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Modeling of zinc uptake and transport in plant roots

Summary

Zinc is an essential micronutrient in green plants, yet toxic at high concentrations.
Only specialized hyperaccumulator plants can tolerate high zinc doses and are there-
fore of special interest for their potential application in phytoremediation and crop
development. Zinc ions are taken up from the soil along with water and are trans-
ported towards the root’s vascular bundle in two parallel ways: cell wall (apoplast)
and cytoplasm (symplast). Cross-membrane transport into and out of the cyto-
plasm is mediated by ZIP and HMA transporter proteins, respectively. The ZIP
transporters responsible for zinc uptake are highly regulated to guarantee an opti-
mal internal zinc concentration under varying external conditions.
A dynamical model based on ordinary differential equations is used to study the

regulation of ZIP transporters. A data-based model in yeast allows insights into
general mechanisms. Simulations of different model variants in plants suggest an
activator-inhibitor model as the most likely mechanism, because it provides more
robust zinc homeostasis than simpler models without inhibitor. High robustness of
the steady state towards external zinc variations, however, leads to instability of the
steady state and high-amplitude oscillations. These oscillations form stable periodic
solutions and emerge from a supercritical Hopf bifurcation in certain critical values
of the external zinc concentration.
To study spatial aspects of the zinc distribution in root tissues, the ZIP regulatory

model was coupled to a radial transport model. This model accounts for the struc-
ture of the root consisting of symplast and apoplast and includes effects of water
flow, diffusion, and cross-membrane transport via transporters. It also incorporates
the radial geometry and varying porosity of root tissues. We use existing biological
data to estimate parameters and analyze the properties of the model in numerical
simulations. Experimental results show a pattern of zinc accumulation close to the
center of the root, which disappears at high levels of the efflux transporter HMA.
Using our model, we study the roles of ZIP regulation, HMA level and water flow
velocity in the creation of this radial pattern. In the steady state, the model repro-
duces the zinc gradient found in experiments as well as its loss at increased levels
of HMA. Surprisingly, water flow velocity is found to be also a key parameter for
producing this gradient. These results give insight into the uptake and transport of
zinc in roots and suggest improved experimental assays.
Buffering and vacuolar sequestration are known to play important roles in zinc

homeostasis. Regulated vacuolar sequestration in yeast again serves as a data-based
model for possible mechanisms. In plants, buffering can dampen the oscillations and
lead to stability of the steady state. Since experiments do not suggest oscillatory
behavior in the cellular zinc concentration, these results indicate the existence of
strong zinc buffers.



Modellierung von Zinkaufnahme und Transport in
Pflanzenwurzeln

Zusammenfassung

Zink ist ein essentielles Spurenelement für Pflanzen, in hohen Konzentrationen je-
doch giftig. Nur spezialisierte sogenannte Hyperakkumulatoren können hohe Zink-
mengen tolerieren und werden aufgrund von mögliche Anwendungen in der Phytore-
mediation oder als funktionelle Nahrungsmittel seit Längerem erforscht. Zinkionen
werden in Wasser gelöst aus dem Boden aufgenommen und auf zwei Wege durch die
Wurzel zum Leitgewebe transportiert: der Zellwand (Apoplast) und dem Zytoplasma
(Symplast). Die Transportproteine ZIP und HMA erlauben den Zinktransport über
Zellmembranen. Die für die Aufnahme zuständigen ZIP Transporter sind hoch re-
guliert, um eine optimale zelluläre Zinkkonzentration unter schwankenden externen
Bedingungen zu garantieren.
Ein dynamisches Modell aus gewöhnlichen Differentialgleichungen wird zur Un-

tersuchung der Regulation der ZIP-Transporter verwendet. Das Modell wird in Hefe
und Pflanzenwurzeln angewendet. Simulationen verschiedener Modellvarianten deu-
ten darauf hin, dass in Pflanzen ein Aktivator-Inhibitor-Mechanismus wahrschein-
licher ist als einfachere Modelle ohne Inhibitor, denn dieser Mechanismus erlaubt
robustere Zinkhomöostase. Hohe Robustheit der stationären Lösung führt jedoch
zur Instabilität und der Entstehung von Oszillationen. Diese bilden stabile peri-
odische Lösungen und entwickeln sich aus einer superkritischen Hopfbifurkation in
bestimmten kritischen Werten der externen Zinkkonzentration.
Um räumliche Zinkdistributionen im Wurzelgewebe zu verstehen, wurde das ZIP-

Regulationsmodell gekoppelt mit einem radialen Transportmodell. Dieses berück-
sichtigt die Struktur der Wurzel mit Symplast und Apoplast, die radiale Geome-
trie und wechselnde Porosität und beschreibt die Effekte von Wasserfluss, Diffusi-
on und Membrantransport durch Transportproteine. Biologische Daten werden zur
Abschätzung der Parameter verwendet. Experimentelle Ergebnisse zeigen ein Mus-
ter mit hoher Zinkakkumulation im Zentrum der Wurzel, welches bei Erhöhung
des Effluxtransporters HMA verschwindet. Diese stationären Zustände werden im
Modell reproduziert. Erstaunlicherweise scheint der Wasserfluss jedoch auch eine
Schlüsselrolle bei der Erzeugung dieses Gradienten zu spielen. Diese Resultate ge-
ben Biologen wichtige Erkenntnisse und Vorschläge für verbesserte experimentelle
Messungen.
Pufferung und Sequestrierung spielen eine wichtige Rolle in der Zinkhomöostase.

Die regulierte Sequestrierung in die Vakuole in Hefe lässt sich mithilfe von Da-
ten gut simulieren und experimentelle Vermutungen bestätigen. In Pflanzenmodell
führt simulierte Pufferung zu einer Dämpfung der beobachteten Oszillationen und
zur Stabilisierung des Steady States. Da Experimente tatsächlich keine Anzeichen
von Oszillationen in der Zinkkonzentration liefern, deuten diese Ergebnisse auf eine
starke Pufferung hin.
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1 Introduction

Zinc is an essential micronutrient in green plants, yet toxic at high concentra-
tions. Only specialized hyperaccumulator plants can tolerate high zinc doses
and are therefore of special interest for their potential application in phytore-
mediation and crop development (Clemens et al., 2002). For this reason, zinc
transporters and the mechanisms of its uptake in plants have been studied
extensively by experimentalists. To our knowledge, no approaches have been
undertaken so far to understand zinc uptake from a modeling point of view.

Besides the importance of zinc by itself, the study of its uptake regulation
and transport mechanisms provides useful insights into the general function-
ality of plant nutrient uptake. In this sense, the models presented here stand
as examples for ion uptake in plant roots and can easily be adapted for other
nutrients.

Project Description and Objectives
The aim of this interdisciplinary thesis is the development of mathematical
models of zinc uptake and transport in plant roots, their analysis and numerical
simulation, and the discussion of biological relevance and implications.

The first chapters of this work give an introduction to the biological and
mathematical background of the models developed later on. Chapter 2 sum-
marizes the current biological knowledge on zinc nutrition and transport in
roots, while Chapter 3 introduces the types of differential equations to be used
and gives an overview of the relevant mathematical theorems.

A model for the regulation of zinc uptake transporters of the ZIP family is
presented in Chapter 4. This homeostasis model based on ordinary differential
equations (ODEs) is developed in a general setting and fitted to experimental
data from yeast and plants. Three different model alternatives for plant roots
are analyzed for their ability to provide robust and stable zinc homeostasis.
The results of this chapter were developed with A. Chavarría Krauser and were
published in Claus and Chavarría-Krauser (2012).

In the model identified as the most feasible in Chapter 4 a Hopf bifurcation

1



1 Introduction

occurs for certain parameter choices. This Hopf bifurcation is analyzed for
stability and global continuation in Chapter 5. The results of this chapter
were developed with M. Ptashnyk, A. Bohmann and A. Chavarría Krauser
and were published in Claus et al. (2014).

In Chapter 6 the ODE model for the regulation of ZIP transporters is
coupled to a spatial transport model based on partial differential equations
(PDEs). The model accounts for the internal structure of the root, its radial
geometry and varying porosity. Numerical simulations are used to explain the
unequal zinc distribution in root tissues found in experiments and to identify
key processes leading to this pattern. These results were developed with A.
Bohmann and A. Chavarría Krauser and were published in Claus et al. (2013)
and Claus and Chavarría-Krauser (2013).

Chapter 7 focuses on the role of buffering and sequestration in zinc home-
ostasis. A model for vacuolar zinc sequestration in yeast serves as a well-
studied example and can be used to discuss the role of “pro-active” expres-
sion. Buffering in plant roots is modeled in a simple setting and analyzed
for its function in damping oscillations. These latter results were developed
with A. Bohmann and A. Chavarría Krauser and were published in Claus and
Chavarría-Krauser (2013) and Claus et al. (2014).

2



2 Biological background

2.1 Plant zinc nutrition
Zinc is a heavy metal and micronutrient that plays an important role in all
living organisms and is essential for humans (Maret, 2013) as well as for higher
green plants (Sommer and Lipman, 1926). It is part of the functional subunits
or cofactor of more than 300 proteins, among them the class of zinc-finger-
proteins that are essential as interaction modules between DNA, RNA, proteins
and other molecules. In addition, it has been reported to protect plant cells
from oxidative stress mediated by reactive oxygen species (Cakmak, 2000) and
may act as an intracellular second messenger (Yamasaki et al., 2007).

In spite of its indispensability, zinc becomes toxic in higher doses. Toxicity
is far less frequent than deficiency, but likely in plants growing on contami-
nated soils, e.g. in mining or industrial areas. Most plants react to elevated
zinc levels with toxicity syndromes, such as reduced growth and leaf chlorosis
(Broadley et al., 2007). Zinc toxicity has also been reported to lead to abnor-
mal depositions in the xylem vessel walls (Robb et al., 1980). Only specialized
zinc-hyperaccumulating species are able to tolerate high levels without impair-
ment (Zhao et al., 2000). In order to do so, they possess mechanisms for both
the increased uptake of zinc from the soil and its sequestration and detoxifica-
tion (Macnair et al., 1999). These mechanisms are subject of ongoing research,
as they implicate interesting applications in phytoremediation or nutritional
enhancement (Chaney et al., 1997).

Avoiding both deficiency and toxicity, plants need to take up their required
amounts of zinc. Unlike animals they cannot adapt their nutrition accordingly,
but depend on the zinc content of the soil. This content may vary considerably
in different locations and under different conditions. How are plants able to
adapt to this variety?

2.1.1 Zinc transporters
Charged zinc ions are unable to cross cell membranes freely (Alberts et al.,
2002). Instead, they are transported across membrane barriers by specialized

3



2 Biological background
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Figure 2.1: Schematical overview of zinc uptake in A. thaliana. Each root
tissue (epidermis, cortex, endodermis, pericycle) consists of one layer of cells.
Water and zinc move from the outer medium towards the central cylinder,
where they are taken up into the xylem and go towards the shoot. Zinc trans-
porters ZIP and HMA transport zinc across cell membranes into and out of the
cytoplasm, respectively. ZIP is located in epidermis, cortex and endodermis
outside the Casparian strip, while HMA is located in endodermis and pericycle
inside the Casparian strip.
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2.1 Plant zinc nutrition

transporter proteins (Clemens et al., 2002). There are different transporters
involved in the transport of zinc in plants. The most well-known families
are: ZIP (ZRT-, IRT-like proteins), HMA (heavy metal ATPases), and MTP
(metal tolerance protein) or CDF (cation diffusion facilitator). Members of the
ZIP family are believed to act as influx carriers, including uptake from the soil
(similar to ZRTs in yeast). HMAs accomplish efflux of zinc, e.g. from roots into
xylem vessels, while MTPs are involved in sequestration from the cytoplasm
into cell compartments, such as the vacuole (Palmer and Guerinot, 2009).
Other results suggest the involvement of YSL (yellow-stripe-like) transporters
and OPT (oligopeptide transporters) in zinc homeostasis and transport of
chelated metal ions (DiDonato et al., 2004; Schaaf et al., 2005).

To provide sufficient zinc uptake without reaching toxicity, the uptake
transporters are tightly regulated. In general, this regulatory mechanism has
to consist of two parts: sensing of the intracellular zinc concentration and
reaction to changes by controlling the amounts of zinc transporters. Sensing
of changes in zinc concentrations must be very sensitive, because the actual
available zinc concentration within cells is believed to be very small. Zinc
ions bind to various intracellular proteins, are chelated and sequestered into
specific cellular compartments, such as the vacuole (Clemens, 2001). Therefore,
although the total zinc content of cells may be in a millimolar range, the actual
concentration of free zinc ions in the cytoplasm is estimated to be much lower.
Earlier investigations suggest concentrations in a femtomolar range (Outten
and O’Halloran, 2001), while more recent results indicate nanomolar ranges
(Vinkenborg et al., 2009; Dittmer et al., 2009). Zinc influx carriers are thought
to be regulated by this pool of free zinc ions plus ions that are loosely bound
to chelator proteins and are available to bind to other proteins with higher
affinity.

From experiments, the main influx transporters of the ZIP family appear
to be ZIP1 to ZIP4, ZIP9, and IRT3 (iron-responsive transporter) (Grotz et al.,
1998). These transporters are highly expressed under conditions of zinc defi-
ciency, but their expression decreases quickly when zinc is added to the media
(Talke et al., 2006). The exact mechanism of this regulation is still unknown.
Recent results have shown that at least ZIP4 in Arabidopsis thaliana is regu-
lated by transcription factors of the basic-region leucine zipper (bZIP) family:
bZIP19 and bZIP23 (Assunção et al., 2010a). These factors bind to a ZDRE
(zinc deficiency response element), which has been found not only in the up-
stream region of ZIP4, but also of ZIP1, ZIP3, ZIP9 and IRT3. Therefore it
is reasonable to assume similar regulation for these ZIP transporters.

Unlike the ZAP1 transcription factor in yeast (see Section 2.2), bZIP19 and
bZIP23 transcription factors do not have a zinc binding site (Assunção et al.,
2010a). It is unclear how they sense the intracellular zinc status. Existence

5



2 Biological background

of further players that bind zinc and act as inhibitors of bZIP19 and bZIP23
have been proposed (Assunção et al., 2010b). Transcription factors of the bZIP
family have been studied in other regulatory networks and are known to be
regulated post-transcriptionally in various ways (Schütze et al., 2008). Gener-
ally, bZIP transcription factors (in particular bZIP19 and bZIP23) are known
to dimerize (Jakoby et al., 2002). They are partially redundant (Assunção
et al., 2010a) and it is believed that they preferentially form homodimers, but
may also constitute heterodimers (Deppmann et al., 2006).

The efflux of zinc from the root to the shoot mainly depends on HMA2
and HMA4 transporters, which are predominantly expressed in the pericy-
cle cells adjacent to the xylem (Sinclair et al., 2007; Hanikenne et al., 2008).
Zinc hyperaccumulator species such as Arabidopsis halleri appear to have the
same ZIP transporters as nonhyperaccumulators, but different HMA4 genes.
Moreover, studies in different plant species have shown that hyperaccumula-
tors possess multiple copies of HMA4 in their genome. This results in higher
expression levels and more efficient root-to-shoot transport of zinc (Hanikenne
et al., 2008; Ó Lochlainn et al., 2011).

2.1.2 Transport across the root
Water and zinc are taken up from the soil by the epidermal root cells that
often possess root hairs to increase their surface towards the soil or medium.
From the epidermis the substances are transported radially towards the xylem,
from where they are distributed to stem and leaves (Clemens et al., 2002). On
this way, they pass through several tissues: the epidermis, the cortex, the
endodermis, and the pericycle (Hanikenne et al., 2008, Fig. 1). In Arabidopsis
thaliana, each of these tissues comprises only one layer of cells (Dolan et al.,
1993). The cytoplasm of adjacent cells is connected by plasmodesmata, which
may be simple channels or have complex geometries (Roberts and Oparka,
2003) and forms a symplastic continuum without membrane barriers.

Besides through the symplast, water and ions are also free to move in the
cell wall continuum, the apoplast, which has been found to contribute sig-
nificantly to root transport processes (Steudle, 1994). The apoplastic flow,
however, is interrupted in the endodermis by suberin deposited in the cell
wall (Casparian strip). This strip is mostly impermeable to water and ions, al-
though some findings suggest there may also be flow across this barrier (White
et al., 2002; Ranathunge et al., 2005). Nevertheless, most water and ions need
to pass the cell membrane and enter the symplast before the Casparian strip
to be transported further (Yang and Jie, 2005). Because membrane transport
is much more selective than apoplastic flow, this barrier is believed to func-
tion as a mechanism to control the uptake of nutrients and solutes. While

6



2.2 Zinc in yeast

considerable amounts of water can cross the membrane freely, ions are almost
completely blocked and their transport across cell membranes relies on the
specialized transporter proteins described above. A schematical overview of
zinc transport across roots is given in Fig. 2.1.

2.2 Zinc in yeast
The yeast Saccharomyces cerevisiae has been widely used as a model organism
for various processes. As yeast is a single-cellular organism, experimental
measurements are much easier and less prone to artifacts. Especially for zinc
uptake, yeast is an interesting model organism, as the membrane transporters
belong to the same protein family and are potentially regulated in a similar
manner as in plants.

The regulation of zinc uptake in yeast cells has been studied in much detail
and found to be a combination of two systems with high and low affinity for
zinc ions. A similar distribution of high and low affinity transporters has also
been found in wheat (Hacisalihoglu et al., 2001) and is thought to exist in
other plants as well (Guerinot, 2000). A schematic overview of the system can
be seen in Fig. 2.2. Zinc ions are transported with high affinity by ZRT1 (zinc-
responsive transporter) and with low affinity by ZRT2, which both belong to
the ZIP (zinc-, iron-permease) family. ZRT1 has been found to be strongly
regulated by the intracellular zinc concentration and almost exclusively active
under conditions of zinc deficiency (Zhao and Eide, 1996a). ZRT2 has been
reported to guarantee a basic zinc uptake level under normal zinc-replete con-
ditions (Zhao and Eide, 1996b) while being repressed under zinc deficiency
(Bird et al., 2004).

Further studies have shown that both ZRT1 and ZRT2 are activated by
the transcription factor ZAP1 (zinc-dependent activator protein) (Zhao et al.,
1998), which binds to so-called zinc responsive elements (ZREs) in the pro-
moter regions of the respective genes. Under conditions of elevated zinc con-
centrations, the activity of ZAP1 is reduced and production of ZRT1 and ZRT2
decreases. Inactivation of ZAP1 occurs most likely by direct binding of free
zinc ions, although further signaling molecules may also be involved in this
process. By binding to its own promoter region, ZAP1 regulates its transcrip-
tion introducing a positive feedback mechanism and presumably allowing an
even stronger response to zinc-limiting conditions (Eide, 2003). In addition to
the transcriptional regulation, ZRT1 is also regulated by a post-translational
mechanism (Eide, 2003). While it is a stable membrane protein under zinc de-
ficient conditions, ZRT1 is ubiquinated and subjected to endocytosis for high
intracellular zinc levels. The details of this mechanism have been investigated
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2 Biological background

Figure 2.2: Yeast: scheme of zinc influx regulation model. The activator
ZAP1 (A) is inactivated by zinc. It induces gene activity for its own gene,
ZRT1 and ZRT2 (GA, G1, and G2) and also inhibits transcription of ZRT2.
Gene activity results in transcription of mRNAs (MA, M1, M2) that are trans-
lated into the proteins ZAP1 and the transporters ZRT1 (T1) and ZRT2 (T2),
respectively. ZRT1 is also post-translationally inhibited by zinc.

8
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in Gitan et al. (2003), but it is yet unknown whether zinc ions bind directly
to ZRT1 to induce its ubiquitination, or whether other zinc-binding proteins
are involved. It has been proposed that the combination of transcriptional
and post-translational regulation allows for a very quick response to changing
environmental conditions and thus prevents a toxic zinc shock (Eide, 2003).
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3 Mathematical background

3.1 Modeling with ordinary differential equations
Ordinary differential equations (ODE) are commonly used to model chemical
reaction kinetics. For an elementary reaction of two reactants A and B to a
product C, in chemical notation

A+B
k→ C ,

according to the law of mass action the reaction rate or velocity of the reaction
at constant pressure, volume and temperature is proportional to the product
of the concentration of the educts:

v = d[C]
dt

= −d[A]
dt

= −d[B]
dt

= k[A][B] , (3.1)

where [·] denotes the concentration of the respective species and k is the
reaction-specific kinetic or rate constant. Eq. (3.1) assumes that the reac-
tants interact directly in one mechanistic step without intermediates and is
often used for chemical reactions when no further details on the specific re-
action mechanism are known. In biological systems, however, a substrate S
often reacts to a product P with the help of an enzyme. This reaction can be
considered as a two-step mechanism

S + E
kf


kr
ES

kcat→ P + E ,

where E is the catalytic enzyme, kf , kr and kcat denote rate constants and
double arrows indicate that the first reaction is reversible. These reactions can
be written as a system of differential equations of the form

d[S]
dt

= d[E]
dt

= −kf [S][E] + kr[ES]

d[ES]
dt

= kf [S][E]− kr[ES]− kcat[ES]

d[P ]
dt

= kcat[ES] .

11



3 Mathematical background

Assuming that the intermediate product ES is in quasi-equilibrium, i.e. d[ES]
dt

=
0, and that the total amount of enzyme is constant, i.e. [E]+[ES] = [E]0 leads
to the Michaelis-Menten (or Briggs-Haldane) equation

v = d[P ]
dt

= vmax[S]
Km + [S] , (3.2)

where vmax = kcat[E]0 is the maximum reaction velocity, and Km = kr+kcat
kf

is the so-called Michaelis-Menten constant. The Michaelis-Menten equation
is commonly used for enzyme-catalyzed reactions, where the concentration of
the substrate by far exceeds the concentration of the catalytic enzyme and
saturation of the enzyme is therefore rate-limiting.

The above equations for elementary reactions can be extended to model
entire systems of various reacting species,

du

dt
= F (u) ,

where the vector u(t) ∈ Rn contains the reacting species and the right hand
side F : Rn → Rn gives the corresponding reaction rates. Given such complete
system of ordinary differential equations based on (3.1) and (3.2) with a defined
set of kinetic parameters and starting values, its behavior over time can be
computed. In some simple cases analytic solutions can be obtained, but usually
complex biological systems are simulated numerically.

In praxis, however, most of the kinetic constants cannot be measured di-
rectly and therefore need to be inferred from experimental measurements of the
reactive species. This is done by minimizing a cost function, most commonly
the sum of square deviations

χ2(p) =
n∑
i=1

(Mi − Si(p))2

E2
i

between data points Mi and their corresponding model predictions Si for a
given parameter set p, weighted by the respective experimental error Ei. The
procedure of parameter estimation, i.e. finding the parameter set p with mini-
mal χ2, is called fitting and various methods exist to address different problem-
atics. A common difficulty is the insufficiency of experimental measurements
for the estimation of all parameters in a complex model. In some cases biolog-
ical systems may react insensitively to changes in a certain parameter, which
as a consequence cannot be estimated at all by a given measuring method.
Another problem is the existence of local minima of χ2 in the parameter space
where optimization algorithms may get stuck and thus fail to find the global
minimum.
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3.2 Hopf bifurcations

3.2 Hopf bifurcations
Bifurcations occur in ODE systems of the form

du

dt
= F (u, µ) (3.3)

that depend on a parameter µ ∈ R. Here, we assume F : Rn × R → Rn

to be analytic with the Jacobian matrix J(u, µ) and the system to have an
analytic family of stationary solutions u∗(µ) with F (u∗(µ), µ) = 0. Then, the
eigenvalues λi(µ) of J(u∗(µ), µ) can be real or pairs of complex conjugate val-
ues and determine the stability of the stationary solution. Bifurcations, i.e.
qualitative changes in the behavior of stationary solutions, occur when eigen-
values cross the imaginary axis with variation in µ. While some bifurcations
(e.g. pitchfork or saddle-node) change the number of stationary solutions, a
Hopf (or Poincaré-Andronov-Hopf) bifurcation changes the dynamic behavior
of the system. Namely, a stationary solution gains or loses stability and a fam-
ily of periodic solutions emerges in a neighborhood of the bifurcation point.
Commonly, this point is normalized to µ = 0. The Hopf bifurcation theorem
3.1 gives criteria for such Hopf bifurcations. The concept of the normal form
derived in Section 3.2.2 allows to determine the stability and direction of the
evolving periodic orbits.

3.2.1 Hopf bifurcation theorem
The conditions for a local Hopf bifurcation have been described first by Hopf
(1942) and refined by Hassard et al. (1981). The results are summarized in
the following

Theorem 3.1 (Hopf bifurcation theorem). For µ = 0 let exactly two eigen-
values of J be purely imaginary, λ1,2(0) = ±iω 6= 0. For their continuation
λ1,2(µ) let

d

dµ
Re(λ1,2(0)) 6= 0 .

Then there exists a family of real periodic solutions u = u(t, ε), µ = µ(ε) with
µ(0) = 0 and u(t, 0) = u∗(0) but u(t, ε) 6= u∗(µ(ε)) for sufficiently small ε > 0.
µ(ε) and u(t, ε) are analytic in 0 and (t, 0), respectively. The same is true for
the period T (ε) and

T (0) = 2π
|ω|

.

The periodic solutions exist for small µ either only for µ > 0, or only for
µ < 0, or only for µ = 0.
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3.2.2 Normal form of Hopf bifurcations
In simple words, the normal form of Hopf bifurcations is a two-dimensional
reduction of the original system (3.3) that allows to capture the key properties
of periodic solutions in a simplified manner. It can be derived by a projection
on the center manifold and a nonlinear transformation of variables as shown by
Ipsen et al. (1998) and Haragus and Iooss (2011). In the end, the coefficients
in the normal form allow to determine the stability and direction of emerging
periodic orbits in a Hopf bifurcation.

In the standard theory it is assumed that the Hopf bifurcation occurs in
µ = 0. As F is smooth, the system (3.3) possesses a two-dimensional center
manifold for sufficiently small µ (Haragus and Iooss, 2011, Theorems 2.9, 3.3).
Eq. (3.3) reduced on this manifold and transformed by a specific polynomial
transformation is then in the normal form (Haragus and Iooss, 2011)

dA

dt
= iω A+ a µA+ bA |A|2 +O

(
|A|

(
|µ|+ |A|2

)2
)

(3.4)

with a complex “amplitude” function A. The parameters a and b in this normal
form contain information about the stability and direction of the emerging
periodic solutions.

Following Ipsen et al. (1998) and Haragus and Iooss (2011), the solutions
u of eq. (3.3) on the center manifold are of the form

u = Aξ + Aξ + φµ(A,A) + u∗(0), (3.5)

where A(t) ∈ C is the new amplitude function in (3.4) and ξ, ξ ∈ Cn are the
eigenvectors of the Jacobian J(u∗(0), 0) for the purely imaginary eigenvalues
λ1,2 = ±iω. For φµ ∈ Cn a polynomial ansatz in (A,A) is made with complex
coefficient vectors depending on µ. Since the terms Aξ+Aξ represent the linear
part of the projected system around the steady state u∗(0), φµ contains only
non-linearities. Therefore, φ0(0, 0) = 0, ∂Aφ0(0, 0) = 0, and ∂Aφ0(0, 0) = 0.
Written as

φµ(A,A) =
∑

φrsqA
rA

s
µq, (3.6)

this means that the coefficients φ100 = φ010 = 0. Also, φrsq = φsrq (Haragus
and Iooss, 2011).

Now, we can set the projected function (3.5) into the original equation (3.3)):

du

dt
= d(Aξ + Aξ + φµ(A,A) + u∗(µ))

dt

= dA

dt

(
ξ + ∂Aφµ(A,A)

)
+ dA

dt

(
ξ + ∂Aφµ(A,A)

)
.

(3.7)
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To obtain the parameters a and b of the normal form (3.4), we use the Taylor
expansion of F and the series for φµ given in eq. (3.6) and compare coefficients
in powers of A and µ.

To obtain more general results for a Hopf bifurcation in µ∗ 6= 0 we can shift
the critical parameter values and stationary solution by setting µ̃ := µ − µ∗
and ũ := u− u∗(µ). Then, Eq. (3.6) becomes

φµ̃(A,A) =
∑

φrsqA
rA

s(µ− µ∗)q (3.8)

and

dũ

dt
= F (u∗(µ̃+ µ∗) + ũ, µ̃+ µ∗) .

Knowing the first term in the Taylor expansion of F at µ̃ = 0 and ũ = 0 to be
F (u∗(µ∗), µ∗) = 0 we get

F (u, µ) =D10F · ũ+D10F · ∂µu∗µ̃+D01Fµ̃+ 1
2D

20F (ũ, ũ)

+D11F · ũµ̃+D20F (∂µu∗, ũ)µ̃+ 1
2D

02Fµ̃2 +D11F · ∂µu∗µ̃2

+ 1
2D

20F (∂µu∗, ∂µu∗)µ̃2 + 1
2D

10F · ∂2
µu
∗µ̃2 + . . . ,

(3.9)

where ũ = Aξ + Aξ + φµ̃(A,A) and the derivatives are defined by

DpqF := ∂p+qF (u, µ)
∂up∂µq

∣∣∣∣∣
(u∗(µ∗),µ∗)

.

As before, we use J := D10F to denote the Jacobian matrix of F . For higher
orders the derivatives in u are multilinear operators like D20F : (Cn)2 → Cn

and D30F : (Cn)3 → Cn with the i-th component of the result vectors given
by

(D20F (x, y))i :=
n∑
j,k

∂2Fi
∂uj∂uk

xjyk

(D30F (x, y, z))i :=
n∑
j,k,l

∂3Fi
∂uj∂uk∂ul

xjykzl,

where Fi, ui, xi, yi, zi denote the components of the vectors F , u, x, y, and z,
respectively.
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Comparing on the left hand side the ansatz (3.7) for ũ with the expression
(3.8) for φµ̃ and on the right hand side the Taylor expansion (3.9) of F for
coefficients in powers of A, A and µ̃, we find:

O(A) :
iωAξ = D10FAξ

⇒ (J − iω)ξ = 0
O(A) :

iωAξ = D10FAξ

⇒ (J + iω)ξ = 0.

This is the eigenvalue problem for the Jacobian of F in (u∗(µ∗), µ∗). The pair
iω, −iω is the pair of complex eigenvalues crossing the imaginary axis, while ξ
and ξ are the corresponding eigenvectors, so the condition is trivially fulfilled.
Further on, we find:

O(µ̃) :
0 = D10F · φ001µ̃+D10F · ∂µu∗µ̃+D01Fµ̃

⇒ J · φ001 + J · ∂µu∗ +D01F = 0
⇒ φ001 = J−1D01F − ∂µu∗

O(µ̃A) :
aµ̃Aξ + iωAµ̃φ101 = D10F · φ101µ̃+D20F (Aξ, φ001)µ̃+D11F · Aξµ̃
⇒ aξ + (iω − J)φ101 = D20F (ξ, φ001) +D11F · ξ
⇒ 〈aξ, ξ∗〉+ 〈(iω − J)φ101, ξ

∗〉 = 〈D20F (ξ, φ001) +D11F · ξ, ξ∗〉
with 〈(iω − J)φ101, ξ

∗〉 = 〈φ101, (−iω − J∗)ξ∗〉 = 〈φ101, 0〉 = 0
and 〈ξ, ξ∗〉 = 1

⇒ a = 〈D20F (ξ, φ001) +D11F · ξ, ξ∗〉 ,

where 〈·, ·〉 denotes the Hermitian scalar product, J∗ = JT is the adjoint matrix
(or simply transposed, since J is real) to J and ξ∗ is the adjoint eigenvector
to −iω fulfilling J∗ξ∗ = −iωξ∗, scaled with a complex factor to let 〈ξ, ξ∗〉 = 1.
Since J is invertible, the first result can be used to obtain φ001 and from the
second result we can calculate the parameter a in the normal form.
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3.2 Hopf bifurcations

For b we need to go further and consider higher order terms in A and A:

O(A2) :

2iωA2φ200 = D10F · φ200A
2 + 1

2D
20F (Aξ,Aξ)

⇒ (2iω − J)φ200 = 1
2D

20F (ξ, ξ)

⇒ φ200 = 1
2(2iω − J)−1D20F (ξ, ξ)

O(|A|2) :
0 = D10F · AAφ110 +D20F (Aξ,Aξ)
⇒ −Jφ110 = D20F (ξ, ξ)
⇒ φ110 = −J−1D20F (ξ, ξ)

O(A|A|2) :
bA|A|2ξ + 2iωAAAφ210 − iωAA2φ210

= D10F · A2Aφ210 +D20F (Aξ,AAφ110)

+D20F (Aξ,A2φ200) + 1
2D

30F (Aξ,Aξ,Aξ)

⇒ bA|A|2ξ + iωA|A|2φ210

= A|A|2J · φ210 + A|A|2D20F (ξ, φ110) + A|A|2D20F (ξ, φ200)

+ 1
2A|A|

2D30F (ξ, ξ, ξ)

⇒ bξ + (iω − J)φ210

= D20F (ξ, φ110) +D20F (ξ, φ200) + 1
2D

30F (ξ, ξ, ξ)

⇒ 〈bξ, ξ∗〉 = 〈D20F (ξ, φ110) +D20F (ξ, φ200) + 1
2D

30F (ξ, ξ, ξ), ξ∗〉

⇒ b = 〈D20F (ξ, φ110) +D20F (ξ, φ200) + 1
2D

30F (ξ, ξ, ξ), ξ∗〉

Since 2iω and 0 are not eigenvalues of J by the assumptions of the Hopf
bifurcation theorem 3.1, these equations can be solved successively and lead
to a formula for the constant b.

Due to the normal form theory, the sign of the real part of b contains infor-
mation on the type of Hopf bifurcation and stability of the evolving periodic
solutions. If Re b < 0, stable periodic orbits arise at the side of the bifurcation
where the steady state becomes unstable. This is called a supercritical Hopf
bifurcation. A subcritical Hopf bifurcation occurs if the real part of b is positive
and unstable orbits arise at the side of the bifurcation where the steady state

17



3 Mathematical background

μμ*

(a)

μμ*

(b)

Figure 3.1: (a) Supercritical Hopf bifurcation: a stable steady state (solid
line left) becomes unstable in µ∗ and stable oscillations emerge to the right.
(b) Subcritical Hopf bifurcation: a stable steady state becomes unstable in µ∗
and unstable oscillations emerge to the left.

is stable. A graphical illustration of these types in two dimensions is given in
Fig. 3.1.

The results on the stability of periodic solutions in the normal form of the
Hopf bifurcation can be interpreted by studying the time evolution of small
perturbations of the amplitude function A. We recall the normal form (3.4)

dA

dt
= iωA+ aµA+ bA|A|2 + . . . .

Then for a small perturbation δA in the direction of A, i.e. δA = εA with a
small ε > 0, we find up to the order of A|A|2

dδA

dt
= d(εA)

dt
= ε

dA

dt
= ε (iωA+ aµA+ bA|A|2)
= iωδA+ aµδA+ b|A|2δA .

The evolution of the square modulus of the perturbation |δA|2 = δAδA is then
given by

d|δA|2

dt
= δA

dδA

dt
+ δA

dδA

dt
= iω|δA|2 + aµ|δA|2 + b|A|2|δA|2 − iωA+ aµ|δA|2 + b|A|2|δA|2

= 2 Re(a)µ|δA|2 + 2 Re(b)|A|2|δA|2 .

Then, in µ = 0 and a small neighborhood, the evolution of |δA|2 is deter-
mined by the real part of b. Namely, if Re(b) > 0, the perturbation grows
exponentially, while if Re(b) < 0, it falls exponentially.
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3.2.3 Global continuation of periodic orbits
While the original results by Hopf (1942) give conditions for the local existence
of periodic solutions, later works focused on the global continuation of the
periodic solutions. The term “global” Hopf bifurcation was sometimes used to
denote only unbounded sets of periodic solutions (Fiedler, 1986). We, however,
will use it in the sense of Alexander and Yorke (1978) to mean any non-local
continuation of a family of periodic orbits.

The first result on global continuability of periodic orbits for ordinary dif-
ferential equations was presented in Alexander and Yorke (1978) using methods
of algebraic topology. Another proof of the global result was given in Ize (1976)
using homotopy theory. The Fuller index, an index for periodic solutions of a
system of autonomous equations, was used in Chow and Mallet-Paret (1978)
to generalize the global Hopf bifurcation theorem, proved by Alexander and
Yorke (1978), to functional differential equations. An orbit index and a center
index were introduced in Mallet-Paret and Yorke (1982) and applied also in
Alligood et al. (1983) to analyze the large connected sets of periodic solutions
of a one-parameter differential equation. Hopf bifurcation points with a center
index of 1 are called sources, and those with center index of −1 are called sinks.
Mallet-Paret and Yorke (1982) showed, that if a set of orbits is bounded with
respect to the parameter, solution, and periods of the orbits, then the set must
have as many source as sink Hopf bifurcations. Each source is connected to a
sink by an oriented one-parameter path of orbits that contains no orbits with
zero orbit index. The results on global continuability for locally continuable
non-Möbius orbits of general C1 dynamical systems were obtained in Alligood
and Yorke (1984).

Here, we want to cite the main theorems of the above-mentioned authors.
The first gives a global version of the Hopf bifurcation theorem:

Theorem 3.2 (Theorem A in Alexander and Yorke (1978)). With the follow-
ing assumptions

1. A parametrized autonomous differential system

u̇ = f(µ, u) (3.10)

is given defined on an n-dimensional C1 manifold M (n finite). Here
µ is a parameter ranging over some interval Λ of real numbers, and the
parametrized cross section

f : Λ×M → tangent bundle of M

is continuous. Furthermore, it is assumed that for any µ ∈ Λ and any
initial values u ∈ M , the system (3.10) has a unique solution for some
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future range of time. If u is a member of the boundary of M , the solution
is assumed to remain in the boundary of M . It is supposed for some u0
in the interior of M that f(µ, u0) = 0 for all µ in a neighborhood Λ0 of
some µ0, so that u0 is a stationary value of (3.10) for all µ ∈ Λ0.

2. There exists a linear endomorphism L(µ) of the tangent space of M at
u0, defined and continuous for µ ∈ Λ0, such that for any µ1 ∈ Λ0,

exp−1 (f(µ, exp v))− L(µ)v = O(|v|)

as (µ, v)→ (µ1, 0),

3. The endomorphism L(µ0) is non-singular and has a conjugate pair of
purely imaginary eigenvalues ±iω.

4. For µ near but no equal to µ0, none of the eigenvalues in Multµ(iω) has
zero real part, where Mult(iω) is the ordered set {ik1ω, ik2ω, . . . , ikrω}
(with the ki positive integers, 1 ≤ k1 ≤ k2 ≤ . . . ≤ kr) of eigenvalues of
L(µ0) which are positive integral multiples of iω, counted with multiplic-
ity, and including iω. For µ sufficiently close to µ0, there is a unique set
Multµ(iω) of eigenvalues close to the set Mult(iω).

5. The parity of iω is odd, where the parity is defined as follows: Let r+

(r−) be the number of elements in Multµ(iω) with positive real part for
µ > µ0 (µ < µ0). Let r = r+ − r−. Then the parity of iω with respect to
L is the parity (even or odd) of r.

6. Let G(µ, t, u) be the solution of (3.10) at time t ≥ 0 given the initial
condition u(0) = u, and let the set R catalogue the parameter, period
and initial condition of all non-stationary periodic solutions of (3.10),
i.e.

R = {(µ, t, u) ∈ Λ× (0,∞)×M |G(µ, t, u) = u and (u, µ) is periodic} .

Let t0 = 2πω−1.

it holds that

1. There exists a connected subset R0 of the set R∪{(µ0, t0, u0)} containing
(µ0, t0, u0) and at least one periodic solution. Moreover for some neigh-
borhood R of (µ0, t0, u0) in Λ× [0,∞)×M , if (µ, t, u) ∈ R∩R, then for
some positive integer k = k(µ, t, u) such that ikω ∈ Mult(iω), the least
period of G(µ, ·, u) is k−1t.

2. In addition one or both of the following are satisfied:
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3.2 Hopf bifurcations

a) R0 is not contained in any compact subset of Λ× [0,∞)×M ,
b) There exists a point (µ, t, u) in R0 −R0.

3. Furthermore, for any (µ, t, u) ∈ R −R, the solution u is stationary for
(3.10) with µ = µ. Also for any ε > 0, there is a neighborhood Uε
of (µ, t, u) such that for any (µ, t, u) ∈ Uε ∩ R, all points of the orbit
G(µ, ·, u) are of distance less than ε from the point u.

Thus the theorem states that the periodic orbits emerging from a Hopf bi-
furcation point can be continued to a connected family that contains elements
for µ arbitrarily close to the boundary of Λ, or contains elements of arbitrarily
large period, or contains elements the orbits of which do not lie in any preas-
signed compact subset of M .

The following two theorems by Mallet-Paret and Yorke (1982) contain gen-
eral results for paths of periodic orbits (not necessarily oriented). We need
only the results for type 0 orbits and therefore leave out conditions used for
other types. As before, we use the notation of a system

du

dt
= f(u, µ), (u, µ) ∈ Rn × R

with the bifurcation parameter µ. The system is assumed to have a non-
constant periodic solution u = p0(t) at µ = µ0 and a family pµ of periodic
solutions in a neighborhood of µ0 called the Poincaré continuation of p0. With
a new parameter β this family of orbits can interchangeably be written as
(pβ(t), µβ). Tβ denotes the least period of an orbit. The family (pβ, µβ) is
called a path, if γ(β) = (pβ(0), µβ) is a path, i.e. if its domain J is an interval
and γ : J → Rn × R is continuous. The modulus M is defined as the sum of
period, parameter, and maximal norm of the periodic orbit,

M(γ, β) = Tβ + |µβ|+ max
t
‖γ(β)(t)‖ ,

where γ(β)(t) is the x coordinate at time t of the trajectory starting from
γ(β) at time 0. For an end point β0 (with −∞ ≤ β0 ≤ ∞) of the domain J
of γ the limit set is defined as Λ = Λ(β0) = {(u1, µ1) : there is a sequence βi →
β such that T (γ(βi)) is bounded and µ(βi)→ µ1, and there is a sequence {ti}
such that p(βi, ti)→ u1}.

Theorem 3.3 (Proposition 5.1 in Mallet-Paret and Yorke (1982)). Let γ(β) =
(pβ, µβ) be a path whose domain is a bounded interval. Let β0 be an end point
of its domain J . Assume

lim inf
β→β0

M(γ, β) <∞ .
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Then the limit set Λ at β0 is either an orbit or Λ = {(u1, µ1)}, where (u1, µ1)
is an isolated center. Furthermore

d(γ(β),Λ)→ 0 as β → β0

and
lim sup
β→β0

T (γ(β)) <∞ .

The second theorem concretizes the case when the domain J of a path γ
is bounded and the path is maximal, i.e. there are no orbits to further extend
it beyond an endpoint β0 of J . Then γ is open at an endpoint β0 if β0 /∈ J and
closed if β0 ∈ J .
Theorem 3.4 (Proposition 5.2 in Mallet-Paret and Yorke (1982)). Let γ be a
maximal path that is open at an endpoint β0. Then either

M(γ, β)→∞ as β → β0

or the γ family of orbits is convergent to a center at β0.

Center index Following the notation in Mallet-Paret and Yorke (1982), the
center index 中 can be defined to distinguish so-called “source” from “sink”
Hopf points and thus give the connecting path of orbits a sense of direction.
The center index is given by

中 (u∗, µ∗) = χ(−1)E(µ∗) ,

where E(µ) denotes the sum of the multiplicities of the eigenvalues of the
Jacobian DF (u∗(µ), µ) having strictly positive real parts. E(µ+) and E(µ−)
denote right- and left-hand limits of E at µ and the number χ is defined by

χ = 1
2(E(µ∗+)− E(µ∗−)) .

With this definition, Mallet-Paret and Yorke (1980) formulated the fol-
lowing theorem, reformulated and proved in detail in Mallet-Paret and Yorke
(1982). It uses the term snake for a set S of periodic orbits on a maximal
oriented path.
Theorem 3.5 (Snake Termination Principle in Mallet-Paret and Yorke (1980)).
A snake that emanates from a Hopf point either (1) tends to ∞ in R × Rn,
(2) has orbits whose periods tend to ∞, or (3) leads to a second Hopf point.
In this latter case, the two Hopf points must have center indexes of opposite
value, 中 = +1 for one and 中 = −1 for the other.
Theorem 3.6 (Snake Termination Principle in Mallet-Paret and Yorke (1982)).
The source of an open snake S is either ∞ or a center, and its sink is either
∞ or a center. [...]
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3.3 Modeling with partial differential equations

3.3 Modeling with partial differential equations
Ordinary differential equations, as described above, provide useful models that
can easily be analyzed and simulated numerically. These models, however, do
not consider spatial aspects and processes such as flows and diffusion. Thus, in
a biological context they are only valid in a homogeneously mixed fluid, where
concentrations do not depend on the spatial coordinate. The assumption of
homogeneous mixture is reasonable for small compartments and single cells,
where the time scale of diffusion is much faster than reactions. On the tissue
and organ level, however, spatial inhomogeneities and transport processes play
an important role. To model these processes, partial differential equations are
required.

The basis of all partial differential equations used here is a continuity
equation that describes the transport of a conserved quantity. Many physical
quantities (energy, momentum, electric charge) are conserved under appro-
priate conditions, most important in biological systems is the conservation of
mass. In the differential form the general continuity equation is given by

∂ρ

∂t
+∇ · j = σ , (3.11)

where ρ is the density of the considered quantity, j is the flux that will be
discussed in more detail below, and the right hand side σ contains generation
or degradation terms, called sources and sinks. For a conserved quantity that
cannot be created or destroyed, one would find σ = 0. For reactive chemicals, σ
includes reaction terms, where σ > 0 means that the chemical reaction creates
more of the species, whereas σ < 0 denotes a consumption of the considered
species.

From (3.11) one can derive useful equations for water and solute transport
in biological systems. Considering water, the flux is given by j = ρv with a
flow velocity vector field v. Assuming incompressibility, i.e. ρ is constant, the
mass continuity equation (3.11) simplifies to

∇ · v = 0 ,

For a solute in a solution the flux j comprises a diffusive and an advective
term. Diffusion is a mixing process that results in mass transport without bulk
motion of the fluid. Based on Fick’s first law the diffusive flux is proportional
to the local concentration gradient

jdiff = −D∇ρ

with the diffusivity or diffusion coefficient D ∈ R+. The law has been found
phenomenologically, but can be explained physically with the random walk
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3 Mathematical background

or Brownian motion of the diffusing particles. Setting the diffusive flux into
(3.11) results in the diffusion equation

∂ρ

∂t
= ∇ · (D∇ρ) + σ , (3.12)

which is a partial differential equation of parabolic type.
When the solute moves due to a bulk motion of the fluid this is called

advection. The associated advective flux is given by

jadv = ρv

with a velocity vector field v. Setting the advective flux into the continuity
equation (3.11) results in the hyperbolic advection equation

∂ρ

∂t
= −∇ · (ρv) + σ . (3.13)

If the flow is assumed to be incompressible (i.e. ∇ · v = 0), the equation can
be rewritten as

∂ρ

∂t
= −v · ∇ρ+ σ .

Combining diffusive (3.12) and advective terms (3.13) results in a general ad-
vection-diffusion equation of the form

∂ρ

∂t
= ∇ · (D∇ρ− ρv) + σ . (3.14)

This partial differential equation is a good description of transport processes
in biological systems. However, it is in general not possible to find an analytic
solution of (3.14) and even numerical solutions in 3-D are difficult and costly to
compute. While there are stable numerical methods for the parabolic diffusion
part, the hyperbolic advection term poses a numerical challenge and requires
special treatment. To reduce computation costs it is also advisable to reduce
the dimensions of the problem if possible.
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4 Models of zinc uptake regulation

4.1 Models of homeostasis
Homeostatic regulation in biological systems is based on genetic regulatory sys-
tems, and ultimately, on concentrations. These are positive, which constrains
the possibilities of control substantially. In Ni et al. (2009) the positiveness
constraint of a robustly regulating enzyme was shown to lead to the need for
two separate control mechanisms: for influx and efflux. The homeostatic model
proposed in Ni et al. (2009) is

dS

dt
= I − E ,

dR

dt
= k (S − Ss) ,

(4.1)

where S(t) ∈ R+ is the regulated species, I(t) = I(S,R)(t) ∈ R+ and E(t) =
E(S,R)(t) ∈ R+ are the influx and efflux, respectively, R is the regulator, k
is a coefficient (not necessarily positive) and Ss is the set point concentration.
The above model may result in non-physical negative concentrations of the
regulator (Ni et al., 2009). Independently of the type of mechanism sought
after, the negative term in dR/dt needs certain properties to achieve robustness
based on positive concentrations. The approach is to have a term which is
linear in R for small R (positiveness), but becomes almost independent of R
for larger R (robustness) (Ni et al., 2009).

Eq. (4.1) is an oversimplification of homeostatic control in cells, as sub-
stantially more complex mechanisms are needed (compare Figs. 2.2 and 4.3).
Also the concept of perfect control is an idealization. Control of zinc fails in
cells for low and high external concentrations. The presence of oscillations in
perfect homeostasis, (Jolma et al., 2010), poses a problem to living organisms.
Strong oscillations could lead to transient, very high and potentially lethal
concentrations. Prescinding from perfect regulation could be a compromise
between avoiding strong bursts and achieving good control.
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4 Models of zinc uptake regulation

Based on biological information available, we will develop several putative
models of influx homeostasis in plant root cells. In Section 4.2, a general influx
regulation model based on an ordinary differential equation system describing
gene expression of transporters, will be developed and non-dimensionalized.
Using the general model, the biological model for yeast in Zhao et al. (1998)
will be translated into a corresponding mathematical model (Section 4.4). This
model is simplified and fitted to transcript level data via a non-linear optimiza-
tion method (Gegenfurtner, 1992). The mathematical properties of the steady
state are analyzed and discussed. In Section 4.5, the experiences won with the
yeast model are used to pose three models for plant roots. The possibilities
are manifold, for which reason we restrict the models to the most simple cases
of: activator only, activator with dimerization and activator-inhibitor.

4.2 General model
The zinc homeostasis mechanisms presented in this manuscript can be arranged
into a general model, which will be developed in this section. Zinc homeostasis
can be split into two components: short and long term regulation. Short term
regulation is fast but rough, while fine tuning is done by long term regulation.
The time scale of short term regulation is less than two hours in plant roots
(Talke et al., 2006). Long term regulation has a substantially larger time scale
of several hours, days, weeks, etc.

We are interested here in short term regulation, which is local in the sense
that the processes occur at the level of single cells in plant roots. Other signals
besides the fluxes seem not to be transmitted between cells or tissues. This is
probably not the case for long term homeostatic control, which might rely on
signals transmitted from tissue to tissue. Therefore, the short term response
in plant roots and yeast cells is assumed to follow similar laws that can be
subdivided into the phases

sensing −→ transduction −→ reaction (4.2)

The zinc status is measured in the sensing phase, decisions are taken in the
transduction phase and changes in cytosolic concentration occur in the reaction
phase. As mentioned in Section 4.1, both influx and efflux can be adapted to
achieve homeostatic control. In plant roots as well as in yeast cells, adaptation
of the expression of influx transporters poses the major component of zinc
regulation (Eide, 2003; Talke et al., 2006).

Based on the concept presented in Eq. (4.2), the models considered in this
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4.2 General model

chapter have the following structure

Sensing:
dÃi
dt = p̃Ai(Ãi, . . .) −

(
nI∑
j=1

βij Ĩj +βAi Z̃ + γAi

)
Ãi , i = 1, . . . , nA ,

dĨi
dt = p̃Ii(Ĩi, Z̃, . . .) −

(
nA∑
j=1

βij Ãj +βIi Z̃ + γIi

)
Ĩi , i = 1, . . . , nI ,

dT̃i
dt = αT i M̃i − γT i T̃i −βT i T̃i Z̃ , i = 1, . . . , nT ,

Transduction:
dGi
dt = Ãi

(
(1 + Ĩi)−1 −Gi

)
− γGiGi

dM̃i
dt = αMiGi − γMi M̃i , i = 1, . . . , nT ,

dT̃i
dt = αT i M̃i − γT i T̃i − βTi T̃i Z̃

Reaction:
dZ̃
dt =

nT∑
j=1

αj T̃j f(Ze,Kt
j) −

nE∑
j=1

βjẼj f(Z,Ke
j )− γ Z̃ ,

(4.3)
where Z̃ and Ze are the cytosolic and external zinc concentrations, respec-
tively, Ãi are activators, Ĩi inhibitors, T̃i and Ẽi influx and efflux transporters,
respectively, Gi and M̃i the levels of gene expression and mRNA of T̃i, re-
spectively, and p̃Ai and p̃Ii are model dependent production terms. The total
activation and repression are

Ãi =
nA∑
j=1

αij Ãj +
nA∑
j,k=1

α k
ij Ãj Ãk and Ĩi =

nI∑
j=1

κij Ĩj . (4.4)

The function f(Z,K) describes saturation of the transporters

f(Z,K) = Z

Z +K
.

Sensing is assumed to take place via binding of cytosolic zinc Z̃ to the
activators Ãi or inhibitors Ĩi. The possibility that the transporters T̃i sense
the cytosolic zinc concentration Z̃ directly was also introduced. To achieve
regulation, the total activation Ãi has to decrease with higher Z̃ values (see
Section 4.1).

Transduction is modeled in the usual way (Keener and Sneyd, 2009). Three
equations per protein are needed, namely for: gene activity Gi, transcription

27



4 Models of zinc uptake regulation

into M̃i and translation into T̃i. The activators are introduced as essential
transcription factors activating the gene transcription, i.e.

dGi

dt
= ÃiGi − γGiGi , (4.5)

where Gi is the inactive gene open for binding of the activator and Gi is the
activated form. The quadratic form in Eq. (4.4) allows to include dimerization.
Total gene activity is normalized to 1, so in the case without gene repression
by an inhibitor the proportion of inactive gene in Eq. (4.5) is Gi = 1−Gi. The
inhibitors inhibit either the activators or directly repress gene activity through
Ĩi. Gene repression was assumed to be non-competitive and fast compared
to activation, i.e. it is in quasi-equilibrium and κij are equilibrium constants.
Then the proportion of non-repressed gene equals (Ĩi + 1)−1 and the amount
of inactive gene in Eq. 4.5 reduces to Gi = (Ĩi + 1)−1−Gi. The production of
M̃i and T̃i is then proportional to the amount of Gi and M̃i, respectively.

Reaction is described by an equation for the cytosolic zinc concentration,
which contains essentially the difference between influx and efflux mediated by
T̃i and Ẽi, respectively, and a general consumption term -γ Z̃ that may include
transporter independent outflow, sequestration, and dilution effects from cell
growth. Regulation of the efflux transporters Ẽi was left out of Eq. (4.3), as
these vary only slightly in roots and no information on yeast was available.
If included into the model, these proteins would follow a similar transduction
system as the influx transporters T̃i.

Non-dimensionalization of the equations in (4.3) is done by choosing char-
acteristic valuesM0,i, T0,i, etc. and introducing non-dimensionalized quantities
Mi := M̃i/M0,i, Ti := T̃i/T0,i, etc. The choice of characteristic values aims to
eliminate as many parameters as possible.

Consequently, non-dimensionalization of Transduction in is straightfor-
ward using

M0,i = αMi

γMi

, T0,i = αTi
γT i

M0,i , ΓT i = βT i
γT i

Z0 ,

and the non-dimensionalized total activation and repression

Ai =
nA∑
j=1

Kij Aj +
nA∑
j,k

K k
ij Aj Ak and Ii =

nI∑
j=1

K ′ij Ij , (4.6)

with

Kij = αij
γGi

A0,j , K k
ij =

α k
ij

γGi
A0,j A0,k , and K ′ij = κij

γGi
I0,j .
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Reaction is non-dimensionalized by choosing

Z0 = α1

γ
T0,1 , κj = αj

α1

T0,j

T0,1
and Γj := βj

γ
E0,j .

Non-dimensionalization of Sensing depends on the particular structure of the
production terms. The decay terms can be non-dimensionalized choosing

Γij = βij
γAi

I0,j , Γ′ij = Γij
γAi
γIi

A0,j

I0,j
, ΓAi = βAi

γAi
Z0 , ΓIi = βIi

γIi
Z0 ,

while the productions terms still have to be non-dimensionalized accordingly

pAi(Ai, . . .) = 1
γAiA0,i

p̃Ai(Ãi, . . .) and

pIi(Ii, Z, . . .) = 1
γIi I0,i

p̃Ii(Ĩi, Z̃, . . .) .

In the end, we obtain a non-dimensionalized regulation system of the form

dAi
dt

= γAi

pAi(Ai, . . .)−
 nI∑
j=1

ΓijIj + ΓAiZ + 1

Ai
 , i = 1, . . . , nA ,

dIi
dt

= γIi

pIi(Ii, Z, . . .)−
 nA∑
j=1

Γ′ijAj + ΓIiZ + 1

 Ii
 , i = 1, . . . , nI ,

dGi
dt

= γGi
(
A
(
(1 + I)−1 −Gi

)
−Gi

)
, i = 1, . . . , nT ,

dMi

dt
= γMi (Gi −Mi) , i = 1, . . . , nT ,

dTi
dt

= γT i (Mi − Ti − ΓT iTiZ) , i = 1, . . . , nT ,

dZ

dt
= γ

 nT∑
j=1

κjTjf(Ze,Kt
j)−

nE∑
j=1

ΓjEjf(Z,Ke
j )− Z

 .

(4.7)
The regulation system can be written as

dU

dt
= F (U) , U(0) = U0 , (4.8)

with U = (A1, .., AnA , I1, .., InI , G1, .., GnT ,M1, ..,MnT , T1, .., TnT , Z)T ∈ Rn,
where n = nA + nI + 3nT + 1, and F : Rn → Rn is the right hand side of the
system as given in (4.7). This system is well-posed and remains positive for
positive starting values, as shown in the following

29
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Theorem 4.1. For any positive parameters and production terms and any
initial value U0 ≥ 0, there exists a unique solution U ∈ C∞([0, T ]) for some
T > 0 of the system (4.8) and U(t) ≥ 0 for all t ∈ [0, T ].

Proof. Since F is locally Lipschitz continuous, we obtain local existence and
uniqueness of the solution U(t) of (4.8) by the Picard-Lindelöf theorem on a
maximal interval [0, T ]. To prove the positivity of the solution, we show that
0 is a lower bound for the system (4.8), i.e. that any trajectory U(t) with
U(0) ≥ 0 remains positive for all times t ∈ [0, T ]. From the equations in (4.7)
and by using the positivity of the coefficients and production terms we obtain
the following estimates

FAi(U)|Ai=0 = γAipAi ≥ 0 ,
FIi(U)|Ii=0 = γIipIi ≥ 0 ,
FGi(U)|Gi=0 = γGiA(1 + I)−1 ≥ 0 for A ≥ 0 and I ≥ 0 ,
FMi(U)|Mi=0 = γMiGi ≥ 0 for Gi ≥ 0 ,
FT i(U)|Ti=0 = γT iMi ≥ 0 for Mi ≥ 0 ,

FZ(U)|Z=0 = γ
nT∑
j=1

κjTjf(Ze, Kt
j) ≥ 0 for Tj ≥ 0 ,

which by the invariant region theorem (Theorem 14.7 in Smoller, 1994; Amann,
1990, Theorem 16.9) imply the lower bound U ≥ 0.

Starting from this very general system, we will use knowledge from exper-
imental measurements to describe more specified zinc regulatory systems in
yeast and plant roots in the following sections.

4.3 Numerical Methods
The ordinary differential equation systems were simulated with either an ex-
plicit eighth-order Runge-Kutta method or an implicit Rosenbrock stepper for
stiff differential equations. Steady states were calculated by Newton’s method
in combination with a continuation method for varying parameters. Jacobians
were calculated analytically. The model parameters were determined by fitting
the model to measurements. For this purpose, Brent’s algorithm was applied
to minimize χ2 (Gegenfurtner, 1992; Bevington and Robinson, 2003). The
standard deviation of a measurement was assumed to be proportional to its
value and the relative error (17%) was chosen such to obtain a reduced χ2 of
the order of one. This way, low and high values had the same weights and were
fitted equally well. Penalties were added to χ2 to avoid negative parameter
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values. The confidence intervals were obtained by calculation of the covariance
matrix via the Hessian of χ2 (Bevington and Robinson, 2003). The measure-
ments in Zhao et al. (1998) and Bird et al. (2004) were combined and scaled
correctly. Scaling factors were in part included into the fitting process while
others were prescribed with given values (personal communication of D. Eide).

4.4 Yeast
4.4.1 Model for ZRT regulation
As described in Chapter 2, Section 2.2, zinc uptake regulation in yeast com-
prises the two zinc transporters ZRT1 and ZRT2, as well as the transcription
factor ZAP1 as the only activator, which is directly inhibited by zinc ions with-
out an inhibitor. The production of the activator, which corresponds to the
term pAi(Ai, ...) in the general model Eq. (4.7), is a system of Sensing, Trans-
duction and Regulation by itself, because ZAP1 acts as its own transcription
factor through a positive feedback loop. While ZRT1 is simply activated by
ZAP1, ZRT2 is both activated and repressed by the same molecule (Bird et al.,
2004). Therefore, we assume a model with two binding sites of ZAP1 close
to the ZRT2 gene, one activating and one repressing. The total inactivation
Ii (see Eq. (4.6)) introduces this mechanism into the general model Eq. (4.3).
Here, the inhibitor is equal to the activator and only the ZRT2 gene is affected:
I1 = 0 and I2 = K ′2A.

Following the framework of the general model and the non-dimensionaliza-
tion derived in Section 4.2, we obtain the following system:

dGA
dt

= γGA
(
KAA (1−GA)−GA

)
dMA

dt
= γMA (GA −MA)

dA
dt

= γA (MA − A− ΓA Z A)

dG1
dt

= γG1
(
K1A (1−G1)−G1

)
,

dG2
dt

= γG2

(
K2A

(
(1 +K ′2A)−1 −G2

)
−G2

)
dMi

dt
= γMi (Gi −Mi), i = 1, 2

dT1
dt

= γT1 (M1 − T1 − ΓT1 T1 Z)
dT2
dt

= γT2 (M2 − T2)

dZ
dt

= γ
(
T1 f(Ze, Kt

1) + κT2 f(Ze, Kt
2)− Z

)
.

(4.9)
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The post-translational regulation of ZRT1 is given by the term −γT1 ΓT1 T1 Z.
For simplicity the term −γ Z accounts for all zinc consumption processes.
These may include export from the cell through zinc efflux transporters, se-
questration into the vacuole and other compartments as well as irreversible
binding and chelation of zinc by various proteins in the cytoplasm.

The trivial solution (all species zero) is a steady state of Eq. (4.9). There
is at least one non-trivial steady state, which for the activator ZAP1 can be
written as a function of the intracellular zinc concentration

A∗ = 1
1 + ΓA Z∗

− 1
KA

. (4.10)

For A∗ not to become negative, this equation poses the condition KA > 1 +
ΓA Z∗. As KA is constant and given, this implies that for large Z∗ the non-
trivial and trivial solutions cross. A detailed analysis of this case is presented
below. The case of total deficiency (i.e. Ze → 0) brings insight into some of the
parameters. As expected, we find Z∗ → 0, which means that A∗ → 1− 1/KA.
From the biological point of view, A∗ is expected to shoot to a value close to 1
for total deficiency, which implies KA � 1. Assuming that A∗ ≈ 1 for Ze → 0,
the concentrations of the transporters T ∗1 and T ∗2 behave for Ze → 0 as

T ∗1 →
1

1 + 1/K1
and T ∗2 →

1
1 + 1/K2 +K ′2/K2 +K ′2

.

High affinity of ZRT1 and low affinity of ZRT2, i.e. T ∗1 ≈ 1 and T ∗2 ≈ 0 for
Ze → 0, are obtained when the conditionsK1 � 1 andK ′2+K ′2/K2+1/K2 � 1
are fulfilled. Considering K2 ≈ K1 � 1, the second condition is essen-
tially K ′2 � 1. Expression of ZRT2 is maximal for a ZAP1 concentration
of A∗ = (K2K

′
2)−1/2, while expression of ZRT1 rises monotonically with A∗

and approaches its highest value for Ze → 0. The non-trivial maximum of
ZRT2 expression is possible, because it is both activated and repressed by
ZAP1, and the strength of both competing processes determines the position
of the maximum. For a given activation K2, repression K ′2 has to be large to
shift the expression maximum towards low A∗ and high Ze.

Using the quantitative data measured in Zhao et al. (1998) and Bird et al.
(2004), we estimated the model parameters by a least-square method. These
measurements are stationary values of the four unknowns A, T1, T2 and Z. The
parameters obtained are listed in Table 4.1. These clearly reflect the above
conditions for KA, K1, K2 and K ′2. Nevertheless, most of the parameters could
only be fitted with very high standard deviations. Especially forK1,K ′2 and ΓA
the standard deviation is more than 50% of the fitted parameter value, which
shows that the model reacts rather insensitive towards these parameters. In
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Table 4.1: Yeast: parameters
Parameter Value ± s.d. Biological meaning
KA 109 ±38 ZAP1 gene activation by ZAP1
K1 450 ±307 ZRT1 gene activation by ZAP1
K2 444 ±119 ZRT2 gene activation by ZAP1
K ′2 2171 ±1191 ZRT2 gene repression by ZAP1
ΓA 714 ±600 posttranslational inhibition of ZAP1 by zinc
ΓT1 29.6 ±31.5 posttranslational inhibition of ZRT1 by zinc
κ 6.3 ±3.0 relative transport rate of ZRT2
Kt

1 / µM 139 ±65 Michaelis-Menten constant of ZRT1
Kt

2 / µM 2584 ±1511 Michaelis-Menten constant of ZRT2

Parameters values and standard deviations obtained by fitting the
model to measurements published in Zhao et al. (1998) and Bird et al.
(2004).

the case of ΓT1 the standard deviation is larger than the parameter value. This
means that the existence and strength of posttranslational regulation of ZRT1
through zinc found in experiments cannot be identified by our model based on
steady state data. Dynamical data may help to analyze and clarify the role
of this process. As shown in Fig. 4.1 the model with the above parameters
reproduces the measurements very well.

4.4.2 Roles of ZRT1 and ZRT2
In Zhao et al. (1998) ZRT1 and ZRT2 were proposed to play different roles
in zinc uptake of yeast cells. While ZRT1 is most active only in zinc-deficient
cells, ZRT2 is transiently active also in zinc-replete cells with external zinc
concentration around 1000µM. This implies that under low external zinc con-
centrations ZRT1 dominates the overall zinc uptake, while under high external
zinc concentration, ZRT2 acts as the major transporter. Our model confirms
this behavior.

Fig. 4.2a presents the relative contributions to the total flux. At low ex-
ternal concentrations ZRT1 is responsible for about 80% of the influx, while
at replete conditions (above 500µM) 70% of the influx can be attributed to
ZRT2. ZRT1 seems indeed to act as a high affinity transporter with a Michaelis
constantKt

1 = 139µM, while ZRT2 has less affinity reflected by a substantially
larger Kt

2 = 2584µM. A similar ratio was found in Zhao and Eide (1996b),
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4 Models of zinc uptake regulation

Figure 4.1: Yeast simulations: Comparison between measurements and simu-
lated steady states of ZAP1, internal zinc, ZRT1 and ZRT2 for varying external
zinc concentration. Measurements: ZRT1 and ZRT2 from Bird et al. (2004),
ZAP1 and zinc from Zhao et al. (1998).
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although their values about two orders of magnitude lower, namely Kt
1 ≈ 1µM

and Kt
2 ≈ 10µM. This discrepancy stems from the assumption made in Zhao

and Eide (1996b) that the mechanism is based on pure Michaelis-Menten ki-
netics without effects of regulation. Assuming regulation to take place on the
same time scale as the transport of ions, similarly low values are obtained when
Michaelis-Menten is fitted to our simulations. For the example of ZRT1, while
Zhao and Eide (1996b) assumed a mechanism

v = T1
Ze

Ze +KM

(4.11)

for the reaction velocity v with constant amounts of transporter T1 for all
external zinc concentrations Ze, it is likely that regulatory processes change
the amount of transporters giving

v = T1(Ze) Ze

Ze +Kt
1
. (4.12)

Fitting Eq. (4.11) to (4.12) with the parameters shown in Table 4.1 via a
Lineweaver-Burk-linearization yields an apparent KM ≈ 2.2µM, which is in
the range of the values proposed in Zhao and Eide (1996b). Another rea-
son for proposing high values of Kt

1 and Kt
2 is that these constants have

to be larger than the optimal concentration of the corresponding system,
as saturated transporters cannot pass information on external zinc status
(f(Ze, Kt

i ) ≈ 1 = const for Ze � Kt
i ).

ZRT1 is maximally expressed at total deficiency, while ZRT2 is most ac-
tive at 430µM (Fig. 4.1). A strong repression of ZRT2 is essential to achieve a
maximal expression at high external zinc concentrations (see Table 4.1). How-
ever, a strong repression also results in lower gene activities, which explains
the low expression level of ZRT2 compared to ZRT1 (Fig. 4.1 and Bird et al.
(2004)). To compensate the lower expression level, ZRT2 needs to transport
zinc at higher rates or more copies need to be produced. This is reflected
by the coefficient κ, which suggests that ZRT2 is six times more effective in
transporting zinc than ZRT1. Assuming that the ZRT1 and ZRT2 molecules
transport zinc at a similar rate, κ ≈ 6 could indicate posttranslational regula-
tion of ZRT1. Direct posttranslational regulation via ΓT1, however, was shown
not to be significant here (F-test: P > 0.05).

ZRT1 and ZRT2 were found to be activated equally well by ZAP1, as
reflected by the insignificantly small difference between K1 and K2. The
self-activation constant KA of ZAP1, is four times smaller than K1 and K2.
This suggests that ZRT1 and ZRT2 have more ZAP1-binding promoters than
ZAP1, which is in concord with experimental results (Zhao et al., 1998).
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Figure 4.2: Yeast: Role of ZRT1 and ZRT2 and ZAP1 feedback. (a) con-
tributions of ZRT1 or ZRT2 to the total zinc influx for varying external zinc
concentration. (b) ZAP activity for varying values of ZRT independent influx
αZ . The stable solution is marked with a solid line, the unstable solution is
dotted.

4.4.3 ZAP1 transcriptional feedback
The feedback loop generated by ZAP1 acting as its own transcription factor in-
troduces interesting properties into the model. In Eide (2003) this feedback was
proposed to allow a stronger reaction to zinc-limiting conditions. In contrast,
our model suggests that the advantage is rather for zinc-replete conditions. The
steady state Eq. (4.10) of ZAP1 becomes negative for Z∗ > (KA−1)/ΓA ≈ 0.15
and crosses the trivial steady state. Unless these two steady states exchange
their roles, the model would become non-biological at the bifurcation. Based
on the fitted parameters, the bifurcation is normally reached at very high
external zinc concentrations. To examine the behavior of the model at the
bifurcation, we introduced a ZRT1- and ZRT2-independent path into the cell.
Such a path could for example be another transporter not regulated by ZAP1
and shifts the bifurcation towards lower Ze. Without considering any details of
these processes, the simplest modification is to include an additional constant
zinc influx term αZ to the last line in Eq. (4.9):

dZ

dt
= γ

(
T1 f(Ze, Kt

1) + κT2 f(Ze, Kt
2)− Z + αZ

)
.

The bifurcation is illustrated in Fig. 4.2b. There are at least two steady states,
where one is trivial (A∗ = T ∗1 = T ∗2 = 0 and Z∗ = αZ) and the other is positive
for small αZ (other negative steady steady states exist). The stability of these
are exchanged at the bifurcation. For low αZ the positive steady state is stable,
while the trivial steady state is unstable. After the steady states cross at the
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4.5 Plant roots

Figure 4.3: Plant roots: Scheme of the three models of zinc uptake regulation.
(a) Activator only, (b) Activator with dimerization, (b) Activator-Inhibitor
model.

bifurcation, the trivial solution becomes stable while the now negative steady
states becomes unstable. The positive steady state is literally trapped by the
trivial steady state. From the biological point of view the ZAP1 feedback allows
the system to completely switch off expression of ZAP1 and thus of ZRT1 and
ZRT2. In a mechanism without feedback, ZAP1 expression would just decrease
asymptotically towards zero for increasing zinc influx. Therefore, we conclude
that the feedback of ZAP1 is advantageous for zinc- replete conditions.

4.5 Plant roots

We now focus on the uptake of zinc into the root cell space without considera-
tion of further transport. By restricting the model to this specific situation, a
similar approach as the one for yeast can be applied. We start with a simple
model based on only one zinc dependent activator. Hereafter, the advantage
of dimerization is analyzed, and a third more involved model based on an
activator-inhibitor pair is presented. Using the data in Talke et al. (2006),
some of the parameters are obtained via optimization. An F-Test is used to
compare the models and select the most reasonable one. Finally, we analyze
the relation between stability and robustness of the activator-inhibitor model.
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4 Models of zinc uptake regulation

4.5.1 Activator only model
Here, we assume that regulation takes place by one zinc dependent transcrip-
tion factor (see Fig. 4.3a for a scheme). In terms of the general model Eq. (4.3)
we set nA = nT = 1 and nI = 0 and avoid unnecessary notation by dropping
indexes (e.g. A = A1 andK = K11, etc.). Sensing is assumed to take place only
at the activator level (βT = 0). The possibility that the activator dimerizes is
also ruled out (α k

ij = 0). Efflux transporters are assumed to be non-saturable,
which allows combining efflux/consumption into one term −γ Z. In contrast
to the case of yeast, there is no specific information on the production of the
activator available. To keep the system simple, we introduce a constant pool
A0 of activator, which is split into active, A, and inactive molecules, (A0−A).
The net production is set to αA (A0 − A) and

pA = αAA0 and αA = γA . (4.13)

The non-dimensionalized system is then

dA

dt
= γA

(
1− (1 + ΓA Z)A

)
,

dG

dt
= γG

(
K A (1−G)−G

)
,

dM

dt
= γM (G−M) , (4.14)

dT

dt
= γT (M − T ) ,

dZ

dt
= γ

(
T f(Ze, Kt)− Z

)
,

with two steady states

T ∗ = M∗ = G∗ = K

K + 1 + ΓA Z∗
,

A∗ = 1
1 + ΓA Z∗

, (4.15)

Z∗ = 1
ΓA

(
−1

2 (K + 1)±
(
K ΓA f(Ze, Kt) + 1

4(K + 1)2
) 1

2
)
.

The steady state with Z∗ < 0 is biologically irrelevant and therefore not con-
sidered. For total deficiency, i.e. Ze → 0, we find

Z∗ → 0 and G∗ → K

K + 1 . (4.16)
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4.5 Plant roots

Biology suggests that gene expression will shoot to a very high value, so G∗
should be close to one. This implies: K � 1. For replete conditions, i.e.
Ze →∞ and f(Ze, Kt)→ 1,

Z∗ → 1
ΓA

(
−1

2 (K + 1) +
(
K ΓA + 1

4(K + 1)2
) 1

2
)

and

G∗ → 1/
(

1
2 ±

(
ΓA
K

+ 1
4

) 1
2
)
,

(4.17)

where K � 1 was used. Biology suggests that gene expression should be small
for high external zinc concentrations, which implies

ΓA � K � 1 . (4.18)

For a given Ze, the steady state depends on three more parameters: K, ΓA
and Kt. While Kt is a property of the transporters, K and ΓA determine gene
activity for extreme conditions. For ZIP1, a value Kt = 13µM was published
in Grotz et al. (1998) and used here. Assuming gene activity to reach at least
95% for total zinc deficiency, we obtain

K ≥ 20 . (4.19)

Determination of K from measurements would need data at very low zinc
concentrations, which is uncertain and was not available to the authors. For
this reason, an empirical value of K = 20 was used. The remaining parameter
ΓA ≈ 4.1 · 104 was obtained by fitting the model to published values of ZIP3
expression (Talke et al., 2006). All parameters are listed in Table 4.2.

Fig. 4.4 shows the steady state as a function of Ze. Gene activity slightly
decreases for increasing Ze resulting in a continuously increasing internal zinc
concentration. Regulation fails for extreme zinc conditions, i.e. undersupply at
low Ze and oversupply for large Ze. The reason for oversupply is the activator
reacting insufficiently to changes in Ze. By adjustingK and ΓA, the model only
offers the possibility to fix the maximum and minimum of gene expressions,
but not the transition steepness between these. ΓA is also very large compared
to the value determined for yeast (∼ 60 times larger; Table 4.1), rendering this
simple activator-only model even more unlikely.

4.5.2 Activator model with dimerization
The transcription factors bZIP19 and bZIP23 are known to form dimers (Jakoby
et al., 2002). Assuming that only these dimers activate the gene yields α k

ij 6= 0
and αij = 0 in the general mode. A scheme of the model is presented in Fig.
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4 Models of zinc uptake regulation

Figure 4.4: Plant roots: Steady states of the different regulation models.
The models are: activator only, dimerizing activator and activator-inhibitor
pair with dimerization. Measurements in Talke et al. (2006) are also shown.
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4.5 Plant roots

Table 4.2: Plant roots: parameters used in the simu-
lation of the activator only, dimerized activator and the
dimerized activator-inhibitor models.
Parameter Activ. only Activ. dimer. Activ./Inhib.

dimer.
Kt [µM ]∗ 13 13 13
K 20 20 20
ΓA 41138 1844 –
Γ – – 38
Γ′ – – 167.2
ΓI – – 1000
ζ† – – 4.4 · 10−3

ξ‡ – – 10−3

* Value for ZIP1, Grotz et al. (1998); † ζ = Γ′/ΓΓI ; ‡ ξ = 1/ΓI .

4.3b. The total activation is here A = K A2, while the rest stays the same as in
Eqs. (4.14) and (4.15), meaning that only gene activity needs to be adapted:

dG

dt
= γG

(
K A2 (1−G)−G

)
, (4.20)

G∗ = K

K + (1 + ΓA Z∗)2 .

Gene activity reacts more sensitive to changes of zinc status than in the non-
dimerizing case (Fig. 4.4). The transition between gene on and off is steeper,
rendering a more robust mechanism. Fitting the model to the measurements
delivers ΓA ≈ 1.8 · 103, which is approximately 20 times smaller than in the
non-dimerizing case and substantially closer to the value for yeast. From an
evolutionary point of view, dimerization allowed to down-regulate the trans-
porters more strongly with less binding affinity. Also, by assuming that the
standard deviations of the measured values are proportional to these, one finds
that χ2 for the model with dimerization is less than half that of the one with-
out when fitted to the measurements in Talke et al. (2006). In total, the
model with dimerization statistically and qualitatively outperforms the above
activator model, although both models have the same number of degrees of
freedom.
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4 Models of zinc uptake regulation

4.5.3 Activator-Inhibitor model
Including dimerization delivered a better fit to the measurements than the
activator only model. However, a systematic deviation for high values of Ze

was found (Fig. 4.4). Following the proposition in Assunção et al. (2010b) of
intermediate steps in sensing, we propose a mechanism involving an activator-
inhibitor pair. We assume a competitive inhibition, i.e. the inhibitor can inter-
act whith the activator (the transcription factor) while the latter is not bound
to the DNA and the pairs of activator and inhibitor cannot activate the gene.
Zinc is assumed to be sensed only by the inhibitor (Fig. 4.3c). Applying these
assumptions to the general model Eq. (4.3) gives nA = nI = nT = 1. Dimer-
ization again is included by using the total activation A = K A2. Production
of the activator is set as in the activator only model (Eq. (4.13)). Sensing
occurs at the level of the inhibitor:

pI = αI I0 Z , αI = βI , and βA = 0 .

Transcription and translation are the same as in the dimerizing activator case.
The equation for Z stays the same, meaning that the key differences to Eq.
(4.14) are

dG

dt
= γG

(
K A2 (1−G)−G

)
,

dA

dt
= γA

(
1− ΓAI − A

)
, (4.21)

dI

dt
= γI

(
ΓI Z − Γ′AI − (1 + ΓI Z) I

)
.

If Z∗ is considered to be a parameter in the above system, the steady state is

G∗ = K

K + (1 + Γ I∗)2 ,

A∗ = 1
1 + Γ I∗ ,

I∗ = 1
2

(
Z∗ − ζ
Z∗ + ξ

− 1
Γ

)
±

 1
Γ

Z∗

Z∗ + ξ
+ 1

4

(
Z∗ − ζ
Z∗ + ξ

− 1
Γ

)2
 1

2

,

where ζ = Γ′/ΓΓI and ξ = 1/ΓI . The solution with I∗ < 0 is biologically
irrelevant. For totally deficient conditions, i.e. Ze → 0,

I∗ → 0 , A∗ → 1 , and G∗ → K

K + 1 .
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4.5 Plant roots

The case of very high external zinc concentration needs to include the expres-
sion for Z∗. Instead of determining what happens for Ze →∞, we determine
the behavior for large internal concentrations, i.e. Z∗ →∞:

I∗ → 1 , A∗ → 1
1 + Γ , and G∗ → K

K + (1 + Γ)2 .

The same biological conditions as those listed in Eqs. (4.18) and (4.19) are
found here. In contrast to the activator models, gene activity does not go to
zero for Z∗ → ∞. Again, the constants Γ and K determine gene activity for
extreme zinc levels. The steady state values depend on two more constants:
ζ and ξ. The meaning of these constants is found by the following reflection.
The first term in I∗ is zero for Z∗ = (Γ ζ + ξ)/(Γ− 1) ≈ ζ. Is Z∗ smaller than
this value, the term is negative and has to be compensated by the slightly
larger positive square root term, i.e. the inhibitor level I∗ stays close to zero.
Is Z∗ larger than this value, both terms are positive and the inhibitor level I∗
increases fast with Z∗. The activator is inhibited substantially and a strong
reduction of gene activity is the consequence (compare Fig. 4.5a). Thus, ζ
determines the internal zinc concentration for switching the gene from on to
off. The constant ξ determines the steepness of the transition between the on
and off states (Fig. 4.5b). A small ξ corresponds to a strong binding affinity
ΓI between zinc and inhibitor. The switching steepness is also affected by Γ,
as it weights the first term under the root. Large Γ result in steeper switches
with a similar effect as decreasing ξ (Fig. 4.6b).

The activator-inhibitor model renders a better and more robust homeo-
static control mechanism than the activator only models (Fig. 4.4). Of course,
none of these models shows the kind of perfect homeostatic behavior described
in Eq. (4.1). Compared to this simple model, the set point for Z∗ depends
here on the external zinc concentration. The activator-inhibitor model, how-
ever, reacts similar to Eq. (4.1) within a small region around Z∗ ≈ ζ. The
reason is the steep genetic switch obtained by the inclusion of an inhibitor,
which reacts strongly to the internal zinc status (Fig. 4.5). Fitting the model
to the measurements delivered Γ ≈ 38 and ζ ≈ 4.4 · 10−3 (Table 4.2). ξ cannot
be determined by a fit, because a robust mechanism is sought after and in
that regime the model becomes almost independent of ξ (compare Fig. 4.5b)
. Therefore, a value of the same order of magnitude as ΓA for yeast was used
(ξ = 10−3 ⇒ ΓI = 1000 while ΓA = 714 for yeast). The model describes the
measurements very well (Fig. 4.4), which is also a consequence of the small
number of degrees of freedom. No systematic deviation for large Ze was found
for this model. An F-Test showed that the activator-inhibitor is statistically
more likely, even considering that it contains one more parameter (P < 0.05).
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Figure 4.5: Plant roots: Activator-Inhibitor model with dimerization. (a)
steady state values of inhibitor, activator and gene activity in dependence of
internal zinc concentration. (b) steady state gene activity in dependence of
internal zinc status for varying ξ. Dashed curve corresponds to the nominal
ξ = 10−3.

4.5.4 Robustness and instability
In Jolma et al. (2010) perfect homeostatic control was shown to lead to un-
damped oscillations. In the case of a toxic substance, oscillations may cause
lethal peaks. In view of this, the stability of the activator-inhibitor model was
analyzed. Dynamics and stability depend on the time scales involved in the
mechanism. The authors could not find suitable data for these. Similar values
to those listed in Cook et al. (1998) were used, where the products were as-
sumed to decay four times slower than gene activity. The reader should keep
in mind that the specific choice of the time scales influences stability, but the
relation between robustness and instability found below should remain valid.

Regarding robustness, a duality between the static and dynamic properties
of the activator-inhibitor mechanism was found. Large Γ resulted in a steeper
genetic switch and consequently the steady state internal zinc concentration
varied less with Ze (Fig. 4.6b). At a first glance robustness of the mechanism
seemed to increase with Γ. However, large Γ lead also to instability of the
steady state and to undamped oscillations (Fig. 4.6a). Therefore, from a point
of view of the dynamics, robustness decreased for increasing Γ. During one
oscillation period, the internal zinc concentration reached up to 3.5 times the
steady state value (oscillation amplitudes for 10 Γ also shown in Fig. 4.6b),
meaning that strong and possibly toxic periodic peaks of zinc were produced.
These peaks exceeded the steady state concentration for the nominal Γ. We
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Figure 4.6: Plant roots: Robustness and stability. Robustness and stability
of the activator-inhibitor model for 0.1Γ, Γ and 10Γ and varying external zinc
concentration. (a) Internal zinc concentration. Minimal and maximal values
of limit cycle shown for unstable steady state (10Γ). (b) Real part of largest
eigenvalue.

conclude that toxicity for high external zinc concentrations could either oc-
cur because of stable high internal zinc concentrations (small Γ) or due to
toxic high amplitude oscillations (large Γ). Reducing the perfectness of the
homeostatic control could be a strategy to avoid strong zinc bursts, but cells
might also use other mechanisms to damp strong oscillations, e.g. buffering
and sequestration. These processes will be discussed in detail in Chapter 7.
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5 Hopf bifurcation in the ZIP
system

5.1 Introduction
In the last Chapter 4 we have studied mathematical models describing different
mechanisms for the regulation of ZIP transporters. The most promising model
identified in this study was the activator-inhibitor model. It appeared to have
the most robust regulatory mechanism. In the analysis of this model, how-
ever, we noticed the occurrence of oscillations for certain parameter choices.
Here, we analyze the Hopf bifurcation leading to these oscillations in more
mathematical detail. In Section 5.2 we introduce the simplified model used in
this chapter and consider the well-posedness and uniform boundedness of the
solutions as well as the existence of a unique stationary solution. In Section
5.3 we will show the existence of two local Hopf bifurcations for critical values
of the bifurcation parameter Ze and by deriving the normal form in Section
5.4 analyze the stability of the periodic orbits in a neighborhood of the two
Hopf bifurcation points. Furthermore, in Section 5.5 we show the existence
of a global continuous path of periodic orbits between the two Hopf bifurca-
tion points and in Section 5.6 analyze the stability of periodic solutions by
calculating the Floquet multipliers via the monodromy matrix.

5.2 Model description
The activator-inhibitor model presented in Chapter 4, Section 4.5.3, included
a dimerizing activator A, as well as an inhibitor I that senses the internal
zinc concentration Z and inhibits the activator. Gene activity (denoted by
G) is induced by the activator and leads to transcription of mRNA (M) and
production of ZIP transporter proteins (T ).

We now consider a simplification of the original system, where transcription
and translation of transporter proteins are assumed to be quasi-stationary and
in equilibrium G = M = T . Thereby, the system reduces to four equations
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5 Hopf bifurcation in the ZIP system

Table 5.1: Parameter values for the ZIP regulation model.
Parameter value Biological meaning

Kt 13 Michaelis-Menten constant of ZIP
K 20 Gene activation rate by activator
ΓI 1000 Binding constant of zinc to inhibitor
Γ 380 Binding constant of activator and inhibitor (scaled

for activator)
Γ′ 1672 Binding constant of activator and inhibitor (scaled

for inhibitor)

describing the time evolution of gene activity G, internal zinc concentration Z,
activator A and inhibitor I. For further simplification, all the time constants
γi in (4.7) are set to one, resulting in

dG

dt
= KA2(1−G)−G

dZ

dt
= Gf(Ze, Kt)− Z

dA

dt
= 1− ΓAI − A

dI

dt
= ΓIZ − Γ′AI − (1 + ΓIZ)I,

(5.1)

where f(Ze, Kt) = Ze

Ze+Kt is a function of the external zinc concentration Ze.
For convenience, we will simply write f(Ze). Parameter values were obtained
in Chapter 4 and are shown in table 5.1. As oscillations appear only for high
values of the parameter Γ (see Section 4.5.3), we use Γ = 380 in this chapter
if not stated otherwise. The external zinc concentration Ze varies naturally
in the soil and is therefore taken as the variable bifurcation parameter. Since
non-lethal external zinc concentrations for A. thaliana have been found in
experiments to be in a range of 0µM to 30µM (Talke et al., 2006), we will use
Ze ∈ Z := [0, 30].

For more compact notation we will write U := (G,Z,A, I)T and F (U,Ze) =
(F1(U), F2(U,Ze), F3(U), F4(U))T with

F1(U) = KA2(1−G)−G , F2(U,Ze) = Gf(Ze, Kt)− Z ,

F3(U) = 1− ΓAI − A , F4(U) = ΓIZ − Γ′AI − (1 + ΓIZ)I .

Then, the system can be considered as a 4-dimensional autonomous system of
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ordinary differential equations in the form
dU

dt
= F (U,Ze) . (5.2)

F (U,Ze) is continuously differentiable in U and its Jacobian matrix is given
by

J(U,Ze) =


−KA2 − 1 0 2KA(1−G) 0
f(Ze) −1 0 0

0 0 −ΓI − 1 −ΓA
0 ΓI(1− I) −Γ′I −Γ′A− 1− ΓIZ

 (5.3)

Theorem 5.1. For any initial value U0 ∈ S, where S = [0, 1]4, there exists a
unique global solution U ∈ C∞([0,∞)×Z) of the system (5.2) and U(t, Ze) ∈ S
for all t ∈ [0,∞) and any Ze ∈ Z.

Proof. Due to the local Lipschitz continuity of F , we obtain the local in time
existence and uniqueness of a solution U(t, Ze) of (5.2) by the Picard-Lindelöf
theorem. To prove the uniform boundedness of the solution, we show that S
is a positively invariant region for the system (5.2), i.e. that any trajectory
U(t, Ze) with U(0, Ze) ∈ S remains in S for all times t ≥ 0. From the equations
of the system (5.2) and by using the positivity of the coefficients we obtain the
following estimates

F1(U)|G=0 = KA2 ≥ 0 , F2(U)|Z=0 = Gf(Ze) ≥ 0 for G ≥ 0 ,
F3(U)|A=0 = 1 > 0 , F4(U)|I=0 = ΓIZ ≥ 0 for Z ≥ 0 ,

which by applying the invariant region theorem (Theorem 14.7 in Smoller,
1994; Amann, 1990, Theorem 16.9) imply the lower bound U ≥ 0. To show
the upper bound we use the fact that f(Ze) < 1 ∀ Ze ∈ Z and obtain

F1(U)|G=1 = −1 < 0 , F2(U)|Z=1 = Gf(Ze)− 1 ≤ 0 for G ≤ 1 ,
F3(U)|A=1 = −ΓI − 1 ≤ 0 for I ≥ 0 , F4(U)|I=1 = −Γ′A− 1 ≤ 0 for A ≥ 0 .

Then the invariant region theorem ensures that U ≤ 1. Thus, any trajec-
tory starting in S remains bounded within this set. The global existence and
uniqueness of a solution of (5.2) is then implied by the uniform boundedness
of U(t, Ze) together with continuous differentiability of F . The smoothness of
F : R4×Z → R4 with respect to U and Ze ensures also the smoothness of the
solutions U of the system (5.2) (Amann, 1990).

Theorem 5.2. For any positive parameter set K, Kt, Γ, Γ′, ΓI and any Ze ≥
0, there exists a unique steady state U∗(Ze) of the system (5.2) in S = [0, 1]4.
Furthermore, U∗ ∈ C∞ ((0,∞)).
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The proof of Theorem 5.2 will be based on the following two Lemmata. In
these, f := Ze

Ze+Kt will be used as one parameter instead of Ze and Kt, as for
any Kt ∈ (0,∞) the function f(Ze) is bijective in [0,∞) and every f ∈ (0, 1)
is uniquely identified with a Ze ∈ (0,∞). For Ze = 0 we find f(Ze) = 0
and we can explicitly calculate the values of the unique positive steady state
G = K

K+1 , Z = 0, A = 1, and I = 0. Therefore, in the following we will
assume f ∈ (0, 1) and K, Γ, Γ′, ΓI ∈ (0,∞) and denote the parameter space
by P := (0, 1)× (0,∞)4 with elements p = (f,K,Γ,Γ′,ΓI) ∈ P .

Lemma 5.1. For any p ∈ P the system (5.2) has at least one steady state
U∗ ∈ intS and none on ∂S. Further, any steady state U∗ ∈ intS corresponds
to a root A∗ in SA :=

(
1

1+Γ , 1
)
of the polynomial

φ(x) :=Γ′Kx4 + (fΓI(1 + Γ) + 1− Γ′)Kx3

+ (Γ′ −K − fΓIK)x2 + (1− Γ′)x− 1 ,
(5.4)

and any root of φ in SA to precisely one steady state in intS.

Proof. Since S is a positively invariant (see Theorem 5.1), compact and convex
subset of R4, existence of a stationary solution U∗ of F (U, p) in S follows from
Brouwer’s fixed point theorem (Smoller, 1994, cf. Theorem 12.10).
A steady state U∗ is a solution of F (U∗, p) = 0. Equation F3(U∗, p) =

1− ΓA∗I∗ − A∗ = 0 implies

A∗ = 1
1 + ΓI∗ . (5.5)

This expression is monotonically decreasing in I∗ and for I∗ ∈ [0, 1] we there-
fore find A∗ ≤ 1 and A∗ ≥ 1

1+Γ . From F1(U∗, p) = 0, F2(U∗, p) = 0 and
F3(U∗, p) = 0 we find expressions for G∗, Z∗ and I∗ as functions of A∗:

G∗ = KA∗2

1 +KA∗2
, Z∗ = fKA∗2

1 +KA∗2
, I∗ = 1− A∗

ΓA∗ , (5.6)

showing G∗ < 1 and Z∗ < 1. G∗ and Z∗ increase and I∗ decreases strictly
monotonically with A∗. Since A∗ > 0 this implies G∗ > 0, Z∗ > 0 and I∗ < 1.
Setting Z∗ > 0 into F4(U∗, p) = 0 delivers I∗ > 0. Using I∗ ∈ (0, 1) in Eq. 5.5
implies A∗ ∈ SA. Combining everything we find U∗ ∈ S and U∗ 6∈ ∂S for all
p ∈ P .
Substituting the equations (5.6) in F4(U∗, p) = 0 yields the equation φ(A∗) =

0. Thus, any steady state U∗ corresponds to a root of φ in SA. Conversely, if
A∗ is a root of φ in SA, then (5.6) delivers unique G∗, Z∗, and I∗, which fulfill
F (U∗, p) = 0 and U∗ ∈ intS.
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5.2 Model description

Lemma 5.2. The number of steady states of system (5.2) in S is constant for
all p ∈ P and the determinant of the Jacobian (5.3) is strictly positive when
evaluated at a steady state U∗ ∈ S.
Proof. We denote D := det J(U∗, p) the Jacobian of F in the steady state U∗
for a given parameter set p ∈ P . The equations (5.6) can be used to express
G∗, Z∗, and I∗ in terms of A∗ and the determinant is then

det J(U∗(Ze), Ze) = 1
A∗(1 +KA∗2)

(
Γ′K2A∗6 + (KfΓI + 2Γ′ +K)KA∗4

+ (2K + Γ′)A∗2 + (2fΓI(1 + Γ)A∗ − fΓI)KA∗2 + 1
)
.

Apart from −fΓI , all terms are positive. Using A∗ > 1
1+Γ we find

2fΓI(1 + Γ)A∗ − fΓI > fΓI > 0 .

Thus, D > 0 for any p ∈ P and any corresponding steady state U∗ ∈ S.
Since P is connected and N is discrete, the number of steady states in S could
only be non-constant if this number was discontinuous in P . By Lemma 5.1
a steady state U∗ cannot enter or leave the compact set S upon variation of
p, because the steady state U∗ depends continuously on p and does not cross
over ∂S. Hence, the only way the number of steady states could change is by
bifurcation of steady states (pitchfork or saddle node), which is not possible
because D > 0 in P . In total, we find that the number of steady states in S
has to be constant for all p ∈ P .

Proof of Theorem 5.2. Now we can finish the proof of Theorem 5.2 by choosing
one specific parameter set in P , namely f = 1

2 and K = Γ = Γ′ = ΓI = 1 to
obtain SA =

(
1
2 , 1

)
and

φ(x) = x4 + x3 − 1
2x

2 − 1 .

Since the derivative
dφ

dx
= 4x3 + 3x2 − x > 1

4 > 0

we find that φ is strictly monotonic in SA. On the boundary of SA we have
φ
(

1
2

)
= −15

16 < 0 and φ(1) = 1
2 > 0. Therefore, φ has a unique root in SA.

By Lemma 5.1 this corresponds to exactly one steady state U∗ ∈ S and from
Lemma 5.2 the same holds for any p ∈ P .
The smoothness of U∗ with respect to p follows from the smoothness of F

and the implicit function theorem. As f is a smooth function in Ze for fixed
Kt, K, Γ, Γ′, and ΓI , the steady state U∗(Ze) can also be viewed as a smooth
function in Ze.
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5 Hopf bifurcation in the ZIP system

5.3 Local Hopf bifurcation
In numerical simulations of the model (5.2) with sufficiently high values of the
parameter Γ we observe a stable steady state for small Ze, which becomes
unstable at some critical parameter value Ze

1 and stable again after some value
Ze

2 > Ze
1 . Between these values, i.e. for Ze ∈ (Ze

1 , Z
e
2), numerical simulations

show the existence of stable limit cycles depending continuously on Ze. In this
section we show that at both critical values of Ze a Hopf bifurcation occurs.

Theorem 5.3. There exist two critical values Ze
1 , Z

e
2 ∈ Z of the external zinc

concentration for which a Hopf bifurcation occurs in the system (5.2).

Proof. We shall show that all criteria for existence of a local Hopf bifurcation
(cf. Theorem 3.1 in Chapter 3) are satisfied by the system (5.2). The right
hand side F : R4×Z → R4 of (5.2) is continuously differentiable in U and Ze.
Theorem 5.2 guarantees the existence of a family of unique equilibria U∗(Ze)
inside the invariant set S depending continuously on Ze. From this together
with the continuity of f(Ze) = Ze

Ze+Kt and of the determinant, we obtain that
the eigenvalues λi(Ze), i = 1, 2, 3, 4 of the Jacobian J(U∗(Ze), Ze) evaluated
at the stationary solution vary continuously with Ze.
A diagram of these eigenvalues in the complex plane for different values of

Ze is shown in Fig. 5.1. For Ze = 0 the eigenvalues can be calculated explicitly
and are equal to λ1,2 = −1, λ3 = −K − 1 = −21 and λ4 = −Γ′ − 1 = −1673.
For Ze ∈ (0, 30] the eigenvalues were computed numerically by a reduction of
the Jacobian matrix to Hessenberg form followed by QR iteration as described
in Press et al. (2007).
The two smallest eigenvalues λ3 and λ4 have negative real parts for all Ze ∈
Z = [0, 30], while λ1 and λ2 form a complex conjugate pair that crosses the
imaginary axis in two points (Fig. 5.1). The values of λ1, . . . , λ4 for the
critical parameter points Ze

1 = 0.189537 . . . and Ze
2 = 12.6432 . . . at which

J(U∗(Ze), Ze) exhibits two purely imaginary eigenvalues are shown in Table
5.2. The purely imaginary eigenvalues λ1,2(Ze

i ) are simple and none of the
multiples nλ1,2(Ze

i ) with n ∈ N \ {1} is an eigenvalue of J(U∗(Ze
i ), Ze

i ) for i =
1, 2. This follows from det J(U∗(Ze

i ), Ze
i ) > 0 and tr J(U∗(Ze

i ), Ze
i ) < 0, which

imply λ3,4 < 0. It was shown numerically that the eigenvalues λ1,2(Ze) cross
the imaginary axis with non-zero speed, i.e. d

dZe
Reλi(Ze

j ) 6= 0 for i, j = 1, 2
(see Table 5.2) .
Therefore, based on the Hopf Bifurcation Theorem (cf. Theorem 3.1) we

conclude that the system (5.2) has a one-parameter family of periodic solutions
bifurcating from the stationary solution in a neighborhood of both critical
values Ze

1 and Ze
2 .
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5.3 Local Hopf bifurcation

Table 5.2: Critical values of Ze
1,2 with the corresponding eigenvalues λ1, . . . , λ4

of the Jacobian matrix, derivative of the real part of the eigenvalue with respect
to Ze and sign of the real part of the parameter b in the normal form.

Ze (µM) λ1,2 λ3 λ4
d
dZe Re(λ1,2) sgn(Re b)

Ze1 0.189 . . . ±i1.983 . . . −3.474 . . . −238.6 . . . 1.83 . . . -1

Ze2 12.64 . . . ±i2.782 . . . −5.599 . . . −84.43 . . . −0.0126 . . . -1
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Figure 5.1: Eigenvalues of the Jacobian matrix of F in the steady state for
varying external zinc concentrations between 0µM and 30µM. Arrows show
the direction of growing external zinc concentration. The eigenvalues λ3 and
λ4 are real and negative for the entire range of external zinc concentrations,
while the complex conjugate pair λ1/2 crosses the imaginary axis twice. These
points are marked as first and second Hopf bifurcation points.
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5 Hopf bifurcation in the ZIP system

5.4 Normal form and stability of Hopf bifurcations
In the last section we showed the local existence of periodic orbits close to the
two Hopf bifurcation points. Further information is needed to determine the
stability and direction of the periodic solutions. To do so we use the concept
of the normal form as explained in Section 3.2.2 and calculate the parameter
b for the two Hopf bifurcations in the ZIP regulatory system (5.2). As in Eq.
(3.4), the normal form of the Hopf bifurcation is given by

dA

dt
= iω A+ a µA+ bA |A|2 +O

(
|A|

(
|µ|+ |A|2

)2
)
.

The formulas from Section 3.2.2 are used to calculate b.

Theorem 5.4. At both critical parameter values Ze
1 and Ze

2 a supercritical Hopf
bifurcation occurs for the system (5.2) and the bifurcating periodic solutions
are stable. In the first critical point Ze

1 the orbits arise for increasing values
Ze > Ze

1, whereas in the second critical point Ze
2 the orbits arise for decreasing

values Ze < Ze
2.

Proof. In order to calculate the parameter b in the normal form, we need a
number of derivatives. The Jacobian of the system has already been given in
(5.3). Second derivatives are needed in the form D20F (x, y), where x, y ∈ C4

analogous. These are given by

D20F




x1

x2

x3

x4

 ,

y1

y2

y3

y4



 =


−2KA(x1y3 + x3y1) + 2K(1−G)x3y3

0
−Γ(x3y4 + x4y3)

−ΓI(x2y4 + x4y2)− Γ′(x3y4 + x4y3)

 .

The third derivative term D30F (x, y, z) with x, y, z ∈ C4 is computed as

D30F




x1

x2

x3

x4

 ,

y1

y2

y3

y4

 ,

z1

z2

z3

z4



 =


−2K(x1y3z3 + x3y1z3 + x3y3z1)

0
0
0

 .

Having these derivatives, we can now apply the formulas derived in Sec-
tion 3.2.2 and standard numerical methods like Newton’s and continuation
methods used to compute stationary solutions and eigenvalues of the Jacobian
matrix in Section 5.3, as well as LU decomposition (Press et al., 2007) for
equation solving. Thus, we obtain b for the critical parameter values Ze

1 and
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Figure 5.2: Illustration of the snake of periodic orbits between the two Hopf
bifurcation points. From the four-dimensional system only two dimensions
(gene activity and internal zinc concentration) are shown. The thick solid line
marks the steady state, thin lines show the stable periodic solutions. The
rotation direction is indicated with an arrow.

Ze
2 . For both cases, Re b is negative (see Table 5.2). Consequently, both Hopf

bifurcations are supercritical, i.e. the families of periodic orbits in the neigh-
borhoods of the bifurcations are stable and arise at the side of the bifurcation
where the steady state becomes unstable. Therefore, the sign of the derivative
d
dZe

Reλ1(Ze), i = 1, 2 determines the direction in which the orbits appear. In
the first critical point, the derivative is positive and the orbits arise to the right
(i.e. with increasing Ze

1 < Ze), while at the second the derivative is negative
and orbits emerge to the left (with decreasing Ze < Ze

2), as can be seen in Fig.
5.2.
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5 Hopf bifurcation in the ZIP system

5.5 Global continuation of periodic orbits
While the results in Section 5.3 only give the existence of stable periodic orbits
in a small neighborhood of the critical values of Ze, we now want to show the
existence of a continuous path of periodic orbits between those two bifurcation
points. Section 3.2.3 summarizes the main results that will be applied to the
ZIP system in the following.
Theorem 5.5. The model (5.2) possesses a continuous path of periodic solu-
tions connecting two Hopf bifurcation points, where the first point (U∗(Ze

1), Ze
1)

is a source and the second point (U∗(Ze
2), Ze

2) is a sink for the path.
Proof. We shall show in the following that for the model (5.2) neither param-
eter nor period nor solution can become unbounded, so the path of periodic
orbits bifurcating from the stationary solution must end in another Hopf point.
Theorem 5.1 ensures uniform boundedness of solutions of the model (5.2). The
parameter Ze ∈ Z is naturally bounded since zinc concentrations in the soil
only appear within a certain range. Here, we chose the non-lethal range for A.
thaliana, Z = [0, 30] (Talke et al., 2006). We note, however, since Ze enters the
system only via the term f(Ze) < 1, that its contribution is bounded for all
Ze > 0. The least period of the orbits is a continuous function of Ze. Numer-
ical computations show that the period is also bounded for all Ze ∈ [Ze

1 , Z
e
2 ],

see Fig. 5.3(a).
Thus, since parameter, period and solution remain bounded, and the domain
Z of the parameter contains exactly two Hopf bifurcation points, the path of
periodic orbits emerging from one Hopf point must terminate in another Hopf
point (cf. Theorem 3.3 and 3.4). Therefore, there exists a continuous family
of periodic solutions between these two points. An illustration of this path of
periodic orbits in two dimensions is given in Fig. 5.2.
To distinguish source from sink Hopf bifurcation points we use the center

index 中 (see Section 3.2.3). In our case, exactly two eigenvalues cross the
imaginary axis in the critical values Ze

1,2. In Ze
1 the two eigenvalues cross

the imaginary axis from left to right (χ = 1), whereas in Ze
2 they cross the

imaginary axis from right to left (χ = −1). Then with E(Ze
1,2) = 0 we find

中 (U∗(Ze
1), Ze

1) = +1, so the first Hopf bifurcation (left point in figure 5.2) is
a source of the path of periodic orbits. For the second Hopf point (right point
in figure 5.2) we obtain 中 (U∗(Ze

2), Ze
2) = −1 showing that it is a sink. This

result is in concord with the Snake Termination Principle by Mallet-Paret and
Yorke (1980) stating that if a path of periodic orbits emerging from one Hopf
point terminates in a second Hopf point, then the two Hopf points must have
center indexes of opposite value.
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Figure 5.3: Least period T (Ze) (a) and Floquet multipliers (b) of periodic
orbits as a function of the external zinc concentration Ze between the two Hopf
bifurcation points. (a) The numerically computed least period T (solid line) is
shown together with the hypothetical period 2π/ω(Ze) of the linearized system
in the steady state (dashed line), where ω(Ze) is the imaginary part of the
first eigenvalue of the Jacobian matrix J(Ze). In the critical values (Ze

1 ≈ 0.19
and Ze

2 ≈ 12.6) the lines cross, showing lim
Ze→Ze1,2

T = 2π/ω(Ze
1,2). (b) Floquet

multipliers were computed numerically. While the first Floquet multiplier
equals one, the others are smaller than one. Therefore, the periodic solutions
are of type 0 and asymptotically stable for all external zinc concentrations
within this range.
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5 Hopf bifurcation in the ZIP system

5.6 Floquet multipliers and stability of periodic
orbits

The stability of periodic solutions can be analyzed by studying its Floquet
multipliers. These multipliers can be derived as eigenvalues of the linearized
Poincaré map and equivalently as eigenvalues of the monodromy matrix. In
the following, we will focus on the latter.

Theorem 5.6. The periodic solutions of the model (5.2) for Ze ∈ [Ze
1 , Z

e
2 ] are

asymptotically stable.

Proof. In the previous section we have shown that for a given Ze ∈ [Ze
1 , Z

e
2 ] the

system of differential equations (5.2) has a periodic solution U(t) = U(Ze, t)
with a period T = T (Ze) ∈ (0,∞), i.e. U(T ) = U(0). Naturally, all integer
multiples of T are also periods, so we choose T to be the least period. Similar to
a fixed point, the periodic orbit is called asymptotically stable, if trajectories
starting near the orbit converge to the orbit for t → ∞. This stability is
determined by the eigenvalues of the monodromy matrix.
For Ze ∈ [Ze

1 , Z
e
2 ] let Φt(U0) denote the solution U(t) at time t starting from

U(0) = U0. For a point (U0(Ze), Ze) on a periodic orbit and T = T (Ze) the
least period of this orbit the monodromy matrix is given by

M = ∂ΦT (U,Ze)
∂U

∣∣∣
U=U0

.

Its eigenvalues are called Floquet multipliers or characteristic multipliers. The
Floquet multipliers are independent of the choice of U0 on the periodic orbit,
whereas the monodromy matrix and its eigenvectors do depend on this choice.
In an autonomous system like Eq. (5.2), one of the multipliers is always 1 and
its eigenvector points in the direction tangent to the periodic cycle, i.e. F (U0)
(Marx and Vogt, 2011). The periodic solution is asymptotically stable, if all
other Floquet multipliers are strictly smaller than 1 in modulus (Lust, 2001).
In order to numerically compute the Floquet multipliers we first obtain

U0(Ze) and T (Ze) using the single shooting technique (Marx and Vogt, 2011).
For a point U0(Ze) ∈ R4 on a periodic orbit with period T (Ze) it holds that

g(U0(Ze), T (Ze)) := ΦT (U0(Ze))− U0(Ze) = 0.

Since every point on a given orbit fulfills this equation, the system is underde-
termined and an additional scalar "phase condition" of the form

h(U0(Ze), T (Ze)) = 0
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5.6 Floquet multipliers and stability of periodic orbits

is needed. Most simply, the condition fixes one of the components of the vector
U0(Ze). Here, we estimated the stable periodic orbit by long-time numerical
integration of the dynamical system (5.2) by starting slightly off the steady
state U∗(Ze). Then the state U(τ, Ze) for some large enough τ ∈ (0,∞)
was used to fix the first component G0(Ze) by setting h(U0(Ze), T (Ze)) :=
G0(Ze)−G(τ, Ze). With this condition the combined system

g(U0(Ze), T (Ze)) = 0, h(U0(Ze), T (Ze)) = 0

was solved for (U0(Ze), T (Ze)) ∈ R5 with a standard Newton algorithm using
U(τ, Ze) and a rough estimate of T (Ze) as starting values. Numerical integra-
tion of (5.2) was done with a Rosenbrock stiffly stable ODE solver (Press et al.,
2007). For regular periodic solution, the Newton iteration converges locally
with quadratic rate (Marx and Vogt, 2011, Theorem 6.25). Having U0(Ze) and
T (Ze), the derivatives in the monodromy matrix were obtained by the finite
difference formula and eigenvalues of the monodromy matrix were calculated
using Hessenberg form and QR iteration as before.
The resulting minimal periods are shown in figure 5.3(a), while the result-

ing Floquet multipliers for varying external zinc concentrations Ze ∈ [Ze
1 , Z

e
2 ]

are shown in figure 5.3(b). As confirmed by the theory, the first multiplier
in the direction tangent to the periodic orbit equals unity, while the others
are real positive and smaller than one in (Ze

1 , Z
e
2). Therefore, the periodic

orbits are asymptotically stable for all external zinc concentrations between
the two Hopf bifurcation points. In the bifurcation points, the second Flo-
quet multiplier tends to unity and a conclusion on stability cannot be drawn.
However, stability there is guaranteed by the normal form (see Section 5.4.
Since all the multipliers are smaller than one in modulus for the open interval
Ze ∈ (Ze

1 , Z
e
2), no secondary bifurcation takes place, i.e. all the periodic orbits

are of type 0 (Mallet-Paret and Yorke, 1982). It is also noteworthy that two
of the Floquet multipliers are very close to zero. This shows that the periodic
solution is strongly attracting in two directions and corresponds in some sense
to the two large negative eigenvalues of the Jacobian matrix J of the system
(5.2) in the steady state.
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6 Radial transport of zinc in plant
roots

6.1 Introduction
Based on the ZIP regulation model discussed in Chapter 4 we now develop
a model for the radial transport of zinc across the root. There are several
existent approaches to model water and solute transport through root tissues.
One approach is to model transport in analogy to electric resistor networks
according to Ohm’s and Kirchhoff’s laws (Steudle and Frensch, 1996; Steu-
dle and Peterson, 1998). Katou and Taura (1989) and Taura et al. (1988)
use advection-diffusion equations to describe water and solute movement in
the apoplast. Many modelling approaches concern the interface between soil
and root surface (Ptashnyk et al., 2011; Leitner et al., 2009; Zygalakis et al.,
2011). However, to my knowledge, there has so far been no attempt to cou-
ple a structured transport model in the root tissue to a regulatory model for
transporters.

Starting from the ODE model for the regulation of ZIP transporters dis-
cussed in Chapter 4 we now want to couple this model with PDEs describing
the radial transport. The structure of the root and the processes involved in
zinc transport have been introduced in Chapter 2. The regulatory mechanism
of ZIP transporters is modeled in Chapter 4. For the sake of simplicity, the
root was seen as one compartment there, disregarding the fact that uptake,
symplastic transport and xylem loading involve several different cell types
(Clemens et al., 2002; Hanikenne et al., 2008). Here we want to extend that
model to consider the internal structure of root tissues in more detail. Sym-
plastic and apoplastic transport in a radial geometry will be coupled to the
regulatory mechanism to understand the accumulation pattern of symplastic
zinc and to find the prerequisites of moving zinc ions from the root surface to
the xylem.
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Figure 6.1: Radial scheme of root tissues in A. thaliana used for the transport
model. The root consists of four tissue types: epidermis (ep), cortex (co),
endodermis (en), and pericycle (pc). Water and nutrients move radially from
the external medium across the root surface at radius re towards the xylem
at radius rx. The impermeable casparian strip is located at position rc in the
endodermis. Zinc is transported across cell membranes by ZIP and HMA4
transporters. Arrows denote the direction of water and zinc fluxes.

6.2 Model

6.2.1 Assumptions

The root geometry is simplified as a single radially symmetric cylinder and
transport in the root is assumed to take place in radial direction only. This
allows to reduce the three-dimensional problem into coupled one-dimensional
problems in the later treatment. The structure of the root along the radius
is shown schematically in Fig. 6.1. The root is assumed to be composed of
the following cell types (from outside to inside): epidermis (ep), cortex (co),
endodermis (en) and pericycle (pc). The cell layers extend from radius rx
(at the pericycle or xylem) to re (at the epidermis or outer root surface). A
perfectly impermeable Casparian strip (cs) was assumed at position rc in the
endodermis (see Table 6.2 for values). Cell sizes have been estimated for typical
young A. thaliana roots (see Table 6.1) with a cell wall thickness of 0.5µM.

The overall geometry of the root is described in cylindrical coordinates.
Reduction from 3-D to 1-D can then be achieved by averaging over the axial
coordinate z and the azimuth angle ϕ. Cells are modeled as blocks, where
the symplast volume is denoted by Ω3 and different parts of the apoplast by
Ω1, Ω2 and Ω4 as shown in Fig. 6.2a. The apoplast components Ω1 and
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6.2 Model

Table 6.1: Cell sizes used in simulations. Values correspond to a typical young
A. thaliana root.

Cell type Left radius (µm) Right radius (µm)
Pericycle (pc) 6 9.75
Endodermis (en) 10.25 14.75
Cortex (co) 15.25 29.75
Epidermis (ep) 30.25 40

Ω2 exchange water and ions with the symplast Ω3, while the contribution of
the “edges” Ω4 is assumed to be negligible. These blocks are thought to be
repeated periodically in azimuthal and axial direction. The model focuses on
one line of cells as in Fig. 6.1, so we set Ωi to span over all cell layers from rx
to re.

Cells form a continuum connected by plasmodesmata that allow symplas-
tic flow from cell to cell. Within this continuum they have a complex internal
structure with organelles, such as vacuoles, nucleus, etc. Plasmodesmata be-
tween neighboring cells also reduce the flow cross section substantially. To
avoid the treatment of these internal structures, we regard the cell content to
be a porous medium with a given volume fraction Φ. Vacuoles are considered
only by a reduction of flow cross section, i.e. they are not treated as sepa-
rate compartments and their role in sequestration is neglected. Cell walls are
also assumed to be a porous medium of constant structure and porosity. We
introduce a volume fraction Φ for the symplast, which depends only on the
radial position. This assumption is valid in view of the periodic structure of
the root and the orientation of cell layers (Fig. 6.1). The volume fraction Ψ
of the apoplast is assumed to be constant, and based on the results of Kramer
et al. (2007) it is set to have a value of 1/15. Fig. 6.3 presents at the bottom
graph the volume fraction of the symplast used in the simulations. The volume
fraction in plasmodesmata is of the order of 0.15 (Rutschow et al., 2011), while
the vacuole is assumed to make up 0.8 of the cell volume giving a cytoplasmic
volume fraction of 0.2. These parameters are coarse estimates, but the exact
values are not of crucial importance to the model and the simulation results.

Membrane transport of zinc ions is achieved by several different influx and
efflux proteins expressed in roots. For the sake of simplicity, we assume the
existence of only two types of transporters: influx (ZIP) and efflux (HMA4).
Epidermis, cortex and endodermis cells are allowed to have ZIP influx trans-
porters, while pericycle cells produce only HMA4 efflux transporters. Following
the results of Talke et al. (2006), the expression of HMA4 is assumed to be
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Figure 6.2: (a) 3-D scheme of root cells showing the different compartments
for the transport model. Ω3 denotes the symplast, Ω1, Ω2 and Ω4 denote differ-
ent parts of the apoplast above/below and besides the symplast, respectively.
(b) Sketch of concentric surfaces Γ(r). Zinc concentrations are averaged over
Γ to reduce the model from 3-D to 1-D.
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Figure 6.3: Relative water flow velocity v/q0 (top) and the symplastic volume
fraction Φ (bottom) as functions of the radial coordinate. Tissues include the
epidermis (ep), cortex (co), endodermis (en) and pericycle (pc). The volume
fraction Φ in the symplast varies due to the internal structure of the tissue
consisting of cells with large vacuoles and plasmodesmata between neighboring
cells. The flow velocity increases towards the xylem due to the radial geometry.

independent of the zinc concentration and is included into the model as a given
amount of transporters. Both ZIP and HMA4 are assumed to be saturable.
Therefore, transport across the membranes is modelled as an enzymatic reac-
tion with Michaelis-Menten kinetics as described in Chapter 4. The expression
of ZIP in the epidermis, cortex and endodermis is assumed to adapt to the
current internal zinc status based on the dimerizing activator-inhibitor model
proposed in Chapter 4. Depending on the average internal zinc concentra-
tion each cell regulates its ZIP expression independently of the others. The
resulting amount of transporters is assumed to be evenly distributed on the
plasma membrane and will thus vary from cell to cell, but not within one cell.
This assumption is supported by the HMA2 expression pattern found in A.
thaliana (Sinclair et al., 2007, Fig. 1(c)). The model uses no other type of
signal besides the internal zinc concentration. Hence, coordination is achieved
merely by zinc fluxes.
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6 Radial transport of zinc in plant roots

6.2.2 Zinc transport
Transport of zinc is modelled by a general advection diffusion problem stating
the conservation of zinc

∂t(ΨZi)− div (ΨD gradZi) = 0 in Ωi × (0,∞) , i = 1, 2 , (6.1)
∂t(ΦZ3) + div (Φ vZ3 − ΦD gradZ3) = 0 in Ω3 × (0,∞) , (6.2)

where Ψ is the volume fraction of the apoplast Ω1,2, Φ is the volume fraction
in the symplast, Zi is the zinc concentration in Ωi, D the diffusion coefficient
of zinc, and v the flow velocity of water. We assume no water fluxes in the
apoplast, i.e. advection of zinc in the apoplast was neglected. This assumption
is reasonable for simplification, because the small apoplast volume can be
expected to contribute little to overall zinc transport, which has been confirmed
by preliminary simulations. Leaving out advection in the apoplast makes the
numerical simulation much simpler, as advective terms are prone to numerical
instabilities.

Solving these equations would deliver the time evolution of three dimen-
sional distributions of zinc in the root tissue. For this purpose, a precise 3-D
representation of the tissue and computationally expensive numerical methods
would be needed. To avoid this but still capture the essential features on the
tissue structure shown in Fig. 6.1, we focused on the radial distribution by
reducing Eqs. (6.1), (6.2) into a system of 1-D equations.

Reduction to 1-D

Reduction to 1-D is achieved by averaging zinc concentrations over concentric
surfaces Γ(r) with radius r as sketched in Fig. 6.2b. These surfaces are given
by

Γi (r) :=
{

x ∈ Ωi

∣∣∣x2
1 + x2

2 = r2
}

for i = 1, 2, 3 , (6.3)
which can be described in cylindrical coordinates by

(r, ϕ, z) ∈ {r} × (0, ϕ0,i)× (0, z0,i) for i = 1, 2, 3 ,

with azimuth ϕ0,i and height z0,i of the considered domain. We use different
polar coordinate systems for Ω1, Ω2, and Ω3. Let µi (r) = r ϕ0,i z0,i denote the
area of Γi (r). Then we define Zi as the average of Zi over Γi(r) ⊂ Ωi:

Zi(r, t) := 1
µi(r)

∫
Γi(r)
Zi(x, t) dγ , for (r, t) ∈ [rx, re]× [0,∞) .

We will now average the equation for symplastic transport, Eq. (6.2). The
result will also apply to apoplastic transport, Eq. (6.1), by exchanging Φ with
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Ψ and setting v = 0. For the time derivative we find
1

µ3(r)

∫
Γ3(r)

∂t (ΦZ3) dγ = ∂t (ΦZ3) .

Averaging of the advection term in (6.2) results in
1

µ3(r)

∫
Γ3(r)

div(Φ vZ3) dγ =1
r
∂r

(
rΦ 1

µ3(r)

∫
Γ3(r)

vr Z3 dγ
)

+ 1
µ3(r)

∫
∂Γ3(r)

Φ vnZ3 ds ,

where vn is the normal velocity on ∂Γ3. Assuming no water exchange between
symplast and apoplast (vn = 0), the integral over ∂Γ3 is zero. By the mean
value theorem, there exists a v(r) with∫

Γ3(r)
vr Z3 dγ = v(r)

∫
Γ3(r)
Z3 dγ .

This leads to an approximation of the form
1

µ3(r)

∫
Γ3(r)

div(Φ vZ3) dγ ≈ 1
r
∂r (rΦ v Z3)

with a characteristic radial velocity v(r) that will be derived in Section 6.2.3.
The diffusion term in Eq. 6.2 is expressed in cylindrical coordinates by

div(ΦD gradZ3) = 1
r
∂r(ΦD r ∂rZ3) + 1

r
∂ϕ

(
ΦD

1
r
∂ϕZ3

)
+ ∂z(ΦD∂zZ3) .

The first term with r-derivative is averaged as

− 1
µ3(r)

∫
Γ3(r)

1
r
∂r(ΦD r ∂rZ3) dγ = −1

r
∂r (ΦD r ∂rZ3) ,

while the term with ϕ- and z-derivatives is transformed into an integral over
the boundary of Γ3(r)

− 1
µ3(r)

∫
Γ3(r)

(
1
r
∂ϕ

(
ΦD

r
∂ϕZ3

)
+ ∂z(ΦD∂zZ3)

)
dγ

= − 1
µ3(r)

∫
∂Γ3(r)

ΦD∂nZ3 ds ,

where ∂nZ3 is the normal derivative of Z3 on ∂Γ3(r). This boundary integral
delivers the average flux through the membrane:

1
µ3(r)

∫
∂Γ3(r)

Φ (vnZ3 −D∂nZ3) ds = −Q3 ,

Qi :=
2∑
j=1

σij(r) Jj(r) ,
(6.4)

67



6 Radial transport of zinc in plant roots

where Qi, i = 1, 2, are zinc source terms and Jj(r), j = 1, 2, denote flux
densities through the transporters ZIP and HMA4 (see Section 6.2.4) and

(σij)(r) :=


−2/z0,1 0

0 −2/rϕ0,2

2/z0,3 2/rϕ0,3


account for different ratios between the length of the pieces composing the
boundary ∂Γ3 towards apoplast compartments Γ1 and Γ2, respectively, and
the area of Γ3. The sign convention of Ji is as follows: positive for a flux from
the apoplast into the symplast and negative vice versa.

In the end, the reduced model for the symplast Ω3 is obtained as

∂t(ΦZ3) + 1
r
∂r (rΦ v Z3 − ΦD r ∂rZ3) = Q3 in (rx, re)× (0,∞) . (6.5)

For implementation purposes the equation can be rewritten into a conservative
form with the variables rZi. Then, applying the reduction for the symplast in
Eq. (6.5) also to the apoplast Ω1 and Ω2 we obtain

∂t(Ψ rZ1) + ∂r
(
(D/r) Ψ rZ1 −ΨD∂r(rZ1)

)
= r Q1 ,

∂t(Ψ rZ2) + ∂r
(
(D/r) Ψ rZ2 −ΨD∂r(rZ2)

)
= r Q2 ,

∂t(Φ rZ3) + ∂r
(

(v +D/r) Φ rZ3 − ΦD∂r(rZ3)
)

= r Q3 ,

in (rx, re)× (0,∞) .

(6.6)

Initial values and boundary conditions

Eq. (6.6) needs initial values and suitable boundary contions to obtain a well
posed (solvable) problem. The apoplast is assumed to have access to a perfectly
stirred medium of concentration Ze. A concentration Zx(t) is prescribed at
the xylem. This concentration depends on the flux of zinc through HMA4
and a model will be developed in the next section. The impermeability of
the Casparian strip is considered by setting a no-flux condition. In total, we
prescribe for the apoplasts Ω1 and Ω2

Zi

∣∣∣∣
r=rx

= Zx(t) ,

(D/r) Ψ rZi −ΨD∂r(rZi)
∣∣∣∣
r↗rc

= 0 ,

(D/r) Ψ rZi −ΨD∂r(rZi)
∣∣∣∣
r↘rc

= 0 ,

Zi

∣∣∣∣
r=re

= Ze ,

for t ∈ [0,∞), i = 1, 2 . (6.7)
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The zinc flux is prescribed at the boundary of the symplast Ω3

(v +D/r) Φ rZ3 − ΦD∂r(rZ3)
∣∣∣∣
r=rx

= r H0Hpc f
(
Z3(rx), Kh

)
, (6.8a)

(v +D/r) Φ rZ3 − ΦD∂r(rZ3)
∣∣∣∣
r=re

= −rΦT0 Tep f
(
Ze, Kt

)
, (6.8b)

for t ∈ [0,∞) .

Published experimental results that capture the dynamics of regulation,
focus on changes from one steady state at a given external concentration to
another steady state for a different concentration (e.g. zinc resupply). There-
fore, the initial conditions used here are solutions of the stationary version of
Eq. (6.6)

Zi(r, t)
∣∣∣∣
t=0

= Zi(r) for r ∈ [rx, re] , i = 1, 2, 3,

where the Zi fulfill one of the following equations

∂r
(

(D/r) Ψ rZi −ΨD∂r(rZi)
)

= r Qi in (rx, re)× (0,∞) , i = 1, 2 ,

∂r
(

(v +D/r) Φ rZ3 − ΦD∂r(rZ3)
)

= r Q3 in (rx, re)× (0,∞) ,

with boundary conditions Eqs. (6.7), (6.8a) and (6.8b). For dynamic simula-
tions of the system, we use the steady state for given Ze and q0 as an initial
condition to then capture the transition dynamics when one of these param-
eters is changed. This models the dynamic adaptation of a real plant to a
sudden change in the external zinc concentration or transpiration rate.

Xylem

A calculation of the apoplastic zinc concentration in the region enclosed by the
casparian strip (rx ≤ r ≤ rc) needs the concentration of zinc in the xylem. For
simplicity, we will pose a model for the central cylinder 0 ≤ r < rx (i.e. stele
without the pericycle) and account the true size of the xylem by a constant
volume fraction Ψx. The domain describing this tissue will be denoted as Ωx,
where the x stands for xylem.

Mass conservation of water and (6.2) apply also to this tissue

div(Ψxvx) = 0 in Ωx ,

∂t(ΨxZx) + div (Ψx vxZx −ΨxD gradZx) = 0 in Ωx × (0,∞) ,

where vx is the flow velocity and Zx is the zinc concentration in the central
cylinder Ωx. A surface average can be obtained as before in the radial reduction

69



6 Radial transport of zinc in plant roots

to 1-D. The main difference is that the surface over which the average is created
is here the horizontal cross section

Γx (z) := {x ∈ Ωx |x3 = z} .

Conservation of water delivers

∂z(Ψx vx) = − 2
rx

Φ(rx) v(rx) , (6.9)

where Φ(rx)v(rx) is the flow velocity of the water being delivered from the
symplast, and the average velocity in the xylem is defined as

vx(z) := 1
µ
(
Γx(z)

) ∫
Γx(z)

vz,x(r, ϕ, z) dγ , for z ∈ [0, L] ,

where L is the length of the root portion considered. In Section 6.2.3 we
will derive an expression for the water flow velocity v(r) given in Eq. (6.15).
Expression of Φ(rx) v(rx) by this Eq. (6.15), integration of Eq. (6.9), and
assumption of vx(0) = 0 delivers

vx(z) = − 2
rx

re
rx

q0

Ψx

z for z ∈ [0, L] , (6.10)

which is a linear function of z. Remeber that q0 < 0 so that vx(z) ≥ 0 for
z ≥ 0. Eq. (6.10) is based on the assumption that q0 is constant, which will not
be true in reality. The pressure gradient between the xylem and the medium
will fall with z and, hence, vx(z) cannot grow linearly indefinitelly and will
stagnate at a constant value. However, vx(z) will behave similar to Eq. (6.10)
in a region near z = 0. We focus on this region and assume validity of Eq.
(6.10).

An average for the equation describing the conservation of zinc is obtained
readily

∂t(ΨxZx) + ∂z(Ψx vx Zx −ΨxD∂zZx) = 2
rx
H0Hpc f

(
Z3(rx, t), Kh

)
,

where the boundary condition Eq. (6.8a) divided by r was used and the average
zinc concentration is defined as

Zx(z, t) := 1
µ
(
Γx(z)

) ∫
Γx(z)
Zx(x, t) dγ for (z, t) ∈ [0, L]× [0,∞) .

A preliminary simulation of this equation with no-flux and open vessel condi-
tions at z = 0 and z = L, respectivelly, shows that Zx is almost constant in
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space. Hence, we set Zx(z, t) ≈ Zx(t), use that Ψx is constant and express vx
by Eq. (6.10) to obtain

dZx

dt
= 1

Ψx

2
rx

(
re
rx
q0 Z

x +H0Hpc f
(
Z3(rx, t), Kh

))
for t ∈ (0,∞) ,

Zx
∣∣∣
t=0

= Zx
0 .

Note again that q0 < 0 while H0Hpcf(Z3(rx, t), Kh) ≥ 0, so that this equation
has a non-trivial positive steady state solution

Z
x = −rx

re

H0Hpc

q0
f
(
Z3(rx), Kh

)
.

6.2.3 Water flow
As described above, zinc is carried along the water flow path with the velocity
of the water (advection). This process influences the distribution of zinc and
determines how fast variations in external zinc concentration spread in the
system. To avoid a complete treatment of water fluxes in root tissues, we
focus only on mass conservation delivering the radial flow speed by considering
the effective flow cross section. Variation of cross section in the symplast is
included by the volume fraction shown in the bottom graph of Fig. 6.3 and
explained in Sec. 6.2.1. Water fluxes in the apoplast were assumed to be
small and were neglected, although the apoplast is believed to contribute to
the total flux (Steudle, 2000). Hence, water exchange was assumed to occur
only at the interfaces between medium and epidermis (especially root hairs)
and between pericycle and xylem. Epidermal cells were assumed to take up
water from the medium with a given constant flux velocity q0. The value of
q0 was varied to simulate different transpiration rates. This approach is very
simplistic. More sophisticated water flux models have been proposed by other
authors, for example Katou and Furumoto (1986); Katou et al. (1987); Taura
et al. (1988); Katou and Taura (1989); Murphy (2000); Chavarría-Krauser
and Ptashnyk (2013). These models, however, do not couple water flow to
regulation of membrane transporters.

Mass conservation for an incompressible fluid in the symplast reads

div(Φv) = 0 in Ω3 , (6.11)

where again Φ is the volume fraction and v is the vector field of flow velocity.
Eq. (6.11) can be expressed in cylindrical coordinates to reflect the geometry
of the roots by

1
r
∂r(rΦ vr) + 1

r
∂ϕ(Φ vϕ) + ∂z(Φ vz) = 0 . (6.12)
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6 Radial transport of zinc in plant roots

where vr, vϕ, and vz denote the radial, azimuthal, and axial component of
the velocity v. To the end of reducing the model to 1-D we consider the
surfaces Γi(r) as given in (6.3). We introduce the averaged radial velocity in
the symplast Ω3

v(r) := 1
µ3 (r)

∫
Γ3(r)

vr(r, ϕ, z) dγ , for r ∈ [rx, re] ,

and consider the corresponding average of Eq. (6.12) over Γ3 (r):

1
µ3(r)

∫
Γ3(r)

1
r
∂r(rΦ vr) dγ = − 1

µ3(r)

∫
Γ3(r)

(1
r
∂ϕ(Φ vϕ) + ∂z(Φ vz)

)
dγ ,

where the second and third terms in Eq. (6.12) were moved to the right hand
side. With the surface element dγ = r dϕ dz the left hand side of the equation
is

1
µ3(r)

∫
Γ3(r)

1
r
∂r(rΦ vr) dγ = 1

r
∂r(rΦ v) ,

while the terms on the right hand side correspond to a two dimensional di-
vergence and can be transformed into an integral over the boundary ∂Γi(r).
This boundary integral is zero, based on the assumption that the apoplast
and symplast do not exchange water (consequence of assuming no water fluxes
in the apoplast). We obtain an equation for the average flow velocity in the
symplast

∂r(rΦ v) = 0 for rx < r < re , (6.13)
Φv
∣∣∣
r=re

= q0 , (6.14)

where the water influx q0 was prescribed on the root surface (r = re). This
system can be solved by integration rendering

v(r) = re
r

q0

Φ(r) for rx ≤ r ≤ re . (6.15)

The top graph in Fig. 6.3 shows the flow velocity obtained from the above
derivation and used in the sequel. It shows clearly how the cylindrical geometry
of the root results in a general increase of velocity towards the stele. Note that
the flow profile can be computed independently from the zinc concentration,
because the overall zinc concentration is very small and has practically no
effect on the water potential.
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6.2.4 Membrane transport
In addition to diffusion and advection, zinc fluxes through the membrane have
to be considered (ZIP and HMA4 transporters). Namely, the zinc sources Qi

on the right hand side of Eq. (6.6) depend on the flux densities Jj, which still
need to be specified. The zinc flux through transporters T (influx via ZIP)
and H (efflux via HMA4) can be modelled by a saturable pointwise reaction
mechanism

Zi + T 
 Z−T → Z3 + T , for i = 1, 2 ,
Z3 +H 
 Z−H → Zi +H .

We will assume that the above reactions follow Michaelis-Menten kinetics as
in Chapter 4 with a saturation function

f(Z,K) = Z

Z +K
, (6.16)

where K is the corresponding Michaelis-Menten constant.
Regulation of ZIP has been discussed in detail in the previous Chapter 4,

where we found an activator-inhibitor model with dimerisation to present a
likely mechanism. This model along with the fitted parameters was used here
to describe the amount of ZIP transporters for each cell type shown in Fig.
6.1 besides the pericycle. Although this regulatory mechanism was developed
as an average description over the whole root, it is more realistic to assume
individual gene expression and transporter production in each single cell:

dGα

dt
= γG

(
K A2

α (1−Gα)−Gα

)
,

dMα

dt
= γM (Gα −Mα) ,

dTα
dt

= γT (Mα − Tα) ,
dAα
dt

= γA
(
1− ΓAα Iα − Aα

)
,

dIα
dt

= γI
(
ΓI ζα − Γ′Aα Iα − (1 + ΓI ζα) Iα

)
,

for t ∈ (0,∞), α = en, co, ep ,

(6.17)

where Gα is the gene expression level, Mα the transcript level, Tα the trans-
porter level, Aα an activator and Iα an inhibitor, and ζα the internal zinc
concentration.
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The coupling between ZIP regulation and the transport model (6.6) de-
serves a few considerations. First, zinc is not homogeneously distributed within
each cell and it is unclear where and how the cell actually senses the concentra-
tion. Here, we assumed that a cell senses its average cytoplasmic concentration
given by

ζα(t) = ζ−1
0

1
µ(Cα)

∫
Cα
Z(x, t) dx for t ∈ [0,∞), α = en, co, ep ,

where ζ−1
0 is a scaling factor (ζα is non-dimensionalized), integration is over

the cell Cα ⊂ Ω3 and µ(Cα) is its volume.
Depending on this sensed concentration, each cell adjusts its own expres-

sion level and the resulting amount of transporters independently of the other
cells. The transporter proteins regulated by Eq. (6.17) are assumed to be
confined to the cell they are produced in and evenly distributed on the plasma-
membrane ∂Cα of each single cell. This assumption is supported by the HMA2
expression pattern found in A. thaliana (Sinclair et al., 2007, Fig. 1c). In math-
ematical terms, the distribution of transporters in the tissue is constructed as
follows

T (x, t) =
ep∑

α=en
Tα(t)χ∂Cα(x) , for (x, t) ∈ Ω3 × [0,∞) (6.18)

with the characteristic function

χ∂Cα(x) =

 1 if x ∈ ∂Cα ,
0 if x /∈ ∂Cα .

HMA4 efflux transporters at the pericycle are included in a similar manner

H(x) = Hpc χ∂Cpc(x) , x ∈ Ω3 , (6.19)

where the assumption that the level Hpc of HMA4 is constant was used (Talke
et al., 2006).

Finally, we introduce versions of T (x, t) and H(x) which depend on the
radius by averaging over ∂Γ3(r)

T (r, t) := 1
µ
(
∂Γ3(r)

) ∫
∂Γ3(r)

T (x, t) ds , for (r, t) ∈ [rx, re]× [0,∞) ,

H(r) := 1
µ
(
∂Γ3(r)

) ∫
∂Γ3(r)

H(x) ds , for r ∈ [rx, re] .

Influx was assumed to take place on the surfaces of epidermis, cortex and
endodermis cells, while efflux was assumed to take place only at pericycle
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Table 6.2: List of parameters used in simulations of the zinc transport model.
Parameter Value Description
q0 0.1− 4µm/s Water flux velocity at root surface re
D 500µm2/s Diffusivity of zinc in cytoplasm
rx 6µm Stele radius (without pericycle)
rc 12.5µm Position of Casparian strip
re 40µm Root radius
z0,1 0.5µm Thickness of cell wall
z0,3 135µm Height of cells in cell line
ϕ0,3 π/10 Width (azimuth angle) of cells in cell

line
ζ0 166.67µM Scaling factor for dimensionalization of

internal zinc concentration
T0 500µM/(µm2s) Maximal amount of ZIP
H0 5µM/(µm2s) Wild type amount of HMA4
Kh 1µM Michaelis-Menten constant for HMA4
τ 0.01− 1 Scaling factor for regulatory time scale

cells. Therefore, T (r, t) is equal to Ten(t), Tco(t) and Tep(t), respectively, for
an r inside one of these cells, zero elsewhere. H(r) is equal to Hpc for an r
inside the pericycle and zero elsewhere. The reaction probability depends on
ΨT (r, t) instead of only T (r, t), because Ω1 and Ω2 are porous media and only
the reduced amount ΨT (r, t) has actually contact to Z1 and Z2. No correction
is needed for H(r), as the cytoplasm can be assumed to have direct contact
with the membrane, so that the complete H(r) can react with Z3.

In total, the flux densities Jj are modelled as

Jj(r, t) = ΨT0 T (r, t) f
(
Zj(r, t), Kt

)
−H0H(r) f

(
Z3(r, t), Kh

)
, j = 1, 2 ,

where T0 and H0 are constants that characterize the true amount of trans-
porters (non-dimensionalized regulation).

6.2.5 Parameters
The diffusivity of zinc ions in water has been measured by Harned and Hudson
(1951) to be 700 µm2/s. Values of 530 µm2/s have been found for calcium
in the axoplasm of Myxicola (Donahue and Abercrombie, 1987). Based on
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these values we assumed an approximate diffusivity of D = 500µm2/s for
zinc in the symplast. This value does not consider the diffusion of chelated
zinc, which could be several times slower. Diffusion in the cell wall has been
measured to be fifteen times slower than in the cytoplasm (Kramer et al., 2007).
The reduction in diffusivity was accounted for in the model by inclusion of a
volume fraction Ψ of 1/15 as in Eq. (6.6). The order of magnitude of the
surface water flux velocity q0 was estimated based on data from Rosene (1943)
for water fluxes through root hair cells and data from Zarebanadkouki et al.
(2012) for Lupinus albus roots. To obtain similar steady state patterns as
observed in fluorescence images of zinc distributions in roots (Sinclair et al.,
2007; Hanikenne et al., 2008) q0 was then manually adjusted within this range
to values between 1 and 4µm/s. The other unknown parameters H0 and T0
were also manually adjusted to qualitatively reproduce those data. The steady
state parameters of the regulation model are presented in Chapter 4. Sizes of
cells and tissue layers were estimated from Hanikenne et al. (2008) with re =
40µm, rc = 12.5µm, and rx = 6µm. All model parameters are listed in Table
6.2 and the cell sizes used are listed in Table 6.1.

6.2.6 Numerical methods
Time simulations of PDEs require more involved numerical methods than
ODEs. We implemented a conservative (i.e. mass-preserving) finite differ-
ence method on an equidistant grid in C++ and applied it to solve the system
of partial differential equations (6.6) in one space dimension. Operator split-
ting was used to employ different stable explicit finite difference schemes to
the advective (hyperbolic) and the diffusive (parabolic) contributions.

Namely, we applied a second-order MacCormack method for the advection
term. Given a one-dimensional hyperbolic equation of the form

∂tρ+ ∂x(ρq) = 0 ,

the MacCormack method calculates the density ρn+1
i at space point xi and

time tn+1 by a two-step formula

ρ∗i = ρni −∆t
(
ρni+1qi+1 − ρni qi

∆x

)
ρn+1
i = 1

2

(
ρni + ρ∗i −∆t

(
ρ∗i qi − ρ∗i−1qi−1

∆x

))
,

where ρ∗ is a provisional value of ρ and qi = q(xi) (Oran and Boris, 2001).
For our system (6.6) ρ is given by ΨrZi, i = 1, 2, in the apoplast and ΦrZ3 in
the symplast, while the advection factor q is given by D/r in the apoplast and
v +D/r in the symplast.
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A first-order FTCS (forward time centred space) scheme was used for the
diffusion and reaction terms. It combines a forward Euler step in time with a
central difference scheme in space. For a purely diffusive equation

∂tρ− ∂x(D∂xρ) = 0

the density ρn+t
i as above is calculated by

ρn+1
i = ρni + ∆t

∆x2

(
Di+1u

n
i+1 − 2Diu

n
i +Di−1u

n
i−1

)
where Di = D(xi).

The boundary conditions were implemented with upwinding. To guarantee
mass conservation, the boundary flux was corrected for the numerical diffusion
of the scheme. The ODEs of the regulation model Eq. (6.17) were solved by
an explicit Euler method.

Using explicit schemes for the advective, diffusive and reactive parts al-
lowed us to couple the solvers without much effort. A scheme of this coupling
is given in Fig. 6.4. Initial conditions were obtained by calculating the steady
state for a given set of parameters by Newton’s method. Then, one parameter
(Ze or q0) was changed to simulate the dynamical adaptation of the tissue. In
each time step, first the average internal zinc concentration was computed sep-
arately for the three outer cell layers (epidermis, cortex, endodermis). Then,
this internal zinc concentration ζα, α = en, co, ep was used to calculate the
change in regulation by the system (6.17) with one Euler step and obtain
the new amounts of ZIP transporter proteins Tα, α = en, co, ep. With these
amounts set into the flux densities J , Eqs. (6.6) can be advanced by the time
step ∆t with the MacCormack and FTCS methods as described above. The
updated zinc concentrations are then used to start the next time step, until
the defined end time Tmax is reached.

Steady states of the combined system Eqs. (6.6) and (6.17) were calculated
with Newton’s method using numerical derivatives. Average gradients from
spatial data were obtained by linear regression.

6.3 Results and Discussion
6.3.1 Steady state
Figure 6.5 shows the simulated steady state patterns of ZIP levels (boxes), and
the zinc concentrations in the symplast (solid line) and apoplast (dashed line)
for roots grown in media with high (Ze = 25µM) and low zinc (Ze = 1µM).
Fluorescence imaging data (Sinclair et al., 2007; Hanikenne et al., 2008) show
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Compute steady state
by Newton's method

Calculate average internal 
zinc concentration ζα 

for α = ep, co, en

Compute ZIP distribution
Tα for α = ep, co, en
by Euler step in ODE

Compute zinc distribution
Z(r,t) by MacCormack

& FTCS methods

Initialize concentrations 
with steady state values

Advance time by Δt

Reset variable parameter 
(Ze or q0)

Set parameters
(Ze, q0 and others)

t < Tmax?

Stop

yes

no

Initial Conditions Time Evolution

Compute zinc 
concentration in xylem by 

Euler step

Update concentrations

Figure 6.4: Scheme of the numerical methods for dynamic simulations of
adaptation to sudden changes in external conditions (Ze or q0). Setting of
initial conditions is shown in blue (left), time evolution steps are shown in red
(right).
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6.3 Results and Discussion

Figure 6.5: Spatial steady state distribution of zinc in wild type. Symplastic
(solid line) and apoplastic (dotted line) zinc concentration for high (25µM;
top) and low (1µM; bottom) medium concentration. Grey boxes illustrate the
ZIP activity in epidermis (ep), cortex (co) and endodermis (en).
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higher zinc concentrations in the apoplast than in the symplast. A similar dis-
tribution is seen in our simulations, although the accumulation in the apoplast
may not appear as prominent as in the fluorescence images. This may be due
to the fact that zinc and other cations can bind to components of the cell wall
and accumulate in the apoplast (Sattelmacher, 2001), which is not considered
in our model. Also, the fluorophore Zinpyr-1 used by Sinclair et al. (2007)
and Hanikenne et al. (2008) reflects only levels of non-chelated zinc (Sinclair
et al., 2007). Considering, in addition, that the vacuole contributes up to 90%
of the cell volume, the fluorescence images reflect rather the concentration in
the vacuole. All these points could result in underestimating the symplastic
zinc concentration in measurements.

In the experimental measurements, no visible gradient was detected in the
apoplast. However, in the simulations, under both high and low zinc conditions
(see dotted lines in Fig. 6.5), the apoplastic zinc concentration decreases from
the epidermis towards the Casparian strip. This is a consequence of zinc
being pumped from the apoplast into the symplast by ZIP. In the pericycle,
behind the Casparian strip, the apoplastic concentration rises again, as HMA4
mediates zinc efflux from the symplasm. The apoplastic concentration inside
the stele is smaller for low external zinc. However, it is still about 60% of
the concentration at high zinc, although the external concentration is 25 times
smaller. The concentration in the xylem is very low in both cases, because
inflowing water dilutes the solution strongly.

Regarding the symplastic concentration, a radial concentration gradient
with accumulation in the pericycle has been found in experiments (Sinclair
et al., 2007; Hanikenne et al., 2008). This pattern was reproduced very well
by the model under certain conditions (see solid lines in Fig. 6.5). We found
that for existence of the pattern the contributions of influx, efflux, diffusion
and advection have to be properly balanced. Here, influx into the symplast
(parameter T0; Table 6.2) needed to be about 100 times higher than efflux into
the apoplast (parameter H0; Table 6.2) to sustain the pattern in equilibrium.
Although the absolute value of H0 and T0 are more or less arbitrary, their ratio
should give a good estimate for a real root. Much less HMA4 than ZIPs was
needed to obtain the pattern, which could explain why roots express so many
different ZIPs compared to HMAs. Higher influx or higher efflux produced
retrograde gradients, when advection was not increased correspondingly. This
result is surprising in the sense that the pattern can be expected to vary
in the course of the day, since advection varies in roots as a consequence
of changes in transpiration rates. Diffusion is by its nature an equilibrating
process, which seeks to even out any concentration gradient. Hence, a large
diffusivity compared to advection would destroy the pattern.

The two crucial points for the creation of the pattern are water flow and
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Figure 6.6: Effect of different external zinc concentrations (25µM, solid line;
10µM, dashed line; 1µM, dotted line) on the symplastic zinc gradient. (a)
Steady states of symplastic zinc distribution with increasing flow velocity to-
wards the root center (cf. Fig. 6.3). Even at lower external zinc levels, a
gradient towards the stele can be seen. (b) Steady states of symplastic zinc
concentration with constant flow velocity q0 = 4µm/s. The gradient is less
pronounced at Ze = 25µM and disappears at lower external concentrations.

geometry. First, the radially oriented advection produced by water uptake is
the only process that is physically able to create accumulation at the pericy-
cle. It links the spatially separated influx and efflux cells. Although these are
also linked by diffusion, accumulation cannot be explained by that process.
The importance of the velocity of water influx will be discussed below in more
detail. Second, the cylindrical geometry is beneficial to creation of the pat-
tern, because the volume contracts for smaller radii. On the one hand, this
accelerates water on its path to the xylem, helping to create a larger accumu-
lation in the pericycle. On the other hand, the concentration increases faster
at small radii for the same flux, because there is less solvent volume. With-
out the geometrical effects, the pattern was far less pronounced (Fig. 6.6b).
The influx velocity of water, q0, needed to be larger than 1µm/s to produce a
sufficient gradient (Fig. 6.7 bottom). Zarebanadkouki et al. (2012) measured
velocities of approximately 0.2µm/s in Lupinus albus during the day. The
measured values are lower than the values used here, but these are for lateral
roots of L. albus with a diameter substantially larger than the primary root
of A. thaliana. Measurement of the flux velocity in A. thaliana roots and an
extension of the water flow model would be necessary to be able to draw more
precise conclusions.

Regarding the patterns of ZIP expression, our model predicts that ZIP
activity follows conversely the pattern of symplastic concentration (see grey
bars in Fig. 6.5). The gradient in expression is particularly clear for low zinc
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6 Radial transport of zinc in plant roots

(Ze = 1µM), where the epidermis is predicted to have an expression level that
is five times higher than in the endodermis. In Chapter 4 we showed that
the regulation mechanism proposed is particularly robust for certain internal
concentrations (Fig. 4.5). Gene expression can vary substantially without
affecting much the internal zinc concentration in this “robust” range. Our
model suggests that a high dynamic range in expression level, i.e. high and low
expression in the epidermis and endodermis, respectively, can be expected near
1µM external zinc concentration. This is the external concentration at which
an experimental validation of the expression pattern should be conducted to
obtain the best results. Measurements of Birnbaum et al. (2003) are not in
concord with our results. Using growth medium with 30µM external zinc,
these authors found the expression levels of ZIP2 and ZIP4 to be minimal in the
cortex and similarly high in the epidermis and endodermis. The measurements
of Birnbaum et al. (2003) are surprising in the sense that they are not in line
with the well documented symplastic gradient. Their results suggest that
concentration of zinc is maximal in the cortex cells, where expression was
found to be lowest. Neither our model nor the fluorescence images of Sinclair
et al. (2007) and Hanikenne et al. (2008) support this. As mentioned above,
an experimental validation of the expression patterns should be conducted at
an external concentration for which a high dynamic range in expression is
expected. At 30µM external zinc, where Birnbaum et al. (2003) conducted
their measurements, expression can be expected to be very low in general and
the dynamic range per se small (cf. Fig. reffig:fig4 top). Small gradients in
expression level are probably insignificant compared to the uncertainty of the
measurement at that high concentration. Future experiments are needed to
verify the gradient in ZIP activity predicted by the model.

6.3.2 Variation of HMA4 and water influx velocity
The level of HMA4 has been increased in experiments by introducing an
HMA4 gene of the zinc hyperaccumulator A. halleri into roots of A. thaliana
(Hanikenne et al., 2008). The AhHMA4 gene has been found to contain mul-
tiple copies of HMA4, which leads to higher expression and more efficient
transport of zinc into the xylem (Hanikenne et al., 2008). As a result, fluo-
rescence images showed a change in the distribution of zinc in the tissue such
that accumulation in the pericycle and the radial gradient were lost. To model
such A. thaliana mutants with enhanced expression of HMA4, simulations
were performed with higher levels of HMA4 transporters (via parameter H0;
Table 6.2). As a reference value for the wild type we use H0 = 5 µM

µm2s . Fig.
6.7 presents in the upper panel the symplastic concentration distribution for
different HMA4 levels. Increasing HMA4 to two (dashed line) or three times
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6.3 Results and Discussion

Figure 6.7: Variation of HMA4 and flow velocity. Symplastic zinc concen-
trations are shown along the radial coordinate in epidermis (ep), cortex (co),
endodermis (en) and pericycle (pc) cells. Top: HMA4 levels were increased
from the wild type level (WT, solid line) by a factor two (dashed line) or three
(dotted line) at a constant flow velocity q0 = 4µm/s. Bottom: Flow velocity
q0 was decreased from 4µm/s (solid line) to 2µm/s (dashed line) and 1µm/s
(dotted line) with constant HMA4 at WT level.
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Figure 6.8: Average symplastic zinc gradient is shown as a function of HMA4
(in multiples of the wild type level, solid line) and of the external zinc concen-
tration Ze (dashed line). Negative numbers reflect a gradient oriented towards
the stele.

(dotted line) of the original level (solid line) leads to a decrease of the overall
zinc concentration and loss of the gradient.

The contrary effect has been observed in hma2, hma4 double knockout
mutants of A. thaliana (Sinclair et al., 2007) and in A. halleri with reduced
expression of AhHMA4 (Hanikenne et al., 2008). The model describes this
situation also very well (Fig. 6.8) and predicts a high sensitivity to variations
in HMA4 in this regime. Talke et al. (2006) showed that HMA4 expression
in A. thaliana and A. halleri roots varies substantially less in resupply and
oversupply experiments than the one of ZIP genes. They used this fact to
propose that its expression does not depend much on the zinc status. In view
that our model predicts a regime of large sensitivity, HMA4 might actually
also be subjected to regulation and only small adaptation of expression might
be enough to create sufficient effect. This would explain why HMA4 expression
varies much less.

Surprisingly, decreasing the influx velocity of water (parameter q0; Table
6.2) had a very similar effect as increasing HMA4. Simulations with half
(dashed line) or one fourth (dotted line) of the original velocity (see Fig. 6.7,
lower panel) show a loss of symplastic zinc gradient similar to the one seen with
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increasing HMA4. The overall zinc concentration, however, remains higher
than in the variation of HMA4, with even slightly higher values in the epidermis
than for the original velocity (q0 = 4µm/s). While an increase in HMA4 caused
enhanced efflux of zinc into the xylem and thereby an increase in the total
outflux from the symplastic domain, a decrease in velocity only changed the
distribution of zinc in the tissue. Instead of accumulating zinc in the pericycle,
diffusion took overhand and produced an almost homogeneous distribution.
Very low water fluxes and very high HMA4 levels produce even a retrograde
gradient with higher zinc concentrations in the epidermis than in the pericycle,
as can be seen in Fig. 6.8 (postive gradient for high HMA4) and in the first
panel in Fig. 6.10.

These results can be of major importance for future measurements, since
plants change their respiration rates depending on the time of day, light, hu-
midity, etc. and thus, the flow velocity of water in roots is highly variable.
Adaptation to a new transpiration rate is even predicted to take place within
less than a minute (Fig. 6.10). No published experimental data examining the
relation between transpiration rate and solute localization in roots is known
to the author. If the equilibration times predicted by the model prove to be
realistic, experiments will have to be designed and conducted with much care
to avoid artefacts–just moving the plant into dark to conduct the measurement
might change the pattern.

To further investigate the relation between HMA4 level and symplastic
gradient, the correlation between steady state average gradient and HMA4
activity is analysed. The average gradient was calculated by linear regression
as the slope of a fitted linear function. In the case of an accumulation in the
pericycle the result is a negative number, reflecting the fact that the gradient
points inwards, i.e. concentrations increase towards the xylem. The absolute
value of this gradient gives a measure of the “steepness” of the concentration
profile. Fig. 6.8 shows the dependence of the average gradient on the nor-
malized HMA4 activity (solid line) as a strongly non-linear response. Raising
HMA4 leads to a decrease in the absolute value of the gradient. For HMA4
levels larger than three times the wild type level, the gradient becomes even
retrograde (change in sign). At less than half the wild type value, a singu-
larity/pole is found. The gradient becomes very steep when approaching the
pole and no steady state can be sustained beyond. The reason is an imbal-
ance of influx and efflux, leading to more zinc being pumped into the symplast
than can flow out into the xylem. Small variation of HMA4 produces a strong
reaction near the pole, i.e. zinc accumulation reacts very sensitive to HMA4
activity there.

The gradient also depends on the external zinc concentration. External
zinc concentrations are predicted by the model to influence the strength of the
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Figure 6.9: Dynamics after a change in the external zinc concentration (re-
supply experiment). Starting from the steady state distribution of zinc in the
symplast (solid line) and apoplast (dashed line) at an external concentration of
1µM, the medium concentration was changed to a high zinc condition (10µM).
Grey boxes show ZIP activity for epidermis (ep), cortex (co) and endodermis
(en) cells. The new steady state is reached at t = 20 s.

zinc concentration gradient in an almost linear manner (Fig. 6.6a and Fig. 6.8,
dashed line), i.e. higher external concentrations lead to higher accumulations
of zinc in the pericycle. No experimental quantifications of the concentration
gradient for varying concentrations are known to the authors. Sinclair et al.
(2007) found an almost linear relation between Zinpyr-1 fluorescence and zinc
concentration in the medium, suggesting that the average internal concentra-
tion depends linearly on the external concentration. Our model predicts also
a roughly linear dependency with a slope of 0.0887 ± 0.0005µM/µM. Talke
et al. (2006) also measured the average zinc concentration in A. thaliana and
A. halleri roots for different external concentration and found a positive cor-
relation. They plotted their data with a logarithmic scale, which does not
allow to compare directly the functional relations. However, plotting a linear
relationship against a logarithmic scale produces a graph similar to the one
published by Talke et al. (2006), suggesting that at least for small concentra-
tions the relationship is roughly linear.
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6.3.3 Dynamics

Similar to the resupply experiments by Talke et al. (2006), we simulated the
adaptation of the system to a new environmental condition with increased
external zinc. Starting from the steady state at low zinc (Ze = 1µM), the
external zinc level was raised to a high zinc condition (Ze = 10µM). Figure
6.9 presents the evolution of the concentration profiles in time during this
adaptation. After increasing the external concentration zinc diffused quickly
into the apoplast outside the Casparian strip (in less than 1 s). During this
time, regulation kept the high expression level of ZIP, resulting in an overall
increase in symplastic concentration and a more pronounced gradient. This led
to an increase in apoplastic concentration inside the stele and later to a sudden
down-regulation of ZIP. Although the time scale of regulation was assumed
to be equal to that of transport (parameter τ = 1; Table 6.2), adaptation
of ZIP activity lagged behind, leading to an “overshoot” at about 5 s, where
symplastic zinc in the pericycle exceeded its final steady state value by a factor
of two. From there on the system stabilized to finally approach the new steady
state value after about 20 s. Talke et al. (2006) measured the expression levels
every two hours, which is too coarse to resolve the dynamics of adaptation in
the root, as suggested by our results and analysed in more detail in Section
6.3.4.

While a sudden change in the external zinc concentration is rather unlikely
in a natural environment, changes in the flow velocity happen regularly caused
by changes in leaf respiration rates. Transpiration, which defines the velocity
of water flow, can vary substantially in the course of the day and is minimal
during the night. To understand how adaptation to a change in transpiration
rate takes place, we simulated the time evolution upon a sudden change in
water influx velocity q0 from 0.05 to 4µm/s (see Figure 6.10). Due to the low
water flux, a slightly retrograde concentration gradient was found at 0 s. ZIP
expression was also almost constant in space, with a slightly higher expres-
sion in the endodermis. After increasing q0, the concentration gradient built
up quickly. An accumulation in the pericylce was clearly visible after 0.2 s
and stabilized already after 1 s. This led to a reversal of the distribution of
gene expression, with a clear gradient towards the epidermis, where expression
stabilized at twice the level of endodermis cells. The apoplastic concentra-
tion outside the Casparian strip did not change much during equilibration. In
contrast, the apoplastic concentration in the stele decreased to half the initial
value as a consequence of the higher water flow rate. Due to the same reason,
the concentration in the xylem fell from about 10µM for low transpiration to
almost 0µM for a normal transpiration rate.

Equilibration predicted by our model seems at a first glance to take place
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Figure 6.10: Dynamics after a change in flow velocity. Starting from the
steady state distribution of zinc in the symplast (solid line) and apoplast
(dashed line) at q0 = 0.05µm/s, the flow velocity was increased to q0 = 4µm/s.
Grey boxes show ZIP activity for epidermis (ep), cortex (co) and endodermis
(en). A new steady state is reached after 5 s. External zinc was kept constant
at Ze = 25µM.
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very fast (within less than a minute). Due to the lack of data, the time scales of
both transport and regulation had to be chosen more or less arbitrarily, which
makes this result uncertain. Nevertheless, the following reflection indicates
that equilibration within minutes is feasible. The time scale of transport is
in principle determined by four parameters beside the diameter of the root
(Table 6.2): q0, D, H0 and T0. While q0, H0 and T0 were chosen such that
our results correspond qualitatively to the observations of Sinclair et al. (2007)
and Hanikenne et al. (2008), the diffusivity D in the cytoplasm was estimated
from measurements of free calcium in the axoplasm of Myxicola (Donahue and
Abercrombie, 1987). That is, D was set while the rest was chosen to match the
observations. The time scale can be adapted by multiplying these parameters
with the same factor. Therefore, if the diffusion coefficient D would be smaller,
q0, T0 and H0 could have been chosen correspondingly smaller obtaining the
same spatial pattern but with a slower equilibration. Zinc is known to be
chelated in the cytoplasm (Clemens et al., 2002). Depending on the size of the
chelator, diffusion coefficients may be an order of magnitude lower. Hence, the
time scale of our model would be roughly ten times higher and equilibration
would take place in three to four minutes. The time scale of equilibration
should be considered with more detail in further experiments. Our model
indicates that experiments should be conceived to capture effects that live
only a few minutes (cf. Fig. 6.12).

6.3.4 Time scale of regulation
In the numerical experiments described above, the time scale of regulation was
set to be comparable to the time scale of transport and diffusion (parameter
τ = 1; Table 6.2). The real time scale of regulation is unknown and may indeed
be much slower. To understand how the specific choice of τ influences the entire
process, simulations with different time scales were performed. Figure 6.11
shows the effect of resupply from low zinc (Ze = 1µM; upper black square) to
high zinc (Ze = 10µM; lower black square) by plotting: the evolution in time
of average ZIP activity and average internal zinc concentration as a phase
diagram (Fig. 6.11a), and the average internal concentration against time
(Fig. 6.11b). The paths shown in Fig. 6.11a represent the state of the root in
time and the arrows mark the direction in which the state moved. The same
transition from low to high zinc was conducted for three different time scale
factors τ : 1 (red path), 0.1 (blue path) and 0.01 (green path). This means
that the time scale of regulation was approximately 6 s for τ = 1, 60 s = 1 min
for τ = 0.1 or 10 min for τ = 0.01.

In general, the internal concentration rose strongly after resupply, exceed-
ing the one of the new steady state at high zinc (“overshoot”, Fig. 6.11). The
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Figure 6.11: Variation of regulation time scale. The time scaling factor τ of
the ZIP regulation model was decreased from τ = 1 (red line) to τ = 0.1 (blue
line) and τ = 0.01 (green line) and time courses were simulated for a change of
the external zinc concentration from 1µM to 10µM. (a) the transition between
the two steady states (black squares) is shown as a phase diagramm of ZIP
activity against symplastic zinc. For τ = 1, the system reaches the new steady
state after a minor overshoot. For τ = 0.1 and τ = 0.01, the new steady is
unstable and concentrations oscillate on a limit cycle. (b) time course of the
symplastic concentration showing clearly the oscillations.

reason was the high ZIP expression level at the initial state (about 30% ac-
tivity; Fig. 6.11a). Regulation then reacted by shutting down the expression
of ZIP (vertical portion of the paths; Fig. 6.11a), overreacting even slightly.
For τ = 1 the system eventually approached the new steady state. For slow
regulation (τ = 0.1 and 0.01) stable oscillations around the steady state were
observed (Fig. 6.11). In those cases the system did not approach the steady
state. The reason for the oscillation was the overreaction of regulation produc-
ing a strong sudden reduction in concentration (horizontal path; Fig. 6.11a),
which led again to an overreaction of upregulation, and to a too large concen-
tration. The amplitude of the oscillation correlated with the time scale of the
regulation: slow regulation produced larger oscillations (Fig. 6.11). Similar
oscillations emerging from a Hopf bifurcation had also been observed in the
ODE regulatory model analyzed in Chapters 4 and 5. There, the appearance
of these oscillations depended on the choice of a high value for the parameter
Γ. Here, oscillations appear even at low Γ, but depend on the choice of the
regulatory time scale.

Experimental validation of these oscillations may be difficult, because a real
root lacks a high degree of spontaneous coordination. The model assumes that
the root is perfectly coordinated resulting in well defined oscillations. In real
roots, the oscillatory behaviour would rather come to light as a high variance
in, for example, expression level. Since zinc shocks caused by oscillations can
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Figure 6.12: Dynamics of ZIP activity under different time scales of regu-
lation. Characteristic time of 6 s (τ = 1, magenta), 1 min (τ = 0.1, green),
10 min (τ = 0.01, blue), and 100 min (τ = 0.001, red) were simulated. The
buffering parameters were kept constant at Kb = 1000 and a characteristic
time of 0.003 s.

be toxic and even deadly to plant cells, regulation either needs to be fast - on
the same time scale as transport–or the cells need to have fast and efficient
buffering mechanisms.

Zinc is known to be buffered and sequestered into the vacuole (Clemens
et al., 2002). To be efficient in damping oscillations, these mechanisms have to
be fast and not rely directly on regulation, which calls for a chelation mecha-
nism. Such buffering (see Chapter 7 for details) can slow down the adaptation
of the entire root system to external changes and allows slower regulation with-
out oscillations. Nevertheless, Fig. 6.12 shows that even with strong and rapid
buffering (Kb = 1000 and ζb = 1, which corresponds to a characteristic time
of 0.003 s, cf. Chapter 7), adaptation of ZIP activity is faster than two hours.
Varying the time scale of regulation by a factor of 103 leads to no measurable
differences in ZIP activity after one hour. To be able to determine a more re-
alistic time scale of ZIP regulation, measurements need to be taken at shorter
intervals of preferably less than 10 min.

6.3.5 Conclusions
Our simulations show that water uptake and the associated advection of zinc
towards the stele is the main mechanism in formation of the radial zinc pattern
in roots. The transpiration rate is therefore expected to influence the pattern
strongly and its reduction should produce a similar effect as increasing the ex-
pression of HMA4. The cylindrical geometry supports the effect of advection.
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Zinc accumulation in the pericycle depends nonlinearly on the expression of
HMA4, where small variations of expression suffice to produce large effects.
This might explain why HMA4 seems to be unchanged during resupply exper-
iments. In general, a much smaller activity of HMA4 than of ZIPs is needed to
maintain sufficient zinc supply, giving a possible explanation why so many dif-
ferent zinc uptake transporters (ZIP family) are expressed in roots compared
to only few zinc release transporters (HMA).

Modelling of resupply experiments shows that regulation must occur within
minutes to avoid strong peaks in symplastic concentration. Fast chelating
agents seem to be necessary to dampen possible oscillatory behavior and short-
term oversupply (see Chapter 7 for details). A slow sequestration possibly
based on genetic regulation, e.g. into the vacuole, is less suited to counteract
these short-term effects and may be rather important in long-term adaptation.

The model presented here describes the uptake and transport of zinc, but
can easily be applied to other nutrients as well. Iron is another essential metal
that seems to be mainly transported by IRT1, another member of the ZIP
family of transporters (Kim and Guerinot, 2007). The distribution of iron
in roots has been studied in a recent paper (Roschzttardtz et al., 2013, Fig.
1) and the results show a distribution pattern with strong accumulation in
the apoplast of the pericycle. This pattern resembles the zinc pattern in our
model and can most likely be explained by the same mechanisms of cylindrical
geometry, water flow and regulated transport.
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7 Roles of buffering and
sequestration

7.1 Vacuolar sequestration in yeast
The vacuole is a key player in metal sequestration both in plants and in yeast.
Zinc transport into the vacuole appears to be regulated in a similar manner
as the uptake across the cell membrane. Little is known about the regulation
of vacuolar transporters in plant roots, but considerable amounts of data are
available for yeast. Therefore, we will again start this chapter with a discussion
of the well-known processes in yeast.

7.1.1 Biological background
The vacuole has been shown to play a major role for zinc homeostasis in yeast.
It acts in three different main functions: First, the vacuole is able to store zinc
under zinc replete conditions for future periods of zinc deficiency. Secondly,
the compartment can sequester excessive amounts of zinc from the cytosol for
detoxification, and thirdly, it can buffer rapid changes of zinc levels and thus
protect the cells under “zinc shocks” (MacDiarmid et al., 2002; Simm et al.,
2007).

In the vacuole, zinc is supposedly bound to ligands that mainly contribute
to the vacuolar zinc storage capacity. Among these are polyphosphates and
organic anions such as glutamate and citrate (Simm et al., 2007). Other cell
compartments like the mitochondria or zinc-enriched cytoplasmic vesicles seem
not to play an important role in zinc sequestration in yeast (Simm et al., 2007).

Transport of zinc across the vacuolar membrane is driven by transporter
proteins. Two transporters, ZRC1 and COT1, have been found to be respon-
sible for transport into the vacuole (MacDiarmid et al., 2003), while a third
transporter, ZRT3, seems to transport zinc out of the vacuole into the cytosol
(MacDiarmid et al., 2000). While the expression of COT1 is not responsive
to the external zinc concentration, ZRC1 and ZRT3 are regulated by zinc.
Both genes contain a ZRE (zinc responsive element) in their promoter region,
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7 Roles of buffering and sequestration

which is activated by ZAP1. This transcription factor is expressed under zinc
deficiency and also activates the expression of ZIP transporters ZRT1 and
ZRT2 in the outer membrane to pump zinc from the external medium into the
cytoplasm. A schematic overview of these processes is given in Fig. 7.1.

7.1.2 Model

The model is based on the model (4.9) on page 31 describing the regulation
of zinc uptake transporters. We use the same notations as in Chapter 4: A
is the activator ZAP1, GA its gene activity, MA the corresponding mRNA, T1
and T2 are the uptake transporters ZRT1 and ZRT2 with their gene activities
G1 and G2 and mRNAs M1 and M2, respectively:

dGA

dt
= γGA

(
KAA (1−GA)−GA

)
dMA

dt
= γMA (GA −MA)

dA

dt
= γA (MA − A− ΓA Z A)

dG1

dt
= γG1

(
K1A (1−G1)−G1

)
,

dG2

dt
= γG2

(
K2A

(
(1 +K ′2A)−1 −G2

)
−G2

)
dMi

dt
= γMi (Gi −Mi), i = 1, 2

dT1

dt
= γT1 (M1 − T1 − ΓT1 T1 Z)

dT2

dt
= γT2 (M2 − T2) .

(7.1)

New equations are needed to describe the vacuolar transporters ZRT3 (T3) and
ZRC1 (T4) with their respective gene activities G3 and G4 and mRNAsM3 and
M4. We assume ZRT3, which pumps zinc from the vacuole into the cytoplasm,
to be activated by the activator ZAP1 in the same manner as the membrane
transporter ZRT1 before. Transport from the cytoplasm into the vacuole is
achieved by ZRC1, which is also expressed under activation by ZAP1, but has
an additional basal zinc-independent activation term. The third transporter,
COT1, seems not to be regulated by zinc and transport through it cannot be
distinguished from the zinc-independent activity of ZRC1. Therefore, we will
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7.1 Vacuolar sequestration in yeast

Figure 7.1: Scheme of vacuolar transport in yeast. The activator ZAP1 is
inhibited by zinc. It induces gene activity for the membrane transporters
ZRT1 and ZRT2 as well as for the vacuolar influx transporter ZRC1 and the
efflux transporter ZRT3. Gene transcription into mRNA and translation into
protein is combined in the dashed arrows. The influx transporter COT1 is not
regulated by zinc.
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7 Roles of buffering and sequestration

not model it separately. These considerations lead to the equations

dG3

dt
= γG3 (K3A (1−G3)−G3)

dG4

dt
= γG4 (K4A(1−G4) +K ′4(1−G4)−G4)

dMi

dt
= γMi (Gi −Mi), i = 3, 4

dTi
dt

= γT i (Mi − Ti), i = 3, 4 .

(7.2)

The cellular zinc concentration is now divided into cytosolic zinc Zcyt and
vacuolar zinc Zvac. For simplicity, we assume the volumes of cytoplasm and
vacuole to be equal, which is roughly the case in average yeast cells. Then, we
need no additional volume scaling factors and can use the same γ for cytosolic
and vacuolar zinc to obtain

dZcyt

dt
= γ

(
T1 f(Ze, Kt

1) + κT2 f(Ze, Kt
2) + κ3 T3 Zvac − κ4 T4 Zcyt − Zcyt

)
dZvac

dt
= γ (−κ3 T3 Zvac + κ4 T4 Zcyt) .

(7.3)
Here, we model transport into the vacuole with simple mass action equations
without saturation effects, since preliminary numerical simulations showed no
significant difference and zinc affinities of ZRT3 and ZRC1 are unknown.

7.1.3 Results and Discussion
Steady states and dynamic behavior

For the model we used the parameters obtained in Chapter 4 and fitted the new
parameters with data from MacDiarmid et al. (2000) and MacDiarmid et al.
(2003). These data consist of steady state values for zinc and the transporter
proteins (see Fig. 7.2) at various external zinc concentrations and time data
of zinc accumulation in conditions referred to as “zinc shock” (Fig. 7.3). Such
a stress situation occurs when zinc-deficient cells with a maximal induction of
zinc uptake transporters encounter even moderate amounts of external zinc,
leading to rapid overaccumulation. While the parameters from Chapter 4 are
given in Table 4.1, the new parameters are shown in Table 7.1.

The steady state measurements for ZRT3 in MacDiarmid et al. (2000)
and ZRC1 MacDiarmid et al. (2003) were used to fit equilibrium constants
K3, K4, and K ′4. As shown in Fig. 7.2a, the model can explain the data
for the regulation of ZRT3 and ZRC1 very well. They are both regulated
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Figure 7.2: Steady states of transporters and zinc for varying external zinc
concentration with data points. (a) Model simulation and data for ZRT3
(solid line) and ZRC1 (dotted line) steady states. ZRT3 data is taken from
MacDiarmid et al. (2000, Fig. 1A) (black circles), ZRC1 from MacDiarmid
et al. (2003, Fig. 2A) (white squares). (b) Model simulation and data for
internal zinc steady states in wild type (WT, solid line) and zrc1 cot1 double
mutant (dotted line). Data is taken from MacDiarmid et al. (2003, Fig. 3B):
WT - black circles and zrc1 cot1 mutant - white squares.

Table 7.1: Parameters used in the yeast vacuole model.
Parameter Value Biological meaning
K3 9.81 Activation of ZRT3 by ZAP1
K4 4.23 Activation of ZRC1 by ZAP1
K ′4 0.06 ZAP1-independent activation of ZRC1
κ3 4.6 · 108 Transport rate of ZRT3
κ4 7 · 107 Transport rate of ZRC1

τ1 929 Time constant for ZAP1, ZRT1 and ZRT3 regulation
τ2 0.28 Time constant for ZRT2 regulation
τ3 0.09 Time constant for ZRC1 regulation
τ4 0.16 Time constant for zinc transport
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7 Roles of buffering and sequestration

by the zinc-dependent activator ZAP1 and therefore highly expressed under
zinc deficiency and down-regulated for increasing zinc levels. The vacuolar
import transporter ZRC1 shows also ZAP1-independent basal expression at
high zinc that is parametrized by K ′4. It is noticeable that the values of K3
and K4 that determine the ZAP1-dependent regulation of ZRT3 and ZRC1,
respectively, are smaller by one magnitude than the corresponding value K1
for the membrane transporter ZRT1. Indeed, the values reflect the steeper
curve shown in the regulation of the vacuolar transporters (MacDiarmid et al.,
2000, cf. Fig. 1A). Compared to the outer membrane transporter ZRT1, they
are downregulated already at lower external zinc concentrations.

MacDiarmid et al. (2003) also present steady state measurements of the
entire “cell-associated” zinc concentration combining cytosolic and vacuolar
zinc in wild type yeast and various mutants. We focused on only one of these
mutants, namely the zrc1 cot1 double knockout that can be assumed to have
virtually no vacuolar sequestration of zinc. While the wild type data was
compared to model simulations with the full model in Eqs. (7.1), (7.2) and
(7.3), data for the zrc1 cot1 mutant was compared to a model with the same
parameters but without vacuolar transport. The model fits the zinc data
reasonably well. Higher deviations in the range from 0µM to 10µM external
zinc may be due to the fact that the zrc1 cot1 mutant has nevertheless some
vacuolar storage activity by other transporters (Simm et al., 2007), which is not
considered in the model. In addition, the model assumes a steady state for all
external zinc concentrations, whereas the experiments might not be measured
under steady state conditions. Indeed, a more recent report by Simm et al.
(2007) claims that zrc1 cot1 mutants are not even viable under zinc levels of
100µM and more. In their measurements of cell-associated zinc in wild type
and zrc1 cot1 mutants (Simm et al., 2007, Fig. 1A) the difference between the
two is almost insignificant between 0µM and 25µM and only the wild type is
measured for higher values. These measurements are in very good accordance
to our model predictions.

The zinc steady state measurements shown in Fig. 7.2b and time data from
MacDiarmid et al. (2003) measuring internal zinc in wild type and mutant cells
in a zinc shock experiment (Fig. 7.3) have been used to fit the transport rates
κ3 and κ4 of the vacuolar transporters. From the comparison of different fits
we found that these rates seem to be correlated with a ratio κ3/κ4 ≈ 6.5.
This means that the efflux from the vacuole via ZRT3 is stronger then the
influx through ZRC1, either by a higher number of transporters or by a higher
transport efficiency. The absolute values of κ3,4 could not be obtained wit high
certainty from the fitting, but it is clear that they need to be much greater
than the transport activities of the membrane transporters. In biological terms,
this means that transport into and out of the vacuole must take place on a
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7.1 Vacuolar sequestration in yeast

much faster time scale than the transport on the outer membrane. This allows
the vacuole to act as a buffer for rapid transient changes in the cellular zinc
concentration.

As there is no data on the individual speed of gene activation, transcription,
and translation, we reduced the number of the time constants γi by assuming
average rates for each of these steps in one regulation cycle, i.e. γGi = γMi =
γT i. Starting with one time constant for all reactions, the parameter fit was
improved by adding new time constants until no further improvement could
be seen. As a result, four different time constants were needed: τ1 was used
for the regulation of ZAP1, ZRT1 and ZRT3 (γGA, γMA, γA, γG1, γM1, γT1,
γG3, γM3 and γT3), τ2 for the regulation of ZRT2 (γG2, γM2, γT2), τ3 for the
regulation of ZRC1 (γG4, γM4, γT4), and τ4 was used as the time constant for
zinc transport (γ). It appeared to be especially important that the regulation
of ZRT2 (parameter τ2 ≈ 0.28) is by magnitudes slower than the regulation of
ZRT1 (parameter τ1 ≈ 929). As shown in Fig. 4.1, ZRT2 follows a different
regulation than ZRT1 with low expression under zinc deficiency and maximal
activity between 500 and 1000µM of external zinc. In the case of zinc shock,
ZRT1 seems to be downregulated in less than 5 min, while upregulation of
ZRT2 and the resulting increased influx of zinc cannot be observed in the data
for 20 min (cf. dotted line in Fig. 7.3). The regulation of the vacuolar import
transporter ZRC1 (parameter τ3 ≈ 0.09) also appears to be slow compared to
ZRT1. This ensures that all excessive zinc can be transported into the vacuole.

Simm et al. (2007) present zinc shock time measurements similar to those
above, which can be used to validate the model. There, in addition to the entire
cellular zinc content, the concentration of zinc in the vacuole was measured
separately. The measurements show that after 10 min of zinc shock 80− 90%
of the inflowing zinc is directly stored into the vacuole (Simm et al., 2007,
Fig. 4). This is within the tolerance in accordance with our model predictions,
where after 10 min ca. 75% of the total zinc is in the vacuole (cf. Fig. 7.3 and
Fig. 7.4).

Proactive expression

In the curves shown in Fig. 7.2a it seems reasonable that the vacuolar efflux
transporter ZRT3 is most active under zinc deficiency in order to provide the
cytosol with sufficient amounts of the essential metal, while at higher zinc
concentrations it is suppressed to retain more zinc in the vacuole and protect
the cytosol from excessive zinc. The regulation of the vacuolar influx trans-
porter ZRC1, however, appears contraproductive. Very similar to ZRT3, it
is also strongly upregulated under zinc deficiency, although zinc sequestration
is not needed under these conditions. From the economic point of view, it
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Figure 7.3: Time course of internal zinc for wild type (solid line) and zrc1
cot1 mutant (dotted line) for a resupply experiment after zinc deficiency. Data
is taken from MacDiarmid et al. (2003, Fig. 6B): WT - black circles and zrc1
cot1 mutant - white squares.

seems costly and unnecessary to express ZRC1 in such high levels. MacDi-
armid et al. (2003) argue that this behavior is nevertheless important for cell
survival, as it appears to prevent toxicity under zinc shocks. These shocks oc-
cur when zinc deficient cells suddenly encounter moderate amounts of zinc in
the medium. Due to the deficiency, their uptake transporters are upregulated
to ensure maximal transport capacity. When the zinc concentration in the
surrounding medium suddenly rises, these cells take up high amounts of zinc
because the regulation of uptake transporters needs time to react to the new
situation. Experiments show high sensitivity of zrc1 cot1 knockout mutants
to zinc shocks even under external zinc concentrations that they can normally
tolerate (MacDiarmid et al., 2003). These results suggest that ZRC1 plays a
crucial role in the protection against zinc shocks. The most likely hypothesis
presented by MacDiarmid et al. (2000) is that the upregulation of ZRC1 dur-
ing zinc deficiency functions in a “proactive” manner to buffer zinc shocks by
fast sequestration into the vacuole.

Our model simulations support this hypothesis, as shown in Fig. 7.4. The
graph shows only the cytosolic zinc concentration during zinc shock in wild
type yeast and in mutant cells without vacuolar sequestration. The zinc con-
centrations in both cell types eventually approach the same steady state. In
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Figure 7.4: Simulation of the cytosolic zinc concentration in wild type (WT,
solid line) yeast cells and mutants without vacuolar sequestration (dashed line).
Both curves approach the steady state value, which is indicated by a horizontal
dotted line.

the mutant cells, on the one hand, the cytosolic zinc concentration increases
rapidly in the beginning of the zinc shock, which leads to an overshoot far
above the steady state value. After about 15 min the concentration starts to
slowly decrease towards the steady state. On the other hand, in wild type
cells with ZRC1 expression, the excessive zinc is immediately stored into the
vacuole. Therefore, the cytosolic concentration rises slowly and approaches the
steady state without an overshoot. Assuming that yeast cells react very sen-
sitively even to slight zinc excess in the cytosol, these curves explain the high
lethality of zrc1 cot1 mutants after zinc shocks (MacDiarmid et al., 2003) and
indeed suggest that ZRC1 upregulation during zinc deficiency is an efficient
survival strategy of wild type yeast.

7.2 Buffering in plant roots

7.2.1 Biological background
Vacuolar sequestration in plant roots has been studied extensively during the
last years but the underlying mechanisms are still not fully understood. It has
been found that zinc is transported into the vacuole by different transporter
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7 Roles of buffering and sequestration

proteins, namely MTPs like MTP1/3/8 and HMA3. Remobilization into the
cytoplasm is accomplished by transporters of the NRAMP family.

Nicotianamine (NA) seems to play a key role in vacuolar sequestration. It is
a low-molecular-weight metal chelator that is synthesized by the enzyme nico-
tianamine synthase (NAS). NAS has been shown to be transcriptionally regu-
lated in response to changing zinc concentrations (Talke et al., 2006). During
zinc deficiency the gene is upregulated, while transcription decreases in higher
zinc levels. It is also known that zinc hyperaccumulators such as A. halleri
have consistently higher levels of NAS and NA than non-hyperaccumulators
like A. thaliana. Therefore it has been suggested that NA plays a role in detox-
ification and accumulation of zinc. Under this assumption, however, it seems
surprising that NAS is downregulated at higher zinc concentrations in roots of
A. thaliana. Besides buffering zinc by chlelation in the cytoplasm, NA seems
to be involved in other processes. It enhances the transport of zinc into the
xylem and shoot and the vacuolar sequestration of zinc in the root. To go into
the vacuole, NA is transported by ZIF1 (Haydon and Cobbett, 2007). ZIF1 is
induced by high zinc levels and seems to transport NA but not the complex of
NA and zinc and no free zinc ions.

Unlike in yeast, virtually no data is available concerning the vacuolar se-
questration of zinc in plants. This makes it difficult to develop a detailed
realistic model and estimate its parameters. Therefore, we will confine our-
selves to a simplistic model describing a very general buffering mechanism
without regulation. This buffering can be accomplished both through vacuo-
lar sequestration and by cytosolic zinc chelators.

7.2.2 Model
Buffering is modeled with a simple addition to the reduced regulatory system
(5.1) as described in Chapter 5. The buffer is assumed to be present in high
excess with almost constant concentration. The equilibrium constant Kb gives
the steady state ratio of buffered to unbuffered zinc, i.e. Kb = Z∗

b

Z∗ and the time
constant ζb controls the speed of the buffering reaction in relation to the other
reactions (all other time constants in the model were set to 1). In terms of
the differential equations, a new equation is needed to describe the dynamics
of buffered zinc Zb as

dZb
dt

= ζb(KbZ − Zb) (7.4)

and the equation for the internal zinc concentration Z is extended by the
corresponding term resulting in

dZ

dt
= f(Ze)− Z − ζb(KbZ − Zb) (7.5)
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to guarantee zinc mass conservation.

7.2.3 Results and Discussion
The steady state of this extended system is equal to the steady state of system
(5.1) with Z∗b = KbZ. The dynamic behavior of the system, however, can be
changed dramatically. We want to analyze this change with respect to the two
buffering parameters p ∈ {Kb, ζb}.

Most informative for the dynamical behavior of the system around the
steady state is the largest eigenvalue of the Jacobian matrix. The jacobian of
the extended system with buffering is given by

Jb =



−a 0 b 0 0
c −1− ζbKb 0 0 ζb

0 0 −d −e 0
0 f −g −h 0
0 ζbKb 0 0 −ζb


(7.6)

where positive numbers a, b, c, d, e, f, g, h are introduced for simplification:

a = KA2 + 1 b = 2KA(1−G)
c = f(Ze) d = ΓI + 1
e = ΓA f = ΓI(1− I)
g = Γ′I h = Γ′A+ 1 + ΓIZ.

The matrix is closely related to the Jacobian of the unbuffered system in (5.3).
The characteristic polynomial χ(λ,Kb, ζb) of Jb can be calculated as

χ(λ,Kb, ζb) = −bcef(λ+ζb)−(a+λ)(−eg+(d+λ)(h+λ))(λ2 +ζb+λ(1+ζb+Kbζb)).

For an eigenvalue λ(µ, p) with p ∈ {Kb, ζb} of (7.6) it holds that χ(λ(µ, p), p) ≡
0 and dχ

dp
≡ 0. Having the solution λ0 of χ(λ(µ, p), p) ≡ 0 for p = 0 (no

buffering), we can use a continuation method with

∂λ

∂p
= −∂χ

∂p
/
∂χ

∂λ
,

λ(µ, 0) = λ0
(7.7)

to describe λ(p) by a single ordinary differential equation. This equation was
solved numerically at various values of Ze using a Dormand-Prince method
with adaptive step size for ordinary differential equations (Press et al., 2007).
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Figure 7.5: Largest eigenvalue λ1 of the Jacobian matrix of the buffered
system for variations of the two buffering parameters (a)Kb and (b) ζb. Dashed
lines show isolines for constant external zinc concentration Ze in the originally
unstable region between 0.18µM and 12.6µM. Constant lines mark isolines
for constant Kb (a) or ζb (b), respectively. Increasing either Kb (a) or ζb (b)
stabilizes the system by decreasing real and imaginary part of the eigenvalue.

The effect of one of the buffering parameters p ∈ {Kb, ζb} can be calcu-
lated by choosing the other buffering parameter to be constant and solving
χ(λ(µ, p), p) ≡ 0 via (7.7) for a given Ze. Fig. 7.5 shows the results for both
parameters and for various external zinc concentrations. The parameter Kb

is related to the amount of zinc buffers in the cell and the strength of their
binding affinity to zinc, ζb is the relative time scale of the binding and disso-
ciation of zinc to buffer molecules. Both an increase in Kb and an increase
in ζb decreases the real part of the first eigenvalue below zero and leads to
asymptotic stability of the steady state for all external zinc concentrations. In
biological terms this means that buffering needs to be sufficiently strong (high
Kb) and/or sufficiently fast (high ζb) to stabilize the system. Equilibrium con-
stants above Kb ≈ 1.1 guarantee that all eigenvalues have negative real part
and that the steady state is asymptotically stable. Indeed, experimental mea-
surements suggest that most zinc in the cells is bound to chelators and buffers
(Dittmer et al., 2009; Vinkenborg et al., 2009), so Kb can be estimated to be
in the range of at least 1000. Under such high values of Kb all eigenvalues
are real and negative and oscillations do not occur (Fig. 7.5a). The time scale
ζb does not seem to play such an important role. The eigenvalues turn neg-
ative already at ζb ≈ 0.09 and further increase does not qualitatively change
the system’s behavior. Increasing ζb beyond 1 results even in less damping
(Fig. 7.5b).

Until now, we analyzed how buffering changes the stability of the system for
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7.2 Buffering in plant roots

different values of Ze. However, we have not dealt with the dynamic reaction to
variations of Ze, although the external zinc concentration tends to vary in time
under natural soil conditions. To get an idea of how dynamic variation of Ze

affects the system, assume that the buffer reaction is such that the system stays
near the steady state. Further, assume that variation in Ze is small around a
given Ze

0 . Under these conditions, the linearized system reflects the behavior
of the full system sufficiently well and the concept of the transfer function of
linear time invariant systems can be applied. With U = (G,Z,A, I, Zb)T we
denote with U0 := U∗(Ze

0) the steady state U∗ for Ze = Ze
0 . The input is

x := (Ze − Ze
0)/Ze

0 , while y := (Z − Z0)/Z0 is the output. In other words, the
variation in external zinc concentration is the input and the output is given by
the variation in internal zinc concentration. Note that the input and output
were scaled to account for the difference in magnitude of Z and Ze (∼ 0.01
against ∼ 1). The linearized system is then given by

dŨ

dt
= J0

b Ũ +B0x ,

y = C0 · Ũ ,

(7.8)

where Ũ = U − U0, J0
b = Jb(U0, Z

e
0), B0 = Ze

0
∂F
∂Ze

(U0, Z
e
0) = Ze

0G0∂Zef(Ze
0) η,

η = (0, 1, 0, 0, 0)T and C0 = η/Z0.
Laplace transforming (7.8) renders

Ly = C0 ·
((
sI − J0

b

)−1
B0
)
Lx ,

where Ly and Lx are the Laplace transforms of y and x, respectively, and
s ∈ C. The function G(s) := C0 ·

(
(sI − J0

b )−1
B0
)
is the transfer function of

the system. We determined G(s) numerically for Ze
0 = 1, ζb = 1 and various

values of Kb and present it in a Bode plot in Fig. 7.6. The details of how this
graph was obtained follow. Firstly, the steady state of (5.1) extended by the
equations (7.4) and (7.5) for the given Ze

0 was determined. Secondly, J0
b , B0

and C0 were calculated for ζb = 1 and various Kb. Finally, G(s) was calculated
using GNU Octave’s Computer-Aided Control System Design toolbox.

Up to a resonance, the overall gain of the system is below −20 dB, and
hence it is small (Fig. 7.6). Considering that the system is responsible for
homeostasis of zinc, it makes sense that the gain is small to decouple the in-
ternal concentration as much as possible from the external concentration. A
resonance at the frequency of the periodic orbits (ω(1µM) ≈ 2.92) is clearly
present for small Kb, as expected from the results on the global Hopf bifur-
cation in Sect. 5.5. The accumulated phases in the phase response of these
unstable cases go beyond π and tend to 3

2π for ω → ∞. Hence, the corre-
sponding principal values ArgG(s) are shown as dashed lines. Increasing Kb
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Figure 7.6: Bode plot of the transfer function G(s) of the system with buffer-
ing for Ze = 1µM, ζb = 1 and variousKb between 0 and 1000. For smallKb be-
low ∼ 1.1 (unstable steady state) a clear resonance appears. The accumulated
phases of the unstable cases go beyond π (gray box) and the corresponding
principal values ArgG(s) are shown as dashed lines.

damps the system until no Hopf bifurcations occur. This is seen by the sudden
change in the phase response, where the argument of G(s) stays smaller than π
for all ω (Fig. 7.6 bottom). We found previously that high values of Kb imply
overdamping of the system (Fig. 7.5a). This fact is also reflected in the phase
response for large Kb: the phase for low frequencies becomes smaller than for
moderate frequencies above the resonance frequency of the unbuffered system.

From a biological point of view, it is assumed to be optimal for plants
to keep an almost constant zinc concentration under wide ranges of external
zinc supply. In the model in Chapter 4, a high value of Γ, the binding affinity
between activator and inhibitor, is required to make the steady state robust
to variations in Ze. Without buffering this high affinity, however, leads to a
change in the system’s dynamic behavior resulting in instability of the steady
state and oscillations. Such oscillations generate toxic zinc peaks in the cells
and therefore pose a dangerous threat for the plant. Without considering
the important effect of buffering, we proposed in Chapter 4 that Γ should be
smaller, yielding a model with less robust but stable steady states. The results
of this chapter now showed that stability can also be affected by buffering
without changing the steady state. We found that already weak buffering can
switch the dynamic behavior of the system from oscillations to a stable steady
state and thus protect the plant cells against toxic zinc shocks. Thus, our
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7.2 Buffering in plant roots

results suggest that buffering is not only important as a mechanism against
fast transient supply changes, but also to stabilize the regulatory system and
prevent strong self-oscillatory behavior.
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The work presented here gives an example of how mathematical modeling can
be applied to gain insights into biological systems. Zinc uptake and transport
in plant roots was chosen as an example for a wide range of problems concerning
transport in biological tissues. Special focus has been put on the interplay
between “biological processes” like gene regulation and “physical processes”
such as water flow and diffusion. The models developed here proved to be
useful, since they helped to explain and analyze the zinc uptake system from
a new perspective.

In Chapter 4 we proposed a very general model for the regulation of trans-
porter proteins. This general model can be adapted and applied to zinc up-
take in any organism and even more generally to any situation where solutes
influence the level of their specific transporters via gene regulation and post-
translational mechanisms. Here, it was used to model similar zinc uptake
systems via ZIP transporters in yeast and plant roots. The system in yeast is
well-understood and its behavior has been documented with extensive experi-
mental data (e.g. Zhao and Eide, 1996b; Zhao et al., 1998; Bird et al., 2004).
Still, modeling was able to provide new insights on certain aspects, especially
on the important role of the ZAP1 transcriptional feedback under zinc-replete
conditions. Zinc uptake regulation in plants is not as well-understood so far.
Here, modeling with different possible variants derived from the general model
identified a feasible mechanism. It comprises an activator and an inhibitor
molecule, which provides more robust homeostasis than simpler models with-
out an inhibitor.

In the model for zinc uptake in plant roots developed in Chapter 4 a Hopf
bifurcation was found numerically for certain parameter choices. Chapter 5
is focused on the theoretical aspects of this bifurcation on a local and global
scale. The analysis showed that the periodic solutions emerging from the Hopf
bifurcation point are stable and that the family of periodic orbits ends in
another Hopf point.

In Chapter 6 the regulatory model from Chapter 4 was coupled to a trans-
port model describing spatial processes like advection and diffusion to model
the radial movement of zinc across the plant root. This model was used to iden-
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tify key processes for the creation of the radial pattern of zinc accumulation
seen in experimental measurements (Hanikenne et al., 2008). Most impor-
tantly, it showed that so far the role of water flow through the root tissues has
been underestimated when studying transport of solutes.

Chapter 7 focuses on another important process involved in zinc homeosta-
sis, the buffering and sequestration of zinc by cytosolic chelators and organelles
like the vacuole. Modeling the well-studied vacuolar sequestration system in
yeast confirms the theory of pro-active regulation suggested by experimental-
ists (MacDiarmid et al., 2003). Because little detail is known on buffering in
plant roots, a simple general model was used here. The results reveal that
strong and fast buffering is essential in dampening transient zinc peaks and
oscillations.

The methods developed here are of course not limited to the special case
of zinc uptake in roots, but can also be applied to other solutes and other
tissues. For example, iron is presumably taken up by a very similar system of
influx and efflux transporters (Kim and Guerinot, 2007) and exhibits a similar
spatial pattern (Roschzttardtz et al., 2013) in roots. Other ions, like sodium
and potassium, are pumped by other transporters (Kronzucker and Britto,
2011; Shabala and Cuin, 2007) with different regulatory mechanisms, but can
also be modeled in a similar framework.

The biggest drawback in the models presented here is the lack of reliable
quantitative data. The parameter estimation relies on existing published ex-
perimental data and many parameters cannot be estimated at all from these
few measurements. Although the results of our modeling suggest new measure-
ments for effective validation, no attempts for the according experiments have
been made so far. Therefore, the experimental validation followed by model
modifications and improvements require further consideration in the future.
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