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St�orungstheoretische Behandlung der Strahlungstransportgleichung in

dreidimensionalen, bewegten Medien und Anwendung auf Akkretions-

scheiben

Die mehrdimensionale Strahlungstransportgleichung wird mit Hilfe einer st�o-

rungstheoretischen Methode gel�ost, wobei sich die vollst�andige L�osung durch eine

Reihe von 1D L�osungen ergibt. Da die L�osungen von St�orungen h�oherer Ord-

nung explizit angegeben werden k�onnen und die Verfahren, die f�ur die L�osung

der Gleichung 0. Ordnung verwendet werden, gr�o�tenteils analytisch sind, ist der

entsprechende Code e�zienter als gew�ohnliche mehrdimensionale Strahlungstrans-

portprogramme. Um den dabei involvierten iterativen Proze� zu untersuchen, wird

das Strahlungsfeld einer geometrisch d�unnen, langsam rotierenden Akkretions-

scheibe berechnet. Die Methode stellt eine Verbesserung gegen�uber solchen Meth-

oden dar, die die Akkretionsscheibe als ein System von unabh�angigen Ringen be-

trachtet, da die Wechselwirkung der Ringe bei den St�orungen h�oherer Ordnung

ber�ucksichtigt wird. Der Ein
u� von radialen Gradienten, Geschwindigkeitsfeldern

u.a. auf das Linienpro�l wird diskutiert.

Desweiteren wird unter der Annahme der Zwei-Strom-N�aherung, die analytis-

che L�osung der planparallelen Strahlungstransportgleichung f�ur eine Vielzahl von

Verteilungen des Abregungskoe�zienten � gefunden. Eine neue Methode f�ur die

L�osung dieser Gleichung mit stochastisch verteiltem � wird vorgeschlagen. Au�er-

dem erlaubt uns eine verbesserte Separationsmethode ("separable approximation"),

die L�osung der planparallelen Strahlungstransportgleichung ohne Winkel- und

Raumdiskretisierung schnell und genau zu �nden.

Perturbation approach for the radiative transfer equation for 3D moving

media and application to accretion disks

The multidimensional radiative transfer equation is solved by means of a per-

turbation approach in which the full solution is represented by a sequence of 1D

solutions. Since the solutions of the higher perturbation orders are given explic-

itly, and the methods used for the solution of the zero order equation are largely

analytical, the corresponding code is more e�cient than general multidimensional

radiative transfer codes. To examine this iterative procedure the radiation �eld of

a geometrically thin slowly rotating accretion disk is calculated. The method is

the improvement of those methods which treat the accretion disk as a system of

independent rings because the interaction of the rings is taken into account in the

higher perturbation orders. The in
uences of radial gradients, velocity �eld etc.

on the line pro�le are discussed.

Furthermore, under assumption of the two-stream approximation the analyt-

ical solution of the plane-parallel radiative transfer equation is found for a large

variety of the internal distribution of the de-excitation coe�cient ". A new method

for the solution of the equation with the stochastic " is proposed. In addition, an

improved separable approximation method enable us to obtain fast and accurate

solution of the basic plane-parallel radiative transfer equation without angle and

space discretization.
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Chapter 1

Introduction

1.1 Accretion disks

Accretion disks are ubiquitous in the Universe (cf. Meyer et al. 1989). They

are believed to provide the source of radiation of many objects, ranging from

active galactic nuclei (AGN), cataclysmic variables (CV) to young pre-main

sequence stars (T Tauri type stars). Therefore, studying accretion disks is

very important in many branches of modern astrophysics.

The best studied accretion disk objects are low-mass binaries which are

systems composed typically of a compact degenerate object (white dwarf in

the case of dwarf novae and novalike variables; or a neutron star or a black

hole (Fig. 1.1) in the case of low-mass X-ray binary systems) and a late-type

star �lling its Roche lobe. The matter lost by the companion star via Roche

lobe over
ow is captured in the gravitational �eld of the compact object.

Because of an excess of angular momentum it is not immediately accreted

on the compact star, but rather forms an accretion disk. Viscosity operates

in the disk and transports the angular momentum outwards. The nature of

viscosity, one of the most important problem in the theory of accretion disks,

is not discussed in the framework of this thesis.

One of the most direct methods of detecting an accretion disks is to

observe the line pro�les produced by it. An obvious feature is double-peaked

pro�les (Fig. 1.2). They are produced by separate rings of gas rotating, as

assumed of many of the authors, with Keplerian velocities around a compact

object. The rings closer to the central object have higher velocities and

contribute to the outer wings of the pro�le, whereas those at large radii

move slowly and form the bulk of the line core. The velocities of the outer

rings largely determines the separation of the peaks. A central dip occurs

because of gas having zero radial velocity.

An accretion disk is a complicated 3D structure and strictly speaking

should be treated as such. However this is a di�cult task. The problem may

1



2 CHAPTER 1. INTRODUCTION

Fig. 1.1: Artist's concept of the view of an accretion disk around a black hole.

be signi�cantly simpli�ed by disentangling the radial and vertical structure.

This approximation is possible because for many disks of astrophysical in-

terest the radial extent of the disk is larger than the vertical one. In other

words, the disk is geometrically thin. Therefore models are constructed as

an at least two-step process. First, assuming a vertically homogeneous struc-

ture and axial symmetry the problem is reduced to 1D problem in the radial

direction. Solving simultaneously equation of continuity, angular momen-

tum balance and energy balance one can in principle determine the total

column mass, angular and radial velocities and the total dissipated energy

as a function of radius (Shakura & Sunyaev 1973; Frank et al. 1992).

In order to get the radiation spectrum of a disk authors of early works

(Shakura & Sunyaev 1973; Bath et al. 1974) simply assumed that each point

of the disk at radius r radiates as a blackbody with the temperature T

e�

(r).

The radiation from the whole disk is obtained by integrating the local spec-

trum. Needless to say, agreement between these models and data was very

rough at best. The disk spectra modeled in such a way generally do not show

observed power-law behavior. The radiation from a blackbody has neither

spectral features nor any angular dependence.

There was a subsequent era in which sums of stellar spectra were taken to

represent the disk spectrum. The pioneering works by Schwarzenberg-Czerny

& Rozyczka (1977) and Kiplinger (1979, 1980) used existing model stellar

spectra from a variety of sources. Later Wade (1984) used available grids of

model stellar spectra by Kurucz (1979) for the modeling of an optically thick

disk. However the Kurucz model grid did not extend to the high gravities

predicted for the inner parts of CV disks, and its maximum temperature was
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Fig. 1.2: Spectrum of U Gem ( from Stover 1981).

only 50,000 K. In the models by Herter et al. (1979), Mayo et al. (1980) and

la Dous (1989) approximate atmospheres were used which were calculated

directly and not interpolated from a grid. While the match of models to

observed disk spectra was improved, important details such as the size of the

Balmer jump or the slope of the Balmer continuum were often still far from

agreement (Wade 1984, 1988).

Objections to using standard stellar atmospheres to model the local spec-

tra of the disk surface include the following. The gravitational acceleration

in the disk is not constant with depth. Instead it can change signi�cantly, es-

pecially in the optically thin parts of the disk. The disk is not a semi-in�nite

atmosphere but rather its optical depth is �nite and not a priori known. The

geometry of the disk is neither plane-parallel nor spherical. The radiative 
ux

cannot be treated as constant with depth since there is an energy generation

in the disk due to dissipation which converts the orbital kinetic energy into

heat.

The next category of simple approaches comprises models constructed as-

suming optically thin, vertically homogeneous disks. The emergent spectrum

is again calculated rather easily, because the optically thin approximation

enables one to write analytical expressions for the emergent 
ux (Williams

1980; Tylenda 1981; Williams & Ferguson 1982).

The models of the accretion disk were continuously modi�ed and im-

proved by several authors to include shear broadening (Horne & Marsh 1986;

Hummel & Vrancken 2000), line broadening due to the Stark e�ect (Lin et al.

1988), disk winds (Murray & Chiang 1996) and NLTE e�ects (Williams &

Shipman 1988).
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Some phenomena cannot be explained in the framework of the traditional

Keplerian disk models. Thus a new model of the accretion disk { advection-

dominated disks { was proposed by several authors (e.g. Narayan & Yi 1994;

Chen 1995). In such a new optically thin disk the viscously dissipated energy

is stored as entropy and advected inward rather than being radiated. In some

cases the rotational velocity becomes considerably less than the Keplerian one

and the radial infall velocity cannot be neglected.

Attempts to solve more self-consistently the vertical structure and the

emergent spectrum of the disk were done in the new generation of models.

Meyer & Meyer-Hofmeister (1982), Cannizzo & Wheeler (1984), Cannizzo &

Cameron (1988) calculated the vertical structure of the disk in the di�usion

approximation but without treating the radiation �eld in detail. Although

these models are important for the understanding of the formation and evolu-

tion of the accretion disks, they are still not satisfactory because the di�usion

approximation provides an acceptable description of the radiation �eld only

at large optical depths but not at upper layers of the disk atmosphere where

the spectra originate.

The self-consistent treatment of the radiative transfer equation is neces-

sary on the way towards the satisfactory solution. K�ri�z & Hubeny (1986)

and Adam et al. (1988) have done it in the models of grey disks. The con-

tinuum radiation of the accretion disk was calculated by Shaviv & Wehrse

(1991) self-consistently under assumption of the two-stream approximation.

Using a model of the vertical structure El-Khoury & Wickramasinghe (2000)

presented a grid of model disk spectra for the helium-rich AM CVn cata-

clysmic variables. They calculated the vertical structure of the disk in the

grey two-stream approximation as in Adam et al. (1988) but with the rays

inclined at a certain angle. This new generation of models overcomes many of

the problem associated with applying stellar atmosphere models where they

are not appropriate. Although self-consistent models certainly represent an

improvement (e.g. very good agreement with the observational spectra was

found in Shaviv & Wehrse (1991) and El-Khoury & Wickramasinghe (2000)),

the situation is still far from being satisfactory. Many approximations and

uncertainties remain even in these models.

1.2 Multidimensional radiative transfer equa-

tion

One of the uncertainties that remains in all mentioned models is the decou-

pling of the radial and vertical structures of the disk. It is obvious that the

consideration of the disk as a system of non-interacting rings is unphysical

and leads to inaccuracies in the �nal solution. The problem can, in princi-
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pal, be overcome by applying fully multidimensional calculations. However,

it is not clear whether even the most sophisticated 3D models which still

treat viscosity by means of various ad hoc parameters would be more than a

mathematical exercise.

Methods for the solution of a multidimensional radiative transfer equa-

tion roughly fall in one of three categories: Monte Carlo methods, Discrete

Ordinate methods and Angular Moment methods. Monte Carlo codes are

very 
exible and can be used for a large variety of problems in multidimen-

sional geometries (cf. Wood et al. 1996; Wolf et al. 1999; Schultz 2000). Such

methods perform well at low to medium optical depths but at high optical

depths they converge very slowly. Because the random error of the results

is approximately inversely proportional to the square root of the number of

simulated photons, Monte Carlo simulations are always very time consuming.

Angular Moment methods, on the other hand, are very well suited to

treat the high optical depths regime because many of them are related to

the di�usion equation (Spagna, Jr. & Leung 1987; Sonnhalter et al. 1995).

However, it is not surprising that they fail at low optical depths, since the

di�usion approximation was never meant for this regime. In order to treat

the problem also at low optical depth the variable Eddington factor approach

(Auer &Mihalas 1970) can be used. However, the computational e�ort due to

the generalization of this approach to the multidimensional problem appears

to be huge and only a few calculations with this code have been published

(Klein et al. 1989; Menshchikov & Henning 1997).

In the Discrete Ordinate approach the photon propagation direction is

discretized. A classical method is the application of simple trapezoidal or

quadrature rules to evaluate the integral operator for each of the two describ-

ing angles separately (Adam 1990; Stenholm et al. 1991). Since the nodes

are concentrated toward the poles this grid is usually not adapted to the

physical problems. It is therefore desirable to have equally distributed nodes

on the unit sphere. Such a discretization of the integral operator was used

by Steinacher et al. (1997), Maier (1994) and in the Finite Element method

(Kanschat (1996), see also Schrage (1999) for application to accretion disks).

For spatial discretization the Finite Di�erence method can be used (Sten-

holm et al. 1991). Another way for the computation of the speci�c intensity

at every point is the Short Characteristics method (V�ath 1994; Papkalla

1995). The structure of the resulting numerical scheme is very simple but

the 
exibility for treating complex geometries is lost. For unstructured grids

and complex geometries the Finite Element method is well suited instead.

The discretization of the multidimensional radiative transfer equation re-

sults in a very large linear system of equations which is usually solved by

means of �{iteration method (cf. Mihalas 1978). Its serious disadvantage

is a very slow convergence if the optical depth and/or a scattering fraction
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is large. To improve the rate of convergence the Approximated �{iteration

method can be applyed. This is essentially the Jacobi or block Jacobi itera-

tion depending on the form of the approximate operator. There are additional

ways of accelerating the convergence. They are Ng method (Ng 1974; Olson

et al. 1986), orthomin (Vinsome 1976; Klein et al. 1989) and Bi-CGSTAB

(van der Vorst 1992; Turek 1993).

1.3 Why the perturbation approach ?

Despite the relative e�ciency of the mentioned multidimensional radiative

transfer codes, they have not yet been combined self-consistently with the

hydrostatic and energy equations. It is very di�cult to do this on the present

computers both because the size of the problem exhausts the memory space,

and because such computations would require far too much computing time.

However, further developments in this direction are in progress since this is,

probably, the only way to get an accurate solution in systems with a complex

geometry.

In general, the accretion disk is such a system. But in those disks which

are geometrically thin the variations in the radial directions are usually small

relative to the vertical ones and evidently can be treated as perturbations.

In such situations, the perturbation approach seems to be the most appro-

priate method for the calculation of the vertical structure and spectra of the

accretion disks. The solutions of the existing self-consistent models can be

regarded as the basis for the zero order of the perturbation theory, whereas

the radial gradients, shear broadening etc. which were ignored in these mod-

els so far can be taken into account in the higher orders of this approach.

Certainly, such a sequence of 1D calculations requires additional computing

resources but still remains computationally much cheaper than the codes in-

volving solution of the general 3D radiative transfer equation. The e�ciency

of such an approach depends both on how many perturbation orders are con-

sidered, and how e�ective the method for the solution of the plane-parallel

radiative transfer equation is. The development of such a perturbation ap-

proach for the radiative transfer equation for the subsequent application to

a geometrically thin, slowly rotating accretion disk is the aim of this thesis.

The methods for the solution of the plane-parallel radiative transfer equa-

tion are rather well developed and there exists a vast literature on this topic

( see e.g. Chandrasekhar 1950; Mihalas 1978; Cannon 1985; Kalkofen 1984,

1987).

One should bear in mind that although the total optical depth of the

disk may be very large, the spectra originate only in the thin surface layer.

Coupled with the complex disk shape this may lead to the extremely large

number of grid points necessary for the adequate description of the prob-
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lem. In such cases either a clever choice of the grid points or the local grid

re�nement methods must be used for the derivation of the fast solution.

The most preferable methods are those which proceed analytically and

are less CPU-time and memory consuming. The two-stream approximation

method referred to such class of methods. In spite of the serious simpli�-

cation, one can obtain results with reasonable accuracy. The problem with

the varying de-excitation coe�cient " (see Chapter 2 for de�nition) could be

solved only numerically so far. Now it becomes analytically solvable for a

large variety of the internal distributions of the de-excitation coe�cient.

Chandrasekhar (1950) considered more than two beams in his analytical

approach. It was found that the exact solution of the radiative transfer equa-

tion in semi-in�nite atmospheres leads to closed expressions for the angular

distribution of the emergent radiation, involving a so-called H-function that

is the solution of an integral equation of standard form. In media of �nite

optical depth the emergent radiation can be expressed in terms of certain ra-

tional functions X and Y which satisfy integral equations too. The method is

not much in use because the Chandrasekhar functions H, X and Y are di�-

cult to calculate in spite of the di�erent methods proposed (Caldwell & Perks

1981; Bosma & de Rooij 1983; Haggag & Machali 1985; Haggag et al. 1989).

In addition, it does not provide the distribution of the speci�c intensity with

depth that is required in models of astrophysical objects.

In this thesis the separable approximation method by E�mov et al. (1995,

1997) is applied to the solution of the plane-parallel radiative transfer equa-

tion. By introducing the intensities in outward and inward directions the

transfer equation can be written in a matrix form. The involved matrix M

is an operator in an in�nite dimensional space and possesses rather unpleas-

ant properties, in particular, its spectrum extends from �1 to 1. In spite

of this, the transport operator can be expressed in terms of the hyperbolic

tangent function of the matrix M . Note that this function is bounded and

therefore no di�culties arise related to the in�nite spectrum of M . The

successive application of the formalism of meromorphic functions as well as

Krein's formula for the �nding of inverse operators leads to the exact so-

lution represented in a form of in�nite series. Because of their very slow

convergence these results are not well suited for numerical work. Therefore

an appropriate approximation of the in�nite sums by �nite ones is recom-

mended. In such a matter the angular distribution of the emergent intensity

was only found in the lowest approximation order.

The further development of the method is presented in the thesis. For

the slab of �nite optical depth with the symmetry plane we obtain both

the angle and depth distributions of the speci�c intensity, i.e. the total

solution of the radiative transfer equation. In order to get more precise

results additional approximation orders are considered which are de�ned by
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the number of terms in the �nite sums approximating the in�nite series. The

comparison with the solutions obtained by means of other methods shows

that highly precise results can be achieved for a wide range of parameters in

low approximation orders.

The thesis is arranged as follows. In Chapter 2 we give de�nitions of

quantities used in the radiative transfer theory, discuss the choice of the co-

ordinate system and the reference frame. In Chapter 3 we describe the basic

concept of the perturbation approach. We obtain the perturbation equa-

tions in the zero, �rst and second orders of the perturbation theory and give

the solutions of the �rst and second order equations. Next two chapters are

dedicated to the solution of the zero order equation, plane-parallel radia-

tive transfer equation with isotropic coherent scattering. In Chapter 4 we

solve this problem under assumption of the two-stream approximation. The

separable approximation method is used in Chapter 5. Chapter 6 presents

results of our calculations. Finally, in Chapter 7 the results are discussed,

and conclusions drawn.



Chapter 2

Basic notions

In the present chapter we shall present the basic notions, de�nitions of the

radiative quantities, abbreviations etc. used throughout the thesis. They

are mostly taken from Mihalas (1978). We shall use a special form of the

radiative transfer equation, the basic equation describing the interaction of

the radiation �eld with matter, which is more suitable for our needs. Here,

special attention will be paid to the choice of the coordinate system and the

reference frame.

2.1 Radiation

2.1.1 Speci�c intensity and its moments

Speci�c intensity. The monochromatic speci�c intensity (surface bright-

ness) I

�

is the proportionality coe�cient in

dE � I

�

(�; r; s; t) cos � dA d
 dt d�; (2.1)

where dE is the amount of energy transported in direction s at time interval

dt per wavelength interval (�, d�) passing through an area dA at position r

into a solid angle d
. � denotes the angle between the normal to dA and the

direction s.

Mean intensity. The mean intensity J

�

is the average of the speci�c in-

tensity over all solid angles

J

�

(r; t) =

1

4�

Z

I

�

d
 =

1

4�

Z

2�

0

d�

Z

�

0

I

�

sin � d�:

Writing d
 = sin � d� d� = �d� d� with � � cos � we have

J

�

(r; t) =

1

4�

Z

2�

0

d�

Z

+1

�1

I

�

d�: (2.2)

9
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Flux. The 
ux is the net 
ow of energy per unit time interval per unit

wavelength interval at wavelength � through a unit area placed at location

r in direction s. In principal, 
ux is a vector

F

�

(r; t) =

Z

I

�

(r; s; t) s d
 (2.3)

2.1.2 Radiation { matter interaction

Emission. The monochromatic emissivity j

�

is de�ned by

dE � j

�

dV dt d� d
; (2.4)

where dE is the energy locally added to the radiation in volume dV per

wavelength interval d� during the time interval dt into a solid angle d
. The

intensity contribution from the local emission to the beam is

dI

�

(s) = j

�

(s) ds; (2.5)

where s measures the geometrical path length along the beam.

Extinction. The monochromatic extinction coe�cient speci�es the energy

fraction taken from the beam due to absorption and scattering. The de�ni-

tion is

dI

�

(s) = �

�

I

�

ds; (2.6)

with

�

�

= k

�

+ �

�

; (2.7)

where k

�

and �

�

are the absorption and scattering coe�cients, respectively.

The contributions to �

�

come from both the continuum and spectral lines

�

�

= �

c

�

+ �

l

�

In the present work we consider a simple case of a single spectral line

with a Lorentz pro�le, and continuum extinction which does not depend on

� across the line, i.e.

�

c

�

= �

c

;

�

l

�

= � �

l

0

'

�

(
=2);

with �

l

0

the extinction coe�cient at the line center �

0

. The line pro�le

function is given by

'

�

=

1

�

(
=2)

(
=2)

2

+ (�� �

0

)

2

; (2.8)

with 
=2 the full width at half maximum of the line, FWHM(�). Thus the

total extinction coe�cient can be written as

�

�

= �

c

(1 + 0:5 � 
 �

0

'

�

) = �

c

f

�

; (2.9)

where �

0

= �

l

0

=�

c

is the line strength.
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Source function. The source function is the ratio of emissivity to extinc-

tion

S

�

= j

�

=�

�

: (2.10)

We consider a medium with thermal emission and coherent isotropic scatter-

ing that implies a source function in the following form

S

�

= (1� "

�

)J

�

+ "

�

B

�

; (2.11)

with "

�

the de-excitation coe�cient de�ned by

"

�

=

k

�

k

�

+ �

�

(2.12)

and the Planck function

B

�

=

2hc

2

�

5

1

e

hc=kT�

� 1

(2.13)

2.2 Radiative Transfer Equation

2.2.1 Transport along a ray in a static medium

The basic transfer equation governing the variation of the speci�c intensity

I

�

through an atmosphere which absorbs and emits radiation of wavelength

� is obtained by counting the gains and losses of a pencil of radiation

dI

�

(s) = I

�

(s+ ds)� I

�

(s) = j

�

(s) ds� �

�

(s) I

�

(s) ds

or

dI

�

ds

= j

�

� �

�

I

�

or

dI

�

ds

= �

�

(S

�

� I

�

): (2.14)

Cylindrical coordinate system. In general, any problem requires a choice

of coordinate system which re
ects its main properties and facilitates the

solution of equations describing the problem. For problems without sym-

metries the Cartesian coordinates are the most appropriate. The Cartesian

coordinate system may also be very advantageous in systems with certain

symmetries when the problem is solved with help of purely numerical means.

This results in a PDE with constant coe�cients which contains only spatial

derivatives and therefore can be easily discretized. Since there are no direc-

tional derivatives, many problems related to the angular grid and boundary



12 CHAPTER 2. BASIC NOTIONS

ϕ
ψ

φ

θ

r

Iz

Fig. 2.1: Spatial and local directional coordinate systems.

conditions are avoided. However, the ignorance of the symmetrical proper-

ties leads to a computational redundancy. For instance, a radiative transfer

problem in a disk which possesses axial symmetry requires the calculation

of the speci�c intensity at grid N

z

� N

x

� N

y

if one uses the Cartesian co-

ordinates, and only at grid N

z

� N

r

if the cylindrical coordinates are used.

However, the direct solution of such a PDE with varying coe�cients caused

by the introduction of the cylindrical coordinates is a very di�cult task for

most available numerical and analytical methods. This is not the case for the

perturbation theory we apply to solve this equation. Although an additional

directional derivative appears in the equation, the method does not require

any angular grid. Moreover, this approach provides us with an iterative

solution with explicit dependence on directional angle.

According to Jones & Bayazitoglu (1992), the pathlength derivative in

cylindrical coordinates is given by

d

ds

= cos �

@

@z

+ sin � cos�

@

@r

� sin � sin�

1

r

@

@�

+ sin � sin�

1

r

@

@ 

; (2.15)

where the variables (r;  ; z) de�ne the spatial location, and locally de�ned

azimuthal � and polar � angles de�ne the direction of the radiation relative

to the spatial location (Fig.2.1). Due to the axial symmetry the last term in

(2.15) disappears and the basic transfer equation (2.14) becomes

cos �

@I

�

@z

+ sin � cos�

@I

�

@r

� sin � sin�

1

r

@I

�

@�

= �

�

(S

�

� I

�

) (2.16)

2.2.2 Radiative transfer equation in a rotating disk.

Choice of a reference frame. To study transport phenomena in a moving

medium special attention has to be paid to the choice of the frame of refer-

ence. Appropriate choice of the frame may give considerable computational
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advantage. To solve the radiative transfer equation in a moving medium it

should be taken into account that in the observer's frame (an observer is

�xed with respect to the center of the disk) the Doppler shift, aberration

and advection make both opacity and emissivity angle dependent and hence

anisotropic. However, this di�culty can be avoided by expressing the trans-

fer equation in a frame comoving with the element under observation. The

comoving frame is a relevant, 'natural' description for the radiative transfer

equations since all thermodynamic quantities are only de�ned in this frame.

Transfer equation in the comoving frame. Let the matter of the disk

move on a circular orbit at z = const with Keplerian velocity

v

'

(r) =

s

GM

r

; (2.17)

withM the mass of the central object and G the gravitational constant. The

velocity relative to an observer at rest is given by

v(r) = v

'

(r)

0

B

@

� sin 

cos 

0

1

C

A

:

The presence of a velocity �eld in a medium gives rise to the Doppler shift of

photons and other angular-dependent e�ects like advection and aberration,

each of them of order O(v=c). The study of relative importance of these

e�ects suggests that in the case of line pro�le calculation in slowly moving

media the Doppler e�ect plays the major role ( cf. Mihalas & Weibel Mihalas

1984, p. 492), and advection and aberration can be ignored.

Let all physical variables measured in the comoving frame be distin-

guished by subscripts such as �

0

; �

0

; �

0

etc. The speci�c intensity in the

comoving frame is

I

0

= I

0

(z; r; �

0

; �

0

; �

0

):

If � and �

0

are wavelengths in the observer's and comoving frames then we

have the classical formula for the Doppler shift obtained by retaining terms

only up to O(v=c) and putting 
 � 1=

p

1� �

2

= 1 for the Lorentz factor

�

0

= �(1 + � � n); (2.18)

where � = v=c and the direction vector n has components

n = (sin � cos'; sin � sin'; cos �): (2.19)

We assume that n = n

0

, so that

�

0

= �

0

@

1 +

1

c

s

GM

r

sin �

0

sin�

0

1

A

: (2.20)
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To derive the transfer equation in the comoving frame we shall follow Wehrse

et al. (2000). We consider any vector r(s) to depend on the variables r

0

(s)

and �

0

rather than directly on s. Then the pathlength derivative (2.15)

becomes

d

ds

)

@

@s

+

d�

0

ds

@

@�

0

; (2.21)

with

d�

0

ds

= �

d(� � n)

ds

=

�

0

1 + � � n

0

d(� � n

0

)

ds

� �

0

d(� � n

0

)

ds

:

Since

@(� � n

0

)

@z

= 0;

@(� � n

0

)

@ 

= 0;

@(� � n

0

)

@�

0

=

1

c

s

GM

r

sin �

0

cos�

0

;

@(� � n

0

)

@r

= �

1

2c

s

GM

r

3

sin �

0

sin�

0

;

we have

d(� � n

0

)

ds

= �

1

2c

s

GM

r

3

sin

2

�

0

sin�

0

cos�

0

�

1

c

s

GM

r

3

sin

2

�

0

sin�

0

cos�

0

= �

3

4c

s

GM

r

3

sin

2

�

0

sin2�

0

= w(r; �

0

; �

0

): (2.22)

Thus the radiative transfer equation reads

cos �

@I

@z

+ sin � cos�

@I

@r

� sin � sin�

1

r

@I

@�

+ w�

@I

@�

= �(S � I): (2.23)

where we have suppressed the subscripts 0 and � to simplify notation. The

last term in the left-hand side of (2.23), the Doppler term, describes the

in
uence of a velocity gradient.



Chapter 3

Perturbation approach

In this chapter we shall discuss the applicability of the perturbation theory,

describe the perturbation procedure as a whole, and give high order solutions

in particular.

3.1 Applicability

The smallness of all gradients in the horizontal direction relative to the gra-

dients in the vertical direction is the main criterion of the applicability of the

perturbation approach. Once the assumption is made that most of the radi-

ation 
ows in the vertical direction, it follows that the disk is geometrically

thin, i.e. at any radial point r we have

r � z

0

(r);

where z

0

(r) is the geometrical thickness of the disk at r. It is also obvious

that the perturbation approach is not applicable when the matter of the disk

moves with a very large velocity. We require therefore that

c� v

'

� v

r

:

If above conditions are ful�lled the second to fourth terms in the left-hand

side of equation (2.23) can evidently be treated as perturbations.

Thus the zero order solution is always the solution of a problem where

the disk is regarded either as one static plane-parallel layer or as a system of

independent rings, each of them radiating as a plane-parallel static medium.

The latter case implies that all quantities do not depend on r across the width

of a ring but their values can vary from one ring to another. It is obvious that

the zero order solution does not depend on the angle �; the radiation �eld

in a plane-parallel medium is isotropic with respect to this azimuthal angle.

Interactions of the rings with each other, radial gradients, velocity �eld etc.

15
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are taken into account in the next orders of the perturbation approach. A

consequence of these e�ects is an azimuthal variation of the radiation �eld.

3.2 Perturbation equations

Let us expand the speci�c intensity in power series depending on the small

parameter � � 1

I(z; r; �; �) = I

(0)

(z; r; �) + � I

(1)

(z; r; �; �) + �

2

I

(2)

(z; r; �; �) +O(�

3

) (3.1)

Substitution of this series into equation (2.23) and collection of terms corre-

sponding to the di�erent powers of � give us the zero, �rst and second order

perturbation equations

�

@I

(0)

@�

= �f

�

I

(0)

+

1� "

2

f

�

Z

+1

�1

I

(0)

d�

0

+ "f

�

B; (3.2)

�

@I

(1)

@�

= �f

�

I

(1)

+

(1� ")

4�

f

�

Z

2�

0

d�

Z

+1

�1

I

(1)

d�

0

(3.3)

�

q

1� �

2

1

�

c

cos�

@I

(0)

@r

� w�

1

�

c

@I

(0)

@�

;

�

@I

(2)

@�

= �f

�

I

(2)

+

(1� ")

4�

f

�

Z

2�

0

d�

Z

+1

�1

I

(2)

d�

0

(3.4)

�

q

1� �

2

1

�

c

 

cos �

@I

(1)

@r

�

sin�

r

@I

(1)

@�

!

� w�

1

�

c

@I

(1)

@�

;

where we have introduced, as a new variable in place of z, the optical depth

d�(z; r) = �

c

(z; r) dz; (3.5)

which is measured away from the symmetry plane and equals �� and � at

the lower and upper boundary, respectively.

For the boundary conditions we require that no radiation is incident on

the disk surface from outside, i.e.

I

+

(��; r; �; �) = I

�

(�; r; �; �) = 0; (3.6)

where I

+

= I(� > 0) and I

�

= I(� < 0) are intensities in positive and

negative directions with respect to �.

3.3 Zero order

The zero order equation (3.2) will be considered in detail in the forthcoming

chapters. There we shall derive a solution of this integro-di�erential equation
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by means of two methods. The �rst method (Chapter 4) provides us with

the solution under the simplifying conditions of the two-stream approxima-

tion. The method belongs to the family of Discrete Ordinate methods and

was originally developed by Schuster and Schwarzschild (reprinted by Menzel

1966). Taking into account only two beams from the set of directed streams,

we shall obtain a fast analytical solution whose accuracy strongly depends

on the inclination of the chosen beams. The second method is a more sophis-

ticated separable approximation method developed by E�mov et al. (1995,

1997). It is presented in Chapter 5 and enables us to obtain a very accurate

solution without discretization of the spatial transport and integral operators

in the transfer equation.

3.4 First order

In spite of the seeming complexity of the �rst and second order equations,

their solutions can be obtained without much e�ort. We look for a solution

of the �rst order equation (3.3) in the form

I

(1)

= I

(1)

0

+ cos� I

(1)

c

+ sin 2� I

(1)

s

: (3.7)

Then we substitute it into (3.3) and equate terms corresponding to cos�,

sin 2� and remaining ones. A result is the system of equations which requires

the already determined function I

(0)

�

@I

(1)

0

@�

= �f

�

I

(1)

0

+

1� "

2

f

�

Z

+1

�1

I

(1)

0

d�

0

; (3.8)

�

@I

(1)

c

@�

= �f

�

I

(1)

c

�

q

1� �

2

1

�

c

@I

(0)

@r

; (3.9)

�

@I

(1)

s

@�

= �f

�

I

(1)

s

+ (1� �

2

)

3�

4c

s

GM

r

3

1

�

c

@I

(0)

@�

: (3.10)

Since equation (3.8) is the homogeneous equation and satis�es the zero

boundary conditions, its solution equals zero. For equations (3.9) and (3.10)

we give explicit solutions for I

+

only, since solutions for I

�

follow analo-

gously. Taking into account the boundary conditions (3.6), these solutions

read

I

(1)

c

(�) = �

p

1� �

2

�

�

Z

��

e

�

f

�

�

(���

0

)

1

�

c

@I

(0)

@r

d�

0

; (3.11)

I

(1)

s

(�) =

1� �

2

�

3�

4c

s

GM

r

3

�

Z

��

e

�

f

�

�

(���

0

)

1

�

c

@I

(0)

@�

d�

0

: (3.12)
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3.5 Second order

We look for a solution of the second order equation (3.4) in the form

I

(2)

= I

(2)

0

+ cos

2

� I

(2)

c

+ sin

2

� I

(2)

s

+ sin

2

2� I

(2)

2s

(3.13)

+ cos� sin 2� I

(2)

c2s

+ sin� cos 2� I

(2)

s2c

:

In a similar way we have the system of equations

�

@I

(2)

c

@�

= �f

�

I

(2)

c

�

q

1� �

2

1

�

c

@I

(1)

c

@r

; (3.14)

�

@I

(2)

s

@�

= �f

�

I

(2)

s

�

q

1� �

2

1

�

c

I

(1)

c

r

; (3.15)

�

@I

(2)

s2c

@�

= �f

�

I

(2)

s2c

+

q

1� �

2

1

�

c

2I

(1)

s

r

; (3.16)

�

@I

(2)

2s

@�

= �f

�

I

(2)

2s

+ (1� �

2

)

3�

4c

s

GM

r

3

1

�

c

@I

(1)

s

@�

; (3.17)

�

@I

(2)

c2s

@�

= �f

�

I

(2)

c2s

+ (1� �

2

)

3�

4c

s

GM

r

3

1

�

c

@I

(1)

c

@�

�

q

1� �

2

1

�

c

@I

(1)

s

@r

; (3.18)

�

@I

(2)

0

@�

= �f

�

I

(2)

0

+

1� "

4

f

�

Z

+1

�1

�

2I

(2)

0

+ I

(2)

c

+ I

(2)

s

+ I

(2)

2s

�

d�

0

: (3.19)

Solutions of equations (3.14) to (3.18) are straightforward for I

+

I

(2)

c

(�) = �

p

1� �

2

�

�

Z

��

e

�

f

�

�

(���

0

)

1

�

c

@I

(1)

c

@r

d�

0

; (3.20)

I

(2)

s

(�) = �

p

1� �

2

�

�

Z

��

e

�

f

�

�

(���

0

)

1

�

c

I

(1)

c

r

d�

0

; (3.21)

I

(2)

2s

(�) =

1� �

2

�

3�

4c

s

GM

r

3

�

Z

��

e

�

f

�

�

(���

0

)

1

�

c

@I

(1)

s

@�

d�

0

; (3.22)

I

(2)

s2c

(�) =

p

1� �

2

�

�

Z

��

e

�

f

�

�

(���

0

)

1

�

c

2I

(1)

s

r

d�

0

; (3.23)

I

(2)

c2s

(�) =

1� �

2

�

3�

4c

s

GM

r

3

�

Z

��

e

�

f

�

�

(���

0

)

1

�

c

@I

(1)

c

@�

d�

0

(3.24)

�

p

1� �

2

�

�

Z

��

e

�

f

�

�

(���

0

)

1

�

c

@I

(1)

s

@r

d�

0

:

The integro-di�erential equation (3.19) can be solved by the same method

as the zero order equation (3.2).



Chapter 4

Two-stream approximation

The present chapter is devoted to the solution of the plane-parallel radia-

tive transfer equation in the two-stream approximation. This approximation

makes the problem analytically solvable. In spite of the serious simpli�ca-

tion, one can obtain a rather accurate solution by taking only two beams

with an appropriate inclination. The analytical structure of the solution is

simple and that allows us to investigate various dependences very easily.

First, we shall study the transfer equation with a constant de-excitation

coe�cient ". Results available here serve as a starting point for the investiga-

tion of the properties of the plane-parallel radiative transfer equation before

the application of more accurate methods. The main characteristics of the

system such as the mean intensity and the 
ux are depth-weighted samplings

of the Planck function with the weighting extending over a region around the

depth of interest. The fully analytical solution enables us to investigate dif-

ferent aspects of the problem very quickly and to get a �rst insight into the

problem. The developed technique will be partially applied in the method of

separable approximation described in the next chapter.

Then we shall consider the transfer equation with " varying in depth. We

shall obtain analytical solutions for a large variety of internal distributions of

" (linear, quadratic etc.). We shall also propose methods for the derivation

of solutions with a stochastic distribution of the de-excitation coe�cient and

" with spikes, that enables us to treat the problem in media with di�erent

degrees of density inhomogeneity.

Having obtained exact solutions for the di�erent behaviors of "(�), the

solution of the inverse problem, i.e. the diagnostic of "(�) from observational

data, becomes possible. In particular, the procedure for the derivation of the

internal distribution of " is facilitated in the case of isothermal media, since

the characteristic behavior of the solution refers to the behavior of " only.

As an example, we shall �nd the corresponding parameters of the constant

and linear distributions of "(�) precisely.
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4.1 Constant "

In the current section we obtain an analytical solution of the transfer equation

with a depth-independent ". Althought the assumption of the constant " is

unrealistic, it nevertheless represents a landmark test in radiative transfer

theory.

4.1.1 Matrix form of the transfer equation and its so-

lution

The speci�c intensity in the plane-parallel media with coherent isotropic

scattering is governed by the following equation

�

dI(�; �)

d�

= �f

�

I(�; �) +

1� "

2

f

�

Z

+1

�1

I(�; �

0

) d�

0

+ "f

�

B(�) (4.1)

Let us suppose that the radiation �eld can be characterized by a discrete

number of directed streams ("discrete ordinates") to mimic the true variation

of the intensity with angle. To simplify the problem we consider only two

rays in opposite directions � = ��

0

. Thus, instead of (2.2) and (2.3) the

expressions for the mean intensity and the 
ux take the forms

J(�; �

0

) =

1

2

�

I

+

(�) + I

�

(�)

�

; F (�; �

0

) =

1

2

�

I

+

(�)� I

�

(�)

�

: (4.2)

Equations for I

+

(�) and I

�

(�) become

d

d�

I

+

(�) = �k I

+

(�) + � k

�

I

+

(�) + I

�

(�)

�

+ B(�); (4.3)

�

d

d�

I

�

(�) = �k I

�

(�) + � k

�

I

+

(�) + I

�

(�)

�

+ B(�); (4.4)

where

k =

f

�

�

0

; � =

1� �

2

; B(�) = " k B(�):

and f

�

is de�ned in (2.9).

Let us introduce the two-component vector of the speci�c intensity

I(�) =

 

I

+

(�)

I

�

(�)

!

Then equations (4.3) and (4.4) can be written in the form of a matrix equation

d

d�

I(�) = �M I(�) +B(�); (4.5)
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where

M = k(�

3

� je

�

i�he

+

j) = k

 

1� � ��

� �1 + �

!

; B(�) = B(�)je

�

i;

with

je

+

i =

 

1

1

!

; je

�

i =

 

1

�1

!

; �

3

=

 

1 0

0 �1

!

;

he

+

j = ( 1; 1 ); he

�

j = ( 1; �1 )

The boundary conditions (3.6) can be represented in the following form

I(�) =

 

I

out

0

!

; I(��) =

 

0

I

out

!

or

I(�) = I

out

1 + �

3

2

je

+

i; I(��) = I

out

1� �

3

2

je

+

i; (4.6)

where I

out

(�) is the outgoing intensity.

The formal solution of (4.5) can be written in two equivalent forms

I(�) = e

�M(�+�)

I(��) +

�

Z

��

e

�M(���

0

)

B(�

0

) d�

0

(4.7)

= e

�M(���)

I(�)�

�

Z

�

e

�M(���

0

)

B(�

0

) d�

0

:

It follows from (4.7) that

I(�) = e

�2M�

I(��) +

�

Z

��

e

�M(���

0

)

B(�

0

) d�

0

:

Multiplying both sides by e

M�

and using B(��) = B(�) we obtain

e

M�

I(�)� e

�M�

I(��) =

�

Z

��

cosh(M�

0

)B(�

0

) d�

0

: (4.8)

Substitution of (4.6) into (4.8) gives

�

e

M�

1 + �

3

2

� e

�M�

1� �

3

2

�

I

out

je

+

i =

�

Z

��

cosh(M �

0

)B(�

0

) d�

0

;

[�

3

+ tanh(M�)] I

out

je

+

i =

�

Z

��

cosh(M�

0

)

cosh(M�)

B(�

0

) d�

0

:
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Finally, multiplying both sides of the last equation by he

�

j we get an expres-

sion de�ning the intensity emerging from the disk surface

I

out

=

2

he

�

j�

3

+ tanh(M�)je

+

i

�

Z

0

*

e

�

�

�

�

�

�

cosh(M�

0

)

cosh(M�)

�

�

�

�

�

e

�

+

B(�

0

) d�

0

: (4.9)

Using (4.7) and the following relation

I(�) + I(��) = I

out

je

+

i

we obtain

I(�) =

e

�M�

2 cosh(M�)

I

out

je

+

i (4.10)

+

�

Z

��

(

�(� � �

0

)

e

�M(��+���

0

)

2 cosh(M�)

��(�

0

� �)

e

�M(�+���

0

)

2 cosh(M�)

)

B(�

0

) d�

0

;

where the unit step function �(x) is given by

�(x) =

(

0 for x � 0;

1 for x > 0:

The components of the vector I(�) can be obtained either directly from (4.10)

or from the de�nitions of the mean intensity and the 
ux which in the present

notations are

J(�) =

1

2

he

+

jI(�)i; F (�) =

1

2

he

�

jI(�)i: (4.11)

For these purposes we use equalities

e

M�

= 1 cosh(k!�) +

M

k!

sinh(k!�);

cosh(M�) = 1 cosh(k!�);

sinh(M�) =

M

k!

sinh(k!�);

tanh(M�) =

M

k!

tanh(k!�);

e

�Mt

1 + e

�2M�

=

1

2 cosh(k!�)

�

1 cosh(k!(�� t)�

M

k!

sinh(k!(�� t)

�

;

which are valid due to the following

M

2

= 1 k

2

(1� 2�) = 1 (k!)

2

with ! =

q

1� 2� =

p

�:
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Substituting them into (4.9) and (4.10) and using

Mje

+

i = k(1� 2�)je

�

i = k!

2

je

�

i; Mje

�

i = kje

+

i;

he

�

jMje

+

i = 2k(1� 2�) = 2k!

2

; he

+

jMje

�

i = 2k

we get, in accordance with (4.11), expressions for the mean intensity and the


ux

J(�) =

cosh(k!�)

2 cosh(k!�)

I

out

+

�

Z

��

sinh(k!(�� j� � �

0

j))

2! cosh(k!�)

B(�

0

) d�

0

;

F (�) = �

!

2

sinh(k!�)

cosh(k!�)

I

out

+

�

Z

��

�(� � �

0

)

cosh(k!(�� j� � �

0

j))

2 cosh(k!�)

B(�

0

) d�

0

;

and the outgoing intensity

I

out

=

2

1 + ! tanh(k!�)

�

Z

0

cosh(k!�

0

)

cosh(k!�)

B(�

0

) d�

0

(4.12)

with �(x) the Heaviside function. Some transformations which follow after

the substitution of I

out

result in the �nal expressions for J(�) and F (�)

J(�) =

�

Z

��

d�

0

p

"kB(�

0

)

1 +

p

" tanh(k

p

"�)

�

 

p

"

cosh(k

p

"(�� j� � �

0

j))

2 cosh(k

p

"�)

+

sinh(k

p

"(�� j� � �

0

j))

2 cosh(k

p

"�)

!

(4.13)

F (�) =

�

Z

��

d�

0

�(� � �

0

)

"kB(�

0

)

1 +

p

" tanh(k

p

"�)

�

 

cosh(k

p

"(�� j� � �

0

j))

2 cosh(k

p

"�)

+

p

"

sinh(k

p

"(�� j� � �

0

j))

2 cosh(k

p

"�)

!

(4.14)

Their application in media with di�erent linearly depth-dependent B and

constant " is shown in Fig. 4.1. We set f

�

= 1. In order to get the best �t by

eye to the precise solution obtained by the separable approximation method

(Chapter 5) we choose beams with inclination �

0

= 0:55. Note that such a

choice is very close to the Eddington approximation where �

0

= 1=

p

3 � 0:58.

Fig. 4.1 demonstrates the in
uence of such quantities as the gradient of

the Planck function and the de-excitation coe�cient " on the sign and the

magnitude of the split between J and B. Such J 6= B inequality is important

in NLTE radiative transfer because it characterizes the non-local nature of
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Fig. 4.1: Variation of B and J with depth in the upper part of a medium with

depth-independent " and linearly depth-dependentB for the di�erent combinations

of " and dB=dt. t = ��� , with � = 100 the optical half-thickness of the medium.

Left-hand part: numerical results plotted on linear scale. Right-hand part: the

same results on logarithmic scale. Solid: the Planck function B. Dashed: the mean

intensity J obtained by means of the separable approximation method (Chapter 5).

Diamonds: corresponding two-stream approximation results from (4.13). Top row:

isothermal atmosphere producing J < B. Middle row: "radiative-equilibrium

gradient" dB=dt = 1:6 producing J � B. Bottom row: steep inward increase of

the Planck function producing J > B.
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the local radiation �eld. A 
atter B gradient produces J < B, whereas a

steeper one produces J > B. In the �rst case the production of photons in

deeper layers is not su�cient to maintain J � B higher up; in the second

case, there are more photons arriving from the deeper layers than given by

the local thermodynamic equilibrium prediction. The split extends to the

thermalization depth � � 1=

p

".

4.1.2 Limit of large optical depth

For k

p

"�� 1 equations (4.13) and (4.14) look like

J(�) =

k

p

"

2

�

Z

��

 

e

�k

p

"j���

0

j

�

1�

p

"

1 +

p

"

e

�k

p

"(2��j���

0

j)

!

B(�

0

) d�

0

(4.15)

F (�) =

k"

2

�

Z

��

 

e

�k

p

"j���

0

j

+

1�

p

"

1 +

p

"

e

�k

p

"(2��j���

0

j)

!

�(� � �

0

)B(�

0

) d�

0

(4.16)

If we are in a depth far from the boundary, the main contribution to the

integrals comes from the �rst terms of the integrands, and the second terms

can therefore be ignored. This can easily be proved by, e.g., the evaluation

of the integrals with a constant Planck function. We consider then some

reference point � . We can write the Taylor expansion of the Planck function

as

B(�

0

) =

1

X

n=0

(�

0

� �)

n

n!

"

dB(�

0

)

d�

0

#

�

Substitution in (4.15) and (4.16) gives us the values of J(�) and F (�) deep

inside of the medium

J(�) � B(�) +

1

"k

B

00

(�) + � � �

F (�) � �

1

k

B

0

(�)�

1

"k

3

B

000

(�) + � � �

where the restriction to the �rst terms only is referred to as the di�usion

approximation.

4.1.3 Isothermal media

In the simple case of a medium with the constant Planck function B(�) = B

we have

J(�) =

 

1�

cosh(k

p

"�)

cosh(k

p

"�) +

p

" sinh(k

p

"�)

!

B; (4.17)
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F (�) =

p

" sinh(k

p

"�)

cosh(k

p

"�) +

p

" sinh(k

p

"�)

B; (4.18)

I

out

= 2J(�) = 2F (�) =

2

p

" tanh(k

p

"�)

1 +

p

" tanh(k

p

"�)

B: (4.19)

Fig. 4.2 shows the angular distribution of the speci�c intensity emerging from

a plane-parallel isothermal layer. The results from (4.19) are compared with

those obtained by means of the separable approximation method. Since the

scattering term in the transfer equation disappears for " = 1, the results

of both the methods are the same. In the case of optically thin slabs the

agreement is quite good with the exception of grazing incidence (�! 0). In

optically thick media the agreement is much worse. The two-stream approx-

imation method cannot even reproduce the correct behavior of the curves.

Good accuracy can only be achieved in the narrow interval around � � 0:5.

The choice of the beams with an inclination from this interval may also de-

liver the internal distribution of the radiation �eld quite accurately as shown

in Fig. 4.1.

For optically thick media surface values of the mean intensity and the

source function look like

J(�) =

p

"

1 +

p

"

B;

S(�) = (1� ")J(�) + "B =

p

"B:

The last equation is the well-known

p

"-law. The basic reason for this lack

of emergent photons is that a photon on its way out in the direction to

the observer su�ers the chance being scattered back to internal regions of

the medium where its random-walk steps are much shorter. It may well be

con�ned there until it is eventually destroyed. Thus photons experience more

di�culty in escaping. Compensation would occur if photons would enter from

outside and be scattered back into the direction towards the observer, but

such photons are absent because of the boundary conditions assumed.

There is asymmetry between creation and destruction of photons near the

surface because photons may leave the medium without returning into the

thermal pool. In LTE this photon leak is simply ignored by requiring thermal

equilibrium between photon emission ( = creation ) and photon extinction

( = destruction ) all the way. Dropping the LTE condition means that the

transport of photons is coupled self-consistently with the "transport" of lack

of atomic excitation. The scattering part of the source function senses the

anisotropy of the radiation �eld which increases towards the surface.

An appropriate thought experiment is to add a thin layer with " � 1

on top of the medium. It creates a few additional photons and destroys a
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Fig. 4.2: Angular distribution of the emergent intensity in slabs of di�erent optical

thickness � with di�erent values of " and constant Planck function B(�) = 1. The

comparison with the precise solutions is shown. Equation (4.19) was used for the

derivation of the results in the two-stream approximation. The precise solutions

were obtained by means of the separable approximation method as described in

the next chapter.
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few existing ones, but its main e�ect is that it scatters many more. The

scattering prevents the 
ux; extra scattering reduces the emergent intensity.

The same must hold for the next thin surface layer. A quantitative analysis

of this experiment, producing the

p

"-law exactly, is given by Hubeny (1987).

4.2 Depth-dependent "(� )

So far we have discussed the problem of the radiative transfer in the slabs

with constant de-excitation coe�cient ". However, there are many cases such

as the transmission of light through the earth's atmosphere, the emission

of radiation by nonisotropic high-temperature gas streams etc. where the

properties of the medium may signi�cantly vary with position. Even in the

case of stellar atmospheres it is desirable to use varying ", because the density

decreases roughly exponentially outwards resulting in the increase of the

collision probability inwards.

4.2.1 General solution

In order to obtain the desired solution we use a di�erent method, namely, the

Feautrier technique ( cf. Mihalas 1978). Adding and subtracting equations

(4.3) and (4.4) we have

dF (�)

d�

= k "(�)(B(�)� J(�));

dJ(�)

d�

= �kF (�):

Elimination of F (�) produces a second order di�erential equation

 

�

d

2

d�

2

+ k

2

"(�)

!

J(�) = k

2

"(�)B(�): (4.20)

Further we shall use k = 1. An extension to the case of an arbitrary k can be

done easily. Due to the symmetry it is su�cient to obtain the solution e.g.

for the upper part of the slab: 0 � � � �. Then instead of the boundary

condition at the lower surface we use the re
ection condition at the symmetry

plane: I

+

(0) = I

�

(0). Since F (�) = �J

0

(�), the boundary conditions can

be written in terms of J as follows

J(�) + J

0

(�) = 0; J

0

(0) = 0: (4.21)

Let fY

1

; (�); Y

2

(�)g be linearly independent solutions of the homogeneous

equation (4.20) satisfying the normalization condition of the Wronskian

W = Y

1

(�)Y

0

2

(�)� Y

2

(�)Y

0

1

(�) = 1:
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Then the formal solution of equation (4.20) becomes

J(�) = C

1

Y

1

(�) + C

2

Y

2

(�)

+

Z

�

0

(Y

1

(�)Y

2

(�

0

)� Y

1

(�

0

)Y

2

(�)) B(�

0

) d�

0

; (4.22)

J

0

(�) = C

1

Y

0

1

(�) + C

2

Y

0

2

(�)

+

Z

�

0

(Y

0

1

(�)Y

2

(�

0

)� Y

1

(�

0

)Y

0

2

(�)) B(�

0

) d�

0

: (4.23)

C

1

and C

2

are arbitrary constants whose values are de�ned by the boundary

conditions (4.21)

C

1

= �Y

0

2

(0)

Z

�

0

Z(�)�Y(�

0

)

Z(�)�Y

0

(0)

B(�

0

) d�

0

;

C

2

= Y

0

1

(0)

Z

�

0

Z(�)�Y(�

0

)

Z(�)�Y

0

(0)

B(�

0

) d�;

where the following notations have been used

Y(�) =

 

Y

1

(�)

Y

2

(�)

!

; Z(�) =

 

Y

1

(�) + Y

0

1

(�)

Y

2

(�) + Y

0

2

(�)

!

; � =

 

0 1

�1 0

!

:

Note that we do not distinguish column and row vectors, and a matrix prod-

uct in the present notation means xUy =

P

N

i;j

x

i

U

ij

y

j

, where x and y are

N-component vectors and U is an N �N matrix.

Substitution in (4.22) gives

J(�) = �

Y

1

(�)Y

0

2

(0)

Z(�)�Y

0

(0)

Z

�

0

Z(�)�Y(�

0

)B(�

0

) d�

0

+

Y

2

(�)Y

0

1

(0)

Z(�)�Y

0

(0)

Z

�

0

Z(�)�Y(�

0

)B(�

0

) d�

0

+

Z

�

0

Y(�)�Y(�

0

)B(�

0

) d�

0

;

or

J(�) =

Y

0

(0)�Y(�)

Z(�)�Y

0

(0)

Z

�

0

Z(�)�Y(�

0

)B(�

0

) d�

0

+

Z

�

0

Y(�)�Y(�

0

)B(�

0

) d�

0

: (4.24)

For arbitrary vectors U, V, X, Y the following identity is valid

(U(u)�V(v))(X(x)�Y(y)) = (4.25)

(U(u)�Y(y))(X(x)�V(v))� (U(u)�X(x))(Y(y)�V(v)):
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Table 4.1: The di�erent kinds of "(�) and corresponding linearly independent

solutions of the homogeneous equation (4.20). The divergence at � = 0 in the last

three examples can be removed by an appropriate coordinate shift.

"(�) Y

1

(�) Y

2

(�)

b

2

cosh(b�)

1

b

sinh(b�)

a� + b Ai

�

a�+b

jaj

2=3

�

�

jaj

2=3

a

Bi

�

a�+b

jaj

2=3

�

a

2

�

2

+ b a

1=4

e

�

a�

2

2

F (

a+b

4a

;

1

2

; a�

2

) a

�1=4

e

�

a�

2

2

�F (

3a+b

4a

;

3

2

; a�

2

)

b

2

m

2

�

1

4

�

2

+

b

2

a

2

�

2b

�

2

p

� K

m

(a�

b

)

1

b

p

� I

m

(a�

b

)

1

4

�

b�2a

2�

�

b(2�b)

4�

2

�

b

2

e

�

�

2

F (a; b; �)

1

1�b

�

1�b

2

e

�

�

2

F (a� b+ 1; 2� b; �)

b

2

m

2

�

1

4

�

2

�

kab

2

�

b

�

2

+

b

2

a

2

�

2b

4�

2

�

1�b

2

M

k;�m

(a�

b

)

1

2mab

�

1�b

2

M

k;m

(a�

b

)

Ai(�), Bi(�) { the Airy functions,

I

m

(�), K

m

(�) { the modi�ed Bessel functions,

F (a; b; �) { the Kummer con
uent hypergeometric function,

M

k;m

(�) { the Whittaker function, 2m 6= �1;�2;�3 : : :

Breaking the interval of integration in the �rst integral in (4.24) and using

(4.25) we get

J(�) =

Z(�)�Y(�)

Z(�)�Y

0

(0)

Z

�

0

Y

0

(0)�Y(�

0

)B(�

0

) d�

0

+

Y

0

(0)�Y(�)

Z(�)�Y

0

(0)

Z

�

�

Z(�)�Y(�

0

)B(�

0

) d�

0

: (4.26)

Since Z(�)�Y(�) = �1, the mean intensity at the boundary � = � becomes

J(�) =

Z

�

0

Y(�

0

)�Y

0

(0)

Z(�)�Y

0

(0)

B(�

0

) d�

0

: (4.27)

As one can see the exact solution of the radiative transfer equation for

the given run of "(�) requires only the knowledge of the linearly independent

solutions of the homogeneous equation (4.20).

4.2.2 Examples

Some examples of the continuous distributions of "(�) and corresponding

solutions Y

1

(�) and Y

2

(�) (taken from Abramowitz & Stegun 1972; Kamke
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Fig. 4.3: Variations of the

mean intensity in optically thin

(top) and optically thick (bot-

tom), isothermal, B(�) = 1,

slabs with the di�erent distrib-

utions of "(�) (see insert).

1965) have been collected in Table 4.1. The free parameters must be chosen

in such a way to satisfy the condition of the location of "(�) in the interval

between 0 and 1.

In spite of the small variation range of "(�), solutions obtained for di�er-

ent "(�) may have signi�cant di�erence, especially in optically thick media.

So, in Fig. 4.3 solutions of equation (4.20) with constant and linear "(�)

are shown. In optically thin isothermal media (top) this di�erence does not

exceed 10%. However, it becomes larger with the increasing of the total op-

tical thickness and can reach 50% at some points in optically thick media

(bottom).

Although the functions presented in Table 4.1 are suitable for the ap-

proximation of a large variety of internal distributions of "(�), they cannot

be applied for the description of media with strong density condensations.

Furthermore, the solution of the homogeneous equation (4.20) can hardly

be found directly with "(�) approximated by a function with spikes. To

avoid these di�culties we suggest the following procedure: if "(�) can be
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Fig. 4.4: The mean inten-

sity as a function of the opti-

cal depth and "(�) whose inter-

nal distribution can be approx-

imated by a resonance curve.

The dependence on the shape

and the position of the reso-

nance is shown.

represented as

"(�) = �A(�)

d

d�

 

A

0

(�)

A

2

(�)

!

+ "

T

(�)A

4

(�); (4.28)

then the corresponding solutions of the homogeneous equation (4.20) can be

expressed through already known solutions in the following way

Y

i

(�) =

1

A(�)

Y

T

i

(�(�)); (i = 1; 2) (4.29)

where functions "

T

(�), Y

T

1

(�) and Y

T

2

(�) are taken from Table 4.1, A(�)

is known function and the di�erential equation �

0

(�) = A

2

(�) de�nes the

function �(�).

For example, the choice of

A(�) = 0:9 +

0:3

0:3 + (� � 8)

2

; "

T

= 0:047

leads to the dashed curves in the upper part of Fig. 4.4. The altering of the

parameters results in the other curves.



4.2. DEPTH-DEPENDENT "(�) 33

Fig. 4.5: The mean intensity at the boundary as a function of the optical thickness

�. The curves correspond to the di�erent runs of "(�): "(�) = �=� (dashed),

"(�) = 0:6(�=�)

2

+ 0:3 (dashed-dotted), "(�) = ��=�+ 1 (dotted) and "(�) = 0:5

(solid).

4.2.3 Diagnostics of "(�)

The prediction of the internal structure of a medium from observational

data is one of the most important tasks in astrophysics. The only observable

quantity of the problem is the emergent intensity which is a function of

wavelength �. The total optical thickness of a layer also depends on �.

The knowledge of these functions allows us to plot J(�(�)) = J(�) and

therefore makes the prediction of "(�) possible. In the general case when

the solution depends both on temperature and "(�), the diagnostic of "(�)

is hardly possible. However, in the isothermal media the features of the

solutions associate only with a de�nite behavior of "(�) (see Fig. 4.5) and

therefore the derivation of the corresponding parameters of such the behavior

seems not to be so hopeless. In order to con�rm that, we consider a slab with

B = 1, constant and linear "(�). In these cases the integration in (4.27) gives

J(�) =

p

" tanh(

p

"�)

1 +

p

" tanh(

p

"�)

B for "(�) = "; (4.30)

J(�) =

A

1 +A

B for "(�) =

�

a

�

�

� + b; (4.31)

where

A =

a�

1=3

jaj

2=3

(

Ai

0

 

a+ b

(jaj=�)

2=3

!

Bi

0

 

b

(jaj=�)

2=3

!

� Ai

0

 

b

(jaj=�)

2=3

!

Bi

0

 

a+ b

(jaj=�)

2=3

!),
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Fig. 4.6: The mean intensity at the boundary of a medium with a strong density

condensation.

(

Ai

 

a+ b

(jaj=�)

2=3

!

Bi

0

 

b

(jaj=�)

2=3

!

� Ai

0

 

b

(jaj=�)

2=3

!

Bi

 

a + b

(jaj=�)

2=3

!)

:

These expressions can now be used for the �tting of observational data. In

the case of a good �t the parameters of "(�) can be derived without much

e�ort.

The derivation of the corresponding parameters can be done much easier

if we take into account behaviors of these curves at the limit of large and small

�. At the limit of small � these functions are proportional to � whereas at

large � they saturate (Fig. 4.5) in accordance with the following

J(�) =

p

"

1 +

p

"

B

J(�) =

p

a+ b

1 +

p

a+ b

B

for �� 1; (4.32)

J(�) = ("�� "

2

�

2

)B

J(�) = (�"�� �"

2

�

2

)B

for �� 1; (4.33)

where �" = (a + 2b)=2.

We want to stress, however, that some features such as spikes occurring in

intermediate points may be missed during the determination of the internal

behavior of "(�) by means of this method (Fig. 4.6).
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As mentioned above the presence of some peculiarities can point to the

de�nite behavior of "(�) and, thus, simplify its diagnostic. For example, the

maximum of the function J(�) may indicate a linearly decreasing "(�) (Fig.

4.5), although other distributions of the de-excitation coe�cient may also

result in such a feature.

4.2.4 Stochastic "

The method described in subsection 4.2.2 enables us to consider media with

a small number of inhomogeneities. However, in very inhomogeneous media

whose properties can only be treated statistically it no longer works. Mean-

while, such media are ubiquitous as high resolution observations of the solar

atmosphere, nova and supernova remnants, accretion disks etc. have shown

and their investigations are very important. For the need to include strong

spatial variations in reliable models see e.g. Gu et al. (1997). Unfortunately,

in contrast to the Navier-Stokes equations, for the radiative transfer equa-

tion there is not yet a general homogenization scheme available that can

deal with such situations, and exististing algorithms (see Gierens et al. 1986;

Lindsey & Je�eries 1990; Nikoghossian et al. 1997) have a very limited range

of application.

In order to solve the radiative transfer equation in a slab with many

strong density inhomogeneities we divide it into N layers

[0;�] =

N

[

j=1

[(j � 1)�; j�]; � =

�

N

: (4.34)

The Planck function and the de-excitation coe�cient are assumed to be con-

stant in each layer but their values di�er from one layer to an other

"(�) = "

j

= const

B(�) = B

j

= const

for � 2 [(j � 1)�; j�]:

In addition, "

j

is a function of a random number r

j

whose values may be

independent as well as obey correlations from layer to layer.

We do not use the formalism of Peraiah (1984) or that of Schmidt &

Wehrse (1987) based on the interaction principle which relates the incident

and emergent intensities in a layer. Instead of these, we propose another

method which relates the mean intensity and the 
ux at one boundary of

the layer with the same quantities at another boundary. By introducing the

vector of the mean intensity

J

j

(�) =

 

J

j

(�)

J

0

j

(�)

!

(4.35)
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equations (4.22)-(4.23) may be written in a matrix form

J(�) = R(�)C+R(�) �

Z

�

0

Y(�

0

)B(�

0

) d�

0

; (4.36)

with

R(�) =

 

Y

1

(�) Y

2

(�)

Y

0

1

(�) Y

0

2

(�)

!

; C =

 

C

1

C

2

!

:

Taking into account the boundary conditions

J(0) =

 

J(0)

0

!

= J(0)f ; J(�) =

 

J(�)

�J(�)

!

= J(�)g; (4.37)

with

f =

 

1

0

!

and g =

 

1

�1

!

we get the formal solution as

J(�) = U(�; 0)J(0) +R(�) �

Z

�

0

Y(�

0

)B(�

0

) d�

0

; (4.38)

where

U(�

1

; �

2

) = R(�

1

)R

�1

(�

2

); (�

1

� �

2

):

In the case of constant "(�) and B(�) we obtain the equation where corre-

sponding values in the j-th cell can be represented in terms of those in cell

(j � 1) by the following:

J

j

= U

j

J

j�1

�K

j

B

j

; (4.39)

with

U

j

=

 

cosh(!

j

�)

1

!

j

sinh(!

j

�)

!

j

sinh(!

j

�) cosh(!

j

�)

!

; K

j

=

 

cosh(!

j

�)� 1

!

j

sinh(!

j

�)

!

B

j

and "

j

denote the value of the Planck function and the de-excitation

coe�cient at the upper boundary of each layer.

A successive application of equation (4.39) { with the corresponding

boundary conditions { allows us to study the evolution of the mean intensity

in the medium (see Appendix A)

J

j

=

(eB(N; j + 1))(fU(j; 1)f)

eU(N; 1)f

+

(eU(N; j + 1)h)(fW(j; 1))

eU(N; 1)f

; (4.40)
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Fig. 4.7: An example of the stochastic distribution of "

as well as to compute the value of J at the boundary

J

N

=

fW(N; 1)

eU(N; 1)f

; (4.41)

where

U(j; i) = U

j

U

j�1

:::U

i

; (i � j);

B(j; i) = U(j; i + 1)K

i

B

i�1

+U(j; i + 2)K

i+1

B

i

+

+ ::: +U

j

K

j�1

B

j�2

+K

j

B

j�1

;

W(j; 1) = W

1

B

0

+U

>

(1; 1)W

2

B

1

+ :::+U

>

(j � 1; 1)W

j

B

j�1

;

and

W

j

= U

>

j

�K

j

=

 

!

j

sinh(!

j

�)

cosh(!

j

�)� 1

!

; e =

 

1

1

!

; h =

 

0

1

!

The representations given for the matrix U

j

and the vectors K

j

and W

j

are unfortunately not well suited for numerical calculations, since the hyper-

bolic functions involved lead to machine over
ows for large �. In order to

overcome this problem we extract factors X = cosh(!

j

�) from the expres-

sions. It can be shown that the X-terms in the numerator and denominator

of expressions (4.40)-(4.41) cancel, i.e we can use the following formulae

U

j

=

 

1

1

!

j

tanh(!

j

�)

!

j

tanh(!

j

�) 1

!

; (4.42)

K

j

=

 

1� sech(!

j

�)

!

j

tanh(!

j

�)

!

; W

j

=

 

!

j

tanh(!

j

�)

1� sech(!

j

�)

!

:
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Fig. 4.8: Solutions obtained for 50 di�erent realizations of ". The bold curve was

obtained for �".

Fig. 4.9: Statistical distribution of J(�) from Fig.4.8. Top left: The mean value

is hJi = 1:04�10

�5

, the standard deviation � = 0:14�10

�5

, the value of the bold

curve (see Fig.4.8) at this point is J

�"

= 1:09� 10

�5

. Top right: hJi = 1:03� 10

�2

,

� = 0:14 � 10

�2

, J

�"

= 1:08 � 10

�5

. Bottom left: hJi = 0:24, � = 1:65 � 10

�2

.

J

�"

= 0:247. Bottom right: hJi = 0:22, � = 0:052, J

�"

= 0:247.

One is left with equations that involve tanh and sech functions only. If it is

necessary, the sech(x) for large arguments can be approximated by 2e

�x

. In
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Fig. 4.10: The variation range vs the number of layers taken at � = 50.

this way we have obtained convenient expressions that are well suited for all

optical depths.

The solution obtained is written as a sequence of products of 2 � 2-

matrices and two-component vectors that is easily implemented. It is no

longer necessary to solve the system of 2(N�1) linear equations (N { number

of layers) (Wehrse 1981) or to use the method of the forward elimination

and back substitution (Peraiah 1984) for the determination of the internal

distribution of J . The problems related to the �nding of the corresponding

inverse matrix and the keeping of many coe�cients are thus avoided, so that

the numerical calculations are sped up.

In our example we divide the slab into 200 layers. We require that values

of "

j

lie in interval [0,1] and probability of appearance of small "

j

be higher.

As an example of such "

j

we take the following

"

j

= 10

�4r

j

; (4.43)

where r

j

are random numbers from the interval [0; 1].

A realization of " is shown in Fig. 4.7. In Fig. 4.8 one can see the set of

solutions for 50 realizations of " as well as the solution for �" in a medium with

B = 1. Their statistical distributions at di�erent � are shown in Fig. 4.9.

Since the number of layers does not change, the width of each layer be-

comes larger with increasing � and " takes, thus, a block structure. This

seems to be a reason of large scattering of curves at large �. In particu-

lar, the dependence of the variation range on the number of layers shown in

Fig. 4.10 con�rms this assumption.



40 CHAPTER 4. TWO-STREAM APPROXIMATION



Chapter 5

Separable approximation

A method for the solution of the plane-parallel radiative transfer equation

without its spatial and angular discretizations is presented in this chapter.

The basics of this largely analytical method were originally developed by

E�mov et al. (1995, 1997). In these papers the attention was mostly paid

to mathematical aspects of the problem and algorithmic aspects were hardly

considered. Although some applications were discussed, they all referred to

problems without photon sources in a medium. The problem with photon

sources is treated here. In order to solve the inhomogeneous radiative transfer

equation with a depth-dependent Planck function additional methods must

be involved. Using the formalism of meromorphic functions as well as Krein's

formula for the evaluation of inverse operators we are able to represent the

solution in the form of an in�nite sum. However, its extremely slow con-

vergence makes this solution ine�cient. The e�ciency can be signi�cantly

improved by means of an approximation of the in�nite sum by a �nite one

where the number of terms N de�nes the order of the approximation. There

exist at least two methods which enable us to make this approximation in

such a way that the solutions in the low approximation orders (N � 5) may

be highly precise.

The analytical solution of the transfer equation by Chandrasekhar (1950)

is not commonly used because Chandrasekhar functions H, X and Y are dif-

�cult to calculate. Furthermore, it provides the angular distribution of the

emergent intensity only. Numerical methods are usually not well suited for

media with steep gradients and/or large optical depths and scattering frac-

tion. The present method does not su�er from these problems and accurate

and rather fast solutions can be obtained for a wide range of parameters.

41
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5.1 Basic equations

Again, as in the previous chapter, we start with the plane-parallel radiative

transfer equation of the following form

�

dI(�; �)

d�

= �f

�

I(�; �) + �f

�

Z

+1

�1

I(�; �

0

) d�

0

+ "f

�

B(�): (5.1)

with � = (1 � ")=2, f

�

is de�ned in (2.9). The de-excitation coe�cient " is

assumed to be constant.

We introduce I(�; �) =

p

� I(�; �) and regard I(�; �) as a vector in the

in�nite-dimensional space with respect to �. Moreover, we distinguish inten-

sities in the positive I

+

(�; �) and negative direction I

�

(�; �). The represen-

tation of the speci�c intensity as the two-component vector

I(�; �) =

 

I

+

(�; �)

I

�

(�; �)

!

enables us to write equation (5.1) in compact matrix notation

dI(�; �)

d�

= �M

��

0

I(�; �

0

) +B(�) (5.2)

where the integration over the index �

0

is implied. The matrix M and the

vector B are given by

M

��

0

= f

�

(D� jvi � huj)

��

0

; B(�) = "f

�

B(�)jvi

with

D

��

0

=

1

�

�

3

�(�� �

0

); jvi =

1

p

�

je

�

i; jui =

1

p

�

je

+

i;

Subsequently we shall drop the index � in the notation and use the fol-

lowing abbreviation

F (M)jvi =

Z

1

0

d�

0

p

�

0

F (M)

��

0

je

�

i;

hujF (M)jvi =

ZZ

1

0

d�d�

0

p

��

0

he

+

jF (M)

��

0

je

�

i:

Carrying out the statements (4.6) to (4.9) with the new matrix M we

obtain the equation for I

out

(�)

I

out

= he

+

j

"f

�

�

3

+ tanh(M�)

�

Z

0

cosh(M�

0

)

cosh(M�)

B(�

0

)jvi d�

0

: (5.3)
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The internal distribution of the radiation �eld is given by the solution of

equation (5.1). It is su�cient to solve this equation for I

+

, since due to the

symmetry I

�

follows immediately

I

+

(��) = I

�

(�): (5.4)

Thus for the given mean intensity and the boundary conditions we have

I

+

(�; �) =

f

�

�

�

Z

��

e

�

f

�

�

(���

0

)

[(1� ")J(�

0

) + "B(�

0

)] d�

0

(5.5)

The mean intensity is given by

J(�) =

1

2

Z

1

0

�

I

+

(�; �

0

) + I

�

(�; �

0

)

�

d�

0

=

1

2

Z

1

0

1

p

�

0

�

I

+

(�; �

0

) + I

�

(�; �

0

)

�

d�

0

=

1

4

huj

�

I

+

(�) + I

�

(�)

�

je

+

i:

Using the de�nition of I(�) and equation (5.4) we obtain

I(�) + I(��) =

�

I

+

(�) + I

�

(�)

�

je

+

i:

So that the mean intensity becomes

J(�) =

1

4

hujI(�) + I(��)i: (5.6)

The substitution of (4.10) and (5.3) into (5.6) leads to

J(�) =

"f

�

4

�

Z

��

(G

1

(�; �

0

) +G

2

(� � �

0

)) B(�

0

) d�

0

(5.7)

where

G

1

(�; �

0

) =

*

u

�

�

�

�

�

cosh(M�)

cosh(M�)

1

�

3

+ tanh(M�)

cosh(M�

0

)

cosh(M�)

�

�

�

�

�

v

+

G

2

(� � �

0

) =

*

u

�

�

�

�

�

sinh(M(�� j� � �

0

j))

cosh(M�)

�

�

�

�

�

v

+
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5.2 Evaluation of the matrix elements

In order to evaluate (5.3) and (5.7) we apply the formalism of meromorphic

functions and Krein's formula.

By de�nition, a meromorphic function is a function that is analytic, ex-

cept for a set of poles �

m

. For a meromorphic function F (z) decreasing for

jzj ! 1 the following representation is valid

F (z) =

X

m

F

m

z � �

m

(5.8)

where

F

m

= lim

z!�

m

(z � �

m

)F (z):

In our case we have the meromorphic functions

cosh(Ma)

cosh(M�)

;

sinh(Ma)

cosh(M�)

; jaj � �

which in accordance with (5.8) can be represented by

F (M) =

X

m

F

m

M� �

m

=

1

X

m=�1

F

m

D+ iy

m

� jvi � huj

(5.9)

where the constants F

m

= F=f

�

depend on the particular form of the function

F (M), and the simple poles are

�

m

= �iy

m

= �

i�

�f

�

�

1

2

+m

�

:

In order to calculate an inverse operator as that in (5.9) we use Krein's

formula which states that for an operator S acting in an appropriate space

L and being of the following form

S = H �

N

X

i;j

jV

i

ic

ij

hW

j

j = H � jV i c hW j

the inverse operator S

�1

can be represented by

S

�1

=

1

H

+

1

H

jV iUhW j

1

H

(5.10)

where

U = (1� cT )

�1

c; T

ij

=

�

W

i

�

�

�

�

1

H

�

�

�

�

V

j

�

:
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H is an operator, jV

i

i and jW

i

i are vectors of the space L, c

ij

is a number

matrix.

The application of Krein's formula leads to

F (M) = F (f

�

D) +

X

m

1

D+ iy

m

�

�

�

�

�

v

+

�F

m

C(iy

m

)

*

u

�

�

�

�

�

1

D+ iy

m

(5.11)

where

C(iy

m

) = C

m

= 1�

*

u

�

�

�

�

�

�

D+ iy

m

�

�

�

�

�

v

+

(5.12)

= 1� 2�

Z

1

0

1

1 + �

2

y

2

m

d� = 1� 2�

arctan(y

m

)

y

m

Using (5.11) and (5.12) we obtain

F (M)jvi =

X

m

F

m

C

m

1

D+ iy

m

�

�

�

�

�

v

+

;

hujF (M) =

X

m

F

m

C

m

*

u

�

�

�

�

�

1

D+ iy

m

;

hujF (M)jvi =

1

�

X

m

F

m

�

1

C

m

� 1

�

:

In order to evaluate these expressions we apply the following representation

1

C

m

= 1�

2t

0

C

1

1

t

2

0

+ y

2

m

+

Z

1

0

�(t)

1 + y

2

m

t

2

dt (5.13)

where

�(t) =

2�

�

1 + �t ln

�

1�t

1+t

��

2

+ (��t)

2

;

t

0

is a positive root of the equation

C(t

0

) = 1 +

�

t

0

ln

�

1� t

0

1 + t

0

�

= 0

and

C

1

=

dC(t)

dt

�

�

�

�

�

t=t

0

=

1� t

2

0

� 2�

t

0

(1� t

2

0

)

:

Since

X

m

F

m

�

2

+ y

2

m

=

X

m

F

m

2�

 

1

�+ iy

m

+

1

�� iy

m

!

=

1

2�

(F (�f

�

)� F (��f

�

))
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we have for an odd F (M)

hujF (M)jvi =

1

�

 

�

2

C

1

F (f

�

t

0

) +

Z

1

0

�(t)

t

F

 

f

�

t

!

dt

!

:

In a similar way we obtain

X

m

F

m

�

2

+ y

2

m

1

D+ iy

m

=

F (f

�

D)

�

2

�D

2

�

1

2�

 

F (�f

�

)

��D

+

F (��f

�

)

�+D

!

;

Finally, substituting instead of F (M) its actual form we get

*

u

�

�

�

�

�

sinh(M(�� j� � �

0

j))

cosh(M�)

�

�

�

�

�

v

+

= 	(j� � �

0

j);

cosh(M�)

cosh(M�)

�

�

�

�

�

v

+

= �(�; �)jvi ; (5.14)

*

u

�

�

�

�

�

cosh(M�)

cosh(M�)

= hu j�(�; �)

where

	(�) = �

2

�C

1

sinh(f

�

t

0

(�� �))

cosh(f

�

t

0

�)

+

1

�

Z

1

0

�(t)

t

sinh(f

�

(�� �)=t)

cosh(f

�

�=t)

dt

and

�(�; �) =

cosh(f

�

�=�)

cosh(f

�

�=�)

(5.15)

�

2t

0

C

1

 

cosh(f

�

�=�)

cosh(f

�

�=�)

�

cosh(f

�

t

0

�)

cosh(f

�

t

0

�)

!

�

2

t

2

0

�

2

� 1

+

Z

1

0

 

cosh(f

�

�=�)

cosh(f

�

�=�)

�

cosh(f

�

�=t)

cosh(f

�

�=t)

!

�

2

�(t)

�

2

� t

2

dt:

The last operator which has to be represented in a form convenient for

numerical work is (1+�

3

tanh(M�))

�1

. The following representation is valid

for the operator tanh(M�)

tanh(M�) =

1

�f

�

1

X

m=�1

1

D+ iy

m

� jvi � huj

(5.16)

The application of Krein's formula leads to

�

3

tanh(M�) =

�

3

�f

�

X

m

 

1

D+ iy

m

+

D� iy

m

D

2

+ y

2

m

�

�

�

�

�

v

+

�

C

m

*

u

�

�

�

�

�

D� iy

m

D

2

+ y

2

m

!

= �

3

tanh(f

�

D�) +

2�

3

�f

�

1

X

m=0

D

D

2

+ y

2

m

�

�

�

�

�

v

+

�

C

m

*

u

�

�

�

�

�

D

D

2

+ y

2

m

�

2�

3

�f

�

1

X

m=0

1

D

2

+ y

2

m

�

�

�

�

�

v

+

� y

2

m

C

m

*

u

�

�

�

�

�

1

D

2

+ y

2

m
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Thus we have

1 + �

3

tanh(M�) = w

(0)

+ w

(1)

P

�

� w

(2)

P

+

(5.17)

= (w

(0)

+ w

(1)

)P

�

+ (w

(0)

� w

(2)

)P

+

where P

�

=

1

2

je

�

ihe

�

j are the projection operators with the properties:

P

+

+ P

�

= 1; P

2

�

= P

�

; P

�

P

�

= 0:

The operators w

(j)

= w

(j)

(�; �

0

), (j = 0; 1; 2) are given by

w

(0)

(�; �

0

) =

"

1 + tanh

 

f

�

�

�

!#

�(�� �

0

); (5.18)

w

(1)

(�; �

0

) =

4�

�f

�

1

X

m=0

1

C

m

�

p

�

1 + y

2

m

�

2

�

p

�

0

1 + y

2

m

�

02

; (5.19)

w

(2)

(�; �

0

) =

4�

�f

�

1

X

m=0

y

2

m

C

m

�

�

3=2

1 + y

2

m

�

2

�

�

03=2

1 + y

2

m

�

02

: (5.20)

The operators w

(1)

and w

(2)

are symmetric, positive de�nite and have �nite

traces (E�mov et al. 1995, 1997), i.e.

Trw

(j)

=

Z

1

0

w

(j)

(�; �) d� <1; (j = 1; 2):

The inversion of (5.17) is given by

1

1 + �

3

tanh(M�)

=

1

w

(0)

+ w

(1)

P

�

+

1

w

(0)

� w

(2)

P

+

so that

1

�

3

+ tanh(M�)

=

�

1

w

(0)

� w

(2)

�

1

w

(0)

�

P

+

�

3

(5.21)

�

�

1

w

(0)

�

1

w

(0)

+ w

(1)

�

P

�

�

3

+

1

w

(0)

�

3

5.3 Separable representation of the solution

Krein's formula (5.10) can now be applied to the expressions in brackets in

(5.21). w

(0)

corresponds to H and the terms

p

�

1 + y

2

m

�

2

�

p

�

0

1 + y

2

m

�

02

; and

�

3=2

1 + y

2

m

�

2

�

�

03=2

1 + y

2

m

�

02

which are present in the de�nitions (5.19) and (5.20) can be regarded as

the vectors V

m

and W

m

. Unfortunately, the in�nite sums converge very
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slowly and one needs up to several thousands terms in order to achieve the

required accuracy. Consequently, the dimension of the matrices involved

in (5.10) becomes very large that makes the application of Krein's formula

ine�cient here. In order to accelerate computations we use the following

approximations for w

(1)

and w

(2)

.

The operators w

(1)

and w

(2)

are represented by

w

(1)

(�; �

0

) =

p

� �

E(�

2

)� E(�

02

)

�

2

� �

02

�

q

�

0

; (5.22)

w

(2)

(�; �

0

) = �

3=2

�

E(�

2

)

�

2

�

E(�

02

)

�

02

�

02

� �

2

� �

03=2

(5.23)

where

E(�

2

) =

4�

�f

�

1

X

m=0

1

C

m

�

�

2

1 + y

2

m

�

2

: (5.24)

Let us approximate the function E(t) by a �nite sum

E(t) � E

N

(t) =

N

X

n=1

a

n

t

1 + A

n

t

: (5.25)

Then we get for (5.22) and (5.23)

w

(1)

(�; �

0

) �

N

X

nn

0

V

(1)

n

(�) a

n

�

nn

0

V

(1)

n

0

(�

0

) = jV
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iJ
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hV

(1)

j; (5.26)

w
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N
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nn
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where

V

(1)

n

(�) =

p

�
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n

�

2
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(1)

nn

0
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n

�

nn

0

;

V

(2)

n
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�

3=2

1 + A

n

�

2

; J

(2)

nn

0

= a

n

A

n

�

nn

0

:

The number N in (5.25) de�nes the N -th separable approximation.

Taking into account representations (5.26) and (5.27) and using Krein's

formula we now get

1

w

(0)

�

1
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=

1
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=

1
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E

S
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D

V
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�

�

�

1
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(0)
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where

S

(1)

nn

0

=

�

1

1 + J

(1)

U

(1)

J

(1)

�

nn

0

; S
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nn
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�

1
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nn

0
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U
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nn

0
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2

1

Z
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�

�

1 + e

�

2�f

�

�
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(1 + A
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�

2

)(1 + A

n
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�
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nn
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1
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�

(1 + A
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�
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�

2

)
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The substitution of the third term of (5.21) into (5.7) gives

*

u

�

�

�

�

�

cosh(M�

0

)

cosh(M�)

�

3
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cosh(M�)
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:

Because P

�

�

3

je

�

i = 0, the contribution of the second term of (5.21) equals

zero. The substitution of the �rst term gives
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�

�

�
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n
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je
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i

and
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�

�

�

�
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�
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*
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=
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�
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Taking into account the above expressions the mean intensity becomes
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(5.28)
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and the emerging intensity takes the form

I

out

(�) = "f

�

�

1 + e

�

2�f

�

�

�

0

@

1

�

�
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0
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0
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)B(�

0

) d�

0

1

A

(5.29)

where the Einstein's convention is implied.

5.4 E�ciency of the method

The practical e�ciency of the method depends largely on how well the lower

orders of the approximation represent the exact solution. In order to obtain

an accurate solution in the low approximation orders a clever approximation

of the function E(t) is necessary. The representation of the original function

(5.24) by the �nite sum (5.25) with the minimal number of terms and without

loss of accuracy is the crucial point of our investigation.

We propose two methods for the approximation (5.25). The �rst was

originally developed by Stieltjes and Markov (Appendix B.1). Using the

theory of the orthonormal polynomials, the coe�cients a

n

and A

n

can be

found very quickly. However, roundo� errors appearing in the calculation of

the coe�cients p

kl

in (B.1.5) do not allow the method to be implemented,

in particular, by means of FORTRAN codes. The method is well suited

for programs like MATHEMATICA. The convergence of the �nal solution is

moderate in optically thick media and high in optically thin ones.

The second method is the so called "Points method". It consist of the so-

lution of the system of 2N algebraic equations as described in Appendix B.2.

In contrast to the Stieltjes-Markov method it does not su�er from roundo�

errors, and FORTRAN codes run very well. Some matrices become badly

conditioned in the high approximation orders (N > 6). However these cases

imply a very high accuracy of the �nal solution, which is usually not needed

in applications, and are not considered. In optically thin media the solution

obtained with such a

n

and A

n

shows approximately the same convergence

as in the Stieltjes-Markov method. The convergence of the "Points method"

is much better in optically thick slabs. The calculation of a

n

and A

n

takes

much longer because one needs the values of the original E(t) in the reference

points ft

1

; :::; t

2N

g.

Further, all the calculations are carried out with the application of the

"Points method" where the points are chosen as t

i

= i=2N . In the present

chapter we set f

�

= 1.
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Fig. 5.1: Angular distribution

of the outgoing intensity calcu-

lated in the di�erent approxima-

tion orders by means of equa-

tion (5.5) with the Planck func-

tion B(�) = 1 � 0:5 (�=�)

2

. In

the upper panel the curves rep-

resenting the results of the dif-

ferent approximation orders co-

incide.

Fig. 5.1 shows the angular distribution of the emergent intensity in slabs

of di�erent optical depth. The results were obtained through Eq. (5.5) with

the mean intensity J(�) calculated by means of (5.28). The dependence of

the approximation order is shown. As one can see in optically thin media the

precise results can be obtained already in the lowest separable approximation

whereas in optically thick slabs a few additional approximation orders are

necessary in order to match the exact solution.

However, the simplest and the fastest way for the calculation of the emer-

gent intensity is the direct application of (5.29). As in the previous case a

few approximation orders are su�cient to obtain the results with the reason-

able accuracy. The exception is for the range of small � (see Fig. 5.2). The

di�erence between this solution and the exact one is caused by errors in the

approximation of the function E(�

2

). So, for � ! 0 we have E(�

2

) � �,

whereas E

N

(�

2

) � �

2

. Although the asymptotic behavior of w

(1)

(�; �

0

) and

w

(1)

N

(�; �

0

) at small � are the same, w

(2)

(�; �

0

) and w

(2)

N

(�; �

0

) behave in di�er-

ent ways: when �; �

0

! 0 w

(2)

(�; �

0

) �

p

�

p

�

0

while w

(2)

N

(�; �

0

) � �

3=2

�

0

3=2

.

Better results in the region of small � can be obtained by means of a
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Fig. 5.2: Angular distribution of the outgoing intensity calculated in the 6-th ap-

proximation order with the Planck function B(�) = 1�0:5 (�=�)

2

. The solid curve

represents the precise results obtained by means of (5.5). Equation (5.29) was used

to get the dashed curve. The results obtained with the improved approximation

of the operator w

(2)

(5.30) are represented by the dashed-dotted curve.

further improvement of the approximation for the operator w

(2)

:

w
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) (5.30)

where

w

(3)

(�; �
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) =

p

� �

1

�

E(�

2

)�
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E(�
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)

�
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� �

�

q

�
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:

Applying the "Points method" for the following approximation
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(5.31)

we get
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p
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n

�
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n
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1 +B
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�
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: (5.32)
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Fig. 5.3: CPU-time required for the calculation of the mean intensity and the

intensity emerging from the surface of a slab with � = 100 and " = 0:5 in the

di�erent approximation orders.

Thus the �nal results calculated with the new representation of w

(2)

(5.30)

show better agreement with the exact solution for all � as shown in Fig. 5.2.

Fig. 5.3 shows the CPU-time required for the calculation of the internal

distribution of the mean intensity (left panel; Eq. (5.28)) and the angular

distribution of the outgoing intensity (right panel; Eq. (5.29)) in the di�erent

approximation orders. FORTRAN double-precision, optimized codes were

used on a HP C240 computer. Note that time necessary for the calculations

of the coe�cients a

n

, A

n

and matrix S

(2)

nn

0

is also included. Although these

calculations are carried out only once for the given � and ", the most time

(about 8 ms in the 2nd order) is spent on this, which remains the place for

further improvements.

The comparisons of our results with those obtained by means of the Finite

Element (see Richling et al. 2001, and references therein) and the Finite

Di�erence (Stenholm et al. 1991) methods are shown in Fig. 5.4. In general,

these three codes give the same results. Excellent agreement is obtained

between the present and the FE methods. The FD code is not able to

reproduce the results of the other methods for the high optical depth and

large scattering.
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Element methods. The Planck function is constant, B = 1.



Chapter 6

Results

This chapter consists of the results of our calculations of the accretion disk

radiation �eld. In the beginning we discuss a simple case of a homogeneous

disk in order to investigate the in
uence of the kinematic properties of the

disk on the line pro�le. Then the general case is considered. Here we in-

vestigate e�ects caused by all the �rst and second order corrections of the

perturbation theory. The calculation of the radiation �eld divides into two

parts. The �rst part deals with the local line formation and consists of cal-

culating the spectral and angular distribution of the emerging radiation at

each point on the disk surface. The second part consists of calculating, as

a function of inclination, the line pro�le by summing all local contributions

with appropriate Doppler shifts resulting from the rotational motion.

6.1 Homogeneous accretion disk

The calculation of the line radiation is more complicated than the calculation

of the continuum because much more factors a�ect the process of the line

formation. The careful investigation of each of these factors is necessary in

order to recognize the e�ects caused by it in the line pro�le. Obviously, the

best way to do this is to consider such a model where the investigating factor

dominates other ones.

The simplest model for the line pro�les which permits us to investigate

the in
uence of the kinematic structure of the disk on the radiation �eld is a

homogeneous, Keplerian disk (Adam 1990; Papkalla 1995). We assume that

the temperature does not vary in the vertical and radial directions and set

B = 1. The extinction in the continuum �

c

and at the line center �

l

0

are

constant too and considered as parameters. The advantage of this model is

that one can study the e�ect of the de-excitation coe�cient " and the total

optical depth at the line center �

l

0

= �

l

0

H and in continuum �

c

= � = �

c

H.

H is the height of the disk above the midplane.
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Since the disk is homogeneous, many terms in equations (3.2), (3.7) and

(3.13) disappear. Among the remaining ones, only the following �ve may

give a remarkable contribution to the local line pro�le

I
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(�; �) =

f

�

�

�

Z

��

e

�

f

�

�

(���)
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(���)
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We do not consider I

(2)

0

de�ned in equation (3.13) for the reason of e�ciency.

This intensity obeys the integro-di�erential equation (3.19) whose solution is

the most computationally expensive part of the whole perturbation approach.

Although the computations are large, this intensity contribution to the �nal

solution is negligibly small in comparison with the other ones.

Substituting into equation (6.2) the wavelength derivative

@

@�

I

(0)

(�; �; r; �) =

1

�

�

Z

��

e

�

f

�

�

(���

0

)

"

S

0

�

f

0

�

�

(� � �

0

)S

#

d�

0

(6.5)

with the modi�ed source function S = f

�

[(1� ")J + "B] and rearranging the

order of integration
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we obtain the expression for the �rst order correction
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The prime denotes the di�erentiation with respect to � and f

�

is de�ned in

(2.9). In a similar way, the substitution of @I

(1)

s

=@� and I

(1)

s

into equations

(6.3) and (6.4) and the following re-arrangement
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give us the expressions for the second order corrections
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Thus, the assumption of the constant extinction coe�cient �

c

leads to the

possibility of independent calculation of the zero order intensity and its high

order corrections. We need for that the source function and its wavelength

derivatives only. The memory requirements and computational time reduce

signi�cantly because we need to calculate the intensity only in the reference

points (� = � in the above case) and intensities in many irrelevant points

are no longer necessary.

The �nal solution in the comoving frame with the explicit dependences

of r and � reads

I
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(�; �) + sin 2� I
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s
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To compare the calculated intensity with the 
ux an observer would see

we have to take into account all the local contributions with an appropriate

Doppler shift. Thus the 
ux is given by
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Fig. 6.1: Line pro�les of the radiation emerging from a homogeneous CV disk

(B = 1) perpendicular to its surface (� = 1) for the di�erent combinations �

l

0

, �

c

and ". Left-hand part: �

c

= 0:01. Right-hand part: �

c

= 1. Top row: " = 2� 10

�2

.

Bottom row: " = 2� 10

�4

.

The example we consider is an accretion disk in a cataclysmic system.

The model is de�ned by the disk inner radius r

in

= 4 � 10

9

cm, outer radius

r

out

= 2:4 � 10

10

cm, the constant height above the midplane H = 10

9

cm,

the mass of the central object M = 0:5M

�

. The line at �

0

= 5000

�

A has the

Lorentz pro�le with 
=2 = 1

�

A. The parameters are " = 2 � 10

�2

and 2 � 10

�4

,

�

l

0

= 1; 10 and 100, �

c

= � = 10

�2

and 1.

Fig. 6.1 shows the line pro�les of the radiation emerging the disk perpen-

dicular to its surface. Since the Doppler-broadening e�ect due to the disk

rotation is absent in this case, we observe the intrinsic line pro�les. The ratio

F

�

=F

c

is nothing else as I

(0)

�

=I

(0)

c

because of the factor 1 � �

2

in equations

(6.2){(6.4). I

(0)

is de�ned by equation (6.1). Although these pro�les were

obtained by means of the separable approximation method, for their quali-
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tative interpretation we apply the formulae of the two-stream approximation

theory. Discrepances between the results of both the methods are shown in

Fig. 4.2 on page 27.

According to (4.19) the intensity of radiation leaving a slab of half optical

thickness �

�

is given by

I
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= I
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2
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" tanh(
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" tanh(
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B (6.10)

where

�

�

= �+ 0:5 � 
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l

0

'

�

(6.11)

For an optically thin line we can use the McLaurin expansion of (6.10)

which gives

I

�

� ("�
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2

�
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)B (6.12)

When

p

"�

�

> 1 the speci�c intensity cannot be larger than

I

�

=

2

p

"

1 +

p

"

B; (6.13)

and the line width increases for increasing �

l

0

.

For

p

"�

�

� 1 lines saturate with the saturation level I

max

de�ned by

(6.13). However the far wings have

p

"�

�

< 1. They may yet grow for

increasing �

l

0

and so contribute additional width.

The values of the line maxima shown in Fig. 6.1 depend also on the in-

tensity of the continuum I

c

. In the given case the continuum is optically thin

and therefore formula (6.12) with � instead of �

�

can be used for the qual-

itative estimates of the continuum radiation. If, however, �

c

increases, the

continuum level approaches I

max

and the lines disappear into the continuum.

The spatially integrated line pro�les of the radiation in direction ' = 0

for the disk observed at di�erent inclinations are presented in Figs. 6.2 and

6.3. With the exception of the optically thick line �

l

0

= 100 in the disk with

" = 2 � 10

�2

all graphs show double-peaked pro�les which are due to the disk

rotation. The position of the line peaks corresponds to the Keplerian velocity

at the outer radius of the disk and is given by

��

p

� ��

0

v(r

out

)

c

q

1� �

2

(6.14)

The lines are strong for low inclinations and disappear when �! 0 because

the disk becomes optically thick in the continuum when viewed nearly edge-

on.

The e�ect of the disk outer radius is illustrated in Fig. 6.4. According to

(6.14) decreasing disk radius has the e�ect of increasing the average disk
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Fig. 6.2: Line pro�les for a homogeneous CV disk (B = 1, " = 2�10

�2

) observed

at di�erent inclinations for the di�erent combinations �

c

and �

l

0

. Left-hand part:

�

c

= 0:01. Right-hand part: �

c

= 1. Top row: �

l

0

= 1. Middle row: �

l

0

= 10.

Bottom row: �

l

0

= 100.
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Keplerian velocity and widening the line pro�le. The line becomes stronger

because of larger surface area of the disk with larger outer radius.

The line pro�les in the bottom row of Fig. 6.2 remains single-peaked

even for higher inclinations. The reason is the large intrinsic line broadening

that prevents the peak separation. The broad single-peaked emission lines

are present in many cataclysmic variables (Stover et al. 1980; Young et al.

1981). In particular, there are eclipsing systems that have symmetric, single-

peaked pro�les and yet display an evolution through eclipse that suggests

the emission does originate in a rotating disk. The Stark e�ect as a reason of

the single-peaked pro�le is discussed by Lin et al. (1988). Another physical

mechanism is discussed by Murray & Chiang (1996).

6.2 General case

The disk considered so far is a major oversimpli�cation. On one hand a

real disk is not 
at but should obey some pro�le the derivation of which is

the challenge for researchers. In some models, however, the height of the

disk above the midplane as a function of radius is approximated by a line

running at some constant angle that is the free model parameter. On the

other hand the accretion disk is not isothermal. Temperature at the midplane

and the surface as well as at the inner and the outer disk edges may di�er

signi�cantly. The temperature variation with depth and radius is crucial in

the line formation process.

In order to test the method we use for the solution of multi-dimensional

radiative transfer equation, the previous accretion disk model is not su�cient.
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Fig. 6.5: The height of a disk above the midplane as a function of the radial

distance.

To give an estimate of the time and memory requirements as well as to

de�ne the range of the applicability of the perturbation theory, a model

with the number of simpli�cations as small as possible is necessary. For

these purposes we use a model of an accretion disk constructed in a self-

consistent way as described by Shaviv & Wehrse (1991). The parameters of

the model are chosen in such a way to provide the smallness of gradients in the

radial direction relative to ones in the vertical direction, and the rotational

velocity of the disk matter much smaller than speed of light. This disk in

a cataclysmic variables system with the following accretion rate, inner and

outer radii

_
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Fig. 6.6: The total Rosseland optical depth above the disk midplane as a function

of the radial distance.
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Fig. 6.8: Vertical run of the

temperature at r = 10R

wd

rotates around the central object that is a white dwarf with

R

wd

= 6 � 10

8

cm; M =M

�

The disk is not 
at. Instead, its height obtained iteratively from the hydro-

static calculations varies with radius as shown in Fig. 6.5. As one can see this

is the geometrically thin disk where the ratio of the height to the radius for

the outer edge is approximately 20. Apart from the previous case, this disk

is optically thick in the continuum. The complex form of the total Rosseland

optical thickness above the midplane is shown in Fig. 6.6.

Since the temperature changes both in vertical and radial direction, (ex-

amples of such distributions are given in Figs. 6.7 and 6.8), each term in (3.7)

and (3.13) has to be considered. Thus we can investigate the in
uence not

only of the kinematic properties but also of the radial and vertical structures

of the disk on the line pro�le.

Again we take a line at �

0

= 5000

�

A with the Lorentz pro�le. The value of

the damping constant 
 = 2

�

A is chosen for convenience. The disk is always

viewed in the direction ' = 0. We study the e�ect of the de-excitation coef-

�cient " which is assumed to be constant, the line strength �

0

(see equation
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Fig. 6.9: Intensity distribution in the observer's frame of a disk with " = 0:5

viewed at inclination � = 0:8 (� 37

�

) in the direction ' = 0. The disk is observed

at � = �

0

. The line strength parameter �

0

is 10.

(2.9)) and the inclination.

The choice of the parameters �

0

= 10, " = 0:5 and � = 0:8 results in

the brightness distribution on the disk surface shown in Fig. 6.9. Such an

intensity map was obtained by taking into account the solution of the zero

order equation calculated in the 6th separable approximation, and all the �rst

and second order corrections with the exception of I

(2)

0

de�ned by (3.19). An

appropriate Doppler shift was made in each point to get an intensity map in

the observer's frame.

The advantage of the present perturbation approach is that the in
uence

of such factors as the Doppler term in the radiative transfer equation, the

run of quantities with radius and their radial gradients on the local and

spatially integrated line pro�le can be separately investigated by considering

the corresponding terms in (3.7) and (3.13). Fig. 6.10 shows the variation

of the speci�c intensity with the angle  at r = 10R

wd

in the disk with the

parameters mentioned above. The solid curve represents the solution of the

zero order equation whereas the dashed curves show the changes caused by

the higher order corrections. In Fig. 6.11 the spatially integrated line pro�les

are shown. The solid curve depicts the 
ux an observer would see when he
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Fig. 6.10: The variation of the emerging intensity with the angle  at r = 10R

wd

in the observer's frame. The solid curves correspond to the solution of the zero

order equation I

(0)

. The dashed curves show an e�ect of the di�erent terms in

equations (3.7) and (3.13): 1st row, left: I

(1)

c

; 1st row, right: I

(1)

s

; 2nd row, left:

I

(2)

c

; 2st row, right: second part of I

(2)

c2s

; 3rd row, left: I

(2)

2s

; 3rd row, right: �rst part

of I

(2)

c2s

; 4th row, left: I

(2)

s

; 4th row, right: I

(2)

s2c

. The corresponding trigonometric

functions in (3.7) and (3.13) are included in each term. The data are for � = 0:8,

�

0

= 10, " = 0:5.
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Fig. 6.11: The integrated line pro�le of a disk with parameters: � = 0:8, �

0

= 10,

" = 0:5. The solid curves represent the solution of the zero order equation. The

dashed curves show the changes caused by the higher orders corrections. The

arrangement of the graphs is the same as in Fig. 6.10.



68 CHAPTER 6. RESULTS

1e+15

1.5e+15

2e+15

2.5e+15

3e+15

3.5e+15

4e+15

4.5e+15

-2 -1 0 1 2 3 4 5

I λ

1.6e+15

2e+15

2.4e+15

2.8e+15

3.2e+15

3.6e+15

-2 -1 0 1 2 3 4 5

1e+15

1.5e+15

2e+15

2.5e+15

3e+15

3.5e+15

4e+15

-2 -1 0 1 2 3 4 5

I λ

1.6e+15

2e+15

2.4e+15

2.8e+15

3.2e+15

3.6e+15

-2 -1 0 1 2 3 4 5

1.5e+15

2e+15

2.5e+15

3e+15

3.5e+15

4e+15

-2 -1 0 1 2 3 4 5

I λ

1.6e+15

2e+15

2.4e+15

2.8e+15

3.2e+15

3.6e+15

-2 -1 0 1 2 3 4 5

1.6e+15

2e+15

2.4e+15

2.8e+15

3.2e+15

3.6e+15

-2 -1 0 1 2 3 4 5

I λ

ψ

1.6e+15

2e+15

2.4e+15

2.8e+15

3.2e+15

3.6e+15

-2 -1 0 1 2 3 4 5

ψ

Fig. 6.12: The variation of the emerging intensity with the angle  at r = 10R

wd

in the observer's frame. The solid curves correspond to the solution of the zero

order equation I

(0)

. The dashed curves show an e�ect of the di�erent terms in

(3.7) and (3.13): 1st row, left: I

(1)

c

; 1st row, right: I

(1)

s

; 2nd row, left: I

(2)

c

; 2st

row, right: second part of I

(2)

c2s

; 3rd row, left: I

(2)

2s

; 3rd row, right: �rst part of I

(2)

c2s

;

4th row, left: I

(2)

s

; 4th row, right: I

(2)

s2c

. The corresponding trigonometric functions

in (3.7) and (3.13) are included in each term. The data are for � = 0:7, �

0

= 100,

" = 0:02.
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Fig. 6.13: The integrated line pro�le of a disk with parameters: � = 0:7, �

0

= 100,

" = 0:02. The solid curves represent the solution of the zero order equation. The

dashed curves show the changes caused by the higher orders corrections. The

arrangement of the graphs is the same as in Fig. 6.12.



70 CHAPTER 6. RESULTS

0.001

0.01

0.1

1

10

100

1000

1e-06 0.0001 0.01 1 100 10000

1
/δ

∆ − τ

r = 38Rwd
r = 10Rwd
r =   3Rwd

Fig. 6.14: Variation of 1=� =

�

�

�

@T

@z

.

@T

@r

�

�

�

with optical depth at di�erent radii.

considers the disk as a system of independent rings, each of them radiating as

a plane-parallel slab. The line pro�le is distorted when the di�erent motions

of the rings, their interactions with each other etc. are taken into account.

Such distortions are illustrated by the dashed curves. The same quantities

are shown in Figs. 6.12 and 6.13 but for the disk with parameters: �

0

= 100,

" = 0:02 and � = 0:7.

The changes made by the �rst order corrections are shown in the �rst

rows of all �gures. The largest changes in the local line pro�le are caused by

I

(1)

c

(Eq. (3.11)). The large damping constant and a slow disk rotation make

the e�ect of I

(1)

s

(Eq. (3.12)) not so prominent. The closer we approach to the

central object, the larger the distortions of the zero order solution become,

making the perturbation approach irrelevant for the calculation of the radi-

ation �eld in this region. Both functions vary with angle in such a way that

after the integration over the angle  their contributions to the integrated

line pro�le equal zero identically. Thus the second order corrections become

of the prime interest. Each of them plays a certain role in the process of the

line formation. The changes made by I

(2)

c

(Eq. (3.20)) and the second term

of I

(2)

c2s

(Eq. (3.24)) are shown in the second rows. Being dependent on the

radial gradients of the �rst order solutions they tend to deepen the central

depression of the spatially integrated line pro�le making it V-shaped with

the sharp peaks. The peak separation can appear even when the intrinsic

broadening does not dispose of it. The peak separation becomes larger in

the comparison with the zero order solution. Signi�cant changes in the local

line pro�le are caused mainly by I

(2)

c

. The e�ects of I

(2)

2s

(Eq. (3.22)) and I

(2)

s2c

(Eq. (3.23)) show up mostly in the line center as shown in the forth rows. In
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Fig. 6.15: Line pro�les of the disk viewed at di�erent inclinations for the di�erent

combinations " and line strength �

0

. Left-hand part: " = 0:02. Right-hand part:

" = 0:5. Top row: �
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= 100.
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Fig. 6.16: Results obtained by means of the two-stream approximation (with

�lled squares) and the separable approximation methods (without squares). A disk

with " = 0:5 and �

0

= 10 is viewed at inclinations � = 0:8 (dashed ) and � = 0:7

(solid).

contrast to the previous case these functions result in a shallow U-shaped val-

ley between the peaks. The single-peaked lines become stronger. Because of

the large damping constant and slow disk rotation the e�ects of these terms

on the local line pro�le are not prominent. Remaining terms, namely I

(2)

s

(Eq. (3.21)) and the �rst part of I

(2)

c2s

(Eq. (3.24)) are of minor importance

because of the small contributions to the line pro�le. The changes caused by

them are shown in the third rows.

The �nal results where all the second order corrections taken into ac-

count are presented in Fig. 6.15 for the disk with the di�erent combinations

of parameters. The left column exhibits unusual variations of the line pro�le

with inclination. The central depression becomes much deeper and appears

even above the local continuum level at some inclinations. It seems to be

strange also that the line peaks become larger in the disk viewed at larger

inclinations. Such behaviors show up for all considered ". The larger " we

take, the smaller � is necessary to see these e�ects. The reason of such wrong

variations consists in I

(2)

c

and the second term of I

(2)

c2s

. Their absolute values

increase when � decreases and at some inclinations their contributions to

the total solution become signi�cant. However, as it follows from the princi-

ples of the perturbation theory, the higher order corrections must be much
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smaller than the solution of the zero order equation. The opposite means

that some criteria of the applicability of the perturbation approach are not

ful�lled. Careful investigation of the temperature distribution has shown

that the radial temperature gradients are much smaller than the gradients in

the vertical direction in the layers where the continuum forms (� � � � 1)

as represented in Fig. 6.14. In the upper layers where the line radiation orig-

inates this relation does not hold anymore. Thus the perturbation approach

breaks down, which is the main reason of the odd results.

Fig. 6.16 shows line pro�les of the disk viewed at two di�erent inclina-

tions. The solid and dashed curves correspond to the results obtained by

means of the application of the separable approximation method for the so-

lution of the zero order equation. The two-stream approximation method

used in the zero order of the perturbation theory gives the results depicted

by the curves with the �lled squares. As one can see the agreement between

these two results is rather well. The systematic di�erence between the con-

tinuum levels does not exceed 3% which is very good bearing in mind those

serious simpli�cations used in the two-stream approximation method. The

shape of the peaks and the central depression are in the good agreement too.

Thus the two-stream approximation can be successfully applied to obtain

results with a reasonable accuracy. The calculations of the line pro�les in

the two-stream approximation takes less time ( a factor of 4) because of the

less CPU-time needed to solve the zero order equation.
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Chapter 7

Discussion and conclusions

Accretion disks are found in a wide variety of astrophysical situations. Al-

though their importance is obvious, the understanding of their spectra, den-

sity, temperature and velocity distributions is still quite limited. One of the

reasons is unsatisfactory modeling of the vertical structure of these objects

and, in particular, the radiation �eld. Attempts to interpret spectra of the

accretion disks adopting the black body or stellar atmosphere theory are not

successful as it was mentioned in the Introduction. Instead of this, the cal-

culation of the spectra consistently gives more accurate model structure and

predicted emergent radiation. In spite of the big progress in the development

of the multidimensional radiative transfer codes, their incorporation into the

self-consistent scheme meets problems related mainly to the bounded abil-

ity of the present computers. The representation of the accretion disk by a

system of non-interacting concentric rings radiating as a plane-parallel sta-

tic media simpli�es the problem because 1D versions of the corresponding

equations are used. Although such an approach gives quite accurate results

(Shaviv & Wehrse 1991; El-Khoury & Wickramasinghe 2000; Nasser et al.

2001), some discrepancies between them and observations are still present.

In this thesis a perturbation solution of the multidimensional radiative

transfer equation has been proposed. The zero order equation is the plane-

parallel radiative transfer equation used in all mentioned above self-consistent

calculations. The problem is no longer one-dimensional when the higher order

perturbation equations are considered. These equations describe the inter-

actions of the rings composing the accretion disk making the solution more

realistic. Test calculations have shown that the changes in the continuum

level as well as in the line pro�les of the disk emergent radiation caused by

the higher order corrections may be signi�cant. Consequently, some changes

may appear in the parameter estimation of an accretion disk if such the per-

turbation approach will be applyed, for example in the models of El-Khoury

& Wickramasinghe (2000) or Nasser et al. (2001).

75
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It is advantageous to use the radiative transfer equation with the Doppler

term since in this case the system of di�erentially moving rings is described

more properly and the in
uence of the velocity gradients on the radiation �eld

is taken into account. In the models of the accretion disk used in the thesis

the e�ect of the Doppler term on the �nal solution was not so prominent as

for example the e�ect of the radial gradients. The reason is the slow disk

rotation and the large damping constant.

One of the advantage of the present perturbation approach is the explicit

dependence of the speci�c intensity on the directional angle � (in the case

of homogeneous disk there exists also the explicit dependence on radius r).

The sources of the anisotropy of the radiation �eld such as the shear broad-

ening or the temperature distribution are clearly seen and their e�ects can

be investigated separately.

The solution of the radiative transfer equation is very fast due to the

known solutions of the higher order perturbation equations and largely an-

alytical methods applied to solve the zero order equation. In the model

presented here we use a grid which consists of 99 points in the vertical direc-

tion, 40 radii and 40 wavelength points. For one value of � the calculations

takes 280 sec on a HP C240 computer. This includes the calculation of the

mean intensity J in the 5th approximation order for the upper part of the

disk (175 sec), the zero and �rst order speci�c intensities and all needed

derivatives at all grid points (90 sec), and all the second order intensities on

the disk surface (15 sec). Note that subsequent calculations for other incli-

nations take signi�cantly less CPU-time since the most expensive calculation

of J has been already carryed out.

Unfortunately the perturbation approach cannot be used for the calcula-

tion of the radiation �eld of all accretion disks. Only those disks whose rota-

tional velocity is much less than the speed of light and the vertical gradients

are much larger than the radial ones can be considered as such candidates.

Accordingly, for the rings very close to the central object (r < 3R

wd

) or for

the regions near the surface of the disk (optical depth measured from the

surface is much less than unity) where the vertical temperature changes may

be very small and radial gradients dominate, the perturbation approach can

hardly be applied. The latter especially disappoints since many lines origi-

nate in such a region. The slight consolation is that there is no theory at the

moment which can properly describe the processes in such critical regions

(boundary layer, corona).

To solve the zero order equation two methods were used. One of the

applied methods is the two-stream approximation method which is rather

frequently used in applications. Under the simplifying assumption of this

approach we have found the analytical solution of the plane-parallel radia-

tive transfer equation in media with large variety of the internal distributions
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of the de-excitation coe�cient " (linear, parabolic, with spikes etc.). To our

knowledge this problem could be solved so far only numerically. Having ob-

tained the analytical solutions for the di�erent behaviors of ", the solution

of the inverse problem becomes possible. In particular, the deduction of the

internal distribution of " from observational data is facilitated in the case

of isothermal media, since the characteristic behavior of the solution refers

to the certain behavior of " only. As an example, we have found the corre-

sponding parameters of the constant and linear distributions of " precisely.

We have also considered the problem with the stochastic distribution of "

and proposed a new numerical method for its solution. In general, the two-

stream approximation method provides us with the results whose accuracy

strongly depends on the inclination of the chosen streams. The comparison

with the exact solution has shown that in optically thick slabs a su�cient

accuracy of 10% is achieved only when �

0

� 0:35 : : : 0:65. In the optically

thin media signi�cant discrepances appear at grazing incidence.

Another method applying for the solution of the plane-parallel radiative

transfer equation is the more sophisticated separable approximation method.

The inhomogeneous integro-di�erential equation is solved without any dis-

cretization of the transport and integral operators. Since this method is

largely analytical, the solution is fast even on small computers. The highly

precise results can be obtained without much e�ort. The comparisons with

the results of other methods have shown good agreement for a wide range of

parameters.
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Appendix A

Solution of equation (4.39)

Let us introduce new variables � and 	

1

J

j

= �

j

�	

j

; (j = 1; :::; N) (A.1)

which obey the following recurrent equations

�

j

= U

j

�

j�1

; �

0

= J

0

;

	

j

= U

j

	

j�1

+K

j

B

j�1

; 	

0

= 0

Using notations

U(j; k) = U(j; i + 1)U(i; k); (k � i � j);

U(j; j) = U

j

we get

�

j

= U(j; 1)�

0

;

	

j

= B(j; 1) = U(j; 2)K

1

B

0

+U(j; 3)K

2

B

1

+ :::

+ U

j

K

j�1

B

j�2

+K

j

B

j�1

:

The solution for j-th layer thus becomes

J

j

= U(j; 1)J

0

�B(j; 1): (A.2)

The value of J at the boundary reads

J

N

= J

N

g = U(N; 1)f J

0

�B(N; 1):

1

The designations used in this appendix are given in subsection 4.2.4. With the ex-

ception of few cases we do not distinguish row and column vectors. The matrix product

means that xUy =

P

N

i;j

x

i

U

ij

y

j

and xy =

P

N

i

x

i

y

i

, where x and y are N-component

vectors and U is an N �N matrix.
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Multiplying both sides by the row vector e we get

J

0

=

eB(N; 1)

eU(N; 1)f

:

The substitution of J

0

into (A.2) gives

J

j

= fJ

j

= fU(j; 1)f �

eB(N; 1)

eU(N; 1)f

� fB(j; 1) =

A(N; j; 1)

eU(N; 1)f

:

Taking into account the following identity

B(N; 1) = U(N; j + 1)B(j; 1) +B(N; j + 1)

with

U(N;N + 1) = 1; B(N;N + 1) = 0

and

f � f

>

+ h � h

>

= I

we get the expression of A(N; j; 1)

A(N; j; 1) = (fU(j; 1)f)(eB(N; 1))�

� (eU(N; 1)f)(fB(j; 1))

= (fU(j; 1)f)(eU(N; j + 1)B(j; 1)) +

+ (fU(j; 1)f)(eB(N; j + 1))�

� (eU(N; j + 1)f)(fU(j; 1)f)(fB(j; 1))�

� (eU(N; j + 1)h)(hU(j; 1)f)(fB(j; 1))

= (fU(j; 1)f)(eB(N; j + 1)) +

+ (eU(N; j + 1)h)(fW(j; 1))

and thus the equation (4.40). The introduced term fW(j; 1) is given by

fW(j; 1) = (fU(j; 1)f)(hB(j; 1))� (hU(j; 1)f)(fB(j; 1))

= (fU

>

(j; 1)f)(hB(j; 1))� (fU

>

(j; 1)h)(fB(j; 1))

= fU

>

(j; 1)�B(j; 1);

where we have used an identity

f � h

>

� h � f

>

= �:

Taking into account the property

U

>

(j; i)�U(j; i) = �;
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we have

fW(j; 1) = fU

>

(j; 1)�[U(j; 2)K

1

B

0

+U(j; 3)K

2

B

1

+ :::U(j; j)K

j�1

B

j�2

+K

j

B

j�1

]

= fW

1

B

0

+ fU

>

(1; 1)W

2

B

1

+ :::

+ fU

>

(j � 1; 1)W

j

B

j�1

;

where W

j

is de�ned in (4.42).
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Appendix B

Approximation of E(t)

B.1 Stieltjes-Markov method

In order to represent E(t) in equation (5.24) in the form of a �nite sum

E(t) � E

N

(t) =

N

X

n=1

a

n

t

1 + A

n

t

(B.1.1)

one can apply the Stieltjes-Markov method (see Perron 1957).

Let us introduce a measure �(dx) on interval [0; 1] in such a way that

1

Z

0

�(dx)f(x) =

2

�f

�

1

X

m=0

1

1 + y

2

m

� f

 

1

1 + y

2

m

!

: (B.1.2)

For the approximate evaluation of the integral we use a quadrature formula

1

Z

0

�(dx)f(x) '

N

X

n=1

c

n

f(x

n

) (B.1.3)

where x

n

are zeros of polynomials of degree N which are orthogonal with

respect to �(dx), i.e.

1

Z

0

�(dx) P

m

(x)P

l

(x) = 0 for m 6= l;

and the weights c

n

are given by

c

n

=

Q

N

(x

n

)

P

0

N

(x

n

)
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where Q

k

(x) are associated polynomials of degree (N � 1)

Q

k

(s) =

1

Z

0

�(dx)

P

k

(s)� P

k

(x)

s� x

:

The polynomials P

k

(x) can be constructed in the following way. Let us

calculate 2N + 1 moments

m

k

(�) =

1

Z

0

�(dx)x

k

=

2

�f

�

1

X

m=0

 

1

1 + y

2

m

!

1+k

=

1

k!

 

�

@

@v

!

k

tanh (f

�

�

p

v)

p

v

�

�

�

�

�

�

v=1

(B.1.4)

A matrix H with elements

H

ij

= m

i+j

; (i; j = 0; :::; N)

is symmetric and positive de�nite. The Cholesky decomposition gives an

upper-triangular matrix r with the property that H can be represented as

H = r

>

r. Then the elements

p

kl

=

�

r

�1

�

>

kl

(B.1.5)

de�ne the coe�cients of the polynomial P

k

(x)

P

k

(x) =

k

X

l=0

p

kl

x

l

:

The associated polynomial can be written as

Q

k

(x) =

k�1

X

l=0

x

l

k

X

i=l+1

p

ki

m

i�l�1

:

Let us introduce the notation

t =

s

1 + s

; s =

t

1� t

; 0 � s � 1;

x =

1

1 + y

2

; 0 � x � 1; y =

s

1� x

x

:

Then we have

E(t) =

4�

�f

�

1

X

m=0

1

C(iy

m

)

t

1 + y

2

m

t

=

4�

�f

�

1

X

m=0

1

1 + y

2

m

1

C(iy

m

)

s

1

1+y

2

m

+ s

:
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According to (B.1.2) and (B.1.3) we get

E(t) =

1

Z

0

�(dx)

�

C

�

i

q

1�x

x

�

s

x+ s

'

N

X

n=1

c

n

�

C

�

i

q

1�x

n

x

n

�

s

s+ x

n

=

N

X

n=1

c

n

�

C

�

i

q

1�x

n

x

n

�

t

x

n

+ (1� x

n

)t

:

Thus the coe�cients in (B.1.1) become

a

n

=

c

n

x

n

�

2�

C

�

i

p

A

n

�

; A

n

=

1

x

n

� 1: (B.1.6)

B.2 "Points method"

The coe�cient a

n

and A

n

of the N -th separable approximation can be found

by solving the system of algebraic equations:

E

N

(t

l

) =

N

X

n=1

a

n

t

l

1 + A

n

t

l

; (l = 1; :::; 2N) (B.2.1)

where ft

1

; :::; t

2N

g are points from the interval [0; 1]. The solution of (B.2.1)

can be obtained in the following way. We have

E(t

l

)

t

l

N

Y

k=1

(1 + A

k

t

l

) =

N

X

n=1

a

n

Y

k 6=n

(1 + A

k

t

l

): (B.2.2)

Let us introduce the notation

N

Y

k=1

(1 + A

k

t

l

) =

N

X

s=0

t

s

l

u

s

;

u

0

= 1; u

s

=

X

1�i

1

<:::<i

s

�N

A

i

1

� A

i

2

� ::: � A

i

s

;

N

Y

k 6=n

(1 + A

k

t

l

) =

N

X

s=0

t

s

l

u

s

j

A

n

=0

=

N

X

s=1

t

s�1

l

v

(n)

s

;

N

X

n=1

a

n

Y

k 6=n

(1 + A

k

t

l

) =

N

X

s=1

t

s�1

l

b

s

; b

s

=

N

X

n=1

a

n

v

(n)

s

:

Then we can write (B.2.2) as the following

N

X

s=1

t

s�1

l

b

s

�

N

X

s=1

t

s�1

l

E(t

l

)u

s

=

E(t

l

)

t

l

: (B.2.3)
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Let us introduce N �N - matrices and N -component vectors

Q

(1)

= Q

(1)

ls

= t

s�1

l

; H

(1)

= H

(1)

ls

= t

s�1

l

E(t

l

);

Q

(2)

= Q

(2)

ls

= t

s�1

N+l

; H

(2)

= H

(2)

ls

= t

s�1

N+l

E(t

N+l

);

f

(1)

= f

(1)

l

=

E(t

l

)

t

l

; f

(2)

= f

(2)

l

=

E(t

N+l

)

t

N+l

:

So that the system of linear equations (B.2.3) can be rewritten in a form

Q

(1)

b�H

(1)

u = f

(1)

; (B.2.4)

Q

(2)

b�H

(2)

u = f

(2)

:

Eliminating b we obtain the vector u = (u

1

; :::; u

N

)

u =

h

(Q

(1)

)

�1

H

(1)

� (Q

(2)

)

�1

H

(2)

i

�1

h

(Q

(2)

)

�1

f

(2)

� (Q

(1)

)

�1

f

(1)

i

:

The roots of the following polynomial

(�x)

N

+ u

1

(�x)

N�1

+ :::+ u

N

= (�1)

N

N

Y

n=1

(x� A

n

) = 0

correspond to the constants A

1

; ::::; A

N

. The last step is the solution of the

matrix equation

C a = f

(1)

with

C

ls

=

1

1 + A

s

t

l

; (l; s = 1; :::; N)

in order to get the coe�cients a = (a

1

; :::; a

N

).
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