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Abstract

Being able to provide accurate forecasts of future quantities has always been a great human
desire and is essential in numerous situations in daily life. Meanwhile, it has become routine
to work with probabilistic forecasts in the form of full predictive distributions rather than
with single deterministic point forecasts in many disciplines, with weather prediction acting
as a key example.

Nowadays, probabilistic weather forecasts are usually constructed from ensemble prediction
systems, which consist of multiple runs of numerical weather prediction models differing in
the initial conditions and/or the parameterized numerical representation of the atmosphere.
The raw ensemble forecasts typically reveal biases and dispersion errors and thus call for
statistical postprocessing to realize their full potential. Several ensemble postprocessing
methods have been developed and are partly recapitulated in this thesis, yet many of them
only apply to a single weather quantity at a single location and for a single prediction hori-
zon. In many applications, however, there is a critical need to account for spatial, temporal
and inter-variable dependencies.

To address this, a tool called ensemble copula coupling (ECC) is introduced and examined.
Essentially, ECC uses the empirical copula induced by the raw ensemble to aggregate sam-
ples from predictive distributions for each location, variable and look-ahead time separately,
which are obtained via existing univariate postprocessing methods. The ECC ensemble in-
herits the multivariate rank dependence pattern from the raw ensemble, thereby capturing
the flow dependence.

Several variants and modifications of ECC are studied, and it is demonstrated that the
ECC concept provides an overarching frame for existing techniques scattered in the litera-
ture.

From a mathematical point of view, it is shown that ECC can be considered a copula
approach by pointing out relationships to multivariate discrete copulas, which are intro-
duced in this thesis and for which relevant mathematical properties are derived.

A generalization of standard ECC is introduced, which aggregates samples from not neces-
sarily univariate, but general predictive distributions obtained by low-dimensional postpro-
cessing in an ECC-like manner.

Finally, the SimSchaake approach, which combines the notion of similarity-based ensem-
ble methods with that of the so-called Schaake shuffle, is presented as an alternative to
ECC. In this technique, the dependence patterns are based on verifying observations rather
than on raw ensemble forecasts as in ECC.

The methods and concepts are illustrated and evaluated based on case studies, using real
ensemble forecast data of the European Centre for Medium-Range Weather Forecasts. Es-
sentially, the new multivariate approaches developed in this thesis reveal good predictive
performances, thus contributing to improved probabilistic forecasts.






Zusammenfassung

Es ist schon immer ein grofles menschliches Bediirfnis gewesen und in zahlreichen Situatio-
nen des taglichen Lebens unabdingbar, prazise Vorhersagen zukiinftiger Grofien bereitstellen
zu konnen. Mittlerweile ist es in vielen Disziplinen zur Gewohnheit geworden, mit proba-
bilistischen Vorhersagen in der Form von vollstdndigen Vorhersageverteilungen zu arbeiten,
und nicht mit einzelnen deterministischen Punktvorhersagen, wobei die Wettervorhersage
als ein Schliisselbeispiel fungiert.

Heutzutage werden probabilistische Wettervorhersagen tiblicherweise auf der Grundlage von
Ensemblevorhersagesystemen erstellt, die aus mehreren Durchldufen numerischer Wetter-
vorhersagemodelle bestehen, welche sich hinsichtlich der Anfangsbedingungen und/oder der
parameterisierten numerischen Darstellung der Atmosphére unterscheiden. Die unbearbei-
teten Ensemblevorhersagen offenbaren typischerweise systematische und Dispersionsfehler
und bendtigen daher eine statistische Nachbereitung, um ihr volles Leistungsvermdgen zu
verwirklichen. Mehrere Nachbereitungsmethoden fiir Ensembles sind entwickelt worden und
werden in dieser Arbeit zum Teil rekapituliert, wobei viele davon jedoch nur fiir eine einzelne
Wettergréfle, an einem einzelnen Ort und fiir einen einzelnen Vorhersagehorizont gelten. In
vielen Anwendungen besteht jedoch ein dringender Bedarf, rdumliche, zeitliche und Ab-
héngigkeiten zwischen den Groflen zu beriicksichtigen.

Um dies zu bewerkstelligen, wird ein Werkzeug namens Ensemble Copula Coupling (ECC)
eingefiihrt und untersucht. Im Wesentlichen verwendet ECC die von dem unbearbeiteten
Ensemble induzierte empirische Copula, um Stichproben von getrennten Vorhersagevertei-
lungen fiir jeden Ort, jede Variable und jeden Vorhersagehorizont zu verbinden, die durch
bestehende univariate Nachbereitungsmethoden erhalten werden. Das ECC-Ensemble {iber-
nimmt das multivariate Rangabhéngigkeitsmuster des unbearbeiteten Ensembles und erfasst
dadurch die Datenabhéngigkeit.

Mehrere Varianten und Modifikationen von ECC werden untersucht und es wird demons-
triert, dass das ECC-Konzept einen iibergreifenden Rahmen fiir vorhandene Methoden
liefert, die in der Literatur verstreut sind.

Aus mathematischer Sicht wird gezeigt, dass ECC als ein Copulaansatz angesehen wer-
den kann, indem Beziehungen zu multivariaten diskreten Copulas aufgezeigt werden, die
in dieser Arbeit eingefithrt und fiir die relevante mathematische Eigenschaften hergeleitet
werden.

Es wird eine Verallgemeinerung des standardméfliigen ECC eingefithrt, die Stichproben
von nicht notwendigerweise univariaten, sondern allgemeinen Vorhersageverteilungen, die
durch niederdimensionale Nachbereitung erhalten werden, auf eine zu ECC adhnliche Weise
verbindet.

SchlieBlich wird die SimSchaake-Methode, welche die Idee der auf Ahnlichkeit basierenden
Ensemblemethoden mit der des sogenannten Schaake-Shuffies verbindet, als eine Alternative
zu ECC vorgestellt. In diesem Verfahren basieren die Abhéngigkeitsmuster auf eingetrete-
nen Beobachtungen und nicht auf unbearbeiteten Ensemblevorhersagen wie bei ECC.

Die Methoden und Konzepte werden anhand von Fallstudien illustriert und bewertet, wobei
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reale Ensemblevorhersagedaten vom Européischen Zentrum fiir mittelfristige Wettervorher-
sage verwendet werden. Im Wesentlichen zeigen die neuen multivariaten Methoden, die in
dieser Arbeit entwickelt werden, eine gute Vorhersageleistung und tragen somit zu verbesser-
ten probabilistischen Vorhersagen bei.
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Chapter 1

Introduction

1.1 Uncertainty quantification and probabilistic forecasting

In many applications, decision making relies on potentially high-dimensional output of com-
plex computer simulation models. For instance, this applies to weather and climate predic-
tions and the management of air quality, wildfires, floods, groundwater contamination or
disease spread — just to name a few examples. During the last years, the recognition of the
need for uncertainty quantification of such model output has been rising considerably, which
is for example witnessed by the foundation of interest groups on this topic within the Amer-
ican Statistical Association (ASA) and the Society for Industrial and Applied Mathematics
(SIAM), as well as the launch of the STAM/ASA Journal on Uncertainty Quantification in
2013.

Frequently, the output data are employed to make predictions for uncertain future quanti-
ties or events, which has always been a great human desire. Initially, forecasting had been
viewed as a purely deterministic issue, in that a prediction used to be a single number. Such
point forecasts are partly still issued today, be it for reasons of tradition, reporting require-
ments or market mechanisms, for instance, and are also of theoretical interest (Gneiting,
2011a,b). However, it is meanwhile clearly established that forecasts should be probabilistic
in nature (Dawid, 1984), having the form of full predictive probability distributions over
future quantities or events instead of single-valued point forecasts. That is, in place of stat-
ing twenty degrees Celsius (°C) as a point forecast for temperature at noon in Heidelberg
on a spring day, one should rather issue a predictive distribution, for instance a normal
distribution with a mean of twenty degrees Celsius and a standard deviation of one degree
Celsius. If ever, probabilistic forecasts in former times were made almost only for binary
events (Gigerenzer et al., 2005), such as the chance of rain at noon in Heidelberg on a cer-
tain day. Nowadays, also probabilistic forecasts for multi-category or continuous variables
are of great importance and are required in a vast range of scientific disciplines comprising
weather and climate, hydrology, economics and finance, politics, preventative medicine and
epidemiology, among others (Gneiting and Katzfuss, 2014, and references therein).

The aim of probabilistic forecasting is to create predictive distributions of future quan-
tities, from which relevant functionals such as moments, quantiles, prediction intervals or
event probabilities can be extracted to quantify the uncertainty of the prediction. In this
connection, the concepts of sharpness and calibration play an essential role (Gneiting et al.,
2007). Sharpness is a property of the probabilistic forecasts only and concerns the the con-
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Figure 1.1: Tllustration of the goal of probabilistic forecasting: Normal PDFs for temperature in
Heidelberg at noon on a spring day made by Forecaster 1 (green curve) and Forecaster 2 (orange
curve), respectively. Provided that both predictive distributions are calibrated, the sharper one by
Forecaster 1 should be preferred.

centration of the predictive distributions. Calibration, on the other hand, is a joint property
of the probabilistic forecasts and the observations, referring to the statistical compatibil-
ity between them, in the sense that events predicted to occur with probability p should
materialize with empirical frequency p. Gneiting et al. (2007) contend that predictive dis-
tributions should be as sharp as possible, subject to calibration. For instance, let the green
and orange curves in Figure 1.1 be normal predictive probability density functions (PDFs)
for temperature in Heidelberg at noon on a spring day made by Forecaster 1 (green curve)
and Forecaster 2 (orange curve), respectively. In this case, the two predictive distributions
have the same location, but that issued by Forecaster 1 is sharper, as it obviously reflects
a lower degree of uncertainty than that issued by Forecaster 2. The predictive distribution
according to Forecaster 1 should thus be preferred, provided that both forecast distributions
are calibrated.

From now on, we concentrate on weather prediction as a key application area of proba-
bilistic forecasting for the rest of the thesis. However, it should always be kept in mind
that the presented concepts and methods may also apply in much broader settings in which
uncertainty is to be quantified.

1.2 Weather prediction and ensemble postprocessing

Accurate predictions for future weather quantities or events are of crucial interest in our
society for various reasons. For instance, they become valuable when warnings about ex-
treme events or natural catastrophes such as inundations, storms or droughts are sought. In
times in which alternative energy sources become more and more important, they may also
affect decisions regarding energy generation through solar technology or wind power plants.
Finally, weather forecasts may simply help to facilitate the organization of one’s leisure time
activities.

Modern weather forecasting originates in the pioneering work of Bjerknes (1904) at the



beginning of the 20th century. Essentially, Bjerknes (1904) proposed the possibility of nu-
merical weather prediction (NWP), stating that the physics of the atmosphere at any point
in time can be determined based on seven equations in seven parameters, namely the three
hydrodynamic equations of motion (conservation of momentum), the continuity equation
(conservation of mass during motion), the equation of state for the atmosphere and the two
fundamental laws of thermodynamics (conservation of energy and entropy), comprising three
velocity components, density, pressure, temperature and humidity. From a present-day per-
spective, Bjerknes actually should have rather issued a continuity equation for water than
the second thermodynamic law (Lynch, 2008). According to Bjerknes (1904), solving the
equation of state eliminates one of the seven unknowns. The remaining equations then build
a system of six partial differential equations in six variables, where the initial conditions are
set by the observations of the initial state of the atmosphere. As Bjerknes himself did not
put his procedure into practice, it was Richardson who derived by hand the first weather
prediction more than a decade later, employing a finite differences approach (Richardson,
1922) to simplify the equations in Bjerknes (1904). Unfortunately, his attempts were highly
unsatisfactory, both with respect to the totally unrealistic forecast values themselves and the
extraordinarily high calculation time needed. However, the advent of the computer sparked
hopes to lead Richardson’s preparatory work to success, with von Neumann demanding to
use computers for weather prediction in 1946. Finally, the first weather forecast made by
a computer was issued by the Electronic Numerical Integrator and Computer (ENTAC) of
the United States Army in 1950. The first operational forecasts, that is, routine predictions
for practical use, were generated by Rossby’s group in Sweden in 1954 (Harper et al., 2007).
From then on, work on NWP models has continuously intensified, in that new atmospheric
models have been introduced and the size of the initial data sets has grown, to take advan-
tage of the increasing computer power in the second half of the 20th century. Moreover,
data assimilation systems, which supply the initial conditions describing the current state
of the atmosphere on a three-dimensional grid, have become more powerful. For a more
detailed overview of the development and the history of NWP, we refer to Harper et al.
(2007) and Lynch (2008).

Nowadays, NWP models are still based on a system of partial differential equations, which
are discretized and run forward in time to achieve deterministic forecasts of future atmo-
spheric states, and form the basis of modern weather forecasting. However, they exhibit
two major sources of uncertainty:

1. The initial conditions might be inaccurate due to incomplete observation data, defi-
ciencies in data assimilation or measurement errors, for example.

2. The model formulation might be inaccurate due to incomplete or inadequate numerical
schemes or imperfect knowledge of physical processes including inaccurate parameter-
izations of sub grid-scale processes, for instance.

Hence, there is an obvious need for uncertainty quantification in weather forecasts. This
had already been recognized at the beginning of the 20th century by Cooke (1906, page 23),
stating that

“All those whose duty is to issue regular daily forecasts know that there are times
when they feel very confident and other times when they are doubtful as to the
coming weather. It seems to me that the condition of confidence or otherwise
forms a very important part of the prediction, and ought to find expression.”



Lorenz (1963) pointed out the non-linear, chaotic nature of the equations involved in NWP
models, in that extremely small deviations in initial inputs might lead to largely differing
evolutions of the model — an observation which has later become famous as the “butterfly
effect” (Lorenz, 1993). Thus, it becomes impossible to definitely predict the state of the
atmosphere. Epstein (1969) stated that it is not appropriate to describe the atmosphere via
only a single forecast run and introduced an ensemble of stochastic Monte Carlo simulations
to generate means and variances for the atmospheric state, which can be viewed as an early
example of probabilistic weather forecasting.

Nevertheless, weather prediction had been considered a deterministic issue through the
1980s, with the idea that for a set of “best” input data, the NWP model leads to one “best”
deterministic weather forecast (Gneiting and Raftery, 2005). However, in the early 1990s,
a radical change of mind took place in the meteorological community, in that weather fore-
casts for future quantities or events are now preferred to take the form of full predictive
probability distributions rather than single-valued deterministic point forecasts.

The most convenient way to achieve a probabilistic weather prediction is based on so-called
ensemble prediction systems of NWP forecasts (Palmer, 2002; Gneiting and Raftery, 2005).
An ensemble consists of multiple runs of NWP models differing in the initial conditions
and/or the model formulation with respect to the parameterized numerical representation
of the atmosphere, thereby addressing the above-mentioned two major sources of uncer-
tainty. Combinations of ensemble member forecasts frequently show more accuracy than
any of these forecasts separately (Palmer, 2002). Interpreting ensemble forecasts as a sample
from the predictive distribution allows weather forecasts to become probabilistic.

Ensemble prediction systems have been employed operationally since 1992 and can be run
either globally or over limited areas. Examples for global ensembles include those run by the
European Centre for Medium-Range Weather Forecasts (ECMWEF) (Molteni et al., 1996;
Buizza, 2006; Leutbecher and Palmer, 2008; ECMWF Directorate, 2012) and the National
Centers for Environmental Predictions (NCEP) (Toth and Kalnay, 1997), respectively, while
the University of Washington Mesoscale Ensemble (UWME) (Eckel and Mass, 2005) and the
COSMO-DE ensemble of the German Weather Service (Gebhardt et al., 2011) are represen-
tatives of limited area systems. Moreover, there are single-model and multi-model ensemble
prediction systems. A single-model ensemble is based on one particular NWP model, and
the different ensemble forecasts are obtained by perturbing the initial conditions and pa-
rameterizations. On the contrary, a multi-model ensemble is an aggregation of single-model
ensembles, as for instance in the THORPEX Interactive Grand Global Ensemble (TIGGE)
database (Bougeault et al., 2010) provided by leading weather centers.

Ensemble members can be regarded as exchangeable (Brocker and Kantz, 2011) if they
differ in random perturbations only, such that they lack individually distinguishable physi-
cal features and are statistically indistinguishable. For example, ensembles with exchange-
able members can be generated by using bred vectors as in the NCEP ensemble, singular
vectors as in the ECMWF ensemble, or ensemble Kalman filter systems (Evensen, 1994;
Hamill, 2006). On the other hand, an ensemble prediction system is considered to consist
of non-exchangeable members if the NWP inputs or the model parameterizations differ in
a systematic rather than a random fashion. An example for an ensemble system with non-
exchangeable members is the COSMO-DE ensemble run by the German Weather Service.
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Figure 1.2: 24 hour ahead enseml-)le forecast for temperature (in °C) over Germany, valid 2:00 am
on 3 July 2010. Eight randomly selected members of the ECMWF ensemble are shown.

An illustration of a 24 hour ahead ensemble forecast for temperature over Germany, valid
at 2:00 am on 3 July 2010, is given in Figure 1.2, where eight out of the 50 exchangeable
members of the ECMWF ensemble are shown. The ECMWF is one of the leading NWP
centers worldwide, and its global 50-member ensemble prediction system (Molteni et al.,
1996; Buizza, 2006; Leutbecher and Palmer, 2008; ECMWF Directorate, 2012), which will
be described extensively in the next section, has been operational since 1992.

The aim of NWP ensemble systems is to address the inherent uncertainty in the prediction.
Ensemble forecasts often exhibit a spread-error association, in that a positive correlation
between the ensemble range and the forecast error can be observed. The ensemble spread
offers an estimate of the uncertainty of the forecast. While on some days, the ensemble
spread might be small and the atmosphere thus rather predictable, the ensemble forecasts
might diverge drastically on other days, indicating an extremely unpredictable atmosphere.
Despite their benefits, the raw NWP ensemble forecasts however tend to reveal model biases
and dispersion errors (Hamill and Colucci, 1997). While a model bias refers to systematic
errors in the NWP forecast, dispersion errors essentially mean a lack of calibration, in that
the observed values fall far too often outside the ensemble ranges, contrary to the desired
statistical compatibility between observations and forecasts. An example is given in Figure
1.3, where the 24 hour ahead 50-member ECMWEF ensemble forecasts (red dots) for tem-
perature at Hamburg along with the corresponding verifying observations (blue crosses) are
shown for the period from 1 April 2011 to 14 April 2011, valid at 2:00 am each day.

To cope with biases and lack of calibration, the NWP raw ensemble forecasts call for statis-
tical postprocessing, which targets at creating calibrated and sharp predictive probability
distributions. During the last decade, several univariate ensemble postprocessing methods
have been proposed, with Bayesian model averaging (BMA) (Raftery et al., 2005, for in-
stance) and ensemble model output statistics (EMOS) (Gneiting et al., 2005, for example),
which is also known as non-homogeneous regression, being two of the most prominent ones.
The BMA approach employs mixture distributions, where each ensemble member is linked
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Figure 1.3: 24 hour ahead 50-member ECMWEF ensemble forecasts for temperature at Hamburg
(red dots) and corresponding verifying observations (blue crosses), valid 2:00 am for the period from
1 April 2011 to 14 April 2011.

to a kernel function, using a weight which reflects the member’s relative skill. The EMOS
method fits a single, parametric PDF in a regression setting, using summary statistics from
the ensemble. Figure 1.4 shows an example of a 24 hour ahead EMOS predictive PDF for
temperature at Hamburg, valid at 2:00 am on 1 April 2011. The vertical red lines indi-
cate the 50 ECMWF raw ensemble values, the vertical line of blue crosses the verifying
observation, and the vertical black lines the 10th, 50th and 90th percentiles, respectively,
of the EMOS distribution. The EMOS predictive distribution corrects both a negative bias
and underdispersion. BMA and EMOS postprocessing techniques have been developed for
various weather variables and turn out to be well performing, but they mostly apply to a
single weather quantity at a single location and a single prediction horizon only.

This is very unfortunate, as in many applications such as flood management, air traffic
control, ship routing or winter road maintenance, it is crucially relevant to account for
spatial, inter-variable and temporal dependence structures, which cannot be handled by in-
dependently postprocessed forecasts. Hence, there is a critical need for multivariate methods
that provide physically realistic and coherent probabilistic forecasts for multiple locations,
weather quantities and prediction horizons simultaneously. Consequently, much effort has
been invested to address this challenge in the last years, and several ensemble postprocessing
approaches being able to account for multivariate dependence structures have emerged. Ex-
amples include the Spatial BMA approach of Berrocal et al. (2007) and the Spatial EMOS
method of Feldmann et al. (2014) for purely spatial settings dealing with temperature and
the Gaussian copula method of Moller et al. (2013) to handle inter-variable dependencies.
The techniques of Pinson (2012), Schuhen et al. (2012) and Sloughter et al. (2013), respec-
tively, aim particularly at the postprocessing of wind vectors. These methods are parametric
and perform well in low-dimensional situations and if specific structure can be exploited.

Frequently, statistical postprocessing of a full NWP ensemble forecast forms a very high-
dimensional challenge. For example, one might be confronted with five weather quantities at
500 x 500 grid boxes and ten vertical levels for 72 lead times, yielding a total of 900 million
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Figure 1.4: 24 hour ahead EMOS predictive PDF for temperature at Hamburg, valid 2:00 am on 1
April 2011. The vertical red lines indicate the 50 ECMWF raw ensemble values, the vertical line of
blue crosses the verifying observation, and the vertical black lines the 10th, 50th and 90th percentiles,
respectively, of the EMOS distribution.

variables. Even if not all of them might need to be treated simultaneously, many applica-
tions comprise much higher dimensions than can be adequately treated by parametric mod-
els. Hence, the use of non-parametric techniques, such as the Schaake shuffle (Clark et al.,
2004), appears to be most beneficial in high-dimensional settings. Against this background,
a multi-stage non-parametric procedure called ensemble copula coupling (ECC) (Schefzik
et al., 2013) to handle spatial, inter-variable and temporal dependencies is proposed in this
thesis. The key idea is that the postprocessed ECC forecast ensemble inherits the spatial,
temporal and inter-variable correlation pattern of the unprocessed raw ensemble, thereby
honoring the flow dependence. Basically, this is achieved by using the empirical copula of
the raw ensemble to aggregate samples from predictive distributions obtained by univariate
postprocessing techniques, which is why ECC can be considered a discrete copula-based
approach. ECC requires negligible computational effort once the univariate postprocess-
ing is done, and in concert with its theoretical discrete copula background, it turns out to
form an overarching frame for existing techniques scattered in the literature. Moreover, the
ECC notion appears to be particularly appealing as it combines analytic, numerical and
statistical modeling and can be applied not only to weather prediction, but also in broader
settings, in which uncertainty quantification is required. In this thesis, we discuss several
variants and modifications of ECC and relate ECC to the Schaake shuffle (Clark et al., 2004).

To illustrate and test our methods, we apply them to the ECMWE ensemble in real-data
case studies. For that reason, a detailed description of the ECMWEF ensemble dataset as
employed in this thesis is provided in the following section.

1.3 The European Centre for Medium-Range Weather Fore-
casts (ECMWF) ensemble

The European Centre for Medium-Range Weather Forecasts (ECMWF) (http://www.ecmwf .
int) is one of the world’s leading weather centers. It it an independent and intergovernmen-
tal organization, which is supported by various European member states and co-operating
states, with its headquarters being located in Reading near London in the United Kingdom.



Having been established in 1975, the ECMWEF’s main objectives comprise the design of nu-
merical methods for medium-range weather forecasting, the distribution of the forecasts to
the member states, the conduction of research to improve the forecasts, as well as the col-
lection and storage of weather data, actually providing the world’s largest archive of NWP

data (Woods, 2006).

Since 1992, the ECMWEF has been running an ensemble prediction system operationally.
The global ECMWEF ensemble consists of 50 members and operates at a horizontal reso-
lution of approximately 32 kilometers on a 0.25 x 0.25 degree grid, with lead times up to
ten days ahead (Molteni et al., 1996; Buizza, 2006; Leutbecher and Palmer, 2008; ECMWF
Directorate, 2012). It produces forecasts twice a day at 00:00 Universal Coordinated Time
(UTC) and 12:00 UTC, respectively. The 50 ensemble members can be considered exchange-
able, as differences between them arise from random perturbations in initial conditions and
stochastic model parameterizations. More precisely, the random perturbations in the ini-
tial conditions are generated by using singular vectors, while the model uncertainties are
represented by stochastically perturbed parameterization tendencies (Buizza et al., 1999;
Palmer et al., 2009). Additionally, the ECMWF provides a so-called control run, which is
a distinguished NWP run outside the 50-member ensemble, representing the single-valued
best estimate of the atmospheric state at the initialization time due to recent and concurrent
observations. Essentially, the 50 ECMWEF ensemble member forecasts start from slightly
different states being close, but not identical, to the best guess of the initial atmospheric
state offered by the control run. In some former case studies in the literature, the control
run has been included in the ECMWEF ensemble, then comprising 51 members. However,
we do not proceed so in this thesis and stick to the 50-member ensemble, partly employing
the control run as a reference data set as explained later.

In this thesis, we employ the ECMWEF ensemble forecasts initialized at 00:00 UTC only,
and we confine ourselves to prediction horizons of 24, 48, 72 and 96 hours, respectively. As
we focus on forecasts over Germany, the meteorological format of 00:00 UTC corresponds to
local times of 1:00 am in Central European Time and 2:00 am in Central European Summer
Time, respectively. The weather variables which will be investigated involve temperature,
pressure, precipitation and wind vectors. In this context, a wind vector can be either rep-
resented by wind speed and wind direction or equivalently by its u (zonal or west-east)
and v (meridional or north-south) velocity components. We use the latter representation
in our case studies and refer to u- and v-wind, respectively, in what follows. For pressure,
precipitation and (u, v)-wind vectors, we use the corresponding ECMWEF ensemble forecasts
initialized between 1 February 2010 and 30 April 2011 to build our database. In case of tem-
perature, ECMWEF ensemble forecast data were available for initializations from 1 February
2010 to 31 December 2012.

Mostly, we focus on the predictive performance of forecasts at the three international airports
at Berlin-Tegel, Hamburg-Fuhlsbiittel and Frankfurt am Main. As the ECMWEF ensemble
forecasts are available on a grid, they need to be bilinearly interpolated to the locations at
Berlin, Hamburg and Frankfurt, respectively, before comparing them with the verifying ob-
servations, which are directly measured at the three specific observation sites. However, in
some cases, we are also interested in the predictive performance on the whole model grid or
at least on test regions over the grid. As there are no verifying observations available for all
grid points involved, we use the control run for the prediction horizon of 0 hours initialized



at the target date as a grid-based ground truth instead, both as training data and for the
assessment of predictive performance. For example, 48 hour ahead ensemble forecasts ini-
tialized at 00:00 UTC on 1 May 2010 and thus valid at 00:00 UTC on 3 May 2010 would be
compared to the ground truth composed of the 0 hour ahead control run nowcast initialized
at 00:00 UTC on 3 May 2010, where the term “nowcast” is generally employed for short-term
weather predictions with look-ahead times from zero to six hours. As an alternative to the
control runs used in this thesis, so-called analyses could be employed as a grid-based veri-
fication data set and ground truth, respectively, as is described in Box A in Hagedorn (2010).

Principally, we use the one-year test period from 1 May 2010 to 30 April 2011 to assess
our methods in case studies and employ forecasts and observations prior to 1 May 2010 as
training data. When only temperature is involved, and no comparison to other weather vari-
ables is intended, we occasionally take advantage of the corresponding larger database and
evaluate our approaches over a longer test period. Our real-data case studies should in fact
be rather viewed as illustrations or proof-of-concepts, respectively, as we use comparably
small test periods and consider forecasts for few locations, weather variables and look-ahead
times, which may not suffice for conclusive statements about predictive performance.

The rest of the thesis is organized as follows. In Chapter 2, we give an overview of uni-
and multivariate verification methods to assess predictions. Essentially, those tools are pre-
sented that are employed later to evaluate the predictive skill in our case studies. Chapter
3 reviews uni- and multivariate statistical ensemble postprocessing methods, with the focus
on techniques that are either directly used or needed for comparative reasons in the course
of the thesis. The pivotal ensemble copula coupling (ECC) approach, including several vari-
ants and modifications, is then introduced in Chapter 4. Chapter 5 shows to what extent
ECC can be interpreted as an overarching frame for existing techniques in the literature,
whereas the mathematical background of the ECC method in the form of discrete copulas
is discussed in Chapter 6. Chapter 7 aims at combining low-dimensional ensemble postpro-
cessing methods in an ECC-like manner. In Chapter 8, an alternative approach to ECC
based on a combination of similarity-based ensemble methods and the Schaake shuffle is
described. Finally, the dissertation closes with a summary and a discussion of the essential
results, as well as an outlook on possible future work, in Chapter 9. The proposed methods
will be accompanied by illustrative case studies using the ECMWEF ensemble throughout
the whole thesis.

A very first version of the ECC approach from Section 4.1, together with initial case studies,
had already been presented in the diploma thesis of Schefzik (2011). The ECC notion will
be discussed in much more detail in this thesis here, with much more comprehensive case
studies. Similarly, the origin of Chapter 6 about discrete copulas lies in Schefzik (2011), but
again, the presentation in this thesis will be more detailed, providing new insights, with a
focus on general multivariate settings.

This dissertation is partly based on two research papers. Specifically, the already pub-
lished paper of Schefzik et al. (2013) forms the basis of Chapter 4, while the results of
Chapter 6 stem from the working paper of Schefzik (2013), which is available online.






Chapter 2

Forecast verification methods

In this chapter, we address the question how to evaluate predictions. As already hinted at
in the introductory chapter, forecasts essentially can either be issued as single-valued point
predictions or as ensemble predictions or as probabilistic forecasts taking the form of a full
predictive probability density function (PDF) or cumulative distribution function (CDF),
respectively. In this context, an M-member ensemble forecast x1,...,z3; € R can also be
interpreted as a probabilistic forecast for a real-valued quantity in form of a discrete sample,
and each sample value can be regarded as an equally likely potential realization of the future
outcome. Then, the ensemble forecast x1,...,zy can be identified with its empirical CDF
F given by

1 M
F(Z) = M Z ]l{xmgz}
m=1
for z € R, with 14 denoting the indicator function of the event A.

The different forecast formats can be converted to some extent into each other. Ensem-
ble predictions or predictive densities can be transformed into point forecasts if necessary
or desired by extracting relevant functionals from the corresponding distributions, such as
the mean or the median. Moreover, we can always sample from a predictive PDF to obtain
an ensemble forecast, and conversely, an ensemble forecast could be replaced by a density
estimate, especially if the ensemble size is rather large. Hence, the distinction between en-
semble predictions and full forecast PDFs arguably becomes artificial to a certain degree
(Gneiting et al., 2008). Other forecast formats, such as interval predictions, are generally
feasible, but are not discussed in this thesis.

In the case of point predictions (Gneiting, 2011a), forecast quality is usually measured
on the basis of accuracy and association (Fricker et al., 2013). Accuracy describes the cor-
respondence between a forecast € R and an observation y € R and is often quantified by
some function of the error magnitude. Typical examples of such functions include the abso-
lute error (AE) given by AE := |z — y| and the squared error (SE) given by SE := (z —y)%.
In contrast, association measures the extent of a given relationship between forecasts and
observations. For instance, Pearson’s correlation coefficient can be employed to quantify
the strength of a linear relationship. As this thesis focuses on ensemble and probabilistic
forecasts, we do not provide more detail about point forecasts, although relationships might

be discussed occasionally.

For ensemble forecasts and predictive PDFs, the two most important quality features are
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calibration, which is sometimes also referred to as reliability, and sharpness. Calibration is
a joint property of the predictions and the observations, basically relating to the statistical
compatibility between them, whereas sharpness describes the concentration of the predic-
tive distributions, thus being a property of the forecasts only. The goal of probabilistic
forecasting is to maximize the sharpness of the predictive distributions, subject to calibra-
tion (Gneiting et al., 2007). While we will consider calibration and sharpness from a rather
applied point of view (Wilks, 2011) in this thesis, a measure-theoretic handling of these
concepts in the frame of prediction spaces is provided in Gneiting and Ranjan (2013).

Several methods to assess the calibration and the sharpness of ensemble or density fore-
casts have been developed, both for the univariate and the multivariate case. Moreover,
proper scoring rules have been shown to offer an appealing tool to evaluate calibration and
sharpness simultaneously. In view of their utilization in the case studies throughout the
thesis, a selection of those evaluation techniques is reviewed in what follows.

2.1 Calibration

As already stated, calibration relates to the statistical compatibility between forecasts and
observations, therefore being a joint property of those. Basically, the forecasts are cali-
brated if events predicted to occur with probability p materialize with frequency p, or in
other words, if the verifying observations can be considered as random draws from the pre-
dictive distributions.

In univariate settings, calibration is frequently diagnosed by using the verification rank
(VR) (Anderson, 1996; Talagrand et al., 1997; Hamill, 2001) in the case of ensemble fore-
casts or the probability integral transform (PIT) (Dawid, 1984; Diebold et al., 1998; Gneiting
et al., 2007) in case of forecast densities, with reliability diagrams (Wilks, 2011) providing
an alternative. The VR is the rank of the materializing observation when pooled with the
corresponding M ensemble forecast values. Accordingly, the PIT is the value which the
corresponding predictive CDF attains at the verifying observation. Adaptations of the PIT
for discrete distributions are proposed in Czado et al. (2009).

Calibration can then be checked empirically by plotting the VR histogram or PIT his-
togram for aggregated forecast cases. If a predictive distribution is calibrated, the VR or
the PIT are uniformly distributed on {1,..., M + 1} or the unit interval [0, 1], respectively,
and deviations from uniformity in the histograms indicate miscalibration. VR and PIT
histograms can be compared directly, and different forms of deviation from uniformity may
hint at different reasons for that. For instance, a skew in the histogram indicates biases, a
U-shape points at underdispersion, and an inverse U-shape suggests overdispersion in the
forecast distributions. Such VR or PIT histograms have been widely used as tools for as-
sessing calibration. However, their uncritical employment might yield to misinterpretations
of the forecast quality (Hamill, 2001). In particular, Hamill (2001) argues that a flat his-
togram does not necessarily indicate a calibrated ensemble. Hence, uniformity is a necessary
condition for calibration, but not a sufficient one.

Concerning multivariate situations of dimension L > 2, we focus on evaluation tools for

M-member ensemble forecasts, as this is the format to be dealt with in the methods and
case studies later. Specifically, the multivariate rank (MR) (Gneiting et al., 2008), the band
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depth rank (BDR) (Thorarinsdottir et al., 2014) and the average rank (AR) (Thorarinsdot-
tir et al., 2014) provide distinct approaches to rank multivariate data and are employed for

calibration verification in this thesis. To describe these concepts, let S := {@xo, x1,...,xp}
denote the pooled set consisting of the ensemble forecast 1, ...,z € R and the respective
verifying observation zg := y € RY, where @, := (z},...,2%) € RE form € {0,1,..., M}.

According to Gneiting et al. (2008) and Thorarinsdottir et al. (2014), the rank of the ob-
servation in S is then derived in two steps, by

(i) applying a pre-rank function pg : RY — R, to compute the pre-rank pg(a,,) for every
m € {0,1,...,M} and

(ii) setting the rank of xp equal to the rank of pg(xg) in {ps(xo),ps(x1),...,
ps(xar)}, where ties are resolved at random.

In this context, the forecasts and observations in S do not need to be standardized, as the
rankings in the pre-rank functions considered below operate componentwise, thus being in-
variant to such transformations.

In the case of the multivariate rank (MR) (Gneiting et al., 2008), the pre-rank function
is defined by

M
pgAR(mm) e Z ]l{azujwm}7
n=0

with the multivariate partial ordering ¢, =< @, if and only if a:ﬁ <azf forallte {1,...,L}.
The final MR is then derived according to (ii), and aggregating the MRs over forecast cases
leads to an MR histogram, similarly to the univariate case. Conveniently, the interpreta-
tion of the form of the resulting MR histograms coincides with that for the VR or PIT
histograms in the univariate case discussed before. The MR histogram is appropriate to
assess multivariate probabilistic forecasts for low-dimensional quantities (Gneiting et al.,
2008; Schuhen et al., 2012; Moller et al., 2013). However, it loses power in higher dimen-
sions (Thorarinsdottir et al., 2014), as will be observed in our case studies in Section 4.3 later.

To address this shortcoming, Thorarinsdottir et al. (2014) propose to use the band depth
rank (BDR) to evaluate calibration in high-dimensional settings. Based on the work of
Loépez-Pintado and Romo (2009), they introduce the band depth pre-rank function

1 L
pg’DR(wm) = Z Z Z ﬂ{min{a@ﬁ1 ,foQ}SxfnSmax{xﬁl 7foQ}}
(=10<p1<pa<M
1 L M
= 7 Z rankg(z’,)[M — rankg(z!,)] + [rankg(z%,) — 1] Z Tigt—at 3| 5
/=1 n=0

M
with rankg(zf,) ;== > 1yt <4ty denoting the rank of the (-th coordinate of x,, in S.
n=0 -

Thorarinsdottir et al. (2014) note that if zf, # xf; with probability 1 for all m,u €
{0,1,...,M} with m # p and ¢ € {1,...,L}, the band depth pre-rank function can be
simplified to

L
pEPR(g,,) = %Z[M — rankg(z5))][rankg (z5,) — 1] + (M - 1).
(=1
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Finally, the BDR is computed according to (ii), and an BDR histogram can be obtained by
aggregating the BDRs over forecast cases, as ever. Thorarinsdottir et al. (2014) note that
the interpretation of a BDR histogram somewhat differs from that of a classical univariate
VR or PIT histogram. While a calibrated ensemble still yields a flat BDR histogram cor-
responding to a uniform distribution on {1,..., M + 1}, a skewed BDR histogram with too
many high ranks indicates an overdispersive ensemble, and a skewed BDR histogram with
too many low ranks points at either an underdispersive or a biased ensemble. Furthermore,
a lack of correlation in the ensemble leads to a U-shaped BDR histogram, whereas an en-
semble with too high correlations yields an inverse U-shaped BDR histogram.

In addition to the BDR, Thorarinsdottir et al. (2014) propose the average rank (AR) linked
to the pre-rank function

1 L
3R (xm) == 7 Zrankg(:vfn),
/=1

which is just the average over the univariate ranks. Again, the final AR is calculated accord-
ing to (ii), with an aggregation of the ARs over forecast cases leading to an AR histogram,
whose interpretation is similar to that of a VR, PIT or MR histogram. That is, U-shaped
AR histograms indicate an underdispersive ensemble, and inverse U-shaped AR histograms
point at an overdispersed ensemble, while a bias results in a skewed AR histogram. Similar
as for the BDR histogram, under- and overestimation of the correlation structure by the
ensemble can lead to U- and inverse U-shaped AR histograms, respectively.

In addition to the concepts described above, the minimum spanning tree rank histogram
(Smith, 2001; Smith and Hansen, 2004; Wilks, 2004; Gombos et al., 2007), which is however
not used in this thesis, provides another established and popular tool to assess the calibra-
tion of multivariate ensemble forecasts.

Checking the calibration of full multivariate predictive distributions rather than ensem-
ble forecasts can be performed by using the copula PIT recently introduced by Ziegel and
Gneiting (2013). The copula PIT histogram can be viewed as a generalization and vari-
ant of the MR histogram, in that both histograms are inclined to look nearly identical for
large-sized ensembles such as the 50-member ECMWF ensemble. An alternative calibration
evaluation method applying to multivariate density forecasts is the Box density ordinate
transform (Box, 1980; O’Hagan, 2003).

2.2 Sharpness

Contrary to calibration, sharpness is a property of the forecast only, referring to the con-
centration of the predictive distributions. As stated before, forecast distributions ideally
should be as sharp as possible, subject to calibration (Gneiting et al., 2007). Since sharp-
ness strongly depends on the units employed, the forecasts should be standardized if there
are components that are incomparable in magnitude (Gneiting et al., 2008).

For univariate ensemble forecasts, the empirical ensemble variance, the empirical ensem-
ble standard deviation or the ensemble range are common measures to quantify sharpness.
In the case of univariate density forecasts, sharpness can be assessed by the variance and
standard deviation, respectively, of the predictive distribution or by the width of specified

14



prediction intervals. For instance, for the central 80% prediction interval, the width should
be as short as possible, with its empirical coverage lying at the nominal 80% level, while
10% each of the observations are located to its left and right, respectively.

Considering the evaluation of sharpness for multivariate L-dimensional forecasts with L > 2,
we follow Gneiting et al. (2008) and use the determinant sharpness (DS) given by

L

DS := (det(X))2z

as a convenient measure, with ¥ € RX*L denoting the covariance matrix of an ensemble
or density forecast for an RY-valued quantity. The DS generalizes the univariate standard
deviation and can be applied to both ensembles of size M > L and density forecasts, given
that the predictive density has finite second moments.

Alternative sharpness measures for the multivariate case include the root mean squared Eu-
clidean distance between the ensemble members and the ensemble mean vector (Stephenson
and Doblas-Reyes, 2000) in the case of ensemble forecasts, or the scatter measures proposed
by Bickel and Lehmann (1979), among others.

2.3 Proper scoring rules

With the aid of proper scoring rules (Gneiting and Raftery, 2007) as a summarizing mea-
sure, calibration and sharpness of probabilistic forecasts can be assessed simultaneously.

A measure-theoretic introduction of scoring rules and their properties, relating to informa-
tion theory and convex analysis, is given by Gneiting and Raftery (2007). The theoretical
interest in scoring rules is also witnessed by the work of Parry et al. (2012) and Ehm and
Gneiting (2012). However, we again take an applied point of view and introduce the scoring
rule concept to that extent as it is needed for the further development of this thesis.

For our purposes, a scoring rule is a function s(P,y) or s(P,y) that assigns a numerical
score to the pair (P, y) or (P,y) composed of the uni- or multivariate predictive distribution
P suggested by the forecaster and the verifying observation y € R or observation vector
y € RY, respectively. In what follows, the predictive distribution P will occasionally be
identified with its corresponding predictive CDF F. In this thesis, scores are considered
to be negatively oriented penalties, that is, the lower the score the better the predictive
performance, with the aim of minimizing them on average. In practice, as in the evaluation
of our methods in the case studies later, scores are often reported as averages over forecast
cases, that is, over a certain test period.

A very important feature a scoring rule should have is propriety (Gneiting and Raftery,
2007). Assume the predictive distribution @ to be the forecaster’s best judgment, and let
s(P, Q) denote the expected value of s(P,-) under ). A scoring rule s is then called proper
if it satisfies the expectation inequality

s(Q.Q) < 5(P,Q) (2.1)

for all predictive distributions P and Q. It is called strictly proper if (2.1) holds with equal-
ity if and only if P = Q.
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Propriety essentially means that honest and careful assessments of the forecaster are en-
couraged, in that the forecaster has no incentive to issue any P # @) not corresponding to
his or her true belief. Thus, it is an important, indispensable property for scoring rules. To
some extent, proper scoring rules in a probabilistic prediction setting can be regarded as
the analog of consistent scoring functions (Gneiting, 2011a) in the context of point forecasts.

Examples of strictly proper scoring rules that apply to density forecasts only include the
logarithmic, quadratic and (pseudo-)spherical score, while the linear score is an example of
a scoring rule which is not proper. Variants of these scoring rules are available for both uni-
and multivariate settings (Gneiting and Raftery, 2007).

However, we seek to evaluate not only density forecasts, but also predictive distributions
expressed in terms of a sample, as is the case for ensemble forecasts, or distributions in-
volving a point mass at zero, as employed in precipitation forecasting, see Chapter 3. Thus,
it is more practical to define proper scoring rules directly in terms of predictive CDFs. A
very prominent proper scoring rule of this type is the continuous ranked probability score
(CRPS), which is in the univariate case given by

CRPS(P,y) — / (F(2) = 1yey)? dz (2.2)
= Ep[X —yl] - SEAIX - X'], (2.3)

where X and X' are independent random variables having distribution P with CDF F and
finite first moment, and y € R denotes the materializing observation. The CRPS as in (2.2)
was introduced by Matheson and Winkler (1976), with Gneiting and Raftery (2007) noting
its equality to the representation (2.3). It can be reported in the same unit as the verifying
observation.

For some distributions, the CRPS can be derived explicitly. In the case of a univariate
normal distribution N (i1, 0%) with mean p € R and variance o? € R, which will be in-
volved later when modeling temperature, pressure, u- or v-wind, the CRPS is given by

— — — 1
CRPS(N (11, 02),y) = {y “[2@(‘” “)1] p (“)} 2.4
W(p,0%)y) = 0y . +20( NG (2.4)
where ® and ¢ denote the CDF and PDF, respectively, of the standard normal distribution
with mean 0 and variance 1 (Gneiting et al., 2005).

Friederichs and Thorarinsdottir (2012) derive a closed form expression for the CRPS of

a generalized extreme value (GEV) distribution GEV (u, o, &) with location, scale and shape

parameters u,o and &, respectively, which they apply to peak wind prediction. Scheuerer

(2014) extends these calculations to GEV distributions GEV(u, 0, &) left-censored at zero,

for which all mass below zero is assigned to exactly zero. In this case, the CRPS is given by
o

CRPS(GEVy(1,0,8),y) = (n—y)(1—2py) + pp§ — 2 ¢ (1= py = Tu(1 = &, —log(p,))]
L pb = 211 — g —2log(m0))] (2.5)

for £ # 0, with pg := G(0) and p, := G(y), where G denotes the CDF of the standard GEV
distribution, and I'; the lower incomplete Gamma function. For £ = 0, an explicit expression
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for CRPS(GEVq(,0,€)) can be derived as well, but Scheuerer (2014) instead employs the
approximation
e-¢

CRPS(GEVy(p,0,8),y) = 5 CRPS(GEVy(p, 0, = —¢),v)

e+4+¢&
€

+ CRPS(GEVy(p,0,& =¢€),vy) (2.5Db)

for € € (—e,¢) with € € R4 reasonably small, where the two scores on the right-hand side
are computed according to (2.5a).

If the CRPS cannot be computed in closed form, it can be approximated by using suit-
able, computationally efficient Monte Carlo methods.

If P := P.,s corresponds to an M-member ensemble forecast x1,...,x) € R, Peons places
point mass 1/M on the ensemble members, and the CRPS is derived according to (2.3) via

M M M
1 1
m=1 m=1 p=1

A decomposition of the CRPS for ensemble forecasts into a reliability, uncertainty and res-
olution part is presented by Hersbach (2000). Moreover, Brocker (2012) and Fricker et al.
(2013) discuss optimality and fairness aspects, respectively, when evaluating ensembles via
the CRPS, depending on different interpretations of an ensemble forecast. These issues will
be partly reviewed in Chapter 4.2.

In contrast, if x € R is a point forecast and P := 0, corresponds to the point measure
0z, the CRPS reduces to the absolute error AE := |z — y| = CRPS(0,,y), thus allowing for
a direct comparison between deterministic and probabilistic forecasts. In our case studies,
we compute the AE for the point forecast = given by the median of the predictive distri-
bution, which is the Bayes predictor under the absolute error loss function (Gneiting, 2011a).

A modification of the original CRPS is the threshold-weighted continuous ranked proba-
bility score (TWCRPS) (Gneiting and Ranjan, 2011), which emphasizes specific regions of
interest and can be applied to assess performance in the tails of a predictive distribution P
with CDF F', which is useful in case of extreme weather quantities. The TWCRPS is given
by

oo

TWCRPS(P, y) := / (F(2) = Lgyen))? w(z) dz,

— 00

where w(z) is a non-negative weight function on R. While for w(z) := 1, the TWCRPS is
just the original CRPS (2.2), we may set w(z) := 1,5, with 7 € R if we are interested in
the right tail of the distribution, for instance (Lerch and Thorarinsdottir, 2013).

A generalization of the CRPS that applies to multivariate quantities is the proper energy
score (ES) (Gneiting et al., 2008) given by

ES(P,y) := Ep[|| X —yl|] - %EP[IIX - X}, (2.7)
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where || - || denotes the Euclidean norm and y € R the observation vector, and X and
X'’ are independent random vectors with distribution P, with Ep[||X||] being finite. Vari-
ants and generalizations of the ES using other norms are discussed in Gneiting and Raftery
(2007), but are not used for the case studies in this thesis, in which we stick to the Euclidean
norm.

Especially for density forecasts, the expectations in (2.7) often cannot be computed ex-
plicitly, and Monte Carlo methods need to be employed to compute the ES. For example,
to derive the ES for a bivariate normal distribution or related predictive densities, we can
use the approximation

1 N N—
E NZ |20 — y”_ Z |Tn — Tnil]s

with a random sample @1, ..., xy € RE of size N = 10, 000, for instance, from the predictive
density (Gneiting et al., 2008; Schuhen et al., 2012).

If P := P.,s corresponds to an M-member ensemble forecast xi,...,xy € RY, the ES
can be computed via

1 M
ES( ens; Y) = Z me yH - m Z Z me - w,uH (2'8)

mzl m=1p=1

Besides its appealing properties, the ES is, however, sometimes not able to detect misspec-
ifications of the correlations between the different components of a multivariate quantity
(Pinson and Girard, 2012; Pinson and Tastu, 2013). In contrast, the variogram-based proper
scoring rules recently proposed by Scheuerer and Hamill (2014) are more discriminative with
respect to correlation structures.

For a point forecast £ € R with corresponding point measure P := §, in «, the ES
reduces to the Euclidean error (EE) given by EE := || — y|| = ES(dz, y). In the case of an
ensemble forecast or a sample from a continuous predictive distribution xq,...,xy € RE,
we follow Moller et al. (2013) and take the point forecast « to be the multivariate median,
which is given by

x := arg min Z [|€ — x|,
EERL
that is, the vector that minimizes the sum of the Euclidean distance to the single forecast
vectors. Practically, the multivariate median @ can be derived by the algorithm of Vardi
and Zhang (2000), which is implemented in the R (R Core Team, 2013) package ICSNP.
For a general overview and comparison of algorithms and their implementation to compute
the multivariate median, we refer to Fritz et al. (2012). A further discussion of general
multivariate quantiles is given in Chapter 7.1.

A further proper scoring rule, that depends on the univariate predictive distribution P
only through its mean up € R and its variance 0% € Ry, is the Dawid-Sebastiani score
(DSS) (Dawid and Sebastiani, 1999), which is given by

DSS(P,y) := log(o3) + <y;}fp>2 (2.9)
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Analogously, a multidimensional generalization of the DSS depending on the multivariate
predictive distribution P only through its mean vector pup € R* and its covariance matrix
Yp € REXL is provided by

DSS(P, y) := log(det(Sp)) + (y — up) S5 (y — pp)”- (2.10)

The DSS can be applied to both density and ensemble forecasts. For ensemble predictions,
the empirical mean and variance or the empirical mean vector and covariance matrix, re-
spectively, are employed for the calculation of the DSS. However, this is reasonable only if
the ensemble size M is much larger than the dimension L (Feldmann et al., 2014; Scheuerer
and Hamill, 2014).

In multivariate settings, vector-valued quantities should generally be standardized if the
components are incomparable in magnitude or incommensurable due to different units. In
particular, the Euclidean variant of the ES employed in the thesis does not distinguish be-
tween the forecast vector components, such that a standardization may become necessary.
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Chapter 3

Statistical ensemble postprocessing

As raw ensembles tend to reveal biases and dispersion errors, statistical postprocessing is
required to realize their full potential. There are various state-of-the-art ensemble postpro-
cessing methods, both for univariate and multivariate settings. In this chapter, we review a
selection of them, namely those that are relevant for the further development of the thesis
and that are employed in our case studies.

3.1 Univariate postprocessing

Univariate postprocessing approaches yield calibrated and sharp predictive distributions
valid for single weather variables at single locations and for single look-ahead times. They
can roughly be divided into mixture methods, such as Bayesian model averaging (BMA)
(Raftery et al., 2005, among others), and regression methods, such as ensemble model out-
put statistics (EMOS), which is also known as non-homogeneous regression (Gneiting et al.,
2005, among others). BMA and EMOS are implemented in the packages ensembleBMA (Fra-
ley et al., 2011) and ensembleM0S, respectively, which are available in the R language and
environment (R Core Team, 2013) and can be downloaded at www.r-project.org.

In this section, we discuss the BMA and EMOS approaches, where similar reviews have
been given in Thorarinsdottir et al. (2012), Schefzik et al. (2013), Gneiting and Katzfuss
(2014), Gneiting (2014) and Williams et al. (2014), and assess their predictive performance
in a case study using the European Centre for Medium-Range Weather Forecasts (ECMWTF)
ensemble.

3.1.1 Bayesian model averaging (BMA)

For a fixed location and prediction horizon, let y be a weather quantity of interest and
x1,...,2) the corresponding M ensemble member forecasts. The BMA approach then
employs mixture distributions of the form

M
yler . aa ~ Y W f(y]em). (3.1)
m=1
The left-hand side of (3.1) refers to the conditional distribution of y given x1,...,zs, and
f(y|zy,) denotes a parametric distribution or kernel depending on z,, only, where the spe-
cific choice of f depends on the weather quantity of interest. The weights w1,...,wy >0

satisfy SSM_ w,, = 1 and reflect the respective member’s relative predictive skill over a
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Table 3.1: BMA settings for univariate weather quantities y, based on an ensemble forecast
x1,...,xy. For precipitation amount, we refer to y'/3 € R, as the gamma kernels apply to a cube
root transformation. In the case of wind direction, z,, is a bias-corrected ensemble member value on
the circle S, and k,, is a concentration parameter for a fixed ensemble member m € {1,..., M}. For
the rest, a,, and b,, are mean parameters, and J,Qn, ¢m and d,, are variance parameters. This table
follows the similar summary in Table 1 in Schefzik et al. (2013).

Weather quantity Range Kernel (f) Mean Variance

Temperature yeR Normal Am + b Tom Ufn

Pressure yeR Normal Am + b Tm a,%@

u- and v-Wind yelR Normal Am + b Tm afn

Precipitation amount yl/ 3¢ R+ Gamma Qm + bmx:,{ 3 Cm + dmTm

Wind speed ye Ry Gamma Am + b Tm Cm + dmTm
y € Ry Truncated normal Am + bmTm o2,

with cut-off at zero
Wind direction yeS von Mises Zm n:nl
Visibility y € 10,1] Beta am + bmm}f Cm + dmm},{Q

training period.

BMA variants are available for temperature, pressure, u- and v-wind (Raftery et al., 2005),
precipitation (Sloughter et al., 2007), wind speed (Sloughter et al., 2010; Baran, 2014), wind
direction (Bao et al., 2010), fog (Roquelaure and Bergot, 2008) and visibility and ceiling
(Chmielecki and Raftery, 2011). The corresponding BMA settings, especially the specific
choice of the kernel f, are documented in Table 3.1.

The mean and variance parameters as described in Table 3.1 are often subject to con-
straints. Frequently, the variance parameters are supposed to be constant across ensemble
members, thus being independent of m € {1,..., M }.

The BMA model parameters and weights are typically estimated via regression and optimum
score approaches, with maximum likelihood optimization being a special case thereof, based
on a training data set consisting of past forecasts and observations. Usually, the training
period comprises a sliding training window of the past 20 to 40 days. This continuous up-
date allows for a good adaptation to changes in seasons and weather regimes. Throughout
this thesis, we employ a sliding training period of 30 days for estimation in our case studies.
Although larger training periods may principally improve the estimation results, they might
also introduce biases caused by seasonal effects, such that there is a trade-off made in favor
of a shorter training period here. However, several flexible adaptive estimation techniques
have also been proposed and studied (Pinson et al., 2009; Raftery et al., 2010; Pinson, 2012),
including a recursive maximum likelihood estimation procedure.

Not only the length of the training period, but also the spatial composition of the training
data has to be specified, with local and regional approaches being available. Local tech-
niques employ training data from the specific station site or grid box of interest only, such
that the parameters vary from site to site, as they are tailored to the local terrain. In
contrast, regional approaches composite training data spatially and estimate a single set of
parameters, which is then used over entire regions. In the case studies of this thesis, we use
local estimation approaches if we deal with the individual locations of Berlin, Hamburg and
Frankfurt, respectively, and regional estimation techniques when considering test areas.
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Figure 3.1: 24 hour ahead BMA predictive PDF for temperature at Berlin, valid 2:00 am on (a) 21
April 2011 and (b) 25 April 2011, respectively. The 50-member ECMWF ensemble forecast is shown
in red, and the verifying observation in blue, while the black lines indicate the 10th, 50th and 90th
percentiles of the BMA predictive distribution.

For ensembles consisting of M exchangeable members, such as the ECMWEF ensemble, the
BMA weights are assumed to be equal for all ensemble members (Fraley et al., 2010), that
is, wy, = 1/M for all m. Moreover, the BMA mean and variance parameters are assumed
to be constant across the members in this case, such that they do not depend on m either.
Suggestions how to deal with missing data in the context of BMA are given in Fraley et al.
(2010).

In view of the case studies, we now describe the BMA approaches for temperature, pressure,
u- and v-wind (Raftery et al., 2005) and precipitation (Sloughter et al., 2007) more in detail.

For temperature, pressure, u- and v-wind (Raftery et al., 2005), the specific BMA model
based on (3.1) is given by

M
yley, ... e ~ Z Wiy N (@, + b, 02,),
m=1

that is, the kernel f is chosen to be normal with mean a,, + b,,z,, and variance U?n, where

ai,...,ay € Rand by,...,by € R are the mean parameters, and o7, .. .,012\4 € R, are the
variance parameters. In the standard implementation, the variance parameters are assumed
to be constant across the ensemble members, that is, 02 = 07 = --- = 0]2\4. Based on

the corresponding training data, first the mean parameters are estimated for each ensemble
member via linear regression. Then, the mean parameters are considered to be known, and
the weights wy, ..., wys and the variance parameter(s) are derived via maximum likelihood
estimation, using the expectation-maximization algorithm.

Figure 3.1 shows two examples of BMA predictive PDFs for temperature. Being a mix-
ture, a BMA predictive PDF for a specific weather quantity can conceptionally look quite
different for different test cases, depending on the corresponding amount of dispersion within
the raw ensemble. In the examples here, the raw ensemble in Figure 3.1 (a) has a rather
high spread, while the raw ensemble in Figure 3.1 (b) is more concentrated.
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Figure 3.2: 24 hour ahead BMA predictive PDF for six hour precipitation accumulation at Ham-
burg, valid 1:00 am on 11 December 2010. The 50-member ECMWEF ensemble forecast is shown
in red, and the verifying observation in blue, while the thin black lines indicate the 10th, 50th and
90th percentiles of the mixed discrete-continuous BMA predictive distribution. The thick black bar
represents the point mass of 0.068 at zero, and the density at positive accumulations thus has a mass
of 0.932.

In the case of precipitation, the modeling is somewhat more involved, in that the predictive
distribution is mixed discrete-continuous, consisting of a point mass at zero, as there is a
positive probability that no rain occurs, and a possibly highly skewed density on the positive
real axis. Specifically, Sloughter et al. (2007) take the kernel f to be a Bernoulli-Gamma
mixture. The Bernoulli part provides a point mass at zero based on a logistic regression
link, in that

P(y = 0|zm)

— 1/3 S
P(y > 0|xm)> Qpm + Bml‘m + YmOm,

logit (P(y = O[zm)) = log <
with parameters a.,, 8, and 7, and a predictor J,, satisfying é,, = 1 if z,, = 0 and
dm = 0 otherwise, for m € {1,...,M}. Here, P(y > 0|x,,) is the probability of non-zero
precipitation given the forecast z,,. In other words, the Bernoulli component is specified by
1/3
exp(au, + 5mxn{ + YmOm)

P(?J = 0‘$m) = .
1+ exp(am + Bm:r}n/g + YmOm)

The continuous part, dealing with the precipitation amount given that it is not zero, is
given by a gamma distribution in terms of the cube root transformation y'/3 of the precip-
itation accumulation. Hence, the specific BMA model of Sloughter et al. (2007) in case of
precipitation is

M
y1/3|x1’ <o TM Y Z w [Py = O’$m)ﬂ{y:0} + Py > O|xm)hm(y1/3|$m)1{y>0}]a
m=1

with h,, denoting a gamma distribution with mean u,, = a, + bmx}?{:z and variance
02, = Cym+dy Ty, including parameters a,, by, ¢, and d,,,. The member-specific parameters

Qm, Bm and 7, are estimated via logistic regression, while the member-specific coeflicients
a.m, and by, are determined via linear regression. The parameters ¢, and d,,, which are usu-
ally assumed to be constant across the ensemble members, and the member-specific weights
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wi, ..., wys are estimated via the maximum likelihood method, employing the expectation-
maximization algorithm.

Exemplarily, a BMA predictive distribution for precipitation in terms of the non-transformed
precipitation accumulation y is given in Figure 3.2.

For temperature and precipitation, BMA has been applied in real time to generate fore-
casts over the Pacific Northwest regions of the United States based on the University of
Washington Mesoscale Ensemble (UWME) (Eckel and Mass, 2005), which are available at
www.probcast.com (Mass et al., 2009). Moreover, BMA has been employed to postprocess
temperature predictions in Canada (Wilson et al., 2007), Iran (Soltanzadeh et al., 2011) and
Hungary (Baran et al., 2014b), respectively, while Courtney et al. (2013) apply it to wind
energy over Ireland.

Critical reviews and suggestions for improvement of BMA are provided by Hamill (2007)
and Bishop and Shanley (2008), among others.

In heterogeneous terrain, for instance in an area comprising ocean, mountains and low-
lands, it might be preferable to employ locally adaptive parameters that vary spatially.
Spatially adaptive so-called geostatistical model averaging approaches, which fit a BMA
model using Bayesian regulization at each observation site separately and then interpolate
the estimated parameters to locations where no observations are available, have been pro-
posed by Kleiber et al. (2011a) and Kleiber et al. (2011b) for temperature and precipitation,
respectively, and extend BMA directly.

3.1.2 Ensemble model output statistics (EMOS)

Contrary to BMA, being based on mixture distribution, the ensemble model output statis-
tics (EMOS) approach, which is also known as non-homogeneous regression, fits a single
parametric distribution g employing summary statistics from the ensemble. Again, for a
fixed location and prediction horizon, let y be a weather quantity of interest and x1,..., x5/
the corresponding ensemble member forecasts. The EMOS predictive distribution then has
the general form

ylei, ... za ~ g(ylee, ... 20r), (3.2)

where the parameters of the parametric family of probability distributions on the right-hand
side of (3.2) depend on all ensemble members simultaneously.

EMOS implementations are available for temperature, pressure, u- and v-wind (Gneiting
et al., 2005), precipitation (Wilks, 2009; Scheuerer, 2014), wind speed (Thorarinsdottir and
Gneiting, 2010; Maéller, 2013; Lerch and Thorarinsdottir, 2013; Baran and Lerch, 2014) and
wind gusts (Thorarinsdottir and Johnson, 2012), respectively. An overview is given in Table
3.2.

Concerning the choice of the training period and the composition of the training data,
respectively, the same comments hold as for BMA.

In the case of temperature, pressure, u- and v-wind, we follow Gneiting et al. (2005) and
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Table 3.2: EMOS settings for univariate weather quantities . In the case of precipitation amount,
we refer to y'/2 € R for the truncated logistic distribution approach of Wilks (2009), as it applies
to root-transformed precipitation accumulations. This table follows the similar summary in Table 2
in Schefzik et al. (2013).

Weather quantity Range Distribution (g)
Temperature yeR Normal
Pressure yeR Normal
u- and v-Wind yeR Normal
Precipitation amount yl/ 2eRy Truncated logistic
ye Ry Generalized extreme value left-censored at zero
Wind speed y e Ry Truncated normal with cut-off at zero
y € R4 Gamma
ye Ry Generalized extreme value
y e Ry Log-normal

use the regression model

y=a+bzi+...+byzy +e with € ~ N(0, ¢+ ds?), (3.3)

where a,by,...,bpy € R and ¢,d € Rg are parameters that need to be estimated, and
M

s =5 (2, — )% denotes the empirical ensemble variance, with the empirical ensemble
m=1

M
mean I := ﬁ > m. The corresponding Gaussian predictive EMOS distribution is then
m=1

given by
ylot, ..oz ~ N(a+bizy + ... 4 byzas, ¢+ ds?), (3.4)

having mean a4+ byx1 + ...+ by and variance ¢+ ds®>. While a is a bias correction term,
the regression coefficients by, ..., bys reflect the performance of the ensemble members over
the training period relative to the other members, as well as the correlations between the
ensemble members. If the ensemble members can be considered exchangeable, it needs to
be assumed that the regression coefficients are equal, that is, b := by = --- = bys. In this
case,

yloei, ... e ~ N(a+bxy + -+ 2py),c+ ds?)
= N(a+bM z,c+ ds?). (3.5)
The parameters a, by, . .., by, c and d are estimated by minimizing the training CRPS, which
is based on Formula (2.4) and expressed as an analytic function of the parameters. This

estimation technique comes within an optimum score frame, which generalizes the classical
maximum likelihood notion (Gneiting et al., 2005).

An EMOS predictive PDF in the case of temperature has been presented in Figure 1.4
in the introductory chapter, and another example for pressure is shown in Figure 3.3.

For precipitation, Scheuerer (2014) provides an EMOS variant using the generalized ex-
treme value (GEV) distribution with CDF

exp [— {1 +¢ (%)}_l/g} for £ # 0,

Gly) = exp [— exp (—@) } for £=0,
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Figure 3.3: 24 hour ahead EMOS predictive normal PDF for pressure at Frankfurt, valid 2:00 am
on 20 June 2010. The 50-member ECMWEF ensemble forecast is shown in red, and the verifying
observation in blue, while the black lines indicate the 10th, 50th and 90th percentiles of the EMOS
predictive distribution.

where the parameters p, o0 and & characterize location, scale and shape, respectively, of the
GEV distribution. For £ < 0,y > p — (0/€), one sets G(y) := 1, while for £ > 0,y <
p— (0/€), one defines G(y) := 0. Scheuerer (2014) assumes £ € (—0.278, 1) because then,
the GEV has positive skew and its mean 7 exists, where

B ,u—l-ow for £ # 0,
7 w4+ oy for £ =0,

with the Gamma function I' and the Euler-Mascheroni constant v ~ 0.5772. In order to
be appropriate for modeling precipitation amounts, Scheuerer (2014) considers the GEV
distribution to be left-censored at zero, such that all mass below zero is assigned to exactly
zero, with predictive CDF

~ G for y > 0,
Gly) = () y >
0 for y < 0.

According to Scheuerer (2014), this distribution is non-negative and exactly zero with pos-
itive probability if either £ < 0 or £ > 0 and p < o/&. In his model, Scheuerer (2014) links
the parameters 17 and o from the GEV distribution left-censored at zero to the raw ensemble
forecast « := (z1,...,xpr) by setting

n = Qo + Oélf + a2]l{m:0}

and
g = ﬁO + ﬁl MD(m)v

where Z is the ensemble mean,

[
Tiomo} = 37 2_ Haw=0)
m=1

the fraction of zero precipitation and
1 M M
MD(@) = 175 >0 > [om — o
m=1 p=1
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the ensemble mean difference. The parameters «ag, a1, as, 5o, f1 and & are then estimated
by minimizing the training CRPS according to the formulas (2.5a) and (2.5b), respectively.
Details about the implementation can be found in Scheuerer (2014).

Alternatively to the approach of Scheuerer (2014), truncated logistic distributions can be
employed to model precipitation, motivated as follows. Predictions for the probability of
the precipitation amount exceeding a certain threshold have been constructed using logistic
regression (Wilks and Hamill, 2007; Hamill et al., 2008). However, if a full predictive distri-
bution is desired, this approach fails because it is typically inconsistent across thresholds,
violating the monotonicity restriction for CDFs. To address this shortcoming, Wilks (2009)
introduced a technique, in which the postprocessed predictive CDF takes the form

exp(a+ bz + ...+ by + h(y))

Glylxl,...,xm) = , 3.6

(yls M) 1+expla+bizy+...+byxy + h(y)) (36)

with parameters a,by,...,bys, and with h increasing strictly monotonically and without
bounds as a function of the precipitation accumulation y > 0, whereas G(y|z1,...,z3p) =0

for y < 0. If h is chosen to be linear, mixtures of a point mass at zero and a truncated logistic
distribution are obtained. In view of the parametric family in (3.6), the approach of Wilks
(2009) can be considered an EMOS method. In fact, Wilks (2009) applies the truncated
logistic distributions to root-transformed precipitation amounts y'/2. More generally, the
use of transformations zf,...,z%, and y?, respectively, with a, 3 € Ry, in model (3.6) is
feasible (Gneiting, 2014). The coefficients a, b1, ..., by and those included in the model for
h need to be fitted from appropriate training data. Generalizations allowing for interaction
terms are discussed by Ben Bouallegue (2013).

The EMOS approach for temperature was employed by Hagedorn et al. (2008) and Kann
et al. (2009), among others, while Lerch and Thorarinsdottir (2013) provide a review and
comparison of EMOS regression models for wind speed.

Locally adaptive methods for estimating EMOS parameters in the case of temperature are
provided by Scheuerer and Biiermann (2014) and Scheuerer and Kénig (2014), respectively,
who introduce further refinements of EMOS employing geostatistical methods, in which the
postprocessing at individual stations varies in space. Similar locally adaptive EMOS models
for wind speed are considered in Moller (2013).

In addition, Moller (2014) proposes a spatially adaptive extension of univariate EMOS for
temperature called Markovian EMOS due to the Markovian dependence structure induced
by the Gaussian Markov random field representations of the Gaussian fields used to model
the parameters in the approach.

3.1.3 Case study

We now apply the univariate BMA and EMOS approaches with a sliding training window
of 30 days to the ECMWF raw ensemble forecasts and assess their predictive performances
over the one-year test period from 1 May 2010 to 30 April 2011 by using some of the univari-
ate evaluation methods presented in Chapter 2. The focus is on 24 hour ahead predictions
for temperature, pressure, u- and v-wind and precipitation at the three locations of Berlin,
Hamburg and Frankfurt individually, valid at 00:00 UTC, corresponding to the local time
of 1:00 am in winter and 2:00 am in summer, respectively.
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postprocessed (a) BMA and (b) EMOS predictive distribution, respectively. The ECMWF raw
ensemble forecast is indicated by the red dots, and the verifying observation by the blue cross, while
the black lines show the 10th, 50th and 90th percentiles of the (a) BMA and (b) EMOS predictive
distribution. The 80% BMA/EMOS prediction intervals are represented by the segments shaded in
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Figure 3.5: 24 hour ahead ensemble forecasts of u-wind at Frankfurt, valid 1:00 am for the test
period from 1 January 2011 to 14 January 2011, and characteristic quantities of the corresponding
postprocessed (a) BMA and (b) EMOS predictive distribution, respectively. The ECMWF raw
ensemble forecast is indicated by the red dots, and the verifying observation by the blue cross, while
the black lines show the 10th, 50th and 90th percentiles of the (a) BMA and (b) EMOS predictive
distribution. The 80% BMA/EMOS prediction intervals are represented by the segments shaded in
gray.

29



Temperature Pressure u-Wind v-Wind Precipitation
s e N
e & &
o
° H s s
8 - 8 8
2 3 8 8
2 s < <
Edo 3 °® 7 z° z®
258 g g 5 g g g
53 g2 2 g8 33
14 g v e o k4 e
s & £ £e g, £
& 2 - -
E o
] < o
] ]
° ° ° ° °
1 " 21 31 41 51 1 1 21 31 41 51 1 " 21 31 41 51 1 1 21 31 41 51 1 1" 21 31 a1 51
Verification Rank Verification Rank Verification Rank Verification Rank Verification Rank
9 e e
8 8 ]
9
8 8 8
g 2 = =
s g s
> > @ > o @ > @
< g g ] g )
$:¢ i : iz is
@ g g9 g o g 8
& £ £e g I
N S S
8 o | maE -
° ° ° ° °
0.0 0.2 04 06 08 1.0 0.0 0.2 04 06 08 1.0 0.0 0.2 04 06 08 1.0 0.0 0.2 04 06 08 10 0.0 0.2 04 06 0.8 1.0
PIT PIT PIT PIT PIT
o e e
8 8 8
9
8 8 8
8 3 e E
g 8 8
> » - » ®
o 8o g g3 g g
g 88 H H g3 g g
= 3z g o g 3 g
w @ e = e o o 13
£ & £e £ . £
? ?
e N
8 ]
° °

00 02 04 06 08 10

PIT

PIT

00 02 04 06 08 10

00 02 04 06 08 10

PIT

00 02 04 06
PIT

08 10

00 02 04 06 08 10
PIT

Figure 3.6: Calibration check for 24 hour ahead forecasts of temperature, pressure, u- and v-wind
and precipitation at Berlin over the test period from 1 May 2010 to 30 April 2011. Top row: VR
histograms for the ECMWF raw ensemble. Middle row: PIT histograms for BMA postprocessed pre-
dictive distributions. Bottom row: PIT histograms for EMOS postprocessed predictive distributions

Table 3.3: Average CRPS and AE for univariate 24 hour ahead forecasts of temperature, pressure,
u- and v-wind and precipitation at Berlin, Hamburg and Frankfurt. The results are averaged over
the test period from 1 May 2010 to 30 April 2011.

CRPS AE
Berlin  Hamburg Frankfurt Berlin Hamburg Frankfurt
Temperature Raw Ensemble 1.21 1.01 1.23 1.50 1.26 1.53
(°C) BMA 0.90 0.79 0.88 1.27 1.10 1.23
EMOS 0.90 0.78 0.87 1.24 1.09 1.22
Pressure Raw Ensemble 0.54 0.51 0.55 0.75 0.71 0.75
(hPa) BMA 0.43 0.39 0.43 0.62 0.54 0.61
EMOS 0.44 0.40 0.44 0.60 0.54 0.60
u-Wind Raw Ensemble 0.83 0.89 0.96 1.06 1.11 1.19
(m/s) BMA 0.69 0.69 0.59 0.97 0.97 0.80
EMOS 0.70 0.68 0.60 0.97 0.96 0.81
v-Wind Raw Ensemble 0.74 0.76 1.25 0.95 0.95 1.49
(m/s) BMA 0.58 0.64 1.06 0.82 0.90 1.49
EMOS 0.59 0.65 1.07 0.82 0.89 1.50
Precipitation Raw Ensemble 0.25 0.31 0.41 0.32 0.39 0.51
(mm) BMA 0.23 0.37 0.40 0.30 0.44 0.49
EMOS 0.27 0.36 0.43 0.32 0.43 0.50
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Figure 3.7: Calibration check for 24 hour ahead forecasts of temperature, pressure, u- and v-wind
and precipitation at Hamburg over the test period from 1 May 2010 to 30 April 2011. Top row: VR
histograms for the ECMWF raw ensemble. Middle row: PIT histograms for BMA postprocessed pre-
dictive distributions. Bottom row: PIT histograms for EMOS postprocessed predictive distributions.

The positive impact of ensemble postprocessing via BMA or EMOS is demonstrated in
Figures 3.4 and 3.5 comprising examples for temperature at Hamburg, supplementing Fig-
ure 1.4 in the introductory chapter, and u-wind at Frankfurt, respectively, over selected
two-week test periods. The 50-member ECMWEF raw ensemble forecasts are marked by the
red dots, and the verifying observations by the blue crosses, while the black horizontal lines
indicate the 10th, 50th and 90th percentiles, respectively, of the corresponding BMA or
EMOS predictive distributions. In far too many cases, the observations obviously fall out-
side the raw ensemble range. However, they mostly lie within the 80% prediction intervals
of the BMA or EMOS predictive distributions, which are indicated by the segments shaded
in gray.

Calibration is evaluated via the verification rank (VR) histograms for the raw ensemble
and the probability integral transform (PIT) histograms for the BMA and EMOS method,
respectively. The corresponding histograms can be compared directly, and the results for the
different weather variables at Berlin, Hamburg and Frankfurt are shown in Figures 3.6 to 3.8
for BMA and EMOS, respectively. Throughout, the raw ensemble predictions reveal either
skewed or U-shaped VR histograms, pointing at biases and underdispersion, respectively.
On the other hand, the BMA or EMOS forecast densities are clearly better calibrated than
the raw ensemble, with mostly nearly uniform PIT histograms. Note that in the case of the
PIT histograms for precipitation, observations of zero precipitation are randomized within
their probabilistics range to avoid a false impression of bias, as suggested in the manual to
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Figure 3.8: Calibration check for 24 hour ahead forecasts of temperature, pressure, u- and v-wind
and precipitation at Frankfurt over the test period from 1 May 2010 to 30 April 2011. Top row: VR
histograms for the ECMWF raw ensemble. Middle row: PIT histograms for BMA postprocessed pre-
dictive distributions. Bottom row: PIT histograms for EMOS postprocessed predictive distributions

the R package ensembleBMA.

Table 3.3 shows the average results for the continuous ranked probability score (CRPS)
and the absolute error (AE) as overall performance measures, where in the case of the AE,
the reference point forecast is given by the median, that is, the 50th percentile, of the cor-
responding predictive BMA or EMOS distribution. The CRPS is computed according to
the formulas in Section 2.3. In the case of temperature, pressure, u- and v-wind, respec-
tively, both the BMA and the EMOS postprocessing significantly improve the predictive
skill, yielding lower scores than the unprocessed raw ensemble. The only exception can
be observed for v-wind at Frankfurt, where BMA and EMOS at least fail to outperform
the raw ensemble in terms of the AE. As far as precipitation is concerned, the situation is
somewhat more mixed. For this variable, BMA outperforms the raw ensemble in terms of
both the CRPS and the AE at Berlin and Frankfurt, respectively, while it fails to do so
at Hamburg. EMOS even performs worse than the raw ensemble in terms of the CRPS at
all three locations. At least, EMOS does not perform worse than the raw ensemble with
respect to the AE at Berlin and Frankfurt. Although calibration of BMA and EMOS for
precipitation appears to be rather fine at each of the three locations, the partial failures
in terms of the scores, especially the CRPS, might be due to potential deficiencies in the
details of the two postprocessing approaches and their implementation. A deeper analysis of
the corresponding BMA and EMOS forecasts involving the (half-) Brier score (Brier, 1950;
Wilks, 2011) reveals that the two postprocessing techniques generally work well in predicting
precipitation or no precipitation. In case they are not able to outperform the raw ensemble
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with respect to the scores, they on average fail in predicting extreme precipitation events
dealing with higher thresholds. All this witnesses that precipitation generally appears to be
one of the most difficult and complex weather variables to handle.

In a nutshell, the case study underlines previous results, in that both BMA and EMOS
usually outperform the unprocessed raw ensemble, while showing comparable, nearly equal
predictive skill. Generally, BMA is more flexible, while EMOS is more parsimonious.

A similar comparison study of the impact of BMA and EMOS postprocessing, respectively,
for temperature and wind speed has been conducted by Baran et al. (2014a), using forecast
data over Hungary.

3.2 Multivariate postprocessing

The univariate BMA and EMOS approaches presented in Section 3.1 only apply to a single
location, a single weather quantity and a single prediction horizon. This is rather unfortu-
nate, as independently postprocessed forecasts fail to account for spatial, inter-variable and
temporal dependence structures. However, in many applications, such as air traffic control
(Chaloulos and Lygeros, 2007), flood warning (Schaake et al., 2010), winter road mainte-
nance (Berrocal et al., 2010) or the management of renewable energy sources (Pinson, 2013),
it is crucial that such dependencies are restored by the postprocessing methods. Hence, the
development of postprocessing techniques leading to physically realistic and coherent prob-
abilistic forecasts of spatio-temporal weather trajectories is of tremendous interest, with the
aim to handle multiple locations, weather variables and look-ahead times simultaneously.
Meanwhile, several multivariate ensemble postprocessing approaches have thus been de-
signed, yielding truly multivariate predictive distributions. For example, extensions of the
BMA and EMOS approaches for temperature in Section 3.1 being able to address spatial
dependence structures have been introduced by Berrocal et al. (2007) and Feldmann et al.
(2014) within the frame of Spatial BMA and Spatial EMOS, respectively.

Copulas (Joe, 1997; Nelsen, 2006) play an important part in the context of dependence
modeling, and they turn out to be well suited to face the challenge of constructing multi-
variate postprocessing approaches. In this section, the importance of copulas for handling
dependencies is described. Moreover, several selected examples of multivariate ensemble
postprocessing approaches are presented, where the focus is on those methods that are ei-
ther relevant for the whole context of the thesis or which can be interpreted in a copula
framework.

3.2.1 Dependence modeling via copulas

Originally introduced by Sklar (1959), copulas play an important part in probability and
statistics whenever modeling of stochastic dependence is required. Essentially, a copula is
a multivariate CDF with standard uniform margins. A precise mathematical definition is
given in the following (Nelsen, 2006).

Definition 3.1. A function C : [0, 1]% — [0,1] is an L-dimensional copula or L-copula if it
satisfies the following conditions.

(C1) C is grounded, in that C(uq,...,ur) =0 if up = 0 for at least one £ € {1,... L}.

(C2) C(1,...,1,up,1,...,1) =wuy forall £ € {1,...,L}.
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(C3) C is L-increasing, in that
AL AR O (u, L ug) > 0
for all ag, by € [0, 1] such that ay < b, for all £ € {1,..., L}, where

AZ‘ZC(M,---,UL) = C(ug,...,up_1,bp, gy, ..., up)

—C(Ul, sy Up—1, 00, Up41, - - - 7UL)'

Definition 3.2. Let Ji,...,J;, be subsets of [0, 1] containing at least the points 0 and 1.
A function C* : J; x --- x Jp — [0,1] is an L-dimensional subcopula or L-subcopula if it
analogously satisfies the conditions (C1), (C2) and (C3) in Definition 3.1, but is defined on
Ji % --+ x Jp, rather than on the entire L-cube [0, 1]%.

The field of copulas has been developing rapidly over the last decades, and copulas have
been applied to a wide range of problems in various areas, such as climatology, meteorology
and hydrology (Moller et al., 2013; Genest and Favre, 2007; Schoelzel and Friederichs, 2008;
Zhang et al., 2012) or econometrics, insurance and mathematical finance (Cherubini et al.,
2004; Embrechts et al., 2003; Pfeifer and Neslehova, 2003; Genest et al., 2009), with Mikosch
(2006) providing a critical review on their use. However, copulas are also of immense the-
oretical interest, due to their appealing mathematical properties. For a general overview
of the mathematical theory of copulas, we refer to the textbooks by Joe (1997) and Nelsen
(2006), as well as to the survey paper by Sempi (2011).

The relevance of copulas in multivariate dependence modeling is based on the famous theo-
rem of Sklar (1959), which states that any multivariate CDF can be linked to its univariate
marginal CDFs via a copula function.

For the purposes of this thesis, let us suppose that we have a predictive CDF F, for
each univariate weather variable Yy for ¢ € {1,..., L}, where the multi-index ¢ := (4, j, k)
refers to weather quantity ¢ € {1,...,I}, location j € {1,...,J} and prediction horizon
ke {l,...,K}, with L := I x J x K. Our goal is then to provide a physically realistic
multivariate joint predictive CDF F' with margins FY, ..., Fr. With this setting in mind,
Sklar’s theorem can be formulated as follows.

Theorem 3.3. (Sklar) (Sklar, 1959; Nelsen, 2006)

1. For any multivariate CDF H with marginal CDFs Fy, ..., Fy, there exists a copula C
such that

H(yi,-..,yn) = C(F1(y1), - -, FL(yL)) (3.7)

for y1,...,yr € R := RU{—00,00}. Moreover, C is uniquely determined if F1, ..., Fy,
are continuous; otherwise, C' is uniquely determined on Ran(Fy) x --- x Ran(Fr).

2. Conversely, if C' is a copula and F7, ..., Fy, are univariate CDFs, then the function H
as defined in (3.7) is a multivariate CDF with margins Fi, ..., Ff.

Due to Sklar’s theorem, the desired multivariate distribution can thus be constructed by
combining margins obtained by univariate postprocessing and a multivariate dependence
structure contained in a suitable copula function. Hence, the main challenge now is to
choose and fit the copula C' appropriately.
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Various different types of copulas are available, including but not limited to Gaussian,
elliptical, Archimedean, vine or pair, extremal and discrete or empirical copulas.

The most common type used in parametric approaches is that of a Gaussian copula (Em-
brechts et al., 2003), under which the joint multivariate CDF H is given by

H(yr,-..,yrlR) = (@7 (Fi(y1)), .., @7 (Fr(yr))|R), (3.8)

where ®,(-|R) denotes the CDF of an L-dimensional normal distribution with mean vector
0 :=(0,...,0) and correlation matrix R, and ®~! the inverse of the CDF of the univariate
standard normal distribution. A major advantage of Gaussian copula models is that only
the margins F1, ..., Fr and the correlation matrix R are required. Some examples for the
use of Gaussian copulas in multivariate postprocessing are discussed in the next subsection,
while parametric or semi-parametric alternatives comprise elliptical (Demarta and McNeil,
2005), Archimedean (Nelsen, 2006; McNeil and Neslehovd, 2009), extremal (Davison et al.,
2012) and vine or pair copulas (Aas et al., 2009; Erhardt et al., 2014), for instance. All these
types of copula are typically employed if the dimension L is rather small, or if a specific
structure can be exploited.

By contrast, for large L, and if no specific structure can be utilized, it is reasonable to
use non-parametric approaches, which rely on discrete or empirical copulas (Riischendorf,
1976; Kolesarova et al., 2006; Riischendorf, 2009), which are also known under the term

“empirical dependence functions” (Deheuvels, 1979). Letting {x1,...,zy} with z,, =
(zt,....2k) € RE for m € {1,...,M} be a data set of size M with values in R” and

assuming for simplicity that there are no ties, the corresponding empirical copula Ej; is
given by

. . M
11 1L 1
EM (,...,) :fZ]l{ k(zl,)<i1,... k(zL)<ir} (39)
M M M — rank(zl )<iy,...,rank(zl)<ip
for integers i1, ...,iz, € {0,..., M}, where rank(x%) denotes the rank of 2%, in {f,..., 29,}

for¢ e {1,..., L} and m € {1,..., M}. Detailed theoretical aspects of discrete and empirical
copulas, respectively, are presented in Chapter 6. Examples of multivariate postprocessing
approaches based on empirical copulas include the Schaake shuffle (Clark et al., 2004), which
is discussed in the next subsection, and ensemble copula coupling (Schefzik et al., 2013),
which forms the main subject of this thesis and is introduced in Chapter 4.

3.2.2 Examples of multivariate postprocessing methods

Now we discuss some examples of multivariate postprocessing methods and point out rela-
tionships to copulas.

(a) Addressing spatial dependence structures via parametric methods

Spatial BMA and Spatial EMOS

To account for spatial dependence patterns, an established strategy is to fuse univariate
ensemble postprocessing techniques on the one hand and geostatistical models from spa-
tial statistics on the other hand. Examples of multivariate postprocessing methods which
are able to address spatial dependence structures in the case of temperature include Spa-
tial BMA (Berrocal et al., 2007) and Spatial EMOS (Feldmann et al., 2014). These two
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approaches combine the standard BMA and EMOS notions for univariate ensemble postpro-
cessing, respectively, with the geostatistical output perturbation (GOP) technique proposed
by Gel et al. (2004), which models the spatial correlation structure. The final output is a
mixture of multivariate normal distributions in the case of Spatial BMA and a single multi-
variate normal distribution in the case of Spatial EMOS. Thus, an interpretation of the two
approaches in the Gaussian copula setting of Equation (3.8) is available, where in this spatial
setting, the correlation matrix R is taken to be highly structured and satisfies requirements
auch as spatial stationarity and/or isotropy. In general, the use of Gaussian copula tech-
niques is very common in geostatistics, where this notion is referred to as anamorphosis
(Chiles and Delfiner, 2012). A counterpart of GOP which can be applied to precipitation
fields is the two-stage spatial (T'SS) model introduced by Berrocal et al. (2008). Ideas and
first attempts for a combination of the T'SS model with BMA for precipitation (Sloughter
et al., 2007) can be found in Scheuerer and Gneiting (2011), while a combination of the
TSS model with an appropriate EMOS method has not been implemented up to now to my
knowledge.

(b) Addressing inter-variable dependence structures via parametric methods
BMA and Gaussian copulas

Moller et al. (2013) propose the use of Gaussian copulas to retain the inter-variable depen-
dence pattern of forecasts at individual locations and for fixed prediction horizons, where
BMA is employed to generate the postprocessed marginal predictive distributions for each
weather quantity separately. The method is an application of Gaussian copulas except that
precipitation forecasts require special treatment due to the point mass at zero.

Joint postprocessing of temperature and wind speed using BMA

The approach of Baran and Moller (2014) uses a bivariate BMA model based on bivariate
truncated normal distributions for the joint postprocessing of temperature and wind speed.
It is a direct extension of the univariate BMA methods for temperature using normal distri-
butions (Raftery et al., 2005) and wind speed using truncated normal distributions (Baran,
2014), in that the joint modeling of the two weather variables is performed via a bivariate
normal BMA kernel with wind coordinate truncated from below at zero, as wind speed is a
non-negative quantity.

Postprocessing of (u,v)-wind vectors

One of the most common and important examples of handling inter-variable dependence
only is the joint postprocessing of u- and v-wind. To this end, Sloughter et al. (2013)
propose a BMA variant for bivariate wind vectors using mixtures of suitably transformed
bivariate normal densities, where each mixture component can be linked to a Gaussian cop-
ula, allowing for a copula interpretation of this approach.

In view of the further development of the thesis, we concentrate on discussing the alter-
native approaches of Schuhen et al. (2012) and Pinson (2012) in what follows.

To model dependence patterns between u- and v- wind at a fixed location and for a fixed
look-ahead time, Schuhen et al. (2012) propose an EMOS approach for wind vectors, in
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which the postprocessed predictive distribution is bivariate normal, taking the form
No Hu 0'3 POuOy
o )\ pouoy Ug
1

2oy ou\/1 — p?
1 U — fiy)? U — oy ) (V — fhy v — fiy)?
><exp<—2(1_p2) (( Uf) P 0] 2 N et 1, >>

- OuOy o;

with predictive PDF

f(u,v)

In the method of Schuhen et al. (2012) for ensembles consisting of exchangeable members,
the predictive means pu,, = a, + byu and u, = a, + b,v are linearly bias-corrected versions
of the empirical means u and v of the u- and v-wind raw ensemble forecasts ui, ..., uys and
v1, ..., v, respectively. Moreover, the predictive variances 02 = ¢, +d,s2 and 02 = c,+d,s>
are linear functions of the empirical raw ensemble variances s2 and s2, respectively. In this
context, the parameters a, a,, by, by, Cy, ¢y, dyy and d, have to be estimated from training

data. Finally, the predictive correlation coefficient
27

36O(ye+zp)) +q (3.10)

is considered to be a trigonometric function of the mean ensemble wind direction 6, where
the coefficients g and r concern the overall magnitude of p and have to satisfy |gq| + |r| < 1.
Moreover, while 1) encodes phase information, v € N corresponds to the number of periods
of the trigonometric function. In Schuhen et al. (2012), v is constrained to be either 1, 2
or 3. In view of the Gaussian copula frame fixed in Equation (3.8), the method of Schuhen
et al. (2012) deals with the special case of L = 2 and invokes a bivariate normal predictive
distribution H with univariate normal margins F; and F5 for u- and v-wind, respectively.

p::rcos(

Pinson (2012) proposes a bivariate postprocessing method for (u,v)-wind vectors which
directly transfers a u- and v-wind raw ensemble forecast wuq,...,ups and vy, ..., vy, respec-
tively, at a fixed location and for a fixed prediction horizon into a calibrated ensemble via
a member-by-member postprocessing approach, instead of fitting a full predictive postpro-
cessed PDF as in Schuhen et al. (2012). Essentially, Pinson (2012) assumes that the raw en-
semble members sample a bivariate Gaussian distribution and introduces a two-dimensional
translation and dilation of the sets of raw ensemble predictions. The translation and dila-
tion factors are obtained by models for the mean and the variance of the bivariate Gaussian
densities, while Pinson (2012) does not consider a potential correction of the correlation
coefficient, as opposed to Schuhen et al. (2012). Precisely, the new calibrated u- and v-wind
ensemble members u,, and 9, in Pinson’s approach are given by

Uy = ﬂ+Tu+€u(um _a)u
Uy = 7_)+Tv+§v(vm_1_))
for m € {1,...,M}. In this context, u,, and v,, denote the raw ensemble u- and v-wind

forecasts, with empirical means u and v, respectively. Moreover, 7, and 7, are certain
translation factors and &, and &, certain dilation factors, which depend on u and v and the
empirical raw ensemble standard deviations s, and s,, as well as on model parameters. The
work of Pinson (2012) can be interpreted as a special case of the ensemble copula coupling
technique (Schefzik et al., 2013), which turns out to be an empirical copula method and is
introduced in the next chapter. Relationships are discussed in detail in Chapter 5.

37



(c) Addressing temporal dependence structures via parametric methods

Pinson et al. (2009) and Schoelzel and Hense (2011) use Gaussian copulas to capture de-
pendence structures over consecutive prediction horizons in postprocessed predictive distri-
butions.

(d) Addressing dependence structures via the Schaake shuffle as a non-parametric
method

The multivariate parametric approaches presented before work particularly well in low di-
mensions or if specific structure can be exploited. However, these parametric methods are
bound to fail in high-dimensional settings. In contrast, the Schaake shuffle (Clark et al.,
2004) offers an alternative non-parametric method for reconstructing physically coherent
spatio-temporal structures. It was introduced by Clark et al. (2004) as a reordering tech-
nique and has been interpreted by Schefzik et al. (2013) as an empirical copula approach as
follows.

For a given weather quantity ¢ € {1,...,1} at a given location j € {1,...,J}, summa-
rized in the multi-index £* := (i, 5), let %, ... ,i‘f\j be a postprocessed N-member ensemble
forecast valid on date ¢, with L* := I x J being the dimension of the overall output of a
single ensemble member forecast. Here, we think of :%f*, . ,i% as postprocessed ensem-
ble forecasts in the form of samples from corresponding univariate predictive distributions
Fy, ..., Fr at each location for each weather quantity separately, which could be obtained
via BMA or EMOS, for instance. Moreover, let yf*, . ,yﬁ denote corresponding selected
historical observations from N dates t¢1,...,ty in the past of £. In this context, the same N
dates are employed for all locations and weather variables throughout the whole procedure
of the Schaake shuffle. Following the specific implementation of Clark et al. (2004), the dates
t1,...,tn can be chosen from the whole historical record, except for the year of the forecast
of interest, and should lie within seven days before and after the date t, regardless of the
year. For each /*, the corresponding order statistics yg) <... < yfjv) then induce a per-
mutation 7« of {1,..., N} defined by mp«(n) := rank(y’ ) for n € {1,..., N}, with any ties
resolved at random. The final postprocessed Schaake shuffle ensemble @lf, . ,iff:} is then
given by 2§ := jf;[*(l)), 2= ig[* (V) for each ¢* € {1,...,L*}. Hence, the postpro-
cessed ensemble forecasts are just reordered with respect to the rank dependence structure
of the selected historical observations. From a copula-based point of view, the empirical
copula defined by the past observations according to (3.9) is applied to the postprocessed
ensemble forecasts, such that both the historical materializations and the final forecasts
reveal the same multivariate rank dependence pattern. A detailed study of empirical and
discrete copulas, respectively, is given in Chapter 6, where also their relationships to the
Schaake shuffle and the ensemble copula coupling (ECC) approach are explicitly discussed.

Even though the Schaake shuffle has performed well in meteorological and hydrologic ap-
plications (Clark et al., 2004; Schaake et al., 2007; Voisin et al., 2011; Vrac and Friederichs,
2014), a major shortcoming of its standard variant is the failure to condition the multivariate
dependence pattern on current or predicted atmospheric states. This could be addressed by
combining the notion of the Schaake shuffle with the search for so-called analog ensembles
and is further investigated in Chapter 8.
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Chapter 4

Ensemble copula coupling (ECC)

As noted, the parametric multivariate postprocessing methods presented in Section 3.2.2 are
not suitable when dealing with very high-dimensional settings. Moreover, they are capable
to model either spatial or inter-variable or temporal dependencies, but combinations of all
types of dependence are not addressed. As seen, the Schaake shuffle (Clark et al., 2004) as
an empirical copula approach can help to resolve this shortcoming. However, it does not
make use of the multivariate dependence structure of the NWP ensemble.

In this chapter, we introduce and illustrate an empirical copula method, called ensemble
copula coupling (ECC) (Schefzik et al., 2013), that is related to the Schaake shuffle, but in
which the multivariate dependence structure of the postprocessed forecast is adopted from
the original unprocessed NWP ensemble, rather than from historical observations, thereby
capturing the atmospheric flow dependence. Moreover, quantization aspects in the context
of ECC are investigated, and ECC is tested and assessed in a comprehensive case study
using the ECMWEF ensemble. Finally, we discuss modifications of ECC, which are able to
handle some of the limitations arising in the standard ECC implementation.

4.1 The ensemble copula coupling (ECC) approach

In this section, we present and illustrate the standard ensemble copula coupling (ECC) ap-
proach (Schefzik et al., 2013) as a multivariate ensemble postprocessing tool. ECC has been
originally hinted at by Bremnes (2007) and Krzysztofowicz and Toth (2008), and initial in-
vestigations have been conducted in Schefzik (2011), before Schefzik et al. (2013) introduced
the general ECC frame exposed in what follows.

Essentially, ECC uses both univariate postprocessing methods and the rank order informa-
tion available in the NWP raw ensemble forecast to produce calibrated and sharp, physically
coherent spatio-temporal weather trajectories. As NWP models are based on discretizations
of the equations governing the physics of the atmosphere, observed multivariate dependence
structures can be expected to be reasonably well represented in the raw ensemble predic-
tion system. However, it is generally advisable to make diagnostic checks in order to verify
whether dependence structures within the raw ensemble are compatible with historical ob-
servations. For the ECMWEF ensemble data set employed in the case studies throughout
this thesis, the resemblance of the corresponding dependence patterns mostly turns out to
be sufficiently large, in particular in the case of pressure.
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Assuming that the raw ensemble members are exchangeable, ECC is a multi-stage approach,
proceeding as follows (Schefzik et al., 2013).

1. Obtaining an NWP raw ensemble: Initialized at a fixed date, multiple runs of an
NWP model differing in the inputs or model parameters in suitable ways supply an M-
member ensemble forecast, where each member attains values in R”. As an output, we
are thus given the univariate margins xli, . ,xﬁ/j of the raw ensemble, with the multi-
index ¢ := (i, j, k) referring to weather variable i € {1,...,I}, location j € {1,...,J}
and prediction horizon k € {1,..., K}, where L :=1 x J x K.

2. Derivation of the univariate order statistics of the raw ensemble: For each margin ¢,
compute the order statistics wfl) < ... < $€ M) of the raw ensemble values. These

induce a permutation oy of the integers {1,..., M} via oo(m) := rank(z!,) for m €
{1,..., M}. If there are ties among the ensemble values, they are resolved at random,
which is a natural procedure. Other allocation methods are feasible and do not entail
major technical problems.

3. Univariate postprocessing: For each margin ¢, apply a univariate postprocessing method,
such as BMA or EMOS as presented in Section 3.1, to the raw ensemble output
x‘f, R xﬁ/l and obtain a univariate postprocessed predictive CDF, Fy.

4. Quantization/Sampling: Represent each univariate postprocessed predictive distribu-
tion Fy by a discrete sample ﬁ, . ,:ng of size M. This sample can be generated in
various ways, as will be described and discussed in Section 4.2, where we consider
the sampling methods (R), (T) and (Q) referring to samples obtained by employing
a Random quantization, a Transformation approach or equidistant Quantiles, respec-

tively.
5. Reordering: For each margin £, the final postprocessed ECC ensemble &, ... ,28, is
given by
N4 A=l
xry = m(ge(l))7 e Ty = x(gé(M))

That is, the sample from each univariate marginal postprocessed distribution is re-
ordered with respect to the rank dependence structure of the raw ensemble, thereby
preserving the flow dependence.

ECC in the form presented above is basically a reordering technique. The necessity of this
reordering notion to capture the rank dependence pattern of the raw ensemble is not new
and has been recognized in the extant literature (Bremnes, 2007; Flowerdew, 2012, 2014,
for instance). Alternatively, member-by-member postprocessing approaches (Johnson and
Bowler, 2009; Pinson, 2012, among others) directly retain the rank dependence pattern of
the raw ensemble by construction, such that the reordering step becomes obsolete. Examples
of such approaches, which turn out to be special cases of ECC, will be discussed in Chapter 5.

However, ECC can alternatively be interpreted as an empirical copula approach (Schefzik
et al., 2013), in that the empirical copula defined by the raw ensemble is applied to the dis-
crete samples from the univariate postprocessed marginal distributions to obtain the ECC
ensemble. This justifies the term “ensemble copula coupling”. Details in this context will
be provided in Chapter 6.

The basic notion of ECC is illustrated for an L. = 4-dimensional setting in Figure 4.1,
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(c) ECC postprocessed ensemble

Figure 4.1: 24 hour ahead ensemble forecasts of temperature (in °C) and pressure (in hPa) at Berlin
and Hamburg, valid 1:00 am on 8 November 2010. The 50-member ECMWF raw ensemble is shown
in (a), an individually BMA postprocessed ensemble in (b) and the ECC postprocessed ensemble in
(c). Similar plots valid for a different date are shown in Figure 5 in Schefzik et al. (2013).
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Figure 4.2: 24 hour ahead ensemble forecasts of temperature (in °C) and pressure (in hPa) at Berlin
and Hamburg, valid 1:00 am on 8 November 2010. The 50-member ECMWF raw ensemble is shown
in (a), an individually EMOS postprocessed ensemble in (b) and the ECC postprocessed ensemble
in (c).
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ECC Ensemble Individual BMA Ensemble Raw Ensemble

Control Run Nowcast

Figure 4.3: 24 hour ahead ensemble forecasts of temperature (in °C) on a grid over Germany, valid
2:00 am on 23 April 2011. First row: Four selected members of the ECMWF raw ensemble. Second
row: Four members obtained by individual site-by-site BMA postprocessing, where for each grid
point, a random number from the respective BMA postprocessed predictive distribution is drawn.
Third row: The four members of the respective ECC ensemble with rank order structures inherited
from the corresponding ECMWF raw ensemble members in the first row. Fourth row: The single-
valued control run nowcast, shown both at left and at right. A similar overview plot valid for a
different date is shown in Figure 11 in Schefzik et al. (2013).

43



where we consider three different forecast ensembles for temperature and pressure at Berlin
and Hamburg, valid at 1:00 am on 8 November 2010. The scatterplot matrix in 4.1 (a) shows
the 50-member ECMWEF raw ensemble forecasts, which clearly reveal dependencies between
the margins. For instance, there is a strong positive correlation between pressure in Berlin
and pressure in Hamburg, as well as a positive correlation between temperature in Berlin and
temperature in Hamburg, while a negative association can be observed between temperature
in Berlin and pressure in Berlin. The scatterplot matrix in 4.1 (b) consists of samples of the
individual predictive distributions obtained by univariate postprocessing via BMA, using a
sliding training window of 30 days. While biases and dispersion errors in the margins are
corrected for, the original dependence structures from the raw ensemble in 4.1 (a) get com-
pletely lost. Finally, the scatterplot matrix in 4.1 (c¢) shows the effect of the ECC reordering
approach, in that the rank dependence pattern of the unprocessed raw ensemble is retained,
with the margins remaining unchanged from 4.1 (b), as is indicated by the coincidence of
the histograms of the margins on the diagonal of the scatterplot matrices 4.1 (b) and 4.1 (c).

The descriptions and comments just made hold analogously for Figure 4.2, which works
exactly in the same setting as Figure 4.1, except that the univariate postprocessing is per-
formed via EMOS instead of BMA in this case. Hence, the marginals are given by single
normal distributions, as indicated by the histograms on the diagonals in 4.2 (b) and 4.2 (c),
rather than mixtures of normal distributions.

Another example for the positive effect of ECC in spatial settings is given in Figure 4.3,
dealing with ensemble temperature field forecasts valid at 2:00 am on 23 April 2011, made
on a grid over Germany and adjacent areas comprising 33 x 37 = 1221 model grid points.
The first row displays the temperature field predictions of four selected members from the
ECMWFEF raw ensemble. In the second row, four realizations of individual univariate BMA
postprocessing are shown, where for each grid point, a random number from the corre-
sponding BMA predictive distribution is drawn. The third row shows those four members
of the corresponding postprocessed ECC ensemble which adopt their dependence structure
from the respective ECMWF raw ensemble members in the first row. The ground truth on
the grid is given by the corresponding single-valued nowcast initialization of the ECMWF
control run, as described in Section 1.3, and is displayed twice in the fourth row. While they
appear to capture spatial patterns quite well, the ECMWF raw ensemble members exhibit
an overall negative bias, in particular in the Alps region in the south and in Southwest
Germany, respectively. The BMA postprocessing, using a training period of 20 days here,
is able to correct this shortcoming, where the respective BMA parameters are estimated
once and for all based on data of all grid points, thus avoiding inconsistencies between the
univariate postprocessed predictive distributions themselves. However, the individual sam-
pling leads to spatially noisy and inconsistent temperature fields, where the spatial pattern
of the ECMWF raw ensemble member forecasts vanishes. This missing spatial structure is
then restored by the corresponding ECC ensemble members, which both inherit the bias-
corrected marginals from the individual BMA postprocessed forecasts and account for the
dependencies within the raw ensemble.

For the same setting as in Figure 4.3, plots of all 50 members of the raw, individual BMA
and ECC ensemble, respectively, are shown in Figures 4.4 to 4.6 as a supplement. The
50 single plots within each figure are arranged in a consistent manner with respect to the
respective ensemble member indices, thus allowing for a direct comparison.
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Figure 4.4: 24 hour ahead 50-member ECMWTF raw ensemble forecast for temperature (in °C) on
a grid over Germany, valid 2:00 am on 23 April 2011.



Figure 4.5: 24 hour ahead 50-member individual BMA ensemble forecast for temperature (in °C)
on a grid over Germany, valid 2:00 am on 23 April 2011.
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Figure 4.6: 24 hour ahead 50-member ECC ensemble forecast for temperature (in °C) on a grid
over Germany, valid 2:00 am on 23 April 2011.
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The ECC approach, which combines parametric univariate ensemble postprocessing and
a non-parametric reordering notion, has a couple of benefits. It retains the marginal pre-
dictive distributions obtained by any univariate postprocessing method, while inheriting
the rank dependence structure from the unprocessed raw NWP ensemble, thus capturing
the flow dependence and retaining the bivariate Spearman rank correlation coefficients of
the raw ensemble. Hence, ECC combines analytic, numerical and statistical modeling and
embodies a universal concept which is likely to be broadly applicable in the context of un-
certainty quantification, also in application areas apart from weather forecasting. Moreover,
it is comparably easy to explain, understand and implement and can be applied in settings
of any, potentially high, dimension, in which parametric methods are likely to fail. Once
an NWP model has been run and univariate statistical postprocessing has been performed,
the crucial ECC reordering step to account for multivariate dependencies requires negligible
additional computational effort and essentially comes for free. Last but not least, ECC has
a mathematical-theoretical backing, being embedded in the frame of discrete copulas, as
will be discussed in Chapter 6.

ECC appears to be especially valuable if the raw ensemble is rather large, as is the case
with the 50-member ECMWEF ensemble considered in this thesis, such that much infor-
mation can be drawn from it. In contrast, ECC might be less beneficial if the underlying
raw ensemble size is comparably small, or if there are many ties among the marginal raw
ensemble values, as might be the case for precipitation, with several ensemble members
simultaneously predicting zero precipitation, for instance. In these situations, one cannot
learn much about the dependence structure from the raw ensemble, and thus, applying ECC
is expected to be not that powerful. Apart from this, ECC in the form presented before
has further limitations. It cannot correct any inconsistencies between the postprocessed
marginal distributions themselves. Moreover, ECC assumes a perfect model as far as the
multivariate rank dependence structure across weather quantities, locations and prediction
horizons is concerned. For NWP models, this assumption typically appears reasonable and
can be verified empirically via diagnostic checks. However, it most likely does not hold each
and every day, and hence, it might be more realistic to suppose that NWP models may
exhibit errors in dependence patterns, which should be diagnosed and improved by using
the dependence structures of the observations, which are not accounted for in the present
ECC version. Thus, alternative parametric postprocessing methods are likely to outperform
ECC in low-dimensional or highly structured settings, given that there is enough training
data available to statistically correct dependence patterns. This is for instance witnessed by
the case studies in Schuhen et al. (2012), in which the bivariate EMOS approach presented
in Section 3.2.2 outperforms ECC in an L = 2-dimensional scenario considering u- and v-
wind jointly at individual locations and for a fixed look-ahead time of 48 hours. In addition,
ECC can only be applied to ensembles with exchangeable members, and the postprocessed
ECC ensemble is constrained to have the same number of members as the original NWP
ensemble, which is typically rather small. Part of these shortcomings will be addressed later
in this thesis by proposing both suitable modifications of the current ECC approach and a
related technique in Sections 4.4 and 4.5 of this chapter and in Chapter 8, respectively.
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4.2 The quantization step

An essential property of the ECC postprocessing method is that its final output takes
the form of an ensemble. Hence, an important part within ECC is the quantization or
sampling step, in which each univariate marginal predictive CDF F}j obtained by an ensemble
postprocessing method is discretized, such that each Fy is represented by a sample i{, e a?ﬁ/[
from Fy. While various procedures are possible to achieve this, we describe and investigate
three different methods in this section here, which we call the sampling methods (R), (T)
and (Q), as the samples are obtained by using Random draws, a Transformation approach
and equally spaced Quantiles, respectively. In addition, the different sampling approaches
are tested and compared in a case study.

4.2.1 The sampling methods (R), (T) and (Q)

The sampling methods hinted at above are designed as follows.

(a) The sampling method (R)

A simple option to obtain a sample Z{, ..., 55?\4 from a univariate predictive CDF Fy is to
just draw random samples from Fy of the form

I = F[l(ul),...,if\/l = F[l(uM), (R)
with u1,...,uy denoting independent standard uniform random variates, and F[l the
(generalized) inverse of Fy.

We refer to the corresponding ECC variant using this sampling method (R) as ECC-R.

(b) The sampling method (T)

Alternatively, a sample Z¥, . .. ,:%fw from a univariate predictive CDF Fj can be obtained via
the following quantile mapping or transformation approach, which bases on the ensemble
smoothing method of Wilks (2002). Let Sy be a parametric, continuous CDF fitted to

the raw ensemble margin arli, . ,xf\/l. Then, we use those quantiles from Fj, as a sample
ff, ... ,:Eﬁ/[ which correspond to the percentiles of the raw ensemble values in Sy, that is,

~ -1 1 ~A -1 0

Ty = F, (Se(21)), .., &y o= Fy (Se(wy))- (T)

We refer to the corresponding ECC variant using this sampling method (T) as ECC-T.
Due to its design, the sampling scheme (T) automatically retains the rank dependence
structure of the raw ensemble, such that the reordering step 5 in the standard ECC imple-
mentation described in Section 4.1 becomes obsolete.

In the special case of Sy and F} belonging to the same location-scale family, the trans-
formation from the raw ensemble value xfn to the postprocessed sample value fvfn for each
fixed ¢ and for member m € {1,..., M} becomes affine, which is manifested by the following
lemma, where we omit the indices £ and m for convenience.

Lemma 4.1. Let S and F' be two continuous CDFs that belong to the same location-scale
family. Then, the transformation from z to # := F~1(S(z)) is affine.
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Proof. As the continuous CDFs S and F' belong to the same location-scale family, there
exists a continuous CDF G such that S(z) = G((z — pu)/o) and F(z) = G((xz — p*)/0™),
where u, p* € R and 0,0* € R;. By using this location-scale property (LSP) twice, we get

¢ = e (o2 ) 2 o (o () o

(.I‘—IU) * * * o*
= —— oo +tp=p"+—(v—p).
g g

Hence, the transformation from x to Z is affine and has the form & = p* + %*(x —p). O

In the special setting of Lemma 4.1, ECC-T thus retains the raw ensemble’s bivariate Pear-
son product moment correlation coefficients, in addition to preserving its bivariate Spearman
rank correlation coefficients.

In many cases, such as for temperature, pressure, u- and v-wind, S; can be assumed to
be normal, with mean equal to the empirical raw ensemble mean and variance equal to the
empirical raw ensemble variance. When combining such a normal CDF Sy with a univariate
postprocessed normal CDF Fy obtained by EMOS for the suitable weather variables, Lemma
4.1 can be applied, and we have a member-by-member postprocessing method based on a
monotone transformation. Such approaches are further discussed in Chapter 5, and indeed
many methods proposed in the extant literature turn out to be special implementations of
the ECC-T type.

The ECC-T quantization scheme can principally be applied also in non-Gaussian settings.
Exemplarily, we address precipitation in what follows, and describe how to choose F, and
Sy in scheme (T) then.

In the case of precipitation, the univariate predictive CDF F; can be modeled by the stan-
dard BMA and EMOS postprocessing approaches, as discussed in Section 3.1. We could for
instance take Fy to be the CDF of a mixture of Gamma distributions with point mass at zero,
as obtained by the corresponding BMA approach of Sloughter et al. (2007). Alternatively,
Fy could be considered to be the CDF of a GEV distribution left-censored at zero, as in the
respective EMOS approach of Scheuerer (2014). In contrast, the choice of a suitable CDF
Sy fitted to the raw ensemble margin is somewhat more involved. One possibility might be
to let Sy be the CDF of a Bernoulli-Gamma mixture with point mass at zero equal to the
fraction of ensemble members equal to zero and mean and variance of the Gamma part equal
to the empirical mean and variance, respectively, of the remaining members. However, the
variance of the Gamma part may become zero, for instance if exactly one ensemble member
has a strictly positive value or if all ensemble members apart from those predicting zero
precipitation have exactly the same strictly positive value. In this case, one may then take
a very small variance near, but not equal to, zero, for example. Alternatively, Sy could be
taken to be the CDF of a GEV distribution left-censored at zero with location parameter
or mean equal to the ensemble mean and scale parameter equal to the ensemble mean dif-
ference (Scheuerer, 2014), with adaptations in the case of an ensemble mean difference of
value zero as described above.

(c¢) The sampling method (Q)

Arguably, the most intuitive and natural way of sampling from a predictive CDF F} is to
compute equidistant quantiles from F, and take these as a sample ¢, . .. ,57%4 (Hagedorn,
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2010; Hagedorn et al., 2012). Here, we consider two options to do so. An obvious procedure
is to take equally spaced quantiles of the form (Hamill, 2001; Bremnes, 2007)

- _ 1 - _ M
wg::Fe1<M+1>""’x%4::F51<M+1>' @

Alternatively, equidistant quantiles of the form (Graf and Luschgy, 2000; Brocker, 2012)

i =Ft (1/2) iy = Ft <3/2> v By = F <M> Q%)

M M M

can be chosen.

Both equidistant sampling variants reveal advantages and disadvantages. As shown by
Brocker (2012), the equally spaced quantiles according to sampling method (Q*) are opti-
mal in expectation if the predictive performance is assessed by the common and popular
continuous ranked probability score (CRPS). This result by Brocker (2012) to a certain ex-
tent also underlines the findings of Examples 4.17 and 5.5, respectively, in Graf and Luschgy
(2000). Therein, it is stated that for a standard uniform distribution ([0, 1]), the uniquely
determined so-called M-optimal set of centers is given by

S = {mz\/fm‘mzl,...,M}.

According to Graf and Luschgy (2000), finding S is equivalent to determining the M-optimal
quantizers, which is the alternative optimality notion used by them, for 2/(]0,1]). Hence,
the choice of the equally spaced 1—]\/42 e, W -quantiles as samples from the predictive
CDF F; can be regarded as optimal in the sense of Graf and Luschgy (2000) as discussed

before.

While sampling method (Q*) is optimal in terms of the CRPS, it fails to maintain cal-
ibration to some extent. Specifically, Brocker (2012) argues that the ensemble obtained
by sampling method (Q*) cannot be expected to produce a flat rank histogram, which is
however an intuitive criterion that is widely used as a diagnostic check for calibration. In
contrast, the equidistant quantiles according to sampling method (Q) are not affected by
this problem and maintain the calibration of univariate ensemble forecasts, although not
being optimal with respect to a widely used score.

We have to make a trade-off here and follow Gneiting et al. (2007), arguing that the goal of
probabilistic forecasting is maximizing the sharpness of a predictive distribution subject to
calibration. Thus, we generally favor the equidistant sampling variant (Q) during the further
course of this thesis. However, sampling method (Q*) will also be employed in the following
case study, aiming at a comparison of the different sampling methods and a confirmation of
the theoretical aspects discussed before.

4.2.2 Case study

We now investigate the effect of the different sampling types on the predictive performance
in a case study, dealing with 24 hour ahead forecasts of temperature, pressure, u- and v-wind
at Berlin and Hamburg. Univariate postprocessing of the 50-member ECMWF raw ensem-
ble forecasts is performed via EMOS, employing a sliding training period of 30 days. When
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Figure 4.7: CRPS and ES, respectively, for 24 hour ahead temperature forecasts according to
different quantization schemes at (a) Berlin, (b) Hamburg and (c) Berlin and Hamburg jointly, as a
function of the ensemble size. The results are averaged over the test period from 1 May 2010 to 30
April 2011. Univariate postprocessing is performed via EMOS, and the results for sampling scheme
(R) are averaged over 100 runs.
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focussing on the univariate case, we sample 50 times from each marginal predictive EMOS
CDF according to the schemes (R), (T), (Q) and (Q), respectively, and call the resulting
ensembles EMOS-R, EMOS-T, EMOS-Q and EMOS-Q*. As we only deal with weather
quantities, for which the Gaussian EMOS model (3.4) is employed, we take the CDF Sy in
the sampling scheme (T) to be normal with mean equal to the empirical ensemble mean
and variance equal to the empirical ensemble variance, as described before. We will also
consider forecasts jointly at Berlin and Hamburg in our case study, where the weather quan-
tity is fixed. In this bivariate setting, each marginal sample is additionally reordered with
respect to the rank dependence structure of the raw ensemble according to the ECC notion,
and the corresponding ensembles are referred to as ECC-R, ECC-T, ECC-Q and ECC-Q*,
respectively. The reordering is obsolete for ECC-T, as the rank dependence pattern from
the raw ensemble is retained by construction in this case. Intuitively, the predictive perfor-
mance of the different EMOS ensembles might depend on the size M of the underlying raw
ensemble. Thus, we assess our postprocessed ensembles for different ensemble sizes ranging
from M =5 to M = 50 in steps of 5 members. For the purposes of our case study, the
corresponding M-member raw ensemble is constructed by just taking the first M members
out of the 50-member ECMWF raw ensemble, where M € {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}
here. For evaluation, we consider the one-year test period from 1 May 2010 to 30 April 2011.

As overall performance measures, we employ the CRPS in the univariate case and the
energy score (ES) in the multivariate case, respectively. The average results over the test
period for the four weather quantities are shown in Figures 4.7 to 4.10, where panel (a)
refers to the CRPS for Berlin only, panel (b) to the CRPS for Hamburg only, and panel (c)
to the ES for Berlin and Hamburg jointly in each case. In the case of sampling scheme (R),
the results are averaged over 100 runs.

Concerning the CRPS for the different weather quantities at Berlin and Hamburg indi-
vidually, the EMOS-based ensembles clearly outperform the unprocessed raw ensemble,
regardless of the sampling type. The EMOS-Q* and EMOS-Q ensembles based on equally
spaced quantiles outperform the EMOS-T ensemble, which on the other hand outperforms
the EMOS-R ensemble. Well in accordance with the optimality results of Brocker (2012)
discussed before, EMOS-Q* performs best throughout, although the differences to the per-
formance of the EMOS-Q ensemble are partly very minor, typically in the case of large
ensembles. Generally, the larger the ensemble size M is, the smaller the differences of the
scores between the individual sampling types, with those based on equidistant quantiles
nevertheless still performing best. Thus, the quantization type gets to some extent less
important for rather large ensemble sizes, but not completely unimportant. In contrast, the
sampling scheme appears to be much more important when dealing with small ensemble
sizes, for which the differences in the predictive performance of the individual quantization
schemes are more pronounced. In the context of the evaluation of ensembles, Fricker et al.
(2013) discuss fairness aspects and argue that assessing random samples as in EMOS-R
via the CRPS might be unfair and inappropriate to some extent. However, for consis-
tency reasons and since sampling type (R) will not play a major role in the further course
of the thesis, the CRPS is used as a scoring rule for all types of ensembles in this case study.

The univariate results generally extend to the multivariate case, in which we consider the

predictive performances of the ensembles at Berlin and Hamburg jointly. In particular,
ECC-Q* also performs best with respect to the ES, although no optimality result as in the
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Figure 4.8: CRPS and ES, respectively, for 24 hour ahead pressure forecasts according to different
quantization schemes at (a) Berlin, (b) Hamburg and (c) Berlin and Hamburg jointly, as a function
of the ensemble size. The results are averaged over the test period from 1 May 2010 to 30 April
2011. Univariate postprocessing is performed via EMOS, and the results for sampling scheme (R)
are averaged over 100 runs.
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univariate case of the CRPS is known for the multivariate setting. The derivation of an
optimal sampling scheme with respect to the ES for multivariate settings is an issue for
future research.

For the assessment of calibration only, we use the verification rank histogram in the uni-
variate case and the multivariate rank histogram in the multivariate case. We exemplar-
ily focus on pressure and u-wind here, where the ensemble sizes are restricted to M €
{5,10,15,35,50} here. For pressure, the corresponding histograms for Berlin and Hamburg
individually and for the two locations jointly are shown in Figures 4.11 to 4.13, respectively.
Analogously, the histograms for u-wind can be found in Figures 4.14 to 4.16. In the univari-
ate case of Berlin and Hamburg separately, all EMOS-based ensembles are, regardless of the
employed sampling scheme, better calibrated than the raw ensemble, which reveals skewed
(pressure) and U-shaped (u-wind) verification rank histograms, indicating bias and under-
dispersion, respectively. For small ensemble sizes, EMOS-R shows very slightly U-shaped
verification rank histograms in the case of pressure only, while the histograms are partly in-
verse U-shaped for EMOS-T, indicating overdispersion. There appears to be too little data
to fit Sy appropriately in the case of small M. The EMOS-Q and EMOS-Q* ensembles reveal
good calibration throughout. In this context, recall that according to Brocker (2012), the
EMOS-Q* ensemble cannot be expected to produce flat, uniform rank histograms. Specifi-
cally, Brocker (2012) argues that in case of EMOS-Q*, the probability to attain the extreme
ranks 1 and M + 1, respectively, is 1/(2M) and thus lower than the probability 1/M to
attain one of the ranks 2,..., M. In our examples, the underpopulation of the ranks 1
and 6 in the case of M = 5 for the EMOS-Q* ensemble is in accordance with the theory
by Brocker (2012). For large ensemble sizes M, all sampling schemes employed to form
the EMOS ensembles effectively perform equally well, and differences between the quanti-
zation methods vanish, which is well in line with the findings for the CRPS discussed before.

We stress again that our results should be rather viewed as a proof-of-concept than a com-
prehensive case study. The test period comprising 365 forecast cases might be rather short
to check for uniformity of rank histograms, especially for large ensembles with M = 35 or
M = 50, for instance, yielding 36 and 51 possible ranks, respectively, that the verifying
observation can attain.

In summary, sampling scheme (Q) appears to be the most appropriate, and it is already
widely used in meteorological and hydrological applications (Hamill, 2001; Bremnes, 2007).
Even though optimal sampling tables for some special fixed distributions based on the al-
ternative notion of M-optimal centers (Graf and Luschgy, 2000) are available (Max, 1960;
Paez and Glisson, 1972; Lloyd, 1982), sampling scheme (Q) can be readily and conveniently
applied to any type of distribution, hence allowing for a general implementation. In our
case study, it performed better than the sampling schemes (R) and (T), respectively, and
in contrast to method (T), there is no need to fit a CDF Sy to the raw ensemble values,
which can be demanding in non-Gaussian cases. Although the choice of quantization type
(Q*) would be optimal with respect to the widely used CRPS, sampling scheme (Q) is only
very slightly outperformed by (Q*) in terms of the CRPS, particularly if the ensemble size
is rather large, as in the case of the 50-member ECMWEF ensemble used in our case studies.
We therefore set (Q) as the natural standard sampling method in the case studies to follow
in this thesis, even though we also get back to quantization type (T) in a comparative case
study in Chapter 5.
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Figure 4.9: CRPS and ES, respectively, for 24 hour ahead u-wind forecasts according to different
quantization schemes at (a) Berlin, (b) Hamburg and (c) Berlin and Hamburg jointly, as a function
of the ensemble size. The results are averaged over the test period from 1 May 2010 to 30 April
2011. Univariate postprocessing is performed via EMOS, and the results for sampling scheme (R)
are averaged over 100 runs.
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Figure 4.10: CRPS and ES, respectively, for 24 hour ahead v-wind forecasts according to different
quantization schemes at (a) Berlin, (b) Hamburg and (c) Berlin and Hamburg jointly, as a function
of the ensemble size. The results are averaged over the test period from 1 May 2010 to 30 April
2011. Univariate postprocessing is performed via EMOS, and the results for sampling scheme (R)
are averaged over 100 runs.
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Figure 4.11: Verification rank histograms for 24 hour ahead pressure forecasts at Berlin according
to different quantization schemes and for different ensemble sizes over the test period from 1 May
2010 to 30 April 2011.
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Figure 4.12: Verification rank histograms for 24 hour ahead pressure forecasts at Hamburg according
to different quantization schemes and for different ensemble sizes over the test period from 1 May
2010 to 30 April 2011.
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Figure 4.13: Multivariate rank histograms for 24 hour ahead pressure forecasts at Berlin and
Hamburg jointly according to different quantization schemes and for different ensemble sizes over
the test period from 1 May 2010 to 30 April 2011.
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Figure 4.14: Verification rank histograms for 24 hour ahead u-wind forecasts at Berlin according to
different quantization schemes and for different ensemble sizes over the test period from 1 May 2010
to 30 April 2011.
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Figure 4.15: Verification rank histograms for 24 hour ahead u-wind forecasts at Hamburg according
to different quantization schemes and for different ensemble sizes over the test period from 1 May
2010 to 30 April 2011.
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Figure 4.16: Multivariate rank histograms for 24 hour ahead u-wind forecasts at Berlin and Hamburg
jointly according to different quantization schemes and for different ensemble sizes over the test period
from 1 May 2010 to 30 April 2011.
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4.3 The predictive performance of ECC: Case studies

In this section, we evaluate the predictive performance of the ECC ensemble in a compre-
hensive real-data case study, which is meant to be a proof-of-concept here, and compare
it to that of both the raw and related postprocessed ensembles. To this end, we consider
several multivariate settings dealing with spatial, inter-variable and temporal aspects, or
combinations thereof.

4.3.1 Implementation and reference ensembles

We first describe the implementation of ECC in our case study, the data we employ and the
reference ensembles ECC is compared to.

The raw data are provided by the European Centre for Medium-Range Weather Forecasts
(ECMWF) ensemble consisting of M = 50 members, as introduced in Section 1.3. For each
margin ¢ := (i, j, k) corresponding to weather variable i € {1,...,I}, location j € {1,...,J}
and look-ahead time k € {1,..., K}, the raw ensemble forecast x{, . ,xéo is univariately
postprocessed using either BMA or EMOS with a sliding training window of 30 days, as
presented in Sections 3.1.1 and 3.1.2 and implemented in the R packages ensembleBMA and
ensembleMOS, respectively (R Core Team, 2013), leading to a predictive CDF, Fj.

From a spatial point of view, we concentrate on the observation sites of Berlin, Hamburg and
Frankfurt and on grid-based test regions over Germany and adjacent areas. For the stations,
we have real verifying observations, and the corresponding raw ensemble forecasts for each
location are obtained by bilinear interpolation of the grid-based raw ensemble forecasts. In
contrast, we also consider grid-based test areas consisting of several points of the grid, on
which the ECMWF raw ensemble forecasts are issued. As real observations are not available
at all grid points, we employ the corresponding 0 hour ahead nowcasts of the ECMWEF con-
trol run as the ground truth in this case, as discussed in Section 1.3. Moreover, we confine
ourselves to 24, 48, 72 and 96 hour ahead forecasts, and concerning the weather quantities,
we focus on temperature, pressure, u- and v-wind, while precipitation is left out here. As
already hinted at in Section 3.1.3, univariate BMA and EMOS in some situations fail to
outperform the unprocessed raw ensemble for precipitation. This deficiency is spread to
the corresponding multivariate techniques relying on such poor univariate forecasts. Hence,
failures in the multivariate case are very likely grounded on shortcomings concerning the
univariate case, which is why we skip results for precipitation in the following case study,
which focuses on multivariate predictive performance.

After the univariate postprocessing, we then apply sampling scheme (Q) and generate the
M = 50 equally spaced quantiles 5;‘{ = F[l (5%) e, Ty = F[1 (%?) from each marginal
predictive CDF Fy. For each fixed ¢, these quantiles can be aggregated in different ways
to obtain a final postprocessed ensemble &, .. .,:%go. In our case study, we examine the
following ensembles.

e The increasingly ordered quantiles (I0Q) ensemble is given by
N

— Y

That is, the equidistant quantiles stay increasingly ordered as they are.
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Figure 4.17: 24 hour ahead ensemble forecasts of temperature (in °C) at Berlin and Hamburg, valid
2:00 am on 27 June 2010. The ensemble forecasts are indicated by the red dots, while the blue cross
represents the verifying observation. The respective margins are illustrated by the histograms at the
top and to the right of each scatterplot. Univariate postprocessing is performed via BMA.

e The randomly ordered quantiles (ROQ) ensemble is given by

sl . b M~
Ty = ﬂj)\[(l), ey 1'50 = x/\g(f)o)’

with a random permutation \,.
That is, the equidistant quantiles are just randomly reordered.

e The ECC-Q ensemble as in Section 4.1 is given by

:f:ti =2

where the permutation o, is defined by the raw ensemble forecast 1:{, .. .,xéo via
o¢(m) := rank(zf,) for m € {1,...,50}, with ties resolved at random.

That is, the equidistant quantiles are reordered with respect to the rank dependence
structure of the raw ensemble.

Along with the raw ensemble, the three postprocessed ensembles are illustrated in Figure
4.17, showing 24 hour ahead temperature forecasts at Berlin and Hamburg, valid at 2:00
am on 27 June 2010, where univariate postprocessing is performed via BMA. The ensemble
forecasts are indicated by the red dots, while the blue cross represents the verifying obser-
vation.

In contrast to the raw ensemble, all three postprocessed ensembles, for which biases and
dispersion errors have been corrected, exhibit the same margins, as evidenced by the his-
tograms alongside of the scatterplots. However, they differ drastically in their multivariate
dependence structures. The I0Q ensemble provides a maximal possible positive correla-
tion, which is (often close to) linear when the sample stems from (mixtures of) Gaussian
distributions, as is the case for the weather variables considered here. Although the I0Q
ensemble appears to be rather unrealistic in most situations, we nevertheless examine this
scheme in what follows, as it contributes to a better interpretation and comprehension of
the results and illustrates properties of the multivariate calibration verification methods of
Thorarinsdottir et al. (2014). In contrast, the ROQ ensemble assumes that no correlation
structure is evident. It essentially corresponds to the individually postprocessed ensembles
illustrated in Figures 4.1, 4.2, 4.3 and 4.5, respectively, in which any spatial dependencies
get lost. Finally, the ECC-Q ensemble inherits its multivariate rank dependence structure
from the raw ensemble, such that the scatterplots of the raw and the ECC-Q ensemble show
the same rank correlation pattern.
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Table 4.1: Average ES for 24 hour ahead ensemble forecasts of temperature (temp), pressure (press),
u- and v-wind, respectively, at Berlin (Ber), Hamburg (Ham) and Frankfurt (Fra) jointly (L = 3)
and at Berlin (Ber) and Hamburg (Ham) jointly (L = 2), respectively. Univariate postprocessing is
performed via BMA on the one hand and EMOS on the other hand. The results are averaged over
the test period from 1 May 2010 to 30 April 2011. For the ROQ ensemble, the scores are averaged
over 100 runs.

Ber/Ham/Fra jointly Ber/Ham jointly

Temp Press w-Wind v-Wind Temp Press w«-Wind v-Wind
CC) (mPa) (m/s) (m/s) (°C) (hPa) (m/s) (m/s)
Raw Ensemble 2.278  1.005 1.740 1.839 1.726  0.778 1.322 1.170

BMA 10Q Ensemble 1.817  0.833 1.405 1.644 1.375  0.634 1.126 1.012
ROQ Ensemble 1.726  0.827 1.328 1.569 1.335  0.640 1.087 0.969
ECC-Q Ensemble 1.724  0.811 1.331 1.568 1.329  0.625 1.088 0.969

EMOS I0Q Ensemble 1.811  0.850 1.407 1.650 1.368  0.648 1.125 1.017
ROQ Ensemble 1.721  0.841 1.330 1.577 1.329  0.650 1.084 0.974
ECC-Q Ensemble 1.720  0.829 1.334 1.578 1.324  0.639 1.086 0.975

4.3.2 Spatial aspects

We start our case study with the assessment of the predictive performance of our reference
ensembles in modeling spatial dependence structures only. That is, we work with a single,
fixed prediction horizon, which is 24 hours here, and look at the weather variables tem-
perature, pressure, u- and v-wind separately, while locations are considered jointly. The
locations themselves are of a twofold shape: In the first part of our study, we focus on the
sites of Berlin, Hamburg and Frankfurt, for which verifying observations are available. In
the second part, we consider grid-based forecast areas over Germany and its surroundings,
with the corresponding 0 hour ahead nowcasts of the ECMWF control run serving as the
ground truth, as described before.

(a) Berlin, Hamburg and Frankfurt

The 24 hour ahead ensemble forecasts for the individual weather quantities are considered
jointly at Berlin (13.58° longitude east, 52.52° latitude north), Hamburg (10.00° longitude
east, 53.55° latitude north) and Frankfurt am Main (8.68° longitude east, 50.12° latitude
north) in an L = 3-dimensional setting, and jointly at Berlin and Hamburg in an L = 2-
dimensional setting. The three locations are marked on the map in Figure 4.22 (a), where
the linear distance from Frankfurt to either Berlin or Hamburg is on the order of 400 kilo-
meters, while the linear distance between Berlin and Hamburg is about 250 kilometers.
Forecast errors for pressure reveal rather strong long range dependence patterns. This holds
to some lesser extent for temperature, while the dependencies for both u-and v-wind are on
a moderate level, as wind patterns typically vary at much smaller spatial scales.

At this stage, we consistently employ either BMA or EMOS for univariate postprocess-
ing at the indivaidual observation sites for comparative reasons in these scenarios, using a
rolling training period of 30 days. The one-year test period comprises the days from 1 May
2010 to 30 April 2011.

The overall predictive performance of the ensembles is evaluated via the energy score (ES)
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Table 4.2: Average EE for 24 hour ahead ensemble forecasts of temperature (temp), pressure (press),
u- and v-wind, respectively, at Berlin (Ber), Hamburg (Ham) and Frankfurt (Fra) jointly (L = 3)
and at Berlin (Ber) and Hamburg (Ham) jointly (L = 2), respectively. Univariate postprocessing is
performed via BMA on the one hand and EMOS on the other hand. The results are averaged over
the test period from 1 May 2010 to 30 April 2011. For the ROQ ensemble, the scores are averaged
over 100 runs.

Ber/Ham/Fra jointly Ber/Ham jointly

Temp Press wuw-Wind v-Wind Temp Press w«-Wind v-Wind
°C) (Pa) (m/s) (m/s) (°C) (hPa) (m/s)  (m/s)

Raw Ensemble 2.84 1.38 2.19 2.27 2.15 1.07 1.67 1.49
BMA 10Q Ensemble 2.40 1.12 1.84 2.19 1.86 0.87 1.51 1.35
ROQ Ensemble 2.40 1.13 1.84 2.19 1.86 0.87 1.52 1.35
ECC-Q Ensemble  2.40 1.12 1.84 2.19 1.85 0.87 1.52 1.35
EMOS I0Q Ensemble 2.38 1.11 1.83 2.19 1.83 0.86 1.51 1.35
ROQ Ensemble 2.38 1.12 1.84 2.19 1.83 0.86 1.51 1.35
ECC-Q Ensemble  2.38 1.11 1.84 2.19 1.83 0.86 1.51 1.35

in Table 4.1. Moreover, we also show results for the Euclidean error (EE) in Table 4.2, with
the multivariate or spatial median serving as a point forecast based on the respective ensem-
ble, as described in Section 2.3. Last but not least, the sharpness of the forecast ensembles
is measured by the determinant sharpness (DS) in Table 4.3. For the ROQ ensemble, all
numerical scores are averaged over 100 runs. Calibration is assessed via the multivariate,
band depth and average rank histograms, respectively, where we exemplarily show the re-
sults for each weather variable for the L. = 3-dimensional situation of Berlin, Hamburg and
Frankfurt jointly in Figures 4.18 to 4.21, based on univariate postprocessing via EMOS. The
corresponding histograms for the L = 2-dimensional setting of Berlin and Hamburg jointly
are at large qualitatively very similar to those for L = 3 and are therefore not shown here.

In terms of the ES, all postprocessed ensembles outperform the unprocessed raw ensem-
ble for both scenarios. In all cases, the I0Q ensemble performs worse than the ECC-Q
ensemble, and except for pressure in the L. = 2-dimensional setting, the IOQ ensemble also
performs worse than the ROQ ensemble. For temperature and pressure, the ECC-Q ensem-
ble outperforms the ROQ ensemble, while in the case of u- and v-wind, the ROQ ensemble
mostly outperforms the ECC-Q ensemble. However, the differences between the ROQ and
the ECC-Q ensemble with respect to the ES are generally rather minor, except for pressure.
Meanwhile, it is known that the discrimination ability of the ES sometimes can be rather
low (Pinson and Tastu, 2013), and finding remedies for this is a topic of current research
(Scheuerer and Hamill, 2014). Our results in the above case may also be subject to this
problem, which should also be kept in mind for the subsequent case studies.

With respect to the EE, all postprocessed ensembles also outperform the raw ensemble.
However, all three postprocessed ensembles basically more or less have the same EE in each
respective setting. This is likely due to the fact that they can largely be expected to return
similar multivariate median values, as they have the same marginal distributions. Similar
findings have also been obtained in the case studies by Moller et al. (2013).

Concerning the DS, both the ROQ and the ECC-Q ensemble typically reveal a higher DS
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Table 4.3: Average DS for 24 hour ahead ensemble forecasts of temperature (temp), pressure (press),
u- and v-wind, respectively, at Berlin (Ber), Hamburg (Ham) and Frankfurt (Fra) jointly (L = 3)
and at Berlin (Ber) and Hamburg (Ham) jointly (L = 2), respectively. Univariate postprocessing is
performed via BMA on the one hand and EMOS on the other hand. The results are averaged over
the test period from 1 May 2010 to 30 April 2011. For the ROQ ensemble, the scores are averaged
over 100 runs.

Ber/Ham/Fra jointly Ber/Ham jointly
Temp Press wuw-Wind v-Wind Temp. Press w«-Wind v-Wind
Raw Ensemble 0.65 0.49 0.56 0.50 0.65 0.51 0.54 0.52
BMA 10Q Ensemble 0.07 0.13 0.03 0.03 0.18 0.21 0.11 0.09
ROQ Ensemble 1.22 0.73 0.99 1.10 1.20 0.74 1.06 0.92
ECC-Q Ensemble  1.18 0.51 0.93 1.06 1.16 0.53 0.99 0.89
EMOS I0Q Ensemble 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ROQ Ensemble 1.19 0.65 0.95 1.08 1.16 0.66 1.03 0.89
ECC-Q Ensemble  1.15 0.46 0.89 1.04 1.13 0.47 0.96 0.87

and therefore a lower sharpness than the raw ensemble. This is not that surprising, as raw
ensembles typically are already sharp, however at the expense of calibration, in that they
tend to be underdispersive with too little spread, and thus call for statistical postprocess-
ing. The only exception can be observed for pressure, where the ECC-Q ensemble is sharper
than the raw ensemble when univariate postprocessing is performed via BMA. However, the
ECC-Q ensemble is in general sharper than the ROQ ensemble. For the IOQ ensemble, the
situation is somewhat involved. This ensemble yields by far the lowest DS values and thus
provides the sharpest forecasts when univariate postprocessing is done via BMA. However,
the DS values somehow appear much too small to be realistic. This is due to the potentially
inappropriately high correlation structure assumed by the IOQ ensemble, which is reflected
in the covariance matrix ¥ used for the calculation of the DS, having a small determinant.
In the case of univariate postprocessing via EMOS, ¥ is singular with determinant zero.
This is because EMOS yields a single fitted normal distribution in our examples, and the
10Q ensemble then assumes an again higher, namely exactly linear, correlation than it does
in case of working with a BMA postprocessed predictive distribution based on mixtures of
normal distributions.

In terms of calibration only, the raw ensembles for each weather quantity exhibit either
skewed or U-shaped rank histograms and are thus not calibrated. The IOQ ensembles show
skewed multivariate rank histograms, indicating a bias, and inverse U-shaped band depth
and average rank histograms, respectively, additionally pointing at an overestimation of the
correlation structure. The ROQ ensemble is notably uncalibrated in the case of pressure.
In terms of the other weather variables, its calibration appears to be better, but not totally
satisfactory and basically inferior to that of the ECC-Q ensemble. Against the background
that a “perfect” calibration is hard to achieve in our setting with a rather small test period,
the ECC-Q ensembles generally perform fairly well and are all in all calibrated by far the
best for each weather variable.

Putting all results together, the ECC-Q ensemble performs best. While all postprocessed

ensembles basically perform equally well in terms of the EE, ECC-Q generally shows by far
the best calibration and moreover the most reasonable DS, thus being in accordance with
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Figure 4.18: (a) Multivariate, (b) band depth and (c) average rank histograms for 24 hour ahead
temperature forecasts at Berlin, Hamburg and Frankfurt jointly, that is, L = 3, over the test period
from 1 May 2010 to 30 April 2011. Univariate postprocessing is performed via EMOS.
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Figure 4.19: (a) Multivariate, (b) band depth and (c) average rank histograms for 24 hour ahead
pressure forecasts at Berlin, Hamburg and Frankfurt jointly, that is, L = 3, over the test period from
1 May 2010 to 30 April 2011. Univariate postprocessing is performed via EMOS.
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Figure 4.20: (a) Multivariate, (b) band depth and (c) average rank histograms for 24 hour ahead
u-wind forecasts at Berlin, Hamburg and Frankfurt jointly, that is, L = 3, over the test period from
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1 May 2010 to 30 April 2011. Univariate postprocessing is performed via EMOS.
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Figure 4.21: (a) Multivariate, (b) band depth and (c) average rank histograms for 24 hour ahead
v-wind forecasts at Berlin, Hamburg and Frankfurt jointly, that is, L = 3, over the test period from
1 May 2010 to 30 April 2011. Univariate postprocessing is performed via EMOS.
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the goal of probabilistic forecasting, namely maximizing the sharpness of the prediction
subject to calibration (Gneiting et al., 2007).

The performance of the postprocessed ensembles to some extent also depends on the un-
derlying correlation structure in the forecast and observation data. The I0Q ensemble does
an acceptable job and outperforms at least the ROQ ensemble if there are very strong de-
pendencies, as is indeed the case for pressure at Berlin and Hamburg jointly. Generally,
this cannot be expected, and we are typically confronted with less pronounced correlation
structures. Thus, the ROQ ensemble mostly outperforms the IOQ ensemble, and the less
pronounced the dependence structure the more the differences between ROQ and ECC-Q
ensemble appear to vanish, aided by a potential shortcoming of the ES in discrimination
ability. However, the ECC-Q ensemble appears to be appropriate for any type of underlying
dependence structure, regardless of whether strong or weak, in particular if it is a priori
unknown.

In our initial multivariate investigations, we obtain similar results for the corresponding
reference ensembles, regardless of whether we employ BMA or EMOS in the univariate post-
processing step. This confirms the findings in Section 3.1.3 for purely univariate settings.
As it is computationally faster, we confine ourselves to EMOS for univariate postprocessing
in the rest of the case studies, although BMA might sometimes yield slightly better results
than EMOS.

(b) Grid-based test regions over Germany and its surroundings

We now consider not only two or three locations simultaneously as before, but test areas
over Germany and its surroundings. Each area comprises a different number L of points,
corresponding to the dimension of the treated setting, on the ECMWEF grid, which provides
forecasts at a resolution of 0.25°, both for longitude and latitude. In total, we focus on four
different contiguous regions I, II, II and IV, respectively, and one set V consisting of scat-
tered grid points. The composition and characteristics of our test areas are summarized in
Table 4.4, and the regions are marked on the maps in Figures 4.22 (b) and (c), respectively.
Again, we deal with 24 hour ahead forecasts for pressure, temperature, u- and v-wind, re-
spectively, for the one-year test period from 1 May 2010 to 30 April 2011. For the four
contiguous test areas, the spatial correlations are stronger than in the case of the three in-
dividual stations considered before. Especially for pressure, they are very high, but also for
the other weather quantities pronounced dependencies can be observed. Not unexpectedly,
the smaller test areas show a somewhat stronger spatial correlation than the larger ones. In
the case of the scattered test set, the dependencies are less pronounced.

Univariate postprocessing is performed exclusively via EMOS, employing a sliding train-
ing period of 30 days. For evaluation, we use the same verification tools as before. Results
in terms of the ES are shown in Table 4.5. Calibration checks via the usual rank histograms
are exemplarily shown for all weather variables in the case of test area II in Figures 4.23 to
4.26.

In contrast to before, we do not explicitly show the results for the EE and the DS, re-

spectively, in this grid-based setting here. These are, however, very similar to what we saw
when considering Berlin, Hamburg and Frankfurt.
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Table 4.4: Test areas over Germany and surrounding regions. Compare Figure 4.22.

Area Characteristic Longitude Latitude Number L  Color in
index regions of grid Figure
points 4.22
I Central Germany, Harz 9.50°-11.75°  50.75°-52.25° 70 Violet

Mountains, North Hesse,
Lower Saxony

11 Alps, Upper Bavaria 11.00°-13.00°  47.50°-48.50° 45 Orange
111 Baltic Sea, Mecklen- 13.00°-14.00°  53.25°-54.50° 30 Cyan
burg-Western
Pomerania
v Rhine-Neckar Area, 8.25°-9.50° 49.25°-49.75° 18 Green
Forest of Odes
\% Scattered test set Various Various 50 Gray

Specifically, all three postprocessed ensembles outperform the raw ensemble in terms of
the EE, except occasionally for u- or v-wind, and they yield similar EE values, which can
be expected, as explained before. In the few cases in which the postprocessed ensembles do
not outperform the raw ensemble, this is thus very likely due to shortcomings of the EMOS
postprocessing already existing in the univariate case with respect to the mean absolute
error, with the univariate medians of all the postprocessed ensembles being the same.

Concerning the DS, the corresponding values get smaller with an increasing number L of
grid points. For the larger test areas with L = 50 and L = 70, respectively, the computation
of the DS is useless, as it yields effectively a value of zero for all ensembles, due to the high
dimensionality of the settings. Again, as we use EMOS postprocessing here, the DS values
of the IOQ ensemble are reported as zero throughout anyway, with the same explanation
as in Section 4.3.2 (a). In the case of the smaller test areas, for which reasonable DS values
can be computed, the raw ensemble is, as expected and explained before, sharper than the
ROQ and ECC-Q ensemble, however at the expense of calibration, as we will see later. On
the other hand, the ECC-Q ensemble is always much sharper than the ROQ ensemble.

Regarding the ES in the case of temperature and pressure, all postprocessed ensembles
outperform the raw ensemble in each test area, with the ECC-Q ensemble performing best
throughout. For the four contiguous test areas with pronounced spatial correlations, the
10Q ensemble outperforms the ROQ ensemble, whereas this holds vice versa for the scat-
tered test area with low spatial dependencies. In the case of pressure, the ES values of the
10Q and the ECC-Q ensemble are closer together than for temperature, as the dependencies
are again higher. Turning to u- and v-wind, respectively, the ECC-Q ensemble also always
outperforms the raw ensemble and performs best among all postprocessed ensembles, except
for the scattered test area V, where we have the lowest correlation overall, with the ROQ en-
semble performing equally well. Although they are undoubtably existent, the improvements
from the unprocessed raw ensemble to the postprocessed ECC-Q ensemble are not that high
as for temperature or pressure. For u- and v- wind, respectively, the IOQ ensemble does
not perform well and partly even does not manage to outperform the raw ensemble. As the
underlying correlations in the case of u- and v-wind, respectively, are mainly at a moderate
level, the ROQ ensemble typically outperforms the IOQ ensemble, but occasionally even
the ROQ ensemble is outperformed by the raw ensemble. In contrast, the ECC-Q ensemble
always outperforms the raw ensemble, and thus, the specific design of the postprocessed
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Figure 4.22: Test locations and areas over Germany and surrounding regions, including (a) the
three observation sites Berlin, Hamburg and Frankfurt, (b) the four contiguous test regions and (c)
the scattered test set. Compare Table 4.4.

Table 4.5: Average ES for 24 hour ahead ensemble forecasts of temperature, pressure, u- and v-wind
separately over the test areas I to V according to Table 4.4 and Figure 4.22, respectively. Univariate
postprocessing is performed via EMOS, and the scores for the ROQ ensemble are averaged over 100

Longitude (° )

(b)

Latitude (°)

Longitude (°)

(c)

runs. The results are averaged over the test period from 1 May 2010 to 30 April 2011.

Areal Areall Arealll ArealV AreaV
Temperature Raw Ensemble 9.17 14.27 4.44 5.23 8.70
(°C) 10Q Ensemble 8.02 10.71 3.89 4.36 7.53
ROQ Ensemble 8.11 10.98 3.91 4.50 7.12
ECC-Q Ensemble 7.84 10.53 3.77 4.29 7.09
Pressure Raw Ensemble 4.80 4.66 2.87 2.39 4.40
(hPa) I0Q Ensemble 4.10 3.99 2.39 2.07 3.92
ROQ Ensemble 4.46 4.20 2.65 2.29 3.88
ECC-Q Ensemble 4.08 3.94 2.38 2.07 3.78
u-Wind Raw Ensemble 5.12 4.60 3.50 2.45 4.71
(m/s) 10Q Ensemble 5.21 4.58 3.51 2.48 5.00
ROQ Ensemble 5.06 4.47 3.53 2.45 4.60
ECC-Q Ensemble 4.98 4.37 3.41 2.41 4.60
v-Wind Raw Ensemble 4.74 4.81 3.01 2.43 4.50
(m/s) I0Q Ensemble 4.86 4.52 3.11 2.40 4.76
ROQ Ensemble 4.74 4.40 3.11 2.39 4.38
ECC-Q Ensemble 4.64 4.30 3.00 2.33 4.38
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Figure 4.23: (a) Multivariate, (b) band depth and (c) average rank histograms for 24 hour ahead
temperature forecasts for test area II, that is, L = 45, over the test period from 1 May 2010 to 30
April 2011. Univariate postprocessing is performed via EMOS.
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Figure 4.24: (a) Multivariate, (b) band depth and (c¢) average rank histograms for 24 hour ahead
pressure forecasts for test area I, that is, L = 45, over the test period from 1 May 2010 to 30 April
2011. Univariate postprocessing is performed via EMOS.
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Figure 4.25: (a) Multivariate, (b) band depth and (c) average rank histograms for 24 hour ahead
u-wind forecasts for test area II, that is, L = 45, over the test period from 1 May 2010 to 30 April
2011. Univariate postprocessing is performed via EMOS.
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Figure 4.26: (a) Multivariate, (b) band depth and (c) average rank histograms for 24 hour ahead
v-wind forecasts for test area II, that is, L = 45, over the test period from 1 May 2010 to 30 April
2011. Univariate postprocessing is performed via EMOS.
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ensembles appears to be of still greater importance if the positive effects of postprocessing
are not that pronounced.

Relating to calibration in the representative example of test area II, the multivariate rank
histograms detect the miscalibration of the raw and I0Q ensembles. However, they do not
show differences between the ROQ and ECC-(Q ensembles, except in case of pressure, where
the ECC-Q ensemble is calibrated best. This changes drastically when considering the band
depth and average rank histograms, respectively, in which the miscalibration of the ROQ en-
semble is clearly shown by a U-shape. In addition, the band depth rank histograms confirm
the miscalibration of the raw and the IOQ ensembles. The same holds for the average rank
histograms, except for the IOQ ensemble in the case of pressure and the raw ensemble in
the case of u-wind, which appear to be calibrated quite well with respect to this verification
tool. For both the band depth and average rank histograms, the ECC-Q ensemble reveals
the best calibration overall, even though the IOQ ensemble in the case of pressure performs
similarly well and the ECC-Q ensemble in the case of temperature reveals slightly U-shaped
histograms. Putting the results of all three types of rank histograms together, the ECC-Q
ensemble exhibits the best calibration.

In a nutshell, the ECC-Q ensemble performs best in the grid-based settings. It has the
lowest ES and fulfills the ideal of maximized sharpness subject to calibration (Gneiting
et al., 2007), being well calibrated and best among our ensembles. If the underlying corre-
lation structure is high, as in the case of temperature and pressure over the contiguous test
areas, the I0OQ ensemble performs better than the ROQ ensemble. This holds vice versa if
the dependencies are moderate or low, as for u- and v-wind, respectively, or for the scattered
test set.

4.3.3 Inter-variable aspects

After having assessed predictive performance in terms of spatial aspects, we now investigate
inter-variable settings, in which weather quantities are considered jointly. To this end, we
again deal with 24 hour ahead forecasts only and get back to the three observation sites
Berlin, Hamburg and Frankfurt, which are now addressed individually. We examine joint
temperature and pressure forecasts on the one hand, and joint u- and v-wind forecasts on
the other hand, thus being confronted with L = 2-dimensional settings. In contrast to some
of the spatial correlations, the inter-variable dependencies turn out to be rather low in our
considered data set. The most pronounced pattern can be observed between temperature
and pressure, which occasionally exhibit a negative correlation, as is illustrated in Figures
4.1 and 4.2, but not each and every day.

Univariate postprocessing is done via EMOS, using a sliding training period of 30 days,
while the test period ranges from 1 May 2010 to 30 April 2011. The overall predictive
performance is measured by the ES in Table 4.6, where as usual, the results for the ROQ
ensembles are averaged over 100 runs. Note that for the assessment here, the corresponding
forecasts and observations have been standardized, to take account of the different magni-
tudes and units. Specifically, each forecast x,, is transformed to the normalized forecast z,
given by z}, = (zs, — py)/sy for each ensemble member m and each verification day, with
Hy and s, denoting the empirical mean and the empirical standard deviation, respectively,
of the observations over the one-year test period from 1 May 2010 to 30 April 2011. Anal-
ogously, we proceed with the observations. Thus, the ES values do not have a unit in this
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Figure 4.27: (a) Multivariate, (b) band depth and (c) average rank histograms for 24 hour ahead
joint temperature and pressure forecasts at Berlin, that is, L = 2, over the test period from 1 May
2010 to 30 April 2011. Univariate postprocessing is performed via EMOS.
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(c) Average rank histograms

Figure 4.28: (a) Multivariate, (b) band depth and (c) average rank histograms for 24 hour ahead
joint u~- and v-wind forecasts at Frankfurt, that is, L = 2, over the test period from 1 May 2010 to
30 April 2011. Univariate postprocessing is performed via EMOS.
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Table 4.6: Average ES for 24 hour ahead standardized joint forecasts of temperature and pressure
and joint forecasts of u- and v-wind, respectively, at the individual stations of Berlin, Hamburg and
Frankfurt. The results are averaged over the test period from 1 May 2010 to 30 April 2011, and the
scores for the ROQ ensembles are averaged over 100 runs.

Temperature/Pressure jointly u-/v-Wind jointly

Berlin Hamburg Frankfurt Berlin Hamburg Frankfurt
Raw Ensemble 0.176 0.166 0.201 0.543 0.504 0.787
10Q Ensemble 0.140 0.136 0.155 0.468 0.438 0.616
ROQ Ensemble 0.133 0.130 0.147 0.443 0.414 0.588
ECC-Q Ensemble  0.133 0.130 0.147 0.447 0.418 0.590

case. Calibration is assessed via the usual rank histograms, where we exemplarily show the
results for temperature and pressure jointly at Berlin in Figure 4.27 and for u- and v-wind
jointly at Frankfurt in Figure 4.28.

With respect to the ES, all postprocessed ensembles outperform the unprocessed raw ensem-
ble, while the ROQ and ECC-Q ensembles generally perform better than the IOQ ensemble.
When considering temperature and pressure jointly, dealing with a moderate correlation
structure, the ROQ and ECC-Q ensemble perform equally well in terms of the ES. How-
ever, in the case of joint u- and v-wind, revealing a rather low dependence pattern, the ROQ
ensemble outperforms the ECC-Q ensemble.

Regarding calibration only, both the raw and the IOQ ensemble turn out to be uncalibrated,
with the IOQ ensemble overestimating the correlation structure. For the joint temperature
and pressure setting, the ECC-Q ensemble appears to be slightly better calibrated than the
ROQ ensemble, which can be seen best in the band depth rank histogram. In contrast,
in the case of the joint u- and v-wind scenario, differences between the ROQ and ECC-Q
ensemble in terms of calibration are hardly visible, with ECC-Q maybe performing very
slightly better.

4.3.4 Joint spatial and inter-variable aspects

Now, both spatial and inter-variable aspects are considered jointly, while the prediction
horizon of 24 hours still remains fixed. Specifically, we investigate three different settings.
First, we consider joint temperature and pressure forecasts at Berlin and Hamburg simul-
taneously, thus an L = 4-dimensional scenario. Second, we look at the L = 6-dimensional
setting including joint temperature and pressure forecasts at Berlin, Hamburg and Frank-
furt together. Third, we combine all weather quantities and locations and hence consider
joint temperature, pressure, u- and v-wind forecasts at Berlin, Hamburg and Frankfurt si-
multaneously in an L = 12-dimensional situation. The correlations structures for spatial
and inter-variable aspects, respectively, discussed in Sections 4.3.2 and 4.3.3 extend to the
combined settings we deal with here. That is, the L = 4-dimensional scenario shows the
strongest dependencies, while for the L = 12-dimensional example, correlation is rather low.

Univariate postprocessing is performed via EMOS, employing a rolling training period of 30

days, while the test period ranges from 1 May 2010 to 30 April 2011. The overall predictive
performance is measured by the ES in Table 4.7, where as usual, the results for the ROQ
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(c) Average rank histograms

Figure 4.29: (a) Multivariate, (b) band depth and (c) average rank histograms for 24 hour ahead
temperature and pressure forecasts jointly at Berlin, Hamburg and Frankfurt, that is, L = 6, over
the test period from 1 May 2010 to 30 April 2011. Univariate postprocessing is performed via EMOS.
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Table 4.7: Average ES for different combinations of 24 hour ahead standardized joint forecasts of
temperature (temp), pressure (press), u- and v-wind at Berlin (Ber), Hamburg (Ham) and Frankfurt
(Fra). The results are averaged over the test period from 1 May 2010 to 30 April 2011, and those
for the ROQ ensembles are averaged over 100 runs.

Ber/Ham jointly Ber/Ham/Fra jointly Ber/Ham/Fra jointly
Temp/Press jointly ~ Temp/Press jointly  Temp/Press/u-/v-Wind jointly
Raw Ensemble 0.256 0.342 1.211
10Q Ensemble 0.212 0.282 1.037
ROQ Ensemble 0.199 0.262 0.960
ECC-Q Ensemble 0.199 0.262 0.965

ensembles are averaged over 100 runs. Moreover, the scores are standardized to account
for the different magnitudes and units of the corresponding weather variables, where the
normalization of the involved forecasts and observations is achieved as described in Section
4.3.3. Calibration is checked via the usual rank histograms, where we restrict our attention
to the L = 6- and L = 12-dimensional scenarios in Figures 4.29 and 4.30, respectively.

In terms of the ES, all postprocessed ensembles outperform the raw ensemble in each sce-
nario, and the ROQ and ECC-Q ensembles generally outperform the I0Q ensemble. In
the L = 4- and L = 6-dimensional settings considering temperature and pressure jointly,
the ROQ and the ECC-Q ensembles show equally good performances, while in the L = 12-
dimensional setting additionally including u- and v-wind, the ROQ ensemble performs a bit
better than the ECC-Q ensemble. All in all, this is consistent with the results in Sections
4.3.2 and 4.3.3.

Concerning calibration in the L = 6-dimensional setting, the raw and I0Q ensemble turn
out to be uncalibrated, with the latter showing strongly inverse U-shaped band depth and
average rank histograms, respectively, pointing at a strong overestimation of the correlation
structure. The ECC-Q ensemble is calibrated best overall, while the ROQ ensemble appears
to be a bit underdispersed, as indicated by the corresponding band depth and average rank
histograms. At large, the results for the L. = 6-dimensional scenario apply analogously
in the L = 12-dimensional setting. Interestingly, the multivariate rank histogram fails to
detect the miscalibration of the raw ensemble, which becomes obvious when looking at the
band depth and average rank histograms. Moreover, the multivariate rank histogram does
not distinguish between the ROQ and the ECC-Q ensemble and suggests calibration in both
cases, as it wrongly does for the raw ensemble. This is also fixed by the band depth and
average rank histograms, which reveal that the ROQ ensemble is uncalibrated, whereas the
ECC-Q ensemble is calibrated fairly well and best among the ensembles. These shortcom-
ings of the multivariate rank histogram are likely due to the involvement of four different
weather quantities and also the comparably high dimensionality of L = 12 in this setting,
thus confirming the corresponding findings in Thorarinsdottir et al. (2014). In contrast, the
multivariate rank histogram in the L = 12-dimensional setting manages at least to detect
the miscalibration of the IOQ ensemble, as the other two rank histograms also do.

4.3.5 Temporal aspects

Finally, we investigate the predictive performance of ECC and the reference ensembles with
respect to temporal dependence structures. To this end, we consider joint 24, 48, 72 and
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Figure 4.31: (a) Multivariate, (b) band depth and (c¢) average rank histograms for joint 24, 48, 72
and 96 hour ahead temperature forecasts at Hamburg, that is, L = 4, over the 1000 initialization
days from 1 April 2010 to 25 December 2012. Univariate postprocessing is performed via EMOS.
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Table 4.8: Average ES (in °C) and DSS for joint 24, 48, 72 and 96 hour ahead forecasts of tempera-
ture at Berlin, Hamburg and Frankfurt, respectively. The results are averaged over 1000 initialization
days from 1 April 2010 to 25 December 2012. Note that the calculation of the DSS for the 10Q
ensemble fails due to the computational singularity of the involved matrix, that is, one cannot cal-
culate the inverse and determinant. Hence, the corresponding results are reported as “not available
(NA)”. The results for the ROQ ensembles are averaged over 100 runs.

ES DSS
Berlin Hamburg Frankfurt Berlin Hamburg Frankfurt
Raw Ensemble 2.601 2.379 2.815 19.96 18.55 24.57
I0Q Ensemble 2.354 2.273 2.540 NA NA NA
ROQ Ensemble 2.228 2.137 2.396 9.29 8.54 9.66
ECC-Q Ensemble  2.224 2.134 2.394 9.20 8.44 9.66

96 hour ahead temperature forecasts initialized at the same date, for each of the locations
Berlin, Hamburg and Frankfurt separately, thus dealing with L = 4-dimensional settings.
Univariate postprocessing is done via EMOS, using a sliding training period of 30 days.
This time, our test period comprises the 1000 initialization dates from 1 April 2010 to 25
December 2012. The results for the scores as overall performance measures can be found
in Table 4.8. In addition to the ES, we also show the values for the Dawid-Sebastiani score
(DSS) computed according to (2.10) with empirical mean vector and empirical covariance
matrix, respectively, an alternative score that will also be used in Chapter 5. For both
scores, the results for the ROQ ensemble are as usual averaged over 100 runs.

Concerning the ES, all postprocessed ensembles outperform the unprocessed raw ensem-
ble, with the ECC-Q ensemble performing best. Among the postprocessed ensembles, both
the ECC-Q and the ROQ ensemble outperform the I0Q ensemble, whereas the differences
between the ES of the ROQ and ECC-Q ensembles are rather minor, with ECC-Q yielding
the best ES.

With respect to the DSS, the ROQ and ECC-(Q ensembles also outperform the raw ensem-
ble. Note that the calculation of the DSS for the IOQ ensemble fails due to the singularity of
the covariance matrix, with the same explanation as for the calculation of the DS in Section
4.3.2. This prevents us from computing the required inverses. For Frankfurt, the ROQ and
the ECC-Q ensembles yield the same DSS, whereas in the case of Berlin and Hamburg,
ECC-Q outperforms the ROQ ensemble, in fact more clearly than with respect to the ES.
Hence, the DSS is in these situations more sensitive and distinguishes better between the
two ensembles than the ES.

To check calibration, we exemplarily focus on Hamburg in Figure 4.31. The correspond-
ing histograms for the other two sites Berlin and Frankfurt look very similar. All three
histogram types show that the raw and the I0Q ensemble are uncalibrated. The inverse
U-shape of the band depth and average rank histograms, respectively, in the case of the
I0Q ensemble again indicates an overestimation of the correlation structure. The ECC-Q
ensemble performs best in terms of calibration. With respect to the multivariate rank his-
togram, the ECC-Q ensemble appears to be fairly well calibrated, while with respect to the
band depth and average rank histogram, its calibration is not perfect, but still best.
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While the standard EMOS implementation has been used in this case study here, constraints
can be put on the EMOS parameters, such that they vary smoothly across look-ahead times,
ensuring the temporal coherence of the postprocessed marginal predictive distributions.

4.3.6 Conclusions

We now summarize and discuss the main results of the case studies in this section.

The ECC-Q ensemble mostly achieves the goal of probabilistic forecasting according to
Gneiting et al. (2007), namely maximizing the sharpness of the forecast subject to calibra-
tion. While the raw and the IOQ ensemble are typically sharp, they lack calibration, except
perhaps for pressure. The ROQ ensemble is at least partly uncalibrated and less sharp than
the ECC-Q ensemble in general.

The underlying correlation structures of both the ensemble forecasts and the observations
have an impact on the performances of the I0Q, ROQ and ECC-Q ensembles. The 10Q
ensemble performs very well if there is an extremely strong, close to linear, dependence. In
this case, the IOQ ensemble might even slightly outperform the ECC-Q ensemble. The less
correlation structure is existent, the worse is the overall performance of the I0OQ ensemble,
which then may fail drastically, in that it is occasionally outperformed by the unprocessed
raw ensemble, while the ROQ and ECC-Q ensembles are not. In contrast, the ROQ ensem-
ble performs well in situations, in which the correlation is weak, here for instance for (joint)
u- and v-wind at Berlin, Hamburg and Frankfurt, individually and together. However, the
ROQ ensemble is clearly the worst among the three postprocessed ensembles when being
confronted with strong dependence structures. The ECC-Q ensemble, being based on the
rank correlation pattern of the raw ensemble, can be thought of as in between the 10Q
ensemble, which assumes maximal dependence, on the one hand, and the ROQ ensemble,
which assumes no dependence, on the other hand. The ECC-Q ensemble generally performs
well and best in by far the majority of the situations considered in our case study. It might
be occasionally slightly outperformed by the IOQ and ROQ ensembles in cases of extremely
high and weak correlation, respectively. However, the ECC-Q ensemble performs not at all
much worse than the I0Q or ROQ ensemble then, but remarkably better than the corre-
sponding other reference ensemble. Hence, the ECC-Q ensemble provides a reasonable, solid
and reliable tool for multivariate ensemble postprocessing, in particular if the underlying
correlation structure is a priori unknown.

With that said, the employment of ECC-Q turned out to be most beneficial in our case
studies in the settings dealing with purely spatial or temporal dependence structures, and
to some lesser extent in the situations involving multiple weather variables.

The results of our case studies confirm the findings in Thorarinsdottir et al. (2014) about the
interpretation of band depth and average rank histograms, respectively. In particular, it has
been illustrated that an over- and underestimation of the underlying correlation structure,
due to the specific design of the postprocessed ensembles, results in an inverse U-shaped
and U-shaped band depth and average rank histogram, respectively. Moreover, we have
seen that the multivariate rank histogram tends to be not able to distinguish between the
ensembles, especially in rather high dimensions. In particular, the uniformity of a multivari-
ate rank histogram does not necessarily mean that the corresponding ensemble is calibrated.
Hence, it is generally advisable to check calibration via multiple verification tools, as is also
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suggested by Thorarinsdottir et al. (2014).

The ECC-Q ensemble is often clearly better calibrated than the ROQ ensemble in empirical
checks via rank histograms, even for short test periods. In addition, the ECC-Q ensemble is
generally sharper than the ROQ ensemble. However, these benefits appear to be not always
reflected in the corresponding values of the ES as an overall performance measure, which
occasionally reveals weaknesses in distinguishing between the ROQ and ECC-Q ensemble.
This effect also emerges in a recent case study of Scheuerer and Hamill (2014). It is a highly
topical issue to examine and possibly improve the discrimination ability of the ES (Pinson
and Tastu, 2013), and there is much room for future work into this direction (Scheuerer and
Hamill, 2014).

4.4 ECC variants when the desired ensemble size after post-
processing exceeds that of the raw ensemble

In the ECC method presented in Section 4.1, which is referred to as the standard ECC
approach in this section here, the postprocessed ECC ensemble is constrained to consist of
exactly the same number M of members as the unprocessed raw ensemble. Sometimes, it
might however be required to produce a postprocessed ensemble of a size differing from that
of the raw ensemble, while preserving dependence structures as in standard ECC.

If a reduction of the ensemble size after postprocessing is desired, we could just take N < M
out of the M exchangeable raw ensemble members and then apply standard ECC to the
N-member ensemble. The corresponding N members can be chosen either randomly or
according to a specific scheme. For instance, one could generally take the first N of the M
ensemble members.

However, the raw ensemble size often is quite small such that it is typically of interest
to increase the size of the ensemble rather than to reduce it. In the following, we propose
a modification of the standard ECC technique, called extended ECC, to achieve this and
test it in a case study. Moreover, we briefly discuss two alternative approaches based on
recycling and the use of so-called lagged ensembles, respectively.

4.4.1 The extended ECC approach

To address the challenge of creating an ECC ensemble whose size exceeds that of the unpro-
cessed raw ensemble, we present the following modification of the standard ECC method,
valid for ensembles consisting of exchangeable members and named extended ECC in what
follows.

Let M € N denote the number of members in the raw ensemble, and let N € N, N > M,
be the requested number of members in the postprocessed ECC ensemble. As in the stan-
dard ECC method, we assume all M raw ensemble members to be exchangeable. Then,
N =r-M+ P, wherer € Nand P € Ny, 0 < P < M, are uniquely determined non-negative
integers. Obviously, standard ECC with N = M can be interpreted as a special case of
extended ECC with »r = 1 and P = 0. For N > M, we now consider the following two
scenarios and describe how to modify standard ECC in the respective cases.

(A) The requested extended ECC ensemble size is an integer multiple of the raw ensemble
size, that is, r > 2 and P = 0.
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(B) The requested extended ECC ensemble size is not an integer multiple of the raw
ensemble size, that is, » > 1 and P # 0.

Scenario (A)

Suppose that N = r- M, r > 2. As in the standard ECC approach, we are given the
raw ensemble forecast x{, e ,:Ufw for each weather variable i € {1,...,1}, each location
j € {1,...,J} and each prediction horizon k € {1,..., K} individually, summarized in the
multi-index £ := (i, j, k). This defines a permutation oy(m) := rank(z!,) form € {1,..., M},
with ties resolved at random. For each ¢, we employ state-of-the-art univariate ensemble
postprocessing methods, such as BMA or EMOS, to obtain a predictive CDF Fy. Then,
we generate a sample &, ... ,55%, from each CDF F; not of size M as in standard ECC,
but of size N. Since applying quantization scheme (T) appears to be inappropriate due
to N > M, and we prefer scheme (Q) to scheme (R) based on the considerations in Sec-
tion 4.2, this sampling is performed according to scheme (Q) by taking the equally spaced
L N__quantiles of Fy, that is,

N+1 """ N+1
1 N
0. -1 4 . -1
1= F, (N+1>,...,xN.—F€ <+1).

As we have N =r - M, r > 2, we can divide our N-sized sample
~¢ 0 0
z" = (T],..., %)
into r subsamples
gol = (@ E = @S,

each consisting of M elements. We propose the following two approaches (i) and (ii),
respectively, to achieve this.

(i) The sample &' is randomly divided into r subsamples, each consisting of M elements.

That is, if A¢ denotes a random permutation of {1,..., N}, the r subsamples are given
by

5 _0[1 01 ~ 5

wgv[” = (xl[]’,-f]w[]) = (xg\g(l)7""$€\é(M))’

5 0,2 L2 ~ T

#0 = @) = @y B en)

0y 0[r ~Or ~ T

Folrl .= (xl[ ], . ,xM[ ]) = (iﬂf\g((rq)Mﬂ)’ e ’xgz(rM))’
with N =r- M.

(ii) We partition the sample #' into r subsamples such that each of these consists of M
equidistant quantiles. This can be performed as follows:

e The first subsample gt comprises the 7;{,’111 -quantiles of Fy, where v € {0,...,

M — 1} runs through all non-negative integers from 0 to M — 1, that is,

"'£71 Pp— "’Ev[l] ~Z7[1] ~Z7[1] ~Z7[1] * — ~€ ~K ~Z ~£
gt = (@39 Ty Ty ) = (xlaxr+17x2r+1a---axr(M—1)+1>-
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° The second subsample %2 comprises the ’X[’i%—quantiles of Fy, with v € {0,...,
— 1}, that is,
~0[2] . (~0[2] <62 <02 0,2 0 0 ¢ 0
g P = (331[]7372“7373”--' H) (23, r+27x27‘+27'-‘7‘Tr(M—1)+2)‘

e The r-th subsample " comprises the ?{,’i{ -quantiles of Fy, with v € {0, ...,
M — 1}, that is,
~ ~Lr] ~4r ~Z,r ~A[r
w&[r]::(xl[} [r] H... []) (3¢, 7, 7 7,

y Lo T3 Ly Lopy L3ps -+ -5 Ty
where N =71 - M.

Since each of the r subsamples obtained by variant (i) or (ii), respectively, consists of M
elements, we can interpret each subsample as a postprocessed ensemble of size M and
apply the standard ECC-Q approach to each. That is, each of the r postprocessed M-
member ensembles is rearranged separately with respect to the corresponding ranks deter-
mined by the raw ensemble. For each ¢, we thus get r different standard ECC-Q ensembles

g0 bl bl consisting of M members each, via
A@, R Agv[l] "Ev[l} ”‘ev[l} ”‘e [1} ”‘Ev[l]
B = @) = 00 B Ty
Af,[?} f— "£7[2] Aev[Q} fp— ’“Z?[% L [2} "Zv[Q]
= @) = @) T T
AL AL AL ~0,[r] ~L,[r] ~L,[r]
= @B ) = E ) ) Ty

These can then be aggregated in an extended ECC-Q ensemble &¢ that comprises N = r- M
members via
&t (l‘g,,ﬂ?g\,) = (5;&[1},@&[2]’.H’@é,[r]).

Thereby, the order of the r standard ECC-Q ensembles in the aggregation can be in prin-
ciple chosen arbitrarily, but has to be consistent for each ¢. We employ arguably the most
natural aggregation order above.

The variants (i) and (ii) are referred to as extended ECC-Q random and extended ECC-Q
equidistant, respectively, in what follows.

As an illustrative example, we consider an ensemble with M = 10 members based on fore-
casts provided by the ECMWEF. In fact, we just take the first 10 members of the 50-member
ECMWF ensemble as the underlying raw ensemble of size 10 here. We want to increase
the ensemble size such that the postprocessed ensemble has size N = 30 = 3 - 10. In the
exemplary scatterplots in Figure 4.32, we focus on forecasts of temperature at Hamburg
and Berlin, valid 1:00 am on 24 November 2010. Univariate postprocessing is performed by
EMOS, using a training period of 30 days. We show the plots for

e the raw ensemble consisting of M = 10 members,

e the standard ECC-Q ensemble consisting of M = 10 members,

92



Berlin

Raw Ensemble

Standard ECC-Q Ensemble

Extended ECC-Q Random

ECC-Q

Berlin

Berlin

Berlin

00 05 10 15 20 25 3.0

Hamburg

00 05 10 15 20 25 30

Hamburg

00 05 10 15 20 25 3.0

Hamburg

00 05 10 15 20 25 3.0

Hamburg

Figure 4.32: Scenario (A): Scatterplots for 24 hour ahead temperature forecasts (in °C) at Hamburg
and Berlin, valid 1:00 am on 24 November 2010, of a 10-member raw ensemble, the corresponding
10-member standard ECC-Q ensemble and the 30-member extended ECC-Q random and extended
ECC-Q equidistant ensembles, respectively, consisting of 3 subsamples of 10 members each, indicated
by the red dots, circles and crosses, respectively.

e the extended ECC-Q random ensemble consisting of N = 30 members, in which
the 3—11 -, % -quantiles of the corresponding predictive EMOS CDF are randomly

divided into r = 3 subsamples of size M = 10, indicated by red dots, circles and
crosses, respectively, with each conserving the rank dependence structure of the raw
ensemble, and

e the extended ECC-Q equidistant ensemble consisting of N = 30 members, in which
the 3% e, g—(l) -quantiles of the corresponding predictive CDF are divided into r» = 3
subsamples of size M = 10, indicated by red dots, circles and crosses, respectively, with
each conserving the rank dependence structure of the raw ensemble, being composed
of the following members:

— The first subsample comprises the g7-quantiles form the corresponding predictive
CDF, where n € {1,4,7,10,13, 16, 19, 22, 25, 28}.

— The second subsample consists of the s7-quantiles, where
n € {2,5,8,11,14,17, 20, 23, 26, 29}.

— The third subsample is built-up by the 3t-quantiles, where
n € {3,6,9,12,15,18,21,24,27,30}.

We recall that in both extended ECC-Q approaches, each subsample has the same rank
dependence structure as the raw ensemble and the single standard ECC-Q ensemble.

Scenario (B)

We now focus on the case, in which the requested extended ensemble size after postprocessing
is not an integer multiple of the raw ensemble size, that is, N = r- M + P, where r € N
and P € N, 1 < P < M. As before, we are given the raw ensemble forecast z{,... ,:Ufw for
each weather variable i € {1, ..., I'}, each location j € {1,..., J} and each prediction horizon
k € {1,..., K} individually, summarized in the multi-index ¢ := (i,7,k). This defines a
permutation oy(m) := rank(z%,) for m € {1,..., M}, with ties resolved at random. For
each ¢, we employ state-of-the-art univariate ensemble postprocessing methods, such as
BMA or EMOS, to obtain a predictive CDF F,. For each ¢, we draw a sample &, ..., %%
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of size N from Fy by taking the equally spaced ﬁ -, N]il - quantiles of Fj, that is,

1 N
~0 . -1 ~0 . -1
=t <N+1)""’xN'_Ff <N+1>'

Contrary to Scenario (A), we now divide our N-sized sample into r+1 subsamples, where r of
them consist of M members and one of them comprises P members. Since a partition of the
ﬁ e, NLH -quantiles into » + 1 subsamples, such that each subsample has equidistant
quantiles as in the extended ECC-Q equidistant method of Scenario (A), is obviously not
possible in Scenario (B) here, we basically proceed as in the extended ECC-Q random

method of Scenario (A) by randomly dividing the sample

&=z, 1Y)
into r + 1 subsamples
goll = @00 ety gt = @ g, gl g gty

That is, if A is a random permutation of {1,..., N}, the r + 1 subsamples are given by

- ~Z, ~€7 i~ 7

mf,[l} = (le [1}7...,17]\4[1]) = (mg\g(l)""’xg‘l(M)%

- 1,2 ~0,[2 5 7

x&[m = (‘Tl[]7’$MH) = (xg\e(M+1)77x§\[(2M))7

01y A[r ~L,[r 5 T

Ol .— (:1:1[ ], e ,:UM[ ]) = (l‘f\g((rq)Mﬂ)’ aE »xf\z(rM))’
~0.[r ~é,7" 1 ~Z7T 1 7 T
g+l = gttt gty (@ rar1y - B rrr 1Py

with N =r-M + P.

With regard to the r subsamples &5, ..., 40 consisting of M members each, we exactly
proceed as in Scenario (A) and obtain r different standard ECC-Q ensembles &6, 6121,
2601 i

" via

T VA ) RV RO | R C) o]
2= @) = @) T T
02 (b2 21N 02 b2 02
= @) = ) Tty Tt
“év r P Ae’[r] "Z)[T] R *’Zv T} ‘*Zv T} ‘*ez[r]
bl .= (@7, oy ) = (x(gé(l)),x(gé(z)), e ’:L‘(O'((M)))'

For the single subsample &%"*1 comprising P members, we consider the first P < M raw
ensemble members and their corresponding forecast xf, . ,xé defining a permutation py
of {1,..., P} via pg(u) := rank(xﬁ) for p € {1,..., P}, with ties resolved at random. The
subsample #4+1) comprising P members is then reordered according to the permutation
pe to get the ensemble &4+ via

= (Z T

jﬂ,[r—&-l] — (ii,[r+1]’ . ’ié[r+1]) L ( ﬁ,[r—i—l]

£,[r+1]
pe(1))?(

~0,[r+1]
pe(@)7 (o))

pe(P)

Hence, we try to kind of project the basic dependence structure within the M members onto
the remaining P < M members, such that it is roughly retained in the smaller sample. In
principle, the P out of the M raw ensemble member indices may also be chosen according
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Figure 4.33: Scenario (B): Scatterplots for 24 hour ahead temperature forecasts (in °C) at Hamburg
and Berlin, valid 1:00 am on 24 November 2010, of a 10-member raw ensemble, the corresponding 10-
member standard ECC-Q ensemble and the 25-member extended ECC-Q random ensemble, which
consists of 2 subsamples of 10 members each, indicated by the red dots and circles, respectively, and
a single subsample of 5 members, indicated by the red crosses.

to other criteria, rather than just taking the first P as performed here. Finally, the r + 1
ensembles 01, .. @601 2601 are aggregated in an extended ECC-Q random ensemble

&! comprising N = r - M + P members via
NN, NANVAL N AGRPYALS]
&= (24, a%) = @0, gtl] gblrly,

Again, the order of the r 4+ 1 ensembles in the aggregation can be chosen arbitrarily, but has
to be consistent for each ¢, where we arguably use the most natural aggregation order above.

To illustrate the approach for Scenario (B) in Figure 4.33, we again consider the setting
of the previous example. This time, the original M = 10-member ensemble shall be ex-
tended to a size of N = 25 = 2104 5 members. The 10-member raw and standard ECC-Q
ensembles are shown in the left and mid-panel in Figure 4.33, respectively. Besides, the
extended ECC-Q random ensemble consisting of N = 25 members is exhibited in the right
panel, where the » = 2 subsamples of size M = 10 are indicated by red dots and circles,
respectively, and the subsample of size P = 5 by red crosses. In the extended ECC-Q
random ensemble, the 2 subsamples consisting of 10 members each exhibit the same rank
dependence structure as both the raw and the standard ECC-Q ensemble, and the single
5-member subsample covers a part of that at the very least.

4.4.2 Case study

We now assess the extended ECC-Q ensembles as proposed before and compare their pre-
dictive performances to those of both the raw and the standard ECC-Q ensemble. For this
purpose, we consider ECMWEF 24 hour ahead temperature forecasts at Berlin and Hamburg
jointly, for the two-year test period from 1 January 2011 to 31 December 2012. Univari-
ate postprocessing is done via EMOS throughout, using a training period of 30 days. In
what follows, we analyze the three cases, in which we start with raw ensembles consisting
of M = 10, 30 and 50 members, by just taking the first 10, first 30 and all members, re-
spectively, of the regular ECMWEF ensemble. Each initial M-member raw ensemble is then
extended to several test sizes N by employing the corresponding techniques for Scenario (A)
or Scenario (B).

Figures 4.34 to 4.36 show the corresponding average energy score (ES), which is employed as
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Figure 4.34: Average ES (in °C) for 24 hour ahead temperature forecasts at Berlin and Hamburg
jointly over the test period from 1 January 2011 to 31 December 2012. Based on an M = 10-member
raw ensemble, the scores for the corresponding standard ECC-Q, the extended ECC-Q random and
the extended ECC-Q equidistant ensemble, respectively, are shown as a function of the desired
extended ensemble size N > M. The results for the extended ECC-Q random ensemble are averaged
over 100 runs and complemented by the corresponding standard boxplots. For comparison: The raw
ensemble has an average energy score of 1.756.
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Figure 4.35: Average ES (in °C) for 24 hour ahead temperature forecasts at Berlin and Hamburg
jointly over the test period from 1 January 2011 to 31 December 2012. Based on an M = 30-member
raw ensemble, the scores for the corresponding standard ECC-Q, the extended ECC-Q random and
the extended ECC-Q equidistant ensemble, respectively, are shown as a function of the desired
extended ensemble size N > M. The results for the extended ECC-Q random ensemble are averaged
over 100 runs and complemented by the corresponding standard boxplots. For comparison: The raw
ensemble has an average energy score of 1.736.
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Figure 4.36: Average ES (in °C) for 24 hour ahead temperature forecasts at Berlin and Hamburg
jointly over the test period from 1 January 2011 to 31 December 2012. Based on an M = 50-member
raw ensemble, the scores for the corresponding standard ECC-Q, the extended ECC-Q random and
the extended ECC-Q equidistant ensemble, respectively, are shown as a function of the desired
extended ensemble size N > M. The results for the extended ECC-Q random ensemble are averaged
over 100 runs and complemented by the corresponding standard boxplots. For comparison: The raw
ensemble has an average energy score of 1.726.

an overall performance measure here, as a function of the desired ensemble size N after post-
processing over our test period. For scaling reasons, the scores for the raw ensembles are not
explicitly shown in the plots, but mentioned in the corresponding captions for comparison.
In the case of Scenario (A), the results both for the extended ECC-Q random and extended
ECC-Q equidistant ensemble, respectively, are given. The values obtained when using the
random partitioning are averaged over 100 runs and complemented by the respective stan-
dard boxplots, both for Scenario (A) and Scenario (B). In this context, the term “standard
boxplot” refers to the classical box-and-whisker plot as introduced by Tukey (1977), where
outliers are not explicitly shown here. To check calibration only, the multivariate, band
depth and average rank histograms, respectively, for our test period are shown in Figure
4.37 for the exemplary situation of a raw ensemble of size M = 10, which is extended to a
N = 50-member ensemble according to Scenario (A). Similarly, histograms for the situation
in which a raw ensemble is extended from M = 10 to N = 35 members according to Scenario
(B) can be found in Figure 4.38.

In all the cases, both the standard ECC-Q and the extended ECC-Q ensembles clearly
outperform the raw ensemble. Hence, the basic goal of statistical ensemble postprocessing
is achieved.

The extended ECC-Q ensembles essentially always outperform the standard ECC-Q en-
semble in terms of the ES. If the initial raw ensemble is already sufficiently large, here for
M = 30 or M = 50, the improvements are rather small, whereas if the raw ensemble is
comparably small, here for M = 10, the improvements are considerable. Hence, if an en-
semble is sufficiently large with already sufficient amount of information, extended ECC-Q
methods become rather unimportant, such that it effectively makes no difference whether
we employ standard ECC-Q or extended ECC-Q. However, they are very valuable for small
ensembles in order to provide more information.

As far as extended ECC-Q for Scenario (A) is concerned, extended ECC-Q random per-
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Figure 4.37: Scenario (A): (a) Multivariate, (b) band depth and (c¢) average rank histograms for 24
hour ahead temperature forecasts at Berlin and Hamburg jointly over the test period from 1 January
2011 to 31 December 2012. Based on an M = 10-member raw ensemble, the extended ECC-Q
random and extended ECC-Q equidistant ensemble, respectively, comprises N = 50 members.
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Figure 4.38: Scenario (B): (a) Multivariate, (b) band depth and (c) average rank histograms for 24
hour ahead temperature forecasts at Berlin and Hamburg jointly over the test period from 1 January
2011 to 31 December 2012. Based on an M = 10-member raw ensemble, the extended ECC-Q
random ensemble comprises N = 35 members.
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forms slightly better than extended ECC-Q equidistant throughout. Contrary to the ben-
efits at the sampling stage, the use of equidistance has no positive effect with regard to
the partitioning of the samples. In particular, Figure 4.37 reveals that extended ECC-Q
random yields a somewhat better calibration than extended ECC-Q equidistant, for which
the multivariate rank histogram in Figure 4.37 (a) is U-shaped and thus indicates under-
dispersion, for example. The reason for that is to a certain extent already hinted at and
illustrated in Figure 4.32. For extended ECC-Q equidistant, the three subsamples look very
much the same and are only sort of shifted, which is obvious by construction, whereas the
subsample pattern of extended ECC-Q random is somehow more scattered. In some cases,
the equidistant partitioning might create a sort of an unnatural overstructuring.

As N increases, the energy scores ES%X?%%C_Q of the extended ECC-Q ensembles get lower,

that is, better. However, the improvements ESQQ%%“OQ - Esgxf‘%%c_Q of the ES for an

ensemble size N and a larger size N* > N are noteworthy for comparably small N, but
become very minor if N gets sufficiently large.

In a nutshell, it is worth to employ extended ECC-Q approaches in cases when the original
M-member raw ensemble is rather small. If doing so, it is recommended to use extended
ECC-Q random, and it generally suffices to extend the initial ensemble to a size N which
is not excessively larger than M. Practically, it may often be reasonable and plausible to
restrict oneself to the somewhat more natural setting of Scenario (A), in which N =1 - M,
and take rather low values for r, depending on the initial size M.

4.4.3 Alternative approaches

Finally, we briefly discuss two alternative approaches to the extended ECC method described
in Section 4.4.1 and tested in Section 4.4.2. Both techniques also yield a postprocessed N-
member ensemble greater in size than the M-member raw ensemble, that is, N > M. The
first is based on a recycling notion, and the second uses so-called lagged ensembles.

(a) A recycling approach

First, we describe a simple and canonical recycling procedure that can be applied in the case
of Scenario (A) of extended ECC only, that is, if N = r- M, where r > 2. Assuming that we
are given a postprocessed M-member standard ECC ensemble, a postprocessed, enlarged
N-member ensemble can be obtained by just recycling or repeating r times the standard
ECC ensemble in a redundant implementation. We refer to this method as recycled ECC
in what follows. As in the case of standard ECC, we distinguish the variants (R), (T)
and (Q), depending on the quantization used at the sampling stage. The recycled ECC-T
or -Q ensemble comprises r times the same standard ECC-T or -Q ensemble, respectively.
In contrast, the recycled ECC-R ensemble, which has also been proposed and employed
by Wilks (2014), generally does not consist of r times the same sample, because repeated
implementation is not necessarily redundant in the setting of scheme (R).

(b) An extended ECC variant using lagged ensembles

Our last method to create an N-member postprocessed ensemble exceeding the raw ensem-
ble size M and being able to account for dependencies in an ECC-like manner is based on
so-called lagged or time-lagged ensembles.
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Figure 4.39: Tllustration of the connection between initialization dates, verification date and pre-
diction horizons to construct an enlarged lagged raw ensemble. A similar scheme is shown in Figure
3 in Lu et al. (2007).

Lagged ensemble forecasting has originally been proposed by Hoffman and Kalnay (1983). A
forecast ensemble is thereby constructed by collecting single-valued point forecasts launched
at different initialization times, but all materializing at the same verification time, thus
comprising multiple prediction horizons. What Hoffman and Kalnay (1983) call a lagged
average forecast is then just the average of the corresponding lagged ensemble forecasts
at their proper verification time. Mostly, each of the lagged ensemble members is given
equal weight (Kalnay, 2003), while more involved weighting schemes are also available (Lu
et al., 2007). Meanwhile, lagged ensembles have been investigated and employed in various
papers and case studies, including those of Lawrence and Hansen (2007), Lu et al. (2007),
Mittermaier (2007), Bentzien and Friederichs (2012) and Scheufele et al. (2014). Lawrence
and Hansen (2007) use lagged ensembles to increase ensemble size, as is also desired in our
setting here. Specifically, they combine ensemble forecasts initialized at different times, but
valid at the same time, rather than point forecasts. This corresponds better to our setup,
and we now employ the aforementioned notions in our context. As this is meant to be a
description of ideas, both the elaboration of details or modifications and the implementation
of the method in a real-data case study to assess the predictive performance are issues for
future work.

For weather quantity ¢ € {1,...,I}, location j € {1,...,J} and look-ahead time k; €

{1,..., K}, summarized in the multi-index ¢; := (i, j, k1), we are given the M-member raw
ensemble forecast x‘f, . ,xf\}[ valid at verification date ¢y and initialized at date t;. To

create an enlarged ensemble of size N =r- M + P, withr € Nand P € Ny, 0 < P < M,
we pad the above M-member raw ensemble with N — M ensemble forecasts also valid at
to, but launched at different initialization dates ts, ..., t,41 # t1, thus corresponding to dif-
ferent look-ahead times ks, ..., k.41 # k1 and multi-indices fo, ..., ¢, 11 # {1, respectively.
The initialization dates to,...,t,+1 and the corresponding prediction horizons ko, ..., ky41
can be selected arbitrarily. However, the dates to,...,%,41 have to be in the past of 1,
and hence, the look-ahead times ko, ..., k,+1 have to be greater than k;. Without loss of
generality, we can assume that the prediction horizons ko, ..., k,+1 are increasing with the
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indices 2,...,7 + 1 here. An illustration of the connections between initialization dates,
verification date and prediction horizons to construct an enlarged lagged raw ensemble is
shown in Figure 4.39, which is similar to Figure 3 in Lu et al. (2007).

As the lagged ensemble forecast is based on several initialization dates, temporal corre-
lations among different prediction horizons can hardly be accounted for as before. Thus,
the focus is on retaining dependence structures among weather variables i € {1,...,I} and
locations j € {1,...,J}, summarized in the multi-index ¢* := (4, j).

In the general case of N = - M + P, a lagged ensemble forecast «** for each ¢*, based on
the different raw ensemble forecasts

2 = (@l ) = (2. ),
o2 I e ¢ )
T 21— (ng_H,...,l‘QM) = (37127'-‘7'73]\24)7
L A AR tr
xT [r] : (x(rfl)MJrl?'-'aer) T (331 ""’xM)’
0* 0* o b tr
T o[r+1] = (er-i-la"-aer-i-P) = (1’1 +1""7xP+1)’

which are all valid at date ty, can be formally obtained by

o £* (1 £*,[2 0% [r 0% [r+1
= (@5 P g gt
_ * VAN A 0* * * 0* *
= (xl7""IM’J"M+17"’7x2M7“'7x(r—1)M+17“'7xT‘M’xT7\1+17"'7x7‘M+P)
_ 01 1 1) 12 ly ¢ lri1 Cri1
= (7', ..oy, a, Ty, a s e p T,

with N = 7 - M + P. The P out of M members the ensemble &' consists of can be
chosen either randomly or according to a specific criterion, but should be fixed throughout.
One could also just take the first P out of the M raw ensemble members. The order of the
r + 1 ensembles which are employed to create the extended lagged raw ensemble ' can be
chosen arbitrarily, while it has to remain fixed for all £* throughout.

In the special case of P = 0, that is, for N = - M, the lagged ensemble !  reduces
to

o 1] 002 0 [r
x = (a0 g0 2l
_ o* 0* 0* 0* 0 0*
— (xl"'-’vaxM—i-lv'”vaMv-"7x(r—1)M+1v-~'7er)
¢ ¢ 14 14 0 l
= (., T X, ).

The N members of the extended lagged raw ensemble x‘  are treated as if they were
exchangeable in what follows. For each ¢*, a permutation pe-(n) := rank(z% ) for n €
{1,...,N} is induced by x', with ties resolved at random. In the next step, univariate
ensemble postprocessing methods, such as BMA or EMOS, are employed to obatin a predic-
tive CDF Fy for each £*. Then, we draw a sample Z{ , ... ,:Ef\*, of size N from each CDF Fy«
according to quantization scheme (R) or (Q), respectively. We prefer as before the latter
sampling method (Q) here and thus obtain

. 1 . N
0 -1 ~/ -1
P —) = ()
1 <N+1) TN (N+1)
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The samples :fzf*, . ,55% are finally reordered with respect to the permutation py+« to con-

serve the spatial and inter-variable rank dependence pattern from the extended lagged raw
ensemble, yielding the final postprocessed ensemble ﬁ‘i*, . ,irf\*, via

PN A PN Y

1= Tppe (1)) IN T Lppe (V)

as in the standard ECC-Q approach.

As mentioned before, the lagged ensemble postprocessing method described above just col-
lects ideas, and several details of the approach still have to be worked out in the future.
For instance, the specific choice of the prediction horizons ko, ..., k.11 to pad the original
raw ensemble associated with look-ahead time k; has to be examined, in that whether there
are prediction horizons that are more suitable than others for the padding process. In this
context, also the development of appropriate weighting schemes for the different look-ahead
times is of interest and importance. Moreover, the assumption of exchangeability for the
members of the extended lagged raw ensemble might be doubtful and not fulfilled each and
every time. In this light, the lagged ensemble approach might be combined with the ECC
method for ensembles consisting of non-exchangeable members, which will be presented in
the next Section 4.5, to provide an appropriate procedure.

With the two alternative approaches described before and the extended ECC-Q methods
presented in Section 4.4.1, we can solve the shortcoming that the standard ECC ensem-
ble always has to consist of the same number of members as the raw ensemble. However,
these extension techniques still apply to raw ensembles with exchangeable members only — a
problem which will be addressed with respect to standard ECC in the next Section 4.5. An
extension approach that is also valid for raw ensembles comprising non-exchangeable mem-
bers can be constructed by combining similarity-based ensemble methods with the Schaake
shuffle presented in Section 3.2.2. This technique is described and evaluated in Chapter 8
in this thesis.

4.5 ECC for ensembles with non-exchangeable members

As noted, a further constraint of the standard ECC implementation from Section 4.1 is
that it can only be applied to raw ensembles consisting of exchangeable members. We now
consider situations in which at least a part of the ensemble members are statistically dis-
tinguishable, coming from different sources. For instance, we can think of a multi-model
ensemble consisting of C' different physical models of the atmosphere from different NWP
centers, with exchangeable ensemble members arising from N, perturbations of the initial
conditions for each single model ¢ € {1,...,C}, which are then aggregated to a final overall
ensemble. This is for example realized in the TIGGE project and database (Bougeault et al.,
2010). The COSMO-DE ensemble (Gebhardt et al., 2011) run by the German Weather Ser-

vice is an ensemble consisting of clusters of exchangeable members.

To describe an ECC variant suitable to such settings, let ¢ := (,7,k) be a multi-index

referring to weather variable i € {1,...,1}, location j € {1,...,J} and look-ahead time
ke {l,...,K}. Moreover, let
. (.0 0\ . 4 V4 ¢ ¢ 4 4
x = () = (T TIN5 T2 ToN, ey T TONG )
—_— ————
Ni-member cluster 1 Ns-member cluster 2 Ne-member cluster C

M members
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be a raw ensemble forecast consisting of M members in total, but split in C' clusters, or
groups, comprising N, exchangeable members for each ¢ € {1,...,C}, respectively, such
that M = Y% | N,. For each fixed margin £, we proceed as follows.

1. For each cluster ¢ € {1,...,C}, apply standard ECC based on the N.-member raw
cluster ensemble as a reference by conducting the following steps.

e Derive the permutation
pi(n) = rank(xﬁm) for n e {1,..., N},

with ties resolved at random, induced by the corresponding raw ensemble forecast
xf;l, . .,xﬁch of cluster c € {1,...,C}.

e Perform univariate postprocessing, for example via BMA or EMOS, and obtain
a calibrated and sharp predictive CDF Fj. That is, biases and dispersion errors
are corrected separately for each raw cluster ensemble.

e Generate a sample :igl, . ,i‘é N, of size N from Fy according to the sampling
scheme (R), (T) or (Q), respectively.

e Obtain the postprocessed cluster ensemble i‘gl, e ,fcﬁ N, by reordering the sam-
ples on the basis of pg:

N Y 4 —
.’L'C,l = x(pg(l)), . 7xC,Nc =T

2. Aggregate the C postprocessed cluster ensembles piece by piece in the same order as
in the overall raw ensemble to obtain

N AN SN (al A0 NG ~ ~L ~L
z (B, @) = (115 2N B2t Do Ny s T -+ TONG)

as the final postprocessed M-member overall ensemble.

As hinted at in the previous section, the approach to deal with ensembles comprising non-
exchangeable members described above could be combined with the lagged ensemble method
from Section 4.4.3, in that for each look-ahead time ky, ko, ..., k,+1, the respective ensemble
forecasts associated therewith, where the corresponding ensemble members are assumed to
be exchangeable, can be supposed to build the C' = r + 1 clusters ¢, c2, ..., ¢rq1.
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Chapter 5

ECC as an overarching theme

We now focus on exemplary techniques that have been already presented in the literature
and show similarities to the ECC approach or contain elements thereof. In Section 5.1,
we review a common and widely used member-by-member postprocessing (MBMP) method
and discuss its relationship to ECC. Moreover, the predictive performance of this MBMP
approach is compared in a case study to that of ECC based on the standard implementation
in this thesis. Thereafter, we note further methods in the extant literaure that can also be
interpreted as ECC variants in Section 5.2. All in all, ECC turns out to form an overarching
theme for seemingly unrelated approaches scattered in the literature.

5.1 A member-by-member postprocessing (MBMP) method
as an ECC variant

We have seen that state-of-the-art ensemble postprocessing approaches, such as Bayesian
model averaging (BMA) or ensemble model output statistics (EMOS), are mostly univariate
and apply to a single weather quantity at a single location and for a single prediction horizon
only, thereby failing to account for potentially crucial dependence structures. To address
this shortcoming, BMA and EMOS can be combined with the ECC approach, in which
the postprocessed forecast ensemble inherits the spatial, temporal and inter-variable depen-
dence structures of the unprocessed raw ensemble, as proposed in Section 4.1. In Gaussian
settings, the rank dependence patterns from the raw ensemble can alternatively be retained
by using member-by-member postprocessing (MBMP) methods, which are wide-spread in
the literature (Doblas-Reyes et al., 2005; Johnson and Bowler, 2009; Van Schaeybroeck and
Vannitsem, 2014). In this section, we review a consolidated version of the MBMP ap-
proaches and elucidate its relationships to ECC. Moreover, the predictive performances of
the different methods are assessed and compared in a case study.

5.1.1 The MBMP approach

Based on the pioneering work of von Storch (1999), who proposed to use randomization in
statistical downscaling, member-by-member postprocessing methods have emerged in the
literature (Doblas-Reyes et al., 2005; Wood and Schaake, 2008; Johnson and Bowler, 2009;
Van Schaeybroeck and Vannitsem, 2014). We fuse and complete the occasionally slightly
differing formulations in these papers and present our reference member-by-member post-
processing (MBMP) approach in what follows.
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In this context, we consider forecasts for a fixed weather quantity ¢ € {1,...,I} at a fixed
location j € {1,...,J} and for a fixed look-ahead time k € {1,..., K}, but omit for conve-
nience the respective multi-index ¢ := (i, j, k). Forecasts and observations are assumed to
stem from a normal distribution, as is reasonable in the case of temperature, pressure, u-
and v-wind, for instance.

Let z7,...,2}, denote the M-member raw ensemble forecast valid at date 7, and let y,
be the corresponding verifying observation valid at date 7. Moreover, let the corresponding
empirical ensemble mean and variance be denoted by

1 & 1 &
:MZQ/}; and 333:MZ($;¢_7

m=1 m=1

respectively.

Now let ¢ be the verification date for which the raw ensemble forecast is to be postpro-
cessed, and let {1,...,D} be a reference time period consisting of dates in the past of ¢.
Using the ensemble forecast and observation data of the past period {1,..., D}, we define
the quantities

1 D 1 D D D
Hy =5 D Y ME =g D T, : Zw—w, Zm—m
d=1 d=1 d=1 D3
and
1 D
2
— Z 52
D=
For y := (y1,...,yp) and @ := (Z1,...,Zp), we additionally define the correlation coeffi-

cient p := Corr(y, &).

Based on the quantities defined above, the MBMP method transforms the raw ensemble

forecast zf, ..., x’j\/l valid at date t to a postprocessed ensemble forecast 24, ..., iﬁ\/l valid at
date t via
T = by (@ — pz) + By, — T
= (uy — apz) + oz + B(xh, — z4) (5.1)

forme {1,..., M}, with

Sy s
= p—2 d B:=4/1—p2
ai=pan ﬁ\/psg
If p1y = 0 and pz = 0, this method reduces to the approach described in Johnson and Bowler
(2009), which on the other hand is a special variant for a single predictor in the general set-

ting of Van Schaeybroeck and Vannitsem (2014) for multivariate predictors.

Elementary calculations yield that our reference MBMP ensemble has the same proper-
ties as the calibrated ensemble in Johnson and Bowler (2009), namely that the variance s2
of the calibrated ensemble is s2 = a?s2 + 3252 and that Corr(2L,,7;) = . Hence, the

specific choice of o and § can be indeed justified as in the derivations in Johnson and Bowler
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(2009), and for each verification date, a and 3 are derived from a reference data set consist-
ing of forecast and observation values in the past. The reference data base might contain
data from several years. For comparative reasons, however, only the period of the D = 30
days before the verification date is used as the underlying reference data set in our case study.

For convenience, let the index ¢ be suppressed in what follows. In our reference MBMP
technique, a fixed raw ensemble member z,, is postprocessed into a calibrated ensemble
member Z,, via the affine transformation

Em = py — apz + o + B(xm — ) = (py — apg + aZ — BT) + Py, (5.2)

where m € {1,..., M}. Hence, rank(z,,) = rank(,,), and obviously the rank dependence
structure of the raw ensemble is conserved in the calibrated ensemble.

These considerations remind us of the setting of sampling method (T) and Lemma 4.1,
respectively, from Section 4.2. We recall that in the quantization approach (T), the raw
ensemble forecast x1,...,x) is transformed for each fixed multi-index ¢, which remains
suppressed in what follows, into a postprocessed ECC-T ensemble 1, ..., 2y by setting

T = Fﬁl(S(xl)),. C T = Fﬁl(S(xM)),

where F~! denotes the inverse of a predictive CDF F obtained by univariate ensemble

postprocessing, and S is a continuous CDF fitted to the raw ensemble values x1, ...,z If S
and F belong to the same location-scale family, that is, S(x) = H(*2*) and F(x) = H(*2£-)
for some continuous CDF H with u, u* € R and o,0" € R, the transformation from z,, to
&y, for m € {1,..., M} becomes affine. In particular,

N - o*

B = F (S () = p* + ;(a:m — 1) (5.3)
for m € {1,..., M}, as has been shown in the proof of Lemma 4.1.

Thus, if we let F' be the CDF of a N (u, — apz + oz, 32s%)-distribution and S the CDF
of a N(Z, s?)-distribution, with the quantities as defined before and the index ¢ suppressed
in the notation of the raw ensemble mean Z and the raw ensemble variance s, we recover
the MBMP reference approach (5.2). This can be checked by plugging in formula (5.3),

obtaining

Zm :uy—aui—i-aa_:—i-%(azm—i) = py — apg + oZ + By, — )

for m € {1,...,M}. When we combine the postprocessed univariate MBMP ensemble
members for each location, weather quantity and prediction horizon separately in an ECC
fashion, the fourth step of ECC is obsolete, as no reordering of these samples is necessary
due to the affine transformation as discussed before. The index of the calibrated members
is directly defined by the method itself, and the rank dependence pattern from the raw
ensemble is retained by construction. In this light, the MBMP technique can be considered

a variant of ECC-T.

5.1.2 Case study

In our case study, we aim at a comparison of the MBMP method and EMOS as described in
Section 3.1.2 and EMOS combined with ECC, respectively, in univariate and multivariate
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Table 5.1: Average CRPS (in °C) and DSS for univariate 24 hour ahead forecasts of temperature
at Berlin and Hamburg. The results are averaged over the test period from 1 January 2011 to 31
December 2012.

CRPS DSS
Berlin  Hamburg Berlin Hamburg
Raw Ensemble 0.975 0.832 8.20 7.00
MBMP Ensemble 0.776 0.697 2.83 2.14
EMOS-T Ensemble  0.761 0.681 1.85 1.51
EMOS-Q Ensemble  0.754 0.679 1.95 1.59

settings. To this end, we focus on 24 hour ahead 50-member ECMWEF ensemble forecasts for
temperature at Berlin and Hamburg. The predictive performance of the different methods
is evaluated over a two-year test period from 1 January 2011 to 31 December 2012, by using
our usual verification tools. For comparative reasons, we use a rolling window consisting
of the last 30 days before the verification date as training period or reference data set,
respectively, for both the MBMP method and the EMOS postprocessing. Again, as we
only focus on two distinct stations and out test period only comprises two years, our case
study is not meant to be a comprehensive comparison study, but should be rather viewed
as a proof-of-concept. We first show results for univariate settings and then turn to the
multivariate case.

(a) Univariate setting

Initially, we compare the ensemble temperature forecasts at Berlin and Hamburg individu-
ally, issued by the raw ensemble, the MBMP ensemble obtained according to (5.1) and the
EMOS-T and EMOS-Q ensembles, respectively.

We recall that the EMOS-T ensemble here consists of the 50 samples according to the
transformation approach (T) from the corresponding univariate EMOS predictive CDF F,
where the ordering is not relevant in the univariate case. In the Gaussian case of temperature
here, the predictive EMOS CDF F is that of a N'(a+b(x1 +. ..+ ), ¢+ ds?)-distribution,
with the raw ensemble forecast x1,..., 2z, the raw ensemble variance s and parameters
a, b, c and d estimated via minimization of the training continuous ranked probability score
(CRPS), as stated in (3.5) and Section 3.1.2. The CDF S fitted to the raw ensemble is
taken to be that of a N(,s?)-distribution with mean equal to the raw ensemble mean Z
and variance equal to the raw ensemble variance s2. According to the affine transformation
in (5.3), the postprocessed EMOS-T ensemble &1, ..., 2 is then given by

Ve + ds? _

ﬁm:a—i—b(xl—i—...—l—xM)—i—f(xm—x), (5.4)
where m € {1,..., M}, and retains the rank dependence structures of the raw ensemble by
construction.

In contrast, the EMOS-Q ensemble consists of the 50 equidistant 5—11 ey % -quantiles from

the corresponding univariate EMOS predictive CDF F' according to sampling scheme (Q),
where again the ordering is not relevant in the univariate case.
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Figure 5.1: Verification rank histograms for 24 hour ahead temperature forecasts at (a) Berlin and
(b) Hamburg for the test period from 1 January 2011 to 31 December 2012

For an overall assessment of the predictive performances, summarized in Table 5.1, we
employ the CRPS and the univariate Dawid-Sebastiani score (DSS), where the results are
averaged over the test period. The CRPS for the ensemble forecasts is calculated via Formula
(2.6), while the DSS is computed according to Formula (2.9), where we use the correspond-
ing empirical mean Z and the empirical variance s2 of the different ensembles, respectively.
For the assessment of calibration solely, we use the verification rank histograms shown in
Figure 5.1.

As the focus is on the comparison of different ensembles, we do not explicitly show results
for the full EMOS predictive distribution here. However, the full EMOS density generally
outperforms the best EMOS-based ensemble, which is expected and intuitive, as the corre-
sponding ensembles are discretizations of the EMOS distribution. The full EMOS density
forecast very slightly outperforms the best performing EMOS-based ensemble in terms of
the CRPS, namely EMOS-Q, but the results become identical when rounding to two decimal
places.

According to Table 5.1, the MBMP, EMOS-T and EMOS-Q ensembles clearly outperform
the raw ensemble in terms of the CRPS and DSS, and the EMOS-based ensembles outper-
form the MBMP approach. With respect to the CRPS, this might be partly due to the fact
that EMOS is designed such that the CRPS is minimized, and MBMP is not. Moreover,
the EMOS-Q ensemble performs best among the ensemble forecasts regarding the CRPS,
which appears to be well in line with the results in Section 4.2. With respect to the DSS,
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Table 5.2: Average ES (in °C) and DSS for 24 hour ahead forecasts of temperature at Berlin and
Hamburg jointly. The results are averaged over the test period from 1 January 2011 to 31 December
2012; those for the Individual EMOS ensembles are averaged over 100 runs.

ES DSS
Raw Ensemble 1.400 15.15
MBMP Ensemble 1.146  5.07
Individual EMOS-T Ensemble 1.125 3.41
ECC-T Ensemble 1.125 3.34
Individual EMOS-Q Ensemble 1.122  3.60
ECC-Q Ensemble 1.121  3.54

the EMOS-T ensemble outperforms the EMOS-Q ensemble. The variance of the EMOS-T
ensemble turns out to be greater than that of the EMOS-Q ensemble throughout, whereas
the mean is identical for both EMOS-based ensembles. Indeed, the empirical average of the
50 equidistant quantiles yields the median, hence the mean of the EMOS normal distribu-
tion due to symmetry. The empirical average of the EMOS-T ensemble forecasts is also
equal to this EMOS mean, which can be verified by computing the empirical average of the
ensemble member values Z,, in Formula (5.4) in a straightforward calculation. Hence, opti-
mal sampling with respect to the DSS appears to be different from that in case of the CRPS.

Regarding calibration only, all postprocessed ensembles are better calibrated than the raw
ensemble, which reveals U-shaped verification rank histograms. Moreover, the EMOS-T
and EMOS-Q ensembles also outperform the MBMP ensemble in terms of calibration, while
showing basically an equally good performance with verification rank histograms being the
closest to uniform.

(b) Multivariate setting

Turning to the multivariate case, we now focus on spatial aspects by considering the two
stations Berlin and Hamburg simultaneously. We compare

e the unprocessed ECMWEF raw ensemble,

e the MBMP ensemble, in which the two univariately postprocessed ensemble forecasts
obtained by MBMP via (5.1) are aggregated,

e the Individual EMOS-T ensemble, in which the order of the ensemble members ob-
tained by EMOS-T via (5.4) is randomly shuffled, rather than being determined by
the raw ensemble and remaining fixed by the monotone transformation,

e the ECC-T ensemble, which combines the univariate ensemble forecasts obtained by
EMOS-T according to (5.4), where the rank dependence structure of the raw ensemble
is retained by construction via the affine transformation,

e the Individual EMOS-Q ensemble, in which the order of the 50 equidistant 5% -t % -
quantiles from the EMOS predictive CDF obtained via quantization scheme (Q) is

randomly shuffled, and

e the ECC-Q ensemble, which combines the univariate ensemble forecasts obtained by
EMOS-Q, where the corresponding 50 equidistant quantiles are reordered according
to the rank dependence structure of the raw ensemble.
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Figure 5.2: (a) Multivariate, (b) band depth and (c) average rank histograms for 24 hour ahead

temperature forecasts at Berlin and Hamburg jointly for the test period from 1 January 2011 to 31
December 2012
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We employ the energy score (ES) for ensemble forecasts according to (2.8) and the multi-
variate version of the DSS (2.10) as scores. For the calculation of the DSS, p is taken to
be the empirical mean vector, and X is taken to be the empirical covariance matrix of the
respective ensembles. In case of the Individual EMOS ensembles, the results for the scores
are averaged over 100 runs. Again, all scores are averaged over the test period, and the
results are reported in Table 5.2. Multivariate calibration is assessed via the multivariate,
band depth and average rank histograms in Figure 5.2, where in the case of the Individual
EMOS ensembles, the corresponding ranks are averages over 100 runs.

Concerning the ES and the DSS, all postprocessed ensembles outperform the raw ensemble.
Among the postprocessed ensembles, the Individual EMOS and the ECC ensembles yield
better scores than the MBMP ensemble, both with respect to the ES and the DSS. In this
light, the results from the univariate case appear to extend to the multivariate case. This
might also explain that the Individual EMOS ensembles perform better than the MBMP
ensemble, although they do not conserve rank dependencies. In terms of the ES, the ECC-T
and the ECC-Q ensemble, respectively, perform equally well or slightly outperform their cor-
responding counterparts Individual EMOS-T and Individual EMOS-Q, for which the spatial
rank dependence structure is lost, with the ECC-Q ensemble showing the best ES overall, as
is already the case with respect to the CRPS in the univariate setting. The minor differences
between the ECC ensembles and their corresponding Individual EMOS counterparts might
again be partly explained by the discrimination inability of the energy score (Pinson and
Tastu, 2013), which has already been discussed in the context of Section 4.3. Regarding the
DSS, the differences between the respective Individual EMOS and ECC ensembles become
more obvious than with the ES, in that the ECC ensembles perform better, with the ECC-T
ensemble revealing the best DSS overall, as is already the case in the univariate setting.

In terms of calibration only, all postprocessed ensembles clearly outperform the raw en-
semble. In addition, all Individual EMOS and ECC ensemble variants, respectively, show
a somewhat better calibration than the MBMP ensemble, where the ECC ensembles might
slightly outperform their corresponding Individual EMOS counterparts.

In a nutshell, all postprocessed ensembles in our case study dealing with temperature per-
form notably better than the raw ensemble, while the EMOS- and ECC-based ensembles,
respectively, outperform the MBMP ensemble, both in the univariate and multivariate set-
ting. In the multivariate case, the ECC ensembles slightly outperform their Individual
EMOS counterparts. As described, even though the MBMP ensemble clearly outperforms
the raw ensemble, it does not yield particularly good results compared to EMOS and ECC,
respectively, in the case of temperature here. However, this may turn out differently in other
settings. For example, the MBMP ensemble might perform better if the MBMP parameters
were estimated based on a larger reference database comprising much more than the last 30
days used for comparative reasons here.

5.2 Other examples of ECC variants in the extant literature
In addition to the MBMP approach discussed in Section 5.1, there are many other tech-
niques, mainly in meteorological or hydrological contexts, that can be viewed as ECC

variants or that contain elements of ECC. Examples are the methods of Bremnes (2007),
Krzysztofowicz and Toth (2008), Todini (2008), Kann et al. (2009), Kann et al. (2011),
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Flowerdew (2012), Pinson (2012), Roulin and Vannitsem (2012), Flowerdew (2014) and
Van Schaeybroeck and Vannitsem (2014), while this list is not expected to be complete.

In what follows, we exemplarily investigate in detail the connections of ECC to the ap-
proaches of Pinson (2012) and Roulin and Vannitsem (2012), respectively.

5.2.1 Pinson (2012)

We recall the member-by-member postprocessing approach of Pinson (2012) for the postpro-
cessing of raw ensemble forecasts of (u, v)-wind vectors from Section 3.2.2. At a fixed location
and for a fixed prediction horizon, Pinson (2012) essentially introduces a two-dimensional

translation and dilation of the sets of the u- and v-wind raw ensemble predictions w1, ..., ups
and vy, ..., vy with empirical means u and v and empirical standard deviations s, and s,,
respectively.

Specifically, the postprocessed u- and v-wind ensemble members 41, ..., 4y and 01,...,05

in Pinson’s approach are given by

Up = U+Ty +§u(um - 7_1/)7
O = U+ Ty + & (v — 0)
form € {1,..., M}, with translation factors 7, and 7, and dilation factors £, and £, obtained
via
e = 00 4+ (6% — Da+60Ps,
o = 0N +0Pa+ (03 —1)7,
(1)
exp(vu
fu = 27 ) + exp(’yf)),
(1)
exp (Vs
& = g )+ exp(r?)

v
In this context, the model parameters 97(}), 9782), 9&3),751),7182), 07(}1), 07()2), 91()3),77()1), 1(,2) are es-
timated adaptively using a recursive maximum likelihood approach, with exponential for-
getting of past observations.

In Pinson’s approach, each postprocessed margin is essentially a translated and dilated
variant of the original unprocessed margin, while the mapping is compatible with the sam-
pling method (T) and the ECC-T scheme, where both S and F' are normal. Exemplarily
for u-wind, we consider the affine transformation setting in (5.3) and arrive at Pinson’s
approach if we let ' be the CDF of a N(u + 7, &2s2)-distribution, that is, with a = 7,
b=bi=...=by=1/M,c=0,d=¢ and ¢ = &,(zp, — ) with E[¢] = 0 and Var(e) = 52
in the EMOS setting (3.3) for normal distributions in Section 3.1.2, and S be the CDF of a
N (u, s2)-distribution.

The same considerations hold analogously for v-wind, and hence, Pinson’s method can
indeed be considered an ECC-T variant.
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5.2.2 Roulin and Vannitsem (2012)

Roulin and Vannitsem (2012) employ extended logistic regression to postprocess and cal-
ibrate areal precipitation forecasts, where the parameters are estimated from a hindcast
ensemble of past meteorological situations using the same model as the raw ensemble. For
areal precipitation Y at a fixed location and for a fixed prediction horizon, they model the
corresponding distribution via the CDF

Fy(q) =P(Y < q) = H(f(§) + 9(q)), (5.5)
where H(z) = H-e%p(—zr)' They choose
£= L % L1/ (5.6)
M ~ m
as predictor, where x1,...,r) denotes the raw ensemble forecast for areal precipitation.

Further, the functions f and g are set to be f(&) := By + £1& and g(q) = Ba2q'/?, with
parameters [y, 51 and (2. Roulin and Vannitsem (2012) estimate the parameter vector
B = (Po, b1, f2) by maximizing the likelihood function

N R
E(/B) = Z Z{ynr(ﬁo + ﬁlfn + ﬁ2%%/2) - log(l + eXp(,Bo + /61§n + ﬁQQ%ﬂ))}v

n=1r=1

where N denotes the number of realizations in the calibration dataset, R is the number of
the selected thresholds, and

|1 if the observed precipitation y,, does not exceed the threshold ¢,
Ynr 0 otherwise.

In their specific implementation, they select R = 7 precipitation thresholds ¢, r € {1,...,7},
such that these cover the upper quantiles of the distribution. For the n-th realization, Roulin
and Vannitsem (2012) consider w,, = &, + &, where

1 M
—_ 1/4
Wy, 1= — E xnﬁn,
m=1

and e, denotes the uncertainty of the ensemble mean evaluation, which is supposed to be
a random process with E[g,] = 0 and 02 := Var(e,) = %ﬁ“) In this context, 02, denotes
the variance of the power-transformed ensemble members, and av(-) the average over N
realizations. Roulin and Vannitsem (2012) argue that E(,|w,) should actually be used in
place of &, in the extended logistic regression analysis, and they provide an approximate

expression for E(&,|w,,).

To get postprocessed ensembles rather than separate probability distributions at each fore-
cast step, Roulin and Vannitsem (2012) modify the raw ensembles in accordance to the
results obtained by the extended logistic regression postprocessing as follows.

Roulin and Vannitsem (2012) show via a Taylor expansion that the variance of the corrected

ensembles is proportional to its mean if no ensemble member predicts zero precipitation.
According to (5.5), the probability of zero precipitation is py := WM.
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For a fixed forecast day, the raw ensemble member forecasts x1,...,x s are sorted increas-
ingly, that is, z() < ... < z(yp), with any ties resolved at random. Each forecast z(,,),
where m € {1,..., M}, is assigned a probability p(,,) via

m + %
Then, Roulin and Vannitsem (2012) generate a postprocessed ensemble Z1, ..., Z)s by mod-
ifying the forecast values of the members ranked m € {1,..., M} according to their proba-
bilities via
1— m
) log (52 ) — B — i
ZL‘(m) = 5 (5.8)

B2

with £ as defined in (5.6) and parameters [y, 81 and (2 as before.

If pany < po, the precipitation Z(, is set to zero, that is, Z(,) = 0. If pun,) > po,
where mg denotes the number of ensemble members forecasting zero precipitation, only a
fraction 70 := po/p(my) of the mo members is set to zero at random, and the remaining
members are randomly given a value between py and p(,,,) with precipitation specified by
(5.8).

Finally, Roulin and Vannitsem (2012) reassign the postprocessed values obtained via (5.8)
to the corresponding members such that the raw ensemble precipitation trajectories for dif-
ferent prediction horizons are reconstructed.

The method of Roulin and Vannitsem (2012) can be interpreted as an ECC-Q variant,
as it first extracts equidistant quantiles according to (5.7) from the postprocessed marginal
predictive CDFs being of extended logistic type. Then, a reordering with respect to the
rank dependence structure of the raw ensemble as in ECC is performed, with adaptations
allowing to deal with a point mass at zero, to capture the temporal dependence among the
raw ensemble forecasts for several look-ahead times. Although not explicitly demonstrated
by Roulin and Vannitsem (2012), their method is —as is ECC— able to reconstruct spatial
rank dependence patterns of the raw ensembles.
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Chapter 6

Multivariate discrete copulas: The
theoretical frame

In this chapter, we develop the theoretical frame of the standard ECC approach by intro-
ducing and investigating multivariate discrete copulas and thus showing that ECC can be
viewed as a copula technique, as suggested by its name.

As already pointed out in Section 3.2.1, copulas (Nelsen, 2006) play important roles in prob-
ability and statistics whenever the modeling of stochastic dependence is required, have been
employed in numerous application areas and are also interesting from a purely theoretical-
mathematical point of view. Copulas form a special Fréchet class, where this term refers
to a class of multivariate distributions with fixed uni- or multivariate margins (Fréchet,
1951; Joe, 1997). Specifically, copulas are L-variate CDFs, where L € N, L > 2, with stan-
dard uniform univariate margins Fy = --- = F|, = Fyy(o,1]), thus forming the Fréchet class

F(Fiy. ., Fr) = F(Fyo)s - - Fuo,))-

A special type of copulas are the so-called discrete copulas, whose properties have been
studied by Mayor et al. (2005), Mesiar (2005), Kolesarova et al. (2006) and Mayor et al.
(2007) in the last decade. However, the discussion in the papers mentioned above focuses
on the bivariate case, and it is natural to seek a treatment of the general multivariate sit-
uation. In what follows, we generalize both the notion of discrete copulas and the most
important results in this context to the multivariate case, and show to what extent they
build the theoretical frame of the ECC approach (Schefzik et al., 2013) presented in Sec-
tion 4.1 and also of the related Schaake shuffle (Clark et al., 2004) discussed in Section 3.2.2.

Specifically, we introduce the multivariate discrete copula concept in Section 6.1. We then
point out the connection between multivariate discrete copulas and stochastic arrays (Csima,
1970; Marchi and Tarazaga, 1979) in Section 6.2 and continue with the formulation of a mul-
tivariate discrete version of Sklar’s theorem in Section 6.3. Eventually, Section 6.4 deals with
the relationships of the presented results to ECC and the Schaake shuffle.

This chapter is based on the findings in Schefzik (2013), with the origin lying in Schefzik
(2011).
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6.1 Multivariate discrete copulas

First, we extend the notions of bivariate discrete copulas (Mayor et al., 2005; Kolesarova
et al., 2006) and bivariate discrete subcopulas (Mayor et al., 2007) to the general multivari-
ate case.

Let Iy := {0, ﬁ, %, ce %, 1}, where M € N, and let R := R U {—00,00}.

Definition 6.1. A function D : I, — [0,1] is a discrete copula on I, if it satisfies the
following conditions.

(D1) D is grounded, in that D (Zﬁl, ce %) =0 if iy = 0 for at least one £ € {1,...,L}.

(D2) D(1,...,1,%.1,...,1) =4 forall £ € {1,..., L}.
(D3) D is L-increasing, in that
. . ky kr
A AR D (M’ ce M) >0

forall ip € {1,...,M}, £ € {1,..., L}, where

; k1 kr, k1 ke—1 i ke kL)
A p(fL ot p(fv, By e R
ig—1 (M’ ’M) (M’ "M M M’ "M
_D(kl ko1 ig—1 ko kL)
MM M MUUM)

Definition 6.2. A discrete copula D : I, — [0,1] is irreducible if it has minimal range,
that is, Ran(D) = Ijy.

Following Fréchet (1951) and Chapter 3 in Joe (1997), a multivariate discrete copula can be
interpreted as a multivariate distribution in the Fréchet class F (Fu( Ine)s - Fug IM)), where
Fy(1,,) is the CDF of a uniformly distributed random variable on I;.

Definition 6.3. A function D* : J\ x -~ x J$¥ = [0,1) with {0,1} c JP ..., JE) c 1)y
is a discrete subcopula if it satisfies the following conditions.

(S1) D*(iﬁl,...,%):Oifigzoforatleastoneﬁe{1,...,L}.

(S2) D*(1,...,1,%. 1,...,1) = i for all %  J{Y).
(S3)

Agf...Ag}D* (Eﬁ;) >0

for all (%,..., %) (& . ity e g0« x (8 such that iy < jg for € € {1,..., L},
where
j k1 kL k1 ke-1 je kegr k‘L)
AD* | —, ..., — = D' —,...,—/—, = — ... =
b (M’ 7]\4) (M’ "M M M’ "M
—D*(kl ki1 ie ken kL)
MMM M’ "M



Definition 6.4. A discrete subcopula D* : J](Vll) X e X J](WL) — [0,1] is irreducible if
Ran(D*) = Ip.

The definition of discrete (sub)copulas can be generalized. A discrete copula need not
necessarily have domain [ ]@, but can generally be defined on Iy, x --- X Ip,, where
M, ..., M € N might take distinct values. Then, the axioms (D1), (D2) and (D3) ap-
ply analogously to this case. Similarly, discrete subcopulas can generally be defined on
JJ(\Z X oo X J](\Z) for possibly distinct numbers My, ..., My € N, satisfying the conditions in
Definition 6.3.

For convenience and in view of ECC and the Schaake shuffle as applications in Section
6.4, we confine ourselves to the case of M := My = --- = My, as in the above Definitions
6.1 to 6.4 in what follows.

Tailored to the applications to be discussed in Section 6.4, we defined the multivariate
discrete copula on points that are equally spaced across the set I ]@ However, when con-
sidering a multivariate distribution with discrete margins, the points where the copula is of
interest typically do not need to be equidistant across I f/[, but rather are heterogeneously
spaced across the marginals. Such more general situations are studied in Genest and Nesle-
hova (2007) and Genest et al. (2014), for instance.

We now give first explicit examples of multivariate discrete copulas.

Example 6.5. Let i1,...,iy € {0,1,...,M}.

. . L .
(a) II <ZM1, e ZML) = pis i7 is a discrete copula, the so-called product or independence
copula.
(b) M (’Ml, e ZML) := min {Zﬁl, e ’ﬁ} is an irreducible discrete copula.

As they represent the restrictions of two well-known standard copulas defined on [0, 1]% to
the discrete set I%;, Il and M are indeed multivariate discrete copulas.

Example 6.6. Another example for an irreducible discrete copula is given by the so-called
empirical copula (Riischendorf, 1976), which has already been defined in Section 3.2.1 and
is now recalled in our context here. The empirical copula, which has also become popular
under the term “empirical dependence function” (Deheuvels, 1979), is extremely important
and relevant in view of both ECC and the Schaake shuffle, for which it provides the theo-
retical background, as we will see in Section 6.4.

Let S = {(«1,...,2F),...,(z};,...,2%)}, where z{, € R for all m € {1,..., M} and
¢ e {1,...,L} with } # xb,...,x{;% * xﬁ for m,p € {1,..., M}, m # p. That is, we
assume for simplicity that there are no ties among the respective samples. Moreover, let

x%l) <. < x%M), . ,x(Ll) << a:(LM) be the marginal order statistics of the collections
{zd, .. 2h, ), {zF, . 2k}, respectively.

Then, the empirical copula Ey; : 1 Jf/[ — Iy defined from § is given by
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(5 i
Ey (X ... L
M(M’ ’M)

0 if iy = 0 for at least one £ € {1,...,L},
# m) L GS ! < geeey %n_
(i) ‘me“) Sl G e q1,. MY forall £€ {1, L},
Equivalently,
. i M M L
EM (M 7M> Z ]l{rank xl )<iy,...,rank(zl)<ip} — M Z H ]l{rank(xfn)gie}’
m—1 m=1/¢=1

as in Section 3.2.1.

Obviously, the empirical copula is an irreducible discrete copula. Conversely, any irreducible
discrete copula is the empirical copula of some set S, as will be discussed in Example 6.10
(c) in Section 6.2.

Asymptotic theory for the corresponding empirical processes is provided in Riischendorf
(1976), van der Vaart and Wellner (1996), Fermanian et al. (2004) and Riischendorf (2009),
for instance.

6.2 A characterization of multivariate discrete copulas using
stochastic arrays

According to Mayor et al. (2005) and Kolesarova et al. (2006), there is a one-to-one cor-
respondence between discrete copulas and bistochastic matrices in the bivariate case. We
now formulate a similar characterization for multivariate discrete copulas. To this end, the
notion of stochastic arrays (Csima, 1970; Marchi and Tarazaga, 1979) is required.

Definition 6.7. An array A := (ai, L)f‘f is an L-dimensional stochastic array, or an
L-stochastic matrix, of order M if the followmg conditions hold.
(A1) aiy.i;, >0 foralliy,... i € {1,...,M}.
M M M M .
(AQ) Z o Z Z cee Z Qiy.ig_yigipyqip — 1 for 1 € {1, e M}, Ix= {1, ey L}.

i1=1  ip_1=ligg=1  ip=1

As a special case, an L-dimensional stochastic array A is an L-dimensional permutation
array, or an L-permutation matrix, if the entries of A only take the values 0 and 1, that is,
ai,..i; €40,1} for all 41,...,i, € {1,...,M}.

Theorem 6.8. Let D : [ ]{j[ — [0, 1]. Then, the following statements are equivalent.
(1) D is a discrete copula.
(2) There exists an L-dimensional stochastic array A := (ai1...iL)z]‘\1/[, ..ip—1 of order M such

that .
D(M ) fz zam " (6.1)

vi=1

foril,...,iLE{O,l,...,M}.
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Proof. (1) = (2):
If i, = 0 for at least one £ € {1,..., L}, D(i ... iL) =0 by axiom (D1) in Definition 6.1,

SVERRREY Vs
in accordance with setting the empty sum equal to zero by convention, that is, Zgzl cn =20
for some sequence (¢ )nen. For iy, ...,ip € {1,..., M}, we set

i i ki kL
(Ziln_iL =M - (Aii—l e Aii—lD <M, ey M)) ,

with AZAD as defined in axiom (D3) in Definition 6.1, and A := (as,..q, )7 ; —; and
show that A satisfies the axioms (Al) and (A2) from Definition 6.7 and therefore is an
L-dimensional stochastic array of order M.

D(k kLy >

(A1) Since D is a discrete copula, D is L-increasing, that is, A%fl N o 1) 2

i1—1
0. Hence, a;,.;, > 0 by definition, and (A1) is fulfilled.
(A2) Now let £ € {1,..., L} be fixed. We have to show that

M M M M
Sy = Z Z Z Z Qiy.ig_yigigp1.dn = L.

i1=1  ip_1=ligg=1  ip=1

To this end, let A € {1,..., L} \ {¢} and first consider the sum Sy := 2%21 ai, i, - By
using the above definition of a;, ;, , writing down the sum Sy explicitly yields that all
of the M - 2% addends D(,...,-) of Sy cancel out except for those 2” having 0 or 1 in
the A-th component. Since discrete copulas are grounded according to axiom (D1) in
Definition 6.1, all the 2271 terms of S5 that have a 0 in the A-th component vanish,

and the 2271 terms
D (’ﬁ Fac1 | Fama ’fL))

— M.[AL AP AL AR
52 < -1 M’ M M "M

i ixp1—1= 11" i1—1
remain. By writing down the multiple sum .S explicitly, iteratively applying the above
considerations for the calculation of a sum of the type Sy and accounting for the fact
that discrete copulas are grounded due to axiom (D1) in Definition 6.1, all but two of
the terms D(-,...,-) of Sy vanish or cancel out, such that

i Ky
S = M.(Aiﬁ_lD(1,...,1,M,1,...,1))

where the axiom (D2) in Definition 6.1 is employed in the third equality. Hence, (A2)
is fulfilled.

Thus, A is an L-dimensional stochastic array of order M.

Finally, the definition of A gives the structure of D in (6.1). Indeed, similar arguments as
in the proof of (A2) above yield that for fixed A € {1,..., L}, the sum S5 := ZZV);\:I Ay ..y
can be calculated as

S3=M - (AVL

l/L—l V)\+1—1

_ k1 kx—1 ix ka1 kL
2N 12N
.. ~A +1 AVA_i—l .. 'AZi_lD <M’ ceey W’ M7 W,. sy M>) .
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For fixed ¢ € {1,..., L} and by using the expression for Ss, similar calculations as in the
proof of (A2) before yield

g1 Tp41 ir il iz . k@ ié ) iL
) S 12 — +
54_2 Z Z Zajl“'][z_ (AVZ 1D<M77M7M7M77M)>
r1=1 vp_1=1lvpp =1 v =1

We then employ S; to calculate

L SE o Zaul P D SE S

vi=1 vp=1 vy, lfg 1v1=1 v=1
i1 kg 1 i,
- =S M- (A¥_D P LA e 2 N ))
wzl ( ! (M MM MM
& ip—1 ke i i
_ vy il S o oL
— ZA 1D(M .,M,M,M,...,M>
vp=1
Y [p(B i iy (v )]
V[:]- M?"'? M’M’ M?"'7M M?"'? M? M 7M7"'7M
i1 ip ir, 1 1-1 i,
= D|(—,...,—,....—|—-D|—,....—, ..., —
(M’ ’M’ ’M (M’ M M? ’M)

=0, as D is grounded
i ir
= D|—,...,—
(M’ ) M> )
where the second last equality takes advantage of a telescoping sum. Thus, (6.1) holds.

(2) = (1):

Let the function D be defined as in (6.1). Obviously, D has domain Dom(D) = I,. Since
A is an L-dimensional stochastic array of order M, and according to the rules for multiple
sums, we have

iy i1 1 i 1
0<7Z Z Zalfl vL = 71 ZZ Za’/l I/L_MZl:M'iégl
v1=1 vp=1 vr=1 I/g 1lv1=1 vr=1 vp=1

for fixed iy € {0,1,...,M}, ¢ € {1,...,L}, and hence get the range Ran(D) = [0,1].
Moreover, we have to check the axioms (D1), (D2) and (D3) in Definition 6.1 for D.

(D1) Let iy =0 for some ¢ € {1,..., L}. Since the empty sum is equal to zero by convention,

we get
i
D<J\140 ) N S Y s
1/1 1 vp=1 vy =1
Clearly, this is also the case if there are two or more ¢ € {1,..., L} such that i; = 0.

Hence, D is grounded.

(D2) Let £ € {1,...,L}. Then,

i M M i
D(1,....,1,-1,....1) = D(~,...,0—~ £
(7 ”M” ’) <M7 7M7M’

S
Sk



ig

% % vy

Il
Sl
M:

-3

=1 ve_1=1lvpy=1vp41=1 vy =1
1 g M M M M
= XX 2 ) Gnn
vy=1vi=1 vp_1=1lvpy1=1 vrp=1
=1, as A is a stochastic array
i
- M

according to the rules for multiple sums.

We have to show that D is L-increasing, that is,

D(kl kL)zo

N\
V= 1 M UM

i1, — i1—1
By definition, V' involves 2% terms of the form D(-,...,-), where 2¢~! of them have
positive sign and 2571 negative sign. Moreover, each of the L arguments of a term
D(-,...,-) is either of the form 74 or of the form “"]\}1 for £ € {1,...,L}.

Let £ € {1,...,L} be fixed. In addition, let the arguments afor Ae {1,...,L}\ {¢}
also be fixed, that is, k) is either equal to iy or equal to iy — 1. First,

kl ig kL kl ig—l kL
D(M""’M""’M)_D<M7..'7 M ""’M)

1 k‘1 (74 k:L 1 k’l Zz—l kL
= M Z Z Z Auy..vp..vp, — M Z tee Z Z Quy..vp...vp, (62)
v1=1 vp=1 v =1 v1=1 vp=1 vr=1
1 k1 1y kL
R DT S S S
111:1 I/g—ig l/L:1
1 k1 ke—1 key
T M DD Z Quy..vg_vigresr.vr>
v1=1 vop_1=1lvpi =1 vy,

where to some extent, the multiple sum is now reduced due to the fact that the index
Vy = ig is fixed.

By using the definition of V' and writing down V explicitly in terms of the 2¥ terms
D(,...,-) step by step, we obtain 2X~! such differences as described above within the
expression for V. Having calculated all those 2~ differences in the way as proposed
before, we get 2872 new differences of the same type as in (6.2), where the index
vy = i1 in the multiple sums becomes fixed, and can thus proceed as before. By
applying this scheme successively, we finally end up with

ir,—1 1
§ : Qiyig..if vy — E : Qiyig..if, vy = Maili2~--iL—1iL'
VL* VL*

Since A = (aj,..i, ) _i; is an L-dimensional stochastic array of order M by assump-
tion, aiyiy. i, i, > 0 foralli, € {1,...,M}, £ € {1,...,L}. Hence, V >0, and D is
L-increasing.
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Thus, D is indeed a discrete copula. ]

Corollary 6.9. D is an irreducible discrete copula if and only if there is an L-dimensional
permutation array A := (ah...iL)%...,z‘L:l such that (6.1) holds for éy,...,ip € {0,1,..., M}.

We stress that Theorem 6.8 can also be interpreted as a reformulation of the relation be-
tween the CDF and the probability mass function (PMF) (Xu, 1996) because the stochastic
array in Definition 6.7 can be identified with M times the PMF.

Essentially, Theorem 6.8 yields the equivalences
Discrete copula
< Marginal distributions concentrated on I

L
< Probability masses on {ﬁ, %, ey 1}
< Stochastic array.

In the situation of Corollary 6.9, we have the equivalences
Irreducible discrete copula

< Empirical copula

< M point masses of ﬁ each

& Permutation array

< Latin hypercube of order M in L dimensions (Gupta, 1974).

Illustrations of these equivalences are given in Section 6.4, where we discuss their relevance
with respect to ECC and the Schaake shuffle, respectively.

Example 6.10.

. L
(a) The discrete product copula II ( o %) =11 M[ on I%, in Example 6.5 (a) corre-

/=1
M
sponds to the L-dimensional stochastic array A := M%—l) T of order M whose
Uyl =
entries are all equal to 5;7—. Indeed,
T N P N TRTNY DR )
72 ZMLl - MZ Z ML-1 ~ M ML-1
V1= 1 I/L— l/1:1 VL71:1
L iy 11 1L
= H a5 H < 9 ) )
oM M M
(b) The irreducible discrete copula M ( e ZML) := min { T M} on I in Example

6.5 (b) corresponds to the L-dimensional identity stochastic array

1 ifip = =iy

I:=(ai,. )M . where a;, ;, =
. 1--2L /11,0, =1" 11...01, * .
Lot 0 otherwise

of order M. Indeed, employing the definition and writing down the corresponding
multiple sum explicitly yields

—Z Za = i-min{i 71}:min{i1 ZL}
vi...V], M 1y---50L M?"'7M

1/11
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_ i
_ M(M,...,M>.

(c) The empirical copula Ej; in Example 6.6, which is an irreducible discrete copula,

corresponds to the L-dimensional permutation array A := (ailm’iL)Z]'\f,.‘.,iL:l of order
M with
1 L
v 1if (2,5 %5,)) €S,
v1...0 T 1 L
0 if (4, 2,) €S,

with § as defined in Example 6.6.

Conversely, for an irreducible discrete copula D with associated L-dimensional per-
mutation array A := (ail---iL)%...,iLZI of order M, we consider the sets X} := {z] <
co<al) XD = {af < ... < 2¥}. Then, D is the empirical copula of the set
S = {(azill, e ,:UZLL)|ailmiL =1}

6.3 A multivariate discrete version of Sklar’s theorem

The key result in the context of copulas undoubtably is Sklar’s theorem (Sklar, 1959; Nelsen,
2006), as formulated in Theorem 3.3. We now aim at stating and proving a multivariate
discrete version thereof.

In the continuous case, an established proof of Sklar’s theorem employs an extension lemma,
stating that every subcopula can be extended to a copula. The extension lemma in turn is
shown via a multivariate interpolation argument (Nelsen, 2006, and references therein). We
are guided by this idea and first formulate and prove an extension lemma in a multivari-
ate discrete setting, which provides the main ingredient to showing a multivariate discrete
variant of Sklar’s theorem. In the proof, which is in some way straightforward, but involves
rather tedious calculations, we employ the one-to-one correspondence of discrete copulas to
stochastic arrays from Theorem 6.8. A bivariate variant of the discrete extension lemma
has been shown by Mayor et al. (2007).

(1)

Lemma 6.11. (Extension lemma) For each irreducible discrete subcopula D* : ]\/1[ X oo X

JJ(\/? — Iz, there is an irreducible discrete copula D : I f/l — Ips such that
D’J](\})X"'ij(yﬁ) = D*a
that is, the restriction of D to J](\}) X v X J](é) coincides with D*.

() £) (0) (0)
O _)og_ b b’ _ b b
JM._{O_.M<M< <3< =1

Proof. Let

for £ € {1,..., L}, with the corresponding equivalent sets
K](\f[) ={0=: a(()ﬁ) < agf) < < a%) < ag’i)-i-l = M}.

According to Theorem 6.8, it suffices to construct an L-dimensional permutation array A of
order M to get an irreducible discrete extension copula D of an irreducible discrete subcopula
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D*. The array A has to be such that each block specified by the positions (ag), ag), cel agi))
and (agﬂrl, agz)ﬂ, . 7agi)+l)v which consists of the rows from ag) +1to agﬂl, from ag) +1

to agz)ﬂ, and so forth, up to the row from agﬁ) +1 to agi)ﬂ, contains a number of 1’s equal

to the volume
M. Aaii)ﬂ A ilHD* (kl kL)
oD )
where s; € {0,...,r;} and £ € {1,...,L}.

To show the existence of such a permutation array A, let £ € {1,..., L} be fixed and consider

the subarray which contains all the blocks determined by the positions (ag), . agﬁ)) and

(@l -l ) for all sy € {0, 7y}, where A€ {1,..., L}\ {¢}.

We need to show that the number ag?H — agi) of rows in this subarray is equal to the

number of 1’s corresponding to all those blocks. This indeed holds, as

1 Te—1 Te+1 (L) (1
S Y Y (At (B R
(L) (1) M "’M
s1=0 sp—1=0s5p41=0 s, =0

Te—1 Te4+1

@ g * kl kL
SIELED Y R SRS off (% SN S (LY
51=0 sp—1=0sp41=0 s,=0
(Z)-H k’é
— S¢ *
- M- Aag? D( ...,1,M,1,...,1)

) (©)
a8z+1 * Qs
= 1,...,1 ) —-D*(1,...,1,—.1,...,1
( ( M ) b ) ) < ) ) ) M’ ) ) ))
( ad e))
_ Sg-i—l - a84

= Sg+]. - a’Sg )

where we use axiom (S2) in Definition 6.3 for the second last equality.

To see the second equality explicitly, we proceed analogously as in the proof of axiom
(A2) in Theorem 6.8, part (1) = (2). We set

Te—1 Te+1 gL)_‘_1 gl)+1 . kl kL
Z IO DD Z( (f> A(ll) D (M "’M))’

s1=0 sp—1=05p41=0 s, =0

let A€ {1,...,L}\ {¢} be fixed and first consider the sum

2 ii)ﬂ il+1 * kl k?L
T:=Y A(L) --A(l) D (35 037) )

s3=0 st
The (ry + 1) - 2% addends D(-,...,-) of T cancel except for those 2” having a 0 or a 1 in
the A-th component, which indeed occurs as a(())‘) =0 and agi‘)_H = M. According to axiom

(S1) in Definition 6.3, all the 2¢~1 terms having a 0 in the A-th component vanish, and we
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obtain

(L) (A+1) (A—1) 1
T — Aa5L+1 ."Aask+1+1Aas)\71+1 "-Aail)+1D* (kl ]{,‘)\,1 1 k,\+1 kL)
o Tl e el T M M T MM

Applying this iteratively and using again axiom (S1) in Definition 6.3, all but two of the
terms D(-,...,-) of S vanish or cancel out, such that

so A (1 ke
- (2) ()"'7 JM7 oty >7

CLSZ
as desired. ]

Generally, the extension proposed in Lemma 6.11 is not uniquely determined.

The following definitions of finite distribution functions are standard. Nevertheless, we
recapitulate them, as they are needed for the formulation of Sklar’s theorem in the multi-
variate discrete case.

Definition 6.12.

1. A function F : R — [0, 1] is a finite CDF if F is non-decreasing and right-continuous,
and Ran(F') is a finite set containing {0, 1}.

2. A function H : K" — [0,1] is a finite L-dimensional CDF if it satisfies the following
conditions.

(DF1) H is L-increasing, that is,
AZL ---AziH(asl,...,xL) >0,

yL
where
z Pp—
AyiH(CL’l,...,xL) H H(fUlw--7338—17Z£71’Z+17---750L)
—H(Jfl, .. '7:6@717?4(7"1;@4»17 v e 7:1:[/)

for all y1,...,y, € Rand z1,..., 2, € R such that y, < z, forall £ € {1,...,L}.
(DF2) H is non-decreasing and right-continuous in each argument.

(DF3) Ran(H) is a finite set, H(oo,...,00) = 1, and H is grounded in the sense that
H(yi,...,yr) =0 if yp = —oo for at least one ¢ € {1,...,L}.

3. For a finite L-dimensional CDF H, the CDFs F; for ¢ € {1,..., L} with Fy(y,) :=
H(c,...,00,ys00,...,00) are the marginal CDFs of H.

It is also well-known that for a random variable Y : 2 — R on a probability space (€2, .4, P),
Fy(y) =P <y) =P({w € QY (w) <y})

is a CDF corresponding to Y. If Y is a discrete random variable with finite range, then Fy
is a finite CDF. Analogously, for a random vector Y := (Y7,...,Yy), the function

Hy (y1,...,y0) :=PY1 <wy1,...,Yr < yr)
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is an L-dimensional CDF corresponding to Y7,..., Y7 with marginal CDFs F} of Y, where
¢e{l,...,L}. It Yy,..., Yy are discrete random variables with finite ranges, then Hy is a
finite L-dimensional CDF.

With this and Lemma 6.11, we are ready to state and prove a multivariate discrete ver-
sion of Sklar’s theorem. For the bivariate case, such a result can be found in Mayor et al.
(2007).

Theorem 6.13. (Sklar’s theorem in the multivariate discrete case)

1. Let Fi,..., F, be finite univariate CDFs with Ran(F;) C I for all £ € {1,...,L}. If
D is an irreducible discrete copula on [ ]’\LJ, the function

H(yl,...,yL) = D(F1<y1),...,FL(yL)) (63)

for y1,...,yr, € Ris a finite L-dimensional CDF with Ran(H) C I, having F, ..., Fp,
as marginal CDFs.

2. Conversely, if H is a finite L-dimensional CDF with marginal finite univariate CDFs
Fy,...,F; and Ran(H) C Iy, there exists an irreducible discrete copula D on I%,
such that

H(yi,..-,y) = D(F1(y1),-- -, Fr(yr))

for y1,...,yr € R. Furthermore, D is uniquely determined if Ran(F;) = I, for all
te{l,...,L}.

Proof.

1. This is just a special case of the common Sklar’s theorem. The claim follows straight-
forwardly by checking the axioms of a finite L-dimensional CDF in Definition 6.12 for
H as defined in (6.3).

2. Let H be a finite L-dimensional CDF with Ran(H) C I; having univariate marginal
CDFs Fy, ..., Fy. Set

J](\f[) = {;\2 € Iy

% c Ran(Fg)} > (0,1}

for £ € {1,..., L} and define

D gW o g g D*(“... iL)::H
']M X XJM — 1), M7 ’M (y17 7yL)7
where y, satisfies Fy(y¢) = ZM‘Z for ¢ € {1,...,L}.

We now show that D* is an irreducible discrete subcopula. First, Ran(H) C Ips by
assumption, and D* is well-defined, due to the well-known fact that H(yi,...,yr) =
H(z1,...,zr) for points y1,...,yr € Rand 21,..., 21 € R such that F(y,;) = F(z) for
all ¢ € {1,..., L}. Furthermore, the axioms (S1), (S2) and (S3) for discrete subcopulas
in Definition 6.3 are fulfilled, as shown in what follows.

(S1) Let iy =0 for an £ € {1,...,L}. Then,

i1 be—1 . L1 iL
D*( =0, 2 ):H(yl,...,yL)



with Fy(ye) = % = 0 and Fy(yy) = & for all A € {1,..., L} \ {¢}. However,

Fy(ys) = H(oo,...,00,Yp,00,...,00) =0,

and since H is non-decreasing in each argument, we have H(y1,...,ys,...,yr) =
0, and hence ' . . .
« [ 1 -1 20+1 17,
D|\—,...,—,0,—,...,— | =0
(M7 ) M b b M ) ) M)

for all 2 € J](V)[‘), where A € {1,..., L} \ {¢}. Clearly, this is also true if iy = 0 for
two or more ¢ € {1,...,L}.

(S2) For ¢ € {1,...,L}, consider
. iy
D*(1,...,1,—.1,....1| =H
(7 ANV ) ) (y17 7yL)

with Fyp(y,) = ’Mf and F\(yy) = 1 for A € {1,...,L} \ {¢}. Set y) := o for
Ae{l,...,L}\ {¢}. Then,

D* (1,...,1,;\2,1,...,1):H(oo,...,oo,yg,oo,...,oo):Fg(yg):;\2
for all & e J{).

(S3) To show that D* is L-increasing, we use the L-increasingness of H as a multi-
variate CDF and obtain

j j * kl kL
AF - AlD (MM) — AT AR H(zy,. . 2p) 20
for all iﬁé, JMZ € J](\? such that % < JM" , where Fy(y,) = ’MZ and Fy(zy) = jﬁ" for

all yp,zp € Rand £ € {1,...,L}. Hence, D* is L-increasing.

Thus, D* is indeed a subcopula.

According to Lemma 6.11, D* can be extended to a discrete copula D, which sat-
isfies

(i i\ (i i)
D(Fl(yl),...,FL(yL))_D<M,...,M>_D (MM> Hip, . yr)

for y1,...,yr, € R. Hence, H(yy,...,yr) = D(Fi(y1),..., Fr(yr))-

If Ran(Fy) = Iy for all £ € {1,..., L}, then the discrete subcopula D* has domain
1 f/[, and thus we have D = D*, that is, D is uniquely determined. ]

Theorem 6.13 is tailored to situations with empirical copulas for data without ties. It is
for instance relevant in the context of ECC and the Schaake shuffle, respectively, as will be
discussed in Section 6.4.

The statement of Theorem 6.13, part 2, can very likely be extended and accentuated to
the effect that the irreducible discrete copula D is uniquely determined if and only if
Ran(Fy) = Iy for all £ € {1,...,L}. Following the procedure of Mayor et al. (2007) in
the bivariate case, a rigorous proof of the new implication in the above equivalence would
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require the construction of a smallest and largest discrete extension copula, respectively.
The corresponding algorithms to achieve this appear to be supplied by modifying those for
the bivariate case in Mayor et al. (2007). However, due to its expected length and technical
character, a detailed study of this question is not conducted in this thesis.

Example 6.14. We now illustrate the second part of Theorem 6.13, that is, we give an
example for obtaining a discrete copula associated to a finite L-dimensional CDF with given
univariate marginal CDFs.

0 1 2 3 45 1

For this purpose, we focus on the case of L = 3, M = 6 and I = { 1 86767888 }

and assume that we throw a fair die once. Let Y7 be the random variable that gives the
result of the die roll. Moreover, let Y3 and Y3 be the {0,1}- and {1,2}-valued random

variables, respectively, defined by
~JO it Y7 takes the value 1,2, 3 or 4,
2 1 if Y7 takes the value 5 or 6

and

3=

1 if Y7 takes an odd value,
2 if Y7 takes an even value.

The finite three-dimensional CDF Hy for the random vector Y := (Y7, Y2, Y3) is then given
by

HY(ylay27y3) = ]P)(Yi < y17Y2 < y2aY3 < y3)7

where 3, € R, ¢ € {1,2,3}, and H has the marginal CDFs F; of Y7 with Ran(F;) = I,
Fy of Y3 with Ran(F) = {0,3,1} and Fy of Y3 with Ran(F3) = {o,%, } We have
Ran(H) = I, and our goal is now to get a discrete copula corresponding to H and Fi, I
and F3. First, we define the discrete subcopula D* via D* (%1, %2, %”) = H(y1,y2,y3), where

ye € R, £ € {1,2,3}, are such that Fy(y1) = %, Fa(y2) = 2 and F3(y3) = . The domain

of this discrete subcopula is Jél) X Jéz) X J6(3 , where Jél) = I, JéZ) : {0, %,1} and

Jég) = {0, %, 1}. Due to Lemma 6.11, we can extend the discrete subcopula D* defined

[y

Il ol

on Jél) X J6(2) X Jé3) to a discrete copula D defined on I§ = Is x Ig x Is. However, the
discrete extension copula D is not uniquely determined, and there are multiple possibilities
to complete the missing values of D which are not covered by the values of D*.

A possible discrete extension copula for our scenario is shown in Table 6.1, in which we
give explicit values D (%, %2, %3) = %, where i1 € {1,...,6} is fixed for each subtable. For
convenience, we present the corresponding values of i instead of i/6 in each case. More-

over, we abstain from showing a table for the case of iy = 0, because D (0, %2, %) =0

for all %2 € I and %3 € I, due to axiom (D1) in Definition 6.1. In our setting, the val-
; , 3 . - 43 _— ,

ues D (%707())7 D (%7()) 6)1 D (%701 1)7 D (%767 )) D (%7676)7 D (%aév )7 D (%717 )7

D (%, 1, %) and D (%, 1, 1) for all % € I are uniquely determined by the corresponding

values of the discrete subcopula D*, indicated by the bold font in Table 6.1, whereas the

other values have to be chosen in confirmity with the axioms for discrete copulas.

130



" lol1]2]|3|4]|5]6 "
12 12

o
—
[\
w
e~
ot
(@)

11 =1 11 =2

DT W N~ O
oo oCcooo
e e e e =)
e e e e e =)
el e =)
e e e e =)
e e e e =)
== === O
ST W N = O
o0 ooOo oo
— o= = = == O
— o= = === O
el el =)
NN NDNND=O
DD = O
NN~ O

’i3 Z‘3

12 12

[en]
—_
o
w
W~
ot
[=2]
[en)
—_
[N}
w
N
ot
[«2)

DT W N~ O
oo oo oo
e =)
NNDNNDND = O
NN~ O
W W W wNn —OoO
W W W W~ O
W wwwNnw o
ST W N = O
oo oo OoO0o
e e e e e =)
NN - O
W WO~ O
= W w N = O
= R W NN~ O
N N N =)

" 6 ~"lol1]2]3
12 12

o
—_
o
w
W~
ot
W~
ot
[«2)

DT WD~ O
oo oCcooOo
— = === RO
NN NDDND R~ O
W WD~ O
SR W W N RO
UL UL = W N~ O
QU A WN O
ST W N = O
== en e i en e B e i )
=== == O
NN - O
W WO~ O
=R W W N = O
LU W N = O
UL W~ O

Table 6.1: Example of a discrete extension copula D for the scenario in Example 6.14: Explicit

values D ( iz %3) = %, where the corresponding values of ¢ are shown. The bold values are uniquely

i1
66
determined by the corresponding values of the discrete subcopula D*.

6.4 ECC and the Schaake shuffle as multivariate discrete cop-
ula approaches

Now we relate the concepts and results presented beforehand in this chapter to the ECC
approach (Schefzik et al., 2013) from Section 4.1 and the Schaake shuffle (Clark et al., 2004)
discussed in Section 3.2.2.

(a) Multivariate discrete copulas and ECC

We start with ECC and deepen the theoretical considerations in Section 4.2 in Schefzik et al.
(2013). As indicated by its name, ECC has strong connections to copulas, particularly to
the notions and results presented before, which is hinted at by Schefzik et al. (2013) and
investigated in more detail in what follows.

To this end, let X1, ..., Xy be discrete random variables taking values in {z{,...,z3,},...,
{xf e ,:cﬁ/[}, respectively, where x{, R :cﬁ/[ is the M-member raw ensemble forecast for

a multi-index ¢ := (i, j, k) pointing at a fixed weather quantity ¢ € {1,...,1}, location
j€{1,...,J} and look-ahead time k € {1,..., K}, and L := 1 x J x K. For convenience,
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we assume that there are no ties among the corresponding raw ensemble margins. Concern-
ing the multivariate random vector X := (Xy,..., X)), the corresponding univariate CDFs
Ry, ..., Ry, take values in Iy, that is, Ran(R;) = --- = Ran(Ry) = Ij;. Moreover, we have
Ran(R) = Iy for the multivariate CDF R : RY — I, of X. According to the multivari-
ate discrete version of Sklar’s theorem tailored to the ECC framework in Theorem 6.13,
there exists a uniquely determined irreducible discrete, and hence a uniquely determined
empirical, copula Ey; : T J\L/[ — Ipr such that

R(yi,...,yr) = Eny(R1(y1), ..., Rr(yr)) (6.4)
for y1,...,yr, € R, that is, the multivariate distribution R is connected to its univariate mar-
gins Ry, ..., Ry, via F;. Conversely, if we take FEjs to be the empirical copula defined from
the raw ensemble forecast {z1,..., 2%, },..., {z¥, ..., 2%} and Ry,..., R to be the univari-

ate CDFs of the raw ensemble margins, then R as constructed in (6.4) is a multivariate CDF.

Following and generalizing the statistical interpretation of discrete copulas for the bivariate
case by Mesiar (2005),

En <;\} L j\;) —P(R € [~o0, 1] X - - X [~00, 1)),
where y1, ...,y € Rsuch that Ry(y1) = P(X1 < 1) = iﬁl, o Rp(yp) =P(Xp <yp) = iML,
that is, Er (Zﬂl, - ZML) =P(X; <uy,...,Xr <wyr). To describe the discrete probability
distribution of the random vector X, we set «;, ,, = P(X; = :L'%Z-l),...,XL = :L'%%L)),
where xfu) forig € {1,...,M} and £ € {1,..., L} denote the corresponding order statistics
of the values Xi,..., X, attain. Then, oy, i, € {O,ﬁ} for all 41,...,ip € {1,...,M}.
Hence, a;,..i, == May,. i, € {0,1} for iy,...,ir € {1,..., M}, A= (ail_,_Z-L)fV[hwiL:l is a
permutation array of order M, and

1 & L i1 ir
MZ"‘LZIIUJVL..VL:EM M>"'7M )

vi=1 v

in accordance with Theorem 6.8.

In the setting of the standard ECC implementation, the above considerations hold anal-

ogously for both an individually postprocessed ensemble 55{, e ,:E?VI and the ECC ensemble
i’li, . 7§7§\4~ In obvious notation, let F' and F' be the respective multivariate empirical CDFs.

Moreover, let F, ..., Fy, denote the marginal empirical CDFs of the individually postpro-
cessed ensemble, with E; being the corresponding copula. Then,

Flyi,-oyn) = Em(Fi(y), - FrL(yr)) (6.5)

and

A ~ ~

F(yi,...,yL) = En(F1(y1), -+, FrL(yL)) (6.6)
for y1,...,yr, € R.

Comparing Equations (6.4), (6.5) and (6.6), the individually postprocessed ensemble and

the ECC ensemble have the same marginal distributions, whereas the raw ensemble and the
ECC ensemble are associated with the same empirical copula modeling the dependence, due
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(a) Raw ensemble (b) I0Q ensemble (¢) ROQ ensemble (d) ECC-Q ensemble
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Figure 6.1: Different ensemble prediction approaches comprising the (a) ECMWF raw, (b) 10Q,
(¢) ROQ and (d) ECC-Q ensemble. First row: Scatterplots with marginal histograms of 24 hour
ahead temperature forecasts (in °C) at Berlin (Ber) and Hamburg (Ham), valid 2:00 am on 27 June
2010. The red dots show the respective 50 ensemble member forecasts, and the verifying observation
is indicated by the blue cross. Second row: Perspective plots of the corresponding empirical copulas.
Third row: Contour plots of the corresponding empirical copulas. Fourth row: Corresponding Latin
squares.
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to the design of ECC aiming at retaining the rank dependence pattern from the raw en-
semble. In particular, the ECC ensemble conserves the bivariate Spearman rank correlation
coefficients in the raw ensemble output.

Although our focus has been on the general multivariate case in this chapter, we consider
for illustrative purposes a bivariate example, that is, L = 2, in Figure 6.1 dealing with 24
hour ahead forecasts for temperature at Berlin and Hamburg, based on the M = 50-member
ECMWFEF ensemble and valid 2:00 am on 27 June 2010, thus following the setting of Fig-
ure 4.17 in Section 4.3.1. Univariate postprocessing is performed via BMA, using a rolling
training period of 30 days. In the left panel of the first row, the unprocessed raw ensemble
forecast is shown, revealing a pronounced positive correlation. The plots in the middle of
the first row present the IOQ and the ROQ ensemble, respectively, as described in Section
4.3.1. While they both correct for biases and dispersion errors, the IOQ ensemble assumes a
maximal possible correlation, whereas the ROQ ensemble essentially provides no correlation
structure, in that the bivariate rank order characteristics of the unprocessed forecasts from
the left panel are lost. Finally, the postprocessed ECC-Q ensemble in the right panel cor-
rects for biases and dispersion errors as the IOQ and the ROQ ensemble do, but additionally
conserves the rank dependence pattern given by the raw ensemble. Thus, although the 10Q),
ROQ and ECC-Q ensembles have the same marginal distributions, they differ drastically in
their multivariate rank dependence structures. In the second and third row of Figure 6.1,
the perspective and stabilized contour plots, respectively, of the empirical copula linked to
the different ensembles in our illustrative example are shown. As discussed before, the raw
and the ECC-Q ensemble are associated with the same empirical copula E5y. On the other
hand, the I0Q and the ROQ ensemble are linked to distinct empirical copulas E2, and
E50, respectively. While the perspective and contour plots of E50 essentially resemble those
of the copula M from Example 6.5 (b) modeling perfect positive dependence, the plots of
E520 are not far away from those of the independence copula II introduced in Example 6.5
(a). Hence, the specific design of the respective ensembles is reflected. According to the
equivalences discussed in Section 6.2, the raw and the ECC ensembles are also related to
the same Latin square, which is a Latin hypercube (Gupta, 1974) in L = 2 dimensions, of
order M = 50, while the IOQ and ROQ ensembles are not, as is illustrated in the fourth
row in Figure 6.1.

In a nutshell, ECC indeed can be considered as a copula approach, as it comes up with
a postprocessed, discrete L-dimensional distribution, which is according to Theorem 6.13
and Equation (6.6), respectively, constructed from the L empirical CDFs F,...,Fp given
by the samples drawn from the predictive CDFs Fy,..., Fp obtained by univariate post-
processing on the one hand and the empirical copula Ej; induced by the raw ensemble on
the other hand. Conversely, each multivariate distribution with fixed univariate margins
yields a uniquely determined empirical copula, which defines the rank dependence structure
in our setting. Although several multivariate copula-based methods for discrete data have
been proposed, for instance by Panagiotelis et al. (2012) using vine and pair copulas, ECC
as a discrete copula approach still provides an appropriate and useful alternative to these
methods, with benefits as discussed in Section 4.1. As we have seen, the notion of discrete
copulas arises naturally in the context of the ECC approach.

The above considerations apply to the standard ECC implementation as introduced in Sec-
tion 4.1. Starting from those, a next step for further work is to study the theoretical frame
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of the ECC modifications presented in this thesis, such as the ECC variant for ensembles
consisting of non-exchangeable members from Section 4.5, in whose context new questions
concerning the combination of copulas may arise.

(b) Multivariate discrete copulas and the Schaake shuffle

In close analogy to ECC, the Schaake shuffle (Clark et al., 2004) presented in Section 3.2.2
can also be interpreted as a discrete copula approach (Schefzik et al., 2013), with very
similar justifications as in part (a). Letting ¢* := (i,j) denote a multi-index comprising a
fixed weather variable i € {1,...,1} at a fixed location j € {1,...,J}, the main difference
however is that the corresponding empirical copula Oy in the Schaake shuffle method is
defined based on historical verifying observations yf*, e ,yf\;, rather than on raw ensemble
forecasts azl{, . ,acﬁ/[ as in ECC, where N does not need to equal M. Apart from this, the
derivations in part (a) hold analogously. In particular, the multivariate empirical CDF 2
associated with the Schaake shuffle ensemble is given by analogy with Equation (6.6), with
FE\ replaced by Oy, while the empirical marginal CDFs Fi, ..., Fy, are derived based on N
samples from the same predictive CDFs £, ..., I, obtained by univariate postprocessing as
employed in the ECC method. Hence, the reordered forecast in the Schaake shuffle ensemble
inherits the multivariate rank dependence pattern as well as the pairwise Spearman rank
correlation coefficients from the underlying historical weather record, rather than from the
raw ensemble as in the ECC approach.

An illustration is given in Figure 6.2, where we consider 24 hour ahead pressure forecasts
at Berlin and Hamburg based on the M = 50-member ECMWEF ensemble, which are valid
1:00 am on 9 March 2011. Univariate postprocessing is performed via BMA, using a sliding
training period of 30 days. Since the amount of our available observation data is comparably
limited, and for reasons of clarity, we here employ the corresponding verifying observations
of the last NV = 30 days before the verification date of 9 March 2011, that is, of the period
from 7 February 2011 to 8 March 2011, as the underlying historical record database. In the
original Schaake shuffle approach (Clark et al., 2004), the historical observation database,
which the relevant dates close to the verification date in an annual cyclic sense are randomly
chosen from, usually comprises several years, if not decades.

Figure 6.2 compares (a) the 50-member unprocessed raw ensemble, (b) the historical ob-
servation record, (c¢) a 30-member ROQ ensemble and (d) the 30-member Schaake shuffle
ensemble. In the first row, the scatterplots with the corresponding marginal histograms are
shown. The historical observations reveal a strong positive correlation, which is reflected
well in the raw ensemble forecast. Hence, it is en passant illustrated that this reasonable
assumption for the ECC technique is actually fulfilled. Turning back to the Schaake shuffle,
the corresponding ensemble has the same margins as the ROQ ensemble, while conserving
the dependence pattern of the historical observation record, which cannot be achieved by
the ROQ ensemble completely losing correlation structure. The perspective plots, stabilized
contour plots and the Latin squares for the observation record and the different ensembles
are shown in the second, third and fourth row, respectively, of Figure 6.2. By construction,
the historical observations and the Schaake shuffle ensemble are associated with the same
empirical copula O3y and Latin square, respectively, whereas the raw ensemble is linked to
its empirical copula Esg, and the ROQ ensemble to its empirical copula Es.
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Figure 6.2: Pressure at Berlin (Ber) and Hamburg (Ham) (in hPa): (a) 24 hour ahead ECMWF
raw ensemble forecast valid 1:00 am on 9 March 2011, (b) past observations from 7 February 2011
to 8 March 2011, (¢) ROQ ensemble forecast valid 1:00 am on 9 March 2011 and (d) Schaake shuffle
ensemble valid 1:00 am on 9 March 2011. First row: Scatterplots with marginal histograms. Second
row: Perspective plots of the corresponding empirical copulas. Third row: Contour plots of the
corresponding empirical copulas. Fourth row: Corresponding Latin squares. The red dots refer to
ensemble member forecasts, the blue cross to the verifying observation, and the cyan daggers to the

historical observation record.
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Chapter 7

Combining low-dimensional

postprocessing methods in an
ECC-like manner

In the standard ECC approach introduced in Section 4.1, univariate ensemble postprocess-
ing techniques are employed to get calibrated and sharp predictive distributions for each
weather quantity, location and look-ahead time separately, and samples thereof are aggre-
gated by using the empirical copula induced by the unprocessed raw ensemble. This leads
to physically coherent probabilistic forecasts across space, time and variables.

The approach presented in this chapter aims at combining multiple low-dimensional, that
is, not necessarily univariate, postprocessing methods in an ECC-like manner, with the goal
of using the specific benefits of all involved techniques. Examples for such low-dimensional
methods have been already discussed in Section 3.2.2, including the Gaussian copula ap-
proach of Moller et al. (2013) or the bivariate EMOS approach for (u,v)-wind vectors of
Schuhen et al. (2012) in inter-variable settings and the spatial BMA and EMOS approaches
(Berrocal et al., 2007; Feldmann et al., 2014) for purely spatial settings.

In the context of our new method, the issues of multivariate quantiles and the sampling
from a multivariate distribution, respectively, arise and are discussed in Section 7.1. The
new approach itself is then described in Section 7.2, and the chapter closes with a case study
in Section 7.3.

7.1 Multivariate quantiles

We first discuss the notion of quantiles in multivariate settings, which will be relevant for
the new approach.

In the univariate case, the definition and interpretation of an a-quantile of a random vari-
able X, where a € (0, 1), is well-known from probability theory. The notion of equidistant
quantiles is then also straightforward and has already been used in the sampling scheme (Q)

of the ECC approach in Section 4.2.

Alternatively, the a-quantile z, € R of a real-valued random variable X with E[|X|] < oo,
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where o € (0, 1), can be characterized based on a minimization notion via

Tq :=arg min E[(2a — 1)(X — &) + | X — ] (7.1)
£eR

(Ferguson, 1967; Serfling, 2002b).

According to Abdous and Theodorescu (1992), the above assumption that E[|X]|] < oo
can be circumvented by defining the a-quantile z, € R via

X — 2a0 — 1)(X — X 20 — 1) X
o e arg i [ X €L 20X - [X]+ (20 )
é‘eR 2 2

(7.2)

The common univariate median is just the (1/2)-quantile.

For a generalized definition of quantiles in the multivariate case, there are various possi-
bilities, with Serfling (2002b) providing an overview. We exemplarily discuss the notions of
Abdous and Theodorescu (1992) and Chaudhuri (1996), which extend the univariate defi-
nitions in (7.1) and (7.2), respectively, for our purposes here.

Abdous and Theodorescu (1992) first define a norm-like function || - ||.o : R — R via

71| + (2a = Dy zL| + (200 — Day,
Jallua = [zl = | ( ,
2 2 .
where o € (0,1), and || - ||, denotes the usual £4-norm on R” for ¢ € [1,00]. An a-quantile

x, € R of an RY-valued random vector X is then given by

T, = arg min E[HX - £Hq,a - HXH%O‘]'
£eRE

With the above objective function, Abdous and Theodorescu (1992) circumvent the assump-
tion of E[||X||] < oo, as is shown by Kemperman (1987) for the case of the multivariate
median associated with o = 1/2.

Chaudhuri (1996) proposes an alternative characterization of multivariate quantiles based
on a generalization of (7.1), which is first rewritten as

Ty, :=arg min Efu(X — &) + | X —¢]], (7.3)
£eR
where u := (2a — 1) € (—1,1). Thus, the univariate a-quantiles z, € R for a € (0,1) are
re-indexed by u € (—1, 1), yielding u-quantiles z,, € R.

In the multivariate L-dimensional setting, the index set (—1,1) is extended to the open
unit ball B (0) := {z € R |||z|| < 1} with 0 := (0,...,0). Then, a u-quantile x, € R"
of an RF-valued random vector X is defined as

Xy = arg min E[®(u, X — &) — ®(u, X)] (7.4)
¢cRL
for u € B (0), where ®(u,t) := |[t|| + (u,t) with the usual Euclidean norm || - || and the

usual Euclidean inner product (-, -). The subtraction term —®(wu, X) in (7.4) eliminates the
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need for the assumption of E[||X||] < oo, in that ®(u, X — &) — ®(u, X) always has a finite
expectation, even though the expectation of X may not always be finite. However, if the
expectation of X is finite, then x,, becomes a minimizer of E[®(u, X —&)] (Chaudhuri, 1996).

A wu-quantile x,, has both direction and magnitude, its existence is guaranteed for any
u € B)(0), and it is unique given that the distribution of X is not supported on a single
straight line. Thus, uniqueness is achieved whenever X has an absolutely continuous dis-
tribution on R (Chaudhuri, 1996).

Alternatively to the characterization via (7.4), the u-quantile x,, may be represented as
the solution x,, := £ of the equation

ElX_g

=0 7.5
x e T (7:5)

(Chaudhuri, 1996; Serfling, 2002a). If we set u := 0 as a special case in the above consid-
erations in the sense of Chaudhuri (1996), we obtain the multivariate median xq.

In the context of ensembles, the sample version of the multivariate median as a point fore-
cast has already been discussed in Section 2.3 and used in previous case studies. It is in
accordance with the above concepts, where the finite expectiation assumption is fulfilled
and the subtraction terms in the above definitions become superfluous. Various algorithms
to compute the multivariate median are discussed in Fritz et al. (2012).

As we have seen in this thesis, the use of equally spaced quantiles is useful and appeal-
ing at the sampling stage in univariate settings. Thus, it is natural to seek a similar concept
for multivariate scenarios. However, an extension of the notion of equidistant quantiles from
the univariate to the multivariate case is not obvious. A very first idea would be to employ
the concept of equal outlyingness (Serfling, 2002a) as outlined in what follows.

In the univariate case, each point £ € R has a quantile representation ¢ = x, for some
choice of u € (—1,1). Analogously, each point £ € R” has a quantile representation & = @,
with w € B()(0) in the multivariate case (Serfling, 2002a). From (7.5), it follows that
“central” quantiles @, correspond to indices u with ||u|| being close to zero, where the
multivariate median for w := 0 with ||u|| = 0 represents the “most central” quantile. In
contrast, “extreme” quantiles are associated with indices w for which ||ul| is close to one.
Hence, the multivariate quantile x,, can be interpreted as indexed by a directional outly-
ingness parameter u, whose magnitude quantifies the outlyingness (Serfling, 2002a). In this
spirit, the set of quantiles of equal outlyingness is given by {@,, | ||u|| = ¢} for fixed ¢ € [0, 1).
As an analog concept to equally spaced quantiles in the univariate case, we can consider
multivariate quantiles with equidistant outlyingness when dealing with higher dimensions.

To generate M quantiles &4, ..., xy,, of equidistant outlyingness as a sample from a mul-
tivariate distribution, we first have to create M indices u,,, where m € {1,..., M}, for
which the values of ¢, := [|un|| € [0,1) are equally spaced. We can for instance choose
Cm € {ML+1 |m =1,..., M} to obtain this, similar to quantization scheme (Q) from Section
4.2. Alternatively, ¢, € {% |m =0,...,M — 1} can be employed, including the multivari-
ate median for ¢,, = 0, which can be derived as discussed before. In the case of ¢, € (0, 1),

we can generate an index w,, := (ul,...,uk) for m € {1,..., M} such that ||u,,| = cm
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according to the following steps.

1 uL=! from a uniform distribution on

(i) We draw L — 1 random variates u,,,, ..., u,

(_ Cm Cm )
L-1’+\L-1)"

(ii) We consider the equation

ol = V(2 4 o+ 2 )2 = e

with u},, ..., uk~! from step (i) and solve it for ul . Setting v := (ul,)?+- -+ (uk 12,

m
elementary algebra yields
L /
uy, = +4/c2 — 7,

2
as (c2, —) > 0 since y < (L — 1) - (\/chj> = ¢, due to uf, € (_\/%,\/%) for
¢e{l,...,L —1}. That is, we get two solutions for uZ differing only in the sign and

can randomly choose the positive or negative one for our procedure.

(iii) From the corresponding values in (i) and (ii), respectively, we build the final index

Uy, = (uk o ul= b)),
With these indices u,, for m € {1,..., M}, the corresponding wu,,-quantiles x,,,, can be

derived according to (7.4) or (7.5), respectively. However, we note that the indices wu,
obtained via the above construction scheme are not uniquely determined and subject to
several random components.

In a nutshell, while the employment of equidistant quantiles has advantages and benefits
when it comes to sampling in the univariate case, a generalization of this concept to multi-
variate settings is not straightforward. It is not entirely clear how to proceed, with the above
considerations only providing initial suggestions. Moreover, it is unknown whether such a
generalization yields optimal sampling results similar to the univariate case. In addition, the
respective implementation might be rather involved, whereas schemes for drawing random
samples from multivariate distributions are partly already implemented and available in R.
For instance, the R package MASS provides the command mvrnorm() for randomly sampling
from multivariate Gaussian distributions. Hence, we use random multivariate samples for
the initial examples in our case study in this chapter. Nevertheless, further resarch into the
direction of generalization of equidistance and optimal sampling in the multivariate case is
strongly encouraged.

7.2 Combining low-dimensional postprocessing methods in
an ECC-like manner: The LDP-ECC approach

We now introduce a new approach which combines Low-Dimensional Postprocessing (LDP)
methods on the one hand and the reordering notion of ECC on the other hand. It will thus
be referred to as the LDP-ECC approach in what follows.

Let i € {1,...,1} be a weather variable, 7 € {1,...,J} a location and k € {1,...,K}

a look-ahead time. As before, let ¢ := (4,7, k) denote the corresponding multi-index, let
L:=1xJx K, and let !, be the forecast of raw ensemble member m € {1,..., M} for
fixed /.
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In addition, let V' be the number of low-dimensional postprocessing methods intended to be
applied. For each method v € {1,...,V}, let S, denote the number of cases in which the
corresponding technique shall be applied. Moreover, let L, be the corresponding dimension
of the predictive CDF F, ; obtained by approach v € {1,...,V}incase s € {1,...,5,}. We
can thus decompose the dimension L via

The choice of the involved low-dimensional postprocessing methods should be as plausible
as possible and tailored to the specific setting one is interested in. It might be reasonable
to postprocess variables with an expected pronounced correlation jointly, for instance via
the methods from Section 3.2.2. At individual stations, (u,v)-wind vectors could be post-
processed simultaneously via the bivariate EMOS approach of Schuhen et al. (2012) or the
method of Pinson (2012), for example, while temperature and pressure could be treated
jointly via the Gaussian copula approach of Moller et al. (2013). On the other hand, purely
spatial settings could be handled by Spatial BMA (Berrocal et al., 2007) or Spatial EMOS
(Feldmann et al., 2014), respectively.

The description of the LDP-ECC approach is divided into three parts in what follows.
Part 1

1. Let ¢»51 ... ¢»%Lv be the corresponding multi-indices of the raw ensemble forecasts
that shall be jointly postprocessed via method v € {1,...,V} in case s € {1,...,S,}.
Cases in which one should work with standardized forecasts are explixitly stated in
what follows.

We are given the raw ensemble forecast @1, ...,z € RY, with the ensemble members
assumed to be exchangeable, as the output of an NWP system, where for an ensemble

member m € {1,..., M}, we have x,, := (z}.,x2,,...,xV) with

— v,1 v,2 .S
= (xp,xnt, )

L éu,l,l Eu,l,LV éu,2,1 Zu,2,LV EV,SV,I KV,SV,LV
= ((.Tm ’...,.%'m 5 mm ,...,.%'m geeey l’m ,...,xm

case 1 case 2 case Sy

v
',L.m

forve{l,...,V}
Our goal is to come up with a coherent, postprocessed forecast ensemble &1,..., &y €
RL.

Part II

The following is applied to each method v € {1,...,V} and each case s € {1,...,S,}
separately.
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2. While the common univariate ordering is applied in the standard ECC method, we
here first need to define a multivariate ranking structure. To this end, we derive for
each method v and case s a multivariate ranking characteristic R};® for each ensemble

member m € {1,...,M}. For instance, such a characteristic RY;® based on the raw
v,s v, . . . .
ensemble forecast x7,..., &, can be given by one of the expressions considered in

the following subitems (a), (b) and (c), where the corresponding choice has to be
consistent for all involved cases.

(a) We can use the multivariate pre-rank following Gneiting et al. (2008) and set

M
Ry =) Lgusgmsy, (7.6)
pn=1
where z;* < z® if and only if xﬁ”’S’A <zl forall e {1,...,L,}.

(b) For each univariate margin, that is, for each A € {1,...,L,}, we can build the
univariate order statistics :L“f;’)s’A < ... < xf?\’;)’k, with ties resolved at random,
defining the permutations

O-eu,s,)\ (’I’)’L) = l"ank <x£;,5,)\)

of {1,..., M}, that is, each member m € {1,..., M} is assigned its rank via
opsx. Then, we can derive the sum of the marginal ranks of the ensemble
members for all involved multi-indices and set

LV
Ry =Y open(m). (7.7)
A=1
(c) We can use the Euclidean norm and set

= Nl =
R = ||| =

(7.8)

In this case, it is advisable to use standardized raw ensemble forecast values.
After the calculation of these M multivariate ranking characteristics R})®,
pute their order statistics R(VS < ... < R(”]’\‘j[), with ties resolved at random. The
corresponding permutation 7° of {1,..., M} is then given by 7°(m) := rank(R%*).

we CcoIm-

3. We apply the low-dimensional postprocessing method v in the case s to obtain a
calibrated and sharp L,-variate predictive CDF F), .

4. From the predictive distribution F, 5, we draw a sample Z°,..., &7 € R of size
M, where
- _pV,s,1 _pv,s,Ly
mZ’f:z(mfn ,...,:L’fn )
forme {1,...,M}.
5. We reorder the sample &, . .. ,QEVMS from the previous step by using the permutation
7% determined in step 2 to get the ensemble £7°,..., &7/ € RF, with
~ NZED ~pvss, Ly
:B?r’f::(:rﬁl ,...,mfn )
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forme {1,...,M}.

To this end, we derive analogously to step 2 the M multivariate ranking charac-
teristics R, where m € {1,..., M}, associated to the sample &}"°,...,&7;. This

m 2
induces the corresponding order statistics R(Vi§~ <...< R/, , with any ties resolved

(M)~
at random, using the notation (-). to emphasize that the ordering is based on the
sample values. The corresponding permutation 7° of {1,..., M} is then given by
7%(m) := rank(R%*), and the reordered ensemble &, ..., &7, is finally obtained via
VS . mUsS
T T B (gre) =1 (s (m))
for m € {1,...,M}. In other words using order statistic notation, the reordered
ensemble &%, ..., &% is given by
AULS . S8
Fm = s (m)

for m e {1,...,M}.

That is, the sample member with the index (7*)~!(7%%(m)) from step 4 forms the
member m in the reordered ensemble. Therefore, the multivariate sample members

7%, ..., &7 € RE from step 4 have to stay as they are along the components, and
only their order among themselves and hence the indices m € {1,..., M} are changed,

according to the multivariate ranking structure of the raw ensemble.
Part II1

6. We aggregate all reordered ensembles from step 5 in order to get the final LDP-ECC
ensemble &1, ..., &y € R, Precisely, we first aggregate all cases s € {1,...,8,} of
a fixed method v € {1,...,V} for each member m € {1,..., M} by setting

N2 N ~pvo 1Ly APVs2,1 ~pv2 Ly ~pV>Sv,1 ~pvSv,Ly
mm—<<l'm ,...,:Em 5 l’m 7"":1:7'71 geeey ﬁl’fm ,...,l’m .

case 1 case 2 case Sy

Then, we aggregate all methods v for each member m via

& = (2L, 2,
with the multi-indices £%** where A € {1,...,L,}, in the same order as in the raw

ensemble in step 1, and obtain the final LDP-ECC ensemble &1, ..., &).

If postprocessing method v is univariate, such as standard EMOS or BMA, the procedure
in Part II is just that of the standard ECC approach. For univariate methods, we have
seen that ist is most convenient and advisable to use equally spaced quantiles in the style of
ECC-Q in the quantization step 4. In contrast, a generalization of equidistance to the mul-
tivariate case and its concrete implementation are not straightforward, as hinted at in the
previous section. For our purposes here, we thus suggest to employ random samples from
the corresponding multivariate predictive distributions from today’s point of view. However,
the development of optimal sampling schemes for multivariate settings is an important issue
for future work.
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With respect to the usual scores used for the evaluation of predictive performances such
as the energy score, the reordering in step 5 has no effect and thus becomes irrelevant for
scenarios in which only one multivariate method is employed for one case. In these situa-
tions, our approach reduces to applying the corresponding method and drawing a sample
from the obtained multivariate predictive CDF.

Example 7.1. As a first illustrative example for a setting in which the LDP-ECC approach
can be employed, and to get familiar with our notation, assume that we are interested in
joint 24 and 48 hour ahead forecasts for temperature, pressure, precipitation and (u, v)-wind
vectors jointly at Berlin, Hamburg and Frankfurt simultaneously, made by an ensemble con-
sisting of M members. Hence, we have [ = 5, J = 3 and K = 2, thus being confronted
with an L = 5 x 3 x 2 = 30-dimensional problem. As concerns the low-dimensional post-
processing, we can think of employing the Gaussian copula approach of Méller et al. (2013)
as method 1 for the inter-variable postprocessing of pressure and temperature jointly, that
is, L1 = 2, but individually for each station and prediction horizon, that is, we have to deal
with S; = 3 x 2 = 6 cases for method 1. The postprocessing of the (u, v)-wind vectors might
be performed via the bivariate EMOS approach of Schuhen et al. (2012) as method 2 with
dimension Ly = 2, again for each station and prediction horizon separately, that is, Sy = 6.
Finally, univariate postprocessing for precipitation could be made by the BMA variant of
Sloughter et al. (2007) as method 3 with dimension Lz = 1 for each individual location and
look-ahead time, respectively, that is, S3 = 6. In a nutshell, we would then have

30=L= 3x2 x 2 + 3x2 X 2 + 3x2 X 1
N—— ~—~ N——" ~—~ N——" ~—~
=6=251 =1L =6=25> =L =6=_S3 = L3
(3 l()cations7 (Gaussian copula (3 locations7 (bivariate EMOS (3 locations7 (BMA for
2 prediction ~ method for pressure 2 prediction for (u,v)-wind 2 prediction  precipitation)
horizons) and temperature horizons) vectors) horizons)
jointly)

Example 7.2. To further illustrate the LDP-ECC approach in more detail, we test it in the
following real-data case study using the M = 50-member ECMWEF ensemble. We consider
48 hour ahead predictions for (u,v)-wind vectors at Berlin (Ber) and Hamburg (Ham), such
that I = 2, J = 2 and K = 1, and thus we face an L = I x J x K = 4-dimensional
scenario with the raw ensemble forecast 1,..., x50 € R*. The bivariate EMOS approach
of Schuhen et al. (2012) is applied to postprocess the (u,v)-wind vectors jointly at the
individual stations of Berlin and Hamburg, respectively. Hence, our setting is

o Ber 48 _ Ham 48\ .__ u, Ber 48 _ v, Ber 48 u, Ham 48 _ v, Ham 48
Lm = (xm » L ) T ((xm » T )7 (‘rm » T ))
case 1 (Ber 48) case 2 (Ham 48)

method 1 (bivariate EMOS for (u,v)-wind)

for each raw ensemble member m € {1,...,M}. We later use the whole M = 50-member
ensemble in the evaluation of our method over a longer test period. However, for reasons of
clarity and comprehensibility, we demonstrate the procedure for only M = 10 raw ensemble
members by just taking the first 10 members of the 50-member ECMWF ensemble as the
underlying raw ensemble in the following illustration.

For the two cases involved in our setting, Table 7.1 shows for each member m the raw
ensemble values x,, valid 2:00 am on 15 September 2010, the multivariate characteristics
RBer 48 and RHam 48 hased on the bivariate pre-ranks according to (7.6), as well as the in-

duced permutations 75" 48 and 7Ham 48 with ties having been resolved at random, and thus
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Table 7.1: Raw ensemble values (in m/s), corresponding multivariate ranking characteristics accord-
ing to (7.6) and permutations in the setting of Example 7.2, that is, for 48 hour ahead (u,v)-wind
vector forecasts at Berlin (Ber) and Hamburg (Ham) separately, valid 2:00 am on 15 September 2010.

method v = 1 (bivariate EMOS for (u,v)-wind)

case s; = 1 (Ber 48) case s1 = 2 (Ham 48)
m x# Ber 48 x% Ber 48 Raer 48 7_Ber 48(m) SL'# Ham 48 w';)ri Ham 48 Rgam 48 7_Ham 48 (m)
1 4.99 6.12 5 9 7.01 1.39 8 10
2 5.60 4.85 3 7 6.87 0.59 2 3
3 5.74 4.78 3 8 6.84 0.85 3 8
4 4.30 5.60 2 5 5.69 0.71 1 2
5 4.52 4.27 1 3 5.86 1.99 2 6
6 5.95 4.99 5 10 9.30 0.12 2 4
7 4.63 4.77 2 4 6.58 1.28 2 7
8 4.26 5.26 1 2 6.62 —0.01 1 1
9 5.25 5.16 3 6 6.91 1.39 6 9
10 6.46 3.51 1 1 6.94 0.52 2 5

Table 7.2: Bivariate samples (in m/s) from Fpey 48 and Fipam s, respectively, corresponding multi-
variate ranking characteristics according to (7.6) and permutations for the setting of Example 7.2.

method v = 1 (bivariate EMOS for (u,v))

case s1 = 1 (Ber 48) case s1 = 2 (Ham 48)
m jz{ Ber 48 i’:)ﬁ Ber 48 Rier 48 7~;Ber 48(m) j;’;{ Ham 48 i’;},{ Ham 48 Rgam 48 7—;Han1 48(m)
1 4.01 3.71 6 9 4.57 1.67 2 6
2 3.52 3.89 3 5 4.80 2.61 3 7
3 4.14 3.15 4 7 5.40 —0.29 2 5
4 3.34 1.73 1 1 7.32 —2.70 1 1
5 4.70 3.69 7 10 5.33 —0.13 2 3
6 6.91 2.74 3 6 5.03 1.60 3 8
7 3.59 3.01 2 2 4.98 0.67 2 4
8 3.70 2.68 2 3 5.79 1.38 5 9
9 3.35 3.16 2 4 4.18 —0.85 1 2
10 3.75 3.52 5 8 6.23 2.47 8 10
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Table 7.3: The LDP-ECC ensemble: Reordered bivariate samples (in m/s) from Table 7.2 according
to the permutations 78" 48 and 7Ham 48 respectively. As a check, the corresponding multivariate
ranking characteristics and the indices (7B 48)=1(7Ber 48 (1)) and (~Ham 48)—1(pHam 48 (1)) respec-
tively, are given.

method v = 1 (bivariate EMOS for (u,v))

case s1 = 1 (Ber 48) case s1 = 2 (Ham 48)

m :%;J(rz Ber 48 ij:ri Ber 48 R]?ncr 48 7~;Bcr 48\ —1 -ijrlri Ham 48 -’ifﬂ Ham 48 R?ﬂam&i (%Ham 48\ —1
(TBer 48(m)) (THam 48(m))

1 4.01 3.71 6 1 6.23 2.47 8 10

2 4.14 3.15 4 3 5.33 —0.13 2 5

3 3.75 3.52 5 10 5.03 1.60 3 6

4 3.52 3.89 3 2 4.18 —0.85 1 9

5 3.70 2.68 2 8 4.57 1.67 2 1

6 4.70 3.69 7 5 4.98 0.67 2 7

7 3.35 3.16 2 9 4.80 2.61 3 2

8 3.99 3.01 2 7 7.32 —2.70 1 4

9 6.91 2.74 3 6 5.79 1.38 5 8

10 3.34 1.73 1 4 5.40 —0.29 2 3

covers steps 1 and 2 of the LDP-ECC approach.

The postprocessing of the (u,v)-wind vector forecasts at Berlin and Hamburg separately
according to the EMOS method of Schuhen et al. (2012) yields bivariate predictive CDFs
FBer 48 and Fyam 48, respectively. Using the mvrnorm() command in the R package MASS,

we generate a sample scBer 8o Bgr 48 from FRer 43 and a sample a:Ham 8. ,ij?oam 48
e 48 . Ber 48 ~v, Ber 48 ~Ham 48 . Ham 48 ~v,Ham 48
from Fipam 48 , where &) *° 1= (1 P 20 g1 BEr 28) and &, 2™m *° ;= (g, Ham %6 g, Ham 28)

respectively, for m € {1, ey 10}. Table 7.2 lists these samples, together with the correspond-
ing multivariate characteristics RE°" 48 and RHam 48 according to (7.6), which are derived
analogously as for the raw ensemble, and the permutations 72¢" 48 and 7H2m 48~ Thus, it
comprises steps 3 and 4 of the LDP-ECC method.

The reordered postprocessed ensembles of step 5 for the two cases, as well as the cor-
responding values for Rﬁer 48 and Rgam 48 again derived analogously as for the raw en-
semble, are shown in Table 7.3. As a check, also the indices (75 48)=1(7Ber 48 (1)) and
(7Ham 48y =1 (7Ham 48 (1)) " yespectively, indicating which member of the unordered random
samples in Table 7.2 builds member m in the reordered ensemble, are listed in Table 7.3.
The final LDP-ECC ensemble according to step 6 is then given by

:%m — (:%Eler 487 :%I;Ilam 48) = ((ﬂ?%Ber 48’ j:)r,LBer 48)7 (jirerHam 48’ j:)r,LHam 48))’

case 1 (Ber 48) case 2 (Ham 48)
with xBer 8 ig.eéeé%zz(m)) and wHam 8 ig—%-ln;rr%iS(m))N7 respectively.

An illustration of our approach based on this example and Tables 7.1 to 7.3 is given in
Figure 7.1. For Berlin and Hamburg, respectively, the raw ensemble values of Table 7.1 are
shown in the left panel, where each member indicated by a red dot is labeled with its index
and its corresponding bivariate pre-rank according to (7.6) in brackets. In the mid-panel,
we see the unordered LDP ensemble, that is, the bivariate random samples from Table 7.2,
and in the right panel the reordered samples according to Table 7.3, which form the final
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Figure 7.1: Tllustration of the LDP-ECC approach based on Example 7.2 and Tables 7.1 to 7.3.
Each member indicated by a red dot is labeled with its index and its corresponding bivariate pre-rank
according to (7.6) in brackets. For reasons of clarity, the scales on the axes are different.

LDP-ECC ensemble.

The pairs of (u,v)-values and their corresponding bivariate pre-ranks for Berlin and Ham-
burg, respectively, are exactly the same for both the unordered LDP (middle) and the
LDP-ECC (right) ensembles. However, using the LDP-ECC approach, the pairs get other
member indices according to the bivariate pre-rank structure in the raw ensemble. That is,
a final LDP-ECC ensemble member m for Berlin and Hamburg, respectively, should have a
bivariate pre-rank that is near to or comparable to the bivariate pre-rank which the raw en-
semble member with the index m has. An exact confirmity of the bivariate pre-rank pattern
of the raw and the LDP-ECC ensemble obvoiusly is not always possible, as in the bivariate
samples, other bivariate pre-ranks with different frequencies than in the raw ensemble might
occur.

However, the LDP-ECC approach tries to conserve the given structure as much as pos-
sible. For instance, in our example for Berlin, the raw ensemble members 1 and 6 have both
the highest bivariate pre-rank, namely 5, and each of the members 5, 8 and 10 the lowest,
namely 1. This is respected quite effectively by LDP-ECC, in that the LDP-ECC ensemble
member 6 has the highest bivariate pre-rank, namely 7, and member 1 the second highest,
namely 6, while member 10 holds the lowest bivariate pre-rank, namely 1, and members

147



5 and 8 are two out of three members with the second lowest bivariate pre-rank, namely
2. In contrast, this structure gets lost for the unordered LDP ensemble in Table 7.2 and
the mid-panel in Figure 7.1, respectively, where for instance member 6 has the bivariate
pre-rank 3, which is by far not one of the highest, whereas for example member 10 has an
unsuitably high bivariate pre-rank, namely 5.

Generally, several raw ensemble members might have the same bivariate pre-rank, as is
also the case in our example here. Thus, the randomization in the allocation of ties when
determining the permutations 752" 48 and 7Ham 48 regpectively, also has an impact on the
form of the final LDP-ECC ensemble. However, this random component can be expected to
have an inferior influence when using the alternative multivariate characteristics according
to (7.7) or (7.8), respectively, instead of the bivariate pre-rank structure. In these cases, the
appearance of ties should be smaller. More sophisticated allocation methods in case of ties
tailored to the setting of the LDP-ECC approach could be developed in the future.

The LDP-ECC approach can also be interpreted in terms of copulas, in that for each method
v and each case s, the corresponding empirical copula is defined by the multivariate rank-
ing characteristics RY:®, where m € {1,..., M}, derived from the respective raw ensemble
values. The aggregation of these empirical copulas in a final step raises similar questions
concerning the combination of empirical copulas as the ECC variant for ensembles consisting
of non-exchangeable members in Section 4.5, as hinted at in Section 6.4.

In the LDP-ECC method, we seek for a multivariate predictive distribution with fixed
uni- or multivariate margins. It would be nice if a result similar to Sklar’s theorem could be
stated, but this is a non-trivial open question for further research. For some special cases,

such as for fixed bi- or trivariate margins, theory is already available to some extent (Joe,
1997).

7.3 Case study

We now evaluate the LDP-ECC approach in a case study following the introductory Exam-
ple 7.2. That is, we consider 48 hour ahead joint (u,v)-wind vector forecasts at Berlin and
Hamburg simultaneously, provided by the M = 50-member ECMWEF ensemble. The (u,v)-
wind vector predictions are postprocessed jointly via bivariate EMOS (Schuhen et al., 2012),
using a sliding training window of 30 days, individually at each station. In our case study
here, we throughout use v = 2 as period in the bivariate EMOS model for the correlation
coefficient p in (3.10), which is suggested by empirical considerations. Moreover, we employ
the local bivariate EMOS method throughout, in which the parameters are estimated based
on training data only from the individual station of interest, thus yielding a distinct set of
parameters for each location (Schuhen et al., 2012). Samples from the corresponding bivari-
ate EMOS predictive distributions are drawn randomly, using the mvrnorm() command in
the R package MASS. Our one-year test period ranges from 1 May 2010 to 30 April 2011,
and we compare the predictive performances of

e the unprocessed raw ensemble,

e the standard ECC-Q ensemble, where standard EMOS with a rolling training window
of 30 days is used for univariate postprocessing at each station and for each wind
vector component separately, and the equidistant & -, ..., % -quantiles are sampled

51
from each resulting univariate predictive CDF,
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Table 7.4: Average ES over the test period from 1 May 2010 to 30 April 2011 for 48 hour ahead joint
u- and v-wind ensemble forecasts at Berlin and Hamburg simultaneously. Univariate postprocessing
for the ECC-Q and ECC-R ensemble is performed via EMOS, while bivariate postprocessing for the
unordered LDP and the LDP-ECC ensemble variants is done via the bivariate EMOS approach for
wind vectors of Schuhen et al. (2012). The ES values for the ECC-R, the unordered LDP and the
three LDP-ECC ensembles, respectively, are averaged over 100 runs.

ES
Raw Ensemble 1.869
ECC-Q Ensemble 1.694
ECC-R Ensemble 1.707

Unordered LDP Ensemble 1.698
LDP-ECC Ensemble (a) 1.697
LDP-ECC Ensemble (b)  1.696
LDP-ECC Ensemble (c)  1.698

e the ECC-R ensemble, where as for ECC-Q, standard EMOS is employed for univariate
postprocessing, but the samples are drawn randomly from each univariate predictive
CDF,

e the unordered LDP ensemble consisting of the unordered bivariate samples obtained
from the bivariate EMOS postprocessing, that is, we are in the situation illustrated in
the mid-panel of Figure 7.1, for instance, and

e the LPD-ECC ensemble obtained from the bivariate EMOS postprocessing, with vari-
ants based on the different multivariate ranking characteristics according to (7.6), (7.7)
and (7.8), as described in the subitems (a), (b) and (c), respectively, in the previous
section. In what follows, we refer to these variants as LDP-ECC (a), (b) and (c),
respectively.

The average energy scores (ES) as overall performance measures for the different methods in
our setting are shown in Table 7.4. To account for the random component in the sampling
procedure, the scores for the ECC-R, the unordered LDP and the three LDP-ECC ensembles
are reported as averages over 100 runs. Calibration is checked via the multivariate, band
depth and average rank histograms, respectively, in Figure 7.2, omitting the results for the
ECC-Q ensemble for reasons to be discussed soon.

In terms of the ES, each postprocessed ensemble, be it ECC-type or unordered LDP-type or
LDP-ECC-type, outperforms the unprocessed raw ensemble, which is clearly uncalibrated.

The unordered LDP and the three LDP-ECC ensembles show a better ES than the ECC-R
ensemble, but are outperformed by the ECC-Q ensemble. However, it appears to be some-
what unfair to compare the LDP ensembles, which consist of random samples from bivariate
distributions, to ECC-Q working with equidistant samples, since the sampling method has
an impact on the predictive performance. As we have seen, equidistant sampling typically
leads to notably better scores than random sampling. In this regard, it is only reasonable to
focus on a comparison of the unordered LDP and the LDP-ECC ensembles to the ECC-R
ensemble. With that said, the results for the ECC-Q ensemble are omitted with respect to
the rank histograms in Figure 7.2. The LDP ensembles perform a bit better with respect
to the ES than the ECC-R ensemble, which moreover is not calibrated that well in terms of
the band depth rank histogram.
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Figure 7.2: (a) Multivariate, (b) band depth and (c) average rank histograms for 48 hour ahead
joint u- and v-wind forecasts at Berlin and Hamburg simultaneously, that is, L = 4, over the test
period from 1 May 2010 to 30 April 2011.
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In addition, the unordered LDP ensemble performs a bit worse than the LDP-ECC en-
sembles (a) and (b). While the differences are minor with regard to the ES, which might
be again explained by the findings of Pinson and Tastu (2013), they become obvious in
the multivariate and average rank histograms, respectively, considering calibration solely.
Hence, a reordering in an ECC-manner proves to be indeed useful and is thus essential for
our new approach.

In our case study, the rank-based LDP-ECC methods (a) and (b) perform better than
the LDP-ECC approach (c) based on Euclidean norms. Especially in terms of calibration
checked via the multivariate and average rank histogram, respectively, the LDP-ECC en-
semble (c¢) appears to be worse than the other two. This is possibly due to a systematic
error that might occur when using Euclidean norms in the specific context of (u,v)-wind
vector forecasts here. By definition, u- or v-wind is a signed quantity. However, by squaring
in the Euclidean norm expression, this property is eliminated, which might lead to failures
in the reordering step. Hence, LDP-ECC method (c) can be expected to work better for
other, for example positive-valued, variables.

In a nutshell, the LDP-ECC ensemble variants (a) and (b) based on the multivariate char-
acteristics (7.6) and (7.7), respectively, yield good results and turn out to be useful and
appealing alternatives to the standard ECC approach. In our setting dealing with (u,v)-
wind vectors here, the LDP-ECC ensemble (c) based on Euclidean norms according to (7.8)
does not perform that well. However, it is expected to be useful and more appropriate for
other weather quantities.

Since the reordering of the bivariate samples is actually only a spatial issue in our case
study here, the rather minor differences between the unordered LDP ensemble and the
LDP-ECC ensemble variants in the ES might also be explained by the relatively low spa-
tial correlation structure for u- and v-wind, respectively, between the two sites of Berlin
and Hamburg. Thus, it would be interesting to conduct a case study on grid-based regions
similar to those in Section 4.3.2 (b), where spatial correlations can be expected to be more
pronounced.

As hinted at in the previous section, the multivariate ranking characteristics used in the
LDP-ECC approach might be subject to a random component due to the random allocation
of possible ties, which might have an influence when using the multivariate pre-rank based
variant according to (7.6). In such a case, one could repeat the respective case study several
times and report average results. This has however not been done in the case study here,
as tests showed no necessity to do so, with several initial runs yielding the same ES results
to the relevant decimal places.
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Chapter 8

Combining similarity-based
ensemble methods with the
Schaake shuffle

As described in Section 3.2.2; the Schaake shuffle (Clark et al., 2004) generates a postpro-
cessed ensemble inheriting the rank dependence structure from historical observations, and
we have shown in Section 6.4 that it can be regarded as an emprical copula-based approach.
However, the standard Schaake shuffle fails to condition the multivariate dependence pat-
tern on current or predicted atmospheric states. To address this shortcoming, Clark et al.
(2004, page 260) propose to develop an extension of the Schaake shuffle, driven by the idea

“to preferentially select dates from the historical record that resemble forecasted
atmospheric conditions and use the spatial correlation structure from this subset
of dates to reconstruct the spatial variability for a specific forecast.”

Inspired by this suggestion, we introduce an alternative approach for physically consistent
ensemble postprocessing, which essentially fuses the notion of the Schaake shuffle and the
idea of similarity- or analog-based ensemble methods, in this chapter.

In similarity- or analog-based ensemble methods, one seeks ensemble forecasts in an archive
of past data that are similar to the current one. The basic idea is that the states of the
atmosphere corresponding to such an analog ensemble can be assumed to be similar to
the state to be predicted (Hamill and Whitaker, 2006). Such methods have been gain-
ing popularity recently, as witnessed by the papers of Bannayan and Hoogenboom (2008),
Klausner et al. (2009), Hall et al. (2010), Delle Monache et al. (2011) and Messner and Mayr
(2011), among others. In this context, the question of the choice of appropriate similarity
measures in a nearest neighbor sense arises, with the papers above providing some proposals.

Our new technique, which will be called the SimSchaake method, is described in Section 8.1
and then tested and assessed in a case study in Section 8.2.

8.1 Combining similarity-based ensemble methods with the
Schaake shuffle: The SimSchaake method

The following method combines the idea of similarity-based ensembles and the Schaake shuf-
fle. It is referred to as the SimSchaake approach in what follows. In contrast to standard
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ECC, it can be applied to any ensemble, regardless of whether consisting of exchangeable or
non-exchangeable members, and the size of the final postprocessed ensemble is not restricted
to equal that of the raw ensemble.

Let i € {1,...,I} be a weather variable, j € {1,...,J} a location and k € {1,...,K}
a look-ahead time. For simplicity, let ¢ := (i, j, k) and ¢* := (i, j) denote the corresponding
multi-indices, and let L := I x J x K and L* := [ x J, respectively. Moreover, let M denote
the number of raw ensemble members, N the desired number of members in the postpro-
cessed ensemble obtained by the SimSchaake technique, A the length of the training period
required for the univariate ensemble postprocessing step later on, and ¢ the verification date.
Let further D be the number of dates in the past of ¢ for which ensemble forecasts and obser-
vation data are available. For the feasibility of the SimSchaake approach, it is required that
both ensemble forecast and observation data are available for at least max{/N, A} dates in
the past of ¢, that is, D > max{N,A}. In the data set employed in our case study later, we
only deal with data valid 00:00 UTC. The SimSchaake approach then proceeds as follows.

Lt Lt
( )

1. We are given the possibly standardized raw ensemble forecasts a’* := R

valid on date t for fixed ¢. Moreover, let

Lt .2 Lty _ (Lt Lt 2t 2,t Lt Lyt

Lyttt = (a2 )
denote the (L x M)-tuple consisting of the M-member ensemble forecasts of all L
combinations of variable, location and prediction horizon.

If weather variables with distinct units or magnitudes are involved, the components
of 2%t should be standardized for each ¢. This can be for instance done as described
in Section 4.3.3.

2. For each date ¢4 in the past of ¢, where d € {1,..., D}, we compute a suitable fixed
similarity measure Ald := Ald(z! zle) € RY between x! and x'?, which is taken to
be negatively oriented, that is, the lower the similarity measure the more similar the
ensemble forecasts.

3. Choose those N dates 71,...,78 € {tq|d € {1,...,D}} among the D dates t1,...,tp
in the past of ¢t for which the data is most similar to that for the date ¢ in the sense

that the corresponding values of A™ for n € {1,..., N} are the smallest among the
values of Al for d € {1,...,D}.

Thereby, let 71 be the date corresponding to the “nearest” ensemble relative to that of
date t, and so forth, and 7y be the date corresponding to the “furthermost” ensemble
relative to that of date ¢ with respect to the respective similarity measure.

4. For each ¢*, let v ...,y ™V denote the corresponding N historical verifying ob-
servations valid on the dates 71,..., 7y determined in step 3. With those, we build
the data vector y*  := (yf*’t, e ,yf;’t) assigned to the verification date ¢ of interest
by setting . .

yf gy ,yf\,’t = gyt

For each ¢*, the corresponding order statistics yfi)’t <... < ny'; induce a permutation

7o of {1,..., N} via mp(n) := rank(y’ *), where n € {1,..., N}, with ties resolved
at random.
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Figure 8.1: Scheme of the SimSchaake approach

5. For each ¢ separately, we apply state-of-the-art univariate methods to postprocess the

raw ensemble z“*, such as BMA or EMOS, and obtain a predictive CDF F, 7 valid on

date t in each case. Then, we draw a sample i{’t, . ,ff\,’t of size N from each obtained

F}. As usual, we prefer quantization scheme (Q), in which the sample is given by

B = D (g ) e = D ()
forming the postprocessed ensemble &4t := (icﬁ’t, . ,icfv’t).
6. For each ¢, the final SimSchaake ensemble is then given by &6 := (i’f’t, e ,i’f\,’t), where
= Gy BN

that is, the sample from step 5 is reordered with respect to the corresponding obser-
vation ranks of y*** derived in step 4.

Steps 1 to 3 employ information of all ¢ simultaneously to determine the dates t1,...,tn.
However, steps 4 to 6 are applied to each £ and ¢*, respectively, individually.

A schematic diagram of the SimSchaake approach is given in Figure 8.1.

An appropriate choice of the similarity measure Al in step 2, which is consistently used
throughout the whole SimSchaake approach, is crucial. For example, we can take

L L
1 1
Atld — f Z@&t _ a—:é,td)Q + f Z(Sﬁ,t _ Se,td)Q7 (8.1)
=1 =1
where
1 X 1 X,
4 = i z_: xf;f and s = TP (z7 — zbT)2
m=1 m=1
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denote the empirical mean and standard deviation, respectively, of the ensemble forecast
a7 for fixed indices ¢ and 7. As it does not depend on how the ensemble members are
labeled, the similarity measure Atld can be applied to ensembles consisting of exchangeable
members and is thus suitable for the ECMWF forecasts used in the case study in the next
section. Alternative proposals for similarity measures, also for the case of ensembles with
non-exchangeable members, can be found in the references mentioned at the beginning of
this chapter.

The similarity measure A'id can be modified by multiplying it with a weighting function

wy, as a chronological term. By proceeding so, we get

ALt =y, - Al (8.2)

and there are various possibilities to design the time-weighting function w;,. One variant
tailored to our specific data set at hand is to employ a linear weighting scheme, in that

, (8.3)

where 64 € N denotes the temporal distance in days between the dates t and t4. That is, the
closer the past date t4 lies to the date of interest t the lower is the corresponding weight.

However, scheme (8.3) does not take account of seasonality. Alternatively, we can address
this for instance by setting

0
wy i — A — cos (2365(1) | -
> (A — cos (2§égd))

d=1

where 64 € N again denotes the temporal distance in days between the dates t and tg, and
A > 1is a constant. In scheme (8.4), we account for seasonality by assigning low weights to
past dates t4 that are close to ¢ in an annual cyclical sense, and high weights to past dates
ty that are far away from ¢ in an annual cyclical sense.

In both schemes (8.3) and (8.4), the weights are non-negative and add up to one. Concerning
variant (8.4), the choice of the constant A has to fulfill A > 1 to ensure the non-negativity
of the weights. The specific value assigned to A might depend on the data set at hand, as
is discussed with respect to our case study in the next section, where we consider A = 5.

Alternatively, monotone transformations of the weights wy,, such as square root transfor-
mations, could also be used to define a modified similarity measure.

It is possible to transform the values of the similarity measures Akl for v € {1,2} from
RY to the unit interval (0, 1] by employing the standardization *Ald := exp(—Al?). With
respect to *Ald, similarity values near to 1 indicate a very high similarity between ! and

x'd while similarity values near to 0 point at no similarity. Accordingly, if using *Ald, we
then have to choose the dates 71, ..., 7y corresponding to the highest, and not to the lowest,

values of *Ald in step 3.
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Concerning step 2, we alternatively could search for similar ensembles not among all avail-
able dates, but only for the T most recent days before ¢, where N < T < D, in a sort of
sliding searching window. Then, it is required that both forecast and observation data is
available for at least max{Y, A} dates in the past of ¢, where it remains to specify how to
choose T appropriately.

In step 3, the dates 71,..., 7y could alternatively be assigned either chronologically, with
71 being the date closest to ¢, or randomly as in the original Schaake shuffle approach.
Exemplary initial case studies with temperature showed that there is no significant impact
of the assigning method on the final predictive performance. Hence, we set the procedure
described in step 3 as the standard in what follows.

As mentioned, the SimSchaake approach essentially solves two shortcomings appearing with
respect to the standard ECC method. First, our new method can also be applied to ensem-
bles consisting of non-exchangeable members, as the reordering is not based on the ensemble
forecasts, but on the verifying observations. Second, with our new technique we can prin-
cipally create ensembles of arbitrary size, as long as there are sufficiently many historical
observations in the past. In contrast to ECC, the postprocessed ensemble is thus not re-
stricted to have the same number of members as the raw ensemble, that is, N need not
necessarily be equal to M.

As ECC and the Schaake shuffle, the SimSchaake approach can also be interpreted as a
discrete copula-based technique, where the relevant empirical copula is derived from the
historical observation database in step 4.

8.2 Case study

The SimSchaake approach is tested and evaluated by considering 24 hour ahead forecasts
for temperature, pressure, u- and v-wind, respectively, at Berlin, Hamburg and Frankfurt
jointly, provided by the M = 50-member ECMWEF ensemble. Our one-year test period
ranges from 1 May 2010 to 30 April 2011. For temperature, we additionally consider the
two-year test period from 1 January 2011 to 31 December 2012, as more data is available
in this case. Univariate postprocessing is performed via EMOS, using a training period of
A = 30 days. We assess and compare the predictive performance of the unprocessed raw,
the standard ECC-Q, the random selection and two different SimSchaake ensembles. For
the latter three approaches, the past dates from which the corresponding verifying observa-
tions are taken, are searched for among all available historical data, where ensemble forecast
and observation data is available from 2 February 2010 to 30 April 2011, and in the case
of temperature to 31 December 2012. In this context, the random selection ensemble just
randomly selects those past dates, whereas the SimSchaake ensemble variants choose them
based on the ensemble similarity measures (8.1) and (8.2), respectively. Concerning the
time-weighted variant, we use the weighting scheme (8.4) accounting for seasonality in our
case study, with A = 5. In this context, first studies suggested that A = 5 is a suitable
choice for the constant A in (8.4) in our setting. While the above choice for A cannot be
expected to be optimal in any sense, it has proven to be a reasonable compromise in initial
tests.

In Table 8.1, the average energy scores (ES) as overall performance measures are shown,
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Table 8.1: Average ES for 24 hour ahead forecasts at Berlin, Hamburg and Frankfurt jointly over
the test period from 1 May 2010 to 30 April 2011 (temperature, pressure, u- and v-wind) and from 1
January 2011 to 31 December 2012 (temperature), respectively. The results for the random selection
ensemble are averaged over 100 runs.

1-year period 2-year period
Temperature Pressure u-Wind v-Wind  Temperature
o) (hPa) (m/s)  (m/s) 0
Raw Ensemble 2.278 1.005 1.740 1.839 1.938
ECC-Q Ensemble 1.720 0.829 1.334 1.578 1.548
N =M =50
Random Selection Ensemble 1.775 0.836 1.345 1.581 1.604
SimSchaake Ensemble 1.728 0.829 1.332 1.576 1.548
Time-Weighted SimSchaake Ensemble 1.728 0.829 1.332 1.576 1.548
N =170
Random Selection Ensemble 1.773 0.836 1.341 1.578 1.602
SimSchaake Ensemble 1.729 0.829 1.329 1.573 1.546
Time-Weighted SimSchaake Ensemble 1.730 0.828 1.329 1.573 1.546

where the results for the random selection ensemble are averaged over 100 runs. While
the raw and the ECC-Q ensemble are constrained to consist of N = M = 50 members,
the random selection ensemble and the SimSchaake ensemble variants are evaluated for the
final ensemble size of both N = M = 50 and N = 70, respectively. Calibration solely for
N = M = 50 is assessed via the multivariate, band depth and average rank histograms,
respectively, in Figures 8.2 to 8.5, where Figure 8.2 shows results for temperature over the
two-year test period, while Figures 8.3 to 8.5 show the histograms for pressure, u- and v-
wind, respectively, over the one-year test period.

We first comment on the case of N = M = 50, where all postprocessing methods out-
perform the raw ensemble in terms of calibration and the ES for each weather variable.

There is a benefit to use the SimSchaake ensembles based on a similarity measure instead
of the random selection ensemble, as they perform better with respect to calibration and
the ES. Except maybe for calibration in the case of pressure, the SimSchaake ensembles
can compete with the ECC-Q ensemble, in that they yield similar results and even slightly
outperform ECC-Q for u- and v-wind, respectively, concerning the ES.

Furthermore, the differences between two SimSchaake variants are rather minor in terms
of the rank histograms and even non-existent with respect to the ES. This might be not
that surprising, as the data archive the past dates can be chosen from is very small, which
reveals a general shortcoming of this case study to be discussed at the end of this section,
such that seasonal issues cannot be expected to have a great impact.

In the case of SimSchaake ensembles comprising N = 70 members, the results and con-

clusions described above essentially continue to hold analogously, with the respective ES
values mostly being equally good as or slightly better than those in the case of N = M = 50,
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except for temperature over the one-year test period. Actually there is no absolute need to
extend the ensemble size of M = 50 in our case here, although an extension is nonetheless
meaningful. The improvements in the ES obtained by the extension from N = M = 50 to
N = 70 are not that pronounced, which is to be expected, as the ensemble size of M = 50
already appears to be sufficiently large. However, an extension of the number of members
in the SimSchaake ensemble likely has more impact when the raw ensemble is rather small,
as is suggested by the corresponding considerations and examinations in the context of the
extended ECC ensembles in Section 4.4.

Generally, the above case studies can only be regarded as a proof-of-concept for the Sim-
Schaake approach, as the available data set contains by far too little dates in the past to
choose and to learn from. That is why the issue of time-weighting the ensemble similarity
measures likely does not come into great effect. It is thus strongly recommended to repeat
such studies on the basis on a very much larger data archive in a future work.

Nevertheless, one can guess from our promising initial results here that the SimSchaake
scheme provides a reasonable and appealing multivariate postprocessing tool. It might
compete with the ECC techniques, while having the benefit of a broader applicabilty, in
that it can also be applied to ensembles comprising non-exchangeable members, and the
SimSchaake ensemble is not restricted to have the same size as the raw ensemble.

The choice of more sophisticatedly designed similarity measures and/or weighting schemes
might improve the results for the SimSchaake technique once more.
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Figure 8.2: (a) Multivariate, (b) band depth and (c) average rank histograms for 24 hour ahead
temperature forecasts at Berlin, Hamburg and Frankfurt jointly, that is, L = 3, over the test period
from 1 January 2011 to 31 December 2012. Univariate postprocessing is performed via EMOS.
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Figure 8.3: (a) Multivariate, (b) band depth and (c) average rank histograms for 24 hour ahead
pressure forecasts at Berlin, Hamburg and Frankfurt jointly, that is, L = 3, over the test period from
1 May 2010 to 30 April 2011. Univariate postprocessing is performed via EMOS.
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Figure 8.4: (a) Multivariate, (b) band depth and (c) average rank histograms for 24 hour ahead
u-wind forecasts at Berlin, Hamburg and Frankfurt jointly, that is, L = 3, over the test period from
1 May 2010 to 30 April 2011. Univariate postprocessing is performed via EMOS.
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Figure 8.5: (a) Multivariate, (b) band depth and (c) average rank histograms for 24 hour ahead
v-wind forecasts at Berlin, Hamburg and Frankfurt jointly, that is, L = 3, over the test period from
1 May 2010 to 30 April 2011. Univariate postprocessing is performed via EMOS.
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Chapter 9

Summary and discussion

Finally, we summarize and discuss the motivation and main results of this thesis and provide
suggestions for further work in the future.

During the last years, a strong recognition of the need for uncertainty quantification with
respect to the potentially high-dimensional output of complex computer models has taken
place, with prediction often being a main goal. In this context, the field of probabilistic
forecasting has developed steadily, as one nowadays often seeks to issue a forecast in terms
of a predictive distribution instead of a single-valued point estimate. In particular, the
analysis of uncertainty in weather forecasts has become of great interest, and meteorolo-
gists have designed numerical weather prediction (NWP) ensembles to provide forecasts in
a probabilistic form. An ensemble comprises multiple runs of NWP models differing in the
initial conditions and/or the model formulation in terms of the parameterized numerical
representation of the atmosphere, where the 50-member ensemble of the European Centre
for Medium-Range Weather Forecasts (ECMWF) employed in this thesis is a prominent and
leading representative.

The design of an ensemble to account for uncertainties as discussed in this thesis can be
seen as a Monte Carlo approach, in that inputs are generated randomly from a probability
distribution, and multiple deterministic simulations are run. So-called stochastic Galerkin
methods (Xiu and Karniadakis, 2002; Ghanem and Spanos, 2003; Constantine, 2007) pro-
vide an alternative concept, in which the solution of a differential equation with random
input parameters is first represented by a truncated polynomial chaos expansion using mul-
tidimensional orthogonal basis polynomials. Then, this representation is plugged in the
differential equation, and a Galerkin projection of the differential equation onto each basis
polynomial is employed. Due to the orthogonality of the basis polynomials, the differential
equation with random inputs is reduced to a system of coupled deterministic differential
equations for the coefficients of the truncated polynomial chaos expansion (Constantine,
2007). Next, any suitable discretization of the coefficients can be employed to solve the
system. Once the expansion coefficients are derived, the PDF of the solution can be approx-
imated, and approximate moments or samples thereof can be calculated. More details are
given in the above references. A discussion of advantages and disadvantages of Monte Carlo
and stochastic Galerkin procedures to account for and quantify uncertainties is an issue for
future work.

Unfortunately, NWP ensembles typically reveal biases and lack calibration. However, cali-
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bration, referring to the statistical compatibility between the predictive distribution and the
observation, is an essential property of a meaningful and convincing probabilistic forecast.
Therefore, ensembles call for statistical postprocessing, and many univariate methods to do
so have been developed. Examples include Bayesian model averaging (BMA) and ensemble
model output statistics (EMOS), which mostly performed well in our case studies. However,
these univariate postprocessing methods typically fail to account for spatial, temporal or
inter-variable dependence structures, which are crucial in numerous applications. Hence,
multivariate postprocessing being able to handle dependencies is of great importance, and
several methods in this spirit have been presented in the literature. Frequently, these are
based on the use of copulas, which are well suited for modeling multivariate dependencies
whenever univariate margins are given, due to the celebrated Sklar’s theorem.

In this thesis, we have introduced ensemble copula coupling (ECC) as a multivariate en-
semble postprocessing method. ECC aims at physically coherent probabilistic forecasts of
spatio-temporal weather trajectories and is a multi-stage approach. First, we are given a
raw ensemble forecast from an NWP model, consisting of exchangeable ensemble members
resulting from random perturbations in the inputs or model parameters. Second, univariate
methods, such as BMA or EMOS, are employed to postprocess the raw ensemble forecast,
leading to calibrated and sharp predictive distributions for each weather variable, location
and look-ahead time individually. Then, each postprocessed marginal predictive distribution
is represented by a discrete sample thereof, which has the same size M as the raw ensem-
ble. Finally, each sample is reordered according to the rank dependence structure of the
raw ensemble, thereby capturing the flow dependence. Thus, ECC returns a multivariate
postprocessed forecast ensemble with statistically adjusted marginals in order to correct for
systematic biases and/or misrepresentation of the prediction uncertainty, while the multi-
variate dependence structure is adapted from the original unprocessed NWP ensemble.

Depending on the employed quantization scheme (R), (T) or (Q) at the sampling stage
in the ECC approach, we distinguish the variants ECC-R, ECC-T and ECC-Q, referring
to the use of M Random samples, Transformations involving fitted CDFs or equidistant
Quantiles, respectively. Generally, it is advisable to use the most intuitive and canonical
sampling scheme (Q), employing the equally spaced ﬁ e MLH -quantiles of the corre-
sponding univariate predictive CDFs, as a default. It turns out to be particularly useful to
use equidistant sampling if M is rather small. However, the larger M gets, the smaller the
differences between the quantization methods become, with equidistant sampling still per-
forming best. In future research, one could seek optimality results with respect to sampling
in multivariate settings.

The ECC approach, which is able to account for spatial, temporal and inter-variable depen-
dence structures, has various benefits, being conceptionally very simple and straightforward
to implement, and thus predestined to serve as a natural benchmark. ECC essentially comes
computationally for free once the univariate postprocessing is done, which can be performed
via any appropriate method. In contrast to purely parametric multivariate methods, ECC
can handle model output of any dimensionality. It can be interpreted as an empirical
copula-based approach and offers an overarching frame for seemingly unrelated postpro-
cessing techniques scattered in the extant literature. ECC provides a general uncertainty
quantification strategy that combines analytical, numerical and statistical modeling. Hence,
it is appropriate not only for the key example of weather prediction, but also for a wide
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range of other application areas. The ECC scheme can be applied whenever an ensemble of
simulation runs is given which is able to appropriately represent multivariate dependence
structures, and sufficient training data for the statistical correction of the univariate margins
is available.

ECC has been tested and assessed in various case studies in this thesis and has been com-
pared to the raw ensemble, the increasingly ordered quantiles (I0Q) ensemble, assuming
a maximally positive dependence structure, and the randomly ordered quantiles (ROQ)
ensemble, which assumes no correlation. Essentially, ECC performs well throughout and
best in a majority of situations. In cases dealing with very strong dependence structures,
the I0Q ensemble might perform best, whereas the ROQ ensemble may reveal the best
result when there are very low correlations. However, ECC can compete in these cases of
extreme correlation and appears to be at any rate a good and reasonable option, especially
in settings in which the correlation structure is a priori unknown. The band depth and
average rank histogram (Thorarinsdottir et al., 2014), respectively, as new verification tools
for calibration in addition to the established multivariate rank histogram (MRH) (Gneiting
et al., 2008), have proven to be very useful, in that they succeed in detecting miscalibration
in comparably high dimensions, whereas the MRH might fail in such situations. Moreover,
they are often able to distinguish clearer between the reference ensembles than the MRH,
especially in high-dimensional settings. Their shapes in the case of over- or underestima-
tion of the correlation structure by the IOQ or ROQ ensemble underline the corresponding
simulation results by Thorarinsdottir et al. (2014) in a real-data based illustration. In gen-
eral, it is advisable to use several verification tools to check calibration in the multivariate
case (Thorarinsdottir et al., 2014), maybe also including the minimum spanning tree rank
histogram (Smith, 2001; Smith and Hansen, 2004; Wilks, 2004; Gombos et al., 2007). Some-
times, the ROQ and ECC ensembles can hardly be distinguished in terms of the energy score
(ES). This effect also emerges in a recent case study of Scheuerer and Hamill (2014) and
might be at least partly based on the discrimination inability of the ES as discussed by
Pinson and Tastu (2013). While univariate verification tools are already well established,
it is important to design further evaluation methods for multivariate settings, both with
respect to calibration and in terms of scores. In this context, Scheuerer and Hamill (2014)
recently introduced variogram-based proper scoring rules, which are more discriminative
with respect to correlation structures.

It has been shown that ECC serves as an overarching frame for various seemingly unre-
lated postprocessing approaches scattered in the literature. The list of the corresponding
methods in this thesis cannot be expected to be complete, and quite surely other techniques
also fitting into the ECC frame can be found or will be developed in the future. In partic-
ular, we have shown that a member-by-member postprocessing (MBMP) technique which
has fused slightly differing formulations in the literature (Doblas-Reyes et al., 2005; Wood
and Schaake, 2008; Johnson and Bowler, 2009; Van Schaeybroeck and Vannitsem, 2014)
can be interpreted in the ECC-T frame. In this context, we have conducted a compara-
tive case study, revealing that standard EMOS-based ensembles and standard EMOS-based
ensembles combined with ECC can outperform the MBMP ensemble in univariate and mul-
tivariate settings, respectively.

ECC in its standard implementation also has shortcomings and limitations, which are partly
set by its defining feature, that is, the adoption of the rank order pattern of the unprocessed
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ensemble. For instance, ECC operates under the perfect model assumption that the raw en-
semble is capable of reflecting the actual multivariate rank dependence structure. Although
such an assumption appears to be reasonable and can typically be confirmed via diagnostic
checks for state-of-the-art NWP models, it cannot be expected to be fulfilled each and every
day. In general, it seems adequate to suppose that numerical models might reveal errors
in dependence structures, which are to be diagnosed and improved to the extent deemed
possible, and further steps in these directions ought to be taken.

Moreover, the standard ECC ensemble is constrained to have the same size M as the raw
ensemble, which might be rather small in practice. However, it is often desirable to come up
with a postprocessed sample having a larger size N > M, in particular for high-dimensional
predictions based on a comparably small underlying raw ensemble. To increase the size of
the postprocessed ECC ensemble, we have considered three approaches.

The extended ECC method operates with samples of size N from the univariate predic-
tive CDFs instead of size M as in standard ECC. If N is an integer multiple of M, each
sample is divided into subsamples consisting of M members each, which can be created by
either random or equidistant grouping. Then, standard ECC is applied to each subsample,
and the so obtained reordered subsamples are aggregated in an extended ECC ensemble
forecast. A slight adaptation for the case that N is not an integer multiple of M has also
been proposed. Extended ECC performed well in our case study and slightly improved
standard ECC. In particular, using extended ECC makes good sense if the raw ensemble
size M 1is rather small, while the improvements achieved via this method become minor if
M is already large.

The recycling approach just takes the standard ECC ensemble and recycles it as often
as desired, being restricted to the case that NV is an integer multiple of M. A case study
comparing the extended ECC-Q with the recycled ECC-R variant, which has also been pro-
posed by Wilks (2014), is an interesting option for future work.

In the lagged ensemble variant, ensemble forecasts with different prediction horizons be-
ing valid at the same verification date are combined in order to increase the ensemble size.

Another shortcoming of standard ECC is that it can only be applied to ensembles consisting
of exchangeable members. However, many ensemble systems comprise non-exchangeable en-
semble members, with the NWP inputs and/or model parameters differing in a systematic
rather than a random way. To address this issue, we have proposed an ECC modification
which can be applied to groups or clusters of exchangeable ensemble members. However,
the thoughts in this context are at their beginnings, and the variant still has to be tested
and evaluated in a real-data case study, with the COSMO-DE ensemble prediction system
(Gebhardt et al., 2011) of the German Weather Service appearing to be an appropriate
candidate for that.

In addition to ECC, which uses information from the raw ensemble, there are various
alternative approaches to model dependence structures, with some of them having been
recapitulated in this thesis. If the considered model output is low-dimensional or reveals
strong structure, carefully designed parametric copula approaches, allowing for the adjust-
ment of any biases in the ensemble’s representation of conditional correlation patterns, are
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likely to outperform ECC, with Gaussian copula methods providing prominent options (Gel
et al., 2004; Berrocal et al., 2007; Schuhen et al., 2012; Pinson, 2012; Mdller et al., 2013, for
instance). A comparison of the various methods in a real-data case study, with their pros
and cons in concrete settings, should be tackled in a future work.

A prominent non-parametric example for a multivariate postprocessing method is the Schaake
shuffle (Clark et al., 2004), which is based on the dependence structures in a historical record

of weather data and admits an empirical copula interpretation. It performs well and is a

useful concept, as is for instance witnessed by a recent paper of Vrac and Friederichs (2014),

who combine the notion of the Schaake shuffle and a bias correction approach in a climato-

logical context. The predictive performances of ECC and the Schaake shuffle have recently

been compared by Wilks (2014) in a comprehensive case study, with the Schaake shuffle

outperforming ECC. However, the results in Wilks (2014) are based on an M = 11-member

ensemble, which is likely to be too small to get reasonable results with ECC, as the raw

ensemble data one can learn from is limited. Thus, it is of great interest to conduct a similar

study with the M = 50-member ECMWF ensemble employed in this thesis to investigate if
ECC is able to perform better in this case.

From a theoretical point of view, we have introduced the notion of multivariate discrete
,ﬁ, cee %, I}L and have shown that they are in a one-to-
one correspondence to stochastic arrays. In addition, we have proven a multivariate discrete
version of Sklar’s theorem with the aid of an extension lemma. In future work, one could
seek a generalization of the findings to the general case of multivariate discrete copulas
defined on Ips, x --- x Iy, rather than I]@, where M,..., My € N might be distinct. It
has been shown that ECC and the related Schaake shuffle can be interpreted as discrete
copula-based approaches. As mentioned before, many established postprocessing methods
scattered in the literature can be regarded as special cases of the overarching ECC scheme.
Due to our theoretical results, a unifying interpretation of these approaches in terms of dis-
crete copulas is available. A future goal is to put the ECC variants discussed in this thesis
into the discrete copula frame. For instance, it is desirable to develop theory for case of the
ECC modification applicable to ensembles comprising non-exchangeable members, raising

new questions on the combination of discrete copulas.

copulas defined on I%, := {0

The standard ECC approach employs samples from univariate predictive CDFs obtained
by postprocessing, which are then reordered according to the rank dependence structure of
the raw ensemble, and can deal with high-dimensional settings. As noted before, parametric
multivariate postprocessing methods in contrast typically perform well in low-dimensional
or highly structured scenarios, where they often only apply to specific cases, such as for
particular weather variables. To exploit the benefits of both concepts, we have proposed a
generalization of ECC using Low-Dimensional Postprocessing, referred to as the LDP-ECC
approach, in which samples from possibly multivariate distributions are aggregated in an
ECC-like manner. In this context, we have examined notions of multivariate quantiles, with
questions on optimal sampling still being open. Variants of LDP-ECC differing in the un-
derlying multivariate ranking characteristic have basically proven to be promising in a case
study dealing with (u,v)-wind vectors.

In addition to ECC and its modifications and generalizations, we have proposed the Sim-
Schaake approach, which combines similarity-based ensemble methods with the idea of the
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Schaake shuffle. In particular, appropriate similarity measures are employed to identify
comparable past forecast cases, and the correlation structure of the corresponding verifying
observations is transferred to postprocessed samples to get the final SimSchaake ensemble.
In contrast to the case of standard ECC, the size of the SimSchaake ensemble does not
need to equal that of the raw ensemble. In a case study, two distinct SimSchaake ensembles
basically showed a good predictive performance by outperforming a postprocessed ensemble
depending on a random selection of the corresponding past forecast cases in the historical
record and being able to compete with the standard ECC-Q ensemble. Likely, the predictive
performance of the SimSchaake variants could be further improved if the underlying histor-
ical weather database was larger. Hence, the conduction of a similar case study comprising
much more historical data in a future work would be appreciated.

The field of probabilistic forecasting in general and the key application of statistical ensem-
ble postprocessing in weather prediction settings in particular have been rapidly developing
over the last decade. While the corresponding concepts and approaches are well established
in the univariate case, the focus of recent and current research is on multivariate questions
dealing with dependence modeling. This thesis has made a contribution to this highly criti-
cal subject, but as indicated there are still many open questions, both from a theoretical and
an applied perspective. Specifically, the development of further sophisticated multivariate
postprocessing methods and the design of new verification tools for multivariate scenar-
ios (Scheuerer and Hamill, 2014) are topics for ongoing work, with a lot of progress to be
expected in the coming years.
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