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ABSTRACT

A novel measurement technique is developed for 3D reconstruction of Eulerian velocity vector fields
and Lagrangian trajectories at water-side viscous boundary layers in wavy free surfaces. The presented
approach makes use of spatiotemporal image processing algorithms. The method is applied to a falling
film with a known velocity profile.

1 INTRODUCTION

In order to examine the air-water gas exchange, a detailed knowledge is needed of the flow field within
the water-side viscous boundary layer. For review articlesabout the mechanisms of gas transfer we refer
to [2],[7]. Therefore, important quantities, such as shearstresses, velocity profiles, dissipation rates, and
Lagrangian trajectories, have to be determined.

The measurement technique has to fulfil following requirements:

• The interesting flow is inherently 3D: Interesting featuresof the flow are (microscale-) wave-
breaking, (micro-) Langmuir circulations and turbulence.All of these have in common, that they
are three-dimensional phenomena. A classical measurementsetup, like Particle Image Velocimetry
(PIV) [12], which uses laser light sections, yields only a slice of the flow-field and suppresses its
three-dimensionality. For examples of 2D-measurements werelate exemplarily to [9], [10], and
[11].

• We are interested in the flow inside the water-side viscous boundary layer, which is of thickness
O(1 mm). In contrast to that, waves may have amplitudes ofO(10 cm). Because of this dis-
crepance, it is hardly possible, to observe the flow field statically from the side, which would be
a necessary condition of using laser light sections. Either, we have to use a sophisticated wave
tracking mechanism, or we have to look from above, perpendicular to the water surface.

• Waves and turbulence are instationary processes. Because inthis case the Lagrangian path lines
are different from the Eulerian stream lines, it is not sufficient, to reconstruct the flow field taking
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Fig. 1 Left: The emitted light of the two types of LEDs (“blue” and “royal blue”) is absorbed unequally
by the dye (tartrazine acid yellow). Right: Sketch of the principle.

two images, like it is realized in classical PIV. We have to track particles in an image sequence.
In our approach we are not only capable to record time resolved data, but also we make use of its
spatiotemporal structure, which is a great advantage over correlation based-techniques, like PIV.

A technique similar to the one proposed here is applied successfully in the field of biofluidmechanics,
where it is important to acquire knowledge about the flow in (artificial) blood vessels [4].

The next sextion is concerned with the basic principles of our measurement technique. Both, the
reconstruction of the 3D-position and of the three-component velocity of the tracer particles representing
the flow will be addressed. In order to realize these ideas, wehad to design a new measurement setup,
and we had to implement the algorithmics, which will be addressed in sections 3 and 4. First results are
given in section 5. We complete our paper with a conclusion and an outlook.

2 METHOD

A fluid volume is illuminated by LEDs. Small hollow glass spheres (mean diameter 30µm) are added
to the fluid, functioning as a tracer. A high speed camera pointing to the water surface from above
records the image sequences. A dye, namely tartracine acid yellow, is added to the fluid, which limits
the penetration depth of the light into the flow model acoording to Beer-Lambert’s Law:

Ip(z) = I0exp−z/z̃∗,

whereIp(z) is the intensity of the light approaching the particle, which is located at a depthz from the
surface,I0 is the light’s intensity before penetrating the fluid and ˜z∗ is the penetration depth. The light
is reflected by the glass sphere, and passes the distancez again, before approaching the wall with the
intensity

I(z) = Ip(z)exp−z/z̃∗ = I0exp−2z/z̃∗ = I0exp−z/z∗,

2



A NOVEL M ETHOD FOR SPATIOTEMPORAL ANALYSIS OF FLOWS WITHIN THE WATER -SIDE V ISCOUS

BOUNDARY L AYER

where we have introduced an effective penetration depthz∗ = z̃∗/2 for convenience. Within the illu-
minated layer the particles appear more or less bright, depending on their normal distance to the wall:
Particles near the wall appear brighter, i. e. have a higher gray value than particles farther away from the
wall. Because the diameter of the spheres is considerably greater than the wavelength of the light, we
are in the geometric scattering range, and can neglect Mie effects.

The particle’s intensityI(z) is mapped to a grayvalueg(I(z)) by the procedure of imaging. For
simplicity, we assume, that the response of the camera is linear, i. e., we are allowed to write

g(z) = g0exp−z/z∗. (1)

Estimating the depth In order to eliminate the depthz in equation (1) we have to knowg0. If all
particles are of the same type (size, reflectance, etc.), then we obtaing0 by means of calibration. In our
situation this is not possible, because we use heterodisperse particles, i. e. particles, which have a broad
distribution in size. Therefore, we illuminate the fluid alternately with LEDs of two different spectra
(see figure 1). We choose the maxima of the spectral bands to 455 nm (“royal blue”), and to 470 nm
(“blue”). The light of each LED is absorbed by the dye in a different manner, which can be expressed by
the effective penetration depths:z∗1 for the first LED-type andz∗2 for the second LED-type.z∗1 andz∗2

can be measured using a spectrometer, for instance. We writedown Beer-Lambert’s law for each kind of
LED-type:

g1(z) = g01exp−z/z∗1 and g2(z) = g02exp−z/z∗2.

We solve this equation system for the depth of the particle:

z(g1,g2) =
z∗1z∗2

z∗1−z∗2

(

ln

(

g1

g2

)

+ ln

(

g02

g01

))

. (2)

Note, that here the depth of the particle merely depends on the ratio of the intensitiesg01/g02, which is
for all particles the same, and which can be calibrated.

Estimating the velocities The velocity vectors of the flow are obtained by an extension of the method
of optical flow, therefore allowing for changes in exponential brightness [5]. We differentiate equation
(1) with respect tot:

dg
dt

= −

g0

z∗

dz
dt

exp−z/z∗ = −

1
z∗

dz
dt

g = −

w
z∗

g,

where we have introducedw = dz/dt, the component of the particle’s velocity perpendicular tothe wall.
Because we can express the total derivative of the gray valueg using the chainrule

dg
dt

=
∂x
∂t

∂g
∂x

+
∂y
∂t

∂g
∂y

+
∂g
∂t

= u
∂g
∂x

+v
∂g
∂y

+
∂g
∂t

,

we arrive at a partial differential equation for three unknows(u,v,w)T , given the spatiotemporal gradient
(∂g/∂x,∂g/∂y,∂g/∂t)T of the flow, and the gray value itself:

u
∂g
∂x

+v
∂g
∂y

+
∂g
∂t

+w
g
z∗

= 0. (3)
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Fig. 2 Left: Experimental setup, designed for measurements in a free falling film. Right: Triggering of
the illumination unit and of the camera

This can be rewritten to a scalar-product of data- and parameter vector:

~d×~pT =

(

∂g
∂x

,
∂g
∂y

,
g
z∗

,
∂g
∂t

)

× (u,v,w,1)T = 0.

We solve this equation, using data in a spatiotemporal neighborhood about the point, where we want to
estimate the velocity field, by applying a total-least-squares-estimator. For details we refer to [8].

3 MEASUREMENT SETUP

The measurement setup, designed for measurements in a free falling film, is displayed in figure 2, left.
We use a high speed camera with a back-illuminated CCD-sensor,to achieve a high quantum efficiency
in the spectral band of interest. It is capable of acquiring 1000 frames per second at a resolution of
512×512 pixels2. Because we require, that the lateral object size is independent from the longitudinal
distance from the camera, we installed a telecentric optics. Figure 2, right, shows schematically the
triggering of the illumination setup and of the camera. In the box on the top left of this figure a possible
triggering schedule is presented. For illumination we chose 2×20 powerful Luxeon III Emitter LEDs1,
because they supply a luminous flux of about 20 lm at a current of 600 mA (operating at a voltage of

1http://www.lumileds.com/pdfs/DS45.PDF
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Fig. 3 Image processing procedure (description in text).

about 4 V), and are available in the desired spectral ranges.Before mounting we had to sort the LEDs,
because due to the manifacturing process they differ in their output spectra. We installed a passive
cooling, which was capable to transport the emerging heat ofabout 30 W outwards.

4 IMAGE PROCESSING

The image processing procedure is displayed in figure 3. The acquired images undergo a radiometric
calibration, which compensates for the nonlinearity of theCCD-chip response, and for the inhomogenity
of the sensor array, which is essentially composed of eight individually amplified sections. Then we
perform an illumination correction on each image of the sequence individually by dividing the image by
its low-pass-filtered version.

For determing the position of the particles, and for gettingthe brightness of the particles, they have
to be segmented. In order to do this, we apply the region-growing algorithm, which is described in [6] in
detail. It is based on searching for the local maxima in the image, and then subsequently adding adjacent
pixels using prior information of the shape of a typical particle (area, excentricity), and of the image
noise. For the brightness of a particle we use its maximum grayvalue. We have done experiments, using
the integral of the grayvalue over the whole particle, and applying a gaussian fit, but we didn’t find any
improvements in accuracy compared to the maximum grayvalue.

We determine the velocity vector applying model equation (3). Our total-least-squares estimator
yields - besides the velocity vector itself - a confidence measure, so we only get velocity information,
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Fig. 4 Setup of the convection tank experiment

where a reliable estimation is possible. At places, where nounambiguous fit to equation (3) is pos-
sible, we cannot specify a velocity vector. This occurs at the presence of multiple motions inside the
spatiotemporal neighborhood.

For the calculation of the depthz of a particle according to equation (2) we need the maximum
grayvalues of one and the same same particle, recorded at 455nm and recorded at 470 nm. Because
the LEDS are triggered successively, the particle undergoes a displacement between the two recordings.
We have to find correspondences of the same particle between one image and the other. To minimize
the search radius, we warp one image against the other, usingthe previously determined velocity vector
field. Using the same procedure, we find particle trajectories, which extend accross more than to images.
A similar technique is described in [3], where PIV information is used to improve Particle Tracking.

By combining the information about position(x,y,z) and velocity(u,v,w), an irregularily sampled
3D3C-Eulerian velocity vector field is at hand. We can use somekind of interpolation schemes (for
example the Adaptive Gaussian Windowing method presented in [1]) to obtain a dense motion field
from which we are able to calculate derived quantities, likeshear rates and vorticity.

An alternative is the Lagrangian representation, which hasbecome feasible, because we obtained
particle trajectories, which represent the path lines of the flow. It is suitable for visualizing instationary
flows.

5 RESULTS

We have applied the technique for measurements in a convection tank and in a falling film. For the
purpose of this paper, the convection-tank-measurements are just for qualititive illustration of the feasi-
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bility of our method, whereas the measurements in the falling film can be compared with the analytical
solution of the flow, so that we have some kind of “ground truth”.
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Fig. 5 An example of a typical convective flow. a) Flow trajectories, depth is colorcoded. b) Flow tra-
jectories, horizontal velocities are colorcoded. c) Time series of maximum grayvalues of one trajectory.
d) Time series of depthzand of vertical velocityw of the same trajectory

Buoyant convective turbulence We chose buoyant convective turbulence for demonstrating our tech-
nique, because it exhibits a truely three-dimensional flow.Because the flow is moderate in velocity (flow
speeds of less than 1 cm/s), we can use a camera with a high-quality, high-resolution sensor operating at
a frame rate of 30 frames per second.

The setup of the convection tank experiment is shown in figure4. The fluid is put in a rectangular
volume of dimensions 20×20×5 cm3, and is heated from below with a heating power of about 50 W.
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Cool, dry air is directed across the fluid to transport the developing moisture. The flow parameters are
monitored using temperature and humidity sensors.

An exemplary analysis is shown in figure 5. The complex structure of the flow is reproduced in the
analysis. While most of the tracer particles at the top describe a vortex-like structure, some particles,
which are situated in deeper regions, move in different directions.

Having a closer look to one of the trajectories, we find, that while the particle dives down into
the fluid, i. e. it’s z-coordinate gets larger, it’s velocityw = ∂z/∂t remains positive. Note, thatw
is calculated, using the model 3, i. e. directly from the image sequence, andnot with the aid of the
calculatedz-coordinates.

From figures 5 c) and d) we find, that the maximum grayvalue of a particle exhibits strong fluctuations
while moving along a trajectory. This is due to the fact, thatthe particle, whose imaged size is typically
about 3 pixels in diameter, moves continuously across the pixels of the sensor; the maximum gray value
depends on its sub-pixel-position. This effect has the sameorigin, like “peak locking” in PIV [12]. In
our application its impact is even more dramatic, because weuse itensity data in a direct way. Assuming
a continuous progression of a particle, we are allowed to smooth the maximum gray values along one
trajectory (e. g. using a low-pass-filter), which results ina smooth behaviour of the depthz along a
trajectory.

Laminar falling film In order to quantify our measurement technique, we chose a flow, for which we
can easily write down an analytical solution. The flow down aninlinced plane, commonly referred to as
“falling film”. In the regime of moderate Reynolds numbers,v andw vanish, andu depends only onz in
the way

u(z) =
gsinα

2ν
(d2

−z2) with d = 3

√

3νQ
bgsinα

,

whereg denotes the gravitational constant,α is the inclination of the plane,ν is the kinematic viscosity,
Q is the throughput,b is the width, andd is the thickness of the flow. The velocity profile describes
a parabola. For an illustration, see figure 6. By tuning the external parametersα, ν, Q, andd we can
control the flow thicknessd and moreover its maximum velocityu(z= 0).

Figure 5 shows an example of an obtained velocity-profile. Note, that, because the particles move
from right to left, the horizontal velocity is negative. Because the flow is stationary, we averaged theu
in z-windows of width 50µm. The results can be fitted with a theoretically predicted parabola very well.

6 CONCLUSION AND FURTHER WORK

A novel particle-based technique for 3D3C-fluid flow measurement is presented, which is suited for the
investigation of boundary layers at free surfaces. By codingthe depth of the particles supplementing a
dye, we are able to reconstruct its 3D-position using one single camera. Using an optical-flow-based
procedure for velocity analysis, we are capable of determining the three components of the particle’s
velocity. This is possible, because we take the change of thebrightness of an imaged particle as the
velocity component perpendicular to the image plane. We applied our method to the cases of buoyant
convective turbulence and a laminar falling film.

We plan to verify the measurements using infrared-thermography. Moreover we will set up our
experiment in a linear wind-wave-tunnel, to examine the case of wind-driven shear flow. Using an
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Fig. 6 Left: Experimental setup, designed for measurements in a free falling film. Right: Triggering of
the illumination unit and of the camera

imaging slope gauge, we can simultaneously quantify the slope of the waves, so that we can adopt our
measuring technique to wavy, free surfaces.
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