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Abstract

Recent data acquisition techniques permit an improved analysis of living organisms. These tech-
niques produce 3D+t information of cell developments in unprecedentedly high resolution. Bi-
ologists have a strong desire to analyze these cell evolutions in order to find similarities in their
migration and division behaviors. The exploration of such patterns helps them in understanding
how cells and hence organisms are able to ensure a regular shape development. However, the
enormous size of the time-dependent data with several tens of thousands of cells and the need
to analyze it in 3D hinder an interactive analysis. Visualizing the data to identify and extract
relevant features provides a solution to this problem. For this, new visualization approaches
are required that reduce the complexity of the data to detect important features in the visual
analysis.

In this thesis, novel visual similarity analysis methods are presented to interactively process
very large 3D+t data of cell developments. Three main methods are developed that allow differ-
ent visual analysis strategies. The usefulness of them is demonstrated by applications to cells
from zebrafish embryos and Arabidopsis thaliana plants. Both data sets feature a high regularity
in the shape formation of the organs and domain experts seek to research similar cell behaviors
that are responsible for this development. For example, the identification of 3D division behav-
1ors in plants is still an unresolved issue. The first method is a novel visualization approach that
can automatically classify cell division types in plant data sets with high memory and time ef-
ficiency. The visualization is based on the generation of newly introduced cell isosurfaces that
allow a quantitative and spatial comparison of cell division behaviors among individual plants.
The method is applied to cells of the lateral root of Arabidopsis plants and reveals similar di-
vision schemes with respect to their temporal order. The second method enables a new visual
similarity analysis for arbitrary 3D trajectory data in order to extract similar movement behav-
iors. The algorithm performs a grouping of thousands of trajectories with an optional level of
detail modification. The clustering is based on a newly weighted combination of geometry and
migratory features for which the weights are used to emphasize feature combinations. As a re-
sult, similar collective cell movements in zebrafish as well as a hitherto unknown correlation
between division types and subsequent nuclei migrations in the Arabidopsis plants are detected.
The third method is a novel visualization technique called the structure map. It permits a com-
pact and interactive similarity analysis of thousands of binary tree structures. Unique trees are
pre-ordered in the map based on spectral similarities and substructures are highlighted accord-
ing to user-selected tree descriptors. Applied to cell developments from zebrafish depicted as
trees, the map achieves compression rates up to 95% according to spectral analysis and facili-
tates an immediate identification of biologically implausible events and outliers. Additionally,
similar quantities of feature appearances are detected in the center of the lateral root of several
Arabidopsis plants.






Zusammenfassung

Moderne Datenaufnahmetechniken erlauben eine verbesserte Analyse von lebenden Organis-
men. Diese Techniken liefern 3D+t Informationen von Zellentwicklungen in bisher unerreicht
hoher Auflosung. Es ist Biologen ein gro3es Anliegen, diese Zellevolutionen zu analysieren,
um Ahnlichkeiten in deren Bewegungs- und Teilungsverhalten zu finden. Die Untersuchung
von solchen Mustern hilft ihnen zu verstehen, wie Zellen und demzufolge Organismen fihig
sind, eine RegelmiBigkeit in ihrer Strukturbildung zu gewéhrleisten. Allerdings erschweren die
enorme Grofe der zeitabhiingigen Daten von mehreren zehntausenden Zellen und die Notwen-
digkeit, eine Analyse in 3D durchzufiihren, eine interaktive Analyse. Die Visualisierung von
Daten, um relevante Eigenschaften erkennen und extrahieren zu konnen, ist eine Losung fiir
dieses Problem. Dafiir werden neue Visualisierungsansitze gebraucht, die die Datenkomplexi-
tit verringern, um wichtige Merkmale in der visuellen Analyse erfassen zu kdnnen.

In dieser Doktorarbeit werden neuartige visuelle Ahnlichkeitsmethoden vorgestellt, um sehr
grofe 3D+t Zellentwicklungsdaten interaktiv verarbeiten zu konnen. Hierzu werden drei Me-
thoden vorgestellt, die verschiedene visuelle Untersuchungsarten unterstiitzen. Der Nutzen die-
ser Methoden wird anhand von Analysen auf Zelldaten von Zebrafisch-Embryos und Arabi-
dopsis thaliana Pflanzen demonstriert. Beide Datensidtze weisen eine hohe Regularitiit bei der
Organbildung auf und Fachexperten streben nach der Erforschung von dhnlichem Zellverhalten,
das fiir diese Entwicklung verantwortlich ist. Zum Beispiel ist die Identifikation von dreidimen-
sionalem Teilungsverhalten in Pflanzen noch immer ein ungeldstes Problem. Die erste Metho-
de ist ein neuartiger speicher- und zeiteffizienter Visualisierungsansatz, der eine automatische
Klassifikation von Zellteilungstypen in Pflanzendaten ermdglicht. Hierfiir werden sogenannte
Zellisoflichen eingefiihrt, die einen quantitativen und rdumlichen Vergleich von Zellteilungs-
verhalten in Pflanzen zulassen. Diese Methode wird auf Zellen der Arabidopsis Pflanze bei der
Entwicklung der Seitenwurzel angewandt und fiihrt zu Erkenntnissen iiber RegelmiBigkeiten
beziiglich der zeitlichen Abfolge von Zellteilungen. Die zweite Methode ermoglicht eine neue
Ahnlichkeitsanalyse von beliebigen 3D Trajektoriendaten, um #hnliche Bewegungsverhalten zu
identifizieren. Der Algorithmus fiihrt eine Gruppierung von tausenden von Trajektorien durch,
die optional in ihrem Detailgrad angepasst werden konnen. Fiir das Clustering wird eine Kom-
bination aus geometrischen und bewegungsbasierten Features verwendet, das eine individuelle
Gewichtung von Featurekombinationen erlaubt. So lassen sich dhnliche kollektive Zellbewe-
gungen im Zebrafisch sowie eine bisher unbekannte Korrelation zwischen Zellteilungstypen
und anschlieBender Zellkernbewegung in Arabidopsis Pflanzen erkennen. Die dritte Methode
ist eine neuartige Visualisierung, die als Strukturkarte bezeichnet wird. Diese ermdglicht eine
kompakte und interaktive Ahnlichkeitsanalyse tausender Bindrbaumstrukturen. Biume werden
hinsichtlich spektraler Ahnlichkeiten beziiglich ihrer Form vorsortiert und Substrukturen kon-
nen vom Nutzer durch die Auswahl bestimmter Baumdeskriptoren ermittelt und hervorgehoben
werden. Angewandt auf als Baume dargestellte Zellentwicklungen vom Zebrafisch erzielt die
Strukturkartenmethode Kompressionsraten von bis zu 95% beziiglich der Spektralanalyse und
sie unterstiitzt das miihelose Auffinden von biologisch unglaubwiirdigen Ereignissen und Aus-
reiflern. Zusétzlich werden durch Anwendung der Methode dhnliche Quantitéiten an Featurevor-
kommen im Zentrum der Seitenwurzel mehrerer Arabidopsis Pflanzen entdeckt.
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Chapter 1

Introduction

“Nature knows no pause in progress and development,
and attaches her curse on all inaction.”
— Johann Wolfgang von Goethe, 1749—1832

1.1 Motivation

The movement of objects is an event that can be observed almost everywhere in the world.
Movement of an entity is defined as the physical change of its position in relation to a refer-
ence system which is most commonly the geographical 2D or 3D space. Movement behavior
is analyzed in many research areas such as robotics, Geographic Information Science, envi-
ronmental meteorology, robotics, transportation engineering, environmental meteorology, or
molecular and developmental biology. More and more interest has arisen in the analysis of
these movements to gain knowledge about collective behavior, patterns and similar properties.
Most of this data is generated, processed and analyzed in 2D but only little research has been
done in the investigation of 3D movement data. In developmental biology, domain experts
aim to explore plenty of 3D+t cell developments to exploit information of similar cell behav-
tors [HI'W12]]. This cell data used to be only accessible in 2D via microscopic images which
may lead to wrong interpretations or missing facts about growth, cell migrations and cell divi-
sions. However, a valid examination of certain division behaviors can only be achieved in 3D
when orientation and position properties of cells are considered. Similarly, domain experts re-
quire an analysis in the same 3D space from which the cell data originates. This analysis allows
an adequate exploration of cell migrations to formulate hypotheses. Hence, a visual analysis in
3D is required that features a comprehensive representation, e.g. visualization to process very
large 3D+t data sets. However, the interactive visualization of tens of thousands of cells is a
challenging task. While there are many approaches that are designed to deal with 2D move-
ments, they are mostly not suited for the analysis of 3D data. Furthermore, a three-dimensional
visualization of all cell entities may complicate the interpretation of the visual results. For these
reasons, new interactive visualization approaches are required that reduce the complexity of
huge data sets such that relevant information is readily identifiable.

In this thesis, I present new interactive visualization methods for exploring plenty of 3D+t
cell developments. These methods permit the analysis and detection of similar cell divisions
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and cell migrations using different visual data representations. I demonstrate the usefulness of
my methods applying them to model organisms of the zebrafish embryo and the plant model
Arabidopsis thaliana. In the following, I describe the process of how visualization can help in
the analysis of this data followed by background knowledge of the used biological data. After
this, I describe the contributions of my work.

1.1.1 The Role of Visualization

Visualization offers one way to analyze large data sets. It is the presentation of data in such
a way that it enables an efficient analysis and interpretation of information concealed in the
data. For this purpose, data entities are transformed into graphical features such as geometrical
objects, charts, maps or diagrams. Shneidermann [Shn96, p. 2] describes the data exploration
process with the commonly known information seeking mantra: “Overview first, zoom and fil-
ter, then details on demand”. However, when working with extremely huge and complex data
sets, adhering to interactivity and overview is a challenging task. In the research area of vi-

Visual Data Exploration
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Figure 1.1: Visual analysis process (Figure taken from Keim et al. [KKEM10, p. 10]).

sual analytics introduced by Wong and Thomas [WTO04], data mining techniques are used to
cope with this very large data. A definition is given by Keim et al. [KKEM10, p. 7]: “Visual
analytics combines automated analysis techniques with interactive visualizations for an effec-
tive understanding, reasoning and decision making on the basis of very large and complex data
sets.” Thus, automatic tools and techniques are established in order to support people in gaining
insights from massive and complex data sets in an interactive manner. In the area of visual
analytics, Keim et al. [KMS™08, p. 7] extend the above data processing mantra by the appli-
cation of automatic analysis methods: “Analyze first - show the important - zoom, filter and
analyze further - details on demand”. This indicates that a visualization only used as a visual
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metaphor is not enough to handle large data sets. Instead, a focused analysis of data of interest
is required providing further possibilities for interactions on demand. Figure [I.1]illustrates an
abstract overview of the visual analysis process. In most cases, the raw data (blue) has to be
preprocessed before it is suited for a visual analysis. Among other transformations like data
cleaning or normalization this also includes extracting portions of the data selected by the user
to focus the analysis on relevant information. This type of preprocessing is also required for
the 3D+t data of the model organisms in this thesis. The required steps (segmentation, tracking,
feature extraction) are explained in detail in chapter [3] The analysis continues either directly
with an interactive visualization (red) of the data or with performing an automatic data mining
approach resulting in models (green). In case the analysis starts with a visualization, automatic
methods are used to confirm hypotheses by building models combined with user interaction. If
an automated approach is chosen first, parameters of the generated model can be steered using
a visualization of the model. In summary, the visual analysis process is a combination of visual
data exploration, automatic data analysis and the repeated interaction between visualization and
model that results in gained knowledge (yellow). I apply this successive process to analyze
large 3D+t cell development data and to detect similarities of cell behaviors.

1.1.2 Biological Data

Recent advances in 3D+t data acquisition methods in developmental biology allow a fun-
damentally new access to the analysis of cell developments in embryos. The use of high-
resolution light-sheet fluorescence-based live imaging [KSWSO08|] enables biologists to fol-
low single cells during the embryogenesis, i.e. the process by which the embryo forms and
develops. The analysis of cell developments facilitates the generation of complete cell lin-
eages [KSWSO08, OLOD™T10]. A cell lineage [ChiOl] is the visualization of a single cell evo-
lution in a binary tree structure. This lineage tree represents all biological events of such a
cell and is referred to as a cell fate map. Fate maps allow the investigation and observation
of individual cell developments from an early embryo to various tissues in particular regions
of the adult organism. The choice of a cell’s fate and consequently its identity influences all
properties of its behavior such as morphology, migration, and proliferation. For example, liver
cells are specialized in detoxification, muscle cells in contraction, neurons in electrical activity,
and white blood cells in immunity [FurlO]. However, the cell lineages depend strongly on the
quality of the segmentation and tracking process in which individual cells are detected in the
raw data and tracked over time. The set of cell lineages (lineage diagram) can often be defective
featuring biologically implausible events like immediate subsequent cell divisions. A similarity
analysis of these cell lineages can be used for two purposes: First, the detection of patterns
yields important insights of cell developments sharing similar fates. This supports domain ex-
perts in understanding how cells are organized and structured. Second, a similarity measure
helps identify erroneous substructures in tracked cell developments. Finding patterns can either
be used to exclude them from further analysis or to explore their origins in the imaging process.

Common model organisms for research are the zebrafish (Danio rerio), frog, mouse, chick,
fruit fly, and worm in animal biology or the Arabidopsis thaliana in plant biology. The zebrafish
has several advantages for cellular studies of vertebrate embryonic development. It features a
short generation time of few months and produces up to 200 embryos per mating. The em-
bryos are transparent throughout the early development which permits monitoring and analysis
of all morphological events. In addition, the zebrafish can be used as models of a wide variety
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of human diseases [LCO7]. The transparency also allows microscopic data acquisitions and in
combination with injection of tracer dyes the generation of cell lineages and 3D+t cell devel-
opment data [Kell3, IKSWSO0S]. In the zebrafish, cell migration and acquisition of a specific
cellular identity (fate) are interlinked. Fate decisions can result in a certain cell migration while
the fate itself can be influenced by the position of the cell within the developing embryo. To
understand the logic articulating fate acquisition and cell migration, an analysis of cell migra-
tion patterns is required. The plant model Arabidopsis thaliana has a small size and a rapid
life cycle and can produce several thousands of translucent seeds making them well-suited for
cell imaging with fluorescence microscopy. Unlike animals, plants constantly form new organs
throughout their lives and the shapes of these organs follow a high regularity. This robustness
contrasts with the unparalleled ability of plants to adapt their growth to a highly variable envi-
ronment, a process called plasticity. For biologists, there is a need to understand how the plant
is able to cope with both plasticity and robustness. These phenomena can be investigated on a
cellular scale by analyzing similar cell migrations as well as cell division patterns to understand
how the plant is able to manage its regular shape development. In contrast to animals, there
is no movement of plant cells but only intracellular nuclei displacements over time. The plant
cells are firmly attached to each other and the shape of the plant results only from cell divisions
and cell growth. Recently, 3D+t cell data of lateral roots of the Arabidopsis plant has been
acquired [MvWE" 11, vWDL™14] that is used in this thesis to demonstrate the usefulness of
my methods.

1.2 Contributions

The contribution of this thesis is the development of novel visualization methods that permit
a similarity analysis to interactively process very large amounts of 3D+t cell developments.
The usefulness of the methods is demonstrated by applications to cells from zebrafish and Ara-
bidopsis data sets. I perform the analysis on two different visual representations to illustrate
migration information: 3D Cell trajectories and 2D cell lineages. A trajectory (geospatial life-
line) describes the path of a moving entity in space with respect to time. More precisely, it is
defined by a mapping from a set of time steps to positions in space. Structural properties are an-
alyzed in 2D cell lineages which were explained above. Both visualization types originate from
the same data but they provide different interpretation possibilities to investigate cell migrations
and cell divisions in a completely new way. The visualization methods enable the detection of
expected behavior as well as the identification of unexpected similarities and correlations. The
following list gives a detailed overview of the three methods and their contributions:

e Primarily designed for plant data sets, I developed a novel automatic classification algorithm
(see chapter [)) that can distinguish between three cell division types (anticlinal, periclinal,
radial) occurring during the growth of lateral roots. The classification is realized in less
than one second with a space usage smaller than one MiB. It is based on the generation of
newly introduced 3D triangulations called cell isosurfaces that are formed by nuclei posi-
tions. These colored surfaces represent the developing shape of the lateral root in each time
step. The surface color refers to its isovalue which is the frequency of periclinal divisions
for all associated cells. The triangulation is realized using alpha shapes to approximate the
tissue growth of the lateral root. The algorithm determines the division type of a cell by
comparing the angles between the division orientation and the vertex normal of the associ-
ated cell’s isosurface. The angles are then compared to user-selected thresholds to define
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the type of the division. The visualization of the isosurfaces allows a geometric and spa-
tial comparison of periclinal divisions among several plant data sets. These divisions are of
high biological interest because they are mainly responsible for the lateral root growth in
height. The results are analyzed in 3D with a color-coded lineage diagram and additional in-
formation of division sequences. As a result for a set of Arabidopsis plants, similar division
schemes with respect to their temporal order are identified.

e [ created a novel visual similarity analysis method for 3D+t cell trajectories [FHWL12] de-
scribed in chapter[5] The similarity measure is based on a weighted combination of geomet-
rical and migratory features. These weight parameters are checked for cluster stability and
permit a new analysis approach to emphasize specific combinations of features. For each
pair of trajectories, the geodesic distances between spherical coordinates of migration direc-
tions as well as differences of cell cycle lengths and velocities are computed. Additionally,
the coupling distance [EM94b] is determined in order to compare the shapes of a pair of
trajectories. All these features are used to capture similar migration behaviors and have not
been used before in this combination. The results are stored in a similarity matrix that is
processed in a hierarchical clustering approach with computation times of a few seconds and
a space usage of at most 30 MiBs for the investigated data sets. The analysis of trajectory
data is improved by omitting outliers and by applying a level of detail approach. Color-coded
trajectories are displayed in 3D to inform the user about clusters of trajectories with coherent
cell motions. More information is given in a dendrogram in which the cluster hierarchies
are presented. An additional lineage diagram represents the colored cluster memberships of
individual cell migrations. The method is applied to both model organisms but it can be used
to analyze any kind of trajectory data. For the zebrafish, similar features of cell trajectories
are detected. For the Arabidopsis data, the visualization allows the identification of a hitherto
unknown correlation between the cell division orientations (generated with the first analysis
method) and subsequent nuclei displacements.

e I developed a new visualization method called the structure map [FHR'15]] explained in
chapter [6] It enables an interactive overview and comparison of similar structures and fea-
tures in thousands of trees. This map is a matrix-based 2D visualization in which unique
trees in squared tiles are arranged in a compact and uniform design. The trees are ordered in
a few seconds using principal component analysis based on the similarities of tree spectra,
i.e. the set of eigenvalues. The ordered trees are then aligned using a space-filling Hilbert
curve. The structure map features both a global analysis based on user-selected tree de-
scriptors and a local investigation of these descriptors in each single tree structure. The
similarities of trees are indicated by color-coded tiles while individual substructures within
the trees are highlighted in another color. The map can be used to visualize any kind of tree
data or even graphs but I focus on cell lineages from the zebrafish and Arabidopsis data sets.
Descriptors can be set arbitrarily. To answer specific questions in this area, I defined them
in a way suitable to analyze biological events. The descriptors can be steered by the user
with an immediate visual feedback of the colored map and the highlighted structures. For
the zebrafish data sets, the map features compression rates between 82% and 95% according
to spectral analysis. As a result, substructures and outliers that are biologically implausible
can be identified immediately (see also video [FHR™14]). For the Arabidopsis plants, plenty
of similar features are observed in a specific region within the lateral root called the master
cell file introduced later.
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All presented methods are integrated into the visualization software Scifer
(http://www.scifer.info) that is developed in the Computer graphics and Visualization
group (CoVis) of Prof. Dr. Heike Leitte in Heidelberg University. This software is designed
for the interactive analysis of scientific data and to cope with large 3D+t data [LFL™12]. It is
written in C++, using OpenSceneGraph (http://www.openscenegraph.org/) as a graphics toolkit
and Qt (http://qt-project.org/) for the user interface.

1.3 Overview of Thesis

The thesis continues with related work and a description of all preprocessing steps. Afterwards,
all three visual analysis methods are described in detail followed by a concluding discussion.
The following enumeration gives more information about each chapter.

In chapter 2] I provide an overview of existing work related to this research. Because two
different visualization types are used to display cell developments (cell trajectories and cell
lineages), I consider data given as trajectories and tree data. The chapter starts with an overview
of existing visual analysis methods of trajectory data in general. Afterwards, I focus on state-of-
the-art visualization methods for cell trajectories and visual analysis techniques for investigating
tree data from biology.

In chapter [3] I explain the different required preprocessing steps from the living model organ-
isms to the ready-made data sets suitable for the visual analysis methods. These steps consist of
the data acquisition process, the segmentation and tracking of data. Based on that, my contribu-
tion starts with the computation of specific features relevant for the analysis and the definition
of migration terms used in this thesis.

Chapter @] focuses on the first of three visual analysis methods. Mainly designed for plant
data sets, I introduce a novel algorithm to automatically classify the different division types
of the plant cells. This method is applied to several Arabidopsis data sets and the results of
the division schemes are compared with each other. The division types are further used as an
additional feature for the other two visual analysis methods to gain more knowledge about the
data.

In the following chapter |5} I introduce the second method that provides a similarity analysis
of 3D cell trajectories. Prior to the visual analysis, a method for modifying the level of detail
can be applied to the trajectories in order to reduce data complexity and to focus on certain
migration properties. The similarities based on combined migratory and geometrical features
are computed and used in a hierarchical clustering approach. The performance as well as the
cluster validity of the algorithm are examined before its usefulness is verified by applications to
the zebrafish and Arabidopsis data sets.

Chapter [6] presents the third visual analysis method that focuses on the similarity analysis of
thousands of tree structures. I introduce the new visualization method called the structure map
and the underlying methods: Spectral analysis, principal component analysis, and alignment of
trees using a Hilbert curve. The identification of features in trees is based on user-selected tree
descriptors. I explain the functionality of the map, discuss its performance analysis, and present
its application to the zebrafish and Arabidopsis data sets.
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In the last chapter (7 I compare the presented methods to existing related techniques and discuss
why I made the corresponding design decisions. These discussions yield ideas for future work

and possible enhancements for the methods.






Chapter 2

Related Work

’

“The knowledge of all things is possible.’
— Leonardo da Vinci, 1452—-1519

The visualization and analysis of movement behavior can yield new insights and improvements
in many areas. Examples are new optimization strategies of transportation routes, the analysis
of atmospheric phenomena, or a better understanding of biological events in model organisms
and eventually in human beings. Recently, more and more effort has been spent on the visual
analysis of characteristics and similarities of moving objects. Especially in developmental biol-
ogy, depending on the studied organism, the systematic similarity analysis of 3D+t cell behavior
in an entire embryo requires the visualization of thousands of cell positions. The visualization
of such huge time-dependent data is a challenge for each visualization method. However, the
interactive access to this kind of data is a fundamental requirement for users to investigate the
underlying structure of movement data.

2.1 Visual Analysis of Trajectory Data

The movement information is commonly visualized by two approaches: It is shown as a trajec-
tory rendered by a simple polygonal line in which the time-dependent positions are plotted in 2D
or 3D. The additional time parameter is either ignored or given as a feature for each individual
position. This type of visualization is predominantly chosen for the visualization of 2D traffic
or transport data on road maps, for example. Although the pure visualization of trajectories
gives an intuitive representation of the movement data, it often suffers from overplotting which
is the plotting of data on top of a previous plot. The second approach that is applied in the area
of developmental biology is the visualization of a cell development in a binary tree structure
called a cell lineage [Chi0O1]. Read from top to bottom, the cell development with migrations or
divisions is illustrated by nodes with one or two siblings, respectively. While this tree structure
allows a direct comparison of cell developments over time, the corresponding position infor-
mation of cells is missing. Both visualization approaches (trajectory and cell lineage) can be
analyzed with different types of similarity measures. In this thesis, I use both visualizations in
order to analyze similar cell migration behavior.

9
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The similarity analysis of trajectories can be classified into two categories: Complete and
partial similarity [DLM'98]. The first one denotes the matching of complete trajectories of
same length considering each one as a single unit. The second term refers to a pair of trajecto-
ries with different lengths that are compared by finding the best match of a subsequence of one
trajectory in the other one. The cell trajectories in this thesis are defined as the cell migration
range between subsequent cell divisions (Section [3.5) and therefore, I focus on the similarity
analysis of complete trajectories. Through this, biologists can compare complete cell cycle
lengths instead of partial cell migrations. A similarity measure can be defined by a distance
function that quantifies the similarity between two trajectories. In literature, there are a lot of
different distance functions determining the spatial similarity between trajectories. Overviews
are given by Dodge [DodI1, p. 21-36] and Wang et al. [WSZ™13]. In this thesis, the values
of such a function are mapped to [0, 1] with zero defining a perfect match and one represent-
ing highest dissimilarity. Several features can be taken into account for the computation of
similarity. Dodge et al. [DWLO8] present a conceptual framework for the properties and clas-
sification of different moving objects and movement patterns. For the movement parameters,
they distinguish between primitive parameters such as the position, primary derivatives like
direction, velocity, and length/duration of a movement, and secondary derivatives, e.g. sinuos-
ity or acceleration. After discussion with domain experts, I focus on primitive parameters and
primary derivatives such as shapes, durations, dynamics of speed, and directions of movements
to quantify the similarity between cell developments.

There are a lot of visualization methods that focus on the investigation of 2D traffic and
transport trajectories drawn on top of a geographical map. Andrienko et al. [AA13] give an ex-
tensive overview of different approaches and tools used for the visual analysis of traffic move-
ment data. Common choices are static and animated maps [AAGOO]. The animated map fea-
tures a focused visualization based on an user-selected time filter. These maps can be extended
by a space-time cube (STC) [Kra03] (left image in Figure 2.1). Here, the third dimension on
top of the map is used for the time parameter, permitting an analysis of trajectories for different
time intervals. However, using STC does not scale well to thousands of cell trajectories from
biology. Tominski et al. [TSAA12]] use animated maps and include them in a hybrid 2D/3D
display. On top of a 2D geographical map, trajectories are visualized as stacked bands colored
based on their attribute values (right image in Figure[2.1). They combine this with a time graph
showing the dynamics of the trajectories and their properties at different time ranges. In addi-
tion to the limitation to 2D trajectories the coloring allows only a limited view of movement
characteristics which is not suitable to investigate cell developments.

Spretke et al. [SBJ™11]] introduce a visual interface called Animal Ecology Explorer for the
analysis of 2D animal trajectories on top of a static map. Multiple trajectories are rendered
with different colors illustrating various types and properties of movements. They use brushing
and linking which is the connection of several views of the same data in such a way that an
interactive change in one view affects the representations in all other views. Through this, they
can cross-compare animal movements with additional attribute information given in line charts.
However, these visualizations often suffer from visual occlusion and overplotting problems. In
order to reduce these negative effects they use k-means [For63]] clustering applied to movement
features to draw simplified 2D trajectories with less overplotting in a second map visualization.
Several features such as speed, distance, and duration are computed for which the user can
define range parameters to split trajectories for detailed events of interest. These features and
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Figure 2.1: Examples for using the third dimension as a time parameter. The left image shows an
interactive space-time cube (STC) of ship trajectories with 20% opacity colored by ship types (Figure
taken from Andrienko and Andrienko [AAT13] p. 4]). The right image shows stacked bands representing
trajectories colored by velocities (Figure taken from Tominski et al. p- 7.

the usage of range parameters are also relevant for analyzing cell trajectories but their method
does not scale to thousands of trajectories and their visualizations have no support for the third
dimension to investigate cell migration data.

Multiple Views of Movement Data

Other visual analysis techniques provide a combination of multiple views. Wang and
Yuan [WY14] introduce time line visualizations of 2D trajectories in order to better compare
several movement properties. They focus on the comparison of geometry features such as ve-
locity, curvature, straightness and a measure for the contributions of turns of a trajectory. The
results are visualized using static maps, heat maps, and scatterplots. The time lines are gener-
ated for each computed feature and realized in a 2D heat map and a 3D terrain visualization.
These can be sorted based on similarity to reveal similar feature patterns. However, their method
is not designed for 3D trajectories and the terrain visualization is hard to interpret for several
hundreds of movements. Liu et al. develop an analysis technique to investigate the
route diversity of taxi drivers and to compare different routes. They compute the diversity using
a statistical entropy formula. Their system consists of four visualizations providing information
about global and local route diversities with heat maps as well as a so-called trip view to com-
pare source/destination trajectories and a road view to analyze the diversity through a specific
road. The multiple displays provide more user flexibility to analyze the data. However, the sys-
tem is not suited for large data sets from biology because of increasing visual clutter problems.
Furthermore, the diversity computation is only designed for static routes.

Hurter et al. [HT'CQ9] present FromDaDy for the exploration of aircraft trajectories (left
image in Figure [2.2)) using visual designs like scatterplots, brushing, pick and drop, and juxta-
posed views. Users can set a visual configuration by brushing and picking a region or trajectory
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Figure 2.2: Examples for visualizing 2D trajectory data. The left image shows aircraft trajectories
over France colored by a gradient from green to blue that represents the altitude (Figure taken from
Hurter et al. p. 2]). The right image illustrates traffic trajectories colored by type with an
additional circular histogram (Figure taken from Guo et al. p- 4D.

of interest. The selection can be dropped into a new view for detailed investigation. While
the system incorporates a lot of features for the visual analysis of 2D movements, it is not ap-
propriate for processing 3D cell trajectories. Furthermore, the interpretation gets complicated
due to overplotting. Guo et al. present an interactive visual analytics system called
Triple Perspective Visual Trajectory Analytics (TripVista). They combine three different per-
spectives showing spatial, temporal and multidimensional views of the trajectories. They use
additional visualizations showing scatterplots and parallel coordinates for the purpose
of analyzing traffic trajectory data in a region of interest. This region is further analyzed by cir-
cular histograms (right image in Figure 2.2). However, their analysis is limited to a static area
and does not include any automatic approaches to detect relevant features which is required to
process a huge set of cell migrations.

Clustering of Movement Data

In order to cope with large data sets, data mining techniques are used to group trajectories
based on movement-based parameters. Andrienko et al. [AAWO07] develop an interactive visual
framework for the analysis of car and truck movements. They use the density-based clustering
algorithm OPTICS in order to group similar trajectories based on user-selected fea-
tures. The clustering methods is based on neighborhoods of elements defined by user-selected
radii. To simplify the visualization, they use different thicknesses for trajectories that corre-
spond to the number of movements with similar directions. In order to apply different distance
functions for the similarity measure, Rinzivillo et al. extend the work and introduce
the procedure of progressive clustering where a different distance function is used for several
cluster steps applied to a sub cluster. Through this, the resulting structured trajectories or clus-
ters can be further refined. Andrienko et al. refine the visual analysis framework
by integrating event clustering of relevant places and the analysis of the aggregated data. For
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trajectories, the flow commonly indicates the aggregates movement between the start and end
positions of a trajectory (left image in Figure[2.3). The density-based clustering approach could
also be applied to cell trajectories but a hierarchical clustering is chosen because biologists
are interested in the hierarchy structure of merged cell developments. Furthermore, these ap-
proaches are limited to the analysis of 2D trajectories on top of maps.
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Figure 2.3: Examples of clustered movement data and density fields. The left image shows an
example of two clusters (yellow and green dots) grouped based on direction and position that represents
two different landing directions of planes (Figure taken from Andrienko et al. [AAH™13, p. 11]). The

right image shows density fields of vessel movements around the coast of Norway (Figure taken from
Lampe et al. [LKHI10, p. 2]).
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In another approach, 2D trajectory data can also be grouped spatially into continuous den-
sity fields (right image in Figure [2.3)) as it is done by Willems et al. [WvdWvWO09]. They
visualize the fields by illuminated height maps using a kernel density estimation (KDE) method
applied to trajectories of vessels. They combine two fields with a large and small kernel to give
both an overview of area movements and details of speed variations. Lampe et al. [LKH10] ex-
tend this work using a GPU-based implementation and interactive views. Their idea is that the
analysis is performed through an iteration of different views to compare attributes such as time,
type, and speed. They use a combination of multiple views for each day of a week, histograms,
and scatterplots to analyze frequency-based vessel movements. Density maps are well-suited
for the visualization of transport behavior of frequently used routes. However, they cannot be
applied to 3D cell trajectories because cells can move arbitrarily in the developing embryo fol-
lowing no specific route. This behavior will complicate the visual analysis of many generated
density fields.

2.2 Visualization of Cell Trajectories

All analysis approaches explained above are based on 2D trajectory data. The interpretation
and analysis of this data is often supported by including road maps. This processing can also be
transferred to the analysis of biological cell data to a certain extent. For example, in the 2D case,
a projection of the microscopic raw data can be placed underneath the digital cell data or trajec-
tory to provide an overview of cell positions among the organism. In this context, Peng [Pen08]]
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gives an overview of the advances in the area of bioimage informatics, including applications,
techniques, visualizations and tools. He points out that an interactive system is required for ac-
cessing large-scale biological data. O’Donoghue et al. and Keefe et al.
further present central requirements of a visualization software to process biological data: Us-
ability, visual analytics, and multi-scale representation.

ventral

Figure 2.4: Examples of visualizing 3D+t trajectories. The left image shows a split view of colored
cell migrations and a maximum intensity projection of the microscopy zebrafish data (Figure taken from
Khairy and Keller p- 8]1). The top right image illustrates the cylindrical coordinate system for
the Drosophila while the image at the bottom right shows cell trajectories colored by their temporal
appearances (Figures taken from McMahon et al. p. 6-7)).

There are several analysis systems for 2D cell trajectories generated from microscopic
movie data. Walter et al. present a framework in which they study cellular pheno-
typic kinetics in genes. They use segmentation to detect single nuclei from raw movie data and
extract several features for each cell. They further apply hierarchical clustering using Ward’s
method based on the Euclidean distances between starting, middle and end points of the tra-
jectories. Additionally, the cells are classified into morphological classes such as interphase or
cell death. This classification is then visualized in a time series representation to observe the
occurrence of cell classes over time. However, their framework is based on 2D data and the sim-
ilarity analysis is limited to position information of trajectories. Costa and Schubert [dFCS03]]
introduce another framework of measurements to characterize 2D cell trajectories given by a
movie. They focus on the behavior of individual cells, the interaction between a pair of cells
and the interaction of a cell with its environment. For this purpose, they consider properties
like the displacement effectiveness, the maximum dispersion or instant attraction of trajecto-
ries. But their method does not consider 3D cell trajectories and additional features such as
their shapes. Slater et al. [SLM13]] present a visualization to analyze collective cell migrations.
They visualize 2D human cell trajectories as streams colored by their motion directions in the
process of wound healing. In order to detect collective behavior they compare the angle of dis-
placement of surrounding cells to the angle of displacement of the comparison cell. If the angle
is smaller than a certain threshold both cells are designated as correlated. The visualization can
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handle thousands of cell trajectories but their similarity analysis is limited to the observation of
directions in a bounded neighborhood which is not suited for a similarity analysis of different
features all over the embryo.

Only very little research has been done in the visual analysis of 3D trajectories. Espe-
cially in developmental biology, domain experts are interested in the development of cells in
the complete embryo. The reason for the lack of visual analysis methods in this area is due to
missing of prior techniques to generate this 3D+t data. Additionally, the creation of interactive
visual similarity analysis techniques for 3D data is a huge challenge. One example for an ex-
isting visualization is the augmentation of the raw data with additional information to obtain
spatial properties of cells. A popular approach is the color-coding of them based on derived
features such as the directions of motion (left image in Figure |[2.4) as it is done for the early
zebrafish embryo [KSWS08, KK11]. However, this representation does not allow any similarity
analysis between individual cell movements. McMahon et al. [MSESO8] investigate collective
cell migrations in the fruit fly embryo called Drosophila. Based on the geometry of the model
organism, they use a cylindrical coordinate system to compute and visualize the motion direc-
tions of 3D cell trajectories (right image in Figure 2.4). However, their quantitative analysis
is designed for the Drosophila and thus it cannot be easily applied to any other model organ-
isms. Langenberg et al. [LDO™06] develop a tool called TracePilot that enables the interactive
manipulation and visualization of tracking data. They investigate 3D+t cell movements in the
developing zebrafish brain which are illustrated by moving spheres colored by four different
group assignments. The tool allows an investigation of single cell displacements but it does not
feature any similarity analysis methods applicable to cell trajectories.

2.3 Visual Analysis of Tree Collections in Biology

In developmental biology, cell developments are commonly depicted as cell lineages (binary
trees). Thus, in order to explore them, similarity analysis techniques for tree structures are
required. Landesberger et al. [VLKS™11] present a general review of available state-of-the-
art methods for the visual analysis of large graphs. The visualization of trees (static graphs) is
usually simpler than the one of general graphs. In this context, Ziemkiewicz and Kosara [ZKO08]]
point out that the applicability of a certain tree visualization depends not only on the task,
but also on the formulation of the task assignment. Graham and Kennedy [GK10] as well as
Schulz [Schll] give extensive reviews about visualizations for single trees, pairs of trees and
multiple tree collections. For the visual analysis of cell lineages in particular, only few work
has been done.

Cedilnik et al. [CBI"07] propose a visualization framework, called Titan project, for the
visualization and validation of 2D lineage data from the roundworm Caenorhabditis elegans
(left image in Figure [2.5). They combine linked cell lineage visualizations and volume ren-
dering of the microscopy data for a concurrent investigation of both data modalities. However,
their system is not designed for the visual analysis of thousands of cell lineages and they do not
support any analysis methods to compare different features of cell tracks. In a similar approach,
Boyle et al. [BBMT06] present a visual analysis system called AceTree to track expression
of genes. The visualization links annotations and images in cell lineages of the nematode C.
elegans. In an additional 3D view, nuclei are drawn as spheres and colored by their gene expres-
sion. Zhao et al. [ZBBT08] extend the analysis by comparing C. elegans with the closely related
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worm C. briggsae. But also their visualizations do not scale to thousands of cell lineages which
prevents a direct comparison of trees. Furthermore, both aforementioned systems are limited to
single features that are color-coded in the cell lineages.
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Figure 2.5: Examples of visualizing and comparing tree structures from biology. The left image
shows a cell lineage tree of the worm Caenorhabditis elegans colored by the temporal development
(Figure taken from Cedilnik et al. [CBIT07, p. 8]). The right image shows a visual analysis system for
comparing phylogenetic trees. The visualization consists of a color-coded matrix, a set of histograms
and detailed tree representations of selected trees (Figure taken from Bremm et al. [BVTLH™ 11, p. 7]).

Further approaches less related to cell lineages but nevertheless interesting are presented
for phylogenetic trees. These are of high interest for cell biologists [PTL"10]. The leaf-labeled
trees illustrate evolutionary relationships among groups of organisms (taxa). One example for
a visualization system is TreeJuxtaposer [MGTT03]]. It combines visual analysis of tree dif-
ferences with interactive leaf similarity highlighting. The similarity measure is realized by
associating each node to its most similar (best corresponding) node in another tree. Inspired by
the Robinson-Foulds metric [RE81]], a distance measure between unrooted phylogenetic trees,
they compare two internal nodes according to the sets of labeled leaves underneath them. Al-
though their visualization focuses on highlighted differences in trees using colors, the visual
representation is not suited for a huge collection of cell lineages. Moreover, their similarity
measure is designed for leaf-labeled trees and cannot be applied to unlabeled cell lineages.
Bremm et al. [BVTLH™ 11] present an interactive visual analysis system on multiple levels of
detail (right image in Figure 2.5). They use a set of similarity scores that are geared towards
phylogenetic trees. A reference tree is selected to visualize its difference to all other trees.
These differences are depicted in a color-coded matrix and histograms based on three different
similarity measures: Leaf-based, element-based, and edge-based measure. The leaf-based mea-
sure is the Robinson-Foulds metric mentioned above. They compute an element-based measure
according to the number of partitions in a tree to include information of inner structures. The
edge-based variant considers different lengths of edges. Their system is well-suited for a global
and local comparison of the computed similarity scores and the latter two similarity measures
can also be applied to cell lineages. However, the visual design does not scale to data sets in
developmental biology with many thousands of trees and the selection of tree features is limited.
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2.4 Summary

In this chapter, I presented an overview of available visual analysis methods applied to traffic
and transport data as well as cell trajectories and trees in biology. A lot of research has been
done in the area of geographic information science and transportation engineering. However,
most of these methods are designed for 2D+t trajectories and cannot be applied to the analysis
of cell trajectories in 3D. Far too little research has been done for a visual analysis of 3D+t data.
Due to the fast progress of new data acquisition techniques in developmental biology, there is
a need for interactive visual analysis methods to analyze this data. This means that interactive
visualization methods are required to detect and analyze similarities also for large data sets.
In the following chapters, I introduce new visualization approaches that permit an interactive
visual analysis of these 3D+t data sets. Prior to their explanation, required preprocessing steps
and migration terms are described in the next chapter.






Chapter 3

Data Processing

“The goal is to transform data into information,

and information into insight."”

— Carly Fiorina,

in "Information: The currency of the digital age", 2004

The recent available 3D+t data sets of living organisms contain a wealth of biologically relevant
and quantifiable information such as cell migrations, cell division orientations, cell growth, and
cell rearrangements. Model organisms such as the zebrafish or the Arabidopsis plant are espe-
cially well-suited for experimental manipulation and microscopic observation of these devel-
opments. As already mentioned in Section the fundamental question for developmental
biologists is how in multicellular organisms cells proliferate and ensure the reproducible gen-
eration of accurate shape. The biologists desire a quantitative analysis of the morphogenesis,
i.e. the process that causes an organism to develop its shape, of these multicellular organisms to
extract general principles of underlying shape formations. The investigation of cell migrations
and the analysis of their spatial similarities is an important step towards the understanding of
cell behaviors and their identities.

In order to enable a quantitative analysis of cell migrations and cell divisions in both model
organisms, several preprocessing steps have to be applied to the raw data. These steps are
illustrated and explained in the pipeline in Figure[3.1] The pipeline is novel with regard to the
way how cell paths and cell trajectories are extracted from the data.

3.1 Data Acquisition of 3D+t Biological Data

The biological data sets of both the zebrafish as well as the Arabidopsis are generated us-
ing digital scanned laser light sheet fluorescence microscopy (DSLM) that is developed by
Keller et al. [KSWSOS]]. The main idea of this recording technique is to excite selectively a
small “slice” of the specimen and to detect the light emitted by the excited fluorophores by a
second lens located orthogonally to the first one. Figure [3.2] shows the hardware setting of the
microscopy. The DSLM features several advantages for recording the specimen. For exam-
ple, in contrast to confocal or epi-fluorescence microscopes in which the whole specimen is

19
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Figure 3.1: Pipeline for data processing. (A) The 3D+t raw data is generated by light sheet mi-
croscopy (Section [3.1). (B) The data is segmented either manually or automatically in order to identify
single nuclei (Section[3.2). (C) After segmentation, the cells are tracked manually or automatically and
cell developments are traced (Section [3.3). (D) These cell developments are depicted as cell lineage
trees [[ChiOl]. (E) The segmentation and tracking results are used to compute cell-based and movement-
based features (Section [3.4). (F) Based on the lineage tree structure and computed features, cell paths
and cell trajectories are extracted (Section .

ill-treated, DSLM excites only those fluorophores in the illuminated plane of interest thereby
reducing phototoxicity. In addition, all planes are illuminated with the same intensity which
supports the overall recording of the whole embryo. DSLM also offers a high recording speed
of 63 million voxels per second [KSWSO08]], enabling high temporal resolution recordings that
are essential for cell tracking.

The position of the specimen in the sample chamber is different for zebrafish and Ara-
bidopsis. Keller et al. [KSWSO08, |[Kell3] describe the imaging process of the digital embryo
using the zebrafish as a model organism. Initially, the embryo is put into a glass capillary filled
with microliters of agarose gel. Before the imaging process, the gel containing the embryo is
cautiously pushed out of the capillary. This is required in order to avoid the detection lens as
well as the light sheet to pass through the glass wall of the capillary. The Arabidopsis seedlings
on the other hand, like any other plant type, need sunlight to grow. Thus, they require another
type of specimen chamber which fits the requirements of the development. The detailed imag-
ing process is explained by Maizel et al. [MvWET11]] and Wangenheim et al. [vWDL™14].
In a nutshell, the plant grows vertically with leaves in the air and the root on the surface of
an organ medium. The plant is held in the microscope chamber from the bottom by a capil-
lary. The plant is germinated on half-strength MS medium (named after the invented medium
of Murashige and Skoog [MS62]). Seven days after germination, the seedlings are transferred
to the holder setting for the specimen. The leaves are supplied with a lighting system from
above in order to simulate the sunlight (Figure [3.3|C). The specimen chamber also consists of a
perfusion system that exchanges the whole volume of the chamber every 15 minutes in order to
avoid contaminants and toxic compounds. Analogous to the zebrafish recording, the Phytagel
cylinder is ejected from the capillary during the imaging process (Figure [3.3D).
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Figure 3.2: Digital scanned laser light sheet microscopy. A pm-thin laser beam scans the sample
vertically and excites fluorophores along a single line. The f-theta lens is used to adjust the laser beam
vertically while the tube lens and illumination lens focus it on the sample. The detection lens is perpen-
dicular to the illumination and captures the marked nuclei along multiple directions in such a way that
hidden parts of the specimen are also recorded (Figure taken from Keller et al. p. 1D.

The initial nucleus at the one-cell stage (zygote) of the zebrafish is labeled by an mRNA
injection of H2B-eGFP, a fusion protein of human histone-2B and enhanced green fluorescent
protein (GFP) reporter [KSWSO08]. This process makes it possible to observe cell positions in
the imaging process after a few hours post fertilization (hpf) and injection since the protein
does not take effect immediately. In contrast, the plant is injected with three different markers:
a pan-nuclear marker (pUBI::H2B-RFP), a plasma membrane marker (Wavel31Y) and a lateral
root primordium specific marker (pGATA23::nGFP-GUS). Through this, the cell nuclei as well
as the cell contours can be recorded simultaneously.

The recording time can range from several hours to a few days. The volume of the specimen
is captured along two opposing directions in equidistant time distances. The resulting raw
microscopy data of the zebrafish is stored in a HDF5 (http://www.hdfgroup.org/HDFS) file
format for each time step. This file format is designed for managing large and complex data
sets and can be easily extended by additional information such as segmentation and tracking
information. The Arabidopsis volume data is stored in several TIFF images with z-stacks for
the third dimension for each time step. The following two subsections provide more detailed
information about the two recorded model organisms.

Zebrafish - Danio rerio

Figure [3.4] illustrates the different stages of the zebrafish development. Two time-delayed pe-
riods of the vertebrate zebrafish growth are recorded. The two periods differ significantly in
their cell behaviors. The first period covers the embryogenesis in the early epiboly stages (time
step range indicated by green line in Figure 3.4). The term epiboly denotes the cell migration
of an outer cell layer above an inner cell layer. Epiboly refers to the first coordinated cell mi-
gration event in the zebrafish, in frogs, and many other vertebrate species. Here, numerous cell
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Figure 3.3: Setting of light sheet microscopy for imaging Arabidopsis plants. Image (A) shows the
setting of the required hardware elements of the microscope. (B) shows the specimen chamber that is
filled with water. The fluorophores inside a thin planar volume in the center are excited by sending a
pm-thin Gaussian laser beam inside the specimen. The volume detection is realized perpendicular to
the illumination direction. Image (C) illustrates the configuration of the Arabidopsis seedling within the
chamber. The basal (root) is growing in a Phytagel cylinder located in the water while the apical (shoot)
is situated in the air. A light source is coming from the top to simulate sunlight. Image (D) illustrates the
holder setting used in the imaging process (Figure modified from Maizel et al. p- 2D.
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Figure 3.4: Stages of embryonic development of the zebrafish. The fertilized egg is in the zygote
period (0 — 0.75h) until the first cleavage has occurred after 45 minutes. In the next cleavage period
(0.75 — 2.25h), cells divide at about 15-minutes intervals until the 64-cell stage is reached. The next
stage is called the blastula period (2.25 — 5.25h) in which the blastodisc starts to form ball-like until
the beginning of the gastrulation. The gastrula period (5.25 — 10h) begins at 50%-epiboly and at this
stage cell movements start to generate the primary germ layers and the embryonic axis. The somites, i.e.
the divisions of the body of the animal, develop based on a variety of cell movements followed by the
segmentation period (10 — 24h). Here, the tailbud evolves and the embryo elongates. The pharyngula
period (24 — 48h) refers to the stage in which the embryo evolves similar to other vertebrates. During
the hatching period (48 — 72h), the embryo continues to develop into the early larval stage. The green
line illustrates the recorded time step range of the epiboly data set while the green rectangle shows
an example of the perspective viewing from the top, referred to as animal view. In contrast, the red
line and rectangle indicate the time and region of record of the tailbud data set (Figure modified from

Kimmel et al. [KBK™95, p. 4-7]).
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divisions and less cell migrations occur. Thus, homogeneous cell behavior and numerous stem
cell divisions are expected. Stem cell divisions are commonly classified as being symmetric or
asymmetric. A symmetric division results in two identical stem cells whereas an asymmetric
division generates one stem cell and one progenitor cell. While stem cells can replicate indefi-
nitely, progenitor cells can only divide a limited number of times. Progenitor cells also divide
faster than stem cells. In contrast, the second data set is recorded in a later stage of the zebrafish
development. The initial structure of the fish has already been formed and the tail is growing
(time step range indicated by red line in Figure [3.4)). Here, long cell migrations dominate over
less and slower cell divisions. Note that the time ranges differ significantly between the two
data sets. The reason for the short record time of the tailbud data set is that at this stage the
quality of data acquisition is significantly reduced for several of thousands of crowded cells.

Epiboly Data: The first experimental data set is called the epiboly data set. In Figure 3.3A,
I generated maximum intensity projections (MIPs) of the early events from blastula to early
epiboly stages (=~ 3.5—4.5 hpf). The MIPs are seen from the animal view of the embryo. In
early embryogenesis, the development locations can be distinguished between the animal pole
and the vegetal pole. The former term refers to the area in which the cells develop dominantly

40

Figure 3.5: Maximum intensity projections (MIPs) of zebrafish development. In (A), the images
show the temporal development of the epiboly data set from early events in the blastula to early epiboly
stages for six specific time steps. The images are taken from the animal view direction. The images
illustrate the occurrence of many cell divisions at this stage. In (B), the tailbud data set is shown with the
tail starting at 5 somite stage for six specific time steps. Here, less cell divisions occur but with more cell
migrations. The embryo is colored based on the intensity level of the nuclei and membrane.

at the beginning embryo and where rapid cell divisions occur. This region is focused in the
epiboly data set. The vegetal pole mostly consists of large yolky cells that divide very slowly
(embryogenesis in first row of Figure[3.4)). The embryo’s cells migrate, spread and thin to cover
the entire surface of the yolk cell.
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Time | Cropped dimension | Rec. time | Cells Cells Cell Size
Data set . ) .

steps [pixels] [hours| | atstart | atend | lineages | [GiB]|
Epiboly | 100 | 332 x 1111 x 1161 2.5 90 3,253 4,896 13
Tailbud 50 1226 x 834 x 504 0.83 9,961 | 10,173 | 58,048 26

Table 3.1: Properties of zebrafish data sets.

The data set consists of 100 time steps with a spatial discretization of 90 seconds, resulting
in a total captured record time of two and a half hours. The data starts with 90 cells since the
injected protein does not take effect earlier for detecting the nuclei. These cells develop into
3,253 cells due to numerous and fast cell divisions while less cell migrations can be observed.
Note that the numbers of cells are a result of the segmentation process which is explained later.
The microscopy data has a total size of 13 GiB in the compressed HDFS file format.

Tailbud Data: The second data set illustrated in Figure [3.5B covers the tail extension (== 12—
13 hpf) of the zebrafish and has a size of 26 GiB in the HDF5 format. This data set, from now
on called the railbud data, shows the growing zebrafish tail starting at 5 somite stage with a
temporal resolution of 60 seconds. The expression tailbud describes the proliferating mass of
cells located at the posterior of an embryo. The margin of the spreading cell mass is called the
blastopore as a result of the gastrulation to form the tailbud. Gastrulation patterns the head
and trunk regions of the embryo and shapes the main head-to-tail body axis. Subsequent to
gastrulation, the tailbud continues to elongate this body axis and develops into the hindmost
tissues of the body. At the first time step of the recording, 9,961 cells can be identified by
segmentation while after 50 time steps, 10,173 cells are detected. The overall recording time
is approximately one hour and this relatively slow increase in cell numbers in contrast to the
epiboly data set is caused by less cell divisions and more cell migrations. An overview of
the different properties of the data sets is given in Table 3.1} Note that the original record
is longer than the actual record time given in Table Especially in later time steps of the
development, the quality of data acquisition sometimes is too low such that segmentation and
tracking results are insufficient. Thus, only specific time step ranges are considered that yield
satisfactory results.

Arabidopsis thaliana

Figure [3.6) on page [26] illustrates the structure and tissues of the Arabidopsis root. The
primary root has been developed during morphogenesis; from this main root, lateral roots are
regularly initiated under the action of the hormone Auxin [OEB10]. The cell layers of one lateral
root (yellow) denote different tissues of cells that form a dome-like structure like a set of stacked
caps on top of the lateral root. I investigate five data sets (named after their date of genesis) of
the lateral root growth of different plants in order to find similarities in division patterns among
different data sets. During less than six cell cycles, different cell layers are generated, gradually
forming the dome shape structure of the lateral root. All data sets share the same biological
event of the lateral root growth. Except for the data set 121211, the initial cells of all data sets
start in one layer. For this data set, in contrast to the other ones, the first division is not captured
in the segmentation. In Figure [3.7] T created several MIPs for five time steps of the data set
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130508. They illustrate the lateral root development in a side and radial view. The resolution of
the recorded volume is 696 x 520 x 233 for all data sets, where 233 is the number of planes of the
stack during the imaging process. After data acquisition, subsequent time steps of the volumes
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Figure 3.6: Organization of Arabidopsis and the lateral root. Depending on the growth process of
the Arabidopsis (A), the lateral root (yellow) develops horizontally from the primary root into a branch.
It forms a dome-like structure (B) and serves to anchor the plant into the soil. The lateral branch also
has the purpose to supply the plant with water and nutrients required for its growth. In the stem (brown),
the main tissues are named (starting from the outside) epidermis, cortex, endodermis, pericycle and
stele [MB97]| as the central part of the stem (C).

suffer from sample drifts, i.e. the event by samples moving outside of the focused x-y position.
Without correction, sample drifts lead to blurred images with decreased resolution, and even to
misinterpretations of relevant structures [MSC™11]. The drift is corrected with the Correct 3D
Drift plugin [CBR10] of the open-source biological-image analysis software Fiji [SACE"12].
For each data set, the empty space beyond the bounding box of the volume is cropped, resulting
in the final dimensions given in Table[3.2]

The volume of the specimen is recorded and stored as TIFF stack every 5 minutes. The
biological growth event is illustrated by MIPs in Figure Analogous to the zebrafish data,
the recording time is much longer (see values in Table [3.2) than the segmented and tracked time
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Time | Cropped dimension | Rec. time | Cells Cells Cell Size
Data set . ) .

steps [pixels] [hours| | atstart | atend | lineages | [GiB]|
120830 | 300 555 x 221 x 147 47 10 176 10 100
121204 | 300 689 x 393 x 200 45 15 160 15 167
121211 | 300 736 x 376 x 170 39.5 18 260 18 152
130508 | 350 682 x 406 x 130 50.5 9 143 9 432
130607 | 300 666 x 404 x 130 64 15 267 15 243

Table 3.2: Properties of Arabidopsis data sets.

range of 25 hours (220% = 25) and 291/6 hours (2220 = 291/s), respectively. The data sets are
captured for 300 or 350 time steps because these time steps cover the event of interest and in
later time steps the image quality becomes very blurred which complicates the segmentation

and tracking.
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Figure 3.7: MIPs of lateral root development for five time steps. The images show the temporal
development of the dome-like structure of data set 130508 in side and radial view.

3.2 Segmentation

The segmentation process describes the detection of single objects of interest in a volume or
image, in this case, cell nuclei. Here, this process is realized both manually and automatically.
The zebrafish data, consisting of several thousands of cells, requires an automatic approach
due to the large number of cells while the segmentation of the Arabidopsis data is handled
manually due to their relatively small number of cells (< 300) which results in a more accurate
identification of cell developments. Note that in the zebrafish data the cells are migrating while
there are no cell migrations in plants. For both data sets, only the single nuclei displacements



28 3.3 Tracking

are detected.
Automatic Segmentation

The zebrafish data set is segmented using an automatic segmentation approach introduced by
Lou et al. [LKL"11]. The segmentation problem is modeled using a Markov Random Field
(MRF) [L109] model. The main idea is the minimization of an energy function, consisting
of several weighted terms. These terms are weighted differently to satisfy certain constraints
such as spatial, shape and length regularizations of voxel data [LKL™11]. The solution to this
minimization problem is obtained by applying the max-flow min-cut theorem. The output of
the segmentation is a binary image that differentiates between the background and cell nuclei.
This image is further processed with the Rosenfeld-Pfaltz Labeling algorithm [RP66] in order
to get a list of individual nucleus objects. Table [3.1] on page 25]lists the number of segmented
cells at start and end of recording. Since this process is not central to the thesis, I refer to
Lou et al. [LKL"11] for further details. The automatic approach for the zebrafish data yields
many erroneous cell lineage trees for which single cell events are missing. Yet, I am able to
extract a set of lineage trees (=~ 40) that contain enough cell developments to apply an adequate
similarity analysis.

Manual Segmentation

For the Arabidopsis data set, a manual segmentation is applied using the computational software
program Mathematica (http://www.wolfram.com/mathematica/). A manual approach is chosen
because the number of cells is relatively small to be processed manually and it minimizes the
segmentation error. When viewed directly by domain experts, the highest detection rate can
be achieved. Furthermore, the signal-to-noise ratio depends on the development stage of the
lateral root. In advanced stages, the imaging quality is poor and would complicate an automatic
detection of cells deep in the primary root of the plant. To minimize the effort of manually
segmenting each cell nucleus for each time step, only dividing cells as well as their daughter
cells are segmented. The three-dimensional positions in-between are then interpolated linearly.
For my purpose, this simplification is valid for the Arabidopsis data because I want to analyze
cell division patterns and trends of nuclei displacements.

3.3 Tracking

The segmentation of the data sets yields a set of individual cell nuclei for each time step. How-
ever, the temporal information of cell developments is still missing. This information is obtained
by applying a tracking on the detected cells. Through this, single cells and all their subsequent
cell divisions are traced over time, e.g. cell nuclei in each time step are assigned to IDs to be
able to track different cell events. Lou et al. [LKL™11]] consider four different cell events that
can occur between two subsequent time steps: Cell appearance, disappearance, movement and
division. In order to generate cell tracks, each of these cell events, except cell movement, is
assigned a cost constant. The event types plus the associated costs are used to define an integer
linear programming (ILP) problem for finding the optimum joint association [LKL™11]. The
constants for cell appearance and disappearance are chosen in such a way that both events are
heavily penalized in contrast to a cell division. This is motivated by the fact that appearing
without prior cell division or disappearing cells are not biologically plausible. Thus, the penalty
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serves to support the generation of cell tracks. In fact, a cell appearance in a subsequent time
step would not occur in a perfectly segmented data set. However, in the automatic tracking
results of the zebrafish data, such events happen due to errors in segmentation. The biological
equivalence for a disappearance would be apoptosis, 1.e. programmed cell death which is not
plausible in these data sets. The manual tracking is realized in combination with the segmen-
tation in Mathematica because both events can be processed manually at the same time. Note
that in a perfect data set, the number of cells in the first time step defines the number of total
cell lineages. Yet, since appearances and disappearances are allowed, the tracking delivers more
lineages for the zebrafish data than the number of cells at the initial time of recording. Because
of the manual segmentation and tracking of the Arabidopsis data, the number of cells at the start
and the number of cell lineages are identical. Thus, the quality of the plant data is higher and
more accurate than the zebrafish data that is segmented and tracked automatically.

P1

P2 ¢

Figure 3.8: Cell lineage trees with examples of cell migrations. The left image shows a cell lineage
tree which is a binary tree that represents a single cell development evolving in top-bottom direction. The
aforementioned cell events correspond to four different node types: root node (A, brown), movement
nodes (B, cyan), division nodes (C, black), and leaf nodes (D, green). p;, p2 and p3 are examples for cell
paths. The right side illustrates examples for a cell root path (E, brown), cell division path (F, black) and
cell leaf path (G, green). (H, orange) shows an example of a cell branch. Note that a division node can
be shared by two or three different paths marked by a node with multiple colors (I).

Acquisition, segmentation, and tracking of the data are realized by collaborating domain
experts. In the following, I describe my further processing steps that are required for the sim-
ilarity analysis methods. Each generated cell track is depicted as a cell lineage as shown in
Figure This tree is drawn using the Reingold-Tilford algorithm [RT81]. From this point
on, the words node and cell will be used interchangeably. The root node is the first segmented
cell tracked in the initial time step. This time step does not necessarily have to be the first time
step of the recorded data; it can also start at a later time point because the appearance of a cell
is allowed. A short cell cycle at the beginning of a lineage tree is caused by the fixed start time
of recording. This behavior can occur for several lineage trees because it cannot be guaranteed
that the initial cell cycles are fully captured.
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3.4 Feature Computation

Based on the results of segmentation and tracking, I compute for each cell several feature val-
ues relevant for the similarity analysis. I distinguish between cell-based and movement-based
features. A cell-based feature describes a property focused at a single cell (e.g. cell position).
Movement-based features in contrast are defined by the cell migration or division behavior be-
tween at least two subsequent time steps. The position information is given by the segmentation
result while for the movement-based features, I employ the tracking in order to get specific cell
development information over time. Note that the data sets are stored as volumes, thus each cell
is identified by a set of n € N voxels. For the similarity analysis, I consider a single cell-based
feature which is the centroid of a cell:

e Centroid: The centroid C € R? of a cell is computed by the center of the voxel positions of
the segmented cell nuclei:

C==%"p, (3.1)
where 7; € R? denotes the coordinate of the i-th cell voxel.

With the additional information of tracking, the following movement-based features are com-
puted:

e Motion direction: The motion direction vector 771 € R? of a cell migration or division
between two subsequent time steps is given by the direction vector from one cell centroid at
time step ¢ to its subsequent cell centroid at time step ¢ + 1:

m = Cryy — C, Cy,Cryy € R?. (3.2)

e Velocity: The velocity v € R between two subsequent cell centroids is computed using the
Euclidean norm of the direction vector with v = |||,

e Delta time: For domain experts, the temporal difference of a cell migration between two
time steps yields important insights about specific durations of cell phases within its cell
cycle, for example. Thus, I define a delta time At € N:

At == tN+1 - tl - N (33)

At is defined by the temporal difference between the last and first time step of a cell mi-
gration. Note that At = 1 between two subsequent time steps t; and ¢;,1 but N is usually
greater than 1 because of longer cell migrations.

3.5 Cell Migration Definitions

In this thesis, a cell migration is defined by the choice of two visual representations. I distinguish
between migrations that are displayed in a 2D cell lineage tree representation (cell paths) and
migrations that are visualized in the 3D space (cell trajectories). Both designs are applied in the
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similarity analysis. Here, the definition of cell paths is a modification of paths in graph theory
with the following convention:

Definition 3.1 (Cell Path) A cell path p is a sequence of ordered connected pairs (n;,t;):

p= {(nl,tl), cee (n|p‘,t|p‘)},

with nodes n; and time steps t;. The length is |, = |p| — 1, (I, > 0) where |p| is the number of
pairs. Here, the first and the last nodes are only allowed to be a root, leaf, or division node, i.e.
a node of degree 1 or 3.

The left image in Figure [3.8]on page 29| shows some examples of cell paths. In order to distin-
guish different cell paths, three types are defined:

Definition 3.2 (Cell Root Path) A cell root path p, is any cell path that starts at the root node
of a lineage tree. It ends in the first division node of the tree.

Definition 3.3 (Cell Division Path) A cell division path p, is a cell path that starts and ends
in a division node. The path must contain only movement nodes.

Definition 3.4 (Cell Leaf Path) A cell leaf path p, is a cell path that starts in a division node
and ends in a leaf node of the lineage tree.

Note that if a node n describes a cell division, then two cell paths originate from this node. This
pair is called a cell branch b,,:

Definition 3.5 (Cell Branch) A branch b, is defined by a starting node n with two successors,
i.e. a cell division node, and by the length of its left path l,, and its right path r,. These cell
paths contain all nodes between two cell division nodes. A branch is called symmetric if the
lengths of l,, and r,, are equal.

The right lineage tree in Figure [3.8 on page [29]illustrate examples of all four types. A disad-
vantage of the cell lineage tree layout is that the centroid information of cell paths cannot be
analyzed directly. Thus, I define a cell trajectory to represent this additional spatial property.

Definition 3.6 (Cell Trajectory) A cell trajectory tr with length |tr| is a cell path for which
each cell is represented by its centroid C; € R? at time step t;:

tr = {(617t1)7 R (C_;|tr\7t|tr\)}-

Analogous to the definition of the different types of cell paths above, a cell trajectory is also
further distinguished into a cell root trajectory, a cell division trajectory, and a cell leaf trajec-
tory. Figure[3.9|shows some examples of these cell trajectory types. In summary, I define a cell
migration in this thesis as the following:
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Figure 3.9: Examples of cell trajectory types. On the left side, a small lineage tree is displayed with
one root cell path (A, brown), one division cell path (B, black), and two leaf cell paths (C, green). The
right side shows the corresponding trajectories in 3D space.

Definition 3.7 (Cell Migration) If it is visualized in a 2D cell lineage tree a cell migration is
called a cell path and if the visual representation is given in the 3D space, a cell migration is
called a cell trajectory.

The separation between these two definitions is motivated by the visual representation of infor-
mation. If shape, length, spread, and orientation of cell developments are of interest, then cell
migrations should be visualized in the 3D space. The depiction of cell paths in 2D cell lineages
is well-suited for the analysis and identification of structural properties of divisions (e.g. cell
branches) and temporal patterns (delta time). The combined similarity analysis in both visual
representations provide users more interpretation possibilities.

3.6 Summary

In this chapter, I described the data processing steps required to perform my visual similarity
methods. I explained the data acquisition process of the different data types from the zebrafish
embryo and the Arabidopsis seedlings together with their biological background and properties.
The raw data is segmented and tracked manually or automatically in order to identify single
nuclei and their cell tracks. While an automatic approach for the huge zebrafish data is required
but results in erroneous cell lineages, the manual processing of the Arabidopsis data is tedious
but yields higher quality of few lineage trees. These trees permit a noise-free similarity analysis
among several data sets with a focus on division types. With respect to the data, I defined several
features relevant for the analysis followed by a definition of cell migrations either depicted as
cell paths or cell trajectories.
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In the next chapter, I describe the first visual analysis method, a novel classification algo-
rithm to determine the division types during the growth of lateral roots in plant data sets. The
results of the division schemes are used later as additional features for the other two analysis
methods.






Chapter 4

Automatic Classification of Cell Divisions
in Plant Data Sets

“It is not so much that the cells make the plant;
it is rather that the plant makes the cells.”

— Heinrich Anton de Bary,

quoted in "The New Statesman", 1920

In developmental biology, cell migrations and cell divisions fundamentally affect the generation
of tissues and structures of any complex organism. A characteristic of developments of multi-
cellular organisms is the robustness of shape formations. For example, plant cells are bounded
by rigid cell walls precluding any cell migration. Thus, they solely rely on oriented divisions
and cell growth in order to form the shape of their organs. While the plant embryonic devel-
opment is highly stereotypical and only the basic blueprints of the adult organism are laid out,
most of the plant organs are produced post-embryonically. One example of post embryonic
organ formation in plants is the generation of new lateral roots from the main root. This de-
velopment is caused by specific oriented division types forming a dome-like structure of the
initial lateral root. Although there is a variation in the number of founder cells in the lateral
root, the eventual formation of the dome structure is always similar in shape. Biologists are
interested in the detailed visual analysis of this recent 3D+t developments and the detection of
similar structures and division patterns of such growth at organ and cellular scales. Through
this, both the investigation and comparison of single as well as multiple lateral root growth in
several plants enable finding similar patterns. The cell-based analysis of such developments is a
challenging task. As already emphasized in the introduction, cell developments in plants used to
be only accessible in 2D which severely limited previous investigations such as the analysis of
Malamy and Benfey [MB97], for example. Without consideration of the third dimension false
interpretations about growth and cell divisions might occur. A processing in 3D is fundamental
for a correct analysis but at the same time it complicates the visual analysis. The interactive
visualization within an individual plant or the comparison between multiple ones permits new
observations and interpretations.

35
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In this chapter, I provide a visual analysis method to determine, classify and visualize cell
division events in plant data sets. For this purpose, I introduce a novel automatic classification
algorithm for determining three division types (anticlinal, periclinal, radial) during the lateral
root growth. This classification is based on the generation of colored stereotyped cell isosur-
faces for which the isovalue represents the number of periclinal divisions. These allow a visual
and geometrical 3D comparison of such divisions among several data sets. An additional vi-
sualization illustrates the resulting division scheme in color-coded lineage trees with compact
information about the division order and type. I apply the method to all five data sets of the Ara-
bidopsis plants. The resulting division types are used as an additional feature for the similarity
analysis methods explained later in chapters [S]and [6] I first explain the cellular organization
of the lateral root using cell files (Section 4.1). In Section 4.2] the automatic classification
algorithm based on cell isosurfaces is described. Afterwards, I examine its performance and
parameter stability followed by application results (Section {4.3).

4.1 Cellular Organization of the Lateral Root
In order to specify a common coordinate system of cells in all lateral roots, cell files are intro-

duced. The cell files are defined by the initial positions and radial development directions of
founder cells observed in the radial view . The first row in Figure .| shows the founder

120830 121204 121211 130508 130607
10 cells|T 1 15 cells| T 1

Figure 4.1: Colored cell file assignments on top of raw data MIPs for the Arabidopsis data sets:
The first row shows the cell files on top of the MIPs of the raw data for the first time step. The second
row illustrates the cell file development at the last time step of the data record. The specific time step
and current number of cells are given at the top of each MIP. The labels at the right side indicate the
cell file colors in such a way that the master cell file, i.e. the cell file that swells the most, is always
assigned the value 0 with color violet. For the last time step of 120830, it is illustrated how the center
of the root (cyan disk) is determined manually by intersecting all linear principal components of the cell
files. Although the number of founder cells is different among the data sets, the similar structure of the
dome is developed. Furthermore, the cells located in the master cell file are not necessarily situated at
the center of the generated dome.

cells at the first time step for each plant data in radial view. The cells (spheres) are colored by
their cell file memberships. For example, the data set 120830 has initially 10 cells that are
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assigned to certain cell file values radially based on their positions. For 120830, these values
range from —2 to 3. Note that a cell file can include cells from several lineage trees but a cell
lineage is only assigned to exactly one cell file. For the classification algorithm, the position
of the center of root is required. This position can be determined by the intersection point of
the radial principal directions of each cell file (cyan disk in Figure .1 for the last time step of
120830). The master cell file is defined as the file that swells the most in comparison to all other
cell files. The swell value is given by the Euclidean distance between the highest position of a
cell within its file and the root position. Note that this does not necessarily mean that the master
cell file features the highest number of cells in the file. In contrast to the periphery files, i. e.
the outer cell files, the master cell file is of particular interest because it is mainly responsible
for the forming of the dome-like structure of the lateral root. The cell files are labeled with
fixed integers beginning from left to right with respect to the master cell file. These values are
assigned in such a way that the master cell file has always a value of zero and cells colored in
violet.

4.2 Automatic Classification of Division Types

The lateral root development in Arabidopsis is formed by a combination of cell divisions and
cell growth while no cell movement is taking place (only nuclei displacements). In general,
the division types are classified into three orientations depending on the division position with
respect to the lateral root: anticlinal, periclinal and radial divisions. The colored arrows in
Figure 4.3B show the different division directions that influence the growth and total size of
the lateral root, i.e. both the number of cells as well as the volumetric size. I present a novel
automatic classification algorithm to determine these cell division types. For this purpose, I
introduce 3D cell isosurfaces and explain how they are generated.

Figure 4.2: Example of two cell isosurfaces. The initial nuclei positions form a 3D triangulation which
is called an isosurface with an isovalue of zero (yellow color). The nuclei positions may change over
time and if a cell of this surface divides anticlinally or radially than the two daughter cells remain in
this surface with equal isovalue of zero. However, a periclinal division results in the creation of a new
isosurface (blue color) or the augmentation of an existing one with an increased isovalue by one.

4.2.1 Cell Isosurfaces

In this thesis, a cell isosurface is a 3D triangulation of a set of cells that share the same number
of periclinal divisions. Its color-coded isovalue represents this number. This means that existing
isosurfaces change in each time step and new isosurfaces are generated or augmented if cells
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divide periclinally. Figure [4.2]illustrates an example of two isosurfaces. They allow two bio-
logical interpretations: First, the colored isosurfaces depict the number of periclinal divisions
and allow a direct investigation of these divisions that mainly contribute to the height of the
dome structure. Second, the isosurfaces serve as a visualization of the spatial development of
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Figure 4.3: Division types in the lateral root of Arabidopsis. (A) shows a section of the Arabidopsis
root. The enhanced part within the section illustrates the different division types (B): anticlinal (red
arrow), periclinal (green arrow) and radial (blue arrow). (C) illustrates the behavior of anticlinal and
periclinal divisions for cells in the master cell file. A periclinal division results in a new isosurface
(D, orange cell tissues) while for an anticlinal division, the cells remain in the same isosurface. Note
the change of cell walls in the raw microscopy image for each cell indicating the new isosurface and
arrangement of cells.

this division type. Thus, users can observe where periclinal divisions occur and analyze their
contributions. The latter one can also be expressed quantitatively by the volume or the number
of cells of the isosurfaces. These isosurfaces are used to generate vertex/surface normals that
are compared with division orientations. This comparison then yield a classification of division
types explained below.

® ®
@ y &,

®
. ®

oPo g %
V(P)

Figure 4.4: 2D examples of Delaunay triangulation and a-shapes. The left image shows the generated
Delaunay triangulation (B) and the corresponding Voronoi diagram (C) based on the point set P (A). The
right image gives two examples of the resulting c-shapes when using two different o parameters «; (D)
and ao (E) with a1 < ao.
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For generating the surface of a set of cells P with three-dimensional points, the most com-
mon method is the Delaunay triangulation DT. This triangulation has the property
that no point in P is inside the circumsphere of any tetrahedron in DT'(P) (Figure for
an example). Another property of the Delaunay triangulation is that the union of all simplexes
in DT is the convex hull of all cell positions. A simplex is a generalized description for an
n-dimensional polytope, i.e. a polygon of arbitrary dimensions. For example, O-simplex is a
point, 1-simplex is a line, 2-simplex is a triangle, and 3-simplex is a tetrahedron. A dual graph
of a plane graph G is a graph that has a vertex for each corresponding facet of G and an edge
connecting two adjacent facets for each edge in G. Figure {.4C shows the dual graph of the
Delaunay triangulation: the Voronoi diagram [VorO8]. However, as illustrated in Figure @d.3A,
the surface, or more precisely the curvature of the convex hull is an inappropriate approximation
of the evolving dome-like structure of the primordium according to domain experts. This will
lead to incorrect results in the subsequent comparison of surface/vertex normals and division
directions. Because of these reasons, I choose an a-shape for generating the surface
(Figure[d.5B). This shape is a family of piecewise linear simple curves associated with the shape
of a point set P based on the Delaunay triangulation. More precisely, the a.-complex of P is a
subcomplex of this triangulation that contains a-exposed k-simplexes (0 < k < 3). A simplex

Convex Hull Alpha Shape

Z

Y

|_x

Figure 4.5: Convex hull and alpha shape of the data set 130607. Biologically motivated, four different
viewing types (Radial (y, z), side (x, z), top (x, y), and 3D) are used to represent the lateral root. The
images show different surfaces of the last time step of data 130607. (A) illustrates the convex hull of the
primordium based on the delaunay triangulation while (B) shows the a-shape. « is selected in such a
way that only one connected component is generated. The a-shape is better suited as an approximation
of the lateral root than the Delaunay triangulation.

is a-exposed if there is a sphere with the squared radius of « in which all points of the simplex
lie at its boundary and do not contain any other points of P:

Definition 4.1 Let P be the set of points in general position, i.e. they do not satisfy a special or
coincidental relation to each other, and T C P with |T| = k + 1 < 4. Let further be My € RF
a polytope denoting the convex hull of T. Then My is a k-simplex.

Let S, be the a-shape. Then the boundary 05, consists of all k-simplexes of P that are a-
exposed:
o ={Myp : T C P,|T| < 3 and My is a-exposed}. 4.1)
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Then, S,, is the resulting triangulation. Figures and E illustrate two examples of a-shapes
for two different alpha values a; < as. Note that an a-complex can be a non-connected
polytope (Figure .4D) but the a value with 0 < a < oo can be selected optimally in such a
way that only one connected component is generated. Further note that the a-shape degenerates
to the point set P if @ — 0. If @ — oo then the a-shape is the convex hull (Figure 4.4E). The
« value in Figure 4.5B is chosen in such a way that only one connected component is created.
For all a-shapes in the algorithm, I will use appropriate o values that always result in exactly
one connected component. This is realized by a binary search on the o values and has a time
complexity of O(|P|log|P|) with | P| denoting the number of points.

In order to determine the division types, I generate and update the cell isosurfaces for each
time step because the shape of the primordium varies over time. Based on these surfaces, the
algorithm is able to classify the different types of divisions using information of surface and
vertex normals. Each division direction is then compared to this surface or vertex normal by
computing the angle between them. This angle then designates the kind of occurring division

type.

Figure 4.6: Visualization of isosurface and vertex normals. The image shows an example of an a-
shape of the primordium in radial view. The red arrows indicate the surface normals pointing outwards
and the blue ones show the vertex normals.

4.2.2 Classification Algorithm

In each time step and for each dividing cell, the algorithm performs two angle comparisons
between division orientations and vertex/isosurface normals. In the first angle comparison, the
algorithm performs a fundamental check for an anticlinal or periclinal division. Note that for
the former division, the cells remain in the same isosurface while for the latter division, a new
isosurface is generated or augmented by a cell. However, at this time of the algorithm, the
anticlinal division could also be a radial one (for both types, the cells remain in the isosurface).
This is caused by the fact that a single angle check in 3D allows no unique separation between
an anticlinal or radial division. For this reason, I apply a second angle comparison to distinguish
between an anticlinal and radial division. For both angle checks, user-selected angle thresholds
(6 and p) are introduced that mainly influence the classified type of division. I apply a stability
check for these parameters in Section [4.2.4]
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For each isosurface, the surface and vertex normals are determined (Figure [4.6). Let v; be
a vertex of the cell set forming the current c-shape and n(f;) the surface normal of the facet
(triangle) f; pointing outwards. The vertex normal n(v;) of vertex v; is computed as the mean
of all adjacent facet normals:

n(v;) = ; > n(fy). (4.2)

F; represents the index set of all adjacent facets to vertex v; and |F;| denotes the number of
adjacent facets. Note that only cells that belong to the boundary 05, of the a-shape have a
vertex normal. For interior cells, the normal is determined by the closest facet normal in terms
of the closest Euclidean distance between the cell position and a facet. A vertex or surface
normal, from now on denoted as n, is compared with the division direction. In the following,
the value [ will refer to both the isosurface and its isovalue. The algorithm is designed based on
the following biologically motivated constraints:

e When a dividing cell at time step ¢ with isovalue [ performs a periclinal division, then only
one of the daughter cells is assigned a new isovalue [ + 1. The other daughter cell remains
in the previous isosurface /.

e For each division, it is assumed that the cells divide almost collinearly. This means that the
division orientation is given by the vector between the two daughter cells. This does not
necessarily mean that both daughter cells at ¢ + 1 and the dividing cell at ¢ lie on the same
line.

The algorithm is designed in such a way that the division types are determined for the current
time step ¢ but the isovalues are set for the next time step ¢ + 1. This is required because
the algorithm performs angle checks based on the position of a dividing cell at time step ¢
and the direction vector of its subsequent daughter cells. With these constraints the automatic
classification algorithm is realized as follows (Figure 4.7)):

Shape generation: For each time step ¢, the a-shape of the cell point set F; that share the same
isovalue [ is generated (line [6). If ¢ = ¢, and the first recorded time step, then each cell is
assigned an initial isovalue of 0 (yellow cells and shape in Figure 4.8 or Figure 4.9A).

Cell division check: For each cell with position py, at time step ¢, the corresponding isovalue [
is determined (line [§)) and checked if it is a dividing cell. If so then the positions of its daughter
cells are stored. Afterwards, the next step of the normal determination is applied. If the cell
is not dividing, then its successor (based on tracking) in time step ¢t + 1 is assigned the same
isovalue [ as in time step ¢ (line[33)). If the cell has no successor at all then nothing is done and
the next cell is checked.

Normal determination: In line (12} the normal is computed. If an isosurface [ only consists of
one or two cells, the normal for the angle check is given by their vertex normals. For one cell,
this is the normalized direction vector pointing from the center c to the current cell position py:

Pk —¢C
n = .
|pk—0|

4.3)

Note that the center c is defined manually by the intersection of the principal components of
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Input : Point set of cells P; for all time steps ¢ € [1, 7, center of root ¢, angle
thresholds ¢ and p, view rotation matrix M, tracking information of cells.
Output: Classified division types.

D(i,7) : map with i € [1..T — 1], j € N of {anticlinal, periclinal, radial };

begin

numSurfaces < 1;
fort< 1to7T — 1do
for [ < 0 to numSurfaces—1 do
L generateAlphaShape (F;);

for k < 1to |P,| do
[ + determineIsoValue (pg);
if dividingCell (p,) == true then

dy; <+ daughterCell (1,px);

dy < daughterCell (2,pg);

n <— normalDetermination (pg,c,l);

dir < determineDivisionDirection (dq,ds);
[ < computeAngle (dir,n) ;

[y < computeAngle (—dir,n);

divType <~ divisionAngleCheck (81, f2,1,0);
if divType == periclinal then

if 1 < (5 then

assignIsoValue (di,l+1);
assignIsoValue (ds,l);

else
assignIsoValue (di,l);
assignIsoValue (ds,l+1);

if [ + 1 > numSurfaces then
L numSurfaces < numSurfaces+1;

else
assignIsoValue (dy,l);
assignIsoValue (ds,l);
divlype <— radialDivisionCheck (dir, Mo, p);

D(t, getID (py) ) < divType;

else

d < daughterCell (1,p:);

| assignIsoValue (d,l);

Figure 4.7: Automatic classification algorithm for determining division types.
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Figure 4.8: Determining the division type that results in anticlinal divisions. In (A), the shape is
generated for all cells within the same isosurface. Blue arrows indicate the normals of those cells that
divide in time step t+1. The divisions are highlighted by red lines in (B, right). For both possible division
directions, the angles between the vertex normals are computed and compared with a user-selected angle
threshold ¢ (here § = 45). In (C), all three divisions result in an anticlinal division due to the larger
angles 31 and 32 compared to 9.

the cell files. For two cells, the mean position p = 5‘% is computed and afterwards the same
computation as above is used to get the normalized direction vector pointing from the center
to p: B

p—c

p—cl
For three cells, I create a triangle and select the facet normal pointing away from the center c.
With at least four cells the isosurface [ is generated using an «a-shape. An additional check is
required to determine if the current cell position p; belongs to the boundary or if it is located in
the interior of the surface. In the former case, n is given by the vertex normal of the dividing
cell at time step ¢ (blue arrows in Figure 4.8]A,B or Figure #.9A,B) while in the latter case, n is
selected by the normal of the isosurface nearest to the cell position py.

n =

4.4)

Division angle check: In the next step, it is determined if the division is an anticlinal/radial
or a periclinal division. The division direction is given by the vector between the two daughter
cells at time step ¢ + 1 (line [13| and red arrows in Figure or Figure B.9C). Let 6 = 45
be the first selected angle threshold. It has to be decided which of the two possible directions
of the division should be considered for the comparison with the normal n. Because in the
case of a periclinal division, this defines which of the two daughter cells is assigned to the next
isosurface. The two angles 5, and (3, are computed for both possible directions (line and
the daughter cell associated with the smaller angle is assigned a new isovalue increased by one.
Let (4, be the smaller one. If 5; > ¢, the division is an anticlinal/radial (all three divisions in
Figure 4.8)) and both daughter cells are assigned the same isovalue [. Otherwise, if §; < ¢ the
division is a periclinal one and a new isosurface is created (blue cell in Figure 4.9).
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Shape Generation
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Figure 4.9: Determining the division type that results in periclinal divisions. For all cells within an
isosurface, the a-shape is generated (A). The blue arrow in (B) indicates the normal of a cell that divides
at time step ¢t + 1. The red line on the right image in (B) denotes the division direction. This is checked
for both possible directions. In (C), 51 < B2 and 81 < § = 45. This results in a periclinal division and
the “upper” daughter cell that corresponds to the angle (3; is assigned to a new isosurface colored in blue.

Radial division check: After the first division check, it is still unclear if an anticlinal division
could not also be a radial one. This is realized in line [29] Each data set is rotated by a rotation
matrix M,,; such that the four viewing types (radial, side, top, and 3D view) of the lateral root in
Figure[4.5]are satisfied. With respect to the side view, a perfect radial division would correspond
to the normal n, of the x-z plane with ny = (0, —1,0)”. Thus, the direction vector dir between
the two daughter cell positions d; and d5 is chosen in such a way that the vector always points
from the larger rotated y value to the smaller one:

dy —dy if dl; < dQ;J

4.5
dy —d; else (4.5)

dir(d17d2) = {

with di" = M, - dy and dy’ = M, - ds, respectively. Let n, = Mmt ns, then the division

type of dir is determined by using the second user-selected angle threshold p:

radial if <(ny,, dir) < p

. (4.6)
anticlinal else.

divType(dir) = {

Afterwards, a map D with values of type enum for anticlinal, periclinal, and radial stores the
division types for each dividing cell (line[30). A pair of the current time step ¢ and the cell ID
is an unique identifier and used as a key for the map. After processing all cells at all time steps
except the last one, all division types are classified.

4.2.3 Performance Analysis

The algorithm is tested on a standard desktop computer with an Intel Core 17, 3.20 GHz, 12 GB
of memory and an NVidia GTX 480. I use the Computational Geometry Algorithms Library
(CGAL) (https://www.cgal.org/) to generate the isosurfaces realized by a-shapes. Table 4. T|lists
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Time Cells Computation times [s]
Data set ¢ Divisions

steps atend || rsosurface generation | Angle checks
120830 300 166 176 1.05 0.12
121204 300 156 160 0.98 0.12
121211 300 242 260 1.29 0.20
130508 350 134 143 0.91 0.09
130607 300 252 267 141 0.25

Table 4.1: Computation times for automatic classification of division type in Arabidopsis data sets.

the computation times in seconds for the isosurface generation and the pair of angle checks of
the automatic algorithm. In total, the algorithm takes less than a second to finish the classifica-
tion. In contrast to the angle checks, the shape generation needs more time by a factor of approx-
imately 6—10. Note that in the inner for-loop over all cells in the current time step, only dividing
cells are further processed. Thus, the total number of divisions in the data set is identical to the
number of the pair of angle checks. The time complexity is at most O(S(T — 1)|Ps|* + | D])
with S as the maximal number of generated isosurfaces, 7' the number of time steps, | Ps| the
number of points of the corresponding surface, and | D| the number of total divisions in a data
set. The term S (T —1)| Ps|? refers to the required time of the isosurface generation. This means
that the more cells are considered the longer the surface generation takes. This can be observed
for the data sets 121211 and 130607 that both have more than 260 cells at the end. A result in
Section 4.3]is that the number of maximal generated isosurfaces are for all data sets only S = 4
so this is a constant. While for the angle checks, only simple computations are required such
as using the cosine to compute the angle between two vectors, the worst time complexity for
generating the a-shapes is quadratic in the number of points |P|. However, the a-shapes are
based on the Delaunay triangulation for which the upper bound is O(| P|?) which is usually not
reached. Thus a smaller time complexity of O(|P|(log|P]|)?) is more common [EM94a]]. This
also includes the time complexity of O(|P|log|P|) for the binary search finding the optimal
« value in such a way that only one connected component is generated. Another explanation
for the large difference in the computation times between surface generation and angle check is
the fact that the a-shapes are created for all cells and for all time steps while the angle check
is only performed for dividing cells. Also note that in earlier time steps, the surface generation
is realized much faster with a few cells in contrast to later time steps with increasing and more
than hundreds of cells. Even though the computation times are low, I store the results of the
resulting division types as well as the isosurfaces on the disk for faster reprocessing.

The data acquisition process of the Arabidopsis plants results in recorded 3D+t volumes
of several hundreds of GiBs. However, the algorithm only needs the extracted information of
the manual segmentation and tracking results. This means that the three-dimensional position
information of all cells over all time steps as well as their tracking information realized by
pointers in a binary tree structure are required in the algorithm. Consequently, in the worst
case, the space complexity of the algorithm is O(Q + |D|) with Q = 3./, | P| as the sum of
all cells over all time steps and |D| as the size of the map in which the results are stored. This
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means that the space usage increases linearly in the number of total cells for all time steps plus
the number of total divisions. For example, the space usage of the algorithm is smaller than one
MiB (64 bits double precision) for the data set 120830.

4.2.4 Parameter Stability

The choice of the two user-selected angle thresholds ¢ and p fundamentally influences the re-
sults of the classification algorithm. In order to examine the stability of these parameters and
how they influence the results, different distributions of division types for slightly changed
threshold values are investigated. For this purpose, only the data set 120830 is considered. Fig-
ure[d.10]lists four line charts of the different division distributions when changing the thresholds
in steps of 5 degrees in a total range of [0, 100]. A degree value higher than 100 does not further
change the distribution in this data set. Four cases of varying thresholds are distinguished: o
changes with fixed p (Figure .10/A), p changes with fixed § (Figure 4.10B), ¢ and p change
with identical values (Figure.10[C), and ¢ and p change in such a way that their sum is always
100 (Figure 4.10D). These variations allow an investigation of possible threshold settings. In a
perfect model of the lateral root, the angle difference between a pair of an anticlinal, periclinal,
or radial division would be exactly 90 degrees. For this reason, a fixed value of 45 is chosen
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Figure 4.10: Stability check for angle thresholds of classification algorithm. All line charts show
the division distributions by three curves representing the three types in the data set 120830 with 166
divisions in total. For the pair of thresholds (4, p), the following sequences are represented in each chart:
(A) (0,45), (5,45),...,(B) (45,0),(45,5),...,(C) (0,0), (5,5), ..., (D) (100, 0), (95, 5), . . .. Note that
the x-axis in (D) only shows the value for p, although both thresholds are changed and have different
values.

Number of division types
Number of division types
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in two cases in such a way that this parameter does not prefer a certain division type. A first
observation is that the number of division types varies even for small changes of the angle val-
ues. Another common property in all four charts is that for angle values higher than 80 degrees
a pair of curves has always an abrupt change in its behavior (red and green in Figure {.T0A
and Figure 4.10C, red and blue in Figure 4.10B, blue and green in Figure 4.10D). This means
that for such high thresholds, the data sets contain only a few division events that satisfy such
an extreme behavior. Furthermore, based on the design of the algorithm, there is a contrast
between the division types. This means that if a division is not an anticlinal one then it has to be
a periclinal division. Consequently, if a division is classified as an anticlinal one, it could also
be a radial division but not a periclinal one. This dependency explains the symmetric behavior
for such pair of curves. Another observation is that the curves in Figure 4.0 (only changing
¢) and Figure 4.10[C (changing both thresholds simultaneously) are similar which means that
the influence of the § parameter is stronger than the influence of the p value. In Figure 4.10B,
the periclinal curve is constant for all p thresholds because this value affects only the choice be-
tween an anticlinal or radial division. The result in Figure 4.10D shows an ambivalent behavior.
For p < 60, more divisions are classified as anticlinal and radial while for larger angle values,
the anticlinal divisions tend to zero because larger p values yield more radial divisions.

B

Figure 4.11: Example for an implausible isosurface assignment of a cell. The images show two
subsequent time steps in which a boundary cell at time step ¢ (A) is assigned to the next isosurface at
time step ¢ + 1 (B). However, although the algorithm works correctly, the assignment is biologically
incorrect. Based on the normals of the four adjacent surfaces (red arrows) the vertex normal (blue arrow)
of the dividing cell is determined. Its division directions are indicated by green arrows. In order to change
the resulting periclinal division into an anticlinal one, a manual reassignment of isovalue information is
possible.

Note that values of § = 45, p = 45 correspond to an equally weighted distribution such that
no division type is preferred. For the data sets under investigation (see Section 4.3)), I choose a
slight variation with parameters of 6 = 50, p = 45 as it yields more biologically plausible results
according to domain experts. For parameters with a larger divergence (> 10), the isosurfaces
become more chaotic with more implausible division types. But even for this parameter setting,
few divisions are assigned to a cell isosurface by mistake. This can occur for cells located at the
periphery, for example. They have a vertex normal for which the division angle check yields
a result that is biologically implausible. Figure 4.11] demonstrates such a case. The yellow
boundary cell in Figure #.TTA features a vertex normal (blue arrow) which is determined by
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its four adjacent surface normals (red arrows). In the next time step in Figure .11B, the cell
divides (green arrows) and the algorithm identifies this division as a periclinal one. However,
the analysis in 3D reveals that this division should be classified as an anticlinal one. Because of
such possible errors, a manual editing of the assignments to an isosurface is permitted. In each
Arabidopsis data set, on average 5% of the cell divisions are assigned to isosurfaces implausibly.
These errors are corrected manually and saved for further analysis steps.

As a result, small changes of the degrees also result in small changes of the number of
division types. This behavior is caused by the fact that sometimes the cells divide in such a way
that their division types cannot be identified without any doubt even by domain experts. For
such cases, the manual editing can be used to select the assignment that seems most plausible.

Visual Analysis

In this subsection, I briefly present the visual analysis techniques for investigating the resulting
division types and isosurfaces.
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Figure 4.12: Visual analysis of division types in Arabidopsis data. The cells and isosurfaces are
presented in a 2D/3D composite view (A) while a set of color-coded cell lineages illustrate the cell
developments in 2D (B). All visualizations are interlinked and interactive. Detailed properties of selected
cells are given on demand (C).

Cells and isosurfaces (Figure d.12]A) In a 2D/3D view, the cells are rendered by spheres with
constant radii that are colored according to their isosurface assignments. The surfaces are rep-
resented as a-shapes in the same color scheme. Additionally, I include the maximum intensity
projections of the current time step and data set in the background of each view. Through this,
biologists can compare the relative location of cells to their cell walls in the raw microscopy
data and the virtual representation of the cell. Note that the cell positions between two subse-
quent cell divisions are interpolated linearly. Thus, the positions match for dividing cells and
their daughter cells but not necessarily for the displaced nuclei. The manual editing of isovalues
is realized in this representation.

Lineage trees (Figure[d.12B) A 2D lineage tree is used to represent the isosurface memberships
of migrating nuclei as well as the division types of dividing cells. This information is encoded
in the tree using different colors for lines (nuclei displacements) and circles (dividing cells).
Figure 4.13B shows an example of such a cell lineage. On top of each lineage structure, I
create a compact grid of small colored squares to allow a faster investigation of the division
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Figure 4.13: Visualization of ordered division sequences in lineage trees. I color the lines of the
lineage tree in (B) based on the results of the isosurface assignment in yellow for isovalue 0, light-blue
for isovalue 1, magenta for isovalue 2 and red for isovalue 3. The cell divisions are colored according to
an anticlinal (red), periclinal (green), and radial (blue) division. In order to better compare these division
results to other trees, I add a compact grid of squares colored according to the order and occurrence
of division types (A). Each row, read from left to right, indicates the ordered appearance of divisions
between the root and each leaf of the tree.

order (Figure 4.13]A). In this rotated view, the number of rows of the grid denotes the number
of leaves of the tree while the number of columns indicates the number of precursor divisions
for the cell located at a leaf. For example, consider the last row with five squares colored from
left to right by red, green, green, red and blue. This order of divisions is associated with the
lowermost leaf of the tree developing from one anticlinal division, two periclinal ones, again
one anticlinal and finally one radial division. By the use of this compact visualization, users can
immediately compare the division orders among several trees.

4.3 Application Results and Data Comparison

In order to demonstrate the usefulness of the algorithm it is applied to all five Arabidopsis data
sets using angle thresholds of 6 = 50 and p = 45. Table lists properties of the data sets
and results of the generated division types. For each plant data, the algorithm generates at most
four isosurfaces at the last time step. Consequently, only four different colors (yellow, blue,
magenta, red) are required to distinguish between them. This result can be explained by two
observations: Although the same growth event of the lateral root is captured in all raw data,
the record beginnings and endings are differing. For example, in 121211, the first anticlinal
divisions are missing, which causes the peak of the number of cells (18) at the beginning. Thus,
the lateral root is in a later stage of development for which a fourth isosurface is identified.
Second, the cell cycle durations vary significantly among the data. This yields a high variance
of occurring cell divisions and therefore the faster or slower generation of isosurfaces. 121211
and 130607, for example, both feature a high amount of divisions among all time steps. Con-
sequently, these two data sets also develop the furthest into four isosurfaces in contrast to the
other data sets.

In order to find similarities in the division behaviors, the lineage trees located in the master
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Start| End L Division types Cells | Cells
Data set . . Divisions Isovalue
time | time A P R at start | atend
120830 1 300 166 72 69 25 10 176 3
121204 1 300 156 83 54 19 15 160 3
121211 1 300 242 86 107 49 18 260 4
130508 1 350 134 51 56 27 9 143 3
130607 1 300 252 110 94 48 15 267 4
Sample
standard 0 22.36 53.42 21.50 | 23.55 | 13.92 3.78 58.11 0.55
deviation

Table 4.2: Division properties of Arabidopsis data sets considering all time steps. The classification
algorithm for all recorded time steps yields high sample standard deviation values for the different di-
vision types because of the diversity of the temporal development of the plant data. This variety is also
illustrated in the total number of divisions as well as the number of cells at start and end.

cell file are analyzed. Note that the master cell file contributes most to the complete tissue of
the lateral root. Thus the cells in this file are of high interest for domain experts. Also note that
the isovalue of an isosurface reflects the number of periclinal divisions of a cell. Figure 4.14]
illustrates the color-coded lineage trees and division schemes of all plants. One observation
is that all trees start with an anticlinal division except for 121211 because the record of this
data set starts at a later development stage. Furthermore, the trees often feature an alternating
order of their divisions. This order switches back and forth between an anticlinal/radial and a
periclinal division. In other words, the lateral root switches between a growth in width and girth
and a growth in height. Note that the plant data is varying according to the record time and that
sometimes division types are ambiguous even after manual examination. Thus, two subsequent
anticlinal divisions at the beginning for 121204 and 130508, respectively, are identified as well
as some outliers in the alternating division order. The last row in Table 4.2] shows the sample
standard deviations of all column properties of the data sets. Although, there are only samples
of five data points, all values within a column have nearly a symmetric distribution and therefore
the sample standard deviation can be measured. Because of the diversity of the recorded plant
developments, the occurrences of the different division types differ significantly, also indicated
by the high sample standard deviation values. In order to be able to compare the different data
in a reasonable way, I register the five plant data sets based on the total number of cells. For
this purpose, I determine the maximum number of cells at start (= 18) as well as the minimum
number of cells at the end (= 143) in each data set. Through this, arbitrary values of cell
numbers in between can be selected and it is guaranteed that all plants have approximately the
same number of cells for a specific time step.

Table [4.3] lists the changed division properties for the registered data sets. Note that it is
not always guaranteed that a plant has exactly 18 or 143 cells at a certain recorded time step
because of the discrete data acquisition. Hence, the next nearest cell number is chosen which
is 19 for 121204, for example. The data sets 120830 and 130508 feature more than 18 cells
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Figure 4.15: Isosurfaces of all registered Arabidopsis data sets. The figure shows three projections
of the isosurfaces at the last registered 143-cell state for each data set (A: 120830 at ¢t = 269, B: 121204
att = 277, C: 121211 at t = 230, D: 130508 at ¢ = 344, and E: 130607 at t = 213). At this stage,
always three isosurfaces that are similar among the different plant data are generated. For all data sets,
the highest number of periclinal divisions always occur at the center of the dome structure.
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Start | End | Registered | Division types Cells | Cells
Data set 8 : A Isovalue
time | time | divisions A P R | atstart | at end
120830 36 269 127 52 60 15 18 143 3
121204 2 277 130 66 51 13 19 143 3
121211 1 230 126 50 57 19 18 143 3
130508 73 344 126 44 55 27 17 143 3
130607 2 213 124 56 59 9 20 144 3
Sample
standard | 31.76 | 50.79 2.19 8.17 | 3.58 | 6.84 1.14 0.45 0
deviation

Table 4.3: Division properties of Arabidopsis data sets considering registered number of cells.
When registering the different plant data based on the number of cells, an adequate comparison of the
division types is possible. The sample standard deviation values for the types are much smaller compared
to the total temporal analysis.

after 36 and 73 time steps, respectively, while the other remaining ones have the same number
of cells right at the beginning of the record. 121211 and 130607 develop much earlier to at
least 143 cells. These differences illustrate again the high diversity of the plant data sets. The
registration allows a feasible comparison of the data sets and their isovalue results despite this
high diversity. For each data set, at most three isosurfaces are generated until the 143-cell stage.
The sample standard deviation values for the different division types are reduced by a factor
between 2 and 7 in contrast to the generation among all time steps. Consequently, the different
data sets share similar numbers of divisions based on the registration depending on the number

of cells.
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Figure 4.16: Registered comparison of cells in isosurfaces among all Arabidopsis data sets. The
three line charts show the almost linearly increasing number of cells in each of the three isosurfaces. For
each registered step, they also share approximately the same number of cells. Another observation is that
the second isosurface (B) starts developing at a number of approximately 50 cells and the third one (C)
at roughly 100 cells for each data set.

Figure .15 shows the visualization of the cells and isosurfaces for each last registered state
with approximately 143 cells. All isosurfaces share the same visual appearance. Furthermore,
almost all periclinal divisions occur near the center of the developing dome structure. Thus,
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these divisions mainly contribute to the height and shape of the dome. In order to quantify these
observations, I analyze the number of cells in each isosurface and the corresponding volumes
of the a-shapes. For this purpose, eleven registered steps are considered in such a way that
the range [18,143] is subdivided into ten equidistant intervals. The number of cells and the
volumes are then determined for each isosurface. Figure shows the number of cells in
three line charts for each isosurface. In all three images, the number of cells is increasing
almost linearly. The second isosurface in Figure {.16B starts to evolve at approximately 50
cells while the third isosurface in Figure 4.16C is generated at a cell number of around 100. A
similar observation is made by analyzing the volumes of the enclosed isosurfaces in Figure
Although the volumes are increasing almost linearly (except for 130607 in Figure @.17B), their
magnitudes are varying significantly. This indicates that the positions of cell divisions are not
fixed among different plant data. Consequently, the order of periclinal divisions influences
the volume computations and vice versa. The volumes indicate that these divisions are not
distributed equally.
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10 8 — 121204
s 7 121211
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— 130607
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Figure 4.17: Registered comparison of volumes of isosurfaces among all Arabidopsis data sets.
For each of the three isosurfaces, the line charts share similar growth patterns except for 130607 in (B).
However, the individual magnitudes differ significantly among the registered plant data. This is caused
by different orders of periclinal divisions resulting in different sizes of the a-shapes for each isosurface.

4.4 Summary

In this chapter, I introduced a novel automatic classification algorithm to determine the division
types (anticlinal, periclinal, and radial) of cells within the lateral root of plants. The algorithm
is based on cell isosurfaces that represent numbers and locations of periclinal divisions of cells.
The normal information of these surfaces using a-shapes are compared to division directions
to determine the different division types. The performance analysis shows a quadratic time
complexity in the number of total points times the number of time steps. The space usage
grows as a function of the number of divisions and total cells for all time steps. The results
of the algorithm are influenced by two user-selected thresholds ¢ and p. The outcome of the
stability analysis is that small changes of these parameters also result in small changes of the
number of division types.

The usefulness of the algorithm was demonstrated by its application to five data sets of
the Arabidopsis plant. These are registered based on the number of cells in order to compare
them although they have different starting and ending times of the record. After registration,
it can be observed that all data sets share similar distributions of divisions, i.e. similar growth
behaviors. At the last registered step, at most three isosurfaces are generated that look visually



4.4 Summary 55

alike. Considering all data sets, these isosurfaces evolve similarly in the number of cells and
volumes and also are similar in the spatial development of periclinal divisions. The visualization
of the color-coded lineage trees with the compact information of ordered division schemes
reveals an alternating order of anticlinal/radial and periclinal divisions. These division types are
an important property of the lateral root growth and I use this information in the next similarity
analysis methods explained in the chapters [5|and [6]

After investigating the division types, an analysis of movement patterns is still missing. For
this reason, a new visualization method is presented in the next chapter. It is a visual analysis
method for finding similar migration patterns in plenty of 3D cell trajectories.






Chapter 5

Similarity Analysis of Cell Trajectories

“All things are the same except for the differences, and
different except for the similarities."

— Thomas Sowell, "Penetrating the Rhetoric",
The Vision of the Anointed, 1996

Biologists studying animal embryonic development aim to understand how a single cell (zygote)
develops into well-organized tissues, organs, and eventually a fully-formed viable organism.
This development follows a regular behavior in its formation of the tissues. As motivated in
the introduction, biologists assume that the migration of cells is a consequence of specific cell
fates. More precisely, it is believed that a cell migrates and divides because it has a certain
identity and somehow knows how it contributes to organs or tissues. This cell fate commitment
could be even influenced by spatial dependencies like the relative position of cells within the
developing embryo, for example. The research of cell identities leads to a better understanding
of how proliferating cells are able to maintain a regular tissue and organ development. Domain
experts seek to find evidence that confirms their hypotheses and reveal insights on the cause
of cell migrations and fate decisions. However, the detection of such cell fates and behaviors
is a challenge for the analysis process because of the large diversity of the 3D+t data of thou-
sands of cells. This analysis process greatly benefits from interactive visualization methods that
automatically extract and classify plenty of cell developments to group similar trajectories.

In this chapter, I introduce a visual analysis method that permits a similarity analysis for
3D+t cell trajectories [FHWL12]. More precisely, I establish a similarity measure for compar-
ing cell trajectories based on a combination of migratory and geometrical features. The results
are stored in a similarity matrix that is processed in a hierarchical clustering approach. Fig-
ure illustrates the generation steps of the presented method. After explaining the clustering
algorithm, its performance (Section [5.3.1)) and validity (Section [5.3.2)) are examined in detail.
The usefulness of the method is illustrated by applications to zebrafish and Arabidopsis data
sets in Section [5.4] For the zebrafish data, the visual analysis helps in the detection of col-
lective cell migrations and similar tendencies in their development. The visualization of the
Arabidopsis data reveals a hitherto undiscovered correlation between the division orientations
and subsequent nuclei displacements.

57
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Figure 5.1: Workflow chart of the similarity analysis of cell trajectories. (A) The cell trajectories are generated based on the input data (Section H
and modified according to user-selected range parameters such as time, cell cycle length, and the number of divisions. (B) Optionally, a level of detail can
be set for all trajectories using the edge criterion (Section [5.1). After these geometry-based modifications, the extracted cell-based and movement-based
features from each sub-trajectory are stored in a feature vector W (Section E (C) For each pair (j, k) of trajectories, k is transformed with suitable rotations
around the x-axis in order to find the best similarity measure using the coupling distance [EM94b] (Section [5.2). The results are stored in a shape matrix
S (Section H (D) The extracted feature vectors W and the shape matrix .S are given as input data for the clustering algorithm (Section H resulting in a
cluster assignment. (E) For validating the clustering results, a combination of several 2D/3D visualizations is provided (Section E



5.1 Cell Trajectory Modifications 59

5.1 Cell Trajectory Modifications

Domain experts have the possibility to focus on specific cell trajectories. This is realized by the
setting of certain biologically motivated range parameters for time, cell cycle length, and the
number of divisions. The choice of parameters may affect the geometry of trajectories in such
a way that the range constraints are fulfilled. Furthermore, to focus on the analysis of collective
cell migrations and to identify trends, a method for adapting the level of detail is introduced.
This modification reduces the complexity of data and simplifies the visual analysis.

Level of Detail for Cell Trajectories

The visualization of thousands of 3D cell trajectories is a challenge for the visual analysis.
These trajectories often suffer from little cell position changes in time resulting in overplotting
of cell sets in the visualization (Figure [5.2]A gives an example). This is caused by small cell

@ °°., @ o (°

Figure 5.2: Visualization of cell trajectories using lowest level of detail: The examples in (A) high-
light the visual problems in the visualization of cell trajectories with full level of detail. The left trajectory
shows that the centroid computations may result in small cell position changes leading to overplotting.
Overlapping cell trajectories within a dense region may also complicate the visual analysis. Both visual
issues are addressed in (B) by applying the lowest level of detail that simplifies the visualization and
consequently the analysis.

migrations between subsequent time steps and the temporal resolution of data acquisition. The
overplotting also affects the visualization of complete cell trajectories within a dense region as
illustrated in Figure [5.2JA. This phenomenon impedes the analysis in both the 2D and the 3D
visualizations. In order to avoid overplotting, a level of detail (LOD) technique is applied to all
cell trajectories. I use the edge criterion [Jen89] that is explained in Figure [5.3]in five steps for
a two-dimensional example. The procedure works similarly in 3D and can be directly applied
to cell trajectories. The main idea is that for each triple of subsequent nodes, a triangle is gener-
ated. For each triangle, the shortest distance §; between the second node and its opposing line is
considered. If §; is smaller than some user-selected threshold  then the second node is erased
from the trajectory. This means that the value of ~ affects the LOD applied to the trajectories.
The edge criterion tends to remove almost collinear nodes prior to those that feature an abrupt
change of the trajectory direction. This is intuitively a correct behavior because collinear nodes
share a similar movement direction while a variety of different movement orientations should
be coarsened only at a lower LOD.

Figure shows how the edge criterion can be used to address the visual problems de-
scribed above. If the lowest LOD is chosen only the start and end points of each trajectory
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Figure 5.3: Explanation of edge criterion. (A) Trajectory with eight nodes n1, ..., ng. (B) Each triple
of subsequent nodes defines a triangle with a dashed line connecting the first and last nodes. (C) For
each triple, the shortest length §; between the inner node and its opposed dashed line is computed. If
this length is smaller than some user-selected threshold ~ then the inner node of the triple is erased (red
0;), else the node (black ;) remains in the trajectory. (D) The three nodes marked in red are erased and
result in the new coarsened version of the cell trajectory (E).

remain. Note that the feature computation explained in the next section yields different results
if the LOD is altered. For example, if a trajectory with 10 nodes is coarsened to the lowest LOD
such that only two nodes remain, only the information provided by these two nodes influence
the feature computation. Although different levels of detail could be generated, only two levels
are considered in this thesis. Either no LOD is applied at all (v > 2.5 in data sets) or the lowest
one is chosen in such a way that a single line remains for describing a cell migration (y < 0.1
in data sets). This consideration might seem to be a rough simplification of the complex data
but it serves as a focused analysis of migration trends. Without a reduction of the LOD, all
migration properties and shape structures of a trajectory can be analyzed while for the lowest
LOD, a better analysis of main tendencies of single or collective cell migrations is permitted. It
furthermore satisfies a requirement for the clustering method explained later.

5.2 Similarity Measure
In the similarity analysis, I use the movement-based features introduced in Section [3.4] There

are a lot of distance functions available determining the similarity between trajectories j and k.
The most commonly used measure is the Minkowski distance:

(5.1)
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or more precisely the Manhattan distance (p = 1) and Euclidean distance (p = 2) which are
metrics and can be computed in linear time. I compute the absolute distance of the delta time in-
formation (cell cycle length) and the Euclidean distance of the velocities for each sub-trajectory
because they provide a fast computation and compare the actual rating of these features. I addi-
tionally include the direction vectors for each sub-trajectory and compute the geodesic distance
between the spherical coordinates of the vectors. I choose this distance because it represents
an adequate similarity of direction vectors in the 3D space. The required features for each
trajectory are stored in a feature vector f € RAL+1:;

=t Mv)". (5.2)

The first entry is the time value At € N followed by a tuple M = (i, ..., M L)T of the L single
direction vectors 17; € R3 for each sub-trajectory. The tuple V = (vy,. .. ,UL)T denotes the
corresponding velocities v; € R. Within any time step range, the lengths of the trajectories and
thus the dimension of the feature vectors may vary. Clustering, however, only works with data of
the same dimension, i.e. trajectories with the same number of sub-trajectories. After discussion
with domain experts, for each individual comparison between a pair of trajectories, the back of
the longer one is pruned in such a way that both trajectories share the same length (Figure[5.4).
I choose this operation because an extension of the shorter trajectory yields false information
that distorts the analysis. Furthermore, a pruning at different positions is not allowed because
the biological property of cell trajectories starting at a dividing cell should be preserved. Note
that the geometrical structure of a trajectory is not changed, only its representing feature vector
is pruned. Also note that this pruning is only required when not reducing the LOD because
using the lowest LOD guarantees that a trajectory is represented as one line and has a feature
vector f of dimension 5.

® ® ®
Origin Cut Result

Figure 5.4: Pruning of sub-trajectories. In order to assure the same dimensionality of the feature
vectors, trajectories are pruned at the back.

Due to the versatile nature of the input data, a similarity measure only based on single
features would not capture all biological events in the data set. Thus, I generate a similarity
measure based on combined feature values that covers similarity in cell cycle lengths, velocities,
local motions, as well as shapes of entire trajectories. For this purpose, when comparing two
trajectories j and k of different lengths, let L := min ([}, ;) be the smaller trajectory length
with respect to the pruning approach.
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Migration Orientation

I compute the spherical coordinates P = (r,¢,0) of a normalized direction vector m =
(my, ma, m3)T in order to capture and compare the local motions of cells:

T:\/m%—l—mgjtm%,

mg
0 = arccos | — ),

r
[ arctan (;”TQ) if my >0, -
1
5 sgn (mg) - § if m; =0,
arctan 2—?) + 7 if m;i <0Amg >0,
arctan (%) - if m; <0Amy <O0.

\

Due to the normalization, r is always one. 6 € [0, 7] is called the polar angle while ¢ € (—, 7]
is called the azimuthal angle and sgn is the sign function. If a trajectory has more than one sub-
trajectory I compute the mean of all direction vectors in order to average the complete migration
of a cell:

1 L
Ty = Z ;. (5.3)
=1

all

The resulting mean vector 1, is normalized and its spherical coordinates are computed. To
measure the similarity between two spherical coordinates P; = (1, ¢;,6,) and P, = (1, ¢y, 0;)
the geodesic distance (great-circle) is computed which is the shortest distance between two
points on the surface of a sphere:

dp (P;, P;) = 2 arcsin <\/si1r12 <M) + cos 0; cos Oy, sin? (M)) (5.4)

In contrast to the Euclidean distance that calculates the length of the straight line between two
points, the geodesic distance is measured along the surface of the sphere. I choose this method
because it is well-suited for capturing and comparing the motion directions of trajectories.

Cell Cycle

The similarity of cell cycle durations is computed as the absolute difference between two delta
time values:

Note that using the pruning approach and no LOD reduction yields dy (At;, At;) = 0. But
using the lowest LOD, only one line represents each trajectory and all feature vectors share the
same number of elements. In this case, the feature vectors are recomputed based on the first and
last cell centroid. dy (At;, Aty) then yields the difference between two cycle durations.
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Velocity

I further define the similarity between velocities of trajectories by the Euclidean distance of the
tupels V:
dv (V3 Vi) = [[V; = Vill,- (5.6)

Using only the pruning approach, all trajectories originate from a dividing cell and share the
same temporal order. This distance function then computes the individual differences of veloc-
ities starting at the same biological event which makes it a feasible measure to compare cell
migration speeds.

Shape

In addition to the distance functions described above, I employ a geometric similarity measure
in order to compare the shape of different trajectories. One example of such a similarity mea-
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Figure 5.5: Shape similarity computation of trajectories. Each pair of trajectories is considered to
compare their shapes (A). Prior to computing the coupling distance, both trajectories are aligned on the
x-axis according to their direction vector between the first and last cell centroid (B) . In each iteration, the
second trajectory is rotated along the x-axis and the coupling distance is computed for this constellation
(C). According to all rotations, the coupling distance is selected in such a way that it maximizes the
shape similarity (D).

sure is the (bidirectional) Hausdor{f distance. Intuitively, it computes for each position of one
trajectory j the distance to its closest position of another trajectory £ and returns the maximum
over all these values. However, this measure is prone to noise and it neglects the order of the
points on the trajectory. Unlike the Hausdorff distance, the Fréchet distance includes the or-
der of traversal of the trajectory which makes it more suitable for the similarity comparison of



64 5.2 Similarity Measure

shapes [Alt09]:

dp(j, k) = inf max [lo (a(t)) — 7 (B(1))[]- (5.7)

a,B t€(0,1]

o,7 : [0,1] — R? are parameterizations of the two trajectories j and k while o, 8 : [0,1] —
[0, 1] range over all continuous and monotone increasing functions. The continuous Fréchet
distance can be informally explained by the commonly known connection between a person and
a dog by a leash. Imagine the person and the dog walking along a path (curve) from its starting
point to its end point. Both are allowed to control their speed, but they cannot backtrack. The
Fréchet distance between the two trajectories is the minimal length of a leash that is sufficient
for traversing both curves in this manner. Because of the fact that these trajectories correspond
to cell developments, the order in which a cell traverses different positions over time is an
important biological property for the similarity check. Since the trajectories are defined by
discrete points, I apply the coupling distance dr (j, k) of Eiter and Mannila [EM94b] which is
a good approximation of the Fréchet distance for discrete curves. The basic idea is to look at
all possible couplings between the end positions of all line segments of both trajectories. The
distance is then computed in polynomial time using a dynamic programming algorithm.

The coupling distance is sensitive to the spatial location of the trajectories that are being
compared and thus they require an alignment. Goodrich et al. [GMO99]] as well as Alt and
Guibas [AG96] analyze and apply rigid-body transformations for the purpose of matching point
sets in 3D space. However, the focus here is on cell trajectories that start with a dividing cell and
these are transformed in such a way that both share the same first cell centroid. For this reason,
the first cell of each trajectory is translated into the origin. The direction vectors of the first and
last cell centroids are calculated for both trajectories. Both are aligned in such a way that their
direction vectors lay on the x-axis. One degree of freedom remains, namely the rotation of the
trajectory around the x-axis. The angle ¢ for that rotation is determined by an iterative check of
both trajectories based on their shape similarity. More precisely, the second trajectory is rotated
iteratively around the x-axis by the angle ¢ that maximizes the shape similarity

dropt (4, k) = min {dﬁ? (G.k)| ¢=i-Ag, ¢ €0, 360)} : (5.8)

¢

with 4 denoting the iteration index and n as the total number of iterations. A¢ € (0, 360) is
a user-selected offset angle and has to be a divider of 360. The angle ¢ is increased in each
iteration by A¢ until all rotations along the x-axis are performed. In each step i, the coupling
distance d;f) (7, k) is computed. ¢ is chosen in such a way that it minimizes the coupling dis-
tance dpopt (J, k), thus maximizing the shape similarity. Figure illustrates the explained
steps. Note that a smaller angle A¢ means a higher computational effort for the similarity anal-
ysis. While smaller offsets require more iterations n, the shape comparison also becomes more
accurate. I choose an angular discretization of 15 degrees (24 comparisons for each pair of tra-
jectories) because this selection yields an optimal compromise between efficient computation
and exact results for the applied data sets. This costly optimization step is done only once for
M trajectories and the normalized optimal coupling distances dp ¢ (j, k) = s;, are stored in a



5.3 Hierarchical Clustering of Feature Vectors 65

shape matrix S € RM>M:

0 S12  S1.3 R S1,M
52,1 0 523 Ce So. M
S = . (5.9)
SmM1 SM2 -+ SMM-1 0

Note that the coupling distance also takes the length of two trajectories into account. This means
that if the lowest LOD is applied, trajectories only based on their lengths between the first and
last cell centroid can also be compared because each cell migration is represented by a single
line. In conclusion, the similarity of two trajectories j, k£ based on their feature vectors f;, ﬁ is
given by a weighted combination of the individual feature values:

dsd

dsimilarity(fj’ fk) - )\1 : P Pk)

D
((V Vi)t (5.10)

>
(e}
&> :“> &>

Ao+

The weights should satisfy Z?Zl Ai = land \; € [0,1]. Since the features manipulated by
A1, ..., A3 may vary considerably, the three components are normalized to [0, 1], indicated by a
hat symbol, to provide a balanced comparison of local and global features. Note that the entries
of S are already normalized.

5.3 Hierarchical Clustering of Feature Vectors

By means of the feature vectors that describe trajectory properties and shape-based char-
acteristics, the trajectories are clustered in order to group thousands of cells with similar
motion patterns. Clustering is a technique to group objects based on similar features. It
is a large area of research and several survey articles exist with focus on general cluster-
ing techniques [ELLSI1, Rok10] or with focus on clustering of time series and trajecto-
ries [WLOS, KMNRI10O]. Common methods are classified into partitioning, hierarchical,
density-based, grid-based, and model-based clustering techniques. However, for domain ex-
perts in biology, it is important to retrace the hierarchy of clustered trajectories because it en-
ables them to differentiate between the similarity level of cell migrations. In other words, tra-
jectories that are subsequently merged are more similar in comparison to all other trajectories
added later to the same cluster. The clustering process does not need any a priori information
about the number of clusters and can also be visualized in a tree diagram called dendrogram
that serves as a hierarchy representation for detailed cluster analysis. For these reasons, I apply
a hierarchical clustering approach which is a distance-based unsupervised learning method (i.e.
no a priori labeling of the data is given). It merges clusters if they are close to each other and this
can be realized using an agglomerative "bottom up" approach. Here, each element is assigned
to exactly one cluster at the beginning and several clusters are merged during the clustering
process. In the contrasting approach, called divisive type, all elements start in one big cluster
and clusters are split in a "top down" fashion. The divisive type can be computationally expen-
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sive if all 28=! — 1 possible divisions for k objects are considered [ELLSTT, p. 84]. Hence, I
choose an agglomerative approach for which the performance is analyzed later in Section[5.3.1]
More precisely, each element starts in its own cluster and similar trajectories are joined until a
predefined number of clusters or a similarity threshold is attained. The clustering requires the
following input: (i) The feature vectors f for each trajectory (Equation , (i1) a similarity
measure for the feature vectors (Equation [5.10), (iii) a linkage criterion that defines the way to
merge clusters and, (iv) a stopping criterion for the clustering.

The use of different linkage algorithms can result in completely different clustering re-
sults. In Section [5.3.2] I apply and compare several linkage types described here and give a
detailed analysis of the resulting clusters for the biological data sets. The linkage criterion
single-link [SneS7|| (nearest neighbor) results in the merging of clusters with the shortest dis-
tance between any two elements in the two clusters. Here, a small initial cluster can attract
locally the other elements one by one leading to a chain effect. In the analysis, this linkage
algorithm tends to generate one large cluster with other clusters containing only a few ele-
ments. While this behavior is suitable for outlier detection, i.e. elements with largest cluster
distances, it is not appropriate for the presented analysis. In contrast, the linkage criterion
complete-link [Sor48] (furthest neighbor) avoids the chaining phenomenon because it merges
clusters globally based on the longest distance between two elements in two clusters. However,
it is strongly affected by outliers and the merging of elements with large distances significantly
changes the clustering. Therefore is it also not suitable for the cell data. Other types are cen-
troid linkage (unweighted pair-group method using centroids - UPGMC) [Gow67]] and median
linkage (weighted pair-group method using centroids - WPGMC) [Gow67]. For the centroid
linkage the geometric center (centroid) of each cluster is computed. The distance between two
clusters is then given by the (Euclidean) distance between these two centroids. However, newly
formed clusters may significantly change the cluster hierarchy. For the latter type the distances
based on the median of each cluster are computed. This is useful when for the distance cal-
culation each element should be equally weighted which is not suited for clustering the cell
trajectories. Two criteria yield the best clustering results with this algorithm applied to the ze-
brafish and Arabidopsis data: Group average (unweighted pair-group method with arithmetic
mean - UPGMA) [SM58]] and Ward’s method [War63|]. The first one defines the distance be-
tween two clusters as the average (Euclidean) distance between all pairs of the elements z, v in
two clusters X, Y:

dAverage(X Y ‘XH Z d .73' y (511)

| X |, |Y| are the cardinalities of each cluster. In contrast, the weighted average (weighted pair-
group method with arithmetic mean - WPGMA) [McQS57/|] linkage performs the same computa-
tion as the average linkage but weighted distances based on the number of elements in a cluster
are considered. Ward’s method minimizes the total within-cluster variance, i.e. how far the
objects are spread out within a cluster:

(XY

Arerd B = R

[e=gls (5.12)

with X, Y as the centroids. Instead of merging the two most similar elements successively
it tends to combine those elements whose merge increases the within-cluster variance to the
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Input : Feature vectors f, shape matrix S, similarity measure, linkage criterion, metric
weights, stop criterion.
Output: Cluster assignment

D =d(j, k) : matrix [1..M, 1..M] of real;

begin
getMinMax () ;
for j < 1to M do
for £ < jto M do
d(j, k) < computeSimilarity (z;,zy);
d(k,j) < d(j, k);
if d(j, k) < minValue then
minValue < d(j, k);
minRow « j;
minColumn <« &;

clusterSize < M;

matrixReduction < 0;

while clusterSize > clusterStop or !distStop do
merge (XuinRows XminColumn) >

clusterSize < clusterSize—1;

matrixReduction <+ matrixReduction+1;

for j < 1 to M —matrixReduction do

for k < j to M —matrixReduction do

if 7 =minRow and k =minColumn then
d(j,k) < LanceWilliams (X, Xj);
d(k, §) < d(j, k);

if d(j, k) < minValue then
minValue < d(j, k);
minRow <« 7;
minColumn < £;
foreach d(j, k) do
L distStop «— stopCriterion (d(j,k));

Figure 5.6: Agglomerative hierarchical clustering algorithm based on trajectory feature
and shape similarities.
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Linkage (51 (52 53 (54

Average 0.5 0.5 0 0

XI+12] | YI+Z] | _12]
Ward ~ 7 ~ | 0

Table 5.1: Parameters for Lance-Williams algorithm [LW67]. N = | X| + |Y| + |Z].

smallest possible degree. Ward’s method is well-suited if almost equally sized clusters can be
assumed which is the case for the investigated data sets. The implementation of the linkages are
realized using the recursive Lance-Williams algorithm [LW67]:

dpw(XUY,Z)=61-d(X,Z)+ 62 -d(Y, Z) + 03 - d(X,Y )+ 5.13)
54‘d(X>Z)_d<Y>Z)’7 .
with X UY being the clusters to be merged and d(-,-) being the pairwise distances between
clusters X, Y, Z. Different values for d; correspond to different linkages criteria. The parameters
for the applied methods are given in Table [5.1]

The current distances between single elements and clusters are stored in a symmetrical
similarity matrix D = d(j,k) € RM*M where M is the number of trajectories. In each
clustering step, this matrix is updated and the dimension of the row and column is decreased.
The clustering algorithm proceeds as follows (pseudo-code in Figure [5.6):

e The minimum and maximum values of the similarity measure results are computed for all
feature vectors f (line . This information is required for the normalization of the first three
components of the similarity measure in equation [5.10}

e In line [f] the similarity between each pair of trajectories is computed using equation [5.10]
Subsequently, the minimum value minvValue with indexes minRow and minColumn of
the current matrix D are determined and stored (lines [9H11)).

e The initial number of clusters is set to M (line [I2) and the variable matrixReduction
indicates the dimension reduction of the matrix D during the clustering (set to zero at the
beginning in line [13).

e The while-loop runs until either a certain number of clusters has been reached or if all cluster
distances are smaller than a pre-defined threshold. In line[I5] the cluster X,i,z0w is merged
with the cluster X,,.;ncoiumn- As a consequence, the cluster size is decreased by one and the
similarity matrix D is reduced by one row and one column, i.e. the row and column with
index minColumn is removed.

e For each pair of trajectories, the similarities are recomputed using the recursive Lance-
Williams algorithm and the Ward linkage criterion in line Note that a recomputation
of similarities only affects clusters that are linked to the clusters with index minRow and
minColumn, respectively. In the loop, the new local minimum is determined for all entries
in the matrix D (lines 24H26)). In line 28] in case the threshold stop criterion is selected, it is
checked whether the cluster distances are all smaller than the threshold.
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5.3.1 Performance Analysis

Table[5.2]on page[70]shows a summary of the number of sub-trajectories and computation times
in seconds for each main task in the pipeline: Trajectory generation, trajectory modification,
similarity measure, and clustering. The algorithm is applied to all zebrafish and Arabidopsis
data sets with the same hardware setting as in chapter [ (Intel Core i7, 3.20 GHz, 12 GB of
memory and an NVidia GTX 480). The number of sub-trajectories and the other three columns
are based on different parameter settings for each data set (Epiboly: ¢ € [0, 65], all trees with
division range in [8, 64], length > 5; Tailbud: all trees, all times steps, length > 30; Arabidop-
sis: all trees and all time steps). These settings are identical to the ones used to present the
application results and are motivated later in Section [5.4]

The initial generation of the trajectories has a time complexity of at most O(N + M L)
with N = Zle n; as the sum of all tree nodes n; in all L cell lineages because the tracking
information is stored in a binary tree and its traversal is realized in O(n;). M is the number
of trajectories and Ly,,x is the maximum length of all trajectories. The term M L, refers to
the feature computation for all sub-trajectories. The trajectory generation is done only once
for each data set. This result is stored and modified based on the input range parameters and
the chosen LOD. The second task in modifying all trajectories is realized in linear time in the
number of trajectories M.

The clustering algorithm has a time complexity of at most O(M?). More precisely, it is
O(M - (M — C)) with C < M as the desired number of clusters. The term WT_M il-
lustrates the time of scanning the symmetric M x M matrix D in which the diagonal only
contains zeros. The value of M — C refers to the number of iterations and on the number
of clusters that should be generated. The more clusters are chosen the faster the algorithm is
finished. Rafsanjani et al. [RVC12]] present a survey of recent agglomerative hierarchical clus-
tering techniques with a comparison of space and time complexities. While there are other algo-
rithms with improved performance under certain assumptions (O(M? log M) [GRS98,/GRS00],
O(M log® M) [KBXS12], O(M log® M) [EDSNII]), it is still sufficient for these data sets be-
cause only a subset of all cell trajectories is considered.

In comparison with the cubic time complexity of the clustering method, the similarity mea-
sure needs more time to be calculated. The computation of the coupling distance requires that
each pair of elements of the sub-trajectories for two trajectories is compared with each other.
This has an upper bound time complexity of O(I - X°-M . 12 ) with T as the number of sim-
ilarity checks to maximize the shape similarity between two trajectories. Although, [ = 24
is a constant, the similarity measure has a bad time complexity depending on the number of
trajectories and their lengths. This fact also explains the long computation time for the similar-
ity measure of the tailbud data (approximately 20 minutes) in contrast to the epiboly data set
(approximately 21/2 minutes) because of their large difference in the number of sub-trajectories.
The same observation holds for the different Arabidopsis plants with computation times be-
tween approximately 3 and 8 minutes for the similarity measure while all other tasks take less
than a second. However, this huge computation time may be strongly reduced depending on
the analysis purpose: The coupling distance needs only to be computed when the shape be-
tween trajectories should be investigated. This means that for A, = 0 only the migration-based
features are compared and clustered. Furthermore, when only investigating the trends of migra-
tions and collective movement behaviors, then the lowest LOD can be used. This means that




70 5.3 Hierarchical Clustering of Feature Vectors

Computation times [s]
Data set w/o Number of .
level of detail | sub-trajectories | Irajectory Trajectory | Similarity Clustering
generation | modification | measure
Epiboly 15,897 16.16 0.14 160.74 8.94
Epiboly (LOD) 1,132 16.16 0.20 10.8 7.43
Tailbud 51,432 100.96 1.07 1275.34 13.43
Tailbud (LOD) 1,331 100.96 1.18 15.73 12.53
120830 21,084 0.19 0.01 205.4 0.47
120830 (LOD) 339 0.19 0.04 1.13 0.35
121204 19,849 0.27 0.02 180.29 0.39
121204 (LOD) 323 0.19 0.03 1.04 0.33
121211 28,636 0.23 0.02 380.13 1.15
121211 (LOD) 502 0.23 0.04 2.45 0.90
130508 19,102 0.16 0.02 166.12 0.30
130508 (LOD) 277 0.16 0.03 0.8 0.24
130607 32,084 0.26 0.02 476.5 1.10
130607 (LOD) 514 0.26 0.05 2.44 0.92

Table 5.2: Computation times for similarity analysis of all data sets. The table lists the number
of sub-trajectories and the individual computation times in seconds for each main task in the similarity
analysis using Ward’s linkage. Note that the number of sub-trajectories is identical to the number of cell
trajectories in the data sets for which the lowest LOD is applied.

all trajectories are only presented by their first and last centroids. Consequently, L.x = 1 and
the time complexity is quadratic. The reduced computation times are listed in Table[5.2] The
generated shape matrix S based on the coupling distance is generated only once and stored on
the disk for fast reprocessing in later sessions. However, if the structure of any trajectory is
changed by varying the input parameters or by using another LOD, then S has to be recom-
puted. Nevertheless, by using preprocessed results, the data is loaded in a few seconds and the
visual analysis is realized in real-time.

With respect to space usage, the clustering algorithm requires all features vectors f €
R4+ the shape matrix S € RM*M and a temporary similarity matrix D with an initial dimen-
sion of M x M that is reduced in each iteration. The clustering results are stored in a vector
of trajectory IDs for each cluster. Consequently, the algorithm has a space complexity of at
most O(M L. + M?). For example, for the Arabidopsis data 130607, the space usage of the
algorithm is approximately 5 MiBs while for the tailbud data it is approximately 30 MiBs (64
bits double precision).
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5.3.2 Cluster validity

In order to evaluate the presented clustering approach, a cluster validity check is performed.
In general, there are three strategies how this can be realized [TK99, p. 596-608]. External
criteria are based on pre-specified structural assumptions (e.g. labels) imposed on the data set
but not regarded in the clustering itself. This information is often created by human experts and
considered as a gold standard used for evaluation. Internal criteria consider the information
of the similarity matrix, for example, and validate how well the cluster approach preserves the
pairwise distances. This means that the compactness and goodness of a clustering structure
are measured. The third group, called the relative criteria, evaluates the clustering structure by
comparing it to other clustering results using the same algorithm but different parameters. In this
section, the internal and relative properties are investigated because no labeled a priori knowl-
edge of the biological data sets is available. I first validate which linkage methods are suited for
clustering the data sets. Afterwards, I analyze the parameter stability and the cluster robustness
with respect to the weight parameters \; of Equation The analysis of the internal quality
of the clustering permits a way to measure the goodness-of-fit of linkage types applied to all
data sets. I realize this measurement using the cophenetic correlation coefficient [SR62]:

- > jer(dik — d)(yjx — 7) '
\/Zj<k(djk —d)? Zj<k(yjk’ - 7)?

d;i, are the similarity and y;;, are the dendrogrammatic distances between trajectories j, k €
[1, M]. ¢ € [0,1] and d, ¥ are the averages of the d;; and y;, respectively. This measurement
describes how faithfully the cluster hierarchy preserves the pairwise distances between the orig-
inal data. The closer the coefficient is to 1, the more accurately the clustering result reflects the
original data. Table[5.3]on page[72]lists the different coefficients for the linkage types explained
in Section [5.3] The clustering is applied to all data sets w/o reduction of LOD based on the
orientation of trajectories. The numbers in bold type illustrate the highest score for each data
set. The average linkage features most of the time the highest values with similar results for
the centroid and Ward’s method. However, the remaining linkage types have 10 — 20% smaller
values with even 25 — 50% for the single type. The same linkage behavior is also concluded
by Saracli et al. [SDD13] applied to simulation results w/o outliers. In the visual analysis of
the clusters, the average linkage and Ward’s method yield similarly good results in contrast to
the other linkages. Therefore, I use these two methods for analyzing the biological data sets in
Section[5.4] As already mentioned before, using the single linkage results in one big cluster and
many clusters with few elements. This behavior of inappropriate clustering is also confirmed
by the small cophenetic coefficient.

(5.14)

The choice of the weight parameters \; defines the ratio how migratory and geometrical
features of cell developments are taken into account in the similarity analysis. Consequently, it
is important to check how robust the clustered trajectories are when the weights are changed.
A certain cluster setting is selected as a reference hierarchy H to be compared with the other
clustering result C' to analyze the relative differences when changing a specific pair of A;. This
is realized with the same data set, identical number of trajectories M, and the same number
of clusters k. The weights are slightly steered by small steps in such a way that A\, + A\, =
1(a # b Aa,b € [1,4]) is always satisfied. There are many measurements to evaluate the
similarity between cluster results [WWO07|] but I use the Jaccard index (J), the Fowlkes-Mallows
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Average | Centroid | Complete | Median | Single | Ward szi%g;d
Epiboly 0.62 0.61 0.30 0.31 0.32 0.60 0.52
Epiboly (LOD) 0.70 0.68 0.61 0.61 0.44 0.67 0.61
Tailbud 0.71 0.71 0.52 0.61 0.32 0.64 0.64
Tailbud (LOD) 0.69 0.68 0.54 0.59 0.47 0.58 0.54
120830 0.78 0.78 0.67 0.61 0.52 0.71 0.55
120830 (LOD) 0.78 0.77 0.68 0.68 0.58 0.76 0.74
121204 0.70 0.72 0.67 0.63 0.32 0.67 0.66
121204 (LOD) 0.75 0.74 0.69 0.64 0.54 0.73 0.62
121211 0.78 0.75 0.60 0.58 0.55 0.68 0.67
121211 (LOD) 0.76 0.75 0.68 0.58 0.49 0.72 0.70
130508 0.81 0.81 0.73 0.55 0.58 0.70 0.64
130508 (LOD) 0.77 0.79 0.72 0.66 0.48 0.77 0.70
130607 0.74 0.74 0.64 0.61 0.31 0.71 0.60
130607 (LOD) 0.74 0.74 0.66 0.64 0.38 0.71 0.65

Table 5.3: Cophenetic correlation coefficient for different linkage types applied to all data sets.
Each cell entry shows the coefficient for clustering based on orientations only.

index (FM) [EMS83|], and the F-Measure (F) [vR79] because they are commonly used for the
comparison of clustering results. All these measurements yield values in [0, 1] for which one
refers to identical cluster structures and zero refers to no common elements in both hierarchies.
All consider the number of points that are common or uncommon to two hierarchy structures:

TP (true positives) is the number of points that occur in the same cluster in both A and C'.
FP (false positives) is the number of points that occur in the same cluster in H but not in C'.
FN (false negatives) is the number of points that occur in the same cluster not in H but in C'.

TN (true negatives) is the number of points that are in different clusters in both H and C'.

Jaccard Index (J): This index measures the number of objects common to both hierarchies H

and C' divided by the total number of elements in both clusters:

_|HnC|

TP

 |HUC| TP+FP+FN

(5.15)
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Fowlkes-Mallows Index (FM): This index computes the geometric mean of the precision rate
P and the recall rate R. Precision is the fraction of correctly out of all retrieved instances while
recall is the fraction of correctly retrieved instances out of all existing matching instances. In
order to compute the FM index, each cluster hierarchy of H and C' is cut to produce k =
2,...,M — 1 clusters for each dendrogram. This means that the results can be visualized in
a plot of FMy, against k to compare them with other cluster hierarchies. The computation of a
specific cluster k is realized by the following formula [EM83]]:

TP
FM = =+vP-R. 5.16
\/TP—l—FP TP + FN (5.16)

F-Measure (F): The F5-Measure can be used to balance the contribution of FN using a weight
parameter ¢ but I consider here F = F} which is interpreted as the harmonic mean of P and
R [vR79]:

2P -R

= — .17
P+R ©-17)

I apply the evaluation to one Arabidopsis plant (because the analysis of the other plants
yields similar outcomes) and the two zebrafish data sets using reference settings that are moti-
vated by the application results in Section [5.4] The clustering is performed using the average
linkage criterion. For the Arabidopsis, a reference parameter setting of A, = 0.8, A\, = 0.2 and
k = 4 is chosen. For these values, the visual four clusters represent best a correlation between
the division types and the subsequent orientations of nuclei migrations. More details about this
are given later in Section For the zebrafish data, a reference setting of A\, = 0.5, A\, = 0.5
is selected (k = 5 for epiboly and k£ = 6 for tailbud) in such a way that both represented
feature values are weighted equally. The number of clusters £ is biologically motivated and
chosen based on the outcome of the dendrogram. For example, the Arabidopsis plant features a
common growth and division direction, thus the number of clusters is set to four (more details
in Section [5.4). Regarding the dendrogram, a link whose height differs significantly from the
height of the links below is an indicator for an inconsistent link. This means that the trajectories
joined at this stage are much farther apart from each other than their previous components and
that this link could be cut to form an additional cluster.

Table [5.4] on page [74] shows the computed three indexes for all possible pairs of weight
parameters for the Arabidopsis plant 120830. Except for the pair A3, A4, nearly all indexes
have values greater than 0.9 for parameter changes of at most 0.16. This cluster stability is
also confirmed in the visual analysis of the four clusters for which the correlation result can
still be observed when the changes are smaller than 0.16. In particular, for Ao, A3 and A, A4,
the values are quite high for the same bandwidth of changing parameters. This means that the
velocities correlate with the time durations and the lengths of the trajectories. Consequently,
most of the nuclei migrate continuously with constant speed. The variation of values for the
pair A3, A, is assumed to be caused by a higher variance of the time features in comparison to
the shape structure (length when using the lowest LOD) of cell trajectories. The index values
are different for the epiboly data set. In Table |5.5|on page (75| the clustering is stable for Ay, \4
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Aas Ao ||0.60,] 0.64,] 0.68,] 0.72,] 0.76,) 0.80, 0.84,| 0.88,| 0.92,| 0.96,] 1.00,
Resulte~ || 040 | 0.36 | 0.32 | 0.28 | 0.24 [0.20 0.16 | 0.12 | 0.08 | 0.04 | 0.00

Cﬁ] J 0531053109009 [099| 1 |08 097|094 ]0.93]|0.84
j“ FM || 0.72]0.72 10951098 1099| 1 094|099 097|097 |0.91

s F 0.70 1 0.70 1 0951098 1099 | 1 |0.94]0.99 097097091

I J 054108 109308708 | 1 |0.87]0.96|085|0.84]0.88
| FM | 0.72 1092096 | 093094 | 1 |0.93|0.981]0.92]|0.91]0.94
s F 07010921096 093094 | 1 |[0.93 098092091 0.94

TT J 0521082081090 |08 | 1 |0.990.87|0.87]0.90|0.90
j“ FM || 071090 ]094 095|094 | 1 1 1093(0.931]094 094

s F 0.69 109010941095 ]094 | 1 1 1093]0.93|0.94 | 0.94

I J 0.80 1094 1095|084 | 1 1 1 1 1 1 1
~ | FM || 0891097098092 | 1 1 1 1 1 1 1
s F 0.89 109710981092 1 1 1 1 1 1 1

I J 0.96 1 098 1096096 | 098 | 1 |098]0.98]0.98 |0.98 | 0.98
~ | FM |1 0981099098098 1099| 1 ]0.990.99|0.99]0.99 | 0.99
s F 0981099 109810981099 | 1 [0.990.990.990.99|0.99

J 0831086084 |083[084 | 1 |0.53]0.53|0.89|0.54]|0.54
~ | FM |1091093]1092|091|092| 1 |0.70|0.70 | 0.94 | 0.71 | 0.71
S F 0911093091091 ]091| 1 |0.69|0.69]0.94]0.70 | 0.70

Table 5.4: Cluster measurements for investigating the parameter stability of the Arabidopsis plant
120830 using the lowest LOD. For each parameter setting with £ = 4 using the average linkage, and
Ao + X = 1,a # bAa,b € [1,4] in steps of 0.04, the Jaccard index (J), the Fowlkes-Mallows index
(FM), and the F-Measure (F) are computed to quantify the similarity between the resulting clusters. The
cell colored in light blue indicates the parameters of the reference cluster.
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Aas Ao |10.30,] 0.34,] 0.38,] 0.42,] 0.46,) 0.50, 0.54,| 0.58,| 0.62,| 0.66,| 0.70,
Resulte || 0.70 | 0.66 | 0.62 | 0.58 | 0.54 [ 0.:50 | 0.46 | 0.42 | 0.38 | 0.34 | 0.30

J 041047046 062049 | 1 |0.71]0.50 | 0.45 | 0.54 | 0.37
| FM | 0.59|0.64 | 0.63|0.77 066 | 1 |0.84]0.68|0.64|0.71 | 0.57
s F 0.58 1 0.64|0.63 077 ]066| 1 |0.83]0.67|0.62]0.70 | 0.54

I J 0.33 1 0.57 1 0.56 | 0.67 | 055 | 1 |0.46|0.66 | 0.52 | 0.52 | 0.51
— | FM | 0510731072081 |071| 1 |0.63|0.79]0.69 | 0.69 | 0.68
S F 05 1073071081071 1 |0.63|0.790.69 |0.68 | 0.67

I J 046 | 06 | 0.53]055]060| 1 |0.55|0.50]043 048 |0.43
| FM ] 0.65]0.75 069|071 07 | 1 |0.71]|0.68]|0.61|0.68|0.61
s F 0.63 07506907107 | 1 |0.71]0.67|0.61|0.65]|0.60

I J 0591098 | 05 051096 | 1 |098]0.9810.980.82|0.92
~ | FM || 0.77 1099 | 071071098 | 1 [0.99]0.99 099|091 0.96
S F 0.7410.99 | 0.67 | 0.67 | 098 | 1 |0.990.99|0.99 | 0.90 | 0.96

I J 09510961099 1 [097| 1 |0.96|0.96 099094 0.95
~ | FM || 097 1098 | 1 1 1099 1 [098|0.98]0.99 097 | 0.98
s F 0971098 | 1 I 1099| 1 (0980981099097 0.98

J 097 1 1 1 1 1 1099 1 10981099 |0.98
~ | FM || 098] 1 1 1 1 1 71099 1 10.991]0.99|0.99
S F 098] 1 1 1 1 1 71099 1 10991099 |0.99

Table 5.5: Cluster measurements for investigating the parameter stability of the epiboly data set
using the lowest LOD. For each parameter setting with k£ = 5 using the average linkage, and A\, + Ay =
1,a #bAa,b e [1,4] in steps of 0.04, the Jaccard index (J), the Fowlkes-Mallows index (FM), and the
F-Measure (F) are computed to quantify the similarity between the resulting clusters. The cell colored in
light blue indicates the parameters of the reference cluster.
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and A3, \y. However, when the weight parameter for orientation J\; is taken into account, the
values are much smaller around 0.7. The visual analysis of the five clusters show that they
start to differ significantly for changes above 0.1. These observations are explained by the large
diversity of arbitrary cell migration orientations such that even small changes of the weight
parameters affect the cluster results. For the analysis of the parameter stability of the tailbud
data in Table[S.6|on page[77] the values are even smaller for all pairs of weight parameters. This
means that for small changes of the parameters the trajectories are assigned to different clusters.
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Figure 5.7: Plot of Fowlkes-Mallows index FM/, against clusters & for weight parameters \; and \4.
The line charts in (A) show the relative differences of the hierarchy clusters for the Arabidopsis data set
120830 (M = 339) with decreasing (left chart) and increasing A; (right chart). The weight parameters
are changed in steps of 0.05 with respect to a reference parameter setting of A\; = 0.8, \y = 0.2. In
(B), the same pair of weight parameters are changed slightly for the epiboly data set (M = 1132) with
a reference setting of A\, = 0.5, \; = 0.5. For both data sets the lowest LOD is used. Thus, the shape
corresponds to the length of the trajectories.

A more detailed analysis of the Fowlkes-Mallows index FM,, plotted against the number
of clusters £ reveals some more information. Figure shows the resulting line charts for the
Arabidopsis plant and the epiboly data set using the average linkage criterion. Note that for
small and large numbers of clusters k& with respect to the amount of trajectories M, FM; — 1.
This is a property of the method that even occurs when the cluster hierarchies are indepen-
dent [WWO7]]. In fact, the Fowlkes-Mallows index is based on a strong null hypothesis, i.e. that
there is no relationship between two cluster hierarchies. But for each line chart, I focus on the
same number of clusters and a fixed linkage type applied to the same data set. Through this, I
can solely investigate the relative hierarchy differences according to changing weight parame-
ters. Especially, the middle regions of the plots provide a meaningful interpretation. The pair of
line charts in Figure[5.7]A shows the resulting plots for the Arabidopsis plant 120830. On the left
side, the index is plotted for decreasing \; in steps of 0.05 while on the right side \; increases
with respect to the reference parameter setting. A significant change is observed for the blue line
(A1 = 0.65, A4, = 0.35) in comparison to the red one. This means that the cluster memberships
of trajectories have changed considerably. The same behavior is shown for increasing A\; even
earlier according to the red line in the right plot (A\; = 0.9, A\, = 0.1). This robust cluster stabil-
ity is caused by the main movement orientations of nuclei in anticlinal and periclinal directions
within the lateral root. In contrast, the line plots for the epiboly data set in Figure share
a common behavior and have similar relative differences. This means that even small changes
of the weights affect the clustering results and the trajectory assignments because of the high
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Aas Ao |10.30,] 0.34,] 0.38,] 0.42,] 0.46,) 0.50, 0.54,| 0.58,| 0.62,| 0.66,| 0.70,
Resulte || 0.70 | 0.66 | 0.62 | 0.58 | 0.54 [ 0.:50 | 0.46 | 0.42 | 0.38 | 0.34 | 0.30

J 0441048 10431044 1039| 1 |043 048|047 ]0.51]|0.38
| FM | 0.62 | 0.68 | 0.61 | 0.63 | 0.6 1 1061 0.67]0.65]|0.69 |0.58
s F 0.61065| 06 | 061 ]056| 1 |0.61|0.65]0.64]0.68]0.55

I J 06 | 0.7 | 081 1085|071 1 |045]|0.47|0.46 | 0.41 | 0.42
—| FM | 0.77 1 0.8310.89 1092|083 | 1 |0.62|0.64]0.63]0.59]| 0.6
s F 0751083 10891092]08 | 1 |0.62]|0.64|063|0.58]| 0.6

I J 0450550431049 | 064| 1 |0.42)0.67 037|045 ]|0.49
-~ FM | 0.62|0.71 | 0.61 ] 0.66 | 0.78 | 1 |0.59| 0.8 |0.54]0.62 | 0.65
s F 06207106 066078 1 |059| 08 [0.54]0.62]0.65

I J 0381041 1036036042 | 1 [032]055| 04 |0.41]0.36
~ | FM | 0.56 | 0.58 | 0.53 | 0.53 | 0.6 1 1049 |0.72 ] 0.57 | 0.59 | 0.53
s F 0.56 | 0.58 | 0.53 1053059 | 1 |049|0.71]0.57 | 0.58 | 0.53

I J 05110531049 ]081]054| 1 039044 ]0.51]0.56 | 0.64
~ | FM | 0.68 | 0.69 | 0.66 | 0.89 | 0.7 1 1056 |0.61]0.68]|0.72|0.78
s F 0.68 | 0.69 | 0.66 | 0.89 | 0.7 1 1056 0.61]0.68]|0.72|0.78

J 04 1036|054 066|068 1 |0.75]0.71]0.69]0.63 | 0.58
~ | FM |1 059053071 | 08 |08 1 |0.85]0.83]0.82]|0.77]|0.74
S F 0571053 07 ] 08 [|08L| 1 |08 |0.83]0.82]0.77]|0.73

Table 5.6: Cluster measurements for investigating the parameter stability of the tailbud data set
using the lowest LOD. For each parameter setting with k£ = 6 using the average linkage, and A\, + Ay =
1,a #bAa,b e [1,4] in steps of 0.04, the Jaccard index (J), the Fowlkes-Mallows index (FM), and the
F-Measure (F) are computed to quantify the similarity between the resulting clusters. The cell colored in
light blue indicates the parameters of the reference cluster.
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variance of cell migration orientations. Furthermore, the two images in Figure |31|B, each with
four line plots, are nearly symmetrical with respect to the reference parameter setting which can
also be seen in Table [5.5] on page [75] This means that the outcome of the relative differences
between the line plots are independent of the arbitrarily chosen reference cluster for this pair of
parameters.

Although there are four weights )\; that can be steered in the similarity measure, only two
of them are allowed to be nonzero. This means that I do not consider any setting of three or
four \; that are nonzero in the analysis of the biological data. I have decided on this because
for a concurrent steering of three or four weight parameters, a meaningful parameter stability is
required and the cluster results are hard to interpret.

As a result, the parameter setting for the Arabidopsis data is more robust to changes in
contrast to the zebrafish data sets. These changes are also confirmed in the visual analysis of
the clustered trajectories. The robust behavior for the Arabidopsis plant is explained by the fact
that the data has a high quality with no outliers and the cell developments follow a main growth
direction in height, width and length. The same observations are confirmed analyzing the other
Arabidopsis data sets. In contrast, the zebrafish data has a low quality and high diversity of cell
trajectories with arbitrary cell migration directions and lengths. This versatile behavior is the
cause for varying cluster assignments of single trajectories when the parameters are changed
slightly. Because of this reason, only one \; # 0 and thus I consider a single feature of cell
trajectories in Section [5.4] when investigating the zebrafish data sets. In this case, the presented
clustering approach degenerates to a standard hierarchical clustering algorithm.

Visual Analysis of Cluster Results

In this section, I briefly explain the different visual analysis approaches for investigating the
clustering results.

i h i

Figure 5.8: Visual analysis of clustered cell trajectories. The clustered trajectories are visualized in a
3D-window (A) while a composite view shows the shape and structure comparison between pairs of tra-
jectories within the same cluster (B). Additionally, a color-coded lineage diagram (C) and a dendrogram
(D) are generated encoding cluster properties. Next to the visualizations, certain cluster properties and
interaction possibilities are given (E).

Trajectory Clusters (Figures [5.8A and B): The clustered trajectories are analyzed in a 2D/3D
visualization. This is required in order to analyze the spatial developments of cells over time
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such as division properties. Such a visualization allows an intuitive comparison of different cell
developments in space. The trajectories are realized as cylinders and spherical nodes colored
based on their cluster membership. For this, I use a discrete qualitative color map consisting of
eights colors that is generated with ColorBrewer (http://colorbrewer2.org/). The cluster color
assignment depends on the order in which the elements are merged. In order to minimize occlu-
sion problems and visual clutter, the rendering of trajectories can be interactively turned on and
off. Individually, the structural comparison of pairs of trajectories (based on their alignments
illustrated in Figure [5.5B on page [63) is analyzed. By this, the user can immediately validate
the geometrical similarities in more detail.

Color-coded Lineage Trees (Figure [5.8]C): The cell developments are depicted in a lineage
diagram for which the cell paths of the corresponding cell trajectories are colored based on the
clustering results. This allows a direct comparison of clustered similarities between a set of cell
paths in lineage trees. Additional cell lineage information are given on top of each tree (ID,
number of divisions, number of cell paths).

Dendrogram (Figure[5.8D): A tree diagram called dendrogram illustrates the arrangement and
order of the generated cluster hierarchies. As described above, this visualization gives important
feedback about the clustering results and about which cluster parameters are suited best for the
data sets. Both the correct number of clusters and the cluster stop threshold are unknown when
analyzing new data sets. The dendrogram provides a visual representation to verify the selection
of both values depending on the data.

5.4 Application Results

I apply the clustering method to the zebrafish data sets and to all Arabidopsis data sets. Next to
the quantitative results of the weight parameters in Section[5.3.2] the visual analysis yields new
biological insights. These are the detection of similar collective cell migrations in dense regions
and the detection of an hitherto unknown correlation between the orientation of trajectories and
division types. For the clustering of the Arabidopsis data, the average linkage criterion is used
while for the zebrafish data sets, Ward’s method is applied.

Epiboly Data

The tracking results in 4,896 lineage trees. However, only few of them contain a complete track
of a cell development over the whole recorded time step range due to the low segmentation and
tracking quality. Most of the trees are incomplete and do not contain a sufficient amount of
tracking information. For this reason, I consider cell lineages that contain most of the tracked
cells and therefore almost complete cell developments. In order to filter, only trajectories in
trees are considered with at least 8 and at most 64 divisions. Additionally, trajectories with a
length smaller than five are ignored and only the first 65 time steps are regarded. In later time
steps, the lineage trees are too error-prone. This filtering results in a total of 1,132 trajectories
of 37 lineage trees.

I first apply a clustering based on the delta time property in order to investigate the durations
of cell cycles. For this purpose, Af124; = 0 and A3 = 1, no LOD adaption is used and five
clusters are generated because within the first 65 time steps up to five cell cycles after the first
division are recognized. In a lineage tree, the cell root path (path that starts at the root node)
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Figure 5.9: Lineage diagram colored by clustered cell paths based on delta time for the epiboly
data set.

is defined as the zeroth cell cycle which is not further considered in the analysis. Because of
the starting time of the data record it cannot be verified if the cell root path is fully captured.
Figure [5.9] shows the lineage diagram colored according to the cluster assignments. Nearly
all cell division paths (paths between two subsequent divisions) of the first two cell cycles
are assigned to the violet cluster. These cell branches correspond to symmetric divisions of
stem cells. The two daughter cells have the same stem cell properties for the first and second
cell cycle. In the next one, based on the yellow cluster assignment of cell paths, asymmetric
divisions occur that result in a stem and a progenitor cell. The latter one divides faster than stem
cells and this behavior explains the diversity of the cluster colors (orange and yellow) in cell
cycles three and four. Cluster blue includes the longest cell paths for which at least one tracked
cell division is missing. The green cluster includes the shortest cell leaf paths (paths that end
in a leaf node) that are pruned because of the fixed considered time range. For this cluster
setting, the visual analysis of the 3D cluster results does not reveal any spatial pattern and the
trajectories are uniformly distributed all over the embryo. It is assumed that this observation is
due to the epiboly phase in which the first recognized cell migration occurs, the cells are spread
uniformly and divide quickly while forming the embryonic axis.

ih I'hl Iﬂl']” I H' ” r'III"|”|’"|"|||]I‘|’nn

Figure 5.10: Cluster results based on shape for the epiboly data set. The figure shows the trajectories
from the animal (A, C) and side view (B, D) as well as the lineage trees colored based on the cluster
assignments (E).

In order to investigate the shape structure of cell developments, weight parameters of
Ay = 1,Af123y = 0 are chosen. Figure shows the 3D clustering results and the lin-
eage diagram. Almost all trajectories of the first and second cell cycle are either assigned to the
violet or blue cluster. The visual analysis in 3D reveals that both clusters consist of trajectories
that feature similar long lengths and shapes located all over the animal pole of the embryo. This
result also confirms the previous observations that cells in the first two cell cycles are similar in
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the their temporal development. The remaining trajectories in clusters yellow, green and orange
share similar short lengths and structures but no common spatial pattern can be identified in the
lineage diagram or 3D visualization. Note that using the lowest LOD, a cluster analysis of the
trajectory lengths is enabled when clustering with regard to shape because the coupling distance
takes the length into account. The analysis of the lengths could be realized more simply by in-
serting an additional distance measure in the similarity analysis. However, this would also mean
that an additional weight parameter had to be considered but the length information is already
integrated in the shape comparison of the coupling distance. Thus, I use this measurement to
analyze the lengths. The visual analyses based on lengths and velocities (A2 = 1, A{1343 = 0)
are alike and indicate that cells migrate with constant and continuous speed. This behavior
is already assumed based on the quantitative results in Table [5.5] on page Furthermore, it
can be observed that again cell division paths in the first two cell cycles share similar lengths
and velocities. However, the investigation of the orientations (A; = 1, Aj334; = 0) delivers
no regions of similar migration patterns. The epiboly data features lots of cell divisions with
arbitrary directions and this behavior allows no detection of collective migrations.

In summary, in the epiboly data set, the trajectories of the first two cell cycles share similar
shape, duration, length and velocity properties. At later time steps more asymmetric divisions
occur resulting in stem and progenitor cells. The data becomes more dynamic and a homoge-
neous migration behavior all over the embryo can be identified. However, the visual analysis
does not support finding patterns in later time steps. Because of the high dynamic of several cell
divisions, similar cell developments are distributed equally among the embryo. Using cluster-
ing can in this context also be used to identify outliers in the data. For example, in exceedingly
long cell trajectories, division events are missing while strikingly short trajectories indicate cell
root or cell leaf paths. For particularly short cell division paths it is assumed that subsequent
cell divisions are tracked incorrectly.

Tailbud Data

The tailbud data set contains 58,048 tracked cell lineages. This data set features more cell mi-
grations and less cell divisions in comparison to the previous data set and it is more challenging
due to the higher density of cells than in the early stages of the epiboly. In the raw data set of
the tailbud, some cell information is missing due to data loss. This is the reason why in the mid
area of the tail a conspicuous gap is observed. Because of the error sensitivity of the tracking
algorithm, lots of small lineage trees containing only few nodes are generated. Thus, I consider
trajectories that have a length of at least 30 in order to ignore short outliers. By this, the com-
plete data set and all time steps can be analyzed. 1,331 trajectories are generated that feature
51,432 sub-trajectories in 1,314 cell lineages. I choose six clusters to gather different stages of
the cell migrations towards the front tail.

I apply the clustering algorithm based on orientation with weight parameters A\; = 1 and
Ag2,3.4y = 0. Using the lowest LOD enables the investigation of main trajectory directions and
trends. Figure[5.1T|on page[82]shows the cluster results from the side (Figures[5.ITA and C) and
top view (Figures [5.11B and D) of the tail. The cells migrate from right to left differing slightly
with regard to their orientations. These are clustered into three groups (blue, yellow and green)
and represent the main tail growth. The red and orange trajectories in the mid represent dense
regions of similar cells migrating to the front tail (Figure[5.11]D) or ingoing side (Figure[5.TTC).
It is assumed that these cell migrations supply and push new cells into the main growth direction
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Figure 5.11: Cluster results based on orientation for the tailbud data set. The images show the
tailbud from a side (A, C) and top view (B, D).

towards the front tail. The trajectories in the remaining violet cluster are distributed all over
the tail and highlight cell developments against the principal growth direction which might be
erroneous cell tracks.

A visual analysis based on velocities (\; = 1, A(; 343 = 0) reveals a cluster (blue) of the
fastest trajectories that mainly occur at the periphery, i.e. the outer part of the tail and at the
tailbud (Figures [5.12/A and B on page [83). Three other clusters (violet, yellow, and green)
share almost the same velocities (Figure [5.12C) and dominant appearances are located at the
tailbud (Figure [5.12D). It is assumed that the cells at the front tail feature a fast growth while
the migrations at the right push the cell migrations towards the principal growth direction. The
last two clusters (orange and red) contain the slowest cell migrations for which a dense region at
the top right is prominent (Figures[5.12E and F). Cluster analyses based on the length and delta
time spans (cell cycle durations) show similar results of long cell trajectories at the periphery.
Hence, the cells are moving there consistently without abrupt changes in their velocities.

As a next analysis step, the shape structure (Ay = 1, A(1231 = 0) without LOD reduction is
investigated. I choose eight clusters in order to provide more flexibility for the cluster algorithm
to separate the trajectories. In Figure [5.13] on page [84] four similar cluster sets can be distin-
guished. Similar to the previous results, in Figures [5.13]A and B, the main trend of collective
cell migrations at the periphery and at the front tail is identified. Furthermore, a dense region
of short cell migrations at the top right of the tail is detected (Figures [5.13IC and D). The two
clusters in Figures [5.I3E and F allow a separation of similar trajectories into a left and right
region for which the left one is more dominant with more cell activities. The remaining three
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Figure 5.12: Cluster results based on velocity for the tailbud data set.
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Figure 5.13: Cluster results based on shape for the tailbud data set. In this case, eight clusters are
chosen for investigating the shape of the trajectories.
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Data set Divisions Cluster a Cluster 5
A |P|R| A P R
120830 166 79 | 56 | 15| 65 80 | 37
120830 (LOD) 166 112 |1 24 | 11| 32 | 114 | 39
121204 156 109 | 40 | 13 | 57 | 68 | 25
121204 (LOD) 156 119 | 24 | 7 | 49 86 | 27
121211 242 102 | 75 | 36 | 70 | 149 | 62
121211 (LOD) 242 104 | 74 | 32| 68 | 140 | 66
130508 134 71 | 52| 15| 31 60 | 39
130508 (LOD) 134 77 | 15| 8 | 25 97 | 46
130607 252 140 | 88 | 30 | 80 | 100 | 66
130607 (LOD) 252 116 | 70 | 26 | 104 | 108 | 70

Table 5.7: Cluster results of Arabidopsis data focused on division types within clusters. Cluster o
represents the combination of the clusters that mainly includes trajectories starting with anticlinal divi-
sions while cluster 3 contains more trajectories evolving from periclinal and radial divisions. The highest
number of such divisions between the two clusters are indicated by the three colors: red (anticlinal), green
(periclinal), and blue (radial).

clusters (Figures [5.13IG and H) include similar trajectories that are distributed all over the tail
expressing the diversity of numerous cell migrations during the tail growth.

In summary, the cluster analysis of the trajectories for the tailbud data reveals two important
insights. First, similar tendencies of collective cell migrations are detected based on all applied
parameters: their orientation, velocity, shape and duration. Most of the prominent events are
located at the periphery and at the front of the tail. Second, dense regions of similar cell behavior
are detected that further push cells into the direction of the tail growth.

Arabidopsis Data

For the visual analysis of the Arabidopsis data, I extend the visualization by considering the di-
vision type information that was determined by the automatic classification algorithm in chap-
ter @l These division types (anticlinal, periclinal and radial) are based on the orientations of
divisions with respect to the generated isosurfaces (see Section .2.2] for more details). Note
that there are no cell movements in plants but only nuclei displacements. Thus, the cell trajec-
tories refer to the nuclei migrations. I intend to visually analyze if there is a correlation between
these division types and the orientations and shapes of trajectories using the clustering algo-
rithm. Based on the principal growth direction of the lateral root in height (periclinal division)
and in length (anticlinal division) four clusters are generated. This number is chosen in such a
way that a pair of opposing nuclei migrations is captured. For this purpose, A\; = 0.8, Aj23; = 0
and \; = 0.2 are chosen to focus mainly on the orientation and shape information. Initially,
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I apply the lowest LOD to the trajectories focusing on the nuclei directions and their lengths.
Note that the segmentation and tracking are done manually for the different plants. Thus, the
cell lineages have a high quality without outliers. Consequently, all trees and all time steps are
considered without ignoring any trajectories of a specific length.
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Figure 5.14: Visual cluster results of the Arabidopsis data sets based on orientation and shape.
For each lateral root growth, four clusters are generated with weight parameters of A\; = 0.8, \( 3} =
0, 4 =0.2.

Figure [5.14] shows the clustering results for all five lateral root growths of the Arabidopsis
plants. Two different main trends of trajectories can be observed. On the left side, two clusters
are shown that correspond mainly to trajectories oriented almost parallel to the x-axis. This
combination is referred to as cluster «. On the right side, for each root growth the remaining
two clusters correspond to trajectories perpendicular to the x-axis. This combination is referred
to as cluster 3. Table on page [83]lists the corresponding division types for the trajectories
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in each cluster. Based on the numbers of divisions (colored cells in table) in the clusters «
and [, the trajectories of cluster a mainly correspond to trajectories evolving from an anticlinal
division. Cluster S mostly includes trajectories that start with a periclinal and radial division,
thus increasing the height and width of the dome-like structure. The number of anticlinal divi-
sions dominate in cluster « (highlighted in red color) while there are more periclinal and radial
divisions in cluster (3 (highlighted in green and blue).

This behavior is also observed when the trajectories are clustered using the highest LOD,
i.e. the actual shape of trajectories is considered in the similarity analysis (Table[5.7). Note that
the number of divisions for a data set is always half of the sum of all divisions in cluster o and
B (for example for 120830: 166 - 2 = 79 + 56 + 15 + 65 + 80 + 37). This is caused by the fact
that for each dividing cell two trajectories are generated inheriting the same type of division.

As a result, based on the dominant numbers of division types, if a cell divides anticlinally
then its two daughter cells keep on moving into the same direction (cluster o). Analogously,
trajectories that evolve from periclinal and radial divisions, tend to move into the same division
directions. Note that one could have expected that a third cluster could be generated that only
includes trajectories that start with a radial division, while cluster 5 only consists of periclinal
divisions. However, radial divisions are not clearly separable from anticlinal and periclinal di-
visions and sometimes even a manual identification of a radial division is not correct. Although
radial divisions do not contribute to the height of the primordium, they are merged with per-
iclinal trajectories into the same cluster 3. This is because their directions are more oriented
in periclinal direction. It is assumed that this is a consequence of the growing behavior of the
lateral root pressing cells to the top forming the dome. A clustering only based on orientations
yields similar results like in Figure However, the usage of additional shape information
significantly improves the cluster assignment of trajectories. However, in contrast, a clustering
only based on shape information fails to reveal a correlation and therefore a separation between
the different division types.

5.5 Summary

In this chapter, I introduced a visual similarity analysis method for 3D cell trajectories. A level
of detail technique is used to simplify the visualization and to focus on main tendencies of
collective cell migrations. The similarity measure is based on the weighted combination of mi-
gratory and geometrical features in a hierarchical clustering approach. It is capable of automat-
ically discerning and highlighting major differences in shape structures and movement-based
properties of trajectories. The weight parameters \; permit users to influence the clustering
with respect to domain-specific biological knowledge. The robustness of the resulting clusters
with regard to changing parameters was discussed. As a result, the cluster stability depends on
the quality and trajectory properties of the data sets. I demonstrated the practicability of the
clustering method using two experimental data sets recording zebrafish embryogenesis and five
different lateral root growths of Arabidopsis plants.

For the zebrafish, similar and dense regions of cell migrations are identified that share
the same shape and orientation. Moreover, trajectories belonging to a specific cell cycle also
share geometrical similarities in migration and cell cycle length. The clustering approach can
also be used to identify cell trajectories that are biologically implausible, e.g. too long or too
short cell migrations. For the Arabidopsis data sets, a novel correlation between division types
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and subsequent orientations of trajectories is detected. More precisely, almost all trajectories
starting with a certain division type and orientation keep on moving into the same direction until
the next division occurs. This insight supports the hypothesis that a cell’s fate and its further
development is influenced by its division type.

While this method allows a similarity analysis for 3D+t cell trajectories, a new visualization
method is required to analyze thousands of associated cell lineages. In the next chapter, I
introduce a new visual analysis method called the structure map that focuses on the similarity
analysis of a huge collection of tree structures.



Chapter 6

Visual Analysis of Large Cell Path
Collections

“The Grid. A digital frontier. I tried to picture clusters
of information as they moved through the computer.
What did they look like? Ships? Motorcycles? Were the
circuits like freeways? I kept dreaming of a world 1
thought I'd never see. And then, one day... ."

— Kevin Flynn, Tron Legacy, 2010

Developmental biologists analyze the process of how embryos develop from single cells into
complete organisms. During this embryogenesis, patterns in cell migrations and divisions are
believed to play a crucial role in determining cell organization into tissue and organs. In the last
chapter, cell trajectories are clustered based on user-selected values for features such as orien-
tation, velocity, cell cycle length and shape structure. However, the clustering results strongly
depend on the quality of the segmentation and tracking. The latter one tends to result in many
error-prone cell lineage trees. These may contain cell events that are biologically implausible.
Due to technical reasons, data acquisition of single cells cannot start until multiple dozens of
cells have already been developed using the light-sheet microscope [KSWSO08]]. This means that
for each of these cells a lineage tree is generated in contrast to the initial cell (zygote) develop-
ment that would result in one cell lineage for the whole embryogenesis. Furthermore, noise in
the raw data leads in the automatic segmentation process to the detection of non-cell artifacts.
These errors are further inherited by the tracking process and yield wrong biological behavior
in the lineage trees. For example, the event of subsequent cell divisions that occur too fast
or missing division events for exceedingly long cell migrations are indicators for implausible
biological developments. In order to detect these manifold structures an interactive similarity
analysis of cell lineages is required. Through this, erroneous behavior can be identified and
excluded from the analysis to interpret actual biological events. In addition, the exploration of
errors in lineage trees can help improve the data acquisition process to maximize its quality.

In this chapter, I present a novel visualization method called the structure map [FHR™15]].
This map enables the comparison and highlighting of cell paths and cell branches in hundreds
to thousands of trees that share similar patterns. The structure map is a matrix-based, color-
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coded 2D grid that arranges trees into tiles along a Hilbert curve. Prior to the arrangement of
trees, the similarity between trees based on spectral analysis is computed and trees are sorted
using principal component analysis. The interactive visual analysis supports both, a global
observation of complete cell lineages and a local investigation of highlighted cell paths and
branches according to user-selected tree descriptors. The compact and uniform representation
of the map supports domain experts in the identification of similar substructures in thousands
of trees and in the detection of outliers. Moreover, it permits the comparison of various cell
lineage trees among several data sets to investigate similar biological cell developments. I apply
the structure map to the zebrafish data sets and the five lateral root growths of the Arabidopsis
plants to demonstrate the benefit of the map. For the zebrafish data, the structure map helps
to find structural differences and erroneous cell behaviors. A supplemental video [FHR™14]]
demonstrates these results and the main functionalities of the map. Furthermore, I use the
map to compare similarities of all Arabidopsis data sets with each other. Through this, similar
appearances of certain features are detected especially in the master cell file (see Section [4.1)
of all plants.

6.1 The Structure Map

The structure map is an interactive visual analysis method that groups trees according to their
structural similarity. Figure[6.1]illustrates the steps for generating the map and its application in
the visual analysis. In the following, I describe each underlying method in detail followed by an
explanation of the chosen tree descriptors. Afterwards, the complete algorithm for creating the
map is presented with a performance analysis. In a final step, the visual exploratory methods of
the map are defined prior to the presentation of application results.
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Figure 6.1: Workflow for generating the structure map. A A large set of lineage trees is selected
as input data. B Spectral analysis of the tree data is used to derive structural similarity and to merge
isomorphic trees. C To transform the spectral matrix S to a lower dimension, principal component
analysis is applied. D The intrinsically 1D data is laid out in the plane along a Hilbert curve. E The
visual analysis is a loop consisting of the visualization of color-coded tree descriptors in the structure
map (Section[6.1.3), the analysis and interpretation of the result (Section[6.2).
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6.1.1 Similarity Measure based on Spectral analysis

In order to group a large set of cell lineages a similarity measure is required. The most common
technique for computing the similarity between trees is the tree edit distance [Tai79, Bil03l].
This distance between two labeled ordered trees is defined as the minimum number of edit
operations, i.e. insertions, deletions, and modifications, that are required to transform one tree
into another. However, the straightforward implementation has an exponential complexity and
the algorithm requires a labeling. For the structure map, I apply a similarity measure between
cell lineages based on spectral analysis. This approach is used in many areas of computer sci-
ence [ACSv12]] and analyzes a graph or tree based on the spectrum s;, i.e. the set of eigenvalues
associated with a matrix. I choose this measure because of two reasons: First, the spectrum is
a graph invariant that refers to the structure of a graph or tree and not on any labels or layout.
Second, isomorphic graphs, i.e. graphs that are identical up to symmetry, share the same spec-
trum and it is known that small changes in a graph result in small differences in its spectrum,
called interlacing theorem [Hae935]. Thus, this spectrum can be used to identify unique cell
lineage trees. There are many matrices that can be used for the analysis of a graph (/V, F) of a
set of nodes N and edges F. Examples are the adjacency matrix A, the Laplacian L = D — A
or the signless Laplacian |L| = D + A. D is a diagonal matrix of node degrees. I choose the

normalized Laplacian matrix L;j:

1 ifi=jandd; #0
Lij={ —(did;)2 if{i,j} € Eandd;,d; #0 . (6.1)
0 otherwise

This matrix contains structural properties as well as connectivity information of the graph or
tree. Arsi¢ et al. [ACSv12] give an overview of the properties of its eigensystem. Two trees
1,7 are said to be cospectral [WZ0S]|| if they share the same spectrum, i.e. s; = s; sorted
in descending order. There are upper bounds for the uniqueness of a tree spectrum [WZ0S,
ME]12]. Schwenk [Sch73] assumes that almost all trees are cospectral. But his study shows
that the probability of cospectral trees is going to 1 only appears as the number of vertices
goes to infinity for randomly chosen trees that are not used in practice. In another experiment,
Matsen and Evans [ME12] show that the fraction of binary trees with unique spectrum goes to
zero as the number of leaves goes to infinity. However, they observe that this convergence is
very slow and in their experiments with more than 50,000 randomly chosen trees with unique
spectra, less than 0.14% of these trees are not uniquely identified by their spectra. This means
that if two spectra are identical then the corresponding trees are not necessarily isomorphic.
But two isomorphic trees share the same spectrum. Especially for the cell lineage data from

S1 S9 S3 S4 Sy Sg S1 52 53 S5 % %

Figure 6.2: Handling cospectral trees: In this example of six trees, two pairs of cospectral trees (s1, S4
and s3, s¢) are identified for which only one representative tree is further considered in the analysis.
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developmental biology, it is unlikely that trees with the same spectrum are non-isomorphic
which is verified by applying a tree isomorphism test [Bus97/]] to separate isomorphic trees into
equivalence classes. Consequently, for the cell lineages in this thesis, trees are assigned to the
same equivalence class if they share the same spectrum. Figure illustrates an example of
six trees for which two pairs of trees are cospectral. The check for isomorphic trees results in
a lossless compression of the input data set and consequently in the visual analysis of it. For
the zebrafish data, compression rates between 82% (epiboly) and 95% (tailbud) are observed.
The cell lineage trees of the Arabidopsis plants are not compressed at all because of the higher
quality due to manual segmentation and tracking. The similarity between two trees is realized
as the Euclidean distance of their spectra and referred to as the spectral distance [PP09,|Cvel2]:

n

ds (sis7) = (| D (si, — 53,)%, (6.2)

k=1

For each isomorphic tree i the spectrum s; € R” is stored as a row in a spectral matrix S €

RMXP:
S11 S12 Sip
SmM1 -+ --- SMP

M is the number of isomorphic trees and P is the maximal number of nodes regarding all trees.
The number of nodes of a tree is identical to the number of eigenvalues. For different dimen-
sions each spectrum is padded with zeros in such a way that all share the same dimension P.
Wilson and Zhu [WZ08] show that adding an isolated node in the graph yields an additional zero
eigenvalue, but preserves the other eigenvalues and does not change the connectivity properties.

6.1.2 Layout of Tree Collection

There a lot of approaches to visualize and layout trees. These are commonly divided into three
groups: Space-filling, node-link-based, and hybrid approaches. Space-filling techniques use the
complete area of a display in order to illustrate hierarchies in a tree. Here, the information of
relationships is given by enclosure (e.g. treemaps [Shn92] and squarified treemaps [BHvW99]),
adjacency (e.g. SunBurst [SZ00] and icicle plots) or crossings (e.g. beamtrees [VHvWO3]).
Quantitative properties can be given either by the area size, color or height of items. The main
advantage of treemaps is the optimal space usage in which child nodes are enclosed within a
parent node. However, the overlapping in the parent node can yield to interpretation problems
of the hierarchy structure. Adjacency space-filling methods do not suffer from overlapping
issues but the advantage of optimal space usage is lost. Crossing techniques only partially
allow overlap and adjacency information. But they are complicated to read and to interpret.
Node-link-based techniques use links between nodes to represent their relationships. Common
layouts are set horizontally, radially, or in balloon form in 2D [HMMOOQ]. Other layouts are
Cone trees [RMCO1||, point based trees [SHSQ09||, Phyllotrees [NCAQ6l and hyperbolic lay-
outs [Mun97, AH98]. Although these visualizations provide an intuitive interpretation of hier-
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archy information they often do not scale to larger collections of trees. This results in a more
complex overview and complicates the user interaction. Hybrid approaches combine node-link-
based techniques with treemaps and visualize subsets of the hierarchy information [ZMCO0S5].

In the structure map, the layout is realized in a hybrid approach by using a space-filling
Hilbert curve with no overlapping problems and a linear ordering of node-link rendered trees.
More precisely, the ordering of the lineage trees satisfies the clear separation between large
trees with many nodes and small trees with few nodes and the node-link based approach yields
an intuitive representation of the cell developments. For this purpose, I apply a 1-dimensional
principal component analysis (PCA) [Jol02]] to the spectral matrix S. PCA transforms a data
set into a variance-maximizing coordinate system of linearly uncorrelated combinations called
principal components. This 1-dimensional embedding already accounts for more than 90% of
the variance for the zebrafish data and 85% for the Arabidopsis plants. This means that the
ordering is well-suited for sorting the cell lineages. Note that PCA is based on the Euclidean
distance which corresponds to the spectral distance used to compute the difference between
spectra. The ordering result of PCA is used to align the sorted trees along the space-filling
Hilbert curve. This curve (Figure [6.3]for several iterations) is a continuous fractal curve whose
range is a 2-dimensional square. I choose this method for the arrangement of trees because
points that are near when traversing the curve are also likely to be close in the embedded space
of the curve, thus it preserves locality in a compact visualization. Furthermore, any overlapping
issues are avoided because the structure map is a grid of tiles in which each tile represents a
single isomorphic tree. In practice, I choose the number of iterations in such a way that the

Figure 6.3: The first six iterations of the Hilbert curve.

curve contains all trees in a data set. However, the structure map may not use the complete
screen space in general. For example, the layout of 2'? + 1 = 4,097 trees requires a Hilbert
curve with 23 = 8,192 nodes, resulting in almost 50% empty tiles. But in practice, the empty
tiles do not impede the visual analysis of tree structures in any way. In the concluding chapter,
I address this issue in more detail and give ideas for improvement.

Tile Design

Each tile is a colored square that represents a single isomorphism class of the trees. This single
tree is drawn in white on top of the tile using the Reingold-Tilford algorithm [RT81]. This
drawing style is best-suited for domain experts to detect substructures and their patterns. I
apply an adaptive anisotropic scaling method to each tree in such a way that the tree structure fits
completely into the tile. Cell paths or cell branches in a tree that match a given tree descriptor
are highlighted in red. Furthermore, labels are used to represent relevant information of the
corresponding tree this tile represents. The tiles are also colored based on that value. The right
image of Figure [6.5]on page 98| shows an example of such a tile.
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6.1.3 Tree Descriptors

In fact, arbitrary descriptors can be defined according to the requirements of domain experts.
Navigli and Lapata [NLO7] survey common descriptors for developing unsupervised algorithms
for graph analysis such as betweenness centrality to measure how often a node is visited for all
shortest paths or compactness to quantify how easy each node can be reached from other nodes.
In discussions with developmental biologists, I define a set of tree descriptors suited for the
similarity analysis and error detection of cell developments. These descriptors are defined with
respect to the several types of cell path and cell branch definitions introduced in section [3.5]
Each tree descriptor yields quantitative information about a tree and the tiles of the structure
map encode this information through different colors.

Number of Nodes and Leaves: The number of nodes is positively correlated with the total size
and depth of a binary tree. A tree with n nodes has exactly n — 1 edges. Note that for biological
data sets, the number of nodes corresponds to the number of tracked cells. Even without any
further biological analysis, trees with a comparatively small number of nodes are more likely
to contain erroneously tracked cells. Moreover, for the cell lineages, based on the number of
leaves [, the number of cell divisionsisd =1 — 1.

Cell Path Length: The lengths of different cell paths within a cell lineage tree is an essential
quantity for the similarity analysis because it corresponds to the duration of a cell cycle. The
definition of a cell path is given in[3.1] To recap, a cell path p of length [, = |p| — 1, (I, > 0) is
a sequence of ordered connected pairs (n;,t;),i.e. p = {(n1,t1), ..., (nyp, tjp)}. Note that the
cell paths are distinguished between cell root paths, cell division paths and cell leaf paths. These
differ in their start and end node type (Section [3.5)). This information is used as a descriptor to
find similar cell cycle durations or outliers. A tree usually contains multiple paths of different
lengths. Hence, in order to quantify them, I compute the mean cell path length

|p|

1
D=7 Di (6.4)
p| =

where |p| is the number of cell paths in the tree k& and p; denotes the i-th path in the tree.

Cell Division Path Length: By ignoring all cell root and cell leaf paths, I only consider the
mean cell division path length g, for a tree k, which is a variant of the previous measure p;.. The
mean cell division path length only counts cell cycles that have been fully captured. This length
is used as a measure to identify two cell divisions that occur in quick succession, for example.

Cell Branch Asymmetry Length: The length of a pair of cell cycles evolving from the same
division node also describes a biologically important substructure within a cell lineage tree.
This structure in the tree is defined as a cell branch b, (Section [3.5). Note that b,, is symmetric
if the lengths of its both cell paths [,, and r,, are equal. For each branch b,,, I calculate the cell
branch asymmetry as the difference in lengths of its two paths: Ab,, = |I,, — r,,|. From this, the
mean branch asymmetry b;, of a tree is derived when there are several branches in a tree:

1
b = 0 > Ab,, (6.5)
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where |b| denotes the number of branches in the tree and the sum ranges over all cell division
nodes. If a tree does not have any branches, I assign b, = —1. Since Equation (6.5) always
results in positive numbers, trees without branches are easily identified. A red tile color is
used to encode such trees in the structure map in order to signify that they have maximum
dissimilarity to all other trees with at least one branch.

Inner Cell Branch Asymmetry Length: The mean inner cell branch asymmetry length dj, of
a tree k is a subset of the previous measure by,. For this descriptor, I only consider branches that
consist of a pair of cell division paths, else the branch is not used in the analysis. Through this,
only branches are investigated that are fully captured in the lineage structure.

Number of Division Types: When analyzing the Arabidopsis data, the number of different
division types (anticlinal, periclinal, and radial) are of interest for domain experts. These are
classified with the first visual analysis method in section [#.2.2] Through this, division schemes
in several trees and among different lateral root growths can be compared.

6.1.4 Algorithm and Performance Analysis

The pseudo-code in Figure [6.4] illustrates the processing of the underlying methods in order
to generate the structure map. For each cell lineage in the set C, the spectra s; are computed
(line [8) while updating P which represents the maximal dimension regarding all spectra. In
the same for-loop, each spectrum is checked on cospectrality (line [TT]). If a tree structure is
isomorphic, then its ID with an initial counter of one of its occurrence in the data set is stored in
amap Iso. Else if the spectrum already exists, the counter of the corresponding cospectral tree
already inserted into the map is increased by one. Through this, isomorphic trees are detected
and their number of appearance is stored in Iso. When all trees are traversed, M denotes the
number of isomorphic trees and the spectral matrix S is initialized with M rows and P columns
(line [I3). In a second for-loop over all isomorphic trees, the mean values of the descriptors
are determined and stored in a map Descriptor of vectors for each unique tree ID (line[I5)).
The vector holds all descriptor values explained in the previous section. The spectra are padded
with zeros to ensure equal dimensionality P and stored in the spectral matrix S (line[I7)). This
matrix is then used in the PCA to determine a sorted 1-dimensional embedding of the spectra
(line[I8)). The ordering result Order is then used in the structure map to align the trees along a
Hilbert curve (line[19).

The structure map is applied to all zebrafish and Arabidopsis data sets. (Hardware setting:
Intel Core 17, 3.20 GHz, 12 GB of memory and an NVidia GTX 480). For the further analysis,
I call the combination of the data sets 120830, 121204, 130508 and 130607 the Arabidopsis col-
lection for which 121211 is excluded because the recording of this data set starts at a later time
step. More information about this is given in the result section. In general, the generation of the
structure map is realized by applying two dimension reduction methods using spectral analysis
and PCA. The decomposition of the eigenvalues is realized using the library for linear algebra
operations called Eigen (http://eigen.tuxfamily.org/). For all cell lineages |C|, the decomposi-
tion has a worst time complexity of O(Zﬁ‘l N?) with N; denoting the number of nodes of the
tree ¢. Isomorphic trees with a total number of M are identified in linear time in the number
of trees |C'|. The mean values for the tree descriptors such as (inner) cell cycle length and cell
branches are computed in linear time in the number of nodes /N; for each cell lineage (binary
tree). The PCA has a time complexity of O(M?2P) for M < P or O(P?M) for P < M. This is
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realized by a two-sided Jacobi singular value decomposition (SVD) in Eigen. This means that
the time complexity is always linear in the greater dimension of the spectral matrix S € RM*7,
The alignment using the Hilbert curve takes linear time in the number of isomorphic trees M.
In total, the generation of the structure map has a cubic time complexity.

Input : Set of cell lineages C' and number and types of descriptors.
Output: Structure map.

1 S =s(i,7) : matrix [1..M, 1..P] of real;

2 Iso(i) : map with ¢ € N of unsigned integer;

3 Order(z) : vector with i € [1..)/] of unsigned integer;

4 Descriptor(7) : map with i € N of vector with j € [1..numDescriptor] of real;
5 begin

6 P+ 0;

7 for [ + 1to |C| do

8 $; ¢+ determineEigenValues (());

9

if |s;| > P then
10 L P+ |s;
11 Iso(l) < checkCospectrality (());

12 M <+ |Isol;
13 initSpectralMatrix (M, P);
14 for [ < 1to M do

15 Descriptor(l) < determineDescriptors (C));
16 padSpectraWithZeros (s, P);
17 S(l,:) < si;

18 Order < applyPCA (S5);
19 alignLineagesInMap (Order, C');

Figure 6.4: Algorithm for generating the structure map.

Table [6.1] lists several properties such as the number of lineage trees and nodes for each
investigated data set and the corresponding computation times in seconds. Because there is
a high variance of the number of nodes, the minimum, maximum, and average numbers are
given to get an impression of the lineage tree sizes. The computation times for the spectral
analysis corresponds to the decomposition of the eigenvalues for all trees and the finding of
cospectral trees. The times for the similarity measure in the last column include the mean
value computations for the tree descriptors, the PCA and the alignment using the Hilbert curve.
Except for the tailbud data, the spectral analysis takes the longest time with a maximum of
approximately 9 hours for the Arabidopsis collection. In contrast, the tailbud data only requires
19 seconds. These long durations are caused by the large amount of trees with a huge number
of nodes. For example, the tailbud data set features 3,221 isomorphic trees but these have
only 8 nodes on average with a maximum of 189 nodes. However, the Arabidopsis collection
has on average 1,880 nodes with a maximum of 5,164 nodes. Although only 49 cell lineages
are considered, the huge number of nodes is the reason of the long processing time for the
decomposition of the eigenvalues. In order to avoid these long times, for new data sets the
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Lineage | Trees in Number of nodes (NNV;) Computation times [s]
Data set trees map . Max Spectral Similarity

(L) (M) Min (P) Average analysis measure
Epiboly 4,896 875 1 2,323 25 3,347.22 12.37
Tailbud 58,048 3,221 1 189 8 19.79 10.87
120830 10 10 302 | 4,055 2,109 6,342.41 0.92
121204 15 15 306 | 3,577 1,324 3,743.78 0.86
121211 18 18 477 | 2,724 1,591 3,646.31 1.28
130508 9 9 621 | 5,164 2,123 11,939.20 0.85
130607 15 15 386 | 4,543 2,139 13,174.10 1.39
Arabidopsis |4 49 | 302 | 5,164 | 1,880 | 33,064.60 3.81

collection

Table 6.1: Performance analysis of main tasks for generating the structure map. The last two
columns are the computation times measured in seconds for the spectral analysis and the similarity
measure.

spectra are computed only once for each tree structure and stored on the disk. This minimizes
significantly the loading times to just a few seconds for each reprocessing of the structure map.
The similarity measure (descriptor computation, PCA, Hilbert curve) requires much less time
to be processed. In this case, the zebrafish data sets require the longest times of approximately
12 seconds because both share between hundreds and thousands of isomorphic cell lineages in
contrast to the Arabidopsis collection with 49 trees. Note that the maximal number of nodes
in a data set defines the dimension P of the spectra that are padded by zeros. Consequently,
P also affects the computation times for PCA but the greater dimension is processed in linear
time. For example, for the Arabidopsis collection P4 = 5,164 and M, = 49 and for the tailbud
data, Pr = 189 and My = 3,221. When choosing the linear term for the greater value, for the
tailbud much more operations have to be performed in comparison to the Arabidopsis collection
(PaM3 < P:Mr). Because these measurements depend on the structure of the cell lineages
which are never modified, they have to be applied only once for a new data set and are also
stored on the disk for later sessions.

Regarding the space usage for generating the structure map, the spectral matrix S € RM*%
the information of isomorphic trees, the ordering as well as the descriptor values are stored.
Additionally, the set of lineages trees C' is represented by pointers in a binary tree structure
storing for each node its ID and parent-children relationships. This means that the algorithm
has a space complexity of at most O(M P + M ). For example, the generation of the structure
map for the Arabidopsis collection requires a space usage of approximately 3.6 GiBs and for
the tailbud data it is approximately 2.4 GiBs (64 bits double precision). The space usage is very
high but this storage guarantees that the interactivity with the structure map is realized in linear
time for the number of total nodes. This permits an immediate visual feedback when steering
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the parameters.
Visual Analysis with Structure Map

In this section, I briefly explain the functionality and methods for the visual exploration of the
structure map. The map is displayed in a 2D window (Figure [6.5] left).
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Figure 6.5: Left: Workspace for visual analysis. The structure map is displayed in a 2D window
(A) with additional descriptor settings (B). I use a diverging color map described by Moreland
to illustrate similarities (C). Right: Magnified version of a common tile in the structure map. Local
features in the tree are colored red (D) based on the selected descriptor type. The frequency of the unique
tree structure with respect to the complete data set is shown in the top left label (E). This indicates
the total number of cospectral trees. The frequency of local features in the tree based on the selected
descriptor (here: symmetric branches) is displayed at the bottom left (F). The descriptor value for the
whole tree (here: mean branch asymmetry) is shown at the bottom right (G). For the Arabidopsis data,
when investigating several data sets, an additional pair of labels in the top right corner of each tile is
shown. The first value indicates the data ID while the second one denotes the cell file information
(introduced in Section of the lineage tree (H). This area is blank when investigating the zebrafish
data.

Overview of complete isomorphic cell lineages: Users can use the map to get an overview
of all isomorphic cell lineages in the data set. These are already sorted based on the similarity
analysis of their spectra. This reveals structural differences encoded in the graph spectrum, such
as the number of leaf or division nodes, as well as the total number of nodes.

Coloring of tiles based on tree descriptors: The tiles of the map are colored according to
the selection of tree descriptors. By analyzing these color patterns in the map, structural de-
scriptions are combined with highlighting of local tree features. The structure map features two
coloring types for each tree descriptor. The color code can be adjusted to represent the distance
between the descriptor-based values of trees and a user-selected scalar parameter P. For ex-
ample, users can highlight tree structures with a specific mean cell branch asymmetry that are
smaller or larger than P. Note that for this coloring type, (except for the number of nodes and
leaves as well as the division types) the mean values of the descriptors are used in the distance
computation. Furthermore, tiles can be colored by the frequency of a certain feature in the cor-
responding cell lineage. Users can search for cell cycles, for example, that are shorter than 10
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time steps. Each tile is then colored according to the number of such short cycles occurring in
the tree and the respective cell cycles are highlighted in red.

Semantic Zooming: In order to improve the visual analysis as well as the performance for
interaction, the structure map features semantic zooming. Relevant objects are displayed in
different levels of detail (LOD) depending on the zooming level. The level affects both the tree
structure and the tile colors. Figure[6.6]illustrates the representations of the map using different
LODs. The color change for the highest zoom level guarantees that the red color of the structure
map does not interfere with the red color used for highlighting local features.
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Figure 6.6: Different levels of semantic zooming: The different levels emerge in the order from left to
right when zooming in while same rectangle colors represent same areas. For large distances between
camera and structure map, only the tile colors and no trees are rendered (A). Upon zooming in, 50% of
the lines and no nodes of the tree structures are displayed (B). With decreasing distance, each tile color
fades from its original color (set by a tree descriptor) to a white background, while only lines and tile
labels are drawn (C). The highest zoom level displays all details of the tree structure in a white tile (D).

6.2 Application Results and Data Comparison

I apply the structure map to the zebrafish and the Arabidopsis data sets. Through this, I demon-
strate the usefulness of the map for a visual analysis of similarities and errors in thousands of
cell lineages. In the epiboly data set, merging isomorphic trees reduces their number from 4,896
to 875. The remaining trees are arranged in a Hilbert curve of level 5, resulting in a structure
map of 2° x 25 = 1,024 tiles, 149 of which are empty. In contrast, for the tailbud data set, 3,221
of originally 58,048 trees remain after merging. Thus, a Hilbert curve of level 6 is generated,
resulting in a structure map of 26 x 26 = 4,096 tiles, 875 of which remain empty. Both data
sets contain numerous small trees with few nodes but the epiboly data set features several large
trees with 2,000 nodes on average, while the largest tree in the tailbud data set has merely 190
nodes.

Figure shows structure maps for both zebrafish data sets based on the number of nodes
and leaves. The number of nodes and the connectivity information of a tree is encoded by its
Laplacian matrix and for cell lineage trees, both properties are correlated (|N| — |E| = 1 with
N as the set of nodes and E as the set of edges). In Figures[6.7]A and C, this correlation can be
identified in the structure map. Trees with many nodes are colored in red while trees with few
nodes are located in blue tiles. A similar grouping according to the number of leaves is given in
Figure [6.7B. In contrast, the tailbud data set contains multiple smaller trees with approximately
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Figure 6.7: Distance-based coloring of structure maps for both zebrafish data sets. Left: Structure
maps of the epiboly data based on the number of nodes (A) and leaves (B). Right: Structure maps of the
tailbud data based on the number of nodes (C) and leaves (D).

the same number of leaves. The structure map thus cannot group them by the number of their

leaves (Figure [6.7D).
Epiboly Data

The epiboly data set is assumed to contain symmetric cell division patterns in the first two cell
cycles and asymmetric ones in later cycles. This is a result of the clustering of cell trajectories
in chapter[5] To analyze these divisions, symmetric and asymmetric cell branches are explored.

1 1 1 1 ! ! !

1 5.64|5 6.31 30 5.64|30 6.31

32 3.92|46 2.30[21 6.44]

Figure 6.8: Structure maps of the epiboly data based on symmetric and asymmetric branches.
The frequency-based coloring of the map is illustrated for symmetric (A) and asymmetric branches (B).
(C) shows the distance-based structure map with focus on symmetric branches.

Figure [6.8] on page [I00| shows the resulting structure map based on distances and frequencies.
In Figure [6.8A, red tile colors indicate trees with the highest number of symmetric branches.
These are located at the top left corner where the trees also feature the highest number of
nodes. This means that large trees with many branches tend to have more symmetric ones than
small trees with few branches but this is also a consequence of the higher number of nodes.
However, this does not apply to all large trees, as illustrated in the pair of enhanced trees in
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Figure 6.9: Frequency-based structure map of the epiboly data based on cell branch asymmetries
greater than 25.

Figure[6.8]A. Although these two lineage trees have many branches, they both exhibit erroneous
connectivities as well as biologically-incorrect cell division behaviors. This is also indicated by
the small number of symmetric branches (lower-left label: 1 and 5). A switching to the visual
analysis of asymmetric branches is realized in Figure [6.8B. Using this visualization, the two
enhanced lineage trees are identified as outliers because their tile colors indicate a comparatively
large number of asymmetric branches. The majority of blue tiles in the distance-based structure
map in Figure [6.8|C illustrates structures that have a small mean cell branch asymmetry. Red
and orange tiles correspond to trees without branches or with large differences between their
mean branch asymmetry values and a chosen parameter of P = 0. A further analysis of blue
tiles with red substructures reveals several symmetric branches mainly situated in the top left
corner. These lineage trees exhibit an expected cell division behavior and they are very similar
with respect to the frequencies of symmetric branches.

In order to detect outliers for which a cell division event has not been tracked, for example,
cell branch asymmetries greater than 25 are analyzed. Figure [6.9]shows the resulting structure
map with frequency-based coloring. The large amount of blue tiles indicates that the majority
of trees do not contain many branches with large asymmetry values. This is also explained by
the fact that trees whose depth is smaller than 25 cannot contain such branches. Outliers can
easily be identified by red and orange tile colors, while the local highlighting of substructures
serves to enable a more detailed investigation of the errors. Similar to the analysis of symmetric
branches, large trees also tend to have large branch asymmetries.

Another implausible biological behavior is the occurrence of two cell divisions within a
small time frame. This behavior can be analyzed by investigating cell cycle durations shorter
than 4. Figure [6.10] shows the frequency-based coloring of the structure map. The majority
of blue tiles implies that these trees contain longer paths but also some outliers are detected in
red and orange tiles. Example of such outliers are highlighted in red and a local investigation
reveals a multitude of cell division errors.
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Figure 6.10: Frequency-based structure map of the epiboly data based on fully captured cell cycles
smaller than 4.

Tailbud Data

Based on the results of the clustering of cell trajectories it is assumed that the tailbud data set
contains fewer cell divisions, longer cell cycles, and a greater variety with respect to cell de-
velopments. Initially, cell cycles shorter than 4 are investigated in order to find implausible cell
cycle phases. Figure[6.11B on page [I03] shows the result using a frequency-based coloring of
the structure map. Blue and light-blue are the prevailing tile colors, meaning that there are few
trees with very short inner paths. This substantiates the assumption that, by and large, the data
set contains longer cell cycles. In contrast to Figure [6.I0JA on page [102] tiles with light-blue
colors are more evenly-distributed across the structure map. However, red and orange tiles indi-
cate trees with short cell cycles (Figures[6.1T]A and C) that are detected immediately. To detect
missing cell division events, cell branch asymmetry values larger than 25 are analyzed. In the
frequency-based structure map in Figure [6.12] numerous asymmetric branches are identified.
These large differences are most likely based on tracking errors missing the track for a cell
migration in the longer cell division path.

In summary, these results are examples of how fast similar divisions and erroneous substruc-
tures in thousands of cell lineages based on the selected descriptor can be detected. Although,
there are significantly more cell lineages in the tailbud data set, the structure map supports the
detection of biological implausible structures. The different maps of both zebrafish data sets dif-
fer significantly in the frequency of identified errors. This is because of the different biological
developments with either a lot of cell divisions and few cell migrations or vice versa.
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Figure 6.11: Frequency-based structure map of the tailbud data based on cell division path lengths

smaller than 4.

Figure 6.12: Frequency-based structure map of the tailbud data based on cell branch asymmetries

larger than 25.
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Arabidopsis Data

For the investigation of the Arabidopsis data, the different divisions types (anticlinal, periclinal
and radial) are added as tree descriptors. Domain experts are interested in similarities and
division patterns among different data sets that are supposed to describe the same biological
event. The structure map provides the possibility to analyze all tree structures for all five plant
data sets at once. For distinguishing between the different plants, a pair of labels at the right

Figure 6.13: Frequency-based structure maps of the Arabidopsis collection based on the number
of nodes and leaves. The structure maps are colored based on the number of nodes (A) and leaves (B)
among all lineage trees. The trees in red and orange tiles have at least 3500 nodes and at least 35 leaves
which are mainly located in the master cell file (red rectangles) of each plant data.

corner in each tile (see Figure [6.5] right on page [98)) is shown. The first number indicates the
data ID while the second one denotes the cell file assignment of the corresponding tree. Note
that several cell lineage trees can belong to the same cell file.

A preliminary result is that all lineage trees have different spectra and are isomorphic. This
means that each tree structure is unique up to symmetry (indicated by the 1 in each top left
corner of a tile). The data set is thus not being compressed. Note that the recording of the data
set 121211 starts a little bit later in comparison to the other plants. This means that for this data
the first anticlinal division is missing eventually merging two different trees. As a consequence,
I do not consider this data in the analysis with the structure map because I want to focus on the
same biological period of cell events in order to arrive at valid conclusions about the division
behaviors. Note that the combination of the data sets 120830, 121204, 130508 and 130607 is
called here the Arabidopsis collection and each data set has an unique ID in the map (120830
has 0, 121204 has 1, 130508 has 2, and 130607 has 3). The total amount of unique tree structures
is 10 + 15 4+ 9 + 15 = 49 resulting in a Hilbert curve of level 3 with 23 x 23 = 64 tiles in the
structure map, 15 of which are empty.

In the Arabidopsis collection, I focus on dominant occurrences of structural features based
on all tree descriptors such as cell cycle lengths, cell branches or the periclinal divisions. These
divisions are mainly responsible for the growth in height of the lateral root. In order to explore
dominant behaviors, relatively high parameter values for P are selected. For this purpose, the
frequency-based coloring of the structure map is used beginning with an analysis of the number
of nodes and leaves (Figure [6.13). Note that the trees with the highest number of nodes and
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Figure 6.14: Frequency-based structure map of the Arabidopsis collection based on fully captured
cell cycle lengths smaller than 50.

leaves are situated at the bottom right of the structure map because of the order of the Hilbert
curve. Most of the highlighted trees in red tiles are located in the master cell file. Dominant
numbers also exist for few trees situated at neighbor cell files (—1 and 1) but their amounts
of nodes and leaves are always smaller compared to the master file. The remaining tiles are
colored in blue, thereby illustrating that their numbers of nodes and leaves are below the selected
parameters.

I further explore inner cell cycle lengths smaller than 50 that are fully captured. Figure[6.14]
reveals two properties for such short cell division paths. First, these paths always occur during
the first three cell cycles (highlighted cell paths in red in the enhanced trees). In later time steps,
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Figure 6.15: Frequency-based structure map of the Arabidopsis collection based on symmetric

and branch asymmetric branches. The tiles in the map show the frequencies of symmetric (A) and
asymmetric branches smaller than 10 (B).
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the cell cycle durations are longer and the cells need more time to continue dividing. Second,
the shortest cell paths belong predominantly to trees located in the master cell file with few in
its neighbor cell files (—1 and 1). This distribution of fast cell developments in the first cell
cycles implies that the cells are mainly growing in the master cell file and that the initial growth
is predetermined for ultimately forming the dome-like structure.

In order to investigate the cell divisions, symmetric and asymmetric branches smaller than
10 are explored. Based on Figure[6.15]A, the Arabidopsis collection features almost no symmet-
ric branches (at most two for one cell lineage). However, in Figure @B, for division branch
asymmetries smaller than 10, the lineage trees located in the master cell file share almost the
same number of branches. This is indicated by the same orange color of the tiles and further
observable in a detailed analysis by the labels at the left bottom in each tile. These branches
mainly occur during the third and fourth cell cycle indicating that at this stage, similar cell divi-
sions based on their branch are taking place. The quantity and location of the different types of

19 19]15 1540 10] 0 11414 14J15 L] | 0 W6 646 d |

Figure 6.16: Frequency-based structure map of the Arabidopsis collection based on all three divi-
sion types. In order to investigate and compare the different division schemes among the plants, dom-
inant occurrences the division types are investigated. The trees have more than 14 anticlinal divisions
(A), more than 13 periclinal divisions (B), and more than 5 radial ones (C).
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divisions (anticlinal, periclinal, and radial) are also of high interest. Therefore, they are consid-
ered as additional descriptors in the map. Figure[6.16]shows the three resulting frequency-based
maps for each division type. Different parameters for the investigation of anticlinal, periclinal,
and radial divisions are chosen in such a way that all tiles with trees located in the master cell
files are taken into account. The maximum occurrences for all types can be mostly identified
in the master cell files while only a few trees with dominant numbers are assigned to neighbor
files (—1,1 and 2).

As a result, the tree structures located in the master cell file dominate in the number of
appearances for all considered tree descriptors, i.e. nodes, leaves, cell cycle durations, branches,
and division types. Note that the master cell file is defined by its maximal contribution to the
complete tissue of the dome-like structure. Using the structure map reveals that this property
correlates with the predominant occurrences of features in local tree structures. Consequently,
the cells in the master cell file are essential for the total development of the lateral root.

6.3 Summary

In this chapter, I introduced the structure map which is a novel visualization method. It is well-
suited for the interactive visual analysis of large tree data, especially on data from develop-
mental biology. The structure map yields a simple and compact overview of several thousands
of cell lineage trees. It permits both global analysis based on color-coding, as well as local
investigation of substructures or cell paths in trees based on multiple tree descriptors.

I applied the structure map to two different data sets of the zebrafish. As a result, biologists
are able to analyze similar biological events in highlighted cell paths of trees. The combination
of visual analysis and the steering of parameters yield the identification of erroneous substruc-
tures such as too long cell cycles or subsequent cell divisions, for example. In addition, the
comparison of cell lineage trees among several data sets reveals similarities and patterns among
different Arabidopsis plants.

In the next concluding chapter, I discuss the usefulness of all presented methods (automatic
classification of division types, clustering of cell trajectories, structure map), compare them to
related research, and give proposals for future research for improving their functionalities.






Chapter 7

Conclusion

“Finally, in conclusion, let me say just this."
— Peter Sellers, in "Party Political Speech”, 1958

In this thesis, I introduced novel interactive visualization methods that help identify similar mi-
gration and division patterns of 3D+t cell developments. Their usefulness was demonstrated by
applications to the zebrafish and Arabidopsis model organisms. Through this, new insights and
knowledge about cell behavior could be identified that support domain experts in their analy-
ses and formulations of hypotheses. The first method enables a novel automatic classification
of different division types (anticlinal, periclinal, radial) during the growth of lateral roots in
plants. The visualization permits quantitative and geometrical comparisons of division schemes
among several plants demonstrated in Arabidopsis data sets. The second approach facilitates a
new visual similarity analysis of plenty of 3D cell trajectories. Its usefulness is demonstrated
by application to data of both model organisms. Based on a weighted combination of migration
and shape features, the trajectories are compared with each other and grouped using a hierarchi-
cal clustering technique. The resulting clusters are presented in 3D which permits an intuitive
interpretation of the real-world cell developments. The structure map is the third visualization
method which can be applied to thousands of 2D trees. This map permits an interactive com-
parison of specific features of unique tree structures in a compact matrix-based layout. Through
this, erroneous substructures or biological plausible events based on user-defined tree descrip-
tors can be identified immediately.

7.1 Discussion and Future Research

In this concluding chapter, I examine the three presented approaches and compare them to other
related methods. I further discuss why I made the respective design decisions and give ideas for
future research.

Automatic 3D Classification of Division Types

Applied to five Arabidopsis data sets, the classification method in chapter @] yields the detection
of similar division properties among all plants. This algorithm is a novel approach for deter-
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mining the three division types and the visualization of the isosurfaces provides a new way to
interpret the locations and contributions of periclinal divisions.

For such an analysis, an investigation in the 3D space is fundamental to process the data.
Due to the recent availability of this 3D+t data, only little research has been done so far, e.g. the
ongoing work by Wangenheim [vW15]]. Before, mainly the manual inspection of anticlinal and
periclinal divisions was in focus of research because only 2D data was available. For example,
Malamy and Benfey [MB97]], Dubrovsky et al. [DCCRDOI1]], and Casimiro et al. [CBGT03]
explored the lateral root development of the Arabidopsis plant only in 2D based on microscopy
images and formulate hypotheses according to this limited information. However, for a biolog-
ical process that occurs in 3D, it is necessary to consider all three dimensions of cell migrations
that affect the development of the lateral root. For this reason, I perform the presented clas-
sification algorithm and the visual analysis in 3D. The additional visualization of the division
types and sequences in a lineage diagram gives an overview of the division properties and is
well-suited to compare cell developments among several plants. As a result, an unknown order
of division patterns is detected.

In this context, an extension of the method could be a clustering of the division sequences
with respect to their order. The analysis of the 14 cell lineages located in the master cell file in
each plant data in Section 4.3|is performed visually. However, if new data sets with more time
steps are available or if the division types of all cells shall be compared at once then an auto-
matic approach is required. Although the number of divisions in each sequence differs, a partial
similarity analysis of Longest Common Subsequences (LCSS) [ALSS935]] could be applied, for
example. Consequently, similar division schemes could be identified. The question might oc-
cur whether the classification algorithm can also be applied to other data such as cells from
zebrafish, for example. The lateral root development in plants is special in its growth behavior.
It follows a high regularity in forming the dome-like structure only by cell division and growth
because its cells exist in rigid cell walls without migration. The algorithm can be applied to all
plant cells with slight modifications. In contrast, in the fish, cells can divide all over the embryo
with arbitrary orientations. Thus, a unique classification of division types in this system would
not make much sense.

As stated in Section the classification algorithm is based on the generation of cell
isosurfaces (a-shapes) for which the isovalue represents the number of periclinal divisions. I
choose this design approach because it solely relies on real data points of single nuclei positions.
For each time step, only cells in the next time step are taken into account without including other
external information such as knowledge about future developments. I further use a-shapes be-
cause they yield an adequate representation of the tissue and layers of the developing lateral
root in contrast to the rough convex hull that results from a Delaunay triangulation. As already
discussed in Section4.2.4] the resulting classifications of the division types are significantly in-
fluenced by the user-selected thresholds ¢ and p. Due to the variation of real-world data of cell
developments, small changes of the parameters immediately affect the number of generated di-
vision types. Although a parameter setting of ) = 50, p = 45 yields good results, the automatic
approach fails to deliver a correct assignment for a low number of cells (< 5%). These cases
are fixed by a manual editing process and stored on the disk for later sessions. The decision
for such a manual interaction is made because for real-world data of a living organism, it is
assumed that there is always the possibility that cell outliers might occur that are not registered
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in the automatic approach. A future improvement could minimize the manual effort to correct
them by considering context-based information. For example, most of the cells with false divi-
sion types are located at the periphery while for cells at the dome tip the classification is always
correct. This spatial information could be set for the initial cells at time step %, at the periphery
which is further inherited to later daughter cells evolving from the initial ones. Thus, for cells
originating from periphery cells, exceptions in the classification process could be allowed and
addressed as a special case.

Regarding the process of data reduction with respect to the huge initial volume size of the
data sets of several hundreds of GiBs, the classification algorithm only requires the 3D nuclei
positions and tracking information for each time step. This refers to a space usage of only a
few MiBs for each plant that contains all relevant data for the algorithm. As already discussed
in Section the required computation time for each plant is less than one second. This
fast processing together with the interactive 3D visualization of the isosurfaces and 2D lineage
diagram permits a convenient analysis of the data.

Clustering of 3D Cell Trajectories

The presented clustering algorithm in chapter [5] permits the extraction of similar migration
features in data of thousands of 3D cell trajectories. The weights )\; in equation allow users
to emphasize the clustering results according to features of interest in an unprecedented way.
As a result, in Section [5.4] similar trajectory properties such as cell cycle lengths, velocities,
and shapes are identified in the epiboly data while similar collective cell developments are
detected at the periphery in the tailbud data set. Furthermore, for all Arabidopsis plants, a
hitherto unknown correlation between cell divisions and subsequent nuclei displacements could
be found. The method can be applied to any kind of 3D+t trajectory or time-series data with
appropriate changes according to how the trajectories are defined. In this thesis, the trajectory
generation is motivated by the analysis of cell cycles between two subsequent cell divisions.
However, this definition can be modified, e.g. to focus on cell developments in the complete
time step range of the data record. This means that a trajectory would be defined between each
root and leaf of a cell lineage. Nevertheless, 2D or 3D trajectories can be defined arbitrarily and
analyzed with the presented method.

The visual analysis of the clustered cell trajectories is realized in the three-dimensional
space. I choose this representation in order to investigate cell developments in the same space
from which they originate. Consequently, users have an intuitive and natural representation
of the real-world data such that the interpretation of cell events is easily accessible. Other
approaches with biological applications are only realized in 2D resulting from microscopic
movie data WHN™10,ldFCS03},[SLM13]|. These methods complicate an adequate interpretation
of real-world data because the consideration of the third dimension is essential for a correct
investigation of the data.

The investigated data sets with several tens to hundreds of GiBs are reduced in such a way
that only relevant and important information is exploited. Note that the zebrafish data sets
have a low quality with lots of outliers and thus erroneous cell information. For this reason,
filter options such as the consideration of certain trajectory lengths are included prior to feature
computation and clustering to exclude them in the analysis. Furthermore, a level of detail
method (edge criterion in Section[5.)) is used to improve the visual analysis as well as to focus
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on main migration directions of cells. For this purpose, only a binary choice between not using
any LOD reduction and using the lowest LOD is allowed. At first, this processing might seem to
be a rough simplification of the migration complexity but it is valid for the purpose of visually
analyzing only trends and tendencies of cells. Furthermore, it is guaranteed that all trajectories
are represented as a single line with equal dimension for the feature vectors f Thus, no pruning
at the back of a trajectory is necessary to be further processed in the clustering approach. In
total, the algorithm requires only at most 30 MiBs for the tailbud data, for example to ensure
that all relevant information is preserved for clustering.

Other analysis methods focus on the identification of single similar properties of 3D trajec-
tory data. For example, Khairy and Keller [KK11]] as well as McMahon et al. [MSESOS]] use
color coding to represent similar migration features such as orientation or time. However, their
analyses only allow a rough visualization of cell events and are not suited for a detailed similar-
ity analysis of plenty of 3D trajectories. In order to find similar migration behaviors based on
certain features and to cope with large data sets, I use a hierarchical clustering approach (Sec-
tion [5.3)). This approach permits an extraction and grouping of similar trajectories based on a
distance function. This processing could also be realized with other clustering approaches as it
was done, e.g. by Andrienko et al. [AAH™13]] with a density-based clustering of 2D trajectories.
However, the generated hierarchy and its visual representation in a dendrogram are valuable in-
formation for users. Through this, an adequate number of clusters can be determined and it can
be inspected when and where clusters are merged. The latter issues are not considered in this
thesis. However, biologically motivated, an extension could be to analyze merged trajectories
that are subsequently grouped into the same cluster (which are also the ones that are most simi-
lar to each other). This similarity could be compared with their positions within the embryo and
result in knowledge about similar spatial cell developments. In this context, grid-based clus-
tering approaches could support the aforementioned analysis of finding correlations between
trajectories in similar regions of the embryo. Optionally, such context-based information could
be assigned to each trajectory as a priori knowledge included in the similarity analysis.

I compute the distance between trajectories using a weighted combination of several migra-
tory and geometrical features. This is a novel approach to emphasize certain movement-based
features in the clustering. Motivated by the analysis of cell developments, I consider informa-
tion of orientation, cell cycle duration, velocity, and the shape of trajectories (Section [5.2)). For
general 2D trajectories, information about speed, distance, duration, and directions are com-
monly used for the comparison [SBJ"11,IGWY™11]. Geodesic and coupling distances have
not been used for computation of orientations and shapes so far in this context. The focus on
certain migration features can be realized by setting different values for the weight parameters
A; in the distance function described in Section According to the cluster validity check in
Section [5.3.2] the robustness of the clustering results strongly depends on the data quality and
the events in the data that are affected by the changed weights );. For this reason, I only con-
sider single features (only one \; # 0) in the similarity analysis of the zebrafish data because of
its low quality and high variance of features. In contrast, a weighted analysis of trajectory prop-
erties is possible for the Arabidopsis plants that feature a higher quality and more structured
migration directions.

According to the performance analysis in Section [5.3.1] the visual analysis of the clustering
results is realized in real-time while the algorithm can take several minutes to finish. This



7.1 Discussion and Future Research 113

is caused by the quadratic time complexity to compute the coupling distance between each
pair of trajectories. However, this information is computed only once for each data set which
guarantees a fast reprocessing.

Visual Analysis in Structure Map

The structure map presented in chapter [0] is a visualization method that provides a similar-
ity analysis of a huge collection of binary tree structures. Its usefulness is demonstrated by
applications to the zebrafish and Arabidopsis data sets (Section [6.2)). As a result, biological
implausible substructures and similar features can be detected immediately.

In order to reduce the information of the large amount of thousands of tree structures, two
dimension reduction techniques are applied: Spectral analysis and Principal Component Anal-
ysis (PCA). I determine the similarity between trees using spectral analysis. Other approaches
like the tree edit distance [Ta1/9], for example, require an ordered labeling of trees. Moreover,
this method is generally NP-complete for unordered trees [B1l05]. In contrast, spectral analy-
sis provides an elegant way to describe arbitrary trees and even graph structures. This means
that the structure map can be applied to any type of trees and graphs. As already discussed
in Section [6.1.1] there are upper bounds for the uniqueness of a tree spectrum [WZ08, ME12]]
studied on randomly generated trees. But for the cell lineages of the investigated real-world data
sets, all cospectral binary trees are isomorphic. As a result, the collection of trees is reduced
significantly (82% for epiboly and 95% for tailbud) to unique tree structures which is a huge
simplification for the visual analysis. Regarding the time complexity, the eigensystem decom-
position required for the spectral analysis is cubic in the number of nodes which is the same for
a robust version of the tree edit distance [PA11], for example. The determined spectra are then
processed using PCA. This results in a further data reduction and an ordered one-dimensional
embedding of the trees. This embedding is verified by the first principal component scores of
more than 85% for all data sets. In total, the generation of the structure map has a cubic time
complexity (Section [6.1.4)) but the resulting information is stored and assures that the visual
analysis is realized in real-time.

A straightforward horizontal alignment of the ordered unique tree structures, for example,
does not scale to several thousands of trees which makes a visual comparison tedious. For this
reason, I choose a matrix-based design consisting of unique tree tiles that takes advantage of
the two dimensions. Through this, the map scales to even larger data sets and no overplotting
issues occur in contrast to enclosure layouts like treemaps [Shn92] or crossings methods like
beamtrees [VHvWO3|]. The tiles are arranged along a space-filling Hilbert curve which better
preserves local similarity between trees than a simple arrangement of tiles line by line. However,
as already mentioned in Section the inefficient space usage depending on the number of
unique trees and the level of the Hilbert curve may complicate the interpretation of the map.
This could be solved by using approaches inspired by space-filling methods like squarified
treemaps [BHvW99] without the enclosure of child nodes within parent nodes. In the map,
unique tree structures could be assigned to quadrangular tiles with varying sizes depending on
the number of nodes of a tree, for example. This could be realized in such a way that the
complete available 2D space is used.

The current tree descriptors are biologically motivated but in fact, arbitrary descriptors or
even graph invariants as suggested by Navigli and Lapata [NLO7] can be defined. Especially
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for the analysis of cell lineages, the time parameter of a cell development could be considered
as well. In the current version of the structure map, the corresponding time of a tracked cell is
not known. The temporal information could be integrated as an additional descriptor because
cells could share identical tree developments but with completely different time spans. Another
extension could be to consider weighted edges in graphs or trees. Weights may be used to
emphasize or suppress certain connectivity information between nodes in the similarity analysis.

In summary, all visual analysis methods presented in this thesis are realized in real-time
such that users are supported in answering research questions. The combined usage of two dif-
ferent analysis strategies (exploring 3D cell trajectories and the corresponding 2D cell lineages)
is a new visualization approach that adds a contribution for an augmented understanding of cell
behaviors. However, there is still a lot of potential in the visual analysis of 3D+t trajectory data.
For example, in the zebrafish, it is still unclear what causes cells to move and how their cell fate
can be determined. This requires a further global analysis of longer data records covering the
development from single cells to complete organisms. Furthermore, for the recent 3D+t data
of the Arabidopsis plants, the analysis so far does not completely answer the question how the
plant cells in the lateral root are able to cope with both plasticity and robustness during their
growth. These important questions will be the motivation for future research of these model
organisms and there will always be a need for visual analysis methods to explore them.
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