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Abstract

The performance of fuel cells is significantly affected by “loss mechanisms”. This
work is devoted to developing concepts for the efficient numerical computation
of the diffusion polarization in the porous anode of a solid oxide fuel cell (SOFC).
The following topics were covered:

The first part of this work is focused on the numerical verification of coupling
conditions for effective viscous flows over a porous medium. It is generally
accepted that the “Beavers-Joseph-Saffman slip law” holds true for a main flow
direction which is tangential to the interface. However, the interface law for the
effective stress has been a subject of controversy. We provide a confirmation of
the “pressure jump law”, which has been recently derived by Marciniak-Czochra
and Mikelić, for a range of configurations using a direct numerical simulation of
the flow at the microscopic level.

The second part of this work is about the derivation of a goal-oriented, a posteriori
error estimator for the finite element approximation of elliptic homogenization
problems based on the “Dual Weighted Residual method” of Becker and Ran-
nacher. In general, the solution of the macroscopic equation in the homogenized
model depends on effective coefficients which in turn depend on the solutions of
some additional auxiliary equations. Therefore, the accuracy of the physical goal
functional is influenced by the discretization error of the macroscopic and the
auxiliary solutions. By employing the error estimator developed in this work we
can estimate the contribution of the discretization of each sub-problem (effective
model and auxiliary problems) onto the overall error. These contributions are
then balanced within a successive refinement cycle to set up an efficient dis-
cretization. Local error indicators are used to steer an adaptive mesh refinement
for the macroscopic problem as well as the auxiliary problems.

We demonstrate the functionality of this algorithm on some prototypical homog-
enization problems and on an effective model developed in this work to simulate
the gas transport in the anode of an SOFC. In the latter, the diffusion polarization
is the quantity of interest. For a given accuracy, the application of the local mesh
refinement based on the adaptive algorithm in this context decreases the number
of degrees of freedom and computation time significantly compared to the global
mesh refinement.
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CONTENTS

Zusammenfassung

Die Leistung von Brennstoffzellen wird maßgeblich von Verlustmechanismen
beeinflusst. Gegenstand der vorliegenden Arbeit ist die Entwicklung von Kon-
zepten, um die Gasdiffusionspolarisation in der porösen Anode einer Festoxid-
brennstoffzelle numerisch effizient zu berechnen. Hierbei wurden folgende The-
menfelder behandelt:

Der erste Schwerpunkt der Arbeit liegt auf der numerischen Verifikation von
Kopplungsbedingungen effektiver viskoser Strömungen über ein poröses Me-
dium. Im Falle einer Hauptflussrichtung parallel zur Grenzfläche des porösen
Materials ist die Gültigkeit der „Beavers-Joseph-Saffmann-Bedingung“ akzep-
tiert. Uneinigkeit hingegen herrscht darüber, welche Bedingungen an den ef-
fektiven Spannungstensor zu stellen sind. Wir weisen mithilfe einer direkten
Finite Elemente Simulation im Porenraum die Gültigkeit des kürzlich bewiese-
nen „Pressure Jump Laws“ von Marciniak-Czochra und Mikelić für verschiedene
Konfigurationen nach.

Im zweiten großen Themenkomplex entwickeln wir, auf der Basis der „Dual
Weighted Residual Methode“ von Becker und Rannacher, einen zielorienten a
posteriori Fehlerschätzer für die Finite Elemente Approximation von elliptischen
Homogenisierungsproblemen. Im Allgemeinen hängen die makroskopischen
Gleichungen im homogenisierten Modell von effektiven Parametern ab, die
mittels der Lösung sogenannter Hilfsprobleme berechnet werden. Der Diskre-
tisierungsfehler bzgl. einer gegebenen physikalischen Zielgröße hängt von der
Diskretisierung des effektiven Modells und der Hilfsprobleme ab. Mithilfe des
von uns entwickelten Fehlerschätzers lässt sich der Beitrag der Diskretisierung
eines jeden Teilproblems (effektives Modell, Hilfsprobleme) zum Gesamtfehler
schätzen. In einem sukzessiven Gitterverfeinerungszyklus werden die Fehleran-
teile balanciert, um den Approximationsprozess effizient zu gestalten. Mittels
lokaler Fehlerindikatoren können die Gitter jeweils lokal adaptiert werden.

Wir zeigen die Wirksamkeit dieses Algorithmus an generischen Homogenisie-
rungsbeispielen sowie anhand eines von uns entwickelten effektiven Modells zur
Simulation des Gastransports in der Anode einer Festoxidbrennstoffzelle. In letz-
terem Beispiel dient die Gasdiffusionspolarisation als Zielgröße. Die Anwendung
des adaptiven Algorithmus in diesem Kontext führt im Vergleich mit globaler Git-
terverfeinerung bei gleichbleibender Genauigkeit zu erheblichen Einsparungen
bzgl. der Anzahl der Freiheitsgrade sowie der benötigten Rechenzeit.

IV



1. Introduction

This thesis is dedicated to numerically simulating the negative electrode of a solid
oxide fuel cell (SOFC). We conduct a systematic investigation of the modelling
of the gas transport in the cell and develop a numerical algorithm which allows
for an efficient simulation of aforementioned model. This work is part of a
cooperation with the “Institut für Werkstoffe der Elektrotechnik” (IWE) at the
Karlsruher Institut für Technologie (KIT).

The range of topics touched in this thesis is broad and includes: coupling con-
ditions for the Stokes-Darcy problem (Chapter 3), numerical error control of
homogenization problems (Chapter 4) and fuel cell modelling (Chapter 5). This
introduction highlights the common thread of the different chapters. For a more
thorough introduction to the specific topics we refer to Chapter 2 as well as the
introductory parts of the chapters.

The motivation behind this thesis as well as a brief discussion of the problems
addressed is presented in Section 1.1. An overview of the thesis can be found in
Section 1.2.

1.1. Motivation and Goals

This introduction begins with a brief explanation of what a fuel cell is and how
it works. Afterward, we elaborate on the objectives of the thesis: What are the
goals and how do we achieve them?

1.1.1. What Is a Fuel Cell?

A fuel cell is an electrochemical device which converts the chemical energy of a
fuel directly into electrical energy through a reaction with an oxidizing agent. In
most types of fuel cells, the driving reaction is that of hydrogen (the fuel) with
oxygen (the oxidizing agent) producing water and an electrical current, i.e. the
overall reaction of the cell is

2 H2 + O2 −→ 2 H2O + 4 e–.

1



CHAPTER 1. INTRODUCTION

However, it is not mandatory to use pure hydrogen as fuel. Other possibilities
include natural gas, methanol and methane, see Lucia [97]. The advantages of
using hydrocarbons as fuel are their availability and the lower production cost
than pure hydrogen , see Cook [47]. The downside is that the cell then produces
not only water but also carbon dioxide, which may accelerate global warming, see
Cox et al. [48]. Hydrogen is not naturally available to us in pure form, but rather
in chemical compounds like water or biomass. The environmentally-friendly and
simultaneously cheap production of pure hydrogen is one of the big challenges
of undergoing researches, see Kalamaras and Efstathiou [83].

Even though a broad range of fuel cell-types exists, in general, a fuel cell consist of
gas channels, which transport fuel, the oxidant as well as products of the reaction,
e.g. water, and two electrodes (anode and cathode), which are separated by an
electrolyte, see Figure 1.1.1 for a scheme of an SOFC. The classification of fuel
cells depends on the material used for the electrolyte. In this work we will focus
on solid oxide fuel cells which use a solid ceramic material for the electrolyte.

ElectrolyteCathode Gas ChannelGas Channel Anode

Oxygen
Hydrogen
Electron

H2O

Load H2O2

Ω fΩp

Figure 1.1.1.: Scheme of a solid oxide fuel cell – not true to scale.

We briefly discuss the working principle of an SOFC. Oxygen, in the form of
O2, flows through the gas channel on the left hand side in Figure 1.1.1 into the
porous cathode. There the oxygen molecules are split and each atom is enriched
with two electrons. The newly formed oxygen ions travel through the electrolyte,
which acts as a barrier and allows passage only for these negatively charged
ions, to the porous anode. On the anode side of the fuel cell H2 is fed in the gas
channel. These molecules split into positive hydrogen ions in the anode. Near
the electrolyte/anode interface, the hydrogen ions react with the oxygen ions
to produce water and emit electrons. These electrons flow through the external
load back to the cathode and produce thus the electrical current (remember that
the way through the electrolyte is “blocked” for the electrons).

The main areas of applications are transport and distributed power genera-
tion, especially as a combined heat and power source (see Andújar and Se-
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1.1. MOTIVATION AND GOALS

gura [12], Kirubakaran et al. [86]). The main advantages of fuel cells compared
to conventional combustion-based energy-generators, apart from the fact that
the supply of fossil fuel is limited, are (see e.g. Cook [47], Kirubakaran et al.
[86], Stambouli and Traversa [123]):

• Fuel cells have a potentially higher conversion efficiency (i.e. extracting a
higher percentage out of the energy stored in the fuel fed to the cell) than
conventional heat engines (such as diesel-engines or turbines). The reason
is that the conventional engines translate the chemical energy of the fuel
via combustion into mechanical energy (and heat), which is then converted
to electrical energy. This detour greatly decreases the efficiency potential.

• Fuel cells are able to operate at a significantly lower level of noise-emission,
also due to the lack of mechanical, moving parts.

• If hydrogen is used as fuel, there are no pollutant emissions, as water is the
only product of the reaction, so fuel cells are “cleaner”. To make the whole
process of electricity generation with fuel cells environmentally-friendly,
one has to ensure that the production process of the utilized hydrogen uses
renewable energy sources. See also Cook [47, Figure 1] where the author
reports that the amount of hydrogen in used fuels has been increasing over
time.

Although fuel cells look promising as an efficient and environmentally-friendly
way to generate electricity, there are still obstacles which prevent the use of fuel
cells on a grand scale (even though the fuel cell business is constantly growing,
see Fuel Cell Today [61]). We do not want to conceal that there is criticism
which challenges the whole idea of hydrogen-based power generation, see Bossel
[25].

Apart from problems like the need for a fuel-delivering infrastructure or safety
issues related to the storage of hydrogen, a big obstacle is that electricity produced
by fuel cells is too expensive. In the construction of fuel cells, expensive materials
(like platinum) are used, and the durability of the cells is, due to degradation of
the electrodes, relatively poor, see e.g. Cook [47], Kornely et al. [88]. However, to
make the cell more cost-efficient, one could also try to raise the power output.
The performance of a fuel cell is highly influenced by its layout as well as the
material used for the electrodes, see Kornely et al. [87], Yang et al. [137].

Thus, there is still room for improvement in the development of fuel cells. One
could, for example, try to reduce the thickness of the electrode to save material
costs or optimize the design of the cell to increase cell voltage (which is directly
related to electrical efficiency). However, the processes in the fuel cell are complex
and not yet fully understood, and conducting experiments is expensive and time
consuming (Yang et al. [137]).

3



CHAPTER 1. INTRODUCTION

The Role of Numerical Simulations

The use of a mathematical model, i.e. some mathematical formulas or (partial)
differential equations, is a great tool in further understanding and developing
fuel cells. The two main approaches to modelling are black- and white-box
modelling, see Wang et al. [134]. A black-box model is derived by an empirical
evaluation of experimental data, whereas the white-box models are based on
physical principles, most often represented by a partial differential equation.

Running a simulation, i.e. approximating the solution to the aforementioned
model with some numerical scheme, is usually much cheaper than conducting an
experiment. Furthermore, a numerical simulation allows for the implementation
of an optimization algorithm and for the decoupling of specific phenomena
for a better understanding of complex processes. Another advantage is that
measurements within such a simulation are easy (compared to the laboratory)
and one can observe quantities that can not be measured by experiments in the
laboratory at all. The downside is that the models are only an approximation of
reality and may not reproduce every if any physical effect one is interested in.

The choice of a specific model is most often a trade-off of accuracy vs. (compu-
tational) cost. With increasing model-complexity (e.g. using partial differential
equations instead of heuristic formulas, taking more physical effects into account,
using a 3-d model) and thus more realistic results, the numerical effort of the
simulation rises. This is the reason why even today 0-d or 1-d fuel cell models
are widespread, see for example Wang et al. [134].

This work is focused on the gas transport (of fuel and reaction-products) in the
anode and the overlying gas channel in a 2-d setting. The chemical reactions
in the anode are taking place in the so called “three phase boundary” (TPB),
which is located near the interface of the electrolyte and the anode. Thus, it
is of importance that the transportation of fuel to (and water away from) the
TPB is fast enough. Otherwise, the theoretical performance is hampered by an
undersupply of fuel at the TPB – this loss mechanism is called concentration loss.
The model we use should be able to accurately determine the concentration loss
of a specific fuel cell configuration. So the performance of the fuel cell depends
heavily on the distribution of fuel and exhaust in the anode (as well as the gas
channel). The difficulty is that the anode is composed of a porous material which,
along with the geometry of the cell, heavily influences the fuel-distribution.

Our work contributes to the goal of an accurate and efficient fuel cell simulation
in two ways.

• Firstly, a systematic investigation of the part of the model responsible for
the gas transport is undertaken (see also Section 1.1.2).

4



1.1. MOTIVATION AND GOALS

• Secondly, an advanced numerical algorithm to reduce the computational
costs of solving the mathematical model is developed. This algorithm al-
lows for the use of more complex models and, moreover, due to the reduc-
tion of computational time, it allows for the application of an optimization
algorithm, which has higher numerical costs than a mere simulation.

1.1.2. Mathematical Model, Homogenization and Numerical
Approximation

The model we consider and which describes the gas transport in the anode and
the gas channel (of a mixture of N different species, where N is in the range of
two to ten) looks (neglecting boundary conditions) as follows in a stationary
configuration :

−µε∆vε +∇pε = 0, (1.1.1a)
∇ · (ρεvε) = 0, (1.1.1b)

∇ · (ρεyεi vε) +∇ ·Fεi = 0, i = 1 . . . N, (1.1.1c)
N

∑
i=1

yεi = 1, (1.1.1d)

where µε is the dynamic viscosity of the mixture, ρε its the density, vε its velocity,
pε the pressure, yεi the mass fraction of species i, and Fεi the corresponding mass
diffusion flux.

Note that when developing fuel cells one is in general not interested in the
flow field or the distribution of the species per se, but rather their impact on
the actual performance of the device. This performance depends heavily on the
aforementioned concentration loss, which is caused by an undersupply of fuel
at the anode/electrolyte-interface. So, the goal of the simulation therefore is to
provide a precise value ηA

conc = ηA
conc(vε, pε, yεi ), i.e. the concentration loss of the

anode, as our quantity of interest.

When running a simulation of (1.1.1), we have to discretize the problem, i.e. ap-
proximate the solution by some numerical scheme (we opt for the finite element
method but the following discussion is also applicable to other discretization
methods, such as finite volume discretizations). This approach also allows to
calculate an approximation of ηA

conc. However, the discretization introduces a
defect, the so called discretization error. To make sure that our results are meaning-
ful, we must control this discretization error somehow, i.e. we have to evaluate:
What is the impact of using the FE-approximation of (1.1.1) in the computation of the
concentration loss?

5



CHAPTER 1. INTRODUCTION

Additionally, we compute this quantity of interest efficiently to obtain a good
approximation by employing a goal-oriented a posteriori error estimator, see
Becker and Rannacher [20]. This estimator not only measures how precise the
approximation of the quantity of interest is, but also provides a set of local error
indicators. These indicate which cells of the triangulation carry the major part of
the discretization error and should consequently be refined. So, the indicators
allow the use of an adaptive algorithm, which ensures the efficient allocation of
(computational) effort. The development of such an estimator for the situation at
hand is one of the main achievements of this thesis.

The set of PDEs (1.1.1) hold true in the pores of the anode-material and the
overlying gas channel. Thus, when we want to compute an approximation of
the model, our triangulation (subdivision of the domain into small polygons,
called cells) should resolve the porous structure of the anode. Typically the pore-
diameter is in the order of ∼ 10−6 m and the length and width of the anode are
in the range of∼ 10−3–10−2 m, see e.g. Tseronis et al. [131], Zhu et al. [140]. Note
that we consider 2d-models of the fuel cell in this work. Consider an anode with
a length of 1 cm and a width of 1 mm. A triangulation that would be able to
resolve this structure thus needs approximately 107 cells. And this is only in 2-d;
the problem is much more severe if 3-d simulations are considered.

Thus, it is not feasible to resolve the pore structure of the anode with a triangula-
tion needed for a numerical approximation. We choose to overcome this problem
by applying homogenization theory (see Cioranescu and Donato [43], Hornung
[73], Tartar [127] or Section 2.2): From the microscopic problem (i.e. the afore-
mentioned PDEs in the pore-space) we extract some effective behaviour which
describes the (physical) process on a (much) larger scale. This means that instead
of (1.1.1) on the perforated pore space, we consider a set of effective (or macroscopic
or homogenized) equations on a plain domain. The (eligible) hope is that this set
of equations still describes the crucial effects of the process on a macroscopic
scale (in our case: the anode). One can think of the homogenization process as a
kind of averaging; it is a transfer from the microscopic to the macroscopic level,
catching the macroscopically important phenomena and neglecting fine scale
oscillations.

We therefore use the homogenized version of equation (1.1.1) as our fuel cell
model, which we approximate by a finite element scheme. Approximating the
effective equation is generally cheaper than solving the microscopic problem
directly, as the homogenized problem is defined on a domain without perfora-
tions. However, the macroscopic model additionally needs the solution of some
auxiliary equations, which we must discretize too.

Figure 1.1.2 shows a sketch of the situation at hand: Ωε
f represents the gas channel

and Ωε
p the anode on the microscopic level. The macroscopic model holds true

6



1.1. MOTIVATION AND GOALS

on a homogenized domain consisting of the gas channel Ωf and (homogenized)
anode Ωp, compare also with Figure 1.1.1.

Ωε
f

Ωε
p

Homogenization

Ωf

Ωp

Figure 1.1.2.: Sketch of the transition from pore-space (left hand) to a homogenized
domain (right hand) via homogenization.

1.1.3. Goals of the Thesis

The above consideration leads to the following two problems which are ap-
proached in this thesis:

(i) We are interested in the solution of our fuel cell model in the anode and
the corresponding gas channel. Consider only the Stokes part ((1.1.1a)
and (1.1.1b)) of our model. It is known that the type of the homogenized
equation depends on whether we are in the gas channel or the anode,
even though on the microscopic level we have Stokes equations in the
whole domain. In the gas channel the homogenized model is still Stokes
system, but in the porous anode the effective equation is Darcy’s law. Stokes
equations are a set of second order PDEs for the velocity and first order for
the pressure, whereas Darcy’s law is of second order for the pressure and
first order for the velocity. Thus, the following problem arises naturally:
How should we couple these two equations across the interface separating the gas
channel from the anode?

This question has caused a lot of discussion in the scientific community, see
Chapter 3 for an overview. We follow Marciniak-Czochra and Mikelić [98],
who have analytically proven a set of coupling conditions in this context.
In Chapter 3 we present numerical proof of these interface laws, based on
a direct simulation on the pore-scale level. This study requires very high
precision of the numerical approximations and is, to our knowledge, the
first comparison of the aforementioned coupling conditions with pore-scale
simulations.

(ii) Let us consider an approximation of a quantity of interest, which depends
on the solution of a generic homogenization problem (see the introduction

7



CHAPTER 1. INTRODUCTION

of Chapter 4 for a more precise definition). Parts of the effective equations
that emerge from the homogenization process are effective parameters,
which in turn depend on the solution of additional auxiliary problems.
Thus, when approximating the homogenized system (i.e. auxiliary prob-
lems and macroscopic equation), the discretization error introduced to the
auxiliary problems carries over to the macroscopic level. The question is:
How should we distribute the available resources (i.e. degrees of freedom) between
the macroscopic problem and the auxiliary problems? How do we ensure that
we do not waste precious computing time on computing the effective coeffi-
cients when in fact the bulk of the error stems from the macroscopic level
(or vice versa)?

In Chapter 4 we apply the Dual Weighted Residual (DWR) method of Becker
and Rannacher [20] to this kind of problem. This leads us to a goal-oriented
a posteriori error estimator, which accounts for the coupling between the
two levels and separates the discretization error into macroscopic and
auxiliary error-contributions. Thus, we are able to efficiently allocate our
computing power with locally adapted grids (for both macroscopic problem
and auxiliary problems), tailored especially to minimize the error in the
given (physical) quantity of interest.

These are the two main achievements of this thesis; please see the introductions of
Chapters 3 and 4 for a more in-depth presentation of the respective problems.

Finally, we assemble the algorithms and models, systematically developed in
chapter 3 and 4, and use them on our fuel cell model in Chapter 5. Whereas,
in the previous chapters, we present our findings by means of some exemplary
model problems, in this chapter they are tested in a more realistic scenario: We
incorporate the correct coupling conditions for the Stokes-Darcy problem and
show, with the resulting model, that the concentration loss of the anode can
be efficiently approximated by applying the goal-oriented a posteriori error
estimator of Chapter 4. The model considered in this chapter was developed in
cooperation with the IWE at KIT.

1.2. Overview

In Chapter 2 we set the notation used throughout the thesis and give a short
introduction to periodic homogenization.

Chapter 3 presents the coupling conditions on the interface between Stokes
and Darcy equation. This scenario is the outcome of a homogenization process
of Stokes equations in a domain with a perforated part and a part where the
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fluid can flow unhindered. We present the framework of this problem and give a
numerical confirmation of the interface laws proposed by Marciniak-Czochra and
Mikelić [98] by a direct numerical simulation on the microscopic level. Most of
the chapter is concerned with a flow configuration where the main flow direction
is tangential to the interface. We also present the justification of an interface law
that deals with flows that are forced through the porous domain, i.e. flows which
are normal to the interface.

After setting the coupling conditions, Chapter 4 is concerned with goal-oriented
a posteriori error estimation in the context of homogenization problems. We
apply the DWR-method by Becker and Rannacher [20] on the homogenization
problems, i.e. a number of PDEs, separated into macroscopic and auxiliary prob-
lems. The goal functionals in this framework depend on macroscopic quantities
in most scenarios. It is of special interest to estimate the impact of the approx-
imation of the auxiliary problems on the macroscopic goal functional (i.e. the
quantity of interest). We present the results of our algorithm applied to some
typical homogenization problems. The algorithm is able to separate and balance
the influence of the discretizations of the various sub-problems on a given goal
functional. This balancing process is coupled with local mesh refinement and
allows for substantial savings when compared to global mesh refinement, as
shown by the numerical tests.

Finally, in Chapter 5, we apply the methods developed in the previous chapters
to the fuel cell simulation (focusing on the anode and the overlying gas channel).
We start by giving a short introduction into fuel cells. Afterward, a model for the
gas transport in the anode and the overlying gas channel of an SOFC is presented
on the microscopic level. We proceed by deriving an effective equation where
we incorporate the findings of Chapter 3. This formally homogenized problem is
verified by some direct numerical simulations on the microscopic level. After the
model is complete, we apply the algorithm developed in Chapter 4 to this set of
PDEs and show with two numerical examples that we can efficiently compute
the concentration loss of the anode. The chapter is closed by a more realistic
test case where the application of the adaptive algorithm speeds up the solving
process considerably when compared to global refinement.

The thesis is closed by Chapter 6. We summarize the presented results and
discuss possible extensions for future work.
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2. Basic Concepts

In this section we set the basic notation for the thesis in Section 2.1. Afterwards,
we give a brief introductions into the theory of homogenization (Section 2.2). This
section is for the benefit of readers unfamiliar with homogenization theory.

2.1. Notation

Let in the following m, n ∈ N+ and k ∈ N. We consider only Rn-valued functions
in this thesis.

2.1.1. Vector Valued Functions

In general, vectors and vector valued functions are typeset in bold. We use ’·’ as
an abbreviation of the euclidian scalar product, i.e. for a, b ∈ Rn it holds

a · b =
n

∑
i=1

aibi. (2.1.1)

The euclidian norm is denoted by |·|, i.e.

|a| =
√

a · a. (2.1.2)

Letα ∈ Nn be a multi-index, x ∈ Rn. We use the following notation:

|α|1 :=
n

∑
i=1
|αi| , (2.1.3)

Dα :=
∂|α|1

∂xα1
1 . . . ∂xαn

n
, (2.1.4)

xα :=
n

∏
i=1

xαi
i . (2.1.5)

11
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Definition 2.1.1. By ei ∈ Rn, 1 ≤ i ≤ n, we denote the Cartesian unit vectors, i.e.

ei := (δi j)
n
j=1, (2.1.6)

with the Kronecker delta δi j.

Remark 2.1.2 (Arguments). We do not apply bold setting to arguments of functions,
e.g.. we would write f (x) instead of f (x) for x ∈ R2.

2.1.2. Function Spaces

In this section we assume Ω ⊂ Rn to be an open domain with Lipschitz bound-
ary. For an introduction into Sobolev spaces we refer to standard text books,
e.g. Adams and Fournier [6] or Wloka [135], where one can also find the exact
definition of a Lipschitz boundary.

Definition 2.1.3 (Continuously Differentiable Functions). As usual we denote the
space of R-valued, k-times continuously differentiable functions on Ω by Ck(Ω ).
The set of smooth functions on Ω is denoted by C∞(Ω ). If all the functions have
additionally compact support in Ω , we call the space C∞

0 (Ω ).

We use standard notation in the context of Lebesgue- and Sobolev spaces, i.e.
Lp(Ω ) with 1 ≤ p ≤ ∞ is the usual Lebesgue-space of order p and by Hs(Ω ) is
the Sobolev-space of order s with s ∈ R, s ≥ 0 and L2(Ω ) = H0(Ω ).

• Let 1 ≤ p < ∞. Lp(Ω ) is the set of all measurable functions f : Ω → Rn

s.t. for the norm‖·‖Lp(Ω ) =‖·‖Lp there holds

∥∥ f
∥∥p

Lp(Ω )
:=
∫
Ω

∣∣ f (x)
∣∣p dx < ∞. (2.1.7)

L2(Ω ) is a Hilbert-space if we consider the scalar product

( f , g)L2(Ω ) :=
∫
Ω

f (x)g(x) dx f , g ∈ L2(Ω ). (2.1.8)

• Let p = ∞. L∞(Ω ) is the set of all essentially bounded functions, i.e. for
the norm‖·‖L∞(Ω ) =‖·‖L∞ there holds∥∥ f

∥∥
L∞(Ω )

:= inf{C ∈ R |
∣∣ f (x)

∣∣ ≤ C a. e. in Ω}. (2.1.9)

12
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• Forϕ ∈ C∞(Ω ) we define the norms‖·‖Hk(Ω ) =‖·‖Hk by

‖ϕ‖2
Hk(Ω ) := ∑

α∈Nn

|α|1≤k

∫
Ω

∣∣Dαϕ(x)
∣∣2 dx. (2.1.10)

The space Hk(Ω ) is now defined as the completion of C∞(Ω ) w.r.t. afore-
mentioned norm:

Hk(Ω ) := C∞Ω‖·‖Hk . (2.1.11)

Let Γ ⊂ ∂Ω . We denote the space of Sobolev functions with zero trace on
Γ by Hk

Γ (Ω ), i.e.

Hk
Γ (Ω ) = {ϕ ∈ Hk(Ω ) | ϕ|Γ = 0}. (2.1.12)

A short remark regarding the scalar product and norm on the product spaces of
L2: For two functions f, g ∈ L2(Ω )

m with m ∈ N \ { 0 }. We use the following
notation for the corresponding scalar product

(f, g)Ω =
∫
Ω

f(x) · g(x) dx (2.1.13)

respective norm

‖f‖2
Ω =

∫
Ω

∣∣f(x)
∣∣2 dx. (2.1.14)

If the domain of integration is clear from context, we omit the subscript in both
cases.

Spaces of Periodic Functions

Let us describe how we denote periodicity. Let f : Rn → R, l > 0.

Definition 2.1.4 (Periodicity in One Direction). We say f is l-periodic w.r.t. xi if
there holds

f (x) = f (x + eil). (2.1.15)

Definition 2.1.5. Let l ∈
(
R+
)n. We define the rectangle Y ⊂ Rn by Y :=×n

i=1(0, li).
We say a function f : Rn → R is Y-periodic, if it is li-periodic w.r.t. xi for all 1 ≤ i ≤ n,

13
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i.e. there holds

f (x) = f (x + liei) ∀1 ≤ i ≤ n. (2.1.16)

With the above definition of Y-periodicity, we define the function space of smooth,
Y-periodic functions by

C∞
per(Y) := {ϕ ∈ C∞(Rn) |ϕ is Y-periodic}. (2.1.17)

Definition 2.1.6. We call the closure of this function space w.r.t. the Hk(Y)-norm
Hk

per(Y), i.e.

Hk
per(Y) := C∞

per(Y)
‖·‖Hk(Y) . (2.1.18)

Remark 2.1.7. Note the domain of integration of the norm in the completion of Hk
per(Y)

is Y, not Rn.

2.1.3. Theorems

We cite the following theorem from Cioranescu and Paulin [44]:

Theorem 2.1.8 (Mean Value Property of Periodic Functions). Let Ω ⊂ Rn be a
bounded open set and Y :=×n

i=1[0, li] and li > 0. Let f be a Y-periodic function s.t.
f ∈ Lp(Y) with 1 ≤ p ≤ ∞. Define

fε(x) = f ( x
ε ) a.e. forx ∈ Rn. (2.1.19)

Then, as ε→ 0,

fε ⇀
1
|Y|

∫
Y

f (x) dx in Lp(Ω ), (2.1.20)

if p < ∞. The convergence is weak-* in L∞(Rn).

2.1.4. Multicomponent Flows

We settle the notation for the multicomponent flows in Chapter 5. We consider a
chemical mixture of Nsp ∈ N, Nsp ≥ 2 different species. Let 1 ≤ i ≤ Nsp. Let the
molar mass of species i be mi, its dynamic viscosity is denoted by µi.

14
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Definition 2.1.9 (Species Molar Fraction). The molar fraction of species i in the
considered mixture, xi, is the ratio of the number of moles of species i, ni, and the total
number of moles in the mixture, n:

xi :=
ni

n
. (2.1.21)

There holds by definition

Nsp

∑
i=1

xi = 1. (2.1.22)

Definition 2.1.10 (Molecular Mass of the Mixture). The molecular weight of the
mixture, m, is the weighted harmonic mean of the molecular weights given by

m :=
Nsp

∑
i=1

ximi. (2.1.23)

We can now define another method to describe the composition of the mixture.

Definition 2.1.11 (Species Mass Fraction). Let xi be the molar fraction of species i.Its
mass fraction in the considered mixture, yi, is defined by

yi :=
ximi

m
. (2.1.24)

There holds

Nsp

∑
i=1

yi = 1. (2.1.25)

Definition 2.1.12 (Universal Gas Constant). The universal gas constant R is

R := 8.314 462 1 J/mol K, (2.1.26)

with a relative uncertainty of 9.1 · 10−7.

Definition 2.1.13 (Faraday Constant). The Faraday constant F is defined as the
product of the Avogadro constant and the elementary charge. Its value is

F := 96 485.3365 A s/mol, (2.1.27)

with a relative uncertainty of 2.2 · 10−8.

Definition 2.1.14 (Perfect Gas Law). Let a pressure p, temperature T and and mass
fractions yk for 1 ≤ k ≤ Nsp be given. Under the assumption that the mixture behaves

15



CHAPTER 2. BASIC CONCEPTS

as an ideal gas, its density ρ is given by

ρ =
pm
RT

, (2.1.28)

where R is the universal gas constant.

2.2. Introduction to Periodic Homogenization

We give in this section a brief introduction into the goals and methods of the
mathematical homogenization of PDEs in a periodic context. For a broader
presentation of the topic, we refer the reader to standard textbooks such as
Bensoussan et al. [22], E [54], Tartar [127], Zhikov et al. [139] or Cioranescu and
Donato [43].

Homogenization is a mathematical tool that allows us to make the upscaling
process of a partial differential equation rigorous and can be understood as a
kind of “averaging”-process. It takes a microscopic description of a (physical)
process and transfers it to the macroscopic level. Examples for such a transfer
from the micro- to the macro-level can be found in mathematical models from a
lot of different areas of research (solid mechanics, fluid mechanics, gas dynam-
ics). However, not all have bridged this step by an homogenization technique –
instead, an empirical ansatz (using linearization, symmetry arguments or invari-
ance properties) is often employed. Consider for example mathematical fluid
mechanics, where we model Newtonian fluids (and property of fluids such as
viscosity) as a continuum, even though on a very fine scale the fluid consists not
of one homogeneous mass but single, distinct molecules. On the microscopic
scale, the fluid is modelled by some molecular dynamics, but if the domain in
which we consider this fluid is large enough, we can describe most quantities in
a satisfactory manner by the solution of the Navier-Stokes equation.

Now the basic idea of homogenization is the following. Consider a family of
partial differential equations which solutions vε have typically variations in the
scale of ε > 0 (the microscopic level). The question is now, does a function v
exist s.t.

v = lim
ε→0

vε (2.2.1)

holds? If yes, what is the differential equation that v fulfills? This is then
what we consider as the macroscopic model. The sense in which (2.2.1) is to be
understood will be specified later in this chapter.
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In the next section, we explain at an example how homogenization uses mi-
croscopic information to generate an appropriate model on the macroscopic
level.

Introductory Example

We will show how homogenization transfers a microscopic description to the
macroscopic level by a descriptive 1-d example.

Consider the function

a : R −→ R
x 7−→ 2 + 2 sin(2πx), (2.2.2)

and for ε > 0

aε : R −→ R
x 7−→ a( x

ε ).
(2.2.3)

Problem 2.2.1. Find a solution vε s.t.

−(aεvε ′)′ = 1 in (0, 1), (2.2.4a)
vε = 0 on { 0, 1 } . (2.2.4b)

See Figure 2.2.1 where the solutions to this microscopic problem are depicted
for ε ∈

{
1/4, 1/8, 1/16, 1/32

}
. We observe that the oscillations get smaller with ε

and that vε approaches a quadratic function. The question is, how is the series of
solutions (vε)ε behaving for ε→ 0?

Consider the weak formulation of Problem 2.2.1. It can be shown by standard
arguments that (vε)ε and (vε ′)ε are both bounded in L2(Ω ) (see e.g. Zhikov et al.
[139]). Thus, there exists a function v ∈ H1

0(Ω ) s.t.

vε → v
vε ′ ⇀ v′

}
in L2(Ω ). (2.2.5)

How can we determine v? Is there a PDE which v satisfies? Indeed there is such
an equation. But let us first remark why we can not simply take advantage of
(2.2.5) by passing to the limit in the microscopic equation.

17



CHAPTER 2. BASIC CONCEPTS
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Figure 2.2.1.: Solutions of Problem 2.2.1 for different ε-values.

Remark 2.2.2 (Naive Approach). Note that due to the periodicity of aε and Theo-
rem 2.1.8 it holds

aε ⇀ ā :=
∫ 1

0
a(x) dx. (2.2.6)

Consider the variational formulation of Problem 2.2.1:

(aεvε ′,ϕ′) = (1,ϕ) for allϕ ∈ H1
0(Ω ). (2.2.7)

So we could assume that v satisfies

(āv′,ϕ′) = (1,ϕ) for allϕ ∈ H1
0(Ω ) (2.2.8)

However, this is not true as the product of two weakly convergent functions is in general
not the product of the limits, i.e.

lim
ε→inf

aεvε 6= āv. (2.2.9)
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The challenge in the homogenization process is to determine the correct limit in (2.2.9).

The function v satisfies the following homogenized (or effective or macroscopic)
equation:

Problem 2.2.3. Find a solution v s.t.

−(a0v′)′ = 1 in (0, 1), (2.2.10a)
v = 0 on { 0, 1 } . (2.2.10b)

The effective coefficient a0 is defined as

a0 =
1∫ 1

0
1

a(x) dx
=

1√
3

. (2.2.11)

Remark 2.2.4. Note that in general

a0 =
1∫ 1

0
1

a(x) dx
6=
∫ 1

0
a(x) dx = ā. (2.2.12)

In Table 2.2.1 the convergence of the homogenization error v − vε in the L2(Ω )
and H1

0(Ω )-norm is shown. We see that we have first order convergence in the
L2(Ω )-norm, whereas the gradients do not converge to zero. In Figure 2.2.2
we show the gradients of vε for different ε-values and we see that we can not
expect a strong convergence towards v′, but only a weak convergence (see (2.2.5)).
It is possible to enhance the convergence properties with the help of so called
correctors, defined by some auxiliary equations. See the next section for an
example.

ε ‖v− vε‖
∥∥v′ − vε ′

∥∥
1/4 4.2 · 10−3 6.4 · 10−2

1/8 2.1 · 10−3 6.5 · 10−2

1/16 1.1 · 10−3 6.5 · 10−2

1/32 5.4 · 10−4 6.5 · 10−2

Table 2.2.1.: Homogenization error of Problem 2.2.1.

This 1-d example highlights the basic properties of homogenization and allows
for a nice visualization, but some properties do not carry over to the multi-
dimensional case. We will see that in general we can no longer describe the
effective coefficient by an explicit formula as done in (2.2.11). We need the help
of some auxiliary problems in this case, see next section.
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(d) ε = 1/32

Figure 2.2.2.: Gradients of the solutions of Problem 2.2.1 for different ε-values.

Remark 2.2.5. From the mathematical point of view we have a series of microscopic
solutions which converge towards the macroscopic solution v, i.e. the vε approximate v.
Further, when we want to model a physical process (like gas-transport in an SOFC) we
are interested in one specific vε for a given epsilon, and we use the macroscopic solution
as an approximation of this vε.

We also adopt the latter viewpoint in this thesis. This means that the homogenization
error v− vε is given for our model and we can not improve it by making ε small, as it is
given (in our case by the geometry of the anode).

2.2.1. Asymptotic Expansion

The 1-d example in the previous section has a microscopic problem with a
periodically oscillating coefficient. We will focus in this section on 2-d microscopic
problems whose oscillations are caused by the fact that the problems are studied
in perforated domains with a periodic arrangement of the obstacles. We present
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the formal asymptotic two-scale expansion at the well known model problem of
a linear diffusion process. But first we define periodically perforated domains.

Definition 2.2.6 (Periodically Perforated Domains). A periodically perforated do-
main Ωε is defined as follows.

Let (ε) be a series of small parameters s. t.

1
ε
∈ N (2.2.13)

and let Y = [0, 1]2 be the unit cell from which we cut out an obstacle Ys, which does not
have to be connected. We assume Ys is closed, ∂Ys is piecewise smooth and Ys ⊂ Y. Let
Y f = Y \Ys.

We define the set Oε as all obstacles homothetic to Ys with a ratio of ε,

Oε =
⋃

k∈Z2

ε
(

k + Ys

)
. (2.2.14)

Given a bounded domain Ω ⊂ R2 with

∂Ω ∩ ∂Oε = ∅ ∀
{
ε
∣∣∣ 1
ε
∈ N

}
, (2.2.15)

we define the perforated domain by

Ωε = Ω \Oε. (2.2.16)

Remark 2.2.7. In Definition 2.2.6 the restrictions (2.2.13) and (2.2.15) are stated to
ensure a piecewise smooth outer boundary of the microscopic domain Ωε. One can drop
these assumptions, see for example Zhikov et al. [139].

Consider the simple model problem on a periodically perforated domain Ωε.

Problem 2.2.8. We use the assumptions and notation of Definition 2.2.6 regarding the
perforated domain Ωε. Let f ∈ L2(Ωε). Consider the symmetric, Y-periodic diffusion
tensor

A : R2 \
⋃

z∈Z2

(
z + Ys

)
→ R (2.2.17)

(and Ai j ∈ L∞(Rn)) which we assume to be elliptic, i.e. there existsα,β > 0 s.t.

α|ξ |2 ≤
2

∑
i, j=1

Ai j(y)ξiξ j ≤ β|ξ |2 ∀ξ ∈ R2, y ∈ Yf. (2.2.18)
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We define the oscillating coefficient Aε : Ω → R2 by

Aε(x) = A( x
ε ). (2.2.19)

The microscopic problem reads:

Find vε s.t.

−∇ · (Aε∇vε) = f in Ωε (2.2.20a)
vε = 0 on ∂Ωε \ ∂Oε, (2.2.20b)

n · (Aε∇vε) = 0 on ∂Oε. (2.2.20c)

Again, we are interested in the behaviour of vε as ε→ 0, see Figure 2.2.3.

ε = 1/2

ε = 1/4

ε = 1/8

homogenized

ε→ 0

Figure 2.2.3.: Sketch of homogenization process of periodically perforated domains.

Before we proceed to get a result similar to (2.2.5), we have to address a point that
makes the homogenization process in the context of perforated domains slightly
more complex than in the case of oscillating coefficients. The basic reasoning
is the same as in the previous 1-d example, see Section 2.2. However, we can
not establish in the same way the boundedness of the series (vε)ε and (vε ′)ε in
L2(Ωε), as the microscopic problems are defined on a series of varying domains
Ωε. To state the convergence results in some fixed Sobolev spaces defined on the
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homogenized domain Ω , we need to extend vε to Ω , i.e. find a function

ṽε : Ω → R (2.2.21)

s.t.

ṽε
∣∣∣
Ωε

= vε and ‖ṽε‖H1(Ω ) ≤ C‖v
ε‖H1(Ωε) (2.2.22)

with a constant C > 0 independent of ε. After this expansion is established the
usual arguments lead to the existence of a function v s.t.

ṽε → v
ṽε,′ ⇀ v′

}
in L2(Ω ). (2.2.23)

How do we determine the macroscopic equation which v satisfies? There are
various possibilities, we use the formal asymptotic two-scale expansion.

Formal Asymptotic Expansion

The ansatz utilizes an asymptotic expansion with a splitting into two different
scales (i.e. “slow” and “fast” variables x and x/ε), see Bakhvalov and Panasenko
[13], Bensoussan et al. [22], Sánchez-Palencia [119]. The slow variable x describes
macroscopic changes and the fast variable y measures the microscopic behaviour.
It is purely a formal method to determine the homogenized equations, the justifi-
cation of the obtained formulas needs the use of other methods.

We take the ansatz that the microscopic solution allows for an expansion of the
form

vε(x) =
∞
∑
i=1
εivi(x, x

ε ), (2.2.24)

where the functions

vi : Ω ×Rn \Oε −→ R
(x, y) 7−→ vi(x, y), (2.2.25)

are assumed to be Y-periodic w.r.t. y for all x ∈ Ω . For small ε, the value x/ε
changes much more rapidly than x and allows us to exploit scale separation, i.e.
treat x and y = x/ε as independent variables.

Remark 2.2.9. The ansatz (2.2.24) neglects information about the (outer) boundary
conditions. This is the source of some serious technical difficulties when we try to justify
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the result of the method later on. One tool to correct this is the use of boundary layers,
see, e.g., Bensoussan et al. [22].

The basic idea is to plug (2.2.24) into the microscopic equation (2.2.20a). Note
that differentiating a function of typeϕε(x) :=ϕ(x, x/ε) w.r.t. x leads to

∇ϕε(x) = ∇xϕ(x, y)
∣∣∣

y=x/ε
+

1
ε
∇yϕ(x, y)

∣∣∣
y=x/ε

. (2.2.26)

Bearing this in mind, we express the application of the microscopic differential
operator

Aεϕε := −∇ · (Aε∇ϕε) , (2.2.27)

by

Aεϕε =
(
ε−2A1 +ε

−1A2 +ε
0A3

)
ϕ, (2.2.28)

where

A1 = −∇y ·
(

A(y)∇y

)
, (2.2.29)

A2 = −∇y ·
(
A(y)∇x

)
−∇x ·

(
A(y)∇y

)
, (2.2.30)

A3 = −∇x ·
(
A(y)∇x

)
. (2.2.31)

Inserting (2.2.24) and (2.2.28) into (2.2.20a) leads to a cascade of equations. Sort-
ing by powers of epsilon and neglecting the terms of orderε leads to the following
equations:

O(ε−2) : A1v0 = 0 in Ω ×Yf, (2.2.32a)

O(ε−1) : A1v1 +A2v0 = 0 in Ω ×Yf, (2.2.32b)

O(ε0) : A1v2 +A2v1 +A3v0 = f in Ω ×Yf. (2.2.32c)

We deduce in the same way the following equations for y ∈ ∂Ys, the only
difference is that we neglect only the equations corresponding to O(ε2 and
higher):

O(ε−1) : n ·
(

A∇yv0

)
= 0 on Ω × ∂Ys, (2.2.33a)

O(ε0) : n ·
(

A∇yv1

)
+ n · (A∇xv0) = 0 on Ω × ∂Ys, (2.2.33b)

O(ε1) : n ·
(

A∇yv2

)
+ n · (A∇xv1) = 0 on Ω × ∂Ys. (2.2.33c)
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Here denotes n the normal on ∂Ys.

Consider (2.2.32a) together with the boundary condition (2.2.33a):

Problem 2.2.10. Find v0 Y-periodic s.t.

−∇y ·
(

A(·)∇y

)
v0(x, ·) = 0 in Yf, (2.2.34a)

n ·
(

A(·)∇yv0(x, ·)
)
= 0 on ∂Ys. (2.2.34b)

The variable x acts as a parameter in this equation. Problem 2.2.10 is uniquely
solvable in the function space

H1
per(Yf)

R (2.2.35)

(see, e.g., Cioranescu and Paulin [44]) and thus independent of y, i.e.

v0(x, y) = v0(x). (2.2.36)

Now we consider (2.2.32b) together with (2.2.33b) and take (2.2.36) into account,
we end up with

Problem 2.2.11. Find v1 Y-periodic s.t.

−∇y ·
(

A(·)∇yv1(x, ·)
)
= ∇y ·

(
A(·)∇xv0(x)

)
on Yf, (2.2.37a)

n ·
(

A(·)∇yv1(x, ·)
)
= −n ·

(
A(·)∇xv0(x)

)
on ∂Ys. (2.2.37b)

Due to the separation of x and y in the right hand side of equation (2.2.37) we
take the following ansatz

v1(x, y) = −
n

∑
i=1

wi(y)∂xi v0(x) + ṽ1(x), (2.2.38)

where wi are the solutions of the following cell problems:

Problem 2.2.12 (Cell Problem). We use the notation and assumptions of Problem 2.2.8
Let 1 ≤ i ≤ n. Find w j Y-periodic s.t. it fulfils the cell problem

−∇y ·
(

A∇yw j

)
= ∇y ·Ae j in Yf, (2.2.39)

n ·
(

A∇yw j

)
= n ·Ae j on ∂Ys. (2.2.40)
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It is a simple calculation to check that (2.2.38) fulfills Problem 2.2.11. The con-
stant ṽ1(x) is somewhat irrelevant as only the gradient of v1 is needed in the
homogenized equation that follows.

Last, we consider (2.2.32c) together with (2.2.33b). After we integrate (2.2.32c)
over Yf and take the periodicity of the v1 w.r.t. y, equation (2.2.36) and ansatz
(2.2.38) into account, we end up with the following homogenized equation.

Problem 2.2.13 (Homogenized Equation). We use the notation and assumptions of
Problem 2.2.8. The homogenized problem reads:

Find v = v0 s.t.

−∇ ·
(

Ahom∇v
)
= |Yf| f in Ω , (2.2.41a)

v = 0 on ∂Ω . (2.2.41b)

Hereby is Ahom the homogenized or effective diffusion tensor. Its entries are defined
by

Ahom
i j :=

∫
Yf

(
A(y)∇yw j

)
· ei + Ai j(y) dy 1 ≤ i, j ≤ n, (2.2.42)

where { w1, . . . , wn } are the solutions of the cell problems 2.2.12.

Remark 2.2.14. The homogenized diffusion tensor (2.2.42) is again elliptic, see Ben-
soussan et al. [22].

The presented method is not mathematically rigorous. It delivers (at least in this
example) the correct homogenized limit, but it gives no proof of the convergence.
Nevertheless it is a valuable tool to get an idea of how the effective equation looks
like. We refer to the next section regarding the justification of the homogenization
process.

Theorem 2.2.15. There holds

‖vε − v‖Ωε → 0 (2.2.43)

Proof. See, e.g., Cioranescu and Paulin [44].

Justification of the Homogenization Process

We present in this section briefly three methods (out of many more) which allow
to justify the formal homogenization process of the previous section. We do not
go into detail and refer the interested reader to the stated references.

26



2.2. INTRODUCTION TO PERIODIC HOMOGENIZATION

• The energy method or method of oscillating test functions by Murat and
Tartar [102], Tartar [126], see also Tartar [127]. The method is not restricted
to the periodic case. The main idea of this method is to use in (2.2.6) a series
of specially designed test functionsϕε that allow in the end for a passing to
the limit in the equation, even though the product of weakly convergent
functions appears. The construction of the the series (ϕε)ε of the so called
oscillating test functions requires the solution of dual cell problems.

• The method of two-scale convergence was introduced in Nguetseng [105]
and further developed in Allaire [8]. The method is only applicable to
periodic homogenization problem. However, it is self-contained in the
respect that we do not need to know the form of the homogenized equation
before, as it comes out of the homogenization process with this method.
The method relies on the definition of a new type of convergence (the
eponymous two-scale convergence) and the choice of clever test functions.
It leads to a (system of) partial differential equations in x and y, the two-scale
homogenized problem. In some cases it is possible to decouple the two-scale
homogenized problem into a macroscopic equation in x and some cell
problems in y.

• The periodic unfolding method was introduced by Cioranescu et al. [45]
for the study of classical periodic homogenization and applied to homoge-
nization problems in periodically perforated domains in Cioranescu et al.
[46]. This method relies on a so called unfolding operator and decompo-
sition of macroscopic and microscopic scales. The main advantage is that
due to the unfolding operator this method does not rely on any exten-
sion operators and can thus be applied to a broader range of inclusions
(like snow-flake type inclusions). It is also only applicable in the periodic
context.
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3. Stokes-Darcy Interface Coupling

The application we have in mind is the description of mass transport in the
anode-part of an SOFC. The focus of the present chapter lies on the description of
the flow field in the anode and the overlying gas channel, i.e. the mathematical
description of slow incompressible viscous flow (i.e. Stokes flow) over a porous
bed. We note that in general the coupling of Stokes flow and Darcy flow is a
problem with a wide range of applications and by no means restricted to fuel
cell simulations. Examples are simulation of groundwater flow [33, 53], flow of
blood through arterial vessels [49] or industrial filters [69].

For the main part of this chapter we are concerned about the situation we face
in the fuel cell simulation, i.e. a main flow direction which is tangential to the
interface of free flow domain and porous medium. In Section 3.4 we consider
the case where we force the flow to enter the perforated domain, i.e. a main flow
direction that is normal to the interface.

Lets focus on the tangential case first. As we have explained previously in
Section 2.2, we have to use homogenized models as we can not resolve the
porous structure of the anode with our discretization. Thus, we have to upscale
the Stokes equation in the porous medium and replace it by its well known
homogenization limit, Darcy’s law. This homogenization process leads to the
appearance of an artificial interface at the boundary between the perforated
domain and the unconstrained flow domain. The question which arises then
naturally is: What are the correct coupling conditions on this interface?

The answer to this question can be found in Marciniak-Czochra and Mikelić [98]
(see also Jäger and Mikelić [77], Jäger et al. [80]), where the authors have (in the
context of mathematical homogenization) rigorously proven a set of coupling
conditions consisting of the famous Beavers-Joseph-Saffman (BJS, see Beavers
and Joseph [19], Saffman [117]) condition as well as a so called pressure jump
law. Whereas the BJS-condition is generally accepted, interface laws for the
effective stress have been a subject of controversy.

We give a numerical confirmation of the aforementioned interface laws by a
direct numerical simulation of the flow on the microscopic level. To this end
we look at the “homogenization error” between the solution of the microscopic
problems and the homogenized (or effective) solution. The numerical challenge
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CHAPTER 3. STOKES-DARCY INTERFACE COUPLING

is that we have to make sure that the discretization error is smaller than the
error stemming from the homogenization process, which leads to the necessity of
high accuracy in our computations. We handle this difficulty by (goal-oriented)
adaptive mesh refinement.

Most of the results presented in this chapter are already published in Carraro,
Goll, Marciniak-Czochra, and Mikelic̀ [36] and [37].

The structure of this chapter is as follows. We first present the problem in
the tangential flow configuration on the microscopic level and recapitulate the
effective equations (and more importantly the effective interface laws) on the
macroscopic level in Section 3.1. Afterwards, we describe in Section 3.2 how
we approximate the equations defined previously. In Section 3.3, we confirm
the interface conditions (especially the pressure jump law) by a comparison
between the microscopic problem and the effective one for two different flow
configurations. Section 3.2 and Section 3.3 contain thus the main result of this
chapter as well as the authors contribution to Carraro, Goll, Marciniak-Czochra,
and Mikelic̀ [36]. The chapter is completed by Section 3.4 which is concerned
with the Stokes-Darcy interface coupling in the case of a forced infiltration into
a porous medium. We present the correct conditions in this case and give, as
before, a numerical confirmation by computations on the microscopic level. This
part is the authors contribution to Carraro, Goll, Marciniak-Czochra, and Mikelić
[37].

3.1. Statement of the Problem and Effective Equations

In the model we assume a slow incompressible viscous flow through an uncon-
fined region

Ωf := (0, L)× (0, Hu) (3.1.1)

and the pores Ωε
p (see (3.1.6)) of a porous medium

Ωp := (0, L)× (−Hl, 0) , (3.1.2)

where L, Hu, Hl > 0 are positive numbers denoting the length and the height
of the domain above and below zero. We denote the line separating Ωf and Ωp
by

Γ := (0, L)× { 0 } . (3.1.3)
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Note that we consider in this chapter flows with main flow direction tangential
to Γ , i.e. we assume no-slip conditions on the the part of the boundary which is
parallel to the interface. The same holds true for the boundaries of the inclusions,
as they model a rigid structure.

As we rely on analytically derived effective equations and interface conditions,
the porous medium is assumed to be periodic, i.e. it is made up of the periodic
repetition of a re-scaled unit cell, see the next Section 3.1.1, where we give a
proper definition of the geometry and the equations on the microscopic level.
After the formulation of the problem is settled, we present the homogenization
results of Marciniak-Czochra and Mikelić [98], especially the interface laws on Γ ,
see Section 3.3.

3.1.1. The Microscopic Level

The flow on the microscopic level is modelled by the steady Stokes equation,
which will be presented after the discussion of the pore-geometry. For a deriva-
tion of Stokes equation, we refer to standard textbooks on fluid dynamics, for
example Temam [129].

Definition of the Geometry

The geometry of the microscopic problem is sketched in Figure 3.1.1b and, more
precisely, the periodic structure of the perforated domain Ωp is defined as fol-
lows.

Definition 3.1.1 (Unit Cell). Let the so called unit cell Y := [0, 1]2 contain a closed
solid obstacle Ys 6= ∅ with a C0,1-boundary ∂Ys and a positive measure. The complement
of Ys in Y defines the pore, or the fluid part

Yf := Y \Ys. (3.1.4)

We assume further, that Yf is connected, i.e. the fluid can flow freely through
the perforated domain and does not get trapped inside the solid structure, see
Figure 3.1.1a for a sketch.

To make things easy, we assume the characteristic pore size ε > 0 (which we
assume to be “small”) to be such that there holds L/ε, Hu/ε, Hl/ε ∈ N. We consider
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CHAPTER 3. STOKES-DARCY INTERFACE COUPLING

a periodic repetition of the obstacle, scaled by ε, and build so the “skeleton” Sp
of the porous bed. In formulas:

Sp := Ωp ∩ ∑
(i, j)∈Z2

ε
(
Ys + (i, j)

)
(3.1.5)

Subsequently the pore-space of the perforated domain Ωp is defined by

Ωε
p := Ωp \ Sp. (3.1.6)

Yf

Ys

(0, 0)

(1, 1)

y1

y2

(a) Unit cell Y.

Γns

Γper Γper
Ωf

Γ(0, 0) x1

x2

Ωε
p

Γns

L

Hl

Hu

(b) Flow region Ωε.

Figure 3.1.1.: Sketch of the (microscopic) geometry.

Definition 3.1.2 (Microscopic Flow Domain). We define the microscopic flow domain
by

Ωε := Ωf ∪̇ Γ ∪̇Ωε
p. (3.1.7)

We split the boundary of Ωε into the two disjunct parts Γper and Γ εns,

∂Ωε = Γper ∪̇ Γ εns, (3.1.8)

where

Γper := { 0, L } × (−Hl, Hu), (3.1.9)

Γ εns := [0, L]× {−Hl, Hu } ∪

 ∑
(i, j)∈Z2

ε
(
∂Ys + (i, j)

)
∩Ωp

 . (3.1.10)
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Additionally, we name the following part of the boundary Γns:

Γns := [0, L]× {−Hl, Hu } . (3.1.11)

Microscopic Model

As already stated, we impose no-slip boundary conditions on Γ εns, whereas we
require the velocity and the pressure to be periodic on Γper. By this, we get rid
of additional boundary layer effects near these boundaries. The driving force of
the flow in this setting is a nontrivial right hand side f, see equations (3.3.12) and
(3.3.13) for an example.

Bringing everything together, the flow on the microscopic level is described by
the following non-dimensional steady Stokes system.

Problem 3.1.3 (Microscopic Flow Problem). Let a force f be given. Find the velocity
vε and pressure pε, both L-periodic in x1-direction, such that there holds

−∆vε +∇pε = f in Ωε (3.1.12a)
∇ · vε = 0 in Ωε, (3.1.12b)

vε = 0 on Γ εns, (3.1.12c)

together with the normalization condition
∫
Ωf

pε dx = 0.

Remark 3.1.4. We present in this chapter the non-dimensional versions of the flow
equations. See Section B.1.2 for the formulation with units.

Remark 3.1.5. We present all the equations in this thesis in strong from. However, we
understand them in the usual weak sense. The strong form is chosen only to allow for
better readability.

For this example we present the weak formulation as well so that the incorpora-
tion of the periodic boundary conditions in the weak formulation becomes clear.
The weak formulation related to Problem 3.1.3 reads

Problem 3.1.6 (Microscopic Flow Problem, Weak Formulation). Let a force f ∈
L2(Ω )2 be given. Find the velocity vε ∈ H1

Γ εns ,per1
(Ωε)2 and pressure pε ∈ L2(Ωε),

such that there holds

(∇vε,∇ϕ)Ωε − (pε,∇ ·ϕ)Ωε = (f,ϕ)Ωε ∀ϕ ∈ H1
Γns ,per1

(Ωε)2, (3.1.13a)

(∇ · vε,ξ)Ωε = 0 ∀ξ ∈ L2(Ωε). (3.1.13b)

Additionally, we require the normalization condition
∫
Ωf

pε dx = 0.
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3.1.2. Macroscopic Level

In this section, we are interested in the equations that describe Problem 3.1.6 on
the macroscopic level, i.e. we look for an effective equation on the macroscopic
flow domain Ω , see Definition 3.1.7, that is valid for vε and pε in the limit ε→ 0.

Definition 3.1.7 (Macroscopic Flow Domain). We define the macroscopic flow do-
main by

Ω := Ωf ∪̇ Γ ∪̇Ωp. (3.1.14)

If we let ε tend to zero nothing happens in Ωf so we obtain a Stokes flow after
the upscaling process. This means that the effective velocity vf and the effective
pressure pf on the unconstrained flow domain Ωf fulfill

−∆vf +∇pf = f in Ωf, (3.1.15a)
∇ · vf = 0 in Ωf. (3.1.15b)

The situation is fundamentally different in the perforated domain Ωε
p. In such a

medium, the flow on the macroscopic level is described by Darcy’s law (3.1.16).
Darcy’s law for the effective pressure pp and velocity vp in Ωp reads

∇ · vp = 0, (3.1.16a)
vp = K(f−∇pp), (3.1.16b)

where K ∈ R2×2 is the so called re-scaled permeability Tensor, which is constant,
symmetric, and positive definite. Its value depends on the shape of the mi-
crostructure Ys, see Definition 3.1.20 for the exact definition.

Remark 3.1.8. Inserting (3.1.16b) into (3.1.16a) results in a second order elliptic PDE
for the pressure pp:

∇ ·
(

K(f−∇pp)
)
= 0. (3.1.17)

Interface Laws

The effective equations in the interior of Ωf and Ωp are known. However, the
situation on the interface Γ is not so clear. We want to emphasize that this is not a
physical interface but merely a consequence of the mathematical homogenization
process, see Carraro, Goll, Marciniak-Czochra, and Mikelic̀ [36]. The difficulty in
defining correct coupling conditions across Γ is due to the fact that the differential
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operators acting on Ωf and Ωp are quite different. Whereas the Stokes-operator
(3.1.15) is of second order for the velocity and of first order for the pressure, the
Darcy-operator (3.1.17) is of second order for the pressure.

To get rid of the latter problem, some authors prefer the one-domain approach (as
opposed to the two-domain approach we employ, see also Goyeau et al. [67] for an
overview) by using the Brinkman equation, see Brinkman [32],

∇p−µeff∆v + χΩp K−1v = f, (3.1.18a)

∇ · v = 0, (3.1.18b)

in both domains, as this equation is of the same type as the Stokes equation,
see for example Bars and Worster [17], Neale and Nader [104]. For this case,
Ochoa-Tapia and Whitaker [107, 108] developed a set of coupling conditions
involving the continuity of the velocity together with a stress jump. However,
Nield [106] criticizes that the Brinkman model is semi-empirical and the value of
the viscosity µeff in the porous medium is unclear. The Brinkman equation can
also be derived by a homogenization process from the Stokes flow in a porous
medium, but in a context where the solid obstacles are much smaller than the
characteristic pore size ε described in the previous section, see Allaire [9].

The coupling of Darcy and Stokes equation is of great interest and thus there
are a great number of publications concerned with this question, both from a
mathematical, see [58, 77, 78, 80, 94, 98, 106], and computational point of view,
see [33, 34, 42, 52, 84, 93, 115, 115, 132].

Two interface conditions are widely used and accepted: The first is a continuity
of the normal velocities, i.e. if we denote the outer normal vector on ∂Ωf by nf, it
should hold

vf · nf = vp · nf on Γ . (3.1.19)

This is due to the fact that the upscaled velocity remains incompressible. The
incompressibility on Ω as well as on Ωf and Ωp together with the divergence
theorem leads to equation (3.1.19).

The second interface law was found experimentally by Beavers and Joseph [19],
it is a slip law and reads

−τ f · ∇vf · nf =
αBJ√

kε

(
vf − vp

)
· τ f on Γ , (3.1.20)

whereαBJ is a dimensionless parameter depending on the spatial structure of the
pore-space (which has to be fitted by experiments), kε is the scalar permeability,
cf. Remark 3.1.9, and τ f is the tangential vector on ∂Ωf.
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Remark 3.1.9. Beavers and Joseph [19] considered an isotropic porous medium and
thus used a scalar permeability kε in the Darcy’s law. This ties in with our definition of a
rescaled permeability tensor, see Definition 3.1.20, by setting

K =
kε

ε2 id . (3.1.21)

Saffman [117] noted that the magnitude of vp is much smaller than the order of
vf, and could thus be neglected in (3.1.20). This gave rise to the Beavers-Joseph-
Saffman law:

−τ f · ∇vf · nf =
αBJ√

kε
vf · τ f on Γ . (3.1.22)

In the setting of the experiment of Beavers and Joseph [19] (i.e. a flow driven by
a pressure drop), Jäger and Mikelić [77] rigorously justified the Saffman version
of the interface law (3.1.22) in the form

εCbl
1 τ f · ∇vf · nf = vf · τ f on Γ , (3.1.23)

where Cbl
1 is an effective constant derived by an additional auxiliary problem.

Thus, they were able to confirm the form (3.1.22) and determine the value of the
dimensionless parameter,

αBJ = −
√

kε

εCbl
1

, (3.1.24)

see (3.1.51) for more details on the coefficient Cbl
1 . Marciniak-Czochra and Mikelić

[98] confirmed Saffmans’ form (3.1.23) in the slightly more general context where
the driving force of the flow on the microscopic level is given by a general right
hand side and not necessarily a pressure drop, cf. Problem 3.1.3.

Jäger and Mikelić [77] showed that, in agreement with Ene and Sánchez-Palencia
[58], the following orders of magnitude hold true for the effective variables:

vf = O(1), vp = O(ε2), pf = O(1) = pp. (3.1.25)

Thus, they dropped the effective Darcy velocity also from (3.1.19), using

vf · nf = 0 on Γ . (3.1.26)

Remark 3.1.10. We want to remark that Ene and Sánchez-Palencia [58] strongly
advertised a continuity of the pressure instead of the Beavers-Joseph-Saffman condition.
Bernardi et al. [23] also promote a continuity of the pressure.
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Summarizing, we obtain at the interface the continuity of the normal velocity,
either in the form (3.1.19) or (3.1.26), together with the slip law of Beavers and
Joseph or a variant thereof. However, this is not enough to uniquely determine
the effective quantities, a third condition is required.

A widely used condition (see [52, 93, 115, 130, 132] and many more) to close the
system of equations is continuity of normal forces across Γ , i.e.

pf − nf · ∇vf · nf = pp. (3.1.27)

This condition is physically motivated and has the advantage that it fits nicely
into a weak formulation of the effective equations. However, it is not clear at all
if the physical conditions that hold true on the microscopic level should be lifted
to the upscaled formulation.

An alternative is given in Jäger et al. [80]. The authors advocate to use a law of
the form (called pressure jump law)

pf − Cbl
ωτ f · ∇vf · nf = pp, (3.1.28)

where the effective constant Cbl
ω depends solely on the structure on the porous

medium. In Marciniak-Czochra and Mikelić [98], the authors were able to prove
(B.1.9c) analytically. They showed that there holds Cbl

ω = 0 for isotropic porous
media, leading to a continuous pressure in these cases. In general this is not true
(see also Remark 3.1.10) as for Cbl

ω 6= 0, equation (B.1.9c) describes a jump of the
effective pressures across the interface which is related to τ f · ∇vf · nf (instead of
nf · ∇vf · nf as in (3.1.27)).

We will thus use the following conditions on Γ , see also Jäger and Mikelić
[77], Marciniak-Czochra and Mikelić [98]:

• the no-slip condition (3.1.26) for vf,

• the Saffman version of the Beavers-Joseph condition (3.1.23) as well as the

• the pressure jump law (B.1.9c).

Remark 3.1.11. The conditions (3.1.26) and (B.1.9c) will be incorporated into the
formulation of the problem as Dirichlet boundary conditions, whereas (3.1.23) is a kind
of Robin condition, emerging naturally in the weak formulation of the effective flow in
Ωf.
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Effective Equations

We give now a proper presentation of the effective equations and the interface
laws together (following Carraro et al. [36], Marciniak-Czochra and Mikelić [98]).
The auxiliary problems needed to define the effective constants used in this
paragraph can be found in the next section.

The effective flow in Ωf is given by the following problem which we present in
strong formulation.

Problem 3.1.12 (Effective Flow in Ωf). Let f ∈ L2(Ω )2 be the force given by Prob-
lem 3.1.3, restricted toΩf. Find a velocity field vf and a pressure field pf, both L-periodic
in x1-direction, such that there holds

−∆vf +∇pf = f in Ωf (3.1.29a)
∇ · vf = 0 in Ωf, (3.1.29b)

together with the boundary conditions

vf = 0 on Γns, (3.1.29c)
vf,2 = 0 on Γ , (3.1.29d)

vf,1 +εCbl
1

∂vf,1
∂x2

= 0 on Γ (3.1.29e)

and the normalization condition
∫
Ωf

pf dx = 0. The constant Cbl
1 is given by (3.1.51).

Let the mass flows Mε and Meff be given by

Mε :=
∫
Ωf

vε1 dx, Meff :=
∫
Ωf

vf,1 dx. (3.1.30)

The following error estimates from Marciniak-Czochra and Mikelić [98, Theorem
2] hold true

Theorem 3.1.13 (Convergence Results in Ωf). Let vf and pf be the solution to
Problem 3.1.12 with f ∈ C∞

per(Ω ). The following estimates hold true:

‖vε − vf‖L2(Ωf)
= O(ε3/2), (3.1.31a)

|Mε −Meff | = O(ε3/2) (3.1.31b)
‖pε − pf‖L1(Ωf)

= O(ε), (3.1.31c)

‖∇(vε − vf)‖L1(Ωf)
= O(ε), (3.1.31d)

Proof. See Marciniak-Czochra and Mikelić [98, Theorem 2].
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These estimates will be verified by a direct numerical simulation in Section 3.3.

As noted in the introduction of this section, the effective flow in the porous bed
Ωp is given by Darcy equation, which reads, together with the pressure jump
law, as follows:

Problem 3.1.14 (Darcy’s Law with Pressure Jump Law). Let f be the force given by
Problem 3.1.3, restricted to Ωp, pf and vf be the solution of Problem 3.1.12.

Find pp, L-periodic with respect to x1, such that

−∇ ·
(

K(f−∇pp)
)
= 0 in Ωp, (3.1.32a)

K(f−∇pp) · e2 = 0 on Γns, (3.1.32b)

pp = pf + Cbl
ω

∂vf,1
∂x2

on Γ . (3.1.32c)

The rescaled permeability tensor K is given by Definition 3.1.20, the interface constant
Cbl
ω by (3.1.52).

We remark that the microscopic quantities are defined on the perforated domain
Ωε. On the other hand, the effective quantities live on Ω . If we want to quantify
the quality of the approximation, we must be able to compare those quantities.
One possibility to do so is the extension of the microscopic quantities to Ω , see
the following Remark 3.1.15.

Remark 3.1.15 (Extension of Velocity and Pressure). The microscopic fluid velocity
vε is extended by zero to the solid part Ωp \Ωε

p of the porous medium Ωp.

Regarding the extension of the pressure: Let (i, j) ∈ Z2 and x ∈ ε
(
Y + (i, j)

)
, then the

extension of the pressure field pε to the corresponding solid part ε
(
Ys + (i, j)

)
, denoted

by p̃ε, is given by

p̃ε(x) =


pε(x), x ∈ ε

(
Yf + (i, j)

)
,

1∣∣∣ε(Yf+(i, j))
∣∣∣
∫
ε(Yf+(i, j)) pε, x ∈ ε

(
Ys + (i, j)

)
, (3.1.33)

where |ε
(
Yf + (i, j)

)
| denotes the volume of ε

(
Yf + (i, j)

)
. The pressure extension

(3.1.33) is the extension of Lipton and Avellaneda [96] and comes out from Tartar’s
construction, see Allaire [9] for more details.

In the following, we abuse notation and name the extensions also by vε and pε.

Then, pp is an effective quantity with respect to pε inΩp in the following sense.
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Theorem 3.1.16 (Convergence Results in Ωp, pt. 1). Let pp be the solution to
Problem 3.1.14 with f ∈ C∞

per(Ω ) and let vp be defined by (3.1.16b). There holds:

‖pε − pp‖L2(Ωp)
= o(1), (3.1.34a)

‖pε − pp‖H−1/2(Γ )
= O(ε1/2), (3.1.34b)

1
ε2 vε − vp ⇀ 0 in L2(Ω δ

p) as ε→ 0, (3.1.34c)

where for all δ with Hl > δ > 0 we define

Ω δ
p := (0, L)× (−Hl,−δ). (3.1.35)

Proof. See Marciniak-Czochra and Mikelić [98, Theorem 3].

We have a few remarks concerning these homogenization error estimates.

Remark 3.1.17. We want to comment on two things.

• Firstly, mind that ε2vp is an approximation of vε, not vp.

• Secondly, note that in equation (3.1.34c) we have to exclude a small vicinity of Σ
to gain the convergence results. If we want to get the weak convergence in all of
Ωp, a corrector is needed, see Theorem 3.1.18.

Theorem 3.1.18. We use the premises and notation of Theorem 3.1.16. There holds

1
ε2 vε − vp +

1
ε
βbl( ·ε )

∂vf,1
∂x2
◦ Π1 ⇀ 0 in L2(Ωp) for ε→ 0, (3.1.36)

where Π1 is a projection on Γ , i.e.

Π1 : Ωp −→ Γ

(x1, x2) 7−→ (x1, 0)
(3.1.37)

and βbl is the solution of the boundary layer problem Problem 3.1.25.

Proof. See Marciniak-Czochra and Mikelić [98, Remark 4].

We want to remark on the norm in equation (3.1.34b). The estimate for the
homogenization error on the interface Γ is in the H−1/2-norm only. This norm
is relatively weak and allows for oscillations of pε − pp. We will examine in
Section 3.3 if the numerical computations provide an indication that at least a
convergence in the L1(Γ )-norm is possible. We will see that this is not true.
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3.1.3. Auxiliary Equations

We give a brief overview of the auxiliary equations required to define the effective
constants Cbl

1 , Cbl
ω , and K used in the previous section.

Cell Problems

The (rescaled) permeability tensor K depends on the shape of the inclusions Ys
and for its definition, the solutions of additional auxiliary problems are neces-
sary.

Problem 3.1.19 (Cell Problem). Let i ∈ { 1, 2 }.

Find a velocity field wi and pressure π i with
∫

Yf
π i = 0, both Y-periodic, s.t.

−∆wi +∇π i = ei in Yf, (3.1.38a)

∇ ·wi = 0 in Yf, (3.1.38b)

wi = 0 on ∂Ys. (3.1.38c)

Definition 3.1.20 (Rescaled Permeability Tensor). Let wi be the solution of Prob-

lem 3.1.19. The rescaled permeability tensor K =
(

Ki j

)2

i, j=1
is defined by

Ki j :=
∫

Yf

wi
j, 1 ≤ i, j ≤ 2. (3.1.39)

Remark 3.1.21. One may find in the literature also a definition of K like

Ki j :=
∫

Yf

∇wi
j · ∇w j

i , 1 ≤ i, j ≤ 2. (3.1.40)

The equivalence of (3.1.39) and (3.1.40) follows directly by testing the weak form of
(3.1.38a) with w j.

We cite the following result regarding K.

Theorem 3.1.22. The rescaled permeability tensor defined by Definition 3.1.20 is sym-
metric and positive definite.

Proof. A proof of this theorem can be found in most articles containing the
derivation of Darcy’s law by homogenization, see for instance Allaire [9].
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Note that we talk about a rescaled permeability tensor all the time. This is due
to the fact that the leading order of the homogenization limit of vε in Ωp is ε2,
see also Remark 3.1.17. Thus, we have to scale K by ε2 if we want to talk about
the physical (but nonetheless dimensionless) permeability. Not that the physical
permeability (see Definition B.1.4) has the unit m2. It is not to be mixed up with
the hydraulic conductivity, which is often used in soil-sciences and has the unit
m/s.

One last remark regarding diagonal permeability tensors.

Remark 3.1.23 (Diagonal Permeability Tensor). If we assume the mirror symmetry
of the solid obstacle Ys with respect to y1, then it is easy to prove that w2

1 is uneven in y1
with respect to the line {y1 = 1/2}, and w2

2 and π2 are even. We obtain K12 = K21 = 0
and the permeability tensor K is diagonal.

Navier Boundary Layer

We still have to define the effective constants Cbl
1 and Cbl

ω used in the interface
laws on Γ , see (B.1.8e) and (B.1.9c), as well as the function βbl which appears in
(3.1.36). To this end, we introduce the boundary layer in Problem 3.1.25, called
Navier boundary layer (NBL). It was first derived in Jäger and Mikelić [77] and
numerically solved in Jäger et al. [80].

The solution to the Navier boundary layer βbl,ωbl is calculated in a semi-porous
column given by Definition 3.1.24, see also Figure 3.1.2 for a sketch of the do-
main.

Definition 3.1.24 (Boundary Layer Domain). The boundary layer domain Zbl is
defined by

Zbl := Z+ ∪ Σ ∪ Z−, (3.1.41)

with the interface

Σ := (0, 1)× { 0 } (3.1.42)

and the two semi-infinite slabs

Z+ := (0, 1)× (0,+∞), (3.1.43)

Z− :=
∞⋃

k=1

(
Yf − { 0, k }

)
. (3.1.44)
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The boundary of the inclusions in Z+ is given by

Γ bl
ns :=

∞⋃
k=1

(
∂Ys − { 0, k }

)
. (3.1.45)

Σ(0, 0)

Z+

y1

y2 ...

...

Z−

Figure 3.1.2.: Domain of the Navier boundary layer problem.

In this geometry, βbl andωbl are the solution of the following problem.

Problem 3.1.25 (Navier Boundary Layer). Find βbl and ωbl, both 1-periodic in
y1-direction, such that

−∆βbl +∇ωbl = 0 in Z+ ∪ Z−, (3.1.46a)

∇ ·βbl = 0 in Z+ ∪ Z−, (3.1.46b)[
βbl
]
Σ
= 0 on Σ , (3.1.46c)[

{∇βbl −ωbl id } e2

]
Σ
= e1 on Σ , (3.1.46d)

βbl = 0 on Γ bl
ns . (3.1.46e)

Further, to makeωbl unique, we require

ωbl(y)→ 0 (y2 → −∞). (3.1.46f)

The solution of Problem 3.1.25 is a boundary layer, i.e. changes in βbl and ωbl
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are mostly concentrated around the (boundary-layer) interface Σ , and vanish
fast with increasing distance from said interface. This was shown in Jäger and
Mikelić [78], see the following theorem.

Theorem 3.1.26. Let βbl, ωbl be the solution of Problem 3.1.25. Then there exists
constants Cbl

1 ∈ R−, Cbl
ω ∈ R s.t.

• for all 0 < δ < 2π exists C > 0 with∣∣∣βbl(y1, y2)−
(

Cbl
1 , 0

)∣∣∣ ≤ Ce−δy2 ∀y ∈ Z+, (3.1.47)

• exists C > 0 with∣∣∣ωbl(y1, y2)− Cbl
ω

∣∣∣ ≤ Ce−2πy2 ∀y ∈ Z+, (3.1.48)

• it exists C ,γ > 0 with∣∣∣βbl(y1, y2)
∣∣∣+∣∣∣∇βbl(y1, y2)

∣∣∣ ≤ Ce−γ|y2| ∀y ∈ Z−, (3.1.49)

• it exists C ,γ > 0 with∣∣∣ωbl(y1, y2)
∣∣∣ ≤ Ce−γ|y2| ∀y ∈ Z−. (3.1.50)

We can compute the constants Cbl
1 and Cbl

ω with the help of the solution of
Problem 3.1.25, see also Jäger and Mikelić [78]:

Definition 3.1.27 (Effective Interface Constants). Let βbl, ωbl be the solution of
Problem 3.1.25. For the constants Cbl

1 and Cbl
ω from Theorem 3.1.26 there holds for all

a ≥ 0

Cbl
1 =

∫ 1

0
βbl

1 (s, 0) ds =
∫ 1

0
βbl

1 (s, a) ds, (3.1.51)

Cbl
ω =

∫ 1

0
ωbl(s, 0) ds =

∫ 1

0
ωbl(s, a) ds. (3.1.52)

Remark 3.1.28. If the geometry of Yf is axisymmetric with respect to the line

{y ∈ Y | y1 = 1/2}, (3.1.53)

then the constant Cbl
ω from Definition 3.1.27 is zero, and (B.1.9c) describes thus a

continuity of the effective pressures across the interface Γ . See Jäger et al. [80] for a proof.
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3.2. Numerical Treatment

In Section 3.3 the two interface conditions (B.1.8e) and (B.1.9c) are numerically
confirmed by a direct simulation. To numerically verify the theoretical results we
have to solve the following equations (or rather, their discretized versions):

• the microscopic Problem 3.1.6,

• the effective flow in Ωf, see Problem 3.1.12,

• the Darcy’s law in Ωp, see Problem 3.1.14,

• the cell problems, see Problem 3.1.19, to compute the rescaled permeability
K,

• and the boundary layer, see Problem 3.1.25.

All these problems will be solved for two different kinds of inclusions to account
for the qualitatively different behaviour of the effective pressure with regard to
the shape of the inclusions, see Remark 3.1.28. The solution of the microscopic
problem will also be computed for different boundary conditions, a periodic
configuration and a flow with a pressure drop condition, see Sections 3.3.1 and
3.3.2. The case with periodic boundary condition is the one presented in the
previous sections and the interface conditions have been presented in this setting.
We consider the second configuration as it is the one we will use in our fuel cell
simulation and thus are interested in the examination of the influence of outer
boundary layers to the interface laws.

Particular attention has to be given to the calculation of the constants Cbl
1 and Cbl

ω

used in the interface conditions for the effective equations, since we are going
to show converge results with ε → 0 in Section 3.3. Thus, we have to ensure
that the discretization error is smaller than the homogenization error, which
reaches in some of our computations the scale of 10−10. For this reason we adopt
a goal-oriented adaptive scheme for the grid refinement that allows for reducing
of the computational costs to obtain a precise evaluation of a given functional, in
particular to compute the two constants Cbl

1 and Cbl
ω .

We choose the (continuous) finite element method (FEM) as our means of dis-
cretization. For an introduction we refer to standard text-books such as Ciarlet
[41] or Brenner and Scott [30]. In the following, we present the discretization
of the microscopic equation in Section 3.2.1 and explain how we compute Cbl

1
and Cbl

ω in Section 3.2.2 and K in Section 3.2.3. We present also the results of our
computations of the effective constants which will be used in Section 3.3 in these
two sections.
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(a) Circle (b) Ellipse

Figure 3.2.1.: Triangulation of the fluid part of the unit cell for the two types of inclusions:
circles ((a)) and ellipses ((b)).

All computations in this chapter are done using the toolkit DOpElib (Goll, Wick,
and Wollner [65]) based upon the C++-library deal.II (Bangerth et al. [15, 16]).
The author is one of the three maintainers of the software package DOpElib.

3.2.1. Finite Element Formulation of the Microscopic Problem

As explained in the introduction we consider in our computations two different
kinds of inclusions in the porous part, circles and ellipses, see also Figure 3.2.1.

Definition 3.2.1 (Shape of the Inclusions). We consider the following two configura-
tions of the unit cells Y = [0.1]2:

(i) the solid part of the cell Ys is formed by a circle with radius 0.25 and center
(0.5, 0.5).

(ii) Ys consists of an ellipse with center (0.5, 0.5) and semi-axes a = 0.357142857
and b = 0.192307692, which are rotated anti-clockwise by 45◦.

The circular geometry is a case of axis symmetric geometry with respect to the
line

{y ∈ Y | y2 = 0.5}, (3.2.1)

for which we expect from the theory that Cbl
ω = 0, see Remark 3.1.28.

As stated before, we use the FEM to solve the problems numerically and we
present here the discretization of the Stokes flow in the microscopic level. The
natural setting of the finite element approximation of the problem is its weak
formulation, see Problem 3.1.6.
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For the discretization we consider a shape regular triangulation Th of the domain
Ωε with cells K, i.e. Th = { K }. The transformations from the reference-cell K̂ to
the actual cells K we use are bi-quadratic. We define the computational domain

Ωε
h := interior

 ⋃
K∈Th

K

 , (3.2.2)

with the two type of inclusions described above. Remember that, as Ωε has
curved (i.e. non-polygonal) boundaries, there holds in general

Ωε 6= Ωε
h . (3.2.3)

Let s ∈ N, s ≥ 1, and S s
h(Ω

ε
h) ⊂ H1(Ωε

h) be the isoparametric finite element spaces
of order s. For the discretization of the Stokes system we use the Taylor-Hood
element, see Taylor and Hood [128], adapted to the boundary conditions at hand,
i.e. the ansatz space

Vh(Ω
ε
h) :=

(
S2

h (Ω
ε
h)
)2
∩ H1

Γns ,per1
(Ωε

h)
2 (3.2.4)

for the velocity and

Lh(Ω
ε
h) := S1

h (Ω
ε
h) (3.2.5)

for the pressure. This pair of finite dimensional spaces is inf-sup stable (cf. Brezzi
and Fortin [31], Girault and Raviart [64]), i.e. they fulfill

∃γ ∈ R s.t. inf
ξh∈Lh(Ω

ε
h )

sup
ϕh∈Vh(Ω

ε
h )

(ξh,∇ ·ϕh)

‖ξh‖‖∇ϕh‖
≥ γ > 0, (3.2.6)

so there is no need for stabilization terms to solve the saddle point problem
corresponding to the Stokes system.

The finite element approximation of the microscopic problem is obtained by re-
placing the function spaces H1

Γns ,per1
(Ωε)2 and L2(Ωε) in Problem 3.1.6 by their

discretized counterparts Vh(Ω
ε
h) and Lh(Ω

ε
h).

Problem 3.2.2 (Finite Element Approximation of Microscopic Problem). Find a
pair (vεh, pε) ∈ Vh(Ω

ε
h)× Lh(Ω

ε
h), such that

(∇vεh,∇ϕh)Ωε
h
− (pεh,∇ ·ϕh)Ωε

h
= (f,ϕh)Ωε

h
∀ϕh ∈ Vh(Ω

ε
h), (3.2.7)

(∇ · vεh,ξh)Ωε
h
= 0 ∀ξh ∈ Lh(Ω

ε
h). (3.2.8)

and
∫
Ωε

h
pεh dx = 0.
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3.2.2. Approximation of the NBL on a Finite Domain

The Navier boundary layer Problem 3.1.25 is defined on the unbounded domain
Zbl. As we can not triangulate infinitely large domains with finitely many mesh-
cells, we consider a cut-off domain for numerical calculations. Following Jäger
et al. [80], we choose k, l ∈ Z+ and define the finite slab

Zk
l := Zbl ∩ (0, 1)× (−l, k). (3.2.9)

The distance of the cut-off from the interface, determined by k and l, has to be
taken large enough, taking into account the exponential decay of βbl andωbl,
see Theorem 3.1.26, to reduce the approximation error introduced by cutting the
domain.

At the newly introduced parts of the boundary, namely

Γk = (0, 1)× {k} and Γl = (0, 1)× {−l}, (3.2.10)

we have to set some appropriate boundary conditions. We follow Jäger et al. [80]
and put a no-slip condition for the velocity on Γl, while on Γk a zero Dirichlet
condition for the vertical component as well as zero normal flux of the first
velocity component is imposed. This choice of boundary conditions is motivated
by the asymptotic behaviour of the solution variables, see Theorem 3.1.26.

We introduce the function space

Ṽbl(Zk
l ) := {ϕ ∈ H1

per1
(Zk

l )
2 |ϕ

∣∣∣
Γl
= 0,ϕ2

∣∣∣
Γk
= 0,ϕ

∣∣∣
Γ bl

ns ∩∂Zk
l

= 0}, (3.2.11)

and formulate the problem on the truncated domain.

Problem 3.2.3 (Cut-off Navier Boundary Layer). Find βbl
k,l ∈ Ṽbl(Zk

l ) andωbl
k,l ∈

L2(Zk
l ), such that(
∇βbl

k,l ,∇ϕ
)

Zk
l

−
(
ωbl

k,l ,∇ ·ϕ
)

Zk
l

= − (e1,ϕ)Σ ∀ϕ ∈ Ṽbl(Zk
l ), (3.2.12)(

∇ ·βbl
k,l ,ψ

)
Zk

l

= 0 ∀ψ ∈ L2(Zk
l ), (3.2.13)

together with the normalization condition
∫

Yf+(0,k)ω
bl
k,l dx = 0

We refer to Jäger et al. [80] for the details of the approximation properties of βbl
k,l
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andωbl
k,l w. r. t. βbl andωbl. Let us note here just briefly, that the quantities∥∥∥∇ (βbl

k,l −βbl
)∥∥∥

Zk
l

and
∥∥∥ωbl

k,l −ωbl
∥∥∥

Zk
l

(3.2.14)

decay exponentially fast with k, l → ∞.

Our focus is in the approximation of the interface constants Cbl
1 and Cbl

ω , which
are defined as follows.

Definition 3.2.4. Letβbl
k,l ,ω

bl
k,l be the solution of Problem 3.2.3. We define for 0 ≤ a ≤ k

Cbl
1,k,l =

∫ 1

0
βbl

k,l,1(s, 0) ds, (3.2.15a)

Cbl
ω,k,l =

∫ 1

0
ωbl

k,l(s, 0) ds =
∫ 1

0
ωbl

k,l(s, a) ds. (3.2.15b)

The question is: How good are the approximation properties of these constants? The
following theorem answers that question.

Theorem 3.2.5. Given the notation and requirements of Definition 3.2.4, there exist
constants C1, Cω > 0 s.t. ∣∣∣Cbl

1 − Cbl
1,k,l

∣∣∣ = O (e−C1 min (k,l)
)

(3.2.16)∣∣∣Cbl
ω − Cbl

ω,k,l

∣∣∣ = O (e−Cω min (k,l)
)

(3.2.17)

Proof. See Jäger et al. [80].

We will verify the stated exponential decay with our numerical computations,
see Section 3.3.

Finite Element Formulation

In the following we give the finite element approximation of the cut-off Navier
boundary layer Problem 3.2.3. The general method has already been laid out, see
Section 3.2.1, we also use a Taylor-Hood element together with a bi-quadratic
mapping for the triangulation of Zk

l , and thus end up with a computational
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domain Zk
l,h 6= Zk

l . We adapt the velocity ansatz space to the boundary conditions
at hand,

Ṽbl
h (Zk

l,h) :=
{
ϕ ∈ H1

per1
(Zk

l,h)
2 ∩ S2

h (Zk
l,h)

∣∣∣ ϕ ∣∣∣
Γl
= 0,

ϕ2

∣∣∣
Γk
= 0,ϕ

∣∣∣
Γ bl

ns,h∩∂Zk
l,h

= 0
}

, (3.2.18)

where Γ bl
ns,h denotes the boundary of the inclusions in Zk

l,h (which differs from Γ bl
ns

due to the presence of curved boundaries), and use, as before, the space of bilinear
functions for the pressure. The finite element approximation of Problem 3.2.3
thus reads

Problem 3.2.6. Find βbl
h ∈ Ṽbl

h (Zk
l,h) andωbl

h ∈ Lh(Zk
l ), such that(

∇βbl
h ,∇ϕh

)
Zk

l,h

−
(
ωbl

h ,∇ ·ϕh

)
Zk

l,h

= − (e1,ϕh)Σ , ∀ϕh ∈ Ṽbl
h (Zk

l,h),

(3.2.19a)(
∇ ·βbl

h ,ψh

)
Zk

l,h

= 0, ∀ψh ∈ Lh(Zk
l,h),

(3.2.19b)

together with the normalization condition
∫
Γl
ωbl

h dy = 0.

Remark 3.2.7. To declutter the notation and enhance readability, we dropped the indices
k and l in our finite element approximation on the cut-off Navier boundary layer.

Approximation of the Effective Interface Constants

We are interested in the constants Cbl
1 and Cbl

ω . An approximation is gained
by truncating the domain and approximating the solution on this domain by a
FE solution. This is done for both the considered shapes of the inclusions (see
Definition 3.2.1). The approximations Cbl

1,h and Cbl
ω,h are calculated using this FE

approximations in the following way:

Cbl
1,h is computed by swapping βbl

k,l in Definition 3.2.4 by the discretized counter-
part, as it is expected. However, regarding the approximation Cbl

ω,h, we would
like to draw the attention to the following remark.

Remark 3.2.8. Due to (3.1.52) it actually holds for any 0 ≤ a < b:

Cbl
ω =

1
b− a

∫
[0,1]×[a,b]

ωbl(y) dy, (3.2.20)
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and for similar reasons (0 ≤ a < b ≤ k)

Cbl
ω,k,l =

1
b− a

∫
[0,1]×[a,b]

ωbl
k,l(y) dy, (3.2.21)

So for Cbl
ω,h, we interchangeωbl

k,l byωbl
h in (3.2.21).

We observe that to enhance the numerical approximation of Cbl
ω in (3.2.15b) it is

beneficial to calculate the mean of the pressure on a domain far enough from
the interface. We calculate the integral in (3.2.21) for a = 1, b = k, i.e. along the
domain {y ∈ Zbl | a ≤ y2 ≤ b}.

Definition 3.2.9 (Approximation of Interface Constants). Let βbl
h , ωbl

h be the so-
lution of Problem 3.2.6 with k > 1. The approximations of Cbl

1 and Cbl
ω are defined by

Cbl
1,h :=

∫ 1

0
βbl

h,1(s, 0) ds, (3.2.22a)

Cbl
ω,h :=

1
k− 1

∫
[0,1]×[1,k]

ωbl
h (s, 1) ds. (3.2.22b)

Remark 3.2.10. As usual, the index h in Cbl
1,h and Cbl

ω,h indicates the approximation due
to discretization, but in this case also gives the information that the FE-solution was
computed on the truncated domain, see also Remark 3.2.7.

The approximation of Cbl
1 and Cbl

ω by Cbl
1,h and Cbl

ω,h introduces two different
sources of error: the cut-off errors,

eco
1 := Cbl

1 − Cbl
1,k,l and eco

ω := Cbl
ω − Cbl

ω,k,l , (3.2.23)

and the discretization errors

e1 := Cbl
1,k,l − Cbl

1,h and eω := Cbl
ω,k,l − Cbl

ω,h. (3.2.24)

To obtain the convergence results in Section 3.3 with respect to ε, it is important to
control both error sources, the cut-off and discretization errors, and balance them
to reduce the computational costs. To achieve this we should cut the domain in a
way that the magnitude of the cut-off error equals that of the discretization error.
We will discuss both influences separately in the next two paragraphs.

Discretization Error We need to control the discretization error by a reliable
estimation. To this end, we employ the Dual Weighted Residual (DWR) method
from Becker and Rannacher [20] which gives an estimation of the discretization
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error with respect to a given functional exploiting the solution of a proper adjoint
equation.

Remark 3.2.11. We refer to Chapter 4 where we present the DWR method in more
detail.

To set us in a context where the DWR-method is applicable, we have to represent
our quantity of interest, i.e. the interface constants, by an evaluation of a func-
tional. Thus, we define forϕ ∈ H1((0, 1)× (0, k)) and ξ ∈ L2((0, 1)× (0, k)):

J1(ϕ) :=
∫ 1

0
ϕ1(s, 0) ds, Jω(ξ) :=

∫
[0,1]×[1,k]

ξ(y) dy. (3.2.25)

This enables us to rewrite the discretization-errors (3.2.24) by

e1 = J1(β
bl)− J1(β

bl
h ), eω = Jω(ωbl)− Jω(ωbl

h ). (3.2.26)

The DWR method provides us with error estimators

η(Cbl
1 ) ≈ e1, η(Cbl

ω ) ≈ eω, (3.2.27)

as well as local error indicators to control the local mesh refinement. The trian-
gulation of the truncated domain is then adaptively refined until the estimated
discretization error is smaller than a given tolerance.

The reliability of this estimator has been shown in different applications in the
context of flow problems as well as many other areas, a small selection is Becker
and Rannacher [20], Braack and Richter [29], Rannacher [111, 112]. Nevertheless,
we perform an additional check to assure that the method works. The tests verify
that

• the solution on the locally refined grid actually converges and that

• the order of the error is indeed the one estimated.

To check the convergence with respect to the grid-width h we do not have the
exact solution at hand, but we can rely on the best approximation property of
Galerkin approximations on quasi-uniform meshes to perform the following
verification.

On a series of uniformly refined grids we compute the approximations Cbl,unif
1,h

and Cbl,unif
ω,h and compare them with reference values Cbl,ref

1,h and Cbl,ref
ω,h computed

on a (very fine) locally refined mesh. Additionally, we evaluate the error estimator
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η on the uniformly refined grids and compare it with the following approximated
errors:

Cbl,ref
1,h − Cbl,unif

1,h , Cbl,ref
ω,h − Cbl,unif

ω,h . (3.2.28)

The results of this test show the expected reliability of the error estimator, since
(cf. Table 3.2.1) the solution on uniform meshes converges towards our reference
solution and the error estimator is of the same order as the one given by the
reference value, aside from the big hiccup in the third line for Cbl

ω . We have
used grids with up to around 3.9 millions of degrees of freedom (DoF) for the
verification with uniformly refined meshes. Table 3.2.1 shows the efficiency of
the error estimator, i.e.

Ie f f (Cbl
1 ) =

η(Cbl
1 )

Cbl,ref
1,h − Cbl,unif

1,h

, Ie f f (Cbl
ω ) =

η(Cbl
ω )

Cbl,ref
ω,h − Cbl,unif

ω,h

,

which describes how good our guess η of the error in the quantity of interest is.

# DoF Cbl,ref
1,h − Cbl,unif

1,h η(Cbl
1 ) Ie f f (Cbl

1 )

1,096 −4.52 · 10−04 −2.54 · 10−03 5.61
4,142 −7.49 · 10−05 −2.75 · 10−04 3.67

16,066 −1.10 · 10−05 −1.87 · 10−05 1.71
63,242 −9.60 · 10−07 −1.11 · 10−06 1.15

250,906 −6.83 · 10−08 −7.60 · 10−08 1.11
999,482 −4.54 · 10−09 −5.36 · 10−09 1.18

3,989,626 −2.90 · 10−10 −3.82 · 10−10 1.32

# DoF Cbl,ref
ω,h − Cbl,unif

ω,h η(Cbl
ω ) Ie f f (Cbl

ω )

1,096 2.94 · 10−02 −8.53 · 10−03 −0.29
4,142 −1.63 · 10−04 −8.79 · 10−04 5.39

16,066 −6.49 · 10−07 −5.59 · 10−05 86.11
63,242 −1.03 · 10−06 −1.86 · 10−06 1.80

250,906 −9.64 · 10−08 −1.04 · 10−07 1.07
999,482 −7.12 · 10−09 −7.04 · 10−09 0.99

3,989,626 −4.99 · 10−10 −4.77 · 10−10 0.96

Table 3.2.1.: Results of the approximation of the constants Cbl
1 and Cbl

ω by uniform mesh
refinement with k = l = 3 and ellipses as inclusions. The first column gives
the number of degrees of freedom (DoF).

In Figure 3.2.2a an example of a mesh generated by the error estimator for the
computation of Cbl

ω,h with k = l = 5 is shown. We want to emphasize that the
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(a) Grid (b) Close-up (c) βbl
h,1 (d) βbl

h,2 (e)ωbl
h

Figure 3.2.2.: Example of a locally refined grid for the adaptive computation of Cbl
ω with

k = l = 5 in the NBL problem. The whole mesh is shown in ((a)), whereas
((b)) shows a close-up around the interface. In ((c)), ((d)) and ((e)), the
associated solution is shown.

DWR method is a goal-oriented and residual based error estimator. This means the
value of the local error indicators are mainly determined by two factors:

(i) It takes into account whether or not the FE solution locally violates the PDE
it approximates (the residual-part), and

(ii) it takes into account the influence of the aforementioned error to the given
goal functional.

The locally refined mesh in Figure 3.2.2a illustrates this behaviour nicely. A strong
refinement can be observed in the neighbourhood of the line {y ∈ Zbl | y2 = 1}.
This is the lower boundary of the domain on whichωh is evaluated to compute
Cbl
ω,h. Strong refinement occurs also in the vicinity of the first inclusion, see

also Figure 3.2.2b for a close-up of this region. In this part of the domain, the
associated solution has large gradients, see Figures 3.2.2c, 3.2.2d and 3.2.2e for
an illustration of the solution components.
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∣∣∣Cbl
1,h(Zk

l )− Cbl
1,h(Z5

5)
∣∣∣ circle∣∣∣Cbl

1,h(Zk
l )− Cbl

1,h(Z5
5)
∣∣∣ ellipse∣∣∣Cbl

ω,h(Zk
l )− Cbl

ω,h(Z5
5)
∣∣∣ ellipse

10−13

10−11

10−9

10−7

10−5

10−3

1 2 3 4
k, l

Figure 3.2.3.: Difference between the computed constants on domains with increasing
length and Cbl

1,h(Z5
5) resp. Cbl

ω,h(Z5
5).

Cut-off Error In the previous paragraph we explained how we estimate the
discretization error (and gain simultaneously local error indicators for the local
mesh refinement). Now we take a look on the error due to the truncation of the
domain.

We set k = l and compute the solution of Problem 3.2.6 for 1 ≤ k ≤ 5 on a family
of hierarchic adaptively refined meshes. The goal is to get an approximation of the
constants on each domain with a discretization error below the preset tolerance
TOL = 10−11. On each domain, we run two computations, starting from a very
coarse mesh. One uses the DWR-method with J1 as goal functional, the second
one does the same with Jω. Each computation refines the grid adaptively as
long as the error estimator says that the discretization error is above our preset
tolerance TOL. The values of Cbl

1,h and Cbl
ω,h obtained by these computations are

listed in Table 3.2.2, together with the estimation of the related discretization
error. Note that no entries for Cbl

ω,h in the case of circular inclusion are shown, as
we know a priori that the value is zero. The numerical computations confirm
this in the sense that the result is not zero but lies in the order of the machine
precision.

To find the optimal cut-off level l, k we perform a convergence check w.r.t. k,
taking as reference value the constants computed on Z5

5, i.e. Cbl
1,h(Z5

5) resp.
Cbl
ω,h(Z5

5). Figure 3.2.3 shows the error between the constants computed on
Zk

l with k = l = 1, . . . , 4 and the reference values computed on Z5
5. Remem-

ber, we expect an exponential decay of the cut-off error for increasing k, see
Theorem 3.2.5.

The exponential decay of the cut-off error with the distance from interface can
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k,l Cbl
1,h

∣∣∣η(Cbl
1 )
∣∣∣ Cbl

ω,h

∣∣∣η(Cbl
ω )
∣∣∣

circular inclusions

1 −0.3038181652339 1.9 · 10−12 -
2 −0.3038219423526 2.0 · 10−12 -
3 −0.3038219423790 2.0 · 10−12 -
4 −0.3038219423789 2.0 · 10−12 -
5 −0.3038219423756 8.9 · 10−13 -

oval inclusions

1 −0.2694539064491 4.3 · 10−12 −0.2413211012145 2.1 · 10−11

2 −0.2694545953967 1.4 · 10−12 −0.2409146886571 7.3 · 10−12

3 −0.2694545953993 3.1 · 10−12 −0.2409148310717 7.2 · 10−12

4 −0.2694545953993 2.1 · 10−12 −0.2409148310975 8.5 · 10−12

5 −0.2694545953985 2.0 · 10−12 −0.2409148310959 8.6 · 10−12

Table 3.2.2.: Results of the approximation of the constants Cbl
1 and Cbl

ω as well as the
estimated discretization error η for different domain-lengths.

be observed for both approximations. Furthermore, it can be observed that the
error |Cbl

1,h(Zl
k)− Cbl

1,h(Z5
5)| is of the order of the discretization error, i.e. 10−12,

for k, l ≥ 3 for Cbl
1 and k, l ≥ 4 for Cbl

ω .

Reference Values For the computations in Section 3.3, we use the approxima-
tions

Cbl,circ
1,h = −0.3038219423756, Cbl,circ

ω,h = 0, (3.2.29)

Cbl,ell
1,h = −0.2694545953985, Cbl,ell

ω,h = −0.2409148310959, (3.2.30)

which have been computed on Z5
5 with the adaptive algorithm described in the

previous section, see also Table 3.2.2. Note that Cbl,circ
ω,h = 0 is not an approxima-

tion but the true value of this constant, see Remark 3.1.28.

3.2.3. Cell Problem and Determination of the Permeability

For a numerical confirmation of the interface laws we need the solution of the
appropriate cell problems 3.1.19 to calculate the rescaled permeability K, see
Definition 3.1.20.
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By and large, we use the same methods as in the previous sections. This means
we use bi-quadratic transformations in our triangulation of Yf, leading to a
domain Yf,h 6= Yf due to the curved boundary ∂Ys, and call Y \ Yf,h =: Ys,h. We
also use Taylor-Hood-type elements, adapted to the boundary conditions of the
cell problems, so we define the ansatz space for the velocity

Vc
h(Yf,h) :=

(
S2

h (Yf,h)
)2
∩ H1

∂Ys,h ,per(Yf,h)
2. (3.2.31)

The finite element formulation reads:

Problem 3.2.12 (Finite Element Approximation of Cell Problems). Let i, j = 1, 2.
Find a velocity field wi

h ∈ Vc
h(Yf,h) and a pressure π i

h ∈ Lh(Yf,h), such that,(
∇wi

h,∇ϕh

)
Yf,h
−
(
π i

h,∇ ·ϕh

)
Yf,h

= (ei,ϕh)Yf,h
, ∀ϕh ∈ Vc

h(Yf,h), (3.2.32)(
∇ ·wi

h,ψh

)
Yf,h

= 0, ∀ψh ∈ Lh(Yf,h), (3.2.33)

together with the normalization condition
∫

Yf,h
ψh = 0.

We also use an adaptive algorithm based on the DWR method to compute
precisely the reference values for the permeability matrix K. Both cell problems
are solved by a tailored grid refinement considering as goal functional for the a
posteriori error estimation the components of K.

Reference Values The computed reference values for the circles are

Kcirc
h = kcirc

h id ≈ 0.01990143534975 id (3.2.34)

with an estimated discretization error of 1.38 10−11. For the case with ellipses as
inclusions the following values have been calculated

Koval
h =

(
Kh,11 Kh,12
Kh,12 Kh,22

)
≈
(

0.0159787174788 0.00303449804138
0.00303449804138 0.0159787174788

)
.

The estimated discretization errors are 2.76 10−12 for Kh,11 and 1.10 10−13 for
Kh,12.

In the next section we use the reference values of Cbl
1,h, Cbl

ω,h and Kh to present a
numerical confirmation of the interface law.
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3.3. Numerical Confirmation of the Interface Law

In the context of the coupling between Stokes and Darcy, the slip condition
for the velocity of the free flow (B.1.8e) has been established numerically for
example in Kaviany [85], Sahraoui and Kaviany [118], and Larson and Higdon
[91, 92]. In addition, the numerical calculation of the constants Cbl

1 and Cbl
ω has

been performed by the finite element method in Jäger et al. [80]. Nevertheless,
numerical results on the evidence of the pressure relation (B.1.9c) based on a
comparison between the microscopic and the homogenized flow have not yet
been shown. This is the goal of this section.

Note that Kaviany [85], Sahraoui and Kaviany [118] always deal with isotropic
geometries and, consequently, they do not observe the pressure jump but rather
continuity of the pressure across Γ . This ties in with the condition (B.1.9c), as for
isotropic mediums there holds Cbl

ω = 0, see Remark 3.1.28.

Specifically, we show numerical evidence based on the following consideration.
As will be clear from the results of this section, in the microscopic model the
pressure values, which converge to pp on Ωp and to pf on Ωf, oscillate due to the
inclusions. Approaching the interface, the amplitude of the microscopic pressure
oscillations do not vanish with ε. Indeed, it has been shown in Marciniak-
Czochra and Mikelić [98] that the pressure of the microscopic model on the
interface converges to (the non-oscillatory pressure) pp in the sense of H−1/2 that
allows such oscillations for the difference pε-pp. We give a numerical justification
of the interface laws for the pressure and shear stress averages over the pore
faces at the interface as explained in more detail in Section 3.3.1.

We focus first on the validation of the theoretical results from Theorem 3.1.13 and
(3.1.34a) in Section 3.3.1. Remember that the microscopic problem Problem 3.1.6
in this context has periodic boundary conditions in x1-direction. Section 3.3.2
examines the influence of non-periodic boundary conditions onto the effective in-
terface laws. There, instead of periodic boundary conditions, we situate ourselves
in the original experiment by Beavers and Joseph, i.e. we describe a pressure
drop along the channel.

In what follows the reference values for Cbl
1,h, Cbl

ω,h and Kh computed in the
previous section are used.

3.3.1. Case I: Periodic Case

In this part we present the periodic case for which the theory was developed in
Marciniak-Czochra and Mikelić [98], i.e. we consider periodic boundary condi-
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tions in x1-direction for the microscopic problem, as stated in Problem 3.1.6.

To show convergence results w.r.t. epsilon without the predominance of the
discretization errors, we compute the solutions of the microscopic Problem 3.2.2
for

ε ∈
{

1, 1/3, 1/10, 1/31, 1/100, 1/316, 1/1000, 1/3162
}

.

For smaller values of epsilon, our computational power allows only for approxi-
mations for which the discretization error dominates the value we are interested
in, namely the homogenization error. This is actually the reason why we are
interested in homogenized models. If a direct method would be applicable, we
would not have such a need.

Data of the Example

We prescribe an inhomogeneous right hand side to drive the flow f = (1, 0),
and choose the following parameters for the geometry: L = 1, Hl = 1, Hu = 1.
As rigid inclusions in the porous part we consider the two cases presented in
Definition 3.2.1.

With the given data we can exploit the fact that the solutions on the microscopic
level uε = (vε, pε) are not only L-periodic, but, due to the constant right hand
side, also ε-periodic in x1-direction. To strongly reduce computational costs we
compute the approximations ũεh on a domain with length ε instead of L. We
employ then the ε-periodicity to reconstruct the solution uεh = (vεh, pεh) on the
whole domain with length L. The computational grids are obtained by global
refinement.

To show the convergence with ε in Theorem 3.1.13 and (3.1.34a), we need the
solution of the microscopic problem, the constants Cbl

1 and Cbl
ω , the permeability

K and the solution of the effective equations.

• For the microscopic solution, we use the FE-approximation presented here.

• The approximations of Cbl
1 , Cbl

ω , and K have been computed in Section 3.2.

• Regarding the effective solutions: In this simple example, there exist closed
formulas for vf, pf and pp. The analytical solution for the effective problems
3.1.12 and 3.1.14 is (for x ∈ Ωf) given by

vf,1(x) =
1− x2

2
x2(1−εCbl

1 )−εCbl
1

1−εCbl
1

, (3.3.1)

vf,2(x) = 0 and peff (x) = 0. (3.3.2)
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It follows

Meff =
1

12
1− 4εCbl

1

1−εCbl
1

. (3.3.3)

We have then for x ∈ Ωp

pp(x) =
Cbl
ω

2(1−εCbl
1 )

+
K12

K22
x2 =

Cbl
ω

2
+

K12

K22
x2 + O(ε). (3.3.4)

The analytical solutions are evaluated using the reference values Cbl
1,h, Cbl

ω,h
as well as the permeability Kh computed in the previous Section 3.2 with a
discretization error in the order of 10−12 or below. A discretization error
is thus included in the calculation of vf,1 and pp, but it is negligible in
comparison with the error in ε for the values considered in our convergence
tests.To ease notation, we do not distinguish between the analytical solu-
tions vf, pf and pp and their approximations due to discretization errors of
the constants used in the expressions.

We have now everything at hand to compute the error estimates between the
solutions of the microscopic problems and the solutions of the effective/ma-
croscopic problems. Direct simulations confirm the order of convergence in
Theorem 3.1.13. This can be seen in Table 3.3.1 or Figure 3.3.1. These show the
results of our approximations of the various homogenization errors presented in
Theorem 3.1.13, i.e.

e2
2(v

ε,Ωf) :=
∥∥∥vεh −

1− x2

2
x2(1−εCbl

1 )−εCbl
1

1−εCbl
1

e1

∥∥∥2

Ωf

= O(ε3), (3.3.5a)

e2
M :=

∣∣∣Mε
h −

1
12

1− 4εCbl
1

1−εCbl
1

∣∣∣2 = O(ε3), (3.3.5b)

and the estimates

e1(pε,Ωf) :=
∥∥pεh

∥∥
L1(Ωf)

= O(ε), (3.3.6a)

e1(∇vε,Ωf) :=
∥∥∥∇vεh −

(
1

2(1−εCbl
1 )
− x2

)(
0 1
0 0

)∥∥∥
L1(Ωf)

= O(ε). (3.3.6b)

Direct simulations in the porous medium confirm additionally equation (3.1.34a)

e2(pε,Ωp) :=
∥∥∥pεh −

Cbl
ω

2
− K12

K22
x2

∥∥∥2

Ωp

= o(1), (3.3.7)
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e1(∇vε,Ωf)
e2

2(pε,Ωp)
e1(pε,Ωf)

ε

10−6

10−5

10−4

10−3

10−2

10−1

1

1 0.1 0.01 0.001
ε

(a) Confirmation of (3.3.6) and (3.3.7), circles as
inclusions.

e1(∇vε,Ωf)
e2

2(pε,Ωp)
e1(pε,Ωf)

ε

10−6

10−5

10−4

10−3

10−2

10−1

1

1 0.1 0.01 0.001

(b) Confirmation of (3.3.6) and (3.3.7), ovals as
inclusions.

e2
2(v,Ωf)

e2
M
ε3

10−18

10−14

10−10

10−6

10−2

1 0.1 0.01 0.001
ε

(c) Confirmation of (3.3.5), circles as inclusions.

e2
2(v,Ωf)

e2
M
ε3

10−18

10−14

10−10

10−6

10−2

1 0.1 0.01 0.001
ε

(d) Confirmation of (3.3.5), ovals as inclusions.

Figure 3.3.1.: Confirmation of the estimates (3.3.5), (3.3.6) and (3.3.7) for oval (right col-
umn) and circular (left column) inclusions. Notice the different logarithmic
scaling in the two rows.

see the last column in Table 3.3.1 as well as Figure 3.3.1a and 3.3.1b.

We plot the homogenization errors vs. ε for the case with circular inclusions
(left column) and elliptic inclusions (right column) in Figure 3.3.1. Note that
both axes are scaled logarithmically. The drawn out black lines act as a guide
for the eyes and picture the expected convergence rates. These are met almost
perfectly, showing that we succeeded in making the discretization (and cut-off)
errors smaller than the homogenization error. Note that the homogenization
error reaches the order of 10−9. The numbers depicted in Figure 3.3.1 are fleshed
out in Table 3.3.1. Note that a priori only mere convergence without a given rate
w.r.t. ε was given in (3.3.7). In the present case, a convergence of order O(ε) can
be observed.

The main incentive of this section is the verification of the pressure jump law,
so let us take a look at the pressure on the microscopic level. In Figure 3.3.2 the
microscopic pressure is depicted for ε = 0.1 and both types of inclusions. There
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ε ‖vε − vf‖2
Ωf

∣∣∣Mε −Meff
∣∣∣ ‖pε − pf‖Ωf

‖∇(vε − vf)‖L1(Ωf)
‖pε − pp‖2

Ωp

circular inclusions

1 4.7 · 10−04 1.8 · 10−2 1.0 · 10−2 5.9 · 10−2 3.9 · 10−2

1
3 8.2 · 10−06 2.4 · 10−3 2.7 · 10−03 1.2 · 10−02 8.1 · 10−3

0.1 8.3 · 10−08 2.3 · 10−4 7.4 · 10−4 2.7 · 10−3 1.6 · 10−3

1
31 1.2 · 10−09 2.5 · 10−5 2.3 · 10−04 7.7 · 10−04 4.5 · 10−04

0.01 1.8 · 10−11 2.4 · 10−6 7.1 · 10−5 2.3 · 10−4 1.3 · 10−4

1
316 4.1 · 10−13 2.4 · 10−7 2.2 · 10−05 7.0 · 10−05 4.1 · 10−05

0.001 1.1 · 10−14 2.4 · 10−8 7.1 · 10−6 2.2 · 10−5 1.3 · 10−5

1
3162 3.4 · 10−16 1.8 · 10−9 2.3 · 10−06 7.0 · 10−06 4.0 · 10−06

oval inclusions

1 3.3 · 10−04 1.5 · 10−2 1.3 · 10−2 5.6 · 10−2 4.8 · 10−2

1
3 5.6 · 10−06 1.9 · 10−3 3.4 · 10−3 1.3 · 10−2 1.0 · 10−2

0.1 6.0 · 10−08 1.9 · 10−4 9.3 · 10−4 3.0 · 10−3 2.2 · 10−3

1
31 9.8 · 10−10 2.0 · 10−5 2.9 · 10−4 8.6 · 10−4 6.4 · 10−4

0.01 1.9 · 10−11 1.9 · 10−6 9.0 · 10−5 2.6 · 10−4 1.9 · 10−4

1
316 4.8 · 10−13 1.9 · 10−7 2.9 · 10−5 8.1 · 10−5 6.0 · 10−5

0.001 1.4 · 10−14 1.9 · 10−8 9.0 · 10−6 2.5 · 10−5 1.9 · 10−5

1
3162 4.4 · 10−16 1.1 · 10−9 2.9 · 10−6 8.0 · 10−6 6.0 · 10−6

Table 3.3.1.: Confirmation of the estimates (3.3.5), (3.3.6) and (3.3.7) for oval and circular
inclusions.

are two things which catch the eye immediately.

• Visible “pressure jump” in Figure 3.3.2b, whereas no such thing occurs in
Figure 3.3.2a.

• Notable oscillations on the interface. The z-axis has the same scaling as the
other axes.

Pressure Oscillations Firstly, we want to comment on these oscillations and
clear up that these are not numerical artefacts. The pressure in the top layer
inclusions of the porous domain oscillates due to the inclusions. In particular, we
see in Figure 3.3.2 that the pressure at the boundary of each inclusion adjacent
to the interface has two prominent peaks, one positive and one negative. To
visualize it better, we refer to Figure 3.3.3, where we show the microscopic
pressure for ε = 1. It can be clearly seen that the solution is smooth and bounded
and the maximum and minimum values are on the boundary, as expected by the
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3.3. NUMERICAL CONFIRMATION OF THE INTERFACE LAW

(a) Circles as inclusions.
(b) Ellipses as inclusions.

Figure 3.3.2.: Visualization of the pressure pε with ε = 10−1 and periodic boundary
conditions.

maximum principle (the pressure is a harmonic function in this example). Thus,
the numerical approximation looks satisfying.

Keep in mind that in this example pf = 0, so the microscopic pressure is es-
sentially the homogenization error pε − pf. We observe that the amplitude of
the pressure oscillations on the interface is of order O(1) with respect to ε. Fig-
ure 3.3.4 clearly shows this behaviour. The microscopic pressure on the interface
pε |Γ is depicted in this figure for three different ε-values. The x1-axis is scaled by
ε for comparison purposes (i.e. we pick one period of the oscillation). We have
an a priori estimate of pε − pf on Γ in the H−1/2(Γ )-norm only, and the observed
behaviour of the pressure on said interface indicates that no “better” estimate
(i.e. in a stronger norm which does not allow for oscillations, like a Lp(Γ )-norm)
is possible without a corrector of the pressure.

Pressure Jump As can be observed in Figure 3.3.2, there appears a “pressure
jump” in the vicinity of the interface if we consider ellipses as inclusions. No
such thing is observed for the circular inclusions. The quotation marks are put
there because the microscopic pressure pε is naturally continuous. Rather, we
see a drop of the pressure across the first row of inclusions (this behaviour is the
same for all our computations, independent of ε.). So the pictures verify, at least
qualitatively, the expected behaviour of the pressure at the interface. Note that if
we consider ellipses that are rotated anti-clockwise by 135◦ the pressure actually
increases over the first lines of inclusions in Ωp. This is reflected in the fact that
Cbl
ω can be positive or negative, depending on the form of the inclusions.
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CHAPTER 3. STOKES-DARCY INTERFACE COUPLING

(a) Circles as inclusions. (b) Ellipses as inclu-
sions.

Figure 3.3.3.: Plot of the pressure values with ε = 1 and periodic boundary conditions.

Interface-Law Indicators

In the periodic case we have been looking at so far the interface law has been
rigorously confirmed by the convergence rates of Table 3.3.1. Nevertheless,
in the following we give an insightful illustration of the jump behaviour on
the interface. The goal is to have an indicator on the microscopic level which
quantifies somehow how well the interface laws (B.1.8e) and (B.1.9c) are satisfied
by the solution on the microscopic level. This procedure is tested in the periodic
case, which is supported by theoretical results, and is applied in Section 3.3.2 to a
more general flow condition.

The idea which emerges naturally is the (local) averaging of the microscopic
quantities. We have observed that the average value of pε over one ε-period
converges towards zero, which is the value of pf in the given example. As a
consequence of this observation we introduce cell-wise averaged quantities on Γ
denoted with a bar over it (i.e. p̄ε for the averaged microscopic pressure on Γ ),
see also Figure 3.3.5 for a sketch.

Definition 3.3.1 (Cell-Wise Averages). Let vε and pε be the solution of Problem 3.1.6,
x ∈ Γ , m ∈ N with mε < x < (m + 1)ε, . The cell average of ∂2vε1 is defined by

∂2vε1(x) =
1
ε

∫ (m+1)ε

mε
∂2vε1(s, 0) ds. (3.3.8)

The values vε1 and pε are defined analogously.

Our indicators are now defined by inserting these (locally) averaged values into
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ε = 0.1
ε = 0.01
ε = 0.001

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1x1
ε

Figure 3.3.4.: Values of the pressure pε on the interface Γ for different ε. The horizontal
axis is scaled by ε, i.e. the plot shows pε(x1/ε, 0) for x1 ∈ [0,ε].

the residual of the interface laws (B.1.8e) and (B.1.9c), taking the L2-norm and
check if this quantity vanishes with ε → 0. This means, the indicator for the
Beavers-Joseph-Condition is given by

BJS :=
∥∥∥∥vε1
ε

+ Cbl
1 ∂2vε1

∥∥∥∥
Γ

. (3.3.9)

This reasoning can not be applied directly to the pressure jump law, as the micro-
scopic pressure is continuous and subsequently there is no “jump”. Therefore,
the pressure jump for the microscopic pressure is measured by taking the differ-
ence between the cell average of pε on Γ and the cell average pεp on a parallel line
below Γ . The distance of this line from the interface is heuristically motivated by
the following consideration. In view of the continuity of pε, the “pressure from
below” has to be taken away from the interface. In addition, since the pressure in
Ωp converges to an affine function (cf. (3.3.4)), the line below must not be too far
from the interface to define the jump. Hence, we define pεp as follows.

Definition 3.3.2. Given the notation of Definition 3.3.1, we define the pressure from
below by

pεp(x) =
1
ε

∫ (m+1)ε

mε
pε(s,−2ε) ds. (3.3.10)

With this the indicator for the pressure jump law is defined by

PJL := ‖pεp − pε − Cbl
ω∂2vε1‖Γ . (3.3.11)

Remark 3.3.3. As a remark, calculations have been done for the pressure taken at a
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CHAPTER 3. STOKES-DARCY INTERFACE COUPLING

g
g

ε

Figure 3.3.5.: Cell-wise average g of function g on Γ .

distance ε, 2ε and 3ε from the interface in the porous part. In these three tests we observed
convergence in epsilon, but only the distance 2ε, in this specific case, gives the perfect
convergence rate as can be observed in Figure 3.3.6.

In Figure 3.3.6 the values of the previously defined indicators are shown. We
observe convergence of order O(ε) for both, the Beavers-Joseph- and jump-law-
indicator, except for the jump-law-indicator for the circular inclusions. Due to
symmetry the indicator stays in the order of the machine precision, i.e. it is
numerically zero (and thus not shown in the picture). We use this heuristic
definition of the indicators also in the next section for the verification of the
interface laws in a more general case.

BJS
ε

10−5

10−4

10−3

10−2

10−1

1

0.00010.0010.010.11
ε

(a) Circles as inclusions.

BJS
PJL
ε

10−5

10−4

10−3

10−2

10−1

1

0.00010.0010.010.11
ε

(b) Ellipses as inclusions.

Figure 3.3.6.: Values of the indicators BJS and PJL in the case of periodic boundary
conditions.
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3.3.2. Case II: Beavers-Joseph Case

In this case we investigate the behaviour of the microscopic solutions on the in-
terface for a set of boundary conditions corresponding to the original experiment
of Beavers and Joseph [19]. Are the interface laws still valid in this context, or is
the perturbation due to the boundary conditions too big?

Data of the Example

The length of the domain is set to L = 2. In contrast to the periodic case, we
assume a zero right-hand side and a constant pressure drop in x1-direction, i.e.
pε = pl at x1 = 0 and pε = pr at x1 = L. Additionally, the vertical velocity
component is set to zero on Γper. On the same part of the boundary, due to
the divergence free condition, there holds ∂1vε1 = 0. We transform these non-
homogeneous Dirichlet boundary conditions for the pressure into homogeneous
ones with a nonzero right hand side f by setting

pεzr(x) = pε(x)− pl − (pr − pl)
x1

L
. (3.3.12)

It follows that pεzr solves the microscopic equation with pεzr

∣∣∣
Γper

= 0 and right

hand side

f =
pl − pr

L
e1. (3.3.13)

Remark 3.3.4. This setting with the pressure drop is also of importance for us because
these are the boundary conditions we will employ for the simulation of the fuel cell.

As opposed to Section 3.3.1, we can not exploit additional ε-periodicity of vε and
pε. Therefore, we limit computations in this section to

ε ∈
{

1, 1/3, 1/10, 1/31, 1/100
}

.

This range is nevertheless sufficient to show the convergence results. We use, as
before, the reference values of Cbl

1 and Cbl
ω computed in Section 3.2.2.

Validity of the Interface Laws

The non-periodic boundary conditions introduce a pollution effect in comparison
with the theoretical results valid for the periodic case, due to the appearance
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(a) Circles as inclusions. (b) Ellipses as inclusions.

Figure 3.3.7.: Visualization of the pressure with ε = 10−1.

of an outer boundary layer. However, let us take a look at Figure 3.3.7, where
the microscopic pressure with ε = 0.1 for circular and elliptical inclusions is
depicted. We see for both inclusions in the interior of the domain qualitatively
the same behaviour as in the previous section, i.e. pressure continuity for circles
and a “jump” for ellipses.

We are now interested to quantify somehow the pollution of the interface laws.
To this end, we employ the quantities BJS and PJL (see (3.3.9) and (3.3.11)),
where vε and pε are the microscopic solutions to the Stokes problems with the
boundary conditions described above. The results can be seen in Figure 3.3.8. In
Figure 3.3.8a one sees the first order convergence of the indicator for the Beavers-
Joseph-Saffman condition for circles as inclusions. The indicator PJL is missing
in this case, as its values are again numerically zero.

Figure 3.3.8b shows the results for the elliptical inclusions. We observe that
the pressure interface condition (B.1.9c) is not fulfilled by the cell-wise average
quantities, while the Beavers-Joseph condition (B.1.8e) is satisfied (in the sense
that the indicator goes to zero with ε). We observe thus that the pollution effect
on the interface condition mainly concerns the pressure and outer boundary
layer effects appear, see Jäger et al. [80]. It is also by no means surprising that
this behaviour appears, as the pressure-jump on the interface is not compatible
with the zero pressure condition on the left- and right hand side boundaries.

To get rid of this effect we consider the averaged quantities only over part of the
interface away from the boundary, i.e. the integral is taken over Γ̂ := (0.2, 1.8)×
{ 0 } instead of Γ = (0, 2)× { 0 }. In this case, as observed in Figure 3.3.8d, both
interface laws are fulfilled, i.e. a convergence with order ε is shown. So for this
relatively big values of ε, we have to restrict our analysis only to the inner 80% of
the domain. We want to remark that the influence of the outer boundary layers
gets smaller with ε.
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This shows firstly, that the influence of the boundary conditions to the interface
laws in this flow configuration is not too big and secondly, we gain an addi-
tional confirmation of the validity of our computations of the effective interface
constants Cbl

1,h and Cbl
ω,h, using purely information on the microscopic level.

BJS
ε

0.0001
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0.1

1

0.010.11
ε

(a) Circles, indicator on Γ .
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PJL
ε

0.0001

0.001

0.01

0.1

1

0.010.11
ε

(b) Ellipses, indicator on Γ .

BJS
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0.0001

0.001

0.01

0.1

1
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(c) Circles, indicator on Γ̂ .

BJS
PJL
ε

0.0001

0.001

0.01

0.1

1

0.010.11
ε

(d) Ellipses, indicator on Γ̂ .

Figure 3.3.8.: Values of the indicators BJS and PJL in the case of pressure drop boundary
conditions. First row: Indicator applied to whole Γ . Second row: Indicator
applied only to Γ̂ .

3.4. Forced Infiltration

We consider in this section also the problem of coupling a free flow with a
flow through a porous domain on the macroscopic level, but in a different
configuration than before. On the microscopic level, instead of a flow profile
mainly tangential to the interface Γ between the free flow domain and the porous
medium, we look at a flow which is forced through the perforated domain. This
leads to a main flow direction that is orthogonal to Γ .
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In Carraro et al. [37], Marciniak-Czochra and Mikelić prove analytically that the
interface laws for the effective flow in this case are

(i) the continuity of the normal effective velocities,

(ii) zero Darcy’s pressure and

(iii) a given slip velocity for the tangential component of the effective velocity.

The goal of this section is to give an independent confirmation of these analytical
results using a direct numerical simulation of the flow at the microscopic level.

Even though the setup described above is not the situation we face in our appli-
cation, the simulation of a fuel cell model, the problem is closely related to the
first part of this chapter and quite interesting in itself. However, we will keep the
presentation short, as the direct link to the fuel cell simulation is lacking.

The rest of this section is organized as follow: We give a short introduction
into the topic in Section 3.4.1. Subsequently, we present the equations on the
microscopic and macroscopic level as well as the auxiliary systems we need for
the computation of some effective parameters in Section 3.4.2. We describe the
discretizations of all these equations and present the results of our computations
in 3.4.3.

3.4.1. Introduction

We start from an incompressible 2-d flow of a Newtonian fluid penetrating a
periodically perforated domain. At the pore scale, the flow is described by the
stationary Stokes system in the unconstrained fluid part as well as in the pore
space. Upscaling of the Stokes system in a porous medium yields Darcy’s law as
the effective momentum equation, valid at every point of the porous medium.
The two models, Stokes system and the Darcy equation, are PDEs of different
order and need to be coupled across the (artificial) interface Γ of the fluid and
the porous medium.

After Marciniak-Czochra and Mikelić, the resulting interface conditions have the
following form.

(i) Let vp and pp be the Darcy velocity and the Darcy pressure, vf the un-
confined fluid velocity and n a normal vector on Γ . The first part of the
coupling conditions looks like

vf · n = vp · n and pp = 0 on Γ . (3.4.1)
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3.4. FORCED INFILTRATION

(ii) Let C2,bl
1,fi be a boundary layer stabilization constant τ the tangential vector

on Γ . There holds

vf · τ = C2,bl
1,fi∇pp · n on Γ . (3.4.2)

Note that in general C2,bl
1,fi 6= K12 and there is a jump of the effective tangen-

tial velocities, see Remark 3.4.13.

The constant C2,bl
1,fi is calculated from a boundary layer similar to the one presented

in Section 3.1 and depends only on the pore geometry.

Remark 3.4.1. Note that we assume a homogeneous right hand side on the microscopic
level, thus vp = K∇pp instead of vp = K(f−∇pp).

Interface Conditions for Forced Infiltration

There is vast literature on modeling interface conditions between a free flow and
a porous medium. Most of the references focus on flows which are tangential
to the porous medium. In such a situation, the free fluid velocity is much larger
than the Darcy velocity in the porous medium. For more information on this
case, we refer to the other sections of this chapter.

Infiltration into a porous medium corresponds to a different situation, in which
the free fluid velocity and the Darcy velocity are of the same order, see the article
by Levy and Sánchez-Palencia [94]. They classify the situation as "Case B: The
pressure gradient on the side of the porous body at the interface is normal to
it". In that case, the pressure gradient in the porous medium is much larger
than in the free fluid. Using an order-of-magnitude analysis, they concluded
that the effective interface conditions have to satisfy the conditions stated in
(3.4.1). In order to close the system, one more condition is needed. In Levy and
Sánchez-Palencia [94], zero tangential velocity was assumed. However, as we
will see later in Remark 3.4.7, this is only true if the porous medium is isotropic
in the direction tangential to the interface. In general, we have a slip velocity.

We note that in a number of articles devoted to numerical simulations, the
porous part was modeled using the Brinkman-extended Darcy law. We refer to
Discacciati et al. [53], Hanspal et al. [70], Iliev and Laptev [76], Nassehi et al. [103],
Yu et al. [138] and references therein. In such settings, the authors used general
interface conditions introduced in Ochoa-Tapia and Whitaker [107], consisting
of the continuity of the velocity and some jump relations for the stresses. The
latter contain some parameters which have to be fitted to the problem at hand.
However, we recall that the effective viscosity in the Brinkman equation is not
known and the use of it seems to be justified only in the case of a high porosity
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(see the discussion in Nield [106]). Note that a similar procedure was proposed
by several authors for the case of tangential flow, see Section 3.1.

A rigorous mathematical study of the interface conditions between a free fluid
and a porous medium was initiated in Jäger and Mikelić [78]. The analytical
work of Marciniak-Czochra and Mikelić presented in Carraro et al. [37] builds
upon the boundary layers introduced there. Our numerical computations in 3.4.3
confirm these coupling conditions.

Remark 3.4.2. Note that we discuss here only low Reynolds number flows. Darcy-
Navier-Stokes coupling yields also interesting numerical problems, see Layton et al. [93],
Rivière and Yotov [115], and Discacciati and Quarteroni [52] as well as the references
therein.

Computational Aspects

We use the finite element method to obtain a numerical confirmation of the
conditions (3.4.1) and (3.4.2). Numerical study of the homogenization error is
a challenging task. The first difficulty is to find a numerical solution of the
microscopic problem used as a reference because the geometry of the porous part
has to be resolved in great detail. In addition, the tangential velocity component
of the microscopic solution has large gradients in the vicinity of the surface of
the porous medium that result in a discontinuity across Γ on the macroscopic
level. The accuracy needed by the resolution of the interface and porous part
requires a lot of computational effort.

Let us assume that Γ is parallel to the x1-direction. In our test cases, we reduce the
computational costs by considering a problem with data (boundary conditions,
prescribed inflow, etc.) which is constant in the direction tangential to Γ . As we
have a ε-periodic geometry, the whole problem is ε-periodic in the x1 direction.
Therefore, we reduce the computations to one column of inclusions in the porous
part. Nevertheless, even in the simplified example problem, all the computations
must be performed with high accuracy.

The reason is that the homogenization errors, especially in the estimates based
on correction terms, are small in comparison with numerical errors even for sim-
ulations with millions of degrees of freedom. A further difficulty is that to check
the estimates numerically, we have to solve several coupled auxiliary problems.
Therefore the numerical precision of one problem influences the precision of the
others. We apply the Dual Weighted Residual method by Becker and Rannacher
[20] to calculate some constants needed for the estimates, increasing the overall
accuracy of our numerical tests.

72



3.4. FORCED INFILTRATION

3.4.2. Problem Setting and Effective Equations

We start by defining the geometry on the microscopic level. In this setting, it is
basically the same as in the case of mainly tangential flow, so we will carry over
the notation and definitions of Section 3.1.1 for the domains Y, Yf, Ys,Ωf,Ωp and
Ωε as well as the interface Γ . We only change the notations for the boundaries
to reflect the difference in the boundary conditions directly in the naming of the
respective parts.

Given the microscopic flow domain Ωε as defined in Definition 3.1.2, we split its
boundary ∂Ωε into the following disjunct parts

∂Ωε = Γ εns ∪̇ Γin ∪̇ Γout ∪̇ Γper, (3.4.3)

where

Γ εns := Ωp ∩ ∑
(i, j)∈Z2

ε
(
∂Ys + (i, j)

)
, (3.4.4)

Γin := [0, L]× { Hu } , (3.4.5)
Γout := [0, L]× {−Hl } , (3.4.6)
Γper := { 0, L } × (−Hl, Hu). (3.4.7)

We refer to Figure 3.4.1 for a sketch of the geometry.

Yf

Ys

(a) Unit cell Y.

Γin

Γper Γper
Ωf

Γ(0, 0)

Ωε
p

Γout

L

Hl

Hu

(b) Flow region Ωε.

Figure 3.4.1.: Sketch of the microscopic geometry for the case of forced infiltration.

Remark 3.4.3 (Flow Direction). We talk about an injection at Γin and an outflow at
Γout, but of course the reverse situation is also covered by the following discussion.
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The Microscopic Model

Having defined the geometrical structure of the porous medium, we specify the
flow problem. We consider the slow viscous incompressible flow of a single
fluid through a porous medium. The flow is caused by the fluid injection at the
boundary Γin. We assume the no-slip condition at the boundaries of the pores Γ εns
(i.e. the filtration through a rigid porous medium). In Ωε, the flow is described
by the following non-dimensional steady Stokes system.

Problem 3.4.4 (Microscopic Flow Problem). Let an inflow vin and an outflow g be
given s.t. they fulfill the compatibility condition∫

Γout

g =
∫
Γin

vin
2 . (3.4.8)

Find the velocity vε and pressure pε, both L-periodic in x1-direction, such that there
holds

−∆vε +∇pε = 0 in Ωε, (3.4.9a)
∇ · vε = 0 in Ωε, (3.4.9b)

together with the boundary conditions

vε = 0 on Γ εns, vε = vin on Γin, (3.4.9c)
vε2 = g on Γout, ∇vε1 · n = 0 on Γout, (3.4.9d)

and the normalization condition
∫
Ωf

pε dx = 0.

Note that we have not only an inflow at Γin, but a prescribed outflow at Γout too.
This forces the flow through the porous medium.

The Boundary Layer

We are interested in the behavior of solutions to Problem 3.4.4 when ε → 0. In
such a limit the equations in Ωf remain unchanged and the Stokes system in Ωε

p
is upscaled to Darcy’s equation posed in Ωp. The interesting part is how these
two PDEs are linked across the interface Γ .

We will present the results from Carraro et al. [37]. In order to formulate the
coupling conditions we need the viscous boundary layer problem connecting
free fluid flow and a porous medium flow.
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Let Zbl be the boundary layer domain defined in Definition 3.1.24, see also
Figure 3.1.2. The domains Z+, Z− as well as the boundary layer interface Σ and
the no slip boundary Γ bl

ns are also defined in Definition 3.1.24.

Problem 3.4.5. Let j = 1, 2 and wi, π i be the solution of Problem 3.1.19, and let K be
the corresponding permeability tensor, defined by Definition 3.1.20.

Find β j,bl,ω j,bl satisfying

−∆β j,bl +∇ω j,bl = 0 in Z+ ∪ Z−, (3.4.10a)

∇ ·β j,bl = 0 in Z+ ∪ Z−, (3.4.10b)[
β j,bl

]
Σ
= K2 je2 −w j on Σ , (3.4.10c)[

{∇β j,bl −ω j,bl id } e2

]
Σ
= −{∇w j − π i id} on Σ , (3.4.10d)

β j,bl = 0 on Γ bl
ns . (3.4.10e)

After the results from Jäger and Mikelić [78], the system in Problem 3.4.5 describes
a boundary layer, i.e. β j,bl andω j,bl stabilize exponentially towards constants,
when

∣∣y2
∣∣→ ∞:

Theorem 3.4.6. Let j = 1, 2. There exists γ0 > 0 and constants C j,bl
1,fi and C j,bl

ω,fi such
that ∣∣∣β j,bl −

(
(C j,bl

1,fi , 0
)∣∣∣+∣∣∣ω j,bl − C j,bl

ω,fi

∣∣∣ ≤ Ce−γ0 y2 ∀y ∈ Z+, (3.4.11)

e−γ0 y2∇β j,bl, e−γ0 y2β j,bl, e−γ0 y2ω j,bl ∈ L2(Z−). (3.4.12)

The stabilization constants are defined by

C j,bl
1,fi =

∫ 1

0
lim
ε↓0
β

j,bl
1 (s,ε) ds, (3.4.13)

C j,bl
ω,fi =

∫ 1

0
lim
ε↓0
ω j,bl(s,ε) ds. (3.4.14)

The constant C2,bl
1,fi plays an important role in the jump of the tangential effective

velocity at the interface. Because of this we add a short remark regarding isotropic
porous media.

Remark 3.4.7. In the case of mirror symmetry of the solid obstacle Ys with respect to
y1, the function w2

1 is uneven in y1 with respect to the line {y1 = 1/2}, and w2
2 and π2

are even (see Remark 3.1.23). This means that β2,bl
1 is uneven in y1 with respect to this

line, and β2,bl
2 andω2,bl are even. Using formula (3.4.13) yields C2,bl

1,fi = 0 in the case of
the mirror symmetry of the solid obstacle Ys w.r.t. y1.
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The Macroscopic Model

We introduce the effective problem in Ω . It consists of two subproblems, which
are to be solved sequentially. Let g and vin be given as in Problem 3.4.4.

The first problem is posed in Ωp and reads:

Problem 3.4.8. Find a pressure field pp, L-periodic with respect to x1, such that there
holds

−∇ ·
(

K(∇pp)
)
= 0 in Ωp, (3.4.15a)

K(∇pp) · n = g on Γout, (3.4.15b)
pp = 0 on Γ . (3.4.15c)

The rescaled permeability tensor K is given by Definition 3.1.20.

Next, we present the situation in the unconfined fluid domain Ωf:

Problem 3.4.9. Find a velocity field vf and a pressure field pf, both L-periodic w.r.t. x1,
such that

−∆vf +∇pf = 0 in Ωf, (3.4.16a)
∇ · vf = 0 in Ωf, (3.4.16b)

together with the boundary conditions

vf = vin on Γin, (3.4.16c)

vf,1 = C2,bl
1,fi∇pp · n on Γ , (3.4.16d)

vf,2 = −K∇pp · n = −K22
∂pp

∂x2
on Γ , (3.4.16e)

and the normalization condition
∫
Ωf

pf dx = 0. The constant C2,bl
1,fi is given by (3.4.13).

We note that the value pp|Σ of the pressure field at the interface Σ is equal to zero

and thus ∂pp
∂x1

∣∣∣
Γ
= 0.

Convergence Results

After settling the effective equations in the previous section, we cite now the
results regarding the quality of the approximation of the microscopic quanti-
ties by the macroscopic ones. We present only the relevant estimates of the
homogenization errors, for a derivation we refer to Carraro et al. [37].
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Remark 3.4.10 (Extension). In what follows we assume the microscopic velocity and
pressure to be extended from Ωε to Ω as described in Remark 3.1.15.

Theorem 3.4.11. Let O be a neighborhood of Γout, and Π j : R2 → R2, x 7→ x · e j the
projection onto the j-th component, j = 1, 2. The superscript ’+’ indicates as usual the
limit from above. H : R→ R is the Heaviside function. We use the abbreviation

ψ :=
∂pp

∂x2

∣∣∣
Γ

. (3.4.17)

Under the assumption of smooth geometry and data there holds

‖vε − vf‖L2(Ωf)
≤ C
√
ε (3.4.18)∥∥∥vε +ψ

(
K22e2 −β2,bl(

Π1

ε
)+
)∥∥∥

L2(Γ )

≤ Cε (3.4.19)

∥∥∥vε +
2

∑
k=1

∂pp

∂xk
wk( ·ε )−ψβ

2,bl( ·ε )
∥∥∥

L2(Ωp\O)
≤ Cε (3.4.20)

‖pε − H(−x2)ε
−2 pp‖L2(Ω )

≤ C
ε

. (3.4.21)

It is possible to improve these estimates by taking more terms into account.

Theorem 3.4.12. Under the same assumptions as in Theorem 3.4.11 there holds∥∥∥vε − vf + C j,bl
1,fiψe1 −ψβ2,bl( ·ε )

∥∥∥
L2(Ωf)

≤ Cε (3.4.22)

∥∥∥pε − H(−Π2)(ε
−2 pp −ε−1

C j,bl
ω,fiψ+

2

∑
j=1
π j( ·ε )

∂pp

∂x j

∥∥∥
L2(Ω )

≤ C√
ε

. (3.4.23)

Remark 3.4.13. Leaving the boundary layer corrections aside, the effective velocity at
the interface Γ is

vf = C j,bl
1,fi

∂pp

∂x2
e1 − K22

∂pp

∂x2
e2, (3.4.24)

and from the porous media side

vp = −K12
∂pp

∂x2
e1 − K22

∂pp

∂x2
e2. (3.4.25)

This means that there is an effective tangential velocity jump at the interface.
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3.4.3. Numerical Confirmation

This part is dedicated to the numerical confirmation of the convergence results
shown in Theorem 3.4.11 and Theorem 3.4.12. We solve the problems needed to
numerically compare the microscopic with the macroscopic problem by the finite
element method. We keep the presentation short to avoid tiresome repetitions,
please see Section 3.2 for more on FE discretizations.

For the discretization of the Stokes system we use the (generalized) Taylor-Hood
element. In particular, since the homogenization error in some of the proposed
estimates is small in comparison with the discretization error even for meshes
with a number of elements in the order of millions, we have used higher order
finite elements (polynomial of third degree for the velocity components and of
second degree for the pressure) to reduce the discretization error. The smoothness
of the solutions allows for this procedure.

The flow properties depend on the geometry of the pores. In particular there is a
substantial difference between the case with symmetric inclusions with respect to
the axis orthogonal to the interface and the case with asymmetric inclusions, see
Remark 3.4.7 and Remark 3.1.23. We use in the examples therefore two different
types of inclusion in the porous part, circles and rotated ellipses, i.e. ellipses with
the major principal axis non parallel to the flow. The increased accuracy using
higher order finite elements in the numerical solutions was necessary, as shown
later, especially for the case with symmetric inclusions. The geometries of the
unit cells Y = (0.1)2, see Figure 3.4.2, for these two cases are as follows:

(i) the solid part of the cell Ys is formed by a circle with radius 0.25 and center
(0.5, 0.5).

(ii) Ys consists of an ellipse with center (0.5, 0.5) and semi-axes a = 0.4 and
b = 0.2, which are rotated anti-clockwise by 45◦.

In addition, since the considered domains have curved boundaries we use cells
of the FEM mesh with curved boundaries (a mapping with polynomial of second
degree was used for the geometry) to obtain a better approximation.

All computations are done using the toolkit DOpElib (Goll et al. [65]) based upon
the C++-library deal.II (Bangerth et al. [15, 16]).

Numerical Setting

In this section we describe the setting for the numerical test. To confirm the
estimates of Theorem 3.4.11 and 3.4.12 we have to solve the microscopic problem
(4.2.1) to get vε and pε, the macroscopic problems 3.4.8 and 3.4.9 to get vf, pf and
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(a) Circle (b) Ellipse

Figure 3.4.2.: Mesh of the fluid part of the unit cell for the two types of inclusions: circles
and ellipses

pp, the cell problems 3.1.19 to calculate the permeability tensor K, the velocity
vector w j and pressure π j, and the boundary layers 3.4.5 for the velocities β j,bl

and pressuresω j,bl, j = 1, 2.

To reduce the discretization errors we consider a test case, described below,
for which it is easy to derive the exact form of the macroscopic solution. As
we will show below, the analytical solution of the macroscopic problem can
be expressed in terms of the solution of the cell and boundary layer problems.
The discretization error of the macroscopic problem in this case depends on the
discretization error of the cell and boundary layer problems and does not imply,
therefore, an additional discretization error.

We consider the domains

Ω = [0, 1]× [−1, 1] (3.4.26)

and

Ωε = Ω \ ‘the obstacles’, (3.4.27)

where the obstacles are either circles or ellipses as described in the section above.
In our example we consider the in- and outflow condition

vin = (0,−1) and g = −1 (3.4.28)

in the microscopic problem (4.2.1)
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The macroscopic solution in this setting is

vf,1(x) =
C2,bl

1,fi

K22
(1− x2), x ∈ Ωf, (3.4.29a)

vf,2(x) = −1, x ∈ Ωf, (3.4.29b)
pf(x) = 0, x ∈ Ωf, (3.4.29c)

pp(x) =
1

K22
x2, x ∈ Ωp. (3.4.29d)

The macroscopic solution is linked to the solutions of the cell problems through
the permeability K, see expressions (3.4.29a) and (3.4.29d). Furthermore it de-
pends on the solution of the boundary layer though the constant C2,bl

1,fi .

The microscopic problem (4.2.1) is solved with around 10–15 million degrees of
freedom, the cell problem uses around 7 million degrees of freedom. The perme-
ability constant has been precisely calculated using the goal-oriented strategy for
mesh adaptivity described in Section 3.2.2.

In the boundary layer problem, due to the interface condition (3.4.10c), the
velocity as well as the pressure are discontinuous on the interface Σ . Since with
the H1 conform finite elements chosen for the discretization the discontinuity
cannot be properly approximated, we have decided to transform the problem so
that the solution variables are continuous across Σ . The values of β j,bl andω j,bl

needed to check the estimates are recovered by post-processing.

For the numerical solution, as explained in detail in Section 3.2.2, we use a cut-off
domain. That procedure is justified by the exponential decay of the boundary
layer solution. The solution of the boundary layer problem is obtained with a
mesh of around 4 million degrees of freedom and the constants C j,bl

1,fi and C j,bl
ω,fi

are calculated by the goal-oriented strategy for mesh adaptivity described in
Section 3.2.2 where we have made sure that the cut-off error is smaller than the
discretization error. We note that in the computation of C j,bl

ω,fi we do not use the
formula given in (3.4.14) but the equivalent one

C j,bl
ω,fi =

∫ 1

0
ω j,bl(y1, 1) dy1 (3.4.30)

as this proved to be advantageous numerically.

In Table 3.4.1 the computed constants K, C j,bl
1,fi and C j,bl

ω,fi for the two different
inclusions are listed. As there holds for the permeability tensor K in these cases
K11 = K22 and K12 = K21, we state only K11 and K12. Additionally, we give an
estimation of the discretization error.
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circular inclusions oval inclusions

K11 0.0199014353519271 ±2 · 10−12 0.0122773324576884 ±2 · 10−13

K12 0 0.00268891986291451 ±2 · 10−13

C j,bl
1,fi 0 -0.003336740001686 ±4 · 10−10

C j,bl
ω,fi 0.025777570627281 ±3 · 10−8 -0.004429782196436 ±1 · 10−8

Table 3.4.1.: Computed constants for the computations in the example.

Numerical Results

In this section we present the numerical confirmation of the convergence rates of
the homogenization errors (3.4.18–3.4.21) and (3.4.22–3.4.23).

For our test we set Ωp \ O = [0, 1] × [−0.6, 0], and use a computation of the
boundary layer on a cut-off domain ranging from −4 to 4. This means that to
compute the norms we evaluate the terms involving the boundary layer only
for x ∈ Ω with −4ε < x2 < 4ε. Outside of this region we assume the difference
between the boundary layer components and their respective asymptotic values
to be sufficiently small.

In the case of inclusions symmetric in the sense explained above, e.g. circles, the
homogenization errors are much smaller than the numerical error even for large
epsilon such as 0.1 as can be observed in Figure 3.4.3. The lines with markers
represent the results of the computations for

ε ∈
{

1, 1/3, 1/10, 1/31, 1/100
}

, (3.4.31)

the solid lines are reference values for various convergence rates and are plotted
only to compare the respective slopes.

The case of circles is shown in Figure 3.4.3. For the velocity in the fluid part of
the domain the estimate (3.4.18) can be verified. For the better estimate (3.4.22),
that uses correction terms to improve the estimation, the homogenization error is
so small that the curve shows only the numerical error. In Figure 3.4.3b we can
confirm (3.4.20) only for values of epsilon not bigger than 1/31, for ε = 0.01 the
numerical error dominates the homogenization error. Regarding the estimates
for the velocity on the interface with circular inclusions (Figure 3.4.3c) we can
observe only the numerical error for the same reason explained above.

Notice that the error for circles shown in Figure 3.4.3 is much smaller than
the error for ellipses shown in Figure 3.4.4. In addition, we could verify both
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(3.4.22)
(3.4.18)
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(a) Velocity estimates Ωf
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(b) Velocity estimate in Ωp

(3.4.19)
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(c) Velocity on Σ

ε2(3.4.21)
ε2(3.4.23)

ε1.5

ε

10−3
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10−1

1

101

1 0.1 0.01
ε

(d) Pressure estimates multiplied by ε2

Figure 3.4.3.: Convergence results for circular inclusions.

estimates for the pressure (3.4.21) and (3.4.23) as shown in Figure 3.4.3d. Note
that the pressure estimates have been scaled by multiplying by ε2.

The case of ellipses is shown in Figure 3.4.4. As it can be observed, all estimates
could be numerically verified, since the discretization error in this case was
smaller than the homogenization error. The pressure estimates in this case have
been also scaled by ε2. Note, that we observe for the velocity in the porous
domain a convergence rate of 1.5 instead of the predicted first order convergence,
see Figure 3.4.4b.

In conclusion, we show in Figure 3.4.5 and Figure 3.4.6 pictures of the flow for
the case ε = 1/3. Since we use periodic boundary conditions in the x1-direction,
constant in- and outflow data as well as a periodic geometry, the computations
have been performed on a stripe of one column of inclusions to reduce the
computational effort. In Figure 3.4.5a and 3.4.5c we see streamline plots of
the velocity, Figure 3.4.5b and 3.4.5d show the corresponding pressures. Both
pressures are nearly constant in the fluid part and show then a linear descent to
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(3.4.22)
(3.4.18)
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(b) Velocity estimate in Ωp
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(d) Pressure estimates multiplied by ε2

Figure 3.4.4.: Convergence results for elliptical inclusions.

the outflow boundary, similar to the effective pressure (3.4.29c) and (3.4.29d).

Figure 3.4.6 shows only the values of the tangential velocity component. In the
case of circular inclusions (Figure 3.4.6a), the velocity is nearly zero throughout
the fluid region and shows some oscillations around the mean value zero on
the position of the interface. Note that the effective model prescribes here a
no slip condition because there holds C j,bl

1,fi = 0. In Figure 3.4.6b) we see the
corresponding solution for oval inclusions. We notice a linear descent from
the inflow boundary (which lies in this picture on the left hand side) to the
interface, which leads to the slip condition for the tangential velocity component
of the effective flow in this case. Both behaviors are predicted from the effective
interface condition for this velocity component, see (3.4.16d).
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(a) Streamlines of vε (b) pε (c) Streamlines of vε (d) pε

Figure 3.4.5.: Visualization of the solution to the microscopic problem for ε = 1/3. Sub-
figures (a) and (b) show the results for circular inclusions, (c) and (d) for
elliptical inclusions.

vε1

(a) Circular inclusions.

vε1

(b) Elliptical inclusions.

Figure 3.4.6.: Visualization of vε1 for ε = 1/3.
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4. DWR for Homogenization Problems

The formulation of the macroscopic model in Section 5.2.3 contains effective
parameters like the interface constants Cbl

1 or the effective diffusion coefficient
Ahom. These depend on the solutions of some auxiliary problems (the Navier
Boundary Layer and the cell problems), so before we can solve the discretized
macroscopic model, an approximation of these effective quantities has to be
computed. It is clear that the quality of the approximation of the effective
constants has an impact on the approximation error on the macroscopic level.
The question is: Are we able to quantify and estimate this effect?

This section is about the derivation of an a posteriori error estimator which is able
to separate the influence on the overall discretization error of a homogenized
problem into the following parts

• The part stemming from the discretization of the macroscopic problem
and

• the parts coming from the approximation of an effective constant through
the discretization of the corresponding auxiliary problem.

We develop the algorithm in the general context of homogenization problems
and apply it later on to our problem at hand, see Chapter 5.

The chapter is organized in the following way. We give a more thorough introduc-
tion in Section 4.1, define the abstract problem setting in Section 4.2, introduce
the error estimator and the adaptive algorithm in Section 4.3 and show by three
examples that the previously developed algorithm works in Section 4.4.

4.1. Introduction

In this section we consider a goal-oriented adaptive finite element method for
homogenization problems. A microscopic quantity is therefore approximated
by an effective quantity that is obtained by solving a homogenized problem, see
e.g. Allaire [8], Bensoussan et al. [22], Cioranescu and Donato [43], Tartar [127],
Zhikov et al. [139] as well as Section 2.2 for an introduction into homogenization
theory.
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More in detail, the effective parameters and correction terms used in the macro-
scopic problem, which is somehow the limit of the microscopic equations, are
derived by the solutions of some auxiliary problems. Using a discretization by
finite elements for the macroscopic problem and the auxiliary equations the total
approximation error comprehends the model error due to homogenization and
the discretization error of the effective problem and the auxiliary problems.

In this work we do not focus on the model error due to homogenization. We
rather consider available a priori estimates of it, see e.g. Abdulle [1] for the case of
periodic diffusion tensor, Fatima et al. [59] for a case of a perforated domain and
Marciniak-Czochra and Mikelić [98] (as well as Chapter 3) for a priori estimates
in the context of Stokes-Darcy coupling.

We are interested in estimating and reducing the discretization error in a goal
functional representing a (physical) quantity of interest. Essential ingredients in
reducing the discretization error are

• firstly, the choice of a proper locally refined mesh for both the macroscopic
problem and the auxiliary problems, to reach a given error tolerance in the
prescribed goal functional and

• secondly, the separation of the discretization error into macroscopic and
auxiliary error-shares.

With this last information we are able to balance the influence of the discretiza-
tions of the different PDEs bundled in the homogenized problem to the total
discretization error. We are interested in a posteriori error estimates which allow
for a splitting into the various error-parts and possible strategies for local mesh
refinement based on local indicators.

Literature Overview

There are several numerical methods designed to approximate a multiscale prob-
lem like the variational multiscale method, see Hughes et al. [75], the multiscale
finite element method (MsFEM), see Hou and Wu [74] or the heterogeneous mul-
tiscale method (FE-HMM), see Abdulle et al. [5]. In particular the heterogeneous
multiscale finite element method (see E and Engquist [55]) has won increasing in-
terest in the last years and several works have been done to derive discretization
error estimates in this context. A priori error estimates are available for elliptic
(Abdulle [1], E et al. [56]) and parabolic (Ming and Zhang [101]) homogenization
problems using FE-HMM, see also references therein.

The first a posteriori error estimates for the discretization of homogenization
problems by FE-HMM has been derived by Ohlberger [110]. His method relies on
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a reformulation of the numerical method in the two-scale framework (see Allaire
[8]) and the a posteriori error estimates are obtained in terms of the two-scale
norm. The advantage of this error analysis is that the error estimation is split in
a contribution from the macroscale and one from the microscale. Additionally,
this method provides also cell-wise error indicators that can be used to steer
local mesh refinement for the macroscopic problem and for the microscopic cell
problems at the same time. The limitation of this work is that the estimates are
not given in physically meaningful quantities, but the rather abstract two-scale
norm.

A residual based a posteriori error estimation for the FE-HMM discretization in
the general non-periodic case have been first shown in Abdulle and Nonnen-
macher [2] and rigorously derived in Abdulle and Nonnenmacher [3]. These re-
sults regard the error in the energy norm. The main difference between Ohlberger
[110] and Abdulle and Nonnenmacher [3] is the validity of the two formulations.
In particular, it has been pointed out that the derivation in Ohlberger [110] does
not allow in a straightforward way estimations in the physical domain. A further
difference is that the mesh for the microscopic problem in Abdulle and Nonnen-
macher [3] is refined only proportionally to the macroscopic mesh. Besides these
aspects, from the practical point of view the error in some global norms is often
less useful than the error with respect to a specific functional of the solution.
The first work on a posteriori error estimation in a quantity of interest for the
heterogeneous multiscale finite element method has been done by Abdulle and
Nonnenmacher [4].

Application of the DWR Method to Homogenization Problems

The contribution of this work is the derivation of a goal-oriented error estimator
for homogenization problems that identifies the error of the macroscopic problem
and of the auxiliary problems with respect to a physical quantity of interest and
allows for a splitting of the influence of the discretization of the auxiliary problems
and the macroscopic problem. This allows for the systematic discretization of the
different meshes independently while still maintaining an estimation of the
influence of the respective discretization errors to the goal functional at hand.
Note that we require that the number of auxiliary problems is a priori known
and somehow “small”, in the sense that it is efficient to approximate all of the
auxiliary problems. Examples for this type of homogenization problems are
presented in Section 4.4.

The error estimator derived in this chapter is based on the Dual Weighted Resid-
ual method (see Becker and Rannacher [20]) as in Abdulle and Nonnenmacher
[4]. Our approach is nevertheless different because we use a different dual
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problem that allows defining error indicators for both the macroscopic and mi-
croscopic mesh while in Abdulle and Nonnenmacher [4] the microscopic mesh
size is statically coupled to the macroscopic one. Even though we consider only
periodic homogenization problems and do not treat the more general non-periodic
case, there is a broad range of applications (see below) in which the adaptive
algorithm developed here can be of assistance. The prototypical problems treated
in Section 4.4, where we present the viability of our algorithm, have a wide prac-
tical relevance in different applications such as diffusion in porous media, heat
transport in composite materials, and Darcy flow in subsurface formations.

Applications

To explain the practical relevance of this work apart from the performance
estimation of an SOFC that is the focus of this thesis we briefly describe a problem
from practice that can be solved with the method presented here. A problem
that we have in mind is the simulation of porous electrodes in electrochemical
applications as e.g. Lithium-ion batteries Carraro et al. [35], Ender et al. [57], Joos
et al. [81]. This is a prototypical problem in which the cell problems can be
three dimensional (3-d) microstructures reconstructed by tomography and made
periodic by reflections around the main axes, cf. Remark 5.2.3. The mesh derived
by the reconstruction is typically voxel-based and has a large number of degrees
of freedom needed to optically resolve the porous microstructure. Therefore,
the calculation of effective parameters is computationally intensive. This can be
disproportionate to obtain a given tolerance of the error in the macroscopic goal
functional, e.g. a flux over a boundary. In case of reconstructions with a higher
than needed resolution, one could reduce the computational costs by error-based
local mesh adaptivity.

A further motivation to locally refine/coarse the cell problems is the non-convexity
of the resolved porous structure. In this case, the discretization with finite el-
ements may introduce corner singularities. It is not possible hence to define
a priori to which extent these singularities must be resolved to obtain a given
tolerance for the macroscopic discretization error. Our approach will lead to
an adaptive refinement of the cell problems independently of the macroscopic
discretization. Additionally, it is possible to balance the error contribution of the
two parts, as shown in our test cases.

A further problem that we have in mind is the coupling between a gas channel
and a porous bed. The corresponding effective problem is given by the coupling
between the Stokes problem in the gas channel and the Darcy law in the porous
part. In this case cell problems have to be solved for the upscaling of the per-
meability tensor and a boundary layer problem has to be solved to determine
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the coupling at the Stokes-Darcy interface in the effective problem Carraro et al.
[36], Marciniak-Czochra and Mikelić [98]. Depending on the scale of the pores
the coupling might be more or less severe implying that the auxiliary problems
must be more or less precisely solved. This can be seen in the numerical tests
that we have reported.

4.2. Problem Setting

We are interested in the value Jε(vε) ∈ R where Jε is a given (possibly nonlinear)
functional and vε is the solution of a partial differential equation (PDE) based
model (the microscopic problem, see 4.2.1) which is too expensive to be solved
numerically. This can be, for example, due to the fact that it is defined on a very
complex domain which we cannot afford to resolve by a computational mesh or
because the PDE has coefficients that are highly oscillating. We suppose that the
series of microscopic solutions (vε)ε converges (in some sense) to a macroscopic
solution v that solves a homogenized problem.

Let us fix some notation. The microscopic problem in weak form for a given
value of ε > reads:

Problem 4.2.1 (Microscopic Problem). Let a Hilbert space Uε, a linear functional
Fε ∈ L(Uε,R) and an elliptic semi-linear form aε : Uε × Uε → R, linear in the
argument after the semicolon, be given. Find the microscopic solution vε ∈ Uε s.t.

aε(vε;ϕε) = Fε(ϕε) ∀ϕε ∈ Uε. (4.2.1)

Suppose the macroscopic solution v is taken from the solution space U and fulfills
the macroscopic equation represented by the effective semi-linear form

a : U ×U → R (4.2.2)

that depends on the solutions w j ∈ Wj of some auxiliary problems, j = 1, . . . , M,
where Wj is an appropriate solution space and M ∈ N \ { 0 } denotes the number
of auxiliary equations. Hereby is

U = U ×
M

×
j=1

Wj. (4.2.3)

We specify what we mean by “appropriate” and how to choose the functional
spaces U, Wj, the linear functionals Fv, Fw j and the forms a and b j in Assump-
tion 4.2.4.
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Problem 4.2.2 (Homogenized Problem). Let U, Wj be Hilbert spaces, let Fv ∈
L(U,R) and Fw j ∈ L(Wj,R) and let a : U ×U → R be the macroscopic equation
and b j : Wj ×Wj → R be some auxiliary problems.

Find the macroscopic solution v ∈ U and the cell solutions w ∈W :=×M
j Wj s.t.

a(v, w;ϕv) = Fv(ϕv) ∀ϕv ∈ U. (4.2.4)

The macroscopic problem depends on the solutions w = (w j) j of the auxiliary problems

b j(w j;ϕw j) = Fw j(ϕw j) ∀ϕw j ∈Wj, (4.2.5)

where 1 ≤ j ≤ M.

Examples for the additional problems (4.2.5) are cell problems, which solutions
define effective model coefficients (e.g. diffusion or permeability coefficients) or
the Navier Boundary Layer required by the Stokes-Darcy coupling, see Carraro
et al. [36] and Section 4.4.3.

Remark 4.2.3. Let us assume that Uε is a function space on a domain Ωε, U is a
function space on a domain Ω and Wj is a function space on Z j. Note that these
domains, especially Ω and Ωε do not have to be identical and thus the models (4.2.1)
(4.2.4) and (4.2.5) may be defined on different domains, see numerical examples in
Section 4.4.

Before we proceed with the description of the problem, we want to emphasize
that we are not interested here in solution theory or the derivation of homoge-
nized models. Rather, we are concerned with the balancing of the discretization
error stemming form the FE-approximation of the macroscopic problem (4.2.4)
with the discretization errors of the auxiliary problems (4.2.5). Thus, we assume
the following.

Assumption 4.2.4.
(i) The Solution spaces Uε, U, Wj, the semi-linear forms aε, a and b j and the function-

als Fε ∈ L(Uε,R), Fv ∈ L(U,R) and Fw j ∈ L(Wj,R) are chosen s.t. there exist
unique solutions to Problem 4.2.1 and Problem 4.2.2.

(ii) The number M in Problem 4.2.2 which describes the number of auxiliary problems
is a priori known and “reasonably small”, cf. Remark 4.2.5

(iii) Let vε be the solution to Problem 4.2.1 and {v, w} the solution of Problem 4.2.2.
We assume that Jε(vε)→ J(v, w) as ε→ 0. Here, Jε and J are given functionals,
acting on the solution space of microscopic resp. the homogenized equation.
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Remark 4.2.5. A short note regarding the severeness of the Assumption 4.2.4 (ii).
Linear PDEs with oscillating coefficients/on a perforated domain, where the oscilla-
tions/perforations do not depend on the macroscopic variable fulfil this assumption. The
same does hold for semi- and quasi-linear PDEs, see 5.2.3.

Let us turn back to the homogenized problem. Since the macroscopic model is
derived from the microscopic model by homogenization, the underlying PDEs
may differ (as in the case of Stokes equation, which becomes Darcy equation
after the upscaling), the coefficients are replaced with upscaled versions and the
boundary conditions may be different as well (as for example in the Stokes-Darcy
coupling). A prototypical example for the situation described in Problem 4.2.2 is
shown in Example 4.2.6, for more examples see Section 4.4. We will substantiate
the abstract notation by the following, well established standard Example 4.2.6
of homogenization theory, see also Section 2.2.

Example 4.2.6 (Laplace Equation with Oscillating Coefficients). Let Y = (0, 1)2 be
the unit cell,Ω ⊂ R2 be a bounded domain, f ∈ L2(Ω ) andε > 0 withε� diam(Ω ).
Consider the symmetric, Y-periodic diffusion tensor A = (Ai j) : R2 → R which we
assume to be elliptic, i.e. there existsα,β > 0 s.t. for y ∈ Y

α|ξ |2 ≤
2

∑
i, j=1

Ai j(y)ξiξ j ≤ β|ξ |2 ∀ξ ∈ R2. (4.2.6)

We define the oscillating coefficient Aε : Ω → R2 by

Aε(x) = A( x
ε ). (4.2.7)

The microscopic problem in weak form reads:

Find vε ∈ H1
0(Ω ) s.t.

(Aε∇vε,∇ϕε)Ω = ( f ,ϕε)Ω ∀ϕε ∈ H1
0(Ω ). (4.2.8)

We are interested in the solution of the macroscopic problem:

Find v ∈ H1
0(Ω ) s.t.

(Ahom(w)∇v,∇ϕv)Ω = ( f ,ϕv)Ω ∀ϕv ∈ H1
0(Ω ). (4.2.9)

The (constant) homogenized tensor, cf. (2.2.42)

Ahom(w) :=
( ∫

Y
A(y){∇w j · ei + δi j}dy

)
i j

(4.2.10)

depends on the solutions w j, j = 1, 2 of the auxiliary problems or cell problems:
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Find w j ∈ H1
per(Y) ∩

{
ϕw j ∈ H1(Y)

∣∣∣ ∫Yϕ
w j(y) dy = 0

}
s.t.

(A∇w j,∇ϕw j)Y = −(Aei,∇ϕw j)Y ∀ϕw j ∈ H1
per(Y). (4.2.11)

There holds then vε ⇀ v in H1
0(Ω ) as ε → 0, see for example Bensoussan et al. [22,

Chapter I, Theorem 6.1].

Keep in mind that we are interested in the functional value Jε(vε). Since the
computation of Jε(vε) is too expensive, we want to approximate this quantity by
J(v, w) where J is a functional acting on the solution space of the homogenized
problem. By substituting the microscopic solution vε with the pair (v, w) we
introduce a model error

Jε(vε)− J(v, w). (4.2.12)

Typically, a priori error estimates in global norms for the model error are available
(see references in the introduction), while error estimates in the quantity of
interest are mostly not available. The estimation of the model error, especially in
a quantity of interest, is of great importance in context of multiscale problems.
We cite the work Oden et al. [109] in which a method to estimate the model
error a posteriori is introduced. This approach allows for an adaptive modelling
controlled by the error in a quantity of interest and needs the local computation
of the microscopic problem. Nevertheless, we do not consider this aspect and
rely on available a priori error estimates as done in Ohlberger [110] and Abdulle
and Nonnenmacher [4] for example. Thus, we assume in the following:

Assumption 4.2.7. We consider an ε-range for the microscopic problems such that
the model error is small in comparison with the error introduced by the numerical
approximations.

Remark 4.2.8. A short note on the Assumption 4.2.7. In mathematical homogenization
the talk is often about the convergence of the microscopic solution towards the macroscopic
one. So if we are looking at a convergence result for ε→ 0, why are we talking about an
ε-range in the previous assumption?

This is due to the reason that in real applications, one is generally interested in the
solution of the microscopic equation for a given fixed value ε0, which describes the
features of, for example, some porous medium. Thus, the macroscopic solution is only
an approximation of the model we are interested in. The model error is preset by the
application. The Assumption 4.2.7 is to be understood in this sense. We consider only
applications which allow a “good” approximation by a homogenized problem.
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Our work is hence focused on the estimation of the discretization error

J(v, w)− J(vh, wh) (4.2.13)

of a general nonlinear functional J, where {vh, wh} represents an FE-approxima-
tion of {v, w}. This means we will derive an estimator ηwhich approximates this
discretization error. But more importantly, this chapter is focused on splitting
this error estimator into a part ηm, which stems from the discretization of the
macroscopic problem and parts ηc j , 1 ≤ j ≤ M, which measure the influence
of the discretization of the auxiliary problems. Additionally, we gain local
error indicators for the macroscopic mesh and the auxiliary-meshes. All these
ingredients are then used in the derivation of an adaptive solution algorithm for
the discretized homogenized problem.

4.3. Finite Element Approximation and Goal-Oriented
Error Estimation

In this section we describe briefly the problem discretization with the finite
element method in 4.3.1 and the representation of the consequently derived
discretization error J(v, w)− J(vh, wh) in 4.3.2. How to evaluate the error repre-
sentation is explained in 4.3.3; an adaptive algorithm based on this evaluation is
shown in 4.3.4.

4.3.1. Discretization with Finite Elements

We consider a discretization of Problems 4.2.1 and 4.2.2 using appropriate finite
element spaces which will be specified later in the numerical examples. For an
introduction on the finite element method we refer to standard text books as e.g.
Brenner and Scott [30], Ciarlet [41]. We will give a brief summary here to make
this chapter self-contained.

We are interested in the discretization error J(v, w)− J(vh, wh), where (vh,wh) is
the finite element approximation of the solution of Problem 4.2.2. The discrete
counterpart of the macroscopic problem reads

Problem 4.3.1 (Discrete macroscopic problem). Let Uh, Wj,h be appropriate finite
element spaces.

Find vh ∈ Uh and wh ∈Wh =× j Wj,h s.t.

a(vh, wh;ϕv
h) = Fv(ϕv

h) ∀ϕv
h ∈ Uh. (4.3.1)
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The solution components wh = (w j,h) j are given by

b j(w j,h;ϕ
w j
h ) = Fw j(ϕ

w j
h ) ∀ϕw j

h ∈Wj,h. (4.3.2)

Equation (4.3.1) is defined on the macroscopic domain Ω and the equations (4.3.2)
are defined on the auxiliary domains Z j. We consider shape-regular triangula-
tions of these domains given by a set of non-overlapping, non-degenerate open
grid-cells { K } s.t. the union of the closure of the grid cells covers the whole
domain. In our numerical example we use quadrilateral cells Km resp. Kc j and
define the triangulations T m

h = {Km} and T c j
h = {Kc j}. We denote the union

of aforementioned triangulations by Th =
⋃

j T
c j

h ∪ T m
h = {K}. The subscript h

corresponds, as usual, to a mesh parameter which is defined respectively on the
different domains as the piecewise constant function h|K = hK, where hK is the
cell diameter of the cell K.

One of the main goals of this work is to determine the triangulations T m
h and

T c j
h in an adaptive way such that the error with respect to a goal functional

is minimized for a given number of cells. We consider independent adaptive
meshes for all subproblems in 4.3.1. Local refinement is achieved by allowing
the subdivision of one cell without varying the neighbours. This is obtained
by introducing hanging nodes between a refined cell and its neighbours, see
Rheinboldt and Mesztenyi [113]. We allow only one hanging node per edge,
see also Figure 4.3.1. For practical purposes, we need also that all the involved
meshes follow a so called patch-structure. This means that each grid Th has a
corresponding coarse grid T2h such that Th is made up of a global refinement of
T2h, see again Figure 4.3.1 for an example of this.

Remark 4.3.2. Note that no degrees of freedom are connected to the hanging nodes. These
nodal values are eliminated from the linear system by interpolation s.t. the corresponding
finite element space is still H1-conform.

(a) Grid Th (b) Coarse mesh T2h

Figure 4.3.1.: Example of a grid Th with patch-structure (a) hanging nodes. The mesh
T2h in (b) is the result of a patch-wise coarsening of Th.
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In general, the discretization errors of all subproblems in 4.3.1 contribute to the
overall error in the goal functional. The question is, how big is the contribution?
In the numerical example of Section 4.4.1 we present an extreme case in which the
discretization of one auxiliary problem can be neglected completely. We derive a
method in the next sections that not only allows for an estimation of the different
sources of error separately, but takes also the coupling between the problems
into account.

4.3.2. Error Representation

In this section, we derive an a posteriori error estimator for the error arising
in the goal functional J due to the discretization of the macroscopic solution
v and the auxiliary solutions w with the finite element method. We follow
Becker and Rannacher [20] and employ the DWR method. First, we reformulate
Problem 4.2.2 to apply a theorem of Becker and Rannacher [20] to gain the desired
error estimator. Afterward, we translate the result back to the language of the
homogenized problem.

Problem 4.3.3 (Homogenized Problem in Compact Form). We use the notation of
Problem 4.2.2. Let U = U ×W. We define the semi-linear form ā : U × U → R and
the functional F ∈ L(U,R) forϕ = (ϕv,ϕw),ψ = (ψv,ψw) ∈ U by

ā(ψ;ϕ) = a(ψv,ψw;ϕv) +
M

∑
j=1

b j(ψ
w j ;ϕw j) (4.3.3)

and

F(ϕ) = Fv(ϕv) +
M

∑
j=1

Fw j(ϕw j) (4.3.4)

Problem 4.2.2 is then equivalent to: Find u ∈ U with u = (v, w), s.t.

ā(u;ϕ) = F(ϕ) ∀ϕ ∈ U . (4.3.5)

The finite element discretization of Problem 4.3.3 described in Section 4.3.1, reads
in compact form

Problem 4.3.4. We use the notation of Problem 4.3.1. Let Uh = Uh ×Wh. Find
uh ∈ Uh s.t.

ā(uh;ϕh) = F(ϕh) ∀ϕh ∈ Uh. (4.3.6)
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We keep in mind the goal of our computations.

Definition 4.3.5. Let the goal functional J : U ∪ Uh → R be given. Our goal is the
computation of the quantity J(u), where u is the solution of Problem 4.3.3.

Assumption 4.3.6. We assume for the following that

(i) Problems 4.3.3 and 4.3.4 have unique solutions and

(ii) J(uh)→ J(u) for h→ 0.

(iii) Furthermore we assume the existence of Fréchet derivative of the functional J and
the semi-linear forms a and b j up to the order three (w.r.t. their first argument).

In the DWR method an error estimator is obtained by weighting the residual of
the problem at hand with the solution of an appropriate adjoint (or dual) problem.
For the DWR error representation we need the residual of Problem 4.3.4, ρ(uh)(·),
which is defined by

ρ(uh)(ϕ) = Fv(ϕv)− a(vh, wh;ϕv)︸ ︷︷ ︸
=:ρv(uh)(ϕv)

+
M

∑
j=1

Fw j(ϕw j)− b j(w j,h;ϕw j)︸ ︷︷ ︸
=:ρw j (w j,h)(ϕ

w j )

, ϕ ∈ U ,

(4.3.7)

and can be split in the sum of the macroscopic residual ρv(uh)(·) and the auxil-
iary residuals ρw j(w j,h)(·).

Furthermore, we need the adjoint of Problem 4.3.3 considering the chosen goal
functional, which reads

Problem 4.3.7 (Dual Problem in Compact Form). Find z ∈ U s.t.

ā′(u; z,ψ) = J′(u;ψ) ∀ψ ∈ U . (4.3.8)

Its finite element discretization is

Problem 4.3.8. Find zh ∈ Uh s.t.

ā′(uh; zh,ψh) = J′(uh;ψh) ∀ψh ∈ Uh. (4.3.9)

Equivalently to (4.3.7), the adjoint residual ρ∗(uh, zh; ·) is defined as the sum of
the dual macroscopic residual ρv,∗(uh, zh)(·) and the dual auxiliary residuals
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ρw j ,∗(uh, zh)(·) which are defined by:

ρ∗(uh, zh)(ψ) := ∂v J(uh;ψv)− ∂v ā(uh; zh,ψv)︸ ︷︷ ︸
=:ρv,∗(uh ,zh)(ψv)

+
M

∑
j=1

∂w j J(uh;ψw j)− ∂w j ā(uh; zh,ψw j)︸ ︷︷ ︸
=:ρw j ,∗

(uh ,zh)(ψ
w j )

, ψ ∈ U . (4.3.10)

With these definitions at hand, we recall Becker and Rannacher [20, Proposition
2.2.] (adapted to our notation):

Theorem 4.3.9. Let u, uh be the solutions of Problem 4.3.3 and Problem 4.3.4 and let
z, zh be the solutions of the respective adjoint problems 4.3.7 and 4.3.8. We have the a
posteriori error representation

J(u)− J(uh) =
1
2 min
ψh∈Uh

ρ(uh)(z−ϕh) +
1
2 min
ϕh∈Uh

ρ∗(uh, zh)(u−ψh)

+ R (4.3.11)

with the residual ρ(uh)(·) defined in (4.3.7) and the adjoint residual ρ∗(zh)(·) defined
in (4.3.10). The remainder term R is given by

R = 1
2

∫ 1

0

{
J′′′(uh + se; e, e, e)− ā′′′(uh + se; zh + se∗, e, e, e)

−3ā′′(uh + se; e∗, e, e)
}

s(s− 1) ds, (4.3.12)

where e := u− uh and e∗ := z− zh.

To translate the error representation (4.3.11) of the goal functional into the terms
of Problem 4.2.2 we define the corresponding adjoint problem (see (4.3.8)) as
follows

Problem 4.3.10. Find (zv, zw) ∈ U ×W s.t.

∂va(v, w; zv,ψv) = ∂v J(u;ψv) ∀ψv ∈ U, (4.3.13a)
∂w j b j(w j; zw j ,ψw j) = ∂w j J(u;ψw j)− ∂w j a(v, w; zv,ψw j) ∀ψw j ∈Wj. (4.3.13b)

Thus, one has to solve first the macroscopic dual and then the dual auxiliaries.
The highlighted part in (4.3.13b) takes the coupling of the auxiliary problems
with the macroscopic equation into account.

We can also express the dual macroscopic residual ρv,∗(uh, zh)(·) and the dual
auxiliary residuals ρw j ,∗(uh, zh)(·) in these terms (note that the dual macroscopic
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residual does not depend on the solutions of the dual auxiliaries, i.e. there holds
ρv,∗(uh, zh)(·) = ρv,∗(uh, zv

h)(·)):

ρv,∗(uh, zv
h)(ψ

v) = ∂v J(uh;ψv)− ∂va(vh, wh; zv
h,ψv), ψv ∈ U, (4.3.14)

ρw j ,∗(uh, zh)(ψ
w j) = ∂w j J(uh;ψw j)− ∂w j a(vh, wh; zv

h,ψw j)

− ∂w j b j(w j,h)(z
w j
h ,ψw j), ψw j ∈Wj. (4.3.15)

Corollary 4.3.11. Theorem 4.3.9 reads with the introduced notation:

With ψv
h,ϕv

h ∈ Uh and ψ
w j
h ,ϕ

w j
h ∈Wj,h holds

J(u)− J(uh) =
1
2

{
ρv(uh)(zv −ϕv

h) + ρ
v,∗(uh, zv

h)(v−ψv
h)
}

(4.3.16a)

+
M

∑
j=1

1
2

{
ρw j(w j,h)(zw j −ϕw j) + ρw j ,∗(uh, zh)(w j −ψw j)

}
(4.3.16b)

+ R. (4.3.16c)

In Corollary 4.3.11 the error J(u) − J(uh) is split into two main components
(neglecting the remainder),

• a macroscopic part (4.3.16a) and

• an auxiliary part (4.3.16b).

This splitting allows for balancing the error stemming from the discretization of
macroscopic and auxiliary equations as shown in the examples in Section 4.4.

4.3.3. Practical Evaluation of the Error Estimator

The error representation (4.3.16) is not evaluable because the terms u and z are
the analytical solutions of problems (4.3.5) and (4.3.8). We will discuss in this
section how we make these terms computable to get an error estimator

η ≈ J(u)− J(uh). (4.3.17)

Additionally, we explain how we localize the error estimator η to the cells K of
our computational grid Th to gain a set of local error indicators

E := { ηK | K ∈ Th } (4.3.18)

used to steer a local mesh refinement. As before, we follow the lines of Becker
and Rannacher [20].
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Typically the remainder term R in (4.3.16) can be neglected in η, since it is of
higher order w.r.t. the errors e and e∗. In case the remainder term is large, e.g.
due to high non-linearities, and hence cannot be disregarded, we refer the reader
to Becker and Rannacher [20, section 6.2].

We aim at substituting the continuous primal and adjoint solution from the error
representation (4.3.16). There are various possibilities how to achieve this. One
can for example employ a better approximation of u and z using a richer finite
element space. This leads usually to good results, but it is mostly not worth to
spend more work in estimating the error than in solving the original problem.
In view of this consideration, we use here an approximation of the interpolation
errors z−ψh and u−ϕh by a patch-wise higher-order interpolation. This means
given the finite element approximations uh and zh we use component-wise
interpolations i+2huh and i+2hzh in a finite element space which is of higher order
w.r.t. the polynomial degree using a coarser mesh T2h obtained by combining
four adjacent cells of Th to one macro-cell (a so called patch). We replace then the
expressions z−ψh and u−ϕh in the error representation by

Πh zh := (i+2h − id)zh and Πh uh := (i+2h − id)uh. (4.3.19)

This approach is well established in the context of the DWR method and has
been used with success, see, e.g. Bangerth and Rannacher [14], Becker et al.
[21], Goll et al. [66] and the references therein. Also, for the scenario of uniformly
refined meshes and smooth primal and dual solutions, a proof that this weight-
approximation works can be found in Bangerth and Rannacher [14].

Taking all these modifications into account, we define the error estimator η by

η := 1
2

{
ρv(uh)(Πh zv

h) + ρ
v,∗(uh, zv

h)(Πh vh)
}︸ ︷︷ ︸

=:ηm

(4.3.20a)

+
M

∑
j=1

1
2

{
ρw j(w j,h)(Πh z

w j
h ) + ρw j ,∗(uh, zh)(Πh w j,h)

}
︸ ︷︷ ︸

=:ηc j

, (4.3.20b)

with the the macroscopic part ηm and the auxiliary part ηc = ∑
M
j=1 η

c j .

Example 4.3.12 (Error Estimator for Example 4.2.6). How would the error estimator
(4.3.20) look like for the approximation of Example 4.2.6? Assume that we are interested
in the mean of v over Ω , i.e.

J(u) :=
∫
Ω

v(x) dx = (1, v). (4.3.21)

We start off with the dual equations, the FE approximations are defined correspondingly.
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The dual macroscopic problem is: Find zv ∈ H1
0(Ω ) s.t.

(Ahom(w)t∇zv,∇ψv)Ω = (1,ψv)Ω ∀ψv ∈ H1
0(Ω ).

The dual auxiliaries are: Find zw j ∈ H1
per(Y) ∩

{
ψw j ∈ H1(Y)

∣∣∣ ∫Yψ
w j(y) dy = 0

}
s.t.

(At∇zw j ,∇ψw j)Y = −
(

∂w j A
hom(w)(ψw j)∇v,∇zv

)
Ω

∀ψw j ∈ H1
per(Y).

Back to the error estimator. Suppose we use of piecewise bi-linear approximations vh
and wh on a grid Th of the solutions v and w of equations (4.2.9) and (4.2.11) in
Example 4.2.6.

In this case, we would use an interpolation i+2h into the space of piecewise bi-quadratic
finite elements on T2h. The nine nodal values of a bi-linear finite element function on
four neighbouring cells are used to define a bi-quadratic interpolation on the union of
these four cells.

The parts of the error estimator for this example reads as

ηm = 1
2{( f v, Πh zv

h)Ω − (Ahom(wh)∇vh,∇Πh zv
h)Ω

+ (1, Πh vh)Ω − (Ahom(wh)
t∇zv

h,∇Πh vh)Ω}, (4.3.22a)

ηc j = 1
2{−(A

{
ei +∇w j,h

}
,∇Πh z

w j
h )Y

− (∂w j A
hom(wh)(Πh w j,h)∇vh,∇zv

h)Ω − (At∇z
w j
h ,∇Πh w j,h)Y}. (4.3.22b)

The last step is to split the various error parts of the error estimator (4.3.20) into a
set of cell-wise contributions E to drive an adaptive mesh refinement. We will
explain this at the Example 4.3.12.

A simple localization of (4.3.22), i.e. an evaluation of the involved integrals over
the cells K, leads generally to bad local error indicators due to the oscillatory
nature of the residuals see Carstensen and Verfurth [38]. We overcome this
shortcoming by integrating the residuals cell-wise by parts. Afterward, we sum
up the normal derivatives over inner cell-edges (the so called jump terms) and
distribute them, scaled by 1/2, onto the two neighbouring cells. We obtain

ηm = ∑
Km∈T m

h

η̃m
Km and ηc j = ∑

Kc j∈T
c j

h

η̃
c j

Kc j (4.3.23)
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with the local cell contributions η̃m
Km and η̃

c j

Kc j defined as

η̃m
Km = 1

2{( f v +∇ ·
(

Ahom(wh)∇vh

)
, Πh zv

h)Km

+ 1
2 ([n ·A

hom(wh)∇vh], Πh zv
h)∂Km\∂Ω

+ (1 +∇ ·
(

Ahom(wh)
t∇zv

h

)
, Πh vh)Km

+ 1
2 ([n ·A

hom(wh)
t∇zv

h], Πh vh)∂Km\∂Ω}

and

η̃
c j

Kc j =
1
2{ − (Aei,∇Πh z

w j
h )Kc j + (∇ ·

(
A∇w j,h

)
, Πh z

w j
h )Kc j

+ 1
2 ([n ·A∇w j,h], Πh z

w j
h )

∂Kc j\∂Y

− (∂w j A
hom(wh)(Πh w j,h)

∣∣∣
Kc j
∇vh,∇zv

h)Ω

+ (∇ ·
(

At∇z
w j
h

)
, Πh w j,h)Kc j + 1

2 ([n ·A
t∇z

w j
h ], Πh w j,h)∂Kc j\∂Y}.

Finally, local error indicators are gained by taking the absolute values:

ηm
Km = |η̃m

Km | ∀Km ∈ T m
h (4.3.24)

η
c j

Kc j =
∣∣∣η̃c j

Kc j

∣∣∣ ∀Kc j ∈ T c j
h (4.3.25)

Summing up all terms, we end up with a formula for the error estimator

η = ηm +
M

∑
j=1
ηc j ≈ J(u)− J(uh) (4.3.26)

as well as sets of local error indicators for the macroscopic and the auxiliary
problems,

Em = {ηm
Km |Km ∈ T m

h } and E c j := {ηc j

Kc j |Kc j ∈ T c j
h }. (4.3.27)

4.3.4. Adaptive Algorithm

The goal of the local adaption of the grids T m
h and T c j

h is the efficient approxima-
tion of the goal quantity J(u) up to a given tolerance TOL > 0∣∣J(u)− J(uh)

∣∣ < TOL. (4.3.28)
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We start our computation with relatively coarse grids and use then in every cycle
the error estimator η to check if our approximation is already good enough. If
this is not the case, we decide based on the ratio between ηm and ηc j , which
grids we refine. It is desirable to balance all the different parts of the error, i.e. to
have

ηm ≈ ηc1 ≈ · · · ≈ ηcM

during all the refinement cycles, as this is the most efficient way of distributing
the available resources, cf. Algorithm 4.3.1. We are free to set the parameters Ci in
line 16 of the algorithm, their value depends on the assumed local convergence
of the different error components.

If we have decided to refine a particular grid, we do this based on the given set
of local error indicators E . There are several ways which cells should be marked
for refinement, refer once more to Becker and Rannacher [20] for an overview.
In this chapter, we employ a refinement strategy based upon minimization of
expected error and computational effort required for the solution on the new
mesh, see Richter [114].

4.4. Numerical Examples

In this section we present the numerical results for three different problems
obtained by the adaptive Algorithm 4.3.1 showing the reliability of the error
estimator and local grid refinement.

As it is mostly done in a posteriori error estimation, we measure the quality of
the error estimator with the help of the so called effectivity index

Ie f f :=
η

J(u)− J(uh)
. (4.4.1)

An effectivity index close to one is the desired result.

We present all the equations in the examples in strong form, we refer again to
Remark 3.1.5.

All computations in this section are done using the toolkit DOpElib Goll et al.
[65] based upon the C++-library deal.II Bangerth et al. [15, 16].

4.4.1. Simple Poisson Example

This is an introductory example similar to Example 4.2.6, the only difference is
that we take non-homogeneous boundary conditions. To keep the golden thread,
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Algorithm 4.3.1.: Adaptive refinement algorithm.

1: Choose TOL > 0
2: Choose initial meshes T m

h
,1 and T c j

h
,1

3: Set n = 1, η0 = 2TOL
4: while ηn−1 < TOL do
5: Compute auxiliary solutions wn

j,h
6: Evaluate macroscopic semi-linear form a(·, wn)(·)
7: Compute macroscopic solution vn

h
8: Evaluate functional J(un

h)
9: Compute macroscopic dual solution zv

h
,n

10: Evaluate dual coupling term ∂w j a(v
n
h , wn

h)(zv
h

,n, ·)
11: Compute auxiliary dual solutions z

w j
h

,n

12: Evaluate ηm,n and ηc j ,n, set ηn = ηm,n + ∑
M
j=1 η

c j ,n

13: Set E = (ηm,n, ηc1 ,n, . . . , ηcM ,n, 0), sort E from large to small
14: for i = 1 : M + 1 do
15: Refine grid belonging to Ei adaptively
16: if Ei > CiEi+1 then
17: end for loop
18: else
19: continue for loop
20: end if
21: end for
22: Set n→ n + 1.
23: end while

we will show the first results of the adaptive algorithm in the framework of this
common example. The other examples in this section are more closely related to
the fuel cell model we consider in this dissertation in Chapter 5.

Let Ω = (0, 1)2. The microscopic problem in strong form reads:

Problem 4.4.1. Find vε s.t.

−∇ ·
(

Aε∇vε
)
= 1 in Ω , (4.4.2)

vε = x2
2 (−x2 + 11) on ∂Ω , (4.4.3)

with

Aε = λε id, (4.4.4)
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where λε(x) = λ( x
ε ) and

λ(y) = 64
9
√

17
(sin(2πy1) +

9
8 )(cos(2πy2) +

9
8 ), for y ∈ Y = (0, 1)2. (4.4.5)

We are interested in the quantity

J(v) =
∫
Ω

v(x) dx. (4.4.6)

v is the solution of the macroscopic problem belonging to Problem 4.4.1, which
reads in strong form

Problem 4.4.2. Find v s.t.

−∇ ·
(

Ahom∇v
)
= 1 in Ω , (4.4.7)

v = x2
2 (−x2 + 11) on ∂Ω . (4.4.8)

See Example 4.2.6 for the definition of Ahom and the cell problems.

Remark 4.4.3. In the example at hand, the correct homogenization coefficient and
macroscopic solution are known. For x ∈ Ω there holds

Ahom = id and v(x) = x2
2 (−x2 + 11). (4.4.9)

This means that the macroscopic solution is independent of x1 and subsequently the cell
problem related to this direction should not contribute to the solution. We will see that
the adaptive algorithm picks up on this behaviour.

As the solution is smooth and the functional has no special local features, we do not
expect to experience local refinement on the macroscopic level. This example highlights
the fact that the algorithm can handle the estimation and separation of the different
error-shares.

We discretize the macroscopic problem and the cell problems with bi-linear
elements. The direct solver UMFPACK is employed for the solution of the
emerging discrete equations, see Davis [50].

Independence of the different error parts Of special importance when split-
ting the overall discretization error into the different parts is the independence
of the various error components of the refinement of the other parts. This is
numerically justified in this paragraph.
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In Table 4.4.1 we present the behaviour of the different parts of the error estimator
for a fixed mesh under the refinement of the other parts of the discretization.
Listed are

• the degrees of freedom (DoF) used in the discretization of the macroscopic
problem, DoFm,

• the DoF used in the discretization of the two cell problems, DoFc1 and
DoFc2 , and

• the value of the different parts of the error estimator, ηm, ηc1 and ηc2 .

For example, in the first big row, we keep DoFm constant whereas we refine the
meshes of the cell problems globally. We see that the changes in ηm are negligible,
i.e. the error estimator of the macroscopic problem is independent with respect
to changes of the meshes of the cell problems. The same holds true for the other
cases. This gives a numerical confirmation that the error estimators can be split
into the decoupled terms ηm, ηc1 and ηc2 and justifies the balancing strategy
presented in Algorithm 4.3.1.

DoFm DoFc1 DoFc2 ηm ηc1 ηc2

1,089 81 81 7.28 · 10−5

1,089 289 289 7.94 · 10−5

1,089 1,089 1,089 8.09 · 10−5

1,089 4,225 4,225 8.13 · 10−5

1,089 16,641 16,641 8.13 · 10−5

81 1,089 81 5.35 · 10−34

289 1,089 289 9.41 · 10−35

1,089 1,089 1,089 1.25 · 10−34

4,225 1,089 4,225 5.97 · 10−35

16,641 1,089 16,641 2.89 · 10−34

81 81 1,089 4.79 · 10−4

289 289 1,089 4.85 · 10−4

1,089 1,089 1,089 4.86 · 10−4

4,225 4,225 1,089 4.87 · 10−4

16,641 16,641 1,089 4.87 · 10−4

Table 4.4.1.: Independence of the error estimators on the refinement of the other parts of
the problem.

Results of the adaptive algorithm In Table 4.4.2 we apply the adaptive algo-
rithm as explained in the previous chapter onto the problem at hand. Besides
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the DoF and the various parts of the error estimator η, the error in the functional
J(e) := J(u)− J(uh) and the quality measure Ie f f are shown. We see that the
effectivity index is close to one throughout the whole adaptive cycle, showing
that the error estimator is able to estimate the overall discretization error.

Note also, that the correct macroscopic solution (4.4.9) is independent of x1,
and because of that, the entries Ahom

11 and Ahom
21 are irrelevant for the exact

computation of J(v). The error contribution from the first cell problem is therefore
zero and our estimator ηc1 shows precisely this feature. Since our refinement
strategy based on the presented error estimator takes into account only the
necessary components, it does not refine the first cell problem at all.

We note in addition that even though we use adaptive mesh refinement, the
macroscopic problem is refined globally. This is due to the fact that the dis-
cretization error is distributed evenly across all cells, so that our refinement
Algorithm 4.3.1 selects all the cells of T m

h to be refined, which is in fact the most
efficient refinement strategy in this situation.

DoFm DoFc1 DoFc2 J(e) ηm ηc1 ηc2 Ie f f

25 81 81 1.3 · 10−2 4.7 · 10−3 −7.5 · 10−35 6.0 · 10−3 0.79
81 81 189 3.4 · 10−3 1.3 · 10−3 −2.1 · 10−34 2.2 · 10−3 1.02

289 81 353 1.3 · 10−3 3.2 · 10−4 −3.5 · 10−34 8.7 · 10−4 0.92
1,089 81 1,313 3.3 · 10−4 8.1 · 10−5 −8.5 · 10−35 2.4 · 10−4 0.97
4,225 81 4,593 8.8 · 10−5 2.0 · 10−5 1.7 · 10−34 6.6 · 10−5 0.98

16,641 81 6,533 5.1 · 10−5 5.1 · 10−6 2.4 · 10−33 4.5 · 10−5 0.99
16,641 81 23,505 1.7 · 10−5 5.1 · 10−6 1.7 · 10−33 1.2 · 10−5 0.99
66,049 81 29,933 1.2 · 10−5 1.3 · 10−6 −4.3 · 10−33 1.1 · 10−5 0.99

Table 4.4.2.: Results of local mesh refinement applied to the simple Poisson example.

4.4.2. Nonlinear Multi-Cell Example

The first example in Section 4.4.1 showed merely a proof of concept, whereas this
example corresponds to a more complex situation to present the advantages of
our adaptive Algorithm 4.3.1. In comparison with the first example, we have
now a non-constant macroscopic diffusion coefficient and a nonlinear equation.
We consider a perforated domain on the microscopic level as opposed to the
periodically oscillating coefficient in the previous example.

Let the macroscopic domain Ω = (0, 2)2 be split into the domains Ωm and Ωb
and the separating lines Γ as shown in Figure 4.4.1a. The microscopic problem
is defined on the periodically perforated domain Ωε (see Definition 2.2.6). The
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shape of the inclusion depends on the position in the domain Ωε, i.e. all inclu-
sions that lie in Ωb are shaped as described Yb and all inclusions that lie in Ωm
are shaped as described Ym. The unit cell Ym which describes the microscopic
domain in the middle part Ωm is a circle with radius 0.25 and center (0.5, 0.5),
see Figure 4.4.1c. In Figure 4.4.1b we see a sketch of Yb, which shows the unit-cell
correlated to the pore-space in the brown-sketched regions Ωb.

ΓD

Ωb
Γ

Γ

Ωb

Ωm

ΓNΓN

ΓE
(a) Ω

Yb
s

Yb
f

(b) Yb

Ym
f

Ym
s

(c) Ym

Figure 4.4.1.: Overview of the distribution of the two different inclusions in (a). In the
brown parts Ωb the microscopic domain is made up of repetitions of Yb,
see (b). In the white part Ωm, the inclusions look as shown in the unit
cell Ym, see (c). The grey parts in the two unit cells represent the solid
inclusions.

We split the boundary of Ωε into the disjunct parts ΓD, ΓN, ΓE and ΓO. ΓO repre-
sents the boundary of the inclusions, the other parts of the boundary are defined
as:

ΓN := {0, 2} × (0, 2), (4.4.10)
ΓD := (0, 2)× {0, 2}, (4.4.11)
ΓE := (1, 1.5)× {0}. (4.4.12)

The microscopic problem is a nonlinear PDE and reads as follows:

Problem 4.4.4. Find vε s.t.

−∇ ·
(
Aε(1 + vε)∇vε

)
= 0 in Ωε, (4.4.13a)

vε = gD on ΓD, (4.4.13b)
vε = 0 on ΓO, (4.4.13c)

n ·
(
Aε(1 + vε)∇vε

)
= gN on ΓN, (4.4.13d)

with

Aε = λε id, (4.4.14)

107



CHAPTER 4. DWR FOR HOMOGENIZATION PROBLEMS

where,

λε(x) = λ(x, x
ε ) =

λm := 0.1χYm
f
( x
ε ), x ∈ Ωm,

λb := χYb
f
( x
ε ), x ∈ Ωb,

(4.4.15)

and the boundary data is

gD = 1
2 exp

(
(−20(x− 0.5)2

)
+ 0.3, (4.4.16)

gN = −0.08. (4.4.17)

Remark 4.4.5. This example is motivated by the mass-transport equation we model in
the anode of the fuel-cell in Chapter 5. Given a distribution of some chemical species at
the boundary between anode and gas channel ΓD we are interested in the distribution of
the species across the anode, which consist in this case of the compound of two different
materials with specific diffusion properties and pore-shapes. The part of the boundary
Γ denotes the interface between anode and electrolyte and thus we prescribe a negative
flow of the species. Even if the given model is not actually the one we use in Chapter 5,
we opted for a nonlinear PDE to show that our algorithm works in this case too. In
the situation described here, the amount of the species at the boundary ΓE is of special
interest, see Chapter 5.

The homogenization of this microscopic PDE leads to a nonlinear macroscopic
equation and a homogenized diffusion coefficient which depends on four cell
problems (see Chapter A for a formal derivation). These cell problems are given
as follows.

Problem 4.4.6. Find wi, j, i ∈ {m, b}, j ∈ {1, 2} s.t. wi, j is Y-periodic and

∇ · (λi)∇wi, j = −∇ · λie j in Yi
f , (4.4.18)

n · λiwi, j = −n · λie j on ∂Yi
s. (4.4.19)

The macroscopic problem is defined on the square Ω = [0, 2]2 and reads in
strong form

Problem 4.4.7. Find v s.t.

−∇ ·
(

Ahom(1 + v)∇vε
)
= 0 in Ωε, (4.4.20a)

v = gD on ΓD, (4.4.20b)

n ·
(

Ahom(1 + vε)∇vε
)
= gN on ΓN , (4.4.20c)
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Here w = (wm, wb) with wm and wb being the solutions of the cell problems 4.4.6.
The homogenization tensor is defined as

Ahom(w, x) =

{
Ahom

m (wm), x ∈ Ωm,
Ahom

b (wb), x ∈ Ωb,
(4.4.21)

with

Ahom
m/b(wm/b) :=

∫
Y
λm/b(y){∇wm/b, j · ei + δi j}dy)i j. (4.4.22)

The quantity of interest in this example is given by

J(u) =
∫
Γ

v(s) ds. (4.4.23)

In Table 4.4.3 we see the results of our algorithm used to solve Problem 4.4.7. We
use bi-linear finite elements for the discretization of all the involved problems.
The notation in the table is analogous to the one described in Section 4.4.1.
Table 4.4.3a shows the results for the macroscopic problem, whereas 4.4.3b and
4.4.3c show the DoF and error estimators for the four cell problems.

We see that our estimator is able to estimate the total error quite accurate (note
that it is a nonlinear problem), as 0.5 ≤ Ie f f ≤ 1 throughout the computation.
Moreover, the total error gets evenly distributed over the different cell problems
and the macroscopic problem as expected by our error balancing strategy.

In the balancing procedure we note that the cell problem related to the x1-
direction Ωm needs much less assigned degrees of freedom to get its error share
into the same magnitude as the other parts. This behaviour shows that the diffu-
sion in x1-direction in this part of the domain has minor influence on the goal
functional.

Lastly, our error estimator provides also meaningful local error indicators, as
one can see in Figure 4.4.2. This figure shows the relative error in the target
quantity plotted versus the sum of all DoF, i.e. the sum of DoFm and the degrees
of freedom used in the four cell problems. We see clearly the superiority of the
algorithm using local grid refinement and balancing of different error parts in
comparison with global refinement. The global refinement results in a conver-
gence rate of approximately 1.5, whereas we achieve a convergence of order 2
with our algorithm (w.r.t. h̃ = DoF−0.5).

In Figure 4.4.3 we see the resulting locally refined meshes after the fifth refinement
cycle. The macroscopic domain is mostly refined in the vicinity of the boundary
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DoFm J(u)−J(uh)/J(u) η/J(u) ηm/J(u) Ie f f

1,089 −7.7 · 10−2 −4.5 · 10−2 −1.6 · 10−2 0.58
2,123 −3.0 · 10−2 −1.7 · 10−2 −6.4 · 10−3 0.58
5,115 −1.2 · 10−2 −7.7 · 10−3 −2.7 · 10−3 0.62
9,167 −5.7 · 10−3 −3.9 · 10−3 −1.5 · 10−3 0.69

25,249 −2.2 · 10−3 −1.5 · 10−3 −4.9 · 10−4 0.70
34,423 −1.1 · 10−3 −8.1 · 10−4 −3.5 · 10−4 0.77

118,717 −3.6 · 10−4 −2.7 · 10−4 −9.4 · 10−5 0.76
247,333 −1.4 · 10−4 −1.1 · 10−4 −4.1 · 10−5 0.82

(a) Data of the macroscopic problem.

DoFcm,1 DoFcm,2 η
cm,1/J(u) η

cm,2/J(u)

288 288 −2.3 · 10−4 −9.3 · 10−3

288 1,088 −2.3 · 10−4 −2.6 · 10−3

288 3,924 −2.3 · 10−4 −7.9 · 10−4

1,088 5,680 −6.4 · 10−5 −6.3 · 10−4

1,088 21,108 −6.4 · 10−5 −1.7 · 10−4

4,008 37,120 −1.8 · 10−5 −1.4 · 10−4

6,592 135,308 −1.5 · 10−5 −3.7 · 10−5

14,000 420,424 −1.0 · 10−5 −1.2 · 10−5

(b) Data of Cell Problem on Ym.

DoFcb,1 DoFcb,2 η
cb,1/J(u) η

cb,2/J(u)

358 358 −4.5 · 10−3 −1.5 · 10−2

784 758 −1.9 · 10−3 −6.2 · 10−3

1,350 1,362 −9.7 · 10−4 −3.1 · 10−3

4,132 3,198 −3.8 · 10−4 −1.4 · 10−3

10,208 7,260 −1.8 · 10−4 −6.3 · 10−4

32,682 23,338 −6.7 · 10−5 −2.4 · 10−4

102,900 68,044 −2.7 · 10−5 −9.8 · 10−5

292,408 209,814 −1.1 · 10−5 −3.8 · 10−5

(c) Data of cell Problem on Yb.

Table 4.4.3.: Results of the adaptive algorithm applied to the multi-cell example.

ΓE where the functional is evaluated. We also see refinement at the points where
the interface Γ has kinks. Note that the effective diffusion coefficient has a jump
across these faces and that the solution is thus not as smooth in theses points as
it is in the rest of the domain. The small line of refined cells in the left half of the
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Figure 4.4.2.: Plot of error in target quantity vs. DoF for global and local refinement of
multi-cell problem.

vicinity of ΓD are due to the prescribed Dirichlet function which has relatively
large gradients in this region.

The refinement of the cell problems on Ym, i.e. 4.4.3b and 4.4.3c, depends solely
on the smoothness of the solution. Note that, as the geometry and the data of
the PDE are symmetric, so are the grids. The meshes on Yb are mostly refined
around the re-entrant corners.

4.4.3. Stokes Flow over a Porous Bed

With this example we extend our approach to problems in which an effective
interface condition is derived by auxiliary problems. We consider the situation
of Chapter 3, i.e. on the microscopic level, we are interested in a Stokes flow
over a porous bed. An interface condition between the free flow and the porous
part has to be imposed to calculate the effective velocity and pressure. This is
the Beavers-Joseph-Saffman law, see Beavers and Joseph [19], Jäger and Mikelić
[77], Saffman [117], which can be rigorously defined by solving an auxiliary
problem, see Chapter 3. To make this chapter self contained and to adapt the
problems to the notation in this chapter, we briefly repeat the equations from
Chapter 3. However, we refer to the previous chapter and the references therein
for a discussion of the homogenization process involved.

The setting for the microscopic problem is as follows: We assume a slow in-
compressible viscous flow around a fixed obstacle over a porous bed. The
microscopic geometry consists of the unconstrained fluid domain containing
an obstacle, which lies atop a periodically perforated porous flow domain, see
Figure 4.4.4b and definition Definition 2.2.6.
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(a) Ωh

(b) Yb
h (c) Yb

h

(d) Ym
h (e) Ym

h

Figure 4.4.3.: Locally refined meshes of multi-cell example after five refinement steps.
We see the macroscopic triangulation T m

h (a), the two grids of the cell
problems on Yb, (b) and (c), and the meshes connected to Ym, (d) and (e).
The grids in the left column belong to the cell problems connected to the
x1-direction, the grids in the right column belong to x2-direction.

In our computations, we take an ellipsoid with center at (0.5, 0.5), rotated by
45 degrees and with main axes with length 0.357142857 and 0.192307692 as the
obstacle Ys in the unit cell Y. The flow is modelled by the non-dimensional Stokes
equation, driven by a pressure difference along the x1-axis. Additionally, we
assume no-slip conditions on the upper and lower boundary as well as on the
boundaries of the inclusions.

We are only interested in the solution of the effective equation in the upper
fluid domain, see Figure 4.4.5 for the specific configuration of this example.
The geometry is taken from Schäfer and Turek [120]. As for the homogenized
equations, we assume that the following holds (again, see Carraro et al. [36] or
Chapter 3 for more details):

Problem 4.4.8. Find an effective velocity v and effective pressure p s.t.

−∆v +∇p = 0, in Ω (4.4.24a)
∇ · v = 0, in Ω (4.4.24b)
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Yf

Ys

(a)

Ωε

(b)

Figure 4.4.4.: Sketch of the microscopic geometry (b) and the corresponding unit cell (a)
of the Stokes example.

2.2
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0.15

Γ

Γns
ΓoutΓin

0.41

Figure 4.4.5.: Parameters of the macroscopic flow domain Ω of the Stokes example.

together with the boundary conditions

v = 0 on Γincl ∪ Γns ∪ Γ , v2 = 0 on Γin ∪ Γout ∪ Γ , (4.4.24c)
p = 19 on Γin, p = 0 on Γout, (4.4.24d)

v1 = εCbl
1 ∂2v2 on Γ . (4.4.24e)

The interface constant Cbl
1 = Cbl

1 (βbl
1 ) is defined as

Cbl
1 (βbl

1 ) =
∫ 1

0
βbl

1 (y1, 0) dy1 (4.4.25)

whereβbl is part of the solution of an additional problem called Navier Boundary
Layer (NBL), see Section 3.1.3 and especially Problem 3.1.25.

Remark 4.4.9. In our numerical computations Problem 3.1.25 is solved on a cut-off
domain with a length of ten unit cells (five above and below Σ , see also Figure 4.4.7), see
Section 3.2.2 for more details on the numerical treatment.

The quantity of interest in this example is the integral of the first velocity compo-
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nent over the interface Γ .

J(v, p) =
∫
Γ

v2(s) ds. (4.4.26)

The results of the adaptive algorithm for ε = 10−5 are reported in Table 4.4.4.
DoFm and ηm describe the degrees of freedom and the calculated error estimator
of the macroscopic flow domain, DoFc and ηc are the respective quantities for
the NBL. Note the excellent effectivity index, which is close to one even for the
relatively coarse grids after the first refinement step. The refinement strategy
is able to balance the error between the macroscopic domain and the boundary
layer problem quite well.

DoFm DoFc J(e)/J(v,p) η/J(v,p) ηm/J(v,p) ηc/J(v,p) Ie f f

1,610 6,888 4.2 · 10−4 1.1 · 10−3 1.8 · 10−4 9.1 · 10−4 2.60
3,824 8,662 4.9 · 10−5 6.2 · 10−5 1.8 · 10−5 4.4 · 10−5 1.26
7,848 13,534 4.7 · 10−6 5.9 · 10−6 3.2 · 10−6 2.7 · 10−6 1.26

20,840 27,174 8.7 · 10−7 9.0 · 10−7 4.3 · 10−7 4.7 · 10−7 1.04
53,814 49,772 2.1 · 10−7 2.2 · 10−7 7.0 · 10−8 1.5 · 10−7 1.05

102,980 105,910 3.3 · 10−8 3.3 · 10−8 1.2 · 10−8 2.1 · 10−8 1.01

Table 4.4.4.: Results of the adaptive algorithm applied to the Stokes example with ε =
10−5.
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Figure 4.4.6.: Plot of error in target quantity vs. DoF for global and local refinement with
ε = 10−5.

Figure 4.4.6 shows a comparison of the sum of DoFc and DoFm for local and
global refinement. Global refinement shows the expected convergence rate of
four, the local refinement is clearly superior to the global refinement in terms of
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degrees of freedom. After the first four refinement steps the error for the local
mesh refinement lies nearly two orders of magnitude below the global refinement.
This behaviour would be even more pronounced if the macroscopic- and cell-part
of the error are not so well balanced from the beginning, see Table 4.4.4, because
the ability of Algorithm 4.3.1 to balance the different parts of the error would
allow us to save even more degrees of freedom.

In Figure 4.4.7 we see the locally refined meshes T m
h and T c

h after five refinement
cycles. In the macroscopic domain, the refinement concentrates around the
inclusion, where the gradients of the solution are relatively big, and the left hand
side half of the interface Γ where the functional is evaluated. In the boundary
layer the major refinement is taken around the interface Σ and the first inclusion,
showing the influence region for the calculation of the interface constant.

(a)

(b) (c)

Figure 4.4.7.: Locally refined meshes of the Stokes example after five refinement steps.
We see the macroscopic triangulation in (a), the mesh of the cut-off NBL
domain (b) and a close up of this mesh around the interface Σ (c).
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5. Simulation of Porous Anode of an
SOFC

This chapter is devoted to develop and solve a model of the gas transport in
the anode and the overlying gas channel of a solid oxide fuel cell using the
algorithms and techniques developed in Chapter 3 and Chapter 4.

The chapter begins with a short introduction to the working principles and
electrochemical mechanisms in a fuel cell in Section 5.1. We develop an effective
model of the gas transport and present the results of the computations of this
model in Section 5.2 and Section 5.3.

5.1. Motivation & Short Introduction to Fuel Cells

As stated in the introduction (see Chapter 1), fuel cells look promising as an
efficient and environmentally-friendly energy conversion device in the near
future. There exists a broad range of different fuel cell types such as proton
exchange membrane fuel cells (PEMFCs) or alkaline fuel cells (AFCs), see e.g.
Andújar and Segura [12], Cook [47], Kirubakaran et al. [86], Larminie and Dicks
[90] for an overview. In this thesis we consider solid oxide fuel cells (SOFCs)
whose main characteristic is that they use a a solid ceramic as the electrolyte
and require a high operating temperature (800− 1000◦C). The main advantage
in comparison with other fuel cell types is that they have a higher electrical
efficiency and run on a variety of hydrocarbons instead of only pure hydrogen,
due to their capability of internal reforming. Their high operating temperature
makes SOFCs also suitable for a combined heat and power generation which
increases their efficiency even further, see Kirubakaran et al. [86], Stambouli and
Traversa [122]. Drawbacks of the SOFCs are that they have a relatively slow
start-up time and are build from cost-intensive materials. The latter is due to the
fact that the electrodes/electrolyte/gas channels have to withstand the heat in
the fuel cell.

SOFCs come in different designs, there are planar (anode, electrolyte and cathode
are flat plates) and tubular (anode, electrolyte and cathode are coiled inside a
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hollow cylinder) cells and they can be cathode-, electrolyte- or anode-supported,
see Suwanwarangkul et al. [125]. In this work we focus on a planar and anode-
supported SOFC.

There is still a need of improvement in fuel cell design; the energy produced by
fuel cells is still too costly, see, e.g. Cook [47], Kornely et al. [87] and Chapter 1.
The performance of a fuel cell highly depends on the materials used for electrodes
and electrolyte. But not only the choice which material to use is important. The
electrodes in a SOFC are build from porous materials, and the form of these
microstructures (which influences parameters like tortuosity and porosity) have
also a high impact on fuel cell efficacy, see DeCaluwe et al. [51].

Not all processes that occur in a fuel cell are yet fully understood. Thus, con-
siderable effort is still required in developing and testing models that describe
the physical processes accurately, see Bove and Ubertini [27]. Numerical sim-
ulations play an important role at this point as individual phenomena can be
examined separately, the simulations reduce the amount of experiments needed
in determine optimal parameters.

5.1.1. Working Principle

Fuel cells convert chemical energy into electrical energy (see Figure 1.1.1 for a
sketch which explains the principle). At the cathode, O2 gets reduced to O–

2-ions.
The electrons needed for this process flow from the anode through the load and
generate the electrical current. The oxygen ions travel through the electrolyte
(which allows only these oxygen-ions to pass and acts as a barrier for other ions
and electrons) to the anode where they react with H2 and produce H2O. During
this latter reaction the aforementioned electrons are emitted.

5.1.2. Loss Mechanisms

The reversible cell potential (also reversible cell voltage or open-circuit voltage) Vth is
the maximal electrical energy potential which can be obtained in a fuel cell. It
depends on temperature, pressure and the composition fuel and oxidant. In an
ideal fuel cell, Vth is the voltage of the fuel cell when no current is drawn. The
open circuit voltage in real life situation, Voc, is generally smaller than Vth. This
is due to several issues such as partial conductivity of the electrolyte (i.e. a few
electrons travel from the anode through the electrolyte to the cathode) or gas
leaking in the fuel cell apparatus. When a current is applied, more so called loss
mechanisms (also overpotentials or polarizations) can be observed, see Lucia
[97], Yang et al. [137].
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5.1. MOTIVATION & SHORT INTRODUCTION TO FUEL CELLS

The three main loss mechanisms are activation polarization ηact, ohmic polarization
ηohm and concentration polarization ηconc.

Activation Overpotential This loss is due to the slowness of the electrochemical
reactions in the three phase boundary (TPB, boundary of the electrodes
where electrolyte, electrode and pores meet). Each reaction has a certain
activation barrier that must be overcome before the reaction can actually
take place. This overpotential is called activation polarization.

Ohmic Overpotential This voltage drop is caused by the electric and ionic resis-
tance in the electrodes and the electrolyte.

Concentration Overpotential This polarization is due to an undersupply of fuel
or an overaccumulation of products in the reaction area of anode and
cathode, the TPBs. The transportation of the species to (or from) the TPB
in this case is too slow, resulting in a voltage drop. The concentration
overpotential splits into an anodic and cathodic part,

ηconc = ηA
conc + η

C
conc. (5.1.1)

This leads us to the following (approximative) formula for the cell voltage V:

V = Voc − ηact − ηohm − ηconc. (5.1.2)

In Figure 5.1.1 a characteristic plot of cell voltage vs. current density is shown for
a generic fuel cell. The exact form depends on the individual cell configuration.
Note the difference of Vth and Voc due to small imperfections in the fuel cell.Then
a steep initial drop in voltage due to activation overpotential is observed. This
is followed by a less rapid, linear decrease caused by ohmic overpotential. At
high currents, the voltage falls rapidly owing to concentration overpotential.
It has been reported that the performance of an anode-supported SOFC at a
high current density depends mostly on ηA

conc, see Chan et al. [40], Yakabe et al.
[136].

5.1.3. Goal of this Chapter

The scope here is to compute the quantity ηA
conc for a planar SOFC in a steady-

state configuration. To this end, we develop a 2-d model for mass and momentum
transport in the pore space Ωε of the anode and the overlying gas channel in
Section 5.2. As it is computationally too expensive to solve this model in Ωε, we
homogenize (formally) the aforementioned model for the case of a periodic pore
space. In this process the coupling conditions examined in Chapter 3 enter the
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Figure 5.1.1.: Plot of actual theoretical cell voltage Vth (blue line) and cell voltage V (red
line) vs. current density.

macroscopic model. Some effective parameters require the solution of several
auxiliary equations. As we want to approximate ηA

conc efficiently, we utilize the
algorithms developed in Chapter 4 to balance the discretization errors of the
auxiliary and macroscopic problem with respect to ηA

conc.

5.2. Full Model of the Anode Part

In this section we present the system of PDEs modelling gas transport in the an-
ode and the overlying gas channel. There is a vast amount of literature regarding
SOFC modelling, we only mention [10, 11, 24, 24, 27, 39, 68, 82, 95, 121, 131, 134].
Nearly all of aforementioned references use effective models with either fitted or
heuristically determined effective coefficients. One example is the use of effec-
tive diffusivity constants in species mass transport models. Mostly an effective
diffusivity constant is used which is defined as the normal diffusivity constant
scaled by εpor/τ with εpor being the porosity and τ the tortuosity, see for example
Veldsink et al. [133].

While this is a valid approach which leads to reasonably good agreement with
experiments (see for example Tseronis et al. [131]), we consider a different path
as this thesis focuses more on new numerical algorithms instead of state-of-the
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5.2. FULL MODEL OF THE ANODE PART

art models for SOFCs. We look for a model which holds true in the (periodic)
pore space of the anode (as well as in the corresponding gas channel) and then
consider a homogenized version with effective coefficients computed via some
auxiliary equations. Regarding the example above: As opposed to the scaling of
the diffusion coefficient by ε/τ, we use in this circumstances the effective diffusion
matrix as (2.2.42).

We are interested in a mixture of Nsp ∈ N different chemical species in a stationary,
2-d configuration. The assumption of stationarity is valid in our scenario, as we
are interested in the steady state behaviour of the fuel cell, which is reached by
the cell under working conditions after an initial ramp up time, see Bove and
Ubertini [27], Gemmen and Johnson [62], Tseronis et al. [131]. We list the basic
assumptions from which we develop the model on the microscopic level in the
next section.

Assumption 5.2.1. We consider the following assumptions to hold true for the rest of
this chapter. For a discussion on the validity of the assumptions (except the restrictions
imposed on the geometry) we refer to Suwanwarangkul et al. [125], Yakabe et al. [136]
and the references therein.

Geometry We model the equations in the two dimensional pore space Ωε which is
composed by the gas channel Ωf, the pore space of the anode, Ωε

p, and the planar
interface Γ , which separates Ωf and Ωε

p. We assume that Ωε
p is a periodically

perforated domain, see Definition 2.2.6.

Steady State We assume that the SOFC is in a steady state.

TPB The electrochemical conversion happens in the three phase boundary (TPB). We
consider fuel cells where the width of the TBP is negligible in comparison with the
width of the anode. Thus we assume that the electrochemical reactions happen on
the anode-electrolyte boundary.

Constant Current Density The current density is constant on the anode/electrolyte
interface Γel.

Isothermal We assume a constant temperature throughout the fuel cell.

Isobar We neglect the effects of pressure variations on mixture density and species mass
transport, see also (5.2.22).

Mixture Composition We model a mixture of Nsp = 3 different species: Hydrogen,
steam and nitrogen. Hydrogen is the fuel and steam is a product of the reaction at
the TPB. Nitrogen is used to dilute the mixture so that we can modify the hydrogen
concentration in the fuel without perturbing the H2-H2O ratio. The latter is
important to keep Voc constant when comparing different SOFC configurations,
see Yakabe et al. [136].
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Remark 5.2.2 (Characteristic Pore Size). We consider dimensional- as well as non-
dimensional formulations in this chapter, so let us remark shortly on the characteristic
pore size ε. In the previous chapters (esp. Chapter 3) we considered only adimensional
equations, thus ε had no dimension. In this chapter, ε denotes the characteristic pore size
in the physical space and is measured in m. Its nondimensional counterpart is ε∗, i.e. ε
scaled by a characteristic length.

In general, in this chapter we mark adimensional quantities with the superscript *.

Remark 5.2.3 (Geometry Assumptions). Note that we assume that the pore space is
made up of a periodic repetition of a unit cell in 2-d where the inclusion does not touch
the boundary of the unit cell. This has to be relaxed if we consider 3-d models in future
work, as one has to ensure that both the pore-space Ωε as well as the structure Ω \Ωε

are connected.

Regarding the periodicity assumption. The next step would be to consider randomly
perforated domains. There exists a procedure called “periodization”: It is sometimes
possible to to approximate the effective quantities in a scenario with randomly distributed
holes by considering only a representative slab of the microstructure and extend this
slab by periodicity on the domain. We are then back at the framework of periodic
homogenization, see Alexanderian et al. [7], Bourgeat and Piatnitski [26], Sab and
Nedjar [116].

Let us first define the (microscopic) geometry in a little more detail before we
start with the model derivation.

5.2.1. Fuel Cell Layout

We consider two types of SOFC geometries in this chapter, called type A and
type B. Both are sketched in Figure 5.2.1. Note that in both cases the anode Ωp is
a periodically perforated domain with the pore space Ωε

p, see Definition 2.2.6.

Type A Geometry

This microscopic domain is defined as in Definition 3.1.2 with the unconfined
fluid domain Ωf and the porous medium Ωp. We assume L, Hu, Hl > 0 and

xl
el, xr

el ∈ {x ∈ ∂Ωp | 0 ≤ x1 ≤ L and x2 = −Hl}, (5.2.1)

with xl
el,1 < xr

el,1, see also the sketch in Figure 5.2.1a.
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Figure 5.2.1.: Sketch of the two considered SOFC geometries.

Let the macroscopic flow domainΩ be defined by Definition 3.1.7. The boundary
∂Ωε is split into the following parts:

∂Ωε = Γin ∪̇ Γout ∪̇ Γel ∪̇ Γ εns, (5.2.2)

where

Γin := { 0 } × [0, Hu) , Γout := { L } × [0, Hu) , (5.2.3)

Γel := {x ∈ ∂Ω | x = xl
el + λ(xr

el − xl
el) for a λ ∈ [0, 1]}, (5.2.4)

and the no slip parts of the boundary are

Γns := ∂Ω \ { Γel ∪ Γin ∪ Γout } , (5.2.5)

Γ εns := Γns ∪
{

∑
(i, j)∈Z2

ε
(
∂Ys + (i, j)

)
∩Ωp

}
. (5.2.6)

The latter part in (5.2.6) describes the boundary of the inclusions, see Sec-
tion 3.1.1.

Type B Geometry

A sketch of this geometry can be seen in Figure 5.2.1b. When compared with
type A, the difference lies in the fact that the gas channel Ωf is lengthened and
has a buckling on the inflow side.

Let L, Hu, Hl > 0 be the length of the anode, the height of the gas channel and
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the height of the anode. Let xl
in, xr

in, xl
el, xr

el, xu
out, xl

out ∈ R2 be given such that

xl
in,2 = xr

in,2 ≥ Hu, xl
in,1 < xr

in,1, xl
el,1 < xr

el,1, (5.2.7)

xl
el, xr

el ∈ {x ∈ ∂Ωp | 0 ≤ x1 ≤ L and x2 = −Hl}, (5.2.8)

xu
out,1 = xl

out,1 ≥ L, xu
out,2 = Hu, xl

out,2 = 0. (5.2.9)

We define the gas channel Ωf and the porous anode Ωp by

Ωf := (xl
in,1, xl

out1)× Hu ∪ (xl
in,1, xr

in1)× xl
in2 (5.2.10)

Ωp := (0, L)× (−Hl, 0). (5.2.11)

The anodic pore space Ωε
p is defined as Ωp minus the obstacles, see (3.1.6). We

define the microscopic domain Ωε by

Ωε := Ωf ∪ Γ ∪Ωε
p, (5.2.12)

and the macroscopic domain Ω is consequently

Ω := Ωf ∪ Γ ∪Ωp. (5.2.13)

The interface Γ between the gas channel and the anode is defined as in (3.1.3).

The boundary of the domain is split into Γin, Γout, Γel and Γ εns. Inflow, outflow and
electrolyte-part of the boundary are defined as

Γin := {x ∈ ∂Ω | x = xl
in + λ(xr

in − xl
in) for a λ ∈ [0, 1]}, (5.2.14)

Γout := {x ∈ ∂Ω | x = xu
out + λ(xl

out − xu
out) for a λ ∈ [0, 1]}, (5.2.15)

Γel := {x ∈ ∂Ω | x = xl
el + λ(xr

el − xl
el) for a λ ∈ [0, 1]}. (5.2.16)

The rest of the boundary is impermeable and is defined as follows

Γns := ∂Ω \ { Γin ∪ Γout ∪ Γel } , (5.2.17)

Γ εns := Γns ∪̇
{

∑
(i, j)∈Z2

ε
(
∂Ys + (i, j)

)
∩Ωp

}
. (5.2.18)

Remark 5.2.4. In both type of geometries Γel describes the electrolyte/anode interface.

5.2.2. Microscopic Level

Our goal is to determine the distribution of the species in the anode and the gas
channel for a given fuel cell configuration. This means that we are interested
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in the velocity field vε and the pressure pε of the mixture as well as the species
mass fractions yεi with i = 1 . . . Nsp (see Definition 2.1.11). Let T be the constant
temperature in the fuel cell (see Assumption 5.2.1). We denote the molar mass of
species i by mi and its dynamic viscosity by µi.

Remark 5.2.5. For the mass and mole fractions, we sometimes use chemical symbols in-
stead of integers as indices. Let us assume that the first species in the mixture is hydrogen,
then we use the notation yε1 and yεH2

for the hydrogen mass fraction interchangeably.

Conservation Principles

In Ωε The solution variables vε, pε and yεi are subject to the following physical
principles: Conservation of momentum, conservation of total mass and conservation
of species mass. We present the PDEs modelling these conservation laws subse-
quently.

Conservation of Momentum Let the viscous stress tensor be given by

πεs := µε(∇vε +∇tvε)− 2
3
∇ · vε id . (5.2.19)

Conservation of momentum is described by the Navier Stokes equation

−∇ · πεs + ρεvε · ∇vε +∇pε = 0, (5.2.20)

where µε describes the dynamic viscosity of the mixture and ρε its density. The
dynamic viscosity of the mixture is modelled as in Bove and Ubertini [27] by

µε :=
Nsp

∑
k=1

yεkµk. (5.2.21)

The density ρε is modelled by the perfect gas law, see Definition 2.1.14, with the
following modification:

The flow of the mixture in Fuel Cells is in general slow, so a low Mach number
laminar flow is assumed, see Bove and Ubertini [27]. As a consequence, the total
pressure pε is split into a constant thermodynamic pressure pεth and a spatially
variable hydrodynamic part pεhyd, i.e. there holds for x ∈ Ωε

pε(x) = pεth + pεhyd(x), (5.2.22)

see, e.g., Braack and Richter [28].
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Because of the pressure splitting (5.2.22) and the fact that pεth � pεhyd (see Braack
and Richter [28]), in our model we use

ρε =
pεthmε

RT
(5.2.23)

instead of (2.1.28). mε describes the total molecular mass of the mixture as defined
in Definition 2.1.10.

Let Lc be the characteristic length of the flow domain and vc the characteristic
velocity of the flow. Reynolds number on the microscopic level is defined by

Reε :=
ρεvcLc

µε
. (5.2.24)

In a typical SOFC configuration we have Lc ≈ 0.001 m, µε ≈ 10−5 kg/ms and
ρε ≈ 0.01 – 0.1 kg/m3. In the gas channel there holds vc ≈ 1 m s−1 and thus
Reε ≈ 1− 10. However, the situation changes in the pore space of the anode.
The velocity is much smaller, so we should adapt the Reynolds number there.
There holds that the velocity in the pore space is of the order ε∗2 m s−1, see
Remark 3.1.17. A typical fuel cell has pore diameter of around 10−6 m, which
means ε∗ ≈ 10−3, note Remark 5.2.2. It follows that the Reynolds number in the
pores is around 10−5, which is in agreement with Haberman and Young [68].

We conclude that, at least in the pore space, inertia terms play a minor role in the
conservation of momentum. We go one step further and neglect the term

ρvε · ∇vε (5.2.25)

also in the gas channel. Additionally, we use the following approximation of the
viscous stress tensor,

πεs := µε∇vε (5.2.26)

instead of (5.2.19). We have tested both these simplifications at representative
examples and have seen that the changes in the results are negligible, at least in
the configurations we consider in this thesis.

All in all, we use the following Stokes equation in our model

−∇ · (µε∇vε) +∇pε = 0 (5.2.27)

with the expression (5.2.21) for the viscosity.
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Conservation of total mass The continuity equation for the stationary setting
we consider is given by

∇ · (ρεvε) = 0. (5.2.28)

The density is modelled as in (5.2.23).

Conservation of species mass Species mass conservation in the stationary set-
ting is given by (see e.g. Giovangigli [63])

∇ · (ρεyεi vε) +∇ ·Fεi = 0, i = 1, . . . , Nsp (5.2.29)
Nsp

∑
i=1

yεi = 1, (5.2.30)

with Fεi being the mass diffusion flux of species i. Before we discuss the form
of Fεi we want to remark that due to the mass conservation constraints there
holds

Nsp

∑
i=1

Fεi = 0. (5.2.31)

Remark 5.2.6. Note that if we sum equation (5.2.29) over i and consider (5.2.30) and
(5.2.31), we end up with the continuity equation (5.2.28). The system of PDEs is thus
over-determined. We solve that point by skipping one species equation in our final system,
i.e. we discard (5.2.30), evaluate yεNsp

by

yεNsp
= 1−

Nsp−1

∑
i=1

(5.2.32)

and consider (5.2.29) only for i = 1 . . . Nsp − 1.

Assumption 5.2.7. We choose to replace nitrogen in our computations, i.e. we set

yεN2
= 1− yεH2

− yεH2O. (5.2.33)

There are several possibilities how to model Fεi . We mention the three most used
in SOFC modelling: (extended) Fick’s model (FM), Dusty-Gas model (DGM)
and Stefan-Maxwell model (SMM), see Krishna and Wesselingh [89], Veldsink
et al. [133] and references therein for an overview as well as Fick [60], Mason and
Malinauskas [99], Maxwell [100], Stefan [124]. In Suwanwarangkul et al. [125]
the authors compare anodic overpotentials computed with these three transport
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models with experimental results. The DGM comes out on top, FM and SMM
also give reasonable results, depending on the configuration (pore size, current
density, mixture composition). Note that Suwanwarangkul et al. [125] restrict
their computations to the anode, the gas channel is not modelled. Tseronis
et al. [131], who incorporate the gas channel into the simulations, advertise a
combination of SMM in the gas channel and DGM in the anode.

We use FM in our computations and describe it in more detail later on, but
let us first discuss the reasoning behind this decision. We want to develop a
model that holds true in the pore space and allows for a upscaling process. The
DGM incorporates so called Knudsen diffusion, which accounts for molecule-wall
interactions. The Knudsen diffusion coefficient depends on the pore geometry
as well as the gas-surface scattering law of the involved molecules, see Mason
and Malinauskas [99]. Consequently, the computation of the Knudsen diffusion
coefficient directly from the pore geometry is a complicated and difficult task
and lies not in the scope of this work. Most authors that incorporate the Knudsen
term use either experimentally determined values or assume the pores to be long,
circular tubes, see Mason and Malinauskas [99]. For the reasons explained above
we dismiss the DGM.

That leaves us with a choice between FM and SMM. We choose FM over SMM
because Fick’s model allows for an explicit representation of the diffusive flux
which helps us to derive the effective equation more easily, see Section 5.2.3 and
Chapter A. A (formal) homogenization process of SMM would be lengthy and
would at the same time contribute only in a minor way to this work as the focus
of this thesis lies on the design of numerical methods.

Remark 5.2.8. Fick’s Law was originally derived to model the diffusion in a binary
mixture. However, there exists a modification called extended Fick’s law which is used
to model multi-species diffusion.

As discussed above, we use the extended Fick’s law for the mass diffusion flux,
which looks for species i:

FF,ε
i := −ρεDε

i
yεi
xεi
∇xεi (5.2.34)

with the diffusion coefficients

Dε
i :=

1− yεi
∑l 6=i

xεl
Dbin

il

=
1

mε
1− yεi

∑l 6=i
yεl

ml Dbin
il

(5.2.35)

due to Hirschfelder and Curtiss [72]. Dbin
il is the binary diffusion coefficient for

the species pair (i, l) and xεi denotes the molar fractions on the microscopic level,
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see Definition 2.1.9. There holds

∇xεi = ∇
(

mε

mi
yεi

)
= ∇yεi

mε

mi
+∇mε

yεi
mi

, and
yεi
xεi

=
mi

mε
. (5.2.36)

Together with the formula for the density (5.2.23) we can simplify the Fickian
mass diffusion flux as follows

FF,ε
i = −

pεthmε

RT
1

mε
1− yεi

∑l 6=i
yεl

ml Dbin
il

mi

mε

(
∇yεi

mε

mi
+∇mε

yεi
mi

)
, (5.2.37)

= −
pεth
RT

1− yεi
∑l 6=i

yεl
ml Dbin

il

(
∇yεi +∇mε

yεi
mε

)
. (5.2.38)

If we insert this expression into (5.2.29) we end up with the following expression
of the species mass conservation equation

∇ ·
(
ρεyεkvε

)
−∇ ·

(
pεth
RT

1− yεi
∑l 6=i

yεl
ml Dbin

il

(
∇yεi +∇mε

yεi
mε
))

= 0. (5.2.39)

Correction of Fluxes In general, overall mass conservation constraint demands
that the sum of all the fluxes amounts to zero, see (5.2.31). As the FM does in
general not obey this constraint, we correct the fluxes in the following way:

FF,ε,c
i := FF,ε

i − yεi
Nsp

∑
l=1

FF,ε
l . (5.2.40)

Remark 5.2.9. To declutter notation we denote the corrected Fickian fluxes FF,ε,c
i from

now on simply by Fεi .

Boundary Conditions

Having discussed the PDEs that hold true in Ωε in the previous section, we
present here the boundary conditions in our model. By and large, the boundary
conditions of Tseronis et al. [131] are used. The boundary ∂Ωε is split into the
parts Γin, Γout, Γel and Γ εns, see Section 5.2.1. We discuss the boundary conditions
on each of them separately. To make the presentation clearer we define the total
mass flux of species i as the sum of the corresponding diffusive and convective
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fluxes:

Nε
i := Fεi + ρ

εyεi vε (5.2.41)

Inflow Boundary We prescribe the inflow velocity vin as well as the mass frac-
tions yin

i for 1 ≤ i ≤ Nsp − 1.

Outflow Boundary We assume that the convective flux dominates the total flux
on the outflow boundary, i.e. let n be the normal on Γout, there holds then

Fεi · n = 0, i = 1, . . . , Nsp − 1. (5.2.42)

Moreover, we do not allow for a tangential flow, so there holds with the
tangential vector τ

vε · τ = 0. (5.2.43)

Additionally, we use the condition

n · (µε∇vε − pε id) · n = 0, (5.2.44)

see the pressure outflow condition of Barth and Carey [18] or the “do-
nothing condition” of Heywood et al. [71]. For incompressible flows on
planar boundaries, this last condition prescribes a mean pressure value. As
we have only weak compressible effects (especially near the outflow), the
same holds true in our examples.

Electrolyte Boundary Let a current density IC be given. On the boundary Γel,
which describes the electrode/anode interface, the electrochemical reaction
takes place. The consumption of hydrogen and simultaneous production
of steam is given by (see Bove and Ubertini [27], Zhu et al. [140])

FεH2
· n =

−ICmH2

2F
, (5.2.45)

FεH2O · n =
ICmH2O

2F
, (5.2.46)

where F denotes the Faraday constant, see Definition 2.1.13. For the velocity,
this is a no-slip boundary, so we set

vε = 0. (5.2.47)

Impermeable Boundary As the name suggests, nothing penetrates this part of
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the boundary and we have subsequently

Nε
i · n = 0, i = 1, . . . , Nsp, (5.2.48)

vε = 0. (5.2.49)

The Microscopic Model

Before we proceed with the presentation of the effective equations, let us summa-
rize the microscopic problem.

Problem 5.2.10. Let inflow velocity vin, inflow mass fractions yin
k , molar masses mk

and viscosities µk for k ∈
{

H2, H2O, N2

}
as well as the current density IC and the

thermodynamic pressure pεth be given. Let Ωε be a SOFC geometry of either type A or
type B as described in Section 5.2.1.

Find velocity field vε, pressure pεhyd and species mass fractions yεi s.t. for i ∈{
H2, H2O

}
there holds

−∇ · (µε∇vε) +∇pεhyd = 0 in Ωε, (5.2.50a)

∇ · (ρεvε) = 0 in Ωε, (5.2.50b)
∇ · (ρεyεi vε) +∇ ·Fεi = 0 in Ωε (5.2.50c)

and on the boundaries

vε = vin on Γin, (5.2.50d)
vε = 0 on Γ εns ∪ Γel, (5.2.50e)

n · (µε∇vε − pεhyd id) · n = 0 on Γout, (5.2.50f)

(5.2.50g)

as well as

yεi = yin
i on Γin, (5.2.50h)

Fεi · n = 0 on Γout, (5.2.50i)
Nε

i · n = 0 on Γ εns, (5.2.50j)

FεH2
· n = −IC

mH2

2F
on Γel, (5.2.50k)

FεH2O · n = IC
mH2O

2F
on Γel. (5.2.50l)
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Hereby, Fεi is given by (5.2.40), Nε
i by (5.2.41) and the following relations hold true:

yεN2
= 1− yεH2O − yεH2

, µε =
Nsp

∑
i=1

yεiµi, (5.2.51)

mε =
1

∑
Nsp

k=1
yεk
mk

, ρε =
pεthmε

RT
. (5.2.52)

The anode overpotential ηA
conc depends on the mass fractions of hydrogen and

steam at the TPB as well as the inflow concentrations. As only mean values of the
anode overpotential are experimentally accessible (Suwanwarangkul et al. [125],
Tseronis et al. [131], Yakabe et al. [136]), we define the mean anodic overpotential
functional JA by:

Definition 5.2.11 (Mean Anodic Overpotential). Let ϕH2
and ϕH2O be the mass

fractions of hydrogen and steam in a SOFC of type A or B. The functional representing
the mean anodic overpotential is defined by

JA(ϕH2
,ϕH2O) :=

1
|Γel|

∫
Γel

ηA
conc(s) ds (5.2.53)

=
RT

2F|Γel|

∫
Γel

log
(ϕH2

(s)yin
H2O

ϕH2O(s)yin
H2

)
ds

yin
H2

and yin
H2O are the mass fractions at the inflow boundary.

We summarize molar weights, viscosities and the binary diffusion coefficients of
hydrogen, steam and nitrogen in Table 5.2.1. Note that there holds Dbin

i j = Dbin
ji .

Adimensionalization

We present the non-dimensional version of Problem 5.2.10. To this end, we
choose characteristic quantities as defined in Table 5.2.2.

Non-dimensional quantities are marked with the superscript ∗. We set

x = Lx∗, vε = vcvε,∗, pεth = pc pε,∗
th , pεhyd = pc pε,∗

hyd, (5.2.54a)

Dbin
i j = DcDbin,∗

i j , mi = mcm∗i , µi = µcµ
∗
i , vin = vcvin,∗. (5.2.54b)

It follows ∇ = 1
L∇∗ and we get the following adimensional formulation of

Problem 5.2.10
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Molar Weights in 10−3 kg/mol

mH2
2.1588

mH2O 18.015 28
mN2

28.0134

Viscosities in 10−5 kg/m s

µH2
1.8770

µH2O 3.7585
µN2

4.158 083

BDC in 10−4 m2/s

Dbin
H2 ,N2

6.2868
Dbin

H2O,N2
2.21

Dbin
H20,H2

7.535

Table 5.2.1.: Molar weights, viscosities and binary diffusion coefficients (BDC) for the
considered species.

Problem 5.2.12 (Adimensional Microscopic Problem). Let inflow velocity vin,∗,
inflow mass fractions yin

k , molar masses m∗k and viscosities µ∗k for k ∈
{

H2, H2O, N2

}
as well as the current density IC and the thermodynamic pressure pεth be given. Let Ωε

be a SOFC geometry of either type A or type B as described in Section 5.2.1. Let Ωε,∗ be
Ωε scaled by Lc, the same holds true for the boundaries with superscript *.

Find velocity field vε,∗, the pressure pε,∗
hyd and the species mass fractions yεi s.t. for

i ∈
{

H2, H2O
}

there holds in Ωε,∗

−∇∗ · (µε,∗∇∗vε,∗) +∇∗pε,∗
hyd = 0, in Ωε,∗ (5.2.55a)

∇∗ · (mε,∗p∗thvε,∗) = 0, in Ωε,∗ (5.2.55b)
∇∗ · (mε,∗p∗th yεi vε,∗) +∇∗ ·Fε,∗

i = 0, in Ωε,∗, (5.2.55c)

with

Fε,∗
i =

RT
pcvcmc

Fεi . (5.2.55d)

On the boundaries, there holds

vε,∗ = vin,∗, on Γ ∗in, (5.2.55e)
vε,∗ = 0, on Γ ε,∗

ns ∪ Γ ∗el (5.2.55f)
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Characteristic quantities

Velocity vc m/s
Length Lc m
Pressure pc kg/m s2

Diffusion coefficient Dc m2/s
Molar mass mc kg/mol
Viscosity µc kg/m s

Other constants

Current density IC A/m2

Universal gas constant R J/mol K = kg m2/s2mol K
Faraday constant F A s/mol
Temperature T K

Table 5.2.2.: Constants overview.

and

n · (µε,∗∇vε,∗ − pε,∗
hyd id) · n = 0, on Γ ∗out, (5.2.55g)

yεi = yin
i , on Γ ∗in, (5.2.55h)

Fε,∗
i · n = 0, on Γ ∗out, (5.2.55i)

Nε,∗
i · n = 0, on Γ ε,∗

ns , (5.2.55j)

Fε,∗
H2
· n = −I∗C

m∗H2

2
, on Γ ∗el , (5.2.55k)

Fε,∗
H2O · n = I∗C

m∗H2O

2
on Γ ∗el . (5.2.55l)

Hereby, Fεi is given by (5.2.40), Nε
i by (5.2.41) and the following relations hold true:

yεN2
= 1− yεH2O − yεH2

, µε,∗ =
Nsp

∑
i=1

yεiµ
∗
i , (5.2.56)

mε,∗ =
1

∑
Nsp

k=1
yεk
m∗k

, I∗C = IC
RT

Fpcvc
. (5.2.57)

5.2.3. Effective Equations

After setting the system of equations on the microscopic level in the previous
section, we present here the system on the macroscopic level. A homogenization
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procedure lies out of the scope of this work. Instead we present a candidate
for the effective problem and discuss some heuristics why this might be the
right choice. Afterward, we solve a number of microscopic problems as well as
aforementioned effective equations for a test case and show that the microscopic
solution converge under the anodic overpotential functional towards the effective
solution.

We present the adimensional version, domains and boundaries with the super-
script * are scaled by Lc in comparison with their non-superscript counterparts.
Let Ω ∗ be a macroscopic SOFC geometry of either type A or type B as described
in Section 5.2.1. If not stated otherwise, we use the notation and requirements of
the previous section.

Fi, m, ρ and µ, are defined exactly as Fεi (cf. (5.2.40)), mε (cf. Definition 2.1.10),
ρε (cf. (5.2.23)) and µε (cf. (5.2.21)), when we use the macroscopic quantities yi,
xi, etc. instead of yεi , xεi in the respective definitions. The same holds true for the
non-dimensional versions of these quantities.

Let the interface constant Cbl
1 ∈ R be given by Definition 3.1.27, and the matrix

Ahom ∈ R2×2 by (A.1.36), see also (2.2.42). We define Fhom,∗ for x ∈ Ω ∗f ∪Ω ∗p
by

Fhom,∗(x) :=

{
F∗, x ∈ Ω ∗f ,
AhomF∗, x ∈ Ω ∗p .

(5.2.58)

The effective equations in non-dimensional formulation reads as follows (see
Chapter B for the dimensional formulation).

Problem 5.2.13. Let inflow velocity vin,∗, inflow mass fractions yin
k , molar masses m∗k

and viscosities µ∗k for k ∈
{

H2, H2O, N2

}
as well as the current density IC and the

thermodynamic pressure p∗th be given. Let ε∗ := ε
Lc

.

With the notation from above, find the velocity field v∗, the pressure p∗hyd and the
species mass fractions yεi s.t. for i ∈

{
H2, H2O

}
there holds

−∇∗ · (µ∗∇∗v∗) +∇∗p∗hyd = 0 in Ω ∗f (5.2.59a)

∇∗ · (m∗p∗thv∗) = 0 in Ω ∗f (5.2.59b)
∇∗ · (m∗p∗thω∗i v∗) +∇ ·F∗i = 0 in Ω ∗f , (5.2.59c)

∇∗ · (AhomF∗i ) = 0 in Ω ∗p . (5.2.59d)
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On the boundaries, there holds

v∗ = vin,∗ on Γ ∗in, (5.2.59e)
v∗ = 0 on Γ ∗f,ns, (5.2.59f)

n · (µ∗∇v∗ − p∗hyd id) · n = 0 on Γ ∗out (5.2.59g)

and

yi = yin
i on Γ ∗in, (5.2.59h)

F∗i · n = 0 on Γ ∗out, (5.2.59i)
N∗i · n = 0 on Γ ∗f,ns, (5.2.59j)

AhomF∗i · n = 0 on Γ ∗p,ns, (5.2.59k)

AhomF∗H2
· n = −I∗C

m∗H2

2
on Γ ∗el , (5.2.59l)

AhomF∗H2O · n = I∗C
m∗H2O

2
on Γ ∗el . (5.2.59m)

On the interface, the following coupling conditions hold true

[yi] = 0 on Γ ∗, (5.2.59n)

[Fhom,∗
i · n] = 0 on Γ ∗, (5.2.59o)

v∗2 = 0, on Γ ∗ (5.2.59p)

v∗1 +ε
∗Cbl

1
∂v∗1
∂x∗2

= 0 on Γ ∗. (5.2.59q)

In deriving the effective model we orient ourselves on the homogenized equa-
tions for the stokes flow (see Chapter 3) and the nonlinear diffusion equation (see
Chapter A). Note that we only use the formal argument of asymptotic expansion
in deriving the effective diffusion equation in Chapter A. Note also that the
derivation of the homogenized problem in Chapter 3 was for an incompressible
flow. However, computations of the compressible stokes flow on the microscopic
level in a typical SOFC configuration show only weak compressibility effects. We
also want to make clear that in general the product of two microscopic quantities
does not converge towards the product of the effective quantities, see Section 2.2.
We check the validity of the effective system by some numerical examples in
the next section. However, this is no proof and more work is required to prove
convergence w.r.t. ε.

In Chapter 3 the problem regarding the homogenization process of Stokes equa-
tion across an interface between a porous medium and an unconfined region
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was discussed extensively. The main problem was due to the different type of
effective PDEs in Ωf and Ωp. We do not expect this kinds of problems for the
nonlinear diffusion as the effective PDEs are of the same type on both sides of the
interfaces, see Jäger et al. [79] for a similar problem with the Laplace equation.

Note that we assume zero effective velocity in Ωp. This is due to the a priori
estimation of the effective velocity inΩp, which is of orderε∗2, see Theorem 3.1.16.
For a typical SOFC configuration we assume ε∗ to be in the order of 10−3 or 10−4,
so convective transport in the pores is negligible. This is in agreement with
experiments, see Yakabe et al. [136].

Confirmation by Direct Numerical Simulation

We show at an explicit example that the mean anodic overpotential for a series of
microscopic problems converge towards the macroscopic overpotential.

Input parameters

T 1000 K
phyd 101 300 kg/ms2

IC 50 A/m2

vin (x1, x2) 7→ (2x2(1− x2), 0) m/s
xin

H2
0.3

xin
H2O 0.6

Geometry parameters

Type A
Hu 1 m
Hl 1 m
L 1 m
xl

el (0,−1)
xr

el (1,−1)

Table 5.2.3.: Parameters of the homogenization error example.

For the parameters specified in Table 5.2.3 (see also Table 5.2.1) we compute the
solution of (the discretized versions of) the macroscopic Problem 5.2.13 and the
microscopic Problem 5.2.12 for

ε ∈
{

1,
1
3

,
1
6

,
1

10
,

1
16

,
1

30

}
. (5.2.60)
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The domain is of type A and the inclusions are circles with midpoint (0.5, 0.5)
and diameter 0.25 in the unit cell.

In Figure 5.2.2 the homogenization error

eε = JA(yH2
, yH2O)− JA(yεH2

, yεH2O) (5.2.61)

is shown. We observe a clear convergence (slightly faster than ε) of eε with ε→ 0.
Note that we deal with relatively big values of ε∗ (ε∗ = 1/30 means here that
we consider only 900 inclusions). Nevertheless, the (absolute) homogenization
error is 10−4 and, as the functional values in this example are of order 10−2,
the relative homogenization error is around 10−2. This shows that, at least for
this example, the macroscopic problem is a meaningful approximation of the
microscopic problems.

|eε|

10−4

10−3

10−2

1 1
3 0.1 1

30
ε∗

Figure 5.2.2.: Convergence of the homogenization error of the mean anode overpotential
functional.

5.3. Numerical Results

We apply the adaptive refinement algorithm developed in Chapter 4 (see Algo-
rithm 4.3.1) to the effective SOFC-model 5.2.13. The target quantity is the mean
anodic overpotential JA defined in Definition 5.2.11. We start by showing in
Section 5.3.2 with two simple examples that the adaptive algorithm developed in
Chapter 4 works for the SOFC model. In Section 5.3.3 we apply Algorithm 4.3.1
to a more realistic SOFC scenario.
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(a) Circular inclusion (b) Angular inclusion (c) Detailed inclusion

Figure 5.3.1.: Sketches of the unit cell geometries for the CIE(a), AIE(b) and DIE(c).

5.3.1. Discretization

We solve discretized versions of the macroscopic SOFC model (Problem 5.2.13),
the cut-off boundary layer (Problem 3.2.3) as well as the two cell problems for
the computation of Ahom (Problem 2.2.12, with A = id). All these problems are
discretized with systems of parametric finite elements. We use triangulations
of the domains based on quadrilateral cells which follow a patch-structure, see
Section 4.3.1. All Stokes equations are discretized with the Taylor-Hood element,
the other variables use a bilinear element. Curved boundaries are approximated
with a bi-quadratic mapping.

For the solution of the nonlinear equations we utilize an inexact Newton method
with line-search. The Newton matrix is updated only “when necessary”, i.e.
when the residual does not decrease fast enough. Linear systems are solved with
a direct solver (UMFPACK, see Davis [50]). All computations are done with the
software package DOpElib, see Goll et al. [65], which is based on deal.II, see
Bangerth et al. [15, 16].

5.3.2. Test Cases

In this section we test if the adaptive Algorithm 4.3.1 is able to handle the SOFC
model with two examples, called “circular inclusion example” (CIE) and “angular
inclusion example” (AIE), which only differ in their microstructure. In Table 5.3.1
and Table 5.2.1 the SOFC configuration is shown. Note that we specify xin

k instead
of yin

k . Of course, we can convert mole fractions into mass fractions. We choose
the geometry labeled Type B with a parabolic inflow on Γin. The two different
microstructures are shown in Figure 5.3.1. We describe their structure in the unit
cell Y = [0, 1]2.
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Input parameters

T 1000 K
pth 101 300 kg/ms2

IC 15 000 A/m2

vin (x1, x2) 7→ −1.5(0, 4
|Γin| (x1 − xl

in,1)(1−
x1−xl

in ,1
|Γin| )) m/s

xin
H2

0.6
xin

H2O 0.15

Geometry parameters

Type B
Hu 0.001 m
Hl 0.002 m
L 0.01 m
ε 2 · 10−5 m
xl

el (0002,−0.002)
xr

el (0.008,−0.002)
xl

in (−0.002, 0.002)
xr

in (−0.001, 0.002)

Table 5.3.1.: Parameters of test examples CIE and AIE.

CIE In this example the inclusion is a circle with midpoint at (0.5, 0.5) and a
diameter of 0.25, see Figure 5.3.1a.

AIE We do not give a precise definition of the angular microstructure in this
example and refer to Figure 5.3.1b instead.

Parts of the effective SOFC model (see Problem 5.2.13) are

• the macroscopic equation (5.2.59) on Ω ∗,

• the cut off Navier Boundary Layer Problem to compute Cbl
1 on Zk

l and

• two cell problems to compute Ahom on Yf.

We use the notation of Chapter 4. Let us explain how it applies to the situation
at hand. The triangulation of Ω ∗ is called T m

h , the triangulation of Zk
l is T bl

h and
the triangulation of Yf is (depending on which cell problem we consider) T c j

h for
j = 1, 2.

The total number of degrees of freedom, DoF, is defined by

DoF = DoFm + DoFc1 + DoFc2 + DoFbl, (5.3.1)
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where DoFm, DoFc j and DoFbl are the number of unknowns on T m
h , T c j

h and T bl
h

respectively.

Circular Inclusion Example

In Table 5.3.2 we see the results of Algorithm 4.3.1 with TOL = 1 · 10−5 and
Ci = 4 for the circular inclusions.

DoFm JA(yh) eh η ηm Ie f f

1,513 0.01898 1.6 · 10−4 1.6 · 10−4 1.1 · 10−4 1.02
4,275 0.01908 5.2 · 10−5 4.9 · 10−5 3.2 · 10−5 0.95
5,513 0.01910 3.2 · 10−5 2.9 · 10−5 2.2 · 10−5 0.92

15,767 0.01912 1.5 · 10−5 1.4 · 10−5 6.4 · 10−6 0.94
48,601 0.01913 3.9 · 10−6 4.0 · 10−6 1.9 · 10−6 1.02

(a) Data of the macroscopic problem.

DoFc1 DoFc2 DoFbl ηc1 ηc2 ηbl

80 80 1,457 3.4 · 10−6 4.8 · 10−5 −2.4 · 10−8

80 288 1,457 3.4 · 10−6 1.4 · 10−5 −2.4 · 10−8

80 1,088 1,457 3.4 · 10−6 3.8 · 10−6 −2.4 · 10−8

80 1,088 1,457 3.4 · 10−6 3.8 · 10−6 −2.5 · 10−8

288 3,972 1,457 9.9 · 10−7 1.1 · 10−6 −2.5 · 10−8

(b) Data of auxiliary problems.

Table 5.3.2.: Results of the local mesh refinement applied to the test problem CIE.

eh is the error in the functional JA:

eh := JA(y)− JA(yh) (5.3.2)

with y being the vector of mass fractions and yh its discrete counterpart. As
the solution to the macroscopic problem is of course unknown to us, we take a
reference value computed on a very fine grid as JA (y). η is the sum of the error
estimators ηm, ηc1 ,ηc2 , ηbl, which describe the error due to the discretization of
the macroscopic problem (ηm), the two cell problems (ηc j) and the boundary
layer problem (ηbl) as described in Section 4.3. The effectivity index is the ratio
of η and eh, see (4.4.1). Note that the error as well as the error estimators are
signed.
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We see that the algorithm works very well for this example. Throughout the
refinement process there holds 0.92 ≤ Ie f f ≤ 1.02, so we estimate the error
precisely. Moreover, the splitting of η into the macroscopic and auxiliary parts
works also very well too. For the initial mesh there holds

ηm > ηc2 � ηc1 � ηbl (5.3.3)

and consequently T c1
h gets much less refined than T c2

h and T m
h during the adap-

tive cycle process. We see also that the impact of Naviers Boundary Layer
discretization is very weak, and thus the T bl

h is not touched during the whole
process. The goal of the adaptive algorithm is to refine the grids in a way that in
the end all error-parts are balanced. We see that we achieve this in the example
at hand. After the last refinement step there holds

ηm ≈ 2ηc1 ≈ 2ηc2 , (5.3.4)

whereas in the beginning these three errors were stretched across nearly two
orders of magnitude.

Angular Inclusion Example

DoFm JA(yh) eh η ηm Ie f f

1,513 0.02611 2.4 · 10−4 1.8 · 10−4 1.1 · 10−4 0.73
4,157 0.02625 9.7 · 10−5 6.4 · 10−5 3.4 · 10−5 0.66
5,035 0.02629 6.1 · 10−5 4.3 · 10−5 2.4 · 10−5 0.71

16,077 0.02633 2.0 · 10−5 1.4 · 10−5 6.3 · 10−6 0.68
43,121 0.02634 8.1 · 10−6 5.8 · 10−6 2.2 · 10−6 0.72

(a) Data of the macroscopic problem.

DoFc1 DoFc2 DoFbl ηc1 ηc2 ηbl

1,287 1,287 19,741 4.3 · 10−6 5.9 · 10−5 −3.0 · 10−9

1,287 2,217 19,741 4.4 · 10−6 2.6 · 10−5 −3.0 · 10−9

1,287 3,739 19,741 4.4 · 10−6 1.5 · 10−5 −3.0 · 10−9

2,247 11,813 19,741 2.1 · 10−6 5.4 · 10−6 −3.1 · 10−9

5,147 25,939 19,741 1.0 · 10−6 2.7 · 10−6 −3.1 · 10−9

(b) Data of auxiliary problems.

Table 5.3.3.: Results of the local mesh refinement applied to the test problem AIE.

In Table 5.3.3 we see that the situation is basically the same for the example with
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the angular inclusion (TOL and Ci are choose as before). The only difference is
that the effectivity index is a bit worse in this example. This is due to the fact that
we have a lower regularity due to the reentrant corners in the cell problems. As
before, the Navier Boundary Layer has nearly no impact on JA. However, we see
that the cell problems are more important in this example than in CIE. On the
finest level there holds for AIE

DoFc1 + DoFc2 ≈ DoFm, (5.3.5)

whereas for the example with the circular inclusions there holds

10(DoFc1 + DoFc2) ≈ DoFm. (5.3.6)

For both problems, the second cell problem has a bigger impact on JA than the
first one. This is reasonable, since the second cell problem is connected with the
macroscopic diffusion in x2-direction, and the distribution of the species in this
direction is more important for the determination of JA than the distribution in
x1 direction.

Note that the anodic overpotential in the scenario with angular pores is more
than 25% higher than in the previous case with the circular inclusions. We see
that the microstructure has a significant influence on the overpotential.

5.3.3. More Detailed Microstructure Example

In this section we apply the adaptive algorithm to an example which is a little
bit more representative for real problems in the respect that we choose a more
detailed and complex inclusion in the unit cell which has more resemblance
with real pore structures. We call it the “detailed inclusion example” (DIE). The
configuration of the fuel cell model is shown in Table 5.3.4.

Regarding the inclusion in the unit cell, we choose the structure shown in Fig-
ure 5.3.1c, which is a more complicated version of the angular pores example in
the previous section. Note that we reduced the amount of hydrogen and steam at
the inlet in comparison with the previous examples. This corresponds to a higher
fuel utilization which in turn results in higher concentration overpotential. In
this scenario, a precise estimation of JA is essential for an accurate estimation of
fuel cell voltage, see Tseronis et al. [131].

In Table 5.3.5 the results of the adaptive algorithm for this example are shown.
We have no reference values for this case, so no “true” error or effectivity indices
are shown. We see in comparison with the previous examples that the cell
problems have become more important in the sense that we need more degrees of
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Input parameters

T 1000 K
pth 101 300 kg/ms2

IC 15 000 A/m2

vin (x1, x2) 7→ −1.5(0, 4
|Γin| (x1 − xl

in,1)(1−
x1−xl

in ,1
|Γin| )) m/s

xin
H2

0.2
xin

H2O 0.05

Geometry parameters

Type B
Hu 0.001 m
Hl 0.002 m
L 0.01 m
ε 2e-5
xl

el (0002,−0.002)
xr

el (0.008,−0.002)
xl

in (−0.002, 0.002)
xr

in (−0.001, 0.002)

Table 5.3.4.: Parameters of the DIE.

freedom to achieve the same accuracy. As before, the discretization of the Navier
Boundary Layer has a minor influence on the error in the anode overpotential.

This is a valuable information as it allows to save the effort of solving that
problem. In Figure 5.3.2 we show a plot of the total degrees of freedom versus
the relative value of the error estimator, i.e. the quantity

η

JA , (5.3.7)

for a global refinement, where in each refinement cycle we refine all triangulations
globally and our adaptive algorithm. We see clearly that the adaptive refinement
is superior in terms of degrees of freedom. In terms of runtime the global
refinement is 20 times slower than the adaptive algorithm. The source of the
savings is twofold.

• Firstly, we gain an advantage over global refinement by locally refining the
triangulations. This is especially effective if the solution has some localized
regions of reduced smoothness and/or the domain of dependence of the
goal functional is highly localized.
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DoFm JA(yh) η ηm

1,513 0.10069 6.7 · 10−4 3.2 · 10−4

4,383 0.10128 2.9 · 10−4 1.0 · 10−4

5,263 0.10154 1.5 · 10−4 6.4 · 10−5

17,315 0.10166 6.5 · 10−5 1.8 · 10−5

35,155 0.10172 2.9 · 10−5 8.2 · 10−6

(a) Data of the macroscopic problem.

DoFc1 DoFc2 DoFbl ηc1 ηc2 ηbl

4,741 4,741 101,219 3.5 · 10−5 3.1 · 10−4 −2.7 · 10−9

4,741 8,495 101,219 3.5 · 10−5 1.6 · 10−4 −2.8 · 10−9

10,319 21,659 101,219 1.6 · 10−5 7.0 · 10−5 −2.8 · 10−9

10,319 54,477 101,219 1.6 · 10−5 3.2 · 10−5 −2.8 · 10−9

22,423 158,589 101,219 8.1 · 10−6 1.3 · 10−5 −2.8 · 10−9

(b) Data of auxiliary problems.

Table 5.3.5.: Results of the local mesh refinement applied to detailed microstructure
example.

How does this apply to the situation at hand? The cell problems in the
DIE have (a lot of) reentrant corners (see Figure 5.3.1c), but the connection
with the goal functional JA is through the effective diffusion tensor Ahom,
which has no local features in Yf. On the macroscopic level, the solution
is relatively smooth (see Figure 5.3.6). So the overall effect of the local
refinement on each grid is visible, but not too big.

• Secondly, and more importantly in this scenario, we save degrees of free-
dom (and thus computation time) because we are able to evaluate (and
thus balance) the contribution of the various problems to the overall dis-
cretization error: We refine the first cell problem only two times, whereas
the second cell problem, as well as the macroscopic problem, is refined
in every step. The Navier Boundary Layer does not get refined at all, see
Table 5.3.5. This means that we do not “waste” any effort on problems
which contributions to the overall discretization error are minor.

In Figure 5.3.3 and Figure 5.3.4 we see the grids resulting from the adaptive
algorithm after the final refinement step. We see that most of the refinement in
the macroscopic domain is near the points xl

el and xr
el, as well as near reentrant

corners, where the smoothness of the solution variables is reduced. We also see
some refinement in the gas channel, presumably because the distribution of the
species on Γ is important, as the diffusive transport in the anode is much slower
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global
local

10−4

10−3

η
JA

10−2

105 106 107

DoF

Figure 5.3.2.: Total number of dofs vs. relative error estimator in the mean anodic overpo-
tential for global and local mesh refinement in the detailed microstructure
example.

Figure 5.3.3.: Locally refined macroscopic domain for the detailed microstructure exam-
ple on the final refinement level.

compared to the convective transport in the gas channel. Thus, the point of entry
into the anode influences the species distribution on Γel. The outflow channel is
not refined at all. The cell problems are mostly refined near reentrant corners
where the regularity breaks down.

We see plots of the solution in Figure 5.3.6. The mass fractions of hydrogen
and water as well as the hydrostatic pressure and the norm of the velocity are
shown. Note that we do not solve for velocity and pressure in the anode, which
is visualized by the figures by a constant 0. The artefacts of |v| at the outflow
are due to the very coarse grid, see also Figure 5.3.3. We see that hydrogen is
absorbed at Γel, and steam is produced at this site. We thus have a steep gradient
in x2 direction from Γel to Γ . Note that the distribution of species along Γ is not
constant as sometimes assumed in computations, so the gas channel should not
be neglected in the SOFC simulation. If we look closely, a kink along Γ is visible
for the mass fractions. This is due to the jump in the diffusion coefficients across
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(a) Cell 1 (b) Cell 2

Figure 5.3.4.: Locally refined grids for the cell problems on the final refinement level
(DIE).

this interface.

The flow configuration is pretty simple in this example, to the naked eye the flow
is not distinguishable from Poiseulle flow. We see also that phyd is magnitudes
smaller than pth. The simplicity of the flow is one reason why JA is so insensitive
with respect to Cbl

1 . This might change if the layout of the Fuel Cell is modelled
more realistically. For instance, we neglect the (nickel)-mesh between the gas
channel and the anode which transports the electrical current. An incorporation
of this structure should make the flow more complex and consequently raise the
importance of an exact flow simulation. Even though the exact value of Cbl

1 is
not so important in these examples, the coupling conditions (B.2.1p) and (B.2.1q)
decouple the effective flow in Ωf and Ωp. This allows for dropping the effective
flow in Ωp and thus reduces the overall computational effort.

Influence on Overpotential

In this final section we examine the influence of IC and xin
H2

on JA. In we present
Figure 5.3.5 the overpotentials computed for the configuration given in Table 5.3.4
for range of current density and hydrogen mole inlet fractions. We choose

xin
H2
∈ { 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 } (5.3.8)
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and

IC ∈
{

5000 A/m2, 10 000 A/m2, 15 000 A/m2
}

. (5.3.9)

xin
H2O was chosen such that the ratio between hydrogen and steam is constant:

xin
H2

xin
H2O

= 4. (5.3.10)

15 000 A/m2

10 000 A/m2

5000 A/m2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.1 0.2 0.3 0.4 0.5 0.6 0.7

η
A co

nc
in

V

xin
H2

Figure 5.3.5.: Plot of ηA
conc versus hydrogen mole fractions at the inlet for IC =

15 000 A/m2, IC = 10 000 A/m2 and IC = 5000 A/m2.

We see that the anodic overpotential increases with increasing IC and decreasing
xin

H2
. This is expected: An increase in the current density is synonymous with

a higher fuel demand at Γel. This means that more fuel needs to get to the an-
ode/electrolyte interface. That increases ηA

conc. The decrease in xin
H2

corresponds
to a higher fuel utilization, which results also in higher values of ηA

conc. In this
scenario, the transport by diffusion is slower and thus closer to the hydrogen
consumption rate at Γel. Note that the increase in the overpotential gets steeper
with lower xin

H2
.

The whole behaviour is qualitatively in agreement with the results of Tseronis
et al. [131], Yakabe et al. [136] (as we have no information on the microstructure
in their tests, it is unrealistic to expect more in this scenario) and shows that our
model is able to grasp the relevant effects.

Remark 5.3.1 (Influence of Microstructure on Overpotential). Note that the anode
overpotential of the DIE at xin

H2
= 0.6 and IC = 15 000 A/m2 is round about 0.04 V,

which is twice the value of the overpotential in the CIE and more than 1.5 times the value
of the overpotential in the AIE.
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(a) yH2

(b) yH2O

(c) |v|

(d) phyd

Figure 5.3.6.: Mass fractions of hydrogen and steam, norm of the velocity and the pres-
sure values in the fuel cell for the detailed microstructure example.
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6. Conclusions and Outlook

This thesis is devoted to numerically simulate the anodic overpotential of a SOFC
efficiently. The overpotential depends on the distribution of chemical species
(hydrogen and oxygen) in the anode, which consists of a porous material.

6.1. Summary

We derived in Chapter 5 a stationary model of the momentum and species trans-
port in the pore space of the anode and the overlying gas channel. A direct
numerical approximation by continuous finite elements of this system is not
feasible because the triangulation would need to resolve the porous microstruc-
ture, which is way too expensive computationally. We are thus interested in a
homogenized version of the microscopic model in the gas channel and a “homog-
enized” version of the anode. Key features of the microscopic structure enter the
equation through effective parameters, which depend on the solution of auxiliary
problems.

We focused on the following three aspects in this thesis.

Stokes-Darcy Coupling Stokes equation is part of aforementioned microscopic
model. The effective flow is described by Stokes equation in the gas channel
and by Darcy equation in the anode. We have to specify how these two
equations couple across the gas channel/anode interface on the macro-
scopic level. These coupling conditions have been a subject of controversy
for some time. In Marciniak-Czochra and Mikelić [98] a set of coupling
conditions have been analytically proven for the case of a main flow di-
rection that is tangential to the interface, which is the situation we face in
the fuel cell simulation. We have verified these conditions in Chapter 3 by
numerical simulations of the flow on the microscopic level in a variety of
configurations. The difficulty lay in the fact that we have to ensure that the
discretization error lies below the homogenization error. We handled this
by (goal-oriented) adaptive mesh refinement.

The same investigation was conducted for a main flow direction that is
normal to the interface, where another set of coupling conditions hold true,
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see Carraro et al. [37]. We were able to verify the conditions in this scenario
too.

Error Estimator The discretization of the auxiliary problems influences the dis-
cretization of the macroscopic problem through the effective constants. We
developed an algorithm based on the DWR-method of Becker and Ran-
nacher [20] to estimate this coupling w.r.t. the discretization error in a
quantity of interest in Chapter 4. We showed at the example of some char-
acteristic homogenization problems that the algorithm is able to quantify
the error contributions of the involved problems. The algorithm supplies
further a set of error indicators to refine the triangulations of the macro-
scopic problem and the auxiliary problems locally. We showed that the
balancing of the error contributions from the different sources together with
the local mesh adaption allows for substantial savings in the computations
compared to global mesh refinement.

Fuel Cell Simulation We derived under the assumption that the anode is a peri-
odically perforated domain in 2-d formally an effective model that depends
on three auxiliary equations. This effective model of the gas transport was
verified for some test cases by comparison with direct numerical simu-
lations on the microscopic level. The overpotential computed with the
model shows qualitatively the same behaviour as given in the literature
and depends heavily on the form of the microstructure. We showed with
a representative example that the adaptive algorithm developed in Chap-
ter 4 computes the anode overpotential with with substantial savings w.r.t.
degrees of freedom as well as computational time compared to a global
mesh refinement. We saw also that the boundary layer constant Cbl

1 in the
Beavers-Joseph-Saffman condition plays only a minor role in these simu-
lations. Nevertheless, the new formulation allows for a decoupling of the
effective flow, which also reduces the computational work, as the Darcy
flow can be neglected.

6.2. Possibilities for Future Work

There are several directions that seem worthy exploring.

Coupling Conditions This is a very interesting topic that allows for a variety of
directions to examine. How do the coupling conditions presented in Chap-
ter 3 carry over to the 3-d case? What about the incorporation of different
boundary conditions? What are the effects of considering Navier-Stokes
(NS) instead of pure Stokes equation? The nonlinearity in the NS equa-
tions adds another nonsymmetrie effect that makes the coupling conditions
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possibly more elaborate. Direct numerical simulations can give valuable
insight in this situation (at least in 2-d).

Fuel Cell Simulations There is a broad range of interesting extensions possible.
Apart from model extensions (consider the whole cell, take temperature
variations into account, model the electrochemistry, use 3-d microstructures
for the cell problems), a proper derivation of the effective equations is
needed. For instance, how does the three-phase boundary behave under
the upscaling process?

The long term goal would be to optimize the SOFC configuration (run-
time parameters, form of the microstructure) with the help of optimization
algorithms. The savings in runtime due to the adaptive algorithm presented
in this thesis should help in cutting the computational costs so that this
becomes feasible.
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A. Effective Equation of Quasilinear
Diffusion

We present the asymptotic expansion of a quasilinear Diffusion problem, i.e. a
diffusion equation for u in which the diffusion tensor depends only on u, not on
∇u. This type of problem is interesting for us as the mass diffusion model we
consider in Chapter 5 belongs to this category. Our goal is to derive (as done
for linear diffusion coefficients in Section 2.2), a candidate for the homogenized
equation. It is important that one needs only a small, a priori known number of
cell problems to define the homogenized equation, as we want to employ the
algorithm of Chapter 4.

Remark A.0.1. Please keep in mind that asymptotic expansion is a purely formal method.
This is the reason that we do not specify aspects like regularity of the right hand side or
the coefficients. Note also that we present, for the sake of clarity, only the case of a scalar
equation. We assume that all the presented PDEs are meaningful in the sense that they
allow for a unique (weak) solution in the appropriate function spaces.

A.1. Asymptotic Expansion

Let Ωε ⊂ Rn be a periodically perforated domain with unit cell Y with an
inclusion Ys (see Definition 2.2.6). We call

∂Y = Γper and ∂Ys = Γs. (A.1.1)

We call Ω the domain Ωε without the inclusions and split the boundary into the
parts

∂Ω = ΓD ∪̇ ΓN. (A.1.2)

Let the (nonlinear) coefficient a : R→ R+ and a right hand side f as well as some
Neumann data fN be given. We consider the following microscopic problem
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Problem A.1.1 (Microscopic Problem). Let 0 < ε� 1 be given. Find uε s.t.

−∇ ·
(
a(uε)∇uε

)
= f , in Ωε, (A.1.3a)

uε = 0, on ΓD, (A.1.3b)
n · a(uε)∇uε = fN, on ΓN, (A.1.3c)
n · a(uε)∇uε = 0 on ∂Oε. (A.1.3d)

We are interested in the (formal) limit

lim
ε→0

uε, (A.1.4)

using the asymptotic expansion

uε(x) =
∞
∑
i=0
εiui(x, y), x ∈ Ωε, (A.1.5)

where the functions ui(x, y) are Y-periodic with respect to the variable y = x
ε for

all x ∈ Ω . We assume 0 < ε� 1 to so small that we can assume a separation of
scales, i.e. treat x and y as independent variables.

We utilize the expansion (A.1.5) and get

a(uε) = a(
∞
∑
i=0
εiui) =: g(ε). (A.1.6)

We assume that the function g : R → C3(R) allows for a Taylor-Expansion
around 0 and conclude

g(ε) = g(0)(0) +εg(1)(0) +
ε2

2
g(2)(0) +O(ε3), (A.1.7)

which is short for

a(uε) = a(u0) +εa′(u0)u1 +ε
2
(

1
2

a′(u0)u2 + a′′(u0)u2
1

)
+O(ε3). (A.1.8)

Remark A.1.2. We will drop the argument (0) from g to shorten the notation, i.e. we
write g(i) for g(i)(0) etc..

We insert the expansion into the microscopic problem. Letϕε(x) :=ϕ(x, y) with
y = x/ε. Keeping in mind that it holds ∇ϕε = ∇xϕ+ 1

ε∇yϕ (see (2.2.26)), we
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express the microscopic differential operator on Ωε

Aε(g)ϕε := −∇ · (g(ε)∇ϕε) (A.1.9)

by

Aεϕε =
(
ε−2A1 +ε

−1A2 +ε
0A3

)
ϕ (A.1.10)

where

A1 = D1(g(0)), (A.1.11a)

A2 = D2(g(0)) +D1(g(1)), (A.1.11b)

A3 = D3(g(0)) +D2(g(1)) + 1
2D1(g(2)) (A.1.11c)

and

D1(g(i)) = −∇y ·
(

g(i)∇y

)
, (A.1.12a)

D2(g(i)) = −∇y ·
(

g(i)∇x

)
−∇x ·

(
g(i)∇y

)
, (A.1.12b)

D3(g(i)) = −∇x ·
(

g(i)∇x

)
. (A.1.12c)

Keeping this splitting in mind when putting (A.1.5) into the microscopic equation
(A.1.3a) leads to a whole bouquet of equations which we sort by powers of
epsilon. Considering only the first three orders of ε leads to the following
equations:

O(ε−2) : A1u0 = 0 in Ω ×Yf, (A.1.13a)

O(ε−1) : A1u1 +A2u0 = 0 in Ω ×Yf, (A.1.13b)

O(ε0) : A1u2 +A2u1 +A3u0 = f in Ω ×Yf. (A.1.13c)

We conduct in the same way for the microscopic boundary operator (on ∂Oε)

Bε(g)ϕε := n · (g(ε)∇ϕε), (A.1.14)

the splitting

Bεϕε =
(
ε−1B1 +ε

0B2 +ε
1B3

)
ϕ, (A.1.15)
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where

B1 = Cy(g(0)), (A.1.16a)

B2 = Cx(g(0)) + Cy(g(1)), (A.1.16b)

B3 = Cx(g(1)) + 1
2Cy(g(2)) (A.1.16c)

and

Cy(g(i)) = n ·
(

g(i)∇y

)
, (A.1.17a)

Cx(g(i)) = n ·
(

g(i)∇x

)
. (A.1.17b)

Analogously to (A.1.13) we obtain the following three equations on the boundary
of the inclusions:

O(ε−1) : B1u0 = 0 on Ω × ∂Ys, (A.1.18a)

O(ε0) : B1u1 + B2u0 = 0 on Ω × ∂Ys, (A.1.18b)

O(ε1) : B1u2 + B2u1 + B3u0 = 0 on Ω × ∂Ys. (A.1.18c)

Now, we try to destille an homogenized equation out of three equations (A.1.13)
with the boundary conditions (A.1.18).

• For the smallest order terms (ε−2 in the interior and ε−1 on Γs), we obtain
the equation

A1u0(x, ·) = 0 in Yf, (A.1.19a)
B1u0(x, ·) = 0 on Γs, (A.1.19b)

which is short for

−∇y ·
(

g(0)∇yu0(x, ·)
)
= 0 in Yf, (A.1.20a)

n · g(0)∇yu0(x, ·) = 0 on Γs. (A.1.20b)

In this equation, x ∈ Ωε plays the role of a parameter. As u0 = u0(x, y)
is Y-periodic in y (and thus g(0) is also Y-periodic) and assumed that the
equation is (modulo a constant) uniquely solvable, we obtain

u0 = u0(x), (A.1.21)
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and subsequently

∇yu0 = 0. (A.1.22)

• The next order terms (ε−1 in the interior and ε0 on Γs) lead us to

A1u1(x, ·) +A2u0(x) = 0 in Yf, (A.1.23a)
B1u1(x, ·) + B2u0(x) = 0 on Γs. (A.1.23b)

Which is aequivalent to (remember u0 = u0(x)⇒ ∇yu0 = 0)

−∇y · g(0)∇yu1(x, ·) = ∇y · g(0)∇xu0(x) in Yf, (A.1.24a)

n · g(0)∇yu1(x, ·) = −n · g(0)∇xu0(x) on Γs. (A.1.24b)

We take the ansatz:

u1(x, y) =
n

∑
j=1

w j(y)∂x j u0(x), (A.1.25)

which leads to

∇yu1(x, y) =
n

∑
j=1
∇yw j(y)∂x j u0(x). (A.1.26)

The functions w j ( j = 1, . . . n) are solutions of the cellequations

−∇y · ∇yw j = ∇y · e j in Yf, (A.1.27a)

n · ∇yw j = −n · e j on Γs. (A.1.27b)

This choice of w j serves us because the ansatz for u1 fullfills equation
(A.1.24). Be aware that it is a linear equation for u1, and is thus, up to a
constant depending on x, uniquely solvable, see e.g. Bensoussan et al. [22].
Note here that

∇yg(0) = a′(u0)∇yu0 = 0. (A.1.28)

Remark A.1.3. Equation (A.1.27a) simplifies of course to −∆w j = 0. We keep
this structure as it clarifies what happens if the factor a in the microscopic equation
depends on the fast variable y.
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• The term of order ε0 in the interior and of order ε1 on Γs yields:

A1u2(x, ·) +A2u1(x, ·) +A3u0(x) = f (x) in Yf, (A.1.29a)
B1u2(x, ·) + B2u1(x, ·) + B3u0(x) = 0 on ∂Ys. (A.1.29b)

Integration of (A.1.29a) over Yf and (A.1.29b) over Γs leads to the following

∫
Yf

A1u2(x, y) +A2u1(x, y) +A3u0(x) dy = |Yf| f , (A.1.30a)∫
Γs

B1u2(x, s) + B2u1(x, s) + B3u0(x) ds = 0. (A.1.30b)

We split equation (A.1.30a), considering (A.1.22), into three parts (and
neglect the arguments in favour of readability)

∫
Yf

I I︷ ︸︸ ︷
∇x · g(0)∇yu1

I I I︷ ︸︸ ︷
+∇x · g(0)∇xu0+

∇y ·
(

g(0)∇yu2 + (g(1)∇y + g(0)∇x)u1 + g(1)∇xu0

)
︸ ︷︷ ︸

I

dy (A.1.31)

and consider them separately.

We use Stokes’ theorem and gain for the integral over the part I:

I =
∫

∂Yf

n ·
(

g(0)∇yu2 +
(

g(1)∇y + g(0)∇x

)
u1 + g(1)∇xu0

)
ds (A.1.32)

As, by definition, the integrand is Y-periodic w.r.t. y, the part of the integral
over ∂Y dissapears, and only the part over Γs remains. However, this part
vanishes due to the boundary conditions (A.1.30b).

The integral over the second part in (A.1.30a) yields:

∫
Yf

∇x · g(0)∇yu1 dy =
∫

Yf

∇x · g(0)
N

∑
j=1
∇yw j∂x j u0 dy (A.1.33)

=
N

∑
j=1

∫
Yf

∇x ·
(

g(0)∇yw j∂x j u0

)
dy (A.1.34)

=
N

∑
j=1
∇x ·

(
g(0)

∫
Yf

N

∑
i=1
∇yw j · ei ∂x j u0

)
dy (A.1.35)
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A.1. ASYMPTOTIC EXPANSION

Using the abbreviation Ahom = (Ahom
i j )i, j with

Ahom
i j :=

∫
Yf

∇yw j · ei + δi j dy, 1 ≤ i, j ≤ n, (A.1.36)

and taking into account that the integral I vanishes, we deduce from
(A.1.30a) the homogenized problem:
Problem A.1.4 (Macroscopic problem). Let Ahom be given by (A.1.36). Find
u0 s.t.

−∇x ·
(

g(0)Ahom∇u0

)
= |Yf| f in Ω , (A.1.37a)

u0 = 0 on ΓD, (A.1.37b)

n ·
(

g(0)Ahom∇xu0

)
= fN on ΓN. (A.1.37c)

So Problem 4.2.2 is our homogenized equation, and to determine the auxil-
iary functions w j, it is enough to solve n cellproblems, as in the linear case
presented in Section 2.2.
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B. (A)dimensional Formulations

B.1. Dimensional Formulation of Stokes-Darcy Coupling

We present the dimensional formulation of Problem 3.1.3 and the effective Prob-
lems 3.1.12 and 3.1.14. In this section, dimensional quantities are labeled by˜̇. We
start with the flow on the microscopic level.

B.1.1. Microscopic Problem

Let the adimensional, periodically perforated domain Ωε be given. Consider the
flow domain Ω̃ε defined by

Ω̃ε :=
{

x̃ = Lcx
∣∣∣ x ∈ Ωε

}
, (B.1.1)

with a reference length Lc. The domains and boundaries Γ̃ εns, Γ̃ns, Γ̃ , Ω̃p and Ω̃f are
defined analoguosly. Let a dynamic viscosity µ and a body force f̃ be given. A
slow, stationary flow in Ω̃ε is modeled by the Stokes equations. Let ∆̃ and ∇̃ be
differential operators w.r.t. x̃.

Problem B.1.1 (Dimensional Microscopic Problem). Find velocity ṽε and pressure
p̃ε, both LcL-periodic w.r.t. to x̃1, such that

−µ∆̃ ṽε + ∇̃ p̃ε = f̃ in Ω̃ε (B.1.2a)

∇̃ · ṽε = 0 in Ω̃ε (B.1.2b)

ṽε = 0 on Γ̃ εns, (B.1.2c)

with
∫

f
p̃ε(x) dx = 0.

To proceed with the adimensionalization, we choose a reference velocity vc as well
as a reference pressure pc and apply the normalization (let x ∈ Ωε)

vε(x) =
1
vc

ṽε(xLc), pε(x) =
1
pc

p̃ε(xLc), f(x) =
1
fc

f̃(xLc) (B.1.3)
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to the equation (B.1.2). We set

fc :=
µvc

L2
c

. (B.1.4)

We obtain the following dimensionless form of the stationary incompressible
Stokes equations

−µvc

L2
c
∆vε +

pc

Lc
∇pε = fcf in Ωε, (B.1.5)

∇ · vε = 0 in Ωε. (B.1.6)

Consequently, we choose pc = µvc/Lc so that (B.1.5) becomes

−∆vε +∇pε = f in Ωε, (B.1.7)

which es exactly the form of the equation in Problem 3.1.3.

B.1.2. Effective Flow and Darcy’s Law

In the following we give the dimensional formulation of the effective equations
using the adimensionalization of the previous section. Let ` be the characteristic
pore size in Ω̃ε, i.e. εLc = `. The dimensional form of Problem 3.1.12 is

Problem B.1.2 (Dimensional Effective Flow in Ωf). Find a velocity field ṽfand a
pressure field p̃f, both LcL-periodic in x̃1-direction, such that there holds

−∆̃ ṽf + ∇̃ p̃f = f̃ in Ω̃f (B.1.8a)

∇̃ · ṽf = 0 in Ω̃f, (B.1.8b)

together with the boundary conditions

ṽf = 0 on Γ̃ns, (B.1.8c)

ṽf,2 = 0 on Γ̃ , (B.1.8d)

ṽf,1 + `Cbl
1

∂ ṽf,1
∂x̃2

= 0 on Γ̃ (B.1.8e)

and the normalization condition
∫
Ω̃f

p̃f(x) dx = 0. The constant Cbl
1 is given by (3.1.51).

The dimensional form of Problem 3.1.14 reads

164



B.2. ADIMENSIONAL FORMULATION OF THE EFFECTIVE SOFC MODEL

Problem B.1.3 (Dimensional Darcy’s Law). Find p̃p, LcL-periodic with respect to
x̃1, such that

−∇̃ ·
(

K̃(f̃− ∇̃ p̃p)
)
= 0 in Ω̃p, (B.1.9a)

K̃(f̃− ∇̃ p̃p) · e2 = 0 on Γ̃ns, (B.1.9b)

p̃p = p̃f +µCbl
ω

∂ ṽf,1
∂x2

on Γ̃ . (B.1.9c)

The physical permeability tensor K̃ is given by Definition B.1.4, the interface constant
Cbl
ω by (3.1.52).

In the given context, we define the physical permeability K̃.

Definition B.1.4 (Physical Permeability). Let the permeability tensor K be given by
Definition 3.1.20. The physical permeability is defined by

K̃ = (εLc)
2K = `2K. (B.1.10)

The Darcy velocity ṽp is given by

ṽp =
K̃
µ

(
f̃− ∇̃ p̃p

)
. (B.1.11)

Remark B.1.5. Note that ε in this section is dimensionless.

B.2. Adimensional Formulation of the Effective SOFC
Model

We present the dimensional formulation of Problem 5.2.13. We choose the same
characteristic quantities as given in Table 5.2.2 and apply the scaling as given in
(5.2.54).

Problem B.2.1. Let inflow velocity vin, inflow mass fractions yin
k , molar masses mk

and viscosities µk for k ∈
{

H2, H2O, N2

}
as well as the current density IC and the

thermodynamic pressure pth be given.

Find velocity field v, the pressure phyd and the species mass fractions yεi s.t. for
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i ∈
{

H2, H2O
}

it holds in Ωε

−∇ · (µ∇v) +∇phyd = 0, in Ωf (B.2.1a)

∇ · (ρv) = 0, in Ωf (B.2.1b)
∇ · (ρyiv) +∇ ·Fi = 0, in Ωf, (B.2.1c)

∇ · (AhomFi) = 0, in Ωp. (B.2.1d)

On the boundaries, it holds

v = vin, on Γin, (B.2.1e)
v = 0, on Γf,ns, (B.2.1f)

n · (µ∇v− phyd id) · n = 0, on Γout, (B.2.1g)

and

yi = yin
i , on Γin, (B.2.1h)

Fi · n = 0, on Γout, (B.2.1i)
Ni · n = 0, on Γf,ns, (B.2.1j)

AhomFi · n = 0, on Γp,ns, (B.2.1k)

AhomFH2
· n = −IC

mH2

2
, on Γel, (B.2.1l)

AhomFH2O · n = IC
mH2O

2
, on Γel. (B.2.1m)

On the interface, the following coupling conditions hold true

[yi] = 0, on Γ , (B.2.1n)

[Fhom
i · n] = 0 on Γ , (B.2.1o)

v2 = 0, on Γ (B.2.1p)

v1 +εCbl
1

∂v1

∂x2
= 0 on Γ . (B.2.1q)

Fhom is defined analoguosly to (5.2.58).

Remark B.2.2. Note that ε in this section has the dimension m and is defined as
ε = Lcε

∗.
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