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Abstract

The hydraulic conductivity of a confined aquifer is estimated using the
quasi-linear geostatistical approach (QLGA), based on measurements of
dependent quantities such as the hydraulic head or the arrival time of a
tracer. This requires the solution of the steady-state groundwater flow and
solute transport equations, which are coupled by Darcy’s law. The stan-
dard Galerkin finite element method (FEM) for the flow equation combined
with the streamline diffusion method (SDFEM) for the transport equation
is widely used in the hydrogeologists’ community. This work suggests to
replace the first by the two-point flux cell-centered finite volume scheme
(CCFV) and the latter by the Discontinuous Galerkin (DG) method. The
convection-dominant case of solute (contaminant) transport in groundwater
has always posed a special challenge to numerical schemes due to non-
physical oscillations at steep fronts. The performance of the DG method is
experimentally compared to the SDFEM approach with respect to numer-
ical stability, accuracy and efficient solvability of the occurring linear sys-
tems. A novel method for the reduction of numerical under- and overshoots
is presented as a very efficient alternative to local mesh refinement. The
applicability and software-technical integration of the CCFV / DG com-
bination into the large-scale inversion scheme mentioned above is realized.
The high-resolution estimation of a synthetic hydraulic conductivity field in
a 3-D real-world setting is simulated as a showcase on Linux high perfor-
mance computing clusters. The setup in this showcase provides examples
of realistic flow fields for which the solution of the convection-dominant
transport problem by the streamline diffusion method fails.



Zusammenfassung

Die hydraulische Leitfähigkeit in einem gespannten Grundwasserleiter wird
mit dem QLGA Inversionsverfahren (Quasi-linearer geostatistischer Ansatz)
geschätzt, indem man Messungen von abhängigen Größen wie etwa des
hydraulischen Drucks und der Ankunftszeit eines eingeleiteten Tracers (z.B.
gefärbter Indikator) auswertet. Dabei müssen die stationären Gleichun-
gen für Strömung und Transport, die über Darcys Gesetz gekoppelt sind,
numerisch gelöst werden. Bei Hydrogeologen ist die Standard Finite Ele-
mente Methode (FEM) zur Lösung der Strömungsgleichung und die Metho-
de der Stromlinien-Diffusion (SDFEM) zur Lösung der Transportgleichung
weit verbreitet. In dieser praxisorientierten Arbeit wird dieser Ansatz durch
das zellzentrierte Finite-Volumen-Verfahren (CCFV) kombiniert mit dem
unstetigen Galerkin-Verfahren (DG) ersetzt. Der konvektionsdominante
Stofftransport im Grundwasser stellt seit jeher eine Herausforderung an nu-
merische Methoden dar. Das DG-Verfahren wird mit dem SDFEM-Verfah-
ren verglichen, und zwar hinsichtlich Stabilität, Genauigkeit und der ef-
fizienten Lösbarkeit der auftretenden linearen Gleichungssysteme. Eine
neue Methode zur Dämpfung von numerischen Unter- und Überschwinger
wird als eine sehr effiziente Alternative zur lokalen Gitterverfeinerung prä-
sentiert. Die Anwendbarkeit der Kombination CCFV / DG auf das erwähnte
großskalige Inversionsverfahren wird realisiert. In einer dreidimensionalen
Versuchsumgebung wird ein synthetisch generiertes Parameterfeld mit ho-
her Auflösung geschätzt. Wir demonstrieren damit eine parallele Inversion,
die auf Linux HPC-Clusters durchgeführt werden kann. Die in diesem rea-
listischen Beispiel auftretenden Strömungsfelder induzieren Transportprob-
leme, die im konvektionsdominanten Fall mit der Methode der Stromlinien-
Diffusion nicht mehr lösbar sind.
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Chapter 1

Introduction

Assume that we have a mathematical model which relates a finite number of physical pa-
rameters y = (y1, ..., yN)T to a collection of discrete observations dobs = (d1, ..., dM)T

via a system of equations
dobs = f(y) . (1.1)

The forward problem is to find dobs given y. Very often, evaluating the model
function f involves a computationally demanding effort of solving a system of partial
differential equations (PDEs). A mathematical problem is called well-posed in the sense
of Hadamard [Mandelbrojt and Schwartz, 1965] if:

1. A solution exists.

2. The solution is unique.

3. The solution depends continuously on the data.

An inverse problem or parameter identification problem, here denoted (P1), is
by definition the opposite of the forward problem: Given a set of measurements dobs,
the task is to reconstruct the parameters y. Inverse problems are usually ill-posed and
require the application of stabilizing constraints if the number of measurement values
is much less than the number of parameters (M � N ). In practice, the measured
data always contain some amount of noise (measurement error) and the model may not
capture the physics of the simulated system (model error). The solution of an inverse
problem does not necessarily satisfy the model equation (1.1) directly. In fact, one can
only postulate that the discrepancy between simulated and observed measurements is
minimal with respect to some appropriate norm.

A third class of problem in this context, not discussed in this work, is called the
model identification problem: finding f given examples of dobs and y.

Inverse problems play an important role in science and technology. Usually, a direct
measurement of material properties is practically impossible or very expensive. The

1



only way is to calculate or estimate them from indirect measurements of related quanti-
ties for which we have a mathematical model.

The following idea provides the principle behind any iterative scheme for the so-
lution of an inverse problem, provided that the problem is well-defined: Starting with
an initial guess y0 for the unknown parameters we simulate the forward problem (1.1)
and pick the simulated values from model run k at the measurement points. Unless
yk = y, the discrepancy between observed and simulated measurements will be much
larger than the model and measurement errors. This can be used to indicate the quality
of the estimation. The classical inversion approach is to define and minimize a cost
function J (y) that contains the discrepancy and the stabilizing constraints. The sta-
tistical approach seeks for point estimates of a probability distribution that incorporates
this information.

In this work, the unknown parameter of primary interest is the hydraulic conductivity
field of an aquifer. Accurate knowledge of the hydraulic conductivity is of utmost im-
portance for the management of groundwater resources and the remediation of contami-
nated aquifers. In Germany1, more than 70% of the drinking water supply (for domestic,
agricultural and industrial use) originates from groundwater. We simulate single-phase
flow and transport processes in the saturated zone under steady-state conditions. Know-
ing the hydraulic conductivity and given the boundary conditions, it is relatively easy
to compute the hydraulic head distribution. The corresponding forward problem is the
steady-state groundwater flow problem (P2). From its solution, the flow field can
be reconstructed and used to simulate transport processes. Due to very small disper-
sivities and molecular diffusion, (non-reactive) solute transport in groundwater can be
convection-dominated. The transport of a conservative tracer can be described by the
advection-dispersion equation. Considering temporal moments of its concentration in
the coupled forward model leads to the steady-state singularly perturbed convection-
diffusion equation (P3).

We are interested in the efficient solution of the three types of problems (P1)-(P3).

State of the art
While an increasing amount of data generally improves the quality of inversion schemes,
the number of measurement points should be minimal for economical and ecological
reasons. In order to make the most out of a low number of measurement points, it
is essential that a parameter estimation scheme is able to cope with different types of
measurements.

The quasi-linear geostatistical approach (QLGA) is a parameter estimation scheme
with which spatial parameters such as the hydraulic conductivity can be estimated on

1Statistisches Bundesamt: Öffentliche Wasserversorgung 2010, Fachserie 19, Reihe 2.1.1, Erschein-
ungsfolge: dreijährlich, Erschienen am 05. Februar 2013, Artikelnummer: 2190211109004
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the basis of direct or indirect measurements of related quantities such as the hydraulic
head, the concentration of a tracer or its arrival time. The inversion scheme was devel-
oped by P. Kitanidis and later extended and made more efficient by O.A. Cirpka and W.
Nowak. The following list of works contributed to its applicability and success in 2-D
and low-resolution 3-D simulations of real world problems:

• dimensional reduction of the cokriging system enhancing the Gauss-Newton ap-
proach [Kitanidis, 1995],

• efficient computation of sensitivities based on adjoint states [Sun, 1994],

• extension of the adjoint-based inversion scheme to tracer data [Cirpka and Kitani-
dis, 2001],

• FFT-based methods for the efficient computation of the cross-covariance matrices
[Nowak et al., 2003].

Since the main focus of this work lies on the numerical solution of the occurring bound-
ary value problems (in 3-D), especially the convection-dominant solute transport equa-
tion, we do not elaborate on alternative parameter estimation schemes [Alcolea et al.,
2006; Crestani et al., 2012; Doherty et al., 2010; Schöniger et al., 2012].

The steady-state groundwater flow equation is a linear elliptic PDE with a highly
variable coefficient. For the solution of the linear system arising from a standard finite
element or finite volume discretization, we apply a very efficient parallel solver based
on algebraic multigrid (AMG) presented by Blatt [2010].

The numerical solution of convection-diffusion problems has a long tradition. Due
to the fact that a linear monotonicity preserving scheme can be at most first-order accu-
rate (Godunov’s Theorem), all existing schemes suffer from a trade-off between numer-
ical diffusion (too much smearing) and spurious oscillations (under- and overshoots)
near internal or boundary layers where the gradient of the solution is very large (steep
fronts). In each practical application, the decision has to be made whether the one or the
other deficit can be tolerated, leading to the appropriate choice of a numerical scheme.

Amongst the vast literature on the subject, the books of Roos et al. [2008] and
Kuzmin [2010] provide excellent overviews of state-of-the art classes of schemes. We
give a short overview of the most prominent methods, list their main advantages and dis-
advantages, hereby drawing on the results presented by Augustin et al. [2011], who have
worked on a special 2-D problem (Hemker problem). They compared the numerical so-
lutions at specific cut lines with respect to the size of maximal under- and overshoots,
the width of smeared internal layers and the performance in computing time, revealing
important properties of the different schemes.
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• The Scharfetter-Gummel scheme is a first-order finite volume scheme. It is effi-
cient and oscillation-free, but the solution is strongly smeared at layers. A higher
order extension is not available.

• The Streamline Diffusion finite element method (SDFEM), also known as Stream-
line Upwind Petrov-Galerkin (SUPG) method, adds a residual-based stabiliza-
tion term to the standard Galerkin method [Brooks and Hughes, 1982]. SDFEM
belongs to the less time-consuming methods that are capable of resolving the
steep fronts well. Due to its simplicity, it has been the mainstream approach
for decades and a standard method in the hydrogeologists’ community [Bear and
Cheng, 2010; Cirpka and Kitanidis, 2001; Couto and Malta, 2008; Gordon et al.,
2000; Nowak and Cirpka, 2006] where our practical application originates from.
However, the optimal choice of a user-defined stabilization parameter is an open
question.

• The Continuous Interior Penalty (CIP) method [Burman et al., 2010; Roos et al.,
2008] adds a symmetric stabilization term to the standard Galerkin method that
penalizes jumps of the gradient across faces (edge stabilization technique). It
introduces connections between unknowns of neighboring mesh cells and leads
to a discretization with a wider matrix stencil. Comparisons to SDFEM may be
found in Burman and Hansbo [2004].

• Spurious Oscillations at Layers Diminishing (SOLD) methods, originally devel-
oped by Hughes et al. [1986] and further investigated by John and Knobloch
[2007a,b, 2008], suppress oscillations caused by SDFEM by adding a further sta-
bilization term introducing diffusion orthogonal to streamlines (crosswind diffu-
sion). This term is in general non-linear. Therefore, a non-linear equation has
to be solved for a linear problem. Furthermore, the stabilization term contains
another user-defined parameter whose optimal choice might become difficult for
complicated problems. SOLD methods are capable of reducing numerical os-
cillations at a higher computational cost. The larger the stabilization parameter,
the better the reduction. However, non-linearity also increases and the iterative
non-linear solver might not converge [Augustin et al., 2011].

• Algebraic Flux Correction (AFC) is a general approach to design high resolu-
tion schemes for the solution of time-dependent transport problems that ensure
the validity of the discrete maximum principle [Kuzmin, 2006, 2010]. Whereas
the aforementioned stabilization methods modify the bilinear form of a finite el-
ement method (FEM), AFC methods modify the linear system arising from a
FEM discretization by adding discrete diffusion to the system matrix and ap-
propriate anti-diffusive fluxes to the right hand side. The anti-diffusive fluxes
are non-linearly dependent on the computed solution. Depending on whether
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the algebraic constraints are being imposed on the semi-discrete or the fully dis-
crete level, flux limiters of TVD-type (total variation diminishing) or FCT-type
(flux corrected transport) can be constructed. Only the FEM-TVD schemes can
be used to solve the steady-state convection-diffusion equation directly. Using
FEM-FCT schemes, a pseudo time stepping to the stationary limit of the asso-
ciated time-dependent problem would deliver the steady-state solution [Kuzmin,
2006]. A suitable linearization technique for the anti-diffusive fluxes exists only
for the FEM-FCT scheme [Kuzmin, 2009]. According to the studies by John and
Schmeyer [2008, 2009], FEM-FCT schemes yield qualitatively the best solution
and, beyond that, the linear FEM-FCT scheme is efficient. The authors recom-
mend the linear FEM-FCT for the solution of instationary problems. Linearized
AFC-based methods for the solution of the stationary transport problem are not
available.

• Discontinuous Galerkin (DG) methods use piecewise polynomials, that are not
required to be continuous across faces, to approximate the solution. The to-
tal number of degrees of freedom on a structured mesh with cuboidal cells is
O(n · (k + 1)d) where n is the number of mesh cells, d is the dimension of the
domain and k is the polynomial degree. Compared to a continuous Galerkin FEM
method, a DG method using the same polynomial space on the same structured
mesh requires more unknowns. This disadvantage is balanced by a long list of
advantages that has made DG increasingly attractive in computational fluid dy-
namics in the last decade: DG methods are readily parallelizable, lead to dis-
cretizations with compact stencils (i.e. the unknowns in one mesh cell are only
connected to the unknowns in the immediate neighboring cells), a higher flexibil-
ity in mesh design (non-conforming meshes are possible in adaptive h-refinement)
and the availability of different polynomial degrees on different mesh cells (adap-
tive p-refinement). Furthermore, DG schemes satisfy the local, cell-wise mass
balance which is a crucial property for transport processes in a porous medium.
They are particularly well-suited for problems with discontinuous coefficients and
effectively capture discontinuities in the solution. In the comparative study by
Augustin et al. [2011], the DG method gives the best results regarding sharpness
of the steep fronts and produces small errors with respect to reference cut lines,
whereas under- and overshoots are larger than those produced by the SDFEM
method. For the discretization of first-order hyperbolic problems, upwinding is
incorporated into the formulation of DG schemes, evading the need for user-
chosen artificial diffusion parameters. The books of Kanschat [2008b], Rivière
[2008] and Pietro and Ern [2012] offer a comprehensive introduction to this class
of methods.

For time-dependent problems, where explicit time stepping schemes combined with
finite volume or DG discretizations can be used, slope limiters may be constructed from
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the solution of one time-step to preserve monotonicity in the following time-step. To
the best of our knowledge, for the immediate solution of stationary problems, a post-
processing technique of this type is not available.

In the simulation of many applications (e.g. biochemical reactions or combustion),
the concentration of a species must attain physical values (numerical under- and over-
shoots are not accepted) although the position of the plume may be allowed to be inac-
curate. But in the context of a parameter estimation scheme, which allows for measure-
ment errors, a small amount (≈ 5%) of spurious oscillations in the solution is tolerable
whereas the correct localization of steep fronts is of primary interest.

For high resolution 3-D simulations, direct sparse solvers are limited by their mem-
ory consumption. The main purpose of the stabilization term in the SDFEM method is
not only to provide a solution with bounded under- and overshoots but also to improve
the iterative solvability of the linear system arising from the SDFEM discretization. For
an upwind scheme applied to a first-order hyperbolic problem, it is well-known that
numbering the unknowns in a fashion that follows approximately the direction in which
information is propagated will improve the performance and stability of iterative linear
solvers of ILU or Gauss-Seidel type [Bey and Wittum, 1997; Hackbusch and Probst,
1997; Reed and Hill, 1973].

Contributions of this work

Real world problems simulated in 3-D at a high spatial resolution require so many un-
knowns (106 − 108) that their floating point representation would not fit into the mem-
ory of a single-CPU machine, let alone the long computing time a single calculation
would require. Developments on the hardware market have pushed the usage of hyper-
threading and multicore architectures during the last decade [Sutter, 03/2005]. Nowa-
days, academic research groups or small engineering companies can afford to purchase
high-performance clusters with a handful of computing nodes providing the power of
more than one hundred cores for their own usage.

The main contributions of this work comprise

• a realization of a fast solver for the convection-dominated transport equation
based on reordering in flow direction and exploiting the upwind character of the
DG scheme,

• the development of a diffusive L2-projection for reducing non-physical oscilla-
tions near sharp fronts that are not resolved by the mesh,

• a systematic numerical comparison of SDFEM to DG for stationary convection-
diffusion problems in the context of geostatistical inversion,
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• a fully parallel implementation of all methods necessary for the complete inver-
sion scheme, including the handling of multiple measurement types,

• a demonstration of the method on large scale 3-D problems with up to 26 million
degrees of freedom in the parameter space (or 210 million degrees of freedom in
the finite element solution space) and 512 measurement values of different types,
run on a HPC cluster using up to 64 cores.

Outline
The remaining part of this work is structured as follows:

• Chapter 2 introduces the Geostatistical model and the FFT-based generation of
random test fields,

• Chapter 3 derives the QLGA method from the Bayesian point of view,

• Chapter 4 introduces the forward problems. Furthermore, a derivation of the ad-
joint equations and the sensitivities based on the Lagrange formalism is presented
and a description of the FFT-based computation of the cross-covariance matrices
is given.

• Chapter 5 summarizes all boundary value problems and corresponding source
terms occurring in Chapter 4. Afterwards, we consider two combinations of dis-
cretizations for their numerical solution: FEM/SDFEM and CCFV/DG.

* We present two approaches to reduce the under- and overshoots of the DG-
solution of the transport problem:

1. The first approach (Section 5.5) uses h-adaptive hanging-nodes refine-
ment (1-irregular) on a cuboidal axis-parallel mesh based on the resi-
dual error estimator by Schötzau and Zhu [2009] combined with an
error-fraction marking strategy.

2. The second approach (Section 5.6) is a diffusive L2-projection of the
DG solution into the continuous Galerkin finite element subspace. It
works directly on the structured coarse mesh.

* In addition, we have implemented an efficient way to solve the linear sys-
tem for the DG discretization iteratively by exploiting a downwind cell-wise
numbering of unknowns before the stiffness matrix is assembled (Section
5.7).

• Chapter 6 highlights implementation aspects which constitute a significant part of
such a practical work.
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• Numerical studies are presented in Chapter 7. The DG method is compared to
a first order SDFEM implementation within the same code, i.e. the performance
of the two different discretizations can be compared on the same computational
grid using the same linear solver. A 3-D nested-cells environment generating
a sufficiently complex steady-state flow field serves as the basis for a series of
forward and inversion test cases.

• The results are summarized in Chapter 8.

• The appendix summarizes the mathematical basics required for the comprehen-
sion of this work.

Availability of the software
The numerical software used to perform the simulations is written in C++ and based on
the libraries of the Distributed and Unified Numerics Environment DUNE [Bastian et al.,
2008a,b, 2011] that provides MPI1-based parallel solution of partial differential equa-
tions. The implementation of the algorithms and numerical schemes presented in the
chapters 2 – 5 are available in a new DUNEmodule named dune-gesis (Geostatistical
Inversion based on Stationary Models), published by Ngo and Schwede [2014]. It was
developed by the author in the course of his employment (2010-2014) at the Interdis-
ciplinary Center for Scientific Computing (IWR Heidelberg) in cooperation with the
workgroup for hydrogeology at the Center for Applied Geosciences (ZAG Tübingen).
The research project was funded by the Baden-Württemberg Stiftung2 under the con-
tract HPC-8.

1MPI (message passing interface) has the advantage that it can be used on both distributed and shared
memory architectures. Multi-threading in DUNE is a topic of current research.

2http://www.bwstiftung.de/en
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Chapter 2

Geostatistical Modeling

2.1 Hydraulic conductivity in the confined aquifer

We start with a brief clarification of some important terms related to hydrogeology
which are relevant for the understanding of this work. For further details, we refer
to [Bear and Cheng, 2010], one of the most comprehensive books on mathematical
modeling of groundwater flow and contaminant transport.

Subsurface flow is flow through a porous medium (soil or rock). This medium
consists of a solid matrix (mainly minerals or organic compounds) and pore space (void
space). A porous medium can be characterized by a representative elementary volume
(REV), a sample of sufficiently large volume such that a consistent ratio between the
void space volume Vvoid(t, ~x) and the sample’s volume VREV can be defined. This ratio
is called the total porosity:

θ(t, ~x) =
Vvoid(t, ~x)

VREV
(2.1)

Soil porosity varies over a wide range of values, from θ = 0.1 for sandstone to θ = 0.8
for peat soil. We work with the assumption that the porosity is constant throughout the
domain and that the porous medium does not change its shape: θ = 0.3 is a typical value
for gravel and sand. Groundwater hydrologists use the term groundwater primarily for
that part of the subsurface water that occurs in the saturated zone where the entire inter-
connected void space is filled with water. A porous geological formation that contains
groundwater is called an aquifer. A confined aquifer is (1) bounded from above and
from below by impermeable formations, and (2) under pressure, i.e. the water level in a
piezometer rises above the impermeable ceiling (potentiometric surface in the artesian
well in Figure 2.1). A phreatic or unconfined aquifer is bounded from above by a
phreatic surface (water table in Figure 2.1). The unsaturated zone or vadose zone is the
layer between the ground surface and the water table. The pore space is partially filled
with water. The rest is air. It is under direct influence of precipitation or evaporation
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φ = z +
p

ρwg

p

ρwg

z

Figure 2.1: Cross-sectional cartoon of a geological formation, modified af-
ter the Colorado Geological Survey http://www.douglas.co.us/water/water-supply/
what-is-an-aquifer/(last accessed: 2014-09-25)

leading to a natural recharge or discharge of the aquifer. Furthermore, the existence of
surface water (stream, river, lake or wetland) may lead to a flooding or a drainage of the
aquifer.

Natural flowing conditions that are nearly at steady-state over a long period of time
(i.e. several days during which a tracer experiment is being conducted) can be expected,
if at all possible, in a confined aquifer. In an unconfined aquifer, the influence of tran-
sient ambient flow may be reduced to be negligible in a nested-cell setup [Luo et al.,
2006; Schwede et al., 2014]. Thus, it is possible to work with steady-state flow and
transport models presented in [Cirpka and Kitanidis, 2001] and applied in this work.
Steady-State equations can be solved much faster than transient equations. Unfortu-
nately, we must point out that this computational advantage is involved with a drawback
from the perspective of an experimenter’s working in situ: it requires big efforts to
maintain steady-state flowing conditions over a long period of time and to take valuable
measurements of high quality.

The hydraulic conductivity is the most important hydraulic parameter in ground-
water simulation. It describes the ease with which water can move through the pore
space of the fully water-saturated porous medium. Under the assumption that water is
incompressible (its density is constant), the basic law that governs water flow
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• in the saturated zone

• under isothermal conditions

• at macroscopic level (laboratory or field scale)

• in an isotropic porous medium1

is given by the following version of Darcy’s Law2:

~q = −K ∇φ (2.2)

where the specific discharge ~q [m/s] is measured as the volume of water passing through
a unit area of porous medium cross-section per unit time. φ[m] the hydraulic head
(piezometric head), defined as

φ = z +
p

ρwg
(2.3)

where z[m] is the elevation of the point (above some reference level) at which the mea-
surement of φ is actually taken, p[kg/(ms2)] is the water pressure, ρw[kg/m3] is the
mass density of water and g[m/s2] is the gravitational acceleration. The coefficient of
proportionality K[m/s] is the hydraulic conductivity. Whereas K depends on both
the solid matrix and the fluid properties, the intrinsic permeability κ is a property of
the pore geometry alone. Their relation is given by

K = κ
ρwg

µw
(2.4)

where g ≈ 9.81[m/s2]. At a reference temperature of 15◦C, the density of water is
ρw = 999.1[kg/m3] and the dynamic viscosity of water is µw = 1.139 · 10−3[kg/(ms)].
Hence, an alternative formulation of Darcy’s Law reads:

~q = − κ

µw
∇ (p+ ρwgz) (2.5)

Tables G.1 and G.2 in the Appendix show typical values of the porosity and the
hydraulic conductivity for different natural materials.

1 At any given point, the hydraulic conductivity is not dependent on the direction. By contrast,
anisotropic porous media are modeled by a second rank tensor of hydraulic conductivity.

2 originally (1865) suggested on the basis of sand box column experiments and later recognized
as a motion equation that can be derived from the microscopic differential balance equation of linear
momentum by means of volume averaging, homogenization or mixture theory [Bear and Cheng, 2010]
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2.2 Spatial description of the hydraulic conductivity
Throughout this work, the computational domain Ω ⊂ Rd (d ∈ {2, 3}) is a rectangular
cuboid. This is adequate for laboratory experiments with sandboxes. For simulations in
field scale, we must work with the assumption that Ω is merely a block truncated out of
the physical domain (the aquifer).

2.2.1 Stochastic model
We assume that the natural logarithm of the hydraulic conductivity

Y (~x) = ln(K(~x)) (2.6)

is a random field with normal distribution1, consisting of a trend function µ(~x) and a
zero-mean fluctuation Y ′(~x).

Y (~x) = µ(~x) + Y ′(~x) (2.7)

The linear trend model

µ(~x) =

Nβ∑
k=1

βkXk(~x) (2.8)

can be used to describe a zonation of the domain Ω containing Nβ zones provided that
this knowledge is available: Xk(~x) is the indicator function for the k-th zone, inside
which the log hydraulic conductivity fluctuates about a mean value βk. It is important
that the number of zones Nβ is much smaller than the number of measurements M
[Kitanidis, 1997]. The drift or trend coefficient vector β = (β1, ..., βNβ)T itself may
be uncertain. The spatially correlated random fluctuation Y ′(~x) is represented by the
two-point covariance function R (D.7) which is parameterized by one of the variogram
models (D.8)-(D.10). We may summarize the field variance σ2

Y and the correlation
lengths `k into a vector of structural parameters θ := (σ2

Y , `1, ..., `d)
T and write

E[Y ′(~x), Y ′(~y)] = R(~x, ~y
∣∣θ) (2.9)

as in [Kitanidis, 1993], indicating that θ is known.

1 The hydraulic conductivity is not necessarily log-normally distributed, but according to [Domenico
and Schwartz, 1998], the histograms of values taken in many studies assume the shape of the bell curve.
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2.2.2 Discretization of the log hydraulic conductivity Y
Approximating the log conductivity field Y (~x) by a cell-wise constant function on a
structured mesh

Th =
N−1⋃
j=0

tj (2.10)

with N = n1 × ... × nd disjoint cuboidal and axis-parallel cells (with maximal edge
length h) forming a partitioning of the domain Ω, Y (~x) can be represented as a d-
dimensional array with exactly N entries. These entries can be arranged (in lexico-
graphical order) to form a random vector1

y =
(
Y (~x0), ..., Y (~xN−1)

)T ∈ RN (2.11)

where the ~xj is the cell center of tj . The discrete form of (2.7) then reads

y = Xβ + y′ (2.12)

where X ∈ RN×Nβ is the zonation matrix, β ∈ RNβ is the vector of trend coefficients
and y′ ∼ NN(0,Ryy) is the random fluctuation around the mean Xβ with covariance
Ryy. This is equivalent to the statement

y ∼ NN(Xβ,Ryy). (2.13)

The covariance matrix Ryy has the entries

(Ryy)jk = R(~xj, ~xk
∣∣θ)

= σ2
Y − γ

(
h̃( ~xj, ~xk )

) (2.14)

defined by the field variance σ2
Y and the semi-variogram function γ (D.7). The distance

h̃ is scaled by the correlation lengths `1, ..., `d as in (D.5). Ryy is a symmetric, posi-
tive semi-definite matrix, which has Toeplitz structure if the domain is discretized by a
structured equidistant mesh. It can be fully characterized by its first column

(r0, ..., rN−1)T where rj = R(~xj, ~x0

∣∣θ). (2.15)

1In the following, we do not make a distinction between a random vector Y and its realization y, c.f.
Appendix B.
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2.3 Random field generation algorithm

Theorem A.2, Lemma C.1 and Theorem C.1(a) (or Theorem C.2 for the degenerate
case) suggest a straight forward, but inefficient method to generate realizations of a
multivariate Gaussian distributed random vector y′ ∼ NN(0,Ryy) from a white noise
vector x′ ∼ NN(0, Id).

Algorithm 2.1 Random Field Generation (by Cholesky factorization)
Input: Covariance matrix Ryy ∈ RN×N

1.) Generate i.i.d. variables x1, ..., xN ∼ N(0, 1) and set x′ = (x1, ..., xN)T .
2.) Compute a Cholesky factorization Ryy = LLT .
3.) Set y′ = Lx′.

The Cholesky factorization, which is the most cost-intensive part in this algorithm, gen-
erally requires O(N3) floating point operations. For Toeplitz matrices, the complexity
can be reduced to O(N2) [Kailath, 1986]. For practical applications, where N can eas-
ily exceed 106, this is still too much. Dietrich and Newsam [1993, 1997] have presented
a method to generate realizations y′ which requires only O(N logN) operations by

1. embedding the Toeplitz matrix Ryy ∈ RN×N into a non-negative definite circulant
matrix Syy ∈ RN ′×N ′ (with N ′ = 2M ′ and M ′ ≥ N − 1 for d = 1),

2. applying a two-step forward DFT to get an efficient matrix-vector multiplication
η = Bχ, where B ∈ RN ′×N ′ is a square root factor of Syy and χ ∈ CN ′ is a
complex white noise vector,

3. and finally stripping off an N–dimensional sub-vector of η that has the desired
distribution NN(0,Ryy).

The method works on a rectangular cuboidal domain Ω ⊂ Rd, discretized by a struc-
tured equidistant mesh Th ⊂ Ω. Given the domain lengths Lk and the numbers of mesh
cells nk in each dimension k = 1, ..., d, the total number of mesh cells is N = n1 · · ·nd
and the mesh-sizes are ∆xk = Lk/nk. For the most important variogram models in
groundwater simulation, Dietrich and Newsam have listed various conditions for the
choice of correlation lengths, domain lengths and resolution of the discretization under
which the minimal circulant embedding (M ′ = N−1 for d = 1) produces non-negative
definite Syy. These parameters should be chosen in such a way that the correlation
lengths of the random field do not exceed the domain lengths (`k � Lk) and are re-
solved well enough by the mesh-sizes (`k � ∆xk).
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Algorithm 2.2 Random Field Generation (by Dietrich and Newsam)
Input: Domain extensions {Lk}1,...,d, mesh cell numbers N = n1 · · ·nd, zonation matrix X and trend
coefficients β ∈ RN×Nβ , variogram model γ(h̃) with variance σ2

Y and correlation lengths `1, ..., `d.

(1) Domain extension: Define the extended mesh T′h with the same mesh-sizes ∆xk as Th such that
n′k ≥ 2nk − 2 and set N ′ = n′1 · · ·n′d. The extended domain Ω′ is chosen such that L′k = n′k∆xk.

(2) Periodic circulant embedding: Compute the first column s = (s1, ..., sN ′)T of a circulant matrix
Syy ∈ RN ′×N ′

as follows:

d = 1: Define r = (r0, ..., rN−1)T as in (2.15).

sk = rk−1, k = 1, ..., n1

sN ′+2−k = rk−1, k = 2, ..., n1 − 1
(2.16)

A minimal periodic embedding (N ′ = 2n1 − 2) is illustrated in Figure 2.2.

d > 1: Let ~x′ ∈ Ω′ be the center of a mesh cell in T′h and let l ∈ {1, ..., N ′} be the global (lexicograph-
ical) index of this cell. Then,

sl := R(~x,~0
∣∣θ) (2.17)

where ~x ∈ Ω has the coordinates

xk = min{ x′k, L′k − x′k } for k = 1, ..., d (2.18)

For d = 2, this embedding in two directions is illustrated in Figure 2.3(a).

(3) Compute the vector of eigenvalues of Syy as in (A.30) using the forward DFT:

λ =
√
N ′ · FN ′ · s. (2.19)

(4) Generate a complex white noise vector χ = µ+ iν ∈ CN ′
with

independent and real white noise vectors µ,ν ∼ NN ′(0, Id).
(5) Compute the vector χ̃ ∈ CN ′

with entries

χ̃k = χk ·
√
λk k = 1, ..., N ′ (2.20)

and apply the forward DFT on χ̃ to get

η = FN ′ · χ̃. (2.21)

(6) Define the vector y′ ∈ RN with entries y′k = Re(ηk) for k = 1, ..., N .
(7) Compute

y = Xβ + y′. (2.22)

Output: y ∼ NN (Xβ,Ryy)

Remark 2.1. For d = 2, Ryy is a block-Toeplitz matrix with Toeplitz blocks. For d = 3,
Ryy is a block-Toeplitz matrix with block-Toeplitz blocks. Both of them are Toeplitz
matrices. Likewise, the circulant matrix Syy has a block circulant structure for d > 1.
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Remark 2.2. If the embedding is not minimal, the entries sn1+1, ..., sN ′+2−n1 may be
chosen arbitrarily, most naturally by continuation of (2.15) to the extended domain
such that the values of sk are symmetric with respect to the mirror plane of the extended
cuboid Ω′ (Figure 2.2).
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Figure 2.2: Embedding of a domain Ω = [0, 4] into the extended periodic domain Ω′ =
[0, 8) on an equidistant mesh xk = x0 + k∆x for the covariance function given by
rk = σ2

Y − γ(xk − x0) where γ(h) = σ2
Y (1− exp (−h2/`2)) is the Gaussian model

(with correlation ` =
√

2).
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Remark 2.3. Equations (2.20) and (2.21) of Algorithm 2.2 implement the square root
of Syy as defined in (A.32). Using Theorem C.2, it can be shown that both real and
imaginary parts of η ∈ CN ′ have the desired distribution N(0, Syy). Due to the periodic
embedding, any N ×N block along the main diagonal of Syy is a copy of Ryy (Figure
2.2). Therefore, in step 6, actually any consecutive N entries of Re(η) or Im(η) can be
chosen as a random field y′ ∈ RN with the desired distribution NN(0,Ryy).

(a) periodicity of the
mirrored

covariance function

Ω : embedded domain
Ω′: embedding domain

Ω

Ω′

(b) periodicity of the
extended field

Re(η) in Ω′

Ω

Ω′

Figure 2.3: Periodic embedding in 2-D: Ω ⊂ Ω′.
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Chapter 3

Inversion

3.1 Deterministic approach
Let Ω ⊂ Rd be a rectangular cuboid. In the following, let HD denote the “data space”,
HP be the “parameter space” and HU be the “state space”. Measurement data1 at discrete
locations {~x1, ..., ~xM} yield HD ⊂ RM . A discretization of the parameter space as in
§2.2.2 yields HP ⊂ RN+Nβ . The state space HU is typically the function space H1(Ω).

In classical inverse problems, given a vector of observations dobs ∈ HD, the task is to
find (an estimate of) the unknown parameter field p ∈ HP such that the model equation

dobs = F (p) (3.1)

is fulfilled. Hereby, the model function

F : HP −→ HD

p 7→ dobs
(3.2)

can be stated more precisely as a composition F = g ◦ u of a solution operator of the
forward model for the measured quantity

u : HP −→ HU

p 7→ u(p)
(3.3)

and an observation operator evaluating the predicted model outcome at discrete points:

g : HU −→ HD

u 7→
(
u|~x=~x1 , ..., u|~x=~xM

)T
.

(3.4)

1Note that different types of measurements may be taken at a single location. In this case, M is not
the total number measurement locations, but the total number of all measurements.
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Only if F is injective, we can construct an inverse operator F−1 : F [HP] → HP.
Solving an inverse problem practically means to find an approximation of F−1 mapping
the measured data dobs to a uniquely defined p ∈ HP.

The type of parameter estimation problems we want to solve is in general ill-posed and
non-linear even if the underlying forward equation for a known parameter is linear (c.f.
[Engl et al., 2000], §1.6).

For a linear model, F can be represented by a constant matrix A ∈ RM×(N+Nβ). If
the number of measuring points M is much smaller than the number of parameters N ,
we face an under-determined linear system

dobs = Ap . (3.5)

A practical solution may be defined by the least squares solution

min
p∈HP

J (p) :=
1

2
‖dobs −Ap‖2

2 . (3.6)

The best-approximate least squares solution is

p = A+dobs (3.7)

where the Moore-Penrose generalized inverse A+ can be computed through a singular
value decomposition of A (c.f.[Stoer and Bulirsch, 1996], §6.4). However, small sin-
gular values of A tend to zero as N increases and small error components δdk in the
data dobs corresponding to small singular values σk can be amplified arbitrarily much,
namely with 1/σk (c.f. [Engl et al., 2000], §2.2), violating the continuity property for
well-posedness.

Regularization is a concept that replaces an ill-posed problem by a series of well-
posed or better-posed problems such that their solutions tend to p as the perturbations
δdk tend to zero (c.f. [Engl et al., 2000], §3.1). The most popular regularization tech-
nique is the well-known Tikhonov-Phillips regularization method where (3.6) is re-
placed by

min
p∈HP

Jα(p) :=
1

2
‖dobs −Ap‖2

HD
+
α

2
‖p− p?‖2

HP
. (3.8)

In the first term, the norm ‖.‖HD may incorporate weighting of model and measurement
errors (see §3.3.2). The second term restricts the space in which the unknown parame-
ters are sought by imposing prior assumptions in the form of p? which is independent of
the measurements used for the current inversion. p? can be an educated guess from ex-
perts or the result of a preceding estimation. Deviations from p?, measured in the norm
‖.‖HP , are penalized. The importance of this term is weighted by the regularization pa-
rameter α > 0. This new minimization problem is a compromise between data fitting
and keeping the penalization term small, i.e. enforcing stability (c.f. [Engl et al., 2000],
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§5.1). A well-posed problem can be ill-conditioned (if κ(A) = ‖A‖‖A+‖ � 1) which
makes its iterative solution non-robust. Therefore, using a stable algorithm increases
the chance of finding a numerical solution.

This regularization concept can directly be applied to the general case with non-
linear F :

min
p∈HP

Jα(p) :=
1

2
‖dobs − F (p)‖2

HD
+
α

2
‖p− p?‖2

HP
. (3.9)

An iterative scheme based on the successive linearization of F (c.f. [Kaipio and Som-
ersalo, 2005], §2.3), the non-linear Landweber iteration or Newton-type schemes may
be used to solve this problem ([Engl et al., 2000], §11). Thus, the main objective of
regularization theory is to find appropriate norms in the spaces HD and HP and the reg-
ularization parameter α such that the solution best fits the prior information p? [Bal,
2012]. We will see in the next section that the Bayesian approach devises all these
ingredients.

3.2 Statistical approaches

The main advantage in the use of stochastic methods is that the unknown parameters
and their uncertainty can be estimated at the same time [Sun, 1994]. In statistical in-
ference, the vector of observations dobs ∈ RM is regarded as a realization of random
vector d and we are interested in the probability distribution (described by some density
% = %d) that this random vector is drawn from. Thereby, we may distinguish between
point estimates (What are the most probable values of the parameters p?) and interval
estimates (In what interval are the values of p with 90% probability?)

In the frequentist statistics, the probability of an event is defined as the limit of its
relative frequency as the number of repeated trials tends to infinity. In the frequentist
inference, the unknown parameters p are treated as deterministic. One of the most pop-
ular point estimators in statistics is the maximum likelihood (MLE) estimator pMLE.
It answers the question “Which values of p are most likely to reproduce the vector of
observations dobs?”. Formally, it is defined as the solution of the optimization problem

max
p∈RN

%(d|p). (3.10)

Note that in the MLE approach, only d is a random quantity for which a probability
density is defined. Often, it corresponds to solving the classical inverse problem with-
out regularization and is therefore ill-conditioned (cf. [Kaipio and Somersalo, 2005],
§3.1.1).

In the Bayesian inference, both d and p are treated as random vectors. The marginal
density %(p), which is independent of d, is called the prior density. The conditional
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density %(d|p) is called the likelihood function following (3.10) and the conditional
density

%(p|d) =
%(p) · %(d|p)

%(d)
(3.11)

according to Bayes’ formula (B.17) is called the posteriori density. In the Bayesian
context, this is the solution of the inversion problem. Point estimates can be drawn
from this distribution, for example the maximum a posteriori (MAP) estimator1 pMAP,
which solves the optimization problem

pMAP = arg max
p∈RN

%(p|d), (3.12)

or the conditional mean pCM, defined as

pCM = E[p|d] =



∫
RN

y0 · %(p|d) dy

...∫
RN

yN−1 · %(p|d) dy

 . (3.13)

Estimating the conditional mean pCM requires the evaluation of high-dimensional inte-
grals. Usually, Markov Chain Monte Carlo (MCMC) methods such as the Metropolis-
Hastings algorithm are constructed to sample from the posterior distribution. For a use-
ful characterization of the posterior distribution of an inverse problem, a high number
of such samples is needed ([Kaipio and Somersalo, 2005], §3.6).

Computing the MAP estimate pMAP leads to an optimization problem. For its so-
lution, a vast repertoire of gradient based methods can be used (see e.g. [Nocedal and
Wright, 2006]).

In general, the MAP estimate and the conditional mean differ. There is a constant
debate on which of these two estimates are to be preferred [Burger and Lucka, 2014]. A
complete description of a probability distribution requires the specification of the mean
and the covariance matrix, but the MAP estimate corresponds to the solution given by
the classical Tikhonov regularization, as we will see later in §3.3.4.

[Kitanidis, 1995] suggests a combination of sampling and optimization that gener-
ates a series of conditional realizations out of an unconditional realization. It is called
the method of “smallest possible modification” that allows reproduction of data within
their measurement error.

In [Kitanidis, 1995], the quasi-linear geostatistical theory is developed to compute
an MLE estimator for the structural parameters θ based on the measurements d. A

1 Be careful: It is very easy to get confused with the terms MAP and MLE. In [Kitanidis, 1996], the
author states that what he calls MAP is called MLE in [Carrera and Neuman, 1986].
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lower bound for the mean square estimation error of θ is given by the inverse of the
Fisher information matrix (Cramer-Rao inequality). This θ-fitting step is required to
provide prior information to the Bayesian framework. The theory is derived for the case
of cokriging with unknown trend coefficient vector β. In [Nowak, 2005; Nowak and
Cirpka, 2004], the theory is extended to the case of cokriging with uncertain trend.

Under the assumption that the structural parameters

θ = (σ2
Y , `1, ..., `d)

T (3.14)

(field variance and correlation lengths) are known (and not part of the estimation), we
seek for the MAP estimator (for the trend β and the log conductivity y) and its uncer-
tainty.

3.3 Bayesian inference
This section is a summary of the theory developed in the works of Kitanidis [1986, 1996]
and Nowak [2005]. All the quantities involved (parameters, trend coefficients, data and
measurement errors) are considered to be random variables. Furthermore, we assume
that their probability distributions can be represented by a non-degenerate multivariate
Gaussian density function with symmetric positive definite covariance matrix.

According to (3.11), the task is

1. to construct a prior distribution %(p) that reflects all available information of the
unknown parameters p prior to any measurements,

2. to construct a likelihood function %(d|p) that describes the uncertainty in the re-
lation between the measurements d and the model function in (1.1),

3. to develop a method to compute the posterior distribution %(p|d).

3.3.1 Uncertain prior information
The list of prior information available to us comprises of the correlation lengths `k (D.5),
the variance σ2 (D.7) and the choice of an appropriate variogram model. Along with the
domain lengths Lk and mesh-sizes ∆xk, this handful of numbers is sufficient to identify
the covariance matrix Ryy introduced in (2.14).

A general framework for cokriging with uncertain mean (Xβ in (2.12)), which in-
cludes the two cases “cokriging with known mean” and “cokriging with unknown mean”
as special cases, was developed by Nowak [2005], §6.1.1. The vector of trend coeffi-
cients β ∈ RNβ itself is considered to be a random vector and part of the estimation
process. This means that we want to estimate

p := (y,β)T , (3.15)
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where we identify y = Xβ+y′ (2.12) with the random field y|β with conditional mean
Xβ and conditional covariance Cyy|β ≡ Ryy:

y ≡ y|β ∼ NN(Xβ,Ryy) (3.16)

⇔ %(y|β) ∝ exp

(
1

2
(y − Xβ)TR−1

yy (y − Xβ)

)
.

We assume that
β ∼ NNβ(β?,Cββ) (3.17)

⇔ %(β) ∝ exp

(
1

2
(β − β?)TC−1

ββ (β − β?)
)

where β? is the deterministic trend, “polluted” with some predefined uncertainty Cββ
(measurement errors). According to (B.14), the joint distribution density is given by

%(p) = %(y,β) = %(y|β)%(β). (3.18)

3.3.2 Likelihood function

The model equation (3.1) may be written as

dobs = F (p) := f(y) := g ◦ u(y) (3.19)

if we keep in mind that y ≡ y|β. Equation (3.19) would hold only if the physical
model (represented by the solution operator u) were a perfect model of reality and if
there were no errors in the measurement (represented by the observation operator g).
But in practice, all physical measurements are exposed to uncertainties. The simplest
and most commonly used error model assumes a Gaussian distribution for these kinds
of errors and mutual independence between error and measurement. This so-called
additive noise model has the form

dobs = f(y) + e with e ∼ NM(0,Cdd). (3.20)

Two measurements taken at different measuring points are assumed to be independent
of each other. Thus, the covariance matrix Cdd containing the relative and absolute errors
of dobs is diagonal with entries

ε2k =
(
ε(rel)
` d(obs)

` + ε(abs)
`

)2

. (3.21)
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In the context of Bayesian inference, the vector of observations dobs must be understood
as a realization of a random vector conditional on the given realization of the parameter
field y and given trend β. Thus, equation (3.20) may be interpreted as

d
∣∣p = dobs, (3.22)

or
d
∣∣p− f(y) ∼ NM(0,Cdd), (3.23)

or
d
∣∣p ∼ NM(f(y),Cdd), (3.24)

or

%
(
d
∣∣p) = %

(
d
∣∣(y,β)

)
∝ exp

(
−1

2

(
dobs − f(y)

)T · C−1
dd ·

(
dobs − f(y)

))
.

(3.25)

3.3.3 Posterior distribution
The marginal density %(d) in Bayes’ theorem (3.11) is not depending on the parameter
field y. Therefore, it plays merely the role of a normalization factor. Bayes’ theorem
applied to our problem reduces to the relation

%
(
p
∣∣d) ∝ %

(
d
∣∣p) · %(p)

(3.18),(3.25)⇐⇒ %
(
(y,β)

∣∣d) ∝ %
(
d
∣∣(y,β)

)
· %(y|β) · %(β) .

(3.26)

The MAP estimate (3.12) can be derived through maximizing %
(
(y,β)

∣∣d) or minimiz-
ing its negative natural logarithm

− ln %
(
(y,β)

∣∣d) = − ln %
(
d
∣∣(y,β)

)
− ln(y|β)− ln(β) + const. (3.27)

Inserting (3.25), (3.16) and (3.17) into (3.27) and neglecting the additive constant, we
obtain the objective function1

J (p) :=
1

2

(
dobs − f(y)

)T · C−1
dd ·

(
dobs − f(y)

)
︸ ︷︷ ︸

=: J d(p)

+
1

2

(
y − Xβ

)T · R−1
yy ·

(
y − Xβ

)
︸ ︷︷ ︸

=: J y(p)

+
1

2

(
β − β?

)T · C−1
ββ ·

(
β − β?

)
︸ ︷︷ ︸

=: J β(p)

.

(3.28)

1 cost function, performance index, performance measure
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for our minimization problem. The likelihood term J d accounts for the discrepancy
between simulated and real measurements whereas the prior terms J β and J y penal-
ize variations from the structural parameters β? and θ. For a given estimate p̂ = (ŷ, β̂),
the terms J β(p̂) and J d(p̂) can be evaluated directly after solving the differential
equations required to take the simulated measurements. The computation of J y(p̂),
however, requires some preparations as we will see in §3.4.1.

3.3.4 Link with the deterministic approach
Looking back, we see that the objective function (3.28) assumes exactly the form of a
Tikhonov functional (3.9)

Jα(p) =
1

2
‖dobs − F (p)‖2

HD
+
α

2
‖p− p?‖2

HP
(3.29)

for the parameter p := (y,β)T with α = 1, p? = (Xβ,β?)T and F (p) := f(y), if we
apply the square root factorizations

C−1
dd = DTD, D ∈ RM×M ,

R−1
yy = QTQ, Q ∈ RN×N ,

C−1
ββ = BTB, B ∈ RNβ×Nβ (3.30)

and define the Hilbert space norms ‖.‖HD := ‖D(.)‖2 and ‖.‖HP := ‖A(.)‖2 where

A =

[
Q 0
0 B

]
. (3.31)

This does not mean that the Bayesian approach and the Tikhonov regularization
are equivalent. Whereas the Bayesian solution is an entire probability distribution, the
Tikhonov solution can be regarded as a single sample from that distribution.

3.4 The quasi-linear geostatistical approach (QLGA)

3.4.1 Gauss-Newton scheme for the MAP estimate
Applying the square-root factorizations from (3.30) and defining the residuals

r1(y,β) := D(dobs − f(y)) (3.32)
r2(y,β) := Q(y − Xβ) (3.33)
r3(y,β) := B(β − β?) (3.34)
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our non-linear least-squares problem reads:

min
(y,β)

J (y,β) :=
1

2

∑
i

∥∥ri(y,β)
∥∥2

2
(3.35)

subject to a set of ν PDE constraints (ν being the number of measurement types) of
the form

C( Y, u(Y ) ) = 0 in Ω ∪ ∂Ω (3.36)

specified by related forward problems which we will describe in detail in the next chap-
ter (see §4.1.3).

The Jacobians of the residuals ri are given by:

J1(y,β) = [ −DH 0 ] ∈ RM×(N+Nβ)

J2(y,β) = [ Q −QX ] ∈ RN×(N+Nβ)

J3(y,β) = [ 0 B ] ∈ RNβ×(N+Nβ)

(3.37)

where

H :=
∂f(y)

∂yT
=

[
∂u(y)

∂yj

∣∣∣∣
~x=~x`

]
`,j

∈ RM×N (3.38)

is the Jacobian of the model function. Since it is a measure for how sensitively the
model outcome reacts to changes in the parameter field, it is called the sensitivity ma-
trix. Setting up this matrix is the computationally most demanding part of the inversion
scheme. We will see in section §4.2.3 how the entries of H can be computed efficiently.

The gradient of the objective functional is

∇J (y,β) =
∑
i

JTi ri
(3.30)
=

 −HTC−1
dd (dobs − f(y)) + R−1

yy (y − Xβ)

−XTR−1
yy (y − Xβ) + C−1

ββ (β − β?)

 (3.39)

The Gauss-Newton Hessian of J (y,β) is:

∇2J (y,β)
.
=
∑
i

JTi J
T
i . (3.40)

Of course, this is not the full Hessian, because second order terms are skipped due to
the linearization of the model function f(y).

The Gauss-Newton scheme for (3.35) with line search readsyk+1

βk+1


︸ ︷︷ ︸

=pk+1

=

yk
βk


︸ ︷︷ ︸

=pk

+ α

ŷ − yk
β̂ − βk


︸ ︷︷ ︸

=:∆p̂k

α ∈ (0, 1] (3.41)

27



where the Gauss-Newton direction in iteration k is computed by solving the linear sys-
tem (∑

i

JTi (pk)J
T
i (pk)

)
·∆p̂k = −∇J (pk) . (3.42)

This is equivalent to solving

−HT
k C
−1
ddHk + R−1

yy −R−1
yy X

−XTR−1
yy XTR−1

yy X + C−1
ββ

ŷ
β̂

 =

HT
k C
−1
dd dk

C−1
βββ

?

 (3.43)

where

Hk :=
∂f(yk)

∂yT
(3.44)

and

dk := dobs −
(
f(yk)−Hkyk

)
(3.45)

is the vector of measurements, adjusted for the linearization about the last iterate yk.

In our application, O(N) ≥ 106 and O(M) ≤ 103. A direct computation of the inverse
R−1
yy is inconvenient. Instead of solving the large linear system (3.43) for ŷ ∈ RN ,

[Kitanidis, 1995] has reformulated this problem as a small linear system for the com-
putation of a coefficient vector ξ̂ ∈ RM . The estimated log conductivity field ŷ is then
represented as a linear combination of M cross-covariance fields which is outlined in
the following: Subtracting HT

k C
−1
ddHkXβ̂ on both sides of the first line of (3.43) leads

to the equation

(R−1
yy + HT

k C
−1
ddHk) · (ŷ − Xβ̂) = HT

k C
−1
dd · (dk −HkXβ̂)

⇔ ŷ − Xβ̂ = (R−1
yy + HT

k C
−1
ddHk)

−1 ·HT
k C
−1
dd · (dk −HkXβ̂) .

(3.46)

Applying the matrix identity (A.15) on the block matrix R−1
yy HT

k

Hk −Cdd

 ,
the term

(R−1
yy + HT

k C
−1
ddHk)

−1HT
k C
−1
dd

containing the inverse of an N ×N -matrix can be simplified to

RyyH
T
k (Cdd + HkRyyH

T
k )−1
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which only requires the inverse of an M ×M -matrix. This conversion is the first big
contribution to make this scheme applicable to real-world problems. Hence, equation
(3.46) becomes

ŷ = Xβ̂ + RyyH
T
k (Cdd + HkRyyH

T
k )−1(dk −HkXβ̂)︸ ︷︷ ︸
=:ξ̂

.
(3.47)

Inserting this into the second line of (3.43), we get:

C−1
ββ β̂ − XTHT

k ξ̂ = C−1
βββ

? . (3.48)

Combining (3.47) with (3.48) yields the linear system of cokriging equations HkRyyH
T
k + Cdd HkX

(HkX)T −C−1
ββ


︸ ︷︷ ︸

=: M
cokriging
k =: M

 ξ̂

β̂

 =

 dk

−C−1
βββ

?

 (3.49)

and an estimate for the next iteration is given by (3.47):

ŷ = Xβ̂ + RyyH
T
k ξ̂ . (3.50)

The columns of HT
k are the lines of Hk each of which represents the sensitivity field

for one measuring point. We call the columns zi ∈ RN of the cross-covariance matrix
RyyH

T
k the corresponding cross-covariance fields. Therefore, an alternative represen-

tation of (3.50) is

ŷ = Xβ̂ +
M∑
i=1

ξ̂i · zi . (3.51)

Remark 3.1. Due to its small size, the linear system (3.49) can be solved directly using
LU decomposition. Different types of measurements (hydraulic head, tracer concentra-
tion and arrival times) result in large differences ranging in several orders of magnitude
between the sensitivity fields, which are exactly the rows of Hk. This produces an ill-
conditioned cokriging matrix M. Row equilibration is a natural strategy to balance out
these differences. We solve the equivalent system

DMν = Db (3.52)

where D is a diagonal matrix with entries

D`,` :=

M+Nβ∑
m=1

|M`,m|

−1

, ` = 1, ...,M +Nβ . (3.53)
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Applying a line search with scaling factor α = αj = 2−j(j = 0, 1, 2, ...)

the next iterate (3.41)yk+1

βk+1

 =

yk
βk

+ αj

ŷ − yk
β̂ − βk

 α ∈ (0, 1] (3.54)

is finally accepted if the cost function decreases:

J (yk+1,βk+1) < J (yk,βk) . (3.55)

Whereas the first and last terms in (3.28) can be evaluated directly by inserting pk =
(yk,βk)

T into

J d(p) =
1

2

(
f(y)− dobs

)T · C−1
dd ·

(
f(y)− dobs

)
(3.56)

and
J β(p) =

1

2

(
β − β?

)T · C−1
ββ ·

(
β − β?

)
, (3.57)

a naı̈ve evaluation of the prior term J y would require the inverse of Ryy. Following the
derivations in [Nowak, 2005; Nowak and Cirpka, 2004], the prior term resulting from
successive linearization can be evaluated efficiently by reusing the blocks computed for
the setup of the cokriging matrix (3.49):

J y(p̂)
. .

= 1/2 ·
(
ŷ − Xβ̂

)T · R−1
yy ·

(
ŷ − Xβ̂

)
(3.50)
= 1/2 ·

(
RyyH

T
k ξ̂
)T · R−1

yy RyyR
−1
yy ·

(
RyyH

T
k ξ̂
)

. .
= 1/2 · ξ̂

T
Hk · Ryy ·HT

k︸ ︷︷ ︸
=: Q̂dd ∈ RM×M

ξ̂

. .
= 1/2 · ξ̂

T
· Q̂dd · ξ̂

. (3.58)

J y(p̂) is understood to be evaluated at α0 = 1. For αj < 1, the linear line search
(3.54) may be extended to

ξ̂k+1 = ξ̂k + αj ·
(
ξ̂ − ξ̂k

)
(3.59)

Qdd,k+1 = Qdd,k + αj ·
(
Q̂dd − Qdd,k

)
(3.60)

30



where Qdd,k and ξ̂k are retrieved from the storage of the last iteration. Hence,

J y(pk+1) = 1/2 · ξ̂
T

k+1 · Qdd,k+1 · ξ̂k+1 (3.61)

Starting with the initial guess (a homogeneous field)y0

β0

 :=

Xβ?
β?

 (3.62)

it is clear that J β(p0) = J y(p0) = 0. We set Qdd,0 := 0 and ξ̂0 = 0. The dominating
term that needs to be reduced is the discrepancy between simulated and real measure-
ments J d(p0). For its calculation, the model function needs to be evaluated. For the
initial guess p0, this calculation can be skipped by setting J (p0) to a very large value.
The final stopping criterion is reached when the new estimate remains almost un-
changed or when the cost function cannot be reduced any further. We denote the esti-
mated solution to which the iterative scheme converges by yest and βest.

3.4.2 Uncertainty quantification
Note that the expression (3.28) is not quadratic with respect to y since the model func-
tion f(y) is generally non-linear. Therefore, y does not obey a Gaussian distribution.
However, in each iteration of the quasi-linear approach, our MAP estimator yest for the
log conductivity y|d is ’made’ normally distributed by linearization of f(y). Thus, it
can be considered as equivalent to a conditional mean estimator (C.14) since all random
quantities involved are normally distributed. Therefore, if the estimator could be com-
puted perfectly, the solution y|d would follow a distribution which is defined by the
conditional mean estimator yest and the conditional covariance Ryy|d:

y|d ∼ N(yest,Ryy|d) . (3.63)

Successive linearization about the last estimate yk yields the approximation1

Ryy|dk = Ryy −

 HkRyy

XT

T · [Mcokriging
k ]−1 ·

 HkRyy

XT

 (3.64)

which can be found in [Li et al., 2005]. This expression can be used as a lower bound
for the conditional covariance Ryy|d (see also [Nowak, 2005], §6.2.2 and the references
cited therein) which expresses the uncertainty of our estimator for y|d. In most other
applications, the uncertainty of a statistical estimator has to be determined through a
costly generation of conditional realizations (see e.g. [Tan et al., 2012]).

1 We skip its derivation here, for which the marginal distribution of y with the generalized covariance
matrix (Gyy = Ryy + XCββX

T ) must be taken into account.
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3.4.3 Test of unbiasedness
Equation (3.63) is another way of saying that the difference between true and estimated
parameters have zero mean and covariance Ryy|d. In this case, yest is called an unbiased
estimator for y|d [Li et al., 2005]. Since ytrue can be interpreted as a sample drawn
from the distribution (3.63), this is equivalent to

ε := Q−1
yy|d · (ytrue − yest) ∼ N(0, Id) (3.65)

according to Theorem C.1(b), provided that Ryy|d is positive definite with square root
Qyy|d ∈ RN×N . The computation of the weighted error ε requires a Cholesky decompo-
sition of Ryy|d which is costly if N is very large. Let σ2

1, ..., σ
2
N be the diagonal entries

of Ryy|d. We denote by
vest = (σ2

1, ..., σ
2
N)T (3.66)

the field of estimated variances. If Ryy|d is diagonal dominant,

ε̂ := diag(σ−1
1 , ..., σ−1

N ) · (ytrue − yest). (3.67)

is a good approximation for the weighted error.

Remark 3.2. Note that the diagonal entries of Ryy are simply the field variance σ2
Y .

This simplifies the computation of the diagonal entries of Ryy|dk in (3.64).

3.4.4 An estimator for the optimal value of the objective function
If we assume that the distributions (3.20) and (3.17) hold for the estimated solution
pk+1 = (yk+1,βk+1)T and additionally

ξ̂k+1 ∼ NM(0,Qdd,k+1) (3.68)

holds for the coefficient vector ξ̂k+1, then it is trivial to show that

2×J d(pk+1) ∼ χ2
M (3.69)

2×J y(pk+1) ∼ χ2
M (3.70)

2×J β(pk+1) ∼ χ2
Nβ

(3.71)

using Theorem C.1(b). Additivity of the χ2-distribution leads to

2×J (pk+1) ∼ χ2
2M+Nβ

. (3.72)

Due to Remark C.4,

µ := E[J (pk+1)] ≈ M +Nβ/2 (3.73)
σ2 := Var[J (pk+1)] ≈ 2M +Nβ (3.74)
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This may be used to construct a confidence interval estimator of the form

P (µ− σ ≤J ≤ µ+ σ) ≈ 68.27%, (3.75)
P (µ− 2σ ≤J ≤ µ+ 2σ) ≈ 95.45%, (3.76)
P (µ− 3σ ≤J ≤ µ+ 3σ) ≈ 99.73%, (3.77)

known as the so-called three-sigma rule or 68–95–99.7 rule for normal distributions.
However, we will see in the 3-D inversion example presented in Chapter 7, that the
range of the optimal value of J it is not easily matched, but depends strongly on the
magnitude of the measurement errors.

Targeting for the objective function of a minimization problem to fall below a certain
threshold may be a more convenient choice. In the χ2 distribution tables, the 100α-th
percentile is often denoted by χ2

1−α(r) where r is the degree of freedom and 100α is
the percentage of all outcoming values that are smaller than the threshold. To be more
precise, we choose α = 0.95 and look up the value

J ∗ :=
1

2
· χ2

0.05(2M +Nβ) . (3.78)

Since

P (J ≤J ∗) = 95% , (3.79)

our goal is reached if J (pk+1) ≤J ∗.

3.5 Inversion algorithm

The most important steps of the Gauss-Newton based QLGA-method are outlined in the
following algorithm. The details for the computations of the forward and adjoint prob-
lems in steps (7) and (12.3) are clarified in Chapters 4 and 5. If the original parameter
field ytrue is available, at the end, a histogram for the weighted error (3.67) can be plotted
and compared against the standard normal distribution to check for the unbiasedness of
the estimate yest.
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Algorithm 3.1 QLGA (by Kitanidis, Cirpka and Nowak)
1: Input:
2: - all input data required for Algorithm 2.2;
3: - vector of observations dobs := (u1, ..., uM)T from measurements of a quantity
u at discrete points ~x1, ..., ~xM with measurement errors given by Cdd (3.21). For
different indices ` 6= j, u` and uj may be of different types (φ, mc

0 or mc
1);

4: - uncertainties of the trend coefficients β? given by Cββ (3.17);

5: Initialization steps:
6: (1) – (3) Same as in Algorithm 2.2.

7: Iterative scheme starts here:
8: (4) k = 0;
9: if solution (yest,βest)

T from a previous inversion exists then
10: (4.1) Initialize y0 = yest; β0 = βest;
11: else
12: (4.2) Initialize y0 = Xβ?; β0 = β?; . // Homogeneous guess
13: end if
14: (5) Initialize J (p0) = 1012; . // Any large value fulfills the purpose.
15:
16: while k < kmax do . // Outer iteration loop
17: (6) Identify pk = (yk,βk)

T ;
18:
19: (7) Call Algorithm 4.2 with input yk; . // Get f(yk), HT

k and RyyH
T
k .

20:
21: (8) Evaluate adjusted vector of measurements as in (3.45);

dk = dobs −
(
f(yk)−Hkyk

)
22: (9) Setup and store the matrix M

cokriging
k from (3.49);

23: (10) Solve the cokriging system (3.49) with row equilibration (3.53);

DM
cokriging
k ·

 ξ̂
β̂

 = D

 dk

−C−1
βββ

?


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Algorithm 3.1 (continued): QLGA (by Kitanidis, Cirpka and Nowak)
24: (11) Evaluate ŷ as in (3.50) and compute the Gauss-Newton direction:

ŷ = Xβ̂ + RyyH
T
k ξ̂ , ∆p̂k =

 ŷ − yk
β̂ − βk


25: (12) Set α = 1.0;
26: while α > αmin do . // Line search loop
27: (12.1) pk+1 = pk + α∆p̂k;
28: (12.2) Identify pk+1 = (yk+1,βk+1)T ;
29:
30: (12.3) Call Algorithm 4.1 with input yk+1; . // Get f(yk+1) for (12.5).
31:
32: (12.4) Compute ξ̂k+1 and Qdd,k+1 as in (3.59) and (3.60);
33: (12.5) Compute the objective function as in (3.56), (3.57) and (3.61):
34: J (pk+1) = J d(pk+1) + J β(pk+1) + J y(pk+1);
35:
36: if J (pk+1) > J (pk) then
37: (12.6) α = α/2;
38: if α <= αmin and J (pk+1) > J (pk) then
39: (12.7) exit; . // The algorithm got stuck!
40: end if
41: else
42: if J (pk)−J (pk+1) > ∆J and ‖yk+1 − yk‖∞ > ∆y then
43: (12.8) pk = pk+1; . // Accept new estimate as real improvement.
44: (12.9) k = k + 1;
45: else
46: break; . // Convergence reached.
47: end if
48: end if
49: end while . // Line search loop
50: end while . // Outer iteration loop
51:
52: (13) Store the estimated parameter field to yest ∈ RN ;
53:
54: (14) Compute the diagonal entries of Ryy|dk (3.64) and
55: store the result to vest = (σ2

1, ..., σ
2
N)T ; . // Simplified UQ (see Remark 3.2)

56:
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Chapter 4

Model Equations and the Computation
of Sensitivities

In this chapter, we state the forward model PDEs realizing the solution operator (3.3)
and derive the adjoint PDEs for the computation of the gradient of the solution operator.
In the next chapter, we will introduce efficient discretization schemes for the numerical
solution of the boundary value problems (BVPs) presented here.

4.1 Model equations

Physical models describing flow and transport processes in a confined aquifer are well
developed and can be found in the textbooks by Bear and Cheng [2010] or De Marsily
[1986] or in the lecture notes by Roth [2012]. Since the computational domain Ω ⊂ Rd

is truncated out of the physical domain (§2.2), the boundary conditions are unknown.
They need to be approximated by artificial boundary conditions. To minimize their
influence on the flow in the region where pumping tests and tracer experiments are
being conducted, Ω should be chosen large enough such that these artificial boundaries
are sufficiently far away from the region of interest.

4.1.1 Groundwater flow

For simplicity, we assume that the computational domain Ω is a bounded rectangular
cuboid in Rd (d = 2, 3) in which the boundary is subdivided into a non-empty Dirichlet
boundary (ΓD) and a Neumann boundary (ΓN ) section. We consider the steady-state
groundwater flow equation:
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div
(
−K∇φ

)
= w̃inj − w̃ext in Ω (4.1)

subject to the boundary conditions:

φ = φ̂D on ΓD (4.2)
~n · (−K∇φ) = 0 on ΓN (4.3)

in which ~n(~x) is the unit outer normal vector, K(~x) > 0 is the spatially variable, but
locally isotropic hydraulic conductivity [m/s], φ(~x) is the hydraulic head [m] and the
source terms on the right hand side prescribe the rates (volumetric flux per unit volume
[1/s]) of injection and extraction wells Winj,Wext ( Ω:

w̃inj(~x)


> 0 ~x ∈ Winj

= 0 ~x ∈ Ω\Winj

w̃ext(~x)


> 0 ~x ∈ Wext

= 0 ~x ∈ Ω\Wext

(4.4)

This is an elliptic equation for which the coefficient K may be highly variable. The
fluid motion is driven by an ambient flow prescribed by a difference in the hydraulic
head between inflow and outflow boundaries (where φ̂D is defined) and by injection
and extraction wells located within the domain. The flow field is induced by the head
distribution (Darcy’s law (2.2)):

~q = −K∇φ in Ω. (4.5)

~q(~x) is sometimes called the Darcy velocity [m/s]. It is related to the pore water
velocity (or seepage velocity) ~v(~x) via

~q = θ~v (4.6)

where θ is the dimensionless porosity. Throughout this work, the porosity θ is supposed
to be a known constant.

4.1.2 Subsurface solute transport
A conservative tracer used to track flow motion has no influence on the flow itself.
Its concentration c(t, ~x) [kg/m3] is described by the transient convection-diffusion-
reaction equation [Bear and Cheng, 2010]

∂(θc)

∂t
+ div(−D∇c) + ~q ∇c = w̃inj c̃inj − w̃ext c in (0, T ]× Ω (4.7)

in which c̃inj(t, ~x) is the concentration at the injection well and
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D = θDS (4.8)

is the dispersion tensor [m2/s] given by Scheidegger [1961]:

DS =
(
α` − αt

) ~v · ~vT
‖ ~v ‖2

+

(
αt ‖~v‖2 +Dm

)
Id, (4.9)

where α` and αt are the longitudinal and transversal dispersivities [m], Dm is the mole-
cular diffusion coefficient [m2/s] and Id is the identity matrix.

Initial and boundary conditions

The initial distribution is supposed to be zero:

c(0, ~x) = 0 in Ω (4.10)

For the transport equation, we distinguish three types of boundaries, inflow, outflow and
characteristic boundary:

Γ– = {~x ∈ ∂Ω : ~q(~x) · ~n(~x) < 0}
Γ+ = {~x ∈ ∂Ω : ~q(~x) · ~n(~x) > 0}
Γ0 = {~x ∈ ∂Ω : ~q(~x) · ~n(~x) = 0}

(4.11)

Tracer in a constant concentration may enter over a fixed time period Tinj > 0 through
the injection well or somewhere on the inflow boundary:

c(t, ~x) = ĉD(~x) on Γ– (4.12)

On the whole boundary ∂Ω = Γ–∪Γ+∪Γ0, we assume that the flux is non-diffusive for
convection dominant transport:

~n · (−D∇c) = 0 on Γ– ∪ Γ+ ∪ Γ0 (4.13)

This implies the no-flux condition for impermeable boundaries:

~n · (−D∇c+ ~qc) = 0 on Γ0 (4.14)

Boundary value problem for the temporal moments

We are interested in the steady-state solution (∂c/∂t = 0), or more adequately, in the
zeroth or first order temporal moments of the resident concentration (4.7). Naturally, c
has compact support in time and space:
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• the input of tracer is not endless,

• the injection space is restricted to the space occupied by the injection well or is a
limited part of the inflow boundary.

In the formal derivation of the differential equations for the temporal moments, we fur-
ther assume that c is always smooth enough such that the strong form of the differential
operators exists and such that the order for the two operations differentiation in space
and integration in time can be exchanged.

Definition 4.1. Let s ≥ 0 and c ∈ C1(0, T ;Cs(Ω))1. Furthermore, let c(t, ~x) = 0
for t > T . The k-th temporal moment of c is defined by

Mk[c](~x) := mc
k(~x) =

∞∫
t=0

tkc(t, ~x) dt. (4.15)

From the definition of c we conclude that mc
k < ∞ and mc

k ∈ Cs(Ω). [Harvey and
Gorelick, 1995] uses the Laplace transform to derive the moment equations from (4.7).
We apply the operator Mk directly, term by term, onto the differential equation (4.7).
For the first term, we use integration by parts:

Mk

[
∂(θc(t, ~x))

∂t

]
= −

∞∫
t=0

ktk−1θc(t, ~x) dt+

[
tkc(t, ~x)

]∞
0︸ ︷︷ ︸

=0−0

= −kθmc
k−1(~x) (4.16)

Due to the time-independence of the spatial differential operators, the Darcy velocity ~q
and the diffusion tensor D, these operations and factors can be drawn out of the temporal
integral in the remaining terms of the left hand side of (4.7):

Mk

[
div
(
−D∇c(t, ~x) + ~q c(t, ~x)

)
+ w̃ext c(t, ~x)

]
= div

(
−D∇mc

k(~x) + ~q mc
k(~x)

)
+ w̃extm

c
k(~x)

(4.17)

Likewise, the boundary term in (4.13) becomes

Mk

[
~n · (−D∇c)

]
= ~n · (−D∇mc

k). (4.18)

1C1(0, T ;Cs(Ω)) be the space of functions which are continuously differentiable with respect to
t ∈ (0, T ) and s-times continuously differentiable with respect to ~x ∈ Ω.
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Assuming that we inject a tracer in a constant concentration c̃inj at a constant rate w̃inj

through a well over a fixed period of time Tinj > 0, the right hand side term becomes

Mk

[
w̃injc̃inj

]
= w̃inj · (Tinj)

k+1/(k + 1) · c̃inj︸ ︷︷ ︸
↓

=: w̃inj · m̃inj
k (4.19)

In the same manner, we get

Mk

[
ĉD
]

= (Tinj)
k+1/(k + 1) · ĉD =: m̂c

k (4.20)

for (4.12) on the inflow boundary.

Summing up (4.16)-(4.19), we obtain the steady-state transport equations for mc
k:

div(−D∇mc
k + ~q mc

k) + w̃ext m
c
k = w̃inj m̃

inj
k + kθmc

k−1 in Ω, (4.21)

subject to the boundary conditions:
mc
k = m̂c

k on Γ– (4.22)
~n · (−D∇mc

k) = 0 on Γ (4.23)

Physical meaning of the temporal moments

The zeroth moment at an observation location ~x` is the total tracer mass that passes
through a cross-sectional area δA(~x`), divided by the volumetric discharge through ~x`,
qA(~x`) = δA · ~q · ~nA. In other words, the product mc

0(~x`) · qA(~x`) is the accumulated
mass passing ~x`.
The first moment divided by the zeroth moment of solute concentration at ~x` is the mean
arrival time of the solute:

T arrival(~x`) =
mc

1(~x`)

mc
0(~x`)

. (4.24)

For convection dominant transport with very small transversal dispersivities αt, the plot
of the zeroth moment mc

0 in a 2-D simulation shows almost a binary distribution reveal-
ing only the shape of the plume which is typically a connected region permeated by the
solute, lying in a subdomain surrounding the wells (see Figure 7.8). Inside the plume,
mc

0 assumes approximately the value at the injection location and, outside the plume,
mc

0 = 0. In 2-D, the information content is not very high, whereas in 3-D, the permeated
region may encapsulate regions which are much less permeable: A cross-sectional plot
of a 3-D simulation ofmc

0 for the original Y -field in Figure 7.12 (or Figure 7.13) reveals
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those obstructions. The first moment or the mean arrival time is inversely proportional
to the hydraulic conductivity (Darcy’s Law) averaged over the travel path from the in-
jection to the observation point and monotonically increasing with travel distance. It
contains much more information about the structure of the permeated region.

4.1.3 Weak formulation of coupled equations
We seek the solutions {s, t, u} := {φ,mc

0,m
c
1} of (4.1) and (4.21) in the Sobolev space

H1(Ω) and we assume that the logarithm of the hydraulic conductivity Y ∈ L2(Ω). In
the following, we will use the abbreviations

HY := L2(Ω) and Hs := Ht := Hu := H1(Ω) (4.25)

to improve the readability. Note that the dual space of H1(Ω) is denoted by H1(Ω)∗.

Groundwater equation

Let ŝD ∈ H1(Ω) be the extension of φ̂D ∈ H1/2(ΓD). The trace theorem guarantees the
existence of a trace operator γs : H1(Ω) 3 ŝD 7→ φ̂D ∈ L2(ΓD) [Braess, 2007]. Let

SD := {v ∈ H1(Ω) : γsv = 0 on ΓD} . (4.26)

Let G : HY ×Hs −→ H∗s be a bounded operator (linear with respect to s) defined by
the duality pairing of Hs and H∗s:〈

ψs, G(Y, s)

〉
Hs,H∗s

:=
(
∇ψs, K(Y )∇s

)
0,Ω
−
(
ψs, w̃inj − w̃ext

)
0,Ω

(4.27)

The extra dependency on the parameter Y will play an important role later in §4.2.2 in
the derivation of the sensitivities. The weak formulation of the BVP (4.1) reads:

Find s ∈ ŝD + SD such that〈
ψs, G(Y, s)

〉
Hs,H∗s

= 0 ∀ ψs ∈ SD , (4.28)

Transport equations

Similarly, for the zeroth order temporal moment of concentration, let t̂D ∈ H1(Ω) be
the extension of m̂c

0 ∈ H1/2(Γ–) (with trace operator γt). Let

TD := {v ∈ H1(Ω) : γtv = 0 on Γ–} . (4.29)
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Let M0 : HY ×Hs ×Ht −→ H∗t be a bounded operator (linear in t) defined via the
duality pairing of Ht and H∗t〈

ψt, M0(Y, s, t)

〉
Ht,H∗t

:=
(
∇ψt, D∇t− ~q t

)
0,Ω

+
(
ψt, ~n · ~q t

)
0,Γ

+
(
ψt, w̃ext t− w̃inj m̃

inj
0

)
0,Ω

,

(4.30)

keeping in mind that
~q = ~q (Y, s) = −K(Y )∇s .

The weak form of the BVP (4.21), k = 0, reads:

Find t ∈ t̂D + TD such that〈
ψt, M0(Y, s, t)

〉
Ht,H∗t

= 0 ∀ ψt ∈ TD , (4.31)

Analogously, for the first order temporal moment of concentration, let ûD ∈ H1(Ω) be
the extension of m̂c

1 ∈ H1/2(Γ–) (with trace operator γu) and

UD := {v ∈ H1(Ω) : γuv = 0 on Γ–} . (4.32)

Let M1 : HY ×Hs ×Ht ×Hu −→ H∗u be a bounded operator (linear in u) be defined
by the duality pairing of Hu and H∗u〈

ψu, M1(Y, s, t, u)

〉
Hu,H∗u

:=
(
∇ψu, D∇u− ~q u

)
0,Ω

+
(
ψu, ~n · ~q u

)
0,Γ

+
(
ψu, w̃ext u− w̃inj m̃

inj
1 − θt

)
0,Ω

(4.33)

The weak form of the BVP (4.21), k = 1, reads:

Find u ∈ ûD + UD such that〈
ψu, M1(Y, s, t, u)

〉
Hu,H∗u

= 0 ∀ ψu ∈ UD , (4.34)

Remark 4.1. In each of the weak formulations shown here, the Dirichlet boundary
condition is built into the solution space. This option is convenient when working with
standard Galerkin finite elements and sufficient for the formulation of the BVPs as PDE
constraints later in the derivation of the adjoint equations. When working with dis-
continuous Galerkin (DG) methods, Dirichlet boundary conditions are imposed weakly
and the same solution space can be chosen for both the solution and the test function
[Arnold et al., 2002; Nitsche, 1971]. Solutions of DG methods are sought in discrete
subspaces of the so-called broken Sobolev spacesHs(Th) (with integer s) which depend
on the mesh Th [Rivière, 2008].
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4.2 Sensitivities and cross-covariance matrices
The evaluation of the sensitivity matrix (3.38)

[H]`j =

[
∂f`(y)

∂yj

]
`j

=

[
∂u(y)

∂yj

∣∣∣∣
~x=~x`

]
`j

for ` ∈ {1, ...,M}, j ∈ {1, ..., N}

and the linearized cross-covariance matrix (N is very large)

RY YH
T

for the cokriging system (3.49) and the prior term (3.58) of the objective function are the
computationally most demanding tasks in each iteration of the (discretized) inversion
algorithm.

4.2.1 Computation of sensitivities
An overview of methods to compute the partial derivatives of the model function (3.19)
with respect to the model parameters for general non-linear inverse problems can be
found in the article of McGillivray and Oldenburg [1990] or in §2.6 of the monograph
of Uciński [2004]. Some of the most important methods are

• the finite difference approximation:

∂f`(y)

∂yj
≈ u(y + εjej)− u(y)

εj

∣∣∣∣
~x=~x`

(4.35)

where ej is a canonical basis vector and the choice εj =
√
eps is optimal (c.f.

[Nocedal and Wright, 2006], §8.1), where eps is the unit round-off (eps = 10−16

for double-precision). u must be computed once for y and once for each direction
ej (j = 1, ..., N). In total, this amounts to the solution of (N + 1) forward
problems.

• the automatic (or algorithmic) differentiation method (AD): Given an algorithm
that computes values of a function, this technique generates (step-by-step) an al-
gorithm that computes derivative values of the function with respect to specified
parameters. It is based on the observation that any function, no matter how com-
plicated, can be split up into a sequence of elementary operations involving one
or two arguments at a time (c.f. [Nocedal and Wright, 2006], §8.2). Repeated
application of the chain rule to the composition of these elementary operations
yields derivative information that are exact to machine precision. A selected list
of AD software can be found on the website http://www.autodiff.org.
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One of the main difficulties in using AD tools is the need to analyze and debug
generated code that is not written by oneself. Other pitfalls are discussed by Rall
and Corliss [1996].

• the adjoint equation method: We will see that this method is by far superior in
terms of computational cost, if N � M . This method of choice is discussed
in-depth by Cirpka and Kitanidis [2001] and Sun [1994] using small perturbation
theory. We will show an alternative derivation of the very same adjoint equations
using the Lagrange formalism.

4.2.2 Adjoint equation method

We apply the Lagrangian formalism to the adjoint approach [Hinze et al., 2009] for the
derivation of the gradient of the quantity u with respect to the parameter Y taken at a
single measuring point ~x`. The approach is based on defining the cost functional for the
minimization of the state u itself (without actually solving the minimization problem).
Following the principle “First optimize, then discretize!”, the discretization of Y (2.11)
is postponed to the very end, whereas (4.35) is a direct approximation of the gradient
with respect to the discretized parameter field y.

We will explain this procedure in detail for the first1 order moment of solute con-
centration: mc

1 is indirectly depending on the parameter Y = ln(K) through a chain of
dependent solution operators

Y
s−→ φ

t−→ mc
0

u−→ mc
1 (4.36)

provided that the forward problems from section §4.1.3 can be solved. Let

Y ∈ L2(Ω) ( parameter space )
φ = s(Y ) ∈ sD + SD ⊂ H1(Ω) ( solution space for φ )

mc
0 = t(Y, s(Y )) ∈ tD + TD ⊂ H1(Ω) ( solution space for mc

0 )
mc

1 = u(Y, s(Y ), t(Y, s(Y ))) ∈ uD + UD ⊂ H1(Ω) ( solution space for mc
1 )

fulfill the coupled boundary value problems (4.28), (4.31) and (4.34).
The goal is to get a computable term for the expression

u′(Y )

∣∣∣∣
~x=~x`

. (4.37)

1Note that the variable u is identified with mc
1 ONLY in this subsection.
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Let ε > 0 and let Bε(~x`) := {~x ∈ Rd : ‖~x − ~x`‖2 < ε} be an open ball around a
measuring point ~x`. Let

η`ε(~x) :=
1

(ε
√

2π)d
exp

(
−‖~x− ~x`‖

2
2

2ε2

)
(4.38)

represent the volume-averaged approximation of a point source. This function ap-
proaches the Dirac delta distribution δ(~x − ~x`) as ε −→ 0. We consider the “cost”
functional

J (s, t, u, Y ) := u(~x`) =
(
η`ε, u

)
0,Ω

=

∫
Ω

η`ε(~x) u(~x) dΩ (4.39)

realizing a volume-averaged measurement of a quantity u that fulfills the coupled PDE
constraints (4.28), (4.31) and (4.34).

The Lagrange function for (4.39) is given by

L : (Hs ×Ht ×Hu)×HY×(Hs ×Ht ×Hu) −→ R

L(s, t, u, Y, ψs, ψt, ψu) :=J (s, t, u, Y ) +

〈
ψs, G(Y, s)

〉
Hs,H∗s

+

〈
ψt,M0(Y, s, t)

〉
Ht,H∗t

+

〈
ψu,M1(Y, s, t, u)

〉
Hu,H∗u

(4.40)

with Lagrange multipliers ψs, ψt, ψu. Due to the PDE constraints, the Lagrange func-
tion L coincides with the cost functional J . Thus, the reduced cost functional is

Ĵ (Y ) := L( Y, s(Y ), t(Y, s(Y )), u(Y, s(Y ), t(Y, s(Y ))), ψs, ψt, ψu ) , (4.41)

which essentially depends on Y .

In our case, the sensitivity of u can be computed as the directional derivative of the
reduced cost functional with respect to Y . Applying the chain rule, we get for an arbi-
trarily chosen direction δY ∈ HY:

Ĵ ′(Y )(δY ) = L′Y (δY ) +
{
L′s + L′tt

′
s + L′u(u

′
s + u′tt

′
s)
}(
s′(Y )(δY )︸ ︷︷ ︸

=: δs

)
+
{
L′t + L′uu

′
t

}(
t′Y (δY )︸ ︷︷ ︸

=: δt

)
+ L′u

(
u′Y (δY )︸ ︷︷ ︸

=: δu

)
.

(4.42)
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If we choose the Lagrange multipliers ψs, ψt and ψu in such a way that the Karush-
Kuhn-Tucker conditions for the adjoint equations1

L′u
(
δu
)

= 0 (4.43)
L′t
(
δt
)

= 0 (4.44)
L′s
(
δs
)

= 0 (4.45)

hold, all that remains for the sensitivity (4.42) will be

Ĵ ′(Y )
(
δY
)

= L′Y
(
δY
)
. (4.46)

The Lagrange multipliers and the directions δs, δt and δu need to be chosen from ap-
propriately defined subspaces of H1(Ω) which will be explained below.

Let us first compute the partial derivatives in (4.43)-(4.45). In the calculation of these
functional derivatives, we make use of

(I) Green’s theorem (E.8),

(II) the fact that all terms from the PDE constraints without contribution to the deriva-
tive vanish.

Furthermore,

(III) we neglect the dependencies between the Scheidegger Dispersion tensor (4.9) and
the parameter Y and the hydraulic head s = φ:

∂D

∂Y
= 0 and

∂D

∂s
= 0 .

(IV) Since K = K(Y ) = exp(Y ), we have:

∂K

∂Y
= K ′(Y ) = K and

∂~q

∂Y
=
∂(−K∇s)

∂Y
= −K∇s = ~q .

The adjoint equation (4.43) corresponding to u = mc
1 reads:

L′u(δu) = J ′
u(δu) +Du

〈
ψu,M1(Y, s, t, u)

〉
Hu,H∗u

(δu) (4.47)

Clearly,

J ′
u(δu) = Du

[(
η`ε, u

)
0,Ω

]
(δu)

(E.25)
=

(
η`ε, δu

)
0,Ω

(4.48)

1The reverse order (u→ t→ s) of the adjoint equations becomes evident in (4.42).
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We split up the derivative of the duality pairing (4.33):

Du

[(
∇ψu, D∇u

)
0,Ω

]
(δu)

(I)
= Du

[(
div(−D∇ψu), u

)
0,Ω

+
(
~n ·D∇ψu, u

)
0,Γ

]
(δu)

(E.25)
=

(
div(−D∇ψu), δu

)
0,Ω

+
(
~n ·D∇ψu, δu

)
0,Γ\Γ–︸ ︷︷ ︸

u=ûD on Γ–
(4.49)

Du

[(
∇ψu, −~q u

)
0,Ω

+
(
ψu, ~n · ~q u

)
0,Γ

]
(δu)

(E.25)
=
(
− ~q ∇ψu, δu

)
0,Ω

+
(
~n · ~q ψu, δu

)
0,Γ

(4.1)
=
(

div(−~q ψu) + (w̃inj − w̃ext) ψ
u, δu

)
0,Ω

+
(
~n · ~q ψu, δu

)
0,Γ\Γ–︸ ︷︷ ︸

u=ûD on Γ–
(4.50)

Du

[(
ψu, w̃ext u− w̃inj m̃

inj
1 − θt

)
0,Ω

]
(δu) =

(
w̃extψ

u, δu
)

0,Ω
(4.51)

Summing up, we obtain(
η`ε + div

(
−D∇ψu − ~q ψu

)
+ w̃inj ψ

u, δu
)

0,Ω
+
(
~n · ~q ψu, δu

)
0,Γ\Γ–

!
= 0

(4.52)

if we additionally require the diffusive flux ~n · (D∇ψu) to vanish on all boundaries.
In this weak formulation of a new BVP, the Lagrange multiplier ψu becomes the weak
solution and the term δu plays the role of a test function. The convective term has a
reversed Darcy velocity −~q. Hence, inflow and outflow boundaries swap their roles. ψu

need not be prescribed on the outflow boundary. Therefore, it makes sense to define

U+
D := {v ∈ H1(Ω) : γ+

u v = 0 on Γ+} (4.53)

(with a trace operator γ+
u : H1(Ω) −→ L2(Γ+)) and seek the solution ψu ∈ U+

D such
that (4.52) holds for all δu ∈ U+

D .

Hence, the adjoint equation (4.43) is necessarily fulfilled by the solution ψm1
` := ψu

(called the adjoint state) of the BVP:
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div(−D∇ψm1
` − ~q ψ

m1
` ) + w̃inj ψ

m1
` = −η`ε in Ω

ψm1
` = 0 on Γ+

~n · (−D∇ψm1
` ) = 0 on Γ

(4.54)

Remark 4.2. An injection well with rate w̃inj in the forward transport equation be-
comes an extraction well with pumping rate−w̃inj < 0 in the adjoint transport equation,
whereas an extraction well with w̃ext becomes a fresh water injection well.

The adjoint equation (4.44) corresponding to t = mc
0 reads:

L′t(δt) = Dt

〈
ψt, M0(Y, s, t)

〉
H∗t ,Ht

(δt) +Dt

〈
ψu, M1(Y, s, t, u)

〉
H∗u ,Hu

(δt)

(4.55)

Following the same argumentation as for (4.52), we obtain the BVP:
Find ψt ∈ U+

D such that(
div(−D∇ψt − ~q ψt) + w̃inj ψ

t − θψu, δt
)

0,Ω
+
(
~n · ~q ψt, δt

)
0,Γ\Γ–

!
= 0 ∀δt ∈ U+

D

(4.56)

Therefore, the solution ψm0
` := ψt of the BVP

div(−D∇ψm0
` − ~q ψ

m0
` ) + w̃inj ψ

m0
` = θψm1

` in Ω

ψm0
` = 0 on Γ+

~n · (−D∇ψm0
` ) = 0 on Γ

(4.57)

fulfills (4.44).

The adjoint equation (4.45) corresponding to s = φ reads (where we use ~q = −K∇s):

L′s(δs) = Ds

〈
ψs, G(Y, s)

〉
Hs,H∗s

(δs)

+Ds

〈
ψt, M0(Y, s, t)

〉
Ht,H∗t

(δs) +Ds

〈
ψu, M1(Y, s, t, u)

〉
Hu,H∗u

(δs)

(4.58)
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First term:

Ds

〈
ψs, G(Y, s)

〉
Hs,H∗s

(δs) = Ds

[(
ψs, K∇s

)
0,Ω

]
(δs)−Ds

[(
ψs, (w̃inj − w̃ext)

)
0,Ω

]
(δs)︸ ︷︷ ︸

=0

(I)
= Ds

[(
div(−K∇ψs), s

)
0,Ω

]
(δs)−Ds

[(
~n · (−K∇ψs), s

)
0,Γ

]
(δs)︸ ︷︷ ︸

s=ŝD on ΓD

(E.25)
=

(
div(−K∇ψs), δs

)
0,Ω
−
(
~n · (−K∇ψs), δs

)
0,ΓN

(4.59)

Second term:

Ds

〈
ψt, M0(Y, s, t)

〉
Ht,H∗t

(δs)

(III)

↓
≈ Ds

[(
ψt, div(~q t)

)
0,Ω

]
(δs)

(4.1)
= Ds

[(
ψt, −K∇s ∇t+ (w̃inj − w̃ext) t

)
0,Ω

]
(δs) = Ds

[(
− ψtK∇t, ∇s

)
0,Ω

]
(δs)

(I)
= Ds

[
−
(
div(−ψtK∇t), s

)
0,Ω

]
(δs) +Ds

[(
~n · (−ψtK∇t), s

)
0,Γ

]
(δs)︸ ︷︷ ︸

s=ŝD on ΓD

= −
(
div(−ψtK∇t), δs

)
0,Ω

+
(
~n · (−ψtK∇t), δs

)
0,ΓN

(4.60)

The third term is calculated analogously to the second term. If we choose ψs in such
a way that it vanishes on the Dirichlet boundary ΓD, then the sum of the three terms
yields the BVP:

Find ψs ∈ SD such that(
div(−K∇ψs)− div(−ψtK∇t− ψuK∇u), δs

)
0,Ω

−
({
~n · (−K∇ψs)− ~n · (−ψtK∇t− ψuK∇u)

}
, δs

)
ΓN

!
= 0 δs ∈ SD .

(4.61)

The adjoint equation (4.45) is fulfilled by the solution ψφ` := ψs of the BVP:
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div(−K∇ψφ` ) = div(−ψm0
` K∇mc

0 − ψ
m1
` K∇m1) in Ω

ψφ` = 0 on ΓD

~n · (−K∇ψφ` ) = ~n · (−ψm1
` K∇mc

0 − ψ
m1
` K∇m1) on ΓN

(4.62)

where we have used t = mc
0, u = mc

1, ψt = ψm0
` and ψu = ψm1

` .

The sensitivity is given by

L′Y (δY ) =

DY

〈
ψs, G(Y, s)

〉
Hs,H∗s

(δY ) +DY

〈
ψt,M0(Y, s, t)

〉
Ht,H∗t

(δY )

+DY

〈
ψu,M1(Y, s, t, u)

〉
Hu,H∗u

(δY )

(III)

↓
≈ DY

(
∇ψs, K∇s

)
0,Ω

(δY ) +DY

(
ψt, ~q ∇t

)
0,Ω

(δY ) +DY

(
ψu, ~q ∇u

)
0,Ω

(δY )

(IV )
=
(
∇ψs (−~q ), δY

)
0,Ω
−
(
ψt ∇t (−~q ), δY

)
0,Ω
−
(
ψu ∇u (−~q ), δY

)
0,Ω

.

(4.63)

Finally, inserting back s = φ, t = mc
0, u = mc

1 and ψs = ψφ` , ψt = ψm0
` , ψu = ψm1

` , the
sensitivity of the state variable u = mc

1 with respect to the parameter Y reads:

DY [mc
1(Y )](δY )

∣∣∣∣
~x=~x`

= L′Y (δY )

=

∫
Ω

{(
∇ψφ` − ψ

m0
` ∇m

c
0 − ψ

m1
` ∇m

c
1

)
· (−~q )

}
· δY dΩ

(4.64)
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4.2.3 Discretized sensitivities

A cell-wise discretization (2.11) of Y into y ∈ RN yields a representation of the sensi-
tivity (4.64) in the canonical basis of RN . We are interested in the gradient of mc

1 which
is made of partial derivatives with respect to the components of y. Therefore, choosing
the constant direction

δY (~x) =


δYj = 1 ~x ∈ tj

0 ~x ∈ Ω\tj
(4.65)

where tj is the j-th cell of the structured mesh Th (2.10), we obtain

∂mc
1(y)

∂yj

∣∣∣∣
~x=~x`

=

∫
tj

{(
∇ψφ` − ψ

m0
` ∇m

c
0 − ψ

m1
` ∇m

c
1

)
· (K∇φ)

}
dΩ (4.66)

for the j-th component of the discrete gradient with respect to y. We call the expression

∂mc
1(y)

y

∣∣∣∣
~x=~x`

the sensitivity field ofmc
1 at the location ~x` in order to avoid confusion with the gradient

∇mc
1.

Remark 4.3. When monitoring mc
0, we set ψm1

` = 0 in the BVPs (4.57) and (4.62) for
the adjoint states ψm0

` and ψφ` . Furthermore, the right hand side of the PDE in (4.57)
is replaced by the source term −η`ε(~x). The sensitivity field of mc

0 at the location ~x` is
computed via:

∂mc
0(y)

∂yj

∣∣∣∣
~x=~x`

=

∫
tj

{(
∇ψφ` − ψ

m0
` ∇m

c
0

)
· (K∇φ)

}
dΩ (4.67)

Remark 4.4. When monitoring φ, we set ψm1
` = 0 and ψm0

` = 0 in the BVP (4.62) for
the adjoint state ψφ` and the source term−η`ε(~x) becomes the right hand side of the PDE
in (4.62). The sensitivity field of φ at the location ~x` is computed via:
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∂φ(y)

∂yj

∣∣∣∣
~x=~x`

=

∫
tj

{
∇ψφ` · (K∇φ)

}
dΩ (4.68)

Cirpka and Kitanidis [2001] obtain−∇ψφ` instead of∇ψφ` under the integrals of (4.66)-
(4.68) due to the fact that they used div(K∇ψφ` ) in (4.62) instead of div(−K∇ψφ` ).

In summary, the adjoint equation method for the computation of a discrete sensitivity
field

h` :=
∂u(y)

y

∣∣∣∣
~x=~x`

∈ RN ` = 1, ...,M (4.69)

requires the solution of ν adjoint problems per measuring point and ν forward problems,
where ν is the number of measurement types in the dependency chain (ν = 1 for u = φ,
ν = 2 for u = mc

0 and ν = 3 for u = mc
1). In total, this amounts to the solution of

ν · (M + 1) problems.

4.2.4 Efficient computation of cross-covariance matrices
The periodic circulant embedding (Ω ⊂ Ω′) described in §2.3 can be re-used to speed up
the computation of the large matrix×matrix product RyyH

T remarkably [Nowak et al.,
2003]. Each of the M rows of the sensitivity matrix H is filled with a sensitivity field
(4.69). In other words,

HT = [h1| . . . |hM ] . (4.70)

We need to compute
RyyH

T = [Ryyh1| . . . |RyyhM ] . (4.71)

The linear mapping

P : RN −→ RN ′

h = (h1, ..., hN)T 7→ (h1, ..., hN , 0, ..., 0︸ ︷︷ ︸
P :=N ′−N

)T , (4.72)

which simply adds zero padding to the embedded vector h ∈ RN , has the matrix
representation

P =

[
Id
0

]
with Id ∈ RN×N ,0 ∈ RP×N (4.73)

On the other hand, for a vector h′ ∈ RN ′ , the extraction of its first N components is
obtained with PTh′. Now, we can write for any vector h ∈ {h1, ...,hM}:

Ryy · h = PT · Syy · P · h (4.74)
(A.30)

= PT · FN ′ diag(λ) F−1
N ′ · P · h (4.75)
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The eigenvalues λ = (λ0, ..., λN ′−1)T of the circulant matrix Syy ∈ RN ′×N ′ computed
in (2.19) in step (3) of Algorithm 3.1 can be retrieved from storage.
A direct multiplication for the left hand side of (4.75) requires O(N2) floating point
operations. The right hand side requires two FFTs of lengths N ′ which has complexity
O(N ′ log(N ′)) = O(N log(N)) since N ′ ∼ 2dN (see Remarks A.2 and the definition
of N ′ in Algorithm 2.2). Thus, the complexity for the computation of the M cross-
covariance fields in (4.71) is reduced from O(MN2) to O(MN log(N)).

4.3 Subroutines of the inversion algorithm
Algorithm 4.1 is invoked in step (12.3) of Algorithm 3.1 and in step (1) of Algorithm
4.2:

Algorithm 4.1 Solving forward problems and take simulated measurements
1: Input: Current estimate of the parameter field y ∈ RN

2: . // Make sure that M = Mφ +Mmc0
+Mmc1

!
3: (1) Solve the forward BVP (4.1) for φ
4: for ` ∈ {1, ...,Mφ} do
5: (1.1) Take point measurement f` = φ(~x`);
6: end for
7:
8: (2) Solve the forward BVP (4.21) for mc

0; . // only if u = mc
1 or u = mc

0

9: for ` ∈ {1, ...,Mmc0
} do

10: (2.1) ` = `+Mφ;
11: (2.2) Take point measurement f` = mc

0(~x`);
12: end for
13:
14: (3) Solve the forward BVP (4.21) for mc

1; . // only if u = mc
1

15: for ` ∈ {1, ...,Mmc1
} do

16: (3.1) ` = `+Mmc0
+Mφ;

17: (3.2) Take point measurement f` = mc
1(~x`);

18: end for
19:
20: Output: Simulated measurements f(y) ∈ RM
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Algorithm 4.2 is invoked in step (7) of Algorithm 3.1:

Algorithm 4.2 Sensitivities and cross-covariance matrices
1: Input: Current estimate of the parameter field y ∈ RN

2:
3: (1) Call Algorithm 4.1 with input y; . // Get simulated measurements f(y)
4:
5: for ` ∈ {1, ...,M} do
6: (3.1) Solve the adjoint BVP (4.54) for ψm1

` ; . // only if u = mc
1

7: (3.2) Solve the adjoint BVP (4.57) for ψm0
` ; . // only if u = mc

0 or u = mc
0

8: (3.3) Solve the adjoint BVP (4.62) for ψφ` ;
9: (4) Compute and store the sensitivity field

h` :=
∂u(y)

y

10: as in (4.66) if u = mc
1, (4.67) if u = mc

0, or (4.68) if u = φ;
11: (5) Compute and store the cross-covariance field Ryy · h` as in (4.75);
12: end for
13:
14: Output: f(y) = (f1, ..., fM)T and the columns of HT and RyyH

T .
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Chapter 5

Numerical Solution of Model and
Adjoint Equations

All the boundary value problems presented in Chapter 4 can be classified into two
types. We first summarize all occurring source terms and boundary conditions in an
overview. Then, we consider two combinations of numerical schemes (FEM/SDFEM
vs. CCFV/DG) for the discretization of these BVPs before showing methods to reduce
numerical oscillations and methods to solve the occurring linear systems.

5.1 Types of equations
Type I:
The differential equation (4.1) and its adjoint counterpart (4.62) assume the form of the
steady-state diffusion equation

div
(
−K∇φ

)
= w̃ in Ω (5.1)

subject to the boundary conditions

φ = φ̂D on ΓD, ΓD 6= ∅
~n · (−K∇φ) = 0 on ΓN = ∂Ω\ΓD .

(5.2)

The source term and the Dirichlet boundary function are specified as follows:

equation source type w̃ Dirichlet b.c.

(a) (4.1) (forward) (S1) well w̃inj − w̃ext inhomogeneous

(b) Remark 4.4 (adjoint) (S2) point −η`ε(~x) homog.: φ̂D = 0

(c) (4.62) (adjoint) (S3) derivative div(−ψuK∇u) homog.: φ̂D = 0

Table 5.1: Overview of source and boundary terms for the diffusion equation (5.1)
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Type II:

The differential equations (4.21), (4.57) and (4.54) are special cases of the steady-state
convection-diffusion-reaction equation

div(−D∇u+ τ~q u) + µu = s̃ in Ω . (5.3)

The reaction coefficient µ ∈ R is used here only as a sink term within extraction wells.
The factor τ ∈ {−1,+1} distinguishes between the forward and adjoint equations. Un-
der the assumption (4.13) that the flux is non-diffusive on all boundaries, the Neumann
b.c. reads

~n · (−D∇u) = 0 on Γ . (5.4)

The Dirichlet b.c. and the source term are given by:

equation τ source type s̃ µu Dirichlet b.c.

(a) (4.21) (forward) 1 (S4) injection w̃injũinj w̃extu u = ûD at Γ–

(b) (4.54) (adjoint) −1 (S2) point −η`ε(~x) w̃inju u = 0 at Γ+

(c) (4.57) (adjoint) −1 (S5) functional θt w̃inju u = 0 at Γ+

(d) (4.21) (forward) 1 (S4)+(S5) combined w̃injũinj, θt w̃extu u = ûD at Γ–

Table 5.2: Overview of source, reaction and b.c. terms for the transport equation (5.3)

~q = −K∇φ is the Darcy velocity (4.5) and D is the dispersion tensor given by (4.8).

Type II - non-conservative formulation:

For µ′ := µ+ τ div(~q ), equation (5.3) is equivalent to

div(−D∇u) + τ~q ∇u+ µ′u = s̃ in Ω . (5.5)

The Dirichlet b.c. and the source term are given by:

equation τ source type s̃ µ′u Dirichlet b.c.

(a) (4.21) (forward) 1 (S4) injection w̃injũinj w̃inju u = ûD at Γ–

(b) (4.54) (adjoint) −1 (S2) point −η`ε(~x) w̃extu u = 0 at Γ+

(c) (4.57) (adjoint) −1 (S5) functional θt w̃extu u = 0 at Γ+

(d) (4.21) (forward) 1 (S4)+(S5) combined w̃injũinj, θt w̃inju u = ûD at Γ–

Table 5.3: Overview of source, reaction and b.c. terms for the transport equation (5.5)
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5.2 Discrete solution spaces
As in §2.2, we assume that the domain Ω ⊂ Rd, d ∈ {2, 3} is a rectangular cuboid.
Let {Thν}ν∈N be a family of structured or adaptively refined meshes (comprised of axis
parallel cuboidal cells) that we get from a successive refinement of an initially structured
mesh. Each Thν forms a partitioning of Ω into nν disjoint cells (mesh elements), this
means

Thν = {tνj}j=0,...,nν−1

Ω =
nν−1⋃
j=0

tνj , tνi ∩ tνj = ∅ ∀i 6= j.
(5.6)

The variable ν indicates the refinement level. As refinement proceeds, the meshsize

hν = max
t∈T∗ν

{
max
~x,~y∈t
‖~x− ~y‖

}
(5.7)

tends to 0. T∗ν is understood to be the subset of Thν that contains only the finest level
cells. To keep notation readable, we write h instead of hν , Th instead of Thν and n
instead of nν when it is clear or irrelevant which refinement level ν we are considering.

The hydraulic conductivity is resolved on the structured mesh Th0 . It is described
by a cell-wise constant function as in §2.2.2:

Kh(~x) = K(~xt) = exp(Y (~xt)) ∀~x ∈ t, ~xt is the center the cell t ∈ Th0 . (5.8)

Inside the wells, the hydraulic conductivity is supposed to be very high:

Kh(~x) = 1.0 ∀ ~x ∈ t, t ∈ Th0 with t ∩Winj 6= ∅ or t ∩Wext 6= ∅ . (5.9)

The hydraulic head distribution and the Darcy velocity (4.5) are computed on the same
mesh. The transport equation (5.3), whose convective part is prescribed by the Darcy
velocity, may be solved either on the same mesh or on a hierarchy of adaptively refined
meshes based on Th0 , i.e. a cell of a subsequently refined mesh Thν+1 is always a subset
of a cell in Thν .

In our practical application, the estimated hydraulic conductivity fields (3.50) in the
inversion algorithm have the smoothness of a Gaussian variogram model. The mesh-
sizes are chosen in such a way that they resolve the correlation lengths well. Thus,
the flow field on the mesh Th0 can be regarded as sufficiently accurate and we consider
adaptive mesh refinement only for the solution of the transport problem.
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Finite elements on cuboids t ∈ Th are based on the polynomial space

Qd
k =

{
p( ~x ) =

∑
0≤αi≤k
1≤i≤d

γα1,...,αd · x
α1
1 · · ·x

αd
d , ~x ∈ t

}
(5.10)

with maximal degree k in each coordinate direction. Discontinuous Galerkin (DG)
approximations are based on the broken polynomial space

Wh,k = Wh,k(Ω,Th) =

{
u ∈ L2(Ω) : u|t ∈ Qd

k ∀ t ∈ Th

}
. (5.11)

We restrict ourselves to the case where the maximal polynomial degree k is constant for
all cells:

dim(Wh,k) = n · dim(Qd
k) = n · (k + 1)d . (5.12)

The continuous polynomial space

Vh = Vh(Ω,Th) =

{
u ∈ C0(Ω) : u|t ∈ Qd

1 ∀ t ∈ Th

}
⊂ H1(Ω) (5.13)

is used to describe the standard Galerkin FEM and the streamline diffusion method. For

a structured mesh with n =
d∏
i=1

ni cells, its dimension is
d∏
i=1

(ni + 1).

All cell-wise or face-wise defined integrals of the form (E.3), that will occur in the
following numerical schemes, are integrals over products of at least two polynomials of
order k. A Gaussian quadrature rule of order k + 1 guarantees the exact evaluation of
polynomials of order 2k + 1.

5.3 FEM / SDFEM

Let V 0
h =

{
u ∈ Vh : u|∂Ω = 0

}
and assume φ̂D to be a piecewise linear approximation

of the Dirichlet b.c. in (5.2). The standard Galerkin FEM method (cf. [Elman et al.,
2005]) for solving (5.1)&(5.2) reads:

Find φh ∈ V D
h =

{
u ∈ Vh : u|ΓD = φ̂D

}
such that∑

t∈Th

(
Kh∇φh,∇vh

)
0,t

= w̃h(vh) ∀ vh ∈ V 0
h . (5.14)
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The discrete source term on the right-hand side is

w̃h(vh) =



∑
t∈Th

t∩Winj 6=∅

(
w̃inj, vh

)
0,t
−

∑
t∈Th

t∩Wext 6=∅

(
w̃ext, vh

)
0,t

(a)

−
∑
t∈Th

(
η`ε(~x), vh

)
0,t
≈ −

∑
t∈Th

(
δ(~x− ~x`), vh

)
0,t

= −vh(~x`) (b)

∑
t∈Th

(
ψuhKh∇uh, ∇vh

)
0,t
−

∑
f∈Bh∩ΓN

(
~nf , ψ

u
hK∇uh

)
0,t

(c)

(5.15)

whereKh ∈ Wh0,0 as defined in (5.8). ψuh and uh are the discrete solutions of the adjoint
and forward transport equations respectively.

The discrete Darcy velocity can be computed by direct pointwise evaluation of gra-
dients of the polynomial basis on each cell t ∈ Th0:

~qh = −Kh∇φh. (5.16)

The SDFEM method (cf. [Brooks and Hughes, 1982]) for solving (5.5) reads:

Find uh ∈ V –
h =

{
u ∈ Vh : u|Γ− = ûD

}
such that

∑
t∈Th

{(
D∇uh, ∇vh

)
0,t

+
(
~qh ∇uh + µ′huh, vh + δSD

t · ~qh ∇vh
)

0,t

}
=
∑
t∈Th

{(
s̃h, vh + δSD

t · ~qh ∇vh
)

0,t

}
∀ vh ∈ V 0

h .

(5.17)

In the adjoint case, ~qh is replaced by −~qh, Γ– and Γ+ swap positions and ûD = 0.
µ′h and s̃h evaluate the corresponding terms listed in Table 5.3 at quadrature points.
Note that the point source is discretized in the same way as in equation (5.15(b)). The
matrix D ∈ Rd×d is the discretized version of the dispersion tensor D in (4.8) which is
depending on ~vh = ~qh/θ. The stabilization parameter determined by

δSD
t =

h

2‖~qh‖2

· ζ(Pth) (5.18)

is used to tune the amount of artificial diffusion depending on the magnitude of the
mesh Péclet number Pth. If D = ε · Id (ε > 0), the general definition of the mesh
Péclet number is

Pth =
1

2
· ‖~qh‖2 · ht

ε
. (5.19)
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For the Scheidegger dispersion tensor (4.9), the effective mesh Péclet number according
to [Cirpka and Kitanidis, 2001] is

Pth =
1

2
· ‖~qh‖2 · ht
α` · ‖~qh‖2 + θDm

. (5.20)

There is a large variety of definitions for the function ζ in the literature. The original
choice in [Brooks and Hughes, 1982] is

ζ(Pth) = coth(Pth)− 1/Pth. (5.21)

We go for the more efficient approximation (cf. [Elman et al., 2005])

ζ(Pth) = max
{

0, 1− 1/Pth
}
. (5.22)

Remark 5.1. .

• δSD
t vanishes in the diffusion-dominated case (Pth ≤ 1) and SDFEM reduces to

the standard Galerkin FEM.

• The stabilization in (5.17) is based on artificial diffusion added by the multiplica-
tion of the residual

∇ · (−D∇uh) + ~qh∇uh + µ′huh − s̃h (5.23)

with the term δSD
t · ~qh ∇vh . Since we consider only bilinear polynomials (Qd

1)
here, the second-order derivative can be omitted.

5.4 CCFV / DG

5.4.1 Preliminary definitions
The following notation is inspired by the presentation of Ern et al. [2008]. For a given
mesh Th, each cell t ∈ Th has a cell-center ~xt and a d-dimensional cell-volume |t|.
Given two neighboring cells t− and t+ in Th, an interior face or interface f is defined
as the intersection of their boundaries ∂t− ∩ ∂t+. To be more precise, we write t−f = t−

and t+f = t+. The unit normal vector ~nf to f is assumed to be oriented from t−f to
t+f . In the same manner, f is called a boundary face if there exists a t ∈ Th such that
f = ∂t ∩ ∂Ω and we write t−f = t. In this case, ~nf is chosen to be the unit outer normal
to ∂Ω. We denote by Eh the set of interior faces and by Bh the set of boundary faces.
For a face f ∈ Eh ∪ Bh, we denote by ~xf its midpoint (face center), whereas ~xf− is
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the center of the cell t−f . For f ∈ Eh, we denote by ~xf+ the center of t+f . |f | is the
(d− 1)-dimensional volume of the face f .

A function u ∈ Wh,k is in general double valued on internal faces f ∈ Eh. There,
we set

u±f (~x) = lim
ε→0±

u(~x+ ε~nf ) ~x ∈ f. (5.24)

The jump across f and the arithmetic mean value on f are given by

JuKf = u−f − u
+
f and

〈
u
〉
f
(~x) =

1

2

(
u−f + u+

f

)
(5.25)

respectively. Following convention, the definition of these terms is extended to the
boundary ∂Ω by:

JuKf (~x) =
〈
u
〉
f
(~x) = u(~x) ∀ ~x ∈ f, f ∈ Bh. (5.26)

We will suppress the letter f in subscripts if there is no ambiguity.

5.4.2 Two-point flux cell-centered finite volume method (CCFV)

Using the function space Wh,0, the approximation of the boundary value problem (5.1)
& (5.2) is defined as follows:

Find φh ∈ Wh,0 such that

aFV(φh, vh) = `FV(vh) ∀ vh ∈ Wh,0. (5.27)

The bilinear form aFV : Wh,0 ×Wh,0 −→ R is defined by

aFV(φ, v) =
∑
f∈Eh

qφh(~xf ) · JvKf · |f | +
∑

f∈Bh∩ΓD

qφh(~xf ) · v(~xf−) · |f | (5.28)

where

qφh(~xf ) :=



−K eff
h (~xf+, ~xf−) · φ(~xf+)− φ(~xf−)

‖~xf+ − ~xf−‖2

for f ∈ Eh,

−Kh(~xf−) · φ̂D(~xf )− φ(~xf−)

‖~xf − ~xf−‖2

for f ∈ Bh ∩ ΓD.

(5.29)
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is a two-point finite difference approximation of the normal component ~q · ~nf (~xf ) of
the Darcy velocity ~q = −K∇φ through the face f . The discrete hydraulic conductivity
Kh ∈ Wh0,0 is defined as in (5.8) and

K eff
h (~xf+, ~xf−) =

2 ·Kh(~xf+) ·Kh(~xf−)

Kh(~xf+) +Kh(~xf−)
(5.30)

is the harmonic average of Kh(~xf+) and Kh(~xf−). In the definition (5.29), we make
use of the fact that the face f is perpendicular to the line connecting ~xf+ and ~xf−.

Special care must be taken in the discretization of the source term div(−ψuK∇u)
from Table 5.1 (c). In this term, u is either the zeroth or first order temporal moment
of concentration and ψu one of their corresponding adjoint states. While in the FEM
/ SDFEM combination, the discrete solutions of both equation types (Type I and II
from §5.1) are from the same function space Vh, the situation in this section is more
complicated. The solution φh to (5.1) is sought in Wh,0. However, both u and ψu are
approximated by functions uh and ψuh in Wh,k(k > 0) (see §5.4.4) or in Vh (see §5.6)
respectively. The term div(−ψuK∇u) has a similar structure as the differential operator
of (5.1) itself. We choose the following approximation:

quh(~xf ) :=



−〈ψuh·〉f K eff
h (~xf+, ~xf−) · uh(~xf+)− uh(~xf−)

‖~xf+ − ~xf−‖2

for f ∈ Eh,

−ψuh(~xf−) ·Kh(~xf−) · ûD(~xf )− uh(~xf−)

‖~xf − ~xf−‖2

for f ∈ Bh ∩ ΓD.

(5.31)
Hence the linear functional `FV : Wh,0 −→ R is given by

`FV(v) =



∑
t∈Th

t∩Winj 6=∅

w̃inj(~xt) · v(~xt) · |t| −
∑
t∈Th

t∩Wext 6=∅

w̃ext(~xt) · v(~xt) · |t| (a)

−
∑
t∈Th

(
η`ε(~x), v

)
0,t
≈ −

∑
t∈Th

(
δ(~x− ~x`), v

)
0,t

= −v(~x`) (b)

∑
f∈Eh

quh(~xf ) · JvKf · |f | +
∑

f∈Bh∩ΓD

quh(~xf ) · v(~xf−) · |f | (c)

(5.32)

This approximation yields a cell-wise constant solution for which the Dirichlet bound-
ary values φ̂D are satisfied weakly.
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5.4.3 Flux reconstruction
So far, only the normal flux component qφh(~xe) from (5.29) is available on the midpoints
of the faces of a cell t ∈ Th. But we need to evaluate the Darcy velocity on internal
points of a cell. The simplest H(div)-conforming flux reconstruction is achieved using
Raviart-Thomas elements of order 0 [Brezzi and Fortin, 1991; Raviart and Thomas,
1977],

RT0(t) =

{
~τ(~x) : τi = ai + bi(xi − x∗i ), ~x ∈ t,

1 ≤ i ≤ d, ai, bi ∈ R, ~x∗ ∈ t fixed
}
,

(5.33)

for which the polynomial space is defined by

RT0(Ω,Th) =

{
~τ ∈ [L2(Ω)]d : ~τ|t ∈ RT0(t) ∀t ∈ Th

}
. (5.34)

The discrete Darcy velocity
~qh ∈ RT0(Ω,Th) (5.35)

can be evaluated component-wise by a linear interpolation between the normal fluxes
on opposing face midpoints. For a structured mesh in which all cells are axis-parallel
quadrilaterals in 2-D (or axis-parallel cuboids in 3-D) with edge lengths hi, we can
define the 2d local degrees of freedom through the normal fluxes given at the midpoints
of the 2d faces:

a1 = qφh(xwest
f ), b1 =

qφh(xeast
f )− qφh(xwest

f )

h1

,

a2 = qφh(xsouth
f ), b2 =

qφh(xnorth
f )− qφh(xsouth

f )

h2

,

a3 = qφh(xbottom
f ), b3 =

qφh(xtop
f )− qφh(xbottom

f )

h3

.

(5.36)

Interpreting these normal fluxes as face-averaged normal fluxes between two neighbor-
ing cells, it can be shown that the reconstructed Darcy velocity ~qh ∈ RT0(Ω,Th) is
indeed in H(div,Ω) and satisfies the projection condition:∫

f

(
~qh − ~q

)
· ~nf ds = 0 (5.37)
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Compared to the direct evaluation (5.16), this reconstructed Darcy velocity field is point-
wise divergence-free if the groundwater equation is free of any source or sink terms
(w̃inj = w̃ext = 0).

5.4.4 Discontinuous Galerkin method (DG)
The symmetric weighted interior penalty (SWIP) method presented in [Ern et al., 2008]
is a robust discontinuous Galerkin method accounting for anisotropy and discontinuity
in the diffusion tensor of (5.3).

For the discretization of the diffusive term, the authors have introduced a scalar- and
double-valued weighting function ω on internal faces. The two values ω− and ω+ are
constructed based on the double-valued diffusion tensor D with D− and D+ defined
element-wise following (5.24). Using the normal component of D∓ across the face,
namely δ∓ = ~nf ·D∓ · ~nf , the weighting factors are defined as

ω− =
δ+

δ− + δ+
and ω+ =

δ−

δ− + δ+
. (5.38)

Both factors are non-negative and add up to unity ω− + ω+ = 1.
For v ∈ Wh,k, the weighted average of the diffusive flux is defined as〈

D∇v
〉ω

= ω−(D∇v)− + ω+(D∇v)+. (5.39)

On the boundary face f ∈ Bh, we set ω = 1 and
〈
D∇v

〉ω
= D∇v.

For the convective term, we choose an upwind flux formulation that is equivalent
to the presentations in [Georgoulis et al., 2009], in §4.2 of [Rivière, 2008] or in §4.6.2
of [Pietro and Ern, 2012]. For an internal face f ∈ Eh lying between two neighboring
cells t−f and t+f , recall that the unit normal vector ~nf is assumed to be oriented from t−f
to t+f . For a boundary face f ∈ Bh, ~nf is the unit outer normal. By uupwind we denote
the upwind value of a function u ∈ Wh,k. For ~x ∈ f, f ⊂ ∂t\Γ−, it is defined by

uupwind(~x) =


u+(~x) if ~qh(~x) · ~nf < 0

u−(~x) if ~qh(~x) · ~nf ≥ 0

The higher order DG approximation1 of the boundary value problem (5.3)&(5.4) reads2:

Find uh ∈ Wh,k such that

aDG(uh, vh) = `DG(vh) ∀ vh ∈ Wh,k. (5.40)

1 DG(k) indicates that the polynomial basis is from Qdk.
2 The colors in the following terms are red for the convection terms, blue for the diffusion terms,

green for the reaction term and grey for the source term.
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The bilinear form is defined by

aDG(u, v) =
∑
t∈Th

{
(D∇u,∇v)0,t − (u, ~qh · ∇v)0,t + (µhu, v)0,t

}
(cell terms)

+
∑
f∈Eh

{ (
γJuK, JvK

)
0,f

+
(
|~nf · ~qh| uupwind, JvK

)
0,f

(interior face fluxes)

−
( 〈
~nf ·D∇u

〉ω
, JvK

)
0,f
−
( 〈
~nf ·D∇v

〉ω
, JuK

)
0,f

}
+

∑
f∈Eh∩Γ+

(
~nf · ~qh u, v

)
0,f

(convective outflow)

+
∑

f∈Bh∩Γ−

{ (
γ(u− ûD), v

)
0,f
−
(
u− ûD, ~nf ·D∇v

)
0,f

}
(Dirichlet B.C.)

(5.41)

The linear functional is given by

`DG(v) =
∑
t∈Th

(s̃h, v)0,t −
∑

f∈Bh∩Γ−

(
~nf · ~qh ûD, v

)
0,f

(source term, Dirichlet B.C.)

(5.42)

In the adjoint case, ~qh is replaced by −~qh, Γ– and Γ+ swap positions and ûD = 0.
µh and s̃h evaluate the corresponding terms listed in Table 5.2 at quadrature points.
The parameter γ penalizing discontinuity in the solution is given in [Bastian, 2011] by

γ = Cγ ·
Deff · k(k + d− 1)

hf
∀ f ∈ Eh ∪ (Bh ∩ Γ−) (5.43)

where Cγ > 0 is a constant to be chosen sufficiently large (Cγ = 10 is usually enough).
With this definition of γ the user-chosen constant does not play a big role anymore in
the convection-dominated case.
Remember that for the discrete problem (5.40), Th can be a non-conformingly refined
cuboidal mesh. For a face lying between two possibly non-matching elements, we set
hf = min{h−f , h

+
f } where h∓f = diam(f ∩ ∂t∓) are face diameters. On internal faces,

the effective diffusivity is defined by the harmonic average

Deff =
2δ−δ+

δ− + δ+
(5.44)

of the normal component of the diffusion tensor across the face. On boundary faces, we
set directly

Deff = ~nf ·D · ~nf . (5.45)
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5.5 Adaptive mesh refinement
We are interested in reducing numerical oscillations globally. Adaptive mesh refinement
is a particularly promising way of achieving this goal.

Residual-based a-posteriori error estimators offer the advantage of small evaluation
cost because they are based on local residual terms. We consider two existing h-adaptive
versions for the above mentioned discretization schemes of the transport problem. Let
uh be the SDFEM solution (5.17) or the DG solution (5.40) respectively. The residual-
based error estimator described by Verfürth [1998, 2005], developed for the finite ele-
ment and the SDFEM discretization of the steady-state convection-diffusion equation,
is based on the following local error indicator: For each element t ∈ Th, the local error
indicator η2

t is given by the sum of two terms,

η2
t = η2

Rt + η2
Rf
, (5.46)

an element residual term1

η2
Rt =

h2
t

ε

∥∥sh + ε∆uh − ~qh · ∇uh − µ′huh
∥∥2

L2(t)
(5.47)

and a face residual term

η2
Rf

=
1

2

∑
f∈∂t\Γ

hf
ε

∥∥ J~n · (ε∇uh)K
∥∥2

L2(f)
.

To these two terms, Schötzau and Zhu [2009] added a third term measuring jumps of
the solution on internal or inflow boundary faces

η2
Jf

=
1

2

∑
f∈∂t\Γ

(
γε

hf
+
hf
ε

)∥∥JuhK∥∥2

L2(f)

+
∑

f∈∂t∩Γ−

(
γε

hf
+
hf
ε

)∥∥(uh − ûD)
∥∥2

L2(f)

(5.48)

to construct a residual-based error estimator for the interior penalty DG discretization
scheme. Hence, the local error indicator η2

t for each element t ∈ Th is given by the sum
of three terms,

η2
t = η2

Rt + η2
Rf

+ η2
Jf
. (5.49)

In our concrete application, we choose ε = min
1≤i≤d

{Dii} to avoid underestimation.

1Note that ∆uh can be omitted for the polynomial degree k = 1.
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The a-posteriori error estimator (in both cases) is defined by

η =

(∑
t∈Th

η2
t

)1/2

. (5.50)

Schötzau and Zhu have shown that their error estimator is robust in convection-dominated
regimes, effective in locating characteristic and boundary layers and that the error in the
energy norm converges with optimal order as soon as refinement reaches a state when
the local mesh Péclet number is of order 1. An extension to hp-adaptivity can be found
in [Zhu and Schötzau, 2011]. The performance of Verfürth’s error estimator is assessed
in a comparative study by John [2000].

Alternative error estimators for DG discretization schemes of the convection-diffusion
equation can be found in [Ern et al., 2010] and [Georgoulis et al., 2009].

A robust error estimator is one aspect of adaptivity. Another important aspect is
a marking strategy that achieves an equitable distribution of error contributions. An
error-fraction based refinement strategy has the following characteristics: Given a fixed
refinement fraction pr[%] and the list of all cells sorted by the magnitude of the local
error indicators

η2
tj1
≤ η2

tj2
≤ ... ≤ η2

tjn
,

the goal is to mark the cells with the largest local errors for refinement such that their
contribution to the total error is pr[%]. To be more precise, we need to find the largest
η? such that ∑

t∈Th:ηt≥η?
η2
t ≥

pr
100
· η2 (5.51)

using the bisection method and mark the top contributors t ∈ Th with ηt ≥ η? for
refinement. This strategy is readily parallelizable: the sum on the left hand side of (5.51)
and the total error η2 get their contributions from all processes. The very same strategy
can be used to mark the mesh cells with the lowest error contribution for coarsening,
given a fixed coarsening fraction pc[%]: Find the smallest ρ? such that∑

t∈Th:ηt≤ρ?
η2
t ≤

pc
100
· η2 (5.52)

and mark all cells t ∈ Th for which ηt ≤ ρ? for coarsening. Note that the choice of
the fixed parameters pr and pc are dependent on the error distribution and have a strong
influence on the efficiency of the scheme.

For higher order polynomials, the second order derivative in the element residual
term (5.47) would be required. In the small 2-D test problems, this is neglected. In
the solute transport simulations, we apply adaptivity only to the DG(1) discretization.
For a comparative study based on small 2-D test problems, a sequential version of the
adaptive SDFEM code is sufficient.
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Remember that in the practical application, T0 is the mesh on which

• the conductivity field K is resolved (5.8),

• the flow equation (4.1) is solved as in §5.4.2 and

• the Darcy flux (4.5) is evaluated as in §5.4.3.

The mesh T0 should be sufficiently fine such that the main features of the solution are
visible and a partitioning of the mesh among all available processes is possible. The
stopping criterion for refinement is reached as soon as either of the following condi-
tions is fulfilled:

(i) The estimated error is below some prescribed tolerance: η ≤ TOL.

(ii) Provided that the range of the true solution u is given by [0, û], we may choose a
tolerance of posc = 5% for the maximal under- and overshoots by

max

{
|umin|
û

,
umax − û

û

}
< posc. (5.53)

(iii) The mesh refinement level L or the total number of unknowns has exceeded a
certain limit.

The h-adaptive mesh refinement algorithm for the solution of the convection-
diffusion equation can be formulated as follows.

Algorithm 5.1 h-adaptive refinement
Input: Appropriate values for pr and pc.
(1) Start with mesh level L = 0.
(2) Compute the solution uh0 of (5.40) on Th0 .
(3) Compute the error estimator η as in (5.50) for u0.
while η > TOL do

(4) Apply the marking strategy (5.51).
(5) Refine the mesh and set L = L+ 1.
if L > Lmax then

break; . // maximal number of refinement steps exceeded
end if
(2’) Compute the solution uhL of (5.40) on ThL .
if (5.53) holds then

break; . // overshoots and undershoots are small enough
end if
(3’) Compute the error estimator η as in (5.50) for uhL .

end while
Output: uhL
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In each refinement step, the linear system for (5.40) can be solved independently of
solutions from the previous refinement step since the problem is linear and stationary.

5.6 Diffusive L2-projection
In this section, we present another method to reduce numerical oscillations. Due to its
simplicity we consider this a post-processing step for the DG solution. Given the DG
solution uDG ∈ Wh,k on the coarse level h = h0, our goal is to find an approximation
of uDG in the space Vh of continuous Galerkin finite elements that preserves the pro-
file of the DG solution, but with a significant reduction of spurious oscillations. The
L2-projection is a good candidate. It is well-known to give a good on average approxi-
mation of a function and it does not require the approximated function to be continuous.
Furthermore, an extra term imitating a small amount of diffusive flux can be added. This
way, the L2-projection can be interpreted as the solution of a diffusion-reaction equation
without boundary constraints. This leads to the following variational problem:

Find uh ∈ Vh such that(
εh∇uh,∇vh

)
0,Ω

+
(
uh, vh

)
0,Ω

=
(
uDG, vh

)
0,Ω

∀ vh ∈ Vh. (5.54)

Hereby, we choose the extra diffusion εh = 1
2
h2 in such a way that the diffusivity of

characteristic layers are in the order of magnitude of the meshsize ∼ O(
√
εh) = O(h).

Remark 5.2. Taking a point measurement of a DG solution on intersectional entities
between two or more neighboring cells requires the averaging over as many different
values. Taking a point measurement of the L2-projected solution uh ∈ Vh simply means
a direct evaluation of uh. This is an important aspect for the subroutine 4.1 of the
inversion scheme.

5.7 Efficient solution of the arising linear systems
The parallel overlapping linear solvers available in DUNE comprise

• CG (conjugate gradient method),

• GMRES(k) (restarted generalized minimal residual method, where k is the num-
ber vectors in an orthogonal sequence that need to be stored temporarily), and

• BiCGSTAB (biconjugate gradient stabilized method).
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Each of them can be preconditioned with

• SSOR (symmetric successive over-relaxation method),

• ILU(k) (incomplete LU factorization, where the sparsity pattern of L and U in
A = LU are chosen to be the same as for Ak+1),

• AMG (algebraic multi-grid method) with SSOR pre-/postsmoothing.

With multigrid methods as preconditioners one can achieve convergence rates which
are independent of the resolution of the discretization. The classical geometric multi-
grid methods rely on the uniform coarsening of the underlying grid. They do not make
use of information contained in the conductivity field K. However, modelling flow in
a heterogeneous porous medium, K may be highly variable or even have large jumps.
Algebraic multigrid methods are able to detect such jumps and adapt their coarsening
scheme such that the solver remains robust. Iterative methods using other precondi-
tioners are more likely to run into problems since the condition of the stiffness matrix
does not only depend on the resolution of the discretization but also on the ratio of the
conductivity jumps. The coarsening strategy for the parallel algebraic multigrid method
described by Blatt [2010] works with aggregation. It uses a strength of connection mea-
sure that is based on a heuristic greedy aggregation algorithm. The AMG preconditioner
is designed for the solution of problems of the type (4.1) with a highly discontinuous
coefficient K.

5.7.1 Flow equation and diffusive L2-projection
The linear systems arising from the discrete elliptic problems (5.14) or (5.27) and (5.54)
are all of the size O(n2), symmetric positive definite and can be solved very efficiently
using the combination CG with AMG.

5.7.2 Transport equation
By contrast, the stiffness matrix of the discrete transport equation is non-symmetric.
BiCGSTAB or alternatively GMRES are used in our numerical tests. For the SDFEM
discretization (5.17), the matrix size is also O(n2). In the more diffusive case of heat
transport, parallel AMG may be used as a preconditioner. In the convection-dominated
case, the SSOR or ILU(0) preconditioners are used.

As mentioned in the introduction, for the discretization of a first order hyperbolic
problem using an upwind scheme, the order in which the unknowns are indexed, plays
an important role for the performance and stability of an iterative solver. The main
purpose of ordering unknowns in flow direction can already be found in [Reed and Hill,
1973]. The downwind numbering algorithms described in the works of Bey and Wittum
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[1997] and Hackbusch and Probst [1997] handle arbitrary velocity fields. Steady-state
groundwater flow (with a scalar conductivity field) is a potential flow and therefore
always cycle-free. Since the velocity field is induced by the hydraulic head, the latter
can be used directly as the sorting key for the unknowns.

For the DG discretization, it is advisable to collect the unknowns of the solution vec-
tor ~uh block-wise where each vector block ~u(t) holds the unknowns of {u(t)

1 , ..., u
(t)
nlocal}

of a single mesh cell t with nlocal denoting the dimension of the local polynomial space.
The stiffness matrix Ah becomes a block matrix with constant block-size nlocal × nlocal.
The arising linear system

Ah ~uh = ~bh (5.55)

is of the size O(n2 · n2
local) and can be solved efficiently using a block version of

BiCGSTAB or GMRES combined with SSOR or ILU(0) preconditioning, after a renum-
bering of mesh cells: In the hyperbolic limit the bilinear form of the DG discretization
is reduced to the terms listed in the first two lines of (5.41). If the mesh cells are sorted
according to the hydraulic head distribution φ the stiffness matrix Ah obtains the shape
of a block-triangular matrix. In this case, the symmetric block Gauss-Seidel method for
(5.55) becomes a direct solver because it converges after one step.

If the groundwater flow and the solute transport equations are solved on the same
mesh, this procedure is straightforward. Otherwise, if adaptive refinement is applied
only to the solution of the transport problem, as mentioned in subsection 5.2, the hy-
draulic head φ must be reconstructed on the locally refined sub-cells. Given the discrete
Darcy velocity ~qh in the form (5.35), the hydraulic head can be locally reconstructed as
a quadratic function

φ̃|t =
d∑
j=1

(
ajx

2
j + bjxj

)
+ c0 (5.56)

satisfying
φ̃|t = φ|t (5.57)

on the cell center and the discrete form of Darcy’s law

−K∇φ̃|t = ~qh (5.58)

on the 2d face centers of a coarse mesh cell t ∈ T0. This yields 2d+ 1 equations for the
2d + 1 coefficients of φ̃|t. The locally refined sub-cells can then be sorted according to
φ̃|t evaluated at the centers of the sub-cells (Figure 5.1).

Due to the large problem size in 3-D, parallelization is necessary for efficiency. After
each refinement step, the parallel partition-blocks1 of the coarse mesh T0 (and with it all
locally refined sub-cells) may be altered to achieve a similar amount of refined sub-cells
on every processor partition (dynamic load-balancing). To ensure that the renumbering
procedure still works after each repartitioning step, the two quantities φ and K have to

1 In general, the shape of these blocks is not cuboidal.
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be made available on each processor partition of T0 for a new reconstruction of ~qh and φ̃.

hydraulic head φh

i/n

Figure 5.1: Downwind numbering of locally refined mesh cells: The hydraulic head φ is
constant on each coarse mesh cell (upper plot). For the renumbering of mesh cells according
to the hydraulic head, it has to be resolved on the locally refined sub-cells. The cell index
i in the lower plot is sorted according to φ̃. n is the total number of all cells of the locally
refined mesh.
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Chapter 6

Implementation

This chapter gives an overview of the external libraries used and a short insight into
some implementation aspects (explained for the 3-D case).

6.1 The DUNE software framework
DUNE makes extensive use of templates to implement static polymorphism, which has
significant advantages in terms of run-time performance and type safety, when com-
pared to dynamic polymorphism [Vandevoorde and Josuttis, 2002]. The set of core
modules (version 2.3.1) is itemized here with an incomplete list of features:

• dune-common: base class templates, exception handler, MPI helper class, dense
matrix and vector classes

• dune-geometry: generic reference elements and quadrature rules

• dune-grid: parallel structured grid YASP, interfaces to the unstructured grids
UG [Bastian et al., 1997] and DUNE-ALUGrid [Dedner et al., 2014], VTK output
methods

• dune-istl: generic sparse matrix/vector classes, parallel linear solvers and
preconditioners, parallel AMG, interface to the direct sparse solver SuperLU
[Li, 2005]

• dune-localfunctions: shape functions for conforming and non-conforming
finite elements

On top of these modules, the finite element discretization module dune-pdelab
(version 2.0.0)1 serves as a library tailored for the implementation of grid-based numer-
ical schemes and solvers for linear and non-linear systems of PDEs, stationary as well as

1requires the template library dune-typetree for statically typed trees of objects
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time-dependent. The linear algebra backend facilitates exchanging linear solvers avail-
able in dune-istl with minimal effort. An implementation of the Newton method
enables the solution of non-linear systems of equations. A generic implementation of
explicit and implicit one-step-methods allows for the method-of-lines solution of time-
dependent systems of PDEs (first-order in time) using different Butcher schemes. The
modular design of DUNE ensures a great flexibility that allows for the development of
completely new modules solving application problems. A long list of applications has
been realized using dune-pdelab1. dune-gesis is a further contribution.

6.2 The DUNE module dune-gesis

6.2.1 Directory structure

All source files containing the definition of data structures and classes are organized in
the sub-directories of dune/gesis/. Their contents can be summarized as follows:

BVPs/: parameter interface classes with which
the coefficients of the PDEs, the types and values
of boundary conditions and the diverse source-
terms listed in §5.1 are specified;
adaptive/: mesh refinement strategy and error
estimator;
DG/: reordering of grid cells, the equation solvers
and local operators for the CCFV / DG approach;
FEM/: equation solvers and local operators for the
FEM / SDFEM approach;
obs/: class handling measurements (taking, stor-
ing, redistributing, reading existing);
projectors/: diffusive L2-projection;
wells/: assigning grid cells to well locations;
common/: general purpose classes and functions;
io/: everything related to file I/O (definition of
file locations, input file parser, HDF5 routines,
VTK output);

/
bin/
dune/

gesis/
BVPs/

adaptive/
DG/
FEM/
obs/
projectors/
sourceterms/
wells/

common/
io/

driver/
QLGA/
yfield/

src/
tools/

driver/: driver function initializing the computational grid, selecting the finite el-
ement basis and setting up the grid function spaces required for the solution of the

1http://www.dune-project.org/pdelab/
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forward problems;

yfield/: FFT-based random field generator implementing Algorithm 2.2

QLGA/: computation of objective function, sensitivities, cross-covariance matrices (FFT-
based) and the estimated variance; inversion kernel implementing Algorithm 3.1;

The directory src/ contains the 2-D and 3-D versions of the main applications. All
available versions are listed in the file Makefile.am.

The directory bin/ is reserved for the build results and supposed to be the work-
ing directory for the user. Two examples of user-specified input files containing data
for a complete inversion with synthetic fields are given in InputFile2d.xml and
InputFile3d.xml.

The directory tools/ contains Python scripts for the visualization of HDF5 files
and for the creation of histogram plots.

6.2.2 External libraries
Boost Property Tree

XML1 (eXtensible Markup Language) is a general purpose and easy to learn textual data
description language. Every XML document forms a tree that starts at the root node.
This node is the parent of other nodes, called children nodes, which themselves may be
either a leaf node (which contains only textual or binary data) or the parent node of a
sub-tree. Every node may have a set of attributes filled with textual data. The definition
of the tree structure including the node and attribute names gives the document the
required semantics. Any kind of human-readable information can be represented using
an XML document. XML is a widely accepted standard for passing information. The
C++ library Boost.PropertyTree2 provides an XML parser and a data structure
that stores an arbitrarily deeply nested tree of values. After parsing, the tree hierarchy
with all its nodes and attributes is mapped to this data structure.

The measurement data usually occurs as a long list where each line consists of
column- or comma-separated data, holding e.g. the position x, y, z, the value of some
measured quantity, its absolute and relative errors. For each set of measurements, this
information can be stored in a separate text file. In XML however, this text can be stored
as one long string or a CDATA section (interpreted by the parser as character data, not
as markup) within a leaf node. Both options are available. dune-gesis reads and
parses the input XML-file as one single string buffer on the root process. When run in
parallel, file I/O happens only on the root process and this buffer is broadcasted to all
other processes before being parsed by all processes.

1http://www.w3schools.com/xml/xml_whatis.asp, checked 11/09/2014
2http://www.boost.org

77

http://www.w3schools.com/xml/xml_whatis.asp
http://www.boost.org


HDF5

Working with high resolutions in 3-D, the total size of the sensitivity matrix and the
cross-covariance matrix can easily exceed the available RAM. The efficient storage and
retrieval of these intermediate results play an important role in the inversion scheme.
HDF51 (Hierarchical Data Format) is a database format designed for the efficient ma-
nagement of high volume and complex datasets prevalent in scientific computing. The
data is structured in an arbitrary tree starting at the root group. A group is a container
structure that can inhabit other groups or datasets. A dataset is a multi-dimensional
array of a homogeneous datatype. It is comparable to the file-system made of directories
(groups) and files (datasets). Data is stored in compressed binary format.

The HDF5 library supports MPI-based partial I/O on different processes using the
concept of hyperslab selection. This feature is predestined for data assigned to a struc-
tured mesh. In our application, a HDF5 dataset may be the log conductivity field, a
sensitivity field or the finite element solution of the transport equation. In all cases, it is
not necessary, but it turns out to be very practical to preserve the 3-D structure of each
of these fields. A hyperslab is a portion of the whole dataset. When working with P
processes in parallel, the computational grid may be partitioned into P hyperslabs (3-D
blocks) which may be overlapping or non-overlapping.

Special care must be taken here for reasons of performance: 1.) It is essential that
InfiniBand is activated for file access to the hard-disc from all computing nodes. 2.)
When working with overlapping hyperslabs and a high number of cores, competing
processes may hinder each other during data access on the overlapping regions.

The class HDF5Tools in dune-gesis provides grid-based or direct sequential
or parallel methods for reading from or writing to a HDF5 file. A 3-D array may be
written to a HDF5 file preserving its structure or as an 1-D array. If written in structure-
preserving mode, the HDF5 files can be read on a differently partitioned parallel grid.
This is the basis for the parallel-in-parallel approach investigated in the article [Schwede
et al., 2012], in which the parallel computation of the sensitivities introduces an ad-
ditional layer of concurrency, reducing the overhead of inter-process communication
required for domain decomposition in the parallel solution of the adjoint problems. An-
other advantage of the structure preserving mode is that all intermediate results can be
reused in a succeeding computation on a different machine with a different number of
cores. And last but not least, a structure preserving HDF5 file can be directly visualized.

FFTW

FFTW2 (Fastest Fourier Transform in the West) is known as the fastest free software
library (written in C) that computes the DFT of real- or complex-valued arrays of arbi-

1http://www.hdfgroup.org/why_hdf, checked 11/09/2014
2www.fftw.org
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trary length n in O(n log n) time [Frigo and Johnson, 2005]. MPI distributed memo-
ry transforms are supported since the version 3.3 (from 2011). In all the simulations
presented in this work, this version linked with the flag -lfftw3 mpi was applied.
dune-gesis works also with the latest version 3.3.4 (2014). FFTW uses a 1-D block
distribution of data, distributed along the first dimension1. In the implementation of
the spectral method (4.75) for the computation of cross-covariance matrices, a redistri-
bution of the sensitivity field data was established using a structure preserving HDF5
storage:

1. The sensitivity field h ∈ RN is computed on the YASP grid, underlying a 2-D
block MPI distribution of data (see §6.2.3). The result is stored as a 3-D array
with N = n1 · n2 · n3 in structure-preserving mode to one HDF5 file.

2. The size of the extended field is known and given by N ′ = n′1 ·n′2 ·n′3 (Algorithm
2.2). Knowing the number of processes in use, the FFTW routine

fftw_mpi_local_size_3d

provides the information what portion of the extended array is occupied by the
current process.

3. The vector h ∈ RN , now available in the 1-D block distribution required for
FFTW, has to be embedded into a larger array h′ ∈ RN ′ using zero-padding
before the parallel FFT applies.

4. From the result, the first N components are extracted and stored in structure-
preserving mode to a new HDF5 file.

6.2.3 The main performance optimization steps

Domain decomposition

In 3-D groundwater flow simulations, it is often necessary to use a higher resolution in
the vertical direction. Therefore, the computational grid cells will become stretched in
the x, y-directions and shortened in the z-direction. The number of parallel partition
blocks per dimension can be adjusted in the YASP grid. We apply a 2-D partitioning
only in the x, y-directions, avoiding a deterioration of the linear solver convergence.

1http://www.fftw.org/doc/MPI-Data-Distribution.html, checked 11/09/2014
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Caching the stiffness matrix

A large fraction of the solution time of a BVP is spent on assembling the stiffness
matrix1 (including the setup of the sparsity pattern). In the computation of the many
adjoint states for one measurement type, the stiffness matrix for each of the BVPs (4.54),
(4.57) and (4.62) can be “recycled” for different measuring points ~x`, because only the
right hand side of the PDE varies with each ~x`. The forward equation solver classes in
dune-gesis assemble the stiffness matrix only once and store it as a class member. In
the case where AMG is used as the preconditioner, the re-use of the coarsening hierarchy
provided by the AMG solver backend is activated.

Renumbering of mesh cells

The new template class ReorderedGridView is derived from the base type

GRID::LeafGridView

where GRID can be any of the grid managers YASP, UG or ALUGrid. The grid-view
provides ordered access to the grid entities (e.g. cells and faces) via the indexSet()
method which returns the index-set of the grid. This method is overridden to return the
new template class ReorderedIndexSet that is derived from the class

Dune::IndexSet <GRID, OrigIndexSet, OrigIndexType>

(using CRTP2) where OrigIndexSet is the original (usually lexicographically or-
dered) index-set and OrigIndexType is usually an integer type.
ReorderedIndexSet encapsulates the generation of an STL vector container of cell
indices, sorted after the cell values of the hydraulic head φ (which is passed to the new
classes as another template argument).

Caching the Darcy velocity

Once computed for one flow field, the discrete Darcy velocity ~qh (5.35) is required for
the solution of the transport equations for mc

0 and mc
1, or for all their adjoint states

and discrete sensitivities. Caching the values of ~qh saves a considerable amount of
computing time. In dune-gesis, a cache handler class evaluates ~qh using (5.36) and
stores the d components of ~qh inside an STL map for every occurrence of a new location.
When assembling the stiffness matrix for the computation of mc

1, the same quadrature
points as for the assembly of the stiffness matrix for computing mc

0, are revisited. In the
second run, the assembly takes less than 40% of the time of the first run3.

1 See e.g. Tables 7.9 or 7.11 for some figures.
2 Curiously Recurring Tempate Pattern [Vandevoorde and Josuttis, 2002]
3 Compare the DG matrix assembly time for mc

0 in Table 7.9 with the DG matrix assembly time for
mc

1 in Table 7.10. The difference in the mesh Péclet numbers does not play a role in this comparison.
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Chapter 7

Numerical Studies

In §7.1 and §7.2, we start with two singularly perturbed problems on the unit square
for which analytical solutions exist in the domain of interest. Convergence tests can be
performed using global and adaptive refinement. For the first problem, we demonstrate
the influence of the ordering of unknowns on the performance of the iterative solvers
for linear systems arising from a DG(1) discretization as described in section 5.7. The
second problem has a less regular solution. In §7.3, we take a closer look on the quality
of the diffusive L2-projection compared to the SDFEM solution on a structured mesh.
In §7.4 and §7.5, we show a 2-D and a 3-D example of the coupled groundwater flow
and transport problem. Since analytical solutions are not available, numerical solutions
computed on adaptively refined meshes are taken as reference solutions for assessing
the quality of different solution methods computed on a coarse structured mesh.

For computations on structured meshes in 2-D and in 3-D, we use the YASP grid,
an implementation of a structured parallel mesh available in the dune-grid module.
For sequential adaptive refinement in 2-D, we use the UG grid [Bastian et al., 1997], and
for parallel adaptive refinement with dynamic load-balancing in 3-D, we use the DUNE
ALUGrid module [Dedner et al., 2014].

In all computations, the best available linear solver / preconditioner combination (in
terms of robustness and speed) is chosen for each linear system arising from a finite
element discretization of a stationary problem.

All time measurements are based on the wall-clock time, i.e. the difference between
the time at which a certain task finishes and the start time of that task. It may include
time that passes while waiting for resources to become available.

All 2-D computations are performed in sequential mode on a laptop with an In-
tel®Core™2 Duo CPU (P9500, 2.53 GHz) and 4 GB total memory. All 3-D compu-
tations are performed on a multi-core architectures with large memory and high-speed
network communication links. Tables F.1 and F.2 give an overview of the used hard-
ware.
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7.1 An example with a regular solution

Let (x, y) ∈ Ω = [0, 1]2 and consider the boundary value problem (from [John et al.,
1997])

−ε∆u+ ~q · ∇u+ µ · u = s̃ε in Ω (7.1)
u = 0 on ∂Ω (7.2)

where ~q = (2, 3)T , µ = 2 and the source term s̃ε(x, y) is chosen such that

u(x, y) =
16

π
x(1− x)y(1− y)

(
π

2
+ arctan

[
2√
ε
ξ(x, y)

])
(7.3)

with
ξ(x, y) = 0.252 − (x− 0.5)2 − (y − 0.5)2. (7.4)

For our tests, we choose ε = 10−5. Note that in this example, the internal layer is gener-
ated by a source term which itself depends on ε. For ε � 1, an accurate representation
of the source term requires a fine mesh, because, in a finite element discretization of
s̃ε, the error in the quadrature-rule might become dominating on a coarse mesh. Since
we investigate the convergence behavior for global and adaptive refinement, this is not
a severe problem.

Figure 7.1: Profile of the analytical solution u for ε = 10−5.
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Linear solver performance and accuracy

Starting on a coarse structured mesh with h0 = 1/8, we perform an adaptive refinement
loop three times, based on three different ways of cell numbering as depicted in Figures
7.2(a)-(c). For the SDFEM discretization, the different cell numbering has no influence
on the speed of the linear solver. For the DG(1) discretization, Table 7.1 confirms that
an optimal numbering of degrees of freedom (following the velocity field) results in a
faster solution of the arising linear system. The time for renumbering the grid cells is
comparable to the time for one step of the iterative linear solver.

random horizontal downstream

L DOF IT TIT [s] IT TIT [s] IT TIT [s] Tsort[s]

9 6,856 8 0.005 4 0.004 1 0.008 0.003

10 10,528 9 0.008 5 0.007 1 0.008 0.006

11 19,672 13 0.015 6 0.014 2 0.010 0.012

12 34,540 17 0.028 7 0.026 2 0.028 0.022

13 85,468 25 0.081 9 0.079 3 0.068 0.059

14 150,016 34 0.152 10 0.138 4 0.127 0.123

15 278,836 48 0.325 12 0.262 5 0.246 0.284

16 544,300 73 0.770 14 0.516 7 0.496 0.661

Table 7.1: Performance of the linear solver (BiCGSTAB + SSOR with reduction 10−8)
for different cell numbering strategies applied to the DG(1) method: L = refinement
level, DOF = degrees of freedom, IT = number of iterations for the linear solver,
TIT = time per iteration, Tsort = time for renumbering the grid cells.
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i/n

(a) random

i/n

(b) horizontal

i/n

(c) downstream

Figure 7.2: Different cell numbering strategies and corresponding matrix patterns for
the DG(1) method. The block matrix for Q1 elements in 2-D is made of 4× 4 - blocks.
i = cell index, n = total number of mesh cells.
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On coarse meshes, the matrix pattern can assume a block-triangular form (Figure 7.2(c)).
In these cases, the iteration number is indeed 1. As refinement proceeds, the meshsizes
and therefore the mesh Péclet numbers decrease and we diverge from the hyperbolic
limit. Although this increases the iteration numbers, they stay at a low level for the
optimal numbering. Not only the number of iterations is reduced but also the required
time per iteration. This may be due to the fact that the non-zero matrix entries occur
in a more compact format such that cache effects contribute to the performance boost.
The linear solver used is BiCGSTAB with SSOR. Similar results are obtained with the
combinations BiCGSTAB + ILU(0), GMRES + SSOR and GMRES + ILU(0).
We measure accuracy with respect to computing time. The SDFEM method with bili-
near elements is compared to the DG(k) methods (with globally constant polynomial
degree k ∈ {1, 2, 3}) in a convergence test with uniform and adaptive refinement.
Accuracy is measured in the L2-norm of the error taken over the domain of interest:
‖u− uh‖L2(Ω). The solution time is the sum of the system assembly time and the linear
solver time. For the DG(k) methods, we apply an optimal numbering of mesh cells
to speed up the linear solver. The time required to sort the mesh cells is negligible
compared to the solution time.
The solution time is linearly proportional to the number of unknowns. For a comparable
number of degrees of freedom (DOF), the iterative linear solvers perform better for the
DG-based methods.

From Figure 7.3 we can make the following observations:

1. For the same computing time, SDFEM is more accurate than DG(1).

2. The accuracy of the higher order DG methods overtakes the accuracy of SDFEM
at a certain refinement level. This happens as soon as the steep gradient is resolved
and optimal convergence order is achieved.

3. With adaptive refinement, higher accuracy is achieved at an earlier stage.

The blue curve (DG(1)+L2) in the first plot displays the accuracy of the post-processed
DG(1) solution on a structured mesh. Although it is close to the DG(1) curve, in this
case, the diffusive L2-projection adds an extra amount of error. Since solution time for
the post-processing step is a small fraction of the solution time for the transport problem,
it is neglected in this plot.
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(a) global refinement

(b) adaptive refinement

Figure 7.3: Example by John: (a) global refinement on a structured mesh and (b) adap-
tive refinement on an unstructured mesh (UG), both starting on a coarse mesh with
meshsize h = 1/8. The refinement and coarsening fractions for the adaptive refinement
algorithm are pr = 95[%] and pc = 0.5[%]. Linear solver used: BiCGSTAB + SSOR
with reduction 10−8. Solution time = system assembly time + linear solver time.
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7.2 An example with a less regular solution
Let (x, y) ∈ [0, 1]2. We consider the boundary value problem

−ε∆u+ ~q ∇u = 0 in [0, 1]2 (7.5)

with constant velocity ~q =
√

2
2

(1, 1)T and discontinuous boundary conditions

u(x, 0) = 1 and u(0, y) = 0. (7.6)

Obviously, the solution has a jump at the origin and is therefore not H1-regular. This
jump causes a characteristic boundary layer along the direction ~q. This example is close
to a real-world example in the sense that the discontinuity may be used to describe a
binary state and the direction of the velocity is not aligned to the mesh. Theorem 1 of
[López and Sinusı́a, 2004] provides an asymptotic expansion of the solution u on the
subset Ω = [0, 1]2 \U0 where U0 = {~y ∈ R2 : ‖~y‖2 < r0} is a ball with radius r0 > 0
and center (0, 0). Introducing polar coordinates through x = r sinϕ and y = r cosϕ,
we get

u = u0(r, ϕ) +
ewr(sin(ϕ+β)−1)

π
√

2wr
u1(r, ϕ) (7.7)

where β = π/4, w = ‖~q‖2/(2ε) and

u0(r, ϕ) =
1

2



erfc

(√
(1− sin(ϕ+ β))wr

)
if ϕ < β,

1 if ϕ = β,

2− erfc

(√
(1− sin(ϕ+ β))wr

)
if ϕ > β.

(7.8)

The function u1(r, ϕ) has an asymptotic expansion from which we use only the first
term,

u1(r, ϕ) =


Γ(1/2)

{(
cos(ϕ−β)
cos(ϕ+β)

− cos(ϕ+β)
cos(ϕ−β)

)
− 1

2 sin(1
2
(π

2
− ϕ− β))

}
if ϕ 6= π/4,

0 if ϕ = π/4,

(7.9)

hereby neglecting higher order terms of ε.
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For our tests, we choose ε = 10−5 and r0 = 5×10−5. The small area U0(r0) around the
critical location (0, 0), where the numerical errors are largest and a different asymptotic
expansion is necessary, is left out of consideration.

Figure 7.4: Reference solution for ε = 10−5 on the domain of interest Ω = [0, 1]2 \U0

(r0 = 5× 10−5).

Linear solver performance and accuracy

The same numerical experiments as in §7.1 are conducted on this example. The influ-
ence of renumbering cells on the linear solver performance for the DG(1) discretization
are very similar to the results presented in §7.1 Table 7.1.

From Figure 7.5 we can see that the convergence behavior for the approximation of
this less regular solution is different from the observations made in §7.1:

1. For the same solution time, the accuracy of DG(1) and SDFEM are comparable.

2. Higher order DG methods are more accurate than SDFEM right from the begin-
ning.

3. With adaptive refinement, higher accuracy is achieved at an earlier stage.

The blue curve (DG(1)+L2) in the first plot is closer to the DG(1) curve than in
the example of §7.1 (Figure 7.3). Furthermore, the SDFEM plot (red curve in Fig-
ure 7.5) stops after 4 refinement steps (16, 641 unknowns). In the next refinement step
(66, 049 unknowns), the iterative linear solver BiCGSTAB with SSOR converges, but
the solution is wrong. In the 6-th step (263, 169 unknowns), the iterative linear solver
does not converge, although the linear system can still be solved using the direct solver
SuperLU. This is most likely due to the fact that the large sparse system has become
very ill-conditioned. However, direct solvers are not an option for large practical prob-
lems. SuperLU has reached the memory limit of the laptop already in the next refine-
ment level where the number of unknowns is 1, 050, 625.
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(a) global refinement

(b) adaptive refinement

Figure 7.5: Example by López and Sinusı́a: (a) global refinement on a structured mesh
and (b) adaptive refinement on an unstructured mesh (UG), both starting on a coarse
mesh with meshsize h0 = 1/8. The refinement fraction for adaptive refinement is
pr = 95[%] (no coarsening). The solution time = matrix assembly time + linear solver
time. Linear solver used: BiCGSTAB with SSOR with a reduction of 10−8.
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7.3 Post-processed DG(1) versus SDFEM
Using the test problem from subsection 7.2, we take a closer look at the quality of the
solution with respect to smearing effects and numerical over- and undershoots around
the characteristic layer. We compare the post-processed DG(1) method with the SD-
FEM method on structured meshes. Figure 7.6 shows the 3-D profile of four different
numerical solutions on the whole domain [0, 1]2. Figure 7.7 uses cross-sectional plots
over the diagonal line between (0, 1) and (1, 0) to zoom into the steep front.

Observations from Figures 7.6 and 7.7:

Near the discontinuity in the boundary condition:

1. On the same refinement level, DG(1) exhibits larger over- and undershoots than
SDFEM (see Figures 7.6 (a)+(c)).

2. The diffusive L2-projection has a dampening effect on the DG(1) solution, reduc-
ing the amount of large over- and undershoots significantly (see Figure 7.6(c)+(d))
without smearing out the steep front beyond a mesh cell (see Figure 7.7 solution
plots).

Globally:

3. While large over- and undershoots in the DG(1) solution are reduced efficiently,
small over- and undershoots are merely dampened by the diffusive L2-Projection
(see Figure 7.7).

4. On the same refinement level, both DG(1) and DG(1)+L2 capture the location of
the steep front more accurately than SDFEM throughout the domain (see Figures
7.6(a)+(c) and 7.7).

5. SDFEM on refinement level L + 1 captures the steep front as well as DG(1) or
DG(1)+L2 on level L (comparable number of DOF) (see Figure 7.6(b)+(c) and
Figure 7.7: blue line in (a) vs. red line in (b))

To achieve a comparable number of DOF as for the DG(1) method, the SDFEM method
requires one extra level of global mesh refinement. The resulting matrix assembly time
for SDFEM on the refined mesh is higher than for DG(1) on the coarse mesh.
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(a)
uh = usd

h = 1/32

N = 1089

ε = 0.096

umax = −1.045

umin = −0.047

Tsol = 0.028s

(b)
uh = usd

h = 1/64

N = 4225

ε = 0.066

umax = −1.046

umin = −0.048

Tsol = 0.12s

(c)
uh = udg

h = 1/32

N = 4096

ε = 0.062

umax = −1.249

umin = −0.249

Tsol = 0.08s

(d)
uh = ucg

h = 1/32

N = 1089

ε = 0.069

umax = −1.042

umin = −0.042

Tsol = 0.10s

Figure 7.6: Warped plots (all from the same perspective) of the numerical solution for different
methods: (a) and (b): usd is the SDFEM solution, (c): udg is the DG(1) solution, (d): ucg is the
diffusive L2-projection of udg (DG(1)+L2). h is the uniform meshsize, N is the dimension of
the solution space and ε = ‖u − uh‖L2(Ω). umax and umin are the maximal and minimal values
of the numerical solution uh. Tsol is the solution time (matrix assembly + linear solver).

(a) L = 3(h = 1/32) (b) L = 4(h = 1/64) (c) L = 5(h = 1/128)

Figure 7.7: Zoomed plots of the solution and the absolute error for different methods along the
diagonal line connecting (1,0) and (0,1). L is the global refinement level. u is the true solution
resolved on a very fine mesh (h = 10−5).
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7.4 Forward transport in 2-D
In the following, we demonstrate the applicability of the presented DG methods to more
realistic scenarios. We solve the groundwater flow equation (4.1) for the hydraulic head
distribution φ and evaluate the velocity field (4.5) on the structured mesh Th0 . The solute
transport equation (5.3) is then solved

• using adaptive DG(1) on a hierarchy of adaptively refined meshes {Tadapt
ν }ν∈N, or

• using DG(k) with diffusive L2-projection on the same mesh Th0 , or

• using SDFEM on the same mesh Th0 or on a globally refined mesh Tglobal
1 .

The Gaussian field Y depicted in Figure 7.8(a) has the physical size of 100×100[m2], the
resolution of the structured mesh T0 is 100×100 cells. Y is described by its mean value
β = −6.0, its variance σ2 = 1.0 and the correlation lengths (`x, `y) = (10, 10)[m]. The
hydraulic head is prescribed on the left (φ

∣∣
x=0

= 100[m]) and on the right (φ
∣∣
x=100

=
99.5[m]) boundaries. The induced pressure gradient drives the main flow. The injection
well parameters are w̃inj = 5 × 10−4[m3/s], c̃inj = 1[g/m3] and Tinj = 100[s]. The
stationary solution values range between 0 and 100[gs/m3]. The molecular diffusion is
Dm = 2× 10−9[m2/s], the longitudinal and transversal dispersivities are αl = 10−3[m]
and αt = 10−4[m].

Theoretically, uh tends to the true solution u as the meshsize h tends to 0. At least,
all numerical oscillations should disappear if the meshsizes near the characteristic layer
become so small that the effective mesh Péclet numbers1 are smaller than 1. Working
with O(αt) ∼ 10−4 and a base level meshsize O(h) ∼ 1 we would get O(Pth) ∼ 103.
It would require 10 levels of global refinement to achieve O(Pth) ∼ 1, but already after
7 levels of global refinement, our mesh would have more than 108 cells. The problem
size would become extremely large for a 2-D simulation.

Adaptive mesh refinement is the only chance to keep the problem size orders of
magnitude lower while reducing mesh Péclet numbers at the steep fronts. We choose
the stopping criterion (5.53) from section 5.5 with a tolerance of posc = 1%. The result
is achieved after 5 steps of adaptive refinement (Table 7.2 and Figure 7.8(b)). This
solution is taken as the reference solution for assessing the quality of different methods
on the structured mesh (Table 7.3 and Figure 7.8).

1Replace α` by αt in (5.20) to consider longitudinal effects.
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2-D solute transport: u = mc
0

(a) (b) adaptive DG(1), level 7

umax = 100.76
umin = −0.38

(c) SDFEM

umax = 116.79
umin = −13.79

(d) Post-processed DG(3)

umax = 103.73
umin = −3.80

(e) Post-processed DG(2)

umax = 104.82
umin = −3.27

(f) Post-processed DG(1)

umax = 103.13
umin = −3.44

Cross sectional plots along the diagonal line indicated above:
(g) SDFEM (h) post-processed DG(1)

(i) post-processed DG(3) (j) post-processed DG(2)

Figure 7.8: (a) Gaussian field Y = ln(K) and velocity field ~qh on T0. (b) Adaptive DG(1)
solution with posc ≤ 1% is taken to be the reference solution for the stationary transport problem.
(c) - (f) Comparing different solutions on the coarse structured mesh T0 with 100 × 100 cells.
(g) - (j): SDFEM solution usd on T0 and on T

global
1 compared to DG(k) solutions (udgk) on T0

and post-processed DG(k) solutions (udgkcg) on T0 along the indicated cut-line (for k = 1, 2, 3).
umax and umin are the maximal and minimal values of the numerical solution.
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Adaptive DG(1)

L DOF max. Pth M [s] T [s] IT TIT umin umax

0 40,000 4675.89 0.91 0.04 4 0.011 134.47 -33.11

1 64,000 2232.44 1.49 0.08 4 0.018 132.26 -31.77

2 102,364 1105.47 2.42 0.25 8 0.033 127.38 -24.68

3 162,964 545.85 3.93 0.75 14 0.050 112.48 -12.10

4 259,372 272.94 6.29 2.29 26 0.076 104.99 -3.39

5 413,860 136.48 10.26 7.29 52 0.110 100.76 -0.38

Table 7.2: Adaptive mesh refinement on UG, with pr = 20[%] and pc = 10[%]. Renum-
bering mesh cells on mesh level L = 5 takes 0.16 sec. Linear solver used: BiCGSTAB +
ILU(0) with reduction 10−8. M = matrix assembly time, IT = linear solver iterations,
T = linear solver time

Observations:

1. On the coarse mesh T0, DG(k) solutions with k = 1, 2, 3 may locally exhibit
stronger over- and undershoots than the SDFEM solution, but these can be re-
duced very efficiently with a diffusive L2-projection (see the runtimes of M and
T for the diffusive L2-projection in Table 7.3 and Figure 7.8(h)-(j)).

2. The over- and undershoots of the SDFEM solution may oscillate into the domain
surrounding the steep front (see Figure 7.8(c)) whereas over- and undershoots of
the DG solutions do not show this behavior.

3. On the same mesh T0, higher order polynomials can be used to improve the qua-
lity of the DG solution with respect to the sharpness of the steep front. The areas
with over- and undershoots are shrunk. A diffusive L2-projection preserves this
behavior and reduces over- and undershoots (see Figure 7.8(d)-(f)).

4. The SDFEM method applied to a globally refined mesh Tglobal
1 requires a compara-

ble number of unknowns as the DG(1) method on T0. The steep front is resolved
similarly well, but the matrix assembly and the linear solution takes longer (L = 1
in Table 7.3 and Figure 7.8).
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Global h- or p-refinement on a structured mesh

Method DOF M [s] IT T [s] umin umax

SDFEM (L = 0) 10,201 0.2 12 0.02 -13.79 116.79

SDFEM (L = 1) 40,401 0.8 28 0.26 -15.29 113.43

DG(1) 40,000 0.6 4 0.04 -33.11 134.47

diffusive L2-proj. 10,201 +0.05 1 +0.02 -3.44 103.13

DG(2) 90,000 1.7 4 0.13 -34.04 135.88

diffusive L2-proj. 10,201 +0.09 1 +0.02 -3.27 104.82

DG(3) 160,000 4.5 4 0.26 -36.69 135.94

diffusive L2-proj. 10,201 +0.16 1 +0.02 -3.80 103.73

Table 7.3: Computations on a structured mesh: SDFEM on mesh levelL = 0 andL = 1
versus post-processed DG methods on mesh level L = 0 with different polynomial
orders. Renumbering mesh cells on L = 0 for the DG methods takes 0.004 sec. Linear
solver used for solving the transport equation: BiCGSTAB + ILU(0) with reduction
10−8. Linear solver used for the diffusive L2-projection: BiCGSTAB + AMG with
reduction 10−8. M = matrix assembly time, IT = linear solver iteration number, T =
linear solver time.
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7.5 Forward transport in 3-D
A 3-D simulation with a similar setting is started on a coarse mesh Th0 with 32×32×32
cells. The domain extensions are (Lx, Ly, Lz) = (10, 10, 10)[m]. The geostatistical
field parameters for the Gaussian model are β = −6.0, σ2 = 1.0 and (`x, `y, `z) =
(2, 2, 1)[m]. The hydraulic head is prescribed on the left boundary by φ

∣∣
x=0

= 10[m]

and on the right boundary by φ
∣∣
x=10

= 9.8[m]. An injection well is placed at the position
(x, y) = (2.1, 5.1)[m] and its z-range is [0...− 5][m]. The injection well parameters are
w̃ = 1 × 10−2[m3/s], c̃ = 1[g/m3] and Tinj = 100[s]. The values of the stationary
solution range between 0 and 100[gs/m3].

Doing the same analysis as for the 2-D case, we find that with global refinement,
we would end up with more than 1013 cells after 10 refinement steps in order to achieve
O(Pth) ∼ 1. The adaptive DG(1) solution in Table 7.4 after 9 steps shows a sharp
resolution of the steep front (Figure 7.9(c)). However, there are thin layers where the
over- and undershoots exceed 25%. This is still far away from being an acceptable
reference solution. To achieve our targeted reduction of under- and overshoots below
posc = 5%, further refinement steps with increasing memory consumption and solution
time are necessary.

We make very similar observations as in the 2-D case:

1. The over- and undershoots generated by the DG(k) solutions with k = 1, 2, 3 can
be reduced very efficiently with a diffusive L2-projection (see the runtimes of M
and T for the diffusive L2-projection in Table 7.5).

2. The over- and undershoots of the SDFEM solution may oscillate into the domain
surrounding the steep front (see Figure 7.9(d)) whereas over- and undershoots of
the DG solutions do not show this behavior.

3. On the same mesh T0, higher order polynomials can be used to improve the qua-
lity of the DG solution with respect to the sharpness of the steep front. The areas
with over- and undershoots are shrunk. A diffusive L2-projection preserves this
behavior and reduces over- and undershoots (see Figure 7.9(e)+(f)).

4. The SDFEM method applied to a globally refined mesh Tglobal
1 requires a compara-

ble number of unknowns as the DG(1) method on T0. The steep front is resolved
similarly well (not shown here), but the matrix assembly and the linear solution
takes longer (L = 1 in Table 7.3).
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(a) (d)SDFEM

umin = −36.60 / umax = 158.82

(b) (e)DG(1)+L2

umin = −4.28 / umax = 102.77

(c) Adaptive DG(1)

umin = −26.69 / umax = 127.34

(f)DG(3)+L2

umin = −1.03 / umax = 102.14

Figure 7.9: (a): Gaussian field Y = ln(K) on T0 with 32× 32× 32 cells. (b)-(c): Illustrating
parallel adaptive refinement with dynamic load-balancing (step 9). A reduction of under- and
overshoots below 5% is possible, see Table 7.4. (d)-(f): Comparing different solutions on the
coarse mesh T0. umax and umin are the maximal and minimal values of the displayed numerical
solution.
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Adaptive DG(1)

L DOF IT T [s] umin umax Pth

0 346,560 8 0.7 -38.8 136.59 1562

1 399,024 11 1.1 -38.7 142.70 1560

2 537,240 12 1.6 -44.8 144.25 1560

3 814,152 12 3.2 -50.7 141.17 1560

4 1,410,136 18 8.2 -50.2 142.59 389

5 2,740,704 17 15 -56.3 142.78 194

6 5,275,496 18 31 -43.1 147.91 194

7 9,273,552 24 88 -38.8 151.62 97

8 15,368,112 28 152 -28.9 132.08 97

9 23,806,944 35 349 -26.7 127.34 48

10 39,897,040 52 743 -24.0 121.37 48

11 59,903,672 64 1425 -18.7 117.17 24

12 70,498,808 67 1935 -15.2 114.24 24

13 95,837,712 87 3926 -15.5 112.58 24

14 132,771,680 95 5724 -11.7 113.12 24

15 188,298,456 110 8854 -10.5 110.78 24

16 242,272,328 128 13489 -6.88 106.72 24

17 321,793,400 167 28075 -6.59 106.73 24

18 348,929,992 185 30403 -5.30 105.37 24

19 433,481,584 200 38251 -5.23 104.85 12

20 474,804,264 238 61351 -4.98 104.57 12

Table 7.4: 3-D parallel adaptive refinement on ALUGrid, with pr = 70[%] and pc = 5[%].
Renumbering mesh cells on level 20 takes 24.5 sec. Linear solver used: BiCGSTAB + SSOR
with reduction 10−8. L = refinement level, IT = linear solver iterations, T = linear solver time.
The computation is performed on quadxeon4. P = 16 cores are used for the computation,
more than 66% of the RAM is required for the linear solver in step 20 alone.

Global h- or p-refinement on a structured mesh

Method DOF M [s] IT T [s] umin umax

SDFEM (L = 0) 58,806 0.5 14 0.11 -36.6 158.8

SDFEM (L = 1) 363,350 2.7 22 1.12 -36.5 139.1

DG(1) 376,832 2.3 7 0.38 -37.9 136.4

diffusive L2-proj. 58,806 +0.2 2 +0.1 -4.3 102.8

DG(2) 1,271,808 22.5 8 3.8 -50.8 146.7

diffusive L2-proj. 58,806 +0.5 2 +0.1 -3.07 103.4

DG(3) 3,014,656 190.1 9 38.4 -47.1 152.0

diffusive L2-proj. 58,806 +1.2 2 +0.1 -1.0 102.1

Table 7.5: 3-D parallel computations with P = 8 cores on fna (see Table F.2) using a struc-
tured mesh with partitioning (Px, Py, Pz) = (1, 8, 1) and overlap = 1. SDFEM on mesh levels
L = 0 and L = 1 compared to DG methods on the coarse mesh level L = 0 with different
polynomial orders. Parallel renumbering of mesh cells for the DG methods on level L = 0
takes 0.004 sec. Linear solver used for solving the transport equation: BiCGSTAB + ILU(0)
with reduction 10−8. Linear solver used for the diffusive L2-projection: BiCGSTAB + AMG
with reduction 10−8. M = matrix assembly time, IT = number of iterations, T = linear solver
time.
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7.6 Simulations in a nested cells environment
With respect to the efficiency (solution time) and the quality of the solution (maximal
amplitude of the over- and undershoots and smearing effects at the steep fronts) for
the convective-dominant transport problem, the observations made in the previous four
sections §7.2– §7.5 favor the combination CCFV / DG(1) + diffusive L2-projection over
the FEM / SDFEM approach. A further comparison in this section will definitely help
make the decision.

Without doubt, the best possible solution in terms of the L2-error is achieved with
adaptive mesh refinement. However, numerical oscillations can be reduced to an ac-
ceptable level only if the mesh cells at the steep front become so small that their local
mesh Péclet numbers approach 1 (diffusion-dominant problem). This comes at a very
high price, especially in 3-D. A “perfect” solution in this sense may not be necessary
for a robust inversion scheme that can cope with noisy data. This will be verified in
two separate test scenarios, in 2-D using adaptive mesh refinement (§7.6.2) and in 3-D
by adding extra noise to the data (§7.6.6). Therefore, we decide to apply the diffusive
L2-projection rather than local mesh refinement to dampen the numerical over- and un-
dershoots in the DG(1) solution of the transport equation during the inversion process.
Another benefit of this decision is that the same structured mesh as the one on which
the parameter field is resolved can used for the DG(1) discretization.

We conclude this chapter by applying the proposed methods to a real-world example
as applied in field applications. In all upcoming 3-D computations, the structured
parallel mesh (YASP grid) with an overlap of one cell is used.

7.6.1 The setting
The nested cell setup introduced by Luo et al. [2006] is a four well-system made of
two injection and two extraction wells with adjustable pumping rates. The outer pair
spanning the outer cell generates a flow field that acts as a shield,

1. protecting the inner cell, where measurements are being taken, from the influence
of ambient flow,

2. minimizing tracer leakage and

3. devising a control mechanism for the size of the recirculation zone and residence
times within the inner cell.

Provided that each pumping well can flexibly be utilized as an injection or extraction
well, this setup can be employed in four principle directions using eight pumping wells
as depicted by the triangles in Figure 7.10.
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Geometry of the domain Ω

extensions ( Lx, Ly, Lz ) = ( 51.2, 51.2, 5 )[m]

Geostatistical parameters of the original log conductivity field (prior knowledge)

prior variance of Yorig σ2 = 1.0

#zones Nβ = 1

prior mean of the trend β∗ = −6.0

uncertainty of the trend σ2
β = 0.1 or σβ = 0.316

correlation lengths: ( `x, `y, `z ) = ( 1.0, 1.0, 0.5 )[m]

variogram model: spherical

Transport parameters

porosity θ = 0.3

molecular diffusion coefficient Dm = 10−9[m2/s]

longitudinal dispersivity α` = 10−3[m]

transversal dispersivity αt = 10−4[m]

Flow parameters (ambient flow combined with nested cells)

boundary conditions for φ: Dirichlet B.C. (4.2) at west and east: φ
∣∣
x=0

= 100.00[m], φ
∣∣
x=51.2

= 99.90[m],

no-flow Neumann B.C. (4.3) at all other boundaries

setup #1 (Figure 7.10) outer injection well at (10, 25, [−0.5...− 4.5])[m] with w̃inj = 0.008[m3/s]

inner injection well at (17, 25)[m], screening sections

at z ∈ [−0.5...− 1.5][m] with w̃inj = 0.002[m3/s]

at z ∈ [−2.0...− 3.0][m] with w̃inj = 0.002[m3/s] filled with tracer

at z ∈ [−3.5...− 4.5][m] with w̃inj = 0.002[m3/s]

inner extraction well at (33, 25, [−0.5...− 4.5])[m] with w̃ext = 0.009[m3/s]

outer extraction well at (40, 25, [−0.5...− 4.5])[m] with w̃ext = 0.010[m3/s]

setup #2/#3/#4 = rotation of setup #1 by 90◦/180◦/270◦ around (25, 25, z)[m]

Measurement locations and types

point measurements at ( x, y, z ) with x, y ∈ { 20.5, 23.5, 26.5, 29.5 }[m] and z ∈ { −1, −2, −3, −4 }[m]

measurement types φ (= piezometric head) and mc
1 (∼ arrival time)

measurement error of φ (3.21) with ε(abs)
` = 0.005[m]

measurement error of mc
1 (3.21) with ε(rel)

` = 5[%] and a fixed value of ε(abs)
`

total #measurements M = 4 setups × 64 points × 2 types = 512 measurements

Thresholds fine-tuning the inversion algorithm 3.1

kmax = 20, αmin = 0.001, ∆J = 2% ·M , ∆y = 0.01

Table 7.6: 3-D nested cells environment with four different setups
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(a) Setup #1: (x, y)-view through the cross-section z = −2.5m

(b) Setup #1: (x, z)-view through the cross-section y = 25m

0 10 17 x 33 40 51.2

0
10

17
y

33
40

51
.2

Ambient flow direction

(2 injection wells)

W1 = 8[l/s]

W2 = 3× 2[l/s]

(2 pumping wells)

W4 = −10[l/s]

W3 = −9[l/s]

(Observation wells)

0 10 17 x 33 40 51.2

-5
z

0

W1 W2

W3 W4

Figure 7.10: All 24 boreholes house a vertical well-pipe, partially filled with inflatable
packers so that discrete depth intervals can be defined for different purposes. Color
code: fresh water injection (blue), tracer injection (red), pumping (yellow). (a) Injection
and pumping wells can be switched. The other three setups are obtained by a successive
rotation of setup #1 by an angle of 90◦ around the central axis (25, 25, z)[m]. The
observation wells are identical in all four setups. (b) Well screens and z-locations of
observation points (×).
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A QLGA-based inversion using heated water as a tracer was carried out in such a
setting by Schwede et al. [2014]. The SDFEM method was used to discretize the heat
transport equation. Solute transport in groundwater is much more convection-dominant
than heat transport.
In this section, we investigate in five test scenarios for a convection-dominant test case
listed in Table 7.6

(1) the influence of adaptivity on the solution of the inverse problem (2-D),

(2) the performance of FEM/SDFEM versus CCFV/DG(1) for the solution of the
coupled forward problems (φ,mc

0,m
c
1) (3-D),

(3) the parallel scalability of the forward solvers based on CCFV/DG(1) (3-D),

(4) the applicability of CCFV/DG(1) as a forward solver in the context of a massively
parallel fully coupled inversion (3-D),

(5) and, last but not least, the stability of the inversion scheme with respect to distur-
bances in the data (3-D).

7.6.2 Scenario 1: Influence of adaptivity in a fully coupled 2-D in-
version

We consider the setting from Table 7.6 and Figure 7.10 without the third space dimen-
sion z. The domain Ω = [0, 51.2] × [0, 51.2] is discretized using an initially structured
mesh Th0 with 128× 128 cells. The randomly generated field in Figure 7.11(a) is taken
to be the original Y -field. For all four setups, we solve the forward problems to gener-
ate measurement data. The flow equation (4.1)1 for φ is solved using the CCFV method
on the ’coarse’ mesh Th0 . The forward steady-state transport equations (4.21) for the
temporal moments mc

0 and mc
1 are solved in two different ways:

(I) We use the combination DG(1) + diffusive L2-projection on the ’coarse’ mesh
Th0 (YASP).

(II) We use adaptive DG(1) on a sequence of locally refined meshes {Tadapt
hν
}ν (UG in

sequential mode only). The residual based error estimator (5.49) is applied to
u := mc

1 with error-fraction marking strategy. Both equations for mc
0 and mc

1

are solved on the same mesh on each refinement level. The local refinement is
proceeded until the maximal over- and undershoots in the discrete solutions are
below 5%.

1Unlike in the 3-D setting, the Dirichlet boundary conditions are given by φ|x=0 = 100[m] and
φ|x=51.2 = 99.88[m]. The inner/outer well injection/extraction rates are given by w̃inj = +0.8/+2.4[l/s].
and w̃ext = −0.8/− 2.4[l/s].
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Figure 7.11: 2-D inversion: Investigating the influence of adaptive refinement on the final result
of a parameter estimation process. The temporal moments displayed are taken from setup #3.
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The two different sets of measurement data for mc
1, each combined with the measure-

ments for φ (identical in both cases), are then used to run a fully coupled inversion on
the ’coarse’ mesh Th0 (YASP in parallel mode) where the combination CCFV / DG(1)
+ diffusive L2-projection is used to solve the flow and transport equations.

Case I Case II

GN step J d J y J J d J y J

0 3.60 · 104 3.60 · 104 4.40 · 104 4.40 · 104

1 2.40 · 104 5.69 · 100 2.40 · 104 3.35 · 104 5.54 · 100 3.35 · 104

2 7.57 · 103 1.24 · 102 7.69 · 103 1.80 · 104 6.93 · 101 1.81 · 104

3 3.72 · 103 5.30 · 102 4.25 · 103 1.09 · 104 5.24 · 102 1.14 · 104

4 2.12 · 103 6.48 · 102 2.77 · 103 7.81 · 103 9.23 · 102 8.73 · 103

5 8.61 · 102 2.52 · 102 1.11 · 103 5.63 · 103 1.03 · 103 6.66 · 103

6 3.65 · 102 2.01 · 102 5.66 · 102

7 7.67 · 101 1.23 · 102 2.00 · 102

8 5.61 · 101 1.07 · 102 1.63 · 102

9 4.38 · 101 1.01 · 102 1.44 · 102

Table 7.8: The 95-th percentile criterion (3.79) is fulfilled only in case I as soon as the objective function
J falls below the threshold J ∗ := 1

2 · χ
2
0.05(385) = 215.88. The computations run in parallel on 4

cores of dnk. Duration: 47 sec. per Gauss-Newton step.

Observations:

Fig.7.11(e)+(g) show theL2-projected solution ofmc
0 andmc

1 (case I), Fig.7.11(f)+(h)
show the adaptive solution of mc

0 and mc
1 (case II) for Setup #3. The adaptive solutions

may be regarded as the reference forward solutions for these transport problems.
As expected, the estimated field in Figure 7.11(c) shows a very good coincidence

with the original, because the very same forward solvers used for the generation of the
measurement data were used for the inversion scheme (case I).

The observations made for the case II supports the claim that the accuracy of adap-
tively computed solutions may not be necessary for the inversion procedure. The esti-
mated field (Figure 7.11(d)) reveals that the main structures and also the variability of
the original field still can be recovered within the measuring zone although the coarse
grid solution may produce large deviations from the reference solution at single mea-
suring points (Table 7.7).

Figure 7.11(b) shows the corresponding estimated variance (3.66). It is comparable
to the estimated variance for the case I which is not depicted here.

Only the criterion (3.79) is not fulfilled. But as we will see in §7.6.6, increasing the
value of the measurement error for mc

1 (which would have been reasonable here) can
help reducing the value of the objective function.

In the remaining subsections, we solve 3-D problems on the structured YASP grid.
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7.6.3 Scenario 2: FEM/SDFEM vs. CCFV/DG(1) as forward solvers
The domain Ω is discretized using a structured mesh Th1 where the cell numbers are
given by ( nx, ny, nz ) = ( 512, 512, 100 ). Each cell has the constant lengths
(∆x,∆y,∆z) = ( 0.10, 0.10, 0.05 )[m].

Setup #3 #1

Solving for φ :

numerical scheme FEM CCFV FEM CCFV

# parallel unknowns 28,800,756 27,667,600 28,800,756 27,667,600

matrix assembly time [s] 9.135 7.044 9.15 5.31

linear solver time [s] 15.80 6.80 15.79 7.05

# iterations 23 23 23 23

time per iteration 0.68 0.295 0.68 0.31

linear solver/pre-conditioner CG with AMG, reduction 10−10 CG with AMG, reduction 10−10

Solving for mc
0 with effective mesh Péclet number Pth ≈ 490 :

numerical scheme SDFEM DG(1) SDFEM DG(1)

# parallel unknowns 28,800,756 221,340,800 28,800,756 221,340,800

matrix assembly time [s] 19.85 81.15 19.98 82.91

linear solver time [s] 32.12 195.0 --- 81.56

# iterations 98 38 --- 23

time per iteration 0.32 5.14 --- 3.55

linear solver/pre-conditioner GMRES(100) with ILU(0), red. 10−7 GMRES(100) with ILU(0), red. 10−8

Table 7.9: 3-D nested cells environment, comparing forward solvers: Parallel computa-
tions on dnk (see Table F.2) using P = 64 cores on four nodes with 1 task per core and
2 tasks per memory channel.

Observations:

1. CCFV requires less time than FEM for the stiffness matrix assembly.

2. The linear system for CCFV can be solved more than twice as fast as the linear
system for FEM.

3. The SDFEM linear system can be solved only for the Setup #3. In all other cases,
the linear solver does not converge even after 5000 iterations.

This makes the combination CCFV / DG(1) postprocessed with the diffusiveL2-projection
our method of choice for the forward solution of stationary transport problems with
high mesh Péclet numbers. However, for this high-resolution mesh, DG(1) scheme re-
quires more than 200 million unknowns. The memory consumption of the linear solver
reaches about 96% of the RAM that are available on the computing nodes.

106



We want to confirm that our implementation of the SDFEM method can be applied
to less convection-dominant problems in the same setting. Therefore, we set α` = 10−1

and successively increase the amount of αt ∈ {10−4, 10−3, 10−2}. For αt = 10−2

(when Pth ≈ 4.9), this may be comparable to the solution of the more diffusive heat
transport equation. Only in this case, the SDFEM linear system can be solved by GM-
RES(100) with ILU(0) for all four setups. Over- and undershoots are less than 0.5%.
Table 7.10 shows that the linear solution of the DG system takes much longer than in
the convection-dominant case. A further test comparing preconditioners reveals that for
such a linear system, GMRES(100) with ILU(0) is not only faster, but also more robust
than BiCGSTAB with AMG.

Setup #3 #1

Solving for mc
1 with effective mesh Péclet number Pth ≈ 4.9 :

numerical scheme SDFEM SDFEM DG(1) SDFEM SDFEM DG(1)

# parallel unknowns 28,800,756 28,800,756 221,340,800 28,800,756 28,800,756 221,340,800

matrix assembly time [s] 13.09 13.17 32.91 13.23 19.94 33.11

linear solver time [s] 38.84 26.87 1697.32 23.38 --- 1394.72

# iterations 135 34 594 82 --- 420

time per iteration 0.29 0.79 2.86 0.29 --- 3.32

linear solver GMRES(100) with reduction 10−7 GMRES(100) with reduction 10−7

pre-conditioner ILU(0) AMG ILU(0) ILU(0) AMG ILU(0)

Table 7.10: 3-D nested cells environment: Transport simulation with low mesh Péclet
numbers, comparing SDFEM vs. DG(1) and ILU(0) vs. AMG. P = 64 cores as above.

DG(1)+L2 solutions for Pth ≈ 490 :

mc
0 mc

1

SDFEM solutions for Pth ≈ 4.90 :

mc
0 mc

1

Figure 7.12: Quality of different mc
0 and mc

1 solutions for different Péclet numbers (Setup #1): Plots
for the same quantities use the same color code. 1st row: high Péclet number solutions with sharp internal
layers (steep gradients). 2nd row: low Péclet number solutions with smeared layers (smooth gradients).
This reflects the fact that experiments with a solute tracer deliver more accurate measurements than a heat
tracer.
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7.6.4 Scenario 3: Parallel scalability tests for the forward solvers
Strong scaling

For a fixed mesh resolution, the coupled forward problems (φ,mc
o) for Setup #1 of

Table 7.6 are solved on one and the same log conductivity field using an increasing
number of cores. Due to a finer resolution and a lower number of cells in the z-direction,
the parallel partitioning P = Px×Py× 1 of the domain is restricted to the (x, y)-plane.

Solving (4.1) for φ Solving (4.21) for mc
0 Diffusive L2-projection (5.54)

CCFV(P0) / CG + AMG DG(Q1) / BiCGSTAB + ILU(0) FEM(Q1) / CG + AMG

M [s] #IT TIT [s] Tsort[s] M [s] #IT TIT [s] M [s] #IT TIT [s]

P = 1 sequential task

10.073 24 1.0365 3.817 585.09 7 10.77 36.485 4 2.431

P = 4 = 2× 2 parallel tasks on 2 nodes ( 1 task per core, 1 task per memory channel )

2.867 23 0.246 0.795 159.284 9 2.709 9.906 6 0.598

S 3.51 4.21 4.80 3.67 3.98 3.68 4.07

E 0.88 1.05 1.20 0.92 0.99 0.92 1.02

P = 16 = 4× 4 parallel tasks on 4 nodes ( 1 task per core, 1 task per memory channel )

0.758 23 0.0658 0.129 41.315 10 0.699 2.515 6 0.172

S 13.29 15.75 29.56 14.16 15.41 14.51 14.13

E 0.83 0.98 1.85 0.89 0.96 0.91 0.88

P = 32 = 4× 8 parallel tasks on 4 nodes ( 1 task per core, 1 task per memory channel )

0.388 22 0.0385 0.061 22.303 12 0.412 1.294 6 0.104

S 25.96 26.92 62.57 26.23 26.14 28.20 23.38

E 0.81 0.84 1.95 0.82 0.82 0.88 0.73

P = 64 = 8× 8 parallel tasks on 4 nodes ( 1 task per core, 2 tasks per memory channel )

0.215 24 0.0308 0.029 11.18 13 0.31 0.671 6 0.089

S 46.85 33.65 131.62 52.33 34.74 54.37 27.31

E 0.73 0.53 2.06 0.82 0.54 0.85 0.43

Table 7.11: 3-D nested cells environment, strong scalability test for CCFV/DG(1)
with a fixed number of 256 × 256 × 50 = 3, 276, 800 elements. Symbols: Tsort =
time for renumbering the mesh elements, M = matrix assembly time, #IT = number
of iterations, TIT = time per iteration of the linear solver, S = speed-up and E =
parallel efficiency. All computations run on dnk (see Table F.2).
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Weak scaling

For an increasing number of cores, the mesh resolution is increased such that the number
of unknowns per task remains at the same level. (φ,mc

o) for Setup #1 of Table 7.6 are
computed on different Y -fields generated from the same geostatistical parameters.

Solving (4.1) for φ Solving (4.21) for mc
0 Diffusive L2-projection (5.54)

CCFV(Q1) / CG + AMG DG(Q1) / BCGS + ILU(0) FEM(Q1) / BCGS + AMG

M [s] #IT TIT [s] Tsort[s] M [s] #IT TIT [s] M [s] #IT TIT [s]

N = 102, 400
/
P = 1 sequential task

DOF = 102, 400 DOF = 819, 200 DOF = 111, 537

0.312 17 0.0267 0.0548 18.079 3 0.279 1.084 2 0.129

N = 409, 600
/
P = 4 parallel tasks on 2 nodes ( 1 task per core, 1 task per memory channel )

DOF = 422, 500 DOF = 3, 380, 000 DOF = 453, 024

0.365 19 0.0282 0.0548 20.064 7 0.291 1.213 3 0.1449

E 0.85 0.95 1.0 0.90 0.96 0.89 0.89

N = 1, 648, 360
/
P = 16 parallel tasks on 4 nodes ( 1 task per core, 1 task per memory channel )

DOF = 1, 747, 240 DOF = 13, 977, 920 DOF = 1, 860, 129

0.383 23 0.0326 0.0547 21.202 8 0.357 1.296 3 0.158

E 0.81 0.82 1.0 0.85 0.78 0.84 0.82

N = 3, 276, 800
/
P = 32 parallel tasks on 4 nodes ( 1 task per core, 1 task per memory channel )

DOF = 3, 537, 000 DOF = 28, 296, 000 DOF = 3, 771, 348

0.388 22 0.0385 0.0629 22.303 12 0.471 1.307 3 0.209

E 0.80 0.69 0.871 0.81 0.59 0.83 0.62

N = 6, 532, 092
/
P = 64 parallel tasks on 4 nodes ( 1 task per core, 2 tasks per memory channel )

DOF = 7, 112, 448 DOF = 56, 899, 584 DOF = 7, 573, 504

0.41 25 0.0648 0.0943 22.009 14 0.739 1.331 3 0.359

E 0.76 0.41 0.581 0.82 0.38 0.81 0.36

DOF ≈ 1.06 · 105 per task ≈ 8.5 · 105 per task ≈ 1.15 · 105 per task

Table 7.12: 3-D nested cells environment, weak scalability test for CCFV/DG(1) with
a per-task-average of ≈ 105 mesh cells: Symbols: N = number of cells, Tsort = time
for renumbering the mesh elements, M = matrix assembly time, #IT = number of
iterations, TIT = time per iteration of the linear solver and E = parallel efficiency.
All computations run on dnk (see Table F.2).
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Observations

Both scalability tests (which start with P = 1) show that the matrix assembly for all
numerical schemes and the renumbering of mesh cells scale well. The efficiency of
the linear solvers for the different schemes remains at a high level as long as the full
capacities of the memory channels can be exploited. It goes down as soon as more than
one task have to share one channel. This is due to the fact that iterative schemes are
based on matrix×vector multiplications where a high throughput is required. In other
tests on the cluster hpc4 where a higher number of cores is available, the efficiency
of the linear solver for the DG discretization drops for another reason: The cell-wise
renumbering of the unknowns following the hydraulic head play a pre-conditioning role
for the linear solver. For an ideal parallel scalability, the shape of the partitions of the
parallel mesh would have to be constructed and ordered according to the hydraulic head.
However, such an extension of the capabilities of the mesh is beyond the scope of this
work. For our purposes, working with a relatively small number of cores (P ≤ 64) and
using the straight partition blocks of the structured mesh (YASP grid) is sufficient.

7.6.5 Scenario 4: Fully-coupled inversion with different strategies
The Y -field generated for the simulations in §7.6.3 on the fine mesh Th1 is taken as
the original parameter field on which measurements of φ and mc

1 are taken for the four
nested cells setups presented in Table 7.6. Since the ratio between correlation length and
meshsize is 10 : 1, we may try to run the inversion on a coarse mesh Th0 with double
meshsize where this ratio is 5 : 1. The combinations of numerical schemes and linear
solvers verified in §7.6.4 (for the parallel solution of the steady-state groundwater flow
and convection-dominant transport problems) are now employed to the framework of
geostatistical inversion. We apply combinations of two types of inversions, namely

type 1: based on simulated measurements of φ,

type 2: based on simulated measurements of φ and mc
1,

to devise different strategies

St1: inversion of type 1 on the mesh Th0 initialized with y0 = Xβ∗,

St2: inversion of type 2 on the mesh Th0 initialized with the computed estimate of St1,

St3: inversion of type 2 on the mesh Th0 initialized with y0 = Xβ∗,

St4: inversion of type 2 on the mesh Th1 initialized with the computed estimate of St2,
which must be projected onto the fine mesh. One cell of Th0 contains eight refined
cells of Th1 . On these refined cells, the initial estimate for St4 assume the same
value given by the parent cell in Th0 .

In the end, we simulate the forward problems for the final estimate on the fine mesh.
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The absolute error ε(abs)
` [mc

1] in (3.21) can be used to emphasize the importance (or
weight) of a measurement at a certain location ~x`. The practitioner working in the field
has to provide appropriate values. In our numerical experiments, we can vary its values
within a wide range to see its effect. We either choose the same fixed value for all setups
or, for each setup S, we define it by

ε(abs)
` [mc

1] := pε × max
d(obs)
` ∈MS

1

{
d(obs)
`

}
(7.10)

where MS
1 is the list of all original mc

1-measurements of the setup S. In the test cases
(A)-(D) listed in Table 7.14, we choose pε = 5% and obtain four different values for
ε(abs)
` between 2.95 · 105 and 5.7 · 105.

The workload in all computations is distributed among P = 64 parallel tasks, using

• either 4 nodes of hpc4 with 16 cores per node (1 task per memory channel)

• or 4 nodes of dnk with 8 cores per node (2 tasks per memory channel).

mesh cell numbers simulated measurements Sφ S1 hpc4 dnk

Th0
256× 256× 50 φ 256 0 90 min. 30 min.

Th0
256× 256× 50 φ and mc

1 256 256 8 hours 2 hours

Th1
512× 512× 100 φ and mc

1 256 256 >3 days 22 hours

Table 7.13: 3-D inversion: Average runtime for a single step of the Gauss-Newton
iteration scheme, comprising the computation of all involved sensitivity and cross-
covariance fields and the evaluation of the cost function for trial estimates in the line
search algorithm. S{φ,1} = number of sensitivity fields for {φ,mc

1}.

test case strategy hpc4 dnk y σy J (3.28)

(required #steps)

(A) St1(6) 9 hours 3 hours -5.22 0.07 37.85 (φ only)

(B) St1(6) + St2(5) 49 hours 13 hours -5.23 0.112 137.0 (φ,mc
1)

(C) St3(7) 56 hours 14 hours -5.23 0.114 145.0 (φ,mc
1)

post-processing the coarse solution on the fine mesh:

(D) St4(+1) --- +22 hours -5.23 0.108 108.75 (φ,mc
1)

Table 7.14: Total inversion runtimes for different strategies on the coarse mesh. y is
the arithmetic mean and σy is the standard deviation taken from the visible part of the
Y -field shown in Figure 7.13. For the original Y -field, y = −5.44 and σy = 1.0. The
means y of the estimated fields are all within the 2σβ-interval about the given trend
β = −6.0 (see Table 7.6).
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Figure 7.13: 3-D inversion: Comparing original with estimated fields (flow fields for setup #2)
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vest

10 x 40 0 z -5

Figure 7.14: 3-D Inversion: The estimated variance vest (3.66) has its local minima
at measurement locations. Its minimum is 0.41. The histogram of the weighted error
(3.67) matches very well with the standard normal distribution (red line) confirming that
the estimated solution is unbiased.

Observations:

Figures 7.13 & 7.14 show the results of a combined inversion (B)+(D) taking less than
40 hours in total on the machine dnk. Running the inversion on the coarse mesh Th0 ,
where the correlation lengths and thus the geostatistical structures are still resolved well,
the computing time can be reduced dramatically. The total runtime for a complete in-
version on Th0 is in the same range as the runtime of one single inversion step on Th1 .

The two test cases (B) and (C) in Table 7.14 yield almost the same results. Both
solutions can be projected onto the fine mesh and reused as the initial solution for one or
two final inversion steps on the fine mesh. However, this extra step on the fine mesh does
not add a worthwhile improvement. The estimated parameter field on Th0 is qualitatively
(in terms of structure and recovered variances) not much different from the estimated
Y -field on Th1 shown in the first row of Figure 7.13.
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7.6.6 Scenario 5: Varying the input data

We conduct three further test cases (E), (F) and (G) which are copied versions of the
test case (C), slightly modified in the following manner:

(E): Same as test case (C), but pε = 0.5%. Thus, ε(abs)
` [mc

1] decreases by a factor of 10,
putting more weight on the mc

1 measurements.

(F): Same as test case (C), but we set directly a very low value ε(abs)
` [mc

1] = 50, over-
weighting the mc

1 measurements.

(G): Same as test case (E), but

– we work under the false assumption that the correlation lengths are double
as large as listed in Table 7.6,

– the trend coefficient is β = −6.2 instead of −6.0,

– and we add a normally distributed disturbance δd` ∼ N(0, ε2
`) to each of

the measured values d(obs)
` where ε` = εm` = 5% · |d(obs)

` | in the case of mc
1-

measurements, and ε` = εφ` = 5% · |max
k
d(obs)
k − min

k
d(obs)
k | in the case of

head measurements. Some examples are listed in the table of Figure 7.16.

The results are shown in Table 7.15 and Figures 7.15 – 7.17.

original field estimated field

test case (C) (E) (F) (G)

data and prior knowledge unchanged unchanged unchanged disturbed

measurement error ε(abs)
` [mc

1] ∼ O(105) ∼ O(104) = 50 ∼ O(104)

number of St3-steps 7 12 14 8

maxj{(y)j} −0.41 −3.66 −2.91 −2.78 −3.32

minj{(y)j} −10.73 −7.03 −7.72 −8.36 −8.36

y -5.43 -5.23 -5.24 -5.24 -5.23

σy 1.0 0.114 0.146 0.180 0.160

J (3.28) 145.0 339.7 1.3 · 106 380.0

minj{(vest)j} 0.41 0.22 0.11 0.23

Table 7.15: Scenario 4: Decreasing measurement error and disturbing prior knowledge
and data. y is the arithmetic mean and σy is the standard deviation taken from the visible
part of the Y -field shown in Figure 7.17.
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(E): undisturbed data (G): disturbed data

Figure 7.15: Scenario 4: Convergence behavior of the inversion scheme for the test
cases (E) and (G): The 95-th percentile criterion (3.79) is fulfilled as soon as the ob-
jective function J falls below the threshold J ∗ := 1

2
· χ2

0.05(1025). The interval
I2σ := [µ − 2σ, µ + 2σ] prescribed by the three-sigma rule (3.76) offers only a narrow
range for the optimal value of J to hit.

An excerpt from the measurements:
(Setup #2) data disturbed

` ~x` φ(~x`) φ(~x`) + εφ`

1 (20.5, 20.5, 1.0) 99.8576 99.8587
22 (23.5, 23.5, 2.0) 99.8821 99.8824
43 (26.5, 26.5, 3.0) 99.9271 99.9277
64 (29.5, 29.5, 4.0) 99.9653 99.9653

` ~x` mc
1(~x`) mc

1(~x`) + εm`

1 (20.5, 20.5, 1.0) 191.5 187.3
22 (23.5, 23.5, 2.0) 1.75·106 1.69·106

43 (26.5, 26.5, 3.0) 1.31·106 1.36·106

64 (29.5, 29.5, 4.0) 564.2 604.6

Figure 7.16: Scenario 4: Convergence behavior of the inversion scheme for the test
cases (E) and (F): The J d-curve for the test case (F) has a similar shape as the J d-
curve for the test case (E), only shifted upwards.
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Figure 7.17: Scenario 4: Comparing the results of the test cases (C), (E) and (G)
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Observations:

(C)/(E)/(F) reveal the effect that the choice of the measurement error has on the con-
vergence behavior and the quality of the solution. The smaller the measurement error,
the larger the value of the objective function. A higher number of possible iterations
helps achieving a higher recovery of the spatial variability. The best recovery of σy is
achieved in (F) although the objective function is far above the threshold (Figure 7.16).
The thresholds ∆J and ∆y in the convergence criterion of the inversion algorithm 3.1
may be adjusted to the magnitude of the measurement error ε(abs)

` [mc
1] in order to achieve

comparable convergence behavior.
(G) demonstrates experimentally the stability of the inversion scheme for small

disturbances of the data. The results agree well with those from (E) as Figures 7.15
and 7.17. This is an indicator for the regularized inversion problem (3.28) to be well-
conditioned and to fulfill the continuity property for well-posedness.

7.6.7 Overview of time consumption
The heterogeneous landscape of tasks required for the completion of a whole inversion
in parallel calls for a timer measuring the time spent on the different types of tasks. Table
7.16 confirms that most of the time is typically spent on the solution of the occurring
BVPs, where the main burden is borne by DUNE. Moreover, the efficiency of the FFTW
and HDF5 implementations is verified. The extra time (≈ 16%) spent on the evaluation
and redistribution of data summarizes the time consumption of other tasks such as the
simulated measurements, or the computation of the estimation variance at the end of the
inversion procedure.

Task type: Wall time Fraction

I/O: 3,537.47 sec. 4.53 %

BVPs: 60,225.28 sec. 77.12 %

FFTW: 1,961.19 sec. 2.51 %

Eval.: 12,315.65 sec. 15.77 %

Redist.: 53.51 sec. 0.07 %

Sum: 78,093.10 sec. 100.00 %

Table 7.16: Overview of time consumption for the test case (E) that run on dnk (see
Table F.1), using 64 cores on 4 nodes. The program took 81, 604.20 seconds in total.
The time measured in detail covers 95.7%.
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Chapter 8

Conclusion and Outlook

Conclusion

We have shown that the two-point flux cell-centered finite volume (CCFV) method com-
bined with Discontinuous Galerkin (DG) methods for solving the steady-state ground-
water flow and solute transport problems can be applied to the framework of the quasi-
linear geostatistical approach for the 3-D estimation of the hydraulic conductivity in
confined aquifers.

Two main issues occurring in the solution of the convection-dominated transport
equation were tackled:

1. the efficient reduction of numerical under- and overshoots,

2. the efficient solution of the arising linear systems.

We have compared DG methods with the Streamline Diffusion (SDFEM) method.
Putting special emphasis on a practical application, we have analyzed efficiency and
accuracy. The observations made in the example with a jump in the boundary in §7.3
and in the solution of the forward problems in §7.4 and §7.5 clearly speak in favor of the
post-processed DG methods if we consider computing time to be the ultimate measure
of available hardware resources:

• On the same mesh level, the DG solutions resolve the steep fronts more sharply
than the SDFEM solution. In order to obtain the same level of accuracy as DG(1),
SDFEM would have to work on a globally refined mesh. As a consequence, the
SDFEM approach would take longer than DG(1).

• In heterogeneous fields, the layers of spurious oscillations generated by SDFEM
may spread into the surrounding domain whereas they stay localized for the DG
method.
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• The diffusive L2-projection is able to reduce the over- and undershoots without
increasing smearing effects beyond the mesh size.

• There exist cases of real world solute transport problems which can be solved by
the DG(1) approach, but not by the SDFEM approach (§7.6.3).

• For less convection-dominant problems (heat transport), the SDFEM approach is
more efficient than the DG method.

• On clusters with up to 100 cores, the presented DG based PDE solvers scale well
as long as the full capacity of memory bandwidth can be exploited (§7.6.4).

Hence, for the solution of a convection-dominated steady-state transport problem, DG(1)
post-processed by a diffusive L2-projection offers an efficient and more accurate alter-
native to the well-known SDFEM method.

Adaptive mesh refinement yields the best possible solution with respect to the L2

error, but is connected with extremely high computational costs. Using the h-adaptive
DG(1) method, the numerical under- and overshoots can be reduced below a tolerated
threshold of 5% only if the mesh cells at internal layers become so small that their local
mesh Péclet numbers tend to a diffusion-dominant level. In 2-D, the whole adaptive loop
can be finished within a time frame of a few minutes using a sequential code. In 3-D
however, the problem size becomes so large that a very lengthy computation with a huge
memory consumption is unavoidable. In the presented Gauss-Newton scheme in which
a high number of such problems need to be solved repeatedly, adaptive mesh refinement
would form a performance bottleneck. Finite volume schemes, on the other extreme,
are efficient and monotone, but they cannot resolve steep fronts or point sources well
enough for our purposes. The proposed post-processed DG method serves as a reli-
able and efficient compromise between the two extremes. The two test scenarios 7.6.2
and 7.6.6 with disturbed measurements have shown that the inversion scheme does not
necessarily require a “perfect” solution of the transport problem.

Therefore, regarding the integration of the forward solvers into the inversion frame-
work, we recommend the combination CCFV / DG(1) post-processed by a diffusive
L2-projection for the solution of steady-state transport problems with high mesh Péclet
numbers. This combination works on the same structured mesh on which the hydraulic
conductivity is resolved. This avoids an additional level of complexity in the imple-
mentation of the inversion scheme. Regarding the corresponding linear solver / pre-
conditioner combinations, we recommend

• CG / AMG for the CCFV discretization and for the diffusive L2-projection and

• GMRES / ILU(0) for the DG(1) discretization on a mesh with a downstream num-
bering of cells.
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For transport problems with low mesh Péclet numbers, the classical FEM / SDFEM
approach (with CG / AMG for FEM and GMRES / ILU(0) for SDFEM) would be the
better choice.

A fully coupled DG-based 3-D parallel inversion for the setting presented in §7.6
can be accomplished within less than two days on a cluster affordable for an academic
workgroup. Thereby, the mesh size for the inversion process should be chosen in such
a way that

• the DG stiffness matrix easily fits the available memory,

• the matrix assembly and linear solution times stay short

• and the correlation lengths of the parameter field are still well resolved.

Of course, increasing the mesh resolution or the polynomial order of the DG basis gen-
erally improves the quality of the solution, but is paid by a longer computing time and a
higher memory consumption.

The inversion code yields an estimation of the parameter field that essentially pre-
serves its form even after disturbing the measurement data and the prior information to a
large degree (§7.6.6). This verifies experimentally the well-posedness of the regularized
inverse problem and the robustness of the inversion scheme.

A note on gradient based methods
The Gauss-Newton method described in this work requires the computation of the full
sensitivity matrix which is the most time consuming step in the inversion scheme. The
main advantage of the Gauss-Newton method in comparison to gradient-based methods
is its fast (quadratic) convergence for initial estimates near the solution. Gradient-based
methods usually require more iteration steps, but in each iteration step, the number
of adjoint equations to be solved for each quantity is independent on the number of
measuring locations. To see this, let us consider the steepest-descent method as an
example of a gradient-based method for the minimization of the cost function J (pk)
(3.28). Starting with an initial guess p0, a sequence (pk)k∈N is constructed after the rule

pk+1 = pk − αk∇J (pk) . (8.1)

The gradient∇J (pk) (3.39) requires the evaluation of the terms

−HTC−1
dd (dobs − f(y)) (8.2)

and
R−1
yy (y − Xβ) (8.3)
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Using (4.70) and (3.21), the term (8.2) can be written as

−
M∑
`=1

ε−2
` (d` − f`) · h` (8.4)

which is a linear combination of the discrete sensitivity fields h`. Due to the linearity of
sensitivity integral (4.64) and the differential operators with respect to the adjoint states
(in all involved BVPs (4.54), (4.57) and (4.62)), we can simply replace the right-hand
side of the adjoint equation (4.54) by the sum

M∑
`=1

ε−2
` (d` − f`) · η`ε . (8.5)

This way, it is enough to solve only one coupled set of adjoint equations per simulated
quantity, no matter how many measuring points are involved.

Another advantage of this approach is related to adaptive mesh refinement. If we ap-
plied adaptive mesh refinement to the solution of (4.54) in the Gauss-Newton approach,
we would end up with as many differently refined meshes as measurement locations. In
each evaluation of the sensitivity integral (4.64), the mesh for the adjoint solution would
have to be recombined with the adaptively refined mesh for the forward solution. After
each measuring location, the mesh would have to be reset or recreated. In the gradient-
based approach, the recombination would be required only once per measurement type.

The evaluation of the term (8.3) requires the solution of a large linear system con-
taining the covariance matrix Ryy. This difficulty is handled by Klein et al. [2014] by
using an appropriate preconditioner for an iterative solver with FFT-based computation
of the matrix-vector products.

Due to the effort that would be required to compute the gradient ∇J (pk), we
skipped the usage of the well known Wolfe condition, Armijo rule or curvature condi-
tion to check for the acceptance of a step length in the line search loop of the inversion
algorithm 3.1.

Outlook

For future developments, a natural extension of the presented methods is a combination
of h- or hp-adaptive DG with the diffusive L2-projection on unstructured meshes (with
hanging nodes refinement), preferably in combination with gradient-based inversion.

Further improvements regarding efficiency and parallel scalability of the linear solver
for the DG discretizations of the transport equation may be achieved by a multilevel pre-
conditioner in which the block Gauss-Seidel method with downwind numbering plays
the role of a smoother [Kanschat, 2008a].
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We have seen in Tables 7.3 and 7.5 that the number of unknowns and therefore the
matrix assembly and linear solver times for DG(k) grow rapidly with the order k of
the polynomial basis. On quadrilateral/hexahedral meshes, where quadrature points and
shape functions can be constructed from a tensor product of 1-D objects, an excellent
boost in performance can be achieved for the matrix assembly part with a technique
called sum-factorization [Melenk et al., 2001].

Last but not least, the presented numerical schemes for the solution of the forward
problems and their implementation can be employed in alternative parameter estima-
tion schemes such as the Ensemble Kalman Filter (EnKF) or the Pilot Points Method
[Alcolea et al., 2006; Schöniger et al., 2012].
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Appendix

A Basic linear algebra

1 Symmetric positive (semi-)definite matrices
Definition A.1. Let N ≥ 1. A square matrix Σ ∈ RN×N is called symmetric if it
is equal to its transpose: Σ = ΣT . A complex square matrix Σ ∈ CN×N is called
Hermitian if it is equal to its conjugate transpose: Σ = ΣH = Σ

T
.

Definition A.2. Let N ≥ 1. Let K = R or K = C. A square matrix Σ ∈ KN×N is
called positive semi-definite if xHΣx ≥ 0 for all x ∈ KN . Σ is positive definite if
xHΣx > 0 for all nonzero x ∈ KN .

Theorem A.1. (Spectral Theorem). Let Σ ∈ CN×N be Hermitian. Then, its eigen-
values λ1, ..., λN are real and and there exists an orthonormal basis of eigenvectors
{u1, ...,uN} forming a unitary matrix U ∈ CN×N such that

Σ = UΛUH (A.1)

where Λ = diag(λ1, ..., λN). If, additionally, Σ is positive definite (positive semi-
definite) the eigenvalues of Σ are positive (non-negative).

Proof: See [Horn and Johnson, 2013] Theorem 2.5.6 and Theorems 4.1.8 and 7.2.1.

For an invertible matrix A ∈ RN×N the matrix Σ = AAT is symmetric positive definite.
We see that the factorization of a symmetric positive (semi-)definite matrix Σ is not
unique.

Definition A.3. Let N ≥ 1. Let Σ ∈ CN×N be a Hermitian positive (semi-)definite
matrix. A matrix B ∈ CN×N is called a square root of Σ if B ·BH = Σ.
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Remark A.1. Let Σ ∈ CN×N be a Hermitian positive (semi-)definite matrix. Let

Λ1/2 = diag
(√

λ1, ...,
√
λN

)
(A.2)

where the λk’s are the eigenvalues of Σ. For any orthogonal matrix V ∈ CN×N , the
matrix

B = UΛ1/2VT (A.3)

is a square root of Σ. The symmetric square root Σ1/2 is given by

Σ1/2 = UΛ1/2UT . (A.4)

Note that Σ1/2 and Σ share the property of being positive definite (or positive semi-
definite).

The Cholesky factorization provides a numerically robust method to compute a further
square root. We consider only the case K = R.

Theorem A.2. Let Σ ∈ RN×N be symmetric positive (semi-)definite. Then, there exists
a unique (at least one) lower triangular matrix L ∈ RN×N (Cholesky factor) with
positive (non-negative) diagonal entries such that Σ = LLT .

Proof: See [Higham, 2002], §10.1. and §10.3.

2 Matrix identities
Let N = N1 +N2. Let M ∈ RN×N be symmetric with partitioning

M =

[
A B

BT C

]
(A.5)

such that A ∈ RN1×N1 , B ∈ RN1×N2 and C ∈ RN2×N2 .

Lemma A.1. M is symmetric positive definite if and only if the submatrices A ∈
RN1×N1 and C ∈ RN2×N2 and their Schur Complements

SA = C−BTA−1B

and
SC = A−BC−1BT

are symmetric positive definite.

Proof: See [Boyd and Vandenberghe, 2009] A.5.5.

126



Lemma A.2. Let M as in (A.5) be symmetric positive definite. The inverse of M is
given by

M−1 =

[
N11 N12

N21 N22

]
(A.6)

where, choosing the ansatz N22 = S−1
A , (A.7)

we get N12 = −A−1BS−1
A (A.8)

N21 = −S−1
A BTA−1 (A.9)

N11 = A−1 + A−1BS−1
A BTA−1, (A.10)

or, alternatively, choosing the ansatz N11 = S−1
C , (A.11)

we get N21 = −C−1BTS−1
C (A.12)

N12 = −S−1
C BC−1 (A.13)

N22 = C−1 + C−1BTS−1
C BC−1.(A.14)

Proof: The validity of M−1M = MM−1 = Id can be verified easily.

Equating (A.8) with (A.13) yields the matrix identity

A−1B(C−BTA−1B)−1 = (A−BC−1BT )−1BC−1. (A.15)

If N1 � N2, the computationally demanding evaluation of A−1 can be replaced by
a much more convenient evaluation of C−1. This is one crucial step in the inversion
scheme (Chapter 3). Another useful matrix identity is shown to be

A−1 + A−1B(C−BTA−1B)−1BTA−1 = (A−BC−1BT )−1 (A.16)

by comparing (A.10) with (A.11). Cf. [Nowak, 2005] Appendix A and the references
therein.

3 Quadratic functions
Consider a smooth scalar function f : RN −→ R and a vector x ∈ RN . Then, the
column vector

∂f(x)

∂x
= ∇f(x) (A.17)

is the gradient of f . The first order derivatives can as well be arranged as a row vector:

∂f(x)

∂xT
=

[
∂f(x)

∂x

]T
. (A.18)
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Using this notation, the second order derivative or the Hessian of f can be written as

∇2f(x) =
∂f(x)

∂x∂xT
. (A.19)

A point x̂ satisfying the condition

∇f(x̂) = 0 (A.20)

is called a stationary point of f .

Let t ∈ RN and let A ∈ RN×N be a symmetric matrix. We consider quadratic functions
of the form

Q(x) = tTx+
1

2
xTAx. (A.21)

defined in RN or in a convex subset of RN . Clearly, the gradient of Q is

∇Q =
∂(xT t)

∂x
+

1

2

∂(xTAx)

∂x
= t+ Ax (A.22)

and the Hessian of Q is

∇2Q =
1

2

∂2(xTAx)

∂x∂xT
= A. (A.23)

Depending on the properties of the matrix A, a stationary point can be a minimizer, a
maximizer or an inflection point. Throughout this work, we are essentially interested in
global minimizers of a non-negative quadratic cost function.

Lemma A.3. (Second Order Sufficient Conditions)

(a) x̂ = −A−1t is the unique global minimizer of (A.21) if and only if A is positive
definite.

(b) If A is positive semi-definite, then every solution of the under-determined linear
system Ax = −t is a global minimizer of (A.21).

Proof: See Lemma 4.7 in [Nocedal and Wright, 2006].

4 Toeplitz and circulant matrices
Two special classes of matrices play an important role in the spatial description of
hydraulic conductivity fields: Toeplitz and circulant matrices. [Gray, 2006] gives an
overview of their properties. The relation between circulant matrices and the discrete
Fourier transformation is a major ingredient in the construction of efficient algorithms
for the generation of random fields [Dietrich and Newsam, 1997] and for the computa-
tion of large cross-covariance matrices [Nowak et al., 2003].
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Definition A.4. Let n ≥ 1. A matrix Tn ∈ Rn×n of the form
t0 t1 t2 . . . tn−1

t−1 t0 t1 tn−2

t−2 t−1 t0
. . . ...

... . . . . . . t1
t−(n−1) . . . . . . t−1 t0

 (A.24)

with entries ti,j = tj−i is called a Toeplitz matrix.

Definition A.5. Let n ≥ 1. A matrix Cn ∈ Rn×n of the form
c0 c1 c2 . . . cn−1

cn−1 c0 c1 cn−2

cn−2 cn−1 c0
. . . ...

... . . . . . . c1

c1 . . . . . . cn−1 c0

 (A.25)

in which every row is a right cyclic shift of the row above it is called a circulant matrix.

Definition A.6. (Discrete Fourier Transformation)
Let n ≥ 1. Given a complex vector c = (c0, ..., cn−1)T ∈ Cn and the complex n-th root
of unity

ωn := exp

(
−2πi

n

)
, where i2 = −1, (A.26)

the vector ĉ = (ĉ0, ..., ĉn−1)T ∈ Cn defined by

ĉk =
1√
n

n−1∑
`=0

c` · (ωn)k` k = 0, ..., n− 1 (A.27)

is the discrete Fourier transform (DFT) of c. Conversely, given a complex vector ĉ, the
inverse DFT is defined by

ck =
1√
n

n−1∑
`=0

ĉ` · (ωn)−k` k = 0, ..., n− 1. (A.28)

Cf. [Butz, 2006].
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Introducing the Fourier matrix Fn with entries (Fn)k` = 1√
n
(ωn)k` it can be shown that

its inverse fulfills F−1
n = FHn , i.e. Fn is unitary. Then, the forward DFT (A.27) reads

ĉ = Fnc and the backward DFT (A.28) reads c = FHn ĉ.

Remark A.2. A direct implementation of the DFT of length n would require O(n2)
floating point operations. The fast Fourier transform (FFT) can achieve the same
result with only O(n log(n)) operations. Its basic idea was published by [Cooley and
Tukey, 1965]. We use the implementation by [Frigo and Johnson, 2005].

Theorem A.3. (Eigenvalues and eigenvectors of a circulant matrix)
Let Cn be a circulant matrix of the form (A.25), fully determinable by its first column
c = (c0, ..., cn−1)T . Then, Cn has eigenvectors

v` =
1√
n

(
1, ω`n, ..., ω

(n−1)`
n

)T
(A.29)

with corresponding eigenvalues

λ` =
(√

n · Fn · c
)
`

` = 0, ..., n− 1. (A.30)

Proof: See [Gray, 2006], §3.1.

Theorem A.3 states that any circulant matrix Cn has a spectral decomposition of the
form

Cn = Fn · diag (λ0, ..., λn−1) · FHn . (A.31)

All circulant matrices share the same eigenvectors which are the columns of the Fourier
matrix and the vector of eigenvalues is proportional to the forward DFT of the first
column:

λ =
√
n ĉ =

√
n Fnc .

One square root factorization of Cn is given by

Bn = Fn · diag
(
λ

1/2
0 , ..., λ

1/2
n−1

)
(A.32)

since Bn ·BH
n = Cn.
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B Basic multivariate statistics

1 Random vectors and probability distributions
We take it for granted that the reader is familiar with the basic concepts of a continuous
random variable, its probability density and cumulative distribution functions, and its
expected value and variance. We start directly with some basic definitions from multi-
variate statistics. For a mathematically rigorous introduction, the reader might look into
the textbooks [Bilodeau and Brenner, 1999] or [Georgii, 2008].

Definition B.1. Let N ≥ 1. A multivariate random variable or a random vector X =
(X1, ..., XN)T is a finite sequence of random variables on the same probability space
(Ω,F, P ), where Ω is the sample space, F is the collection of all events (σ-algebra),
and P is the probability measure.

Definition B.2. For continuous X1, ..., XN , the cumulative distribution function (cdf)
is the function F : RN −→ [0, 1] defined by

F (x) = P (X ≤ x) = P (X1 ≤ x1, ..., XN ≤ xN). (B.1)

Definition B.3. If the cumulative distribution function has the form

F (x) = F (x1, ..., xN) =

x1∫
−∞

. . .

xN∫
−∞

%(x1, ..., xN) dxN . . . dx1 (B.2)

where % : RN −→ [0,∞) is a non-negative function with∫
RN

%(x) dx = 1 (B.3)

we say that % is the probability density function (pdf) ofX .

Definition B.4. The mean of a random vector X is defined as the vector of expected
values of the random variables Xj:

µX = E[X] =


E[X1]

...

E[XN ]

 =


∫
RN

x1%(x)dx

...∫
RN

xN%(x)dx

 , (B.4)
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provided that the integrals exist.
The N ×N matrix

ΣXX = Var[X] = Cov[X,X] = E[(X − µX)(X − µX)T ] (B.5)

is the covariance matrix ofX . In summary, we may write concisely

X ∼ (µX ,ΣXX). (B.6)

The i-th diagonal entry of ΣXX is the variance σ2
i = E[(Xi − E[Xi])

2].

2 Joint distributions and marginalization
Let Nx, Ny ≥ 1. Let N = Nx +Ny. Let

X ∈ RNx ,X ∼ (µX ,ΣXX) with density %X(x) > 0

and
Y ∈ RNy ,Y ∼ (µY ,ΣY Y ) with density %Y (y) > 0.

Definition B.5. The Nx ×Ny matrix

ΣXY = Cov[X,Y ] = E[(X − µX)(Y − µY )T ] (B.7)

is the cross-covariance matrix betweenX and Y .

Remark B.1. ΣXY is used to describe the correlation between X and Y . It follows
directly from the definition that

ΣY X = ΣT
XY . (B.8)

Remark B.2. (Linear transformation)
Let X ∈ RNx ,X ∼ (µX ,ΣXX). Let A ∈ RNy×Nx be a constant matrix and let
V ∈ RNy be a constant vector. Then,

Y = AX + V ∈ RNy

is a random vector with mean µY = AµX + V . The covariance and cross-covariance
matrices are

ΣY Y = E[A(X − µX) · (X − µX)TAT ] = AΣXXA
T (B.9)

and
ΣY X = E[A(X − µX) · (X − µX)T ] = AΣXX (B.10)

and
ΣXY = ΣXXA

T . (B.11)
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Definition B.6. The combined random variable Z =

[
X
Y

]
∈ RN is called the joint of

X and Y whereasX and Y are called the marginals of Z. Let %X,Y (x,y) denote the
joint density for X and Y . The marginal density of X is found by “integrating out”
the variable y:

%X(x) =

∫
RNy

%X,Y (x,y)dy. (B.12)

This procedure is called marginalization. Similarly, the pdf

%Y (y) =

∫
RNx

%X,Y (x,y)dx (B.13)

is the marginal density of Y .

3 Conditional distributions and stochastic independence
Definition B.7. The conditional density of Y given X = x, written Y |X = x, is
defined by

%Y |X(y|x) =
%X,Y (x,y)

%X(x)
. (B.14)

Definition B.8. X and Y are called independent if

%X,Y (x,y) = %X(x) · %Y (y). (B.15)

In this case, %Y |X(y|x) = %Y |X(y), i.e. the outcome of Y does not depend on the
outcome of X .

Theorem B.1. IfX and Y are independent, then

E[X,Y ] = E[X]E[Y ] and ΣXY = 0 . (B.16)

Proof: Cf. Theorems 4.7 and 4.11(d) [Georgii, 2008]

The converse is not true in general.

Theorem B.2. The conditional density ofX given Y = y is

%X|Y (x|y) =
%Y |X(y|x) · %X(x)

%Y (y)
. (B.17)

Proof: Cf. Bayes’ formula in [Marden, 2013]

For the sake of readability, we do not use subscripts for the density function when
its meaning is clear from the context.
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C The multivariate Gaussian distribution

1 Definition and basic properties
Definition C.1. A random variable X ∈ R has a normal distribution with mean µ and
variance σ2, short

X ∼ N(µ, σ2) (C.1)

if it has the probability density function

%(x) =
1√

2πσ2
exp

(
−1

2

(
x− µ
σ

)2
)
. (C.2)

Definition C.2. Let Σ ∈ RN×N be symmetric positive definite matrix and let µ ∈ RN .
A random vector Y ∈ RN has a multivariate normal (or Gaussian) distribution with
mean µ and covariance Σ if it has the probability density function

%(y) =
1

(2π)N/2
· 1

| det Σ|1/2
· exp

(
−1

2
(y − µ)TΣ−1(y − µ)

)
. (C.3)

We write
Y ∼ NN(µ,Σ). (C.4)

Important special cases:

• N(0, 1) and NN(0, Id) are called standard normal distributions.

• The absence of variance, Y ∼ NN(µ,0), is equivalent to Y = µ with 100%
probability (being a constant random vector).

• Singular or degenerate case: If Σ ∈ RN×N is positive semi-definite with
rank(Σ) = k < N , by Theorem A.1, we have

Σ =
[
U1 U2

] diag(σ2
1, ..., σ

2
k) 0

0 0

UT
1

UT
2

 (C.5)

where σ2
1, ..., σ

2
k are the non-zero eigenvalues of Σ and the columns of U1 form a

basis of range(Σ). The probability density function is defined only in the affine
subspace µ+ range(Σ) ⊂ RN (see [Bilodeau and Brenner, 1999]):

%(y) =
1

(2π)k/2
· 1

σ1 · . . . · σk
· exp

(
−1

2
(y − µ)TΣ−(y − µ)

)
(C.6)
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where

Σ− =
[
U1 U2

] diag(σ−2
1 , ..., σ−2

k ) 0

0 0

UT
1

UT
2

 (C.7)

is the Moore-Penrose pseudo-inverse of Σ (see [Higham, 2002], problem 20.3).

Lemma C.1. The collection of random variables X1, ..., XN is independent and identi-
cally distributed (i.i.d.) with N(0, σ2) if and only if the random vectorX = (X1, ..., XN)T

has the distribution N(0, σ2Id). X is called a (Gaussian) white noise vector.

Theorem C.1. Let µ ∈ RN and let Σ ∈ RN×N be a symmetric positive definite matrix
with square root B ∈ RN×N .

(a) IfX ∼ NN(0, Id) then

Y = BX + µ ∼ NN(µ,Σ). (C.8)

(b) If Y ∼ NN(µ,Σ) then

X = B−1(Y − µ) ∼ NN(0, Id). (C.9)

Proof: Apply the transformation formula of multidimensional integration for the change
of variable Y = Φ(X) = BX+µ and make use of | detB| = | det Σ|1/2, see [Georgii,
2008], §9.1. for the proof of (a). The proof of (b) follows the same argumentation.

Theorem C.2. Let µ ∈ RN and let Σ ∈ RN×N be a symmetric positive semi-definite
matrix with square root B ∈ RN×N . IfX ∼ NN(0, Id) then

Y = BX + µ ∼ NN(µ,Σ). (C.10)

Proof:
E[Y ] = E[BX + µ] = BE[x]︸︷︷︸

0

+µ = µ

and

Cov[Y ,Y ] = E[Y Y T ] = E[BXXTBT ] = B E[XXT ] BT = B Id BT = Σ.
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For many applications in which the likelihood function has the form (C.3), it is more
convenient to consider the natural logarithm of the likelihood function,

ln(%(y)) = −1

2
(y − µ)TΣ−1(y − µ)− const. (C.11)

called the log-likelihood or the information content in [Sun, 1994]. We work with the
non-negative quadratic function

L(y) := − ln(%(y)) (C.12)

called the normal negative log-likelihood.

Remark C.1. Because the logarithm is a monotonically increasing function, %(y) as-
sumes its maximum at the same point where L(y) assumes its minimum.

Remark C.2. L(y) is a quadratic form with Hessian

∂2L(y)

∂y∂yT
= Σ−1 (C.13)

and ŷ = µ is a global minimum of L(y) (see Lemma A.3).

In other words, for a Gaussian distributed random vector Y ∼ NN(µY ,Σ), the maxi-
mizer of the probability density ρ(y) coincides with the expected value

µY = E[Y ] = arg max
y∈RN
{%(y)}. (C.14)

Furthermore, the covariance matrix Σ of a Gaussian distribution is the inverse of the
Hessian of L(y):

Σ =

(
∂2L(y)

∂y∂yT

)−1

. (C.15)
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2 Conditioning

Let Nx, Ny ≥ 1 and N = Nx + Ny. Let ΣXX ∈ RNx×Nx and ΣY Y ∈ RNY ×NY be
symmetric positive definite matrices. Let µX ∈ RNx and µY ∈ RNy . Let

X ∼ N(µX ,ΣXX)

and
Y ∼ N(µY ,ΣY Y )

be two normally distributed random vectors correlated through ΣXY . If ΣXY = 0, it
can be shown that the two random vectors X and Y are independent, i.e. for normal
distributions the converse of Theorem B.1 is also true. If ΣXY is chosen in such a way
that the matrix

Σ =

[
ΣXX ΣXY

ΣY X ΣY Y

]
∈ RN×N (C.16)

is also symmetric positive definite, then the composite vector
[
X
Y

]
∈ RN is normally

distributed with mean
[
µX
µY

]
∈ RN and covariance matrix Σ.

Theorem C.3. Let Σ ∈ RN×N be a symmetric positive definite matrix of the form
(C.16). LetX ∈ RNx and Y ∈ RNy be two random vectors fulfilling[

X
Y

]
∼ NN

([
µX
µY

]
,Σ

)
. (C.17)

Then, the conditional distribution of Y givenX = x is

N
(
Ŷ ,ΣY Y |X

)
(C.18)

where the conditional mean Ŷ is equal to

µY + ΣY XΣ−1
XX(x− µX) (C.19)

and the conditional covariance matrix ΣY Y |X is the Schur complement of ΣXX:

ΣY Y |X = ΣY Y −ΣY XΣ−1
XXΣXY . (C.20)

Proof: See [Kaipio and Somersalo, 2005], §3.4
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3 χ2 distribution
Definition C.3. For each N ≥ 1, a random variable X has a χ2-distribution with N
degrees of freedom, or short:

X ∼ χ2
N , (C.21)

if it has the density function

%(x) =


xN/2−1

2N/2 · Γ(N/2)
e−x/2 for x ≥ 0,

0 for x < 0.

(C.22)

Remark C.3. Using integration by parts, it can be shown that the expected value and
the variance for X ∼ χ2

N are E[X] = N and Var[X] = 2N .

Theorem C.4. Let N ≥ 1. The squared sum of i.i.d. random variables X1, ..., XN with
standard normal distribution has χ2-distribution with N degrees of freedom:

X2
1 + ...+X2

N ∼ χ2
N (C.23)

Proof: See [Georgii, 2008], §9.2.

Remark C.4. Using the central limit theorem, it can be shown that the χ2
N distribu-

tion can be approximated by the normal distribution with mean value N and standard
deviation

√
2N :

X ∼ χ2
N =⇒ X ∼ N(N, 2N) as N →∞ (C.24)

D Random fields and variogram models
Definition D.1. Let d ≥ 1. Let Ω ⊂ Rd be a compact subset of the Euclidean space.
A second order (spatial) random field is a function Y : Ω −→ R whose values are
random variables which can be described by the first two statistical moments:

1. the mean function
µY (~x) = E[Y (~x)] (D.1)

which gives the expected value at any point ~x ∈ Ω,

2. the covariance function

R(~x, ~y) = E
[
(Y (~x)− µY (~x))(Y (~y)− µY (~y))

]
(D.2)

describing the spatial covariance of Y between any two locations ~x, ~y ∈ Ω.
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Y is called stationary if the mean is constant,

µY (~x) = const. ∀~x (D.3)

and the covariance function
R(~x, ~y) = R(~h), (D.4)

depends only on the separation vector ~h = ~x− ~y.

The separation distance in the euclidean norm is h = ‖~h‖2. We will work with the
distance

h̃( ~x, ~y ) :=

√√√√ d∑
j=1

(
xj − yj
`j

)2

(D.5)

that is scaled by different correlation lengths `j . This can be used to simulate anisotropic
behavior in the different coordinate directions. In typical sedimentary layers, `1 ≈ `2

and `3 � `1.

Most often, the constant in (D.3) is unknown and needs to be estimated from the data.
For this reason, it may be more convenient to work with the following model:

Definition D.2. A random field Y is called intrinsic if

E[Y (~x)− Y (~y)] = 0 (D.6)
R(~x, ~y) = r(h̃) := σ2 − γ(h̃) ∀~x, ~y ∈ Ω, (D.7)

where σ2 < ∞ is the variance and γ(h̃) =
1

2
E[(Y (~x) − Y (~y))2] is a semi-variogram

function.

The most commonly used variogram models are

• the Gaussian model,

γ(h̃) = σ2

(
1− exp

(
−h̃2

))
, (D.8)

• the exponential model,

γ(h̃) = σ2

(
1− exp

(
−h̃
))

, (D.9)

139



• the spherical model,

γ(h̃) =


σ2

(
3

2

h̃

α
− 1

2

h̃3

α3

)
for 0 ≤ h̃ ≤ α,

σ2 for h̃ > α,

(D.10)

for some prescribed range α > 0.

0 1

0

e−1

1

h̃ = h/`

r(h̃)/σ2
Y

exponential
spherical
Gaussian

Figure D.1: Comparison of variogram models

Due to the smooth transition (r′|h̃=0 = 0) of the Gaussian covariance function for short
distances, the corresponding field looks very smooth, see Figure 2.4. The Gaussian
model drops more quickly to zero than the exponential model after the correlation length
is exceeded (h > `). The near-distance behavior of the spherical model is similar to
that of the exponential model, whereas for h > α`, the values of Y are immediately
uncorrelated. As in the Gaussian model, this tend to generate connected zones with a
smaller radius. Choosing α = 2.2 for the spherical model, we obtain r(1)/σY ≈ e−1

(dashed blue curve in Figure D.1), which can be compared to the curves of the other
two models.
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Remark D.1. Given any two locations ~x, ~y ∈ Ω, the covariance function (D.7) fulfills
the following properties:

• R(~x, ~y) ≥ 0 (non-negative)

• R(~x, ~y) = R(~y, ~x) (symmetric)

• R(~x+ ~h, ~y) = R(~y + ~h, ~x) = R(~h) for any lag ~h (translation-invariant)

E Basic definitions of functional analysis

1 Function spaces
The notion of norm, completeness and inner product in a real vector space, the concept
of Lebesgue integral as well as the upcoming definitions and statements can be looked
up in [Hinze et al., 2009] or in introductory textbooks on linear functional analysis and
finite element analysis [Brenner and Scott, 2008].

Recall that a complete, normed vector space V is called a Banach space. A vector
space H with inner product (., .)H is called a Hilbert space if it is complete under the
induced norm ‖u‖ :=

√
(u, u)H .

If U is a normed vector space and V is a Banach space, then the space of all linear
and continuous (or bounded) mappings, denoted by L(U, V ), and equipped with the
norm

‖A‖L(U,V ) := sup
u∈U,u6=0

‖Au‖V
‖u‖U

<∞ ,

is a Banach space. An element of L(U, V ) is called a linear operator. If V = R, the
space U∗ := L(U,R) is called the dual space of U . An element f ∈ U∗ is called a
bounded linear functional. The bilinear form

〈
., .
〉
U∗,U

: U∗ × U −→ R defined by〈
L, u

〉
U∗,U

:= L(u) (E.1)

is called duality pairing between U∗ and U . We identify
〈
u, L

〉
U,U∗

with
〈
L, u

〉
U∗,U

.

Theorem E.1. (Riesz representation theorem)
Let H be a real Hilbert space with inner product (., .)H . Then, for any bounded linear
functional L ∈ H∗ there exists a unique v ∈ H with ‖L‖H∗ = ‖v‖H such that

L(u) =
〈
L, u

〉
H∗,H

:= (v, u)H ∀u ∈ H .
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Let Ω ⊂ Rd be an open subset with piecewise smooth boundary. Let u be a real-valued
function on Ω for which the Lebesgue integral∫

Ω

u(~x) d~x :=

∫
Ω

u(~x) dµ(~x) (E.2)

exists. Consider the inner product

(u, v)0,Ω :=

∫
Ω

u(~x)v(~x) d~x . (E.3)

The Lebesgue space of square-integrable functions

L2(Ω) := {u : Ω −→ R : ‖u‖0,Ω <∞} (E.4)

is defined as a space of equivalence classes of functions, equipped with the norm

‖u‖L2(Ω) := ‖u‖0,Ω :=
√

(u, u)0,Ω . (E.5)

In L2(Ω), two functions are said to be identical (almost everywhere) if they differ at
most on a set of zero measure. L2(Ω) with inner product (., .)0,Ω is a Hilbert space. For
vector-valued square-integrable functions in [L2(Ω)]d, the definition of the inner product
(E.3) is straight forwardly extended to

(
~u, ~v

)
0,Ω

=

∫
Ω

~u(~x) · ~v(~x) d~x =
d∑
j=1

(uj, vj)0,Ω . (E.6)

C0(Ω) denotes the space of continuous functions. For s > 0, Cs(Ω) denotes the
space of s-times continuously differentiable functions, C∞(Ω) the space of infinitely
often differentiable functions and C∞0 (Ω) the subspace of C∞(Ω)-functions that have
compact support in Ω (i.e. vanishing almost everywhere outside a compact subset of Ω).

For a vector field ~A ∈ [C1(Ω)]d (i.e. all components are C1-functions), the Gauss’s
divergence theorem states:∫

Ω

div ~A(~x) d~x =

∫
S=∂Ω

~n · ~A(~x) dS(~x) . (E.7)

Applying this formula to the vector field ~A := v ·K∇u, where v ∈ C1(Ω), u ∈ C2(Ω)
and K ∈ L2(Ω), yields Green’s first identity:∫

Ω

(div(K∇u) v +K∇u∇v) d~x =

∫
S=∂Ω

~n ·K∇u dS(~x) . (E.8)
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For a function u ∈ L2(Ω), the function v denotes the distributional partial deriva-
tive or weak partial derivative of u with respect to the coordinate xi, if v ∈ L2(Ω) and

(ψ, v)0,Ω = −(∂xiψ, u)0,Ω ∀ψ ∈ C∞0 (Ω) . (E.9)

The same symbol is used as in the case of the classical partial derivative, since both
definitions yield the same derivative for Cs(Ω)-functions: v = ∂xiu or v = ∂iu. For
a d-tuple α ∈ Nd with |α| := α1 + ... + αd, we set ∂αu := ∂α1

1 . . . ∂αdd u and (E.9) is
generalized to

(ψ, ∂αu)0,Ω = (−1)|α|(∂αψ, u)0,Ω ∀ψ ∈ C∞0 (Ω) . (E.10)

For α = 0, the convention is ∂αu := u.

Sobolev spaces play an important role in the solution of partial differential equations.
Their definition in the general case is based on the Lebesgue space Lp(Ω) with p ≥ 1.
We restrict ourselves to the case p = 2. For an integer s, we introduce the Sobolev
space

Hs(Ω) = {v ∈ L2(Ω) : ∂αv ∈ L2(Ω) ∀0 ≤ α ≤ s} . (E.11)

Equipped with the scalar product

(u, v)s,Ω =
∑
|α|≤s

(
∂αu, ∂αv

)
0,Ω

(E.12)

and the induced norm

‖u‖s,Ω =
√

(u, u)s,Ω =

∑
|α|≤s

∥∥ ∂αu ∥∥2

0,Ω

1/2

, (E.13)

Hs(Ω) is a Hilbert space. In the distributional sense, Green’s first identity (E.8) can be
extended to v ∈ H1(Ω), u ∈ H2(Ω) and K ∈ L2(Ω) ([Šolı́n, 2006], §A.4.8).

The function space in which we seek the flow field induced by the pressure field is
the space

H(div,Ω) =
{
~q ∈ [L2(Ω)]d : div(~q) ∈ L2(Ω)

}
. (E.14)

Together with the inner-product given by(
~u, ~v

)
H(div,Ω)

=
(
~u, ~v

)
0,Ω

+
(

div(~u), div(~v)
)

0,Ω
, (E.15)

H(div,Ω) is a Hilbert space [Brenner and Scott, 2008].
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2 Broken Sobolev spaces

Given a partitioning of the domain Ω ⊂ Rd as in (5.6), for any mesh element t ∈ Th,
the Sobolev space Hs(t) can be defined as in (E.11) if we replace Ω by t. The broken
Sobolev space is then defined by

Hs(Th) = Hs(Ω,Th) =
{
v ∈ L2(Ω) : v

∣∣
t
∈ Hs(t) ∀ t ∈ Th

}
. (E.16)

In the derivation of the Discontinuous Galerkin method (5.41) for the solution of the
convection-diffusion problem (5.3), it is assumed that the ’real’ solution u is inH2(Ω) ⊂
H2(Th). The broken polynomial space defined in (5.11) is a finite-dimensional approx-
imation of the broken Sobolev space Hs(Th). The broken gradient operator acting on
the broken Sobolev space H1(Th) is defined by

∇h : H1(Th) −→ [L2(Ω)]d

~q 7→ ∇h~q |t := ∇~q |t .
(E.17)

In the formulation of the DG method (5.41), the index h in the broken gradient operator
is dropped for the sake of readability.

Similarly, the broken version of the space H(div,Ω) is defined by

H(div,Th) =
{
~q ∈ [L2(Ω)]d : ~q |t ∈ H(div, t) ∀ t ∈ Th

}
(E.18)

where the function space H(div, t) is defined as in (E.14) if we replace Ω by t ∈ Th.
The broken divergence operator is

divh : H(div,Th) −→ L2(Ω)
~q 7→ divh(~q )|t := div(~q |t) .

(E.19)

Lemma E.1. A vector-valued function ~q ∈ H(div,Th) with bounded components and
bounded first order derivatives belongs to H(div,Ω) if and only if

J ~q Kf · ~nf = 0 ∀f ∈ Eh . (E.20)

Proof: Cf. Lemma 1.24 in [Pietro and Ern, 2012]

This Lemma gives a characterization of the space H(div,Ω). It says that the normal
component of the diffusive flux is continuous across internal faces. For the DG based
discretization of the transport problem, this important property must be considered when
constructing the discrete flux.
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3 Differentiation in Banach spaces
Definition E.1. (Gâteaux differentiability)
Let U and V be real Banach spaces and U0 be a non-empty open subset of U . Let
F : U0 −→ V be a mapping.

(a) Given u0 ∈ U0 and δu ∈ U , if the limit

δF (u0; δu) := lim
ε→0+0

F (u0 + εδu)− F (u0)

ε
∈ V (E.21)

exists, it is called the directional derivative of F in the direction δu. If it exists for
all δu ∈ U , the mapping δu 7→ δF (u0; δu) is called the first variation of F in u0.
In general it is non-linear.

(b) F is called Gâteaux differentiable in u0 if the first variation of F in u0 exists
and is bounded and linear, i.e. if there exists a linear and bounded operator
A : U −→ V such that

δF (u0; δu) = A(δu) . (E.22)

For A we write F ′(u0), or alternatively Du[F (u0)] or F ′u(u0). If V = R, we have
F ′(u0) ∈ U∗. If, in addition to this, U is a Hilbert space, there exists a vector∇F (uo) ∈
U , called the gradient of F , such that

F ′(u0)(δu) =
(
∇F (uo), δu

)
U
∀δu ∈ U (E.23)

according to the Riesz representation theorem.

Example:

Let N ≥ 1 and let Ω ⊂ RN be compact. Let U = L2(Ω) and let f ∈ U . Consider the
mapping

F : U −→ R
u 7→

(
f, u
)

0,Ω
.

(E.24)

Let u ∈ U . Then,

Du[(f, u)0,Ω](δu) = lim
ε→0+0

(f, u+ εδu)0,Ω − (f, u)0,Ω

ε

=

(
f, lim

ε→0+0

u+ εδu− u
ε

)
0,Ω

=
(
f, δu

)
0,Ω

.

(E.25)

Hence, f ∈ L2(Ω) is the gradient of the linear functional F .
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F Hardware in use

Machine name dnk h3a

Number of nodes 5 32

RAM per node 128 GB (DDR-3/1600) 128 GB (DDR-3/1333)

CPU-sockets per node 2 4

Total #cores 100 1024

OS Linux CentOS 6.5 Debian GNU 7

CPU socket Intel® Xeon® E5-2680 v2 AMD Opteron™ 6212

Clock speed 2.80 GHz 2.60 GHz

#cores 10 8

#threads 20 8

Launch date Q3/2013 Q3/2011

L3 Cache 25 MB 16 MB

#memory channels 4 4

InfiniBand QDR 40Gbit/s Mellanox
MIS5023Q QDR-Switch

Mellanox 40G QDR sin-
gle port PCIe Interconnect
QSFP

Table F.1: Computing clusters at the IWR Heidelberg

Machine name quadxeon4 fna

Number of nodes 1 1

RAM per node 1024 GB (DDR-3/1066) 128GB (DDR-3/1333 MHz)

CPU-sockets per node 4 4

Total #cores 40 48

OS Debian GNU 7 Debian GNU 7

CPU socket Intel® Xeon® E7-4870 AMD Opteron™ 6172

Clock speed 2.40 GHz 2.10 GHz

#cores 10 12

#threads 20 12

Launch date Q2/2011 Q1/2010

L3 Cache 30 MB 12 MB

#memory channels 4 4

Table F.2: Multi-core machines at the IWR Heidelberg
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G Hydraulic parameters

Soil type θ

Gravel 0.3 . . . 0.4

Gravel and sand 0.3 . . . 0.35

Medium to coarse mixed sand 0.35 . . . 0.4

Uniform sand 0.3 . . . 0.4

Fine to medium mixed sand 0.3 . . . 0.35

Silt 0.4 . . . 0.5

Till 0.1 . . . 0.2

Clay 0.45 . . . 0.55

Table G.1: Typical values for the porosity [Bear and Cheng, 2010], §2.4.2

Soil type K[m/s] Y = ln(K)

Gravel 3 · 10−4 . . . 3 · 10−2 −8.1 . . . −3.5

Coarse sand 9 · 10−7 . . . 6 · 10−3 −13.9 . . . −5.1

Medium sand 9 · 10−7 . . . 5 · 10−4 −13.9 . . . −7.6

Fine sand 2 · 10−7 . . . 2 · 10−4 −15.4 . . . −8.5

Silt, loess 1 · 10−9 . . . 2 · 10−5 −20.7 . . . −10.8

Till 1 · 10−12 . . . 2 · 10−6 −27.6 . . . −13.1

Clay 1 · 10−11 . . . 5 · 10−9 −25.3 . . . −19.1

Unweathered marine clay 8 · 10−13 . . . 2 · 10−9 −27.8 . . . −20.0

Table G.2: Typical values for the hydraulic conductivity [Domenico and Schwartz,
1998]
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