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Summary 
Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in adults of 

the Western world. It is a malignancy characterized by an accumulation of CD5 positive 

B-cells in blood and lymphoid organs. CLL is a very heterogeneous disease, where 

molecular subgroups display striking differences in treatment response and prognosis. A 

greater BCR signaling capacity and a loss of p53 signaling activity confer a poor 

prognosis. While the higher BCR signaling activity seen in CLL with unmutated IGHV 

genes supports tumor cell survival, p53 aberrations mediate resistance towards standard 

therapy. The aim of this work was to characterize the involvement of non-coding RNA in 

these two key signaling pathways of CLL cell survival and resistance. 

Small RNA sequencing was applied to comprehensively assess microRNA (miRNA) and 

other non-coding RNA expression in peripheral blood mononuclear cells of 35 CLL 

patients. miRNAs were identified that display IGHV mutation status dependent 

expression, and the transcript levels of 15 miRNAs predicted IGHV mutation status with 

82% accuracy. By abrogation of BCR signaling in vitro using the small-molecule inhibitor 

ibrutinib, the expression of miR-320c, miR-1246, miR-484, miR-17-5p, miR-155-3p and 

miR-27a-5p was found to be BCR signaling dependent, suggesting a role in mediating 

CLL cell survival. The basal expression of 10 miRNAs was associated with ibrutinib 

sensitivity in vitro, implicating an involvement of these miRNAs in the regulation of BCR 

signaling.  

It was hypothesized that p53-dependent ncRNAs could be identified by comparison of 

CLL samples with or without TP53 mutation/deletion for their ncRNA expression changes 

upon DNA damage-triggered p53 induction. In addition to miR-34a, a set of further 

miRNAs was found to be TP53 status dependently induced (particularly miR-182-5p, 

miR-7-5p and miR-320d/c). Beyond miRNAs, the present data demonstrate p53-

dependent expression of the long non-coding RNAs lincRNA-p21 (long intergenic non-

coding RNA p21) and NEAT1 (nuclear enriched abundant transcript 1) upon DNA 

damage and direct p53 activation with nutlin-3. p53-dependent induction of expression 

was further proven in a panel of Burkitt’s lymphoma (BL) cell lines including cell lines 

with genetically engineered knockout or knockdown of p53. p53 ChIP demonstrated 

direct binding of p53 to the NEAT1 promoter. This provides first evidence of p53-

dependent regulation of long non-coding RNAs in CLL and BL. The discovery of p53-

dependent NEAT1 induction, which is an integral part of nuclear paraspeckles, paves the 

way for further research on the role of paraspeckles in tumor cell apoptosis and 

resistence. The current work identifies additional components of the p53-dependent DNA 

damage response in lymphoma.  
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The results of these studies provide new insight into the involvement of miRNAs and 

lncRNAs in two key signaling pathways regulating cell survival and treatment resistance 

in CLL and lymphoma.  
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Zusammenfassung 
Die chronisch lymphatische Leukämie (CLL) ist die häufigste Form der Leukämie in 

Erwachsenen der westlichen Hemisphäre. Charakteristisch für diese maligne 

Erkrankung ist die Akkumulation von CD5 positiven B-Zellen im Blut und in den 

Lymphorganen. CLL ist eine sehr heterogene Erkrankung, in der molekulare 

Subgruppen bemerkenswerte Unterschiede im Hinblick auf Therapieansprechen und 

Prognose zeigen. Eine erhöhte Kapazität des B-Zell-Rezeptor (BCR) Signalwegs wie 

auch ein Verlust der Aktivität des p53-Signalwegs bedingen eine schlechte Prognose. 

Während unmutierte IGHV Gene über eine höhere Aktivität des BCR Signalwegs zu 

einem verbesserten Überleben der Tumorzellen führen, vermitteln Aberrationen in dem 

Tumorsuppressor p53 Therapieresistenz. Ziel dieser Arbeit war es, die Beteiligung von 

nicht-kodierenden RNAs (ncRNAs) in diesen beiden für das Überleben und die 

Resistenz von CLL-Tumorzellen zentralen Signalwegen zu charakterisieren.   

Um die Expression von microRNA (miRNA) und weiteren nichtkodierenden RNA 

(ncRNA) in mononukleären Zellen des periphären Blutes von 35 CLL Patienten 

umfassend zu quantifizieren, wurden kurze RNA Transkripte (small RNA) sequenziert. 

Es wurden IGHV-Mutationsstatus abhängig exprimierte miRNAs identifiziert, und anhand 

der Signatur von 15 miRNAs ließ sich der IGHV Mutationsstatus in 82% der Proben 

korrekt bestimmen. Eine Unterbrechung des BCR Signalwegs durch in vitro-Behandlung 

mit dem small-molecule Inhibitor Ibrutinib führte zur differenziellen Expression von miR-

320c, miR-1246, miR-484, miR-17-5p, miR-155-3p und miR-27a-5p, was deren 

Abhängigkeit von einem aktiven BCR demonstriert und eine Beteiligung an diesem 

überlebensfördernden Signalweg nahelegt. Die Assoziation der basalen Expression von 

10 miRNAs mit in vitro Ibrutinib-Sensitivität der Proben impliziert eine Mitwirkung dieser 

miRNAs an der Regulation der BCR Signalaktivität.  

p53-abhängige ncRNAs wurden durch einen Vergleich der Expressionsänderungen 

zwischen TP53 wildtyp und TP53 mutierten/deletierten CLL-Proben nach p53 Induktion 

durch DNA-Schädigung identifiziert. Zusätzlich zu miR-34a war die Expression einer 

Gruppe weiterer miRNAs (insbesondere miR-182-5p, miR-7-5p, miR-320d/c) abhängig 

vom TP53 Mutationsstatus. Über miRNAs hinaus enthüllten die Daten dieser Arbeit die 

p53-abhängige Expression der langen nicht-kodierenden RNAs (lncRNAs) lincRNA-p21 

(long intergenic non-coding RNA p21) und NEAT1 (nuclear enriched abundant transcript 

1) nach DNA-Schädigung sowie nach direkter p53-Aktivierung mittels Nutlin-3 in CLL. 

Deren p53-abhängige Induktion über CLL hinaus wurde anhand einer Auswahl an 

Burkitt’s Lymphom (BL) Zelllinien, deren p53 Expression teils durch p53 knockout oder 

knockdown kontrolliert worden war, nachgewiesen. Durch p53 ChIP konnte die direkte 
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Bindung von p53 an den NEAT1 Promoter demonstriert werden. Damit wurde erstmals 

die p53-abhängige Regulation langer nicht-kodierender RNAs in CLL und BL gezeigt. 

Die Entdeckung der p53-abhängigen Regulation von NEAT1, einem zentralen 

Bestandteil nukleärer Paraspeckles, bahnt weiteren Arbeiten zur Rolle der Paraspeckles 

in Apoptose und Resistenz von Tumorzellen den Weg. Die vorliegende Arbeit identifiziert 

neue Komponenten der p53-abhängigen Antwort auf DNA-Schäden in malignen 

Lymphomen.   

Die Ergebnisse dieser Arbeit bieten neue Einblicke in die Beteiligung von miRNAs und 

lncRNAs an zwei für die Regulation von zellulärem Überleben und Therapieresistenz 

zentralen Signalwegen in der CLL und malignen Lymphomen. 
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1 Introduction 
 

1.1 Cancer 
1.1.1 Characteristics of cancer  
Tumor cells arise from normal cells through an evolutionary process that eventually 

enables them to evade the body’s control mechanisms and multiply at unphysiologic 

frequency1. The characteristics obtained by the malignant cells have been summarized 

as the ‘hallmarks of cancer’ by Hanahan and Weinberg in 20002, revised in 20113 and 

illustrated in Figure 1. These acquired functional capabilities including the resistance to 

cell death, replicative immortality or invasion and metastasis are present in virtually all 

cancers. However, the biological mechanisms underlying their development and their 

chronological sequence vary greatly in different cancer types, among tumors of the same 

entity, and even among the cells composing a tumor2,3.  

Cancer is a disease of genetic and epigenetic alterations affecting genes that regulate 

cellular integrity and tissue homeostasis4-8. Depending on the outcome of their activation, 

those genes are termed tumor suppressor genes or oncogenes.  

 

 

 
Figure 1. The hallmarks of 
cancer. Acquired capabilites of 

tumor cells as summarized by 

Hanahan and Weinberg, 20113. 

 

  

1.1.2 Oncogenes and tumor suppressor genes 
Oncogenes develop from normal, non-cancerous proto-oncogenes through mutation, 

translocation, amplification or epigenetic mechanisms (‘gain of function’) to promote 

tumorigenesis. As such, they are frequently involved in cellular proliferation and signal 

transduction. A single, monoallelic, alteration in a proto-oncogene can be sufficient for 
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transformation, illustrating the dominant effect of oncogene activation. Myc (c-Myc), for 

example, is a transcription factor which is frequently found overexpressed in cancer 

through gene amplification, leading to a higher expression of genes involved in cell cycle 

progression including cyclin A and E9,10 . In ~80% of Burkitt’s Lymphoma, a translocation 

(mostly t(8;14)(q24;q32)) puts c-Myc under the control of a strong immunoglobulin heavy 

chain locus promoter, resulting in overexpression of the oncogene10. Supported by 

accompanying second-hit mutations which counterbalance the pro-apoptotic pathways 

(e.g. p53) activated to safeguard the cell against MYC-induced transformation, mice 

transgenic for this translocation almost invariably develop aggressive lymphomas11-13.  

In contrast, tumor suppressors prevent malignant transformation. Here, a decreased 

activity (‘loss of function’) promotes, i.e. increases the likelihood of, carcinogenesis. As it 

typically requires the presence of only a single functional gene for its activity, tumor 

suppressor genes are recessive, requiring ‘two-hit’ inactivation of both alleles8,14. 

Inheritance of one mutant allele can increase tumor susceptibility, as only one further 

mutation is needed to inactivate gene function8. This is often observed in familial cancer 

syndromes. Tumor suppressor genes are involved in cellular processes such as cell 

cycle checkpoint responses, DNA damage detection and repair, differentiation and tumor 

angiogenesis. The retinoblastoma gene (RB) which is frequently found deleted in 

hereditary and sporadic retinoblastoma was the first tumor suppressor gene to be 

identified14. By inhibiting e.g. E2F, a major negative regulator of the cell cycle, it prevents 

proliferation by blockade of G1/S-phase progression15. p53 is a key tumor suppressor 

and is inactivated by deletions and/or somatic mutations in more than 50% of cancers8. It 

is an exception to the ‘two-hit’ rule, as mutant p53 protein can exert a dominant negative 

effect by preventing the activity of wild-type protein from the second allele16. p53 causes 

G1 phase arrest and apoptosis upon DNA damage, guarding the cell against genotoxic 

insult17. Multiple stresses inducing p53 and downstream outcomes have been described, 

emphasizing its key role in tumor suppression (delineated in section 1.3.2.2).  

1.2 B-cells and B-cell malignancies 
1.2.1 B-cells and B-cell receptor development  
The human immune system is composed of an innate and an adaptive part. The innate 

immune system quickly reacts as first-line defense to microbial pathogens in a generic 

way. The adaptive immune system relies on antigen-specific recognition by receptors 

expressed on the surface of clonally expanded B- and T-cells. It triggers targeted 

responses against pathogens, which take several days or weeks to develop and 

generate long lasting immunity. B-cells play a major role within the adaptive immune 
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system by producing specific antibodies, presenting antigens and generating memory 

cells that can be activated upon repeated infection with the same pathogen18. 

B-cell development and maturation starts from stem cells within the bone marrow and 

occurs through numerous stages that are characterized by changes in the specific 

structure of the B-cell receptor (BCR). This cell-membrane bound surface 

immunoglobulin (sIg) consists of two identical heavy-chain (H) and two identical light-

chain (L) polypeptides, which are covalently linked by disulphide bridges and display a 

specific antigen-binding site. The corresponding genes occur as separate fragments that 

are assembled into the active gene by V(D)J recombination19,20. During early B-cell 

development in the bone marrow, first the H region is remodeled through randomly 

joining together one of about 50 functional variable (VH) genes, one of about 27 

functional diversity (DH) and one of 6 joining (JH) gene segments. The L region is 

similarly rearranged by combination of the VL and JL genes, generating high receptor 

diversity. Only B-cells expressing a functional, non-autoreactive BCR differentiate into 

mature, naïve B-cells and leave the bone marrow21. Subsequently, they can participate 

in immune responses upon antigen binding to the BCR in the peripheral blood, but more 

frequently, antigen-activated B-cells undergo T-cell-dependent immune responses and 

clonal expansion in the germinal centers (GCs). GCs are specialized structures in 

secondary lymphoid tissues such as the lymph nodes and spleen, illustrated in Figure 2. 

Here, the Ig genes are further modified by somatic hypermutation occurring at the 

complementarity determining regions, resulting in mutated IgHV (immunoglobulin heavy 

chain variable region) genes and tremendous BCR diversity. While most mutations result 

in reduced antigen binding affinity of the BCR to the cognate antigen leading to apoptotic 

cell death, cells with mutations conferring enhanced affinity are positively selected and 

can undergo class-switch recombination. Here, the original constant regions (C) of the 

BCR, usually IgM or IgD, can be replaced to IgG, IgE or IgA by chromosomal 

recombination. Subsequently, B-cells can differentiate into memory B-cells or antibody 

producing plasma cells and leave the GC20,22. 



Introduction 

4 
 

 
Figure 2. B-cell differentiation in the germinal center (GC). Antigen-activated B-cells 

differentiate into centroblasts that undergo clonal expansion and somatic hypermutation (SHM) in 

the dark zone, introducing base-pair changes into the IgV region of the heavy and light chain. 

Centroblasts differentiate into centrocytes and move to the light zone where they are selected for 

improved BCR antigen affinity, supported by antigen presentation by T-cells and follicular 

dendritic cells (FDCs). Positively selected B-cells can undergo class-switch recombination (CSR) 

and differentiate into memory B-cells or plasmablasts to be released from the GC. Centrocytes 

producing an unfavourable BCR upon SMH (low affinity, auto-reactivity) undergo apoptosis (Klein 

et al., 2008).   

 

1.2.2 B-cell malignancies and mechanisms of lymphomagenesis 
The World Health Organization (WHO) classifies lymphomas into Hodgkin- and non-

Hodgkin Lymphoma, the latter encompassing mature B-cell neoplasms, mature T-cell 

and NK (natural killer cell) neoplasms and posttransplantation lymphoproliferative 

disorders23. B-cells account for about 95% of lymphomas20. In the Western world, about 

19 new cases of non-Hodgkin lymphoma are diagnosed in 100,000 individuals annually, 

making it the 7th most frequent cancer diagnosed and the 9th most frequent cause of 

cancer death in the U.S.24,25. B-cell lymphomas are classified according to the 

developmental stage of their cell of origin and thus sub-divided into about 20 different 

types23. The most common (in the U.S.) are diffuse large B-cell lymphoma (DLBCL), 

follicular lymophoma (FL) and chronic lymphocytic leukemia (CLL). By gene expression 

profiling and surface marker phenotyping, the assignment of tumor cells to a distinct cell 

of origin is for some types very clear (Figure 3). CLL however is a remarkably 

heterogeneous disease, for which various cells of origins are debated and no consensus 
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has been found to date26,27. In about half of the patients, CLL cells carry unmutated IgHV 

genes, suggesting pre-GC B-cells as normal counterpart. In the remaining half they carry 

somatically mutated IgHV genes, suggesting B-cells past the GC response as origin28,29. 

This distinction is of great biological and therapeutic relevance.  

B-cell transformation is promoted by at least four mechanisms: I) Somatic mutations 

and/or chromosomal aberrations, II) BCR signaling, III) the microenvironment and/or VI) 

viral infection. 

 
Figure 3. Cellular origin and frequent genetic aberrations in non-Hodgkin lymphoma. B-cell 

malignancies arise at different stages of B-cell development. Frequently, genetic aberrations 

contribute to pathogenesis and characterize the type of B-cell lymphoma. The germinal center is 

surrounded by a mantle zone (follicle) of naïve, mostly CD5+ B-cells and a marginal zone in the 

spleen (but not in lymph nodes), a B-cell rich zone between B-cell follicles and the T-cell area. (B-

ALL, B-cell acute lymphocytic leukemia; CLL, chronic lymphocytic leukemia; SMZL; splenic 

marginal zone lymphoma; MCL, mantle cell lymphoma; DLBCL, diffuse large B-cell lymphoma; 

MALT, mucosa associated lymphoid tissue (Rickert 2013, modified).  
 
Most lymphomas are derived from GC- or post-GC B-cells. The GC constitutes a highly 

proliferative environment to generate large amounts of immunoglobulin for antigen 

elimination30. This background supports the occurrence and accumulation of 

chromosomal rearrangements and somatic mutations. Some malignancies are 

characterized by specific cytogenetic abnormalities. Reciprocal chromosomal 

translocations involving an Ig locus and a proto-oncogene constitute a hallmark of B-cell 

lymphoma (Figure 3). Consequently, the proto-oncogene comes under the control of the 

active Ig locus, causing its constitutive overexpression which drives the disease30,31. 

Others, such as CLL, are not distinguished by a common genetic defect.  

Another pivotal role in supporting lymphomagenesis is taken by the BCR. Ablation of 

BCR expression on mature B-cells in mice leads to apoptosis, establishing BCR 
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signaling as a determinant of B-cell survival32,33. There is strong evidence that stimulation 

by antigen binding contributes to survival and proliferation of lymphoma cells. Whether 

this survival signal is supplied by autonomous or antigen-induced activation is a matter of 

ongoing debate20.  

An important role of the microenvironment (i.e. nurse-like cells, T-cells, mesenchymal 

stromal cells and matrix factors34) for the survival and/or proliferation of transformed B-

cells is demonstrated by lack in vitro proliferation of many lymphoma cells without its 

support. FL cells, for example, require co-culture with CD4+T-cells or stromal cells35, 

whereas CLL cells need support by stromal cells (or their secreted factors) and CD40 

ligand to keep in culture or proliferate, respectively36-38. In part, this interaction involves 

signaling through the BCR. 

Lastly, B-cell transformation can be caused by viral infection, most frequently by Epstein-

Barr virus (EBV), a herpes virus found in almost all endemic Burkitt’s lymphoma and 

post-transplant lymphoma, and about 40% of classical Hodgkin’s lymphoma39-41. EBV-

encoded latent genes induce transformation by altering cellular gene transcription and 

constitutively activating key cell-signaling pathways41. 

 

1.3 Chronic Lymphocytic Leukemia (CLL) 
Chronic lymphocytic leukemia (CLL) is characterized by the progressive accumulation of 

immunoincompetent CD5+ B-lymphocytes, mostly arrested in G0/G1 phase of the cell 

cycle, in blood, bone marrow, lymph nodes and spleen42. It represents about 25-30% of 

all leukemias, making it the most common adult leukemia in Western countries43. CLL is 

diagnosed in 3.9 per 100 000 individuals in the U.S. annually at a median age of 72, and 

the incidence is nearly twice as high in men than in women44. While patients are usually 

asymptomatic at diagnosis, lymph node enlargement, constitutional symptoms and bone 

marrow failure are common symptoms at later stages. CLL is a very heterogeneous 

malignancy. Whereas it is indolent in most cases and can be monitored over years 

without treatment (‘watch and wait’ strategy), it is more aggressive in others who show a 

poor response to standard treatment and a survival of less than two years45-47.  

Various pathogenic mechanisms have been discussed, which include chromosomal 

aberrations46,48, gene mutations49-51, altered DNA methylation52, deregulated (micro) RNA 

expression levels53, antigen-triggered and autonomous BCR signaling54,55 as well as the 

microenvironment56. The identification of molecular subgroups has greatly improved the 

understanding of underlying biology, the prediction of clinical course of the disease and 

the development of more stratified treatment approaches. 
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1.3.1 Molecular subgroups 
1.3.1.1 IGHV mutation status 
CLL can be separated into cases that have mutated IGHV genes and those with 

unmutated IGHV genes (defined as at least 98% sequence homology with the germline 

IGHV genes). The clinical and biological behaviour of the two subsets differs 

substantially, with patients of unmutated IGHV showing significantly poorer survival 

(Figure 4)28,29,42,57. 

 

 
Figure 4. CLL patient survival by 
IGHV mutation status. Patients with 

IGHV unmutated genes show poorer 

survival than those with mutated IGHV 

(Zenz et al., 2010). 

 

While this can in part be explained by the greater likelihood of IGHV-unmutated CLLs to 

carry high-risk genetic lesions such as 11q23 and 17p1357,58, the prime underlying 

reason is a differential signaling capacity through the BCR. BCR signaling is reduced in 

IGHV-mutated CLLs59 (see also section 1.3.2.1). Unmutated CLLs additionally show 

higher expression levels of CD38 and tyrosine kinase zeta associated protein 70 

(ZAP70), which enhance BCR signaling60-62. In line with this, unmutated CLLs display a 

greater proliferative capacity in vivo, which is supported by the observation of reduced 

telomere lengths in those tumor cells63-65.  

 

1.3.1.2 Genomic aberrations 
Approximately 80% of CLL cases show aberrations in a few frequently affected 

chromosomal regions. A deletion on chromosome 13q14.3 is the most frequent one 

(~55%, Table 1). Still, CLL tumor cells do not show a typical, causative somatic mutation 

pattern.  

The minimally deleted region on 13q14.3 encodes two long non-coding genes (DLEU1 

and 2) as well as miR-15a and miR-16-1, which were the first microRNA (miRNA) genes 

to be found deleted in cancer53,66. The next most frequent aberration is a mutation and/or 

deletion of the ATM (ataxia telangiectasia mutated) gene encoding a kinase activating 



Introduction 

8 
 

p53 upon DNA damage, which in turn is central to the induction of cell cycle arrest, DNA 

repair and apoptosis.  

 
Table 1. The most frequent genomic aberrations in CLL overall, and in refractory cases.   

Genetic aberration Unselected (%) Refractory (%) 

1. del13q14 (miR-15a, miR-16-1) 5548 1967 

2. ATM mutation 12-1468,69 ? 

3. del11q23 (ATM)  12-1848,68 19-2067,70 

4. trisomy 12   16-1748,57 767 

5. NOTCH1 mutation 5-1271-73 1374 

6. TP53 mutation  7-1473,75,76 3774 

7. SF3B1 mutation 4-972,73 1874 

8. del17p13 (TP53) 7-957,75 30-3267,70,77 
 

Del13q14 (as sole aberration) confers a good prognosis (Table 1, Figure 5). In contrast, 

the presence of ATM aberrations or a deletion and/or mutation of TP53 encoding p53 on 

chromosome 17p13.1 associate with a particularly poor prognosis, since conventional 

chemoimmunotherapy often proves ineffective78. Consequently, ATM and TP53 

aberrations are frequent among in refractory patients (Table 1) and result in poor patient 

survival (Figure 5, see also section 1.3.2.2). The molecular pathomechanisms underlying 

other recurrent aberrations such as trisomy 12 and mutations of the membrane receptor 

NOTCH1 and splicing factor SF3B1 are less well understood79-81. 

 

 

 
Figure 5. Probability of 
survival from diagnosis in 
CLL patients of five genetic 
subgroups.   
(Dohner et al., 2000). 
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1.3.2 Two key signaling pathways in CLL cell survival and proliferation 
1.3.2.1 B-cell receptor signaling  
Signaling through the BCR may have different consequences depending on the stage of 

maturation and/or (co-)activation of the B-cell. The same signals may result in apoptosis 

of immature or self-reactive B-cells, but in proliferation of selected, foreign antigen-

specific mature cells82. In CLL, BCR signaling plays a vital role in the maintenance and 

expansion of the B-CLL clone, as indicated by a strong, constitutive activation of this 

signaling pathway56,83,84. Whether this activation is caused by specific (auto)antigens 

and/or cell-autonomous mechanisms is intensely debated. The concept of antigen-

triggered BCR signaling is supported by a strong bias in IGHV gene usage. Of the ~50 

functional human IGHV gene segments, only a selection is found highly enriched in CLL 

(e.g. VH1-69, VH3-21, VH3-07 and VH4-34)85. Moreover, in about 30% of CLL cases 

(both IGHV unmutated and mutated), the malignant cells express ‘stereotyped’ BCRs, 

i.e. the V regions of unrelated patients are nearly identical, indicating discrete antigens or 

structurally similar epitopes as disease drivers54,86. B-cells with mutated IGHV are 

thought to be selected and expanded by high-affinity binding to a restricted set of rare 

antigens that induce anergy87. In contrast, BCRs with unmutated IGHV sequences are 

considered polyreactive, enabling more frequent, low-affinity binding of the BCR and a 

higher BCR signaling activity59,87,88. This likely explains the higher tumor cell proliferation 

rates and poorer prognosis seen in CLL with unmutated IGHV.  

Recently, two studies additionally suggested ligand independent (‘tonic’), cell-

autonomous BCR activation in CLL by binding of the heavy-chain complementarity 

determining region (HCDR3) on one BCR to an internal epitope of a neighboring 

BCR55,89. 

In any case, BCR activation has a distinct outcome: On the one hand, it triggers cytokine 

secretion by the CLL cells, shaping the supportive microenvironment by attracting 

monocytes and T-cells38,90. On the other hand, a powerful survival program is elicited 

upon downstream signaling originating from the oligomerization of BCR components (i.e. 

sIg and CD79A CD79B heterodimers (Ig-α/Ig-β)) and Lyn-mediated phosphorylation of 

the CD79A and B cytoplasmic tails91-94 (Figure 6). The signal is further transmitted 

through a set of signaling pathways, particularly through spleen tyrosine kinase (SYK), 

Bruton’s tyrosine kinase (BTK) and phosphoinositide 3-kinases (PI3Ks)95 leading to the 
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Figure 6. CLL BCR signaling 
with focus on Bruton’s tyrosine 
kinase. BCR signaling results in 

the formation of a micro-

signalosome composed of VAV, 

PI3K, BTK, SH2 domain-containing 

leukocyte protein of 65 kDa 

(SLP65) and phospholipase C2γ 

(PLCγ2), resulting in an influx of 

Ca2+. This leads to activation of the 

transcription factors nuclear 

receptor of actiated T-cells (NFAT) 

and NF-κB as well as ERK. AKT is 

activated via PI3K, inhibiting 

forkhead box O (FOXO) 

transcription factors. BCAP, B cell 

adaptor for PI3K; BIM, BCL-2 

interacting mediator of cell death; 

CaM, calmodulin; CIN85, CBL-

interacting protein of 85 kDa; CN, 
calcineurin; DAG, diacylglycerol; GSK, glycogen synthase kinase; IκB, inhibitor of κB; IKK, inhibitor of 

NF-κB kinase;IP3, inositol trisphosphate; IP3R, IP3 receptor; PDK1, 3-phosphoinositide-dependent 

protein kinase 1; PIP3, phosphatidylinositol-3,4,5,-trisphosphate; PKC, protein kinase C (Hendriks et 

al. 2014, modified). 

 

activation of nuclear factor kappa light-chain enhancer of activated B-cells (NF-κB)56,96, 

protein kinase B/AKT97, and extracellular signal-regulated kinase (ERK)98 pathways. 

BTK has proven to be an attractive drug target. Its inhibition with the recently developed 

covalent small-molecule inhibitor ibrutinib (PCI-32765) leads to decreased NF-κB and AKT-

signaling and abrogation of CLL cell survival, and promises a major advance in CLL 

therapy97-100. As ibrutinib treatment resulted in a high frequency of durable remissions even in 

patients refractory to common chemotherapy in clinical trials up to stage III95,101,102, it has 

been approved in 2014 for the treatment of refractory CLL in the U.S.. In line with a higher 

BCR signaling capacity in IGHV unmutated CLL patients, those show a better treatment 

response than IGHV mutated CLLs95. Likewise, the PI3Kδ inhibitor idelalisib has reached 

approval for the treatment of relapsed CLL in the U.S. this year103,104, and a SYK inhibitor 

(fostamatinib) is in current development105,106. 
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1.3.2.2 The p53 pathway  
p53 is a key regulator of the cellular response to a broad range of stress signals 

including DNA damage and oncogene activation, as illustrated in Figure 7.  

 

 

Figure 7. Mechanisms of p53 activation and regulation of downstream targets, highlighting 
components aberrant in CLL. Various stresses induce signal mediators increasing the half-life 

of p53 by phosphorylation or inhibition of its MDM2-mediated ubiquitinylation. Modifications such 

as acetylation (Ac) and methylation (Me) can further stabilize the protein homotetramer, which 

binds to a DNA p53 response element (p53 RE) and recruits cofactors to regulate the 

transcription of a nearby gene. Hundreds of genes can be transactivated, mediating outcomes 

including DNA repair, cell cycle arrest and apoptosis. ATR, ataxia telangiectasia and Rad3-related 

protein; CHK1/2, checkpoint kinase 1 and 2; DDB2, damage-specific DNA-binding protein-2; 

GADD45α, growth arrest and DNA-damage inducible α; TRIM22, tripartite motif containing-22; 

Bax, BCL2-associated X protein (based on Riley et al. 2008, Zenz et al. 2010, Bieging et al., 

2014).   

 

In response to diverse cellular stresses that activate kinases such as ATM or inhibit the 

negative regulator MDM2 (double minute-2), p53 binds to p53 response elements (p53 

RE) in the promoter regions of p53 target genes to activate, or - more rarely - repress 
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their transcription. Via transducer molecules such as GADD45α, p21 (CDKN1A) or Bax it 

mediates DNA repair, cell cycle arrest and apoptosis, respectively, to prevent the 

accumulation of genetic aberrations and maintain cellular integrity107-110. This key 

suppressor of tumorigenesis is mutated or functionally inactivated across human 

malignancies, enabling tumor cells to escape apoptosis, cell cycle arrest and 

senescence108,109,111.  

In CLL, p53 aberrations have direct implications for disease management, as they 

associate with progressive disease and are a main determinant of chemorefractoriness, 

resulting in a median survival of 3-4 years92,93,70,112,113. 

p53 deletions (del 17p13) and/or TP53 mutations are present in about 10% of cases and 

up to 50% of refractory patients (Table 1). Deletions are monoallelic. In the majority of 

cases (>80%) the second allele is mutated114. TP53 mutation in absence of 17p13 is 

infrequent (4-5%), but confers a similar prognosis to the patient as biallelic TP53 

inactivation76,114, possibly due to the dominant negative effect of mutant over wild-type 

p5316,115. p53 aberrations are frequently subclonal, indicating an occurrence at later 

stages of tumor evolution. Beyond p53, further pathway members are often affected in 

CLL. Aberrations of ATM, the principal activator of p53 in the response to DNA double-

strand breaks, by a deletion of 11q22-23 and/or mutation result in impaired in vitro DNA 

damage responses and reduced overall and treatment-free patient survival68,69. However, 

genetic aberrations of p53 and ATM explain only about 50-70% of poor patient 

outcomes, and the reason for refractoriness in the remaining cases remains largely 

unclear. In part it could be attributed to a low expression of p53 target miR-34a, which is 

associated with refractory CLL even in the absence of p53 aberrations70,116.  

 

1.4 microRNAs and long intergenic non-coding RNAs  
1.4.1 Classification, biogenesis and function 
microRNAs 
microRNAs (miRNAs) represent a class of short, single-stranded non-coding RNAs of 

17-25 nucleotide (nt) length which post-transcriptionally regulate the expression of the 

majority of protein-coding genes117-119. miRNAs are abundant in many human cell types. 

Since the initial discovery of lin-4 and let-7 in C. elegans in 1993120, over 1800 human 

miRNAs have been annotated and listed in the miRNA reference database (miRBase 

v21). miRNAs are involved in the regulation of virtually all cellular processes including 

cell cycle, proliferation, apoptosis and differentiation121. Not surprisingly, their 

deregulation has been implicated in many diseases including cancer. 
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miRNA genes are transcribed by RNA polymerase II from intergenic, intronic or 

polycistronic loci, forming a miRNA precursor (pri-miRNA) of hairpin-shaped loop 

structure and several 100 nt length (see Figure 8). Processing by the Drosha-DGCR8 

complex yields a ~70 nt pre-miRNA hairpin, which is exported to the cytoplasm and 

cleaved by the Dicer-TRBP complex, generating imperfect miRNA duplexes of mature 

miRNAs. These are incorporated into Argonaute (Ago2) protein complexes, forming the 

RNA-induced silencing complex (RISC) which retains one of the mature miRNA strands. 

Depending on which arm of the precursor the miRNA originates from, the mature miRNA 

is assigned the suffix -3p (3’ arm) or –5p (5’ arm, e.g. miR-155-5p). This miRNA 

functions as a guide, directing RISC to partially complementary sites in target mRNAs, 

where it binds to the 3’ untranslated region. This results in silencing by translational 

inhibition, induced degradation and/or deadenylation of the respective mRNA122,123. 

 

 

 
Figure 8. The miRNA 
biogenesis pathway. See 

text for explanations (Winter 

et al., 2009, modified). 

 

 

 

For miRNA target recognition, complementarity at miRNA positions 2-7, the ‘seed 

region’, is crucial and evolutionary conserved. Due its brevity (resulting in genomic 

ambiguity) and the nature of imperfect complementarity of the remaining sequence to the 

mRNA, one miRNA has tens to hundreds of mRNA targets119. Further, the functional 

activity of a miRNA in regulating a specific target is context-dependent and cell-type-

specific, as its availability is additionally a function of abundance of alternative targets 
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‘sponging’ miRNA levels, and the affinity of the miRNA for binding to them124-126. One 

mRNA can be bound by multiple miRNAs acting in concert to regulate their target and 

building regulatory networks. miRNAs whose sequence only differs by one or two 

nucleotides (likely to have similar targets) are annotated with an additional lower case 

letter (e.g. miR-320a, miR-320b).  

 

Long non-coding RNAs 
Less than 2% of the human genome encodes for proteins, however, up to 80% is 

actively transcribed127,128. Substantial advances in whole-transcriptome sequencing 

technologies have revealed the widespread transcription of long non-coding RNA 

(lncRNA), which are differentiated from small non-coding RNA (such as miRNA, snoRNA 

(small nucleolar RNA) or piRNA (PIWI-interacting RNA)) by their length of >200 nt. It is a 

very heterogeneous class which is generally poorly conserved129-131. LncRNAs are 

classified according to their position relative to protein coding genes, comprising long 

intergenic ncRNA (lincRNA), intronic lncRNA, antisense lncRNA, transcribed 

pseudogenes and enhancer RNA (eRNA)132. The most recent release from Gencode 

(v19) has annotated ~14 000 human lncRNA genes133. In their biogenesis, lncRNA share 

many characteristics with mRNAs: They are transcribed mostly by RNA polymerase II 

and frequently show polyadenylation134 and 5’-methylguanosine capping135. However, 

they are lowly expressed on average (about 10-fold lower than mRNA) and display a 

higher degree of tissue-specific expression136,137. 

Interestingly, lncRNA have been proposed as a new and potentially crucial layer of gene 

regulation, while the function of the majority of lncRNAs remains unknown138. Through 

their arbitrary definition by sequence length but not functional unity, a great diversity in 

underlying functional mechanisms to regulate gene expression in cis and in trans has 

been described138,139. One of the best-studied examples is Xist (X-inactive specific 

transcript), which was found to be expressed exclusively from the inactive X 

chromosome, and later demonstrated to mediate X chromosome silencing in female 

mammals through chromatin remodeling140,141. It was proposed to act in cis by remaining 

tethered to its site of transcription, affecting neighbouring gene regions – a model 

thought to be valid for a group of lncRNA that e.g. disrupt the transcription machinery by 

DNA binding or foster transcription by attracting transcriptional coactivators138. In 

contrast, others have been described to act in trans by associating with DNA-binding and 

regulatory proteins to guide their localization and affect target gene expression142. This is 

the case for HOTAIR, which functions as a molecular scaffold for histon modifying 

complexes143. However, the mechanisms of lncRNA function are as diverse as the group 

itself, further including disruption of translation, modulation of mRNA stability, masking 
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miRNA binding sites or acting as miRNA ‘sponges’. Some lncRNA have structural 

functions as core components of nuclear bodies such as speckles and paraspeckles138.  

 
1.4.2 Role in human cancer and CLL 
microRNAs 
In 2002, Calin et al. made the seminal observation of frequent deletions and down-

regulation of miR-15 and miR-16 (on 13q14) in CLL, suggesting a role of miRNA 

deregulation in cancer53. Low miR-15 and miR-16 levels have been implicated in CLL 

pathogenesis by increasing the expression of anti-apoptotic Bcl-2 (B-cell lymphoma 2)66.  

It has been shown that aberrant miRNA expression frequently contributes to cancer 

formation through deregulation of cell cycle control, proliferation, apoptosis, 

differentiation, migration and/or epigenetic mechanisms144-149. By targeting mRNA of 

oncogenes or tumor suppressor genes, miRNAs can function as tumor suppressors or 

oncogenes themselves. The oncogenic miR-17~92 cluster serves as prominent example, 

in which individual miRNAs target tumor suppressive members of the Bcl-2 family in 

acute lymphoblastic leukemia150. In CLL, a downregulation of miR-29 and miR-181 

targeting oncogenic TCL-1 is suggested to contribute to pathogenesis151.  

Aberrant miRNA function and regulation can originate from sequence variations in 

miRNA genes, from aberrant transcription mediated by epigenetic mechanisms152-154 as 

reported in gastric and colorectal cancer155,156 from deregulated transcription factor 

activity or from impaired function of the miRNA processing machinery (e.g. Drosha, 

Dicer) as reported also in CLL157-159.  

Characteristic miRNA expression profiles may be exploited for early tumor detection, 

classification and prognosis160-162. This is particularly interesting in solid cancers that are 

difficult to access but display characteristic miRNA expression changes in the peripheral 

blood, as in pancreatic and lung cancer163,164. The remarkable stability of miRNAs in 

biological samples owed to relative resistance to ribonuclease degradation additionally 

renders them to be promising biomarkers165. In CLL, the expression of a set of miRNAs 

associates with prognosis and progression166-168. 

First miRNA-based therapeutics are in clinical development, primarily as replacement 

therapies to reintroduce miRNAs that are downregulated or lost in cancer cells122. Here, 

p53 downstream target miR-34a, itself a tumor suppressor downregulated in 

del17p/TP53mut (and) high-risk CLL70,116,169,170 and a broad range of other 

malignancies171, was the first miRNA mimic to reach phase I clinical trials in 2013 

(clinicaltrials.gov identifier NCT01829971)171,172.  
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Long non-coding RNAs 
There is increasing evidence for a crucial role of lncRNA deregulation in human diseases 

including cancer173-176. One of their major roles is to guide the site specificity of 

chromatin-modifying complexes, impacting on epigenetics. In this context, HOTAIR 

overexpression was shown to greatly influence gene expression to promoting 

invasiveness and metastasis formation in epithelial cancer cells through retargeting of 

chromatin structure remodeling polycomb proteins174. Xist has been found a potent 

suppressor of hematologic cancer in mice, as Xist loss resulted in X reactivation and 

genome-wide, cancer-promoting changes177. As a component of the RNA processing 

machinery controlling alternative pre-mRNA splicing, lncRNA MALAT1 was found 

overexpressed in various cancers176 and linked to an increase in proliferation and 

migration in lung178 and colorectal cancer179. Other lncRNAs have been described as key 

regulators of signaling pathways underlying carcinogesis such as the p53 pathway, as 

detailed in section 1.4.3.  

In CLL, an altered expression profile of transcribed ultraconserved regions (T-UCR) has 

been reported180 and lncRNA BIC (B-cell integration cluster) comprising oncogenic miR-

155 was found overexpressed181. Further, the lncRNA genes DLEU1 (deleted in 

leukemia) and DLEU2 span the minimally deleted region of 13q14182. DLEU1 and 2 have 

been suggested to act on miR-15a/miR-16-1 transcription in cis, eventually 

downregulating NF-kB levels183 and supporting tumor cell survival. A comprehensive 

understanding of the role of lncRNAs in CLL is lacking. 

LncRNA expression is useful for refinement of diagnosis and prognostication in some 

cancers184,185, whereas the exploitation of lncRNAs as therapeutic agents is still in its 

very beginning186. 

  

1.4.3 miRNAs and lncRNAs displaying BCR- or p53-dependent regulation 
in CLL  

microRNAs 
Whereas numerous studies associated miRNA expression profiles to CLL IGHV mutation 

status169,187-189, direct BCR signaling-dependent miRNA expression has been reported 

only once. Upon BCR activation with anti-IgM in vitro and microarray-based 

quantification of miRNA expression changes, Pede et al. found the miR-132/miR-212 

cluster, miR-155-3p, miR-20a-3p and miR-19b-1-5p induced190. However, miRNA 

identification was confined to the sequences on the array, and anti-IgM sets an 

unphysiological trigger to the pathway. Further, no direct connection to tumor cell 

survival or proliferation was drawn, as the targets of those miRNAs in the investigated 
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setting remained undetermined. Of note, in no other B-cell malignancies, a systematic 

screen for BCR signaling dependently expressed miRNAs has been performed. 

The only established miRNA transcriptionally targeted by p53 in CLL is miR-34a-

5p70,116,169,170,191. DNA-damaging irradiation has been shown to induce its expression116. 

miR-34 has been originally characterized as a p53 target in lung, colon and epithelial 

ovarian cancer cells as well as fibroblasts by several groups in parallel192-196. It inhibits 

cell-cycle progression by targeting cyclin-dependent kinases 4163, and 6192,197, cyclin 

D1197 and transcription factor E2F3197,198, and promotes apoptosis by targeting anti-

apoptotic BCL2196 and survivin199. No systematic screen for (further) p53 targets in CLL 

has been reported. In other tumor cells though, numerous p53-regulated miRNAs have 

been identified such as miR-107200, miR-145201 and miR-182193. On the other hand, 

miRNAs including miR-504 were described to target p53202. However, most miRNAs 

reported to target or be targeted by p53 greatly vary between entities and may be 

irrelevant for CLL.  

 

Long non-coding RNAs 
So far, the role of lncRNAs in BCR signaling remains unknown, and p53-dependent 

lncRNAs in CLL cells have not been investigated. 

In contrast, several p53-dependent lncRNAs have been established in other entities 

(Figure 9). The lincRNAs PANDA (p21 associated ncRNA DNA damage activated) and 

lincRNA-p21 are located ~5 kb and ~15 kb upstream of the p21 transcription start site, 

respectively, but expressed independently from p21. Whereas PANDA was shown to 

mediate anti-apoptotic functions of p53 through sequestering transcription factor NF-YA 

away from pro-apoptotic target genes (e.g. Puma, Noxa)203, lincRNA-p21 mediates 

repressive functions of p53 to promote apoptosis upon DNA damage204. In the HeLa cell 

line, lincRNA-p21 was shown to physically associate with JUNB and CTNNB1 mRNAs, 

lowering their translation205. Recent large chromatin immunoprecipitation (ChIP)-based 

sequencing screens for p53 targets in cell lines provide a basis for the identification and 

functional characterization of novel p53-dependent lncRNAs206-209.  
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Figure 9. Long non-coding RNAs as 
regulators and targets of p53.  
A set of lncRNAs has been functionally 

characterized as p53 targets. See text for 

details. The direct regulation of GAS5 by p53 

is being discussed. MEG3, maternally 

expressed 3; TUG1, taurine upregulated gene 

1; GAS5, growth arrest-specific 5, eRNAs, 

enhancer RNAs142,210,211. 

 

 

1.5  Aims of this work 

The role of non-coding RNAs in promoting CLL cell survival and resistance to apoptosis 

remains poorly understood. Active B-cell receptor (BCR) signaling strongly supports B-

cell survival and is upregulated in CLL. The tumor suppressive p53 pathway is a key 

mediator of apoptosis and frequently hit by genomic aberrations, which confer a 

particularly poor prognosis to CLL patients.  

This work set out to identify 1) BCR and 2) p53 signaling-dependent microRNAs and 

further non-coding RNAs in primary CLL by a comprehensive next-generation small RNA 

sequencing-based screen. Pharmacologic inhibitors and the impaired transcriptional 

activity of mutant p53 in primary CLL cells were used to define novel ncRNA targets of 

both pathways.  

The results of this work provide insight into the involvement of miRNAs in promoting 

primary CLL cell survival upon BCR signaling. Moreover, an overview of p53-regulated 

miRNA expression and the identification of novel p53-dependent long ncRNAs shall 

provide a better understanding of (the effects of) impaired p53 activity in CLL and 

potentially across cancer. In a translational sense, this work can pave the way to targets 

for novel, ncRNA-based therapeutic approaches.  

 

  

p53

 lincRNA-p21
 PANDA
 LOC285194
 lincRNA-RoR
 p53 eRNAs
 TUG1
 GAS5 (?) 

MEG3 MALAT1

H19
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2 Material and Methods 

2.1 Material 

2.1.1 Chemicals and Biochemicals 
Reagent Supplier 
2-Propanol Sigma-Aldrich, St. Louis, USA 

Agarose, ultra-pure (Invitrogen) Thermo Fisher Scientific, Waltham, USA 

Annexin V 10x binding buffer Becton Dickinson, Franklin Lakes, USA 

Annexin V- APC Becton Dickinson, Franklin Lakes, USA 

Benzonase VWR, Radnor, USA 

CellTiter-Glo®  Promega, Madison, WI, USA 

Chloroform Carl Roth, Karlsruhe, Germany 

DMSO Sigma-Aldrich, St. Louis, USA 

DNA ladder 50bp, 100 bp (Invitrogen) Thermo Fisher Scientific, Waltham, USA 

DNase I Roche, Mannheim 

Ethanol Sigma-Aldrich, St. Louis, USA 

Ethidium Bromide Applichem, Darmstadt, Germany 

Glycogen Thermo Fisher Scientific, Waltham, USA 

Ficoll-Paque Premium VWR, Radnor, USA 

Ibrutinib (PCI-32765) Selleckchem, Munich, Germany 

Laemmli buffer, 2x concentrate VWR, Radnor, USA 

Loading Dye, 5x Thermo Fisher Scientific, Waltham, USA 

LS columns Miltenyi, Bergisch Gladbach, Germany 

MACS BSA Stock Solution Miltenyi, Bergisch Gladbach, Germany 

MACS Rinsing Solution Miltenyi, Bergisch Gladbach, Germany 

Methanol Sigma-Aldrich, St. Louis, USA 

Milk powder Carl Roth, Karlsruhe, Germany 

Mouse serum Agilent Technologies, Santa Clara, USA 

Nutlin-3 Absource Diagnostics, Munich,  

 Germany  

PageRuler Prestained Protein Ladder  Thermo Fisher Scientific, Waltham, USA 

(Fermentas)  

Phosphate buffered saline (PBS) (Invitrogen) Thermo Fisher Scientific, Waltham, USA 

PhosSTOP Roche, Basel, Switzerland 

Power SYBR Green PCR Master Mix Thermo Fisher Scientific, Waltham, USA 

Propidium Iodide Sigma-Aldrich, St. Louis, USA 
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RNase away Thermo Fisher Scientific, Waltham, USA 

RNase-free water (Ambion) Thermo Fisher Scientific, Waltham, USA 

Sodium Acetate, 3 M, pH 5.2 Sigma-Aldrich, St. Louis, USA 

SYBR® Gold Nucleic Acid Gel Stain Thermo Fisher Scientific, Waltham, USA 

TAE running buffer 1.2 M, 40x Serva Electrophoresis, Heidelberg,  

 Germany 

TaqMan Universal PCR Master Mix II, no  Thermo Fisher Scientific, Waltham, USA 

UNG  

Trizol (Invitrogen) Thermo Fisher Scientific, Waltham, USA 

Western Lightning® Plus-ECL, Enhanced  PerkinElmer, Waltham, USA 

Chemiluminescence Substrate  

 

2.1.2 Consumables 
Consumable Supplier 
Sealing film for PCR plates Steinbrenner, Wiesenbach, Germany 

Sealing film for qPCR plates Roche, Basel, Switzerland 

Cell culture flasks, T25, T75 EasyFlask Thermo Fisher Scientific, Waltham, USA 

Cell culture plates, 6-well, 12-well Greiner BioOne, Kremsmünster, Austria 

Conical tubes 15 ml, Falcon® VWR, Radnor, USA 

Conical tubes 50 ml, Falcon® VWR, Radnor, USA 

Cryo vials, system 100, PP, 2ml VWR, Radnor, USA 

Cryo-Babies® Diversified Biotech, Dedham, USA 

Eptips LoRetention, PCR-clean Neolab, Heidelberg, Germany 

FACS Tubes, BD™ Falcon™ Round-Bottom 

Tube (5ml) 

Becton, Dickinson and Company, 

Franklin Lakes, USA 

FasRead102 Disposable counting chambers Immune systems, Paignton, UK 

Filtertips 10µl, 20µl, 200µl, 1000µl Starlab, Hamburg, Germany 

Gel breaker tubes 3388-100 IST Engineering, Milpitas, USA 

Leucosep falcons, sterile Th. Geyer, Renningen, Germany 

Mini-PROTEAN-TGX gels 4-15%, 10-well Bio-Rad, Hercules, USA 

Novex® Hi-Density TBE Sample Buffer, 5x  Thermo Fisher Scientific, Waltham, USA 

(Invitrogen)  

Novex® TBE PAGE gel, 1.0 mm, 6%  Thermo Fisher Scientific, Waltham, USA 

(Invitrogen)  

Novex® TBE running buffer, 5x (Invitrogen) Thermo Fisher Scientific, Waltham, USA 

Pasteur pipettes, disposable Carl Roth, Karlsruhe, Germany 
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PCR tube strips 0,5 ml Biozym, Hessisch Oldendorf, Germany 

PCR tubes 0,5 ml Biozym, Hessisch Oldendorf, Germany 

Pipettes 2ml, 5ml, 10ml, 25ml, 50ml Corning, New York, USA 

Pipetting reservoir Corning, New York, USA 

Cryotube-print labels Steinbrenner, Wiesenbach, Germany 

Qubit assay tubes Thermo Fisher Scientific, Waltham, USA 

Reaction plates for PCR, 96-well Greiner BioOne, Kremsmünster, Austria 

Reaction plates for qPCR, 384-well Roche, Basel, Switzerland 

Reaction plates for qPCR, 96-well Greiner BioOne, Kremsmünster, Austria 

Reaction tubes 0,5 ml, 1,5 ml, 2 ml Eppendorf, Hamburg, Germany 

Ribbon cartrige  Steinbrenner, Wiesenbach, Germany 

Scalpel, disposable Feather, Osaka, Japan 

Scepter sensors - 40 µl Merck Millipore, Billerica, USA 

Spin-X® Centrifuge Tube Filters Sigma-Aldrich, St. Louis, USA 

Trans-Blot® TurboTM mini-size transfer  Bio-Rad, Hercules, USA 

stacks  

PVDF membrane Bio-Rad, Hercules, USA 

Scepter sensors 40µm Merck Millipore, Billerica, USA 

 

2.1.3 Antibodies 
Antibody Supplier 
Anti-mouse IgG (HRP) Abcam, Cambridge, UK 

Anti-rabbit IgG (HRP) Abcam, Cambridge, UK 

CD19-beads Miltenyi, Bergisch Gladbach, Germany 

CD19-PE Becton, Dickinson and Company, 

Franklin Lakes, USA 

GAM-RPE Agilent Technologies, Santa Clara, USA 

Mouse anti-human p53, DO-1 Becton, Dickinson and Company, 

Franklin Lakes, USA 

Rabbit anti-human GAPDH Abcam, Cambridge, UK 
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2.1.4 Primers for qRT-PCR  
All oligonucleotides were ordered from Eurofins MWG Operon, Ebersberg. 

Gene 5’ → 3’ Reference 
p21 forward (fwd) TGTCCGTCAGAACCCATGC own design 

 p21 reverse (rev) AAAGTCGAAGTTCCATCGCTC 

Lamin B1 fwd TCGCAAAAGC ATGTATGAAGA Sun et al.212 

Lamin B1 rev CTCTACCAAGCGCGTTTCA 

lincRNA-p21 fwd GGGTGGCTCACTCTTCTGGC Huarte et al.204 

lincRNA-p21 rev TGGCCTTGCCCGGGCTTGTC 

NEAT1 fwd CTTCCTCCCTTTAACTTATCCATTCAC Zhang et al.213 

NEAT1 rev CTCTTCCTCCACCATTACCAACAATAC 

NEAT1 promoter fwd GGAGATACAGTCAGGAAGAGA own design 

NEAT1 promoter rev CACAGAAGGTGGTGATGTG 

p21 promoter fwd CTGGACTGGGCACTCTTGTC Mattia et al.214 

p21 promoter rev CTCCTACCATCCCCTTCCTC 

  
Reagent Supplier 
TaqMan® small RNA assays (Applied 

Biosystems) 

Thermo Fisher Scientific, Waltham, USA 

 

2.1.5 Commercial Kits 
Kit Supplier 
DNA 1000 Kit Agilent, Santa Clara, USA 

High Sensitivity DNA Kit Agilent, Santa Clara, USA 

NEBNext® Multiplex Oligos for Illumina New England Biolabs, Ipswich, USA 

NEBNext® Small RNA Library Prep Set for 

Illumina 

New England Biolabs, Ipswich, USA 

Pierce BCA Protein Assay Kit Thermo Scientific, Waltham, USA 

QIAquick® PCR Purification Kit Qiagen, Venlo, Netherlands 

Quant-iTTM RNA Assay Kit (Invitrogen) Thermo Scientific, Waltham, USA 

RNA 6000 Nano Kit Agilent, Santa Clara, USA 

SuperScript® III Reverse Transcriptase 

Super Mix 

Thermo Scientific, Waltham, USA 

TURBO DNA-free™ Kit (Ambion) Thermo Scientific, Waltham, USA 
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2.1.6 Primary human material 
Peripheral blood from 72 patients selected for having high lymphocyte fractions (more 

than 76%) and fulfilling standard diagnostic criteria for CLL were obtained. The majority 

of patients was enrolled at the University Hospital of Heidelberg. RNA derived from 

peripheral blood mononuclear cells of 13 CLL patients used as part of the validation 

cohort for p53-dependent lincRNA-p21 induction (section 3.5.4.1) was kindly supplied by 

the European Research Initiative on CLL (ERIC). All patients provided written informed 

consent in accordance with the Declaration of Helsinki and approval obtained from the 

local Institutional Review Board (S-206/2011 and Te Raa et al.215). The patient cohort 

was selected to represent meaningful numbers of patients from high-risk groups. Clinical 

and genetic patient characteristics are summarized in Table 3 and S1. Buffy coats from 

two healthy individuals were obtained from the Heidelberg Blood Bank.  

 

2.1.7 Cell lines 
Cell line Supplier 
BL-2 DSMZ, Braunschweig, Germany 

BL-7 Dr. G. M. Lenoir, IARC, Lyon, France 

BL-60 Dr. G. M. Lenoir, IARC, Lyon, France 

BJAB DSMZ, Braunschweig, Germany 

CA-46 DSMZ, Braunschweig, Germany 

Cheptanges A. Rickinson, Birmingham, UK 

HeLa DSMZ, Braunschweig, Germany 

Ly-47 Dr. G. M. Lenoir, IARC, Lyon, France 

Namalwa DSMZ, Braunschweig, Germany 

Ramos DSMZ, Braunschweig, Germany 

Salina A. Rickinson, Birmingham, UK 

Seraphine A. Rickinson, Birmingham, UK 

 

Cell lines were authenticated using Multiplex Cell Authentication by Multiplexion 

(Heidelberg, Germany) as described216. The single nucleotide polymosphism profiles 

matched known profiles or were unique. 

 

2.1.8 Cell culture media and additives 
Material Supplier 
Fetal Bovine Serum (for washing) PAN-Biotech, Aidenbach, Germany 
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2.1.9 Self-prepared Buffers  

 

2.1.10 Instruments 
Instrument Supplier 
-20°C Freezer Liebherr, Biberach an der Riß, Germany  

-80°C Freezer Sanyo (Panasonic), Osaka, Japan 

Analytical Balance TE 124S Sartorius, Göttingen, Germany 

Bioanalyzer 2100 Agilent, Santa Clara, USA 

Camera Lumix DMC-FZ50 Panasonic, Osaka, Japan 

Cell culture hood HeraSafe Thermo Scientific, Waltham, USA 

Cell culture incubator HeraCell 150  Thermo Scientific, Waltham, USA 

Centrifuge 5424 Eppendorf, Hamburg, Germany 

Centrifuge 5430 Eppendorf, Hamburg, Germany 

Centrifuge Heraeus Fresco 17  Thermo Scientific, Waltham, USA 

Centrifuge Heraeus Megafuge 16 Thermo Scientific, Waltham, USA 

ChemiDocTM XRS+ Imaging System Bio-Rad, Hercules, USA 

Fetal Bovine Serum (for cell culture) Life Technologies, Carlsbad, USA 

Human Serum Sigma-Aldrich, St. Louis, USA 

RPMI Medium 1640 (Gibco) Thermo Scientific, Waltham, USA 

Buffer Composition  
(final concentration) 

Supplier 

10x PBST buffer 

(phosphate 

buffered saline with 

Tween 20) 

27 mM KCl 

1.37 M NaCl 

0.5 % Tween 20 

100 mM Na2HPO4 

20mM KH2PO4 

in H2O 

 

Carl Roth, Karlsruhe, Germany 

VWR, Radnor, USA 

Sigma-Aldrich, St. Louis, USA 

Carl Roth, Karlsruhe, Germany 

Carl Roth, Karlsruhe, Germany 

RIPA buffer 150 mM NaCl 

0.5 % Na-Desoxycholate 

1 % Nonidet P-40 

0.1 % SDS 

50 mM Tris pH 7.5      

in H2O 

VWR, Radnor, USA 

Applichem, Darmstadt, Germany 

Applichem, Darmstadt, Germany 

Bio-Rad, Hercules, USA 

Applichem, Darmstadt, Germany 
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Chip Priming Station Agilent, Santa Clara, USA 

Cluster Station Illumina, San Diego, USA 

Cobas z 480 Roche, Basel, Switzerland 

Cryogenic Freezer MVE 1500 series MVE BioMedical, Ball Ground, USA 

Electrophoreses Power Supply 200/2000 Elchrom Scientific, Cham, Switzerland 

Eppi Rotator SB3 Bibby Scientific (Stuart), Stone, UK 

Flow Cytometer LSR II Becton, Dickinson and Company,  

 Franklin Lakes, USA 

Fridge Medline Liebherr, Biberach an der Riß, Germany 

Heating block TS-100 Peqlab, VWR, Radnor, USA 

HiSeq2000 Illumina, San Diego, USA 

Infinite M200 Pro® TECAN, Männedorf, Switzerland 

LabChip® XT Perkin Elmer, Waltham, USA 

Label printer BMP71 Brady, Milwaukee, USA 

LightCycler 480 384-well Roche, Basel, Switzerland 

Microscope Axiovert 40C Zeiss, Oberkochen, Germany 

Microwave Bartscher, Salzkotten, Germany 

Minishaker MS1 IKA, Staufen, Germany 

NanoDrop® Spectrophotometer ND-1000 Peqlab, VWR, Radnor, USA 

Nitrogen System German-Cryo, Jüchen, Germany 

PAGE chambers Bio-Rad, Hercules, USA 

Pipetboy Peqlab, VWR, Radnor, USA 

Pipetboy acu Integra Biosciences, Fernwald, Germany 

Pipettes Research® (10μl; 20μl; 200μl;  Eppendorf, Hamburg, Germany 

1000μl)  

QuadroMACS separator Miltenyi, Bergisch Gladbach, Germany 

Qubit® 2.0 Fluorometer Thermo Fisher Scientific, Waltham, USA 

Scepter Handheld automated cell counter Merck Millipore, Billerica, USA 

SDS-PAGE chambers  Peqlab, VWR, Radnor, USA 

SpeedVac Thermo Fisher Scientific, Waltham, USA 

Spin-down Galaxy Mini VWR, Radnor, USA 

TC10™ Automated Cell Counter Bio-Rad, Hercules, USA 

Thermocycler Biometra, Göttingen, Germany 

Transilluminator Biotec-Fischer, Reiskirchen, Germany 

Trans-Blot Turbo Transfer System Bio-Rad, Hercules, USA 

Water bath Lauda®AL5 VWR, Radnor, USA 
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XRAD 320  Precision X-ray, North Branford, USA  

  

2.1.11 Software 
Software Supplier 
Agilent 2100 Bioanalyzer Agilent, Santa Clara, USA 

Axiovision Rel. 4.8 Zeiss, Oberkochen, Germany 

Endnote Thomson Reuters, New York, USA 

FACS Diva Becton, Dickinson and Company,  

 Franklin Lakes, USA 

GraphPad Prism 5 GraphPad Software Inc., La Jolla, USA 

Image Lab 3.0 Bio-Rad, Hercules, USA 

Ingenuity® Qiagen, Redwood City, USA 

Lasergene 8 DNAStar, Madison, USA 

Light Cycler 480 SW 1.5 Roche, Basel, Switzerland 

Microsoft Office 2007 Microsoft, Redmond, USA 

NanoDrop® ND-1000 V3.2.1 Coleman Technologies, Langley, Canada  

Photoshop CS5.1 Adobe, San Jose, USA 

R 3.0.1 open source 

STG Picture Merge Starglider Systems 

Tecan i-control 1.6 TECAN, Männedorf, Switzerland 

 

2.1.12 Databases and online tools 
Name Address 
BLAST (NCBI) http://blast.ncbi.nlm.nih.gov/Blast.cgi 

Ensembl http://www.ensembl.org/index.html 

GtRNAdb http://gtrnadb.ucsc.edu/ 

IDT PrimerQuest http://eu.idtdna.com/Primerquest/Home/Index 

miRBase http://mirbase.org/ 

miRanda http://www.microrna.org/microrna/home.do 

miRwalk http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/ 

PicTar5 http://pictar.mdc-berlin.de/ 

piRNA cluster - database http://www.uni- 

 mainz.de/FB/Biologie/Anthropologie/492_DEU_HTML.php 

NCBI Build 37 piRNA http://www.uni-mainz.de/FB/Biologie/Anthropologie/ 

 492_DEU_HTML.php 
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Primer3Plus http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus. 

 cgi/ 

Rfam http://rfam.xfam.org/ 

SNP-BLAST www.ncbi.nlm.nih.gov/projects/SNP/SNPBlast.html 

TarBase http://diana.imis.athena- 

 innovation.gr/DianaTools/index.php?r=tarbase/index 

UCSC Genome Browser https://genome.ucsc.edu/ 

 

2.1.13 Other 
Material Supplier 
Freezing Boxes Nalgene, Rochester, USA 

Western incubation box (medium) Li-cor, Lincoln, USA 

 

2.2 Cell culture methods 

2.2.1 Isolation of mononuclear cells from whole blood 
Peripheral blood (PB) samples from CLL patients were collected in heparin-coated 

tubes. Mononuclear cells (MNCs) were isolated by density gradient centrifugation of 30 

ml whole blood over 15 ml Ficoll-Paque Premium at 800x g, room temperature (RT) for 

20 min in 50 ml Falcon tubes. The resulting PBMNC layer was harvested and washed 

twice with PBS supplemented with 2% FBS. PMNCs were resuspended in RPMI 

containing 10% FBS for further processing.  

 

2.2.2 Magnetic activated cell sorting (MACS) 
For enrichment of B-lymphocytes from peripheral blood mononuclear cells (PBMNCs) of 

healthy individuals, activated cell sorting with CD19 magnetic beads was performed 

according to the manufacturer´s protocol. To this end, after cell counting and 

centrifugation, cells were resuspended in 80 μl MACS buffer per 1x107 PBMCs. 20 μl 

magnetic beads were added, followed by a 15 min incubation at 4°C in the dark. After a 

subsequent washing step, cells were purified on MACS LS columns during exposure to a 

strong magnetic field. To increase purity, B-cells were purified sequentially over 2 

columns.  

CD19 positive-selected B-cells were stained with a secondary goat anti-mouse antibody 

for subsequent FACS analyses (see 2.2.5). The cells had purities of at least 99% after 

MACS enrichment. 
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2.2.3 Freezing, thawing and culturing of primary cells and cell lines 
Isolated PBMNCs were split into aliquots of 1x107-5x108 cells and cryopreserved in 

RPMI supplemented with 10% FBS, 1% Penicilline/Streptomycine and 7,5% DMSO.  

Cell lines were cryopreserved at 5x106-1x107 cells per aliquot in RPMI supplemented 

with 10% FBS and 10% DMSO. 

For culturing, cells were thawed in a waterbath pre-warmed to 37°C, transferred to PBS 

with 2% FBS for washing and resuspended in the desired cell culture medium.  

CLL primary samples were cultured in RPMI 1640 supplemented with 10% heat 

inactivated human serum (HS) at 37°C and 5% CO2. Only for the pilot small RNA 

sequencing screen, cells were cultured in 10% FBS instead of HS. With the exception of 

BL-7, all Burkitt’s lymphoma (BL) cell lines as well as HeLa were kept in RPMI 1640 with 

10% FBS at 37°C and 5% CO2. BL-7 was cultured with 20% FBS. A list of the cell lines 

used as well as their TP53 status is provided in table S2. 

 

2.2.4 Cell culture treatments 
For experiments with CLL primary cells, the cryopreserved samples were thawed, 

adjusted to 107 cells/ml and allowed to equilibrate for 30 min at 37°C and 5% CO2.  

For induction of DNA damage and p53, CLL samples were subjected to 5 Gy irradiation 

(IR) or treated with 1 µM, 5 µM or 10 µM nutlin-3 (10 mM stock in DMSO) and harvested 

after 24h. Untreated controls or, for nutlin-3 experiments, cells incubated with the 

corresponding DMSO concentration (0.01-0.1%) incubated for the same time period 

were included. At harvest, aliquots of every sample were prepared for viability analysis in 

FACS. The remainder was pelleted and lyzed in Trizol®.  

For inhibition of BCR signaling at the level of BTK, CLL cells were induced with 1 µM 

ibrutinib (1 mM stock in DMSO) or left untreated for 24h and harvested thereafter as 

above. 

Cell lines were seeded at 106 cells/ml, IR with 5 Gy, harvested 6h, 12h, and 24h 

thereafter, pelleted and flash-frozen in liquid nitrogen or treated with 0, 2.5 or 10 µM 

nutlin-3 and harvested likewise after 24h. Untreated or solvent-treated controls were 

included.  

 

2.2.5 Fluorescence activated cell sorting (FACS) 
Viability staining of CLL samples  
To quantify apoptotic cells, double-staining with Annexin V-allophycocyanin (APC) and 

propidium iodide (PI) was performed. To this end, 1x105 cells were washed in 200 µl 

PBS with 2% FBS and resuspended in 100 µl cold 1x Annexin V binding buffer. For each 
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sample, one aliquot was left unstained as control. To another aliquot, 2 µl Annexin V-

APC and 2 µl PI (1:50 diluted in PBS) were added for a 15 min incubation at 4°C in the 

dark. Subsequently, 400 µl cold 1x Annexin V binding buffer were added and the 

samples were analysed on a BD LSR II FACS using the FACS Diva software. 10 000 

events were recorded. 

 
Staining of B-cells after MACS 
To check the B-cell purity of samples after MACS, 1x105 cells of the resulting B-cell 

fraction were washed in 200 µl PBS with 2%FBS and resuspended in 100 µl PBS with 

2% FBS. For staining of CD19, 1 µl R-phycoerythrin (RPE)-coupled goat anti-mouse 

(GAM) antibody was added. Unstained samples were included as control. After 20 min 

incubation at RT in the dark, PBS with 2% FBS was added to the GAM-stained samples 

for washing. The pellet was resuspended with 10 µl mouse serum and incubated for 10 

min at RT. It was then again washed with PBS and 2% FBS and resuspended in 300 µl 

PBS with 2% FBS for analysis on a BD LSR II FACS using the FACS Diva software, 

recording 10 000 events. 

 

2.4.6 Cell viability assessment using CellTiter-Glo® 
For screening sensitivity to ibrutinib treatment in vitro, cryopreserved PBMNC samples 

were thawed, seeded in 384 well plates at a density of 10 000 cells in 50 µl RPMI 1640 

supplemented with 10% heat inactivated human serum per well. Cells were incubated 

with ibrutinib at 1 µM for 48 hours. Cell viability was assessed using CellTiter-Glo® assay 

according to the manufacturer’s protocol. Data were kindly generated by Leopold 

Sellner. 

 

2.5 Molecular Biology 

2.5.1 RNA isolation  
Total RNA was isolated using Trizol®. In brief, up to 107 cells were lyzed in 1 ml Trizol® 

and frozen at -80°C. For isolation, the lysate was allowed to adjust to room temperature 

for 5 min and extracted with 200 µl chloroform. For all further procedures, the RNA 

containing solution was kept on ice or at 4°C. After spinning at 12 000g and 4°C for 15 

min, the resulting aqueous supernatant was precipitated with an equal volume of 

isopropanol and 10 µg glycogen at -20°C for 30 min. The precipitate was pelleted, 

washed with ice-cold 75% ethanol and allowed to air-dry. It was then dissolved in the 

desired volume of RNase-free water. 
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For purification of RNA from DNA contaminants, DNA digestion was performed with the 

TURBO DNA-free™ Kit following the manufacturer’s instructions for routine DNase 

treatment. Up to 10 µg RNA were processed in one 50 µl reaction. After DNA digestion, 

RNA was purified from the kit’s buffer by precipitation with an equal volume of 

isopropanol and 10 µg glycogen as described above. The RNA pellet was washed, dried 

and dissolved in RNase-free water. The RNA concentration and purity was determined 

on the NanoDrop® ND-100 spectrophotometer. The RNA solution was then aliquoted to 

avoid repeated freeze-thaw cycles, and stored at -80°C. 

At the start of this project, a large batch of HeLa cells was cultured, harvested and RNA 

was extracted, pooled, aliquoted and stored at -80°C to serve as reference throughout all 

qRT-PCR experiments. 

 

2.5.2 RNA quantification and quality control 
Quantification and a first quality control of isolated RNA was performed on a 

NanoDrop®. The RNA concentration was determined from the absorption of 1 µl sample 

at 260 nm, the absorption maximum of nucleic acids. Additionally, the absorption at 230 

nm and 280 nm was used to estimate the extent of contamination with phenol and 

protein (at 280 nm) or phenol and carbohydrates (at 230 nm).  

As ubiquitous RNases quickly and easily degrade RNA, using RNA of high integrity is 

vital to obtain meaningful experimental results. RNA integrity of all samples prepared for 

small RNA sequencing was determined on a 2100 Bioanalyzer using the RNA 6000 

Nano Kit according to the manufacturer’s instructions. Here, stained RNA is 

electrophoretically separated based on size and the RNA integrity number (RIN) is 

calculated considering primarily the intensity and ratio of signals corresponding to 18S 

and 28S ribosomal RNA.  

With two exceptions, only samples with a RIN of ≥ 7 were used for small RNA library 

preparation. 

2.5.3 cDNA synthesis (reverse transcription) 
cDNA synthesis for miRNA quantification 
To determine the relative amount of miRNA expression, TaqMan Small RNA Assays 

containing target specific primer and probe sets for cDNA synthesis and quantitative 

real-time PCR (qRT-PCR) were used according to the manufacturer’s instructions. The 

expression of RNU6B was used for normalization. Assay volumes were down-scaled by 

50% for quantification of all miRNAs and RNU6B except for quantification of miR-34a-5p. 

Therefore, cDNA was synthesized from 5 or 10 ng RNA per sample in target specific 7,5 

or 15 µl reactions. 
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cDNA synthesis for mRNA/lncRNA quantification 
For long RNAs, cDNA was prepared from 120-500 ng RNA per sample using the 

SuperScript III First-Strand Synthesis SuperMix with random hexamer primers according 

to the manufacturer’s instructions. The resulting cDNA was diluted to 5 ng/µl for further 

analyses. 

 

2.5.4 Primer design for qRT-PCR 
qRT-PCR primers for were manually designed following the subsequent criteria: A primer 

length of between 18 and 23 base pairs, a melting temperature preferentially between 

58-65°C with less than 3°C difference between forward and reverse primer and a G/C-

content of about 50-60%. Primers on the target sequence were picked using 

Primer3Plus and IDT PrimerQuest. Generation of hairpin structures and primer dimers 

was minimized using binding prediction tools of DNAStar Lasergene 8. To ensure gene 

specificity, primer sequences were run in BLAT and BLAST. To additionally ensure the 

absence of single-nucleotide polymorphisms (SNPs) within the primer sequence, SNP-

BLAST was run. Primers were ordered from Eurofins. 

 

2.5.5 Quantitative real-time PCR (qRT-PCR) 
Quantification of miRNA 
Target specific cDNA obtained in 2.5.3 was quantified using TaqMan Small RNA Assays 

following the manufacturer’s protocol. The assays were run in 10 µl or 20 µl reactions in 

triplicates or duplicates, respectively, on 384-well-plates. A HeLa RNA sample was run 

on every plate as additional reference. 

 
Quantification of long RNA transcripts (mRNA, lncRNA, promoter sequences) 
For quantification of p21, NEAT1 and Lamin B1 transcripts, 2 µl of the 5 ng/µl random 

hexamer primed cDNA obtained in 2.5.3 were used per qRT-PCR reaction. They were 

added to a master mix composed of 10 µl SYBR Green, 6 µl H2O, 1µl forward primer (5 

µM) and 1 µl reverse primer (5 µM), resulting in a reaction volume of 20 µl. For lincRNA-

p21 quantification, 6 µl cDNA were used and the water content of the master mix was 

adapted accordingly. The expression of Lamin B1 was chosen for normalization, as it 

was observed to be unaffected by the treatments. A HeLa RNA sample was run on every 

plate as additional reference. qRT-PCR was performed on a LightCycler 480 in 384-well-

plates. The program was run as detailed in Table 2. A melting curve analysis was 
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performed to ensure assay specificity, and only wells displaying target-specific 

amplification were chosen for further analysis. 

For NEAT1, lincRNA-p21 and Lamin B1, the primer annealing temperature was 59°C. 

For p21 and Lamin B1 quantification it was 58°C. 

 
Table 2. qRT-PCR program run for the quantification of lincRNA-p21, NEAT1 and p21.  

Detection 
Format Block Type Reaction Volume         
SYBR Green I 384 20µl           
Programs               
Name Cycles Analysis Mode         
Pre-Incubation 1 None           
Amplification 40 Quantification         
Melting Curve 1 Melting Curve         
Cooling 1 None           
 Programs in detail             

Target (°C) Acquisition 
Mode 

Hold 
(hh:mm:ss) 

Ramp 
Rate 
(°C/s) 

Acquisi-
tions 
(per°C) 

Sec 
Target 
(°C) 

Step 
Size 
(°C) 

Step 
Delay 
(cycles) 

Pre-Incubation               
95 None 00:10:00 4,4   0 0 0 
Amplification        
95 none 00:00:15 4,4   0 0 0 
variable None 00:01:00 2,2  0 0 0 
72 single 00:00:05 4,4   37 0 0 
Melting Curve        
95 None 00:00:05 4,4         
65 None 00:01:00 2,2      
97 continuous   0,06 10       
Cooling        
40 None 00:00:10 1,5   0,0 0 0 

  

 

2.5.6 Agarose gel electrophoresis 
To additionally ensure target specificity of qRT-PCR assays with SYBR Green, the 

product of the qRT-PCR reactions was run on an agarose gel and checked for the 

correct amplicon size. As amplicons were of 67 – 116 nt length, 3% agarose gels were 

prepared. Agarose was melted in 1x TAE buffer and 1-2 drops ethidium bromide were 

added for nucleic acid visualization. DNA samples were mixed 1:5 with 5x loading dye 

and loaded onto the gel; a 50 or 100 bp DNA ladder was included in every run. The gel 

was run at 120 V for 75 min and subsequently analyzed on a transilluminator. 
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2.5.7 Small RNA library preparation 
For next-generation sequencing, 1 µg total RNA/sample was converted into a barcoded 

cDNA library using the NEBNext® Small RNA Library Prep Set for Illumina according to 

manufacturer’s instructions with the following specifications/adaptations: 

• After ligation of the 5’ SR Adaptor, 18 µl H2O were added to the 30 µl total 

volume, and half of the reaction volume was stored at -20°C as backup. The 

other half was further processed for sequencing. 

• During size selection of the amplified cDNA library on a polyacrylamide gel, 

bands corresponding to nucleic acids of approximately 15 - 35 nt length were 

selected. This was performed manually for the pilot screen, whereas the 

LabChip® was implemented for the main screen. 

• To recover nucleic acids from the gel, the crushed gel slices were eluted for at 

least 16 h instead of 2 h to increase the yield. 

Library preparation was performed at, and supported by, the DKFZ Genomics and 

Proteomics Core Facility. 

 

2.5.8 Next-generation Sequencing 
Libraries were amplified on an Illumina cBot and sequenced on llumina’s Hiseq 2000 

platform, running 7-9 libraries per lane with 50 bp single read sequencing. Amplification 

and sequencing were performed by the DKFZ Genomics and Proteomics Core Facility. 

 

2.5.9 Protein extraction  
Cell aliquots intended for protein extraction were harvested at 106 cells per aliquot and 

washed once with PBS. Upon removal of all PBS, the cell pellets were snap-frozen in 

liquid nitrogen to disrupt the cell structure and stored at -80°C. For extraction of protein, 

106 cells were resuspended in 20 µl RIPA buffer containing 125 U/ml Benzonase and 1x 

protease/phosphatase inhibitors. The sample was vortexed and kept on ice for 30 min, 

vortexing every 10 min.  

 

2.5.10 Determination of protein concentration 
Protein concentrations were measured using the BCATM Protein Assay Kit according to 

the manufacturer’s instructions. Sample protein solutions were diluted 1:10 for 

measurement, and concentrations were determined in a 96-well format. 

Chemiluminescence was detected on a microplate reader. Protein concentration was 



Material and Methods 

34 
 

adjusted to 2 µg/µl in all samples. Isolated protein was immediately used or stored at -

20°C. 

 

2.5.11 Western Blot 
For Western Blot, protein was first separated according to size by poly-acrylamide gel 

electrophoresis. To this end, pre-cast Mini-PROTEAN-TGX gels 4-15% were placed into 

a Bio-Rad gel chamber, which was subsequently filled with 1x Bio-Rad 

Tris/Glycerine/SDS running buffer. Samples were mixed 1:2 with 2x Laemmli buffer and 

a volume equaling 10 µg protein was inserted into every lane, reserving one lane for the 

marker. Gels were run at 120 V for 70 min. After electrophoresis, the gels were removed 

from the chamber, the stacking gel was separated from the resolution gel, and the latter 

was used for transfer of the proteins onto a PVDF membrane. 

For Western blotting, a Trans-Blot Turbo PVDF-LF membrane cut was activated in 

methanol for 1 min and equilibrated in transfer buffer. Per gel, two stacks of filter paper 

were soaked in transfer buffer. One stack was placed on the lower side of the blotting 

chamber, the membrane was added, then the gel and another soaked filter paper stack. 

Blotting was run at 25 V for 10 min. 

The membrane was then briefly washed in methanol and incubated in blocking buffer (5 

% milk in PBST) for 1 h at room temperature (RT). The membrane was then incubated 

with primary antibody diluted 1:1000 (anti-GAPDH) or 1:5000 (anti-p53) in blocking buffer 

at 4°C over night, or alternatively at RT for 2 h. It was then washed 3x 5 min with PBST 

on a shaker, then secondary horseradish peroxidase-coupled antibody in blocking buffer 

was added according to host species at a dilution of 1:10 000. The membrane was 

incubated for 1 h at RT and washed 3x 5 min with PBST. 1 ml Western Lightning Plus-

ECL Enhanced Luminol Reagent Plus and 1 ml Western Lightning Plus-ECL Oxidizing 

Reagent Plus were mixed, added dropwise onto the membrane and incubated for 5 min 

at RT. Chemiluminescence was detected directly on a ChemiDoc station, capturing 10-

300 s exposure. An additional white light picture of the membrane was taken to record 

the marker bands and later on merged with the chemiluminescence picture.  

 

2.5.12 Chromatin immunoprecipitation (ChIP)-PCR 
107 cells were harvested from the Séraphine p53wt and the isogenic p53ko cell line in 10 

ml cell culture medium. 1% paraformaldehyde was added and incubated for 10 min at 

37°C to crosslink proteins and chromatin. This was terminated by addition of 125 mM 

glycine and incubation for 5 min at RT. Cells were washed with cold PBS containing 

protease inhibitors and aliquoted, as 106 cells were used for each ChIP experiment. 106 
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cells were resuspended in 500 µl lysis buffer from Millipore’s ChIP Assay Kit, and further 

steps were performed according to the manufacturer’s protocol using the following 

specifications and adaptations: Chromatin was sheared to 200 - 400 bp using a Covaris 

S220 sonicator for 5 x 10 min set to duty cycle 20%, intensity 5, 200 cycles per burst, 

60s. Subsequently, shearing was checked on a 1.5% agarose gel. Aliquots were saved 

as input control. No antibody or 2 µg DO-1 p53 antibody (from Santa Cruz Biotechnology 

or BD Biosciences) were added for incubation at 4°C over night. Elution and de-

crosslinking were performed simultaneously, and AMPure SPRI beads were used for 

DNA purification post de-crosslinking according to the manufacturer’s instructions. 

NEAT1 and p21 promoter sequences were detected by qRT-PCR running the program 

detailed in section 2.5.5, using 56°C and 59°C as annealing temperature, respectively, 

and 10 s for elongation at 72°C. Half of the PCR product was subsequently run on a 3% 

agarose gel.   

 

2.6 Bioinformatics and Statistics 

2.6.1 Read processing and mapping 
The sequencing reads obtained were quality filtered, adaptor trimmed, size selected for 

reads of 17-25nt length and bowtie-aligned to the human mature miRNA sequences of 

miRBase v19 requesting perfect sequence identity. Likewise, reads of ≥ 15nt not 

mapping to mature miRNA sequences were bowtie-aligned to human mRNA and ncRNA 

sequences derived from a set of databases (Ensembl 71, GtRNAdb217, Rfam 11.0, 

piRNA cluster database218). For these purposes, pipelines implemented in the HUSAR 

system at DKFZ were used219 with the support of Agnes Hotz-Wagenblatt. Analyses for 

this study did not exclude multiple mapping reads. This was done to include miRNAs 

with high numbers of genomic loci (e.g. miR-1246: on chromosome 2, 3, 5, 6, 13, 14 and 

17; miR-941: 7 loci on chromosome 20) and to avoid losing a large fraction of 

sequencing reads. 

 

2.6.2 Data analysis and statistics 
Mapped raw sequencing read count data were normalized using DESeq2 in R220. Only 

RNAs with an average of ≥ 5 counts across samples or a count of ≥ 10 in at least one of 

the samples were considered for further analysis. Dispersion of each RNA was 

estimated using the Cox-Reid adjusted profile likelihood approach221. The Wald test 

based on the negative-binomial regression model was used to detect differentially 

expressed RNAs, accounting for batch effect and sample pairing in the model. P-values 
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were adjusted for multiplicity using Benjamini-Hochberg correction. Hierarchical 

clustering of log2-transformed fold changes was done using euclidean distance and 

Ward’s linkage. The L1 penalized regression model was implemented for the 

identification of a miRNA signature predicting IGHV status. 

For miRNA target identification, normalized read counts were transformed using 

regularized log-transformation as implemented in the rlogTransformation function in 

DESeq2. The batch effect was removed from the transformed count data using the 

removeBatchEffect function from limma222. Pearson’s correlation coefficient including 

95% confidence interval between transformed miRNA and mRNA expression levels was 

computed and tested using the cor.test function. miRanda118, miRWalk223 and 

TargetScan224 were used to predict miRNA targets. 

All analyses were conducted with R/Bioconductor 3.0.1 and Bioconductor package 

DESeq2 1.0.19221 and greatly supported by Thomas Hielscher. Student’s t-test was 

applied on qRT-PCR data in GraphPad Prism. All tests were two-sided. P-values below 

0.05 were considered statistically significant. 
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3 Results 
 

The activity of BCR signaling and the p53 signaling pathway is of central importance to 

CLL tumor cell survival, hence influences disease progression and patient’s response to 

treatment. To improve our understanding of the involvement of non-coding RNAs in 

these contexts, this work set out to comprehensively identify novel non-coding RNAs 

implicated in BCR signaling or the p53 signaling pathway by applying small RNA 

sequencing. 

 

3.1 Establishment and validation of the small RNA sequencing 
approach  

 
To establish the sequencing and data analysis pipeline for small RNA quantification, first 

a pilot screen was performed on libraries generated from samples of two previously 

untreated TP53wt and three TP53del/mut CLL patients (indicated by green numbers in 

Figure 11). Cells were treated with 5 Gy for p53 induction or left untreated, and 

harvested after 24 hours for RNA isolation. The dataset obtained from small RNA 

sequencing was checked for sufficient read coverage, read length distribution, 

comparability of miRNA expression levels to published datasets, and reproducibility, as 

discussed in the following paragraphs. For all analyses from section 3.2 forward, the 

datasets of pilot and main screen were combined.  

In the pilot screen, an average coverage of 39.8 Mio raw reads/sample (min. 24.3 – max. 

58.6 Mio/sample) were obtained, of which on average 22% perfectly mapped to mature 

miRNA sequences (miRBase v19). Known p53 target miR-34a-5p, serving as positive 

control, was represented by an average of 328 reads per sample at baseline, i.e. after 24 

hours of cell culture without treatment. A dynamic range with a minimum of 15 and a 

maximum of 1169 reads per sample reflected expected inter-patient differences and 

induction after DNA damage as assessed by qRT-PCR for miR-34a-5p. The total and 

miRNA-34a-5p read coverages were higher compared to similar small RNA sequencing 

studies225-227. In conclusion, this sequencing depth should allow sensitive, high-resolution 

profiling of miRNA expression.  

The length of adaptor-trimmed reads ranged from 5 to 45 nucleotides (nt) as exemplified 

in Figure 10A, peaking at 22 nt as expected for mature miRNA sequences. Since the 

length of 99.1% of human miRNAs falls within the range of 17-25 nt (miRBase v19) and 

short, random RNA degradation products were to be excluded, miRNA expression 
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analyses were confined to reads of this length range. Within this selection, on average 

36% of reads mapped to mature miRNA sequences.  

A comparison of the 30 most abundantly expressed miRNAs at baseline to those 

reported by Landgraf et al.227 and Jima et al.225 yielded a good overlap of 22 and 18 

miRNAs, respectively (table S3). 

Sequencing data reproducibility was verified by two approaches: Firstly, by 

independently preparing two small RNA libraries of one sample, which produced nearly 

identical sequencing results (R2 = 0.99, Figure 10B) and secondly, by validating the 

expression of miR-34a-5p and miR-151-5p by qRT-PCR. Figure 10C, D display the 

correlation of expression levels as determined by the two quantification methods across 

all sequenced screen samples, comprising the 5x2 samples of the pilot screen. Strong 

correlations of qRT-PCR and sequencing data were observed (R2 = 0.70 and R2 = 0.76, 

respectively).  

 

 
Figure 10 Establishment and validation of small RNA sequencing. (A) Read length 

distribution for a representative sample, indicating the 17-25 nt selection used for miRNA 

quantification. (B) Correlation of miRNA quantity in two independently prepared libraries of the 

same sample (technical replicates). Every dot represents one miRNA; non-normalized read 

counts are plotted. (C, D) Correlation of miR-34a-5p (n = 83) and miR-151a-5p (n = 73) 

expression, respectively, as quantified by small RNA sequencing (seq) and qRT-PCR. 
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In conclusion, the described miRNA quantification and sequencing data analysis pipeline 

allowed reliable, high-resolution quantification of miRNA, and qualified for application to 

this project’s research question. It was applied to the whole screening approach used to 

identify p53-dependent and BCR signaling dependent ncRNA as delineated in Figure 11.  

 

 
Figure 11. Graphical summary of the screening approach used in this study. The screen 

included peripheral blood mononuclear cells (PBMNCs) of 35 CLL patients and two healthy B-cell 

controls. Samples of the pilot screen (n = 5) are indicated in green. Refer to text for details.  

 
This sample set was generated from cryopreserved peripheral blood mononuclear cells 

(PBMNCs) of 35 CLL patients selected for high tumor load and stratified by p53 status 

and prior therapy for CLL (see Table 3 for clinical and molecular characteristics) as well 

as two pooled CD19 positive selected healthy B-cell controls. It encompassed three 

different treatments in total. p53 induction by 5 Gy irradiation was used for the 

identification of p53-dependent ncRNA transcripts and applied on 34 samples, whereas 

BTK-inhibition by ibrutinib to identify BCR signaling dependent miRNAs was performed 

on 12 samples only; no treatment controls were prepared for all samples. Healthy B-cell 

controls were not taken into culture, but RNA was directly extracted from isolated cells. 

The irradiation dose was chosen according to Zenz et al.116, who at this dose observed a 

strong induction of p53 target miR-34a-5p at 24 h upon treatment of primary CLL cells. A 
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dose of 1 µM ibrutinib had previously been demonstrated to strongly inhibit BCR 

signaling in vitro99,100. At 24 hours post induction, cell viability was monitored by Annexin 

V / propidium iodide staining and flow cytometric analysis (FACS). Total RNA was 

isolated, DNase treated and analyzed by qRT-PCR for the expression of selected targets 

of interest. RNA aliquots of the identical samples were subjected to small RNA library 

preparation and next-generation sequencing on an Illumina HiSeq 2000.  

All further analyses were performed on the combined data of pilot and main screen.  
 

Table 3. Summary of clinical and genetic characteristics of the patient samples screened. 
11 of the 12 patients used for in vitro ibrutinib treatment were part of the irradiation treated sample 

set. 

 Parameter Irradiated Ibrutinib 
treated 

Clinical 

Number of patients (n) 34 12 

Median age, years (range) 68 (48 - 90) 66 (49 - 77) 

Female gender (%) 44 50 

Median PB leukocytes / nl (range) 89 (27 - 262) 154 (100 - 262) 
Median PB lymphocyte fraction  
(% of leukocytes) (range) 95 (76 - 100) 99 (90 – 100) 

Pretreated, n (%) 17 (50) 6 (50) 

FISH 

13q14 deletion, n (%) 20 (59) 10 (83) 

17p13 deletion, n (%) 10 (29) 5 (42) 

11q23 deletion, n (%) 5 (15)   2 (17) 

Trisomy 12, n (%) 4 (12) 2 (17) 

8q24 amplification, n (%) 3 (9) 1 (8) 

Mutations 

IGHV unmutated (%) 17 (53)* 8 (67) 

TP53 mutation, n (%) 10 (29) 5 (33) 

ATM mutation, n (%) 2 (6) 1 (8) 

SF3B1 mutation, n (%) 7 (21) 1 (8) 

BRAF mutation, n (%) 3 (9) 2 (17) 

NOTCH1 mutation, n (%) 2 (6) 1 (8) 

*= 17 of 32, as IGHV status was unknown for 2 patients. One sample displaying 6% TP53 

mutation (no 17p deletion) was counted as TP53wt, as this low fraction of mutated cells is not 

expected to alter the p53 response. 

 
 

3.2 Induction of known p53 targets after DNA damage in primary CLL 
cells 

Prior to sequencing the main screen samples, apoptosis induction and p53 key target 

expression levels were monitored in PBMNCs of the cohort by qRT-PCR to examine 

whether TP53 status dependent expression would be detected. Of the 34 samples that 
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were treated with 5 Gy irradiation (or left untreated) and harvested 24 hours thereafter, 

19 were p53 wild-type, carrying no genetic abnormalities in the p53 pathway as 

determined by routine FISH (i.e. no TP53 or ATM deletion). Five displayed monoallelic 

deletions of the p53 activating kinase ATM encoded on chromosome 11q22.3 (del11q). 

In 10 samples, monoallelic deletions of chromosome 17p13 (TP53) and / or mutations in 

TP53 had been detected by FISH or 454 sequencing, respectively (for details on sample 

genetics, see also table S1).  

Induction of apoptosis indicative of p53 activation was quantified by staining with 

Annexin V (marking apoptotic cells) and propidium iodide (marking cells with 

damaged/porous plasma membrane, i.e. late apoptotic and necrotic cells) in FACS. The 

expression of p21 and miR-34a-5p, two key p53 transcriptional targets was assessed by 

qRT-PCR.  

After IR-triggered DNA damage induction, only the group of TP53wt samples displayed a 

significant increase in apoptotic cells (total Annexin V positive: NT 32% vs. IR 47% 

(median), p < 0.001), whereas samples displaying genetic aberrations of TP53 or ATM 

were largely resistant to this treatment (del11q: 31% vs. 33%, p = 0.15; TP53del/mut 32% 

vs. 36%, p = 0.91 (median values) (Figure 12 and Figure 13)). 
 

 

Figure 12. Effects of 5 Gy irradiation (IR) on CLL cell apoptosis. TP53wt (n = 19), del11q (n = 5) 

and TP53del/mut (n = 10) samples were analyzed by Annexin V / propidium iodide (PI) staining in 

FACS to quantify apoptosis induction (APC-Annexin positivity). 
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Figure 13. Examples of the impact of 5 Gy irradiation (IR) on cell viability / apoptosis. (A) 
provides a representative example of the impact of IR on cell viability of a TP53wt sample (upper 

panels: NT 34%, lower panels: IR 46% Annexin positive). The increase in the apoptotic cell fraction 

after IR is best appreciated by the drop in viable, double-negative cells. (B) is a representative 

example of effects of IR on cell viability of a TP53del/mut sample (upper panels: NT 27%, lower 

panels: IR 28% Annexin positive cells). SSC, side scatter; FSC, forward scatter. 
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Analysis of p53 downstream target expression demonstrated a strong and significant 

induction of p21 expression in TP53wt samples due to IR-triggered DNA damage (relative 

expression median untreated: 1.1 vs. IR: 24.8, p < 0.001), whereas this effect was less 

pronounced in del11q patients (1.3 vs. 7.9, p = 0.17) (Figure 14A). As expected, 

induction was lowest in TP53del/mut samples (1.3 vs. 3.6, p = 0.02). The TP53 genetic 

subgroups could be clearly distinguished by their p21 expression level post IR, which 

was significantly higher in TP53wt than TP53del/mut samples (p < 0.001). This was also true 

for miR-34a-5p expression. Here, markedly higher expression levels in TP53wt than 

TP53del/mut samples were already detected at baseline (15.7 vs. 5.7, p = 0.02) (Figure 

14B). Induction of miR-34a-5p and p21 was still seen in TP53del/mut samples at a low 

level, which is owed to the subclonality of p53 aberrations (26 - 92%) resulting in residual 

p53 activity.  

 

 
Figure 14. Effects of 5 Gy irradiation (IR) on p53 target gene expression. p21 (A,C) and miR-

34a-5p (B,C) expression in the screen samples 24h post +/- 5 Gy IR quantified by qRT-PCR, by 

genetic status of TP53 and ATM (11q). Means and standard deviations are indicated. Target gene 

expression was normalized to RNU6B and referenced to a HeLa sample. 
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While miR-34a-5p and p21 expression levels were not found to correlate in untreated 

samples (R2 = 0.07, data not shown), a strong correlation was observed after IR (R2 = 

0.62, p < 0.001, Figure 14C).  

The results confirmed previous data116,191, and cohort and experimental setup appeared 

suitable for the identification of transcriptional p53 targets.  

Patient treatment status influenced DNA damage-triggered induction levels of p21. 

Samples of patients previously treated for CLL displayed reduced p21 induction 

independent of TP53 status (median fold increase in TP53wt, 11q disomic, untreated 

CLLs (n = 15): 26.4, in TP53wt treated CLLs (n = 9): 6.8, p = 0.001, Figure 15A). This 

was largely independent from ATM status of samples of treated patients, as samples 

with del11q or ATM mutation (n = 6) displayed a 10.0 fold induction, and ATM wild-type, 

disomic ones (n = 3) a 3.8 fold induction (p = 0.28, data not shown). This suggests 

impaired p53 pathway activation in tumor cells of treated CLL patients, which is 

independent of TP53 and ATM status.  

For miR-34a-5p induction, no influence of previous patient treatment was observed (4.7 

fold in samples of TP53wt previously untreated patients vs. 5.9 fold in TP53wt previously 

treated ones) (Figure 15B).  

 

 
Figure 15. DNA damage-triggered p21 and miR-34a-5p induction by patient treatment 
status. . (A) p21 and (B) miR-34a-5p expression in previously untreated (UT) patients (n = 17) 

and patients having received prior therapy (PT) for CLL (n = 17) irrespective of genetic status, and 

of only TP53wt, 11q disomic status (UT n = 15, PT n = 9). Means and standard errors are 

indicated. Target gene expression was normalized to RNU6B and referenced to a HeLa sample. 

 

The identical RNA samples were used to screen for novel p53 targets by small RNA 

sequencing. For identification of p53 targets, TP53wt patient’s (n = 15, untreated) cells 
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were used for comparison to TP53del/mut samples (n = 10) to avoid impaired p53 pathway 

activity in previously treated TP53wt patients.  

 

3.3 Overview of RNA expression in primary CLL cells as captured by 
small RNA sequencing  

 
For small RNA sequencing, total RNA was extracted from 82 CLL primary samples (35 

patients, all treatments) and one pooled healthy B-cell control. RNA integrity numbers 

(RIN) as determined on an Agilent Bioanalyzer 2100 indicated that RNA was generally of 

sufficient quality (average RIN = 8.3, range 6.4-9.1, two samples below 7).  

Applying the aforementioned experimental approach and data analysis pipeline, 1.98 

billion reads were obtained from sequencing 84 small RNA libraries (= 82 + one technical 

replicate + healthy B-cells) (average 23.4 mio/sample) in total.  

Section 3.3.1 provides an overview of the transcript landscape captured by sequencing 

and mapping of all high-quality, adaptor-trimmed reads of at least 15 nt length to a set of 

coding and non-coding RNA databases as listed in 2.6.1. Basal miRNAs expression 

profiles in non-treated samples are presented in 3.3.2.  

3.3.1 RNA families detected by the approach 
Figure 16 illustrates the representation of different RNA family’s transcripts in the 

sequencing reads of at least 15 nt length. Ribosomal RNA, normally constituting 80-90% 

of cellular RNA228, was efficiently depleted, representing only 2% of all sequencing 

reads. Interestingly, only 13% of all reads mapped to mature miRNA sequences, 

whereas snoRNA were covered by most reads (22%), followed by mRNA represented by 

14%, down to lincRNA being covered by 1% of reads. 41% of reads did not map to any 

sequence of the curated set of reference databases, of which half (49%, i.e. 20% of total 

reads) were reads that did not map to the genome. In our selection of 17-25 nt long 

reads for miRNA expression analyses, 30% of reads mapped to mature miRNA (median; 

range 14 – 45%). Of the 1405 human mature miRNAs (miRBase v19), 1244 miRNAs 

were detected (≥ 1 read) in at least one CLL sample. We focused our analyses on 

miRNAs with an average of ≥ 5 reads across samples or a count of ≥ 10 in at least one 

sample. 

Although our screen was targeted at small RNA sequences to enrich for miRNA, the data 

on mRNA and other ncRNA expression was also analysed. 
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Figure 16. Expression of RNA subgroups detected by small RNA sequencing. Overview of 

read fractions mapping to different RNA families. Average values of n = 85 samples from 35 CLL 

patients and 1 pooled healthy B-cell sample. Relative abundance is expressed as percentage of 

total reads ≥15 nt. snoRNA = small nucleolar RNA; mRNA = messenger RNA); miRNA = mature 

microRNA, snRNA = small nuclear RNA; rRNA = ribosomal RNA; mt tRNA = mitochondrial 

transfer RNA; lincRNA = long intergenic ncRNA. 

 

3.3.2 miRNA expression profiles at baseline 
miRNA expression was quantified by mapping 17-25 nt long high quality reads to mature 

miRNA reference sequences of miRBase v19. Within this range of read lengths, isomiRs 

generated by 3’ or 5’ trimming of the miRNA reference sequence were subsumed in the 

total read count of the corresponding mature miRNA. For further analysis, read counts 

were corrected for batch effects between pilot and main screen, and normalized using 

DESeq2 in R. 

After 24 hours in culture without treatment (i.e. at baseline), expression profiles were 

dominated by miR-21-5p, a miRNA frequently overexpressed in malignancies229-231 

(Figure 17). Together with miR-26a-5p, let-7g-5p and miR-101-3p, it accounted for 51% 

of total miRNA reads. Nine of the 10 most strongly expressed miRNAs were previously 

reported among the 10 most abundant miRNAs in primary CLL cells (all except for miR-

148a-3p), although the top expressed miRNAs varied considerably between 

studies227,232,233.  
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Figure 17. Basal miRNA expression profiles detected by small RNA sequencing. Relative 

abundance is expressed as percentage of total mature miRNA sequence reads. Median values of 

n = 35 samples cultured for 24 hours without treatment are provided. The top 10 most abundant 

miRNA and their contribution to the overall miRNA read count are specified. The top 25 miRNAs 

shown on the chart. 

 

3.4 Identification of BCR signaling-dependent miRNA in CLL  
The identification of miRNAs involved in BCR signaling was approached from different 

angles: Firstly, as IGHV mutational status is connected to BCR signaling capacity, 

miRNAs differentially expressed in IGHV mutated compared to IGHV unmutated 

samples at baseline were identified. Secondly, dependency of miRNA expression on 

BCR signaling was directly tested by inhibition of the signaling pathway at the step of 

Bruton’s Tyrosine Kinase (BTK) using ibrutinib. Further, the correlation of miRNA 

expression profiles to in vitro ibrutinib sensitivity of primary CLL cells was assessed. 

 

3.4.1 Baseline miRNA expression and IGHV status  
To identify IGHV dependently expressed miRNA, the basal miRNA expression profiles of 

35 CLL patient samples of known IGHV mutation status were evaluated. Seven miRNAs 

were significantly overexpressed in samples of unmutated IGHV as compared to 

mutated IGHV, five were downregulated (Table 4), pointing towards potential 

involvement in BCR signaling. 
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Table 4. miRNAs differentially expressed with 
respect to IGHV status. Identified from miRNA 

expression profiles of n = 35 primary CLL samples. 

miRNA name 
U- 

IGHV 
M-

IGHV 
fold 

difference p-value 
Higher in U-IGHV 
miR-574-3p 241 115 2.0 0.009 

miR-184 30 9 3.3 0.009 

miR-330-3p 112 67 1.7 0.009 

miR-152 331 116 3.3 0.010 

miR-574-5p 163 76 2.0 0.014 

miR-9-5p 781 99 3.3 0.014 

miR-155-5p 44517 30945 1.4 0.041 

Lower in U-IGHV 
miR-514a-3p 3 13 0.2 0.003 

miR-29c-3p 1741 3736 0.5 0.009 

miR-141-3p 89 186 0.5 0.010 

miR-29c-5p 137 282 0.5 0.014 

miR-4432 2 6 0.3 0.042 

Normalized read counts are provided. U-IGHV = 

unmutated IGHV; M-IGHV = mutated IGHV. P-values 

were determined by Wald Test and corrected for 

multiple testing. 

Table 5. miRNA signature for 
the classification of samples 
according to IGHV status.  

Signature 
component coefficient 
miR-1246 0.10 

miR-138-5p -0.41 

miR-144-3p 1.03 

miR-151a-5p 1.11 

miR-181a-2-3p 0.14 

miR-181b-5p 1.29 

miR-193b-3p 0.25 

miR-29c-3p 1.34 

miR-29c-5p 0.90 

miR-365a-3p 0.67 

miR-365b-3p 0.00 

miR-4685-3p 2.67 

miR-511 -0.72 

miR-514a-3p 4.38 

miR-654-3p -1.60 
 

 

Using an L1 penalized logistic regression model for the development of signatures for 

sample classification, a miRNA expression signature composed of 15 components was 

found to discriminate between IGHV mutated and IGHV unmutated samples (Table 5). 

The performance of this IGHV status predictor was tested by leave-one-out 

crossvalidation, displaying an accuracy of 82%. The regression model provides a 

weighted classification rule, i.e. the coefficient indicated in Table 5 represents the weight 

of the respective miRNA for the classification. The higher the positive coefficient, the 

more a high expression level of the respective miRNA argues for the sample being IGHV 

mutated (e.g. miR-514a-3p). On the contrary, expression of a miRNA with a negative 

indicated coefficient will argue for the sample being IGHV unmutated (e.g. miR-654-3p). 

  

3.4.2 The impact of BTK inhibition on miRNA expression  
The BTK inhibitor Ibrutinib was used for abrogating the BCR signaling pathway in 

primary PBMNCs of 12 CLL patients. After a 24 hour treatment with 1 µM ibrutinib in 

vitro, the great majority of miRNAs did not change in expression as illustrated in Figure 
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18. However, miR-320c and miR-1246 were found upregulated, while miR-484, miR-17-

5p, miR-155-3p and miR-27a-5p were downregulated (Table 6).  
 

 

Figure 18. miRNA expression changes due to 1 µM ibrutinib treatment for 24 hours. 

Volcano plot displaying 397 expressed miRNAs, of which 6 are influenced by the treatment (p < 

0.05). miR-155-3p/5p, miR-27a-5p, and miR-132 have previously been described as BCR 

signaling dependent190,234. P-values were determined by Wald Test and corrected for multiple 

testing. 

 

Table 6. miRNAs differentially regulated upon ibrutinib treatment. Mean normalized read 

counts per group are provided. p-values were determined by Wald Test and Benjamini-Hochberg 

corrected. FC = fold change. 
 

miRNA name non-
treated 

24h 
ibrutinib FC p-value 

upregulated 
    miR-320c 80 108 1.4 5.8E-04 

miR-1246 5587 7797 1.3 5.8E-04 
downregulated 

  miR-484 337 272 0.8 5.8E-04 
miR-17-5p 4191 3440 0.8 0.011 
miR-155-3p 21 10 0.5 0.018 
miR-27a-5p 245 159 0.7 0.034 
 
 

Whereas the expression changes caused by BCR signaling inhibition were subtle for 

most miRNAs, they were consistent across the samples (Figure 19). 

qPCR validation was attempted for miR-320c, miR-1246, miR-484 and miR-155-3p 

regulation, using miR-155-5p expression which was not influenced by the treatment as 
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control. The inhibitory effect of BCR signaling abrogation on miR-155-3p could be 

validated (fold change in qRT-PCR 0.6, p = 0.01), just as the steady expression of miR-

155-5p (fold change 1.3, p = 0.95). For the other candidates, the regulation as 

determined from the sequencing data was within the variability of the qRT-PCR assay. 

 

 

Figure 19. Expression of six ibrutinib-regulated miRNAs in 12 primary CLL samples in non-
treated (NT) condition and after 24h with 1 µM ibrutinib (PCI). P-values were determined by 

two-sided Student’s t-test. Dashed lines represent samples of unmutated IGHV status (n = 8), 

sold lines of mutated IGHV (n = 4) status. Every individual sample is encoded by one specific 

colour. 

 

No regulation of ncRNA expression beyond mature miRNAs (e.g. tRNA, lincRNA, etc.) 

was observed. 

 

3.4.3 Baseline miRNA expression and in vitro ibrutinib sensitivity  
Abrogation of BCR signaling with ibrutinib induces apoptosis in CLL tumor cells, and 

does so in an IGHV status dependent manner95,101. This could also be observed after 

treating the screen samples with 1 µM ibrutinib for 48 hours in vitro and measuring cell 

viability with CellTiter-Glo®. As illustrated in Figure 20, viability – indicated by the level of 

cellular ATP - was decreased to 83% over all samples (median; n = 34) at this timepoint. 

For IGHV mutated samples, viability dropped to 89% (median; n = 15), whereas viability 

was decreased to 77% in IGHV unmutated samples (median; n = 19) (p = 0.006). 

Viability data were kindly provided by Leopold Sellner.  
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Figure 20. Cell viability post in vitro ibrutinib treatment, stratified by IGHV status. Cell 

viability in all samples (n = 34), and separated into mutated IGHV (n = 15) and unmutated IGHV 

(n = 19), after 48 hour treatment with 1 µM Ibrutinib as determined by ATP-measurement with 

CellTiter-Glo®. Referenced to non-treated samples; mean and SEM are indicated. P-value was 

determined by two-sided Student’s t-test. 

 

We asked whether basal expression levels of specific miRNAs correlate to, and 

putatively influence, the treatment efficiency in vitro. To this end, basal miRNA 

expression levels were tested for differential expression in regard to cellular viability after 

treatment with ibrutinib. Because of outliers, the results were additionally tested for 

robustness using Cook’s distance measure. 10 miRNAs were found differentially 

expressed in regard to ibrutinib sensitivity, i.e. these miRNAs showed significant 

regulation upon 10% increase of cell viability post treatment (Figure 21 and Table 7). Of 

the 10, miR-23a, miR-23b and miR-24 are expressed from the same miRNA cluster. 

Three miRNAs, miR-574-5p, miR-155-5p and miR-4432 had been found to be IGHV 

status dependently expressed (refer to section 3.4.1). As miR-150-5p and miR-155-5p 

had been previously reported to regulate BCR signaling activity233,235, the potential 

involvement of the 10 miRNAs in regulating BCR signaling was investigated. The highly 

expressed miRNAs miR-23b-3p, miR-150-5p, miR-24-3p, miR-23a-3p and miR-155-5p 

were selected for identification of potential mRNA targets. To identify mRNAs which were 

inversely co-regulated with the expression of these miRNAs, and at the same time 

predicted targets of the respective miRNA, mRNA expression data generated from small 

RNA sequencing (see also section 3.5.2), the Pearson correlation coefficient and the 

miRanda, miRWalk and TargetScan target prediction algorithms were used. For miR-

150-5p, two potential mRNA targets were identified. The expression levels of the top hit, 

protein disulfide isomerase family A, member 6 (PDIA6) displayed a strong negative 

correlation to miR-150-5p expression (R = -0.75, p = 0.002) and was reported to be 

induced upon anti-IgM stimulation in CLL59. This opens up the possibility of BCR 
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signaling impairment by high miR-150-5p expression leading to ibrutinib resistance. The 

expression of Fc receptor-like protein 2 (FCRL2) correlated with and is targeted by miR-

23a-3p (R = -0.68, p = 0.04). It is an inhibitor of BCR signaling236 known to be 

downregulated in poor prognostic CLL237. It was also predicted to be targeted by miR-

155-5p (R = -0.68, p = 0.06). For miR-574-5p, 20 predicted targets displayed inverse co-

regulation (table S4), of which proto-oncogene PIM3, a serine/threonine kinase (R = -

0.64, p = 0.01) and transcription factor forkhead box O4 (FOXO4, R = -0.54, p = 0.04) 

were previously implicated in regulating BCR signaling and/or survival238-241. 

 

 

Figure 21. Hierarchical clustering of basal expression of miRNAs displaying robust 
differential expression in regard to CLL cell viability post in vitro ibrutinib treatment. 

miRNAs are presented in rows, CLL samples in columns. Median-centered, normalized 

expression levels are illustrated. Samples (n = 35) are sorted for cell viability post ibrutinib 

treatment (1 µM, 48 hours) as determined by CellTiter-Glo®. 

The baseline miRNA expression profiles could not be used to reliably predict in vitro 

ibrutinib sensitivity though (R2 = 0.2 for the correlation of observed viability after 

treatment to viability predicted using the L1 penalized linear regression model).  
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Table 7. miRNAs regulated with 10% increase of cell viability after 1 µM ibrutinib in vitro. n 

= 35 CLL samples. Normalized read counts and Benjamini-Hochberg corrected p-values are 

provided. 

miRNA name 
mean basal 

expression (reads) 
Fold 

change 
p-value 

miR-23b-3p 1146 0.8 0.007 

miR-4432 7 1.8 0.011 

miR-150-5p 138529 1.2 0.011 

miR-24-3p 7976 0.8 0.014 

miR-23a-3p 3094 0.8 0.015 

miR-548j 6 0.7 0.019 

miR-574-5p 205 0.8 0.019 

miR-155-5p 63468 0.9 0.029 

miR-1285-3p 39 0.9 0.032 

miR-330-5p 129 0.9 0.036 

 

3.4.4 Summary of BCR-dependent miRNAs in CLL 
The BCR signaling-dependent miRNA transcriptome in primary CLL was 

comprehensively assessed by small RNA sequencing. 12 miRNAs were found 

differentially expressed according to IGHV mutation status, which is a strong prognostic 

factor known to determine BCR signaling capacity. A miRNA signature made of 15 

components predicted IGHV status with good accuracy (82%). By ibrutinib-mediated 

BCR signaling inhibition at the stage of BTK, six regulated miRNAs were identified: miR-

320c and miR-1246 were induced, miR-484, miR-17-5p, miR-155-3p and miR-27a-5p 

were downregulated, implicating a role in BCR-signaling mediated support of cell 

survival. The basal expression of 10 miRNAs associated with in vitro sensitivity to 

ibrutinib treatment, and potentially influences BCR signaling capacity.  
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3.5 Identification of p53-dependent ncRNAs in primary CLL cells 
The impaired transcriptional activity of mutant p53 was used to identify ncRNAs 

dependent on p53 function in primary leukemia cells by comparison of DNA-damage 

triggered induction in TP53wt samples of previously untreated patients to TP53del/mut CLL. 

Analyses were performed separately for mature miRNAs, presented in section 3.5.1, and 

other ncRNAs, presented in section 3.5.4. For the latter, p53-dependency was assessed 

by two approaches: Firstly, by qRT-PCR based assessment of the expression of long 

intergenic non-coding RNA p21 (lincRNA-p21), a known p53 target in other cancer 

entities204. Secondly, by analysis of small RNA sequencing data for ncRNAs displaying 

TP53 status dependent induction after irradiation. 

 

3.5.1 TP53 status dependent miRNA induction 
In the absence of DNA damage induction, no differentially expressed miRNAs were 

found in TP53wt compared to TP53del/mut, but the lower expression of miR-34a-5p in 

TP53del/mut (97 vs. 29 reads; p = 0.16) was confirmed. In an unsupervised hierarchical 

clustering, samples clustered by patient (data not shown), reflecting inter-patient 

heterogeneity. 

Across all CLL samples, there was a strong correlation of miRNA expression in 

untreated versus irradiated CLL cells (median R2 = 0.98), suggesting that the 

transcriptional profile is not altered for the great majority of miRNAs. An overview of 

irradiation-induced miRNA expression changes related to genetic and clinical parameters 

of our test cohort by unsupervised hierarchical clustering (Figure 21) demonstrated that 

the miRNA signature was not sufficient to identify the patient’s genetic or treatment 

status, although most samples carrying TP53del/mut or del11q clustered together. 

Subsequently, DNA damage triggered miRNA induction in TP53wt was compared to 

TP53del/mut samples. A more dynamic expression change was observed in the p53 wild-

type CLLs, where 36 miRNAs were regulated in response to DNA damage compared to 

12 in the group with p53 loss/mutation (Table 8). While a set of miRNAs including miR-

150-3p, miR-155-5p and miR-92a-3p was uniformly regulated in the genetic subgroups 

suggesting a p53-independent role upon DNA-damage, 23 miRNAs showed substantially 

different regulation in TP53wt compared to TP53del/mut samples, albeit some at very low 

expression levels (Table 8, bold print). miR-34a-5p was the most strongly induced target 

in TP53wt but not in TP53del/mut samples (4.3 fold, p < 0.001 vs. 2.9 fold, p < 0.001). 

Further, the expression of a set of miRNAs including miR-182-5p, miR-7-5p and miR-

320d/c was found up-regulated after IR in TP53wt, but not TP53del/mut samples, indicating 
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p53-dependent transcriptional regulation (see also S1). p53-dependent miR-34a-5p 

expression had been validated by qRT-PCR (Figure 14). 

 

 
Figure 22. Unsupervised hierarchical clustering of IR-induced expression changes of the 
300 most variably expressed miRNAs over 34 CLL patient samples. Genetic and clinical data 

are provided (grey = no, black = yes). Each row represents a miRNA, each column represents a 

sample. The colour scale illustrates the median-centered, relative expression change of a miRNA 

(red = higher, blue = lower than median). 

 

Additionally, miR-7-5p and -320d regulation upon IR was successfully validated by qRT-

PCR (median miR-7-5p TP53wt (n = 10): 2.4 fold, p = .001; TP53del/mut (n = 6): 1.0 fold, p 

= .31; median miR-320d TP53wt (n = 11): 1.7 fold, p = .01; TP53del/mut (n = 7): 1.0 fold, p = 

.37). Our data furthermore support a p53-dependent regulation of miR-320d family 

members miR-320c and miR-320b sharing the same seed sequence (Table 8). 
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Table 8A. miRNAs regulated upon DNA damage in TP53wt (n = 15) CLL samples. miRNAs 

regulated upon IR in TP53wt but not in TP53del/mut cases, or vice versa, are highlighted*. Mean 

normalized read counts 24h post NT (no treatment) or IR (irradiation) are provided. P-values are 

Benjamini-Hochberg corrected for multiple testing.  
*miRNA selection criteria: A fold change (FC) difference of ≥0.3 between TP53wt and TP53del/mut, 

and a p-value of < 0.05 in at least one of both groups, and a difference in p-values of ≥ 1 log10. 

miRNA  TP53wt TP53del/mut TP53wt TP53del/mut TP53wt TP53del/mut 

 NT IR NT IR FC FC p-value p-value 

miR-34a-5p 97 370 29 115 4.3 2.9 4.3E-39 2.3E-04 
miR-150-3p 302 180 292 172 0.6 0.6 9.3E-18 1.3E-07 
miR-182-5p 98 158 149 170 1.6 1.2 6.7E-10 0.221 
miR-7-5p 1218 1767 1508 1672 1.5 1.1 4.4E-08 0.671 
miR-155-5p 33921 47139 43778 54809 1.4 1.3 6.2E-07 3.6E-04 
miR-320d 39 69 59 57 1.7 1.0 7.6E-07 0.984 
miR-320c 69 116 101 98 1.6 1.0 7.6E-07 0.990 
miR-21-3p 223 323 375 458 1.5 1.3 9.0E-07 0.026 
miR-574-5p 83 116 147 154 1.4 1.1 2.6E-05 0.918 
miR-9-5p 115 167 1203 1299 1.5 1.1 8.4E-05 0.923 
miR-34a-3p 1 4 0 1 8.4 8.7 8.6E-05 1.000 
miR-92a-3p 15619 18608 15648 18329 1.2 1.2 1.2E-04 0.221 
miR-23a-3p 1958 2496 2515 2546 1.3 1.0 1.2E-04 0.984 
miR-320b 168 237 267 256 1.4 1.0 2.3E-04 0.984 

miR-186-5p 6295 5499 5903 5903 0.9 1.0 9.9E-06 0.984 
miR-181d 5 11 11 16 2.1 1.6 3.6E-04 0.501 
miR-29b-1-5p 18 9 15 17 0.5 1.1 5.8E-04 0.936 
miR-24-3p 4276 5020 5773 6360 1.2 1.1 0.003 0.034 
miR-1260b 10 4 11 10 0.5 1.0 0.003 0.984 
miR-26a-2-3p 129 75 92 78 0.6 0.9 0.004 0.921 
miR-339-5p 787 606 591 573 0.8 1.0 0.006 0.936 
miR-181c-3p 5 11 10 15 2.1 1.6 0.006 0.605 
miR-28-5p 1206 1027 1200 1204 0.8 1.0 0.009 0.990 

miR-183-5p 29 39 37 43 1.4 1.4 0.009 0.501 

miR-335-5p 487 415 486 475 0.8 1.0 0.012 0.936 
miR-582-5p 3 7 2 6 2.2 1.5 0.014 0.928 
miR-27a-5p 240 317 390 454 1.3 1.2 0.014 0.221 
miR-15a-5p 1266 1063 705 675 0.8 1.1 0.017 0.928 
miR-3653 182 255 207 178 1.3 0.9 0.020 0.928 

miR-142-3p 25133 22119 21751 23157 0.9 1.1 0.020 0.928 
miR-6724-5p 5 3 4 3 0.4 0.8 0.021 1.000 
let-7i-5p 49359 58378 56522 60268 1.2 1.1 0.023 1.000 

miR-27a-3p 16001 18532 19466 23169 1.2 1.2 0.035 0.006 
miR-3609 61 81 82 78 1.2 0.9 0.035 0.936 
miR-17-5p 3710 4538 3285 4696 1.2 1.4 0.035 1.3E-04 

miR-339-3p 393 347 351 335 0.9 1.0 0.043 0.984 
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Table 8B. miRNAs regulated upon DNA damage in TP53del/mut CLL (n = 10) not listed in 
A. . 

miRNA  TP53wt TP53del/mut TP53wt TP53del/mut TP53wt TP53del/mut 

 NT IR NT IR FC FC p-value p-value 

miR-18a-5p 71 73 61 95 1.0 1.6 0.902 0.002 
miR-20a-5p 16613 18664 15483 19367 1.1 1.3 0.432 0.004 
miR-155-3p 14 17 19 36 1.2 1.8 0.578 0.011 

miR-1246 8040 10090 12275 9635 1.2 0.8 0.213 0.025 

miR-22-3p 2733 2876 3037 3451 1.0 1.1 0.839 0.026 
 

On the contrary, three miRNAs were regulated in the TP53 del/mut but not TP53wt 

samples (Table 8B), suggesting a p53-independent role in resistance to DNA damage-

induced apoptosis. 

3.5.2 Deriving insights into the regulation of long RNA transcripts from a 
small RNA sequencing screen  

The small RNA sequencing reads had been mapped to a set of ncRNA families and 

mRNA (section 3.3.1). In order to investigate whether these expression data derived 

from fragments of longer RNAs would be informative, i.e. whether the fragment quantity 

would reflect the parent RNA expression and could be used for analyses, irradiation-

induced mRNA expression changes in previously untreated TP53wt were compared to 

TP53del/mut samples.  

In the wild-type setting, 792 mRNA transcripts were found significantly regulated as 

opposed to 15 in p53 aberrant samples. Table 9 compares the 10 most strongly 

regulated mRNAs in the TP53wt samples and well-established p53 targets Bax242,243 and 

GADD45A153,244 to their expression and induction in TP53del/mut CLLs. Key p53 targets 

MDM2 and CDKN1A (p21) ranked among the top five induced mRNAs in TP53wt, but 

showed no significant induction in TP53del/mut. The same regulation was also observed for 

Bax and GADD45A. In line with this, all of the top 10 regulated mRNAs displaying 

induction exclusively in the wild-type setting were known p53 targets (bold print; 

RPS19206,208,243, MDM2245, PLXNB2246, TRIM22243, CDKN1A247,248, PCNA153, 

TNFRSF10B153, ASCC3208, BBC3 (PUMA)206,249). TP53 status dependent induction was 

not a bystander effect of higher RNA fragmentation in irradiated TP53wt than TP53del/mut 

samples caused by higher apoptosis rates in TP53wt (Figure 12), since the mean RIN for 

both TP53 groups after IR was 8.2. The expression values of p21/CDKN1A post 

irradiation as determined by qRT-PCR and smRNA sequencing correlated well (R2 = 

0.65) over all samples. 
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These data strongly suggested that small RNA sequencing was representative even for 

longer transcripts. 

 
Table 9. Top mRNAs induced in previously untreated TP53wt compared to TP53del/mut 
samples 24 h post irradiation. Known p53 targets are marked by bold print. Mean normalized 

read counts and Benjamini-Hochberg corrected p-values are provided. NT = non-treated, IR = 

irradiated, FC = fold change.  

Rank mRNA name TP53wt TP53del/mut TP53wt TP53del/mut TP53wt TP53del/mut 
  NT IR NT IR FC FC p-value p-value 

1 RPS19 140 387 121 185 2.7 0.7 3.6E-40 0.015 
2 MDM2 92 390 81 179 4.1 1.9 4.7E-40 0.178 
3 PLXNB2 28 103 24 42 3.7 1.6 4.3E-22 0.154 
4 TRIM22 61 144 64 78 2.3 1.1 7.2E-21 1.000 
5 CDKN1A 10 44 11 21 4.5 1.9 1.1E-19 0.207 
6 PCNA 17 50 19 27 2.8 1.4 2.1E-15 1.000 
7 TNFRSF10B 34 80 33 41 2.3 1.2 8.9E-14 1.000 
8 EEF1A1 1139 1829 1249 1741 1.6 1.4 4.9E-13 5.2E-4 
9 ASCC3 72 132 70 84 1.8 1.2 1.5E-12 1.000 
10 BBC3 9 29 7 14 3.2 1.7 1.8E-12 1.000 
17 BAX 29 55 27 33 1.9 1.3 5.6E-9 1.000 
78 GADD45A 11 21 9 14 2.0 1.6 6.6E-5 1.000 

 

3.5.3 Potential targets of p53-dependently regulated miRNAs in CLL 
Target prediction for miR-34a-5p, miR-182-5p, miR-7-5p and miR-320c/d was performed 

in Ingenuity® (based on the TargetScan algorithm). Only mRNAs significantly 

downregulated after DNA damage in TP53wt samples were analysed. Table 10 

summarizes all predicted mRNA targets for which a role in cell proliferation and/or 

survival has been previously reported, and which were predicted to be targeted by the 

respective miRNA by at least one additional database tool (TarBase250, miRanda118, 

miRwalk223, PicTar251). Induction of miR-182-5p, for example, correlates with a reduction 

of nuclear receptor subfamily 1, group D, member 2 (NR1D2) mRNA, which was 

suggested to negatively regulate p21 expression252. It further correlates with a 

downregulation of O-linked β-N-acetylglucosamine transferase (OGT) mRNA levels. 

OGT has been shown to affect the phosphorylation of ATM, fostering p53 activation253. 

Moreover, miR-182-5p induction correlates with reduction of cAMP-dependent protein 

kinase type I-alpha regulatory subunit 1 alpha (PRKAR1A) mRNA. PRKAR1A is 

overexpressed in a variety of tumors254 and a loss of function was shown to cause 

apoptosis via BCL2255. 
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Table 10. mRNAs predicted to be targeted by p53-dependent miRNAs upon DNA damage. 

Gene names of high confidence targets (TargetScan) are listed. FC, fold change after irradiation 

(5 Gy) in TP53wt CLL. 

miRNA name 
 

FC mRNA target 
(gene) FC 

Involved in 
proliferation/survival, 

reference 
miRNA-34a-5p 4.3 E2F5 0.6 256,257 

  MDM4 0.8 258,259 

miR-182-5p 1.6 NR1D2 0.7 252 

  OGT 0.8 253 

  PRKAR1A 0.8 254,255 

miR-7-5p 1.5 OGT 0.8 253 

  PRKCB 0.8 260,261 

miR-320c/d 1.7 NR1D2 0.7 252 

  PCDH9 0.7 69 

  PRKAR1A 0.8 254,255 

  YWHAZ 0.8 262 
 

 

3.5.4 p53 dependent long non-coding RNA induction 

3.5.4.1 lincRNA-p21 in CLL 
qRT-PCR quantification of lincRNA-p21 expression upon irradiation-triggered p53 

activation revealed a significantly stronger induction in TP53wt (n = 19, p = 0.005) than 

TP53del/mut CLL (n = 10, p = 0.08) (median 16.5 vs. 3.0 fold, p = 0.001), while samples 

with del11q displayed a medium induction (n = 5, p = 0.04, median 16.5 vs. 7.7 fold, p = 

0.11) (Figure 23 A, B). 

These results were validated in an independent cohort of 39 CLL patients (Figure 23 C, 

D). Brisk lincRNA-p21 induction was again observed after DNA damage in TP53wt CLL (p 

< 0.001, median induction 16.3 fold) but not in p53 deficient CLL (p = 0.27, induction 1.3 

fold; Figure 23 D).  
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Figure 23. DNA damage triggered lincRNA-p21 induction in CLL. . (A, B) lincRNA-p21 

expression in samples of n = 34 CLL patients left untreated for 24h or 24h post irradiation (IR, 5 

Gy), grouped into TP53wt and 11q23 disomic, TP53wt with del11q23, and TP53del/mut as in Figure 

14. (C, D) LincRNA-p21 induction in a validation cohort of CLL patients (n = 36). Median ± SEM 

are indicated.  

 

We observed a strong correlation of lincRNA-p21 with induction of p21 and with 

reduction of cell viability due to apoptosis, a major endpoint of p53 activation (Figure 24 

A, B).  

Cp values across all samples post irradiation ranged between 29.0 and 35.6, indicating 

low expression. 
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Figure 24. Correlation of DNA-damage triggered lincRNA-p21 induction with p21 induction 
and cell viability. (A) LincRNA-p21 vs. p21 expression after IR in the test cohort. Median ± SD 

are indicated. (B) Correlation of lincRNA-p21 induction with cellular viability as determined by 

double negativity in FACS Annexin V / PI staining of the test cohort samples. 

 

To support p53-dependence of expression in the absence of DNA damage induction, 

primary CLL cells were exposed for 24 hours to 10 µM of the MDM2 inhibitor nutlin-3 

selectively stabilizing p53. Likewise, nutlin-3 led to induction of lincRNA-p21 expression 

exclusively in TP53wt (n = 7, median 5.3 fold), but not TP53del/mut samples (n = 3, median 

1.1 fold) (Figure 25).  

 
Figure 25. LincRNA-p21 expression 24 h post induction with 10 µM nutlin-3 or vehicle 
control in primary CLL samples. Expression was determined by qRT-PCR in n = 8 p53wt 

samples and n = 3 p53del/mut samples. Means ± SEM are indicated. 

 

 

3.5.2.3 NEAT1 in CLL 
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reference sequences curated from Ensembl 71, GtRNAdb217, Rfam 11.0, and the piRNA 

cluster database218. From this, a list of DNA damage induced ncRNA in primary CLL was 

generated (Table 11). The precursor of miR-34a was the top IR-induced ncRNA. Directly 

following pre-miR-34a, two transcripts of NEAT1 (nuclear enriched abundant transcript 

1), a lincRNA constituting a major component of the nuclear paraspeckles of mammalian 

cells263, showed distinct p53-dependent induction after IR.  

In total, three overlapping NEAT1 transcript sequences were captured - NEAT1-002 (1.8 

kb), NEAT1-202 (1.5 kb) and NEAT1-001 (22.7 kb; Figure 26A) - originating from the 

22.8 kb long NEAT1 gene located on chromosome 11q13.1 (11:65,190,245-65,213,011 

Ensembl GRCh37). In contrast to NEAT1-002 and NEAT-202, NEAT1-001 was not 

found regulated by DNA damage (mean fold change TP53wt 1.1, p = 0.32; TP53del/mut 1.0, 

p = 0.99). DNA damage-triggered NEAT1-202 and NEAT1-002 induction in previously 

untreated TP53wt was significantly stronger than in TP53del/mut samples (TP53wt mean 

NEAT1-202/NEAT1-002 induction 2.0/1.8 fold, p < 0.001; TP53del/mut mean NEAT1-

202/NEAT1-002 induction 1.3/1.3 fold, p = 0.22/0.03; Table 11 and Figure 26 B, C). 

NEAT1-202 and NEAT1-002 normalized read counts over all samples strongly correlated 

(R2 = 0.91), which was expected due to high sequence similarity of the transcripts. 

 
Table 11. Top 10 ncRNAs induced in previously untreated TP53wt compared to TP53del/mut 
samples 24 h post irradiation. Mature miRNAs were excluded. Mean normalized read counts 

and Benjamini-Hochberg corrected p-values are provided. FC = fold change.  

RNA name TP53wt TP53del/mut TP53wt TP53del/mut TP53wt TP53del/mut 

 NT IR NT IR FC FC p-value p-value 

pre-miR-34a 200 853 70 314 4.6 3.5 1.07E-34 2.50E-07 

NEAT1-202 40 84 41 52 2.0 1.3 8.43E-24 0.222 

NEAT1-002 61 115 58 77 1.8 1.3 5.04E-17 0.025 

trna8-LysCTT 358 642 354 401 1.8 1.1 5.12E-11 0.811 

tRNA 385 669 397 460 1.7 1.1 5.12E-11 0.444 

trna30-LysCTT 703 1036 771 880 1.5 1.2 1.58E-10 0.201 

trna119-LysCTT 4063 5796 4212 6176 1.4 1.4 4.00E-09 2.29E-16 

trna10-LysCTT 5366 8067 5003 7175 1.5 1.4 4.97E-07 4.84E-13 

trna13-LysCTT 8107 12173 7243 9670 1.5 1.4 1.24E-06 2.01E-07 

trna1-SeC(e)TCA 343 584 215 315 1.7 1.4 1.68E-06 0.085 
 

 

http://grch37.ensembl.org/Homo_sapiens/Location/View?r=11:65190245-65213011
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Figure 26. NEAT1 induction upon DNA damage in primary CLL cells. (A) NEAT1 transcripts 

as originating from the 22.77 kb long NEAT1 gene on chromosome 11q as in Ensembl GRCh37. 

Localization of the qRT-PCR amplicon is indicated. (B, C) NEAT1-202 and NEAT1-002 

expression as determined by sequencing (see Table 11) in non-treated (NT) and irradiated (IR) 

samples of TP53wt and TP53del/mut status, and (D) as determined by qRT-PCR in identical 

samples. In B and C, P-values were calculated using the Wald test and corrected for multiple 

testing. In D, two-sided Student’s t-test was applied.  
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NEAT1 expression levels were validated by qRT-PCR detecting an amplicon in the 5’ 

end of the 2nd exon of NEAT1-002, i.e. detecting all three NEAT1 transcripts (Figure 26 

A, D and Figure 27). As in the sequencing data, NEAT1 expression after IR was 

significantly higher in TP53wt than TP53del/mut samples (p < 0.001, Figure 27 A). Cp values 

of irradiated samples ranged between 19.5 and 23.7, indicating high NEAT1 expression. 

Thus, the moderate average induction of 2.8-fold (qRT-PCR) in TP53wt samples reflected 

a strong addition in NEAT1 transcript amount upon DNA damage.  

Samples harboring del11q displayed a tendency towards diminished NEAT1 induction as 

illustrated in Figure 27 A, B (TP53wt median 2.9 fold; del11q 1.9 fold; TP53mut/del 1.3 fold). 

 

 
Figure 27. NEAT1 expression 24 hours after irradiation (IR) or no treatment (NT) of primary 
CLL cells. (A) NEAT1 expression at NT state or post IR, stratified by TP53 and 11q status. (B) 
DNA damage-triggered NEAT1 induction stratified by TP53 and 11q status. P-values were 

calculated by two-sided Student’s t-test. (C) Correlation of NEAT1 and p21 expression in 

irradiated samples. All data were generated by qRT-PCR.  
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The level of NEAT1 and p21 expression after DNA damage strongly correlated (Figure 

27 C), indicating a common regulatory mechanism. The correlation of NEAT1 expression 

to the fraction of apoptotic cells was low (R2 = 0.19, p = 0.28; data not shown).  

Targeted activation of p53 by nutlin-3 treatment of primary CLL cells induced cellular 

apoptosis in TP53wt samples (p < 0.001) but not in the presence of TP53 aberrations (p = 

0.35). At the same time, NEAT1 expression was induced in TP53wt (p < 0.001) but not 

TP53del/mut samples (p = 0.30) (Figure 28), confirming p53-dependent regulation. 

 

 
Figure 28. NEAT1 expression 24 h post induction with 10 µM nutlin-3 or vehicle control in 
primary CLL samples. Expression was determined by qRT-PCR in n = 10 TP53wt samples and n 

= 5 TP53del/mut samples. Means ± SEM are indicated. 

 
 

3.5.5 Comparison of p53 pathway activity in treated and untreated TP53 
wild-type CLL 

TP53 aberrations in CLL associate with relapse after therapy, but not all relapsed CLL 

patients carry mutant p53264,47. To determine factors causing poor therapy response in 

the wild-type setting, p53 pathway activity was assessed in nine previously treated, high-

risk TP53wt CLLs and compared to samples of TP53wt patients who had not received 

prior therapy for CLL.  

In treated TP53wt CLLs, only three miRNAs were regulated upon IR-induced p53 

activation: miR-34a-5p (fold change (FC) 4.1, p < 0.001), miR-150-3p (FC 0.7, p = 0.002) 

and miR-21-3p (FC 1.3, p = 0.03). This is in contrast to the dynamic response observed 

in samples of TP53wt, untreated patients, where 36 miRNAs were regulated (Table 8). 

The expression of p53 targets miR-182-5p, miR-7-5p and miR-320d/c was unchanged 

upon DNA damage in TP53wt high-risk patient samples (miR-182-5p FC 1.3, p = 0.68; 

miR-7-5p FC 1.1, p = 0.84; miR-320d FC 0.9, p = 0.97, miR-320c FC 1.0, p = 0.98). 

Similarly, treated TP53wt CLLs displayed reduced lincRNA-p21 and NEAT1 induction 
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(Figure 29, PT median 4.2 fold and 2.0 fold, respectively) compared to untreated (UT) 

TP53wt CLLs (median 20.7 fold and 2.9 fold, respectively; p = 0.03 for lincRNA-p21 and p 

= 0.01 for NEAT1). This was independent from the treated TP53wt patients’ ATM status, 

as lincRNA-p21 induction was diminished to 7.9 fold (median) also in disomic 11q and 

wild-type ATM samples (p = 0.17, Figure 29 A). This was comparable for NEAT1, where 

induction in the high-risk group with ATM aberrations was 2.0 fold (n = 6), just as for 

ATM normal samples (median 2.0 fold, n = 3; p = 0.60), both being far lower than the 

induction in 11q disomic ATMwt, TP53wt samples of untreated patients. This is in keeping 

with the observations for p21 (refer to section 3.2). Together, this points towards 

impaired p53 pathway activity in treated TP53wt high-risk CLLs, which is independent 

from aberrations of ATM. 

 

 
Figure 29. Induction of lincRNA-p21 and NEAT1 in CLL stratified by patient treatment, TP53 
and ATM status. (A) lincRNA-p21 fold induction and (B) NEAT1 fold induction in CLL-PBMNCs 

24 hours post 5 Gy irradiation stratified by patient treatment status, indicating samples derived 

from patients that were previously untreated (UT), or had received prior therapy (PT) for CLL. The 

four groups on the right display TP53wt samples only, stratified by treatment (UT = 15, PT = 9) 

and ATM status (aberrant n = 6; normal n = 3). The PT TP53wt patients had all relapsed within 26 

months after therapy. Means and standard errors are indicated. P-values were calculated by 

Student’s t-test. 

 

To explore possible mechanisms of p53 deactivation in treated TP53wt patients, baseline 

miRNA profiles were compared between untreated TP53wt and treated, high-risk TP53wt 

CLLs. After additional testing for robustness using Cook’s distance measure, miR-1285-

3p and let-7b-5p were found higher expressed in samples from treated patients (fold 

difference 1.9 and 2.2, p < 0.05). Interestingly, miR-1285-3p was reported to target p53 
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mRNA265. However, no direct correlation between baseline miR-1285-3p expression and 

p53 activity indicated by IR-triggered p21 induction was observed (n = 35, R2 = 0.05). 

Still, TP53wt high-risk patient samples expressing high miR-1285-3p (> median) 

displayed a tendency towards lower p21 induction (average 5.8 fold) than low expressing 

samples (average 10.1 fold, p = 0.22). Let-7b is predicted to target the mRNA of p53 and 

TP53 regulating kinase (miRanda, miRWalk and TargetScan). Again, no direct 

correlation of basal expression to p21 induction post irradiation was found (R2 = 0.04). 

High (> median) let-7b-5p expressing samples showed only slightly lower p21 induction 

than low let-7b-5p (< median) expressors (6.0 vs. 9.1, p = 0.40). In addition, basal non-

miRNA ncRNA expression was compared between previously untreated TP53wt patients 

and treated TP53wt patients. As displayed in table S5, nine transcripts were differentially 

expressed, whereas for none of them, a function in the p53 pathway has been previously 

reported. In conclusion, no overexpression of a known ncRNA repressor of the p53 

pathway was found in treated, high-risk TP53wt patients. 

 

3.6 p53 dependency of lincRNA-p21 and NEAT1 expression in the 
Burkitt’s Lymphoma (BL) cell line model  

To assess lincRNA-p21 and NEAT1 regulation in other lymphoma subtypes, a large set 

of Burkitt’s Lymphoma derived B-cell lines of disparate TP53 status was chosen. In this 

model, p53-dependency of NEAT1 and lincRNA-p21 was investigated in more detail. 

3.6.1 lincRNA-p21 and NEAT1 induction in BL cell lines  
Induction dynamics of lincRNA-p21 and NEAT1 expression in response to IR-mediated 

DNA damage were studied in a set of 11 genetically unmodified Burkitt’s lymphoma cell 

lines, of which six were TP53wt, seven TP53mut (table S2) as illustrated in Figure 30. 

In analogy to the observations in CLL, lincRNA-p21 was induced 24 hours post 5 Gy IR 

in the TP53wt cell lines only, while none of the TP53mut cell lines showed an increase in 

expression (Figure 30 A), supporting a direct regulation by p53. The induction observed 

in the wild-type setting was heterogeneous, ranging from 22.0 fold (BL-7) to 1.9 fold 

(Seraphine).  

NEAT1 induction was more subtle and did not separate the cell lines by TP53 mutation 

status as clearly (Figure 30 B). Still, at 24 hours after IR, TP53wt displayed a clear 

tendency towards higher NEAT1 induction (mean 2.5 fold) than TP53mut cell lines (mean 

1.1 fold) (p = 0.07).  
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Figure 30. Time course of lincRNA-p21 and NEAT1 induction in TP53wt and TP53mut 

Burkitt’s Lymphoma cell lines. (A) lincRNA-p21 and (B) NEAT1 induction in TP53wt (blue) and 

TP53mut (black) Burkitt’s Lymphoma cell lines after 5 Gy irradiation (IR) was monitored for up to 24 

hours (h). Expression levels are relative to the non-irradiated sample (normalized to lamin B1) 

determined by qRT-PCR. 

 

3.6.2 NEAT1 and lincRNA-p21 expression in BL cell line models of 
controlled p53 expression 

To finally prove p53-dependency of NEAT1 and lincRNA-p21 expression, modified 

Salina and Seraphine cells (p53wt) with p53 expression controlled by shRNA mediated 

knockdown (p53kd, Salina) or CRISPR/Cas9 mediated p53 knockout (p53ko, Seraphine) 

as well as p53 mutant Namalwa (p53mut) were used. The cell lines were exposed to 

nutlin-3 for 6 or 24 hours or treated with vehicle control. A concentration- and time-

dependent, nutlin-3 triggered induction of p53 protein levels was observed in the wild-

type setting (Figure 31).  

 
 
Figure 31. Effect of nutlin-3 treatment on p53 expression in BL cell lines of defined p53 
status. (A) p53 and expression after 6 h treatment with 0-10 µM nutlin-3 determined by Western 

Blot. (B) p53 expression after 24 h treatment with 0-10 µM nutlin-3. GAPDH served as loading 

control.  
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Figure 32. Effect of nutlin-3 treatment on apoptosis in BL cell lines of defined p53 status. 

Wild-type p53 (p53wt), p53 mutation (p53mut), shRNA-mediated p53 knockdown (p53kd) or 

CRISPR/Cas9 mediated knockout (p53ko) cell lines were subjected to treatment with nutlin-3 or 

solvent control (DMSO). The fraction of apoptotic cells was measured by APC-coupled Annexin V 

staining in FACS. (A) Exemplary scatter plots displaying the fraction of apoptotic cells (blue) post 

24 h DMSO solvent control or 10 µM nutlin-3 in Salina p53wt and (B) Salina p53kd cells. (C) 

Summary of nutlin-3 concentration dependent fraction of apoptotic, Annexin V positive cells in 

FACS after 24 h for all cell lines.  

 

Simultaneously, the fraction of apoptotic cells increased as determined by FACS (Figure 

32 C). p53 modified or mutant cell lines displayed no (p53kd, p53mut) or subtle (p53ko) 
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nutlin-triggered p53 stabilization. Residual p53 expression in the p53ko cells was 

attributable to the pooled nature of the approach; the knockout was present in 80% of 

cells as confirmed by 454 sequencing. p53 mutant Namalwa displayed strong 

overexpression of (non-functional) p53, as expected. Induction of apoptosis in these p53 

aberrant cell lines was negligible.  

 

 

 
Figure 33. Expression of p21, lincRNA-p21 and NEAT1 upon nutlin-3 treatment of primary 
CLL and BL cell lines. (A) Expression and fold induction of p21, (B) lincRNA-p21 and (C) 

NEAT1 after 24 hours of treatment with 0-10 µM nutlin-3 as assessed by qRT-PCR. Values were 

normalized to Lamin B1 and referenced to a HeLa sample. Induction was calculated as fold 

change compared to solvent control (DMSO). The legend in A is applicable to all panels of this 

figure. 

 

Induction of p21, lincRNA-p21 and, most importantly, NEAT1 were monitored by qRT-

PCR. Their expression levels tightly correlated to those of p53 (Figure 31). Apoptosis 

induction strongly correlated with induction of NEAT1 (R2 = 0.75), and moderately with 
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induction of lincRNA-p21 (R2 = 0.32) and p21 (R2 = 0.35). For all three RNAs, nutlin-3 

triggered induction was pronounced in the Seraphine and Salina p53wt cell lines and 

reduced in the p53 knockdown / p53ko and p53mut cells. These data strongly suggest a 

role of p53 in regulating lincRNA-p21 and NEAT1 transcription not only in primary CLL 

cells, but also in cellular models of Burkitt’s Lymphoma. 
 

3.6.3 Assessment of p53 binding to the NEAT1 promoter 
To determine whether p53 binds to the NEAT1 promoter and to rule out indirect 

regulation of NEAT1 expression by a p53 target, we made use of the Burkitt’s lymphoma 

cell line models of controlled p53 expression. 24 hours upon treatment with 10 µM nutlin-

3, Séraphine p53wt and isogenic p53ko cells were harvested, DNA was sheared to 300-

400 bp (Figure 34 A) and subjected to ChIP with p53 antibodies. Subsequently, the 

NEAT1 promoter sequence was amplified by PCR, using self-designed primers targeting 

a published p53 binding site upstream of NEAT1206. As displayed in Figure 34 B, p53 

was found to bind to the NEAT1 promoter in the p53wt cells, whereas no binding was 

observed in the p53ko cells which served as negative control. Binding to the p21 

promoter was used as positive control, showing the identical pattern with the exception 

of a contamination detected in the no-antibody control.  

 
Figure 34. ChIP-PCR for p53 binding in the promoter regions of NEAT1 and p21. Séraphine 

p53wt and p53ko cells treated with 10 µM nutlin-3 were used for ChIP. (A) 1.5% agarose gel 

showing high molecular weight DNA in unsheared samples, and successful shearing to 300 - 400 

bp in the samples used for ChIP. (B) Products of qRT-PCR for the NEAT1 promoter region (137 

nt) and p21 promoter region (positive control, 214 nt) were run on a 3% agarose gel. qRT-PCR 

products from a reaction run without template, with genomic DNA and without antibody selection 

(‘input’) served as controls. p53 antibodies from Santa Cruz (SC, p531) and BD (p532) were 

tested. Samples incubated with no antibody (noAb) were additional controls.  



Results 

72 
 

Combined with the data provided in section 3.6.2 this provides strong evidence for p53 

binding to the NEAT1 promoter, which results in transcriptional activation and expression 

of the NEAT1 gene. 

3.6.4 Summary of p53-dependent ncRNAs in CLL and BL 
By small RNA sequencing-based comparison of miRNA induction in TP53wt and 

TP53del/mut primary samples after DNA damage, miR-34a-5p was confirmed as prime p53 

target in CLL. A set of potential novel p53 targets was suggested including miR-182-5p, 

miR-7-5p and miR-320c/d, which show irradiation-triggered induction only in the wild-

type setting. In addition, this work’s data demonstrated p53-dependent lincRNA-p21 and 

NEAT1 regulation in primary CLL upon irradiation and nutlin-3 treatment. Figure 35 

provides an overview of DNA damage triggered expression changes of the top p53-

dependent RNAs assessed. In this hierarchical clustering, all TP53del/mut samples and 

most previously treated, high-risk TP53wt samples cluster together.  

In BL cell lines genetically modified for controlled p53 expression, both lincRNA-p21 and 

NEAT1 displayed TP53 status dependent induction upon nutlin-3, and direct p53 binding 

to the NEAT1 promoter was confirmed by ChIP-PCR. 

 

 
Figure 35. Unsupervised hierarchical clustering of p53 targets identified in primary CLL 
samples. The heatmap summarizes the irradiation (IR)-triggered fold induction of p53 targets 

(rows) NEAT1, lincRNA-p21 and p21 as determined by qRT-PCR, and NEAT1-002, NEAT1-202, 

miR-182-5p, miR-7-5p, miR-320d/c, miR-34a-5p and miR-34a precursor (pre-miR34a) as 

determined by sequencing for all samples of our test cohort (n = 34, columns). TP53 status of the 

samples is indicated. (●) Denotes previously treated TP53wt patients who had relapsed after 

chemotherapy. 
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4 Discussion 
The BCR- and p53 signaling pathways are key determinants of B-CLL tumor cell 

survival. BCR signaling is constitutively active in CLL cells56,83,84, eliciting survival 

supporting effects, while p53 is frequently deleted and/or mutated, leading to impaired 

tumor cell apoptosis and treatment resistance42,78. The involvement of ncRNAs in 

mediating these pro-survival and apoptotic effects is not well understood. To identify 

ncRNA networks dependent on BCR signaling and p53 pathway activation in primary 

CLL, a small RNA sequencing and analysis platform was established.  

Investigations of miRNA expression in primary CLL established the link between miRNA 

deregulation and cancer53. More extensive screens on miRNA expression in CLL have 

relied on quantification by microarray and qRT-PCR array technologies53,160,166-

169,190,266,267 confining the assessment of target RNA expression to sequences covered by 

the respective array. In contrast, sequencing based miRNA quantification allows the 

analyses to be continuously adapted to employ the most current reference databases for 

read mapping. The few studies that implemented RNA sequencing to quantify miRNA 

expression in CLL either used reference databases which contained still a limited 

number of sequences188,268, or were confined to a small number of CLL samples 

analysed (less than 10)188,227,232. This study therefore set out to use small RNA 

sequencing for a comprehensive quantification of miRNA expression in 35 primary CLL 

samples with a focus on dynamic expression upon BCR signaling inhibition or p53 

activation.  

By sequencing 82 samples from 35 CLL patients, 1244 mature miRNAs were detected. 

This greatly exceeds the 157 miRNAs detected by Landgraf et al.227 or the 256 miRNAs 

found expressed by Jima et al.232, who applied a similar analysis pipeline. In line with 

Jima et al., sequencing reads were mapped to the miRBase human reference 

sequences requesting perfect sequence identity. In contrast though, analyses for the 

present study did not exclude reads with more than 5 genomic matches. The challenge 

of dealing with multiple mapping reads was met by selecting only reads of 17 – 25 nt 

length for statistical analyses of miRNA expression, thereby excluding short sequences 

likely to map to the genome multiple times.  

After selecting ~15 to 35 nt RNA molecules for sequencing during library preparation, 

only 13% of reads generated corresponded to mature miRNA sequences, whereas 41% 

were not found in the RNA databases used (which did not include e.g. transponsons, 

non-lincRNA lncRNA and miRNA precursor sequences) or did not map to the genome. 

Considering the abundance of transposon transcripts and RNA splicing and editing, this 

percentage of non-mapping reads was expected. A considerable fraction of sequences 
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originated from transcripts > 50 nt, although 50 bp sequencing was performed. These 

possibly represent fragments originating from RNA degradation in the sample set 

(average RIN = 8.3). Unexpectedly, these sequences proved to be highly useful and 

informative.  

At baseline, miRNA expression in CLL was dominated by miR-21-5p, which accounted 

for 25% of all miRNA reads and is frequently found overexpressed in malignancies229-231. 

Eight of the 10 most strongly expressed miRNAs reported here were previously listed 

among the most abundant in primary CLL cells188, supporting the results of this work. 

Comparisons of baseline miRNA expression between CLL and normal CD19 positive B-

cells have been performed extensively53,160,168,269 and are therefore mentioned in this 

thesis only to evaluate the chosen sequencing approach. Interestingly, of those 10 most 

highly expressed miRNAs, miR-21-5p, miR-101-3p, miR-150-5p and miR-155-5p are 

known to be overrepresented in CLL versus normal B-cells isolated from peripheral 

blood188 and were confirmed in the present study. This overrepresentation was not 

observed in a comparison to miRNA expression in normal CD5+ memory B-cells168 

though, emphasizing the impact of the ‘normal counterpart’ chosen for profiling of 

aberrant miRNA expression. 

 

4.1 miRNA expression profiles predict IGHV status and associate with 
in vitro ibrutinib sensitivity 

The BCR signaling pathway is constitutively activated in freshly isolated B-CLL 

cells55,84,270, supporting tumor cell survival91,101 and providing an attractive drug 

target95,271. In this work, miRNAs involved in BCR signaling and response to inhibition by 

ibrutinib treatment in vitro were investigated, as they may play a role in BCR-signaling 

mediated CLL cell survival. To this end, IGHV status dependent miRNAs and miRNAs 

directly regulated upon in vitro ibrutinib treatment were identified, and miRNAs 

associated with treatment response were reported.  

Analyzing the basal expression of 35 primary CLL samples, 12 miRNAs were found 

differentially regulated based on IGHV status. Of those, the higher expression of miR-

155-5p and the lower expression of miR-29c-3p/5p in U-IGHV samples is in keeping with 

previous reports166,188,189,269. This study additionally found miR-547, -184, -330, -153 and 

-9 upregulated, and miR-514a, -141 and -4432 downregulated in U-IGHV samples. The 

pro-proliferative roles of miR-9 observed in mixed-lineage leukemia-arranged 

leukemia272, of miR-330 in glioblastoma273, of miR-153 in prostate cancer274 and of miR-

184 in squameous cell carcinoma275 are in line with higher expression in U-IGHV CLL. 

However, the targets of one miRNA are numerous and depend on cell type and 
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physiologic state, so that contrary findings exist276-278. A predictor encompassing the 

expression profiles of 15 miRNAs was calculated in this work, which was able to 

discriminate between M-IGHV and U-IGHV samples with 82% accuracy. Using miRNA 

expression profiles presents a potential alternative to IGHV sequencing as has been 

previously suggested187. However, the level of accuracy seen in this study does not 

support a substitution of sequencing by miRNA profiling in this cohort. 

Ibrutinib, a covalent inhibitor of Bruton’s tyrosine kinase (BTK) downstream of the BCR, 

leads to abrogation of CLL cell survival and has recently been approved for the treatment 

of relapsed CLL95,279. The basal expression of 10 miRNAs was found to differ based on 

in vitro ibrutinib sensitivity in 34 CLL samples. This included miR-574-5p, miR-24-3p, 

miR-23a-3p and miR-155-5p, implicating a correlation between low baseline sample 

viability and high ibrutinib sensitivity. miR-155-5p, miR-24 and miR-23b were previously 

described as higher expressed in U-IGHV166. miR-330-3p was added to this group, 

reflecting the established link between IGHV status and ibrutinib sensitivity.  

Samples expressing high miR-155-5p levels displayed particularly good ibrutinib 

sensitivity in vitro. Interestingly, high miR-155-5p levels associate with adverse clinical 

patient outcome and were demonstrated to enhance responsiveness to BCR ligation in 

CLL280, supporting CLL cell survival. Therefore, enhanced BCR signaling in miR-155-5p 

high expressing CLL could contribute to ibrutinib sensitivity of these samples. In contrast, 

high basal miR-150-5p levels mediated resistance to ibrutinib in vitro. Interestingly, miR-

150 was described to target FOXP1 (forkhead box P1) and GRB1 (GRB2-associated 

binding protein 1), enhancers of BCR signaling233. High miR-150-5p levels associated 

with low FOXP1 expression also in this work, and additionally with low PDIA6 

expression, which is predicted to be targeted by miR-150-5p and is induced upon BCR 

stimulation in CLL59. The negative impact of miR-150 on BCR signaling activity may 

explain the low effectivity of ibrutinib, which targets the same pathway. These two 

examples suggested that also other miRNAs associating with ibrutinib sensitivity could 

regulate BCR signaling activity and CLL cell survival. First support for this hypothesis 

was provided by observations of a negative correlation of miR-23a-3p (low in ibrutinib 

resistant samples) and FCRL2 expression. Predicted miR-23a-3p target FCRL2 is a 

transmembrane molecule specifically expressed in B lineage cells, is overexpressed in 

CLL with good prognosis237 and inhibits BCR signaling by recruitment of the inhibitory 

tyrosine phosphatase SHP-1 to the BCR236. Low miR-23a-3p expression could reduce 

BCR signaling activity via accumulation of FCRL2, contributing to ibrutinib resistance. 

Likewise, the expression of miR-574-5p (low in resistant samples) and its predicted 

target PIM3 inversely correlated. The kinase PIM3 is essential for CLL tumor cell 

survival281. Low miR-574-5p levels could therefore support cell survival and mediate 
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ibrutinib resistance through de-repression of PIM3 in CLL. These hypotheses provide an 

interesting starting point for further experimental work.  

 

4.2 BTK inhibition identifies a set of five BCR signaling-dependent 
miRNAs 

Until recently, regulation of miRNA expression by the complex BCR signaling cascade 

remained poorly investigated282. To identify BCR signaling dependent miRNAs, ibrutinib 

was used as a tool to abrogate BCR signaling in primary CLL. BCR signaling-induced 

miRNA expression was previously investigated by Pede et al.190, who evaluated the 

transcriptional response (mRNA, miRNA) of primary CLL cells upon anti-IgM mediated 

BCR stimulation in vitro using hybridization arrays and qRT-PCR. Stimulation with anti-

IgM targeting the BCR poses an unphysiological trigger to the receptor and it appeared 

more meaningful to inhibit steady-state, cell-autonomous BCR signaling55 for this work. 

Sequencing data analyses revealed an induction of miR-320c and miR-1246, while miR-

484, miR-17-5p, miR-155-3p and miR-27a-5p were downregulated. The p53-dependent 

induction of miR-320c observed upon DNA damage (refer to section 3.5.1) suggests that 

this regulation reflects ibrutinib treatment-induced apoptosis rather than a direct effect of 

BTK blockage. miR-155-3p has been found induced in the study of Pede et al., in line 

with our data. The miR-212/132-3p cluster was the only other miRNA regulated after 

BCR stimulation in their experiments. Interestingly, a reduction in miR-212 and miR-132-

3p expression was observed in this work, albeit the expression levels were extremely 

low. This questions the biological relevance of the published miR-212/132-3p induction 

upon BCR signaling. 

The repression of oncogenic miR-17-5p upon BTK inhibition is in keeping with ibrutinib’s 

effects of abrogating CLL cell survival and proliferation. Overexpression of the miR-

17~92 cluster is known to induce lymphoma-/leukemogenesis in transgenic mice283 and 

has been described to amplify BCR signaling in diffuse large B-cell lymphoma by 

augmenting BCR downstream target activation including PLCγ2 phosphorylation and 

calcium flux284. The present work suggests a role of miR-17-5p in BCR signaling also in 

CLL, acting to support tumor cell survival and proliferation.  

Previously, miR-155-5p expression was suggested to be BCR dependent as implied by 

the coexistence of miR-155-5p overexpression and over-active BCR signaling in CLL vs. 

healthy B-cells181,269,285 and an induction of miR-155-5p after BCR stimulation of healthy 

B-cells and Burkitt’s Lymphoma cell lines269,286. Neither Pede et al. nor this work found 

miR-155-5p expression to be BCR signaling dependent. However, an association 

between high miR-155-5p expression, high ibrutinib sensitivity and U-IGHV status was 
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apparent. Therefore, this study rather supports miR-155-5p as a recently suggested 

enhancer280 than as a target of CLL B-cell receptor signaling. 

For miR-484 and miR-1246 no connection to BCR signaling or support of cell survival 

has been previously reported.  

In general, very subtle regulations of miRNA expression upon BTK inhibition were 

observed (0.5 to 1.4 fold), indicating a low level of baseline BCR signaling activity. This 

suggests that inhibiting baseline, cell-autonomous BCR signaling without applying 

extrinsic BCR stimulation comes at the expense of low downstream regulation 

amplitudes and the possibility of missing BCR signaling targets. Additionally, ibrutinib 

has been shown to act in vitro within 8 hours as read out by CD69 expression, cell 

viability and caspase-3 activation100, so a shorter incubation time (e.g. 12 hours) might 

enrich the results for more immediate BCR signaling targets.  

 

4.3 miR-182, miR-7 and miR-320d/c are novel p53-dependent miRNAs in 
CLL 

miRNA targets of p53 were previously reported for various cellular models and cancer 

entities. They will not be reviewed here for their sheer number, but were recently 

summarized by Hermeking287. It needs to be kept in mind though, that the set of 

functional p53 targets will vary with the cell type and the type of stress applied to trigger 

p53 activation208,288. In CLL, several studies have gathered associative data of basal 

miRNA expression levels and 17p status169,191,266. However, a direct regulation of 

aberrantly expressed miRNAs by p53, as can be demonstrated by analysis of miRNA 

expression changes upon p53 activation, was not investigated.  

Upon DNA damage, higher rates of apoptosis and expression of key p53 targets p21 and 

miR-34a-5p was observed in TP53wt than in del11q than in TP53del/mut samples. Further, 

miR-34a-5p expression was already significantly lower in TP53del/mut than TP53wt already 

at baseline. This was in line with previous data70,116,170,289 and affirmed the capability of 

the experimental approach chosen.  

Quantification of miRNA expression dynamics upon DNA damage demonstrated a more 

dynamic overall response to irradiation-triggered p53 induction in TP53wt than TP53del/mut 

samples. Still, a few miRNAs including miR-150-3p, miR-155-5p and miR-21-3p were 

found regulated in both sample groups, implying a role in DNA damage response 

independent of p53. miR-34a-5p, miR-182-5p, miR-7-5p and miR-320d/c were identified 

as the top five p53-dependent miRNAs. The miRNAs were checked for shared 

sequences, and a false-positive induction caused by a random RNA fragment mapping 

to all of them was excluded. Interestingly, for the four last-mentioned, basal expression 
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levels were higher in TP53del/mut than TP53wt samples, which is in contrast to miR-34a-5p 

and seems counter-intuitive when considering p53-dependency. However, TP53 status 

dependent miRNA induction was validated by qRT-PCR for miR-7-5p and miR-320d (in 

addition to miR-34a-5p). Previous observations support p53-dependent expression of 

these miRNAs. miR-182-5p has been described as p53 target in lung, breast and colon 

cancer cell lines193,290, and its anti-proliferative activity was demonstrated in renal cell 

carcinoma291. For miR-7-5p, a p53 binding site was identified in close proximity to miR-7-

2206, and an anti-proliferative, cell cycle arresting292,293 function in solid cancers 

underlines its tumor suppressive role and supports p53-dependent transcription. 

Experimentally validated targets of miR-7-5p include members of the AKT pathway (IRS-

1 and 2) in glioblastoma294 and transcriptional repressor YY1 (yin yang 1) in colorectal 

cancer292 to induce apoptosis and inhibit cell proliferation. miR-320d/c/b display high 

sequence homology, similar regulation and belong to the miR-320 family sharing the 

same seed sequence. For miR-320, no direct functional link to p53 has been established 

to date, although p53 binding sites in proximity to miR-320c and b were reported207. 

Zhang et al.295 found miR-320 in regions with DNA copy number loss in three different 

types of solid cancer (breast, ovarian, melanoma), and Schepeler et al.296 established 

miR-320 as independent predictor in colon tumors, where high expression correlated 

with a longer progression-free survival. In summary, this suggests a role of miR-182-5p, 

miR-7-5p and miR-320d/c in apoptosis and inhibition of cell proliferation as part of the 

p53 pathway in primary CLL, a connection which was uncovered by this work.  

Eighteen further miRNAs displayed p53-dependent expression, of which miR-34a-3p (as 

part of pre-miR-34a) and miR-15a-5p are published p53 targets in CLL70,116,297. p53 has 

been shown to activate transcription of mir-155195, and was reported to bind in the 

proximity of mir-9-2207, mir-23a206-208, mir-29b208 and mir-26a-2208 in various cell lines. 

Functional studies of their p53-dependence are lacking.  

Interestingly, irradiation-triggered induction of oncogenic miR-17~92 cluster members 

(miR-17, miR-18a and miR-20a but not miR-92a) was stronger in TP53del/mut than TP53wt 

samples. This could result from a decreased miR-17~92 repression by p53298. Similarly, 

miR-155-3p was stronger induced in TP53del/mut than than TP53wt samples. Considering 

its downregulation after survival-abrogating ibrutinib treatment, it could confer a survival 

advantage to TP53del/mut cells, although its rather low expression is to be beared in mind. 

Table 12 summarizes miRNAs that were previously reported to display significantly 

different basal expression levels between 17p13 disomic and 17p13 deleted patients. 

This work’s data support and confirm p53-dependency of miR-34a-5p expression, since 

lower basal levels were observed in del17p patients and a higher DNA-damage triggered 

induction was seen in TP53wt than TP53del/mut. Along the same lines, evidence for p53-
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dependency of miR-15a suppression is provided by a significant IR-mediated 

suppression exclusively in the wild-type setting. In contrast, this work’s results suggest 

that the lower expression of miR-151a-3p, miR-29c, miR-181b and miR-497 in del17p is 

a p53-independent effect, possibly resulting from the deletion of another gene on 17p, as 

no regulation is observed upon p53 induction. This can be underlined for miR-497, which 

itself is located on 17p approximately 200 kb centromeric of TP53 and hit by 17p 

deletions as a ‘bystander’266. For miR-17-5p and miR-155-5p, DNA damage triggered 

induction independent of TP53 status suggests a p53-independent role in the DNA 

damage response. 

 
Table 12. p53 dependence of miRNAs with reported differential basal expression in deleted 
versus disomic 17p in CLL. Observed data were derived from the small RNA sequencing 

screen on 15 tumor samples from previously untreated TP53wt and 10 TP53del/mut patients. FC = 

fold change. IR = irradiation, 5 Gy (cell harvest 24h thereafter). P-values were Benjamini-

Hochberg corrected. 

miRNA 
name 

Reported 
level in  
del17p 

Observed 
FC del vs. 
disomic 
17p 

p-
value 

Regu-
lation by 
IR in 
TP53wt 

p-value 

Regu-
lation by 
IR in 
TP53del/mut 

p- 
value 

miR-34a-5p 
Low115,167,

189,262 
0.3 0.16 4.3 4.3E-39 2.9 2.3E-04 

miR-151a-3p Low169 0.2 0.16 1.0 0.91 1.0 0.99 

miR-29c Low167,189 0.6 0.51 1.0 0.77 1.0 0,94 

miR-17-5p Low191 0.9 0.90 1.2 0.03 1.4 1.3E-04 

miR-181b Low266 1.1 0.94 1.1 0.21 1.1 0.94 

miR-497 Low266 1.1 0.95 0.9 0.81 0.9 0.98 

miR-155-5p High266 1.4 0.43 1.4 6.2E-07 1.3 3.6E-04 

miR-21-5p High266 1.2 0.70 0.9 0.28 1.0 0.93 

miR-15a High266 0.7 0.75 0.8 0.02 1.1 0.93 

 

Detailed insight into the biological role of miRNAs can only be gained through 

characterization of their mRNA target genes, which enables the discovery of their 

mechanism of action. A targeted quantification of mRNA expression was not part of this 

work. However, 13% of the small RNA reads generated here mapped to mRNA 

sequences. Those reads are expected to be fragments arising from RNA degradation, 

which was present at low levels after RNA isolation as indicated by an average RNA 

integrity number of 8.3. In these fragments, a clear TP53 status dependent induction of 

key p53 transcriptional targets including MDM2, p21, Bax, Puma and GADD45A was 

observed. This suggested that their levels were representative of the expression of 
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longer parent transcripts, enabling the identification of p53-dependent long (non-coding) 

RNA transcripts from this dataset.  

Accordingly, for the top five p53-dependent miRNAs (miR-34a-5p, miR-182-5p, miR-7-

5p, miR-320d/c), predicted mRNA targets displaying an IR-triggered regulation inverse to 

the miRNA expression dynamics were identified. This provides a starting point for 

experimental validation and subsequent functional analyses.  

 

4.4 p53-dependent long non-coding RNAs identified in primary CLL and 
BL cell lines 

4.4.1 p53-dependent lincRNA-p21 expression in CLL and BL 
The present work demonstrates a very low expression of lincRNA-p21 in CLL, which is 

strongly induced upon p53 induction by irradiation or nutlin-3 treatment in p53 wild-type 

samples only. Induction of apoptosis, p21 and lincRNA-p21 were shown to closely 

correlate. TP53 status dependency of lincRNA-p21 induction was confirmed in a set of 

Burkitt’s Lymphoma cell lines. p53 knockdown or CRISPR/Cas9-mediated p53 knockout 

abolished lincRNA-p21 induction, proving direct p53-dependency. These data argue for 

a role of lincRNA-p21 in the p53 pathway in CLL and lymphoma albeit the question 

remains, whether this is limited to a co-activation of p21299, or whether it is (additionally) 

acting beyond on a plethora of downstream targets of the p53 pathway205. The present 

experiments were not designed to dissect the independence of p21 and lincRNA-p21 

transcription. 

Long non-coding RNAs have been implicated in the p53 network as regulators and 

effectors of p53. Only a handful of lncRNA p53 targets have been described in more 

detail, and the relevance to CLL biology remained unknown. LincRNA-p21 was one of 

the first lncRNA p53 targets to be characterized in mouse endothelial fibroblasts204. It 

obtained its name for its proximity to the neighboring p21 gene, but was proposed to be 

transcribed independently from p21204 to mediate transcriptional suppression (e.g. of 

stat3, cyclin D2, cyclin dependent kinase 4) downstream of p53 via several mechanisms 

in trans205. Very recently, lincRNA-p21 was shown to activate p21 transcription in cis, 

acting primarily as a locus-restricted coactivator for p53-mediated p21 expression, which 

contrasts previous findings299. p53-dependent transcription of lincRNA-p21 was 

confirmed in various solid cancer cell lines (HCT-116300, HeLa and MCF-7301). In primary 

human material, lincRNA-p21 was found at decreased levels in plasma of CLL patients 

as opposed to healthy individuals302, and decreased in colon tumor versus normal 

colonic tissue300, which is consistent with a tumor-suppressive function.     
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4.4.2 p53-dependent NEAT1 expression in CLL and BL 
NEAT1 (nuclear enriched abundant transcript 1) clearly emerged as potential p53 target 

from sequencing-based analysis of non-coding RNA expression other than mature 

miRNA. More precisely, of the three NEAT1 transcripts in the reference database 

(Ensembl GRCh37), the largely overlapping NEAT1-002 and -202 transcripts (~1.7 and 

~1.5 kb) were found induced. TP53 status dependent NEAT1 induction was validated by 

qRT-PCR. Since the discovery of NEAT1, confirmed transcript sizes and numbers have 

been subject to numerous changes, amounting to five since the latest Ensembl update in 

August 2014 (Emsembl GRCh38). This discussion will consider aggregated NEAT1 

expression as determined by qRT-PCR (Figure 26 A). 

p53-dependence of NEAT1 expression was further supported by a close correlation to 

p21 expression and TP53 status dependent response to nutlin-3 treatment in primary 

CLL. TP53 dependent expression was confirmed in genetically modified Burkitt’s 

lymphoma cell lines displaying controlled p53 activity, and a p53 ChIP-PCR experiment 

finally demonstrated direct, TP53 status dependent binding of p53 to the NEAT1 

promoter sequence.  

NEAT1 is a lincRNA widely expressed across cell types upon differentiation303, where it 

localizes to the nucleus. It is an essential architectural component of paraspeckles, 

relatively newly identified ribonucleoprotein bodies that are found in the interchromatin 

space of mammalian cells upon differentiation263,304-306. NEAT1 is the only RNA 

component in human paraspeckles, building a scaffold for 40 co-localized proteins307. 

Knockdown of NEAT1 led to paraspeckle loss263, demonstrating that its RNA, but not the 

associated proteins, is the rate-limiting molecule for paraspeckle formation. In mice, 

paraspeckles were non-essential in unstressed conditions308. As NEAT1 upregulation 

was observed upon proteasomal inhibition, serum starvation, acidosis and HIV infection 

in vitro, a role in the cellular stress response has been suggested213,309.  

Binding of p53 to the NEAT1 promoter has been observed in two previous large-scale 

p53 ChIP-Seq studies: Botcheva et al.206 reported the NEAT1 promoter as novel p53 

binding site in a human lung fibroblast cell line, which was confirmed in mouse 

endothelial fibroblasts310. It was not until very recently though, that p53 binding at this 

locus was demonstrated to be functional, i.e. induce transcription of the nearby NEAT1 

gene209. The present work now demonstrates a stress-induced transcriptional activation 

of NEAT1 by p53 in leukemia and lymphoma. In light of the aforementioned, this poses 

the question about the role of NEAT1 upregulation upon p53 activation in the DNA 

damage response or, asked differently, the role of NEAT1 in mediating p53 pathway 

function.  
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Paraspeckles can influence gene expression through three mechanisms: On the one 

hand, they control nuclear retention of mRNAs containing inverted repeats (Alu 

elements) that form double-stranded RNA regions subject to adenosine-to-inosine (A-to-

I) editing by ADARs (adenosine deaminases acting on RNA), ultimately resulting in 

translational repression304. On the other hand, they counter-regulate the function of 

paraspeckle-localizing proteins, which normally regulate distinct nuclear processes 

outside the paraspeckles, as recently demonstrated for SFPQ (splicing factor 

proline/glutamine-rich)311,312. Thirdly, NEAT1 has been described to bind to active 

chromatin sites, its localization being subject to transcriptional status rather than 

homology to the DNA sequence. It was speculated, that NEAT1 could play a structural 

role in the organization of nuclear bodies at highly transcribed loci, although it remained 

unclear how this would impact on gene expression profiles313. 

Considering the role of NEAT1 in the control of hyperedited mRNA expression, p53 

activation potentially impacts on the expression of hundreds of genes containing Alu 

repeats in their 3’-UTRs that undergo A-to-I editing. The impact of p53-mediated 

translational repression via NEAT1-mediated nuclear retention of (hyperedited) mRNA 

could be characterized by screening the subcellular localization of mRNA and 

corresponding protein levels after p53 activation. Thereby, NEAT1 overexpression could 

explain repressive effects seen upon p53 activation314, whose mechanisms remain 

largely unknown142,315. Another potential connection between p53 and NEAT1 expression 

emerges from the re-localization of paraspeckle proteins from the nucleoplasm into the 

paraspeckles upon NEAT1 overexpression263,311,312. In the nucleoplasm, these proteins 

serve diverse functions including transcriptional control, RNA processing and DNA 

repair311,316. Interestingly, upon DNA damage, the paraspeckle proteins SFPQ, NONO 

(non-POU domain-containing octamer-binding protein) and FUS (fused in sarcoma) are 

rapidly recruited to the damaged sites, where the SFPQ supports homology-directed 

double-strand break repair317,318. In line with this observation, reduced SFPQ expression 

conferred cellular sensitivity to DNA damaging agents. A combination of SFPQ depletion 

with a deletion of Rad51d (catalyzing homologous pairing between single- and double-

stranded DNA) resulted in a lethal phenotype as would be expected from a disruption of 

homologous recombination (HR)318. FUS depletion diminished double-strand break 

repair by HR and non-homologous end joining (NHEJ)77. Similarly, paraspeckle protein 

RBM14 (RNA binding motif protein 14) was shown to stimulate DNA repair by controlling 

the NHEJ pathway. Accordingly, its upregulation caused radio resistance in 

glioblastima319. It is tempting to hypothesize that p53-mediated NEAT1 induction would 

sequester SFPQ, FUS and RBM14 away from their sites of action, resulting in a 
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disruption of HR and NHEJ, tilting the p53-response from DNA damage repair to 

apoptosis.  

However, considering NEAT1 is also induced upon direct p53 activation by nutlin-3 in 

absence of DNA damage, it would be expected to regulate responses beyond DNA 

damage repair. A connection between p53 activation, NEAT1 induction and inhibition of 

paraspeckle protein activity or nuclear export of A-to-I edited RNA to apoptosis as 

suggested here has not been established and opens an interesting field of study. 

 

In summary, this work confirmed miR-34a as prime p53 target and identified several 

novel p53 targets in CLL including miR-182-5p, miR-7-5p and miR-320d/c. While some 

reports indicating p53-dependency of miR-182-5p, miR-7-5p in other entities exist, this 

context is novel for miR-320d/c. With the exception of miR-15a and miR-34a, miRNAs 

previously reported to associate with p53 aberrations in CLL were regulated 

 
Figure 36. Summary of p53 targets identified in CLL. miR-34a-5p was confirmed as non-

coding p53 target. miR-182-5p, miR-7-5p and miR-320c/d are newly suggested targets in CLL, 

which are induced less strongly. NEAT1 and lincRNA-p21 are novel long non-coding p53 targets 

in CLL and Burkitt’s lymphoma. The roles of the newly identified ncRNAs in mediating the 

outcome of p53 activation needs further study. In addition, a selection of known p53 targets also 

found in this work is presented. MDM2, mouse double minute 2 homolog; DDB2, damage-specific 

DNA binding protein 2; ASCC3, activating signal cointegrator 1 complex subunit 3, GADD45A, 

growth arreast and DNA-damage-inducible alpha; Puma, p53 upregulated modulator of apoptosis; 

BCL-2 associated X protein; TNFRSF10B, tumor necrosis factor receptor superfamily, member 

10B.   
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independently of TP53 status. Beyond miRNA, the smRNA sequencing dataset reflected 

the p53-dependency of key p53 targets including MDM2, p21, Bax and Puma, and was 

therefore used to evaluate long ncRNA expression. The lincRNAs NEAT1 and lincRNA-

p21 were found p53-dependently induced in CLL and Burkitt’s lymphoma. Considering 

the high expression levels of NEAT1 and the absence of a previous link to cancer 

chemoresistance, it appeared a particularly interesting target. p53 binding to the 

promoter sequence of NEAT1 was demonstrated. The function of NEAT1 upon p53 

induction remains unknown. However, NEAT1 binding partners were previously implied 

to be critical for DNA damage repair, suggesting a role for p53-induced NEAT1 in tilting 

the balance from damage repair to apoptosis. A graphical summary is provided in Figure 

36. 

 

4.5 CLL high-risk patients display p53 pathway impairment independent 
of TP53 and ATM aberrations  

The reasons for chemorefractoriness in CLL patients displaying wild-type, disomic TP53 

and ATM are not well understood. By analysis of irradiation-triggered induction of p21, 

lincRNA-p21, NEAT1, miR-182-5p, miR-7-5p and miR-320d/c to assess p53 signaling 

activity in samples of TP53wt, previously treated ‘high-risk’ patients, a pattern similar to 

p53 pathway inactivation was found despite disomic wild-type p53 and ATM. In this 

setting of impaired p53 activity, miR-34a-5p induction was not reduced in the high-risk 

group, which might be due to p53-independent, alternative regulation, whose existence 

has been previously suggested193,320,321. While p53 pathway inactivation offers an 

explanation for the observed chemorefractoriness, no reason for p53 inactivation could 

be found on the basis of ncRNA regulation, i.e. no aberrant expression of ncRNAs 

reported to target p53 pathway members were identified. Thus, the mechanism 

underlying impaired p53 pathway activity in this patient group warrants further study. 

However, the development of high-risk disease can (additionally) be caused by 

deregulation of tumor suppressors and oncogenes other than p53, as recently suggested 

by the identification of genetic aberrations affecting BIRC3 (Baculoviral IAP repeat 

containing 3) and FAT1 (protocadherin Fat 1), which closely associated with 

chemorefractoriness in TP53wt CLL322,323.  
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5 Conclusion and Perspective 
Active B-cell receptor signaling supports the survival of CLL tumor cells, and p53 

aberrations are known to confer resistance towards apoptosis, mediating poor prognosis. 

We hypothesized that by modulating the BCR- and p53 signaling pathways, miRNAs and 

other ncRNAs could be identified that play important roles in mediating their outcome, 

and are critical to survival or apoptosis of CLL tumor cells. 
 

In this work, small RNA sequencing was applied to assess ncRNA expression in CLL at 

unprecedented resolution. miRNAs were identified that are IGHV mutation status 

dependently expressed, regulated upon abrogation of BCR signaling and/or show basal 

expression levels associated with in vitro ibrutinib sensitivity. All of those are potentially 

involved in supporting CLL cell survival. Direct BCR signaling dependent expression was 

demonstrated for miR-320c, miR-1246, miR-484, miR-17-5p, miR-155-3p and miR-27a-

5p. Their influence on tumor cell survival would be most interesting to investigate further 

by targeted modulation of expression levels.  

The emphasis of this work was put on the identification of p53-dependent ncRNAs. By 

analyzing ncRNA expression changes upon DNA damage-triggered p53 induction, a set 

of miRNAs were discovered as novel p53 targets in CLL. Beyond known prominent p53 

target miRNA-34a these included miR-182-5p, miR-7-5p and miR-320d/c. Experimentally 

validating the suggested mRNA targets of those miRNAs will be critical to understand 

underlying functional mechanisms and evaluate their potential for miRNA-based 

therapies. Importantly, the present work demonstrates p53-dependent induction of 

lincRNA-p21 and NEAT1 in CLL and Burkitt’s lymphoma, providing first evidence of p53-

dependent long non-coding RNA regulation in these entities. p53-dependent induction of 

lincRNA NEAT1, a key component of nuclear paraspeckles, is intriguing, and the 

involvement of paraspeckles in p53-dependent apoptosis opens a new field of study.  

These findings extend the network of p53-regulated genes in CLL and lymphoma. 

Subsequent work will need to elucidate the functional roles of the newly identified p53 

targets. 
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Appendix 
Table S1. Detailed sample genetics and grouping for comparison of ncRNA expression. 
Group 1 = TP53wt patients without del11q, no prior treatment; group 2 = TP53wt ‘high-risk’ 

patients, previously treated; group 3 = TP53del/mut patients. Y = yes, N = no. *A sample containing 

6% TP53 mutation was considered TP53wt. 

group Sample 
Nr. 

del17p,  
% 

TP53mut, 
% 

del11q,  
% 

other,  
% IGHV Prior 

treatment 

1 

1 0 0 0 MYD88, 65  M N 

2 0 0 0 tris12, 78  UM N 
3 0 0 0 0 UM N 
4 0 0 0 0 UM N 
5 0 0 0 0 M N 
6 0 0 0 0 M N 
7 0 0 0 0 UM N 
8 0 0 0 0 M N 
9 0 0 0 0 M N 
10 0 0 0 0 M N 
11 0 0 0 0 M N 
12 0 0 0 0 UM N 
13 0 0 0 0 M N 
14 0 0 0 0 M N 

15 0 0 0 tris 12, 57 M N 

2 

16 0 0 95 BRAF, 12  UM Y 

17 0 0 88 NOTCH1, 45  UM Y 
18 0 0 81 SF3B1, 48  UM Y 
19 0 0 79 ATM, 37 UM Y 
20 0 0 0 SF3B1, 34 UM Y 
21 0 0 0 8q24+, 78; SF3B1, 45 M Y 
22 0 6 11 SF3B1, 34  M Y 
23 0 0 0 8q24+, 78  M Y 

24 0 7 0 ATM, 33 UM Y 

3 

25 13 71 0 0 M Y 

26 23 26 0 0 UM Y 
27 Y 30 0 NOTCH1, 50  UM Y 
28 91 0 0 MYD88, 50  M N 
29 Y 54 0 SF3B1, 52; BRAF, 49 UM Y 
30 58 44 0 0 M Y 
31 11 35 0 BRAF, 17; SF3B1, 44 UM Y 
32 52 80 0 0 UM N 
33 ? 44 0 SF3B1, 48 UM Y 

34 47 92 0 0 UM Y 
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Table S2. TP53 mutation status of the BL cell lines used. 

Cell line TP53 status Amino acid change 
BL-2 wt - 

BL-7 wt - 

Cheptanges wt - 

Ly-47 wt - 

Salina wt - 

Seraphine wt - 

BJAB c.578A>G p.H193R 

BL-60 c.742C>T; c.844C>T p.R248W; p.R282W 

CA-46 c.743G>A p.R248Q 

Namalwa c.743G>A p.R248Q 

Ramos c.760_761AT>GA p.I254D 
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Table S3. Comparison of the 30 highest expressed miRNAs in CLL baseline samples to 
previously reported CLL sequencing screens. Normalized read counts are provided. 

 This work Jima et al.232 Landgraf et al.227 

rank name 
average 

read count 
NT 

name 
average 

read count 
NT 

name 
average 

read count 
NT 

1 miR-21-5p 531914 let-7f-1 1166618 miR-142-3p 247 
2 miR-26a-5p 234464 let-7g 841349 miR-142-5p 165 
3 let-7g-5p 206540 let-7a-2 358095 miR-29b-3p 112 
4 miR-101-3p 160967 miR-21 215094 miR-16-5p 85 
5 miR-150-5p 136475 let-7i 174294 miR-150-3p 70 
6 miR-148a-3p 112555 miR-140-3p 170300 miR-26a-5p 61 
7 let-7f-5p 93963 miR-29a 116065 miR-21-5p 55 
8 miR-29a-3p 84091 miR-101-1 93093 miR-30e-5p 37 
9 let-7i-5p 74492 miR-142 54372 miR-15a-5p 35 
10 miR-155-5p 63073 miR-378 43937 miR-29a-3p 33 
11 miR-142-3p 34047 miR-103-1 43831 miR-26b-5p 24 
12 miR-142-5p 31798 miR-320c-1 32030 let-7f-5p 22 
13 let-7a-5p 31678 miR-320a 30631 let-7a-5p 19 
14 miR-26b-5p 31105 miR-101-2 29796 miR-101-3p 18 
15 miR-27a-3p 29320 miR-103-2 27408 miR-30d-5p 17 
16 miR-30d-5p 23499 miR-107 25865 miR-155-5p 15 
17 miR-92a-3p 20473 miR-423 24503 mir-29c-3p 13 
18 miR-16-5p 20436 miR-25 20142 miR-140-5p 12 
19 miR-103a-3p 19451 miR-26b 19647 let-7g-5p 8 
20 miR-191-5p 18884 miR-26a-1 18373 miR-28-5p 7 
21 miR-20a-5p 18854 miR-92a-1 14005 let-7i-5p 6 
22 miR-361-3p 17263 miR-30e* 11068 miR-32-5p 5 
23 miR-1246 16815 miR-221 10882 miR-191-5p 5 
24 miR-30e-5p 14928 miR-30e 8944 miR-27a-3p 5 
25 miR-29b-3p 12868 miR-191 7248 miR-19b-3p 4 
26 miR-140-3p 11523 miR-16-1 7239 miR-186-5p 3 
27 miR-25-3p 10692 miR-192 6898 miR-146a-5p 3 
28 miR-186-5p 9726 miR-29c 5770 miR-24-3p 3 
29 miR-30b-5p 9225 miR-30d 5456 miR-92a-3p 3 
30 miR-146a-5p 9197 miR-151-3p 4801 miR-30c-5p 3 
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Table S4. mRNAs inversely correlating to miR-574-5p expression, and predicted to be 
targeted by miR-574-5p. Target prediction was performed by miRWalk, miRanda and 

TargetScan algorithms. Pearson’s correlation coefficient (R) is provided and p-values corrected 

for multiple testing are provided. 

Gene / protein name R p-value 
SLC16A14 / solute carrier family 16, member 4  -0.67 0.009 
IMPACT / impact RWD domain protein -0.65 0.010 
MLLT3 / myeloid/lymphoid or mixed-lineage leukemia translocated to, 3 -0.64 0.012 
PIM3 / PIM3 -0.64 0.013 
CLDN6 / claudin-6 -0.62 0.016 
DCDC2 / doublecortin domain-containing protein 2 -0.61 0.017 
PHOSPHO1 / phosphatase, orphan 1 -0.61 0.017 
LECT1 / chondromodulin-1 -0.59 0.023 
SLIT2 / slit homolog 2 -0.58 0.028 
STXBP5L / syntaxin-binding protein 5 -0.57 0.030 
MAOB / monoamine oxidase B -0.56 0.031 
MYO5B / myosin V B -0.56 0.035 
TRMT5 / tRNA methyltransferase 5 -0.55 0.036 
GPR83 / orphan receptor Gpr83 -0.55 0.037 
TLN2 / talin 2 -0.55 0.039 
NSL1 / kinetochore-associated protein NSL1 homolog -0.55 0.040 
FOXO4 / forkhead box O4 -0.54 0.040 
HOXC8 / homeobox C8 -0.54 0.041 
XPO-7 / exportin-7 -0.54 0.042 
INSIG1 / insulin induced gene 1 -0.54 0.043 
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Table S5. ncRNAs differentially expressed between previously untreated TP53wt and high-
risk TP53wt samples at baseline. Previously untreated TP53wt samples (UT, n = 15) were 

compared to high-risk TP53wt samples that had all received prior treatment (PT, n = 9). Mean 

normalized read counts and Benjamini-Hochberg corrected p-values are provided. 

RNA identifier RNA 
type 

UT TP53wt PT TP53wt Fold 
difference 

p-value 

ENSG00000201570 snRNA 2407 32 0.01 1.3E-4 
ENSG00000245526 lincRNA 225 1718 7.56 0.009 
ENSG00000261786 lincRNA 117 6 0.05 0.009 
ENSG00000230590 lincRNA 314 23 0.06 0.009 
miR-1285-3p miRNA 21 36 1.86 0.014 
let-7b-5p miRNA 3343 7523 2.17 0.026 
ENSG00000201198 snRNA 65 21 0.33 0.019 
ENSG00000239075 snRNA 51 14 0.25 0.019 
ENSG00000207227 snRNA 50 14 0.26 0.032 
ENSG00000206595 snRNA 51 14 0.26 0.034 
ENSG00000207099 snRNA 85 31 0.36 0.042 
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Figure S1. Induction of the top four p53-dependently regulated miRNAs upon irradiation. 

NT = non-treated, IR = irradiated. Normalized read counts and Benjamini-Hochberg corrected p-

values are provided. One colour encodes one specific TP53wt or TP53del/mut sample.  
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