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Kritik und anregende Gesprächsrunden. Es hat mir sehr viel Spaß gemacht.

Den Arbeitsgruppen Computergraphik und Visualisierung (CoVis) und Visualisierung und
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Abstract

In Cambodia close to the Thai border, lies the Angkor-style temple of Banteay Chh-
mar. Like all nearly forgotten temples in remote places, it crumbles under the ages. By
today most of it is only a heap of stones. Manually reconstructing these temples is both
complex and challenging: The conservation team is confronted with a pile of stones, the
original position of which is generally unkown. This reassembly task resembles a large-
scale 3D puzzle. Usually, it is resolved by a team of specialists who analyze each stone,
using their experience and knowledge of Khmer culture. Possible solutions are tried and
retried and the stones are placed in different locations until the correct one is found. The
major drawbacks of this technique are: First, since the stones are moved continuously they
are further damaged, second, there is a threat to the safety of the workers due to handling
very heavy weights, and third because of the high complexity and labour-intensity of the
work it takes several months up to several years to solve even a small part of the puzzle.

These risks and conditions motivated the development of a virtual approach to re-
assemble the stones, as computer algorithms are theoretically capable of enumerating all
potential solutions in less time, thereby drastically reducing the amount of work required
for handling the stones. Furthermore the virtual approach has the potential to reduce
the on-site costs of in-situ analysis. The basis for this virtual puzzle algorithm are high-
resolution 3D models of more than one hundred stones. The stones can be viewed as
polytopes with approximately cuboidal form although some of them contain additional
indentations. Exploiting these and related geometric features and using a priori knowledge
of the orientation of each stone speeds up the process of matching the stones.

The aim of the current thesis is to solve this complex large-scale virtual 3D puzzle.
In order to achieve this, a general workflow is developed which involves 1) to simplify
the high-resolution models to their most characteristic features, 2) apply an advanced
similarity analysis and 3) to match best combinations as well as 4) validate the results.

The simplification step is necessary to be able to quickly match potential side-surfaces.
It introduces the new concept of a minimal volume box (MVB) designed to closely and
storage efficiently resemble Khmer stones. Additionally, this reduced edge-based model
is used to segment the high-resolution data according to each side-surface. The second
step presents a novel technique allowing to conduct a similarity analysis of virtual temple
stones. It is based on several geometric distance functions which determine the relatedness
of a potential match and is capable of sorting out unlikely ones. The third step employs
graph theoretical methods to combine the similarity values into a correct solution of this
large-scale 3D puzzle. The validation demonstrates the high quality and robustness of
this newly constructed puzzle workflow.

The workflow this thesis presents virtually puzzles digitized stones of fallen straight
Khmer temple walls. It is able to virtually and correctly reasemble up to 42 digitized
stones requiring a minimum of user-interaction.



Zusammenfassung

In Kambodscha nahe der thailändischen Grenze befindet sich die Tempelanlage von Ban-
teay Chhmar, erbaut im Stile des besser bekannten Angkor Wat. Wie die meisten fast
vergessenen Tempel zerfällt sie zusehends und ist heutzutage kaum mehr als ein großer
Haufen Steine. Ein Wiederaufbau dieser zerfallenen Strukturen von Hand ist sehr komplex
und fordernd: Ein Team aus Konservatoren und Archäologen steht vor einem Trümmerhau-
fen, bei dem die ursprüngliche Position der einzelnen Teile meist unbekannt ist. Generell
wird diese Art von überdimensioniertem Puzzle gelöst, indem ein Team von Spezialisten
jeden einzelnen Stein mit Hilfe von Erfahrung und Wissen über die Kultur der Khmer
analysiert. Mögliche Lösungen werden solange ausprobiert, bis die richtige Zusammenset-
zung der Steine gefunden wurde. Die größten Nachteile dieser Methode bestehen darin,
dass die Steine bei jeder Bewegung weiter beschädigt werden und die Sicherheit der Ar-
beiter durch das Hantieren mit schweren Gewichten gefährdet ist. Darüber hinaus dauert
diese Art des Wiederaufbaus aufgrund ihrer hohen Komplexität und Arbeitsintensität
mehrere Monate oder Jahre.

Diese Bedingungen motivierten die Entwicklung eines virtuellen Ansatzes, um den
Wiederaufbau zu unterstützen, da computerbasierte Algorithmen das Potential haben,
die Lösung schneller zu finden und gleichzeitig den notwendigen Arbeitsaufwand re-
duzieren können. Desweiteren können die Kosten vor Ort gesenkt werden. Die Basis
dieses virtuellen Puzzles sind hochauflösende 3D Modelle von mehr als hundert Steinen.
Diese Steine können als annähernd quaderförmige Polyeder aufgefasst werden, häufig mit
einer zusätzlichen Einkerbung versehen. Das Ausnutzen dieser Eigenschaft in Kombina-
tion mit Vorwissen über die Orientierung eines jeden Steins führt zu einem schnelleren
Arbeitsablauf beim Zusammenfügen der Steine.

Das Ziel der vorliegenden Arbeit ist es dieses virtuelle 3D Puzzle zu lösen. Die zugrunde
liegende Idee dabei ist 1) die hochauflösenden Modelle auf ihre charakteristischsten Eigen-
schaften zu vereinfachen, 2) eine ausgeklügelte Ähnlichkeitsanalyse anzuwenden und 3)
die besten Kombinationen zusammenzusetzen sowie 4) die Ergebnisse zu validieren.

Der Vereinfachungsschritt ist notwendig, um mögliche Lösungen schnell zu testen und
zusammenzusetzen. Hierbei kommt eine neue Art der Repräsentation von Khmer Tem-
pelsteinen zum Einsatz, die minimale Volumen Box (MVB). Sie wurde entwickelt, um die
Steine speichereffizient und trotzdem genau wiederzugeben und um die hochauflösenden
Daten entsprechend der Seitenflächen zu segmentieren. Im zweiten Schritt wird eine neue
Technik vorgestellt, die es ermöglicht, eine Ähnlichkeitsanalyse der Steine durchzuführen.
Sie basiert auf verschiedenen geometrischen Abstandsmaßen, die Aussagen über die Zusam-
mengehörigkeit eines möglichen Paares treffen. Die besondere Stärke dieser Analyse ist,
dass unpassende Kombinationen aussortiert werden. Im dritten Schritt wird mit Hilfe von
graphentheoretischen Methoden die korrekte Lösung des Puzzles gefunden. Abschließend
wird die hohe Qualität und Stabiliät dieses neuartigen Khmer 3D Puzzles präsentiert.



Der Arbeitsablauf, den diese Arbeit präsentiert, ist in der Lage, digitalisierte Steine
von zerfallenen geraden Mauern von Khmer Tempeln zu puzzlen. Es ist nun möglich, bis
zu 42 virtuelle Steine mit einemMinimum an Benutzeraufwand wieder zusammenzusetzen.
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Chapter 1

Introduction

“
For the enthusiast of Khmer art, just the name Banteay Chhmar will evoke

lively interest, mingled with passion and wonder.1

”

1.1 Motivation

All over the world, vast numbers of ancient temples are crumbling under their age, for-

gotten in remote places. Most of them are hardly more than a heap of stones by today.

Archaeologists are fighting against time and decay in order to preserve and restore those

fallen monuments. The evolution of computers, acquisition techniques and storage capac-

ities opens up a whole new world of possibilities. An object can now not only be studied

in-situ, where further constraints as for example accessibility or fragility have to be met

or back in the office, using photographs and drawings, but also on a computer at any

place and any time. Additionally, three-dimensional virtual models of an object help gain

new insights without touching and thereby further deteriorating the object.

In the area of cultural heritage the vast majority of objects such as cuneiform tablets,

vessels, potsherds or temples comes from architecture and ceramics as they are the most

common findings in archaeology. Unfortunately, such man-made objects erode over time,

break apart and are scarcely found unfragmented during excavations. This leads to the

1Cunin, O. and Baku, S.; The Face Towers at Banteay Chhmar; Tokyo 2005; p. 106
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Motivation

longsome and intensive work of finding the correct placement for each piece. The rea-

son such time-consuming labor is conducted lies in the promising potential of learning

something about the studied culture. Findings usually contain ornamental paintings, dec-

orations, bas-reliefs or inscriptions and a complete object helps in reading the inscription

or interpret the ornamental picture. Yet, determining the correct reassembly of broken

artifacts is made difficult by many facts, e.g. the numerous objects and object parts that

need to be compared to each other or that it is unknown whether the object is complete

or how the final result will look like or the existence of matchings that are too small for

the human vision. Consequently, reconstruction systems bear the potential to: save time,

make the result more exact, gain deeper insights, find new combinations and probably

complete objects whose fragments have been acquired at different times and different

places.

The present dissertation deals with a partial reconstruction of a large but nearly

forgotten temple site in northwestern Cambodia, called Banteay Chhmar. Due to looting

and the ingression of plants only about 20% of the original structure are still standing.

A real-world reassembly would be desirable to deepen the understanding and widen the

knowledge about Khmer culture and history, but is not feasible because of several reasons

such as:

• Location

The accessibility of the site is complicated due to the fact that the temple is located

in a sparsely settled area, with only unpaved roads and a broad belt of landmines –

remainings from the war.

• Climate

“In the summer, there is no game and torrid heat; in winter, the area is subjected

to violent storms deflected by the mountains. This is the most desolate place in

Cambodia.”2

• Temple stones

A manual reassembly would require several men to move the temple stones, where

stone each can weigh between 100kg up to 1000kg making the handling difficult.

This means every movement of a stone is able to increase its deterioration as well

as endangers the workers involved.

2Groslier, George; Une merveilleuse cité khmère; L’Illustration magazine; Paris 1937; no. 4909; p. 352
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1.2 Goals and Requirements

A computer-based reconstruction of the Banteay Chhmar temple side can be seen as a

large-scale 3D puzzle where each stone represents one of its pieces and the (complete) re-

assembly is the solution. According to the Oxford English Dictionary ”to puzzle something

out” means” solve or understand something by thinking hard” and a ”(jigsaw) puzzle”

is ”a mystery that can only be resolved by assembling various pieces of information.”3

Meriam Webster defines it as ”a question or problem that requires thought, skill, or clev-

erness to be answered or solved; something or someone that is difficult to understand.”4

This virtual task has the potential to be much faster than the real one, reduce further de-

terioration of the temple stones and enhance the workers’ security. In contrast to classical

2D jigsaw puzzles, which contain readily identifiable structures that enable an algorithm

to easily find corresponding parts and uniquely match the pieces, broken fragments from

man-made objects have no easy-to-identify corners or boundaries. The beginning or end

of such structures is difficult to determine as well as each curve, corner or boundary

”may match equally well with numerous similar boundaries from other fragments.”5 This

is therefore a different approach thus the scope of this thesis is not only to discuss 3D

puzzles in general thereby examining prerequisites that need to be met but also an in-

terdisciplinary approach – a study of cultural features and the employment of knowledge

from mathematics and computer science aims at developing an autonomous algorithm

that is able to solve the puzzle. Main aspects of this algorithm are 1) the formulation of

a robust distance measure for discrete surface models, 2) the development of optimization

methods to deal with this class of discrete optimization programs as well as 3) the use of

a graphical user interface to make the underlying complex algorithms manageable for the

researcher in the field. To this end high-resolution 3D models of stones are needed as well

as a map of their original placement within the temple. Only with a deep understanding

of temple building and expertness in layout the proposed solutions of the algorithm can

be validated and the correct reassembly be determined.

1.3 Workflow Overview

Before solving this digital 3D puzzle, the stones need to be acquired and digitized first.

Digital acquisition equipment (also known as 3D scanner) is nowadays capable of cap-

3http://www.oxforddictionaries.com/definition/english/puzzle, accessed 27.05.2014
4http://www.learnersdictionary.com/definition/puzzle, accessed 27.05.2014
5A.R. Willis and D.B. Cooper, Computational reconstruction of ancient artifacts, IEEE Signal Pro-

cessing Magazine 25 (2008), no. 4, p.67

3



Contributions

turing objects at a micrometer resolution. The resulting output is a triangulated surface

mesh model that nearly flawlessly reproduces the stone in all its details. The remaining

challenge ist therefore that of reassembling the individual 3D stone models. To this end,

this thesis proposes a five step puzzle workflow that is qualified to solve this task.

The first step is to simplify the virtual stone models to wireframe box models. This

is done due to the fact that the temple stones have a box-shaped form. Exploitation

of this feature allows a reliable segmentation of the stone models and enables a quick

enumeration of all possible pairings. In the next step, using those pairings, a way of

measuring similarity between two joints is introduced. To achieve this, several point-based

methods are combined to allow for a reliable prediction. In the third step, the results of

the previous step are converted into rank-based values and pair-wise matchings with a

low rank get pruned to reduce the number of overall possibilities. Next, the remaining

probable matchings are taken step by step to form larger solution parts, until no further

suitable pairing is available. This fourth step is achieved by making use of tree structures.

In the last step, by letting craftsmen and specialists include their profound knowledge on

Khmer culture and temple sites, the solution proposed by the algorithm can be verified.

1.4 Contributions

A detailed analysis of existing works in the area of 3D puzzles and cultural heritage

shows that none of the existing propositions is capable of piecing together Khmer temples

based on their separate stones. In order to be able to solve such large-scale 3D puzzles, a

classification of potential matches is needed. This calls for a method which can classify

vertical and horizontal joining surfaces and is capabale to judge if two surfaces fit together.

Furthermore, this approach must be able to distinguish between different vertical and

horizontal joints quickly and assess which one is to use for a possible matching.

This is achieved by the first contribution: a new representation of the sandstone blocks

developed in the course of this thesis, called minimal volume box(MVB). It is a wireframe

representation which resembles the outer shape of a virtual stone model using a minimum

of storage capacity. The idea is that the sandstone blocks closely resemble the form

of a cuboid (or polyhedron in a mathematical sense) making the MVB a polyhedron

approximating the edges of the stone based on a linear-least-squares approach.

The second contribution is a similarity analysis especially tailored to Khmer temple

stones. Before the actual puzzling can be started, it is of the utmost importance to gain

reliable information on the probability of a vertical or horizontal joint. This is the same

4



as within the framework of classical 2D jigsaw puzzles. Only if two pieces are considered

to fit they are tested for a possible match. Blocks of sandstone from ancient Khmer

temple sites feature the special difficulty, that there are no mirroring counterparts which

interlock. To resolve this drawback, a combination of different per-point based methods

in 2D and 3D allows for reliable propositions on the probability of a match. Appropriate

pairings will score highly in all measurements.

The third major contribution of this thesis is the five-step workflow to which the

MVB computation is integrated in order to make use of the similarity analysis. This

is the actual algorithm puzzling together the separate stones. Its first step is the MVB

creation and determination of possible pairings, the second step is the already mentioned

similarity analysis. After this, possible pairings are classified and pruned out if termed

unprobable. The fourth step then combines remaining pairwise matchingsto complete

solutions using a tree structure. In the last step the unique identification of the correct

solution is determined by applying a force-directed graph drawing algorithm.

1.5 Outline of thesis

The thesis is structured as follows: Chapter 2 gives an overview of available 3D puzzling

techniques that are the basis to solve the given task. Additionally, 2D puzzle techniques

are reviewed as well, as it strenghtens the outcome of the puzzle algorithm to also take

into account the 2D layout of each stone. Further areas of research that were investigated

are presented as well. After this, chapter 3 talks about Khmer temples and temple

building techniques and discusses how architectural insights can be exploited for a virtual

reconstruction algorithm. Chapter 4 explains bounding volumes and derives a new type

of representation for virtual temple stones, the minimal-volume-box (MVB). Chapter 5

discusses possibilities how to compare two stones and develops a measure for the similarity

of temple stones. The results are used for the reconstruction algorithm. Chapter 6 presents

new methods to apply the similarity analysis for the reconstruction of the temple. The

results of this new puzzle pipeline are discussed in chapter 7. A summary and an outlook

on possible enhancements is provided by chapter 8.

5
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Chapter 2

Related Work

“ Reconstruction of fractured ancient artifacts such as frescoes, pots, statues and

tablets is important because it helps archaeologists make inferences about past

civilizations and cultures. Unfortunately, reconstruction is usually a painstak-

ingly labor-intensive job which may take several months or even years to com-

plete by hand if the number of fragments is very large.6

”
The aim of this dissertation is to develop an automatic virtual algorithm that is able to

reassemble fallen Khmer temple walls. Those temple walls typically consist of individual

stones and can be seen as a large virtual puzzle where each stone represents a puzzle

piece. Due to the high complexity of this task it is beyond the scope of this thesis to

abstract problem and solution to other temples as well. In general, puzzles can be divided

into two or three dimensional puzzles. 2D puzzles are often called jigsaw puzzles, see

figure 2.1 for an example. The reconstruction of the studied Banteay Chhmar temple wall

can be tackled from the 2D as well as from the 3D perspective. In order to enhance the

reliability of the matches proposed by the newly developed puzzle algorithm a combined

2D and 3D approach is used, although the focus is on 3D. This chapter will briefly talk

about 2D puzzles and then elaborate on various methods to solve 3D puzzles.

6Shin, H., et al.; Analyzing fracture patterns in Theran wall paintings; in: Proceedings of the 11th In-
ternational conference on Virtual Reality, Archaeology and Cultural Heritage; Eurographics Association,
2010; p. 71
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2D puzzles

2.1 2D puzzles

The earliest mentioning of modern-day jigsaw puzzles dates back to the 1760’s when they

were created as an educational aid for children to help them learn geography. In the indus-

trial age jigsaw puzzle production became less expensive leading to an increased popularity

and spreading. During the “Golden Age”7 in the 1920’s and 1930’s the geometrical shape

of each piece got more complex and thus the difficulty of 2D puzzles increased leading to

an increase of adults solving those kinds of riddles as well. This increase in popularity

caught the attention of scientists and in 1976 Garey and Johnson [GJS74] proved that 2D

jigsaw puzzle belong to the class of NP-C problems, which is known to be very hard to

solve.

Tybon [Tyb04] wrote an overview on history, problem statement and solution of jigsaw

puzzles. He states the mathematical formulation of a 2D jigsaw puzzle as a rectangular

grid with r rows and c columns, which form an array of quadruples, given in 2.1.

G = (r × c× 4), (2.1)

where G[i, j, k] ∈ R+, for i = 1, ..., r, j = 1, ..., c, and k = 1, 2, 3, 4.

Each element of this array represents a value associated with one of the edges of a puzzle

piece. Therefore, the four edges of a rectangular puzzle are denoted by G[i, j, 1], G[i, j, 2],

G[i, j, 3], G[i, j, 4], where (i, j) is the position of the piece in the puzzle grid. Tybon

proposes that the optimum solution (2.2) of a jigsaw puzzle is the minimization of the

following sum:

min
r

i=1

c−1
j=1

|G[i, j, 3]−G[i, j + 1, 1]|+
r−1
i=1

c
j=1

|G[i, j, 4]−G[i+ 1, j, 2]|. (2.2)

Figure 2.1: A classical 2D jigsaw puzzle. A human would firt sort and puzzle the border
thus reducing the problem size and then puzzle its interior. Source [WSKY88]

7http://inventors.about.com/gi/dynamic/offsite.htm?site=http://www.jigsaw-puzzle.org/jigsaw-
puzzle-history.html, accessed 01.08.2014
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Generally speaking two types of 2D puzzles exist: pictorial and apictorial ones. The

former makes (nearly) exclusive use of the information that is gained by examining the

picture on each of the pieces and develops an algorithm which correctly combines the

fragments. Apictorial puzzle approaches either cannot or do not want to use the pictorial

information. In 1964 Freemand and Garder [FG64] gave the first and clear description of

the characteristics (orientation, connectedness, exterior boundary, uniqueness, radiality)

of apictorial jigsaw puzzles along with a suggested solution algorithm. Since then a lot of

research in this area and the area of pictorial puzzles has been done. A survey concerning

both types of 2D puzzles (pictorial and apictorial) is given by Kleber and Sablatnig [KS09],

[KS10]. The authors also briefly comment on 3D puzzles yet they focus on the 2D case.

An additional puzzle research field are ripped up documents although their classifica-

tion of being either a 2D or a 3D problem is not clear: In general it is agreed on that

machine-ripped up documents belong to pictorial 2D puzzle types. The geometric form of

such pieces is identic. Hand-ripped up documents are usually viewed as 3D puzzles. This

is due to the fact that during the tearing possibly different layers of paper get broken.

Unfortunately none of the features of ripped up documents occur on stone blocks therefore

they will not be considered for further discussion.

2.2 3D Puzzles

Latest in 1971, over 40 years ago, when Hilaire G. DeGast got the patent for three dimen-

sional puzzles, (see figure 2.2) the step from 2D to 3D was taken. In his patent application

DeGast states that “Three-dimensional puzzles are disclosed for forming a hollow orna-

mental object having a surface of revolution” [DeG71].

In the academic context, scientific research started about 15 years ago with the works

of Üçoluk [UT99]. To the best of the author’s knowledge there are seven reviews done

by Agapiou et al. [AGI+08], Eliuk and Boulanger [EB08], Kleber and Sablatnig [KS09],

Kleber and Sablatnig [KS10], Willis and Cooper [WC08], Gomes et al. [GBS14], as well

as Tsamoura et al. [TNP11] on 3D puzzles and cultural heritage in virtual reality.

In addition to these reviews the author would like to highlight the following works,

giving an overview on different aspects of 3D reconstruction in the field of cultural heritage.

From the abundance of works the ones featuring the highest similarity with the current

work are selected and discussed. The literature section of Gomes et al. [GBS14] containing

more than 100 published papers, provides a profound basis for further works in this large

field of research for the interested reader.
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3D Puzzles

Figure 2.2: A spherical 3D puzzle according to DeGast, [DeG71].

One of the first works concerning virtual automatic reconstruction of three dimensional

surface objects from archaeology was published in 1999 by Üçoluk and Toroslu [UT99].

They assume a hollow object, i.e. an object having no thickness. Therefore, it can be

represented by a surface in Euclidean space. The boundary of such a surface can be viewed

as a closed 3D space curve. Üçoluk and Toroslu propose an algorithm, using curvature

and torsion of 3D space curves, that is able to automatically match fitting curves and

thus reconstruct a broken object. Their algorithm is already capable of taking erosion

into account which is an important feature.

In 2001 Kong and Kimia [KK01] approached the problem of 2D and 3D puzzle solving

through curve matching as well. They propose a 2D costfunction measuring the similarity

of 2D curves from puzzle pieces, see figure 2.3(a). The function is the sum of determining

similarity in length of the curves under consideration and computing the difference in the

rotation angle. The authors use a coarse-to-fine strategy, where all possible matches are

first determined on a coarse scale and only get refined if the costfunction performs well

enough. Thereby the algorithm is able to determine possible matches on different resolu-
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tion scales and an impossible fit can be rejected at a very early stage. The costfunction

and the coarse-to-fine approach then get generalized to 3D space curves, see figure 2.3(b).

Both approaches rely on dynamic programming to be able to perform all computations in

a reasonable amount of time. Their 2D approach is used in this thesis for the similarity

analysis of two temple stones and will be discussed in more detail in chapter 5.

(a) Automatically solving
jigsaw puzzles using a 2D
costfunction on a coarse-
to-fine scale [KK01].

(b) Modifying the 2D costfunc-
tion to include torsion and ex-
tend it to the 3D case [KK01].

Figure 2.3: 2D(a) and 3D(b) puzzle algorithm using (space) curves to virtually reassemble
the object, both [KK01].

Also in 2001 Papaioannu published Virtual Archaeologist [PKT01], a tool for semi-

automatic reconstruction of threedimensionally acquired archaeological finds. It is divided

into three main stages: 1) mesh segmentation (restrict search space to potentially interest-

ing sides of fragments), 2) fragment matching (use matching error based on point-to-point

distance derivatives) and 3) full reconstruction (find globally minimal matching error and

match fragments).

Kampel and Sablatnig [KS03], [KS04] and Willis and Cooper [WC04] published works

on how to virtually reassemble broken pottery. Basically, all make use of the fact that

pottery vessels are symmetric to their rotation axis, yet they propose different methods of

match finding. Kampel and Sablatnig extract profile lines, determine the rotational axis

on each fragment and combine both information for a complete reconstruction. Willis and

Cooper extract profile curves of each sherd fragment and use methods from probability

theory to compute all reasonable alignments in form of a matching cost. The puzzling

and merging of fragments is then done favoring those alignments resulting in a minimal

sum of matching costs.

Probably the most noted work was published by Huang et al. in 2006 [HFG+06]. Using

arbitrary fragments from non-symmetric broken objects they are able to automatically

reassemble them as complete 3D models. Their reconstruction process consists of four
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3D Puzzles

steps (see figure 2.4): 1) each fragments’ surface gets segmented and classified into

original (outer) surface and fracture surface, based on boundary curvatures and surface

roughness, 2) a multiscale feature extraction based on integral invariants takes places,

leading to 3) a pairwise matching of the fragments and finally 4) multi-piece matching

using an iterative greedy algorithm.

Figure 2.4: The most prominent work concerning 3D puzzles has been done by Huang
et al. [HFG+06]. Using a four step reconstruction process digitized broken objects are
automatically reassembled.

Winkelbach [Win06] andWinkelbach andWahl [WW08] also work with non-symmetric

objects and propose an algorithm which creates a series of probable pose hypotheses for

each two fragments and employ a coarse-to-fine strategy using a cluster tree. This tree is

then used to reject wrong matches at early stages, which saves computational time.

Parikh et al. [PSCC07], as well as Reuter et al. [RRS+07], Mellado et al. [MRS10]

and Palmas et al. [PPCS] all work on semi-automatic ansätze to solve digital 3D puzzles.

Parikh et al. [PSCC07] developed an algorithm that computes promising matching can-

didates between a query and candidate pieces in a database and displays them to a user.

This algorithm is based on five sequential stages: 1) find a region that is of interest for

the reassembly, 2) get local description of the interest region, 3) find near-neighbor local

correspondences, 4) compute the geometric agreement and 5) analyze the match using

a spectral technique based scoring. Reuter et al. [RRS+07] presented a user study for a

semi-automated system which they developed. With this system a user is able to virtually

reassemble broken pieces. Mellado et al. [MRS10] improved Reuter’s system by adding a

real-time geometric matching algorithm and a feedback to validate or refine the proposed

match. The work of Palmas et al. [PPCS] is similar to the already described ones. The

main difference is that in the last method an expert user defines several constraints based

on his experience. Those are then taken into account for a reassembly where the algorithm

finds the most suitable solution.

In a different approach Oxholm and Nishino [ON11], [ON13] attribute their 3D ap-

proach to 2D image registration. They extract the fragments’ boundary as well as the
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colour of each boundary contour. Then this information is encoded as a multi-channel

2D image represented as a graph. By determining cycles in this graph, the fragments

are incrementally matched. The advantage of this approach is that no assumptions on

geometry or structure of the object need to be made. On the downside this approach

relies on user interaction in each step to validate if a match is accepted or not.

The series of papers published by B. Brown, T. Funkhouser, S. Rusinkiewicz, C. Toler-

Franklin, H. Shin, et al. ( [BTFN+08], [BLD+12], [FTFC+11], [SDF+10], [TFBW+10]) is

an example for ongoing work concerning the virtual two- and threedimensional reassembly

of fragmented objects (see figure 2.5(a)) in order to assist archaeologists. The objects are

different broken wall paintings mostly from excavations in Greece, the Netherlands and

Belgium as well as a synthetic fresco which has been professionally created and shattered

such that a basic groundtruth is known. In Brown et al. [BTFN+08] the authors mainly

focus on acquisition and processing of found fragments. They propose an acquisition

workflow incorporating 2D as well as 3D scanning of data. After the acquisition, the 2D

and 3D information is combined into one virtual model and a first matching based on

ribbons is presented and discussed. Shin et al. [SDF+10] and Franklin et al. [TFBW+10]

use the same data and extend the matching methods to gain further information. The

former ( [SDF+10]) elaborates on how fragment contours feature patterns that can be

used for a matching algorithm. The latter takes into account a large variety of features,

such as average color, contour curvature, average normal or dominant orientation. Brown

[BLD+12] focuses on a visual approach. A software solution is presented that displays

possible matches to a user, who is then able to accept or refuse the results. The authors

of the last paper of this series, Funkhouser et al. [FTFC+11] take the same frescoes and

apply a combination of the methods used in [SDF+10] and [TFBW+10] and apply them

to a machine-learning approach. They suggest that, if the system has learned how to

match one fresco, it can be used to automatically match other frescoes. The drawback is

that these approaches present methods to help verify predicted (either by an expert or a

computer) matches but unfortunately have not been applied to reassemble a fresco wall

of unknown geometry.
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3D Puzzles

(a) Shattered pieces
from a wall fresco.
The picture shows
how they are found
at the excavation
site [BLD+12].

(b) The broken pieces are scanned using 2D and 3D
scanning methods and then reassembled on a com-
puter [PAE+12].

(c) Final impression
[PPE+02]

Figure 2.5: Virtually reassembling a broken wall fresco. (a) shows pieces found at an
excavation site, (b) their digitized counterparts and (c) a virtually reassembled fresco.

M. Fornasier [For09] also works on virtually reassembling broken frescoes. His dataset

comes from the Ovetari Chapel in Padua, Italy. He proposes a 2D approach, based on

circular harmonic decomposition to explain, where, how and why mathematics is needed

in the restoration and reassembly of broken objects of archaeological interest.

C. Papaodysseus and his group are working on the reconstruction of fragmented wall

paintings as well, see [PAE+12], [PPE+02]. For their earlier approach done in 2002 (see

[PPE+02]) they use 2D digital photographs of a dataset from Greece and were able to

reconstruct a part of this painting consisting of 936 pieces. From those images a contour

line based on pixels is extracted and those lines are compared to each other. The smaller

the overlap of the pixels and the smaller the region in between two contour lines which

are in contact the higher the probability they match. Their more recent work, published

in 2012 (see [PAE+12]), is based on 3D scans of an other wall painting from Greece.

It applies the 2D approach to 3D meshes, i.e. they compare the volume between two

contact surfaces, consider the overlapping area, relate the area in contact to the maximum

allowed volume and check the length of the contact curves. Alas, for the 3D approach no

completely reconstructed result is shown but it is mentioned that suggested pairings were

confirmed by conservators.

Another example of 3D reassembly in cultural heritage are the works concerning the

Severan Marble Plan also called Forma Urbis Romae8, published by Koller, Levoy et

al. [KL06], [Kol08]: “The Severan Marble Plan was an immense marble map of Rome

constructed in the early 3rd century during the reign of Septimius Severus and is a primary

8http://formaurbis.stanford.edu/, accessed 30th of May, 2014
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source of topographical knowledge of the ancient city.”9 The work group of professor Levoy

at Stanford university started a digitizing campaign around 2002, where all accessible

remaining pieces of this huge map were threedimensionally recorded and inserted into a

database. Additionally the group proposed a technique for a virtual reassembly of those

broken pieces, taking into account additional points such as structure of marble, incisions

on the fragments and thickness of each piece. This way they were able not only to confirm

already existing matches but also to find new ones, see figure 2.6 for an example.

Figure 2.6: Two fitting pieces of the Forma Urbis Romae project as published by Koller
[Kol08].

Approaches from G. Carra [CDV08], Geary and Howe [GH09], Oetelaar [Oet13], Son-

nemann et al. [SSRS06], Arbace et al. [ASC+13], Ikeuchi et al. [IOT+07] and similar all

use various methods such as photogrammetry, laser scanning, time-of-flight, to digitally

acquire an object of cultural interest. These are for example the temples of Angkor Wat,

the Lichfield Angel, the Baths of Caracalla or the Great Buddha. By using this threed-

imensional data in combination with a modelling or CAD software package10, enhanced

virtual models are created and missing pieces are modelled.

With regard to a threedimensional virtual reassembly of the Banteay Chhmar temple

wall only the works of Winkelbach and Wahl provide helpful information as their cost-

function is applicable to reassemble Khmer temple stones, see section 5.2.5. This is due to

the fact that the preliminaries for the Cambodian temple site data set are different from

the ones in the presented works. Temple stones are as such not part of a larger but broken

object where clear incisions and heightenings provide highly probable fits. Additionally,

the stones are not rotationally symmetric as they were quarried out and therefore do not

provide symmetric features that could be exploited. Another hindering fact is that the

proposed algorithms make use of special characteristics such as color or fragment thick-

ness. This adds to the complexity of the topic as a completely new methods needs to be

9Koller, D. R.; ”Virtual archaeology and computer-aided reconstruction of the severan marple plan.”;
Beyond Illustration: 2D and 3D Digital Technologies as Tools for Discovery in Archaeology, British
Archaeological Reports International Series (2008): 125-134; p. 125

10e.g. AutoCAD, Blender
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developed from scratch. To this end, the following sections will provide an introductional

overview to the research areas from which the proposed puzzle solution workflow takes

its algorithms.

2.3 Minimal bounding boxes

Khmer temple stones, which are the pieces of the present puzzle algorithm have a clear

box-shaped form, see figure 2.8. A wireframe representation of their virtual counterparts

enables a fast computation of matching possibilities and matching tests. To this end

advances from areas such as reverse engineering, feature extraction and (tight fitting)

volume boxes are discussed in this section.

The work of Mukherjee [MDC90] proposes an algorithm which is able to determine

a wireframe structure of three-dimensional objects. The object under consideration is

segmented into planar surfaces and thinned. Then each surface is polygonized and outliers

are removed. With regard to simplifying Khmer temple stones this method was not

applied as the prerequisites of this algorithms could not be met or modified to be met.

“Reverse engineering, typically starts with measuring an existing object so that a

surface or solid model can be deduced in order to exploit the advantages of CAD/CAM

technologies.“ 11 An informative introduction to this topic is provided by Varady et al.

[VMC97], Benko et al. [BMV01] and Werghi et al. [WFRA99]. Demarsin et al. [DVVR06]

use reverse engineering to extract boundary curves represented as sharp features to seg-

ment the object.

Detecting (sharp) features (also known as ridge valley lines) in an object and using

them to reduce the object has been investigated for long from different points of view.

Boissonat [Boi84] makes use of nearest-neighbour-structures and Delaunay triangulation

to extract a minimal representation of the shape of the object. Gumhold et al. [GWM01]

convert the 3D point cloud into a weighted neighbourhood graph and create feature lines

by extracting minimizing subgraphs. Ohtake et al. [OBS04] work in the same direction, yet

they make use of first and second order curvature derivatives. Vosselman et al. [VGSR04]

gave an overview on state-of-the-art methods of feature extraction in 2004, followed-up

by Gross and Thoennessen [GT06] which propose an algorithm to extract lines from

laser scanner point clouds. Fleishman et al., and Daniels II. et al. [FCOS05], [DIHOS07],

[DIOHS08] propose to detect feature lines using robust moving least-squares approaches,

11T. Varady, R. R. Martin, and J. Cox, Reverse engineering of geometric models - an introduction,
Computer-Aided Design (1997), p.255
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smoothing the extracted lines and enhance them through spline representation.

Considering the construction of minimal bounding boxes or minimal bounding volumes

the works of Barequet [Bar01], Bartz et al. [BKS06], Hu et al. [HFR10], O’Rourke [O’R85]

and Suri et al. [SHH99] were important as a basis for the minimal volume box that has

been developed for the temple stones.

All presented approaches are capable to reliably compute a regular box-shaped object

consisting of planar surfaces which fit very closely to the underlying entity they are de-

signed to resemble. They are able to simplify the virtual temple stones into box-shaped

objects, yet a representation is needed that is not limited to planar geometry but that is

also able to reflect the stone as closely as possible and segment the various side surfaces

correct, fast and easy. Additionally, most of the methods are not able to detect whether

an indentation is present or not and if yes, to locate it.

2.4 Mesh similarity

As already pointed out this thesis deals with solving a large scale 3D puzzle. Generally,

in order to solve a puzzle on any scale or any dimension a criterion measuring the to-

getherness of two pieces is needed. In classical 2D jigsaw puzzles this criterion is usually

expressed as correctness of the picture printed on each piece (pictorial puzzles). Yet, if

the puzzling task is to fit together matching shapes (apictorial puzzle) a measure of sim-

ilarity is needed making predictions on the geometric similarity of a possible match. In

computer vision and graphics, the issue of shape similarity or mesh similarity has already

been extensively studied, yet the meaning of similarity may differ in various works.

Commonly, given two computational representations of objects or shapes the research

matter is to identify how much these entities resemble each other. To achieve this certain

transformations such as translation, rotation or scaling can be applied to one of the

shapes in order to match the other one as closely as possible partially or globally. This

matching can be viewed as an application of shape analysis techniques. Shape analysis as

such is the automatic examination of geometric structures in order to identify similarity

e.g. of objects stored in a database. Important application areas apart from 3D puzzles

include biology, forensics, CAD, or medicine. The Princeton Shape Retrieval and Analysis

Group has intensively studied shape similarity, see [FK04]. ”Similarity assessment in

3D cases is usually carried out by generating shape signatures from the 3D models and

then comparing these signatures using suitable distance functions. Ideally, these signatures

should be representation independent and completely describe the features of the 3D model
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Packing problems

needed for similarity assessment. A shape signature could be a graph, a vector or an

ordered collection of numeric values. The features captured by the signatures are usually

dependent on the motivation for performing similarity analysis.“ 12. Important in all areas

is an effective shape matching method allowing to evaluate the similarity. A survey on

this topic is provided by Loncaric [Lon98] and Shum et al. [SHI96]. Further works in this

research field include Adan and Adan [AA04], Alt [AG99], Barequet and Sharir [BS97],

Chen and Bahnu [CB09], Kishon et al. [KHW91] and Milios and Petrakis [MP98]. Many

of the works on different similarity features have various limitations such a restricting

the shape of the matched objects, presuppose occlusion-free environments or limiting the

motion [BS97].

In contrast to this shape matching, which usually occurs when working with a 3D

acquisition device, can be considered as a form of similarity as well. Two 3D point clouds

need to be identified and then registrated with each other. A good introduction to this

topic is given in the dissertation of Simon Flöry [Flo10].

Techniques detecting shape similarity make use of a variety of methods such as ge-

ometric distances, topological features, geometric hashing, transformations in Rd space

and are usually tailored specifically to the problem they aim to solve. Determining simi-

larity in Cambodian temple stones lays the focus on a combination of different geometric

distances, see chapter 5.

2.5 Packing problems

The sketch of the wall (fig. 3.12) which serves as a groundtruth in the current case (see

chapter 3), the arrangement of the stones in combination with the task of puzzling them

resembles a packing approach. In classical two dimensional bin packing a series of rect-

angles of different size is given and the task is to place them into a minimum number

of bins of known size (see figure 2.7). The problem is known to be NP hard. Coff-

man et al. [CJGJ96] give a mathematical description of the one-dimensional bin packing

problem as: ”We are given a positive integer bin capacity C and a set or list of items

L = (p1, p2, ..., pn), each item pi having an integer size s(pi) satisfying 0 ≤ s(pi) ≤ C.

What is the smallest integer m such that there is a partition L = B1 ∩ B2 ∩ ... ∩ Bm sat-

isfying


pi∈Bj

s(pi) ≤ C, 1 ≤ j ≤ m? We usually think of each set Bi as being the contents

of a bin of capacity C, and view ourselves as attempting to minimize the number of bins

12Cardone, et.al.; A Survey of Shape Similarity Assessment Algorithms for Product Design and Man-
ufacturing Applications; J. Comput. Inf. Sci. Eng. 3(2); 2003, 110
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needed for a packing of L.“ 13 Jylänki [Jyl10], Dowsland and Dowsland [DD92], Berkey

and Wang [BW87] and Dyckhoff [Dyc90] provide concise and informative overviews on

various variants of the bin packing as well as strip packing approaches. Bin packing can

be classified in either online or offline, where online means the number of rectangles is

unkown in advance and the best configuration needs to be determined while the algorithm

is running. Offline bin packing means the number of rectangles is known beforehand and

the best configuration can be determined before the algorithm is applied.

Figure 2.7: Bin packing: The task of fitting different rectangles into bins thereby mini-
mizing the number of bins used. In this figure eight rectangles were fitted into two bins.
The bins have been redrawn in red to enhance visibility. Picture source: [Dyc90]

Variants of bin packing are strip packing, free-form strip packing or cutting stock. In

all three cases, there is only one bin of known width but unkown height (the strip). The

objects here are not necessarily rectangles but are allowed to take any form needed. Such

problems can occur e.g. in textile industry where clothes are cut out of the fiber.

Concerning a partial reassembly of the Banteay Chhmar temple that is dealt with in

this thesis, the stones could be viewed as the rectangles and the wall as the bin the stones

need to be placed in. As some of the stones have indentations, thus being non-convex

polytopes and not rectangles prevents the application of bin packing methods as those are

especially tailored to rectangles. Additionally, the width and height of the wall is unknown

as it is indecisible in advance if the stones come from one vertical row or one horizontal

column of the wall, from a rectangular part or neither. Thus it could happen that the

algorithm would falsely indicate a one row or one column solution as correct.

An alternative to bin packing is polyomino packing. An n-omino is a 2D object made

up from n squares. The most popular n-omino is the domino. Conway [CL90], Marshal

[Mar97], Golomb [Gol70] and the book Polygons, Polyominoes and Polycubes [Gut09]

give overviews and introductions to that area of research. Concerning the large scale 3D

13Coffman, Garey, Johnson; Approximation algorithms for bin-packing – an updated survey; p.46
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Virtual reassembly by hand

puzzle of Khmer sandstone blocks polyomino packing or rather polyomino puzzling does

not provide helpful insights as it is not possible to tile the irregular sandstone blocks into

regular n-ominoes.

Another possible approach which is related to bin packing is very-large-scale integra-

tion (VLSI). It places several thousands of transistors optimally on a single chip and

creates an integrated circuit. VLSI design is a methodology for saving microchip area us-

ing optimization methods to minimize the interconnected fabrics area. Placement in this

case is the process of determining the optimal location of the devices. Main objectives

in the design flow are 1) to minimize area and depth, 2) to minimize wirelength, 3) to

minimize delay and power, 4) to minimize power subject to timing or 5) to minimize

changes. Unfortunately, none of the prerequisites for placement in VLSI design could be

met or adapted to match Khmer temples stones. Yet, for the gentle reader, Chu [Chu08]

gives an informative introduction on this topic.

2.6 Virtual reassembly by hand

In order to develop an automatic virtual reassembly algorithm a virtual manual approach

was conducted to see where difficulties might occur. Figure 2.8 shows 61 stones that have

been assembled manually using the Breuckmann software Optcocat. The software comes

along with the 3D scanner which was used to digitally acquire the separate stones, see

chapter 3. Throughout the manual assembly the sketch of the wall in its original position

was used as a groundtruth. It took the author one week (about 40 hours) to complete this

model, which means the reassembly needs to be tackled with sophisticated algorithmic

approaches. The manually reassembled model has a size of about 2Gib and it is rather

difficult to insert further stones. In addition to that the red circles show parts, where

accumulation errors occured. This is due to the fact that by puzzling the stones from top

to bottom using the sample solution all the small errors made by not perfectly aligning the

stones sum up and in the end lead to large holes. Meshlab was used to visually enhance the

visible parts. Before investigating and presenting methods for an automatic reassembly

sound knowledge on how the Khmer build their temples is needed. This is presented in

the following chapter.
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Figure 2.8: A solely manual approach to virtually reassemble the temple wall. This model
was created using the optocat software package that is distributed with the 3D scanner that
has been used to acquire the separate stones.

21



Virtual reassembly by hand

22



Chapter 3

Khmer Temples

“ Today, natural decay and the ravages of vandals and thieves (...) have left their

mark, but no one who visits Angkor can fail to be stirred by its grandeur.14

”
With regard to a virtual reconstruction and before an algorithm can be developed

it is important to gain profound knowledge and a deeper understanding on how Khmer

masons built their temples. This chapter gives a short overview on Khmer temples and

will then focus on how they were constructed. From the fact that Banteay Chhmar and

Bayon, a temple at the Angkor archaeological park, were both built by king Jayavarman

VII, information on Khmer temple building can be learned. The Bayon temple features

bas-reliefs with many scenes from daily life and amongst them also workers carving bricks.

According to Freeman and Jacques [FC06] Khmer temples are not, as their European

counterparts (= churches) congregation places for faithful believers but rather an excep-

tional palace of a god. This leads to the fact that there was no need for vaulting or

creating large interior spaces. The earliest temples were built around the sixth or seventh

century A.D. With respect to their artistic criteria and construction period art histo-

rians can classify Khmer temples into 15 styles, see Nguonphan [Ngu09]. The temples

usually have a quadrangular shape and are built by following various geometric rules.

Another important feature is the moat surrounding a temple side. For more information

on Khmer temple styles the interested reader is referred to the PhD thesis of Pheakdey

Nguonphan [Ngu09] or the papers of Freeman and Jacques [FC06]. The following chapter

14Tully, J.; A short history of Cambodia; Singapore, 2005; p.30
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Banteay Chhmar

is based on the works of E. Aymonier [Aym04], A. le Bonheur [Bon95], O. Cunin [CB05],

J. Dumarcay [Dum73], [DR01], M. Freeman [FC06], C.F. Higham [Hig01], [Hig04], E.

Lajonquiere [Laj11], D. Rooney [Roo06] as well as J. Tully [Tul05].

3.1 Banteay Chhmar

”Foreigners don’t go to Banteay Chhmar, for good reasons. The ancient Khmer

temple sits on the lawless northern frontier of Cambodia, throttled by malaria-

infested jungle. The area is land-mined, banditry is rife, and the roads are

barely passable. In short, Banteay Chhmar is a tempting destination only for

those who like to get way off the beaten path.”15

(a) The map of Cambodia
shows its location within the
country close to the border of
Thailand as well as the fa-
mous Angkor Wat.

(b) The picture documents the state
of deterioration inside the inner
walls.

Figure 3.1: One of the largest known Khmer temples built by king Jayavarman VII is
situated in Banteay Chhmar, Cambodia.

Originally built under the reign of king Jayavarman VII ruling from his ascension to

the throne in 1181 until his death around 1220 AD to honor his son and four of his

army generals for defeating the Cham, Banteay Chhmar is nowadays gradually being

reconstructed, see Higham [Hig01]. Due to its remote and isolated location, it had been

nearly forgotten and the remarkable bas-reliefs had been subject to severe looting. Today,

the temple region is slowly developing into a tourist attraction, despite the fact that

Banteay Chhmar lies within a large minebelt stretching over several hundred kilometres

along the Thai-Cambodian border. The map in figure 3.1 (a) shows the location of Banteay

15D. Preston; The temples of Angkor. Still under attack ; National Geographic, 2000, vol. 198, no. 2;
p. 86
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Chhmar within Cambodia in reference to the famous and well-known Angkor Wat.16

Despite the fact that the Khmer empire stretched across nearly all of former Siam at its

height and that its trading networks even reached up into China, their only legacy are

such astounding temple sites, spreading over all of the region.

The site

The templesite of Banteay Chhmar is located about 63km north of Sisophon and 20km

east of the Thai border, close to the Dangrek mountains, and belongs to the Thma Puok

District (see figure 3.1 (a)). As the romanization of Khmer writing can be ambiguous, its

name means either citadel of the cats or rather Narrow Fortress17,18. The inner complex

is enclosed by walls, which span an area of 2.2 × 2.4 kilometres, and is encircled by a

moat. This moat has been fed by a stream from the nearby baray19 in the northeast and

is crossed by four fortified bridges. Those passages are bordered by sitting giant statues,

similar to the ones at Angkor Thom as O. Cunin remarks, see [CB05]. Additionally, there

are eight small satellite temples surrounding the moat, thus all in all Banteay Chhmar

encompasses an area of about nine square kilometers, see fig. 3.3, making it one of the

largest temples in the world. C. Higham states that “This extensive area between the outer

wall and the moat and walls of the inner temple, which covers 448 hectares, now includes

only eight single-chambered shrines, but presumably at one time it would have housed a

considerable population.”20. Some of the small temples are completely collapsed by today.

Inside the inner sanctum the walls are covered with bas-reliefs showing battle scenes

between the Khmer and the Chams (see fig. 3.5) and scenes of daily life, very similar to

the ones that can be admired at the Bayon temple, which is located close to Angkor Wat.

Additionally, a lot of apsaras21 and “an extraordinary range of gods with multiple heads

and arms” 22 can be seen. The inner complex is a labyrinth of passageways and shrines.

16Map source: ”Banteay Chhmar,” Wikipedia, The Free Encyclopedia,
http://de.wikipedia.org/wiki/Banteay Chhmar (accessed May 12, 2014).

17Aymonier, E.; Le Cambodge. Les provinces siamoises, Vol.2, Paris, 1904, p. 335
18Inventaire descriptif des monuments du Cambodge, Vol. 3; PEFEO 9, E. Leroux, Paris 1911, p. 391
19A baray is some kind of water reservoir.
20C. Higham. The Civilization of Angkor. University of California Press, 2001, p. 131
21In buddhism and hinuism an apsara is a spirit of clouds and waters.
22C. Higham. The Civilization of Angkor. University of California Press, 2001, p. 131
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Banteay Chhmar

Figure 3.2: A map of the inner temple complex. The red box on the right marks the part
this thesis deals with, the red box on the left marks the Avalokeshvara (see fig. 3.4)

Figure 3.3: Map showing outline of Banteay Chhmar, Cambodia. Picture courtesy of
Global Heritage Fund: www.globalheritagefund.org

The sanctuary’s remote location and the peculiar building technique that does not use

mortar or other alternatives caused about 80% of the templesite to collapse due to tree

and foliage growing on the walls and rainwater ingressing every fracture, causing stones

to shift. Of the remaining 20%, most structures require stabilization that keeps them

from collapsing. Unfortunately, there is not much written information left of the Khmer,

since their writing was done on palm leaves or animal skin, which decomposes quickly,

see Tully [Tul05].

The site is similar to the better-known Bayon temple, which is situated in the Angkor

complex, especially concerning the numerous towers showing faces of Jayavarman VII

both sites feature. The reason for this is that Banteay Chhmar as well as Bayon were

founded by the same king, Jayavarman VII. After his reign, Banteay Chhmar has been
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given up and is therefore today considered as an unmodified historical monument. Thus,

as Dr. Olivier Cunin remarks,23 a better understanding of Banteay Chhmar and Bayon

can be reached by studying both structures.

(a) The combination of beautiful carvings and remote location encourages looting: This is a picture showing
eight multi-armed Avalokeshvaras. The picture was originally taken by George Groslier in the 1930s when
he was examining Banteay Chhmar.

(b) Status quo of (a) in 2010 from the back side. After severe looting in the 1990s, only two Avalokeshvaras
remain. Two can be found in the National Museum in Phnom Penh, two are supposed to be found in the
pile of stones in-situ and the remaining two are still missing.

(c) Front view of the last the two Aval-
okeshvaras that are still upright.

Figure 3.4: Beautiful carvings at Banteay Chhmar.

The aforementioned remote location and the beauty of the carvings caused looting

and severe damage to the Banteay Chhmar site. The most prominent example for this

is a bas-relief, for which the temple is known best, the Avalokeshvara, a multi-armed

buddhistic boddhisattva, also known by names such as Lokeshvara, Avalokiteshvara or

Lokiteshvara. In 1998 parts of this wall were removed ”by the Cambodian army for sale

on the Bangkok antiquities market.”24.

23“The Small Citadel”: Reconstructing the Ruined Buddhist Complex of Banteay Chhmar. Aspects
of Angkor Lecture Series, Smithsonian Institution; 2010

24”Banteay Chhmar“, in: C.F. Higham. Encyclopedia of Ancient Asian Civilazations. Facts on File
Inc., 2004, p. 39
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Banteay Chhmar

Figure 3.4 shows the remainingss of this bas-relief today. Of formerly eight remarkable

Avalokeshvaras only two are still standing today. Figure 3.4(a) shows how they have been

found by George Groslier in the 1930s, whereas figure 3.4(b) shows the status quo of the

same part of the temple from its back side in 2010. Figure 3.4(c) is the front view of the

last two still standing and most prominent Avalokeshvaras of Banteay Chhmar.

Figure 3.5: One of the many battle scenes at the Banteay Chhmar temple complex.

A computer-modelled reconstruction (see figure 3.6) of the templesite was done by

Olivier Cunin, who studied the carvings and face towers of the Banteay Chhmar temple

for over a decade. For more information the author refers to Sharrock, Jacques and

Cunin [SJC], as well as Cunin [CB05].

Since 2008 the Global Heritage Fund (GHF) is leading a preservation campaign, which

involves, among others, teaching locals how to conserve the precious bas-reliefs and stones.

Supported by the Cambodian Ministry of Culture and Fine Arts, the IWR (Interdisci-

plinary Center for Scientific Computing of Heidelberg University) and the GHF are col-

laborating in order to develop appropriate techniques to support the conservation process

using advanced digital acquisition and reconstruction techniques.

Figure 3.6: A computer-modelled reconstruction of the Banteay Chhmar templesite done
by Olivier Cunin. Picture courtesy of Olivier Cunin.
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3.2 Temple building techniques

Most of the currently available information on constructing a Cambodian temple site was

gathered by the early French explorers travelling through then Indochina and from the

analysis of the bas-reliefs on the walls of different temples. In figure 3.7. for example

workers are depicted carving bricks.

Figure 3.7: Part of the southern wing of Bayon temple showing workers carving stones
for the construction of a temple. Picture Source: [Bon95]

In order to construct a monument like a Khmer temple, building material and an

economic surplus is needed. Materials used in ancient south-east Asian complexes were

mainly brick, sandstone, and laterite and, to a lesser extend, wood which by now is nearly

completely deteriorated in most places. As the use of sandstone requires higher masonry

skills and more manpower the earliest temples dating back to the eighth and ninth century

were completely made from wood, followed by brick. Temples being in brick mostly have

stucco facades, although sometimes it was carved directly. Stone however made a gradual

appearance and for the Khmer case can be dated to the late 10th century. For every

temple the considerable distance from the quarry to the construction site also needed to

be covered – this is especially the case for sandstone, whereas laterite quarries were mostly

exploited close to the construction site.

Quarries and Transportation

The quarries for most Khmer temples were located at the Kulen plateau, about 30km

away from the central Angkor complex. For the temple complex of Banteay Chhmar it is

not sufficiently known where the stones came were sourced yet in all cases the following

principle was applied.

Within a quarry the sandstone was cut and shaped into blocks of various sizes, al-

29



Temple building techniques

though in a mathematical sense they are not blocks as they do not feature angles of 90◦.25

This cutting and shaping was reached by marking out a shallow vertical working face of

roughly two metres, sometimes less. Next the block was shifted vertically and raised hor-

izontally. While the exploitation of the quarry moved on the working face became higher

and higher - yet the highest appears to have been five metres, probably because above

that it was too difficult to shift blocks on rollers. The disadvantage of this technique is

that it does not allow the blocks to be used vertically other than as a false bedding.

Another technique which has been used, hollows out a recess line and forces wooden

wedges into it. Those wedges were then soaked in water for several days until the block

split off along these markings.

Figure 3.8: The figure shows the cutting face of a sandstone quarry at the Kulen plateau.
Picture Source: [DR01]

To move the material from the quarry to the site the blocks were transported by

elephant or ox carts, depending on the size. To hoist the stones, pairs of bamboo pegs

were driven into specially prepared holes (two sets per block, see figure 3.9 for an example)

and linked by ropes using tripods, leavers and pulleys.

Figure 3.9: On the right side of the stone two holes are visible which were needed in order
to be able to hoist the block into place.

25It is known that the stones were quarried according to demand as the inventory of stones needed for
building was drawn up on some of the temples.
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Construction

After the material had reached the construction site the building of the themple could

start. In general, the basic layout for construction was a base or a platform. If the temple

was intended to represent a mountain, the masons formed a high platform using laterite

to shape it and then filled it with rammed earth. In most cases sandstone was used to

cover the laterite. In a temporary shelter close to the temple site the preparation of

the blocks was undertaken by cutting them to the desired dimensions and grounding the

layers against each other. This is nicely shown by a relief on the internal gallery at the

Bayon, see figure 3.10. The bas-reliefs were sketched by the master carvers making the

design. After everything was in place hundreds of carvers finished the sketch, which is

indicated by a lot of unfinished examples and the final reliefs bear no relationship to the

junctions of the stones they are carved on to.

Figure 3.10: Sketch of a bas-relief located at the internal gallery of the Bayon temple
showing workers cutting stones. Picture Source: [DR01]

During the construction process the stones were very seldom keyed together but ver-

tical joints were laid out, one on top of the other. This created a weakness leaving tree

roots space for infilration which then tore the structure apart. Additionally, the Khmer

masons did not use any mortar or binder to fix the stones, just occasionally some metal

clamps, first made of bronze and later iron. As metal is a very valuable commodity, most

of them are stolen nowadays. In conclusion this means the only stability in the structure

came from the cut of the stones. New stones were added in rows from bottom to top and

if a stone was to be placed but did not perfectly fit, then an indentation or kink from the

underlying stone was cut out.

Rooney [Roo06] states that after the stones were set in place, they were ground to-

gether using abrasive sand between them and rocked back and forth until a tight joint

was formed. This is not accepted by all scientists and there is another theory how the

stones were prepared. Dumarçay e.g. [DR01] doubts Rooneys opinion, stating, the stones

were first roughly cut out, finished with a chisel and then polished. His argument is that,

assuming stone A is grinded against stone B on the same height as the moving stone
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Temple building techniques

(A) where the vertical and the horizontal surface can be processed, if stone A is smaller

than stone B, the surface of B being grinded by A is larger than the grinding surface

over the whole length. But nothing similar can be seen at the Bayon, only the contact

surfaces have been worked on. Furthermore Dumarçay suggests, that a wall is separated

into several parts stabilizing each other. He is convinced that the assembly was as follows:

the first layer was set in place and blocked at an edge. The cornering stones were placed

higher and adapted to form an offset in which the second layer was fit into, which in

turn was also blocked by an edge. The free space at the corner was filled with specially

prepared stones before the third layer came, and so on. This scheme has not always been

pursued, as can be seen by missing edges or missing offsets. Additionally, the described

scattering technique explains the sole working on nearly horizontal surfaces.

An explanation not mentioned by Dumarçay but facilitating his arguments is that

that the grinding of the stones is not likely to have been taken place in situ since the

depth of the walls is not always constructed from a single block of stone. This way when

the stones were placed they needed to by adjusted according to their cut of stereotomy

which is sometimes very complex.

From the ninth century on Khmer masons started to employ stone wedges in the

vertical plane and later also in the horizontal plane to be sure of the coherence of the

masonry courses, see figure 3.11.

Figure 3.11: One of the walls from the Bayon temple where the wedge stones, wich are
used ensure the coherence and stability of the wall have been marked in black. Picture
source [DR01]

According to Dumarçay the wedge repells the stress beyond the length of the lintel

and avoids straining this element too much as it only rests on top of the jambs on each

side. Thus the wall gained a greater solidity and undertook the structures with a greater

verticality showing that the Khmer adapted to the sandstone material in the course of

time. The wedges can also be found on the wall segment that serves as a groundtruth for

this thesis, see figure 3.12.
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Figure 3.12: Sketch of the wall in the Banteay Chhmar temple, that has been threedimen-
sionally acquired.

3.3 Data

The 3D puzzling task of a fallen Khmer temple side this thesis deals with is based on

separate stones from the Banteay Chhmar temple. Therefore, those stones were acquired

using digital measuring equipment. In the following, a short overview on 3D acquisition

techniques is given and the data acquisition in-situ summarized. For further information

on machine vision the reader should refer to the Handbook of Computer Vision and

Applications, volume 1 [JHG99].

In recent years digital data acquisition has gained increasing interest in the academic

context. The equipment got more affordable and new insights in existing research as

well as new research areas are thus possible. Topics of investigation are for example the

indentification of wedges on cuneiform tablets26. One of the goals there is to enhance

the readibility of the writing. Another example is under-water archaeology: using pho-

togrammetric methods, i.e. 3D information is gained by using 2D photographs taken from

different viewing angles, objects on the sea bottom can now be studied without neces-

sarily hoisting them, see Drap et al. [DSS+07], and Drap [Dra12]. Further applications

are models gained by aerial photographs, see Altan et al. [ACKT04], digitally acquired

cave paintings, see Stanco et al. [SBG11] or adding models into databases, see Koller and

Levoy [KL06]. Mixed methods open up additional possibilities: using threedimensional

scans of ruins in combination with virtually modelled objects, whole cities can now be

explored on a computer, see Dylla et al. [DFM+08] or simulations answer questions as to

the reason of a specific placement of a building, see Frischer and Fillwalk [FF13].

Threedimensional digital data acquisition equipment can acquire two different types

26For further information see to the dissertation of Mara, [Mar12]
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Data

of data: i) hollow surface meshes where only the outer hull of the object is acquired

and ii) volumetric depth image where focus is laid on acquiring the inside of an object.

Data from the latter type is mainly dealt with in medicine (e.g. tomographic data) and

will be skipped from further consideration in this thesis. The former type of data is used

throughout this thesis and will be considered in more detail in the following section.

Digital surface models can be acquired using

• Triangulation:

The object under consideration is viewed from two different known viewing points.

Depth information can be gained by the difference of both images.

• Running time:

A signal with known velocity is emitted and reflected by the object. Depth infor-

mation is gained by the time it takes the signal to travel to the object and back.

• Interferometry:

Depth information is gained by measuring differences in amplitude and phase of an

emitted ray.

• Shading or structured-light:

A pattern of black and white stripes is projected onto the object and at every

transition from black to white the scanner gains depth information about the object.

• Photogrammetric stereo:

Using a set of twodimensional images from a camera taken from different (unknown)

viewing positions depth information is gained by the difference in the photographs.

Additional techniques are usually a variation or combination of the just listed types.

The different scanning methods feature several advantages as well as disadvantages,

which can be separated into pricing, range and accuracy. Accuracy in case of digital

measuring equipment means the potential of representing the object under consideration

as perfect as possible reducing the error on the surface to a minimum. Range is related

to the size of the object which can be measured. E.g. a time-of-flight scanner (ToF;

running time type) can capture objects up to 300m in size. Not every method is suitable

for every application. E.g. photogrammetry is usually extremely cheap as it uses digital

images, which can be acquired with an ordinary digital camera at any place and at any

time and any object and there exist free software packages for depth calculation. Its

disadvantage yet is the lack of accuracy especially for very small objects. On the contrary

shape from shading and triangulation methods have the possibility to acquire objects with
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an accuracy in the µm scale yet they are very expensive as highly sophisticated hardware

and software equipment is required.

The technique used for the data acquisition this thesis is based upon is a mixture

of structured-light and sterevision. To gain a very high accuracy the structured light

pattern size is varied at the power of two and additionally a phase shift is done. The

combination of stereo vision and structured-light techniques leads to a precision of up to

10 µm. Furthermore, the scanning device can use its two color cameras to acquire colored

texture maps, thus gaining a more realistic impression of the object. Figure 3.13(b) shows

one of the stones during data acquisition, with the typical stripe pattern, caused by the

acquisition process.

(a) A stone after the cleaning
process and before being digi-
tally acquired.

(b) A stone with the typical stripe
pattern of the 3D scanner.

(c) After some postprocessing
steps, a complete model of the
stone can be viewed on the com-
puter.

Figure 3.13: The 3D data acquisition process in brief.

In 2010 a team of the Interdisciplinary Center for Scientific Computing (IWR) digi-

tally acquired different parts of this temple with the aim to provide groundtruth work in

the area of large-scale 3D Khmer temple puzzles. The data that is used in this thesis as a

groundthruth is based on 135 digitally acquired stones from a part of Banteay Chhmars’

eastern outer temple wall from the inner complex, cf. figure 3.1(c). Figure 3.14 shows this

wall in its original state in December 2009. The acquired stones are the ones between the

two red lines. The foundations of the wall in question needed to be reinforced to enhance

its stability and prevent it from deterioration. Therefore, a sketch (see figure 3.12) and

photographs of the wall were taken, and all stones were labeled while being taken down.

Due to several cirumstances it was not possible to scan during nighttime in Banteay Chh-

mar, yet structured-light scanning techniques need a very dark environment to operate at

their best. To overcome this a dark tent was used to perform the data acquisition during

daylight. Further data acquisition details, applications and outlook of the projects can

be read in the papers by Schaefer et al., [SMF+11] or Freudenreich et al., [FSN+11].

Each of the digitally-acquired stones as well as the fallen blocks still lying around
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Optimization and Khmer temple reassembly

consists of sandstone with a unique geometrical structure. On site, the Global Heritage

Fund already began a manual reassembly, but taking into account the weight of each stone

(up to one ton) as well as the fragility of the material, the abundance of fallen stones and

the climate conditions, a computer-aided documentation and reconstruction process was

favoured.

The fact that the aforementioned eastern wall had to be taken down stone by stone,

proved a great possibility to capture individual stones and investigate ”whether a virtual

reconstruction based on scans is possible in order to fasten the reassembling process and

enhance the safety for manpower and stones” 27.

Based on the digitally acquired data, characteristic features of each stone can be ana-

lyzed in order to define criteria necessary to verify if the blocks are adjacent. Automating

this virtual 3D puzzle is of great help for archaeologists and stone conservators recon-

structing the temple site.

Figure 3.14: The set of stones that is used throughout this thesis.

3.4 Optimization and Khmer temple reassembly

The task of reassembling the bas-relief wall from the Banteay Chhmar temple site requires

the assignment of digitally acquired stones to the position they had before the wall was

dismantled. This can be described as a problem from the area of optimization: in order

to find the original (= correct) positioning of each stone either a similarity analysis can be

conducted to determine the positions via algorithmic methods or an exhaustive trial and

error approach can be applied via positioning each stone until the correct solution is found.

27Freudenreich, J. et al.; Close range architecture documentation of angkor style temples; in: Proceed-
ings of DMACH 2011; p. 239
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Due to expert knowledge from stone conservators and other Khmer architecture experts,

it is assured that the correct solution is unique. Independent from the puzzling method

of choice (complete enumeration, algorithmic methods or a combination) the problem is

to find the optimal solution from many possible. The stones have been worked on such

that they fit very tightly, i.e. the objective function of this optimization problem needs

to be able to detect pairings of stones featuring the highest similarity and determine the

optimal layout.

The problem can be classified as being a combinatorial optimization problem with a

constraint. Given a pair (S, f), where S is a finite set of all possible pairings of two stones

and f is a function assigning similarity values to pairings of stones, the goal is to find

a globally optimal solution i ∈ S, such that s minimizes f , i.e. f(s) = min
x∈S

f(x). The

constraint is that the stones may not intersect, i.e. the Euclidean distance d(k, l) between

two stones k, l is always required to be greater than zero.

Let 1 ≤ i, j ≤ n be two stones and ti, tj their respective sides. A pairing p = (i, ti, j, tj)

thus constitutes a potential match of two stones describing how the position of i and j

relates to each other. A similarity analysis (given as 3.1) assigns each pairing p of such

two stones a similarity value rs.

τ(p) = rs (3.1)

A solution for assembling n stones therefore consists of at least n− 1 pairings. Thus, the

optimal solution can be given as

min
n−1
k=0

rsk (3.2)

As a proof of concept, this has been tested for a synthetic dataset, see figure 3.15.

Three stones with typical features of Khmer temple stones as described in this chapter

were designed and the puzzle workflow applied. In this ideal case the optimal solution of

(3.2) is the correct solution, see figure 3.16.
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Conclusions for a reconstruction algorithm

(a) Stone with an indentation
to the right

(b) Stone with no indentation (c) Stone with an indentation
to the left

Figure 3.15: A synthetic dataset of Khmer temple stones.

Figure 3.16: The optimal solution of the synthetic dataset is the correct solution.

3.5 Conclusions for a reconstruction algorithm

Concluding chapters 1 - 3 the given task is to virtually re-erected a fallen Cambodian

temple from the Angkorian period by solving problem (3.2) and the development of an as

automatic as possible algorithm. Chapter 1 outlined the need of a computational method

to help people on site: the assembly can be done much faster, the fragile stones are

carried around less and the security of the workers is enhanced. Chapter 2 showed that

a completely new and indepented approach needs to be developed, as already existing

work is not useful in the current case. It additionally pointed out, that the amount of

data increases fast and small errors accumulate. On top of that, a purely manual puzzling

done with the computer provides no gain in time compared to the manual puzzling on

site. Chapter 3 pointed out that the stones feature a very specific form, which should be

exploited for the puzzling algorithm. Independent of the discussion how the stones were

set in place it is safe to assume a very high fitting accuracy and precision leading to nearly
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invisible transitions between the stones. The following chapters elucidate how to make use

of this unique geometric form and the tight fitting. The outline of the algorithm that has

been developed based on the presented research and considerations in order to solve the

Khmer temple puzzle is as follows: 1) for each digitized 3D model of a sandstone block a

minimum volume box (MVB) is created (see chapter 4) and possible pairing combinations

(i.e. how two stones join) are enumerated. 2) For each combination a similarity analysis is

conducted, see chapter 5 and a similarity value is computed. 3) The pairing combinations

are pruned according to their similarity value and the best ones are kept, see chapter 6.

4) The remaining combinations are pieced together to form part of the original wall, see

chapter 6 and chapter 7. Finally, the suggested solution is validated.
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Chapter 4

Simplifying the model

“ Every solution to every problem is simple. It’s the distance between the two

where the mystery lies. 28

”
The data that is used for the partial virtual reassembly of a broken wall from the

Banteay Chhmar temple site has been gained using a high-resolution 3D structured-light

and stereo vision scanner (cf. chapter 3.3, Schaefer et al. [SMF+11] and Freudenreich et

al. [FSN+11]). Figure 3.13 depicts the acquisition process in short: The stone is cleared,

scanned and subsequently a virtual 3D model is created. Each of these models resembles

the original object with an accuracy of 3.14 points/mm2 on average resulting in a data

size ranging from 75 MB for the smallest model of a stone up to 1.1 GiB for the largest

model. Since the data size increases with every stone that is added to the puzzle (see

section 2.6) a meaningful way of reducing the size of each model is needed. To be able

to solve this large-scale 3D puzzle, requires an algorithm that gives information on the

quality of two corresponding pieces. In the current case the threedimensional shapes

resembling the form of blocks are used for the puzzle, i.e. corresponding parts refers to two

rectangularly shaped bounded surfaces from two different blocks. This chapter introduces

minimalistic versions of the high resolution models which are used whenever the acquired

high resolution is not necessarily needed, how the input data is segmented into parts

that can be compared to each other and how matching candidates are determined. The

minimalistic stone representations are based on so-called bounding boxes which will be

explained in the first part of this chapter.

28Derek Landy, Skulduggery Pleasant

41



Bounding Volumes

4.1 Bounding Volumes

Imagine a virtual surrounding in which a character can walk through the environment and

explore it. The virtual figure is able to recognize structures like walls, plants or people and

can interact with them without accidentally passing through them. This is enabled by

intersection tests, that apply the principle of bounding volumes. The significant advantage

of testing versus a bounding volume in contrast to the whole object is that the object

itself (e.g. a person, a house, an animal, ...) is typically composed of many vertices, faces

or polygons to make it as realistic as possible, thus the representation is a highly complex

shape. Contrary to this a bounding volume is a simple geometric object, e.g. a sphere,

that completely surrounds a given object. Instead of checking a complete polygonal model

for intersection (computational amount: O(n2)) only its bounding volume is tested. As

long as the bounding volume remains untouched, the complex object inside does not need

to be considered for further computations (this is also known as ”early out” concept).

For a correct and real-time decision whether there is an unwanted intersection or not

easy shapes facilitate fast intersection tests. The following section is primarily based

upon Bender [BB06], Eberly [Ebe07], Foley [FDF+97] and Mortenson [Mor06]. For more

information the reader is referred to the aforementioned literature. Among the areas,

where bounding volumes are used are:

• Computer graphics, e.g. Ray tracing: used for ray intersection and/or viewing frus-

tum29 tests. If the ray does not intersect with the bounding volume, it will not

intersect with the object itself either.

• Computer games: used for collision detection. If the player hits a wall, door or gets

hit by something it is faster to first test if the bounding volume is in collision.

• Robotics: used for collision detection to prevent the robot from unwanted collisions.

• Animation and computer simulated environments: used for collision detection and

occlusion of animated objects or while interacting within a simulated environment.

Depending on the purpose and the shape of the underlying object bounding volumes

can have different forms, such as 1) bounding sphere, 2) bounding box, 3) bounding

ellipsoid (tighter fit than a sphere), 4) bounding cylinder (appropriate if the object can

only rotate around a vertical axis) or 5) convex hull. Examples of the principle boundary

volumes are shown in figure 4.1.

29The viewing frustum is the volume containing everything visible on the screen.
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Bounding volumes taking the shape of a box can appear in two ways: as 1) AABB (axis

aligned bounding box) or as 2) OBB (oriented bounding box). The first is a rectangular

box, aligned with the axis of the current coordinate system completely surrounding the

object in question. An AABB is very simple and fast to compute as just the minimum

and maximum values of vertices in all three space directions need to be calculated. The

drawback of this approach yet can be seen in fig. 4.1: An OBB is tighter fitting than an

AABB, thus with an AABB intersections are more likely to lead to false positives, i.e. an

intersection is reported but it is an intersection with the bounding box only and not with

the object itself. In case of an OBB the bounding box is rotated such that it encloses the

object in the minimal possible way leaving less free space between object and bounding

volume.

The choice and size of a bounding volume are determined by computational cost,

updating cost, cost of intersection detection and precision of interest. In general it can be

said, that the more sophisticated the bounding volume is, the more expensive the tests

get. In practice there are often several types used in conjunction.

Figure 4.1: Different types of bounding volumes. Picture source: Ericson [Eri05]

The characteristics of a bounding volume are 1) tight fitting, meaning the volume

resembles the real object as closely as possible, 2) intersection efficient, meaning it is fast

and easy to work with and 3) memory efficient, meaning they require only a small amount

of memory. The advantage is that bounding volumes can be generated during compile

time not during run-time making them fast accessible. One of the disadvantages however

is that if the object is transformed, the bounding volume needs to be transformed as well.

The smallest amount of memory is needed for a sphere, as only the center and the radius

have to be stored.

The following sections will illustrate the correlation between bounding volumes and

Khmer temple stones and describe the workflow necessary to compute a volume tightly

fitting to a virtual temple stone. Existing approaches to automatically compute a tight

fitting volume box could not be applied to digital Khmer temple stones (see section 2.3)

as their major drawback was the difficulty to automatically detect whether a temple stone
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Bounding Boxes for Khmer temple stones

features an indentation or not. Therefore a new representation called minimal volume box

tailored to Khmer sand stone blocks as well as a method to derive such a box is developed.

In the first step of the method an OBB for each stone model is computed, then edges (i.e. a

neighbouring pair of connected vertices, see next section) of the stone that correspond

to the edges of the minimal volume box are extracted, secondly it is checked, whether

an indentation is present and thirdly, the box gets refined. Those steps are applied to

all stone models. In preparation for the computation of matching parts needed to solve

the puzzle, each box is classified whether having no indentation, one indentation or two

indentations.

4.2 Bounding Boxes for Khmer temple stones

In general, before a puzzle can be solved a method is required classifying matching surfaces

and judging how closely two sides resemble each other. Furthermore this method needs

to be capable to quickly distinguish between different sides and assess which side is to be

used for a potential match. In case of temple stones matching surfaces are the vertical

and horizontal joints. Thus the virtual 3D model needs to be segmented and those joints

determined. The difficulty of an automatic segmentation are broken corners and eroded

edges. The bas-relief most stones feature should not be used in the puzzling algorithm as

in some cases there has not been a bas-relief in the first place and in some cases it has gone

missing due to weathering or looting. Drawing the attention to the last passage of the

preceding subsection, it was conducted that bounding boxes are tight fitting, intersection

efficient and memory efficient. The oriented bounding box of a Khmer temple stone, see

figure 4.2 already closely resembles the stone.

Figure 4.2: A 3D model of a Khmer temple stone and its oriented bounding box.

Furthermore as the surfaces of each stone are approximately planar the high-resolution

models can be reduced to drastically simplified versions using scientific methods to de-

crease computational amount and time later on. It has to be stressed that an investigation
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on the resemblance of two joints cannot be confined to the planar sides of a bounding box

as important curvature information would be lost and the similarity proposition worthless.

To avoid ambiguity the following definitions are made which are based on Ball, [BC87].

Definition: Vertex

A vertex v is defined as a point in 3D space v := {p ∈ R3|(px, py, pz)}. A vertex can

either be the corner point of a polygon, the ending point of a line or just a point.

Definition: Polygonal line, polygon

For a set of vertices {p0, ...pn} the set Q := {(p0, p1), (p1, p2), ..., (pn−2, pn−1)} is called

a polygonal line. The pairs of vertices are the edges of the polygonal line. If pn−1 = p0 it

is called a closed polygonal line. The area that is surrounded by a closed polygonal line

is called a polygon.

Definition: Face

If a polygon is part of a greater object which is constructed from several, not neces-

sarily identical, polygons (e.g. cube), it is called a face.

Definition: Polyhedron

A set of polygons will be called a polyhedron, if the following holds:

(i) Each two faces share either no vertex or one corner vertex or one edge. The in-

tersecting set of two different faces is therefore either empty, a corner vertex or an

edge.

(ii) Each edge of a face belongs either to one or at most two faces.

(iii) The set of all edges belonging to only one face is either empty or forms a closed

polygonal line. This polygonal line is called the boundary of the polyhedron.
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Computing the boxes’ edges

Definition: Box faces

An oriented bounding box has got six faces and is assumed to be oriented parallel to

the coordinate axis of a cartesian coordinate system and that one vertex lies in the origin

of the coordinate system. Then, the six faces will be termed

• Front: the face with the lowest overall z value.

• Back: the face with the highest overall z value.

• Left: the face with the lowest overall x value.

• Right: the face with the highest overall x value.

• Bottom: the face with the lowest overall y value.

• Top: the face with the highest overall y value.

The stones are the pieces of the 3D puzzle and thus a tool describing fitting and non-

fitting parts is needed. As the temple stones feature a box-shaped form the preferred

fitting criterion is how the faces of this box match together. A box-shaped form based

on an OBB suits ideally for fast and reliable matching tests, segmentation of the high-

resolution 3D models and validation of the suggested solution. Referring to the specific

geometric form of a Khmer temple stone, the most typical feature is an indentation, which

some of the stones incorporate. Yet, between an OBB and an indentation a lot of free

space is retained which indicates to prefer a tighter fitting volume. The algorithm involved

in computing such a volume must be able to detect indentations automatically, categorize

and construct a tight fitting box to the stone. As the edges of the 3D model coincide with

the edges of such a box, the first stage of the algorithm is to perform an edge extraction.

4.3 Computing the boxes’ edges

The virtual 3D model of temple sandstone blocks can be represented as either point

clouds or as triangulated meshes depending upon the requirements. In order to compute

a minimal tight fitting box it is necessary to distinguish faces and edges. Mathematically,

edges are areas featuring high curvatures, i.e. a curvature computation is needed. In this
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thesis curvatures are computed based on algebraic point set surfaces (APSS) as they

provide a reliable and computationally cheap estimate of the mean curvature of a surface

and allow robust handling of sharp features and boundaries based on moving least squares,

see Guennebaud [GG07]. Originally, point set surfaces (PSS) were developed by Alexa

et al. [ABCO+03] for fast and facile display of 3D models whose overall point density

is rather low. This approach is able to dependably compute additional points and thus

enhance the models visual representation. APSS’s create algebraic spheres for the point

sampling thus the curvature of the underlying mesh is already given as the ratio of 1
r
,

where r is the radius of the sphere. The following description is based on the papers from

Guennebaud et al. [GG07], [GGG08] and outlines the APSS approach:

A given point set P = {pi ∈ Rd} should be interpolated. This is done by computing

the implicit scalarfield f(x) given in equation (4.1), which depicts the algebraic distance

between the evaluation point x and the sphere u(x).

f(x) = Su(x)(x) = [1, xT , xTx]u(x) = 0, (4.1)

where Su(x)(x) = [1, xT , xTx]u, u = [u0, ..., ud+1]
T ∈ Rd+2. u is a scalar vector describing

the sphere. The center of the sphere is given as:

c = − 1

2ud+1

[u1, ..., ud], ud+1 ̸= 0 (4.2)

and the radius is

r =


cT c− u0

ud+1

. (4.3)

The sphere fit for a given point x is then:

u(x) = arg min
u,u̸=0

W 1
2 (x) ·D · u

2

, (4.4)

with W being the weighting matrix

W =


w0(x)

. . .

wn−1(x)

 , (4.5)

and the functions wi(x) and ϕ are given as

wi(x) = ϕ


∥pi − x∥
hi(x)


, ϕ =

(1− x2)4, x < 1

0, else.
(4.6)
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Computing the boxes’ edges

D is given as

D =


1 pT0 pT0 p0
...

...
...

1 pTn−1 pTn−1pn−1

 (4.7)

Applying several transformations (see Guennebaud et al. [GG07], [GGG08]), the al-

gebraic sphere fit can be given as

u(x) = (DTW (x)D)−1 ·DTW (x) · b = A−1(x) · b̂(x), (4.8)

with

W =



w0(x)
. . .

βwi(x)
. . .

wn−1(x)


, D =



...
...

...

1 pTi pTi pi

0 eT0 2eT0 pi
...

...
...

0 eTd−1 2eTd−1pi
...

...
...

1 pTn−1 pTn−1pn−1


, (4.9)

b =



0
...

eT0 ni

...

eTd−1ni

...


. (4.10)

β is an additional weighting factor that is usually set to β = 108, ei is the unit vector and

ni the unit normal.

Figure 4.3 shows the result of this APSS based curvature estimation applied to the 3D

models of Khmer temple stones. The color code ranges from blue for areas with the lowest

curvatures over cyan and green to red for areas with the highest curvatures. It can clearly

be seen, that areas with a higher curvature are located primarily on the edges of the

model. The resulting point clouds differ depending on the underlying stone (e.g. whether

its side faces have a lot of chisel marks or a deeply incised bas-relief), the quality of the

virtual model, the radius of the sphere and the threshold value used for the extraction of

highly curved areas.
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(a) Stone 1 (b) Stone 2 (c) Stone 3 (d) Stone 4

(e) Stone 5 (f) Stone 6 (g) Stone 7 (h) Stone 8

Figure 4.3: Eight of the digitally acquired stones with their estimated curvatures and the
extracted point cloud containing highest curvatures only. It can clearly be seen that areas
with higher curvatures generally correspond to the stones’ edges. Exceptions are the bas-
relief on the front or the unhewn back side.

4.4 Detection of indentations

With the extracted point cloud containing points from areas with high curvatures only

the succeeding procedure to compute a tight fitting volume is an automatic detection of

whether indentations are present or not. For a human this is a very straightforward task

as the indentation can be effortlessly recognized in figure 4.3 (a), (b), (d), (f) and (h).

In contrast to this an algorithm is not competent to distinguish points belonging to an

indentation or to any other edge and therefore cannot conduct if an indentation is present

without relying on further information. To this end, several approaches were investigated.

For the following discussion it is assumed that the extracted point cloud is oriented such

that an indentation is only found on the top left or top right side. The length of a stone is

taken as the distance from left face to right face, the height as the distance from bottom

face to top face and the width as the distance between the front face and the back face.
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Detection of indentations

Several techniques were tested to find a way to automatically detect indentations. The

first approach was to use a plane that ’travels’ the width, length and height of the stones’

extracted point cloud and counts the total number of points it passes. If an indentation is

present the number of counted points should be significantly higher than in cases where

no indentation is present. Figure 4.4 shows that this assumption did not work. The red

line depicts the number of counted points for the stones 1, 3, 7 and 8 (see figure 4.3).

Theoretically, the red line should at some point show a rapid increase in counted points for

stones 1 and 8, but obviously no clear distinction between the four cases can be observed.

Figure 4.4: Taking a plane in 3D space that ’travels’ the width, length and height of
an extracted point cloud counting the number of points it passes, it is assumed that a
significant difference between models with an indentation (stone 1, stone 8) and models
without an indentation (stone 3, stone 7) would occur.

To understand the failure of this approach, the extracted point clouds, shown in figure

4.3 need to be observed. These contain so-called noise meaning there exist areas with a

high curvature that do not belong to the edges but to the bas-relief on the front side,

the back side, holes or deep chisel marks. These points falsify the result and make the

method unsuitable.

The next approach was to use a minimum spanning tree. In the research field of

graph theory a spanning tree is considered to be a connected, undirected subgraph of G,

including all nodes and a minimum of its edges. A minimum spanning tree (MST) is a

spanning tree whose overall weight is less than the weight of every other spanning tree,

for further information see chapter 6. Taking the distance between the points as weights,

the assumption is that junctions (i.e. a point being connected to more than two other

points) in this MST would predominantly occur at the corners of the stone model. Figure
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4.5 shows the minimum spanning tree algorithm applied to eight stones. It can be seen,

that the method can not cope with the noise as well and therefore junctions occur not

only on the edges but on various areas of the 3D model.

(a) Stone 1 (b) Stone 2 (c) Stone 3 (d) Stone 4

(e) Stone 5 (f) Stone 6 (g) Stone 7 (h) Stone 8

Figure 4.5: A minimum spanning tree algorithm has been applied to the curvature points
to automatically detect the edges and cornerpoints.

The next method applied to the extracted point clouds was the detection of sharp

features based on the works of Daniels II et al. (see chapter 2). The authors suggest

to smooth the extracted points, project them onto a polyline and extract line features.

Figure 4.6 shows the result for Khmer temple stones. In case of clear edges as shown in

the papers from Daniels II et al. [DIHOS07], the point cloud is able to be transformed

into a complete wireframe model. In contrast to that, for the virtual stone models the

polylines get strongly blurred and it is not possible to automatically detect, whether there

is an indentation or not.

(a) Stone 1 (b) Stone 2 (c) Stone 3 (d) Stone 4

(e) Stone 5 (f) Stone 6 (g) Stone 7 (h) Stone 8

Figure 4.6: Daniels II. et al. model applied to Khmer temple stones leads to a blurring of
the indentations, most prominent at stone 1 and stone 2.
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Computation of tight fitting bounding boxes for Khmer temple stones

None of the investigated methods is able to distinguish between an edge line and an

indentation line although all of them are capable of detecting line structures inside a

point cloud. As several approaches to detect indentationes automatically failed, a semi-

automatic semi-interactive procedure was developed to calculate the MVB of each temple

stone.

4.5 Computation of tight fitting bounding boxes for

Khmer temple stones

The first step of the herewith introduced semi-automatic semi-interactive method to sim-

plify the high-resolution 3D stone models into a tight fitting volume edge-based model

is an OBB computation and a curvature estimation for each stone. Using the vertices

of the OBB the user corrects them in the second step in case the underlying 3D temple

stone has broken parts or adjoins additional vertices in case an indentation is present.

These improved vertices are used as a basis for the automatic corner vertex computation

in the third step, where the updated vertices are refined. For each pair of neighbouring

vertices a cylinder is laid out whose height is given as the euclidean distance between the

two vertices and whose best radius for all stones was in practice determined as r = 15.0

cm. All vertices from areas with a high curvature, lying inside this cylinder, are fitted

to a line using a linear least squares approach. Each three (as it is a problem in R3)

of those skew lines meet in one of the corners of the new box, thus the corner vertex is

obtained by computing the vertex having the minimal distance to all three lines. From

a mathematical point of view there is no minimal distance between three points in R3.

Therefore the practical approach was to determine which two lines feature the minimal

distance and choose a vertex which bisects this distance. Figure 4.7 shows an overview

to this simplification process. Th new kind of representation for Khmer temple stones is

termed Minimal Volum Box (MVB).
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Figure 4.7: The simplification process from 3D modell to wireframe modell is shown for
stone 1, stone 3, stone 7 and stone 8. A curvature estimation based on APSS is applied
to the digitally acquired stone and areas with high curvatures extracted. By refining the
vertices of an OBB of each modell and using a cylinder test, the final tight fitting volume
box (MVB) is computed.

Definition: Minimal Volume Box

The minimal volume that represents a simplified digital Khmer temple stone satis-

fies the requirements of a polyhedron. Moreover, as every angle between two edges is

in between 80◦ and 100◦ it resembles the form of a cube or a cube with indentations

respectively. The here studied MVB’s show the following systematics:

a) 8 corner vertices and 6 faces

b) 12 corner vertices, 8 faces and an upper right indentation,

c) 12 corner vertices, 8 faces and an upper left indentation,

d) 16 corner vertices, 10 faces and an upper indentation on the left and on the right.

(a) (b) (c) (d)
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Computation of tight fitting bounding boxes for Khmer temple stones

As discussed in chapter 3 the temple site of Banteay Chhmar features many similarities

with the better known Bayon temple and, in general, with many other Khmer temples

from that period of time. In conclusion the pricinple of a MVB can be used for the

reassembly not only of parts of Banteay Chhmar but also of other temple sites in former

Siam. As the concept of a MVB is very flexible it is moreover possible to extend it to

other types of stones, e.g. stone blocks used for arch or tower building.

Figure 4.8: A stone and its MVB (shown in green) showing the MVB is an inner approx-
imation.

Comparing the volume of the OBB of a virtual Khmer temple stone with the volume

of its MVB the latter one is an underestimate whereas the former approach is an overes-

timate. Therefore the oriented bounding box completely encloses the 3D model of a sand

stone block, whereas the minimal volume box resembles it. Due to the linear least squares

method which was applied to the high curvature areas to create the MVB its edges are

not an outer approximation but an inner approximation. Figure 4.9 shows the calculated

deviations in percent of the volumes of all stones computed for the OBB’s (blue) and the

MVB’s (red) and as well as original volume as a green reference base line. Using an OBB

the volume is overestimated on average by 23.58% while with the MVB the volume is

underestimated by 10.43% on average. The overall percentaged error is lower in case of

the MVB.

Figure 4.9: The deviation in percent from the volume of the original 3D stone model is
shown for all acquired stones in case of an OBB (blue) and in case of a MVB (red). The
green line depicts the original volume as a reference base being 100%.
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In figure 4.10 the distribution of volumes for all digital stone models is shown. The

distribution was determined using a kernel density estimation function. It gets clear that

the distribution of MVB volumes closely mirrors the original volumes.

Figure 4.10: The distribution of original volumes (green line), volumes of MVB (red
line) and OBB volumes (blue line) of all digital stones. The MVB closely resemble the
distribution of the volumes of digital Khmer temple stones.

Classification and segmentation

For the match detection and similarity analysis of Khmer temple stones in general and for

the developed puzzle algorithm in particular it is important to know whether the stone

model (and its MVB) have one or more indentations and on which side of the stones

these are located. The studied stones can have up to two indentations which are located

either left or right. Using this knowledge, the MVBs get classified to be able to distinguish

between logically meaningful and impossible combinations of two virtual stones. Figure

4.11 shows how the classification step is performed using stone 1 as an example. As it

is not possible to automatically detect whether an indentation exists or not each 3D

model is tagged with this information when the corner vertices are refined. Therefore this

information can be extracted from the 3D model without further calculations.

An additional information which is written into the 3D model during the digitization

step is its orientation. Stone conservators and craftsmen on site already know the orien-

tation of each stone which is why this information does not need to be time-consumingly

computed. Combining the MVB its classification and its orientation, the virtual three

dimensional sand stone blocks get segmented into their left, right, top, bottom and in-

dentation parts.
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Computation of tight fitting bounding boxes for Khmer temple stones

Figure 4.11: After the wireframe model of a stone has been determined, it is categorized.

The front side and the back side are not considered for further measurements and

evaluation. The back side usually does not contain useful information (except for stones

from the top most or bottom most row). Extracting information about the bas-relief can

provide helpful information wether two stones fit together. Yet as not all of the stones

contain a bas-relief, some by accident some on purpose, it was not considered in this

thesis.

The segmentation of the digital stone model into left, right, top, bottom and inden-

tation is performed by extracting all vertices whose Euclidian distance is within a small

threshold from their corresponding MVB face. Figure 4.12 illustrates the result of the

segmentation step which is afterwards used for the similarity analysis.

(a) Stone 1 (b) Stone 2 (c) Stone 3 (d) Stone 4

(e) Stone 5 (f) Stone 6 (g) Stone 7 (h) Stone 8

Figure 4.12: Eight of the digitally acquired stones with their segmented side faces.
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4.6 Possible pairwise combinations

Solving a 3D puzzle implies knowledge about how pieces could possibly fit as not every

potential way to bring together two parts is necessarily the correct solution. In the current

case a possible match between two stones is a vertical or horizontal joint of two faces, i.e.

left, right, top, bottom and indentation faces. The thickness of the wall which serves as

a groundtruth in the current case is determined by the width of the stones, as no stones

were placed behind each other. In conclusion a front face and a back face do not serve as

valid joints. Pointed out in section 4.5, the orientation of a stone is known a priori which

excludes further possibilities such as combining a left face with a front face. This section

presents the combinatory potentiality of how two stones can be joint in order to evaluate

their resemblance using the similarity criterion explained in chapter 5. This is done for

the case of two stones with no indentations, a complete enumeration is accordingly done

in Appendix A.

It is common knowledge by architects, stones conservators and other experts working

with Khmer temples that the construction of such temples is distinct with regard to the

placement of the stones, i.e. there is one exact placement for each stone. Combining this

with the fact that the stones join very tightly it is safe to concentrate the possibilities

which need to be tested for the similarity analysis on flush edges. Even if a stone lies in

the middle of another stone it has at least one shared edge with some other stone. This is

shown by figure 4.13. It is an excerpt of figure 3.12 where the focus is laid on flush edges.

The red arrows depict edges flush with edges of a neighbouring stone.

Figure 4.13: Due to the unique placement of the stones and their tight joints it is safe to
concentrate the enumeration of possible pairings on flush edges. Every stone has at least
one shared edge with another one. The red arrows in this figure illustrate such flush edges.

In general there are three ways of piecing the stones together to solve this problem:

First, starting with pairwise combinations increase matches to larger joining parts until

the solution exists as one piece (this is also known as hierarchical clustering with a com-

putational cost of O(n3)). Second, find all pairwise combinations, evaluate them and set

them together (computational cost O(n2)). Third, do a combination of first and second.

The significant advantage of the second approach is that the similarity computation only

57



Possible pairwise combinations

needs to be performed once on comparatatively small puzzle pieces whereas for the first

and third approach the similarity analysis needs to be undertaken for all pieces, including

the newly emerging larger ones.

Due to the fact that each stone can be classified to fit into one of four different types an

enumeration of all valid pairwise combinations can be performed beforehand, thus saving

time. As stones have at least one edge flush, the orientation is known and false pairings

can be excluded, the remaining enumeration is done based on edges resembling the width

of the wall (in the current case being the width of the stones). Figure 4.14 illustrates eight

of them. For the similarity analysis later only the surfaces being in contact with each

other will be considered (marked in red in figure 4.14). The complete enumeration and

storage of all possible solution pairs is done using the MVB.

Figure 4.14: Possibilities on how to combine two MVBs with eight corners respectively.
The edges corresponding to the width of the stone are taken as edge of origin and the
surfaces in contact will be considered for further similarity analysis.
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Chapter 5

Similarity analysis

“ Similarity is fundamental for learning, knowledge and thought, for only our

sense of similarity allows us to order things into kinds so that these can func-

tion as stimulus meanings.30

”
Chapter 3 gave an overview on the building techniques of Khmer temples and in

chapter 4 a new method of computing and classifying a simplified model of the digital

stone models as well as possible pairwise matches were presented. The next step of the

puzzle pipeline is a similarity analysis making reliable statements on the quality of a

possible match, thereby giving room to filter better and worse fitting pairs or even find

the correct solution between all possible solutions.

The general question “What is similarity?” is not easy to answer as the subject of

similarity is dealt with in a wide range of disciplines ranging from psychology over physics

to mathematics. The Oxford Handbook of Thinking and Reasoning states that “Humans

and other animals perceive and act on the basis of similarities among things because

similarities are usually informative. Similar things usually behave similarly, and because

we can grasp these similarities, we can organize and predict the things in our world.”31

It suggests four classes of distinction: geometric models (similarity is based on position

in multidimensional space), featural models (similarity is determined by the number of

shared features), alignment-based models (similarity is measured through corresponding

structures) and transformational models (number of transformations needed to convert

30Oxford Handbook of Thinking and Reasoning; p. 155
31Oxford Handbook of Thinking and Reasoning, p. 155
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CHAPTER 5. SIMILARITY ANALYSIS

one model into the other). Distinction through transformational models is also called

shape similarity and is defined as ’we are given two objects A, B and want to know

how much they resemble each other. Usually one of the objects may undergo certain

transformations like translations, rotations or scalings in order to be matched with the

other as well as possible.’32 Concerning the case of Khmer temple stones no additional

information can be learned from this approach as the stones already closely resemble

each other. For the same reason a topological similarity analysis cannot be applied, as

the stone models are topological equivalent. Featural models require the virtual models

to be described according to different but comparable features, such as existence of an

indentation, or a bas-relief or the width of a stone. Yet, such features are not distinct

enough to make reliable statements to reassemble the wall. An alignment-based model

for similarity is not sufficient as a corresponding structure in the current case would mean

to check which side faces of a stone could possibly fit. What is needed for the solution

of the puzzle is an analysis of how good in the sense of geometrical closeness such an

alignment can be compared to another alignment. This leads to similarity based on

geometric models.

The virtual 3D models of the Khmer temple stones consist of triangulated discrete

point clouds. To gauge similarity in terms of positions in space making use of the minimal

volume boxes from the previous chapter can be done by measuring the angle of intersection

between the associated faces of two MVB’s. In the present case, though, the results are

nondiscriminable from each other as it is possible for two boxes to have an ideal angle of

0◦ and not belong to each other. The temple stones were acquired using a high-resolution

3D scanner with an accuracy of 3.14 points/mm2. Therefore the inter-point distance (=

distance between two points belonging to one stone) is lower than the expected distance

between the side faces of two stones belonging together. This led to the decision to develop

a similarity criterion based on points. All methods which are taken into account for this

purpose are evaluated at each point of one stone face possibly being in contact with a

point from a corresponding stone face.

The following presents and discusses several point-based methods to compare two

models with each other and derives a similarity measure for Khmer temple stones. To

strengthen the similarity analysis and allow for reliable decisions a combination of different

per-point measures is used. Those measures use two-dimensional and three-dimensional

joining characteristics. Usually, correct matchings have a high score in all measurements.

To clarify the meaning the following annotations are made according to [SBSL14].

32A. Adan and M. Adan. A flexible similarity measure for 3d shape recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 26(11):1507–1520, November 2004., p. 1
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• A matching or pairing p(i, si, j, tj) is a pair of two stones combined at either one

side surface. i, j denotes the stones and sk, tk denote the faces of the stones being

in contact with each other.

• A correct matching or correct pairing is a pair of two stones combined such

that an expert can verify their proper mutual arrangement.

• A solution is a valid join of several pairings. If there are n stones in the examined

dataset, a complete solution consists of n− 1 pairings.

• A correct solution is a solution consisting of correct matchings only.

Furthermore, for n = 135 being the number of digitally acquired stones, a dataset is

termed a subset of the complete digitally acquired wall containing m stones, where 1 ≤
m ≤ n.

5.1 Aligning stones for further evaluation

In 1992 Paul Besl and Neil McKay introduced the well-known and widespread iterative

closest point (ICP) algorithm for the registration of two shapes (data and model) in 3D

space [BM92]. It is not only suitable to align two shapes with each other but can also be

used to make statements on the quality of this match. It was therefore integrated into

the puzzle workflow in order to align two stones prior to the performance of the similarity

analysis and its resulting function value is used as one of the similarity criteria. The heart

of the algorithm is the following optimization problem (see equation 5.1), which is solved

during each step. In this formula q is the reference model and p the target model. R with

its rotational angles κ, ω, ϕ is the 3D rotational matrix, t := tx, ty, tz the translational

vector. N is the number of elements.

min
κ,ϕ,ω,tx,ty ,tz

f = 1
N

N
i=1

∥R · pi + t− qi∥22 (5.1)

The algorithm works as follows (the enumeration is closely related to the originally given

one, see [BM92]):

• Select the point sets P with Np points {pi} from the data shape and the model

shape X with Nx points, where Nx = Np is required

• Initialize all values and start the iteration

1. Compute closest points (pi, qi).
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Aligning stones for further evaluation

2. Compute the registration: solve optimization problem (5.1).

3. Apply the registration to all points of P

4. Terminate the iteration when the change in mean-square error is below a user-

defined threshold.

• Repeat steps 1 - 4 until the termination criterion τ is met.

Due to the fact that the ICP is a very powerful and reliable method especially in the

fast growing area of registering 3D surfaces many advancements in all steps of the workflow

have been proposed since its introduction. Rusinkiewicz and Levoy [RL01] give a review

classifying, presenting and discussing those improvements according to six classes affecting

different steps of the algorithm: 1) Selection of points, 2) Matching of selected points, 3)

Weighting the corresponding point pairs, 4) Rejection of certain pairs, 5) Assignment of

an error metric based on the pairs, and 6) Minimizing the error metric. In the present case

of aligning Khmer temple stones the best results were gained by accelerating the closest

point computation using a k-d tree (a space partitioning data structure) and rejecting

pairs with largest point-to-point distances.

Collision free registration

In the current case where the shapes to be matched are the sides of a stone it is important

that the ideal registration does mean that the stones do not intersect. Following the idea

of Flöry [Flo10] the second step of the inner ICP loop (minimizing the least squares error

function thus finding the optimal rotation and translation) is extended by a constraint

and rewritten into a standard non-linear programm (NLP). The minimization problem

formulation is now given as:

min
κ,ϕ,ω,tx,ty ,tz

f =
1

N

N
i=1

∥R · pi + t− qi∥22 (5.2)

s.t. ni · (R · pi + t− xi) > 0, ∀i,

where ni are the normals of each xi.

Sequential quadratic programming (SQP) is the most successful and state of the art

method for solving NLPs. It is not a standalone algorithm but a concept from which a

variety of methods has evolved. At each iteration step a quadratic function approximates

the objective function. The constraint conditions are approximated by linear functions.

This is based on the principle of replacing a difficult problem by an easier-to-solve approx-

imation. A short introduction to SQP methods, based on Nocedal and Wright [NW06],
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Boggs and Tolle [BT95] and Schäfer [Sch09], is given. The main principle of an SQP

algorithm is a series of iterates

xk+1 = xk + tk△xk (5.3)

which converge to the optimal solution x∗. Within the method xk is the current solution

approximation value, t ∈ R the step size and △xk ∈ Rn the search direction. SQP

algorithms can in general be divided into active set methods and interior point methods.

The former is more suitable for small-scale problems, whereas the latter is better suited in

case of large-scale problems. If a constraint equals zero it is said to be active. Active set

methods therefore emphasize on active constraints, making them always feasible and they

resemble the well-known Simplex algorithm for solving linear programs [Flo10]. Interior

point methods search for the solution by traversing the interior of the feasible set.

In the current case the ICP achieves, as already mentioned, two things: Firstly, the

stones are correctly aligned. Figure 5.1 shows this exemplarily. The left part shows the

stones that were in a rough alignment using the MVBs before the ICP has been applied

and the right part shows those stones in correct and perfect alignment after the application

of the ICP. Secondly the final ICP function value serves as a quality measure concerning

the matching of two stones. In case of a wrong pairing the result of the ICP does still

look as if it would fit, yet the functional value is usually worse than for the correct case,

which is illustrated by figure 5.2.

Figure 5.1: The picture shows several stones before (left) and after (right) the ICP has
been applied.

Figure 5.2: In case of a wrong pairing the result of the ICP still seems valid, yet the
functional value is in general worse than for the correct case.
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Aligning stones for further evaluation

Aligning two Khmer temple stones using the ICP algorithm the computation can be

stopped after ten iterations in each case. This is due to the fact that then either the

accuracy does not significantly improve any further or that the algorithm finds another

local minimum wich minimizes the function but does not correctly align the point clouds

in question. Depending on the number of points taken into account and the quality of

the underlying mesh33 the final function value of the ICP lies on different scales. It is

possible that minf = 5.1 or minf = 7.0 or minf = 2.99 for correct cases. This hinders

an efficient comparison of ICP values and was one of the reasons to combine several

similarity measurements. The explanatory power for different matchings is checked by

using six selected datasets, see figure 5.3. The datasets are chosen to differ in number of

stones included as well as in quality of their measurement. In the following, dataset 01

refers to the stones marked in green in figure 5.3, dataset 02 to the stones marked red,

dataset 03 refers to the blue stones, dataset 04 to the yellow ones, dataset 05 depicts the

stones in purple and dataset 06 those in cyan.

Figure 5.3: To check the similarity under different conditions six unrelated datasets have
been created. The datasets will be referred to with numbers from 1 - 6, where 1 depicts
the green one, 2 the red one, 3 the blue one, 4 the yellow one, 5 the purple one and 6 the
cyan one.

33Some of the stones were heavily weathered or feature a very dark surface. The acquisition equipment
used for scanning of the stones is sensitive to darker parts leading to possible holes in the resulting 3D
data.
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Figure 5.4 shows how the ICP performs in the six test cases. The blue curve depicts

the ICP value of all possible pairings in the dataset plotted against their kernel density

estimation. The green line illustrates this for correct pairings only. In all cases correct

pairings usually have a low ICP value although a clear distinction between correct values

and overall values cannot be drawn.

(a) Dataset 01 (b) Dataset 02 (c) Dataset 03

(d) Dataset 04 (e) Dataset 05 (f) Dataset 06

Figure 5.4: Performance of the ICP algorithm tested on different datasets: the probability
of finding correct pairings within low ICP values is higher than for wrong pairings yet there
is no clear offset between the two. The datasets are shown in figure 5.3.

5.2 Similarity analysis based on geometric distances

Described in the introduction to this chapter similarity is measured in terms of geometric

distances. This section presents functions that are able to make statements about point

clouds and their geometric distance. The explanatory power of those functions is checked

for the already mentioned six selected datasets, see figure 5.3. In the following it is assumed

that two stones are in contact as discussed in chapter 4.6, aligned using the ICP as

presented in the previous section and their associated contact point clouds are given as

pi ∈ R3, P = (p0, p1, ..., pN), 0 ≤ i ≤ N , and qj ∈ R3, Q = (q0, q1, ..., qM), 0 ≤ j ≤ M . N ,

M denote the size of the point clouds. The minimum Euclidean distance (5.4) between

two points p ∈ P and q ∈ Q is defined as:

d(p, q) = min ∥p− q∥22 (5.4)
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Similarity analysis based on geometric distances

The points (p, q) then will be called closest points.

There are several measures which can be applied. From the possible generally known

and well accepted approaches the some were excluded from further evaluation. These are

distance measures such as the Manhattan distance, the Maximum distance or the Pearson

correlation. The reason is that the point cloud extracted from Khmer temple stones did

not meet the prerequisites (e.g. the pearson correlation, often used for similarity analysis,

can not be applied as the point clouds are not random variables). Other methods such as

a heat kernel estimation were excluded as their implementatory costs are too high.

5.2.1 Frechet distance

The Frechet distance is considered as “a suitable measure for the similarity of shapes

represented by parameterized curves or surfaces”34, and is also considered for a pairing of

Khmer temple stones. This distance is mainly used for polygonal curves and measures

their resemblance in arbitrary dimensions. Its counterpart for triangulated surfaces is

proven to be NP-hard. Compared to the Hausdorff distance, see 5.2.3, which concentrates

on the set of points on both curves, the Frechet distance is able to represent the course

of the curves.

The formal definition of the Fréchet distance is as follows, based on [AB10]. Let f, g

be parameterizations of a curve or surface

f, g : [0, 1]k → Rd, k ∈ {1, 2}, d ≥ k (5.5)

Then the Fréchet distance (5.6) is given as

δF (f, g) = inf
σ:[0,1]k→[0,1]k

max
t∈[0,1]k

∥f(t)− g(σ(t))∥ (5.6)

where σ is the reparametrization ranging over all homeomorphisms preserving the orien-

tation.

Figure 5.5 illustrates the performance of the Frechet distance in the six test cases.

The blue curve depicts the Frechet distance of all possible pairings in the dataset plotted

against the kernel density estimation. The green line illustrates this for correct pairings

only. Except for the case of dataset 05 the distribution of correct pairings closely resembles

that of all pairings meaning no clear distinction can be drawn.

34H. Alt and M. Buchin, Can we compute the similarity between surfaces?, Journal of discrete and
computational geometry (DCG) 43 (2010), p78
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(a) Dataset 01 (b) Dataset 02 (c) Dataset 03

(d) Dataset 04 (e) Dataset 05 (f) Dataset 06

Figure 5.5: Performance of Frechet distance tested on different datasets: there is no
clear offset between the distribution of Frechet distances of all pairings compared to the
distribution of Frechet distances of correct pairings. The datasets are shown in figure 5.3.

5.2.2 Mean and median distance

Among the most widespread methods to measure deviation is probably the usage of the

mean or median of a dataset. Given that pi ∈ {P |i = 0, ..., N} and qi ∈ {Q|i = 0, ...,M}
be two point clouds containing all points of one plane of stone A and B respectively.

Then x is determined as the Euclidean distance between the closest points pi ∈ P and

qj ∈ Q respectively. The median md of the ordered set X containing all distances x is

then defined as:

md =

xn+1
2
, if n uneven

1
2
(xn

2
+ xn

2
+1), if n even

(5.7)

The mean mn of X is defined as follows. The set does not need to be ordered in this case:

mn =
1

N

N
i

xi (5.8)

Due to its definition the median is preferred over the mean in the current case as it is

more robust to outliers. This criterion determines similarity with regard to the distance

of closest points, i.e. the lower the median value of a possible pairing the more likely

it is a correct one. Figure 5.6 shows the performance of the median for all six datasets.
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Similarity analysis based on geometric distances

The blue curve depicts the median value of all possible pairings in the dataset plotted

against the kernel density estimation. The green line illustrates this for correct pairings

only. Although there are still outliers it can in general be said that the correct pairings

are more likely to have a low median value.

(a) Dataset 01 (b) Dataset 02 (c) Dataset 03

(d) Dataset 04 (e) Dataset 05 (f) Dataset 06

Figure 5.6: Performance of Median tested on different datasets: In general it can be
observed that correct pairings are more likely to feature a low median value. The datasets
are shown in figure 5.3.

5.2.3 Hausdorff distance

A distance metric often used in computer vision for the comparison of geometric shapes

is the Hausdorff distance. The shapes are represented as sets of points. The Hausdorff

distance assigns for every point of one point cloud the distance to its closest point on the

other and then takes the maximum of those minima. Its performance is reasonable in

practice, yet it can fail if there is too much noise, see [AG99].

The Hausdorff distance is defined as:

h = max{max{D(p,Q)|p ∈ P},max{D(q, P )|q ∈ Q}}, (5.9)

with D(x,K) = min{d(x, k)|k ∈ K}.

Variants of the Hausdorff distance are e.g. the average linkage distance or the single

linkage distance. The average linkage is the average of all pairwise point-to-point dis-
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tances, not necessarily being closest points. Single linkage refers to the maximum of all

pairwise point-to-point distances. Both linkage values greatly differ if they compare two

large stones and two small stones. Thus their result is not comparable which is why they

are skipped from further discussions.

Figure 5.7 shows how the Hausdorff distance performs for the six datasets. As before,

the blue curve depicts the value of all possible pairings in the dataset plotted against the

kernel density estimation. The green line illustrates this for correct pairings only. It can

be observed that for dataset 01 both curves are similar, in case of the second, third and

fourth dataset there is a peak where Hausdorff distance values are low with additional

large outliers. In case of the last two (dataset 05 and dataset 06) correct pairings clearly

stick out as being clustered having a low Hausdorff distance value whereas the overall

distribution is more widespread. The differences are due to the different quality of the

data.

(a) Dataset 01 (b) Dataset 02 (c) Dataset 03

(d) Dataset 04 (e) Dataset 05 (f) Dataset 06

Figure 5.7: Performance of Hausdorff tested on different datasets: For the datasets 02,
03, 04, 05 and 06 it can be observed that there is a high likeliness that correct pairings
feature a short Hausdorff distance. In case of the dataset 01 the distribution of all pairings
versus the distribution of correct pairings is similar. The datasets are shown in figure 5.3.

5.2.4 Distance to Medoid and Centroid

Another measure of similarity is to investigate the scattering of the point clouds from the

Khmer temple stones using centroid and medoid. The centroid of a shape is the mean

position of all points in this shape, where the medoid of a shape is the median position.
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Similarity analysis based on geometric distances

The difference between the two is: A centroid is a mean point but not necessarily part

of the shape and the medoid is a median and always an actual point of the point cloud.

Given two points pi, pj ∈ P then dij and their Euclidean distancet the medoid med is

calculated as

med = min
j

1

N

N
i

dij (5.10)

The similarity measure distance to medoid is then computed as the Euclidean distance

between the medoids of two point clouds.

Figure 5.8 shows performance of this measure for Khmer temple stones in the six cases.

The blue curve depicts the values of all possible pairings in the dataset plotted against

the kernel density estimation. The green line illustrates this for correct pairings only.

Except for outliers occuring in the number of overall pairings correct pairings and overall

pairings cannot clearly be distinguished.

(a) Dataset 01 (b) Dataset 02 (c) Dataset 03

(d) Dataset 04 (e) Dataset 05 (f) Dataset 06

Figure 5.8: Performance of distance to medoid tested on different datasets: The distri-
bution of correct pairings compared to all pairings closely resembles each other in all six
datasets. The datasets are shown in figure 5.3.

5.2.5 2D costfunction

In 2001 Kong and Kimia [KK01] introduced an algorithm that is able to solve a 2D

puzzle and at the same time is computationally very efficient. Their proposal was a so-

called costfunction for the task of finding correct matchings in a dataset of 2D puzzles
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pieces. The costfunction extracts and considers the boundary curve of each piece and

compares all boundary curves against each other. It is a comparison of the length of

a corresponding section and the change in the orientation angle. Using dynamic pro-

gramming this approach can be applied to compare all segments of all curves with

each other and only takes about three seconds. Sticking to the original notation, let

A = (a1, a2, ..., aN) and B = (b1, b2, ...bM) be cyclic lists of the two contours respec-

tively. A table consisting of M rows and N columns at most containing the costs of

partial matches is build using dynamic programming. The starting point pairs are de-

noted by (ai, bj), 1 ≤ i ≤ N, 1 ≤ j ≤ M . An entry in this table will be called a cell.

Matching of merged sequences of points a(mw−1|mw) and b(nw−1|nw) is indicated by a

link between cells (mw−1, nw−1) and (mw, nw), i.e. a(mw−1|mw) denotes the sequence of

points (a(mw−1, a(mw−1+1), ..., a(mw)), the same goes for b(nw−1|nw). A linked sequence

of cells ((m0, n0), (m1, n1), ..., (mt, nt)) is called a path indicating a partial match, where

m0 = i, n0 = j,m0 < m1 < ... < mt, n0 < n1 < ... < nt. In each entry cell (mw, nw)

the values cost, uw, vw are contained. Cost refers to the partially accumulated matching

cost up to that entry, the indices of the parent entry are represented by uw and vw. The

final cost D(A,B, i, j) of matching the two contours A and B starting from ai and bj

respectively ist then given as:

D(A,B, i, j) =
t

w=1

ψ(a(mw−1|mw), b(nw−1|nw)), (5.11)

where ψ(a, b) = η(a, b)+rγ(a, b) is the sum of the length of two subcurves of the boundary

(η) and the curvature of those subcurves (γ) and thus represents the cost of its arguments.

cw is the ratio of the length of the segments a(mw−1|mw) and b(nw−1|nw).

η(a(mw−1|mw), b(nw−1|nw)) =

−2.0/(cw + 1/cw), 0.8 < cw < 1.2

(c1 + 1/cw)/2, otherwise
(5.12)

SAw and SBw are the angles of the segments and αw is the difference of orientation change:

αw = (SAw − SAw−1)− (SBw − SBw−1).

γ(a(mw−1|mw), b(nw−1|nw)) =

−cos(αw), −π/6 < αw < π/6

|αw|, otherwise
(5.13)

As the sandstone blocks from the Khmer bas-relief wall have very tight vertical and

horizontal joints this approach is a possible measure how well two stones fit together.

Applying this approach to a 2D projection of the stone models, their boundary curves
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Similarity analysis based on geometric distances

are extracted and the cost function computed. It has to be pointed out that due to

weathering and broken parts the 2D boundary curve can be falsified. In practice it was

determined that the ratio r between D and η, i.e. r = D/η has the highest explanatory

power. Figure 5.9a shows extracted boundary curves used in the original approach and

5.9b shows exemplarily how a boundary from a Khmer temple stone looks like.

(a) 2D boundary from Kong and Kimia, [KK01]. (b) 2D boundary extracted from a Khmer temple
stone.

Figure 5.9: 2D boundaries which are used for a comparison based on a 2D costfunction
proposed by Kong and Kimia, [KK01].

(a) Dataset 01 (b) Dataset 02 (c) Dataset 03

(d) Dataset 04 (e) Dataset 05 (f) Dataset 06

Figure 5.10: Performance of Costfunction tested on different datasets: correct pairings
distribute approximately the same as overall pairings making them difficult to detect. The
datasets are shown in figure 5.3.

Figure 5.10 shows the performance of the costfunction for the six selected datasets.

The blue curve depicts the costfunction values of all possible pairings in the dataset plotted
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against the kernel density estimation. The green line illustrates this for correct pairings

only. It is observable that the distribution of overall pairings and the distribution of correct

pairings are nearly indistinguishable. Although it seems this renders the method useless,

the next section introduces a similarity measure where the employment of equation (5.11)

enhances the result.

5.3 A similarity criterion for Khmer temple stones

From the previous discussion of comparing point clouds in two and three dimensions it

emerges that the methods are not distinct enough to be used as stand-alone measures

which is caused by the fact that wrong matches can score better than correct ones. This

section thus presents a novel approach of computing similarity for pairings of Khmer

temple stones.

Each of the discussed methods scores on a different scale, which is why first the

values were grouped according to the side surfaces they belong to. E.g. if two stones

are tested for similarity and each stones has six possible contact faces, there will be

12 sets. Subsequently the values are normalized to be found within a range of [0, 1].

This is achieved by applying normalization (5.14) to each of the values. vi is one of the

aforementioned distance measures, i = 1, ..., k is the number of comparisons within each

group, e.g. in case there are two stones compared to each other k = 1.

vnorm =
vi −min v

max v −min v
(5.14)

Finally the normalized values are combined to one similarity value given in (5.15)

using an exponential function. The exponential function is used as correct pairings mainly

feature comparably low values close to 0 after the normalization which are leveled near 1

after application of the exponential function and therefore become clearly distinguishable.

s(vnorm) =
k

i=1

exp(−vnorm)2 (5.15)

The result of applying equation (5.15) to each of the six datasets is shown in figure

5.11. A significant improvement for the sum of normalized exponential values over the

separate values can clearly be observed. Due to the usage of the exponential function,

the higher the value, the higher the similarity, i.e. in all six cases the green curve, which

depicts the correct pairings, outperforms the blue one, which depicts all possible pairings.
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(a) Dataset 01 (b) Dataset 02 (c) Dataset 03

(d) Dataset 04 (e) Dataset 05 (f) Dataset 06

Figure 5.11: Performance of combined similarity values tested on different datasets. The
values discussed in the previous subsections are summed up leading to a better identifica-
tion correct values. The datasets are shown in figure 5.3.

5.4 Concluding remarks

Summing up the different methods of determining similarity in 2D and 3D shapes or more

precisely of determining similarity in case of possibly matching Khmer temple stones they

are only able to distinguish a tendency of correct and incorrect pairings. The major

contribution of this chapter is if taking the sum of the indiviual measurements the ability

to differentiate between a correct and an incorrect match increases considerably. Referring

to the quote in chapter 2.4, ”Similarity assessment in 3D cases is usually carried out by

generating shape signatures from the 3D models and then comparing these signatures (...).

A shape signature could be a graph, a vector or an ordered collection of numeric values.

(...)“ the sum can be seen as a shape signature. This shape signature is used in the

next step of the puzzle workflow to discriminate correct stone pairings and construct a

complete and correct solution of the puzzle. Though a determination of correct pairings

is now possible two difficulties remain. Although the sum is a significant advantage over

the single methods it is not discriminant enough to clearly determine correct pairings.

Chapter 6 introduces an approach that is able to overcome this drawback. The second one

is the large number of overall possible pairings shown in table 1. It highlights the overall

number of possible pairings versus the number of correct pairings concerning each of the
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six datasets. Though correct pairings score comparatitively higher then wrong pairings

concentrating on best pairings only still leaves several billion combinatory possibilities.

The next chapter will also discuss how this large search space can be reduced and the

correct solution be found.

Dataset Number of overall possible pairings Number of correct pairings

Green dataset 147 13

Red dataset 135 11

Blue dataset 210 13

Yellow dataset 227 12

Purple dataset 261 15

Cyan dataset 266 14

Table 5.1: The overall number of possible pairings is significantly larger than the number

of correct pairings in each dataset.
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Chapter 6

Best match determination

“

The possible solutions to a given problem emerge as the leaves of a tree, each

node representing a point of deliberation and decision.35

”
In the preceding chapters two foundations for automatically and digitally reassem-

bling a Khmer bas-relief temple wall were introduced. First all possibilities to combine

two stones were determined and enumerated and second a similarity measure was intro-

duced which is capable of evaluating those pairwise matches. The next step to piece the

separate stones together is to solve equation (3.2). Due to the fact that the stones fea-

ture a nearly planar surface, which was sometimes difficult to digitally acquire, it is not

always assured that a pairing featuring a high similarity value is also a correct pairing.

Computing the minimum of (3.2) by selecting only those pairings which score high in

the similarity analysis will therefore lead to a false solution. It additionally needs to be

ensured that selected pairings form a feasible solution, i.e. the stones are not allowed to

intersect themselves, see e.g. figure 6.1.

35Niklaus Wirth, Program Development by Stepwise Refinement
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Figure 6.1: A solution with a high similarity score. The red ellipse marks a stone whose
final position means to intersect with the other stones in the dataset. While this positioning
can be rendered on a computer it is impossible in the real world. Therefore it has to be
ensured that such infeasible solutions are sorted out.

Table 5.1 lists the number of possible pairwise combinations in relation to the number

of correct pairings for the six datasets. Due to the high number of potential solutions

(e.g. 42 pairwise matches result in more than 42000 different solutions) and the compara-

tively high similarity values scored by false pairings leading to false solutions, the number

of overall pairings should be decreased without decreasing the number of correct pairings.

Considering a chosen sample dataset, e.g. dataset 01 which contains six stones (see figure

5.3) every stone is in contact with several of its neighbours. Each connection represents

one potential pairwise match of two stones, thus the problem is overdetermined. A com-

plete solution consisting of n stones needs n − 1 pairings for a clear positioning of the

virtual stones, generally about 2n pairings are present. In the following the similarity

analysis presented in chapter 5 is enhanced such that it leads to an improved reliability

of distinguishing correct pairings and includes a criterion for reducing the overall number

of possible matchings. Transforming the results into a graph structure subsequently leads

to the optimal solution.

6.1 Similarity based on sum of rankings

The previously discussed options, such as e.g. the Hausdorff distance or the iterative

closest point algorithm, showed that geometric criteria are not discriminant enough to

be used as a stand-alone measure in order to distinctly find the solution of the Khmer

temple reassembly. Thus a combination of the different methods is needed. To this end

the similarity function values are grouped into as many sets as there are possible contact

faces. Referring to figure 4.14 as an example this results in eight such groups as each of

the stones is compared with another stone in two ways.

Chapter 5.3 suggested to combine the similarity values from each of the geometric

distance functions and normalize them within the set, see equation (5.14). This approach
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achieved a significant improvement over the separate methods. The normalization is re-

quired as each distance function scores on a different scale and without its application the

values are not comparable. Yet, this standardisation can be falsified if outliers are present.

To overcome this drawback and keep the values comparable the function value of each

geometric distance method of a pairing in the set is transferred into a rank. Table 6.1

demonstrates this approach for one set of a sample dataset containing eight stones. Each

function, in this example the ratio of the cost function, the ICP algorithm, the Median

distance and the Hausdorff distance, is ranked according to its functional value, i.e. for

example the smallest Median distance is ranked first and the largest Median distance is

ranked last. Note that in case of the cost function the largest ratio ranks first. The final

decisive similarity value for each of the pairings is computed as the sum of its ranks. In

this set, the left side of stone 1 has the highest similarity with the right side of stone 6

with a sum of 2 + 2 + 3 + 4 = 11.

Pairing Cost ratio ICP Median Hausdorff Ranking Sum

Stone 1/left side – stone 6/right side 2.81 3.401 2.52 27.23 2 2 3 4 11

Stone 1/left side – stone 8/right side 3.07 4.870 5.28 12.69 1 4 6 2 13

Stone 1/left side – stone 2/right side 0.24 6.483 1.57 5.98 7 6 1 1 15

Stone 1/left side – stone 4/right side 1.56 3.221 4.32 30.44 6 1 4 5 16

Stone 1/left side – stone 7/right side 2.62 6.674 3.74 18.66 5 7 2 3 17

Stone 1/left side – stone 5/right side 2.77 5.939 4.33 42.51 3 5 5 6 19

Stone 1/left side – stone 3/right side 2.63 4.453 10.99 45.48 4 3 7 7 21

Table 6.1: Similarity criterion based on the sum of rankings shown for a sample dataset.

Each column is ranked according to its function values, e.g. as the Median distance in the

third row is the lowest it ranks first. The final similarity value is determined as the sum

of the different rankings. In this example the left side of stone 1 has the highest similarity

with the right side of stone 6.

A time intensive evaluation was performed for each of the presented geometric distance

functions for all six datasets: The placement scoring of correct pairings in each function

was analyzed. A combination of ICP, Median, Hausdorff distance and 2D costfunction

will yield the best performance and score high rankings for correct pairings and lower

rankings for incorrect pairings. Additionally, this allowed to introduce a weighting factor

w. Thus the similarity value based rank sum per pairing τ(p) = rs(p) (see equation (3.1))

is now given as 6.1, where r is the rank sum per pairing and set, p the pairing, g the set

M indicates the Median, I the ICP, H the Hausdorff distance and Cf the costfunction.

τ(p)g = wM · rM(p) + wI · rI(p) + wH · rH(p) + wCf · rCf (p). (6.1)
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In practice optimal results were achieved setting wm = 0.4, wI = 0.3, wH = 0.2 and

wcf = 0.1, as Median distance and ICP algorithm scored best, followed by Hausdorff

distance and ratio of the costfunction.

To validate the performance of this approach figure 6.2 shows the distribution of cor-

rect pairings for datasets 1-6 in comparison to the distribution of overall pairings. The

matchings are sorted according to their sum of rankings. For all six datasets more than

75% of correct pairings can be found within the first 25% of all sorted possible pairwise

combinations. This demonstrates the high quality and robustness of the developed sim-

ilarity analysis based on the sum of rank ordered geometric distances. Only in case of

dataset 05 a fraction of correct pairings is contained inside the last quarter of all match-

ings. Although dataset 05 has a higher error-proneness due to difficult cirumstances while

digitally acquiring the stones (see section 3.3) its overall performance is still reasonable.

Figure 6.2: The similarity analysis was applied to six different datasets. The figure demon-
strates how the correct pairings distribute within the sorted possible pairings. It can be
observed that for every dataset the correct pairings concentrate in the first quarter of all
matchings.

6.2 Pruning

The problem of forming a solution from the possible pairings is overdetermined, thus an

advanced pruning technique sorting out the most unlikely pairings is applied to reduce the

combinatorial and computational complexity. The rank sum tables from the previous step

are the basis in order to achieve this reduction. Those tables are generated for all sides

of all stones. The entries of the highest scoring rank sums in each table are considered

for corresponding matches. If a corresponding pairing is found, it is stored for further
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evaluation, otherwise it will be omitted. Mathematically spoken, for a dataset of z stones

there are q ordered sets L as well as q ordered subsets Lsub ⊆ L. Lsub contains the m

highest ranking entries of L. The entries of L are computed according to table 6.1 and

equation (6.1) and L is given in equation (6.2). Recall that i, j denote the stones and ti, tj

their respective sides.

Lb = {rsj(i, tib , j, tj) | 1 ≤ j ≤ z, j ̸= i}, (6.2)

with 1 ≤ b ≤ q and 1 ≤ i ≤ z. A pairing pij = (i, ti, j, tj) will only be considered for

further analysis, if pij ∈ Lwsub
, pji ∈ Lvsub and equation 6.3 holds, i.e.

pij = pji, (6.3)

where v ̸= w, 1 ≤ v, w ≤ q. For example, in case of table 6.1 the sets of stone 6/right

side, stone 8/right side, stone 2/right side, stone 4/right side and stone 7/right side were

compared if the pairing “stone 1/left side” can be found within the first five entries. To

create subsets Lsub, m is in practice set to 5 for the six test datasets, which is why this

method is called best out of five in the course of this chapter. If Lsub contains less than

five entries too many pairings are sorted out, i.e. the pairings not being omitted are not

able to form a complete solution, whereas more than five entries does not omit enough

pairings to reasonably reduce the problem size.

The presented innovative pruning technique thus reduces the number of possible pair-

wise combinations to a maximum of five possibilities per side. E.g. in case of dataset

01 the number of possible pairings is reduced from 144 to 42. A statistical analysis was

performed to validate this step: More than 80% of possible but wrong pairings were sorted

out whereas at the same time only 15% of correct pairings were rejected. Figure 6.3 dis-

plays for each of the six datasets the relation of all pairings versus correct pairings before

and after this best out of five approach. Generally, in less than a second most wrong

pairings are omitted and nearly all correct pairings are kept.
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Figure 6.3: After applying the best out of five approach the number of wrong pairwise
matchings reduces by 76.21% on average whereas the number of correct pairings is reduced
by only 19% on average. The columns show the ratio of all pairings compaired to correct
pairings before and after the pruning step has been applied.

6.3 Graph-based approaches

The enhanced similarity measure based on the sum of rankings and the pruning which

is applied subsequently reduces the high number of possible pairings but the correct

solution needs yet to be found. Although many wrong pairings are sorted out it is still

possible that the solution which minimizes the rank sum of all pairwise matches, is not

the correct one. Finding this correct solution for Khmer temple stones thus equals to

finding the optimal combination of pairings. This combinatorial problem can be solved by

applying graph-based approaches. The stones are considered as the vertices of the graph

and the pairwise combinations as its edges. The following definitions are closely related

to Diestel [Die06] and Jungnickel [Jun13].

Definition: Graph, weighted graph

A graph is a pair G = (V,E) of disjoint sets with E ⊆ [V ]2. The elements of V

are called the vertices or nodes of G and the elements of E are its edges. A graph can

be visually realized by drawing the vertices as points and the edges as connecting lines

between the points. Two vertices x and y of G are called adjacent if xy ∈ E(G). Two

edges are called adjacent if they share a common vertex. If a cost c : E → R is assigned

to the edges, the graph will be called a weighted graph.
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Definition: acyclic, connected

A sequence (e1, ..., ei) of edges in a graph G with vertices vi ∈ G such that

ei = vi−1vi, i = 1, ..., n is called a walk. A walk for wich v0 = vn, the ei and vj are

distinct except for v0 = vn, and n ≥ 3 holds, is a cycle. Two vertices vk, vp of a graph G

are connected, if there exists a walk starting at vk and ending at vp. A graph is acyclic, if

it does not contain any cycles.

Definition: bipartite graph

If a partition V = A ∪ B,A ∩ B = ∅ of the edgeset V (G) exists, such that each edge

e ∈ E(G) has exactly one vertex in A and one vertex in B, then this graph is bipartite.

Definition: distance, shortest path

The distance d(v, w) between two vertices v, w ∈ G is defined as:

d(v, w) =

∞ if m is not accessible

min(w(P ))| P is a path from w to v otherwise
(6.4)

Any path achieving the minimum of equation 6.4 is a shortest path.

Definition: Tree, spanning tree, minimum spanning tree

Let T be a graph with n vertices. If any two of the following three conditions hold,

the third is implied:

(i) T is connected.

(ii) T is acyclic.

(iii) T has n− 1 edges.

Then T will be called a tree. For a proof see [Jun13]. A spanning tree is graph S if it is a

spanning subgraph of a graph G and is a tree. If G is a weighted graph and S minimizes
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Graph-based approaches

the sum of all including edges, then S is a minimum spanning tree.

To apply graph theory algorithms to the reassembling of fallen Khmer temple stones

the given datasets need to be transferred into a graph. As already suggested, the stones are

the nodes of the graph and the connections are the edges of the graph. Several intricacies of

this approach have to be considered. Firstly, starting with all possible pairwise matchings

and transferring them into a graph, it is possible that several edges between the same two

nodes (i.e. stones) occur. This appears, if after the application of the pruning step more

than one possibility to match these stones remains. Those edges are therefore difficult to

distinguish. Secondly, regarding possible pairings as the graphs vertices, the information

of which side belongs to which stone is lost and the result is a set containing only pairs of

adjacent vertices. Thirdly, by assigning each stone a set of numbers (i.e. stone 1 = 0, stone

2 = 10, stone 3 = 20, side 1 (any stone ) = 0, side 2 (any stone) = 1, ...) and the numbers

are added up, the resulting combinations are unique. E.g. number 11 is assigned to side 2

of stone 1. Fourthly, to overcome the drawback of the first two suggestions combinations

of them can be used. The stones as well as their sides are represented as nodes in the

resulting graph, edges between sides of different stones (denoting possible pairings) have

a weight larger than zero and edges between the stone and its sides (denoting to which

stone a side belongs to) have zero weight. This last approach is illustrated for dataset 01

in figure 6.4, where (a) shows all possible pairings in black and enhances the correct ones

in red and (b) shows the correct ones.

(a) all pairings (b) correct pairings

Figure 6.4: For dataset 01 figure 6.4(a) shows all possible pairings in black and enhances
the correct ones in red, and figure 6.4(b) shows the correct pairings.
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After the transformation of possible pairwise matches into a graph according to the

fourth approach the task to find the correct solution remains. In order to solve this task

the similarity values of each pairing are used. They are applied as weights to the edges of

a graph. Edges with minimal weights are preferred for calculation under the assumption

that the correct solution minimizes the combined sum of ranks of possible matchings.

Additionally, only a minimal set of pairings is needed which is able to connect all stones.

This equals to the graph theoretical problem of finding a minimum spanning tree. There

exist two greedy algorithms that are able to find the minimum spanning tree of a graph,

one variant is called Prim’s minimum spanning tree, the other one Kruskal’s minimum

spanning tree. The problem is NP − hard thus the algorithms cannot be proven to be

correct. Both have a complexity of O(n2).

A minimum spanning tree using Prim’s algorithm has been applied to the six datasets.

In all cases, the solution suggested by the minimum spanning tree algorithm contains

correct and incorrect pairings. Due to the fact that it is possible for incorrect pairings

to score high similarity values the solution suggested by Prim’s algorithm is not the

correct one, although it already contains correct pairings. Thus, a minimum spanning

tree approach is not able to determine the correct solution in the current case. Figure 6.5

exemplarily shows the result of applying Prim’s minimum spanning tree algorithm to the

first dataset.

Figure 6.5: Applying a minimum spanning tree algorithm to pairwise possible matchings
with the aim of constructing a complete solution. The edges between a stone and its sides
have weight zero and the edges between two sides, being the possible pairwise matchings
have their similarity rank value assigned as weight. The red edges mark correct pairings. It
is observable, that a mixture of correct and incorrect pairings forms the minimum spanning
tree.
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Figure 6.6: Examining the applicability of k-partite graphs to the Khmer temple reassembly.
As k-partite graph theory examines ways to find completely connected graphs and the
solution to the 3D puzzle is to find a minimal connected graph,this approach fails.

As weight minimization algorithms such as the minimum spanning tree are not applica-

ble the suitability of k-partite graphs was examined. A k-partite graph is a generalization

of a bi-partite graph where the graph can be partitioned into k separate sets of edges.

Each stone and its sides form one of the k sets, see figure 6.6. Yet, in k-partite graph

theory the search focus is laid on looking for completely connected graphs as e.g. the

Turan graph whereas we are looking for the minimal complete correct solution, which is

a subset of all remaining possible pairings.

6.4 Solution Construction

The puzzle workflow up to this point (MVB computation, matching enumeration, similar-

ity analysis, find minimum rank sum) was applied to the synthetic test data presented in

section 3.4. In this ideal case the correct solution is also the one minimizing problem (3.2)

thus solving the reassembly task. In case of the real-world Khmer temple stones, however,

the preceding sections taught that false pairings can score higher than correct ones which

is why classical approaches are inapplicable. Subsequently, a new concept was developed,

that is capable of non-ambiguously determining the correct solution. It consists of two

steps, first all possible and feasible solutions are enumerated using a tree structure, the

so-called solution tree and second a force-directed graph layout is applied. As not only
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the numerically minimal solution is considered but to also the final arrangement of the

stones is taken into consideration the correct solution featuring the optimal layout and a

low accumulated rank sum is uniquely detected. The following subsections elaborate how

this method works, present advantages and drawbacks and show results.

6.4.1 Solution tree

To be able to obtain all possible solutions from the pairwise matchings a tree structure

is applied. A vertex (also called node) of the tree is a possible pairing p(i, ti, j, tj) of two

stones. An edge of the tree is a connection between two pairings (= vertices) iff one stone

occurs in both vertices, e.g. v1 = p(i, ti, j, tj) and v2 = p(i, ti, k, tk). The root node of

the tree can be chosen to be any one of the potential matches. Each level of the tree

represents all possibilities how one pairing can be added to the already existing partial

solution. Thus the adding procedure is terminated if either all stones of the dataset are

in use or no further pairings are available. The depth of the tree is determined by the

number of stones in the dataset and, assuming there are enough pairings, is given as:

n− 1, where n is the number of stones in the dataset. Before another vertex is added to

a partial solution an intersection test is performed. It determines whether the new stone

possibly intersects with the already given stones (see e.g. figure 6.1). If this is the case

then this branch is cut as it represents an impossible solution. Thus the deepest level of

the solution tree contains only the remaing feasible and complete solutions. An excerpt

of the resulting tree is shown in figure 6.7. As the final result of the solution tree still

provides a large number of possible solutions (e.g. 42 possible pairings in case of dataset

01 lead to about 1313 possible solutions) those solutions are sorted according to their

accumulated rank sum, i.e. the sum of each pairings’ rank. In practice it was determined

that the correct solution does not feature the lowest but still has a comparatitevely low

accumulated rank sum. Table 6.2 shows the minimal accumulated rank sum of the six

evaluated datasets as well the correct and the maximal accumulated rank sums. To reduce

the large number of possible solutions, the minimal and maximal accumulated rank sum

is computed and the median determined. All solutions with a rank sum above the median

are subsequently filtered out. This resulting dataset size is also given in table 6.2. The

remaining solutions are then evaluated by a force-directed graph layout which is discussed

in the next section.
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Figure 6.7: An excerpt of the solution tree for dataset 01. Potential pairwise matches of
two Khmer temples stones are the nodes of this tree. In each level another pairing is added
to the already existing partial solution if it passes an intersection test. This is necessary to
avoid impossible solutions, see figure 6.1 for an example. If the intersection test is failed
the branch in question is cut. In the deepest level of the tree, only feasible solutions are
present. The depth of the tree is determined by the number of stones in the dataset.

Dataset 01 Dataset 02 Dataset 03 Dataset 04 Dataset 05 Dataset 06

Minimal Rank sum 12 10 15 12 17 17

Correct Rank sum 14 11 17 16 30 20

Maximal Rank sum 41 43 54 52 60 54

Remaining solutions 1313 2530 7602 11489 13385 32472

Table 6.2: Results of the solution tree for the six datasets. It shows the minimal sum of

accumulated ranks, the rank sum of the correct solution as well as the maximum sum of

ranks. Additionally the number of remaining solutions after filtering out solutions whose

accumulated rank sum is above the median is given.

Figure 6.8.a shows the solution with the minimal accumulated rank sum for dataset

01 and figure 6.8.b shows the correct reassembly of the same dataset. From an algo-

rithmical point of view it is difficult to tell which of the two is the correct and optimal
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reassembly as in both cases the stones do not intersect and the arrangement seems valid.

The minimal rank sum criterion therefore serves as a presorting condition, whose output

is taken as input for the force-directed graph drawing algorithm in the last step of the

puzzle reassembly. The application of the solution tree as a presorting step is necessary

to ensure impossible solutions are removed as well as possible solutions kept for further

consideration.

(a) (b)

Figure 6.8: Both figures show a possible solution for dataset 01. (a) depicts the minimal
accumulated rank sum solution and (b) the correct one.

6.4.2 Force-directed graph drawing

Although a graph can be drawn using points and lines a proper visual embedding is

not always straightforward. The importance lies in the fact that the graphs needs to be

correct as well as easily understandable. To this end the research field of graph drawing

“adresses the problem of constructing geometric representations of graphs, networks, and

related combinatorial structures.”36 The search for the best solution within the many that

remained after the construction of the solution tree is supported and simplified by making

use of so-called force-directed graph drawing (FDGD) algorithms.

Usually graphs are used to illustrate the relationship between objects. Although there

are no strict rules applying to graph drawing it is in general agreed upon an even distribu-

tion of vertices, minimal edge crossing and symmetry. The introduction and application

of force-directed methods in graph drawing relates to Tuttes work in 1963 [Tut63] and to

Fruchterman and Reingold [FR91]. Tutte showed that a polyhedral graph can be drawn

in a plane by assigning attractive forces like e.g. springs to the edges and then let the

system settle to an equilibrium state. Fruchtermann and Reingold introduced an algo-

rithm that produces “aesthetically-pleasing, two dimensional pictures of graphs by doing

simplified simulations of physical systems.”37 FDGD methods are therefore flexible, easy

to implement and result in pleasant drawings. Their basic idea is to model the graph as a

36(Graph Drawing: algorithms for the visualization of graphs, Battista, 1999, p.vii)
37Fruchtermann and Reingold, p. 1
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system of bodies with interacting forces where the aim is to find the optimal arrangement

minimizing the energy of the system. This is achieved by modeling the forces as springs

attracting and repelling each other. Typically, attracting springs are modelled based on

Hooke’s law and repelling springs are based on Coulomb’s law. After having modelled

the nodes, edges and springs the whole system can be simulated like a physical system.

The springs then either pull the nodes closer together or push them further apart until

an equilibrium is reached. The final positions of this system are then used to actually

draw the graph. Methods for finding an equilibrium state can e.g. be stress majorization,

energy minimization or simulated annealing. The difficulty of FDGD approaches is that

the objective function usually has many local minima especially for large graphs.

Applying a FDGD method to find the best solution is done by keeping the stones

as vertices of the graph and adding only those pairings as edges (or springs) which are

occuring in the complete solution. Taking the results from the solution tree, where com-

plete solutions with an accumulated rank sum above the median are already sorted out,

the FDGD approach is able to reliably determine the correct solution within all remain-

ing ones by assigning a scoring value to each solution. The score is calculated using the

accumulated rank sum (derived from applying the solution tree), the overlapping area

and the gap distance between the stones. Table 6.3 shows the performance of the force

directed graph drawing method for the correct solution of the six datasets in relation

to the solution having the minimal rank sum. Clearly, the score of the correct solution

outperforms the score of the solution featuring the lowest rank sum. It has to be pointed

out, that the starting positions for each stone are chosen at random yet in all cases in the

final position the algorithm assigns a clearly distinguishable score to the correct solution.

Figure 6.9(a),(c),(e),(g),(i),(k) shows the resulting graph for the correct solution of the

six datasets and figure 6.9(b),(d),(f),(h),(j),(l) shows the resulting graph for the minimal

rank sum solution.

Dataset 01 Dataset 02 Dataset 03 Dataset 04 Dataset 05 Dataset 06

Minimal Rank sum solution 21588 19641 14941 20510 85425 42502

Correct solution 15670 15616 14271 17526 43990 25644

Table 6.3: Results of the force directed graph drawing for the six datasets. It shows the

score of the force-directed graph drawing approach for the solution having minimal rank

sum and the correct solution.
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(a) correct solution, dataset 01 (b) minimal rank sum solution, dataset 01

(c) correct solution, dataset 02 (d) minimal rank sum solution, dataset 02

(e) correct solution, dataset 03 (f) minimal rank sum solution, dataset 03

(g) correct solution, dataset 04 (h) minimal rank sum solution, dataset 04
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(i) correct solution, dataset 05 (j) minimal rank sum solution, dataset 05

(k) correct solution, dataset 06 (l) minimal rank sum solution, dataset 06

Figure 6.9: The result of the FDGD approach for the six datasets in case of the correct
solution (a),(c),(e),(g),(i),(k) and the minimal rank sum solution (b),(d),(f),(h),(j),(l).
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Chapter 7

Results

“ When I’m working on a problem, I never think about beauty. I think only how

to solve the problem. But when I have finished, if the solution is not beautiful,

I know it is wrong.38

”
The performance and quality of the methods which have been developed and employed

during the course of this thesis have already been discussed in chapters 4, 5 and 6 ac-

cordingly. The concept of a minimal volume box was explicitly designed and developed

for Khmer temple stones in order to have an accurate and storage efficient description of

each stone. From figure 4.9 it emerges that although an MVB is an underestimate of the

original volume it is more accurate than an oriented bounding box. Exploiting this easy to

handle structure all plausible pairwise combinations can be enumerated and stored prior

to the similarity analysis. The determination of highly similar pairings and the discrimi-

nation of dissimilar combinations is conducted using a novel approach based on combining

ranks of different geometric distance functions explained in section 5 and 6.1. Based on

their ordered accumulated rank sum a pruning removes the most improbable matchings

and retains those with a high similarity. The definite non-ambiguous identification of the

correct solution is enabled by constructing complete solutions from all remaining pairwise

matchings and applying a force-directed graph drawing algorithm.

Through this approach two major contributions have been achieved. First, it is now

possible to virtually analyze digitized Khmer temple stones in order to reassemble them

as a wall and second the correct positioning can be exactly identified.

38Richard Buckminster Fuller
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CHAPTER 7. RESULTS

Each step of the presented reassembly algorithm was tested on six different datasets

containing six to eight stones of different measurement quality and the results were pre-

sented in the according chapters. All computations have been performed on an Intel i7

3.07Ghz CPU with 24 Gb RAM. Whenever possible, a parallelization was applied using

OpenMP. The software framework the algorithm is integrated into is called scifer.

(a) Dataset 01 (b) Dataset 02

(c) Dataset 03 (d) Dataset 04

(e) Dataset 05 (f) Dataset 06

Figure 7.1: The six reassembled test datasets are illustrated. The stones are correctly
reassembled upon the application of the puzzle workflow.
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Scifer is developed and used by the Computer Graphics and Visualization workgroup at

the Interdisciplinary Center for Scientific Computing at the Heidelberg University.

Figure 7.1 shows the virtually reassembled stones of the six test datasets after the last

step of the puzzling workflow. A sketch of the datasets and their location in the original

wall is shown in figure 5.3. Figure 7.1.a shows the reassembly of dataset 01, figure 7.1.b

dataset 02, figure 7.1.c dataset 03, figure 7.1.d dataset 04, figure 7.1.e dataset 05 and

figure 7.1.f dataset 06.

The remaining of this chapter discusses the complete puzzle pipeline for three larger

datasets, see figure 7.2. Dataset 07 contains 16 stones marked in light green, dataset 08

contains 25 stones which consist of the ones from dataset 07 plus the stones with darker

green color and dataset 09 which contains all marked stones. The aim is to examine the

behaviour of the puzzling workflow in case of larger datasets.

Figure 7.2: Testing the puzzling workflow on larger datasets: Dataset 07 contains 16
stones marked in light green, dataset 08 contains 25 stones which consist of the stones
with darker green color in addition to the ones from dataset 07 and dataset 09 which
contains all stones marked in green.

7.1 Minimal Volume Boxes and Possibility Enumer-

ation

For each of the digitized Khmer temple stones its minimal volume box is computed ac-

cording to chapter 4. This step can be precomputed for all stones at once and the result

can be stored for further evaluation as the minimal volume box of a stone remains undis-

turbed as long as the underlying stone is unchanged. As the edges of the stone feature
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a significantly higher curvature than the flat side surfaces this step can be performed on

a low resolution version of the digital stones which speeds up the calculation. The com-

putational amount of this step is O(n). Enumerating all possible pairwise combinations

to perform a similarity analysis results in 1076 pairings for dataset 07, 3090 pairwise

matchings for dataset 08 and 8162 pairwise combinations for dataset 09.

7.2 Similarity analysis

Computation of the similarity analysis requires O(n2) time. For dataset 07 64.1% of

correct pairings can be found within the first quarter of all pairings and 1.28% in the last

quarter, for dataset 08 65.83% of correct pairings are in the first quarter and 9.17% in

the last quarter. In case of dataset 09 there are 72.86% of correct pairings which can be

found within the first 25% of overall pairings and 4.76% correct pairings within the last

quarter. In all cases on average more than two thirds of correct pairings can be found

within the first quarter of all possible pairwise matchings and only an average of 5.07%

score low in the rank sum based similarity analysis. In conclusion it can be deducted that

the rank sum based similarity analysis is very robust even for larger datasets.

Figure 7.3: The distribution of correct pairings within all possible pairings of datasets 07,
08, 09.

7.3 Best out of five and solution tree

Constructing the solution tree leads in general to a high number of possible complete

solutions. The tree is based on a list of remaining possible pairwise matchings after the

performance of the pruning step determining the five highest ranking pairings. As de-

scribed in chapter 6 only a minimal set of correct pairings is needed for a correct solution,

thus the problem of reassembling the stones is overdetermined. In reverse this means that

even if some correct pairings are omitted by the best out of five approach the correct
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solution can still be determined. Each stone that is added to the dataset increases the

number of pairings as well as the number of wrong pairings with a high rank sum. This

increase has to be considered and the pruning step needs to be adjusted to the number n

of stones in the dataset in order to fit. In practice the size of the subset Lsub (see equation

(6.2)) used for the cutting should be chosen to be n
2
. Table 7.1 depicts the overall correct

matches before and after the pruning step has been applied in relation to the number of

correct pairings before and after the pruning.

The computational cost of enumerating all solutions using the solution tree depends

on the size of the reamining pairings, i.e. the more pairings remaing the more complete

solutions can be constructed. If one or several pairings are known in advance, impossible

pairings can be deleted from the list prior to the construction of the solution tree. Ad-

ditionally, the running time of building up the solution tree depends on the number of

stones in the dataset. It requires more time if the tree has a larger depth as for every

layer of the tree the remaining pairwise possibilities have to be checked. Applying an

intersection test, as suggested in chapter 6.4.1 leads to a downsizing of possible solutions

thereby speeding up the running time.

Number of Dataset 07 Dataset 08 Dataset 09

overall matches before pruning 1076 3090 8162

correct matches before pruning 78 120 210

overall matches after pruning 118 248 457

correct matches after pruning 21 38 70

Table 7.1: How many overall matches are reduced due to the pruning step versus the

number of correct pairings reduced by the pruning.

7.4 Reassembling the wall using force-directed graph

drawing

Applying the force-directed graph drawing that is described in chapter 6 to all possible

and plausible complete solutions finally leads to the correct solution. Table 7.2 shows that

the score of the force-directed graph drawing approach is significantly higher in case of

the correct solution than it is in case of the minimal rank sum solution. The running time

depends on the number of stones as a complete solution consisting of n stones contains

n − 1 pairwise matchings. In the force-directed graph drawing these pairwise matchings

are taken as the springs and adding one additional stone to the dataset results in one

additional spring as well as one additional node in the force-directed graph drawing.
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Reassembling the wall using force-directed graph drawing

Figure 7.4 shows the final virtually reassembled results for the three datasets 07, 08 and

09.

Concluding, the results in this chapter showed that the puzzle workflow developed

in the course of this thesis is able to correctly virtually reassemble stones from a fallen

Khmer temple wall whose original position is unknown.

Dataset 07 Dataset 08 Dataset 09

Minimal Rank sum solution 207737 506846 1365478

Correct solution 104344 457231 733682

Table 7.2: Results of the force directed graph drawing for dataset 07, 08 and 09. It shows

the score of the force-directed graph drawing approach for the solution having minimal

rank sum and the correct solution.

(a) dataset 07 with 16 stones

(b) dataset 08 with 25 stones
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(c) dataset 09 with 42 stones

Figure 7.4: The reassembled datasets.
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Chapter 8

Conclusion and Future Work

“
Success is the sum of details.39

”
This thesis presented a novel approach to virtually reassemble a wall of the fallen

Khmer temple site Banteay Chhmar, which is a very complex and challenging task. Based

on digitally acquired temples stones using a 3D scanner, these virtual stone models support

the manual reconstruction done on site. The generally applied approach conducted in-

situ uses time-consuming manual labour to suggest potential placements for each stone

and verify the assumptions using man-power and cranes. For every error that occurs

the process has to be restarted from scratch causing unwanted and unneccessary further

deterioration of the stones and additionally risks the safety of the workes who have to

carry around the heavy stones. Due to the high complexity this manual approach can

take several months.

Making use of the new methods presented in this thesis the manual work can be

reduced to an absolute minimum. The stones now only have to be moved twice: once for

the digitization and once for the final reassembly. The developed and presented workflow

is able to distinctly determine the correct solution. In order to achieve this specific features

of Khmer temple stones, namely to be of cuboidal form and the occasional presence of

indentations, were exploited. The user interaction is now only needed for the preparation

of the stones. Furthermore, the thesis not only provided a puzzle framework but developed

a new type of storage saving structure for virtual Khmer temple stones, the minimal

39Harvey S. Firestone
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volume box (MVB). A MVB closely resembles a virtual stone and can be extended to

types of stones used for different parts of the temple.

The MVBs were subsequently used to fast enumerate all pairwise possibilities and

a sophisticated similarity measure, based on different geometric distance functions, de-

termined the togetherness of such potential matches. The particular strength of this

similarity analysis is the ability to remove pairings featuring a low similarity. By enu-

merating only pairings with high similarity values through a tree structure all possible

and plausible complete solutions were found. Force-directed graph drawing algorithms

applied to those complete solutions distinctly found the correct position for each stone in

order to rebuild the temple wall.

In conclusion this large-scale 3D puzzle was uniquely solved by applying the presented

workflow and it will help to reduce the movement of stones on site as well as reduce the

labour-intensity of the work.

8.1 Future work

In the future, the similarity analysis of the presented workflow can be strengthened to also

include bas-reliefs on a stone, if present. This has so far not been taken into account as not

every stone has a bas-relief applied onto. Some stones did not have one by intention and

on some it has been stolen. Evaluating the bas-relief on the stones requires methods from

the area of image processing to identify parts of an image spreading over several stones

as well as methods from numerical geometry to account for the fact that the bas-relief is

not only a 2D image applied on top of the stone but was carved into the stone making it

threedimensional.

In case of very large datasets, containing several hundreds of stones, the stones can

be presorted according to their width. It was observed for the present part of a temple

wall that the two top most and the two bottom most rows of stones are significantly

wider than the stones in the central part. Using this feature the stones can be clustered

into smaller groups, which reduces the computational complexity. Furthermore advanced

data structures and parallelization techniques or the usage of modern-day gpu’s40 can be

applied to speed up the computation.

It is possible to extend the developed MVB to other types of stones and the whole

workflow can be extended to reassemble other and larger parts of the temple. On top

40Grapics processing unit, a highly specialized electronic unit whose architecture is designed to rapidly
compute large and massively parallel operations.
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of that Khmer temples feature a lot of similarities i.e. the outcome of this thesis can be

applied to other temples in former Siam as well. Furthermore, the approach is not limited

to temples in South-East Asia but adaptable to fallen Roman, Greek or Mayan temples.
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Appendix A

In this appendix all possible pairings how two virtual Khmer temple stones can be com-

bined are shown. Virtual stones which are used as a ground-truth in this thesis and whose

orientation in R3 is known belong to one of the following four classes: having no indenta-

tion, having one indentation on the upper right side, having one indentation on the upper

left side and having two indentations one on the upper right as well as one on the upper

left side.

Figure A.1: Two stones with no indentation are compared to each other.
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Figure A.2: A stone with a left indentation is compared to a stone with no indentations.
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Figure A.3: A stone with a right indentation is compared to a stone with no indentations.
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Figure A.4: A stone with a two indentations is compared to a stone with no indentations.
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Figure A.5: Two stones with a left indentation are compared

Figure A.6: Two stones with a right indentation are compared
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Figure A.7: A stone with a right indentation is compared to a stone with a left indentation.
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Figure A.8: A stone with a left indentation is compared to a stone with two indentations.
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Figure A.9: A stone with a right indentation is compared to a stone with two indentations.
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Figure A.10: Two stones with upper indentations are compared.
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