminal 2008 paper by Grimm and colleagues [212], was further expanded and 

applied in the present thesis and will thus be described in more detail in the following chapter 1.3.1. 

The same is true for an alternative strategy for direct capsid engineering called viral display, in which 

short peptides are introduced into an exposed region of the viral capsid, hoping that this will ablate 

primary tropism and mediate binding to previously resistant cell types (chapter 1.3.2) The following 

Figure 9 shows a summary of all methods for genetic AAV capsid engineering reported thus far.  

 

Figure 9: Methods for AAV vector evolution. Shown are the three main strategies that have been reported thus far: A) DNA 
family shuffling, B) peptide display, and C) randomized PCR. The first two have been used and further refined in the present 
thesis, and are therefore described in more detail in chapters 1.3.1 and 1.3.2. The third strategy relies on the introduction 
of random point mutations during error-prone PCR amplification of AAV capsid genes. As the frequency of these mutations 
is typically very low, and as only a minor fraction will actually improve capsid features, only few groups use this strategy. 
Also indicated is that all three main approaches can be combined, either in pairs (D-F) or all three (G). 
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1.3.1 DNA Family Shuffling 

As outlined in chapter 1.2 above, naturally occurring AAV capsids differ broadly in multiple aspects 

such as cell and tissue specificity and efficiency as well as immunogenicity. All these features are 

mostly determined by numerous residues and domains that are dispersed throughout the sequences 

of VP1 to VP3, and that remain largely unidentified. While this complicates the rational design of 

hybrids between different natural serotypes, it provides an excellent starting point for the method of 

DNA family shuffling (DFS). This technique, which was first reported by Stemmer and colleagues in 

the 90’s [213], enables the generation of large libraries of chimeric DNA sequences from closely 

related genes. A prerequisite is that the parental DNAs share at least 50% sequence homology, which 

fortunately applies to all known AAV isolates (including the diverse AAV4 and AAV5, see chapter 

1.2.1). Briefly, these DNAs are first enzymatically fragmented (typically using DNase I) and then 

reassembled into chimeras in a series of two PCRs. The first lacks external primers in order to foster 

self-priming of partially homologous parental DNAs, and the second serves to amplify the resulting 

library for subsequent subcloning into an expression plasmid. This in turn allows to express all 

chimeras and to screen for those that exhibit a desired phenotype.  

In the case of AAV, this method was originally introduced into the AAV field by Dirk Grimm and 

colleagues who reported the first chimeric AAV library generated by DFS in 2008 [212]. This library, 

comprising about 7x105 different hybrids, was generated by shuffling eight different AAV isolates, 

AAV2, AAV4, AAV5, AAV8, AAV9, avian AAV, bovine AAV and caprine AAV. It was then iteratively 

amplified in human hepatocytes in the presence of pooled human antisera (IVIG), with the aim to 

isolate new chimeras that would combine a high efficiency in these therapeutically relevant cells with 

the ability to evade pre-existing anti-AAV nAB that occur in the human population (and that are 

represented in IVIG). Indeed, this resulted in the enrichment of a single chimera - termed AAV-DJ - 

after 5 amplification rounds. Interestingly, AAV-DJ is only composed of shuffled sequences from 

AAV2, AAV8 and AAV9 and has lost the five other serotypes that were present in the original library. 

Notably, it combines the most beneficial assets of these three serotypes: like AAV2, AAV-DJ has the 

ability to bind HSPG and even shows a superior efficiency in cell lines of hepatic origin as well as in 

many other cells in culture. Like AAV8 and AAV9, it greatly outperforms AAV2 transduction efficiency 

in vivo, yet it preferentially transduces the liver (whereas AAV8 and AAV9 show substantial extra-

hepatic targeting). Finally, AAV-DJ exhibits a decreased reactivity with nAB as compared to AAV2, 

most likely due to protruded loops in its capsid that originate from AAV8 and AAV9. As a whole, this 

study and this clone thus clearly exemplify the great power of the DNA family shuffling technology to 

create novel AAV chimeras that unite the best features of several parental viruses in a single capsid, 

and that can even outperform its parents. It is thus not surprising that a vast number of groups have 

rapidly adapted this technology after the original paper by Grimm et al [212]., have produced 
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additional libraries based on other serotype combinations and have executed further selection 

schemes to isolate clones that perform under specific conditions. For instance, shortly after the first 

AAV shuffling paper, another AAV chimeric library was reported that was generated from the 

parental serotypes AAV1, 2, 4, 5, 6, 8 and 9. The resulting clones showed a broad tropism in several 

cell lines comparable to AAV2 and an increased (up to 400-fold) resistance to human antibodies 

(IVIG) as compared to AAV2. Similar to the Grimm study, one clone which contained surface loops 

from multiple serotypes was found to be highly efficient at liver and also heart transduction after tail 

vein injection in vivo [214]. In another exemplary study, a shuffled AAV library comprising chimeras 

of AAV2, 7 and 8 was selected in HepG2 cells (human hepatoma line). The lead candidate had an 

increased efficiency specifically on HepG2 cells compared to AAV2 [215]. As a third example, an AAV 

library derived from AAV1, 6, 7 and 8 was selected in vivo to target the myocardium. One emerging 

clone transduced murine heart more efficiently than AAV6, and concurrently displayed a decreased 

tropism towards liver and other organs [216]. Moreover, further interesting examples of the power 

of AAV DNA shuffling include clones that were derived from AAV1, 3, 8 and 9 and that exhibit the 

potential to cross the (chemically compromised) blood-brain barrier in [217] rats. Finally, clones were 

selected from a library made of AAV1, 2, 4, 5, 6, 8 and 9 [218] in human embryonic stem cells 

(hESCs), and the same group isolated chimeric particles generated by pairwise shuffling of the AAV2 

cap gene with AAV4, 5, 6 or 8 that mediated increased transduction of neuronal stem cells [6], [219]. 

Remarkably, albeit these and other papers differed in details regarding the library composition and 

target cells, three particular parameters were frequently similar which highlights their importance for 

AAV vector evolution: 1) The libraries were either amplified in the target cells via co-infection with a 

helper Adenovirus, or the capsid genes were rescued from the infected cells by PCR and then re-

cloned to generate a new library for the next infection round; 2) selection occurred only under 

positive pressure (i.e., enrichment for particles that can infect a given cell type), or it also included a 

negative pressure (i.e., typically elimination of capsids that react with nAB/IVIG, as in the original 

Grimm paper [212]); and 3) many final clones were largely composed of serotype 2 in combination 

with potent (in vivo) capsids such as AAV8 or AAV9, strikingly reminiscent of the AAV-DJ chimera. 

Altogether, these curious observations provided the rationale for the experiments in the first part of 

this thesis, whose aim it was to more thoroughly dissect the influence of adenoviral co-infection and 

IVIG pressure, and to better understand the predominance of a few serotypes in typical final hybrids.   

1.3.2 Peptide display 

The second approach to alter AAV tropisms that was studied here is genetic modification of the AAV 

capsid aa sequence through the introduction of additional short peptides. The underlying idea is that 

these peptides will hinder binding of the capsid to its natural receptor(s) and concurrently mediate 
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attachment to other molecules that are specifically expressed on the surface of a target cell. This 

method, which is similar to phage display and hence called viral display, was originally established in 

the AAV2 context because the AAV2 structure was the first to be resolved [64], [124]. Accordingly, 

short peptides of seven residues were inserted into the AAV2 capsid at positions that were supposed 

to 1) be exposed at the capsid surface, 2) mediate binding to the natural AAV2 receptor(s), and 3) 

accept the insertion of additional amino acids without disrupting functions essential for the viral life 

cycle [84], [220], [221]. Of the insertion sites tested, position 587 and later 588 were confirmed to 

fulfill these criteria, as they accept peptides of different lengths (ideally seven amino acids, but also 

14 and more were reported [61]) and to mediate the desired AAV2 retargeting, i.e., ablation of the 

primary tropism and introduction of a new cell specificity. Indeed, peptide display at these positions 

was found to avert HSPG binding of the underlying AAV2 wildtype virus [222]. Moreover, a vast array 

of publications from the past decade has validated the power of this technology to create novel 

tropisms based on the AAV2 scaffold. Again, as for DNA family shuffling, only a few selected 

examples will be mentioned. Müller and colleagues were the first to select 7mer peptide libraries in 

the context of AAV2. Their selection scheme in human primary endothelial cells led to the 

enrichment of the peptides NSSRDLG and NDVRAVS. Both peptides have the potential to increase the 

transduction efficiency in their target cells substantially as compared to wtAAV2, but were inefficient 

in HeLa cells [221].  Another in vitro selection scheme in primary breast cancer cells from PymT mice 

identified two peptides, RGDMSRE and RGDLGLS that share the RGD motif and roughly double the 

transduction efficiency of wtAAV2 in primary PymT cancer cells. In the same paper, in vivo 

biopanning and selection in murine lungs identified two peptide motifs, PRSADLA and PRSTSDP, that 

increase transduction in the lung but also in other organs after intravenous administration (up to 

233-fold with peptide PRSTSDP as compared to the unmodified wtAAV2 control, 28 days post-

infection) [223]. In two more recent approaches, the previously generated AAV2 peptide library [221] 

was selected in hESCs and neuronal stem cells (NSCs). In the latter case, this led to the identification 

of an AAV2 clone that displayed the motif TQVGOKT and that carried an additional point mutation at 

position 719 (V719M). The peptide-displaying clone gave up to 50-fold increased NSC infection as 

compared to wtAAV2 and wtAAV5 (curiously, correction of the point mutation did not alter the 

efficiency of this clone) [6], [219]. 

Obviously, an important prerequisite for the success of this strategy is a detailed knowledge of the 

structure of the AAV capsid that is used for peptide display. This readily explains why up until very 

recently, peptide display and selection approaches have been restricted to the AAV2 prototype, as 

structures for alternative AAV serotypes have only been resolved lately. Accordingly, very few papers 

have thus far started to assess the potential of non-2 AAV serotypes as scaffolds for peptide display 

[224], [225], despite the fact that these capsids are very interesting candidates. This is because 
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peptide insertion into AAV2 will not alter the majority of epitopes on the capsid surface that are 

recognized by nAB in the population; accordingly, even the best retargeted AAV2 vector may 

ultimately fail in human gene therapy trials once it is neutralized. In addition, as highlighted above 

(chapters 1.2.2 - 1.2.4), the capsid not only affects cell attachment but also influences subsequent 

steps during vector transduction. Again, this suggests that inherently more potent capsids such as 

those from AAV8 or AAV9 may represent better scaffolds for peptide display, than the AAV2 

prototype.  

Finally, it was also suggested that it is not only the peptide per se which mediates target specificity, 

but that the combination with the AAV capsid backbone further contributes to an altered tropism. 

Arguing for the influence of the underlying serotype, Müller and colleagues already proposed in their 

original 2003 paper that direct peptide selection within the virus context is preferable over e.g. 

phage display and subsequent transfer of enriched peptides into AAV, since the peptide confirmation 

may be altered in the precise virus protein context [221]. One could accordingly postulate that capsid 

and peptide should be viewed as an entity rather than a combination of two parts. Along this line, 

Grimm and co-workers made observations that further support the concept that the capsid 

backbone is essential for peptide display. In their 2008 study, they performed an in vivo biopanning 

of a peptide library in the AAV-DJ context, and surprisingly isolated the exact same peptides in 

murine lungs that had previously been selected in coronary arterial and venous endothelial cells in 

vitro in the context of AAV2 [212], [221], [226]. This again highlights the importance of the capsid and 

raises the question whether the specificity of peptides displayed in AAV is truly due to the peptide 

alone, or whether it rather results from a complex, not yet fully understood, peptide-backbone 

interplay. 
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1.4 Objectives 

This study had two closely related overarching goals, namely, (i) to improve and apply two essential 

technologies for AAV vector evolution, and (ii) to concurrently exploit these methods and the ensuing 

data in order to expand our understanding of AAV biology. One specific objective in the first part was 

to streamline the methodology of AAV DNA family shuffling, a process whereby capsid genes from 

distinct AAV isolates are first fragmented and then re-assembled based on partial homologies, thus 

yielding libraries of AAV chimeras for selection of desired candidates. Therefore, critical steps of the 

underlying protocol needed to be optimized, and constructs carrying the different capsid genes for 

shuffling or vector production had to be standardized. In addition, we aimed to thoroughly analyze 

two key parameters for AAV library selection, i.e., the role of helper Adenovirus and the influence of 

the source and dose of neutralizing anti-AAV antibodies (IVIG). Similarly, another goal was to also 

improve the second fundamental AAV evolution method, viral peptide display, which is based on the 

presentation of short retargeting peptides on the surface of a genetically modified AAV capsid. Here, 

our specific aim was to assess the amenability of 11 non-AAV2 serotypes that were present in the lab 

as scaffolds for peptide display, which was intriguing as these alternative isolates provide a variety of 

assets for clinical use in humans. For both methodologies - DNA family shuffling and peptide display - 

a common goal was to finally apply the viral libraries and novel capsid-peptide combinations for 

selection of new and enhanced AAV vectors in a variety of cells in vitro and in vivo. Ideally, the lead 

candidates emerging from this work would not only represent optimal templates for future gene 

transfer/therapy applications, but would concomitantly allow us to dissect the individual residues 

and domains that determine the features of an AAV capsid and that hence govern AAV biology. 
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2 Materials and Methods 

2.1 Materials  

2.1.1  Cell lines and viruses 

2.1.1.1 Cell lines: 

Cell line Origin Tissue/Cell Type References 

RPMI 8226 H. sapiens B-lymphocyte/ myeloma [227] 

A375 H. sapiens Skin/ malignant myeloma [228] 

AMO-1 H. sapiens Myeloma, plasmacytoma [229] 

H-4-II-E M. musculus Liver/ hepatoma [230] 

HEK293T H. sapiens Embryonic kidney cells [231] 

HeLa H. sapiens Cervix/ adenocarcinoma [232] 

HepG2 H. sapiens Liver/ hepatocellular carcinoma [233] 

HepA1-6 M. musculus Liver/ hepatoma [234] 

hiPSC H. sapiens 
Foreskin/ fibroblast  

Induced pluripotent stem cell 
[235] 

HT144 H. sapiens Malignant melanoma [236] 

Huh7 H. sapiens Liver/ hepatoma cell line [237] 

JAWSII M. musculus Bone marrow/ immature DC, monocyte [238] 

Jurkat H. sapiens T-lymphocyte/ acute leukemia [239] 

K-562 H. sapiens Bone marrow/ lymphoblast [240] 

Karpas H. sapiens lymphoma [241] 

KG1 H. sapiens Bone marrow/ macrophage, acute leukemia [242] 

KMS-11 H. sapiens myeloma [243] 

KMS-12BM H. sapiens myeloma [243] 

L363 H. sapiens Plasma cell leukemia [244] 

MCF10A H. sapiens Mammary gland, breast/ fibrocystic disease [245] 

MCF7 H. sapiens Mammary gland, breast/ metastatic site [246] 

MDA-MB-231 H. sapiens Mammary gland, breast/ adenocarcinoma [247] 

MDA-MB-436 H. sapiens Mammary gland, breast/ adenocarcinoma [247] 

MolP2 H. sapiens Multiple myeloma [248] 

MolP8 H. sapiens Multiple myeloma [249] 

MT4 H. sapiens T-lymphocyte/ T-cell leukemia [250] 

NIH3T3 M. musculus Embryo fibroblast [251] 

NKL H. sapiens NK-cell/ leukemia [252] 

OPM H. sapiens Myeloma, leukemia [253] 

OVCAR-3 H. sapiens Ovary/ adenocarcinoma [254] 

Panc-1 H. sapiens Pancreas, duct/ carcinoma [255] 

PC3 H. sapiens Prostate carcinoma [256] 

Raji H. sapiens Burkitt lymphoma [257] 

Raw264.7 M. musculus Macrophage, monocyte [258] 

SF-539 H. sapiens Gliosarcoma [259] 

SH-SY5Y H. sapiens Neuroblastoma [260] 
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SK-MEL2 H. sapiens Skin/ malignant melanoma [236] 

SKW6.4 H. sapiens B-lymphoblast/ EBV derived [261] 

SupT1 H. sapiens T-lymphocyte/ T-cell lymphoma [262] 

T98G H. sapiens Brain/ glioblastoma [263] 

THP-1 H. sapiens Monocyte/ leukemia [264] 

U266 H. sapiens Multiple myeloma [265] 

U373 H. sapiens Glioblastoma, astrocytoma [266] 

U937 H. sapiens Histiocytic lymphoma [267] 

WM266-4 H. sapiens Skin/ melanoma, metastatic site [268] 

2.1.1.2 Viruses: 

Virus type Description Source 

rAAVx Recombinant Adeno-associated virus type x (x= cap 

genes from AAV serotypes 1 to 9, rh10, po.1, 12) with 

different transgenes 

produced in this study 

 

rAAVDJ Recombinant Adeno-associated virus type DJ vector 

with different transgenes 

produced in this study 

Ad5 Adenovirus type 5 provided by D. Nettelbeck, DKFZ 

2.1.2 Cell Culture Media and Additives 

Product Company 

1x PBS PAA, GE Healthcare (München, Germany) 

Dulbecco’s modified eagle medium (DMEM) High 

Glucose (4,5 g/l) without L-Glutamine 

PAA, GE Healthcare (München, Germany) 

Fetal Bovine Serum Gold (FBS) PAA, GE Healthcare (München, Germany) 

L-Glutamine Life Technologies GmbH (Paisley, UK) 

MEM Non-Essential Amino Acids (NEAA) Life Technologies GmbH (Paisley, UK) 

Penicillin/ Streptomycin (Pen/Strep) PAA, GE Healthcare (München, Germany) 

2.1.3 Nucleotides 

Name Company 

dNTPs (dATP, dCTP, dGTP, dTTP) NEB (Frankfurt am Main, Germany) 

NTPs (ATP, CTP, GTP, UTP) Fermentas (St. Leon-Rot, Germany) 

2.1.4 Standard markers 

Marker Company 

100 bp DNA ladder Life Technologies GmbH (Paisley, UK) 

1 kb DNA ladder Life Technologies GmbH (Paisley, UK) 

PageRuler
TM

 Plus Prestained Protein Ladder Fermentas (St. Leon-Rot, Germany) 
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2.1.5 Enzymes 

Enzyme Company 

Antarctic Phosphatase NEB (Frankfurt am Main, Germany) 

Benzonase MERCK (Darmstadt, Germany) 

DNaseI Life Technologies GmbH (Paisley, UK) 

HotStar Hifidelity Polymerase QIAGEN (Hilden, Germany) 

Phusion Hot Start II DNA Polymerase Finnzymes (Espoo, Finland) 

Proteinase K Roche (Penzberg, Germany) 

Restriction Enzymes NEB (Frankfurt am Main, Germany) / Fermentas (St. 

Leon-Rot, Germany) 

T4 DNA Ligase NEB (Frankfurt am Main, Germany) 

2.1.6 Kits 

Kit Company 

DNA 1000 Kit Agilent Technologies (Santa Clara, US) 

PureLink® HiPure Plasmid Maxiprep Kit Life Technologies GmbH (Paisley, UK) 

PureYield
TM

 Plasmid Midiprep System Promega (Madison, USA) 

QIAquick Gel Extraction Kit QIAGEN (Hilden, Germany) 

QIAquick Nucleotide Removal Kit QIAGEN (Hilden, Germany) 

QIAquick PCR Purification Kit QIAGEN (Hilden, Germany) 

SensiMix
TM

II Probe Kit Bioline (London, UK) 

QIAamp Min Elute Virus Spin Kit QIAGEN (Hilden, Germany) 

Western Lightning® PLUS-ECL PerkinElmer (Waltham, USA) 

2.1.7 Buffers and solutions 

Name          Composition 

DNA loading dye (10x) 

50 mM 

50% 

0.25% 

Tris pH 7.6 

Glycerin 

bromophenol blue 

Iodixanol (15%) 
15% 

dilute in 

Iodixanol (Optiprep) 

PBS-MK-NaCl 

Iodixanol (25%) 

25% 

dilute in 

0.25% 

Iodixanol (Optiprep) 

PBS-MK 

Phenol red  red color 

Iodixanol (40%) 
40% 

dilute in 

Iodixanol (Optiprep) 

PBS-MK 

Iodixanol (60%) 
60% 

0.25% 

Iodixanol (Optiprep) 

Phenol red  yellow color 

LB (lysogenic broth) medium 

1% (w/v) 

0.5% (w/v) 

1% (w/v) 

for LB plates: 

1.5% (w/v) 

Bacto Tryptone 

Bacto Yeast Extract 

NaCl 

 

Bacto Agar 

Na-HEPES-Resuspension buffer 

50 mM 

0.15 M 

25 mM 

HEPES 

NaCl 

EDTA 

P1 buffer (Mini prep) 50 mM Tris/HCl pH 8.0 
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10 mM 

100 µg/ml 

EDTA 

RNase A  pH 8.0 

P2 buffer (Mini prep) 
200 mM 

1% 

NaOH 

SDS 

P3 buffer (Mini prep) 2.8 M KAc pH 5.1 

PBS-MK 

1x 

1 mM 

2.5 mM 

PBS 

MgCl2 

KCl 

PBS-MK-NaCl 

1x 

1 mM 

2.5 mM 

1 M 

PBS 

MgCl2 

KCl 

NaCl 

Protein sample buffer (2x) 

2 mM 

100 mM 

4% 

20% 

10% 

0.02% 

EDTA 

Tris/HCl pH 7.5 

SDS 

Glycerin 

β-mercaptoethanol 

bromophenol blue 

Proteinase K buffer 

200 mM 

25 mM 

300 mM 

2% (w/v) 

Tris/HCl pH 7.5 

EDTA 

NaCl  

SDS 

SOB medium 

2% (w/v) 

0.5% (w/v) 

10 mM 

2.5 mM 

10 mM 

Bacto Tryptone 

Bacto Yeast extract 

NaCl 

KCl 

MgCl2  pH 7.0 

SOC medium 

2% (w/v) 

0.5% (w/v) 

10 mM 

2.5 mM 

10 mM 

20 mM 

Tryptone 

Yeast extract 

NaCl 

KCl 

MgCl2 

Glucose  pH 7.0 

TAE (50x) 

2 M 

50 mM 

1 M 

Tris 

EDTA 

Acetic acid  pH 8.3 

TBS(T) 

25 mM 

125 mM 

(0.05% 

Tris/HCl, pH 7.4 

NaCl  pH 7.5 

Tween 20) 

Virus lysate solution 

(Iodixanol gradient) 

50 mM 

0.15 M 

Tris/HCl pH 8.5 

NaCl  pH 8.5 

 

2.1.8 Bacteria: 

Strain Description Source 

E. coli MAX Efficiency DH5α
TM

 chemically competent Life Technologies GmbH (Paisley, UK) 

E. coli MegaX DH10B
TM

 T1
R
 electrocompetent Life Technologies GmbH (Paisley, UK) 
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2.1.8.1 Constituents of bacterial cultures 

Product Company 

Ampicillin Roth (Karlsruhe, Germany) 

Bacto
TM

 Agar BD (Franklin Lakes, USA) 

Bacto
TM

 Trypton BD (Franklin Lakes, USA) 

Bacto
TM

 Yeast Extract BD (Franklin Lakes, USA) 

Gentamicin Life Technologies GmbH (Paisley, UK) 

2.1.9 Chemicals and reagents 

All commonly used chemicals were purchased in the highest purities from the listed companies:  

Product Company 

1,4-Dithiothreitol (DTT) Roth (Karlsruhe, Germany) 

TBE 10 x Fermentas (St. Leon-Rot, Germany) 

TGS (Tris/Glycine/SDS buffer) 10x Bio-Rad (Hercules, USA) 

Agarose Biozym Scientific GmbH (Hessisch Oldendorf, Germany) 

Albumin Fraktion V (BSA) Roth (Karlsruhe, Germany) 

Ammonium persulfate (APS) GRÜSSING GmbH (Filsum, Germany) 

Bromophenol blue CHROMA (Bellows Falls, USA) 

Cesium chloride SIGMA-ALDRICH (St. Louis, USA) 

Ethidium bromide Roth (Karlsruhe, Germany) 

Ethylendiamintetraacetate (EDTA) GRÜSSING GmbH (Filsum, Germany) 

HEPES GERBU Biotechnik (Gaiberg, Germany) 

Immunoselect Antifading Mounting Medium DAPI Dianova (Hamburg, Germany) 

Iodixanol (Optiprep
TM

) AXIS SHIELD (Dundee, UK) 

Lipofectamine 2000 Life Technologies GmbH (Paisley, UK) 

MOPS Roth (Karlsruhe, Germany) 

Nuclease-free water Ambion, Life Technologies GmbH (Paisley, UK) 

Paraformaldehyde Electron Microscopy Sciences (Hatfield, UK) 

Phenol red MERCK (Darmstadt, Germany) 

Polyethylene Glycol (PEG 8000) Promega (Madison, USA) 

Polyethylenimine (PEI), linear Polysciences Inc. (Eppelheim, Germany) 

PonceauS SIGMA-ALDRICH (St. Louis, USA) 

Proteinase inhibitors (Pefabloc SC (AEBSF)) Roche (Penzberg, Germany) 

QIAzol QIAGEN (Hilden, Germany) 

Roti®-Aqua-Phenol/C/I Roth (Karlsruhe, Germany) 

Rotiphorese Gel 40 (19:1) Roth (Karlsruhe, Germany) 

UltraPure
TM

 TEMED Life Technologies GmbH (Paisley, UK) 
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2.1.10 Equipment 

Device Company 

70Ti rotor Beckman Coulter (Brea, USA) 

Accu-jet® pro Pipette Controller BrandTech Scientific (Essex, USA) 

Agilent 2100 Bioanalyzer Agilent Technologies (Santa Clara, US) 

BANDELIN SONOREX BANDELIN electronic (Berlin, Germany) 

Beckman tube sealer Beckman Coulter (Brea, USA) 

Centrifuges: 

Allegra X-12R centrifuge 

Avanti J-26 XP centrifuge 

Benchtop centrifuge 5415R 

Optima
TM

 L-90K Ultracentrifuge 

 

Beckman Coulter (Brea, USA) 

Beckman Coulter (Brea, USA) 

Eppendorf (Hamburg, Germany) 

Beckman Coulter (Brea, USA) 

Electrophoresis System: 

Mini-PROTEAN (protein gels) 

PowerPac Power Supply 

Trans-Blot® SD Semi-Dry Electrophoretic Transfer Cell 

EPS301 Power Supply (Hot lab) 

HOEFER
TM

 SE 600 Ruby (Hot lab) 

 

Bio-Rad (Hercules, USA) 

Bio-Rad (Hercules, USA) 

Bio-Rad (Hercules, USA) 

GE Healthcare (München, Germany) 

GE Healthcare (München, Germany) 

Flow cytometer: 

Cytomics FC500MPL analyzer  

 

Beckman Coulter (Brea, USA) 

Film developing cassettes Dr. Goos-Suprema GmbH (Heidelberg, Germany) 

FlexCycler analyticjena (Jena, Germany) 

Function line incubator Thermo Fisher Scientific (Waltham, USA) 

Gel Doc XR Bio-Rad (Hercules, USA) 

Gene Pulser Xcell Bio-Rad (Hercules, USA) 

HERA cell 150 incubator Thermo Fisher Scientific (Waltham, USA) 

HERA safe sterile work bench Thermo Fisher Scientific (Waltham, USA) 

INTELLI-MIXER neoLab (Heidelberg, Germany) 

Microwave oven Sharp Electronics (Hamburg, Germany) 

Mixing block Biozym Scientific GmbH (Hessisch Oldendorf, 

Germany) 

MSH Basic - magnetic stirrer with steel heating plate IKA Laboratory Equipment (Staufen, Germany) 

NanoVue Spectrophotometer Thermo Fisher Scientific (Waltham, USA) 

Personal Molecular Imager Bio-Rad (Hercules, USA) 

pH meter PB-11 Sartorius (Göttingen, Germany) 

Pipettes Gilson (Middleton, Germany) / Eppendorf 

(Hamburg, Germany) 

Refractometer Exacta + Optech (San Prospero, Italy) 

Rotor-Gene Q QIAGEN (Hilden, Germany) 

Shaker DOS-10L neoLab (Heidelberg, Germany) 

Shaker DRS-12 neoLab (Heidelberg, Germany) 

Shaking Incubator Multitron  INFORS HT (Basel, Switzerland) 

Tube Rotator VWR (Radnor, USA) 

Ultra Sonicator  Covaris (Woburn, MA, USA) 

Vortex Genie2 Scientific Industries (Bohemia, USA) 

Water bath TW12 Julabo Labortechnik (Seelbach, Germany) 

X-OMAT 2000 processor (film developer) KODAK (Rochester, USA) 
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2.1.11 Materials 

Material Detail Company 

Amicon® Ultra 

Centrifugal Filters 

Ultracel - 100 K Millipore (Billerica, USA) 

Cell culture dishes Ø 6 / 10 / 15 cm greiner bio-one (Frickenhausen, Germany) / nunc (Roskilde, 

Denmark) 

Cell culture flasks 75 / 175 cm
2
 greiner bio-one (Frickenhausen, Germany) 

Cell culture plates 6 / 12 / 96 well greiner bio-one (Frickenhausen, Germany) / nunc (Roskilde, 

Denmark) 

Cell lifter  Corning Incorporated (Corning, USA) 

Electroporation 

Cuvettes 

25 x 1 mm gap peqlab (Erlangen, Germany) 

illustra
TM

 MicroSpin
TM

  

G-25 columns 

 GE Healthcare (München, Germany) 

Microscope cover 

glasses 

Ø 12 mm Marienfeld GmbH (Lauda-Königshofen, Germany) 

Neubauer counting 

chamber 

 Hecht Assistant (Sondheim, Germany) 

Nitrocellulose 

membrane 

PROTAN® Whatman (Maidstone, UK) 

Nylon membrane Hybond
TM

-N
+
 GE Healthcare (München, Germany) 

PCR tubes 0.2 ml 8-Strip STARLAB (Hamburg, Germany) 

Petri dishes 10 / 15 cm greiner bio-one (Frickenhausen, Germany) / BD (Franklin 

Lakes, US) 

Pipette tips 10 / 200 / 1000 µl Sarstedt / Biozym Scientific GmbH (Hessisch Oldendorf, 

Germany)/ Kisker / greiner bio-one (Frickenhausen, 

Germany) 

PP tubes 14 ml greiner bio-one (Frickenhausen, Germany) 

qRT-PCR tubes 0.1 ml strip tubes QIAGEN (Hilden, Germany) 

Reaction tubes 0.5 / 1 / 2 ml SARSTEDT (Nümbrecht, Germany) 

Sephadex G-25 (fine) Quick spin column 

for radiolabeled RNA 

purification 

Roche (Penzberg, Germany) 

Serological pipettes 5 / 10 / 25 ml greiner bio-one (Frickenhausen, Germany) 

Slide-A-Lyzer Dialysis 

Cassette 

G2, 20,000 MWCO, 

15 ml capacity 

Thermo Fisher Scientific (Waltham, USA) 

Sterile filter 0.22 µM pore size Roth (Karlsruhe, Germany) 

Tubes 15 / 50 ml greiner bio-one (Frickenhausen, Germany) 

Ultracentrifuge tubes Quick-Seal
TM

 (25x89 

mm) 

Optiseal 

(26x77 mm) 

RE-SEAL 

(16x77 mm) 

Beckman Coulter (Brea, USA) / Seton Scientific (Petaluma, 

USA) 

Whatman paper 3 mm Whatman (Maidstone, UK) 

X-ray films Amersham 

Hyperfilm
TM

 ECL 

GE Healthcare (München, Germany) 
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2.1.12 Software: 

Software Company 

ImageJ [269] 

Quantity One Bio-RAD (Hercules, USA) 

Salanto Developed by Christian Bender in the context of [270]  and this study in close 

collaboration with Nina Schürmann. 

(https://bitbucket.org/benderc/salanto/wiki/Home) 

Vector NTI Life Technologies GmbH (Paisley, UK) 

 

2.2 Methods 

2.2.1 Standard microbiological methods 

2.2.1.1 Production of bacteria 

2.2.1.1.1 Chemically (CaCl2) competent bacteria 

For self-made stocks of competent bacteria, 10 ml of LB medium without antibiotics were inoculated 

with E. coli from a commercially available stock of DH5α and grown o.n. at 37°C. 200 ml SOC medium 

were next inoculated with 1 ml of this o.n. culture and grown to an O.D. of 0.5-0.6 at 37°C. Bacteria 

were then spun down by centrifugation at 3.200 rpm for 15 min at 4°C. The supernatant was 

discarded, and the bacterial pellet was resuspended in TFB-I, incubated on ice for 10 min and 

centrifuged again at 3.200 rpm for 10 min at 4°C. The resulting pellet was resuspended in 10ml TFB-

II, aliquoted on ice, frozen in liquid nitrogen and stored at -80°C. 

2.2.1.1.2 Electrocompetent bacteria 

Stocks of self-made electrocompetent bacteria were made from commercially available E. coli 

DH10B. Therefore, 10 ml LB medium without antibiotics were inoculated with DH10B and grown o.n. 

at 37°C. Next, one liter SOC medium was inoculated with 2 ml of the o.n. culture and grown to an OD 

of 0.5-0.6 at 37°C. The bacterial culture was cooled on ice for 30 min and centrifuged at 5.000 rpm 

for 15 min at 4°C. The pellet was resuspended in 30 ml ice-cold ddH2O and dialyzed o.n. against 3 l 

ddH2O at 4°C. The bacteria suspension was then centrifuged for 15 min at 5.000 rpm at 4°C, and the 

resulting pellet was resuspended in glycerin and adjusted to 2.5 E+10 cells/ml. Aliquots were frozen 

in liquid nitrogen and stored at -80°C.  

2.2.1.2 Transformation of bacteria 

2.2.1.2.1 Chemical transformation  

Standard transformations were performed using chemically competent E. coli from the self-made 

stocks. Therefore, 8 µl from a typical ligation reaction (see 2.2.2.4 below) were mixed with 50 µl 

chemically competent bacteria and kept on ice for 30 min. The mixture was then heat-shocked at 
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42°C for 90 sec and immediately kept on ice again for 2 min. Depending on the resistance encoded 

on the plasmid, the bacteria mixture was either plated immediately (Ampicillin resistance) or 

incubated with 1 ml LB medium without antibiotic for 30 min (Kanamycin resistance). In the latter 

case, the bacteria were then pelleted through centrifugation at 4.000 rpm for 2 min, resuspended in 

50-100 µl LB medium and plated. For simple re-transformation of whole plasmids, the initial 30 min 

incubation on ice and the heat-shock were omitted. 

2.2.1.2.2 Electroporation 

For higher transformation efficiencies that were required especially for plasmid library productions, 

electrocompetent E. coli were transformed by electroporation in cuvettes with 0.1 mm gaps. Per 

electroporation/ cuvette, 2 µl ligation mixture with a DNA concentration of 50 ng/µl were mixed with 

30 µl bacteria and transferred to a pre-cooled cuvette. The electroporation pulse was performed 

with a constant protocol of 25 µF, 200 Ω and 2000 V. Ideally, the time constant for the pulse was 

close to 1 sec. Immediately after the pulse, 1 ml pre-warmed SOC medium (without antibiotics) were 

added to the reaction mixture, before the bacterial solution was transferred to a 1.5 ml reaction tube 

and incubated for 1 h at 37°C. Next, the bacteria were centrifuged and plated as described for 

chemical transformation. For large-scale library productions, 5-20 electroporation reactions were 

pooled previous to incubation and either plated on large (15 cm diameter) agar plates or grown o.n. 

in 1 L liquid cultures. In the latter case, the library diversity was determined by plating small aliquots 

on 10 cm plates and by counting colonies on the next day. 

2.2.2 Standard molecular biological methods 

2.2.2.1 Amplification of plasmid DNA  

For amplification of plasmid DNA, bacteria were transformed with the respective plasmids, plated on 

agar plates and grown o.n. at 37°C. Liquid culture media (LB media) was inoculated the next day with 

a single colony and agitated at 37°C for 12 - 14 h. The volume of the liquid culture was chosen 

according to the amount of plasmid needed. Both, the agar plate and the liquid LB media contained 

an antibiotic for which the transformed plasmid encoded a resistance gene, to ensure that only those 

bacteria grew that contained the desired plasmid. Plasmid DNA was isolated from the bacteria by 

alkaline lysis. For larger preparations (50 ml Midi-Prep, 200 ml Maxi-Prep, and 500 ml Mega-Prep), 

commercially available kits were used (2.1.6), according to the manufacturer’s protocol. For small 2 

ml Mini-preps, plasmid DNA was isolated using self-made buffers (2.1.7) and the following protocol: 

2 ml o.n cultures were spun down in a centrifuge at 13,000 rpm for 2 min. The supernatant was 

discarded, and the bacterial pellet was resuspended in 300 µl buffer P1. 300 µl lysis buffer were 

added, mixed by inversion and incubated for 5 min at RT. The lysis reaction was stopped with 300 µl 

neutralizing solution P3, mixed again by inversion and incubated for 5 min at RT. The solution was 
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cleared from cell and protein debris by centrifugation at 13,000 rpm for 10 min. Next, 800 µl of the 

supernatant were taken and mixed with 600 µl isopropanol. The suspension was mixed well by 

repeated inversion or vortexing, and centrifuged for 15 min at 13,000rpm. The supernatant was 

removed carefully to not disturb the DNA pellet. The pellet was washed with 70% ethanol (and 

centrifuged again at 13,000 rpm for 5 min. Ethanol was then removed completely, and the DNA 

pellet was air-dried and resuspended in 50 µl DNase-free water. DNA concentration was determined 

with a spectrophotometer. 

2.2.2.2 Polymerase Chain Reaction (PCR) 

All PCRs were performed using either an Eppendorf Thermo cycler or Biorad Thermo cycler with a 

three-step protocol, unless mentioned otherwise. A typical protocol is listed below: 

PCR reaction mix:  Cycling conditions: 

Reagent  Vol./ conc.  Step Temperature Time Cycles 

DNA 10-200 ng  Initial denaturation 98°C 30 sec 1x 

Primer (forward) 1 µM  denaturation  98°C 10 sec 

35x Primer (reverse) 1 µM  annealing 52°C-68°C  30 sec 

dNTPs 200 µM  elongation 72°C 30 sec/kb 

5x Phusion buffer 10 µl  final elongation 72°C 10 min 1x 

Phusion Hot Start II 
DNA polymerase 

1 U      

H2O add to a total 
volume of 50 
µl 

     

 

2.2.2.3 Restriction digest of DNA 

Frequently used restriction enzymes are listed below. 

Enzyme Recognition site  Reaction temperature 

AscI 
 

37°C 

BglI 
 

37°C 

BglII 
 

37°C 

HindIII 
 

37°C 

NotI 
 

37°C 

NsiI 
 

37°C 

PacI 
 

37°C 
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PmeI 
 

37°C 

SalI 
 

37°C 

SfiI 
 

50°C 

SpeI 
 

37°C 

SwaI 
 

25°C 

Table 2: Frequently used restriction enzymes. Shown are the recognition sites with the cutting sites indicated by black 
triangles. All restriction enzymes were supplied by NEB. 

 

2.2.2.4 Ligation of DNA 

In standard cloning procedures, fragments from restriction digests or synthesized oligomers were 

ligated into plasmid backbones using T4 DNA ligase. Typically, 1 µl plasmid backbone and 2-7 µl  

insert were ligated in a 10 µl reaction with 1 µl 10x reaction buffer and 0.5-1 µl T4 DNA ligase. The 

reaction was either incubated at RT for 4 h or o.n at 14°C, before an aliquot of the reaction mixture 

was used for bacterial transformation (2.2.2.1). 

2.2.2.5 DNA agarose gel electrophoresis 

Agarose gel electrophoresis was performed using 1-2% agarose gels at a current of 60-120 V 

according to the size of the gel and the expected size of the fragments. DNA samples were mixed 

with 10x loading dye and run together with a standard DNA length marker. DNA fragments were 

isolated from the gel using a commercially available kit (Gel extraction kit, Qiagen). 

2.2.2.6 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 

Western blotting 

2.2.2.6.1 SDS-PAGE 

To separate proteins according to their size, samples were first denatured through 5-10 min 

incubation in 2x lysis buffer at 95°C. A discontinuous polyacrylamide gel was prepared as exemplified 

below. AAV capsid and Rep proteins were separated using 8% resolving and 5% stacking gels, 

respectively. Samples were run together with a standard length protein marker (PageRuler Plus 

Prestained Protein Ladder). Electrophoresis was performed at a constant current of 80-120 V in 1x 

TGS Buffer. Following gel separation, the samples were transferred to nitrocellulose membranes by 

Western blotting (next paragraph). 
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Resolving gel (5 ml) 8% Stacking gel (3 ml) 5% 

ddH2O 2.6 ml ddH2O 2.2 ml 

Acrylamide (19:1) 1 ml Acrylamide (19:1) 375 µl 

1.5 M Tris (pH 8.8) 1.3 ml 1.5 M Tris (pH 8.8) 375 µl 

10% SDS 50 µl 10% SDS 30 µl 

1% APS 50 µl 1% APS 30 µl 

TEMED 3 µl TEMED 3 µl 

 

2.2.2.6.2 Western blotting 

Transfer of separated proteins from SDS gels to nitrocellulose membranes was performed by semi-

dry blotting. Therefore, the SDS gel was gently placed on top of a nitrocellulose membrane and 

covered with Whatman paper soaked with 1x TGS buffer containing 20% methanol. Transfer 

occurred at 1 mA/cm2 for 1 h in a semi-dry blotter. After transfer, residual positions on the 

membrane not covered with the transferred proteins were blocked with 1x TBST supplemented with 

6% milk powder. Transfer efficiency was validated by PonceauS staining prior to blocking. The 

membrane was then washed with 1x TBST buffer and incubated with primary antibody in 1x TBST 

with milk, either for 3 h at RT or o.n. at 4°C. Following incubation, the membrane was washed several 

times with 1x TBST and incubated for 1 h at RT with a secondary antibody conjugated to horseradish 

peroxidase. Finally, bound antibody-peroxidase conjugates were detected via chemiluminescence 

(Western lightning PLUS-ECL kit). Protein bands were visualized on an X-ray film that was exposed to 

the membrane. Antibodies used for AAV detection are listed in Table 3. 

Antibody Specificity Dilution References Source 

B1 VP1, VP2, VP3 1:10 

[86], [147], [271], [272] 
J. Kleinschmidt, DKFZ 

(ATV) 
A1 VP1 1:10 

303.9 Rep78, 68, 52,40 1:10 

Table 3: Antibodies against AAV for Western Blot analyses. All AB were kindly provided by J. Kleinschmidt (DKFZ, 
Heidelberg). 

 

2.2.3 Cell biological methods 

2.2.3.1 Cultivation of eukaryotic cells  

Cells were either maintained in Dulbecco´s modified Eagle medium (DMEM) supplemented with 10% 

fetal calf serum, 100 U/ml penicillin, 100 mg/ml streptomycin, or in RPMI-1640 medium 

supplemented with 10% fetal calf serum, 100 U/ml penicillin, 100 mg/ml streptomycin. All cell lines 

were maintained in a humidified incubator with 5% CO2 at 37°C. 
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2.2.3.2 Transfection of cells with polyethyleneimine (PEI) 

Eukaryotic cells were transfected with PEI. Linear PEI was prepared by four iterative freeze-thaw 

cycles at -80°C and 37°C, respectively, and stored at -80°C. Adherent cells were seeded 24 h prior to 

transfection at a density ensuring less than 80% confluency at the time of transfection. Suspension 

cells were transfected directly after seeding. All reagents used for transfection (PEI and NaCl) were 

pre-warmed to 37°C. Plasmid DNA was adjusted to the appropriate volume (Table 4) with ddH2O and 

mixed with 300 mM NaCl. A second mixture of H2O, 300 mM NaCl and PEI was prepared, briefly 

mixed by inverting and added drop-wise to the DNA mixture. The combined solutions were briefly 

mixed by inverting, vortexed for 30 sec and incubated at RT for 10 min. The PEI/DNA mix was then 

slowly added to the cells. Exact volumes of DNA and reagents were adjusted to the transfection 

format (Table 4). Volumes are given per well or dish. 

Mixture 96-well 6-well 14 cm dish 

DNA 100 ng 2.6 µg 44.1 µg 

DNA mix 
3 µl DNA 49 µl DNA 790 µl DNA 

3 µl NaCl (300 mM) 49 µl NaCl (300 mM) 790 µl NaCl (300 mM) 

PEI mix 

3 µl NaCl (300 mM) 50 µl NaCl (300 mM) 790 µl NaCl (300 mM) 

1.7 µl H2O 28 µl H2O 438 µl H2O 

1.7 µl H2O 22 µl H2O 352 µl H2O 

Table 4: PEI transfection in different formats. Volumes are given per well or dish. 

 

2.2.4 Cloning procedures 

2.2.4.1 Fluorescence reporter constructs 

The pTR-UF3 plasmid that carries a gfp gene under a CMV promoter, flanked by ITRs from AAV2, was 

previously used to package fluorescence protein-encoding sequences into AAV capsids [273]. Self-

complementary constructs for fluorescence reporter expression were generated on the basis of 

pBSU6 that was previously described by Dirk Grimm and colleagues [274]. The pBSU6 plasmid carries 

one ITR from AAV2 and another from AAV4 to avoid loss of ITRs by homologous recombination. The 

terminal resolution site (a short sequence adjacent to the ITR which is important during AAV 

replication and packaging; see also 1.2.1) in the ITR from AAV4 is mutated to allow back-folding of 

the self-complementary sequences to rapidly generate a double-stranded genome. The pBSU6 

plasmid was digested with BglII to remove all sequences between the ITRs. The UF3 cassette in pTR-

UF3 consists of a CMV promoter, IRES, gfp gene, a polyA site, a PO enhancer sequence, TK promoter 

and a neomycin resistance followed by another polyA site. It was isolated from pTR-UF3 with BglII 

and ligated into the pBSU6 backbone. The resulting construct was digested with NotI and SalI, leaving 

only the CMV promoter and a splice donor/ splice acceptor (SD/SA) sequence downstream of the 
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restriction site and the upstream polyA site from pTR-UF3 in the modified pBSU6 plasmid (Figure 

10A). Subsequently, the fluorescent reporter genes gfp, yfp, cfp and mCherry were PCR-amplified and 

cloned into the newly generated pBSsds vector using the NotI and SalI restriction sites. The resulting 

plasmid names and the corresponding primer sequences for reporter gene amplification are listed in 

Table 5. In initial, comparative experiments the yfp reporter was found most efficient (data not 

shown). Thus, fluorescent data shown in this study are mainly gained with the pBSsds_YFP reporter 

construct (Figure 10B). Other constructs are listed for the sake of completeness. 

Figure 10: Fluorescence reporter plasmids. A) The pBSsds vector encodes a CMV promoter, a SD/SA enhancer sequence 
and a poly A site; all flanked by ITRs. The terminal resolution site in ITR4 is mutated to promote back-folding of the 
packaged sequence to directly generate a ds genome. B) The reporter gene of choice can be directly cloned into the pBSsds 
vector via NotI/SalI restriction sites. Indicated are the ITRs (red triangles), CMV promoter (green arrow), the yfp gene 
(yellow arrow in B), SD/SA sequence (blue triangle) and the polyA site (gray arrow). Commonly used primer binding sites 
M13 for/rev; T3/T7) are indicated by brown triangles. Restriction sites are shown in light blue boxes. 

 

Plasmid name # Oligo  (5’  3’) # 

pBSsdsYFP 552 
5’- AAA TAT GCG GCC GCA CCG GTC GCC ACC ATG GTG AGC - 3’ 118 

pBSsdsGFP 553 

5’- GAC TGG TCG ACG GAC CTA TCG ATT TAC TTG TAC AGC TCG TCC ATG C - 3’ 119 
pBSsdsCFP 558 

pBSsdsmCherry 554 

5’- AAA TAT GCG GCC GCA CCG GTC GCC ACC ATG GTG AGC - 3’ 118 

5’- GAC TGG TCG ACG GAC CTA TCG ATT TAC TTG TAC AGC TCG TCC ATG CCG 

CCG GTG - 3’ 
120 

pBSsdsdsRed 557 

5’- AAA TAT GCG GCC GCA CCG GTC GCC ACC ATG GCC TCC TC - 3’ 116 

5’- GAC TGG TCG ACG GAC CTA TCG ATT CTA CAG GAA CAG GTG GTG GCG GCC 

CTC - 3’ 
117 

Table 5: Fluorescence reporter constructs. NotI recognition sites are in bold, SalI recognition sites are in bold italics. 
Sequences specific to the amplified gene are underlined. # = plasmid and oligo number, respectively, in the Grimm lab 
plasmid database. 

A) B)
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2.2.4.2 AAV capsid donor plasmids 

AAV capsid sequences of twelve serotypes (AAV1 to 9, rh.10, po.1, 12) were present in the lab. In 

analogy to the previously described pBSAAV cap plasmids [212], all cap sequences were cloned into 

pBSII-KS(+) and flanked with additional restriction and primer binding sites. Initially, the AAV6 cap 

gene was PCR-amplified as follows (serotype-specific sequence is shown in italics and underlined). 

The forward primer 5’-GGA CTC AAG CTT GTC TGA GTG ACT AGC ATT CGT TAA TTA ACAG GTA TGG 

CTG CCG ATG GTT ATC TTC CAG-3’ introduced a PacI restriction side (bold italics), a binding side for 

primer CUF (light gray background) and a HindIII site (bold). The reverse primer 5’-CGT GAG ACT AGT 

GCT TAC TGA AGC TCA CTG AGG GCG CGC CTT ACA GGG GAC GGG TGA GGT AAC GG-3’ contained an 

AscI site (bold italics), a binding site for primer CUR (light gray background) and a SpeI site (bold). The 

resulting fragment was cloned into pBSII-KS(+) via HindIII and SpeI. The newly introduced primer 

binding sites allowed efficient amplification of the cap gene and shuffled chimeras (2.2.5), and the 

PacI and AscI sites facilitated later cloning. The remaining eleven cap genes were cloned analogously. 

Integrity of all cap genes was confirmed by sequencing. In the course of this work, cap-containing 

pBSII-KS(+) vectors were further modified. To enable iterative PCR amplification of shuffled cap 

sequences by nested PCR (2.2.5), additional primer binding sites were introduced upstream (SAfor) 

and downstream (SArev) of the cap genes. The cap sequence and flanking restriction and primer 

binding sites were removed by NotI and SalI double-digestion. An oligonucleotide that contained 

NotI/SalI-corresponding overhangs, the additional primer binding sites and HindIII and SpeI 

restriction sites was cloned into the pBS donor backbone. The resulting plasmid that was designed 

for nested PCR was named pBSnst_cx, where x denotes the serotype. All cap genes were then 

transferred from pBS donor vectors to the newly generated plasmid pBSnst_cx via HindIII and SpeI. 

An example with the AAV cap2 gene is shown in Figure 11. Primer sequences are listed in Table 6. 
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Figure 11: pBSnst_c2 capsid donor plasmid. The pBS based 
vector encodes AAV capsid genes (exemplified here by AAV 
cap2). The cap sequence is flanked by several primer 
binding sites indicated by light brown triangles and boxes.  
The pBSnst construct shown here differs from the pBS 
construct by two additional primer binding sites (SA 
for/rev) highlighted by orange framed boxes. Commonly 
used restriction sites are indicated by light blue boxes. 
 

 
 

 

 

Plasmid name # Oligo  (5’  3’) # 

pBSc1/  

pBSnstc1 

1452 
5’-GGA CTC AAG CTT GTC TGA GTG ACT AGC ATT CGT TAA TTA ACAG GTA 

TGG CTG CCG ATG GTT ATC TTC CAG -3’ 
34 

1464 
5’-CGT GAG ACT AGT GCT TAC TGA AGC TCA CTG AGG GCG CGC CTT ACA 

GGG GAC GGG TGA GGT AAC GG -3’ 
35 

pBSc2/  

pBSnstc2 

1453 5’-GAC TCT TAA TTA ACA GGT  ATG GCT GCC GAT GGT TAT CTT CC - 3’ 121 

1465 5’-GTG AGG GCG CGC CTT ACA GAT TAC GAG TCA GGT ATC- 3’ 1166 

pBSc3/  

pBSnstc3 

1454 5’-GAC TCT TAA TTA ACA GGT ATG GCT GCT GAC GGT TAT CTT CC - 3’ 123 

1466 5’-GTG AGG GCG CGC CTT ACA AGT TTC GTG TGA GAT ACC - 3’ 1167 

pBSc4/  

pBSnstc4 

1455 5’-GAC TCT TAA TTA ACA GGT ATG ACT GAC GGT TAC CTT CCA GA - 3’ 1168 

1467 5’-GTG AGG GCG CGC CTT ACA GGT GGT GGG TGA GGT AGC -3’ 1169 

pBSc5/  

pBSnstc5 

1456 5’-GAC TCT TAA TTA ACA GGT ATG TCT TTT GTT GAT CAC CCT CC -3’ 1170 

1468 5’-GTG AGG GCG CGC CTT AAA GGG GTC GGG TAA GGT ATC  - 3’ 1171 

pBSc6/  

pBSnstc6 

1457 
5’-GGA CTC AAG CTT GTC TGA GTG ACT AGC ATT CGT TAA TTA ACAG GTA 

TGG CTG CCG ATG GTT ATC TTC CAG -3’ 
34 

1469 
5’-CGT GAG ACT AGT GCT TAC TGA AGC TCA CTG AGG GCG CGC CTT ACA 

GGG GAC GGG TGA GGT AAC GG -3’ 
35 

pBSc7/  

pBSnstc7 

1458 5’-GAC TCT TAA TTA ACA GGT ATG GCT GCC GAT GGT TAT CTT CC- 3’ 121 

1470 5’-GTG AGG GCG CGC CTT ACA GAT TAC GGG TGA GGT AAC -3’ 122 

pBSc8/  

pBSnstc8 

1459 5’-GAC TCT TAA TTA ACA GGT ATG GCT GCC GAT  GGT TAT CTT CC - 3’   121 

1471 5’-GTG AGG GCG CGC CTT ACA GAT TAC GGG TGA GGT AAC - 3’ 122 

pBSc9/  

pBSnstc9 

1460 5’-GAC TCT TAA TTA ACA GGT ATG GCT GCC GAT GGT TAT CTT CC - 3’   121 

1472 5’-GTG AGG GCG CGC CTT ACA GAT TAC GAG TCA GGT ATC  -3’ 1166 

pBScrh10/ 

pBSnstcrh10 

1461 5’-GAC TCT TAA TTA ACA GGT ATG GCT GCC GAT GGT TAT CTT CC -3’ 121 

1473 5’-GTG AGG GCG CGC CTT ACA GAT TAC GGG TGA GGT AAC - 3’ 122 
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pBScpo.1/ 

pBSnstcpo.1 

1462 5’-GAC TCT TAA TTA ACA GGT ATG TCG TTT GTT GAT CAC CCT CC -3’ 125 

1474 5’-GTG AGG GCG CGC CTT ACA GGG GTC GGG TAA GGT AAC - 3’ 126 

pBSc12/ 

pBSnstc12 

1463 5’-GAC TCT TAA TTA ACA GGT ATG GCT GCT GAC GGT TAT CTT CC - 3’ 123 

1475 5’-GTG AGG GCG CGC CTT ACA AGT GGT GGG TGA GGA AAC -3’ 124 

 

Nested (nst) 

oligos 

- 

5’- TCG ACT GTA CAT GCA GTA GAC TAC AAG GAC GAC GAT GAC AAG AAG 

CTT CGT TGC ACT AGT CTT CGC CTG ATG AGA ATT CAG TGG GAA CTC GCT 

AGC GC - 3’ 

1172 

- 

5’- GGC CGC GCT AGC GAG TTC CCA CTG AAT TCT CAT CAG GCG AAG ACT 

AGT GCA ACG AAG CTT CTT GTC ATC GTC GTC CTT GTA GTC TAC TGC ATG 

TAC AG - 3’ 

1173 

SAfor - 5‘-  GAC TAC AAG GAC GAC GAT GAC AAG - 3‘ 459 

SArev - 5‘-  CAC TGA ATT CTC ATC AGG CGA AG - 3‘ 460 

Table 6: AAV capsid donor constructs. Listed are the oligos used for capsid amplification for cloning into pBS and pBSnst 
capsid donor vectors. HindIII and SpeI sites are shown in bold. PacI and AscI sites are in bold italics. Bold/ italics/ underlined 
are the NotI and SalI corresponding overhangs in the nst oligos. Primer binding sites for later amplification have a light gray 
background. Capsid gene-specific sequences are underlined. # = plasmid and oligo number, respectively, in the Grimm lab 
plasmid database. 

 

2.2.4.3 AAV helper constructs 

AAV helper constructs without ITRs that provide AAV2 Rep proteins in conjunction with cap genes 

from different serotypes have been described previously. These vectors express the viral capsid into 

which the ITR-flanked transgene is packaged. Here, we modified a construct that was originally used 

by Grimm and colleagues [212]. The previous cloning strategy relied on a SwaI/ PmeI digest for cap 

gene transfer, using long 3’ primers specific for each cap gene and containing a PmeI restriction site 

downstream of the polyA site. To facilitate cap gene cloning with shorter reverse primers, we 

introduced a SpeI site directly behind the cap stop codon (Figure 12). To this end, a reverse primer 

(5’-CAG GTT TAA ACG CCC TTC GCA GAG ACC AAA  GTT CAA CTG AAA CGA ATC AAC CGG TTT ATT 

GAT TAA CAC TAG TTT ACA GAT TAC GAG TCA GGT ATC-3’) was designed that contained a PmeI site 

(underlined/ bold/ italics) followed by a longer stretch including a minimal poly A signal, the newly 

introduced SpeI site (bold italics) and the last 23 nucleotides of the cap gene from AAV2 (underlined). 

Together with a forward primer comprising a SwaI site, the AAV2 capsid sequence was amplified 

from the previously generated pBS donor plasmid and cloned into the existing, previously described 

AAV helper plasmid via SwaI and PmeI. The remaining eleven AAV cap sequences were PCR-amplified 

and cloned in a similar manner, utilizing the newly introduced SpeI site instead of the PmeI site. 

Integrity of the cap genes was verified by sequencing. There was no influence of the newly 

introduced SpeI site on the expression of the cap genes as detected by Western blot analyses. Oligos 

used for capsid gene amplification are listed in Table 7. 
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Figure 12: AAV helper construct. The AAV helper 
plasmids encode an AAV2 rep gene, followed by an 
AAV cap sequence (exemplified here for AAV cap2). 
Cap sequences were cloned via SwaI/SpeI digestion. 
Rep and cap can be provided in trans to form a AAV 
capsid. The sequences are not flanked by ITRs and are 
therefore not packaged in the newly generated 
capsid. Note that the p5 promoter is located 
downstream of the actual rep and cap sequence. This 
orientation was found favorable for AAV production 
[65], [88]. Restriction sites are indicated by light blue 
boxes. 

 

Plasmid name # Oligo  (5’  3’)  # 

WHc1 182 
5’- TGG AGA TTT AAA TCA GGT ATG GCT GCC GAT GGT TAT CTT CCA G -3’ 129 

5’- GAC AAC ACT AGT TTA CAG GGG ACG GGT GAG GTA ACG G -3’ 169 

WHc2 183 

5’- TGG AGA TTT AAA TCA GGT ATG GCT GCC GAT GGT TAT CTT CCA G -3’ 129 

5’- CAG GTT TAAA CGC CCT TCG CAG AGA CCA AAG TTC AAC TGA AAC GAA TCA 

ACC GGT TTA TTG ATT AAC ACT AGT TTA CAG ATT ACG AGT CAG GTA TC -3’ 
130 

WHc3 1194 
5’- TGG AGA TTT AAA TCA GGT ATG GCT GCT GAC GGT TAT CTT CCA G -3’ 163 

5’- GAC AAC ACT AGT TTA CAA GTT TCG TGT GAG ATA CCG G -3’ 173 

WHc4 184 
5’- TGG AGA TTT AAA TCA GGT ATG ACT GAC GGT TAC CTT CCA GAT T -3’ 165 

5’- GAC AAC ACT AGT TTA CAG GTG GTG GGT GAG GTA GCG G -3’ 174 

WHc5 185 
5’-TGG AGA TTT AAA TCA GGT ATG TCT TTT GTT GAT CAC CCT CCA G -3’ 166 

5’- GAC AAC ACT AGT TTA AAG GGG TCG GGT AAG GTA TCG G -3’ 175 

WHc6 186 
5’- TGG AGA TTT AAA TCA GGT ATG GCT GCC GAT GGT TAT CTT CCA G -3’ 129 

5’- GAC AAC ACT AGT TTA CAG GGG ACG GGT GAG GTA ACG G -3’ 169 

WHc7 187 
5’- TGG AGA TTT AAA TCA GGT ATG GCT GCC GAT GGT TAT CTT CCA G -3’ 129 

5’- GAC AAC ACT AGT TTA CAG ATT ACG GGT GAG GTA ACG -3’ 171 

WHc8 188 
5’- TGG AGA TTT AAA TCA GGT ATG GCT GCC GAT GGT TAT CTT CCA G -3’ 129 

5’- GAC AAC ACT AGT TTA CAG ATT ACG GGT GAG GTA ACG -3’ 171 

WHc9 189 
5’- TGG AGA TTT AAA TCA GGT ATG GCT GCC GAT GGT TAT CTT CCA G -3’ 129 

5’- GAC AAC ACT AGT TTA CAG ATT ACG AGT CAG GTA TC -3’ 829 

WHcrh10 190 
5’- TGG AGA TTT AAA TCA GGT ATG GCT GCC GAT GGT TAT CTT CCA G -3’ 129 

5’- GAC AAC ACT AGT TTA CAG ATT ACG GGT GAG GTA ACG -3’ 171 

WHcpo.1 191 
5’-TGG AGA TTT AAA TCA GGT ATG TCG TTT GTT GAT CAC CCT CCA G -3’ 164 

5’- GAC AAC ACT AGT TTA CAG GGG TCG GGT AAG GTA A -3’ 172 

WHc12 192 
5’- TGG AGA TTT AAA TCA GGT ATG GCT GCT GAC GGT TAT CTT CCA G -3’ 163 

5’- GAC AAC ACT AGT TTA CAA GTG GTG GGT GAG GAA ACG G -3’ 170 

Table 7: AAV helper constructs. Listed are the oligos used for capsid gene amplification for cloning into AAV helper 
plasmids. The SpeI site is indicated by bold italics. The SwaI site is shown in bold, and the PmeI site is in underlined bold 
italics. Capsid specific-sequences are underlined. # = plasmid and oligo number, respectively, in the Grimm lab plasmid 
database. 
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2.2.4.4 Peptide insertion sites 

To introduce oligonucleotides encoding specific peptides into the 12 available capsid genes, we 

engineered unique restriction sites into the corresponding AAV helper constructs and then used the 

two-fragment cloning strategy depicted in Figure 37 (chapter 3.2.1). Therefore, the first 

approximately 1.8 kb of every capsid gene were PCR-amplified using a suitable forward primer (Table 

7) together with a reverse primer that contained SfiI and NsiI sites at its very 3’ end (Table 8). In a 

second PCR, the residual approximately 400 bp of each capsid gene were amplified with a forward 

primer that contained the same sites in a reverse order - i.e., NsiI at the 5’ end followed by SfiI - and 

with a reverse primer comprising a SpeI site (Table 7 and Table 8). Both PCR fragments were digested 

with NsiI and either SwaI (5’ cap fragment) or SpeI (3’ cap fragment) and ligated into the SwaI / SpeI 

double-cut helper plasmid backbone. For details about the helper constructs and the respective SwaI 

and SpeI restriction site, see Figure 13 below or chapter 2.2.4.3 and Table 7. This resulted in a full-

length cap gene containing two new SfiI sites for later insertion of the peptide-encoding 

oligonucleotides. Correct sequence composition and the presence of the two SfiI sites were 

confirmed by sequencing. From the AAV helper constructs, capsid genes with insertion sites were 

additionally transferred to the pBS donor plasmids that provide a source of capsid genes for further 

cloning procedures. Of note, the SfiI-based insertion sites were designed such that they introduced a 

frameshift into the capsid genes. Only upon correct oligonucleotide insertion, the reading frame is 

shifted back to the original. Annealed peptide-encoding oligonucleotides contained two overhangs 

matching the SfiI sites and were ligated directly into the SfiI-digested backbone (protocol chapter 

2.2.2.4). Oligo sequences for peptides are listed in Table 9. Correct insertion was controlled by 

sequencing. 

 

 

Figure 13: Peptide insertion sites. Using a 
PCR-based approach (chapter 3.2.1, Figure 
37), we introduced insertion sites for peptide 
sequences into the AAV capsid genes (shown 
here in the context of AAV helper plasmids 
and exemplified for AAV cap2). The insertion 
sites consist of two SfiI sites and were 
generated via ligation of a NsiI site. 
Restriction sites are indicated by light blue 
boxes. Using the AAV helper plasmids, AAVs 
were produced that display a single distinct 
peptide and can package a reporter gene 
(chapter 2.2.4.1, Figure 10). Modified capsid 
sequences were also transferred into the 
pBS/pBSnst capsid donor plasmids (chapter 
2.2.4.2, Figure 11) and the pTRAAVwt 
constructs described below (chapter 2.2.4.5, 
Figure 14). 
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Primer name # Oligos  (5’  3’) forward and reverse 

modAAV1  
279 5’-CCA TGC ATG CAT GGC C CAG GCG GCC GGA GAT GTG CAT GCT ATG GGA GC-3’ 

280 5’-CCA TGC ATG CAT TTG GCC TCT CTG GCC GCT GCT CTG GAA ATT GAC TGC CAC- 3’ 

modAAV2 

132 
5’-CCA TGC ATG CAT GGC C CAG GCG GCC ACC GCA GAT GTC AAC ACA CAA GGC GTT 

CTT- 3’ 

133 
5’-CCA TGC ATG CAT TTG GCC TCT CTG GCC TTG CTG GAG GTT GGT AGA TAC AGA ACC 

ATA CTG- 3’ 

modAAV3 
281 5’-CCA TGC ATG CAT GGC C CAG GCG GCC GCT CCC ACG ACT AGA ACT GTC AAT G- 3’ 

282 5’-CCA TGC ATG CAT TTG GCC TCT CTG GCC GTT ATT TGC CAC AGT TCC ATA CTG- 3’ 

modAAV4 
283 5’-CCA TGC ATG CAT GGC C CAG GCG GCC CTG CCG ACC GTG GAC AGA CTG ACA G- 3’ 

284 5’-CCA TGC ATG CAT TTG GCC TCT CTG GCC ACC GCC AGG TAG GTT GCC CCA CAT G- 3’ 

modAAV5 
285 5’-CCA TGC ATG CAT GGC C CAG GCG GCC GCC CCC GCG ACC GGC ACG TAC AAC- 3’ 

286 5’-CCA TGC ATG CAT TTG GCC TCT CTG GCC GTT GGT GGC CAT CTG CCC GCC GAC G- 3’ 

modAAV6 
287 5’-CCA TGC ATG CAT GGC C CAG GCG GCC GGA GAT GTG CAT GTT ATG GGA GCC- 3’ 

288 5’-CCA TGC ATG CAT TTG GCC TCT CTG GCC GCT GCT CTG GAG ATT GAC TGC CAC- 3’ 

modAAV7 
289 5’-CCA TGC ATG CAT GGC C CAG GCG GCC CAG ACA CAA GTT GTC AAC AAC CAG- 3’ 

290 5’-CCA TGC ATG CAT TTG GCC TCT CTG GCC TTG TAA GTT GCT GCT GAC TAT CCC G- 3’ 

modAAV8 
291 5’-CCA TGC ATG CAT GGC C CAG GCG GCC CAA ATT GGA ACT GTC AAC AGC CAG- 3’ 

292 5’-CCA TGC ATG CAT TTG GCC TCT CTG GCC CTG CAA GTT ATC TGC CAC GAT ACC- 3’ 

modAAV9 
293 5’-CCA TGC ATG CAT GGC C CAG GCG GCC CAG ACC GGC TGG GTT CAA AAC CAA GG- 3’ 

294 5’-CCA TGC ATG CAT TTG GCC TCT CTG GCC CTG GTG GTT TGT GGC CAC TTG TCC- 3’ 

modAAVrh10 
295 5’-CCA TGC ATG CAT GGC C CAG GCG GCC ATT GTA GGG GCC GTC AAC AGT CAA G- 3’ 

296 5’-CCA TGC ATG CAT TTG GCC TCT CTG GCC TTG CAG GTT ATC GGC CAC CAC GCC- 3’ 

modAAVPo1 
297 5’-CCA TGC ATG CAT GGC C CAG GCG GCC CAT CCT ACG GTC GGA GTA TAC AAT C- 3’ 

298 5’-CCA TGC ATG CAT TTG GCC TCT CTG GCC GTT GTT TGA TAC CTG ACC ACC GGT G- 3’ 

modAAV12 
299 5’-CCA TGC ATG CAT GGC C CAG GCG GCC GCC CCT CAC ATC GCT AAC CTG GAC- 3’ 

300 5’-CCA TGC ATG CAT TTG GCC TCT CTG GCC ATT ATC TGC AAT CTG TCC AAA CAT G- 3’ 

modAAV2 

TG with R585 

132 
5’-CCA TGC ATG CAT GGC C CAG GCG GCC ACC GCA GAT GTC AAC ACA CAA GGC GTT 

CTT- 3’ 

- 
5’- CC TGC ATG CAT TTG GCC AGT CTG GCC TCT CTG GAG GTT GGT AGA TAC AGA ACC 

ATA CTG - 3’ 

modAAV2  

TG w/o R585 

132 
5’-CCA TGC ATG CAT GGC C CAG GCG GCC ACC GCA GAT GTC AAC ACA CAA GGC GTT 

CTT- 3’ 

- 
5’- CC TGC ATG CAT TTG GCC AGT CTG GCC TTG CTG GAG GTT GGT AGA TAC AGA ACC 

ATA CTG -3’ 

Table 8: Oligos for capsid insertion site modification. Shown are the forward primer (top) and reverse primer (bottom) for 
each AAV serotype that was modified. Note that the reverse primer generates the 5’ end of the insertion site, while the 
forward primer creates the 3’ part. Both oligos (forward and reverse) contain a NsiI recognition site (bold italics) and a SfiI 
recognition site (underlined). For the oligos modAAV2TG with and w/o R585, the modified triplet that introduces a Thr (T) 
and the triplet that restores the Arg (R) are indicated by a light gray background. Compare also to Figure 32 in chapter 4.2.1. 
# = oligo number in the Grimm lab oligo database. 

Table 9: Oligos for peptide insertion (next page). Sequences encoding the actual peptide are in bold underlined. Modified 
triplets for the alanine walk are in underlined bold italics. Forward and reverse oligos form overhangs that are 
complementary to the SfiI restriction sites in the modified plasmids. Restriction sites for BglI within the peptide library oligo 
are underlined; the actual recognition site is shown in underlined italics. # = oligo number in the Grimm lab oligo database. 
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Oligo name # Oligo  (5’  3’) 

Peptide1 (P1) 
1174 5’- T GGC CGC GGC GAT CTG GGC CTG AGC GCC CAG G -3’ 

1175 5’- G GGC GCT CAG GCC CAG ATC GCC GCG GCC ACT C -3’ 

Peptide2 (P2) 
1176 5’- T GGC TGC GAT TGC CGC GGC GAT TGC TTT TGC GCC CAG G -3’ 

1177 5’- G GGC GCA AAA GCA ATC GCC GCG GCA ATC GCA GCC ACT C -3’ 

Peptide3 (P3) 
1178 5’- T GGC CGC GGC GAT GCG GTG GGC GTG GCC CAG G -3’ 

1179 5’- G GGC CAC GCCAC CGC ATC GCC GCG GCC ACT C -3’ 

Peptide4 (P4) 
1180 5’- T GGC AAC GAT GTG CGC AGC GCG AAC GCC CAG G -3’ 

1181 5’- G GGC GTT CGC GCT GCG CAC ATC GTT GCC ACT C -3’ 

Peptide5 (P5) 
1182 5’- T GGC AAC GAT GTG CGC GCG GTG AGC GCC CAG G -3’ 

1183 5’- G GGC GCT CAC CGC GCG CAC ATC GTT GCC ACT C -3’ 

Peptide6 (P6) 
1184 5’- T GGC TGC AAC CAT CGC TAT ATG CAG ATG TGC GCC CAG G -3’ 

1185 5’- G GGC GCA CAT CTG CAT ATA GCG ATG GTT GCA GCC ACT C -3’ 

Peptide7 (P7) 
1186 5’- T GGC AGC CCG GGC GCG CGC GCG TTT GCC CAG G -3’ 

1187 5’- G GGC AAA CGC GCG CGC GCC CGG GCT GCC ACT C -3’ 

Peptide8 (P8) 
1188 5’- T GGC GAT GGC CCG TGG CGC AAA ATG GCC CAG G -3’ 

1189 5’- G GGC CAT TTT GCG CCA CGG GCC ATC GCC ACT C -3’ 

Peptide9 (P9) 
1190 5’- T GGC TTT GGC CAG AAA GCG AGC AGC GCC CAG G -3’ 

1191 5’- G GGC GCT GCT CGC TTT CTG GCC AAA GCC ACT C -3’ 

P4 ‘Alanine walk’ 

(A at position 1) 

1192 5’- T GGC GCG GAT GTG CGC AGC GCG AAC GCC CAG G -3’ 

1193 5’- G GGC GTT CGC GCT GCG CAC ATC CGC GCC ACT C -3’ 

P4 ‘Alanine walk’ 

(A at position 2) 

1194 5’- T GGC AAC GCG GTG CGC AGC GCG AAC GCC CAG G -3’ 

1195 5’- G GGC GTT CGC GCT GCG CAC CGC GTT GCC ACT C -3’ 

P4 ‘Alanine walk’ 

(A at position 3) 

1196 5’- T GGC AAC GAT GCG CGC AGC GCG AAC GCC CAG G -3’ 

1197 5’- G GGC GTT CGC GCT GCG CGC ATC GTT GCC ACT C -3’ 

P4 ‘Alanine walk’ 

(A at position 4) 

1198 5’- T GGC AAC GAT GTG GCG AGC GCG AAC GCC CAG G -3’ 

1199 5’- G GGC GTT CGC GCT CGC CAC ATC GTT GCC ACT C -3’ 

P4 ‘Alanine walk’ 

(A at position 5) 

1200 5’- T GGC AAC GAT GTG CGC GCG GCG AAC GCC CAG G -3’ 

1201 5’- G GGC GTT CGC CGC GCG CAC ATC GTT GCC ACT C -3’ 

P4 ‘Alanine walk’ 

(A at position 7) 

1202 5’- T GGC AAC GAT GTG CGC AGC GCG GCG GCC CAG G -3’ 

1203 5’- G GGC CGC CGC GCT GCG CAC ATC GTT GCC ACT C -3’ 

P4 ‘Alanine walk’ 

(3xA at position 5 to 7) 

1204 5’- T GGC AAC GAT GTG CGC GCG GCG GCG GCC CAG G -3’ 

1205 5’- G GGC CGC CGC CGC GCG CAC ATC GTT GCC ACT C -3’ 

Peptide Library 
1206 5’-CAG TCG GCC AGA GTG GC -NNB x7- G CCC AGG CGG CTG ACG AG -3’ 

1207 5’- CTC GTC AGC CGC CTG G -3’ 
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2.2.4.5 AAV wildtype constructs 

An AAV wt vector that contains the AAV2 rep gene flanked by AAV2 ITRs was previously generated by 

D. Grimm and colleagues [212]. The vector is based on pTR-UF3 [273] and was designed such that it 

allows the direct cloning of AAV cap genes downstream of the rep sequence via PacI and AscI 

restriction sites. In the resulting construct, the rep2 gene and the cap gene of choice are flanked by 

ITRs and enable the production of replication-competent viral particles (Figure 14). Such replication-

competent vectors were needed for selection approaches of capsid libraries where a tight genotype-

phenotype linkage was necessary, i.e., in DNA shuffling reactions (chapter 3.1) or for the preparation 

of peptide display libraries (chapter 3.2). In the first case, the AAV wildtype vector served as recipient 

for PacI/ AscI-digested chimeric capsids. For the latter case, previously described AAV capsid genes 

with peptide insertion sites (2.2.4.4) were first transferred from the pBS donor plasmids (2.2.4.2). 

Subsequently, a peptide library was inserted into the modified capsids. Peptide sequences were 

generated with reverse oligonucleotides that contained randomized nucleotides and a corresponding 

forward primer (Table 9). In contrast to the defined peptide sequences (2.2.4.4, Table 9) that form 

the required overhangs for direct ligation upon annealing, the newly generated peptide library had to 

be digested. Therefore, the random peptide oligos contain two BglI restriction sites that flank the 

actual peptide sequence. These restriction sites create overhangs that match those of the SfiI-

digested backbone. Upon ligation, both the BglI and the SfiI restriction sites are destroyed. Further 

primer sequences used for capsid gene amplification from the pTR_AAVwt constructs are listed in 

Table 10. 

 

 

Figure 14: AAV wt constructs. The pTRAAVwt 
plasmids encode AAV2 rep genes and capsid genes 
(exemplified here by cap2) under a p5 promoter and 
flanked by ITRs. From these plasmids, replication-
competent AAVs were produced that can package 
the AAV genome into the respective capsid. These 
plasmids were used for shuffled capsid and peptide 
display libraries production. In analogy to the 
pBS/pBSnst plasmids, different capsid genes were 
cloned via PacI/AscI. ITRs are shown as red triangles, 
commonly used primer binding sites are shown in 
light brown and restriction sites are indicated by 
light blue boxes.  
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Oligo name # Oligo  (5’  3’) 

LseqF 822 5’- GATCTGGTCAATGTGGATTTG -3’ 

LseqR 823 5’- GACCGCAGCCTTTCGAATGTC -3’ 

Lseq_nstF 824 5’- ACTGCATCTTTGAACAATAAAT -3’ 

Lseq_nstR 825 5’- GTTTATTGATTAGGCGCGCC -3’ 

Table 10: Oligos for capsid gene amplification. # = oligo number in the Grimm lab oligo database. 

 

2.2.5 DNA family shuffling 

The method of DNA family shuffling allows for the recombination of partially homologous genes into 

chimeric sequences using a PCR-based approach. As illustrated in more detail in chapter 3.1, it relies 

on the initial fragmentation of the parental genes, followed by reassembly based on partial 

homology and amplification of full-length sequences via flanking regions common to all input 

sequences. Here, this method was applied to AAV cap genes from multiple serotypes to create 

diverse libraries of AAV capsid chimeras.  

2.2.5.1 Capsid PCR 

In order to generate sufficient amounts of cap DNA for subsequent fragmentation, cap genes of 

interest were PCR-amplified from the pBScap and pBSnst donor plasmids (Figure 11, chapter 2.2.4.2 

and Table 6) with the M13 primer pair, binding to sites in the standard pBSII-KS(+) backbone adjacent 

to all cap variants. In the resulting PCR fragments, cap sequences were flanked by sites for the T3/T7 

primer pair, the CUF/CUR primer pair and - in the case of pBSnst-derived sequences - the SA primer 

pair (Figure 11). All fragments further contained restriction sites for HindIII and PacI (5’), as well as 

for SpeI and AscI (3’). These conserved regions were used for later rescue PCR of the chimeric 

sequences (chapter 3.1) and subsequent cloning. To obtain sufficient amounts of cap sequences in 

that first PCR, two 50 µl reactions per serotype were performed with the HotStar Hifidelity 

Polymerase (Qiagen). Cycling conditions are listed below. PCR products were run on a 1% agarose gel 

and purified with the Qiagen gel extraction kit according to the manufacturer’s protocol. 

PCR reaction mix:  Cycling conditions: 

Reagent  Vol./ conc.  Step Temperature Time Cycles 

DNA 200 ng  initial denaturation 95°C 5 min 1x 

M13For 1 µM  denaturation  94°C 15 sec 

40x M13Rev 1 µM  annealing 57°C 30 sec 

5x HiFi buffer 10 µl  elongation 68°C 3 min 

HiFi polymerase 5 U  final elongation 72°C 10 min 1x 

H2O add to a total 
volume of 50 µl 
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2.2.5.2 DNA fragmentation 

A controlled DNase digest was used to generate DNA fragments of a defined size range that 

efficiently re-assemble into chimeric cap sequences. Because the DNase digest is a crucial step in 

DNA family shuffling, it had to be carefully controlled. The reaction was set up as listed below, with 

DNase added last, flicked three times and spun down briefly. Incubation at 25°C for 1 min resulted in 

fragments between 100 and 1000 bp, whereas incubation of up to 2 min gave 100-500 bp fragments. 

Typically a reaction time of 1.5 min was sufficient for an appropriate fragment size of 100-800 bp. 

The reaction was stopped by adding 6 µl 25mM EDTA, brief vortexing and incubating at 75°C for 10 

min. DNA fragments were separated in a 1% agarose gel and purified with the Qiagen gel extraction 

kit according to the manufacturer’s protocol. Isopropanol was added to the sample prior to 

purification to enhance DNA yields. Purified fragments were eluted in 30 µl ddH2O. 

DNase digestion:  

Reagent  Vol./ conc.  

DNA  
(total amount of DNA 
consists of equal amounts of 
capsid DNA) 

4 µg 

 

10x DNase buffer 6 µl  

DNase I (undiluted) 0.3 µl  

H2O add to a total volume of 60 µl 

2.2.5.3 Re-assembly PCR (1st PCR) 

Following DNA fragmentation, the cap fragments were re-assembled in a first PCR reaction in which 

they self-prime each other based on their partial homology. Phusion Hot Start II DNA Polymerase 

(Finnzymes) was used in this first PCR. To foster self-priming and hence formation of chimeric 

sequences, DMSO was added and annealing was performed at a low temperature of only 42°C. 

Precise reaction conditions are indicated below. PCR products from this first shuffling PCR were not 

purified, but rather used directly as templates for the subsequent second PCR (see next paragraph).  

PCR reaction mix:  Cycling conditions: 

Reagent  Vol./ conc.  Step Temperature Time Cycles 

DNA (from purified 
DNase digest) 

500 ng  initial denaturation 98°C 30 sec 1x 

5x Phusion HF 
buffer 

10 µl  denaturation  98°C 10 sec 

40x DMSO 1.5 µl  annealing 42°C 30 sec 

dNTPs 1 µl  elongation 72°C 45 sec 

Phusion 
polymerase 

0.5 µl  final elongation 72°C 10 min 1x 

H2O 
add to a total 
volume of 50 µl 
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2.2.5.4 Rescue PCR (2nd PCR) 

In an ensuing second PCR, chimeric full-length sequences were amplified or ‘rescued’ from the 1st 

PCR with primers binding to the conserved regions that flank each capsid gene. Reaction conditions 

are shown below. PCR products were run on a 1% agarose gel, purified with the Qiagen gel extraction 

kit and eluted in 30 µl ddH2O. The complete eluate was digested with PacI and AscI, and then cloned 

into a wtAAV recipient plasmid. After ligation, E. coli were electroporated (see chapter 2.2.1.2.2) to 

ensure maximal transformation efficiency and diversity of the resulting plasmid library. 

PCR reaction mix:  Cycling conditions: 

Reagent  Vol./ conc.  Step Temperature Time Cycles 

DNA (from 1
st

 PCR) 2 µl  initial denaturation 95°C 5 min 1x 

SAFor 1 µM  denaturation  94°C 15 sec 
40x 

SARev 1 µM  annealing/ elongation 68°C 3 min 

5x HiFi buffer 10 µl  final elongation 72°C 10 min 1x 

MgSO4 0.5 µl      

HiFi polymerase 5 U      

H2O add to a total 
volume of 50 µl 

     

 

2.2.6 AAV virus production  

AAV virions were either produced as wildtype vectors containing the cognate AAV genome or as 

rAAV carrying a reporter construct in a specific capsid. To generate wildtype genome-containing 

viruses, Hek293T cells were transfected with two plasmids at equal amounts - an AAV plasmid 

encoding the AAV rep and cap genes flanked by ITRs, and an Adeno helper plasmid carrying the 

necessary adenoviral helper functions [275]. To produce reporter rAAVs, three plasmids were 

transfected, again at equal amounts. The first plasmid encoded the recombinant AAV vector genome 

comprising the reporter expression cassette, flanked by ITRs. The second plasmid provided the rep 

and cap genes, while the third plasmid was again the Adeno helper construct. Transfection was 

performed according to the PEI protocol (2.2.3.2).  

2.2.6.1 AAV small-scale production (crude lysates) 

In cases where only small amounts of virus were needed or where a large set of different viruses had 

to be generated in parallel (as for the AAV peptide screen, chapter 3.2.3), AAV was produced in small 

scale in a 6-well format. Therefore, one well of a 6-well plate of Hek293T cells was triple-transfected  

with 1) an AAV vector plasmid typically encoding a yfp reporter gene, 2) an AAV helper plasmid 

expressing the desired capsid proteins, and 3) the adenoviral helper construct. Seventy-two h post-

transfection, the cells were harvested together with the media and transferred to a 2 ml reaction 
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tube. After centrifugation for 10 min at 4000 rpm to pellet cells containing virus, the supernatant was 

discarded. The cell pellet was washed twice with 1x PBS and centrifuged again. The final pellet was 

resuspended in 500 µl 1x PBS and subjected to five freeze-thaw cycles in liquid nitrogen and a 37°C 

water bath, respectively. The lyzed cells were then additionally sonicated for 1 min at 48 W and 

centrifuged at 13.000 rpm for 10 min. Finally, 450 µl of the supernatant were carefully transferred to 

a new reaction tube. These crude lysates were either directly used for further analysis or infection, or 

stored at -80°C for later use. 

2.2.6.2 AAV large-scale production 

AAV vectors were produced to the highest grade in 10 to 40 14 cm culture dishes. Per dish, 5x105 

Hek293Tcells were seeded, grown for 24 h at 37°C and transfected with the required plasmids (see 

2.2.6.1) according to the PEI protocol (chapter 2.2.3.2). Seventy-two h post-transfection, the cells 

were harvested, scraped off the plates, centrifuged at 1.500 rpm at 4°C for 5 min and washed twice 

with 1x PBS. The cell pellets were then either frozen at -80°C for later processing, or virus was 

directly purified by Iodixanol or cesium chloride density gradient centrifugation (chapters 2.2.6.2.1  & 

2.2.6.2.2  below). 

2.2.6.2.1 Iodixanol purification 

AAV vectors produced in 10-20 14 cm dishes were typically purified by Iodixanol gradient 

centrifugation. Therefore, the cell pellets were initially resuspended in 20 ml virus lysis solution. After 

five freeze-thaw cycles in liquid nitrogen and a 37°C water bath followed by sonication for 1 min at 

48 W, 50 U/ml benzonase was added to degrade free nucleic acids. The mixture was incubated at 

37°C for 1 h and vortexed every 10 min. Afterwards, virus lysis solution was added to a total volume 

of 22 ml, and samples were centrifuged at 5.000 rpm for 15 min at 4°C. The supernatant was 

transferred to a new reaction tube, and the centrifugation step was repeated once. The cleared 

lysate was carefully transferred into an ultracentrifuge tube by pipetting through a Pasteur pipette 

that was placed into the tube. To set up the density gradient, 7 ml 15% Iodixanol solution were 

pipetted through the same Pasteur pipette, followed by 5 ml 25%, 4 ml 40% and 4 ml 60% Iodixanol 

solution. The Pasteur pipette was finally carefully removed from the tube to avoid air bubbles and to 

not disturb the gradient. The ultracentrifugation tube was filled up with virus lysis solution, and any 

remaining air bubbles were carefully removed with a needle. The tubes were sealed with a tube 

sealer (Beckman) and centrifuged at 50.000 rpm for 2 h at 4°C in an ultracentrifuge with the 70Ti 

rotor. The 40% Iodixanol phase containing full virus particles (i.e., capsids containing viral genomes) 

was pulled and frozen at -80°C. 
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2.2.6.2.2 AAV purification by cesium chloride density gradient 

In cases where the highest possible particle purity was desired, AAV stocks were purified by cesium 

chloride density gradient centrifugation. To this end, cell pellets from 20-40 14 cm dishes were 

resuspended in 15 ml benzonase buffer, subjected to five freeze-thaw cycles and sonicated for 1 min 

at 48 W. Next, 200 U/ml benzonase were added, and the solution was incubated for 1 h at 37°C and 

vortexed every 10 min during incubation. The samples were then centrifuged for 15 min at 2,500 x g 

at 4°C, and the supernatant was transferred to a new reaction tube. Low molecular weight proteins 

were removed from the samples by adding 1/39 of the total volume of CaCl2. After incubation on ice 

for 1 h, the lysates were centrifuged for 15 min at 10.000 rpm. The supernatant was again 

transferred to a new tube and mixed with ¼ volume of 40% PEG8000/2.5 M NaCl. The samples were 

incubated o.n. on ice and then centrifuged at 2,500 x g for 30 min at 4°C. The supernatant was 

discarded, and the pellet was thoroughly resuspended in 10 ml Na-Hepes resuspension buffer. The 

total volume was adjusted to 24 ml using the same buffer, before 0.55 g/ml CsCl was added. Once 

the samples had recovered from the resulting temperature drop back to RT, their refractive index 

was measured using a refractometer and adjusted to 1.370 with Na-HEPES resuspension buffer to 

decrease, or with CsCl to increase values, respectively. The samples were transferred to 

ultracentrifuge tubes which were filled up with topping solution, and remaining air bubbles were 

carefully removed. The samples were centrifuged in an ultracentrifuge at 45.000 rpm for 24 h at 21°C 

in a 70Ti rotor. Afterwards, the gradient was fractionated as follows:  3, 3, 0.5, 0.5, 0.5, 5, 0.5, 0.5, 

0.5, 3 ml. The refractive index of all fractions was determined, and those with an index between 

1.3711 and 1.3766, containing full AAV particles, were pooled and dialyzed o.n. against 1x PBS using 

Slide-A-Lyzer dialysis cassettes. Resulting virus in PBS was further concentrated using Amicon-Ultra-

15 centrifugal filters to a final volume of 1.5-2 ml and frozen at -80°C.  

2.2.6.2.3 AAV titration 

Titers of virus stocks purified via Iodixanol or CsCl density gradient centrifugation (see above) were 

determined by quantitative RT-PCR, using the specific primer/probe sets shown in Table 11 and 

plasmid standards. The latter ranged from 5x103 to 5x109 vg/ml. Samples were prepared as follows: 

10 µl of virus sample and controls were lyzed with 10 µl TE and 20 µl NaOH (2 M) for 30 min at 56°C. 

The reaction was stopped with 38 µl HCl (1 M), and the total volume was adjusted to 1 ml with 

ddH2O. Iodixanol-purified samples were further diluted to avoid interference with the RT-PCR 

reagents. Reaction mixtures were then set up which contained 1.48 µl sample, 0.4 µM primer, 0.1 

µM probe and 1 µl SensiMixII in a total volume of 10 µl. All qRT-PCRs were run on a Rotor-Gene-Q 

thermo cycler. Cycling conditions and primer probe sets are listed in Table 11 and Table 12. 
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Cycling conditions: qRT-PCR 

Step Temperature Time Cycles 

initial denaturation 95°C 10 min 1x 

denaturation  95°C 10 sec 40x 

annealing/ 
elongation 

60°C  30 sec 

final elongation 72°C 10 min 1x 

Table 11: Cycling conditions for qRT-PCR. 

 

Plasmid name Oligo  (5’  3’) 

CMV primer 
TGCCCAGTACATGACCTTATGG 

GAAATCCCCGTGAGTCAAACC 

CMV probe FAM-ATGCATCGCTATTACCATGG-BHQ1 

GFP primer 
GAGCGCACCATCTTCTTCAAG 

TGTCGCCCTCGAACTTCAC 

GFP probe FAM-ACGACGGCAACTACA-BHQ1 

Rep2 primer 
AAGTCCTCGGCCCAGATAGAC 

CAATCACGGCGCACATGT 

Rep2 probe FAM-TGATCGTCACCTCCAACA-BHQ1 

Table 12: Primer-probe combinations used in qRT-PCR for rAAV titrations. Probes are dually labeled with the reporter dye 
(FAM) 5’ and the quencher molecule (BHQ1) 3’. 

 

2.2.6.3 Infection and transduction of cultured cells 

Eukaryotic cells were infected with AAV vectors at multiple MOIs. Typically, adherent cells were 

seeded 24 h prior to infection at a confluency of 70-80%. In contrast, suspension cells were infected 

directly after seeding. Because crude lysates cannot be titered properly (qRT-PCR yields inaccurate 

results due to various interfering lysate ingredients), equal volumes rather than defined particle 

numbers were used for infection. Accordingly, adherent cells in a 96-well plate were infected with 5 

µl/well and suspension cells with 10 µl/well, respectively. Purified vectors or crude lysates were 

added directly to the cells in complete culture medium. In cases where super-infection with Ad5 was 

required, such as for viral library amplification (see chapter 2.2.7.1), the medium was removed, the 

cells were washed with PBS and medium with a reduced amount of FCS of 2% was added. Unless 

otherwise mentioned, infected cells were analyzed 72 h post-infection.  

2.2.6.3.1 Heparin assay 

Soluble heparin is an analog of HSPG and inhibits HSPG-dependent AAV binding, allowing its use to 

study the role of HSPG for binding of wildtype AAVs and of mutants with peptide insertions. 

Therefore, 10 µl virus were incubated at 37°C for 1 h with 90 µl full medium supplemented with 50 

µg/ml heparin. Virus incubated with medium without heparin served as control. After the incubation, 
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the medium was removed, and the cells were washed twice with 1x PBS before the virus/medium 

mix was added. The cells were then incubated for 24 h before the virus-containing medium was 

removed. The cells were washed again twice with 1x PBS, before normal medium was added. After 

another 48h incubation at 37°C, infection rates were determined by FACS. 

2.2.6.3.2 Neuraminidase assay 

Sialic acid-dependent AAV binding can be inhibited by Neuraminidase III from Vibrio cholera that 

removes sialic acid from the cell surface. To measure dependency of virus binding on sialic acid, cells 

were seeded and grown for 24 h at 37°C in normal medium. The medium was then removed, and the 

cells were washed twice with 1x PBS  and incubated for 2 h at 37°C with medium without FCS, 

supplemented with 50 U/ml Neuraminidase III. Afterwards, the treated cells were washed twice with 

1x PBS before virus in complete medium was added. After a 1 h incubation time, virus-containing 

medium was removed, and the cells were again washed twice with 1x PBS prior to addition of full 

medium. The short virus incubation time of only 1 h was chosen to avoid virus binding to restored 

sialic acid residues. The cells were grown for another 48 h, and infection rates were determined by 

flow cytometry. 

2.2.7 Selection procedures 

AAV capsid libraries were subjected to different selection schemes in order to identify clones with 

desired properties. Typically, five amplification rounds were performed per selection scheme, either 

in the presence of Adenovirus that promotes AAV replication, or in the absence of helper functions.   

2.2.7.1 Iterative AAV library amplification in Huh7 cells 

AAV library selection was conducted by iterative amplification in cultured cells. To assure a high 

phenotype-genotype linkage, infections were performed under minimal conditions. First, cells in a 6-

well format were infected with 2x108 to 2x1010 virus particles in complete medium. The cells were 

incubated for 4 h at 37°C and then washed twice with 1x PBS. The full medium was then replaced 

with medium supplemented with only 2% FCS, and the cells were superinfected with Ad5 at an MOI 

of 10 to 50. The Ad5 MOI was varied so that cell lysis was ideally induced 48-72 h post-infection. 

After up to 72 h incubation, the cells were harvested and crude lysates were prepared. AAV protein 

expression was assessed by Western blotting, and only those samples which gave minimal signals 

were passaged (assuming that this should foster a tight phenotype-genotype linkage). In the second 

and in the following amplification rounds, the exact viral titer of the crude lysates was not known. 

Hence three different volumes (typically 0.5 µl, 1 µl and 10 µl) of crude lysates that gave minimal 

signal in the Western blot were used for infection. Incubation times and conditions for Ad5 co-

infection were adjusted as described for the first infection round. After five selection rounds, viral 

DNA was isolated, cloned into the wt recipient plasmid and sequenced. Individual capsid genes were 
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additionally transferred to the AAV helper plasmid for production and titration of vectors encoding a 

yfp reporter. 

2.2.7.2 IVIG selection 

For library selection in the presence of increasing amounts of intravenous IgG (IVIG), purified virus 

(first selection round) or crude lysates (subsequent rounds) were incubated for 1 h with either a 

‘starting concentration’ of Gamunex®, Octagam® and Kiovig® or a ‘final concentration’ of Gamunex® 

prior to infection. ‘Starting’ concentrations of IVIG ranged from 1 µg/µl in the first round, to up to 10 

µg/µl in the last selection round.  ‘Final’ concentrations of IVIG ranged from 0.1 µg/µl to 1 µg/µl. The 

cells were incubated for 4 h with the IVIG-treated virus, then thoroughly washed three times with 1x 

PBS to remove all remaining IVIG and finally co-infected with Ad5. Conditions for Ad5 co-infection 

were adjusted according to the protocol described for iterative amplification of AAV on Huh7 cells 

(previous passage 2.2.7.1). Because IVIG also contains neutralizing antibodies against Adenovirus, the 

Ad5 MOI had to be empirically adjusted to a level that would mediate cell lysis after 72 h. As for the 

amplification without IVIG (previous passage), viral DNA was isolated after five selection rounds, 

cloned into the wt recipient plasmid and sequenced. Individual capsid genes were also transferred to 

the AAV helper plasmid for production and titration of vectors encoding a yfp reporter. 

2.2.7.3 Selection without Ad5 

To select AAV in the absence of Ad5 and hence without AAV replication, AAV capsid genes were 

isolated from infected cells 48 h post-infection after each round using the virus spin kit (Qiagen) 

according to the manufacturer’s protocol. Capsid genes were digested with PacI and AscI and ligated 

into the wt recipient plasmids. According to the protocol described in more detail in 2.2.1.2.2, 2 µl 

ligation mixture with a DNA concentration of 50 ng/µl were transformed per electroporation 

reaction.  Based on a plasmid library obtained from ten such electroporation reactions, virus libraries 

were produced. As described in 2.2.3.2 and shown in Table 4, 44.1 µg of total DNA were transfected 

in a double-transfection reaction together with Adeno helper plasmids according to the PEI protocol 

for 14 cm dishes. Purification by Iodixanol gradient centrifugation from ten such 14 cm dishes was 

performed as described in chapter 2.2.6.2.1. Viral titers were determined after each production 

round (Table 14), and 2x108 viral particles were used in the next infection round. In in vivo selection 

assays that were performed by our collaboration partners, AAV infection was also performed without 

Ad5 co-infection. AAV capsid genomes were amplified from total DNA, and viral libraries were 

produced, according to the protocol described above.  
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2.2.8 Flow Cytometry  

2.2.8.1 Measurement setup 

Infection rates and expression intensities of YFP- or GFP-expressing viruses were measured by flow 

cytometry. The size and granularity of the cells were determined by forward and sideward scatter. 

‘Alive cells’ were defined according to these parameters and gated for measurement of fluorescence 

expression. YFP and GFP expression was detected in the yellow and green channel, respectively, and 

plotted against red fluorescence. Background fluorescence that is caused by auto-fluorescence of 

e.g. dying cells was determined with uninfected samples, and the threshold for fluorescence-positive 

cells was set according to this value. Infection rates were determined as percentage of positive cells 

out of at least 10.000 events in the ‘alive cells’ gate. Mean intensities that reflect the expression 

intensity were calculated from the total of fluorescence-positive cells. For comparison of infection 

rates and intensities between different cells, forward and sideward scatter as well as the definition of 

‘alive cells’ were adjusted to the properties (size and density) of the respective cell type. Detector 

intensities were kept constant for all measurements to allow for comprehensive comparisons. All 

data were acquired with a Cytomics FC500MPL analyzer flow cytometer in a 96-well format. 

2.2.8.2 Cell preparation 

Eukaryotic cells in a 96-well format were prepared as follows for flow cytometry: Adherent cells were 

washed twice with 1x PBS 72 h post-infection and incubated with 30 µl 0.25% trypsin for 10 min at 

37°C. Next, 170 µl PBS supplemented with 1% BSA were added and repeatedly pipetted up and down 

to separate cell clusters. For suspension cells, the volume of the medium was adjusted to 200 µl. 

Measurement was conducted directly from the 96-well culture plates. 

2.2.9 Bioinformatic analysis of shuffled sequences  

Sequences from shuffled AAV clones were analyzed using the Salanto program. The program was 

developed by Christian Bender in cooperation with the group of Dr. Dirk Grimm to specifically suit 

the needs of chimeric sequence analysis [270]. Based on a sequence alignment created with other 

programs, e.g. vector NTI, Salanto assigns amino acids or nucleotides in any chimeric sequences to 

their corresponding parental origin. These assignments can be either position-wise, or the program 

allocates whole stretches to a certain serotype. Crossover frequencies and distribution of reference 

sequences are also indicated, which allows for a determination of the efficiency of the shuffling 

process itself. The program is accessible free-of-charge and is available together with a detailed 

manual describing the different applications and the algorithm at the following website: 

https://bitbucket.org/benderc/salanto/wiki/Home. 

 

https://bitbucket.org/benderc/salanto/wiki/Home
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3 Results 

3.1 AAV DNA Family Shuffling 

The first part of the work in this thesis focused on the method of DFS as a potent and versatile means 

for molecular AAV vector evolution. The following Figure 15 again summarizes the main steps in the 

protocol as indicated in chapter 1.3.1 above and as originally established by Grimm and colleagues in 

2008 [212], from initial cap gene isolation and shuffling, followed by subcloning and library 

production, to selection either in cultured cells or in animals (in vivo biopanning). 

 

 

Figure 15: Overview over the DFS process. Capsid genes are amplified from donor plasmids (A), fragmented and re-

assembled using two iterative PCRs (B). Resulting chimeric cap gene sequences are ligated into wt recipient plasmids that 

encode the rep gene of AAV2 and that carry flanking ITRs (C). After ligation, plasmids are transformed to generate a diverse 

plasmid library (D) from which a viral library is produced (E-F). Individual chimeric capsids of interest are selected from this 

library through either manual screening (G) or iterative amplification under specific selection pressures, including the 

presence or absence of helper Adenovirus (Ad) (H-J). (Figure adapted from [276]). 
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In this protocol, two processes are particularly critical:  

1. The initial production of the shuffled library (steps A-D), as it a) ultimately determines the 

success of isolating a desired clone that combines the assets of the parental viruses in a 

single capsid, and b) has not yet been standardized between different labs and thus relies on 

personal experience and specific cap plasmids, hampering the wide use of this technology 

2. The exact conditions for final selection in cells or animals (steps H-J), as the success of this 

step may depend on a variety of further parameters in addition to the target cells, especially 

the presence of a helper virus, as well as the combination of positive and negative pressures 

 Accordingly, three specific aims in the first part of this thesis were to: 

1. improve and standardize the technology for AAV DFS 

2. study critical parameters for AAV library selection - Adenovirus helper and IVIG pressure 

3. apply the optimized tools and protocols for in vitro and in vivo AAV selection schemes 

 

3.1.1 Optimization of the protocol for generation of shuffled AAV libraries 

As shown in Figure 15 above, a prerequisite for AAV DFS is the initial isolation and then 

fragmentation of the cap genes of choice. In the original protocol by Grimm and co-workers, 8 

different cap sequences were isolated from respective plasmids by restriction digestion, using 

enzyme binding sites that had been engineered into each of the cap plasmids. While feasible and 

efficient, a drawback of this strategy is that it may not be applicable to all present or future cap 

genes because some of them may inherently contain binding sites for the enzymes originally used 

(HindIII/SpeI). Moreover, since the DNase digestion step may have to be repeated until desired 

fragments are produced (see below), it can become necessary to digest large amounts of cap plasmid 

with restriction enzymes which is time-, work- and cost-intensive. Finally, since many labs have set 

up their own plasmids and restriction strategies, it is very difficult to share and use constructs 

between individual groups which hampers a broader evaluation and application of the whole 

technology.  

To overcome these problems and to standardize the complete protocol, we decided to refine the 

original strategy and switched to a PCR-based approach for cap gene amplification rather than 

enzymatic digestion. Therefore, we generated an entirely new set of AAV donor plasmids in which 

the cap genes of 12 different AAV serotypes - 1 to 9, rh10, po1 and 12 - are flanked by a collection of 

PCR primer binding sites (Figure 16). These serotypes were chosen because they have been studied 

extensively in our and other labs, and because they differ substantially in their tropisms and 

efficiencies, making them interesting templates for DFS. The primer binding sites were identical to 
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those used for shuffled cap gene amplification in the 2008 Grimm study (CUF/R); in addition, we 

included the SAF/R primer binding sites (see Materials and Methods 2.2.4.2, Figure 11) that another 

PhD student in our lab (Nina Schürmann) had concurrently found to work well for shuffling of other 

genes (encoding human Argonaute proteins) [270]. As the plasmids were based on pBlueScript, they 

additionally contained binding sites for the standard M13 and T3/T7 primers. Finally, in our eventual 

constructs, each cap fragment is flanked by recognition sites for the restriction enzymes PacI (5’) or 

AscI (3’) which allowed a) the initial cloning of all cap sequences into the new plasmids, and b) the 

final subcloning of shuffled sequences into an appropriately modified AAV recipient plasmid, i.e., a 

replication-competent construct containing the AAV2 ITRs and the AAV2 rep gene followed by 

PacI/AscI sites. While this strategy again introduces a need for a restriction digestion, it is important 

to point out that both PacI and AscI recognize an 8 bp target sequence (in contrast to most other 

enzymes which bind only 6 bp, including HindIII/SpeI) and thus cut very infrequently; indeed, there 

are no PacI or AscI sites in any of the 12 AAV cap genes used here. Figure 16 schematically depicts 

the composition of the new modular AAV donor and recipient plasmids described above. 

 

 

 

 

 

 

 

 

 

Figure 16: New AAV cap gene donor and recipient plasmids for standardized AAV DNA family shuffling. Top: AAV cap 

donor plasmids containing binding sites for 4 different primer pairs on each side of the cap gene. Also shown schematically 

are binding sites for the capF and capR primers used to initially amplify the capsid genes for subcloning into these plasmids, 

as well as the location of several restriction sites. Bottom: Similar depiction of the new AAV cap gene recipient plasmids, 

containing AAV2 ITRs and rep gene, followed by PacI/AscI sites for cap subcloning. Also shown are binding sites for two 

primers (LseqR/F) that were used for sequencing of the shuffled and cloned cap genes. 
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Using these plasmids, we next assessed which primer pairs would give the best results, as measured 

by the strength of the band after the second PCR (for amplification of shuffled fragments, see Figure 

15 above). For this proof-of-concept work, we DNase-fragmented and then re-assembled AAV 

serotypes 2, 8 and 9. The M13 primers (Figure 16, top) were used to amplify all cap genes prior to 

DNase digestion. According to the original protocol [212], we first tested the CUF/R primer pair and 

found that while it worked, the yields of the final cap chimera band were relatively weak which 

hampered subsequent large-scale cloning (data not shown). The same was observed for a nested PCR 

with the T7/T3 primers in a first reaction, followed by amplification with CUF/R; moreover, this 

primer combination produced multiple non-specific bands (Figure 17A MTC). In fact, the only setting 

which produced satisfactory results were “nested” PCRs in which the T3/T7 primers were re-used 

(Figure 17A, MTT). Interestingly, a single PCR with the SAF/R primers alone was equally efficient and 

specific, especially at higher annealing temperatures of up to 67°C (Figure 17B). We therefore 

continued to use this simple two-step PCR (including the first primerless PCR) with these two primers 

in the second PCR step in all subsequent shuffling reactions in this thesis. 

 

Figure 17: Comparison of experimental setups for the AAV DNA shuffling re-assembly PCR. A) Nested PCR with different 

primer combinations at increasing annealing temperatures. M refers to the M13 primer pair that was used in the first PCR 

from the donor plasmids and is hence part of all PCRs. T, C and S refer to the T3/T7 primers, the CUF/CUR primers and SAF 

and SAR, respectively. B) Single PCR to re-assemble capsid genes with the newly introduced primer pair SAF and SAR. Yellow 

arrows mark the desired bands, while yellow brackets indicate the area with unspecific bands.  

 

Having optimized the PCR conditions, we next aimed to also improve the initial step of cap gene 

fragmentation via DNase I digestion. An inherent problem with this step is that the reaction is hard to 

standardize, due to the fact that DNase I is an extremely potent enzyme that rapidly degrades input 

DNA. The representative gel in Figure 18 demonstrates that even small variations in the length of the 
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reaction can already induce substantial differences regarding the size range of the fragments that are 

produced. The same variation was found when slightly different pre-dilutions of DNase I enzyme 

were used (data not shown).  

 

 

Figure 18: Example for DNase I digestion of cap genes (AAV2, 8 and 9). Shown 

is an agarose gel electrophoresis analysis of the products of cap gene digestion 

using the indicated different incubation times (in minutes:seconds). Lane U 

shows the undigested input cap fragment pool as control. In this example, ideal 

digests were obtained with incubation times of 1:45 or 2:00 min, which yielded 

the preferred predominant peak of fragments around 100 to 500 bp (yellow 

box). 

 

 

 

 

As a result of this high and hard-to-control activity, it can be difficult to avoid complete DNA 

degradation and to instead generate sufficient cap fragments of a desired size range. In addition, the 

latter is typically rather broad (roughly 100 to 500 bp gives good results) since a large gel piece has to 

be isolated (yellow square in Figure 18), which further complicates standardization between different 

labs. We thus asked whether a more controlled fragmentation by physical means rather than 

enzymatic digestion could improve this essential step. Specifically, we tested DNA ultrasonification 

via “Adaptive Focused Acoustic” technology (Covaris, Woburn, USA) and compared it with 

conventional DNase I digestion. The Covaris system offers the possibility to generate very defined 

fragment sizes, allowing us to create sheared AAV cap fragments with a peak size of either 150, 300 

or 800 bp. Their correct length distribution was confirmed by analysis on an Agilent Bioanalyzer 2100 

(Figure 19A). As expected, the fragments generated through DNase I digestion showed a much 

broader distribution over the entire size range, with a slight accumulation of fragments of around 

100 bp (Figure 19B). 

For further analysis cap genes from AAV serotypes 1,7-9 and rh10 were fragmented, using either the 

DNase digestion technique or the previously determined Covaris protocols for 150bp, 300bp and 

800bp fragments, respectively. The serotypes were chosen because they are representative for 

libraries made of several AAV parents (five in this case) with roughly 85% homology to each other. 

Covaris- and DNase-digested fragments were used in parallel to produce the respective shuffled 

1.6kb
2kb

1kb

4kb
3kb

0.5kb

U

DNase digestion 

1:00
1:15

1:30
1:45

2:00
2:15
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libraries. If successful, the first and second PCRs of the shuffling protocol should result in a distinct 

gel band of around 2.2 kb, corresponding to full-length chimeric cap genes. Notably, as depicted in a 

representative gel in Figure 19C, the re-assembly reaction did not work for Covaris fragments with an 

average size of 150 bp, and the PCRs with the 300 bp fragments gave only a weak band of the correct 

size. In fact, the Covaris conditions that produced a defined fragment size of 800 bp were the only 

ones that resulted in a full-length cap gene band that was comparable in intensity to that from the 

conventional DNase I digestion. 

 

Figure 19: Fragmentation of AAV capsid 

genes. A) A pool of different capsid genes 

was fragmented to different average 

fragment lengths by ultrasonification and 

analyzed on a Bioanalyzer. Plotted are 

fragment lengths (in bp, X axis) versus 

fluorescence units (FU, Y axis) from which 

the amount of DNA is calculated, 

compared to standard peaks, visible at 15 

and 1500bp. The small peak at 2kb in the 

800bp fragmentation indicates remaining 

full-length cap genes (yellow arrow). B) 

DNA fragmented with DNase I and 

purified on an agarose gel was analyzed 

the same way. C) Agarose gel of PCR 

products from the re-assembly PCR that 

amplifies full-length genes. Using the 

Covaris fragmentation, only fragments 

with an average length of 800 bp resulted 

in comparable amounts of PCR product. 

Desired band are indicated by the yellow 

arrow. D) Average length of fragments (in 

bp) in assembled capsid genes from a 1,7-

9,rh10 library. In sequences that were 

generated with DNase I, digested DNA 

fragments are shorter and therefore the 

crossover frequency is higher. The 1,7-

9,rh10 library was produced, sequenced 

and analyzed with Salanto by Stefanie 

Große. (C) and D) courtesy of Stefanie 

Große.) (Indet= indetermined; sequence 

parts for which an exact allocation to a 

certain serotype is not possible.) 

 

From both reactions, 800 bp Covaris and DNase I digestion, Stefanie Große (PhD student in the lab) 

produced a plasmid library, sequenced 20 clones and used the Salanto program that Christian Bender 

had developed together with our lab (chapter 2.1.12) to determine the average length of fragments 

according to the parental serotypes. Interestingly, with the exception of AAVrh10 (for reasons 

unknown), the average fragment length in the DNase I-derived library was about half the size of the 
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800 bp Covaris library (Figure 19D). The fragment length directly correlates with the number of 

crossovers per clone, with shorter fragments meaning more crossovers, which is beneficial for the 

library diversity. We therefore decided to continue using the conventional DNase I digestion rather 

than physical fragmentation for the remaining work in this thesis.  

We finally also analyzed whether we could further improve the efficiency of the two PCRs by altering 

the annealing temperature in the first PCR where the partially homologous fragments are supposed 

to self-prime. However, we found that 42°C as used in the original Grimm et al. paper [212] as well as 

in the experiments above gave best results that were not enhanced by lowering or raising the 

temperature over a 20 degree range (data not shown). We accordingly concluded that 42°C is already 

an ideal temperature to allow annealing of different cap gene fragments and thus efficient shuffling.  

In summary, the final optimized protocol for AAV capsid gene shuffling consists of: 

1. PCR amplification of the desired cap genes from our new donor plasmids using M13 primers 

2. DNase I-based fragmentation (aiming for fragments of 100-500 bp) 

3. a primer-less recombination (shuffling) and re-assembly PCR at 42°C annealing temperature 

4. a second single-step PCR (i.e., combined annealing/extension at 68°C) using SAF/R primers 

Important to note, this protocol has not only been used successfully for all further library 

productions in this thesis, but also independently by Stefanie Große in the lab for generation of >10 

additional libraries based on various AAV serotype combinations (Große et al., manuscript in 

preparation). 

3.1.1.1 Combination of AAV capsid shuffling and peptide display 

As will be described in more detail in a later chapter (3.2), we also engineered all 12 cap genes to 

contain unique restriction enzyme sites for cloning of short oligonucleotides encoding re-targeting 

peptides for display on the viral surface. Because the combination of this viral peptide display with 

DFS should theoretically create the largest possible diversity (of all currently available molecular AAV 

evolution techniques), we tested whether the two methods were truly compatible. Therefore, all 12 

insertion site-modified cap genes were transferred into the new donor plasmid described above and 

then used in shuffling reactions, using the optimized protocol. The shuffled reaction products were 

then used as templates for cloning of a randomized peptide library on top. Two factors were 

particularly important to guarantee the success of this strategy: first, the insertion sites for peptide 

display were located at comparable positions across all the different serotypes, reducing the risk that 

one is lost upon recombination. Second, because the peptide insertion site initially creates a 

frameshift (see chapter 3.2.), VP protein expression and virus production are only possible with a 

successfully inserted oligonucleotide that corrects this frameshift. 
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We then produced eight different shuffled AAV libraries, with or without additional peptide library 

insertion, as listed in the following Table 13. As can be seen, all eight libraries were produced to 

decent titers, albeit we noted a 5- to 50-fold reduction in the titers of the peptide-containing libraries 

as compared to their direct counterparts without peptide insertion. Most likely, this difference is due 

to the fact that a proportion of the plasmid clones in the shuffling-display libraries has not taken up 

the oligonucleotide which corrects the frameshift and allows viral library production. Moreover, a 

fraction of the peptide-encoding oligonucleotides will comprise stop codons, which will further 

reduce the number of viable sequences in such a complex library. These assumptions are in fact 

supported by the observation that library diversities on the plasmid level were comparable between 

the shuffled and corresponding shuffling-display libraries (with minor variations in both directions).  

 

Notably, sequencing of 5 clones from each of the four different shuffling-peptide libraries confirmed 

that all clones had indeed taken up peptide-encoding oligonucleotides (representative examples in 

Figure 20A-C). While these libraries were not further used for selection schemes in the context of this 

thesis, they represent an essential proof-of-concept that our new protocol and plasmids allow for the 

juxtaposition of two powerful AAV evolution methods and thus provide a novel avenue that can be 

exploited in the future (Discussed in more detail in chapter 4.3) 

Library 
Diversity 

[whole library] 

Viral titer 

[vg/ml] 

Table 13: Comparison of AAV libraries. 

Libraries based on the indicated serotypes 

were either generated by DNA family 

shuffling alone, or by combining shuffling 

with insertion of a peptide library (+PL). The 

diversity of the respective library was 

estimated by the number of bacterial 

colonies after transformation, assuming 

that each colony carries a distinct clone. 

Viral libraries were produced in Hek293T 

cells and purified by Iodixanol density 

gradient centrifugation. Viral titers were 

determined by RT-PCR.  

 

289  3.5x10
6
 2.00x10

12
 

289+PL  1.3x10
6
 4.40x10

11
 

789  2.2x10
6
 1.78x10

13
 

789+PL  8.9x10
5
 1.54x10

12
 

1689  1.1x10
6
 1.60x10

13
 

1689+PL  1.1x10
6
 2.50x10

12
 

15689  1.5x10
5
 6.00x10

12
 

15689+PL  5.0x10
5
 1.20x10

11
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Figure 20: Comparison of chimeric sequences from different shuffled AAV libraries that harbor additional peptide 

insertions. A) Clones from the library 289 plus peptide insertion. B) Clones from the library 789 plus peptide insertion. C) 

Clones from the libraries 15689 and 1689 plus peptide insertion. Chimeric sequences are shown in alignment to their 

parental serotypes and compared to a modeled AAV2 sequence, where peptide insertion is indicated by 21 ‘N’ (AAV2mod.). 

Chimeric sequences are coded with colors that refer to the parental sequences. Note that the chimeric character of the 

shuffled clones is not always visible within the short area shown around the peptide insertion site, but was always 

confirmed by further sequencing. Modified sequences flanking the peptide insertion are boxed as triplets. Additional 

nucleotides are shown in bold, peptide sequences are bold underlined. For details about peptide insertions please refer to 

chapter 3.2.1, Figure 37 and Figure 39. 

 

3.1.2 Analysis of parameters influencing AAV library selection 

As described in introductory chapter 1.3.1, the first chimeric AAV that was reported in the literature 

to have emerged from DNA family shuffling was AAV-DJ [212]. To obtain this clone, the authors had 

shuffled eight AAV serotypes (2, 4, 5, 8, 9, avian, bovine, caprine) and then selected their library in 

human hepatocytes in the presence of IVIG (pooled human antisera) and Adenovirus. Curiously, this 

led to elimination of five of the eight parental serotypes and yielded the DJ clone, which is solely 

composed of AAV2, AAV8 and AAV9 and which combines their assets - high efficiency both in vitro 

and in vivo - in a single capsid.  

Here, we considered it interesting to test whether it was possible to recapitulate the isolation of 

AAV-DJ or similar clones through selection of a new library that would only contain the three leading 

serotypes - 2, 8 and 9 - to begin with. Ideally, this would then help to better understand the unique 

features - capsid parts and combinations thereof - of the DJ clone and AAV vector transduction in 

A)

B)

C)

AAV2mod. G T A T C T A C C A A C C T C C A G C A A G G C C A G A G T G G C N N N N N N N N N N N N N N N N N N N N N G C C C A - - - G G C G G C C A C C G C A G A T G T C A A C A C

AAV2 G T A T C T A C C A A C C T C C A G A G A G G C A A C A G A - - - - - - - - - - - - - - - - - - - - - - - - - - - C A - - - A G C A G C T A C C G C A G A T G T C A A C A C

AAV8 G T G G C A G A T A A C T T G C A G C - - - A G C A A A A C - - - - - - - - - - - - - - - - - - - - - - - - - - - A C G G C T C C T C A A A T T G G A A C T G T C A A C A G

AAV9 G T G G C C A C A A A C C A C C A G A - - - G T G C C C A A - - - - - - - - - - - - - - - - - - - - - - - - - - - G C A C A G G C G C A G A C C G G C T G G G T T C A A A A

289PL#1 G T G G C C A C A A A C C A C C A G G - - - G C C A G A G T G G C C A G C A G C A G G G G T A G C C T C G T G C C C A G G C G G C C C A A A T T G G A A C T G T C A A C A G

289PL#2 G T A T C T A C C A A C C T C C A G C A A G G C C A G A G T G G C C G G T G C A G G T G G A G T G T T T G T G C C C A - - - G G C G G C C A C C G C A G A T G T C A A C A C

289PL#3 G T G G C A G A T A A C T T G C A G G - - - G C C A G A G T G G C T C C A T C A G C G T G A G C G G T T C C G C C C A - - - G G C G G C C A C C G C A G A T G T C A A C A C

AAV2mod. G T A T C T A C C - A A C C T C C A G C A A G G C C A G A G T G G C N N N N N N N N N N N N N N N N N N N N N - G C C C A G G C G G - C C A C C G C A G A T - - - G T C A A

AAV7 G T C A G C A G C - A A C T T A C A A - - - G C G G C T A A T - - - - - - - - - - - - - - - - - - - - - - - - - - - - A C T G C A G C C C A G A C A C - A A G T T G T C A A

AAV8 G T G - G C A G A T A A C T T G C A G - - - C A G C A A A A C - - - - - - - - - - - - - - - - - - - - - - - - - - - - A C G G C T C C T C A A A T T G G A A C T - G T C A A

AAV9 G T G G C C A C A - A A C C A C C A G - - - A G T G C C C A A - - - - - - - - - - - - - - - - - - - - - - - - - - - - G C A C A G G C G C A G A C C G G C T G G G T T C A A

789PL#1 G T G - G C A G A T A A C T T G C A G - - - G G C C A G A G T G G C G G T C C G T C T G A C T A G T A G T G C - G C C C A G G C G G C C C A A A T T G G A A C T - G T C A A

789PL#2 G T G G C C A C A - A A C C A C C A G - - - G G C C A G A G T G G C A T C C A G C G T A G C C G C T C C C G C - G C C C A G G C G G C C C A G A C C G G C T G G G T T C A A

789PL#3 G T C A G C A G C - A A C T T A C A A - - - G G C C A G A G T G G C G A G G C G G G C A - C G T C G A C G T G C G C C C A G G C G G C C C A G A C A C - A A G T T G T C A A

AAV2mod. G T A T C T A C C A A C C T C C A G C A A G G C C A G A G T G G C N N N N N N N N N N N N N N N N N N N N N G C C C A G G C G G C C A C C G C A G A T G T C A A C A C A C A

AAV1 G T G G C A G T C A A T T T C C A G A G C A G C A G C A C A G A C - - - - - - - - - - - - - - - - - - - - - - - - - - - C C T G C G A C C G G A G A T G T G C A T G C T A T

AAV5 A T G G C C A C C A A C A A C C A G A G C T C C A C C A C T G C C - - - - - - - - - - - - - - - - - - - - - - - - - - - C C C G C G A C C G G C A C G T A C A A C C T C C A

AAV6 G T G G C A G T C A A T C T C C A G A G C A G C A G C A C A G A C - - - - - - - - - - - - - - - - - - - - - - - - - - - C C T G C G A C C G G A G A T G T G C A T G T T A T

AAV8 G T G G C A G A T A A C T T G C A G C A G C A A A A C - - - - - - - - - - - - - - - - - - - - - - - - - - - A C G G C T C C T C A A A T T G G A A C T G T C A A C A G C C A

AAV9 G T G G C C A C A A A C C A C C A G A G T G C C C A A - - - - - - - - - - - - - - - - - - - - - - - - - - - G C A C A G G C G C A G A C C G G C T G G G T T C A A A A C C A

15689PL#1 G T G G C A G T C A A T T T C C A G A G C A G C G G C C A G A G T G G C C G C C G G A T G T G G T G T G T C G G G G C C C A G G C G G C C G G A G A T G T G C A T G T T A T

15689PL#2 G T G G C A G T C A A T T T C C A G A G C A G C G G C C A G A G T G G C G C G A T T G G G T T C T G G C C T T A C G C C C A G G C G G C C G G A G A T G T G C A T G T T A T

1689PL#1 G T G G C C A C A A A C C A C C A G G G C C A G A G T G G C G A T C T G C C T A C G G C G A G G C T G G C C C A G G C G G C C C A A A T T G G A A C T G T C A A C A G C C A

1689PL#2 G T G G C A G T C A A T T T C C A G A G C A G C G G C C A G A G T G G C A G T G G G T C C C C G G T C C G G C G C G C C C A G G C G G C C G G A G A T G T G C A T G C T A T
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general. Moreover, such a new selection would permit to experimentally dissect the role of two 

critical parameters that likely influence the outcome of this process, namely, the type and dose of 

IVIG, and the presence or absence of helper Adenovirus.  

We therefore produced the 289 library listed in Table 13 above, using our optimized protocol and 

plasmids also described in the previous chapter. As shown in the table, this library had a diversity of 

3.5x106 (calculated from bacterial colony numbers), and virus was produced to a titer of 2x1012 

particles per ml. Prior to applying different selection pressures, we first sequenced 8 randomly 

selected clones to verify the presence of all three serotypes in the library, and to ensure that the 

clones were diverse. DNA and protein sequence alignments were performed using the Salanto 

program (chapter 2.1.12) [270].  

As hoped for, we found that the three parental sequences were all present in the 8 clones, without a 

dominance of one or two serotype(s) in a certain part of the capsid sequence (Figure 21-23) (see also 

Appendix for full sequences). Still, the percentage of AAV9 on both the nucleotide and protein level 

was slightly decreased as compared to AAV2 and AAV8 throughout the entire capsid (Figure 22). 

While a few clones contained single point mutations (that are frequently found in shuffled libraries 

[212] and originate from errors during the PCRs), none of the 8 randomly chosen clones had a stop 

codon. Moreover obvious was a decrease of crossover frequencies starting from the EF-loop that is 

readily explained by a lower homology of AAV serotypes in the C-terminal part which hampers 

recombination (Figure 22). Nonetheless, the numbers of crossovers from one serotype to the other 

were comparable, as were the average fragment lengths (Figure 23).  

 

Figure 21: (next page) Amino acid sequence of analyzed AAV clones with chimeric capsids from the original 289 shuffled 

library before and after different selection schemes. Amino acids are indicated by colors according to the parental AAV 

serotypes from which they originate. In cases where they could be assigned unanimously to a single serotype, red was used 

for AAV2, blue for AAV8 and orange for AAV9. Amino acids that originate from either AAV2 or AAV8 are drawn in light blue, 

those from either AAV2 or AAV9 are yellow, and those that could be allocated to either AAV8 or AAV9 are colored in purple. 

Light green areas mark amino acids that could originate from any of the three parental serotypes. The top panel shows 

starting points for the three capsid proteins (VP1-VP3) as well as the beginning of the outer part of the capsid that could be 

crystallized and for which a 3D structure is available. Black bars mark variable regions and green bars the respective loops. 

For space reasons, not the entire sequence is shown. Larger parts where sequences are identical to all parental serotypes 

are cut out as indicated by light gray vertical lines in the top panel and white lines in the sequences. Note that due 

shortening of the sequences, some loops are not shown.   
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VRI VRII VRIII VRIV VRV VRVI VRVII VRVIII VRIX
VP1 VP2 VP3

3D BC DE EF GH HI

>AAV2>AAV8>AAV9
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>AAV9 

>AAV2>AAV8

>AAV8>AAV9

>AAV2>AAV9

DJ

289 unselected
#1
#2
#3
#4
#5
#6
#7
#8

IVIG 'final concentration'
#1
#2
#3
#4
#5
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#7
#8
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#1
#2
#3
#4
#5
#6
#7
#8

IVIG 'starting concentration'
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#1
#2
#3
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#1
#2
#3
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#1
#2
#3

289PBS (without IVIG)
#1
#2
#3
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#5

Minus Ad5
#1
#2
#3
#4
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#6
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Figure 22: Clonal composition of shuffled AAVs derived from serotypes 2, 8 and 9. A) Position-wise nucleotide distribution 

of the parental serotypes (in percent) in the capsid genes of 8 shuffled clones from the unselected AAV289 library. B) 

Position-wise amino acid distribution of the parental serotypes (in percent) in the capsid protein sequence of 8 shuffled 

clones from the unselected AAV289 library. Parental serotype AAV2 is shown in red, AAV8 in blue and AAV9 in green. 

Mutations and positions that could not be allocated to a certain serotype are shown in light blue and purple, respectively. 

C) Absolute complexity of the aligned parental serotypes AAV2, 8 and 9 (nucleotide level). The graph was derived by 

calculating a sum of all pair-wise substitution scores at a given alignment position, divided by the number of pairs in the 

alignment. The scores are taken from the residue substitution matrix used for alignment calculation in AlignX, VectorNTI 

(Invitrogen). For more details, please refer to the VectorNTI manual (available online at http://www.lifetechnologies.com) 

and the Salanto online manual (https://bitbucket.org/benderc/salanto/wiki/Home). A lower complexity implies a higher 

variability between the sequences. As can be seen from the comparison of graph C) with A) crossover numbers in the C-

terminal half decrease around an area where the variability between the parental sequences increases (nt1300 to nt1900).  

 

 

Figure 23: Crossover analysis of the shuffled AAV289 library. A) Shown are the numbers of crossovers from one serotype 
to another within a pool of 8 randomly picked clones. B) Depiction of the variations in average length (in bp) of the 
combined fragments, calculated from the length of fragments derived from a distinct serotype and the number of 
fragments of that size present in the entire capsid sequence. 
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Finally important was to demonstrate that the AAV289 library not only contained all parental 

serotypes on the DNA and protein level, but that the individual clones were also functional. We 

therefore transferred the capsid genes from the 8 randomly picked clones into an AAV helper 

plasmid and then produced YFP reporter-expressing vectors in small scale, in parallel to vectors with 

the parental AAV2, 8 or 9 capsids, or the chimeric vector DJ. The resulting crude vector lysates were 

next titered on Huh7 cells, and the results are depicted in the form of a heatmap in the following 

Figure 24. As expected, the 8 clones exhibited a large variety of transduction efficiencies, from clones 

that were nearly inert (akin to AAV8 and 9) or that showed intermediate reporter expression, to one 

clone (#2) approaching the potencies of AAV2/DJ. Notably, this clone #2 shares a large portion of the 

C terminus with AAV2/DJ (Figure 21 above), supporting prior conclusions that this region of the 

capsid is particularly important for potent transduction in cultured cells [212].  

 

Figure 24: Titration of chimeric clones from the 
AAV289 shuffled library. Virus encoding a YFP 
reporter construct was produced in small scale (6-
well format). From crude lysates, 10 µl were 
applied to the first well of a 96-well plate of Huh7 
cells and diluted serially (ten-fold). Shown are 
infection rates in percent as determined by FACS. 
The data are shown as heatmaps where the 
percentage of YFP-expressing cells is color-coded, 
starting from zero in black to the maximum in 
white. Here and in the following heatmaps, the 
overall maximum for each heatmap is indicated by 
the color: yellow = 25%; green = 50%; blue = 75% 
and red = 100%. 

 

3.1.2.1 IVIG selection 

Knowing that our AAV289 library contained all parental serotypes and was diverse and functional, we 

next exploited this library to gain more insight into the role of neutralizing anti-AAV antibodies as a 

negative selection pressure that eventually shapes the composition and structure of AAV libraries 

during selection. In the original 2008 study by Grimm et al., the AAV-DJ capsid was isolated after five 

rounds of library amplification on Huh7 hepatoma cells in the presence of increasing amounts of 

IVIG, i.e., pooled human antisera containing neutralizing anti-AAV-antibodies. Because this former 

study had applied a specific IVIG brand available in the US (GamimmuneN, [212]),  it was now 

interesting to repeat the selection procedure with our new AAV289 library in the same cell line, but 

using three different IVIG variants that are available in Germany (Gamunex, Kiovig and Octagam). The 

underlying goal was to dissect whether the various IVIG brands with their different antibody 

compositions would still enrich capsids similar or identical to DJ, or whether the original result was 

specific for the particular IVIG batch. Either way, the results would provide important information 

and should guide future AAV library selection schemes. Moreover, the library was amplified 
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iteratively (five times) either alone or in the presence of a low ‘starting’ or a higher ‘final’ IVIG 

concentration. The ‘final’ concentration was higher because it was expected that the particles in the 

selected library would gain resistance to the antibodies present in the IVIG. At ‘starting’ IVIG 

concentrations, ranging from 0.1-1 µg/µl human protein with a minimum of 95-98% IgG, the three 

different brands were used to account for the mentioned batch or donor variations. Selection at the 

higher ‘final’ doses from 1-10 µg/µl human protein was exclusively performed with Gamunex. This 

was the only brand that was used for the high dose selection since this particular scheme was started 

late in this work, once the results from the low dose selection had been analyzed.  

In the first selection round, the purified virus library was used at different concentrations, ranging 

from 2x108 to 2x1010 particles (corresponding to 0.1 to 10 µl, based on the original library stock with 

a titer of 2x1012, see Table 13), and incubated for 1 h at 37°C with either 0.1 or 1 µg/µl IVIG diluted in 

PBS, or with PBS alone as a control. Afterwards, the virus-IVIG mixture was added to Huh7 cells in a 

well of a 6-well plate and incubated at 37°C for 4 h. The cells were next washed twice with PBS to 

remove unbound virus and IVIG, and then kept in DMEM complete growth medium supplemented 

with 1% FCS (FCS was reduced from the normal 10% to enhance AAV transduction). Adenovirus type 

5 was added to the cells at an MOI that led to cell lysis at approximately 72 h post-infection, 

assuming that this will allow for complete AAV replication. Because the Rep proteins of AAV (which 

are expressed from the viral library) as well as (residual) IVIG inhibit adenoviral growth, the ideal 

helper virus MOI had to be determined empirically. As exemplified in Figure 25, Adenovirus infection 

without AAV co-infection and in the absence of IVIG leads to the start of cell lysis after 72 h at an 

MOI of 20. During the selection process, a slightly higher Adenovirus MOI between 20 and 50 has 

been found ideal. 

 

Figure 25: Cytopathic effect of Adenovirus on Huh7 
cells. Microscopic images of Huh7 cells 72 h post- 
infection with different MOIs of Adenovirus. At an MOI 
of 10, cell growth is inhibited as compared to the non-
infected control, but no obvious cytopathic effect is 
visible. In contrast, at an MOI of 100, most cells already 
appear dead.  
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The cells were then harvested into the medium, washed twice with 1x PBS and lyzed in 1x PBS 

according to the protocol for crude lysates (chapter 2.2.6.1). After heat inactivation of the 

contaminating Adenovirus (30 min incubation at 56°C), these crude lysates were used for re-infection 

in subsequent selection rounds (#2-5). The exact AAV titers used for infection were no longer 

determined as this would have required virus purification and titration; instead, three different 

volumes of crude lysates (usually again 0.1-10 µl) were used. Only during the selection with the 

higher ‘final’ IVIG dose, a higher volume of up to 50 µl of crude lysates was used in the first selection 

rounds, to still enable detection of replicating AAV by Western blotting at an increased IVIG 

concentration. Still, as indicated in Figure 26 for this last selection round, infections with 1 µl lysates 

were again sufficient for detection. Prior to re-infection, each of these lysates was again incubated 

with 0.1 or 1 µg/µl IVIG for the ‘starting’ dose selection, or with >1 µg/µl IVIG for the ‘final’ dose 

selection (up to 10 µg/µl in the final round #5). The purpose of testing this multitude of parameters 

was always to empirically identify conditions that would result in the weakest detection of AAV 

capsid proteins in cell lysates amongst all samples. A minimal AAV protein expression in the Western 

blots was indicative of limited progeny particle production, which was in turn an indirect proof of a 

desired tight genotype-phenotype linkage, i.e., a high probability that newly produced capsids would 

actually carry the corresponding capsid gene. Otherwise, if the cells had produced large amounts of 

particles (evidenced by strong bands in the Western blots), there would have been a high risk that 

the majority of these capsids carried the wrong capsid gene and that the selection would have failed.  

The representative Western blots in Figure 26 show examples for different conditions (library and 

IVIG concentrations) and corresponding VP protein expression levels after round #1 (top), round #3 

(center) or the last round #5 (bottom). Also shown is a comparison of the ‘starting concentration’ 

(panel A) and the ‘final concentration’ (panel B) IVIG selections. As can be seen, there were always 

conditions that led to the desired relatively weak VP expression. Accordingly, those were used for re-

infection in the next selection round. Since the PBS control underwent no additional selection 

pressure, and the corresponding bands were relatively strong, crude lysates from the 0.1 µl infection 

were diluted 1:10 prior to subsequent infections.  
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Figure 26: Monitoring of AAV library selection via Western blotting. The B1 antibody was used to detect the viral capsid 
proteins VP1, VP2 and VP3. Shown are results after the first (top), third (center) or fifth (bottom) round of amplification. 
Yellow boxes depict lanes with barely visible AAV protein expression that were considered ideal for re-infection in the next 
round (see main text). A) Selection at ‘starting’ doses of IVIG. Three different volumes of virus - either 0.1-10 µl or 1-50 µl - 
were incubated with two different concentrations - 0.1 or 1 µg/µl - of IVIG of either the Gamunex, Kiovig or Octagam brand. 
B) Selection at ‘final’ doses of Gamunex. Starting from 1 µg/µl, as in the IVIG low selection, the IVIG concentration was 
increased to up to 10 µg/µl in the last round (#5). In all cases, samples from the 0.1 µl PBS infection were used as controls 
and diluted 1:10 prior to further infection. 

  

After five rounds following this scheme, we randomly picked and analyzed 6-8 individual clones from 

each library or from the control (where the library was amplified in the presence of 1x PBS instead of 

IVIG). An overview over the results from the three groups -  ‘starting concentration’ IVIG (pooled for 

all three IVIG batches or subdivided according to IVIG brands), ‘final concentration’ IVIG and PBS 

control - together with a side-by-side comparison of the data from the unselected AAV289 library 

(see also chapter 3.1.2 and Figure 22) is shown in the following Figure 27 and Figure 28. Note that 

clones from the control amplification with PBS that were selected together with the IVIG ‘starting 

conc.’ are referred to as 289PBS, while those selected with the IVIG ‘final conc.’ are named 289ctr.   
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Figure 27: Overview over the capsid protein composition of the AAV289 library before and after IVIG selection. The top 
panel shows the linear alignment of VP amino acid residues. See Figure 4 in the Introduction for details. Colored lines in the 
four panels underneath indicate the percentage of clones that originate from the respective parental serotype at any 
position within the AAV capsid sequence. A) Clones from the original library, not subjected to any selection process. B) 
289ctr clones (selected together with IVIG ‘final conc.’) and C) 289PBS clones (selected together with IVIG ‘starting conc.’) 
were iteratively amplified on Huh7 cells in the presence of PBS, but no IVIG. D) Selection at ‘starting concentrations’ of IVIG. 
E) Selection at ‘final concentrations’ of IVIG. 6-8 clones from each library were analyzed per graph.  
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Figure 28: Overview over the capsid protein composition of the AAV289 library after IVIG selection at the ‘starting’ 
concentrations. The top panel shows the linear alignment of VP amino acid residues. See Figure 4 in the Introduction for 
details. Colored lines in the four panels underneath indicate the percentage of clones that originate from the respective 
parental serotype at any position within the AAV capsid sequence. A) Combined clones from IVIG selection at ‘starting 
concentration. The capsid protein composition of all clones is further subdivided into clones selected in the presence of B) 
Gamunex, C) Octagam and D) Kiovig, with three clones per batch. 

 

As is evident from Figure 27 above, the sequences from these clones revealed striking differences in 

the overall capsid composition for each selected pool, with the clearest patterns visible in the C-

terminal part that comprises the exterior of the capsid. Amplification of the library without additional 

IVIG selection pressure (Figure 27 panel B and C) has led to sequences that mainly consisted of AAV2 

and AAV8. In particular in the area comprising the hypervariable regions IV-VIII within the GH-loop, 

the frequency of AAV2-like amino acids was increased as compared to the unselected library (panel 

A). In contrast, the HI-loop and the very C-terminal end of 88% of the clones in panel B) and 50-80% 

in panel C) were composed of sequences from AAV8. No such clear enrichments were noted in the N-

terminal part (Figure 27B and C). Pooled results from all three IVIG batches from the selection at 

‘starting’ concentrations showed an increase in AAV9-like amino acids throughout the entire capsid 

sequence compared to the PBS control (Figure 27B-D and Figure 28A). This trend was most 
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prominent for clones selected in the presence of Octagam (Figure 28C). On average, the increase of 

AAV2-like sequences in the GH-loop, especially in hypervariable regions V to VIII, was again visible, 

albeit less pronounced than in the PBS controls (Figure 27B-D and Figure 28A). A notable exception 

were again clones from the Octagam selection where AAV9 prevailed in this particular capsid area 

(Figure 28C). At the C-terminal end, comprising the HI-loop and the hypervariable region IX, non-

AAV2-like amino acids again became more abundant, regardless of IVIG brand (Figure 27D and Figure 

28A-D). 

The most drastic differences were observed, however, for the selection in the presence of the ‘final’ 

concentrations of IVIG. As seen in Figure 27 panel E, these selection conditions markedly shifted the 

overall clonal composition towards AAV8, with the entire second protein part consisting almost 

exclusively of amino acids from this serotype. Accordingly, the outer part of the capsids of those 

clones is mostly composed of AAV8-like amino acids (Figure 27E) (see also Figure 30 below).   

Based on these remarkable differences, we were interested to also compare the transduction 

efficiency of selected clones, to ideally link their activity to specific parts of each capsid. We therefore 

re-cloned eight individual capsid genes per selection scheme (nine clones for the ‘starting’ IVIG 

concentration selection) into the AAV helper plasmid, produced YFP reporter-expressing vectors as 

crude lysates and used them to transduce Huh7 cells in a 96-well format. Prior to infection, the 

vectors were incubated with increasing amounts of IVIG (Gamunex brand) or PBS as control. In 

parallel, we titered vectors based on wt AAV2, AAV8, AAV9 or the chimera AAV-DJ as further 

controls. Infection rates were determined by FACS analysis 72 h post-infection and are depicted as 

heatmaps in Figure 29.  

Amongst the eight clones from the unselected library, clone #2 was by far the most efficient and 

resembled AAV2, as already noted during the initial characterization of the AAV289 library (chapter 

3.1.2). Also notable is that it seemed more resistant to IVIG than AAV2, since the reduction in 

infectivity at 1 µg/µl IVIG was less pronounced (as compared to the titration without IVIG, Figure 24). 

The same was noted for some other clones in the unselected library (#1, 4 and 6), although they 

were far less efficient to begin with, similar to AAV8 and 9. (For aa sequences of these clones refer to 

Figure 21)  
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Figure 29: Titration of selected clones at increasing IVIG concentrations. Vectors were produced from individual clones 
from the different pools as described in the text and titered in the presence of the indicated IVIG concentrations in Huh7 
cells. The data are shown as heatmaps where the percentage of YFP-expressing cells is color-coded, starting from zero in 
black to the maximum in white. Here and in the following heatmaps, the overall maximum for each heatmap is indicated by 
the color: yellow = 25%; green = 50%; blue = 75% and red = 100%. A) Chimeras from the original AAV289 library yielded a 
variety of transduction efficiencies, as expected. These are the same clones as in Figure 24 above. B) Clones from iterative 
library amplification without IVIG (289ctr.) behave similarly to AAV2 and AAV-DJ. C) Selection at the ‘starting’ IVIG 
concentration (shown are the three different brands Gamunex, Octagam and Kiovig). Note that these clones show no 
obvious improvement over the iterative amplification with the PBS control (PBSctr.) (panel B). D) Selection at high levels of 
IVIG led to AAV8-like particles with decreased infectivity but high resistance to IVIG. Titration data for AAV2 and AAV-DJ 
were omitted as these vectors were far superior to those shown in this panel and would thus have distorted their color-
coded depiction.    

 

Interestingly, all chimeras from the 289ctr. scheme (amplified without IVIG) exhibited an infectivity 

of more than 90% when titered without IVIG (Figure 29B). Common to all these clones is a part of the 

GH-loop-comprising hypervariable regions (VR) IV-VIII that was derived from serotype AAV2. Within 

this area, at positions 585 and 588 in VR-VIII, lies the HSPG binding domain which is present in AAV2 

but absent in AAV8 and AAV9. This strongly suggests that library amplification in cultured cells had 

led to an enrichment of clones that contained this HSPG binding site which presumably enhances 

infection. When incubated with IVIG prior to titration, the infectivity of some of these clones 

dropped comparable to that of AAV2. Still, other clones continued to transduce efficiently even at 
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higher amounts of IVIG, akin to AAV-DJ. Interestingly, these more efficient clones #1, #3 and #6-8 

consist of sequences from AAV8 in VR-IV, indicating that this region is responsible for the increased 

IVIG resistance of these clones (Figure 21). Remarkably, AAV-DJ, which is also very resistant to IVIG, 

likewise contains VR-IV from AAV8. Together, these findings suggest that the AAV-DJ phenotype 

(high transduction efficiency and high IVIG resistance) is due to a combination of the first part of the 

GH-loop including VR-IV from serotype 8, and a second part of the GH-loop with VR-VIII from AAV2.  

Considering that these clones were not exposed to human sera during the selection process, one 

may moreover conclude that this GH-loop combination primarily increases transduction efficiency 

and that the enhanced resistance to IVIG is a by-product. In this respect, clone #7 is particularly 

interesting. It shares this GH-loop with the other DJ-like isolates yet its efficiency at an IVIG 

concentration of 2 µg/µl was decreased. One obvious difference between clone #7 and these other 

clones is in hypervariable region VR-I within the BC-loop, which is composed of amino acids from 

serotype 2 in clone #7, not serotype 8/9 as in AAV-DJ (Figure 21). This region is indeed involved in 

transduction, as well as neutralization with A20 (an antibody which recognizes and neutralizes 

assembled AAV2 capsids [147], [271], [272]) and IVIG [81], [86], [97], [277]. Nonetheless, this cannot 

be the only explanation as clone #8 is identical to clone #7 in this region yet it is more resistant to 

IVIG, similar to AAV-DJ. 

Another interesting clone is #4 which was less efficient than AAV2 despite the fact that of all eight 

clones, it is most homologous to this serotype. Not only is the entire GH-loop from AAV2, but in 

contrast to the other seven clones in this group and to AAV-DJ, the parts from AAV2 extend to the 

very C terminus including the HI-loop and VR-IX. Conversely, the BC-loop and VR-I are from serotypes 

8/9 in clone #4, akin to AAV-DJ (Figure 21). Taken together, this implies that the combination of VR-V 

to -VIII from AAV2 with an HI-loop and VR-IX from AAV8/9, as present in AAV-DJ but not in clone #4, 

provides a capsid composition that exhibits high transduction efficiencies. Notably, this is consistent 

with, and extends, the conclusions from the analysis of the clones selected in the absence of IVIG 

(see above). 

Equally interesting were the results from the selection at ‘final’ doses of IVIG where the clones 

differed substantially from the other groups in terms of overall sequence composition (Figure 21, 

Figure 27 and Figure 30) and infection rates (Figure 29D). 

Particularly obvious and consistent is that all eight clones largely resembled AAV8, especially in the 

second protein half including VR-IV to -IX; accordingly, none of the eight clones in this group had the 

GH-loop from AAV2. AAV8 was also clearly the predominant serotype in VR-I to -III of these eight 

clones (Figure 21). Moreover notable is that despite their overall low efficiency (as compared to the 
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potent AAV2 and AAV-DJ), all eight clones in this group were able to resist even high doses of IVIG 

during the titration, as expected from this selection scheme. Altogether, this strongly suggests that 

the very stringent IVIG selection in this group had shifted the bias towards chimeras that largely 

mimic AAV8 and that thus can evade neutralization, at the cost of alternative capsid compositions 

that would have mediated a higher infectivity.  

Finally also noteworthy is clone #8 from this group as it mediates a slightly increased transduction 

rate as compared to AAV8/9 (Figure 29D). The only notable difference to these two wildtypes is in 

the C-terminal part where clone #8 carries a single mutation at position 493, causing a switch from 

threonine (T) to lysine (K) as in AAV2 (Figure 21). However, whether this single amino acid change 

truly contributes to the increased transduction of this peculiar clone has to be analyzed more 

thoroughly in future experiments.  

Titration of clones from the IVIG selection at ‘starting’ concentrations showed no significant 

difference in transduction efficiency as compared to the pool from the selection without IVIG, 

consistent with their comparable capsid composition. It can be assumed that the previously 

described increase in AAV9-like amino acids in these clones is due to the IVIG selection pressure, but 

it has no obvious effect on transduction efficiency (Figure 27D, Figure 28 and Figure 29) 

To summarize and better visualize the findings from all these experiments, the 3D structures of 

selected clones are depicted in Figure 30 on the following page. Based on their transduction 

efficiencies, the shown clones were clustered into DJ-, AAV2- or AAV8/9-like chimeras. As already 

noted above and as further exemplified by these 3D structures, it is particularly the composition and 

combination of the different hypervariable regions that are exposed on the capsid surface which 

determines capsid properties. Consequently, the pattern of these regions is largely dictated by the 

selection pressure that has been applied to the AAV289 library. A weak selection pressure - no IVIG 

or a low dose, regardless of IVIG batch - favors clones that resemble AAV2 and can therefore infect 

potently, but are also readily neutralized by the pre-existing antibodies present in IVIG. In contrast, a 

stringent selection with high IVIG produces the opposite, i.e., hybrids that transduce poorly but are 

concurrently more resistant to neutralization. The AAV-DJ chimera and the newly selected chimeras 

that behave similarly combine the best of both worlds, by mediating potent transduction even in the 

presence of relatively high IVIG doses.     
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Figure 30: 3D structure of clones selected under various conditions. The top panel gives an overview of a VP3 monomer. 
Variable regions are named and indicated by light gray color. Thin white lines indicate the 2-fold (2F), 3-fold (3F) and 5-fold 
(5F) symmetry axis, respectively, of the assembled AAV capsid. Shown below are the eight clones from the 289ctr. group, 
selected in the absence of IVIG, as well as five of the eight clones after IVIG selection at ‘final concentration’ (f.c.). Also 
shown is how they cluster into AAV-DJ, AAV2- or AAV8/9-like chimeras, according to their transduction efficiency in Huh7 
cells per se or with increasing concentrations of IVIG. Dark gray ribbons/balls in the lower panel indicate sites of mutation. 
All 3D structures were generated with PDB viewer on the basis of the structure of AAV2 (file 1LPD). 
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3.1.2.2 Library selection without Adenovirus helper 

In all selections above, Adenovirus type 5 (Ad5) was used as helper virus to promote the replication 

of AAV particles that had entered the infected cells and to thus permit the production of progeny 

AAV for re-infection of fresh cells. This co-infection is necessary as AAV is a replication-deficient virus 

that has evolved to highjack RNA and protein functions of its helper virus for its own agenda. Hence, 

the vast majority of previously published protocols include this helper virus co-infection step, except 

for a few reports of in vivo biopanning where Adenovirus was omitted due to safety or toxicity 

concerns, or where the target tissue was resistant to helper virus infection from systemic virus 

inoculation [212], [216], [217]. However, also for in vitro selection in cultured cells, there are at least 

three concerns with the use of a helper Adenovirus. First, the inherent Ad5 tropism will limit or even 

prohibit the selection in cell types of interest that are not or only poorly infectable with this virus. 

This is equally problematic for mixed cell populations, such as peripheral blood mononuclear cells 

(PBMCs), where the Ad5 tropism will induce a bias for or against a cellular subpopulation. Second, 

the adenoviral helper functions act throughout the entire AAV life cycle, up to final cell lysis and 

hence efficient release of AAV progeny. Yet, AAV vectors are intended to only transduce target cells, 

i.e., to deliver their genome to the nucleus for expression, but not for replication and subsequent 

packaging into new virions. Hence, it is conceivable that the use of helper virus during AAV library 

selection may enrich AAV capsids that are optimized for later steps in the productive infection which 

are, however, irrelevant for their use as recombinant vectors. Third, because the adenoviral helper is 

replication-competent and pathogenic in humans, its use requires the entire selection protocol to be 

conducted under biosafety 2 conditions (despite the fact that the AAV library per se is level 1) which 

are not available in any lab. 

For all these reasons, there is a rationale and preference, at least in theory, to molecularly evolve and 

select AAV chimeras in the complete absence of infectious Adenovirus. We therefore asked two 

essential questions: 1) does AAV selection in cultured cells without helper virus lead to the isolation 

of AAV clones that differ substantially from those selected under standard conditions, i.e., in the 

presence of Ad5, and 2) if so, will these clones really transduce cells more efficiently when used as 

vectors, or will they have some defect in transgene delivery and/or expression?   

To answer these questions, we again exploited the AAV289 library that we had used for the different 

IVIG selections in the previous chapter. As described there, our control selection scheme represented 

a standard approach, where a shuffled library was amplified five times in the presence of helper Ad5 

(289PBS, Figure 27C). Notably, the same helper virus-dependent approach, albeit with a different 

library and in the presence of IVIG, had also been used to enrich the AAV-DJ chimera in the original 

Grimm study [212]. As a second and new strategy, we now re-screened our AAV289 library by five 
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cycles of infection in the absence of any helper virus, followed each time by PCR amplification of viral 

genomes that had entered the cell, re-cloning into the ITR/rep plasmid, and finally production (in ten 

14 cm dishes) and iodixanol gradient purification of a fresh library for the next infection round. The 

titers of each new library were determined by RT-PCR, and virus integrity was confirmed by Western 

blot analysis (Table 14). Because this selection scheme does not result in expression of AAV proteins 

in the infected cells, it was impossible to monitor changes in library potency over time by Western 

blotting, or to use these data to in turn adjust the volume for re-infection to a minimal amount 

promising a tight genotype-phenotype linkage (see chapter 3.1.2.1 above). Instead, we kept a 

constant titer of 2x108 particles per well of a 6-well plate for each infection round, based on our 

empirical observation that this virus amount permitted a robust PCR rescue (data not shown). 

 

Table 14: Selection of the AAV289 library in the 
absence of helper Adenovirus. Shown are the titers 
of the original library and after each round (up to 
#4) of infection and re-production. Also shown are 
Western blots made after virus production and 
purification. The B1 antibody was used to detect the 
viral capsid proteins VP1, VP2 and VP3. After five 
rounds of selection, the titer of the fifth library was 
no longer determined. Instead, ten clones of this 
last library were isolated, subcloned into an AAV 
expression plasmid and tested individually by 
Western blotting. The shown results confirm the 
integrity of the intermediate libraries as well as of 
the individual clones.  

 

 

 

 

 

 

Library Viral titer vg/ml Western Blot

289 2.00E+12

289-Ad5-1st 6.48E+11

289-Ad5-2nd 7.65E+11

289-Ad5-3rd 4.00E+12

289-Ad5-4th 1.36E+12

289-Ad5-5th
VP1 
VP2 
VP3

VP1 
VP2 
VP3

VP1 
VP2 
VP3

VP1 
VP2 
VP3

VP1 
VP2 

VP3

VP1 
VP2 
VP3

1 2 3 4 5 6 7 8 9 10
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Figure 31: Clonal composition of the shuffled AAV289 library after selection with or without Adenovirus. Shown on top is 
the linear alignment of VP capsid residues akin to the depiction in Figure 4 and Figure 27 (see these for details). Colored 
lines in the three panels underneath indicate the percentage of clones that originate from the respective parental serotype 
at any position within the AAV capsid sequence. A) Data for the original unselected AAV289 library. All serotypes are 
equally distributed throughout the capsids. B) The 289 library after iterative amplification on Huh7 cells in the presence of 
adenoviral helper. C) The same AAV289 library after selection without Ad5. Note how the entire C-terminal half of all 
clones, starting from the beginning of the GH-loop, is composed of AAV2-like amino acids. 8 to 10 clones from each library 
were analyzed per graph. Graphs A) and B) have been shown before in Figure 27 and were again included here for direct 
comparison. 

 

After five rounds of infection and PCR rescue, 10 individual clones were picked randomly, sequenced 

and analyzed in direct comparison to the clones previously isolated from the unselected library or 

after selection in the presence of Adenovirus, respectively (see chapter 3.1.2.1). As is evident from 

the graphical representations in Figure 27 and Figure 31, the most striking differences occurred again 

in the C terminus, which was entirely derived from AAV2 in 100% of the clones selected without Ad5 

helper. This included the complete GH-loop, the HI-loop as well as VR-IX at the very end (Figure 31). 

Consequently, none of these new clones carried the aforementioned combination of a GH-loop from 

AAV2 with a C-terminal end from AAV8 that was found in clones selected in the presence of 

Adenovirus (Figure 27 and Figure 31).  

From six of these ten clones, we next also produced vectors (after re-cloning of the corresponding 

cap genes into an AAV helper plasmid) encoding a YFP reporter and titered them in Huh7 cells along 

with clones from the previous 289PBS control pool that was selected in the presence of Adenovirus. 

Parental serotypes AAV2, AAV8 and AAV9 served as controls. As compared to previous titration 

experiments, we shortened the time until FACS analysis after infection to 48 instead of 72 h since we 
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added helper virus during the titration in some experiments and wanted to avoid excessive cell 

death.  

Curiously, despite their differences in sequence composition, the infection rates of clones selected 

without Ad5 did not differ dramatically from those selected with Ad5. Instead, the infectivity of all 

clones, regardless of selection protocol, was between 80% and 90% (at the lowest dilution, top wells 

in Figure 32A). Adding Adenovirus during the titration increased the infection rate of AAV2 from 86% 

to 100%, yet had no effect on the chimeric AAVs (Figure 32A). Thus, despite selection of particular 

library clones in the presence of Adenovirus, adding this helper did not further boost the activity of 

the corresponding capsids once they had been transferred into an AAV vector context.  

One notable general outlier was clone #2 which gave only 37-39% transduction in both assays. While 

it shares the complete AAV2 C terminus with all other clones in this pool (selected without Ad5), it is 

the only clone whose ßG-sheet and beginning of GH-loop originate from AAV8, and whose VR-II in 

the DE-loop is from AAV9 (Figure 21) (for more detailed information about the AAV capsid loops and 

intermediate ß-sheets, please refer to Figure 4). This C-terminal capsid composition is shared by only 

one other clone tested, the also less functional clone #4 from the previously selected control pool 

289ctr (selected together with IVIG ‘final conc., Figure 21, Figure 27B,  chapter 3.1.2.1).  

Thus far, all titration experiments had used a relatively long AAV infection time of 4h. To dissect 

potential differences in the early kinetics of receptor binding or virus uptake between the two pools 

(plus/minus Ad5 during selection), we performed a time course experiment where we kept Huh7 

cells on ice after AAV addition to inhibit virus uptake, followed by a switch to 37°C for 1, 5 or 20 min. 

The cells were then washed twice with 1x PBS supplemented with fresh medium and incubated for 

48 h until FACS analysis. Again, we found no clear differences between the chimeras from both 

selection schemes, despite some variation between individual clones (Figure 32B). 
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Figure 32: Infection rates of AAV chimeras selected with or without Ad5 helper. A) Infection rates 48 h post-infection 
either in the absence (top) or presence (bottom) of Adenovirus during the titration. B) Time course experiment as described 
in the text, also showing no clear difference between the clones (except for #2 without Ad5) from the two pools. (For color 
code of the heat maps refer to Figure 24 and Figure 29.) 

 

At this point, we were surprised to find that selection with or without adenoviral helper apparently 

resulted in clones that differed in sequence, but were identical in transduction. This tempted us to 

speculate that the capsids might differ in their strength of transgene expression, a parameter not 

studied thus far (since we had only measured numbers of infected cells). Consequently, we re-

analyzed the FACS data with a new focus on YFP expression intensities as a means for how well the 

virion is processed within the cell. Indeed, as shown in the following Figure 33, this now revealed 

striking differences between the two capsid pools. 
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Figure 33: Mean YFP expression intensities of AAV chimeras selected with or without Adenovirus. A) Results at 48 h post-
infection in the absence of Adenovirus during titration. B) Same as A, but in the presence of Adenovirus during titration. 
Depicted are the expression intensities of individual clones (heat maps) as well as the average overall intensities of the 
different pools (corresponding bar graphs on the right). Intensities in both heat maps were normalized to the highest value 
of AAV2 expression measured with Adenovirus (white square in panel B) and given in percent. The average overall 
expression intensities of the pools are shown as absolute values. Note that two bars (gray or hatched) are shown for the 
clones selected without Ad5 that either omitted or included clone #6, which was an obvious outlier in this group.  (For color 
code of the heat maps refer to Figure 24 and Figure 29.) 

 

As compared to the highest mean intensity value, measured with AAV2 in the presence of Ad5 during 

the titration and set to 100%, clones from the selection plus Ad5 helper gave a relative expression 

intensity of 30-50%. In marked contrast, clones from selection without Adenovirus gave only around 

10% expression (Figure 33A). These differences were noted in the absence or presence of Adenovirus 

during the titration, where the average overall YFP expression intensities increased from 405 to 718 

(without Ad5) or 159 to 238 (with Ad5) (Figure 33B).  

The only exception in the pool of clones selected without Ad5 was clone #6 whose transduction rates 

as well as expression intensities are similar to those of the clones selected in the presence of helper 

virus. Indeed, clone #6 resembles AAV2 almost entirely except for only two amino acids in VP1 

(Figure 21). Accordingly it is in all probability that all capsid mediated functions of #6 are AAV2-like. 

However, these two aa changes apparently led to a slightly decreased infectivity of clone #6 upon 

Ad5 super-infection, as compared to wtAAV2.   

In summary, we can draw at least two essential conclusions from these experiments, which are again 

highly relevant with respect to the design and application of future selection strategies (see 

Discussion for more details). First, our sequence and titration data strongly support the concept that 
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the different properties of AAV capsids, such as transduction rates and efficiencies (or IVIG 

resistance, as studied before in chapter 3.1.2.1), are not determined by single residues or regions, 

but rather by a very complex interplay of multiple dispersed domains. This explains why we obtained 

several clones in all selection schemes that differed in their primary sequence yet gave comparable 

phenotypes. It also highlights that the original combined positive-negative pressure used to isolate 

the AAV-DJ clone as the only lead candidate in the Grimm et al. study must have been very potent 

and stringent [212]. Second, our data show that the presence or absence of Ad5 helper virus during 

library selection indeed has a profound effect on the performance of the resulting clones, as we had 

hypothesized originally. Surprisingly though, our results suggest that adding helper virus is actually 

beneficial, despite the mentioned concerns about safety and biased tropism. Clear evidence is the 

superior transgene expression per cell from the clones selected in the presence of Ad5, which is a 

feature that is very relevant for many gene therapy applications. Nonetheless, there are specific 

scenarios where a helper Adenovirus can or should not be used during selection, as exemplified in 

the next chapter and as further discussed below (Discussion chapter 4). 

 

3.1.3 In vivo biopanning of an AAV15689 library 

One of the capsid libraries that we had generated during the initial work when we established and 

validated the new plasmids for AAV shuffling was made of serotypes 1, 5, 6, 8 and 9 (Table 13 above). 

This AAV combination was not only picked because it represented a typical experimental setting 

where users wish to shuffle five different serotypes, but also because these particular candidates are 

interesting for a variety of in vivo selections and applications. AAV1 and AAV6, for instance, potently 

transduce smooth muscle cells and heart [110], [155]. Moreover, our own data (shown later, chapter 

3.2.5.2) imply their great potential to also efficiently infect cells of neuronal origin, blood cells as well 

as cell lines derived from organs like spleen or pancreas (3.2.3). AAV8 and AAV9 poorly transduce in 

vitro but are very efficient in vivo, plus they have a broad tissue tropism and the potential to cross 

the blood-brain barrier [155], [212]. Finally, AAV5 was chosen for its unique capsid composition (it is 

the most diverse of all known AAV serotypes) and its low abundance in humans, with only 10% of the 

human population carrying pre-formed antibodies against AAV5 [278]. Besides, AAV5 was also 

recently described to mediate retrograde transport along axons [279]. Last but not least, we 

purposely omitted AAV2 from this library to lower the risk of neutralization by prevalent anti-AAV2 

antibodies and to avoid a bias towards hepatotropic chimeras. As shown in Table 13, the final CsCl-

purified library had a diversity of 1.5x105 colonies and a viral titer of 6x1012 particles per ml.  
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Because we had this unique library, we were able to establish a collaboration with the company 

Boehringer Ingelheim (BI) in which they screened this library in the pancreas of adult mice in vivo, 

with the aim to isolate chimeras that potently transduce -islets. 

3.1.3.1 Library selection in murine pancreas  

The ß-islets, also called islets of Langerhans, are located in the pancreas and consist of approximately 

75% ß-cells. These cells are important for insulin regulation and are crucially involved in type 1 

diabetes, making them important targets for therapeutic gene transfer and intervention. To screen 

our library for candidates that can infect these cells, we transferred it to our collaborators at BI who 

injected it intravenously into the tail vein of adult C57/BL6 mice at a dose of 3x1011 viral particles per 

mouse. Treated animals were sacrificed 3 d post-injection, and ß-islets were isolated from the 

pancreas. Figure 34A shows a microscopic image of ß-cells isolated after the first selection round. 

Of note, the mice were not co-injected with Ad5 helper virus, despite our evidence described in the 

previous chapter 3.1.2.2 that this may foster the isolation of potent capsids. Our reasons for omitting 

the helper virus in the in vivo biopanning were that systemic Ad5 delivery is toxic in mice, and that it 

may additionally introduce a bias towards cells other than the desired -cells, such as hepatocytes. 

As also noted before, leaving out the helper virus created the need to rescue the capsid genes of the 

infected AAV particles by PCR and to re-clone them for a new library production prior to re-infection.  

Accordingly, we extracted whole DNA from ß-cells after library infusion and then PCR-amplified the 

chimeric capsid genomes from the DNA samples using primers LseqF and LseqR (see Figure 16). To 

obtain sufficient DNA amounts for cloning into the AAV library recipient plasmids and subsequent 

library production, we additionally ran a second nested PCR using primers Lseq_nstF and Lseq_nstR 

(Figure 34C-E) (see 2.2.4.5 for primer sequences). Moreover, after each round, tissue samples from 

liver, heart, visceral fat and kidney were also taken to monitor the distribution of AAV capsid 

genomes in other organs besides ß-islets. As exemplified in Figure 34B, capsid sequences could never 

be amplified from heart or kidney, and were only found in visceral fat after the first selection round, 

but no longer after the second or third injection, implying de-targeting from fat as a consequence of 

ß-cell selection. In contrast, AAV capsid sequences were detected abundantly in the liver DNA 

samples especially after the second and third injection. 
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Figure 34: In vivo selection of an AAV15689 library in murine ß-islets. A) Representative photo of ß-islets isolated from 
mouse pancreas after the first injection with the AAV15689 library. B) AAV genome amplification from the shown tissue 
samples after the first, second and third selection round. C-E) AAV capsid gene amplification from ß-cells by PCR and nested 
PCR after the first, second and third injection. Total DNA concentrations and template volumes in each round are shown at 
the bottom. Desired cap bands are indicated by yellow arrows.  

 

From each selection round, ten clones were sequenced and analyzed for their overall composition 

according to the five parental genes. After the first injection, AAV5 was almost entirely depleted 

from the library, whereas the remaining four parental sequences were still present throughout the 

entire capsid sequence, with a slight tendency towards an AAV1/AAV6 (the two serotypes are hard to 

distinguish in this region) over-representation in the C-terminal part (Figure 35A). After the second 

selection round, the bias towards AAV1/AAV6 substantially increased for the entire GH- and HI-loop 

(Figure 35B). Three clones from the first and second selection round carried an asparagine (N) at 

their very C terminus that originates from serotype AAV8, while the rest of their C-terminal half was 

composed of sequences from AAV1/AAV6. Besides, most clones from the second selection could only 

be clearly distinguished according to their BC-loop.  
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Figure 35: Overview over the clonal composition of the shuffled AAV15689 library after in vivo biopanning. The top panel 
shows the linear alignment of VP capsid residues, while colored lines indicate the percentage of clones that originate from 
the respective parental serotype at any position within the different AAV capsid sequences. See Figure 4 for further details. 
A) Composition of the library after the first selection round. B) Composition of the library after the second selection round. 
Ten clones per selection round were sequenced and analyzed using the Salanto program. 

 

Surprisingly, already after the third selection round, we detected only a single sequence after PCR 

amplification (all ten clones were 100% identical). This clone, called AAV-BIEK, consists of AAV1/AAV6 

in its entire VP3 sequence except for the BC-loop that came from AAV8 and the aforementioned 

AAV8-like asparagine at the very C terminus (Figure 36A). In fact, the combination of both these 

AAV8-like elements was the only obvious feature that distinguished this clone from clones from 

previous selection rounds.  

To analyze whether this lead candidate would indeed transduce pancreas cells, we transferred its 

capsid sequence into our AAV helper plasmid to produce YFP-encoding vectors. As controls, we 

included several clones from the first and second selection round. These were picked based on their 

sequence that comprised AAV8- and AAV9-like amino acids in the C-terminal part, for example in 

clone BI1st#2. Alternatively, they combined the AAV1-/AAV6-like GH-loop with a BC-loop of a 

different origin, as in the case of BI1st#3, BI2nd#10 and BI2nd#12 (Figure 36B). When we tested the 

different purified vectors on Panc-1 cells, a human pancreatic carcinoma cell line, most gave only 

weak transduction as compared to AAV6. Here we chose AAV6 as a control, since it was found 

superior to all other wildtype and modified AAV clones in cells from pancreas and spleen (chapter 

3.2.3). The only clone that transduced Panc-1 more efficiently than the other isolates, yet still less 

than AAV6, was clone #12 (Figure 36C). Notably, this clone was from the second selection round and 

consisted almost entirely of AAV1/AAV6-like amino acids.  
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To our surprise, our actual lead candidate AAV-BIEK not only transduced the human pancreatic cells 

inefficiently, but it also did not provide transgene expression in -islets in vivo after intravenous 

injection into mice (undisclosed data from BI; not shown). Alas, our collaboration partner did not 

study whether the viruses had at least bound to the cells or entered the -islets without uncoating 

and expressing  their transgene; two possibilities that would be fully compatible with our enrichment 

of this clone despite its presumable inactivity in its target cells. Moreover, our experience from the in 

vitro selections with or without helper Adenovirus suggest a critical and positive role of the helper 

virus in the isolation of capsids that mediate robust transgene expression within the infected cell. 

Taken together, we can envision a number of explanations for this initially counter-intuitive result 

from our in vivo selection, as will be discussed in more detail in chapter 4 below.     

 

Figure 36: 3D structure of selected clones and YFP expression ratios in Panc-1 cells. A) 3D structure of the lead candidate 
AAV-BIEK after three selection rounds in murine ß-cells in vivo. Thin white lines indicate the 2-fold (2F), 3-fold (3F) and 5-
fold (5F) symmetry axis, respectively, of the assembled AAV capsid. B) 3D structure of two clones each from the first and 
second injection rounds. See panel A) for color code. C) Transduction efficiency of AAV-BIEK as compared to shuffled clones 
from previous selection rounds or AAV6 as control. (For color code of the heat maps refer to Figure 24 and Figure 29.) 
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3.2 AAV peptide display 

The second part of the work in this thesis focused on viral peptide display as an alternative technique 

for molecular AAV vector evolution. As already described in more detail in introductory chapter 

1.3.2, display of short peptide libraries on the AAV surface and subsequent selection on target cells 

have been used extensively over the past decade to alter AAV tropism. However, with the exception 

of a few recent studies, these approaches were always restricted to the capsid of AAV serotype 2, 

due to the fact that this has long been the best characterized isolate and that its structure had been 

resolved [212], [221], [224]–[226]. In the meantime, the structures of eight other serotypes have 

become available, yet the expansion of peptide display to isolates other than AAV2 remained 

challenging because of our incomplete knowledge of the receptor binding sites in these capsids. 

These sites would be preferred regions for peptide insertion, along the basic idea to ablate the 

primary tropism while concurrently adding a new specificity through the displayed peptide. Still, 

alternative serotypes continue to be highly interesting templates for AAV peptide display as it is very 

likely that the eventual particle properties are not only determined by the peptide, but rather by a 

complex interplay of the additional amino acids with residues and domains in the underlying capsid 

scaffold.  

Here, our major aim was thus to comprehensively assess the potential of 11 AAV serotypes other 

than AAV2 to serve as templates for peptide display. Therefore, it was first necessary to genetically 

engineer these alternative capsid genes in order to allow simple and straight-forward insertion of 

peptide-encoding oligonucleotides. Second, we aimed to analyze the resulting capsid-peptide panels 

in a large variety of cell types, including different primary cells as well as established cell lines, in 

comparison to the 12 unmodified viruses. Third, if functional in principle, we planned to screen our 

new AAV panels on selected clinically relevant cell types in-house or in collaboration with other labs. 

 

3.2.1 Engineering of alternative AAV serotypes for peptide display 

The first specific aim was to modify the capsid sequences of different non-AAV2 serotypes to 

introduce sites for insertion of peptide-encoding oligonucleotides. This posed two challenges: 1) the 

technology how to engineer these sites, and 2) the selection of the precise region for 

modification/insertion. In the pioneering work with AAV2, the two most preferred sites were 

positions 587 or 588 since they are exposed on the capsid surface, tolerate peptide insertions and 

comprise 588 or are near 587 a residue that is critical for primary receptor binding (an arginine at 

position 588, R588). To insert oligonucleotides at either of these positions, the AAV2 cap gene has 

been mutated to introduce two endonuclease restriction sites that are neither present elsewhere in 

the AAV2 genome nor in the plasmid backbone. Moreover, these sites ideally produced two different 
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overhangs after cleavage, to facilitate directed cloning of the oligonucleotide (as two single-stranded 

DNA strands that form matching overhangs after annealing). A typical enzyme that fulfills these 

criteria is SfiI which was first used by the Kleinschmidt lab in the AAV2 context, and later also by 

Grimm and co-workers for the modification of AAV-DJ which is identical to AAV2 in the area 

surrounding R588 [212], [221]. Unlike other possible non-cutters in AAV2/-DJ that could have been 

used, SfiI has the benefit that it is a class I restriction enzyme that cuts outside its actual recognition 

site, allowing for the creation of individual sticky overhangs. Luckily, we found that SfiI is also a non-

cutter in the 11 other serotypes that we had available in the lab and wanted to modify - AAV1, 3-9, 

rh10, po1 and 12 (the same as used in the shuffling work above). The problem that remained was 

how to insert two SfiI sites into all 11 serotypes, considering that the originally published strategy 

comprised a series of three work- and time-consuming iterative mutagenesis steps (Figure 37 left, 

top). In fact, to adopt this strategy to e.g. AAV9, even five mutagenesis reactions would have been 

required (Figure 37 left, bottom). We therefore designed a new, much simpler and faster strategy 

that is depicted on the right in Figure 37 and explained in detail in the next chapter.  

 

Figure 37: Strategies for insertion of peptide display sites in AAV serotypes. Shown is a comparison of the standard 
iterative site-directed mutagenesis approach (left) with a new PCR-based protocol (right) that was implemented in this 
thesis. AAV2 (upper panel) and AAV9 (bottom panel) are depicted as examples. Starting from the wt (top in each panel) to 
the final modified sequence (bottom in each panel), each sequence in between marks one intermediate step. Red 
nucleotides highlight the changes over the previous sequence, and blue letters are the corresponding amino acids. 
Numbers above are amino acid positions corresponding to AAV2 cap. After each site-directed mutagenesis step in the 
original protocol (left), the modified cap genes have to be cloned and sequenced (indicated by arrows). The number of 
intermediate steps necessary to introduce the two SfiI sites via this strategy varies largely between serotypes, from three 
for AAV2, to five for AAV9 and other serotypes. In contrast, the new PCR-based protocol permits the introduction of the 
same two SfiI sites in only two steps, for any serotype. It is based on NsiI digestion of two PCR-amplified fragments and 
their subsequent ligation via the resulting overhangs. 
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3.2.1.1 PCR-based creation of a peptide insertion site in AAV2  

The hallmark of our new strategy is that a cap gene of interest is first PCR-amplified in two halves 

using primers that contain the two desired SfiI sites - one in the 3’ primer for the left part of cap, and 

the other in the 5’ primer for the right cap fragment. This is followed by a triple ligation that joins the 

two halves using an NsiI site also present in these two primers and that concurrently inserts the 

modified cap gene into a library plasmid containing AAV2 ITRs and rep (the same as used for the 

shuffled libraries above), or into an AAV2 helper plasmid (lacking the ITRs). Because both SfiI and NsiI 

generally cut infrequently, this strategy was fully compatible with all 12 AAV serotypes (including 

AAV2) that we studied here, and will most likely also work with other viral isolates in the future.     

To obtain proof-of-concept, and to compare the efficiency and speed of our approach with the 

conventional strategy, we initially tested it with AAV2. We therefore designed appropriate PCR 

primers according to the rules outlined above for the amplification of a ~1.8 kb left half of AAV2 cap 

(ending with SfiI and NsiI sites) and a ~400 bp right half (starting with NsiI and SfiI sites). Following 

digestion with NsiI and further unique restriction enzymes that cut upstream of the left cap half 

(SwaI) or downstream of the right (SpeI), the two halves were gel-purified and ligated into a SwaI-

SpeI double-digested AAV2 helper plasmid. Further details of the primer design and cloning 

procedure can be found in the Materials and Methods section (2.2.4). Notably, control digests as well 

as sequence analyses confirmed successful cap re-assembly and SfiI site insertion in nearly 100% of 

the resulting clones (Figure 38A). In contrast, the success rate of the original step-wise mutagenesis 

using a commercial kit (Stratagene, QuikChange Site-Directed Mutagenesis Kit) is only ~80% per 

mutagenesis step, according to the information provided by the manufacturer and to our own prior 

experience (D. Grimm, personal communication).           

Analogous to the original method, our new primers were designed such that they introduced a 

frameshift into the modified and re-assembled cap genes, and that proper insertion of the peptide-

encoding oligonucleotide is required to correct this shift. The purpose of this frameshift is to prevent 

contamination of the final viral library with capsids that have not taken up the oligonucleotide and 

hence do not display the re-targeting peptide(s). We verified this presumption by inserting a specific   

oligonucleotide, encoding the peptide NSSRDLG that was previously selected from peptide libraries 

in two independent studies [212], [221], into our modified AAV2 helper plasmid. The oligonucleotide 

was designed to introduce an additional AvrII restriction site that enabled us to confirm its insertion 

by control digestion. Moreover, after annealing of the two single DNA strands, the resulting double-

stranded oligonucleotide contained two overhangs that were compatible with those from the SfiI 

digestion. As exemplified in Figure 38B, the success rate of this ligation was 100%. Importantly, 

Western blot analysis after small-scale virus productions validated the restoration of correct VP 
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protein expression after oligonucleotide insertion (Figure 38C). Titration of the recombinant AAV2 

variant displaying the NSSRDLG motif showed a decreased efficiency in Huh7 cells as compared to 

wildtype AAV2 (Figure 38D). This result was expected since the peptide insertion destroyed the HSPG 

binding domain in AAV2 which is critical for efficient cell binding, and since the particular peptide had 

not been selected in liver cells. Together, these data confirm the feasibility and efficiency of our new 

PCR-based insertion site modification strategy in the context of AAV2, and thus tempted us to 

translate it into the other 11 serotypes as well.  

 

Figure 38: Validation of the new strategy for creation of peptide insertion sites in AAV2. An insertion site for peptide-
encoding oligonucleotides was introduced into an AAV2 helper plasmid through the new PCR-based protocol and validated 
by sequencing and expression analysis. A) Control digestion with restriction enzymes HindIII and NsiI of 10 clones from two 
independent ligation reactions. All clones show the correct restriction pattern with a 5.2 kb and a 2.1 kb band. B) Control 
digestion after oligonucleotide insertion with HindIII, AvrII and SpeI. All three expected bands of 4.7 kb, 2.1 kb and 450 bp 
(faint and thus marked with an arrow) were detected. C) Western blot analysis of virus lysates. Virus was produced in a 6-
well format by triple transfection of an adenoviral helper plasmid, a mCherry reporter construct and an AAV helper plasmid 
that encodes either the capsid of AAV2wt or AAV2 with the ‘NSS’ peptide or AAV2 with the insertion site (“I.S.”) alone. The 
B1 antibody was used to detect the viral capsid proteins VP1, VP2 and VP3. AAV2 with the inserted peptide NSSRDLG 
(“NSS”) and wt AAV2 gave clear bands. In contrast and as expected, transfection of AAV2 with only the insertion site but no 
peptide-encoding oligonucleotide did not lead to VP expression. D) Titration of crude cell extracts. Values are infectious 
units per ml (IU/ml). Shown are average values from three individual experiments plus SD. 
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3.2.1.2 Expansion of PCR-based cap gene modification to non-AAV2 serotypes 

As noted, a major hurdle in the translation of viral peptide display to AAV serotypes other than AAV2 

has long been the lack of a detailed knowledge about their three-dimensional structure and the 

precise location of the receptor binding sites. At the time when the work in this thesis commenced, 

such knowledge was exclusively available for the AAV2 prototype, despite first emerging reports on 

the cellular receptors for some other serotypes. Our best and only option to identify possible peptide 

insertion sites in the 11 alternative AAV isolates that we were interested in - AAV1-9, rh10, po1 and 

12 - was therefore to align their primary protein sequences to that of AAV2. Akin to the strategy for 

AAV2, we aimed to place the insertion sites in variable region VIII within the GH-loop, postulating 

that the peptides would then also become displayed on the capsid surface. Moreover, because of the 

variability and exposure of this region across all serotypes, it was likely that it contained critical 

residues and domains for receptor binding also in the 11 alternative isolates. Table 15 shows the 

insertion sites (amino acid positions and actual residues) that we eventually picked based on the 

comparison with AAV2 (also shown in more detail in Figure 39 below).   

Table 15: Features of peptide insertion sites in 
twelve AAV serotypes. Listed are the modified 
serotypes (first column), the position of each 
peptide insertion site (second column) and the six 
amino acids that flank this site in the original VP 
proteins (third column). Numbers in the second 
column refer to the amino acid position within each 
serotype. 

 

 

 

 

 

 

We next engineered all 11 capsid sequences according to the newly established PCR strategy, using 

serotype-specific primers that introduced the same SfiI and NsiI restriction sites and hence also 

allowed cap modification by a single PCR and triple ligation. Notably, we designed the 11 primer pairs 

to introduce two further changes in all cap genes. First, they added two amino acids - glycine (left) 

and alanine (right) - that served as spacers between the inserted peptide and the surrounding capsid 

sequence, and that were intended to facilitate proper peptide display and folding [221]. Second, the 

primers further modified the three original amino acids flanking the insertion site on either side 

Serotype Insertion Site Modified Amino Acids 

AAV1 D590_P591 STD/PAT 

AAV2 R588_Q589 GNR/QAA 

AAV3b S586_S587 LQS/SNT 

AAV4 S584_N585 DQS/NSN 

AAV5 S575_S576 NQS/STT 

AAV6 D590_P591 STD/PAT 

AAV7 N589_T590 AAN/TAA 

AAV8 N590_T591 QQN/TAP 

AAV9 Q588_A589 SAQ/AQA 

AAVrh10 N590_A591 QQN/AAP 

AAVpo.1 N567_S568 NQN/SNT 

AAV12 N592_A593 NQN/ATT 
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(third column in Table 15), rendering them identical to the engineered AAV2 cap gene. This was done 

to further increase the probability that a given peptide would be displayed in a comparable manner 

at the tip of the GH-loop across all 12 serotypes. The changes included the introduction of a 

glutamine at position -2 relative to the peptide insertion site, based on the corresponding alteration 

in the AAV2 prototype (asparagine-to-glutamine mutation) that resulted from the engineering of the 

first SfiI site (Figure 37). A second change upstream of the insertion site (position -1) changed an 

arginine (R588) in AAV2 into a serine and was introduced to further ablate AAV2 binding to its 

primary HSPG receptor. For consistency, this serine was also maintained in the 11 other serotypes.  

A comprehensive overview over these changes and other features of the insertions sites is shown in 

Figure 39. As is evident from the serotype-specific color code in this figure, the peptide insertion sites 

were located within a highly variable region of the AAV capsid (corresponding to VR-VIII in AAV2). 

 

Figure 39: Comparison of the peptide insertion sites in the 12 modified AAV serotypes. The serotypes are color-coded to 
permit visualization of amino acids that originate from, and are specific for, one particular serotype. Amino acids with a 
light gray background could be assigned to more than one serotype, while dark gray shading indicates a possible origin from 
any of the 12 serotypes. A) Original sequences surrounding the peptide insertion site (depicted as gap) prior to PCR-based 
modification (compare to panel C). Red frames highlight the amino acids that were altered during PCR amplification. 
Slashed letters indicate the amino acids of the original sequence that are replaced. B) Sequences that were maintained 
regardless of the PCR or peptide insertion (i.e., same as panel A, but lacking the residues in the red frames). C) Sequences 
after PCR amplification. Red frames highlight amino acids that were changed from the original wildtype sequences 
(compare to panel A), while residues in black frames (flanking glycine and alanine) were introduced additionally. D) Final 
sequences including an inserted peptide (red x as placeholders).  

>AAV1 578 G T V A V N F Q S S S T D P A T G D V H A M G A L P G 605

>AAV2 577 G S V S T N L Q R G N R Q A A T A D V N T Q G V L P G 603

>AAV3 578 G T V A N N L Q S S N T A P T T R T V N D Q G A L P G 604

>AAV4 576 G N L P G G D Q S N S N L P T V D R L T A L G A V P G 602

>AAV5 567 G Q M A T N N Q S S T T A P A T G T Y N L Q E I V P G 593

>AAV6 578 G T V A V N L Q S S S T D P A T G D V H V M G A L P G 604

>AAV7 579 G I V S S N L Q A A N T A A Q T Q V V N N Q G A L P G 605

>AAV8 580 G I V A D N L Q Q Q N T A P Q I G T V N S Q G A L P G 606

>AAV9 578 G Q V A T N H Q S A Q A Q A Q T G W V Q N Q G I L P G 604

>AAVrh10 580 G V V A D N L Q Q Q N A A P I V G A V N S Q G A L P G 606

>AAVpo1 559 G Q V S N N N Q N S N T H P T V G V Y N H Q E V L P G 585

>AAV12 584 G Q I A D N N Q N A T T A P H I A N L D A M G I V P G 610

>AAV1 578 G T V A V N F Q S S G D V H A M G A L P G 605

>AAV2 577 G S V S T N L Q R T A D V N T Q G V L P G 603

>AAV3 578 G T V A N N A P T T R T V N D Q G A L P G 604

>AAV4 576 G N L P G G L P T V D R L T A L G A V P G 602

>AAV5 567 G Q M A T N A P A T G T Y N L Q E I V P G 593

>AAV6 578 G T V A V N L Q S S G D V H V M G A L P G 604

>AAV7 579 G I V S S N L Q Q T Q V V N N Q G A L P G 605

>AAV8 580 G I V A D N L Q Q I G T V N S Q G A L P G 606

>AAV9 578 G Q V A T N H Q Q T G W V Q N Q G I L P G 604

>AAVrh10 580 G V V A D N L Q I V G A V N S Q G A L P G 606

>AAVpo1 559 G Q V S N N H P T V G V Y N H Q E V L P G 585

>AAV12 584 G Q I A D N A P H I A N L D A M G I V P G 610

>AAV1 578 G T V A V N F Q S S G Q S G A Q A A G D V H A M G A L P G 605

>AAV2 577 G S V S T N L Q Q G Q S G A Q A A T A D V N T Q G V L P G 603

>AAV3 578 G T V A N N G Q S G A Q A A A P T T R T V N D Q G A L P G 604

>AAV4 576 G N L P G G G Q S G A Q A A L P T V D R L T A L G A V P G 602

>AAV5 567 G Q M A T N G Q S G A Q A A A P A T G T Y N L Q E I V P G 593

>AAV6 578 G T V A V N L Q S S G Q S G A Q A A G D V H V M G A L P G 604

>AAV7 579 G I V S S N L Q G Q S G A Q A A Q T Q V V N N Q G A L P G 605

>AAV8 580 G I V A D N L Q G Q S G A Q A A Q I G T V N S Q G A L P G 606

>AAV9 578 G Q V A T N H Q G Q S G A Q A A Q T G W V Q N Q G I L P G 604

>AAVrh10 580 G V V A D N L Q G Q S G A Q A A I V G A V N S Q G A L P G 606

>AAVpo1 559 G Q V S N N G Q S G A Q A A H P T V G V Y N H Q E V L P G 585

>AAV12 584 G Q I A D N G Q S G A Q A A A P H I A N L D A M G I V P G 610

>AAV1 578 G T V A V N F Q S S G Q S G X X X X X X X A Q A A G D V H A M G A L P G 605

>AAV2 577 G S V S T N L Q Q G Q S G X X X X X X X A Q A A T A D V N T Q G V L P G 603

>AAV3 578 G T V A N N G Q S G X X X X X X X A Q A A A P T T R T V N D Q G A L P G 604

>AAV4 576 G N L P G G G Q S G X X X X X X X A Q A A L P T V D R L T A L G A V P G 602

>AAV5 567 G Q M A T N G Q S G X X X X X X X A Q A A A P A T G T Y N L Q E I V P G 593

>AAV6 578 G T V A V N L Q S S G Q S G X X X X X X X A Q A A G D V H V M G A L P G 604

>AAV7 579 G I V S S N L Q G Q S G X X X X X X X A Q A A Q T Q V V N N Q G A L P G 605

>AAV8 580 G I V A D N L Q G Q S G X X X X X X X A Q A A Q I G T V N S Q G A L P G 606

>AAV9 578 G Q V A T N H Q G Q S G X X X X X X X A Q A A Q T G W V Q N Q G I L P G 604

>AAVrh10 580 G V V A D N L Q G Q S G X X X X X X X A Q A A I V G A V N S Q G A L P G 606

>AAVpo1 559 G Q V S N N G Q S G X X X X X X X A Q A A H P T V G V Y N H Q E V L P G 585

>AAV12 584 G Q I A D N G Q S G X X X X X X X A Q A A A P H I A N L D A M G I V P G 610

A)

B)

C)

D)
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Correct insertion site modification was confirmed for all 11 serotypes again in about 90% of the 

analyzed clones, almost reaching success rates of that of the model serotype AAV2. Moreover, we 

also validated the functionality of all cap genes again by inserting an oligonucleotide encoding the 

NSSRDLG peptide, and by then producing vectors in small scale to analyze whether correct VP 

protein expression was restored. As shown by the Western blot analyses of the respective crude 

vector lysates in Figure 40, all three capsid proteins (VP1 to VP3) were indeed detected in the 

expected 1:1:10 ratio. These results indicate that our improved cloning strategy was successful in all 

cases, and that peptide insertion is compatible with all 12 AAV serotypes tested here (at least on the 

VP protein expression level). Together, this provided the basis for a much broader evaluation of the 

approach using a larger collection of peptides and cell lines, as detailed in the next chapter.   

 

Figure 40: Western blot analysis of 12 AAV 
serotypes harboring peptide NSSRDLG. The 
peptide-modified capsid genes were used to 
produce vectors (encoding a YFP reporter), 
and crude lysates were probed with the B1 
antibody (detecting VP1-3 of all serotypes 
except for AAV4 and AAV12) for the 
expression of capsid proteins. Protein 
expression of AAV4 and 12 was detected with 
antibody A1 that binds VP1 of all serotypes 
[86], [272]. AAV3b with peptide insertion was 
created later than the other clones and was 
visualized on a separate Western blot. 

 

3.2.2 Characterization of AAV serotype-peptide panels  

3.2.2.1 Selection of further peptide motifs 

Thus far, we had verified the feasibility to insert a distinct peptide of seven aa into 12 different AAV 

serotypes. To provide a broader proof-of-concept for the usefulness of alternative viral isolates as 

scaffolds for peptide display, and to demonstrate that the inserted sequences in fact alter capsid 

properties, we selected a panel of six additional peptides for analysis. The candidates listed in Table 

16 were chosen from the literature and had been isolated either from phage display or AAV2 display 

libraries. Regardless of origin, all six peptides had previously been inserted into the AAV2 capsid and 

then been reported to mediate vector re-targeting to certain cell types. It was thus a particularly 

interesting question whether and to what extent the exact same peptides would also re-target the 11 

other serotypes that we tested here. In more detail, peptides P1 to P3 contain an RGD motif that is a 

consensus sequence for integrin binding [220], [223], [280]. P2 is believed to especially target αvβ3 

and αvβ5 integrins and was found to mediate increased AAV2 transduction of HeLa, K562, Raji and 

SKOV-3 cells. In contrast, P1 and P3 were reported to re-target AAV2 to primary PymT tumor cells 

(P1) or to MCF-7 and M07e (P3). Peptides P4 and P5 originate from an AAV2-based selection on 

HsaVEC cells, and both share the NDVR sequence [226]. P6, that targets MT1-MMP [281], and P2 

100 
70 
55

kDa

B1 AB A1 AB
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were both selected by phage display and consist of nine amino acids, rather than seven as all other 

peptides (including the NSSRDLG peptide used for initial validation, see above). For more details on 

the cell lines and their origin, please see 2.1.1.  Accordingly, these six sequences represented a good 

mixture of different lengths, motifs and efficiencies in various cell types.  

 

Peptide 

No. 

Peptide 

sequence 
Oligonucleotide sequence Target Reference 

P1 RGDLGLS 5‘-CGCGGCGATCTGGGCCTGAGC-3‘ 
Primary PymT tumor 

cells 
[223] 

P2 CDCRGDCFC 5‘-TGCGATTGCCGCGGCGATTGCTTTTGC-3‘ αvβ3 & αvβ5 integrins [220] 

P3 RGDAVGV 5‘-CGCGGCGATGCGGTGGGCGT -3‘ M07e [280] 

P4 NDVRSAN 5‘-AACGATGTGCGCAGCGCGAAC-3‘ HSaVEC [226] 

P5 NDVRAVS 5‘-AACGATGTGCGCGCGGTGAGC-3‘ HSaVEC [226] 

P6 CNHRYMQMC 5‘-TGCAACCATCGCTATATGCAGATGTGC-3‘ MT1-MMP [281] 

Table 16: Overview over peptides P1 to P6. Shown are the peptide amino acid sequences with common motifs highlighted 
in bold and the corresponding nucleotide sequences. Note that the actual oligonucleotides used for cloning were extended 
on both sides, to also encode the flanking glycine and alanine residues (see Materials and Methods chapter 2.2.4.4 for full 
sequences). The cells and papers in which the peptides were originally selected are also shown. 

 

Akin to the cloning of the NSSRDLG-encoding oligonucleotide before, the sequences corresponding 

to the six new peptides were designed such that after annealing, they contained overhangs matching 

the ends from SfiI digestion of the 12 different cap genes (see Figure 37 above). Correct insertion was 

confirmed by sequencing of all resulting 72 peptide-serotype combinations (6 peptides in 12 

serotypes). Including the 12 wildtype capsid genes, a total of 84 different vectors containing a YFP 

reporter for later transduction analysis were next produced in a small-scale 6-well format. The 

vectors were again harvested as crude lysates and analyzed by Western blotting. As shown in Figure 

41, correct VP1-3 expression was found in all cases independent of peptide sequence or length. Only 

proteins comprising peptide P6 were never detected, irrespective of the underlying serotype (Figure 

41). They were found, however, in Western blots made from whole cell pellets after transfection of 

the various AAVP6 plasmids, and they were likewise detected in iodixanol- or CsCl-purified virus 

stocks [282]. Together, this suggests that P6-containing particles can assemble, but are potentially 

trapped in an intracellular compartment from which they are not efficiently released during the 

preparation of crude lysates. Nonetheless, we included P6-expressing clones into our further analysis 

as it remained possible that the viral titers in crude lysates were below the detection limit for 

Western blotting, but still in a range that would mediate infection of certain cell types.  
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Figure 41: Western blot analysis of the complete set of 84 different AAV 
variants. Analyzed were crude lysates from wtAAVs (first lane) and derivatives 
displaying peptides P1 to P6. Except for P6, VP1-3 proteins were detected for 
all serotypes in the expected ratio of 1:1:10, independent of the peptide 
insertion. As noted in the text, vectors displaying P6 could only be detected in 
cell pellets or purified virus stocks (data not shown). These Western blots were 
performed together with Marina Bechtle, a former MSc student in our lab. 

 

 

3.2.2.2 Analysis of peptide function 

To evaluate the principal functionality of our new clones, we first tested them in HeLa cells which are 

amenable to infection with several AAV wildtype capsids. Because all vectors were produced as crude 

lysates (generation of 84 purified stocks was technically impossible), we could not determine exact 

titers; instead, we used equal volumes for the infection. Based on the Western blots shown in Figure 

41, this likely resulted in the delivery of comparable vector amounts amongst all peptide-serotype 

combinations (with the exception of the P6 variants, see above). The infections of HeLa cells and all 

other cells shown below were always carried out in a 96-well format, and YFP expression was 

analyzed by FACS 48 h later. To determine transduction efficiencies, we measured both the 

percentage of infected cells (infection rate) as well as expression intensities. The results are depicted 

in heatmaps in which all values were color-coded, always ranging from 0% in black, to the maximal 

value in white. The intermediate colors denote the maximum values, with yellow corresponding to 

25%, green to 50%, blue to 75% and red to 100%. The infection rate reflects the overall potential of 

each vector to bind, enter and functionally transduce the target cells, whereas the median intensity 

shows the strength of YFP expression per cell. If both are comparable between different vectors, it 

indicates a similar correlation between their infection rates and expression strengths. However, as 

observed previously (3.1.2.2 ), they can also differ, hinting at distinct cell attachment, uptake and/or 

intracellular vector processing.  

The first results from the analysis of our 84 vectors in HeLa cells were already highly intriguing and 

promising, as they revealed a large variety of vector efficiencies depending on the capsid and peptide 
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(Figure 42). Differences over two orders of magnitude were found for one capsid displaying various 

peptides (or none at all), or, vice versa, for one peptide exposed on different capsids. For instance, 

display of P1 or P3 frequently resulted in a loss-of-function of the wildtype capsid (where detectable 

to begin with, e.g., AAV1-3, 5 and 6). In contrast, especially peptides P4 and P5 substantially 

enhanced several serotypes, as was most evident for AAV1, 7-9 and rh10. The improvement was 

visible both on the levels of infection rate and transduction intensity. Of all capsid-peptide 

combinations, AAV1P5 gave the highest YFP expression per cell and was set to 100% (Figure 42B). 

AAV1P4 gave 89% of this maximum intensity, while wildtype AAV1 reached only 26%. Curiously, P4 

and P5 had no enhancing effect on AAV6, despite that fact that it differs from AAV1 in only six amino 

acids [65], [89]. This result confirms our assumption that even marginal differences in capsid 

composition can already largely impact the performance of the displayed peptides, and thus 

supports our investigation of alternative AAV serotypes. Further notable are cases where peptide 

display not only altered the efficiency of an inherently functional wildtype capsid, but instead 

enabled this AAV isolate to transduce at all. Examples are the already mentioned AAV7-9 and rh10 

which are nearly inert as wildtypes, but became very efficient upon display of peptides P2, P4 and P5. 

The infection rate of AAVrh10, for instance, was increased from merely 3% to more than 90% with P4 

and P5.  

Our two main conclusions from this pilot experiment with our panel of 84 vectors in HeLa cells were 

that 1) the function of a displayed peptide critically depends on the AAV capsid scaffold, and that 2) 

non-AAV2 serotypes represent intriguing scaffolds for peptide display that, when combined with 

certain peptides, can vastly outperform the AAV2 prototype and its peptide derivatives. 

 

Figure 42:  FACS analysis of the 
complete set of 84 different AAV 
variants. A) Infection rates of 12 
wtAAVs and 72 peptide-displaying 
clones in HeLa cells, ranging from black 
(no transduction) to white (highest 
value). The intermediate color red 
indicates a maximum infection ratio of 
100% (see main text for our four-color 
coding scheme). B) Mean YFP 
expression intensities in percent, 
normalized to the highest value 
obtained with AAV1P5 (set to 100%). 
(For color code of the heat maps refer 
to Figure 24 and Figure 29.) 
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3.2.3 AAV peptide display screens 

The interesting and diverse results with our panel of 84 vectors in HeLa cells motivated us to expand 

the analysis of this panel to a large array of human or non-human cell lines or primary cells. Table 17 

below summarizes the findings in 30 cell types of different origin, by showing the infection rate of 

the best performing wildtype serotypes and peptide derivatives. All individual data for all cell types 

are moreover displayed in the form of heatmaps in the Appendix. Furthermore, several selected 

examples will be presented and discussed in more detail in the following chapters 3.2.4 and 3.2.5. 

 

Table 17: Results from cell screening with 12 wildtype AAVs and 72 peptide-displaying clones. Shown are 30 cell types and 
their origin. The cells are clustered according to their derivation from solid organs, or to their hematopoietic or neuronal 
nature. Infection rates of the best performing wildtype AAV and, in addition, the three best performing viral isolates (wt 
and peptide displaying clones) are indicated. Note that in some cases the best wt virus outperforms all other isolates. 
Wildtype (wt) viruses are always shown in light gray. Screening experiments and FACs analysis were performed together 
with Marina Bechtle (a former MSc student in our lab) and Dr. Kathleen Börner (Infectious Diseases/ Virology Dept.). Color 
code is in analogy to the heatmaps. Pr = primary; n.a.= non activated; hu = human; hep = hepatocytes. 

 

One remarkable result was that in several cases, naturally occurring AAV capsids were already very 

efficient, in particular AAV1, 2 and 6 that frequently gave around 80 to >95% transduction. For 

instance, AAV6 was superior to all other wildtypes or peptide mutants in cells from pancreas and 

spleen. Its potency is particularly evident in RawE cells (spleen), where the second best performing 

No. Tissue/ Cell type Origin Cell line

1 cervix H. sapiens HeLa wt2 96.0 1P4 99.0 1P5 99.0 rh10P4 99.0

2 ovary H. sapiens OVCAR-3 wt2 93.0 5P2 96.0 1P5 95.0 1P4 93.0

3 pancreas H. sapiens Panc-1 wt6 99.0 rh10P2 99.0 8P2 97.0 7P2 95.0

4 spleen M. musculus RawE wt6 50.0 7P2 17.0 wt1 9.5 8P2 7.8

5 kidney H. sapiens Hek293T wt2 98.0 wt1 97.0 wt3 97.0 wt6 91.0

6 liver H. sapiens Huh7 wt2 100.0 1P4 99.0 1P5 99.0 wt3 99.0

7 liver M. musculus H4IIE wt1 34.0 wt6 29.0 1P4 23.0 wt2 16.0

8 liver H. sapiens HepG2 wt2 95.0 7P2 92.0 rh10P2 74.0 9P2 66.0

9 liver M. musculus Hepa1-6 wt6 88.0 1P4 69.0 1P5 56.0 8P4 39.0

10 liver H. sapiens pr hu hep wt2 0.1 6P1 7.9 9P3 6.3 7P3 2.1

11 skin H. sapiens SK-MEL2 wt2 94.0 9P2 98.0 8P2 97.0 7P2 97.0

12 embryo/fibroblast M. musculus MEF wt1 17.0 1P4 16.0 1P5 10.0 7P2 8.7

13 embryo/fibroblast M. musculus NIH/3T3 wt6 58.0 1P4 71.0 1P5 49.0 8P4 47.0

14 breast H. sapiens MCF7 wt2 100.0 1P5 88.0 1P4 86.0 7P2 86.0

15 breast H. sapiens MCF10A wt6 98.0 7P2 62.0 1P1 48.0 wt2 46.0

16 breast H. sapiens MDA-MB-231 wt2 94.0 wt6 94.0 9P2 85.0 rh10P2 80.0

17 breast H. sapiens MDA-MB-436 wt2 99.0 wt6 99.0 9P2 93.0 1P4 93.0

18 bone marrow H. sapiens K562 wt6 78.0 rh10P2 84.0 1P5 82.0 1P4 81.0

19 blood H. sapiens NKL wt6 68.0 wt4 51.0 wt5 45.0 4P3 19.0

20 blood H. sapiens pr n-a NK wt6 5.4 6P2 0.5 6P5 0.5 6P3 0.5

21 blood H. sapiens pr a NK wt6 0.4 6P2 0.3 6P5 0.3 6P4 0.3

22 blood H. sapiens SKW6.4 wtpo1 25.0 1P5 18.0 1P4 13.0 rh10P2 12.0

23 blood H. sapiens Sup-T1 wt5 9.2 1P4 59.0 1P5 51.0 8P5 45.0

24 blood H. sapiens Raji wt6 47.0 wt5 18.0 3P5 8.6 wt2 7.4

25 blood H. sapiens Jurkat wt1 0.7 1P5 28.0 1P4 20.0 7P5 13.0

26 brain H. sapiens T98G wt6 99.0 wt5 96.0 wt2 86.0 7P2 73.0

27 brain H. sapiens SH-SY5Y wt1 97.0 7P2 98.0 9P2 98.0 rh10P2 98.0

28 CNS H. sapiens SF-539 wt2 99.0 wt6 99.0 7P2 99.0 1P5 98.0

29 Human glioblastoma astrocytoma H. sapiens U373 wt2 51.0 8P1 90.0 1P1 84.0 9P1 80.0

30 astrocytes H. sapiens Astrocytes wt6 15.0 9P1 57.2 1P1 52.7 9P2 48.1
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vector, AAV7 with peptide P2 (7P2), only gave 17% transduction as compared to 50% with AAV6. In 

the case of H4IIE, a hard-to-infect murine liver cell line, AAV1 and AAV6 gave comparable maximum 

efficiencies of 29-34%. These two wildtype serotypes were also the best in SH-SY5Y or T98G (cells 

from brain) which they transduced at nearly 100%, whereas wildtype AAV2 was on par in another 

CNS cell line, SF539. As a final example that should be highlighted, AAV6 was also superior to all 

other capsid variants in Raji cells, a human cell line that originates from Burkitt lymphoma and NKL, a 

human leukemia natural killer cell line.   

Even more notable was, however, that the newly generated capsid-peptide combinations often 

outperformed the natural capsids. As already noted for HeLa cells (see above), we frequently found 

an increase in the efficiency of serotypes 1, 7-9 and rh10 when they displayed peptides P4 

(NDVRSAN) or P5 (NDVRAVS). A similar pattern was observed for AAV7-9 and rh10 in combination 

with the P2 nonamer CDCRGDCFC. For instance, AAV1P4 and P5 matched the potency of wtAAV2 in 

Huh7 cells (almost 100%), and AAV1P4 was most efficient in NIH/3T3 cells (71%, outperforming 

wtAAV6 by more than 10%). Very striking findings were also made in some difficult-to-infect cells of 

hematopoietic origin, such as Sup-T1 cells which were transduced at 59, 51 and 45% by AAV1P4, 

AAV1P5 or AAV8P5, respectively, as compared to only 9.2% with wtAAV5 (the best wildtype). 

Another example are Jurkat cells that are refractory to wtAAV infection, but transduced at more than 

20% with AAV1P4 and AAV1P5. Accordingly, these and other cells in Table 17 exemplify interesting 

cases where peptide display in non-AAV2 serotypes allows, for the first time, for efficient AAV-based 

transduction of cells that have previously not been accessible to this vector system. 

Our results from this extended analysis confirm the conclusions from the HeLa pilot experiment, by 

validating that AAV transduction is not determined by the peptide alone, but rather by its embedding 

in a certain capsid context. In addition, it was interesting to note the recurring patterns of efficient 

peptide-capsid combinations, such as AAV1, 7-9 and rh10 with peptides P2, P4 and P5. Because these 

patterns were observed in numerous different cell types, it tempted us to study whether these 

combinations mediated binding to common receptors (3.2.3.1 below). Another intriguing conclusion 

was that specific peptide-capsid pairs mediated efficient transduction of clinically relevant cell types 

that were resistant to wildtype AAV serotypes, motivating us to investigate their potential in more 

detail for selected examples (chapter 3.2.5 below). 

3.2.3.1 Analysis of cellular binding features of capsid-peptide mutants 

3.2.3.1.1 HSPG 

The first cellular receptor that we investigated were heparan sulfate proteoglycans (HSPG), as they 

are known to act as primary receptor for the AAV2 prototype as well as for AAV3 [93], [206]. To test 
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whether any of our new capsid-peptide combinations also depends on HSPG, we performed a 

heparin competition assay where soluble heparin is added to cells and then functions as an analog to 

membrane-bound HSPG that can block this receptor [93]. Previous to the infection of HeLa cells, viral 

isolates were incubated for one hour in complete growth medium supplemented with soluble 

Heparin. Virus incubated with complete growth medium alone served as control. The cells were 

washed twice with 1x PBS 24 h post-infection, and infection rates were determined by FACS another 

48 h later in analogy to the previous analyses.  

As shown in Figure 43A-B, wt serotypes AAV2 and AAV3 were profoundly inhibited by heparin, as 

expected. Specifically, infection rates dropped from 70% (AAV2) or 40% (AAV3) to less than 1%. 

Decreases were also noted for the peptide-displaying derivatives of these two viruses, but the 

changes were much less pronounced, implying that HSPG no longer served as (sole) primary receptor 

for these mutants. The majority of all other capsid-peptide combinations also remained largely 

unaffected, as compared to the substantial drops for wt AAV2 and AAV3. We thus concluded that 

none of our peptides had restored or de novo introduced heparin binding ability in any of our clones, 

although further analyses are probably required to solidify this notion (Discussion chapter 4). 

 

Figure 43: Influence of heparin or neuraminidase on transduction of wildtype or peptide-modified AAV vectors in HeLa 

cells. A) Control infection of HeLa cells without inhibitors. B) Infection of HeLa cells in the presence of a soluble heparin 

competitor. The orange boxes highlight the profound inhibition of AAV2 and AAV3 (compare to their transduction rate in 

panel A). C) Infection of neuraminidase-treated HeLa cells. The orange boxes demarcate vectors whose infectivity was 

affected by removal of sialic acid. Note that possible changes for AAV4, whose primary receptor is N-liked sialic acid, could 

not be determined due to the low infectivity of this vector in HeLa cells. Also note how neuraminidase treatment increases 

the transduction efficiency of AAV9 and various derivatives (see text for explanation). (The neuraminidase- and heparin 

assays were partially performed together with Marina Bechtle, a former MSc student in our lab.) (For color code of the heat 

maps refer to Figure 24 and Figure 29.) 
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3.2.3.1.2 Sialic acid 

A second common AAV attachment receptor that we studied is sialic acid. Therefore, HeLa cells were 

treated with neuraminidase type III from Vibrio cholera for 2 h at 37°C (to remove sialic acid from the 

cell surface), washed twice with 1x PBS and then infected with the viral lysates. After one hour, 

unbound virus was removed by washing the cells again with 1x PBS, and transduction efficiencies 

were determined by FACS analysis 48 h post-infection as usual. Removal of unbound virus was 

necessary as the cells would have otherwise recovered from the neuraminidase treatment and 

started to produce new sialic acid, which would have blurred the analysis. 

As expected, the absence of sialic acid profoundly decreased the infectivity of serotypes AAV1, AAV5 

and AAV6, all of which bind O-linked sialic acid as primary receptor, by 25-45%. The infectivity of 

AAV4, whose main receptor is N-linked sialic acid, could not be assessed as it was already below the 

detection limit even without neuraminidase treatment. In general, infection rates were diminished 

overall as compared to previous experiments due to the shortened infection and incubation times. 

Notably, none of the peptide-displaying mutants were markedly affected by neuraminidase 

treatment, suggesting their independence of sialic acid. A striking exception was wildtype AAV9 and 

its derivatives whose transduction efficiency was actually increased in the treated cells. While curious 

at the time of this work, it was later reported that AAV9 binds N-terminal galactose which is masked 

by sialic acid on the cell surface, and hence becomes accessible upon neuraminidase treatment [283], 

[284] (see also Discussion). Accordingly, our data suggest that peptide insertion had not completely 

abolished primary receptor binding in AAV9 but nonetheless improved the efficiency of the capsid. 

3.2.3.1.3 RGD receptors 

As mentioned earlier, some of the peptides we used had previously been selected in the context of 

AAV2, including P2 which contained an RDG motif (known to bind to integrins) and which was 

reported to improve AAV2 transduction in HeLa, K562, and Raji cells [220]. However, in our own 

hands, these enhancements were not observed (Figure 42, Figure 44, Table 17 and Appendix). One 

possible explanation for this discrepancy were differences in the aa that flanked the peptide in the 

published or our own vectors, respectively. In our vectors, both arginines (R) at position 585 and 

position 588 were mutated, to completely abolish HSPG binding. In contrast, the original plasmid still 

contained both wildtype arginines, plus an additional threonine/glycine (TG) linker downstream of 

the peptide insertion. To reproduce the original conditions, we generated a new set of peptide 

mutants based on AAV2 that carried the described TG linker, and in which either both arginines were 

mutated (AAV2-TG-P2_ΔR585/ΔR588) or only arginine 588 alone(AAV2-TG-P2_ΔR588). Vectors were 

produced as usual and then titered in HeLa cells in direct comparison to wildtype AAV2 and our 

unmodified AAV2P2 (ΔR585/ΔR588) (Figure 44A). 
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Figure 44: Comparison of different variants of AAV2P2. 
Three distinct versions of AAV2P2 were analyzed in which 
(i) R585 was either mutated (AAV2-P2ΔR585/ΔR588), (ii) 
mutated and juxtaposed with a linker sequence (AAV2-TG-
P2ΔR585/ΔR588), or (iii) kept together with this linker 
(AAV2-TG-P2ΔR588). The third variant should resemble 
the construct in the original paper that identified P2 [220]. 
A) Titration of these three variants together with wildtype 
AAV2 in HeLa cells. B) Confirmation of virus integrity by 
Western blotting (using B1 antibody for VP1-3 detection). 
Note the slightly weaker signals for AAV2-TG-
P2ΔR585/ΔR588 which could explain the reduced 
infectivity of this mutant (as compared to the other two) 
in panel A). (Experiments were done together with Marina 
Bechtle a former MSc student in our lab.) (For color code 
of the heat maps refer to Figure 24 and Figure 29.) 

 

 

In line with our prior data, the transduction efficiency of our own AAV2P2 construct but also that of 

the new AAV2-TG-P2_ΔR588 mutant was reduced by more than one order of magnitude as 

compared to wildtype AAV2. Infectivity dropped even further with AAV2-TG-P2_ΔR585/ΔR588 which 

could hardly transfect HeLa cells anymore, albeit this may correlate with the reduced levels of viral 

protein in the respective supernatant (Figure 44B). Even taking this into consideration, our data 

clearly show that none of the different P2 contexts reproduced the described gain-of-function with 

our clone AAV2P2. Of course, it remains possible that there were further differences between our 

own and the published construct, especially since the information given in the original report was 

incomplete. Potentially unique modifications on our side include the upstream linker amino acid 

alanine (part of the SfiI site) or a glutamine instead of an asparagine at position 587 (chosen for steric 

reasons in the original design by the Kleinschmidt lab on which our own approach is based). 

Generally, this reaffirms our conclusion that not only the peptides or capsids themselves, but also 

even minor changes within the sequences surrounding the peptide can substantially impact the 

performance of the whole particle. 

 

3.2.4 Consensus sequence NXXRXXX   

A remarkable observation we made during many titrations was how frequently peptides P4 

(NDVRSAN) and P5 (NDVRAVS) improved the transduction efficiency of a set of different serotypes, 

especially AAV1, 7-9 and rh10. Intriguingly, both peptides share the motif NDVR as the first four 

amino acids of the heptamer, suggesting that it might be critical for peptide function. Of the 

remaining three amino acids, two more are identical (S and A) but arranged in a different order, 

whereas only one residue is truly diverse (N at position 7 in P4 or V at position 6 in P5).  

100% 0 

A) B)
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In order to further dissect the relevance of the seven single residues, we performed an alanine walk 

whereby we individually mutated each aa within peptide P4 into alanine (using GCG as triplet). 

Furthermore, we made another construct in which we altered all three aa at the C-terminal peptide 

end simultaneously, since this part comprises the actual differences between P4 and P5. All new 

peptides were displayed in the AAV1 context, and the corresponding particles were titered in HeLa 

cells in comparison to wildtype AAV1 or AAV1 displaying the unmodified P4 peptide. The results as 

shown in Figure 45 confirm our hypothesis, that the first four aa are most important for peptide 

function, while mutation of the last three aa has no clear effect on transduction. Most crucial aa are 

the asparagine (N) at position one, arginine (R) at position four as well as valine (V) at position three. 

Substitution of each of these three aa led to a reduction in transduction efficiency of one (V) or even 

two orders (N/R) of magnitude. Hence, we concluded that NX(V)RXXX represents a new peptide 

consensus sequence that frequently improves transduction with AAV1 (and likely other serotypes as 

well, especially AAV7-9 and rh10). 

 

Figure 45: Alanine walk to dissect the function of the NDVRSAN 
peptide. Shown on the left are the new peptides that were derived 
by stepwise mutation of the original P4 sequence. All peptides 
were displayed on AAV1, and resulting vectors were compared to 
wildtype AAV1 (shown on top). Therefore, vector supernatants 
were titered in HeLa cells in 10-fold dilutions (from left to right, 
indicated by the black caret on top). Displayed are transduction 
efficiencies. Note the substantial drops after point mutation of N 
or R at positions 1 or 4, respectively. (Heatmap is partially based 
on results that were acquired together with Marina Bechtle, a 
former MSc student in our lab.) (For color code of the heat maps 
refer to Figure 24 and Figure 29.) 

 

Of note, further verification of these findings and conclusions was obtained through a collaboration 

with Anna Sacher from the group of Martin Müller (German Cancer Research Center). They used our 

12 new constructs for display of another array of peptides named A1 to A6 (from their own initial 

screening of an AAV2 peptide library in dendritic cells), and confirmed that many of their candidates 

worked particularly well with our AAV1, 7-9 and rh10 scaffolds, akin to our own data [285]. 

Interestingly, two of their six peptides were highly similar to peptides P4 and P5, namely, NYSRGVD 

(A2) and NEARVRE (A6). Strikingly, screening of A2 and A6 in the context of our modified viral capsid 

backbones, in a multitude of different cells, revealed a general improvement similar to that with 

peptides P4 and P5. As noted above, our two peptides NDVRSAN (P4) and NDVRAVS (P5) led us to 
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hypothesize that amino acids NX(V)RXXX are most important. The comparison with the two new 

candidates A2 and A6 now solidified that the crucial features are actually mediated by the amino 

acids N and R at positions 1 and 4, respectively, that are shared by all four peptides. This refined 

hypothesis is fully congruent with our mutation analysis as it had shown a stronger influence of these 

two residues as compared to V at position three (Figure 45 above). We thus finally identified the 

sequence NXXRXXX as a consensus motif that frequently enhances at least the serotypes AAV1, 7-9 

and rh10 in a large variety of cell types, by interacting with an as-of-yet unknown receptor or by 

improving any other step during vector transduction (see Discussion for possible mechanisms). 

 

3.2.5 Specific applications of AAV peptide display  

The work described in the previous chapters showed the great potential of serotypes other than 

AAV2 as templates for peptide display, in particular their ability to transduce cells that are refractory 

to infection with wt viruses and that were hence not considered as targets for AAV-mediated gene 

transfer in the past. Encouraged by these results, we initiated a number of collaborations with other 

groups on Heidelberg campus in order to more thoroughly investigate the usefulness of our capsid-

peptide panel in clinically relevant cell types. Specifically, as detailed in the following three chapters, 

we studied blood cells (including T-cells, collaboration with Dr. Kathleen Börner, Infectious 

Diseases/Virology Dept.), myeloma cells (collaboration with Dr. Anja Seckinger, Medizinische Klinik V) 

and neuronal cells (collaboration with Prof. Armin Blesch, Orthopedics Dept.). Note that only 

selected representative examples will be shown in each case below, while the complete data set (all 

cell types and titration data) can be found in the Appendix of this thesis. 

3.2.5.1 Blood cells 

Figure 46 below shows exemplary results from the titration of our panel in three human cell lines of 

lymphoid origin, K562 (chronic myelogenous leukemia cell line), SupT1 (T-lymphoid cell line) and 

SKW6.4 (B-lymphoid cell line). In particular for SupT1 and SKW6.4, it is again evident that these cells 

were largely refractory to infection with any of the 12 wildtype capsids, but that potent transduction 

could be achieved with some of our new peptide-displaying vectors. The most impressive results 

were obtained for SupT1, which were almost completely resistant to AAV wildtype infection. 

However, when transduced with AAV1P4 or AAV1P5, more than 70% of the cells became YFP-

positive (Figure 46B). Similarly remarkable observations were made in SKW6.4 cells; albeit they were 

generally less infectable, display of P4 or P5 on AAV1 resulted in a five-fold and six-fold increase in 

efficiency, respectively, over the best wildtype capsid (AAV6, 2.81%) (Figure 46C).  
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Figure 46: Transduction of cells of lymphoid origin. The three cell lines shown in A-C) were transduced with our panel of 12 
wildtype and 72 peptide-modified AAV vectors (all encoding a YFP reporter). D) Titration of SupT1 cells with purified vectors 
(abbreviated labels on the left). Numbers in the table next to the capsids represent % transduction efficiency (same data as 
in the graph above). (For color code of the heat maps refer to Figure 24 and Figure 29.) 

 

In view of the notable results in SupT1 cells, and because they are frequently used in HIV research in 

our Department, we decided to perform a more thorough analysis of vector dose responses in these 

cells. Towards this end, we picked the two best vectors, AAV1P4 and AAV1P5, and also included 

wildtype AAV1 for direct comparison. Moreover, we chose the equivalent set for AAV2 (i.e., the wt 

and the two peptide derivatives), as well as AAV9P5 as a representative of the other serotypes that 

were also improved by the P4/P5 peptides. All vectors were produced as purified high-titer stocks 

and then used to infect SupT1 cells at doses over a range of six orders of magnitude (Figure 46D). 

Importantly, the results confirm the pattern observed with the crude lysates (Figure 46B); only the 

absolute numbers were higher, as could be expected from the use of purified stocks. The two 
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wildtypes gave ~30% transduction at the highest dose, and then showed a linear decline to ~3% at a 

ten-fold lower dose and to undetectable levels at all subsequent vector dilutions. Interestingly, these 

dose responses were markedly different for the peptide derivatives. For AAV1P5, AAV2P4 and 

AAV2P5, transduction decreased from 85-90% at the highest concentration, to still ~50% at an MOI 

of 1x104, i.e., only a two-fold drop. However, the next ten-fold vector dilution yielded a ten-fold drop 

in transduction, i.e., again a linear response akin to the wildtype viruses. Unique results were also 

noted for AAV1P4, the overall most efficient capsid in these cells. Starting with nearly complete 

transduction (~98%) at the highest vector dose, the number of positive cells dropped by only ~5% at 

a ten-fold lower vector dilution. Even at a further 100-fold dilution, still ~6% of the cells were 

transduced, while all the other capsids had already become inert. Of note, the high robustness and 

efficiency of AAV1P4 (and AAV1P5) in human T-cell lines was also observed and extensively validated 

by others (especially Dr. Kathleen Börner; manuscript in preparation), verifying the findings in this 

thesis.       

In general, these additional comprehensive data further highlight the potential of peptides with the 

consensus sequence NXXRXXX to substantially increase the infectivity of different serotypes in many 

cell types. Moreover, as can be seen in Figure 46A-C, also peptide P2 (CDCRGDCFC) gave a robust 

improvement of selected wildtypes in the three blood cell lines and likewise in several others (see 

Appendix). We therefore designated a “Master panel” in which we juxtaposed our three best 

peptides - P2, P4 and P5 - with the three lead candidates from our collaboration partner Dr. Anna 

Sacher, A1, A2 and A6. All six peptides were displayed in all 12 serotypes, again resulting in a total set 

of 84 vectors (12 wildtypes and 72 peptide variants). To date, this Master panel has been screened in 

~80 different cell types (cell lines and primary cells of different species origins) and has in all cases led 

to the isolation of potent capsids (manuscript in preparation). It was also used for the screening of 

myeloma cells as described in the next chapter.   

3.2.5.1.1 Myeloma cells 

Multiple myeloma is a cancer of plasma cells of lymphoid origin. As is typical for B-lymphocytes, most 

myeloma cell lines and primary cells are difficult to transduce, hampering advances in myeloma 

analysis and treatment. Together with our collaboration partner Dr. Anja Seckinger (Medizinische 

Klinik V) , we therefore screened our Master panel in different myeloma cell lines and primary cells 

(Figure 47).  
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Figure 47: Transduction of human or murine myeloma cells with the AAV peptide Master panel. Shown in A-F) are 
representative examples of the unique transduction patterns that were obtained. (For color code of the heat maps refer to 
Figure 24 and Figure 29.) 

 

The six examples shown above exemplify the different transduction patterns that were observed and 

that were cell line- and species-specific. For instance, AMO (Figure 47A) cells were most potently 

infected by wildtype AAV2 and AAV3, as well as by their derivatives, displaying peptides A1, A2, and 

A6 (maximum was 93% with AAV3p1). Decent transduction was also obtained with AAV4 displaying 

these three peptides, which was remarkable as AAV4 and its descendants frequently remained 

inconspicuous in other screens. In contrast, the other NXXRXXX peptides P4 and P5 did not enhance 

transduction of any serotype, which was also unusual (in view of our prior data in other cells, see 

above). As compared to the other five cell lines, transduction of U266 cells was less efficient, but 

wtAAV2 and AAV3 remained most potent with up to 75% positive cells (Figure 47B). In addition, 

peptide P2 improved the efficiency of several serotypes in these cells, AAV7-9, rh10, po1 and 12. 
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Further interesting was that AAV4 and AAV12 were both able to transduce U266 cells, independent 

of the displayed peptides. The two serotypes are close relatives but distinct from most other AAV 

isolates [108], suggesting that a common, as-of-yet unknown shared capsid feature is responsible for 

their efficacy in these specific cells. In Karpas cells (Figure 47C), AAV2 and AAV3 with A1, A2 and A6 

were again most efficient, with AAV2 peaking with an almost 100% infection rate. While AAV9 and 

AAVrh10 were also enhanced by A1 (to up to 78%), even more notable was the increase to 95% 

observed with the same serotypes displaying peptide A2. Contrary to AMO and U266 cells, P4/P5 

display also resulted in improved transduction for a few serotypes (e.g., AAV7-8), albeit the increase 

was marginal. OPM cells (Figure 47D) gave a comparable pattern as Karpas cells, with the exception 

of AAV1 which was improved by P4 and P5, but became less potent by A1 display. HG1 cells (Figure 

47E) were also unique as they were efficiently infected by more than half of all clones in the Master 

panel, including the whole set of serotypes AAV7 to rh10 displaying all six peptides (especially with 

A2, A6, P2, P4 and P5). The final examples were primary mouse myeloma cells and hence the only 

non-human cell type (Figure 47F). Strikingly, none of the 12 wildtypes could infect the cells, not even 

AAV2 or AAV3 which worked on all five human specimens (see above). Instead, robust transduction 

was observed with AAV7 to rh10 displaying peptides A2 and A6, as well as, to a lesser extent, P4 and 

P6. The difference in efficiency between A2/A6 and P4/P5 was, however, not as pronounced as in 

Karpas or OPM cells (compare Figure 47 panel F to panels C/D). 

As noted above, it was interesting that AAV2 and AAV3 were efficient in all five human cell lines. The 

fact that both serotypes use HSPG as primary receptor tempted us to study the role of this receptor 

in human myeloma transduction. We therefore performed a heparin competition assay in the human 

myeloid cell line L363 that gave a comparable transduction pattern as OPM cells (Appendix). The 

assay was essentially conducted as described before (3.2.3.1.1), and infection rates were again 

determined by FACS 48 h after virus addition. As expected, wildtype AAV2 and AAV3 transduction 

dropped from 70% to less than 1% in the presence of heparin. Also AAV3A1 infection was completely 

abolished after heparin incubation. Remarkably, the ~90% transduction efficiency of AAV7 to rh10 

with A2 and A6 decreased to that of the same serotypes displaying P4 and P5. In contrast, the 

potency of all serotypes displaying P4 and P5 (including AAV1P4 and AAV1P5) remained unaffected 

by heparin treatment (Figure 48). 
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Figure 48: Transduction of L363 cells with the 
peptide Master panel. A) Titration in the absence of 
heparin. B) Titration of vectors previously incubated 
with heparin. Main differences between the two data 
sets (see main text) are highlighted by orange 
frames. (For color code of the heat maps refer to 
Figure 24 and Figure 29.) 

 

 

Based on these results, we hypothesized that the higher infectivity achieved with the NXXRXXX 

peptides A2 and A6 is least partially due to a heparin-dependent effect. However, as the A1-

displaying vector was also inhibited by soluble heparin we further speculated that the ability to bind 

heparin might be related to a unique feature of the oligonucleotides from the “A” series, located 

most likely in the flanking sequences of the three peptides (see also Discussion, chapter 4.2). As a 

whole, these results thereby once again demonstrate the enormous potential of AAV peptide 

modification to create novel properties and to further dissect AAV biology. 

Finally, towards the application of our new vectors, we assessed their potential in primary human 

myeloma cells from different patients. These cells were isolated from fresh blood samples, grown for 

48 h and then transduced. Representative FACS results for three donors are shown in Figure 49. The 

overall infection rates in these primary cells were lower than those in cell lines, but the basic pattern 

was recapitulated. We also observed donor-dependent differences in infectivity. Notably, ~12% of 

the cells from the donor with the weakest infectivity were transduced with AAV3A1, and even up to 

43% from the donor with the highest overall transduction (Figure 49C). Serotypes displaying the A2 

or A6 peptides were again amongst the most efficient, suggesting that their partial heparin binding 

might also facilitate primary cell transduction. Consequently, these capsids will now be studied 

further by our collaboration partner and used for RNAi-mediated regulation of myeloma-associated 

factors (Dr. Anja Seckinger, personal communication). 
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Figure 49: Transduction of primary human myeloma cells from three different donors (A-C). Transduction efficiencies 
were determined by FACS. (For color code of the heat maps refer to Figure 24 and Figure 29.) 

 

3.2.5.2 Neuronal cells 

Our initial screen of different cells and cell lines had revealed the potential of several AAV peptide-

display clones to transduce difficult-to-infect cells of neuronal origin (chapter 3.2.3, Table 17 and 

Appendix). Notably, P1 in conjunction with AAV1, AAV2, as well as AAV7-9 and AAVrh10 gave the 

highest infection rates. Hence, we decided to utilize the original peptide panel P1-P6 rather than the 

Master panel for screenings in additional neuronal cell types. A first example was U373, a cell line 

derived from human glioblastoma/astrocytoma that could be transduced to 89% with AAV8P1. P1 

also increased the infectivity of AAV1, AAV2 and the set of AAV7 to AAVrh10 to more than 80%. For 

AAV1, display of P1-P3, all of which contain the ‘RGD’ motif, led to a gain-of-function. In contrast, 

display of peptides P4 and P5 had no effect on U373 transduction, independent of the underlying 

AAV serotype (Figure 50A). Second, we tested a subset of the P1-P6 panel on human neuronal stem 

cells (HNSC-100, provided by Christine Kammel, Helmholtz Zentrum München) (The complete panel 

could not be evaluated due to a limited number of available cells). AAV9P1 peaked with a 

transduction efficiency of 50%, and AAV9P2, AAV1P1, AAV8P1 and AAV8P2 infection rates were also 

remarkably high (Figure 50B). Our third example were astrocytes derived from HNSC-100. For those 

AAV serotype/peptide combinations that were already tested in HNSC-100, infectivity in astrocytes 

basically mirrored the infection pattern of their progenitor cells, except for a decrease in wtAAV2 

infection and an increase for AAV2P1 (Figure 50B and C). Astrocyte transduction was further 

increased again for the set of AAV7 to AAVrh10 in conjunction with P1 and P2. However, while P4 

and P5 increased AAV1 infectivity in HNSC-100 as well as in astrocytes, display of the same peptides 
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in other AAV serotypes was not beneficial in these cells. Altogether, our results thus suggest that the 

RGD-containing peptides P1 and P2 are most suitable to improve neuronal cell transduction with 

AAV.  

 

Figure 50: Transduction efficiencies of wtAAVs and AAVs displaying the peptide panel P1-P6 on cells of neuronal origin. 
A) U373 cells. B) Human neuronal stem cells, HNSC-100. C) Astrocytes, derived from HNSC-100 cells, provided by Christine 
Kammel, Helmholtz Zentrum München. (For color code of the heat maps refer to Figure 24 and Figure 29.) 

 

3.2.5.2.1 Peptide-serotype combinations with DRG-targeting peptides  

Neuronal cells of the dorsal root ganglion (DRG) are sensory neurons of the periphery that possess 

two axonal branches: one that innervates a peripheral sensory organ and another, central branch, 

which projects into the spinal cord. While the peripheral branch possesses the ability to repair upon 

injury, the capability of the central branch to regenerate is limited, just like for other neurons of the 

CNS. Due to these divergent assets of two branches of a single cell, DRGs serve as excellent models to 

study cell-autonomous mechanisms upon injury and their influence on cell regeneration in the CNS 

(For details refer to [286]). However, most experimental and therapeutic approaches towards nerve 

regeneration rely on effective gene delivery techniques. Together with our collaboration partners 

Prof. Dr. Armin Blesch and Julianne McCall (Orthopedics Dept., Klinik Heidelberg), we aimed at the 

development of a more effective AAV-based in vivo gene delivery system for adult DRG neurons. 

We first tested our set of clones displaying peptides P1-P6 in DRG neurons. Our results confirmed the 

potential of AAV wt serotypes AAV1 and AAV6 to transduce DRG neurons [287], yet we could not 

further increase wildtype infection with the peptide motifs we had used so far (data not shown). We 

therefore investigated additional peptides that were previously reported to specifically target DRG 

neurons [288]. In particular, we chose three motifs that were isolated in the context of Adenovirus 
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[289] and inserted these peptides into our 12 AAV serotypes according to our scheme (identical 

insertion sites and peptide flanking regions as for all other peptide insertions from the ‘P’ series of 

peptides, see above). The sequences of these three additional peptides P7-P9 are shown in Table 18.  

 

Peptide Sequence Oligonucleotide sequence Reference 

P7 (SPG) SPGARAF 5‘- AGCCCGGGCGCGCGCGCGTTT -3‘ 

[288], [289] P8 (DGP) DGPWRKM 5‘- GATGGCCCGTGGCGCAAAATG -3‘ 

P9 (FGQ) FGQKASS 5‘- TTTGGCCAGAAAGCGAGCAGC -3‘ 

Table 18: Peptides P7 to P9. Shown are the peptide amino acid sequences selected for DRG targeting and the 
corresponding nucleotide sequences. Not shown are the flanking spacer amino acids. Letters in bold refer to the 
abbreviation used in the following text instead of the entire peptide sequence. 

 

Correct peptide insertion and AAV capsid protein expression were confirmed by sequencing and 

Western blot analysis (data not shown). We then again produced vectors with yfp transgenes and 

analyzed transduction efficiency by FACS in analogy to previous experiments. In a first approach, we 

confirmed the ability of these newly displayed peptides to alter AAV tropism in general. We 

therefore tested our set of DRG-targeting peptides along with wtAAVs in cell lines that were already 

part of our previous AAV peptide screen (Table 17 and appendix). We found that display of P7-P9 

mainly affected the infectivity of serotypes AAV1, AAV6 and AAV8 to AAVrh10 (Figure 51). In most of 

the cells derived from solid organs, infection rates of AAV8 and especially of AAV9 were increased. 

For instance, in Huh7 cells, display of P8 in the context of AAV9 boosted infectivity from 30% to 89%. 

In contrast, AAV7 was not further enhanced by P7-P9. Except for the lymphoblast cell line K562, DRG-

targeting peptide display had no effect on transduction of lymphoid cells, regardless of the serotype. 

Surprisingly, with only a few exceptions display of P7-P9 also had no clear effect on infection of cells 

of neuronal origin. However, AAV1P9 and AAV9P8 in U373 as well as AAV6P7 and AAVrh10P7 in 

SHSY5Y, exhibited increased infectivity over the respective wt serotypes. Still, in most other cells 

tested, independent of their origin, DRG-displaying clones could not outperform transduction by the 

corresponding wildtype. Instead, maximum transduction efficiencies were mostly achieved with wt 

AAVs. Nonetheless, it was important to find that our new peptide clones are functional in principal, 

since these peptides were never before displayed in any AAV context, neither in AAV2 nor in other 

serotypes. These first results thereby again confirm the validity and versatility of our peptide display 

approach. 
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Figure 51: Titration of cells of disparate origin with AAV serotype / DRG-targeting peptide combinations. Shown are 
infection rates of 12 wtAAVs and the respective clones displaying peptides SPG, DGP and FGQ (complete peptide sequences 
are listed in Table 18) (For color code of the heat maps refer to Figure 24 and Figure 29.) 

 

In an attempt to study transduction on DRGs we directly targeted these cells with AAVs displaying 

the DRG-peptide panel in a neurite outgrowth assay that was optimized by Prof. Dr. Armin Blesch 

and Julianne McCall (Orthopedics Dept., Klinik Heidelberg), allowing for observation of viral 

transduction rates in murine DRGs ex vivo. Briefly, DRGs were isolated from the spinal column of 

adult Fischer 344 rats (10–14 weeks) and dissociated mechanically and by enzymatic treatment. From 

one animal, between 1.25 and 1.75 × 106 cells including neurons and glia cells were typically 

obtained. Isolated cells were plated at a density of 1.8 x 103 cells per well in 2 ml complete medium. 

At 24 h post-plating, 10 µL of rAAV crude lysate was added to the culture medium (0.5 ml total 
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volume), and cells, were analyzed by microscopy 72 h post-infection. Due to their morphology and 

since these cells are rather sensitive, a FACS-based analysis was not possible. For detailed analyses, 

the general DRG population was determined by labeling with an AB against Beta-III-tubulin, including 

all DRG subpopulations. Amongst all Beta-III-tubulin-positive (BIII-Tub) neurons, the highest 

transduction efficiency of 23% positive cells was achieved with wildtype AAV6. The second best 

infection rate of 19% positive cells was noted for AAV9P9, outperforming wtAAV7 and wtAAV5 with 

about 10% infectivity each. In contrast, AAV9 wildtype -together with other wtAAVs and the 

remaining viral clones - hardly transduced these neurons at all (Figure 52). 

Isolated DRGs could be further subdivided based on expression of neuropeptides. Of special interest 

among the DRGs subtypes were the proprioceptive sensory neurons, the largest sensory neurons 

that provide information regarding body position, muscle length and tension. From the general BIII-

Tub-positive neuron population, proprioceptive neurons were further distinguished by NF200 

antibody labeling. Interestingly, in this NF200-positive neuron population, the overall infectivity of 

our DRG-targeting panel was higher. Display of peptides P8 and P9 in the context of AAV7 to 

AAVrh10 increased transduction efficiency over that of the respective wtAAVs. In fact, AAV9P9 

showed the highest rate of infection with 65% positive cells. In contrast to the Beta-III-tubulin-

positive neurons, AAV9P9 slightly outperformed wtAAV6 which exhibited an infectivity of 63%. Also 

interesting was the gain-of-function for AAV1 together with P9, from 20% of the wt virus to 40% YFP-

positive neurons with the modified clone. As compared to the BIII-Tub-positive general DRG 

population, wtAAV5 and wtAAV7 transduction rates were not further increased for NF200-positive 

cells. Since NF200-positive proprioceptive neurons are a subpopulation of BIII-Tub-positive DRGs, the 

overall higher efficiencies of the AAV-DRG panel on NF200-positive cells hint at their increased 

specificity for proprioceptive neurons.  
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Figure 52: Transduction efficiencies of wtAAVs and AAVs displaying the DRG-targeting peptide panel P7-P9. A) 
Transduction of Beta-III-tubulin-positive neurons. B) Transduction of NF200-positive proprioceptive neurons. Infection rates 
were visualized through heatmaps and bar charts. Note that the maximum value of the x-axis is at 30% in the BIII-Tub graph 
versus 80% in the NF200 graph. (For color code of the heat maps refer to Figure 24 and Figure 29.) 
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4 Discussion 

Advances in gene therapy rely to a large extent on improvements of available vector systems. High 

safety, specificity and efficiency are the key features that have to congregate to define a clinically 

useful gene therapy vector. Remarkably, AAV vectors inherently possess most of these properties as 

their parental viruses are apathogenic in humans, and as the vectors themselves are gutless (i.e., 

devoid of any viral genes) and non-integrative. Furthermore, the wealth of natural AAV serotypes 

and isolates, coupled with techniques for molecular capsid evolution and engineering, offers a wide 

range of possibilities to find or create an AAV vector that meets specific demands. The approval of an 

AAV1-based gene therapeutic in Europe (EMEA/H/C/002145, 2012, European Medicines Agency 

London) and >70 clinical trials to date using AAV vectors, including several derived from serotypes 

other than the AAV2 prototype [15], clearly emphasize the potential of rAAVs for therapeutic 

applications.  

Nonetheless, there is room for further improvement as specificity after systemic application and 

particle immunogenicity remain critical issues with respect to clinical use of AAV. In the recent past, a 

variety of strategies have been proposed to partially overcome these concerns, such as the use of 

endogenous cell-specific miRNAs as regulators of AAV vector specificity on the post-transcriptional 

level [290]–[293]. Others have started to clinically evaluate the use of immunosuppressants to block 

humoral or cellular immune responses against the AAV capsid, or have proposed co-delivery of 

empty AAV particles that act as decoys which bind and sequester neutralizing anti-AAV capsid 

antibodies [199], [294]–[296]. A common disadvantage of these and other related strategies is that 

they complicate the clinical protocol since they require additional agents and regimes. Especially in 

the case of immunosuppression, these supplementary treatments can invoke extra physical and 

mental burdens on the treated individual and may ultimately interfere with patient compliance.    

Here, we therefore decided to focus on engineering of the AAV capsid as a straight-forward strategy 

to improve vector efficiency and specificity without a need for either exogenous modulation of the 

patient’s immune system, or for recrafting of pre-existing vector genomes. In particular, we 

concentrated on two powerful methods, (i) DNA family shuffling (DFS), i.e., fragmentation and 

subsequent reassembly of capsid genes from different AAV serotypes, and (ii) peptide display, i.e., 

insertion of short amino acid sequences into the AAV capsid to mediate vector de- and retargeting. In 

both cases, we pursued two goals: (i) to further optimize the technology per se, from the creation of 

synthetic AAV capsids to their selection in vitro or in vivo, and (ii) to concurrently exploit these 

methods as a unique opportunity to improve our understanding of fundamental AAV biology. 



Discussion 

[132] 
 

4.1 AAV capsid shuffling 

4.1.1 An optimized shuffling protocol is key to generation of diverse AAV libraries 

The generation of AAV capsid chimeras through the technique of DFS is a multistep process that 

comprises first the fragmentation of sufficient amounts of parental genes; second the reassembly of 

capsid sequences from these fragments in a primerless PCR, based on their partial homology; third, 

the amplification (‘rescue’) of chimeric full-length capsid genes; and finally, cloning and virus 

production in order to generate a diverse plasmid or viral library, respectively. Because of the 

complexity of this workflow, only a few groups in the world have thus far been able to establish this 

technology, which is unfortunate as it continues to hamper its wider application. Therefore, the first 

specific aim in this thesis was to develop a robust protocol for AAV cap gene shuffling that only 

requires standard laboratory expertise and equipment, and that can be easily adapted to custom 

needs including different types and numbers of parental AAV serotypes. In particular, we attempted 

to streamline and simplify the following aspects of the general workflow: 

cap plasmids: A limitation of the original protocol as first reported by Grimm and colleagues [212] 

and subsequently later used by others [6], [214]–[217], [219], [297]–[301] is the need to isolate 

desired capsid genes from plasmids via restriction digests. While relatively simple, there may be a 

need to amplify and then extensively digest large amounts of plasmid DNA since the subsequent 

DNase I reaction can consume substantial input DNA (see also next paragraph). Here, we improved 

this step by introducing a new set of standardized and modular plasmids that contain the cap genes 

of 12 important AAV serotypes flanked by multiple restriction and primer binding sites. As 

demonstrated, these plasmids allow to isolate any desired cap gene in sufficient amounts in a very 

efficient and rapid PCR reaction. Accordingly, they help to save significant material and time, and 

permit to proceed to the DNA fragmentation step within less than two hours (see Figure 53 below). 

DNA fragmentation: This step is highly critical for the success of DFS because the cap DNA fragment 

size or rather the range of sizes determines the crossover rate and hence the degree of shuffling. 

Larger fragments will increase the chances of recombination and thus improve the yields of full-

length genes, but this comes at the cost of reduced diversity. Vice versa, shorter fragments pose less 

opportunity for homologous recombination, but where it occurs, it results in highly diverse progeny. 

Alas, DNA fragmentation via DNase I is very difficult to control due to the high inherent activity of the 

enzyme. We therefore studied whether physical shearing (Covaris ultra-sonication) of cap DNA could 

be more reliable and reproducible, and produce more defined fragment sizes. Interestingly, while we 

found that the latter is indeed the case, we concomitantly noted a drop in shuffling efficiency, as 

evidenced by low yields of reassembled full-length capsid genes and fewer crossovers. In fact, even 
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the best Covaris condition (Fig. 19, 800 bp fragments) which resulted in yields comparable to those 

from DNase I-based digestion produced clones that were less diverse. Notably, these findings were 

confirmed independently by another PhD student in the lab (Stefanie Große) who likewise achieved 

better results for various AAV cap gene combinations with DNase I digestion rather than with Covaris 

(Große et al., manuscript in preparation). Curiously though, yet another PhD student in our group, 

Nina Schürmann, successfully applied the Covaris system to create libraries from the four human 

Argonaute proteins [270], using conditions comparable to those here. Taken together, these three 

independent observations suggest that the success of library generation through chemical versus 

physical fragmentation depends on numerous parameters, especially the primary sequences of the 

parental genes. We thus refrain from generally recommending one method versus the other, but 

conclude that at least for AAV library production, cap gene fragmentation via DNase I digestion is the 

preferred approach. 

Reassembly & amplification PCRs: Equally important as optimizing the conditions for cap gene 

fragmentation was to streamline the subsequent steps of reassembly and amplification of chimeric 

full-length sequences. This was a very challenging endeavor for two major reasons: (i) the success of 

the first reassembly PCR can only be visualized through a robust second amplification PCR, since the 

first PCR itself does not yield a detectable product; hence the two PCRs are closely interrelated and 

had to be optimized simultaneously. Moreover, (ii) the goal of the first PCR (and the preceding DNA 

fragmentation step, see above) is to create maximum diversity, whereas the second PCR rather 

focuses on producing high yields; it was accordingly important to strike a balance between these two 

aims when optimizing the individual PCR conditions. In the end, we indeed found conditions that 

fulfill the last requirement and that not only improve but also simplify the original protocol. This is 

because we eliminated the need for a nested PCR by establishing an experimental setup that allows 

for robust production of full-length and diverse cap genes via a simple and rapid two-step PCR. The 

efficiency of this improved PCR is in fact so high that it also permits to skip the intermediate TOPO 

cloning step that was necessary in the original protocol to increase the amount of cap genes [212]. 

This is again an essential advance in the present work as it minimizes the risk of a loss of sequence 

diversity due to suboptimal TOPO ligation and/or subsequent transformation.  

Collectively, the improvements implemented in this work substantially streamline the AAV DNA 

shuffling protocol and now permit the routine production of highly diverse capsid libraries derived 

from various serotype combinations within less than one week. Figure 53 on the next page illustrates 

the entire workflow and the individual reactions required to create a typical small-scale AAV library.  
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Figure 53: Schematic depiction of the streamlined protocol for AAV library production established in this work. Shown on 
the left are the individual steps with estimated times, while the corresponding numbers of reactions (“rxn/s”) are depicted 
on the right. Numbers outside the circles indicate options for up-scaling. Center arrows denote the required time in days.   

 

4.1.2 The selection process is equally decisive for the success of the shuffling approach  

The power of AAV capsid shuffling is that it creates highly diverse and versatile libraries of chimeric 

clones that ideally combine multiple assets of their parental serotypes. However, as an isolated step, 

library generation is insufficient to yield new vector candidates, for two reasons: (i) the size of these 

libraries typically vastly exceeds the number of natural AAV isolates, which is already too large for 

rational screening of individual capsids; hence, it would appear counter-intuitive to only up-scale the 

wealth of capsids to choose from without any additional measures. Second, (ii) large numbers of 

capsids in a newly produced library are in fact rather inefficient or even completely non-functional, 

further highlighting the need for subsequent steps to identify lead candidates. This second concern 

was well exemplified in the present thesis with the analysis of eight randomly picked clones from an 

AAV289 library, all of which showed relatively poor efficiencies as compared to various wildtype 

AAVs (3.1.2, Figure 24). We can envision a variety of possible explanations for this phenomenon: 
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First, the high diversity of typical libraries (3.5E+6 clones for the present AAV289 library) makes it 

unlikely that randomly chosen clones are already suitable for a certain application. Second, one can 

also expect to find clones that are completely inert due to adverse recombination of distinct capsid 

parts from different serotypes. This is particularly likely when AAV serotypes such as AAV4 or AAV5 

are included in a library, because the isolates are only remotely related to the majority of other 

AAVs, as reflected by the unique length and sequence of their cap genes as well as numerous further 

differences in genome structure and regulation [56], [65], [74], [98], [105], [106], [155], [302]. 

Consequently, shuffling of such distinct serotypes with others increases the risk of adverse changes 

and shifts in the cap open reading frame, including nucleotide “deletions” or “additions”. Even if a 

frame shift is quickly corrected by a subsequent second recombination event, the resulting short 

aberrant sequence can already suffice to disrupt AAV capsid functionality. Moreover, a shift to an 

alternative reading frame can result in premature termination of translation due to the presence of 

out-of-frame stop codons. In fact, although such an event is unlikely for closely related serotypes, it 

was found in one of the clones of the AAV289 library (data not shown).  

Third, it is also conceivable that cap gene shuffling unintentionally disrupts the ORF of the assembly 

activating protein (AAP). This protein, which has been discovered recently by the lab of Jürgen 

Kleinschmidt [55], [56], [303], is believed to (i) interact with AAV VP proteins and (ii) aid in capsid 

assembly. Notably, work from our own lab (Stefanie Große, PhD student) moreover shows that AAP 

is also important for the maintenance of high steady-state levels of AAV VP proteins, and that AAP is 

a rate-limiting factor during AAV virus/vector production since its over-expression boosts particle 

yields. Still, the exact molecular mechanisms remain unknown to date, including potential sites in the 

VP proteins with which AAP might interact. Accordingly, it is well possible that shuffling affects AAP 

protein function in at least two ways, both of which could readily explain the high percentage of non-

functional clones in AAV libraries: (i) since the AAP ORF is located within the cap gene (more 

specifically, AAV is encoded by the second ORF and largely overlaps with the VP2 N terminus), it is 

also shuffled and probably disrupted in the majority of clones in a library. In addition, (ii) it is likewise 

possible that the binding sites for AAV within the VP proteins are perturbed as a result of shuffling, 

hence preventing proper AAP-VP interaction and thus hampering the putative roles of AAP for VP 

stabilization and assembly.  

Altogether, it is clear from the combination of these two major considerations - (i) shuffling creates 

far more capsids that can be screened individually, and (ii) many of these capsids are likely non-

functional, for various reasons - that libraries have to be subjected to a selection process, in order to 

concurrently purge inert capsids and to enrich desired candidates.  
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4.1.2.1 Interplay of different capsid parts contributes to efficient cell transduction 

The most basic selection routine is amplification of an AAV library in target cells in the presence of 

helper virus. This is also one half of the selection scheme that was used in the original shuffling paper 

by Grimm and colleagues to enrich the AAV-DJ chimera (the other half was IVIG selection) [212]. As 

outlined in chapter 3.1.2, it was thus interesting to recapitulate this particular selection with a new 

library solely based on AAV serotypes 2, 8 and 9, i.e., the DJ parents. We accordingly iteratively 

amplified this AAV289 library in the hepatic cell line Huh7 in the presence of Ad5 and different IVIG 

batches. Notably, we had moreover included a selection in the absence of IVIG to study whether the 

withdrawal of negative pressure would alter the composition and function of the enriched capsids, as 

compared to Ad5/IVIG co-selection. Intriguingly, this is indeed what we found, as briefly summarized 

and discussed in the following.  

A first remarkable observation was that in all selected clones, a large portion of the GH-loop, ranging 

from VR-V to VR-VIII, consists of AAV2-like sequences. These aa are located around the 3-fold 

symmetry axis of the AAV capsid, where VR-V to -VII form the depression while VR-VIII contributes to 

the spike-like protrusion. As in AAV2, we noted the presence of the HSPG binding domain at the very 

tip of the spike in all enriched clones, indicating an AAV2-like cell binding.  

An interesting second notion was that in most of the clones, there was a shift to AAV8 mainly in the 

HI-loop, in VR-IX and also at the very C-terminal end. Both VR-IX and the C terminus are part of the 

invading loop that mediates interaction of VP3 monomers at the 2-fold axis and are essential for 

capsid assembly, likely by mediating VP interaction with AAP [79], [97], [304]. A similar function was 

proposed for the ßI-sheet proximate to the HI-loop [303], where a single point mutation (I682S) 

disrupts AAP interaction. The HI-loop contributes to most of the interactions at the 5-fold axis and 

was also found essential for capsid formation and genome packaging [79], [305].  

A third striking finding was that the DE-loop, which together with the HI-loop forms the 5-fold pore, 

was also derived from AAV8 in most of the chimeric virions. In particular these areas around the 5-

fold axis were described to undergo conformational changes upon uncoating and genome release. It 

was further reported that the first aa of VP3 are located within the capsid at the base of the 5-fold 

channel that connects the inside and the outside of the capsid [72], [80], [306]. Correspondingly, 

these aa near the site of PLA2 and NLS externalization also originate from AAV8 in all clones from the 

plus Ad5 / minus IVIG selection. 

Finally, in some chimeras, VR-IV in the GH-loop was composed of AAV8-like sequences. This part lies 

in close proximity to the 2-fold axis and contributes to the interactions of VP monomers at the 3-fold 
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symmetry axis. It seems to be even more salient than the rest of the GH-loop and crucially influences 

AAV transduction [64], [79], [211].  

Overall, we realized that those chimeras were most efficient which combined all the aforementioned 

aspects in a single capsid, i.e., which exhibited a specific juxtaposition of sequences from AAV2, in 

particular in protruded parts of the capsid, with others from AAV8. We thus conclude that selection 

in Huh7 cells in the presence of helper virus (positive pressure) but absence of IVIG (negative 

pressure) favors AAV capsids that contain at least the primary receptor binding site from AAV2 (two 

adjacent arginines at position 585 and 588). This is reasonable since Huh7 express HSPG, the primary 

AAV2 receptor. At the same time, capsid parts which are associated with VP monomer interaction 

exhibit a preference for AAV8. These parts that contribute to capsid stability, together with AAV8 

parts that function in the externalization of PLA2 and NLS domains, might play a role in endosomal 

escape and uncoating [58], [72], [79], [80]. It is indeed believed that AAV8 uncoating is superior to 

AAV2 and that the uncoating step rate-limits AAV transduction [142], [154], [307], [308]. Our own 

data corroborate previous data that correlated the increased transduction and rapid onset of AAV8 

expression with VR-IV and -IX located at the 2-fold axis of the AAV capsid [211], [309]. Besides, Nam 

and co-workers described a pH-induced destabilization at the 2-fold symmetry axis of AAV8 that 

promotes uncoating, and that was not observed for AAV2 [125].  

Altogether, we conclude that selection of an AAV289 library in Huh7 cells in the presence of helper 

virus results in clones merging AAV2-like cell binding with potent AAV8-like uncoating and rapid 

onset of expression/replication. This particular combination most likely provides these clones with a 

growth advantage over the individual parental viruses or over other chimeras, permitting them to 

outgrow their competitors and to become enriched after multiple selection rounds. 

4.1.2.2 Immune tolerance versus transduction efficiency 

As noted, an ideal AAV capsid or a gene therapy vector in general should not only be able to potently 

and specifically infect a target cell, but it should also do so in the presence of neutralizing antibodies 

that are either already circulating in a patient, or that arise after the first vector treatment. This is 

particularly true for cases where the vector is applied systemically and is hence highly prone to 

making contact with such antibodies. Indeed, there is ample evidence from pre-clinical studies in 

mice and other animals that humoral immunity against AAV capsids - but typically not against the 

encoded transgene product - can readily block in vivo transduction [87], [110], [199], [277], [295], 

[310]–[313]. As also mentioned before, AAV-DJ combines high transduction efficiency with the 

capability to at least partially escape antibody (IVIG) neutralization [212]. Curiously, we observed 

some similarities to AAV-DJ with respect to the combination of domains from AAV2, AAV8 and AAV9 

in our clones selected in the absence of IVIG (see paragraph 4.1.2.1 above). In particular the GH-loop 
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was shared between AAV-DJ and most of our clones, indicating that it is primarily important for high 

transduction efficiency rather than for antibody escape. Many other regions and subdomains were 

different, however, suggesting that these are indeed critical determinants of cell transduction versus 

antibody recognition.  

This hypothesis tempted us to further experimentally delineate these properties, by again selecting 

the shuffled AAV289 library but now with additional IVIG pressure comparable to that which had 

originally led to AAV-DJ. To account for possible donor- or batch-specific effects, we applied three 

distinct IVIG brands - Gamunex, Octagam and Kiovig – at lower doses and used two different ranges 

of concentrations for Gamunex. Interestingly, the analysis of our clones selected with the three IVIG 

brands did not imply a major effect of the IVIG source, as the only notable difference was a slight 

increase of AAV9-like amino acids in the clones selected with Octagam. This notion is further 

supported by a cross-titration study, where clones selected at high concentrations of Gamunex were 

titered with Octagam or Kiovig, and where we again saw no major influence of a specific IVIG brand 

(data not shown). We thus conclude that the exact source of IVIG is not critical for this particular 

selection scheme, which is an important information for future attempts at evolution of antibody-

resistant AAV capsids.  

While the three IVIG batches gave similar results when compared to each other at lower 

concentrations, we could draw a number of interesting conclusions from their comparison to clones 

selected in the absence of any IVIG (see also paragraph 4.1.2.1 above). Basically, we can distinguish 

two categories of clones that emerged: (i) capsids that mediate efficient transduction and closely 

resemble those obtained in the absence of IVIG, versus (ii) poor transducers that are, however, more 

resistant to IVIG. Clones in category (ii) are obviously what we expected from selection in the 

presence of IVIG, at least regarding their higher antibody resistance. Congruent with our knowledge 

on the seroprevalence of wildtype AAV serotypes [278], we found an increase of AAV8- and AAV9-

like amino acids in these clones, especially within the protruded parts of the GH-loop. This 

observation is in line with a substantial accumulation of AAV8-like amino acids after selection in the 

presence of high amounts of IVIG (Gamunex). In fact, all clones from the high dose selection 

resemble AAV8 in most of their entire extrinsic capsid part, starting from the EF-loop, including the 

complete GH- and HI-loop, up to the very C-terminal end. Again, these clones gave relatively poor 

transduction, but were still infectious even when titered in the presence of high IVIG doses, where all 

other clones were already fully neutralized. In this respect, chimeras from the IVIG high dose 

selection not only resemble the structure but also the function of their parental serotype AAV8 which 

likewise hardly infects cells in vitro but readily escapes IVIG neutralization.  
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Taking our results from the selection without IVIG into account as well, we propose that the block 

that hampers AAV8 transduction in vitro lies in VR-V to -VIII and is located around the 3-fold axis of 

the capsid. In turn, this implies the block to be linked to receptor binding rather than intracellular 

processing. Along this line, data by Shen et al. who swapped domains between AAV2 and AAV8 

indicate a role of VR-V in cell transduction that is not related to the onset of transgene expression 

[211]. Furthermore, a most recent study using a comparable experimental setup described an 

influence of VR-VII (either alone or in conjunction with VR-IX) on transduction efficiency [309]. 

Intriguingly, in both reports, swapping of VR-VIII from AAV2 to AAV8 and vice versa resulted in a 

substantial decrease in transgene expression. Moreover, mutation of two amino acids in VR-VIII of 

AAV8 into arginines that are essential for HSPG binding in AAV2 recapitulated AAV2-like HSPG affinity 

but did not increase AAV8 transduction in vitro [212]. Thus, sheer physical binding of a single cellular 

receptor seems insufficient to mediate potent transduction.  

In the future, one option to circumvent natural cell binding and to thus permit the further dissection 

of intracellular processing of our AAV8-like clones could be their coating with PEG8000, as it was 

found to enhance wildtype AAV8 transduction in vitro (personal communication, Dr. S. Urban; 

Molecular Virology; University Hospital Heidelberg). It will moreover be interesting to evaluate our 

AAV8-like chimeras in mice as well, hoping that this will help to further delineate the capsid features 

that determine AAV(8) transduction in vitro versus in vivo .     

Generally, it was intriguing to note in these experiments how the IVIG dose and hence the strength 

of the negative selection pressure can shift the balance between two opposing capsid features - 

transduction efficiency versus antibody resistance. Both features are mainly mediated by protruded 

capsid areas and influenced by the serotype origin - AAV2 contributes to a better cellular binding and 

uptake (at least in vitro), while AAV8 and AAV9 are superior at escaping neutralizing antibodies. (For 

an overview over AAV tropism and immunogenic epitopes, please refer to the introductory chapter 

1.2.3, as well as to reference [110], [111], [314].) Under mild selection pressure at moderate IVIG 

doses, there appears to be a bias towards receptor binding and internalization. This explains why in 

AAV-DJ as well as in some of our new clones selected at the low IVIG dose, the most exposed regions 

of the capsid around the 3-fold axis still originate from AAV2 despite its high reactivity with IVIG. It 

likewise explains why following a more stringent IVIG selection, different capsids emerge which have 

gained resistance to neutralizing antibodies, even if it comes at the cost of diminished infectivity. 

Notably, this distinct bias between potent transduction versus antibody escape that we observed 

after selection in cultured cells may not necessarily reflect the in vivo situation. This is because in our 

in vitro selection approach, we had incubated the viral libraries with IVIG prior to infection in a 

confined space and in the absence of target cells. Accordingly, neutralizing antibodies had a high 
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chance of finding, binding and occupying a matching AAV capsid. This is in stark contrast to the 

typical in vivo situation where AAV particles can escape from such antibodies through rapid binding 

to, and entry into, cells. We thus postulate that a more relevant selection scheme is in vivo 

biopanning in animals that are passively immunized with IVIG (which is feasible in principle, [212]), as 

it would more closely mimic the actual situation in human patients. However, as shown and as will be 

discussed below, such an in vivo selection is challenging for other reasons and also requires further 

optimization in the future.   

4.1.2.3 Helper virus-supported AAV replication alters the outcome of selection 

All selection schemes discussed so far, with or without IVIG, included the addition of helper virus as a 

means to support a complete AAV replication cycle and to thus enhance the recovery of desired 

clones [43], [315]. Yet, as outlined in chapter 3.1.2.2 and as briefly recapitulated here, there are at 

least four possible arguments against the use of a helper virus for AAV selection: (i) it could create a 

bias towards chimeric AAVs that more potently complete steps in the life cycle after transduction, 

such as assembly of progeny capsids; these are, however, irrelevant for their use as vectors; (ii) it will 

favor AAV amplification in cells that are also highly infectable by the helper virus, which may not be 

the proper targets, especially in mixed cell populations or in vivo; (iii) Adenovirus needs to be 

handled under special biosafety conditions which are not available everywhere; and (iv) its use is 

questionable in whole animals since it may cause severe toxicity [212] and it may not infect the 

majority of interesting target cells (as noted in (ii) above).  

To investigate in particular the first concern and to study which effects, if any, the helper virus would 

exert on the structure and function of enriched AAV capsids, we performed an additional selection of 

the AAV289 library in the absence of helper virus. Owing to the lack of AAV replication, we had to 

isolate viral DNA from infected cells, clone the cap genes back into AAV rep- and ITR-containing 

plasmids and then produce new virus for the next round. The results from analysis of clones enriched 

after five such selection rounds and from their comparison to capsids selected in the presence of 

Adenovirus were intriguing and surprising on numerous levels, as discussed in the following. 

A first observation was that after selection without Ad5, the entire GH-loop, the proximate HI-loop 

and the C-terminal end of all analyzed clones consisted of AAV2-like amino acids. In addition, the BC- 

and DE-loops were also comprised of AAV2-like sequences in several clones, so that the complete 

extrinsic part of their capsid resembles AAV2. This capsid composition is in sharp contrast to that of 

clones from the other selection schemes discussed above that included adenoviral co-infection. 

There, the HI-loop and the very C-terminal region were typically derived from AAV8, as was VR-IV 

within the GH-loop. As noted, we believe that these regions contribute to uncoating and intracellular 

processing and hence to AAV infectivity when juxtaposed with AAV2 elements that mediate potent 
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cell attachment and entry. Nonetheless, this particular AAV2-AAV8 combination, as it is also present 

in AAV-DJ [212], was no longer found after selection in the absence of Ad5.  

Second, capsids selected without helper virus also display distinct transduction patterns. While their 

infection rates - defined as numbers of cells expressing a vector-encoded YFP reporter - matched 

those of capsids selected with helper virus, YFP intensities per cell were far weaker. Moreover, in 

contrast to the AAV2 wildtype [316], this moderate expression was not enhanced upon Ad5 super-

infection. It seems unlikely that the lower intensities per cell were due to overall fewer infection 

events considering that this should have also resulted in decreased infection rates; this, however, 

was not observed. Instead, we hypothesize that these capsids selected in the absence of Ad5 were 

defect at an as-of-yet unknown intracellular step that is ultimately critical for transduction.    

Originally, we had expected that selection without helper virus would predominantly yield capsids 

that perform well as vectors, since such a helper virus-free selection scheme most closely mimics 

vector transduction. Nonetheless, we found the opposite, which raises the question how and at 

which point Adenovirus benefits the outcome of AAV vector evolution. It is generally known that Ad5 

helper functions (E1, E2 and E4 proteins, as well as VA RNAs) act mainly on the level of AAV gene 

expression and replication [45]. Briefly, E1A is a transcriptional activator and drives the host cell into 

the S-phase of the cell cycle [317]. E2A encodes a DNA-binding protein that functions in promoter 

regulation, mRNA maturation and DNA replication [318]–[320]. E1B55K and E4orf6 promote the 

export of AAV mRNA from the nucleus, and E4orf6 further functions in second strand synthesis of 

viral DNA [144], [145], [321], [322]. Finally, VA RNA further enhances translation [323]. Besides its 

role in AAV gene expression and replication, helper Adenovirus provides yet another function that is 

interesting in the context of this study. In fact, Ad5 co-infection facilitates nuclear translocation of 

AAV particles and thus further enhances transduction [119]. The early onset of enhanced AAV 

translocation upon Ad5 co-infection suggests a role of proteins of the Ad5 particle rather than 

expressed gene products [119]. Still, there is evidence that e.g. the Ad5 protein E4orf1 localizes to 

clathrin-coated vesicles [324]. Regardless of exact mechanism, it is clear that this particular 

adenoviral helper function could support both wildtype and recombinant AAV. 

At this point, we hypothesize that capsids selected with or without helper virus enter the cell with 

similar efficiencies, provided they share sequences from AAV2 which are critical for potent cell 

binding and entry. However, in the presence of Ad5, those that can also robustly complete the 

following steps, i.e., trafficking through the endosome, nuclear entry, uncoating, gene expression and 

genome replication, will have an advantage over others that are defect at any of these steps; hence 

these fully functional capsids will outgrow all defunct particles. Conversely, in selection schemes 

without adenoviral help which exclusively rely on PCR rescue; it is very difficult to distinguish fully 
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functional capsids from those that might be arrested at any step during the viral life cycle. In fact, it is 

likely that the majorities of capsids in a shuffled library at least possess the ability to enter a cell, but 

then get stuck during trafficking or other complex processing steps. Based on our rescue strategy in 

the adenoviral-free selection scheme which relies on PCR from total cellular DNA, it is thus well 

possible that we inadvertently created or rather reflected an inherent bias for capsids that have 

some form of processing deficiency in the cytosol. One possibility to overcome this problem in the 

future would be to segregate cytosolic and nuclear fractions from cells after infection with an AAV 

library, and to then only perform PCR rescues on the nuclei. While this may still amplify capsids that 

remained intact in the nucleus and are thus defect (at uncoating), it should at least substantially 

increase the chances to eliminate all other capsids that are arrested at earlier steps in the cytosol.   

Altogether, the direct comparison of the results from our selections with or without helper virus 

supports our hypothesis that AAV8-like capsid parts act in intracellular steps of the AAV life cycle. 

This is also clearly in line with the previously mentioned seminal study by Thomas et al. who showed 

that AAV8 uncoats much more rapidly than AAV2, and hence leads to a higher amount of single-

stranded AAV DNA genomes which can become double-stranded and express their genes [142]. 

Other reports confirmed the importance of uncoating during transduction of various AAV serotypes 

but also correlated the limited transduction efficiency of AAV2 with impaired nuclear translocation 

[307], [325], [326]. Curiously, the most efficient AAV2/8 capsid chimera described by Tenney et al. 

not only uncoated efficiently but also showed higher nuclear translocation exceeding that of AAV2 

and rather resembling AAV8. The improved performance of this clone is most likely mediated by the 

combination of two AAV8-like domains VR-VII and -IX that are replaced in a clone that otherwise 

consists of AAV2-like sequences [309].  

In conclusion, our work suggests that efficient transduction is the result of a very complex interplay 

of multiple domains that are dispersed throughout the entire AAV capsid. Additional support comes 

from a clone described by Hauck et al.  in which domains VR-I to -III were replaced in AAV2 with the 

corresponding sequence from AAV1. Due to the sequence homology between AAV1 and AAV2 this 

‘domain swapping’ in this less protruded capsid area actually comprised nine aa changes. These nine 

aa in the AAV2 based clone were found already sufficient to increase its transduction efficiency in 

muscle cells equaling that of wtAAV1. At the same time the clone retained the HSPG domain of 

wtAAV2 [209]. The requirement for complex interactions is further exemplified by our own clone #2 

selected without Adenovirus, which poorly transduces despite the fact that its capsids is largely 

derived from AAV2, except for an area around the DE-loop that originates from AAV9 and an AAV8 

like N-terminal VP1 part. This implies that potent transduction does not exclusively depend on the 

outer or most protruded part of the AAV capsid, but rather on its conjunction with other domains 
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and their orchestrated interplay with other factors (cellular and/or viral). To identify these domains 

and to further unravel their interactions within the AAV capsid along with possible cellular or 

helperviral interaction partners remains an important goal for future work, and fortunately one that 

can be readily addressed using shuffling technology.   

4.1.2.4 Ad5-free in vivo biopanning supports results from Ad5-free in vitro selection 

As described in chapter 3.1.3.1 , the availability of a library composed of AAV serotypes 1, 5, 6, 8 and 

9 allowed us to collaborate with Boehringer Ingelheim and to select this library in pancreatic -cells 

in adult mice. At this point in the work, we were already aware of the possible role of Adenovirus for 

AAV selection (see above). Still, we decided to omit Ad5 co-infection for safety reasons and to avoid 

an inadvertent bias towards helper virus target cells outside the pancreas. Consequently, the purified 

AAV library was injected intravenously into mice, and total DNA was isolated from pancreatic ß-cells 

(and other organs) to PCR-amplify viral capsid DNA and to produce a new viral library for re-injection. 

During the total of three selection rounds, we obtained early evidence - including a detargeting from 

fatty tissue after round #1 - that the library composition was changing, as one would predict for a 

functional selection. AAV5-like sequences disappeared almost completely from the library after the 

first selection round, and while AAV8- and AAV9-like sequences were still found, the entire C-

terminal half of all clones (starting from the EF-loop) originated from AAV1 or AAV6 after the second 

infection cycle. As expected, we continued to detect AAV in the liver through all selection rounds, in 

line with the high susceptibility of this organ for AAV transduction. We were then pleased to find that 

three infection rounds already sufficed to enrich a single clone in our actual target cells, considering 

that most previous selection schemes required four to five or even up to seven rounds [212], [218], 

[219], [297], [300]. Still, there are also a few examples where functional AAV chimeras were isolated 

after only three or even two selection rounds [6], [215]–[217].  

Even more surprising was of course the subsequent realization that despite being the only survivor, 

this capsid failed to functionally transduce pancreatic cells in vitro or in vivo when produced as 

vector. Interestingly, this clone consists of AAV1 or AAV6 in almost its entire outer capsid part, except 

for an AAV8-like VR-I in the BC-loop and an asparagine at the very C-terminus (also akin to AAV8). 

Likewise, another chimera which actually worked in pancreatic cells and which was isolated after the 

second round, also nearly exclusively consists of sequences from AAV1 and AAV6. This is noteworthy 

since wildtype AAV6 is very efficient in pancreatic cells, suggesting that the selection was essentially 

successful and enriched AAV6-like capsid variants. In this respect, it is reminiscent of our selections of 

the AAV289 library where the best candidates also resembled the most potent parental serotype, 

AAV2. We speculate that the striking inertness of our lead capsid from the pancreas selection may be 

explained analogously to our hypothesis that emerged from the comparison of in vitro selections 
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with or without helper virus. Accordingly, we believe that the capsid isolated from total -cell DNA 

may possess the ability to very efficiently bind and enter these cells (explaining why it was enriched 

by PCR), but is then trapped in an intracellular compartment and fails to uncoat in the nucleus and to 

hence mediate gene expression (explaining the lack of functional transduction). It is thus important 

for future work to dissect the biology of this capsid in more detail, to understand the putative block 

in transduction and to ideally learn lessons that can be used to improve looming selection strategies. 

In this respect, despite our belief that supporting AAV replication with Adenovirus can help to enrich 

functional capsids, we clearly refrain from drawing the opposite conclusion that in vivo biopanning in 

the absence of helper virus is inefficient. In fact, several reports have already described successful in 

vivo AAV selections before [216], [217], [327]. In one study, Yang at el. isolated a chimeric clone after 

two infection rounds in the absence of helper virus that gave increased expression in the heart. 

Concurrent with our hypothesis that Ad5 helper functions during selection mainly support the ability 

of chimeric AAVs for efficient intracellular processing , a comparison of vector uptake and transgene 

expression of this clone revealed that enhancement is rather mediated by better cell binding than 

increased gene expression [216]. Another notable study exemplified an original hybrid in/ex vivo 

approach that could also be used to improve the odds for selection of a functional capsid in murine 

pancreas in a potential repeat experiment. In this study, Ying et al. injected an AAV2 peptide library 

into mice with the aim to target the heart. Three days post-infection, organotypic heart slices were 

super-infected with Ad5, to ex vivo amplify AAV clones that possessed the ability to replicate. 

Thereby, the authors eventually enriched two peptide motifs that preferentially target heart tissue. 

In addition, these motifs differed substantially in sequence and performance from two other 

sequences that were isolated in parallel from an in vitro selection in cardiomyocytes, again 

highlighting the importance of physiological selection conditions [327].    

In analogy to this work, we suggest the following new workflow for a future repeat experiment: (i) 

inject the AAV15689 library without Ad5, as before; (ii) isolate target -cells; (iii) culture them ex vivo 

and super-infect with Ad5; and (iv) subclone replicated AAV cap DNA to produce a new library for 

another selection round. The key modification is the ex vivo culture and helper virus super-infection, 

which we propose to include as we expect this step to trigger amplification of particles with capsids 

that have efficiently entered the nucleus and released their DNA for expression and replication. In 

turn, they should outgrow inferior particles or capsids, respectively, and thus enhance the success of 

selection. As an alternative, akin to our suggestions for the in vitro selections (see above), one could 

distinguish between particles that have entered the nucleus and those that have only attached to the 

cell or are trapped in cytoplasmic compartments. The success of this second strategy will depend, 
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however, on the feasibility to enrich sufficient nuclei from isolated murine -cells and to then PCR-

amplify the probably miniscule (at least after the first library injection) amounts of AAV DNA.      

4.2  Peptide display 

AAV peptide display was one of the first methods that was used to create libraries of modified AAV 

capsids and remains one of the most powerful strategies to date. While it is similar to DFS in that it 

can yield entirely novel AAV properties, it does so by adding exogenous aa to an otherwise full-length 

capsid sequence. The fact that this requires profound knowledge on at least the primary sequence of 

the underlying wildtype virus explains why the overwhelming majority of previous studies which 

applied this technology, including the original 2003 report by Müller and colleagues [221], used the 

well characterized AAV2 prototype. In fact, there are only a handful of papers which described 

peptide display in non-AAV2 serotypes, in particular [224], [225], [298], [328]. In this thesis, we 

therefore thoroughly explored the feasibility to further expand peptide display to eleven alternative 

serotypes other than AAV2 for which at least the protein sequence was known. Our key findings 

were that (i) it is the combination of peptide and capsid which determines vector specificity and 

efficiency, not the peptide alone; and (ii) the “right” combination can drastically boost even 

inherently inefficient capsids and ultimately permit transduction of very difficult cell types. These 

results, as discussed in more detail in the following, were highly surprising since they illustrate a 

previously unanticipated tremendous potential of different AAV serotypes as scaffolds for peptide 

display and thereby further expand the breadth of AAV vectors as one of our most promising gene 

transfer systems. 

4.2.1 Expansion of peptide display to 11 AAV serotypes other than AAV2 

In order to extend peptide display to non-AAV2 serotypes, we initially chose positions for peptide 

insertion in each serotype according to sequence alignments and available 3D structures. While the 

exact receptor binding sites were unknown for most serotypes at the time, comparative studies of 

AAV capsid structures suggested that they are located in comparable regions [79]. Still, we could not 

be sure that mutation and insertion at these sites would truly disrupt the primary tropism of the 

underlying serotype. Nonetheless, we hypothesized that this may not even be a prerequisite for 

efficient AAV re- or de-targeting. This is because it was also reasonable to expect an additive effect of 

the peptide even if the original receptor binding site remained intact, in analogy to the natural 

interplay of primary and secondary receptor functions (discussed in more detail below; for a recent 

overview over AAV receptors see [111]).   
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4.2.1.1 Rationale of capsid engineering and peptide design 

A first challenge we had to overcome concerned the cloning of peptide-encoding oligonucleotides. 

We did not want to adapt the previously reported iterative point mutation strategy [221] to create 

insertion sites in all 11 serotypes since it would have required excessive mutation, cloning and 

sequencing. Instead, we introduced these insertion sites through a combination of two PCRs and one 

triple-ligation, as detailed in chapters 3.2.1 and 3.2.2 above. This provided several important 

advantages over the original approach: (i) our strategy is substantially faster as insertion sites can be 

created in only two steps, in contrast to up to five with the point mutagenesis protocol; (ii) as a 

consequence of its simplicity, it also reduces costs for reagents and sequencing reactions; (iii) it can 

easily be adapted to other serotypes in the future since it only requires two primer pairs to amplify 

the two halves of a cap gene, as opposed to a much larger set of customized primers that are needed 

for the original protocol (which is especially complicated since the insertion sites lie within 

hypervariable regions, requiring numerous individual primers for each serotype); and (iv) our method 

concurrently changes the three flanking amino acids on each side of the inserted peptide to those 

from AAV2, which likely provides a much greater comparability between results obtained in different 

serotypes as it reduces effects from adjacent capsid-specific residues.    

A second critical step was to select peptides for display and comparison in the 12 different AAV 

serotypes. In principle, there were three major possibilities: sequences that have been (i) published 

previously in the context of AAV2, (ii) identified in own screens, or (iii) designed de novo for AAV 

display. While we eventually exploited all three options in the context of this thesis, we decided to 

select candidates from the literature for initial construct validation. Our rationale was that these 

would provide ideal reference points, as they all had in common that they were pre-selected and 

characterized in an AAV2 scaffold in certain cell types, despite variations in peptide sequence and 

length [220], [226], [280], [281], [329]. We altered the amino acids that flanked this initial peptide set 

into AAV2-like sequences, except for the arginine corresponding to position 588 in AAV2 in the 

vicinity of the peptide sequence which was replaced after oligonucleotide insertion (see also Figure 

54 below). This arginine was part of a motif that is important for HSPG binding in the context of AAV2 

[95]. In view of results of Perabo and colleagues [330] who demonstrated that certain peptides can 

restore a HSPG binding phenotype, we wanted to ensure that none of our initial peptide-displaying 

variants has developed HSPG affinity de novo. In the course of our work, we then expanded our 

approach to the second class of peptides, identified through a 7mer peptide library in vitro selection 

in the AAV2 context by our collaboration partner Dr. Anna Sacher [285]. Notably, oligonucleotides 

used in this screen differed slightly in their design and restored the peptide-flanking arginine, which 

affected the performance of the respective clones, as discussed in detail in 4.2.3. Finally, we found 

our peptide display approach also suitable for de novo designed peptides, as exemplified with three 
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motifs that target neuronal cells of the DRG [288], [289] and that were never expressed in the 

context of AAV before.  

In all cases, the peptides were either 7 or 9 aa in length (plus 2 flanking aa that served as spacers) 

and hence well in the range of 5 to 12 aa that were found optimal for peptide display in a study by 

Naumer and colleagues [331]. In accordance with this report, almost all our AAV/peptide 

combinations could be produced efficiently, with the single exception of peptide P6 (CNHRYMQMC) 

from the initial peptide set. Irrespective of the underlying serotype, clones displaying this particular 

peptide were never detected in cell lysates, but were rather found associated with the remaining cell 

debris. Interestingly, P6 was originally identified in an in vivo phage display screen in atherosclerotic 

lesions and later displayed in the context of AAV2 to target endothelial cells for atherosclerosis 

treatment [281], [332]. Due to its sequence homology to tissue inhibitor of matrix metalloproteinase 

2 (TIMP2), it binds membrane type-1 matrix metalloproteinase MT1-MMP with high affinity. We thus 

speculate that P6 mediates interaction of modified AAV capsids with cell surface fragments of 

Hek293T cells after cell lysis via MT1-MMP and thus hampers virion release. However, capsid 

formation seems not perturbed as P6-displaying AAV particles could, in principle, be produced and 

purified to high titers. 

4.2.2 Implications of peptide display on AAV transduction 

Our collection of 12 wildtype and 72 peptide-modified capsids allowed us to perform comprehensive 

vector screenings in a large variety of cell lines and primary cells. Amongst the unmodified wildtypes, 

it was notable that AAV1, AAV2, AAV3 and AAV6 frequently performed best. In contrast, AAV5, AAV8 

and AAV9 transduced fewer cell types and only to a medium degree, and AAV4, AAV7, AAVrh10, 

AAVpo.1 and AAV12 hardly infected any of the tested cells (3.2.3, Appendix). These results, especially 

the striking in vitro inertness of serotypes that are highly potent in vivo, such as AAV7-9, are 

consistent with previous reports, including a comparative study of AAV1 to AAV9 [155], [212], [302], 

[329], [333].  

4.2.2.1 Interplay of capsid backbone and peptide insert determines vector properties  

Interestingly, the transduction patterns of the wildtype capsids changed dramatically upon peptide 

display. Basically, one can distinguish gain- from loss-of-function phenotypes. With respect to AAV 

applications, the first category is obviously more relevant and will thus be discussed in more detail 

below. Here, suffice it to point out one example for a loss-of-function phenotype, namely, display of 

the P2 peptide in AAV2. This case is interesting because P2 was one of the first peptides for which an 

increase in AAV2 infectivity was reported and concurrently linked to a potential receptor [220]. In 

particular, an RGD motif as present in P2 mediates αVß3 and αVß5 integrin binding during 

Adenovirus infection [38], [220], [280], [329], [334]. Although AAV2 lacks a specific RGD motif, αVß5 
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integrin was described as one of its co-receptors [104], [304]. It was thus postulated that the RGD-

containing P2 mediates binding to abundant integrins on target cells and thereby boosts vector 

transduction [220]. In our hands, however, this improvement was not observed; instead the P2-

modified AAV2 was inferior to its parental wildtype. One possible explanation are subtle differences 

in the sequences surrounding the peptide insertion, which would be well in line with most recent 

data from our lab that alterations of the two arginines which constitute the AAV2 HSPG binding 

domain can significantly impact infectivity of a given AAV2-peptide combination (D. Grimm, personal 

communication). We can, however, rule out that the peptide per se was non-functional since it 

substantially enhanced the infectivity of several other AAV isolates in numerous cell types. In fact, 

the increase was so pronounced that P2 eventually became part of our Master panel.  

Together, these findings exemplify a crucial lesson from the analysis of our peptide-serotype 

combinations: the peptide alone does not determine specificity, but it is rather its embedding in a 

certain capsid scaffold that dictates the AAV phenotype. While this may appear obvious in view of 

the bulk data in this thesis, it must be pointed out again that over the past decade, peptide display 

has been performed almost exclusively in the context of AAV2. The ensuing lack of comparison to 

other serotypes may have blurred the actual contribution of the underlying AAV2 capsid - positive or 

negative - and tempted the authors of numerous studies to conclude that it is indeed the peptide 

which is solely responsible for the observed specificities and efficiencies. In contrast, our new 

findings that the same peptide can enhance a subset of serotypes (frequently including the 

inherently weak transducers AAV7-9 and AAVrh10, but also AAV1) while having no or even a 

detrimental effect on others (such as AAV2, as mentioned) clearly implies that the peptide and the 

capsid mutually influence each other and together shape the properties of the resulting virion.  

4.2.2.2 A peptide consensus sequence that frequently enhances cell transduction 

As just noted, one observation was that serotypes AAV1, AAV7-9 or AAVrh10 were frequently 

enhanced by various peptides, suggesting a common underlying mechanism. We then realized that 

the two peptides P4 and P5, which typically mediated this effect and which were originally described 

to improve AAV2 infection of HSaVEC [226], shared the first four amino acids of their sequence 

(NDVR). This motif is remarkably similar to NGR, a sequence found close to VR-V within the GH-loop 

and conserved in most AAV serotypes, except for AAV4, AAV5 and AAV11. NGR was described to 

mediate α5ß1 integrin binding and to thereby be essential for viral entry of AAV2 [100]. Moreover, 

mutation of either the arginine (R) or the glycine (G) in NGR was found to block endocytic uptake of 

AAV2, while leaving cell binding largely unaffected [81], [100]. This is partially congruent with our 

own mutational analysis of P4 which illustrated an essential role of the N and R residues. Notably, 

after we had initiated a collaboration with Dr. Anna Sacher from the DKFZ, we found additional 
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NGR/NDVR-like sequences in peptides isolated from a library screen in the context of AAV2. 

Furthermore, one more NDVR-like peptide was recovered from an own preliminary peptide library 

screen in AAV1 (Appendix). Last but not least, motifs similar to NGR were observed before and 

discussed by Dirk Grimm and colleagues in the context of their potent AAV-DJ chimera [212].  

From the sum of all these independent findings, we eventually identified the consensus sequence 

NxxR as a common motif in most of our efficient peptides. The similarity to the NGR motif implies 

that our lead peptides comprising NxxR might likewise bind to α5ß1 integrin, a known co-receptor of 

AAV2. This hypothesis is in line with the current model for AAV infection which assumes that the 

virion first binds to cells via attachment to a primary receptor, often glycosaminoglycans, followed by 

interactions with secondary receptors that mediate internalization and intra-cellular processing 

[111]. Congruent with this, Asokan et al. described a ‘click-to-fit’ mechanism whereby initial HSPG 

attachment facilitates repeated binding to the same receptor and finally to integrin as a co-receptor 

via the NGR motif, ultimately resulting in viral uptake [100]. Also consistent with this model, Levy et 

al. reported a conformational change in AAV2 upon HSPG binding in an area close to the NGR motif, 

causing a transition that was postulated to expose co-receptor binding motifs [71]. Consequently, we 

hypothesize that insertion of NxxR and hence a potential co-receptor binding motif into VR-VIII, one 

of the most protruded capsid areas, may exhibit a synergistic or additive effect with virion binding to 

the primary receptor and thereby boost infection. 

4.2.2.3 Interdependency of natural and synthetic receptor functions 

During our studies, we noted that serotype AAV1 seems more receptive than AAV6 to peptide-

mediated gain-of-function, especially in conjunction with the supposed α5ß1 integrin-binding 

peptides P4 and P5. In contrast, wtAAV6 more frequently transduced cells from disparate origin than 

AAV1. These observations are interesting, since AAV1 and AAV6 differ in only six aa from each other, 

yet these minor differences cause remarkably altered tropisms for the two wildtype viruses as well as 

peptide-displaying mutants derived thereof. AAV1 and AAV6 use N-linked sialic acid as glycan 

receptor, but AAV6 (thought to be a cell culture-derived chimera of AAV1 and AAV2) additionally 

binds HSPG, due to an AAV2-like lysine at position 531 [89], [94]. Results from our heparin 

competition assay with AAV6 now suggest that saturation of the HSPG receptor can enhance N-liked 

sialic acid binding as well as P4-mediated integrin binding, albeit to a lesser extent. Removal of sialic 

acid from the cell surface, however, almost completely abolishes AAV6 infection, indicating that the 

weak interaction with heparin alone [335] is insufficient for virus transduction. Taken together, we 

hypothesize that the ability of AAV6 to bind heparin broadens its natural tropism, but hampers its 

amenability for peptide-mediated effects. More generally, this points out the complex 

interdependency of different receptors and receptor binding sites. 
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Interestingly, neuraminidase treatment of cells prior to AAV infection abolished sialic acid-dependent 

transduction but increased AAV9 infectivity. This was initially curious until it was reported later that 

N-terminal galactose, AAV9’s primary receptor, becomes accessible once sialic acid is removed from 

the cell surface [283], [284]. Notably, we found this increase in infectivity not only for wildtype AAV9 

but also for its peptide-displaying derivatives. One likely interpretation is that albeit AAV9 primary 

receptor binding was not fully disrupted, peptide insertion improved transduction efficiency. This 

further supports our conclusion that the success of peptide display strategies does not necessarily 

require ablation of the primary tropism of the underlying AAV serotype. 

4.2.3 AAV peptide mutants can be readily exploited for specific applications  

A major advantage of our pre-arrayed panel of peptide-modified vectors is that it allows for much 

faster identification of potent mutants in a given cell type, as compared to conventional iterative 

screening of shuffled or peptide display AAV libraries. One example where we applied this feature in 

the present thesis are cells of hematopoietic origin which are relevant targets e.g. in HIV research, 

but which are largely refractory to wtAAV infection. Importantly, we here identified a number of 

capsid variants that could transduce these cells very efficiently, especially the combinations of 

peptides P2, P4 and P5 with serotypes AAV1, AAV7-9 and AAVrh10. For instance, our best efficiencies 

reached 81% in K562 or 76% in SupT1. Moreover, by exploiting our peptide display strategy and 

parental serotypes, our collaboration partner Dr. Sacher reached high infection rates in macrophages 

and dendritic cells, comparable to those that we obtained for other cells of myeloid and lymphoid 

origin. Based on these and other results, we combined our best six peptides - P2, P4, P5, A1, A2 and 

A6 - in a Master panel (MP; 84 vectors: 12 wildtypes and 72 peptide display mutants). Notably, four 

of these peptides - P4, P5, A2 and A6 - contained the previously discussed consensus sequence NxxR.  

In one specific application, we applied this MP to a set of myeloma-derived cell lines and primary 

cells to evaluate its potential to target multiple myeloma, a cancer of plasma cells of lymphoid origin. 

As shown in chapter 3.2.5.1.1, we achieved remarkable transduction efficiencies of up to 95% in cell 

lines and 43% in primary human myeloma cells. Not surprisingly, transduction rates in primary cells 

were found to be donor-dependent. To our best knowledge, no other vector system has achieved 

comparably high infection rates on such a variety of myeloma-derived cells as our AAV variants.  

Interestingly, we observed distinct infection patterns among the myeloid cells. First, we frequently 

found potent transduction with serotypes AAV1, AAV7-9 and AAVrh10 displaying the NGR/NxxR-like 

peptides P4, P5, A2 and A6, in line with our prior observations in other cell types. Second, we further 

noted a slight advantage of peptides A2 and A6 (“A-panel”) versus P4 and P5 (“P-panel”). Considering 

that wildtype AAV2 and AAV3 also worked well in these cells and that both bind HSPG, we speculated 

that cell binding with capsids displaying A-peptides is at least partially associated with HSPG. Indeed, 
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we found evidence for HSPG-dependent cell binding of the A-panel in a heparin competition assay. It 

was thus an interesting question what caused this potential effect that was presumably common to 

different A-peptides regardless of their primary sequence. 

To answer this question, we examined possible differences in the capsid sequences after insertion of 

A- versus P-peptides. As noted previously, our PCR strategy for the creation of the oligonucleotide 

insertion sites changed the three upstream amino acids into GQS in all serotypes. The nucleotide 

sequence encoding the third residue (the S in GQS) is in fact determined by the design of the inserted 

oligonucleotide duplex, as the respective triplet is part of its 5’ end. Notably, the oligonucleotides 

used by our collaboration partner Dr. Sacher to create the A peptide variants slightly differ from ours 

at their 5’ end, resulting in replacement of the serine in GQS with an arginine (Figure 54). 

 

 

Figure 54: Comparison of “P” and “A” peptide insertion variants. A) “P” peptide insertions - as created by our group - are 
flanked by a serine (red arrow) downstream of the peptide due to the threonine in the 5’ overhang of the oligonucleotide 
(red letter in bold and red box). B) “A” peptide insertions create an arginine instead of the serine (red arrow) because of the 
alanine in the 5’ overhang of the oligonucleotide (red letter in bold and red box). This arginine, which is common to all “A” 
peptide variants, might contribute to heparin binding. Shown are nucleotide sequences as well as the corresponding amino 
acids (blue letters) of the flanking regions of the peptide insertions. Sequences determined by the peptide-encoding 
oligonucleotide are highlighted in red; those common to all serotypes with the insertion site modification are highlighted in 
light gray. Peptide sequences of the “P” and “A” series that were used in the Master Panel are shown in blue. 
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displaying A2 and A6 still transduced even in the presence of heparin and thus behaved differently 

than AAV2 or AAV3 suggests that these particles use NxxR-bound integrins or other molecules as 

additional receptor next to HSPG for transduction. Thereby, our results with the myeloma cells once 

again imply that AAV is able to concurrently exploit different receptor-binding motifs (even artificial 

sequences) and thus highlight the plasticity and versatility of this virus. 

Beyond the value of our data for AAV vector applications, our observations of recurring transduction 

patterns in a set of well characterized cells of the same origin, such as myeloma cell lines, can also 

provide important insights into AAV biology. For instance, it was interesting to note that AAV4 and 

AAV12 were both able to transduce U266 cells, while they hardly worked in any other cells during 

our screens. The ability of both serotypes to specifically infect myeloma U266 cells, independent of 

displayed peptides, suggests that a common, as-of-yet unknown shared capsid feature is responsible 

for their efficacy in these particular cells. To date, little is known about AAV4 and AAV12 other than 

that these two serotypes are close relatives to each other, but distinct from most other AAV isolates 

[108]. AAV12 transduction is independent from sialic acid, but alternative receptors have not yet 

been identified [92], [110], [335]. Serotype AAV4 binds sialic acid as a glycan receptor, like AAV1, 

AAV5 and AAV6, but differs in its sialic acid linkage specificity (O-linked for AAV4 versus N-liked for 

other serotypes) [73], [94], [98], [99]. However, recent results obtained by Mietzsch et al. question 

the described binding properties of AAV4 [335]. Ideally, our findings from the present work that both 

AAV4 and AAV12 efficiently and specifically transduce U266 cells may help to further unravel the 

cellular factors that these two serotypes interact with, and thereby aid in completing our picture of 

AAV biology. 

4.3 Advantages, challenges and perspectives of AAV evolution technology  

Any method aimed at improving the AAV vector system (including AAV capsid shuffling and peptide 

display) has to tackle the challenge that viral transduction is a highly complex process where 

different parts of the AAV capsid are involved at each of the multiple steps, from vector attachment 

to nuclear uncoating [111]. Accordingly, an ideal method for vector evolution has to be able to 

concurrently improve all these various steps and associated capsid parts. The difficulty of achieving 

this goal is exemplified by several studies that have assessed the contribution to transduction of 

single amino acids within the AAV capsid, next to those that form primary receptor binding sites [95], 

[96], [328], [336]. For instance, a mutational analysis of the AAV2 capsid identified 19 aa whose 

individual mutation decreased transduction despite the fact that heparin binding ability was 

retained. These aa are scattered in the C-terminal half of the linear capsid sequence but cluster in the 

assembled capsid, mostly in an area that was termed ‘dead zone’ [81] (see also Figure 55). The same 

report described aa that are important for capsid formation or whose mutation increased resistance 
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to nAB. A most recent study confirms these observations with AAV9, by identifying individual aa 

associated with primary receptor binding, virion formation, resistance to human AB, liver tropism or 

slower clearance from the blood [337]. Again these aa were found to be dispersed throughout the 

entire capsid sequence, although some important aa cluster in areas which are largely consistent 

with the VR [66] (Figure 55). Together, these and other studies yielded important information on the 

diverse functions of certain aa, and they also consistently highlight how these functions are 

determined by aa that are often located in distant capsid parts. This, in turn, explains why the direct 

and rational translation of the findings from these studies into a more efficient and/or more specific 

AAV vector is very challenging. This is because a single point mutation frequently suffices to abolish 

functions such as receptor binding, whereas gain-of-functions usually require several simultaneous 

aa changes. This is further exemplified by reported difficulties to transfer an AAV9-like galactose 

binding ability into AAV2 [336], [337] or to create a HSPG binding domain in AAV8 [212], using site-

directed mutagenesis of selected individual residues.      

In fact, the only method available to date that can comprehensively dissect functions that are 

dispersed throughout the AAV capsid, and that can concurrently exploit this potential to create new 

gain-of-function phenotypes, is DNA family shuffling. As compared to conventional mutagenesis 

strategies, it yields a far higher diversity and has the unique potential to combine most desirable 

aspects of different capsids in a single chimeric particle. Still, at first glance, it seems counter-intuitive 

that the rearrangement of conserved capsid domains could lead to an increase in transduction 

efficiency and/or specificity, considering that these features have developed during long evolutionary 

processes. Nonetheless, there is ample evidence that the juxtaposition of specialized properties from 

different serotypes in a single capsid can produce entirely novel phenotypes not found in nature. For 

example, it is the combination of different features in AAV-DJ that is assumed to be the reason for its 

superior performance, namely, AAV2-like cell binding and AAV8-like uncoating [212]. Congruent with 

this, our best chimeras from the AAV289 library selection also display a distinct combination of 

motifs from AAV2 and AAV8. This tempts us to speculate that akin to AAV-DJ, these capsids likewise 

combine the ability to partially escape neutralizing antibodies with improved intracellular processing; 

a likely hypothesis that should be interesting to study in more detail in future work.  

Despite its enormous power and potential to improve capsid features related to dispersed aa, a 

remaining limitation of DNA family shuffling is that it relies on motifs that are already present in at 

least one of the parental serotypes. In particular for attempts to target cells that are completely 

refractory to all the known wildtype AAVs, it may be beneficial to be able to introduce entirely novel 

sequences and properties into an AAV capsid. This possibility is provided by the alternative AAV 

evolution method that was studied in this thesis, i.e., AAV peptide display [221], [338]. This technique 
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often yields capsids that exhibit increased, but not always specific transduction [226], [327], [329], 

[339]. As opposed to capsid shuffling, display of peptides at defined positions within the capsid 

represents a spatially restricted modification of an exposed capsid part. This explains why first 

attempts at peptide display mainly aimed at modulating receptor binding, considering that this initial 

step of infection is mostly controlled by exterior capsid parts. Interestingly though, receptor binding 

can in turn determine the mechanisms of virus internalization and consequently control intracellular 

particle fate, thereby allowing displayed peptides to also affect other steps in vector transduction 

beyond cell attachment. However, data obtained by Ying et al. indicates that their AAV2-based 

peptide-displaying clone enters heart tissue better than wtAAV9 (shown by increased genome 

numbers in the cells) while its genome expression is limited by intracellular processing [327].  

In the future, a possible way to further expand the power of peptide display could be the insertion at 

alternative regions within the capsid; either alone or in juxtaposition with validated insertion sites. As 

previously discussed (chapter 4.2), peptides in this thesis were mainly inserted at the tip of the HI-

loop in VR-VIII of AAV2, corresponding to the position of its HSPG binding domain (Figure 55). 

Concurrent with our own results from the shuffling approach that identified VR-IV as being important 

for AAV infection, Naumer et al. [331] chose position 453 in AAV2 to display a heptamer peptide 

library (see also Figure 55). They confirmed the ability of this region to harbor peptides of different 

sequence and then showed how subsequent selection on human coronary artery endothelial cells 

(HCAEC) led to a slight enrichment of particular sequences. Amongst those, two sequences that 

contained an RGD motif significantly improved target cell transduction. Interestingly, a parallel 

selection on HCAEC cells with a peptide library displayed at position 588 yielded completely different 

sequences. The lack of RGD-containing motifs in this alternative selection indicates that the site of 

insertion also influences the sequence of the selected peptides and thus supports our suggestion to 

explore further alternative positions in the future . However, as not every position within the capsid 

sequence is suitable for peptide insertion [340], peptide display will probably remain restricted to 

only a few domains. 

Meanwhile, our expansion of peptide display to non-AAV2 serotypes significantly broadens the 

prospects of this method. It was a central finding of this work that a given capsid scaffold and a 

specific peptide sequence can largely and mutually influence each other. This finding is not only 

important from a biological point of view, but by inserting defined peptides into the context of 

different serotypes previously not utilized for alternative receptor targeting, we also obtained 

vectors with new assets that should prove highly useful in the future. Nonetheless, it remains an 

intriguing question why certain peptides behaved completely unique in the context of different 

serotypes. One explanation could be that a displayed peptide in conjunction with the AAV backbone 
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forms a new set of primary and secondary receptors (as discussed in 4.2).  Another explanation is 

indicated by 3D modeling of peptide-containing AAV capsids from different serotypes, performed in 

the lab of Mavis Agbandje McKenna (University of Florida, USA). Their data generated with selected 

capsid-peptide combinations from our collection suggest that it is not necessarily the peptide itself 

that alters the properties of the modified vector. Instead, it is possible that peptide insertion leads to 

regional or global changes in capsid conformation, which in turn alter the features of the entire 

particle (personal communication). This alternative explanation is very exciting and will be studied 

further in collaboration with this group, as it questions the previous hypothesis that displayed 

peptides primarily act as an entity and directly mediate specific effects. 

 

 

Figure 55: Structure of the AAV VP3 protein. The top panel shows a linear alignment of the C-terminal aa that are shared 
by all three VP proteins in analogy to Figure 4 in the introductory chapter. The lower part gives an overview over a VP3 
monomer. Variable regions are named and indicated by light gray color. Thin white lines indicate the 2-fold (2F), 3-fold (3F) 
and 5-fold (5F) symmetry axis, respectively, of the assembled AAV capsid. Colored residues show aa that contribute to the 
‘Dead Zone’ (red) [81], peptide insertion sites at position 453 (purple) [331] and 588 (blue) [221] and the ‘NGR’ motif 
(yellow) [100].   
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Importantly, albeit the methods of capsid shuffling and peptide display are fundamentally different, 

they are also highly complementary. For example, our approach to display DRG-targeting peptides 

aimed at improving transduction of sensory and motor neurons upon direct application, but could 

not account for retrograde transport. Therefore, very recently, we have started to screen the 

AAV15689 chimeric library in analogy to the selection on ß-cells (chapter 3.1.3) for chimeric AAV 

vectors that allow efficient transduction of DRG neurons by retrograde transport upon sciatic nerve 

injection in vivo. Preliminary data from the analysis of some of the enriched chimeras revealed that 

they were mostly composed of sequences from serotypes AAV1 and AAV6 (data are shown in the 

Appendix). These results are in accordance with our observed high efficiency of wtAAV6 on neurons 

and DRGs (Figure 52). Considering now also the further increase of AAV1 transduction by display of 

peptide P9 (FGQ) (3.2.5.2.1), it might be possible to boost the efficiency of the selected AAV chimeras 

that are already capable of effective retrograde transport. Hence, the combination of the results 

from both approaches may yield a vector suitable for DRG transduction upon peripheral vector 

administration. 

In the course of our work, we finally provided first evidence that AAV capsid shuffling can indeed be 

combined with peptide display. Therefore, we shuffled capsid sequences that already contain 

insertion sites for peptide display, which allows to merge both methods for subsequent capsid 

selection from the resulting, highly complex library. Considering the observed mutual influence of 

capsid backbone and peptide sequence, the feasibility to screen a peptide library within a shuffled 

capsid scaffold has important implications for AAV capsid engineering and evolution. In fact, by 

inserting a distinct peptide with a known binding ability into a shuffled capsid library, it should be 

possible to evolve a capsid backbone whose composition ideally supports display and activity of the 

given peptide. Thereby, such a combinatorial library has potential to merge the best of both worlds, 

i.e., the global effects of DNA family shuffling on capsid structure and function, with the local 

refinements introduced by peptide display. 

In the future, an important next step is the in vivo evaluation of our peptide displaying AAV panels as 

well as of our lead candidates from the multiple shuffling approaches. To maximize the efficiency of 

this process, it should be beneficial to adapt a recently described method for high-throughput 

screening termed AAV barcode sequencing that relies on reporter constructs that additionally 

contain short, specific sequences. These ‘DNA barcodes’ allow to determine the biodistribution of 

different individual AAVs or of whole libraries in vivo in a single animal [337]. With such approaches 

and together with the ever increasing structural information on AAV serotypes, our results, our 

methodological improvements and our new tools should help to significantly advance the field of 

AAV vector evolution and thereby foster the clinical implementation of human gene therapy. 
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5 Appendix 

5.1 Supplementary heatmaps 

5.1.1 Transduction pattern of AAV1-12 with peptides P1-P6 

The following heatmaps provide additional information on the peptide display screens conducted 

with peptides P1 to P6, described in detail in 3.2.3. Screening experiments and FACs analysis were 

performed together with Marina Bechtle, a former MSc student in our lab.  

5.1.1.1 Transduction of cells from solid organs: 

 

 

WT P1 P2 P3 P4 P5 P6

RawE

0 50% 

AAV1

AAV2

AAV6

AAV8

AAV9

AAV7

AAV5

AAV4

AAV3

AAV rh10

AAV Po.1

AAV12

HeLa

WT P1 P2 P3 P4 P5 P6

AAV1

AAV2

AAV6

AAV8

AAV9

AAV7

AAV5

AAV4

AAV3

AAV rh10

AAVPo.1

AAV12

100% 0 

WT P1 P2 P3 P4 P5 P6

OVCAR-3

100% 0 

AAV1

AAV2

AAV6

AAV8

AAV9

AAV7

AAV5

AAV4

AAV3

AAV rh10

AAV Po.1

AAV12

Panc-1

WT P1 P2 P3 P4 P5 P6

AAV1

AAV2

AAV6

AAV8

AAV9

AAV7

AAV5

AAV4

AAV3

AAV rh10

AAVPo.1

AAV12

100% 0 

Hek293T

WT P1 P2 P3 P4 P5 P6

AAV1

AAV2

AAV6

AAV8

AAV9

AAV7

AAV5

AAV4

AAV3

AAV rh10

AAVPo.1

AAV12

100% 0 

WT P1 P2 P3 P4 P5 P6

H4IIE

AAV1

AAV2

AAV6

AAV8

AAV9

AAV7

AAV5

AAV4

AAV3

AAV rh10

AAV Po.1

AAV12

0 50% 

HepG2

WT P1 P2 P3 P4 P5 P6

AAV1

AAV2

AAV6

AAV8

AAV9

AAV7

AAV5

AAV4

AAV3

AAV rh10

AAVPo.1

AAV12

100% 0 

Huh7

WT P1 P2 P3 P4 P5 P6

AAV1

AAV2

AAV6

AAV8

AAV9

AAV7

AAV5

AAV4

AAV3

AAV rh10

AAVPo.1

AAV12

100% 0 



Appendix 

[158] 
 

 

 

 

 

 

SK-MEL

WT P1 P2 P3 P4 P5 P6

AAV1

AAV2

AAV6

AAV8

AAV9

AAV7

AAV5

AAV4

AAV3

AAV rh10

AAVPo.1

AAV12

100% 0 

WT P1 P2 P3 P4 P5 P6

Hepa1-6

100% 0 

AAV1

AAV2

AAV6

AAV8

AAV9

AAV7

AAV5

AAV4

AAV3

AAV rh10

AAV Po.1

AAV12

WT P1 P2 P3 P4 P5 P6

Hep56D

0 25% 

AAV1

AAV2

AAV6

AAV8

AAV9

AAV7

AAV5

AAV4

AAV3

AAV rh10

AAV Po.1

AAV12

Primary Hepatocytes (human)

WT P1 P2 P3 P4 P5 P6

0 25% 

AAV1

AAV2

AAV6

AAV8

AAV9

AAV7

AAV5

AAV4

AAV3

AAV rh10

AAVPo.1

AAV12

WT P1 P2 P3 P4 P5 P6

MDA-MB-436

100% 0 

AAV1

AAV2

AAV6

AAV8

AAV9

AAV7

AAV5

AAV4

AAV3

AAV rh10

AAV Po.1

AAV12

MEF

WT P1 P2 P3 P4 P5 P6

0 25% 

AAV1

AAV2

AAV6

AAV8

AAV9

AAV7

AAV5

AAV4

AAV3

AAV rh10

AAVPo.1

AAV12

WT P1 P2 P3 P4 P5 P6

NIH/3T3

100% 0 

AAV1

AAV2

AAV6

AAV8

AAV9

AAV7

AAV5

AAV4

AAV3

AAV rh10

AAV Po.1

AAV12

MCF7

WT P1 P2 P3 P4 P5 P6

AAV1

AAV2

AAV6

AAV8

AAV9

AAV7

AAV5

AAV4

AAV3

AAV rh10

AAVPo.1

AAV12

100% 0 

WT P1 P2 P3 P4 P5 P6

MCF10A

100% 0 

AAV1

AAV2

AAV6

AAV8

AAV9

AAV7

AAV5

AAV4

AAV3

AAV rh10

AAV Po.1

AAV12

MDA-MB-231

WT P1 P2 P3 P4 P5 P6

AAV1

AAV2

AAV6

AAV8

AAV9

AAV7

AAV5

AAV4

AAV3

AAV rh10

AAVPo.1

AAV12

100% 0 



Appendix 

[159] 
 

5.1.1.2 Transduction of cells from bone marrow and of hematopoietic origin:  

 

 

Heat maps with P1-P6 are partially based on data obtained by Marina Bechtle, a former MSc student in our lab. 
Heat maps of primary NKC (activated and non-activated) are courtesy of Marina Bechtle. Cells of hematopoietic 
origin were provided by Dr. Kathleen Börner (Infectious Diseases/ Virology Dept.). 

 

5.1.1.3 Transduction of cells of neuronal origin: 
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HNSC-100 were provided by Christine Kammel, Helmholtz Zentrum München. Astrocytes were derived from 
HNSC-100 by Christine Kammel. 

 

5.1.2 Transduction pattern of AAV1-12 with peptides of the MP  

The following heatmaps provide additional information on the peptide display screens conducted 

with the MP that includes peptides A1, A2 and A6 as well as P2, P4 and P5. Screening experiments 

and FACs analysis were performed together with Dr. Kathleen Börner (Infectious Diseases/ Virology 

Dept). 

5.1.2.1 Transduction of cells of hematopoietic origin: 
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5.1.2.2 Transduction of myeloid cells: 
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5.1.2.3 Transduction of primary human myeloma cells: 

 

Peptide sequences A1, A2 and A6 of the MP were provided by Dr. Anna Sacher from the group of Prof. Dr. Martin 
Müller, German Cancer Research Center. Cells of hematopoietic origin were provided by Dr. Kathleen Börner 
(Infectious Diseases/ Virology Dept.). Myeloid cell lines and primary myeloma cells were provided by Dr. Anja 
Seckinger (Medizinische Klinik V, Heidelberg).  

 

5.2 Supplementary data on AAV library selection schemes 

 

Supplementary Figure 1: Peptide 
library screen in selected AAV 
serotypes. Shown are serotypes with 
peptide libraries indicated and cell 
lines on which the libraries were 
selected. Single clones were 
sequenced after two rounds of 
selection to generally control the 
functionality of the approach.  
Peptide sequences that emerged are 
shown on the right and possible 
pattern are indicated by colored 
boxes. ’X’ marks positions where 
sequencing could not determine an 
exact nucleotide or aa, respectively.  
Note that due to the limited number 
of selection rounds and analyzed 
clones, these data are preliminary 
and only show tendencies.  
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Supplementary Figure 2: Overview over the capsid protein composition of the AAV15689 library selected in vivo. Shown 
are results after the first (DRG1st), second (DRG2nd) and third (DRG3rd) injection. The top panel shows the linear alignment 
of VP amino acid residues. See Figure 4 in the Introduction for details. Colored lines in the three panels underneath indicate 
the percentage of clones that originate from the respective parental serotype at any position within the AAV capsid 
sequence. Experiments were performed together with Julianne McCall (Orthopedics Dept., Klinik Heidelberg, group of Prof. 
Dr. Armin Blesch) 

 

5.3 Supplementary electronic Data 

Together with the printed dissertation, a CD is provided that contains additional sequence 

information on clones selected from the AAV289 and AAV15689 capsid shuffled libraries. These files 

(Excel) show complete capsid amino acid sequences of selected chimeras in a sequence alignment 

with their parental serotypes.  
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