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Chapter 1
Introduction

The last three decades have seen a substantial increase in the risks of the banking
business. According to HELLWIG (1995, 1997), this trend was mainly driven by two
factors. First, intensified competition in banking and finance. This in turn was set off
by the global deregulation of the industry and by new communication and informa-
tion technologies. Deregulation included the abolition of deposit rate regulations, and
removals of capital controls and other impediments to international finance, while the
new technologies led to a reduction of barriers to competition based on spatial distance
and (or) national borders. As a consequence, competition among banks intensified and
nonbank intermediaries entered the market (e.g. money market funds). Second, fluc-
tuations in nominal interest rates have become much more pronounced and - due to
the abolition of the Bretton Woods System - exchange rate risk began to play a major
role. In summary, reduced intermediation margins and higher volatility of important

aggregates has left the banking system more exposed to macroeconomic shocks.

As a reaction to this increase in riskiness and competitiveness, banks have started to
view risk management as a key issue of their business, and regulators have become
increasingly concerned about the risk allocation brought about by the banking system.
An important focus was (and still is) the development of quantitative risk manage-
ment systems in order to bring more objectivity and accuracy to the risk assessments
that form the basis on which decisions are made (see e.g. THE ECONOMIST (1993)).
Methods for the measurement and management of market risk (e.g. exchange rate risk,
interest rate risk or equity risk) have evolved quite rapidly since the early eighties.!

Moreover, during the nineties, quite a few market risk management models have been

LA leading example is RiskMetrics, a market risk management framework developed by JP Morgan
(see JP MORGAN (1995)).
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Figure 1.1: Credit Risk Management

accepted by banking regulators as methods of determining an institution’s capital ad-
equacy. More recently, banks have also started to address an even more important
source of their risk exposure, credit risk. The first generation of industry-sponsored
credit risk models came to the market in the early nineties. Although they cannot yet
be used directly to determine the regulatory credit risk capital of a bank, some of their
features have already found their way into the proposals for the New Basel Capital

Accord, which is expected to be implemented in the next years.?

However, risk measurement and management methods are still at an early stage and
quite far from providing exact pictures of a bank’s actual risk exposure. This is partic-
ularly true for credit risk models, which have been developed and applied only recently.
Regulators and academics alike have pointed out that the existing methodologies have

to be improved before they can be used to determine a bank’s regulatory capital.

But even if risk measurement and controlling (ez-ante risk management) becomes more
and more sophisticated, the management of bank failures or even system-wide crises
(ez-post risk management) will remain an important measure in dealing with the in-
creased riskiness in banking. A case in point is the reoccurrence of system-wide banking
crises during the eighties and nineties (for example the American savings and loans cri-

sis, the Scandinavian banking crisis or, more recently, the crisis in Asia).

This thesis intends to contribute to both areas ex-ante and ex-post risk management by

2See BASEL COMMITTEE ON BANKING SUPERVISION (2001).
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Figure 1.2: Valuation of a loan for different rating scenarios in ¢ = to.

presenting three theoretically oriented papers, one dealing with optimal bank closure
policies in the event of system-wide banking crises, and the other two with ex-ante

credit risk management.

1.1 Credit Risk Management

In chapters 2 and 3 we present the two papers on credit risk management. To put the
contributions of these chapters into perspective, we first give a brief overview over the
most important credit risk management issues. After that we present the papers and

show how they are related.

Credit Risk Management Issues

Figure 1.1 summarizes the major issues of credit risk management. While the upper
part of figure 1.1 is readily understood, the part on credit risk modeling requires some

further detailing.

To assess its credit risk exposure, a bank typically analyzes the possible realizations of
the value of its loan portfolio at some point in the future, say in ¢ = t5. The credit
risk model specifies the probability distribution of these possible realizations. This is
done in two steps in the currently proposed models. First, as illustrated in figure 1.2,
the ¢ = t5 value of each loan ¢ (i = 1,..,n) in the portfolio is determined, given that
the firm that has obtained the loan (firm ) is in a certain rating class in ¢;. Figure
1.2 contains a stylized rating system consisting of three rating classes A, B and C, and

the default case DF. Consequently, V;’LA denotes the ¢t = t, value of loan i if firm ¢ has
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an A-rating in %o, V;’LB is the corresponding loan value if the firm has a B-rating and
so on.® In addition, the amount Vi, that can be recovered if firm i defaults in ¢, has
to be specified. Typically, VfDF is expressed as a fraction (recovery rate) of the overall
loan value. Finally, note that the time index #; denotes the point in time at which the
t = ty portfolio distribution is determined, and t,, .., t; are the points at which interest

and (or) principal payments of loan ¢ are due.

In a second step, the joint probabilities that the firms in the portfolio will belong to

certain rating classes in t5 have to be determined, i.e. probabilities of the type

Prob{Firm ¢ has rating (; in t5, i=1, .., n}

These probabilities are termed joint migration probabilities.* In the most simple setting,
a bank will only consider two possible states for a loan in ¢ = %5, default or non-
default. In this case, joint migration modeling is reduced to the modeling of joint
default probabilities. Both chapters 2 and 3 will deal primarily with joint default
probabilities. However, most results generalize to joint migration probabilities in a

quite straightforward manner.

Chapters 2 and 3 - Overview

In chapter 2, which is based on ERLENMAIER (2001), we review the models of joint
defaults of the major currently available industry-sponsored credit risk frameworks.

The main aspects of chapter 2 are the following:

A detailed description of the different models within a unified framework.

e An overview over of the most important modeling drawbacks.

Suggestions for the improvement of the existing methodologies.

The formulation of a research agenda for the development of next-generation

models.

3The ratings may be taken from public rating agencies such as Moody’s or Standard & Poor’s or
from the proprietary rating system of the particular bank or the company that offers the credit risk
model employed by the bank.

4The term ,migration” refers to the fact that the above probabilities specify the likelihoods of firms
migrating from their current (¢ = ¢1) ratings to some other ratings (or to default) in ¢ = t5.
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While a general survey on credit risk models has recently been provided by CROURY,
GALAI, AND MARK (2000), the overview in chapter 2 differs from the paper of CROUHY
ET AL. in three respects. First, by focusing on joint default modeling, our descrip-
tion is more detailed and presents some important modeling features which are not
described in CROUHY ET AL. Second, our survey makes the comparison of the models
easier and more transparent by presenting the different methodologies in a unified no-
tational framework. Finally, while reviewing the literature, we found two interesting
new versions of current credit risk models which - in our view - represent important

alternatives to the initial proposals and are therefore discussed as well.

After describing the different joint default models, we identify the most important
modeling problems and make suggestions on how the models’ performance could be
improved. We then set out to assess which of the currently proposed methods for joint
default modeling is the most promising basis for next-generation models. Based on

this assessment we propose a research agenda for the development of such models.

In the second paper - presented in chapter 3 and partly based on ERLENMAIER AND
GERSBACH (2001a) - we derive a theoretical result on the relationship between univari-
ate default probabilities and loan correlations (which are termed default correlations
in the literature since the probabilities of joint defaults are the major building block
of loan correlations).> We find that loans with higher default probabilities will not
only have higher variances (variance effect) but also higher correlations with other
loans (correlation effect). Using numerical examples, we demonstrate that - due to
these effects - a portfolio’s standard deviation can increase substantially when loan
default probabilities rise. These results have some important implications for banks

and regulators.

First, loan prices should not only account for higher expected losses of loans with higher
default probabilities, but should also reflect their higher contributions to a bank’s eco-
nomic capital. Second, macroeconomic shocks (such as business cycle downturns) that
increase average default probabilities will not only increase expected losses of banks
(which is widely recognized) but also portfolio standard deviations. This observation
is indispensable in gaining a more complete picture of the consequences of macroeco-
nomic shocks for the banking system. It will also be important for banks attempting
to hedge against fluctuations in required economic capital caused by macroeconomic
risk. Finally, our results have consequences for credit risk modeling. They emphasize

the necessity of adapting the calibration of credit risk models to the business cycle, an

SReferring to figure 1.2, the correlation between the loans to firm 4 and firm j would be
Corr(V;*,V;*) where V;* denotes the random variable that can take the values Vi, ..., Vipp in ¢ = t5.
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argument that has up to now only been put forward on the basis of varying univariate
default probabilities. Moreover, a major class of current credit risk models employs
the distribution of firm default rates - i.e. empirically determined firm default fre-
quencies (on an industry, country or rating class level) - for calibration. In chapter 3
we find that default-rate standard deviations will vary through the business cycle for
the same reason as portfolio standard deviations do. We therefore suggest that these
standard deviations should be estimated conditional on the business cycle when used
to parametrize credit risk models, in particular because the outputs of these models
have proved to be quite sensitive with respect to the default-rate standard deviations
(see e.g. GORDY (2000)).

Relation between Chapters 2 and 3

Concluding the credit risk management introductory section, we illustrate the link
between chapters 2 and 3. To do so, we examine the different approaches to joint
default modeling a little more closely. Table 1.1 gives an overview and integrates the
contributions of both chapters. There are currently two major approaches to joint
default modeling, the structural and the reduced-form approach.® Both approaches
can be described as modeling conditional default probabilities for each firm, given the
realization of some systematic variables. Joint default probabilities are then derived
by integrating over the distribution of these variables. However, the approaches differ
with respect to the way the conditional default probabilities are determined, and with
respect to the systematic variables employed. While structural models build on the
option-pricing approach as developed in MERTON (1974) and assume that a firm goes
bankrupt if the value of its assets falls below a certain threshold (which depends on the
firm’s liability structure), reduced-form models work with general heuristics predicting
how default probabilities change due to the changes in the systematic factors. The

systematic variables employed are aggregate asset returns and default rates.

In chapter 2 we argue that the structural approach is more suitable for describing joint
default behavior. To analyze the relationship between default probabilities and default
correlations in chapter 3, we therefore rely on a structural model. Two types of such
models have been discussed in the credit risk context. They differ with respect to the
modeling of conditional default probabilities. The first type of models calculates the
probability of the firm value falling below its default threshold at the end of the time

6Note that both approaches can be generalized to joint migration modeling.
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Reduced-Form Models Structural Models
Cond. Default Based on general heuristics Fixed Default | Absorbing
Probabilities & " Horizon (FDH) | Barrier
Syst. Variables Default rates Aggregate asset returns
- Description and assessment of existing models
Chapter 2 - Next-generation models *
Relationship between
default probabilities and
default correlations
Chapter 3 Implications for: %
default rate std. dev.

Y

Implications for:
the adaptation of joint default models to the business cy-
cle, the consequences of macroeconomic shocks for the
banking system, the pricing of loans, hedging loan port-
folios

Table 1.1: Joint Default Modeling and the contributions of this thesis.

horizon for which the default probabilities are to be determined.” We call this type
Fized Default Horizon model (FDH). The second type measures the probability that
the firm’s asset value falls below the threshold at any point in the time horizon. We
call such models Absorbing Barrier models since the default threshold is assumed to

be an absorbing barrier to the firm’s asset value process.

We emphasize in chapter 2 that Absorbing Barrier models are a more realistic de-
scription of actual default behavior and should therefore be preferred in credit risk
modeling. However, when analyzing the relationship between default probabilities and
default correlations in chapter 3, we employ a FDH model for tractability reasons, and
suggest that the robustness of our results should be assessed with respect to Absorbing

Barrier models in future research.

"Note that this horizon would be equal to ¢ = ¢, in the example given in figure 1.2.
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1.2 Bank Closure Policies

The third paper - presented in chapter 4 and partly based on ERLENMAIER AND
GERSBACH (2001b) - analyzes bank closure policies in the event of system-wide banking
crises. Typically, a large number of banks is at the brink of bankruptcy in such crises,
which tends to make the bailout of all banks prohibitively costly. By closing some of
them, the share of funds available for the remaining ones will increase since there are
fewer banks competing for new deposits. We call this effect the funds concentration
effect. Moreover, the surviving banks can take over investment projects from closed
banks, enabling them to offer higher deposit rates and to attract more depositors.
Hence, if enough banks are closed, the others will be able to survive even without any
government subsidies: banks are bailed out by closing others (discriminatory bailout).
Such an interpretation could be given to the closure policies recently applied during
the crisis in Asia and the Swiss regional banking crisis (see RADELET AND SACHS
(1998, 1999) and STAUB (1998)).

In chapter 4 we analyze such policies theoretically. While the existing theoretical litera-
ture® has employed single-bank frameworks where systemic consequences are accounted
for only by exogenous factors, we take a general-equilibrium view of bank closure poli-
cies that allows us to take into account the effect of closing some banks on the financial

viability of the others. The contributions of chapter 4 are the following:

The provision of a simple general-equilibrium framework and a corresponding

equilibrium concept.

A clarification of the major conceptual issues involved.

The introduction and foundation of the funds concentration effect.

e A comparison of the relative merits of different potential bailout schemes.

To concentrate on the general-equilibrium effect of bank closures, we start our analysis
with a situation in which the banks’ insolvency is assumed to result solely from an
exogenous macroeconomic shock. Since the realization of this shock is not under the
control of the banks’ managers, it would be most natural to decide randomly about

which banks to close (RB) in order to put the funds concentration effect to work.

8 An overview can be found in BHATTACHARYA, BOOT, AND THAKOR (1998). More recent contri-
butions are REPULLO (1999), GOODHART AND HUANG (1999), CORDELLA AND YEYATI (1999) and
FREIXAS (1999).
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However, since the closure policies feed back into the banks’ strategic behavior, we also
consider two other bailout schemes in which the bailout decision depends on the size of
a bank with respect to deposits: bailout of big banks (BB) and bailout of small banks
(BS).?

The most important conceptual issue emerging from the analysis of these closure poli-
cies is that - given the banks’ exposure to the macroeconomic shock and the regulator’s
discriminatory closure policy - deposits are risky. Therefore, when deciding about which
bank to choose, depositors cannot only rely on the deposit rates offered but also have
to assess the ezxpected returns paid on the deposits of the respective bank. The actual
expected returns paid will depend on the depositors’ savings decisions since they de-
termine bank sizes and, hence, bailout probabilities. It is therefore not a priori clear
whether return expectations that are correct in equilibrium (consistent assessments)
actually exist and whether these assessments are unique. We find that consistent as-
sessments always exist under RB and BB but not necessarily under BS. Moreover,

while assessments are unique under RB, this is not necessarily the case under BB.

The comparison of the relative merits of the different bailout schemes focuses on the
following issues: stability (with respect to existence and uniqueness of consistent as-
sessments), expected returns, and credibility of regulatory actions. We identify BB as
the preferred bailout scheme if depositors can agree on the consistent assessment that
guarantees maximum returns on deposits. BS leads to stability problems and may
support low-return equilibria, which can both be avoided under BB. Moreover, BB

dominates RB with respect to expected returns and credibility.

The intuition for the dominance of BB with respect to expected returns is as follows.
Under RB, bailout probabilities are the same for all banks. Hence, depositors will
always choose to deposit with the bank that offers the highest deposit rates. This
in turn implies that deposit rates will be bidden up until expected profits are zero.
Under BB, in contrast, banks stop the bidding when expected returns for depositors
are at their maximum, since - due to a self-fulfilling-prophecy effect - depositors will
not switch to a bank that offers slightly higher deposit rates. In constellations where
expected returns are decreasing in offered deposit rates, BB will therefore implement
higher expected equilibrium returns than RB. We show that expected returns can

indeed decrease under discriminatory bailout if deposit rates are raised. In this case

9Tn our model, the size of a bank depends only on the attractiveness of the deposit rates it has
offered. However, in a more realistic setting, banks can differ in size for many other reasons. The
appropriate interpretation of BB and BS will then not refer to the size of the bank with respect to
deposits but to the size of the growth rate of the banks’ deposits.
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the decrease in bailout probabilities overcompensates the increase in deposit rates.

However, our overall conclusions have to be modified when the consequences of the
bailout policies for the bank’s risk-taking incentives are important. If banks can decide
about the riskiness of their projects after they have received deposits, BB will have
the drawback of providing risk-taking incentives for big banks, since these banks can
anticipate to be bailed out with high probability. RB, in contrast, will provide less
incentives for risk taking, since banks are uncertain about the regulator’s bailout deci-
sion. This parallels the ,, constructive ambiguity” approach to bank closures as analyzed
by FREIXAS (1999) in a single-bank model.

In our general-equilibrium framework, however, bailout probabilities have to be chosen
in a way ensuring that under all realizations of the stochastic decision process, the
banks that have not been closed will be able to survive. This makes the design of
such a policy more demanding. The simple version of RB we propose in chapter 4
requires that - in out-of-equilibrium strategies - the regulator must commit to bail
out significantly less deposits than would be possible and optimal. This undermines
the credibility of the regulatory policy. We indicate, however, that more sophisticated
RB-type policies may be found that circumvent these drawbacks. The comprehensive
construction of such a policy seems, however, to be far from straightforward and is left

to future research.

In summary, our findings suggest that closure rules in severe crises should be a mixture
of BB and RB. Whether the actual policy will more closely resemble the former or the
latter will depend on whether return considerations or excessive risk-taking considera-

tions are more important.



Chapter 2

Models of Joint Default in Credit Risk

Management

Abstract. In this chapter we review the models of joint defaults of the current major
industry-sponsored credit risk frameworks. Recognizing the need for further improve-
ments of these models, we address the following issues. First, we identify the most
important modeling drawbacks that could be fixed on a short-term basis. Second, we
analyze which of the proposed models is the conceptually most promising basis for
next-generation models. Concluding that the KMV methodology is the most suitable
to go forward, we set out a research agenda aiming at further improvements and at

extending the KMV model to non-quoted firms.

Keywords: Credit portfolio management, Credit risk models, Joint defaults.

JEL: G11, G21, G28.
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2.1 Introduction

The last years have seen a rapid growth of interest in credit risk modeling from banking
regulators, practitioners and academic researchers. Since the first generation of models
have been developed, big banks have used these models for risk management purposes.
Moreover, regulators have started to explore the potential of the models to determine
regulatory capital (BASEL COMMITTEE ON BANKING SUPERVISION 1999).

The models’ accuracy is the major factor in determining the success of both types
of applications. It has therefore become an important point of focus in academic
research on credit risk modeling. The findings up to now can be summarized as follows.
First, many empirical and theoretical objections regarding the modeling assumptions
and the models’ calibration have been raised.! Second, it has been pointed out that
the models’ outputs are very sensitive with respect to parameter estimates and differ
quite significantly across models (see e.g. GORDY (2000)). Finally, a first backtesting
study (NICKELL, PARRAUDIN, AND VAROTTO 1999) for two of the currently available
models found that - for portfolios of Eurobonds - the models yielded far more exceptions

than they would if they were accurately measuring risk.

The one conclusion emerging from this academic discussion is that current credit risk
models cannot yet be used to determine regulatory capital and that new, more sophis-
ticated models have to be developed to measure credit risk more accurately. Moreover,
it has been argued that once sufficiently elaborated models are available, extensive
backtesting will be necessary before these models can be used to determine regulatory

capital.

Some general suggestions for important roads of improvements have been made. Most
prominently it has been argued that credit risk models should employ stochastic interest
rates instead of deterministic ones (see e.g. CROUHY, GALAI, AND MARK (2000)). It
has also been put forward that they should take into account that default probabilities
and rating transition probabilities vary through the business cycle or between obligors
belonging to different industries (see e.g. NICKELL, PARRAUDIN, AND VAROTTO
(2000)). However, to our knowledge there are no contributions that take a broader
view, aimed at the description of a detailed research agenda for the development of

next-generation models from today’s existing methodologies.

This chapter intends to contribute to the closure of this gap by focusing on one par-

ticular area of credit risk modeling, joint default probabilities. In doing so, we will also

IFor an overview see JACKSON AND PERRAUDIN (2000).
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present a broad picture of modeling drawbacks and suggestions for the improvement
of existing methodologies in this area. We will analyze the four major currently avail-
able industry-sponsored credit risk models: CreditMetrics (by JP Morgan), Portfolio
Manager (by KMV), CreditRisk™ (by Credit Suisse Financial Products) and Credit-
PortfolioView (by McKinsey). In the following we will also refer to these models as
CM (CreditMetrics), KMV, CR (CreditRisk™) and McK (McKinsey).2

We start our analysis by identifying the most important modeling problems with respect
to joint defaults. While repeating some of the arguments that have already been made,
we will be able to point to quite a few drawbacks that have not been discussed yet.

We then make suggestions on how the models’ performance could be improved.

Reviewing the identified modeling problems and the improvements that could be achieved,
we finally set out to assess which of the currently proposed approaches to joint-default
modeling is the conceptually most promising basis for next-generation models.> We ar-
gue that a “mixed” model blending modeling features of KMV and of a model recently
employed in the literature (NICKELL, PARRAUDIN, AND VAROTTO 2000) is the most
suitable to go forward. Moreover, we try to set out a research agenda aiming at further

improvements and at extending the scope of KMV-type model to non-quoted firms.

In doing so we stress that - besides backtesting complete models - it is important to
assess (theoretically and empirically) the adequateness of the model’s different build-
ing blocks with respect to modeling assumptions and parameter estimation. Once
sufficiently well-performing blocks have been developed, backtesting of complete mod-
els can determine how wide remaining error margins are. This method has not only
the advantage that bad performance can be tracked more specifically to single model

components but also makes it possible to combine successful parts of different models.

Finally, while we advocate to use the mixed KMV model as a starting point for next-
generation models, we recognize that each of the currently proposed models will be
applied in banking practice in the near future. We think that the suggestions made for

CM, CR and McK can help to fix some important drawbacks on a short-term view.

This chapter is organized as follows. In section 2.2 we present a detailed description

2A comprehensive description of all of these models can be found in CROUHY, GALAI, AND MARK
(2000). More specific references are JP MORGAN (1997) (for CM), CREDIT SUISSE (1997) (for CR)
and McKINSEY (1998) (for McK). To our knowledge, the best documentation available for the KMV
model is the paper of CROUHY, GALAI, AND MARK (2000). Some interesting information can also be
found on the KMV homepage (http://www.kmv.com).

3“Non-conceptual” issues have also been put forward in the discussion of the models’ relative merits,
in particular computational simplicity (see e.g. CROUHY, GALAI, AND MARK (2000)). Such issues
will not be taken up here.
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of the currently proposed joint-default models. In section 2.3 we discuss the major
drawbacks of the models, argue which conceptual issues should be clarified, and suggest
how the models’ performance could be improved. The suggestions contain short-term
fixes as well as a longer-term research agenda. In section 2.4 we present our conclusions.
A summary of the major insights from section 2.3 builds the basis for the identification

of the most promising joint-default approach for next-generation models.

2.2 Presentation of the Models

Despite the fact that a comprehensive survey for all of the credit risk models discussed
in this paper has recently been provided by CROUHY, GALAI, AND MARK (2000),
we will present a detailed description of each proposed joint-default methodology in
this section. This is done for the following reasons. First, since CROUHY, GALAI,
AND MARK (2000) capture all aspects of credit risk modeling, the description of the
joint-default models is not as detailed as necessary. In particular, the presentation
of the multi-year horizon (for CR and McK), the construction of the KMV country
and industry indices, and KMV’s estimation of the relative size of the systematic
risk component are important modeling features that are not described in CROUHY,
GALAI, AND MARK (2000). Second, focusing on joint-default models allows us to
present all models within a unified framework which makes similarities and differences
more transparent and provides a clear background for the analysis. Finally, while
reviewing the literature, we found two interesting new versions of current credit risk
models, one for CR (GORDY 2000), which hereafter will be referred to as CR-GO, and
one for KMV (NICKELL, PARRAUDIN, AND VAROTTO 1999), hereafter referred to as
NPV. Both were not presented in their own rights but as part of studies attempting
to compare model outputs and backtest currently proposed models. Nevertheless, we
think that these versions represent important alternatives to the initial proposals, and

we will therefore discuss them as well.

To focus on joint-default modeling, we employ the most simple credit risk management
framework. We consider a bank that holds a loan portfolio and does risk management
in ¢ = 0. The loans are due in t = T and we assume that the bank’s risk management
horizon is identical with the date at which the loans mature, i.e. the bank is interested
in the distribution of the value of its portfolio at ¢ = 7. For each loan, two states are

possible in t = T'. Either the firm has not defaulted and the loan’s principal and interest
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are paid back; or the firm has defaulted and the bank receives nothing.? Denoting the
sum of principal and interest due from firm 7 by L; and the default event indicator

variable by B; r, we can describe the ¢t = T" portfolio value by

i LiBin.
=1

In general, B;; is an indicator variable which is zero if firm 4 has not yet defaulted until
time ¢ and which is equal to 1 otherwise (i = 1,..,n). Moreover, we use B, to denote
the vector (B;;)", of default indicators at time ¢. Obviously, the distribution of the

above portfolio value is completely described by the distribution of the vector Br.

We follow the literature and divide the credit risk models into two classes, labeled
“structural models” (CM, KMV and NPV) and “reduced-form models” (CR, CR-GO
and McK) respectively. This terminology can be found for example in JARROW AND
TURNBULL (2000). It refers to the fact that structural models build on a microeco-
nomic description of firm defaults while reduced-form models employ general heuristics
predicting how default probabilities change due to changes in systematic factors such
as the business cycle. Since the reduced-form models anualize the credit risk horizon,
we will measure time in years and will - for simplicity of representation - assume that
T € {1,2,3,.....}. Negative time indices will be employed to describe historical obser-
vations that are used to calibrate the models. 7}, denotes the length of the time span

from which these observations are taken. Figure 2.1 illustrates the time horizon.

T, 2 -1 0 1 2 T

Figure 2.1: Time horizon.

Note that all models derive joint default probabilities by defining a vector S represent-
ing the systematic risk in the economy. Default events are assumed to be independent
given the realization of S. The probability of a certain realization b = (b1, ..., b,) of the
vector Br can then be derived by integrating conditional default probabilities p; 7(S)

over the distribution of S:°

P{B; = b} = Eﬁ{l{bi = 1)pir(S) + 1{b; = 0}(1 - pi,T(S)> }

4Tt is easy to integrate fixed recovery rates.
®Note how the indicator function 1{-} is defined. 1{A4} is equal to 1 if statement A holds and equal
to 0 if statement A does not hold.
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2.2.1 Reduced-Form Models

For both reduced-form models, the vector S consists of 7" systematic vectors: S =
(Si1,.-,S7)".6 The entries Sy, ..., St can be thought of as realizations of a systematic
vector at different points in time. At each point ¢ — 1, the probability that a firm
that has survived until ¢ — 1 will also survive until ¢ is analyzed (¢ = 1,..,7). Default
events are assumed to be independent given S; and the conditional one-year default

probabilities
Pi(Sy) = IP{Bi,t =1|Bj;—1 =0, St}

are assumed to be stable over time. The multi-year conditional default probabilities

pir(S) are then specified in the following way:"

T

pir(S) =1 - H(1 - pi(St)>. (2.1)

t=1

In the following sections we discuss how the conditional one-year default probabilities
pi(-) and the distribution of the vector S are determined for the different models. The
unconditional one-year default probability of firm ¢ will be denoted by p; (1 =1, .., n).
It is important to note that the term unconditional refers to the fact that the default
probabilities are integrated over the distribution of the complete time series (S;);->° .,

of the systematic factors.

2.2.1.1 CreditRisk* (CR)

To develop the reasoning behind the CR model, we start with the most simple version
of CR. CR does not model the distribution of the systematic factors S directly but only

wp
!

We will use the symbol to describe a transposed vector or matrix.
"In the appendix, we show that this specification rests on the implicit assumption that

]P{Bz',t = bt | St, aeny ST} = IP{Bz"t = bz | St} (t = 1, 7T‘ - 1, 1= 1, 7TL)

We will comment on this assumption in section 2.3.1.1 in the paragraph dedicated to multi-year default
probabilities (page 38).
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the distribution of the resulting portfolio default rate, denoted by p; :®

WP = gP(S,) = %Z pi(Sy). (2.2)

It is assumed that the series y! is gamma-distributed and independent, identically dis-
tributed (iid) over time.? Given the realization of the default rate p; , the default events
of all obligors are assumed to be independent. The conditional default probability for

each firm ¢ is specified by

P ,Uf
pi(py) = ﬁi?: (2.3)

where /it is the mean of 41} . Note that this definition of conditional default probabilities
guarantees (a) that py = (1/n) >, pi(uf) for all realizations of y; and (b) that
p; = IEp;(u; ). Moreover, note that by equations (2.2) and (2.3) the mean " and the

standard deviation 0" of u} are given by

1
p — — -
= 5. Di (2.4)
=1
1 n
of = =) o (2.5)
Lt

0; is the standard deviation of the random variable p;(ul), i.e.

o= Var (D)) = |/ Var (u(5.)).

To determine mean and standard deviation of p} from equations (2.4) and (2.5), CR

suggests to estimate the parameters p; and o; (i = 1,...,n) from rating class default-
rate series by mapping each obligor i to a rating class ((7).1° The parameter estimates
have to be provided by the user. An estimation technique is outlined in section 2.2.1.4.

We illustrate the model setup as produced up to now with the following example.

8To be more precise, u} (S;) is the ezpected portfolio default rate conditioned on S;. However, in
this paper we will - for the sake of brevity and to keep track with the terminology used in the CR
manual - use the loose vocabulary “portfolio default rate”.

9The only motivation given in the CR manual for choosing the Gamma distribution, is that it can
be paramatrized solely by its mean and standard deviation.

10Rating class default rate data can be taken from rating agencies such as Moody’s or Stan-
dard&Poor’s.
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Example 1:

Suppose that the conditional default probabilities are given by p;(S;) = ¢;G(S¢)
where G(-) is an arbitrary function mapping into the interval [0, min;—; _,{1/¢;}].
Then

n

G(S;) —
pe = (t)zci,
=1
EG(S,) —
o= BOsIN,
=1

and p; = ¢; IEG(S;). Hence, formula (2.3) indeed specifies conditional default

probabilities correctly.

To account for diversification effects, the framework outlined above can be extended by
dividing the obligors among different subsets &y, .., S;,, where each subset is a collection
of obligors under the common influence of a systematic factor. These subsets are called
“sectors” in the CR manual but do not necessarily represent industry sectors. An other
example might be the division of a portfolio according to the country of domicile of

each obligor. The default rates

n

1 .
phy = — D i € §hniS) (26)
i=1
of each sector are assumed to be gamma distributed, independent of each other and iid
in time. Moreover, defaults are assumed to be independent given the realization of the

vector uf of all sector default rates. Conditional default probabilities are specified by

m P
_ . 1

pi(ur) = pi Z Hie Sj}%: (2.7)
j=1 j

where ﬂf is the mean of pf ;- This implies that the mean ﬂ;-) and the standard deviation

a;-) of the default rate in sector j are given by

I~ . )
no= 521{1653-}1% (2.8)
=1
e .
of = ;;1{265]-}0,-. (2.9)

The most general version of CR allows for the mapping of each obligor ¢ into more than
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one sector. This is achieved by assigning obligor-specific weights (6;1, ..., 0;,) to each
sector that are required to sum to 1 (3°7", 6;; = 1). The weights are specified by the
user. By formal analogy (i.e. by substituting 1{i € S;} with 6;;), the formulas (2.7) -

(2.9) are generalized to

m P
_ M5
pipf) = pi Y055 (2.10)
j=1 K
1 n
o= EZ@-]@- (2.11)
i=1
P RS
O'j = ;ZQZ]U, (212)
i=1

It should be noted that the CR manual gives no definition of the variables uf, (j =
1,..,m) in this general version of the model. Consequently, it is also unclear what
formulas (2.11) and (2.12) actually mean.'!

Finally, note that CR models idiosyncratic risk by employing an additional sector
(called idiosyncratic or specific sector). A model with m — 1 systematic risk factors and
obligor-specific idiosyncratic risk can be parametrized as a m-sector model in which
one of the sectors (without loss of generality sector 1) represents the idiosyncratic
risk components. The default rate associated with this sector is assumed to have zero
volatility and thus u!’ /pd = 1.2 6;; is supposed to describe the size of the idiosyncratic

component of default risk.

In the sequel we will use the following terminology to refer to the different CR versions:
single-sector version (to denote the simple version which is built on only one default
rate), multi-sector version without weights (to refer to the version with m sectors where
each obligor can only be mapped to one sector) and weighted multi-sector version (to
refer to the most general specification where each obligor can be mapped to all sectors

by assigning obligor-specific weights to each sector).

2.2.1.2 CreditRisk": The Modified Version of Gordy (CR-GO)

GORDY (2000) compares the model outputs of CR and CM for a variety of hypothetical
portfolios. In doing so he presents a more abstract form of the weighted two-sector

1'We discuss this problem in more detail in section 2.3.1.1.
12Gee the CR manual (Credit Suisse 1997), section A 12.3. Because the specific sector represents
diversifiable risk, it is assumed to contribute no volatility to a well diversified portfolio.
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version of the CR model (which will hereafter be referred to as CR-GO). He abstracts
from the modeling of portfolio default rates and, hence, replaces the default rate ,ui ¢
of the second (systematic-risk-) sector by a general systematic factor S;. S; is a scalar,
and the series (S;)/__;, is assumed to be gamma distributed and iid in time. By
convention, the first sector represents the idiosyncratic risk (i.e. puf,/fiy, = 1), and
the weight on this sector is given by 6;; = 1 — 6;5. 0; := 60,5 is called the weight on
the systematic factor and conditional default probabilities are described in analogy to

equation (2.10):

pi(St) = pi ((1 —0;) + gz]EifS‘) (2.13)

Gordy then maps obligors to rating classes (i — (()). Within each rating grade ¢,
obligors are assumed to be statistically identical, i.e. they have the same unconditional
default probability p, and the same weight 6 on the systematic factor. To calibrate the
model, Gordy estimates the unconditional default probabilities p, and the variances
of default probabilities ag := Var (pg(St)) from rating class default-rate series. The
estimation method is outlined in section 2.2.1.4. The parameters 6, are then obtained
by inserting the estimates into the formula for default-probability variances that follows

from equation (2.13):
02 = ﬁgﬁg Var(Sy).

However, these estimates are not sufficient to fully specify the model, since Var(S;) is
still undetermined. Gordy argues that there is no obvious information to estimate this
parameter, and (for illustration purposes) considers three different values for \/\W ,
namely 1, 1.5 and 4.0.

2.2.1.3 CreditPortfolioView (McK)

McK models the distribution of certain industry or country (one-year) default rates
(ﬂft, ceey ﬂfn’t) and then assumes that default events are independent given the real-
ization of the vector i€ := (ﬂjc’t);?’zl of these default rates. The default-rate model
is constructed using macroeconomic variables S; := (Si4, ..., Skt). For each default

rate ,&Jct employed, a macro index Sj, is constructed as a linear combination of the
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macroeconomic variables:

k
Sit = E Ti1S1ts
=1

where the weights 7;; on each of the macroeconomic variables are fitted to the respective

default-rate series using a logit model:

C 1

it T T H exp(Sj + 1)

The variables (744, ..., Up,,) are assumed to be normally distributed zero-mean error
terms that are independent in time, while the macroeconomic variables are assumed to
follow an AR(2) process with jointly normally distributed innovations (v;,)%_,. Hence,

by estimating the parameters of the AR process and the covariance matrix
( X Eﬁ,u )
Yor S
of innovation and error terms,'® the joint distribution of the vectors i€, ..., i$ is spec-

ified conditional on the realization Sy of the macroeconomic variables in ¢t = 0.

To derive the conditional default probabilities p;(C), the model draws on the intuition
that with default rates higher than average, default probabilities should also be higher
than unconditional default probabilities while the contrary should be true if default

rates are lower than average. The formal specification used in McK is

, (1= exp(=ri) ) (1 = p) + i if i = i) > 0
pi(By) =
exp(K; )P if k; = ki (BF) <0,

where

m ~C
~ Kt
s (B9) = [ o] -1

J=1

0;; describes the sensitivity of firm ¢ with respect to the default rate ﬂgt. In the current
version of McK, conditional default probabilities of a firm ¢ can only depend on the
default rate of one industry/country j = j(i) (hence 6;; = 0 for all j # j(i)) and the

intensity of exposure to the respective default rate is assumed to be identical for each

1353, is the covariance matrix of the error terms 7;, ¥, is the covariance matrix of the innovations
v;, and ¥; , is the matrix describing the covariances between error terms and innovations.
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firm (0;;;) = 6 for all 7). Hence, the expression for «; simplifies to

it
3(%)

implying that if two firms i and ¢ are mapped to the same default rate (j(i) = j(i) =
j), then the defaults of those firms are assumed to be independent given /lgt. To
calibrate the model, McK estimates the AR process that describes the stochastic of
the macroeconomic variables, and the logit model that links those variables to firm
default rates. Moreover, as for CR, unconditional default probabilities are determined
using average rating class default frequencies. The sensitivity parameter # has to be
set by the user. It is suggested to estimate € from default data published by rating

agencies.

2.2.1.4 Estimating Mean and Variance of Default Probabilities

In this section we present a method proposed by GORDY (2000), to estimate both
mean and variance of annual default probabilities from default rates. It can be used
to calibrate both CR versions we have presented. To describe this method, we first
introduce some notation. We denote the number of corporate obligors in the rating
class ¢ in t — 1 by 7, and the number of obligors in ( who have defaulted until ¢ by

d¢t . Gordy makes the following assumptions:

1. There is a vector of systematic factors driving default probabilities: for each year
t — 1, obligor defaults until ¢ are independent given the realization S; of this

systematic vector in t.

2. Conditional one-year default probabilities are identical for all obligors in one

rating grade ¢ and are stationary over time. They are denoted by p¢(S;).

3. The systematic factor series (S;)/_ 5, and the series (ﬁ’C,t);:T—Th are iid and inde-

pendent of each other.

4. The idiosyncratic components of the default risk (which are modeled implicitly)

are serially independent.

Under these assumptions, the observed rating class default frequencies i, := czg,t [T

are iid in time. By dropping the time index, it can be shown that the mean p, and the

14Gee MCKINSEY (1998), p. 56. Unfortunately, an estimation procedure is not described.
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variance 02 of p¢(S;) are given by p = IE ﬂ? and

_ Var(pg') —E[1/Aclpc(1 - pc)
1 E[1/nd

a; (2.14)
respectively.’® Hence, estimates for j; and o} can be derived by estimating IE if,
Var(if), and IE[1/7] from the series (,&gt)t;Tfl and (fi¢;),—*, and by inserting these
results in equation (2.14).'6

2.2.2 Structural Approach

The structural approach is employed by CM, KMV and NPV. Under this approach,
the specification of joint defaults is derived from an option-pricing model as developed
in MERTON (1974). A firm goes bankrupt if the value of its assets falls below a certain
threshold that depends on the firm’s liability structure. Models of this type consist
of two building blocks: (a) assumptions about the joint dynamics of the firms’ asset
values and (b) the firms’ liability structures. We will start with the description of the
former and denote firm 7’s asset value in ¢ by V;;. The process V; is assumed to follow

the stochastic differential equation

dV;,t = /.,L;}V;,tdt + O'ZJV;,tdWi,t (Z = 1, ey n) (215)

where the vector process (W1y,..,W,) is a multidimensional standard Brownian mo-
tion.!” The correlation structure of this vector process is described using aggregate
asset value processes V;-S (j = 1,..,k) that represent the systematic risk in the econ-
omy. In analogy to equation (2.15), those processes are assumed to follow

Jit

15The formula for p¢ is obvious, and the formula for ag is derived in GORDY (2000).
16Since both series are iid, standard techniques can be used for estimation. If (X;)7, is an iid
series, then the standard estimates for mean and variance are X := % Z:-L:l X; and

respectively.
7The term “standard” refers to the fact that the means and the standard deviations of the instan-
taneous returns of the processes Wy, .., W,, are assumed to be equal to 0 and 1 respectively.
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The vector process (W7, ..,W7) is assumed to be a multidimensional standard Brow-
nian motion with covariance matrix £°. The firms’ asset value processes are linked to

the systematic processes by the joint log returns

Zit(At) = log(Vie/Vig—at) (i=1,.,n) (2.17)
th(At) = log(V, t/‘/ﬁ: ar) G=1,..,k) (2.18)

which are normally distributed.!®

More precisely, it is assumed that a firm’s returns
can be described as a linear combination of the systematic returns and an idiosyncratic

component:
Ziy(At) = Zezjzs (At) 4 €4(At) (i=1,..,n), (2.19)

where the random variables €, ;(At), .., €, (At) are normally distributed for fixed At,

mutually independent and independent of the systematic processes V;°,.., V5.

To determine joint default probabilities, the firms’ liability structures have to be spec-
ified and parameters have to be estimated. We first present the approaches of CM and
KMV, and then the alternative approach suggested by NICKELL, PARRAUDIN, AND
VAROTTO (1999).

2.2.2.1 CreditMetrics and KMV

Both CM and KMV assume that default occurs if a firm’s asset value drops below a
certain level at the end of the risk management horizon, i.e in t = T.'° In this case the
default event can be equivalently expressed as the event that the standard normally

distributed variable

Zig(T)—EZ;r(T)
\/Tag’

hits some low level z; (called default point). To derive the distribution of the vector B

Zi =

of default indicators, it is therefore sufficient to specify the default points and the joint

18 At is the time interval on which the returns are reported.

9Note that - in our description of the KMV model - we primarily refer to the version described in
the paper of CROUHY, GALAI, AND MARK (2000). To our knowledge, this paper contains the most
precise publicly available documentation of the KMV model. We do not know whether KMV has also
implemented other versions of its model.
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distribution of the normalized returns Z; (i = 1,..,n). Default points are determined
by z; := &' (p;7), where ®~!(-) is the inverse standard-normal distribution function
and p; r is the default probability of firm ¢ conditional on the information available in

t = 0 but averaged over all realizations of Z; (i = 1,...,n).

The joint distribution of standardized returns is determined in the following way. First,
for each firm 7, weights 5,-1, - 0, are chosen that determine the extent to which firm 7 is
exposed to the systematic processes V;%, ..., V,5. These weights are required to sum to 1
(Z?Zl f;; = 1). We denote the matrix of all weights by © := (0i;)1<icn;1<j<k- Second,
to allow for the ratio of systematic return risk to overall return risk to take all values
between 0 and 1, the parameters 6;; are supposed to be multiples of 9~ij: 0;; = Hiéij.
Instead of determining the parameters 6; directly, the variables Z; are written as

&:Aﬁ—igﬂL—+q, (2.20)

(Ox250T);
where

0;1/(6L50T);

O-’U

S is a random vector distributed according to A/ (0, %) and the variables ¢; are mutually
independent, normally distributed, independent of S, and have zero mean and variance
1 — (A\f)%. Obviously, the parameter \{ represents the ratio of systematic to overall
return risk for firm ¢ (in terms of standard deviation). Moreover, from equation (2.20)

we can conclude that conditional default probabilities are given by

2z — A (68),/ (ézséT)i}

pi,T(S) = @{ 1_ (/\5)2

Hence, the distribution of the vector B is completely specified by choosing the uncondi-
tional default probabilities ;, the matrices ¥° and (:), and the systematic risk ratios \?
(1=1,..,n). CM and KMV differ in the way these parameters are determined. Before
we describe the different approaches, we note that given the modeling assumptions,
the parameters ¥ and \{ can be estimated from time series data. To see this, define

Z.(At) := (zi,t(m))j . ZS(AL) = (zfgm))f (2.21)

=1 =1

and note that the following lemma holds.
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Lemma 2.1
Suppose that the set of assumptions presented up to now holds. Then the vector series
Th/At Ty /At
Z:= (Zl.At(At)) and Z° := (ZIS_At(At)> are both iid. Moreover,
I=—1 I=—1

Cov (Zf(At)) — A5, (2.22)

and for Z,;, the ratio of systematic to overall risk is constant over time and equal to
X (i=1,.,n).

Lemma 2.1 implies that if the vector series Z and Z® are available, 35 and \? can
be estimated from these series. Standard techniques can be used for the estimation of
Cov (Zts (At)) 20 which, by formula (2.22), also yield an estimate for ¥°. An estimation
technique for the parameters )7 is provided by KMV and is described in section 2.2.2.3.

2.2.2.2 CreditMetrics: Rating Class Default Frequencies and Equity Index

Returns

In CM unconditional default probabilities p; are determined by mapping each obligor
i into a rating class ((i) and by setting p; to the average historical T'—year default
frequency in the rating class (7). The underlying rating system can be Moody’s,
Standard&Poor’s, or the internal rating system of the bank.

Concerning the correlation model, CM interprets the indices V;°,...,V;® as describing
aggregate asset values of certain industries in specific countries. For example V;° may
describe the assets in the German banking industry, V;’ the assets in the German
insurance, V;° the United States chemical industry and so on. The covariance matrix
% of aggregate industry asset returns is approximated by the corresponding matrix
for equity index returns, which in turn is estimated from widely available equity index
time series. The ratio )\f of systematic to total return risk and the weights 9~i1, - éik
of each firm 7 on the different industries have to be specified on a judgmental basis by

the user. We use the following example for illustration:

20Tf (X)), is an iid series of random vectors then the standard estimate for Cov(Xy;, X1;) is given
by

1

1 Z(Xli - X)) (X5 — X;)

=1

where X; := £ YL Xy;.
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Database Portfolio
Default Probabilities | Calculate DD Calculate DD
Map firms to rating classes | Map firms to rating classes
Determine EDFs iﬁi,T = EDFQ(z),T
Correlation Model Choose © Choose ©
Construct indices V;° Estimate A\
Estimate ¥°
Input Asset value series, parameters p’ and o

Table 2.1: Calibration of the KMV model.
Example 2:

Suppose that firm 7 participates in the German banking (30%) and the German
insurance industry (70%). Assume that V;° represents the German banking in-
dustry while V¥ is the index for the German insurance industry. The ratio of
systematic risk to total risk is assessed to be 0.9. In this case we have A\ = 0.9,
6,1 = 0.3 and 6;, = 0.7; all other coefficients 0~Z~j (j > 2) are set to zero.

The approaches of KMV and NPV avoid the approximation of asset returns with equity
returns by deriving asset values from observable variables (equity and liability data)
using option-pricing models similar to that of MERTON (1974).

2.2.2.3 KMYV: Distance to Default, Country- and Industry Indices

Table 2.1 gives an overview over the steps involved in the calibration of the KMV

1.2! Before we start to describe the calibration steps associated with the respective

mode
entries of the table, we note that KMV uses data of two firm pools to calibrate the
model. The first pool consists of the firms 7 = 1,..,n in the actual portfolio and the
second consists of firms from a large KMV database. The database, which includes
firms that have actually defaulted, is used to empirically determine default frequencies
and to construct the aggregate asset value indices V%, ..., V;°. A major input into all
calibration steps are the historical asset value series of the firms in both pools (reported
on a certain time grid ¢t = —T}, —T}, + At,...,0) and the parameters p” and o’ of the

firms’ asset value processes. To derive both asset values and parameter estimates from

21The terms DD and EDF will be explained during the description of the calibration steps on pages
28 and 29 respectively.
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observable variables, KMV employs an option pricing model which is outlined in the

next paragraph.

Firm Model As already described in equation (2.15), a firm’s asset value process is

assumed to follow
dVy = pVidt + o VidWy

where W is a standard Brownian motion. Furthermore, it is assumed that the capital
structure of a firm is composed of equity, short-term debt D; (which is considered to be
equivalent to cash), and of long-term debt, which is assumed to be a perpetuity paying
an average coupon c. Under these assumptions, V; can be determined as function of the
value X; of the firm’s equity, the leverage ratio K; := X;/D,, and the instantaneous risk-
free interest rate r by solving the corresponding option pricing model. This function
is denoted by Hyxv:

Vi = HKMV(UvQ X, Ky, c, 7“)- (2-23)

To calibrate equation (2.23) for ¢%, KMV uses an iterative technique.?> Once oV is
determined the asset value series can be derived from equation (2.23) and the parameter

1Y can be estimated from the obtained series.

Distance to Default Like CM, KMV determines univariate default probabilities
by mapping firms into different rating classes and by calculating the average default
frequencies in these classes. In contrast to CM, however, KMV constructs its own
rating classes, and default frequencies are derived using the database firms. To map
firms into different rating classes, a cardinal measure for the respective firm’s default

probability is calculated. This measure is called “distance to default” (DD).

If T-year default frequencies shall be determined, then the DD of a firm at a point ¢

in time is given by

log(Vi/vr:) + (u” — 0.5(0”)2)T
0”\/T .

22To our knowledge, this technique is not public. But most likely it proceeds by choosing a starting
value 0§ for oV and calculating the asset value series derived from o§. The estimate for 0% that is
derived from the obtained asset value series would then provide the next value for the iteration.

DD = DDy, :=
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Note that given the firms’ asset value processes follow a geometric Brownian motion
(as described in the previous paragraph) and given a firm defaults within a 7T- year
horizon if and only if its asset value falls below a certain threshold vr; at the end
of the horizon 7', all firms with the same DDy, would have the same T-year default

probability in ¢, namely ®(—DDr,).?

The critical threshold vr; is set at the par value of liabilities in ¢ including short-term
debt (STD) to be serviced over the time horizon, plus half the long-term debt (LTD):
’UT’t = STDT,t + (1/2)LTDT’t.24

Univariate Default Probabilities To determine 7T-year default frequencies, the
DD measure is calculated for a time horizon of T" years for each firm in the database at
each point ¢ on the time grid. Firms with a similar DDz ; are mapped into one rating
class (. We denote the set that contains all firms in the data base which are mapped
to the rating class ¢ in ¢ if a T-year horizon is considered by C¢ 1. Then the average
T-year default frequency EDF.;?° in each rating class ¢ and for each time horizon T
is calculated:

EDF(,T = — .
S g, #Coms

Z;:T 1, #(Firms defaulted in C¢ 1, within T' years)

To determine the unconditional T-year default probability p; r of firm ¢ in the portfolio,
the measure DDry is calculated implying the mapping of the firm into a class ((i).

Finally, p; r is set to the default frequency in class ((i): p;7 = EDF () 1.

Correlation Model To specify the correlation model, KMV interprets the processes
V2, .., V¥ as describing aggregate asset values in certain industries and countries (in-
dustry and country indices). The processes (V°, ,V,g ) may represent industry in-
dices while the remaining processes (Vk‘fﬂ,..,Vk‘j +kc) represent the country indices
(kr + k¢ = k). The weights © for the firms in both pools are determined using

accounting data (sales and assets) as is illustrated in the following example.

ZThis follows directly from the fact that the event Vr < wr, can be equivalently written as
log(Vr/V:) <log(vr:/V:) and that the variable log(Vr/V;) is normally distributed with mean (u“ -

0.5(0“)2)T and standard deviation o?+/T. See CROUHY, GALAI, AND MARK (2000), p. 75.

24Note that the formula for vr; is an ad-hoc specification. Using a sample of several hundred
companies, KMV has observed that firms default when their asset value reaches a level somewhere
between the value of total liabilities and the value of short-term debt.

25The term EDF is used by KMV and stands for Expected Default Frequency.
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Example 2 (continued):

As in example 2 we assume that firm 7 participates in the German banking and
the German insurance industry. Let V;° be the industry index for banking, V,°
the index for insurance, and Vk‘j 41 the country index for Germany. Furthermore
assume that the following data have been extracted from a database providing

financial information about firms:26

Business line Assets (%) Sales (%)

Banking 35 45
Insurance 65 55
Total 100 100

In this case we would set 6;; = (0.35+0.45)/2 = 0.4, 6;, = (0.65+0.55)/2 = 0.6.
and §k1+1 =1.

To derive the correlation structure ¥ between the industry and country indices, KMV
constructs the returns on these indices from the asset returns of the database firms.
For each point on the time grid, a (general least square) cross-section regression on the

database asset returns is estimated:

Note that, in order to avoid overstretching the notation, we have used the variables
Z,(At) and © to denote the vector of the database returns and the matrix of weights for
the database firms respectively, despite the fact that elsewhere they are used to describe
the portfolio firms.?” Hence, if N denotes the number of firms in the database, then
Z; is an N-dimensional return vector and the vectors e of constants and €; of error
terms also have the dimension N. Moreover, © is a N x k matrix and the vector 8; of

regression coefficients has dimension k.

The estimates ,Bt obtained for the regression coefficients are interpreted as index re-

turns: Z$(At) := B,. The matrix ©5 is estimated from the obtained vector time series
At

Twn/
(le_ At(At)) as described in the conclusions from lemma 2.1. For explanatory pur-
I=—1

poses, industry and country indices are further decomposed into independent factors

as illustrated in figure 2.2.%

26 An example for such a database would be Compustat.

2TThe definitions of the database variables are completely analogous to the definitions of the respec-
tive portfolio variables. See equations (2.17) and (2.21) for Z; and page 25 for ©.

Z8Figure 2.2 is quoted from CROUHY, GALAI, AND MARK (2000).
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Level 1 Firm risk
Systematic Firm specific
risk risk
Industry Country
risk risk

Level 3

Industry Country specific

specific risk

risk
Global economic  Regjional Industrial sector
risk risk risk

Figure 2.2: Risk decomposition in the KMV model (source: KMV Corporation).

Finally, the systematic risk ratios A\? have to be determined for the portfolio firms
1 =1,..,n. They are estimated from a time series regression of firm returns on index

returns:
Zi,l-At(At) =q; + /Bz . ((:)leAt)l (l = —1, N —Th/At)

A7 is set to the square root of the regression’s R?.

2.2.2.4 Nickell et. al.: Market Portfolio

The NPV model differs from the KMV model in the following points:

1. It employs only one systematic process (kK = 1) which is interpreted as the asset
value of the market portfolio.2? Moreover, the returns on this systematic process
are not constructed explicitly. Only the parameters u§ and o7 of this process are
estimated.

2. It uses a slightly different liability structure to specify the firm model.

3. Firm default is assumed to occur if the firm’s asset value falls below some low
level at any point t in the risk management horizon 7. Consequently, default

probabilities are calculated as absorbing-barrier probabilities.

29The term “market” refers to national or international equity markets.
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Firm Model Each firm is assumed to have an earning flow § - (V; — D;) where §
is the dividend payout rate and D, denotes the firm’s liabilities, assumed to follow
dD; = u’D,dt. Under the assumption that a firm is declared bankrupt when its asset-
to-liability ratio K; := V;/D, first hits some low level k, the observable equity-to-
liability ratio X;/D; can be expressed as (non-linear) function of K; by solving the

corresponding option-pricing model. We denote this function by Hyxpy:
- = HNPV(Kt; T, 55 0-1): :u’d) (225)

r is the instantaneous risk-free interest rate.

Parameter Estimation The parameters ¢, o7, §;, u¢ and 6;; for each firm i in
the portfolio and the parameters p;, of of the systematic process are determined by a
Maximum-Likelihood estimation of the complete model described by equations (2.15),
(2.16), (2.19), and the specifications of equation (2.25) for each firm 7 in the portfolio:*°

Xy
D;;

)

= HNPV(Ki,t; T, 0i Ufa N?) (Z =1,., n) (2-26)

Joint Default Probabilities For given parameter estimates, NPV derive a formula
for the default probability of firm ¢ conditional on the realization of the systematic
return variable Z3(At).3! In contrast to KMV and CM, NPV calculates an absorbing-
barrier probability, i.e. the probability that the asset-to-liability ratio K; falls below
the default threshold £ at any point ¢ in the risk management horizon 7. To stay
consistent with our notation, we normalize Z3 (At) with respect to mean and variance
and denote the normalized variable by S. Using the formulas in NPV, conditional de-
fault probabilities can be expressed as a function of S: p; r = p; r(S). The distribution
of the default indicator vector B, can then be derived by integrating p; r(S) over the
distribution of S.

Finally note that, to ensure better fit to empirical data, observed default frequencies
could also be used for calibration (as in the KMV model). In this case the default
barriers k; would be chosen in a way ensuring that default probabilities are equal to

empirical default frequencies, instead of being explicitly derived from the theoretical

30To account for the non-linearity of equations (2.26) in Ky, NPV include a Jacobian term in the
likelihood.
31Gince there is only one systematic process, the subscript j can be dropped.
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model. We will discuss this more closely in section 2.3.2.3 where we present our sug-

gestions for further improvements of the structural approach.

2.3 Assessment and Suggestions

In this section we try to identify the major problems of the models, argue which concep-
tual issues should be clarified, and make suggestions on how the models’ performance
could be improved. In sections 2.3.1 we discuss the reduced-form models while the
structural models are analyzed in section 2.3.2. For both approaches we perform the
assessment in two steps. In the first step we look at the model setup and in the second

at the calibration procedure.

2.3.1 Reduced-Form Models
2.3.1.1 Model setup

We begin the analysis of the model setup by assessing how joint one-year default prob-
abilities are determined. After that we examine how multi-year default probabilities

are derived from the one-year ones.

One-Year Default Probabilities The major problem of all reduced-form models is
that there is no adequate theoretical or empirical foundation of either the assumptions
about the distribution of the vectors S;, u¥ and i€ describing the systematic risk in
the portfolio, or of the respective conditional default probabilities’ functional form.
Moreover, the assumption of conditional independence given the realization of the

systematic factors can also be problematic. Table 2.2 gives an overview.3?

CR McK

L(Sy), L(uF), L(AC) | No foundation | Monotonic in macro variables

pi(Sy), pi(uF), pi(BE) Monotonic in systematic factors

Cond. Independence | Problematic for multi-factor systematic risk

Table 2.2: Assessment of the reduced-form models’ setup.

32Note that £(X) denotes the law (or distribution) of a random variable X.
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Starting with the first row of the table we note that while the CR-type models give no
foundation for the employed distributions at all,3* McK employs time series of macroe-
conomic indices for which the assumption of normally distributed innovation can be
tested and might be adequate. However, except for a general intuition that coun-
try /industry default rates should be increasing functions of those indices, it cannot be
justified why default rates should be constructed via a logit transformation of these
indices. Nonetheless, this transformation, together with the indices’ distribution, de-
termines the distribution of gC. Turning to the second row of table 2.2, we observe that
while all models build on the reasoning that default probabilities should be increas-
ing in the systematic factors, none of the models delivers a foundation for the specific
functional form employed. It is, however, worth noting that in the special case where
conditional default probabilities are identical for all obligors (p;(S;) = p(S;) for all i),
they are specified correctly in the single sector-version of CR, since uf (S;) = p(S;)-
In this case it does not make sense to introduce an additional idiosyncratic sector (as
proposed by CR), because the diversification effect that stems from the presence of id-
iosyncratic risk is already accounted for by the fact that default events are independent
given S;. Concerning CR-GO, it should be noted that the assumption of statistical
homogeneity within rating classes contradicts the intuitive argument that a firms’ ex-
posure to macroeconomic risk should depend on the type of business it is in rather

than on its default probability.

We finally turn to the last row of table 2.2. We ask what happens if the distribution of
the systematic factors and the conditional default probabilities are specified correctly
(i.e. if the concerns raised in the first two rows of the table are not justified), and want to
analyze in which cases the assumption of conditional independence given the realization
of the systematic factors may be problematic. For the sake of clarity, we will consider
a portfolio where all obligors are mapped to the same default rate (sector). Hence,
for CR, defaults are assumed to be independent given i = (1/n) >, pi(St). The
corresponding statistic for McK can, by the law of the large numbers, be approximated
by i€ ~ (1/N) N, pi(S;) where N is the number of firms in the industry/country
from which the default rate is taken. Assuming - for the sake of simplicity - that
the portfolio is representative for the corresponding industry/country (with respect to
conditional default probabilities), we have i ~ u! and, hence, conditioning on p! and
2¢ will have the same effect. Finally, since we analyze one-year default probabilities

in this paragraph, we will consider a risk management horizon of one year (7' = 1).

33Except for the gamma distribution being a distribution that can be completely specified by choos-
ing its mean and variance.
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We start the analysis with the case where the vector S; is a scalar (i.e. the dimension
of S; is 1). By our assumptions, CR-GO will be correct in that case and we obtain
that this can also be said for CR and McK under the plausible assumption that the

risk factor can be described in a way such that u"(-) is strictly de- or increasing in S;.

Lemma 2.2

Suppose that the distribution of u!’ and the conditional default probabilities p;(-) are
specified correctly, and that the vector S; of systematic risk is a scalar. Then the
one-year portfolio distribution produced by CR and McK is correct if u*'(-) is strictly

de- or increasing in S;.

Now consider the case where the dimension of S; is higher than 1. In this case it is
unclear whether it is possible to construct a one-dimensional statistic of the systematic
vector S; that contains all the information relevant for the portfolio distribution (we
call such a statistic sufficient). Before we present two cases where u! is indeed a
sufficient statistic, we present a more precise definition of what sufficiency refers to in

our context.

Definition 2.1

A statistic u of the systematic variable S, is called sufficient if the portfolio distributions
derived under the assumption of conditional independence given S; and under the

assumption of independence given ji are the same.

Lemma 2.3

In the following cases ut is a sufficient statistic:

(i) If all loans in the portfolio are homogeneous with respect to size.

(ii) If all obligors are homogeneous with respect to their exposure to the systematic
vector, i.e. if p;(S;) = ¢;G(S;) with some constants c,...,c, and an arbitrary

function G mapping into the interval [0, min;—; _,{1/¢;}].

In general, however, it will not be possible to construct sufficient statistics. In this
case the assumption of conditional independence will understate portfolio risk. This is

illustrated in the next example.

Example 3:

We consider a portfolio of 4 loans with face values L; = ¢ (i = 1,..4). Uncon-

ditional default probabilities are assumed to be identical for all obligors (p; =



36 Chapter 2 Models of Joint Default in Credit Risk Management
g E 1 | | | ] S | | | |
T — — 25 -
g °r 1 g 2| [ .
o5r 7] g
Aog b _ A 15 ]
8 8
£ 3r n £ 1f —
2+ ]
L i 05 [ .
0 | | | 1 0 | | |
0 2 4 6 8 0 2 4 6 8
Losses (L) Losses(L)
Figure 2.3: Correct specification. Figure 2.4: Assuming conditional inde-

pendence given pt.

P = 0.2%) and the systematic vector S; has dimension two: Sy = (S1,1,521)-
Furthermore, we assume that obligors can be divided into two groups, A (which
consists of obligors 1 and 2) and B (obligors 3 and 4) so that conditional default

probabilities are identical within groups:
pg(sl) = (I)<Z - 99151,t - 09252,1&)7 g=A,B.

Note that the specification of p,y(-) is taken from the two-factor version of KMV.
We choose 041 = 0y = 0.5 and 040 = 01 = 1 and S; to have independent
components with mean zero and variance 1. Figures 2.3 and 2.4 show the prob-
ability of one-year portfolio losses exceeding the quantiles 0 to 8 for the correct
specification and the specification assuming conditional independence given u?,
respectively. Note that the scaling of both graphs is different, which illustrates the

misspecification caused by assuming conditional independence for our example.3

For McK, homogeneity with respect to conditional default probabilities might be real-

istic if industry default rates are used but it should be problematic for country default

rates. Concerning CR, it is generally unrealistic that the conditions of lemma 2.3 hold

for the entire portfolio and, hence, portfolio risk will be underestimated. Moreover,

note that the one-sector version, which has been used for this discussion is the most

prudential one, producing the highest quantile for a given confidence level.3® Therefore,

the underestimation of portfolio risk will be even worse if the multi-sector version is

used instead of the single-sector one.

34The formula for the conditional default probabilities is derived in the appendix.
35Gee CREDIT SUISSE (1997), p. 23.
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We conclude the discussion of the one-year framework by summarizing the conceptual
critique of CR that has not already been presented. CR employs the economic intuition
that the correlation between the defaults of single obligors can be accounted for by
modeling the variation of the portfolio default rate due to changes in the macroeconomic
environment. We have already argued that, using this intuition, it is inconsistent to
introduce a second type of idiosyncratic risk on the sector level, since the diversification
effect that stems from the presence of idiosyncratic risk is already accounted for by
assuming that default events are independent given S;. Moreover, only the multi-
sector version of the model can account for the fact that default probabilities of obligors
depend on the systematic factors in different forms. The multi-sector version without
weights is consistent with the default-rate intuition but would imply that default events
of obligors in different sectors are independent of each other, which is not plausible.
The multi-sector version with weights is constructed only by formal analogy to the
non-weighted version: the expressions 1{i € S;} are replaced by 6;; in formulas (2.7) -
(2.9). However, the CR manual does not mention how the variables u, (j = 1,..,m)

should be interpreted in this weighted multi-sector version.

It would be most natural to interpret the variables uﬁ . as weighted default rates by

applying the same formal analogy as used to derive the formulas (2.7) - (2.9):3¢

1 n
k= - > 0pi(Sy). (2.27)
=1

This would also be consistent with formula (2.8) for the mean of ,uf .- However, it
would not be consistent with formula (2.9) for the standard deviation of 1} ;. Moreover,
inserting equation (2.10), which specifies the conditional default probabilities p;(-), into
the definition of ,uf . given in (2.27) would imply that the following condition would
have to hold if the model should be consistent:

1 n . s uf .
,Uﬁt = ﬁzpiez‘j Zgilu—; (j=1,.,m).
i=1 =1 !

P
l

This condition lacks a sensible economic interpretation. We are also not aware of any
other plausible interpretation for the variables ,uf . that is consistent with the formulas
for conditional default probabilities and with the formulas for mean and standard devi-

ation employed by CR. (formulas 2.10 - 2.12). In summary, the economic interpretation

%T.e. by replacing 1{i € S;} with 6;; in the definition of u}, for the non-weighted multi-sector
version (see equation 2.6).



38 Chapter 2 Models of Joint Default in Credit Risk Management

of the variables ,uf , which drive the joint-default behavior, is unclear in the weighted
multi-sector version of CR. Consequently, the formulas for the mean and the standard
deviation of these variables are somewhat arbitrary. This is in particular problematic

since these formulas are a key ingredient to the calibration procedure.

Multi-Year Default Probabilities Recall that formula (2.1) provides the link be-
tween the one-year and the multi-year default probabilities for all reduced-form models.

In the appendix we show that formula (2.1) rests on the assumption that
]P{Bi,t = b, ‘ St, ceey ST} = ]P{Bi,t = bz ‘ St} (t = 1, ,T - 1, 1= 1, ceey ’I’L)

Hence, it is assumed that future realizations {S;;1, ..., St} of the systematic factors will
not affect default probabilities in ¢, and only S; is decisive. However, this is in sharp
contrast to the basic idea of the structural approach to firm defaults. Since a firm’s
value reflects the discounted sum of all future cash flows, knowing that the macroeco-
nomic environment will be bad in the future (e.g.) will affect the asset value of the firm
today and hence will also affect the probability that equity holders choose to default
on the obligations of the firm. Therefore, by projecting on the o-algebra generated by
the random vector S; rather than on that generated by the vectors {S;, S;11, ..., S},
the volatility of By and therefore portfolio risk is underestimated.

Note also that while the implicit assumption expressed by equation (2.1) is consistent
within the CR framework (since the systematic factors are assumed to be independent),
this is not the case for McK (since McK explicitly stresses the importance of recognizing
the autocorrelation of default-rate time series, which allows them to model changes of
default probabilities over the business cycle). Of course this observation should not lead
to the conclusion that CR dominates McK in this respect. Rather it should be stressed
that the autocorrelation of default frequency series is an empirically well documented

phenomenon,?” which should be taken into account by CR and by McK.

2.3.1.2 Calibration

A major point of critique with respect to the calibration of all CR-type models is the
following. While the model setup is built on the intuition that default probabilities

change due to changes in systematic factors (of which the business cycle is the most

37See e.g. BAR (2000).
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important example), they do not condition parameter estimates on business cycle in-
formation. This will not only have the (rather obvious) effect that default probabilities
will be underestimated in recessions. It will also - as we show in chapter 3 - have
the effect that the variances Var(/ft?) of rating-class default frequencies and, hence,
the variances of default probabilities will be underestimated. Of course the opposite
will be true during expansion states of the business cycle. Moreover, the rating class

t.3% This is inconsistent

default-frequency series (ﬂgt)t;jlh is very likely serially dependen
with the assumptions posed by GORDY (2000) to set up an estimation technique for

default-probability variances (see section 2.2.1.4).

Addressing the problems mentioned above is important, since the portfolio quantiles
produced by CR-type models tend to be very sensitive with respect to changes in
default probability variances as has been demonstrated for example by GORDY (2000).
Additionally, to make CR-GO applicable, a method of determining the variance of the

systematic factor S; has to be developed.

Concerning McK, it remains unclear which statistical framework should be used for
the estimation of the sensitivity parameter 6 and whether this parameter is stable over

the business cycle.

2.3.1.3 Suggestions

For all CR-type models, the most important issue is the adaptation of default proba-
bility moments to the business cycle. Recently, some authors have proposed statistical
frameworks to predict default rates with macroeconomic variables.?® They suggested
that this might be a method of adjusting unconditional default probabilities in credit
risk models. However, it is much more unclear how to adjust default-probability vari-
ances empirically. A starting point could be the framework of GORDY (2000), which
has been presented in section 2.2.1.4. It could be extended by additionally modeling
changes in conditional default probabilities p;(S;) over time while keeping the assump-
tion that the systematic vector S; is iid in time. A reasoning for this kind of modeling is
that, as in the structural approach, S; could represent returns on aggregate asset value
indices. This would make the iid assumption for S; look like a reasonable approxima-
tion. Explicitly constructing such indices - as has been done e.g. in ANDERSON AND
SUNDARESAN (2000) - would also make it possible to determine the lacking estimate
for Var(S;) in the CR-GO model.

38Default frequencies in ¢ should be correlated with the respective frequencies in ¢t — 1 due to the
common dependency on the business cycle. See for example BAR (2000).
39 Albeit only on the level of country default rates: see e.g. BAR (2000).
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Concerning CR, we think that a clarification of the theoretical model is necessary.
Either the factors that drive joint defaults are not interpreted as portfolio default
rates; then the model can be reduced to the CR-GO version. Or the portfolio default
rate is still used as economic intuition; then it is necessary to construct a consistent
model that (a) allows for a different dependence of obligors on systematic factors and
(b) still has interpretable components. In particular, the role of the idiosyncratic sector
should be clarified. We have demonstrated that by employing such a sector in the way

it is done in the current CR framework, portfolio risk will be underestimated.*®

Finally, the underestimation of portfolio risk arising in the context of multi-year de-
fault probabilities could be avoided for all reduced-form models if multi-year default

probabilities were derived directly from multi-year default rates.

2.3.2 Structural Models
2.3.2.1 Model Setup

The structural approach rests on the following two building blocks.

1. The joint distribution of the obligors’ asset value processes.
2. The obligors’ capital structure.

3. The default event definition employed to determine joint default probabilities.

We first turn to the theoretical justification of the distributional assumptions concern-
ing the firms’ asset value processes. If (unanticipated) asset returns are independent
in time, identically distributed over each time interval with the same length and have
finite variance, then - by the central limit theorem - the asset value processes will fol-
low a multidimensional geometric Brownian motion.*! Serial independence in time can
be derived from the efficient market hypothesis (see FAMA (1970)). Identical distri-
bution over time intervals with the same length builds on the idea that the nature of

unexpected asset returns does not change over time.

Can this model be backed by empirical results? When trying to test hypotheses about
the distribution of asset returns, one faces the problem that asset market values cannot

be observed directly, since not all of a firm’s obligations are traded in the market.

40See the discussion in section 2.3.1.1.
41Gee e.g. Cox AND MILLER (1990).
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As a first approximation, one can investigate equity returns of firms with a very low
probability of default. In this case, equity and asset returns should perform sufficiently
similar. In general, studies on equity returns tend to find that - while not being perfectly
accurate - the normal distribution seems to be a first approximation. However, there
are important deviations of empirical return distributions from the normal family (in
particular skewness and fat tails). A next natural step towards a better fit to empirical
data is to drop the (rather artificial) assumption of finite variances in the reasoning
given above. This enlarges the family of potential distributions for returns to the
(parametric) class of stable-law distributions. Stable-law distributions can account for
fat tails and skewness.*? The second important empirical objection against a Brownian

motion model of equity returns is time-varying volatility.*?

These results on equity returns give first hints on whether the Brownian motion model
might be a good description for a firm’s asset value process. However, for a final
assessment it is important to test this assumption more directly using asset-value series
derived from stock prices and debt structures. In doing so, the two building blocks
of the structural approach, distributional and capital structure assumptions, become
interdependent. To our best knowledge, the only empirical evidence on the distribution
of model-implied asset value returns has been provided by KMV. According to their
studies, actual data conform quite well to this hypothesis for the univariate case,** but
nothing is said about the accuracy of the multivariate distributional assumptions. Of
course it also lies in the commercial interest of KMV to provide evidence in favor of

their own approach; therefore these statements should be treated with some caution.

Concerning the second building block (capital structure assumptions), it should be
noted that - compared to arrangements in the practice - KMV and NPV assume a
quite simplistic capital structure. We will comment on this later when presenting our

suggestions for the structural approach in section 2.3.2.3.

Finally, a major advantage of the NPV model compared to KMV and CM is that
default is modeled as an absorbing barrier that can be reached at any time within the
risk management horizon when equity holders choose to exercise their default option.
KMV and CM on the other hand only allow for the default of a firm at the end of
the risk management horizon which, of course, is unrealistic. On the other hand,

the KMV technique of using theoretically derived univariate default probabilities not

42Gee FAMA (1970) for a discussion of the literature and RACHEV, SCHWARTZ, AND KHINDANOVA
(2000) for a more recent contribution.

43Gee again RACHEV, SCHWARTZ, AND KHINDANOVA (2000).

4Gee CROUHY, GALAI, AND MARK (2000), p. 87.
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directly, but only as an intermediate measure for group-building, seems superior to
the sole reliance on theoretical results. It is, however, completely unclear why the
theoretical default probabilities are not employed directly as group-building indices.
Using a different scaling, such as KMV’s DD measure (which is the quantile of the
default probability under the standard normal distribution), implies that the variation
of default probabilities will be much higher in some classes than in others. This, of

course, is unfavorable.

2.3.2.2 Calibration

The CM approach uses rating-class default frequencies to determine univariate default
probabilities and equity-index return correlations as proxies for asset index return cor-
relations. The former is problematic since it does not take into account that default
probabilities vary through the business cycle. The latter might be an appropriate ap-
proximation for highly rated firms, for which equity and asset values should perform
sufficiently similar. However, it will be problematic for firms with a substantial prob-
ability of default. Additionally, equity volatility and therefore equity index volatility
is relatively unstable over time,*® which is not reflected in CM’s estimation procedure.
Finally, it is also unsatisfactory that the relative size A? of a firm’s systematic return

component is chosen by rules of thumb and is not based on a quantitative analysis.

The approach of KMV and NPV avoids these problems by relying on asset value data.
However, the proposed methods are not practicable for non-quoted firms.*® Comparing
the methods of determining asset correlations of JPM and KMV on the one hand and
of NPV on the other hand, it should be noted that empirical studies on the correlation
structure of equity returns come to the very robust result that traditional-industry-
index models are dominated by market-index models. Provided that these results can
be generalized for asset returns, the NPV approach is superior to the one employed
by KMV. In this context it should also be noted that it is straightforward to make
the current NPV model suitable for the management of international portfolios with
obligors placed in different markets (e.g. US and Europe): the single-index model
can easily be generalized to a multi-index one. Finally, recent research seems also to

suggest that fundamental models, relating equity returns to macroeconomic variables,

45Gee e.g. CROUHY, GALAI, AND MARK (2000), p. 88.
46Note that KMV has extended its model to non-quoted firms. However, there is, to our knowledge,
no publicly available documentation of this extension.
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might outperform market-index models;*” this points to a potential source of further

improvements.

2.3.2.3 Suggestions

Our suggestions for the structural approach can be summarized as follows. First, an
appropriate mix of the KMV and the NPV firm model can be seen as a reasonable
starting point for producing asset value data and modeling joint defaults. Using this
model, the most important assumptions about the distribution of the firms’ asset value
processes should be tested empirically, i.e. multivariate normality of asset returns and
the stability of the parameters ;% and 0¥ over time.*® Second, to fully specify the mixed
structural model, a method for determining asset-return correlations has to be chosen.
Using the asset-value data obtained from the model, empirical research should be
conducted to assess which of the discussed approaches is the most promising (market-
index models, industry-index models or fundamental models). Third, we suggest how
to extend the KMV model to non-quoted firms. We will discuss each of these points

in turn.

Firm Model When deciding about the appropriate option-pricing model to be em-
ployed to produce asset value data, one can choose among quite a variety of models.
Both models proposed in the credit risk context (KMV and NPV) assume a very sim-
ple capital structure, which might be regarded as unrealistic for many firms. More
sophisticated modifications of the original Merton model have been discussed in the

literature (see BOHN (1999b) for an overview). However, as Bohn notes:*’

“The cost of these modifications is tractability. The more realistic the model
becomes, the more complex is the resulting valuation equation. In some of
the more extreme cases we must rely on numerical solutions which can be
unintutitve and computationally expensive. Even in the cases where we can
find closed-form solutions, we may lose clarity regarding the factors driving
the value. More often than not, however, we end up with equations charac-

terized by numerous parameters that are difficult to estimate. Finding the

47For an overview of the empirical evidence on correlation models for equity returns see ELTON AND
GRUBER (1995).

48Remember that p” and oV denote the mean and the standard deviation of instantaneous asset
returns respectively.

49Gee BoHN (1999b), p. 20.
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appropriate balance between realism and tractability requires assumptions
and approximations. Empirical research can illuminate the aspects of these

models that can be simplified or even ignored.”

Our own assessment is very much along these lines. We therefore advocate to start
with firm models that are as simple as possible. Empirical support for such a position
has been provided by (BOHN 1999A) who showed that credit spread data can be fitted

reasonably well with a model even simpler than the original Merton framework.

Both models discussed here (KMV and NPV) are simple enough to provide a reasonable
starting point. The NPV approach seems to be more accurate with respect to the
theoretical derivation of default probabilities (since it can account for default prior
to the risk management horizon). On the other hand, the KMV technique of using
theoretically derived univariate default probabilities not directly, but only as an index
for group-building, seems superior to the sole reliance on theoretical results. However,
group-building should rely directly on theoretical default probabilities and not on a

derived measure such as KMV’s “distance to default”.

We therefore suggest to use the theoretical NPV default probabilities as index for group-
building. Group default frequencies can then provide the estimates for the univariate
default probabilities of the group members. Finally, joint default probabilities can
again be calculated from the NPV formula, using exogenous default barriers k; derived

from the empirically determined univariate default probabilities. *°

Using this “mixed” firm model, the most important underlying distributional assump-
tions about the firms’ asset value processes should be tested empirically: multivariate
normally distributed returns and the stability of the parameters u” and o” over time.
Concerning the latter assumption, it should be noted that the well documented phe-
nomenon of time-varying equity-return volatility can be explained by a firm model with
stable asset return distributions over time. As has been pointed out by BENSOUSSAN,
CROUHY, AND GALAI (1994), stable asset return volatility would imply that equity-
return volatility fluctuates with the firm’s default probability, since the elasticity of the
equity value with respect to the underlying asset value changes with a firm’s leverage.
Empirically investigating asset value models as proposed above could therefore also

provide important insights for equity research.

501f the KMV version is used nevertheless, then at least the sensitivity of joint default probabilities
should be assessed with respect to the simplifying assumption that default can only occur at the end
of the risk management horizon.
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Correlation Model To assess which of the proposed methods of determining asset
return correlations works best, the empirical research on equity-return correlations
should be reproduced for asset returns. The evidence of equity research suggests that it
should be sensible to start with simple index models that explain correlations solely by
the co-movements of the firms’ asset values with the market. While performing robustly
better than traditional-industry-index models for equity returns, such models would
also have the charm of simplicity. However, it should be checked whether fundamental

models might not further improve the correlation models’ performance.

Finally, it should also be stressed that in risk management correlation models are
intimately related to the topic of hedging undiversifiable risk. If the correlation models
are constructed around publicly available and well documented indices, then a bank
can hedge its exposure to these indices. Fundamental models rely on such indices
per definition (e.g. interest rates, economic growth rates) and the method of KMV
explicitly constructs such indices (which could be published). The approach of NPV
would have to be refined in so far that an index for the asset value of the complete
market would have to be constructed. This should, however, be achieved rather easily

by aggregating microeconomic firm data.?!

Extension to Non-Quoted Firms While CM can deal with non-quoted firms, we
have already seen (a) that the determination of univariate default probabilities by CM
is problematic, (b) that equity index returns might be too crude an approximation
for asset returns and (c) that the grouping of firms according to traditional industries
might not be optimal. If the KMV and NPV approach is extended to non-quoted
firms, two issues have to be taken up. First, the determination of univariate default
probabilities and second the derivation of asset return correlations. For both issues,
group-building could be the method of choice. If groups of firms can be identified that
are sufficiently homogeneous with respect to default probabilities and asset returns,
and if the groups contain quoted as well as non-quoted firms, then the correlation
and default probability results obtained for the former can be used as a proxy for the

latter.5?

For univariate default probabilities, rating classes may be a first obvious group choice

which later on might be refined by industry- or country- specific rating classes.*® Con-

51For examples of how to construct such aggregates see ANDERSON AND SUNDARESAN (2000).

520f course it is necessary that “group membership” is identifiable for quoted and non-quoted firms.

53Note that the crucial difference to the JPM method is that - by determining average rating class
default probabilities for quoted firms from a KMV- or NPV-type firm model - estimates for univariate
default probabilities will reflect business cycle information contained in the stock prices.
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cerning asset-return correlations, remember that group building via traditional indus-
tries proved to be not particularly successful for equity-return correlations. It should
therefore be thought of trying to construct pseudo industries as it is done in equity-
return research. Started by FARELL (1974), who extracted four types of pseudo in-
dustries (growth stocks, cyclical stocks, stable stocks, and oil stocks), pseudo-industry

models are applied in more sophisticated ways in today’s investment banking practice.

To assess the relative performance of the different group-building techniques, estimates
(of default probabilities and return correlations respectively) for quoted firms can be
calculated once using the procedure that is only viable for quoted firms and once using
group building. It can then be evaluated which group-building technique produces

results that fit best to the estimates obtained under the quoted-firm procedure.

2.4 Conclusions

In this chapter we have discussed the joint-default models of the four major, currently
available credit risk frameworks: CreditMetrics (CM), Portfolio Manager (by KMV),
CreditRisk™ (CR) and CreditPortfolioView (by McKinsey, McK). Moreover, we have
also included two new versions of current joint-default models, one for CR, presented
by GORDY (2000) (CR-GO), and one for KMV, presented by NICKELL, PARRAUDIN,
AND VAROTTO (1999) (NPV). Following the literature we have divided the six models
into two classes, labeled “structural models” (CM, KMV and NPV) and “reduced-form
models” (CR, CR-GO and McK) respectively.

We have attempted to identify the most severe drawbacks of the proposed models and
suggested measures for improving them. These measures contained short-term fixes
as well as a long-term research agenda. In sections 2.4.1 and 2.4.2 we summarize our
major insights with respect to reduced-form models and structural models respectively.
Drawing on these results, we finally compare the structural and the reduced-form ap-
proach to joint-default modeling in section 2.4.3. We conclude that the mixed struc-
tural model proposed in section 2.3.2.3 is the conceptually most convincing basis for

second-generation models.

2.4.1 Reduced-Form Models

Our findings with respect to the reduced-form models are as follows. First, we have

argued that the arbitrary nature of the assumptions about the systematic risk factors’
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distribution and about the functional form of conditional default probabilities is the

most important drawback of the reduced-form approach to joint-default modeling.

Second, the assumption of conditional independence given portfolio default rates (CR)
or industry- (country-) default rates (McK) is adequate as long as all systematic risk
can be represented by a one-dimensional random variable. This could be appropriate
for portfolios where all obligors are placed in one single (equity) market (e.g. the US
market).’® However, for multi-market portfolios (e.g. US and Europe), more factors
should be necessary. We have argued that if this is the case, McK should still perform

quite well while CR will underestimate portfolio risk.

Third, we have demonstrated that all reduced-form models underestimate portfolio risk
for multi-year risk management horizons; when calculating multi-year default probabil-
ities from the one-year formulas, they neglect the influence of future realization of the
systematic variables on today’s conditional default probabilities. We have suggested

that this could be avoided by directly modeling multi-year default rates.

Concerning the reduced-form models’ calibration, we have argued that it is important
for the CR-~type models to adapt the estimations of mean and variance of default prob-
abilities to the business cycle. We have outlined that this may be achieved by using
returns on aggregate asset indices as systematic factors and by additionally modeling
changes in conditional default probabilities over the business cycle. This would also
allow to complete the calibration of CR-GO through a direct estimate of the system-
atic factor’s variance. For McK, the estimation of the parameter that measures the
sensitivity of default probabilities with respect to default-rate realizations seems to be
the most problematic part of the model’s calibration. It has to be assessed empirically
whether a robust estimation technique can be found and whether this parameter is

stable over the business cycle.

Finally, concerning CR, we think that a clarification of the theoretical model is neces-
sary. Either the reduced version CR-GO is used or a consistent interpretation of the
weighted multi-sector version should be developed. In particular, it has to be clarified
why risk-reducing diversification effects enter the CR model via two channels. First,
via the fact that default events are assumed to be independent given the systematic risk
variable. Second, via an additional idiosyncratic sector. We have argued that the first
channel is sufficient and that adding the second one will lead to an underestimation of

portfolio risk.

54Research on equity-return correlations seems to suggest that a market portfolio index is a quite
good measure for the systematic-risk exposure of firms in a common market (see ELTON AND GRUBER
(1995)).
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2.4.2 Structural Models

The second part of this chapter was concerned with structural models. We have pointed
out that JPM has the important disadvantages that (a) univariate default probabilities
are not sensitive to changes in the macroeconomic environment and (b) that equity
index returns might be too crude an approximation for asset returns. Our analysis has
therefore focused on the models of KMV and NPV, which avoid these problems. These
models rely on asset value data which are produced by employing option-pricing. While
recognizing that both models might be quite simplistic with respect to the specification
of the capital structure, we have argued that it makes sense to start with such simple

models.

Comparing both firm models, we have identified the most problematic assumption in
the KMV model, namely that (as in CM) firms are assumed to default only at the end
of the risk management horizon. NPV uses the more realistic approach of modeling
default as an absorbing barrier of the firm’s asset value process that can be reached
at any time within the risk management horizon. We have therefore proposed that a
“mixed” firm model employing the theoretical setup of NPV, and the group-building
technique of KMV (to empirically determine univariate default probabilities) would
be the best starting point for next-generation structural joint-default models. Using
the asset value data produced by this mixed model, the following issues should be

addressed empirically.

First, the adequacy of the assumptions about the distribution of asset returns should be
assessed (multivariate normal distribution and stability of mean and standard deviation
in time). Second, to fully specify the mixed structural model, a method of determining
asset return correlations has to be chosen (market-index models, industry-index models
or fundamental models). Using the asset value data obtained from the model, the best-

performing method should be identified empirically.

Finally, we have suggested a method of extending the scope of structural models to non-
quoted firms, which does not share the major deficits of the CM approach. Univariate
default probabilities and asset return correlations could be determined by building
groups of quoted and non-quoted firms. If group members are sufficiently homogeneous,
results obtained for the quoted firms can then be used as a proxy for non-quoted ones.
A case in point would be group-building via rating classes (for default probabilities)

and empirically determined pseudo-industries (for asset correlations).
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2.4.3 Comparison

Using the above observations and suggestions we finally want to argue why - in our
view - the structural approach to the modeling of joint defaults should be favored.
As has already been pointed out, the major drawback of the reduced-form models is
the arbitrary nature of the distributional assumptions involved. When backtesting
these models or comparing them with other models, it is completely unclear why the
actually proposed distribution should be used and not any other distribution that does
not violate the few qualitative restrictions that can be made. This question is especially
hard to answer when recognizing that quantiles belonging to extreme probability levels
are the most important output of credit risk models; these quantiles will very likely
depend on the higher moments of the default rates’ distribution® and on the specific
functional form chosen for conditional default probabilities. Both cannot be estimated

from empirical data.

Moreover, even if a potential default-rate distribution is determined, it will be difficult
to test its accuracy empirically since default data are recorded on an annual rather than
on a monthly or even shorter-term basis (as it is the case for stock returns). Aggravat-
ing this problem, there is strong theoretical and empirical evidence that default-rate

distributions vary significantly over the business cycle.

In contrast, the structural approach can use the Brownian motion model for the asset-
value process and a sufficiently simple capital structure as a starting point to test
distributional assumptions and model performance. Data availability is much better
and the case for the distributional stability of unexpected asset returns over the business

cycle is much stronger than for default probabilities and default-rate distributions.

If the starting point proves to be too simplistic, it would be possible to move to more
sophisticated models that are already available in the theoretical literature. Of course
it could well turn out that reality is too complex for sufficiently simple firm models to
be a sensible first-order approximation. But we think that the successful application
of very simple structural models for default prediction, estimation of univariate default
probabilities, and in the area of bond pricing is a quite encouraging sign for structural
models to become a practicable and reasonably accurate approach to the management

of default risk.¢

55Recall that default rates are the systematic factors used by CR and McK.

56 KMV has published several studies on the performance of its EDF measure with respect to default
prediction and default probability estimation (for further assessments see also CROUHY, GALAI, AND
MARK (2000), pp- 92-93). For the application to bond pricing see BOHN (1999a).
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Do these conclusions stand up when extending the focus from the narrow view on
joint-default modeling to the complete credit risk management framework where loans
may not mature at the end of the risk horizon 7" and thus have to be repriced in 77 In
this general setting the case for structural models seems to be even stronger. Pricing
loans is a natural application of the option-pricing models on which the structural
approach is based. Indeed, these models have been developed to price bonds and were
then extended to the field of credit portfolio management. The same cannot be said
for the reduced-form models we have discussed. While CR does not allow for repricing
of loans at all, McK can deal with repricing but employs an ad-hoc specification for
pricing risky future cash flows that uses average credit spread data. KMV, in contrast,

builds on a full-fledged risk-neutral-pricing framework.

It should, however, be noted that a new reduced-form model with a state-of-the-art
contingent claims pricing framework and abstract systematic risk factors (instead of
default rates) has been proposed by JARROW AND TURNBULL (2000). While this
model does not share the methodological problems of McK and CR, it does share the
major drawback of reduced-form models, namely the arbitrary nature of distributional
assumptions. Moreover, the model is calibrated using price data for publicly traded
bonds. This raises the question of how the bond prices entering the calibration have
been determined in the first place, or more generally, how the different securities issued

by a firm should be priced.

While a financial analyst can be expected to assess expected future cash flows and
derive a firm’s asset value by risk-adjusted discounting, she will need the guidance
of a theoretical model to split the asset value into the values of a firm’s different
contingent securities (such as bonds and equity). But the generally accepted and also
most convincing approach to do this is the option-pricing framework as employed by

the structural approach.

In summary, the structural approach - compared to the reduced-form approach -
presents a unified, consistent and more complete framework for the pricing and manage-
ment of portfolios of corporate securities. These properties will prove to be particularly
important for the development of future models that should allow to manage all assets

of a bank within a single risk management framework.
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2.A Appendix

Proof of lemma 2.2.

If S; is a scalar and uf(+) is strictly de- or increasing in S;, then the event {S; = s}
can be equivalently described by {u? = u¥(s)}. Hence, denoting the density of S; and

uY by fs and fup respectively, we obtain:
]P{Bl = b} = / H]P{Bz,l = bz |Sl = S}fs(s) ds
i=1
= [ TIP{Ba = bl = @) fs() ds
i=1

- / [P {Bis = by [4F = r} o ()
=1

Proof of lemma 2.3.

(i) If loans are homogeneous with respect to size (i.e. L; = L for i = 1,...,n), then

P{> LB, =q} = ]E]P{ZBM = q/L| sl}
=1 =1
= EP{X,s, =q/L}

where X, p is a random variable with £(X,») = L3 7, X;) and X;, .., X, are inde-
pendent Bernoulli variables with Y"1  IP{X; = 0} = p. The same formula is derived

under the assumption of conditional independence given pu!.

(ii) If conditional default probabilities are homogeneous, then we obtain
P{B; =b} =EG(S)" ][]
i=1

Moreover, pf = G(S1)(3_, ¢;), implying that conditional default probabilities are

n

given by pi(u7) = cipi/(OSr, ). This in turn shows that joint probabilities are
calculated correctly under the assumption of conditional independence given u?.
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Derivation of conditional default probabilities for example 3

To derive the conditional default probabilities, we assume that, for arbitrary s;, u* (s, -)
is a strictly decreasing, continuous function of the second systematic factor Sy, and
that u" (s1,) takes all values between 0 and 1 if s, varies between —oo and +00.>” This
implies that if uf = 7, then for an arbitrary realization s; of S;, there is an unique

value Sy(s1,7) so that p® <31, Sa(s1, r)) = r (Mean value theorem). Therefore

fj;opz (81, SQ(Sla Nf)) f(81, 52(31, 'uf)) dsq
fjoc;of(sl, S?(Sla:u’f)> ds; '

pz’(/if) =

Multi-year default probabilities (reduced-form models)

Without loss of generality we assume that 7' = 2 and that B;, =0 for ¢ = 1,..,] and

By =1fori=1+1,..,n. In this case we obtain:

]P{B2 = b2} = ]E]P{B2 = b | Sz,Bl}
= E [1_1[ {B;1 = 0}[1 — pi(S2)]
. ﬁ {1{31',1 = 0}pi(S2) + 1{Bi, = 1}}]

= E [H]P{Bi,l = 0[Sy, So}[1 — pi(S2)]

=1

. f[ {]P{Bz,l = O|Sl, Sg}pZ(SQ) + IP{Bi,l = 1|Sl, SQ}}] .

1=l41

Note that the last equation can be derived by applying the conditional expectation
operator IE[-|S;, Sy]. On the other hand, using formula (2.1) for 7' = 2, we find that

]P{B2 - b2} - ]E]P{B2 — b, | sl,SQ}

- [H“ — pu(S1)]- [(L = pi(S2)

. ﬁ {[1 — pi(S1)]pi(S2) +pi(sl)}].

i=l+1

5TNote that this condition is fullfilled for the specifications of p;(-) given in example 3.
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Comparing expressions leads to the statement that, by using formula (2.1) to deter-
mine multi-year default probabilities from the one-year framework, one assumes that
IP{B;1 =b;|S1,S:} =P{B;1 =b;|S:} (i=1,..,n).






Chapter 3

Default Probabilities and Default

Correlations

Abstract. Starting from the Merton framework for firm defaults, we provide the
analytics and robustness of the relationship between default probabilities and default
correlations. We then derive the implications of these results for the impact of macroe-
conomic shocks on credit portfolios, for the pricing of loans, and for the design of credit

risk models.
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3.1 Introduction

During the last two decades portfolio considerations have become a central issue in
credit risk management. A crucial ingredient for any portfolio consideration in the
credit risk context are the correlations of loan returns. They are termed default corre-
lations in the literature since the probabilities of joint defaults are the major building
blocks of loan correlations. In this chapter we examine the relationship between (uni-
variate) default probabilities and default correlations. The analysis is motivated by

two questions.

The first question concerns the pricing of loans with different default probabilities.
In current practice, loan prices usually merely reflect the impact of higher default
probabilities on expected returns. If, however, loans with a higher default probability
also contribute more to the portfolio standard deviation (as we will show to be the
case), then the marginal increase of economic capital when adding such a loan to the
portfolio will be higher than for loans with lower default probabilities. Moreover, if
these differences are substantial (as we will also show), then it is important for loan
prices to reflect these differences. By the variance-covariance formula, the contribution
of a loan to a portfolio’s standard deviation consists of its own standard deviation and
of its correlations with other loan returns, i.e. its default correlations. In the simplest
setting, the standard deviation of a loan is a multiple of \/m where p is the
firm’s default probability.! Therefore it is easy to see that the standard deviation will
increase in p. This is called the variance effect of an increase in default probabilities.
However, it is not clear how default correlations will react to changes in p. This effect

is called the correlation effect.

Second, it has long been recognized that default probabilities change with the state of
the economy and that credit risk models should take this into account, since higher
default probabilities imply higher expected losses.? However, the way in which these
changes in default probabilities affect the second important building block of the loan
portfolio distribution - the portfolio standard deviation - has only recently been ad-
dressed. Using a simulation approach, GERSBACH AND LIPPONER (2000) have demon-
strated that adverse macroeconomic shocks - by increasing default probabilities - can
raise default correlations. They show that this effect may account for more than 50%

of the increase in the credit risk caused by the shock. In this chapter we will provide

'In such a setting, the return on the loan can be described as multiple of a Bernoulli variable that
is either equal to 1 (default) with probability p or equal to 0 (no default) with probability (1 — p).
2See e.g. WILSON (1998) or, more recently CROUHY, GALAI, AND MARK (2000).
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an analytic foundation for the connection between negative macroeconomic shocks and

loan default correlations.

Following the structural approach to credit risk, which has already been described in
chapter 2, we construct our model along the same lines as MERTON (1974). The returns
on a firm’s assets are assumed to be normally distributed and loans are modeled as
a claim on the value of the firm. This value is measured by the price at which the
firm’s total liabilities can be purchased; it is thus equal to the value of the stock
and the value of the debt. Default on loans occurs if the market value of the firm
falls below a certain threshold which depends on the firm’s liability structure. In a
sufficiently simple framework, the joint default behavior of two firms can therefore be
described by two indicator variables 1{Z; < 21} and 1{Z, < 2}.*> Z; and Z, are two
normalized, correlated, jointly normally distributed random variables that describe the
firm’s standardized returns. If, for example, the standardized returns of the first firm
fall below the threshold z;, the firm will default. We call z; and z, the respective
default points of the firms. An increase in default probabilities will shift default points
to the right. We examine how such a shift changes the default correlation of the two

firms.

Our findings are as follows. Default correlations increase under a homogeneous shift
to the right (i.e. both default points increase by the same amount). The same is
true if the shift is more pronounced for the firm with the lower likelihood of default.
Default correlations may only decline if the downward shift for the lower rated firm is

significantly higher than that for the higher rated firm.

Furthermore, at a structural level the correlation effect is made up of two interwined
effects. First, when default points move to the right, the skewness of each of the indi-
cator variables will be reduced.* As a consequence, they will reveal more information
about the correlated underlying firm returns. Default correlations rise and move closer
towards return correlations. We call this phenomenon the skewness effect (SE). Sec-
ond, the distance d := 2z, — z; between default points may change. Default correlations
should decrease in d since it will become harder to infer the state (default/no default)

of one firm when observing the state of the other firm. We call this effect the distance-

3Note how the indicator function 1{-} is defined. 1{A4} is equal to 1 if statement A holds and equal
to 0 if statement A does not hold.

4The term “skewness” in the context of Bernoulli variables refers to the fact that the probability
of one outcome is higher than the probability of the other one. In our case both indicator variables
would be unskewed for z; = 23 = 0. Moreover, note that default probabilities of loans are usually
lower than 50%, implying that z; and 29 are smaller than zero and that the binary default variables
are skewed towards zero. A shift to the right will therefore reduce skewness.
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of-default-points effect (DDE). However, changing the distance between default points
necessarily changes the distance from zero for at least one default point. Hence DDE
cannot be completely separated from SE. If the default point of the firm with the lower
probability of default increases more than that of the other firm, skewness increases
and d decreases, which implies that both effects work in the same direction and default
correlations increase. In the opposite case, both effects work in different directions and
it will depend on the parameters (the location of z; and z, and the asset correlation)

whether the default correlations increase or decrease.

With respect to the two questions posed at the beginning of this introduction, our
results suggest that loan prices should reflect the higher contributions to economic
capital of loans with a higher default probability. Moreover, we indicate that portfolio
standard deviation and hence economic capital can increase significantly under negative
macroeconomic shocks. While for the pricing of loans both effects (SE and DDE) are
relevant, we argue that, for the impact of macroeconomic shocks on credit portfolios,
the distance-of-default-points effect will tend to cancel out while the skewness effect
remains. We will also discuss the consequences of these results for the adaptation of

credit risk models to the business cycle.

Finally, our results remain robust under various generalizations of our original model.
First, we allow for endogenous recovery rates where the severity of the default de-
termines the value of firm assets that can be recovered. Second, by considering loan
maturities that are longer than the risk management horizon, we address scenarios
where changes in the portfolio value stem from rating migrations rather than from firm
defaults. We show that the qualitative nature of our results is robust with respect
to such scenarios. Finally, we demonstrate that any alternative distribution for asset
returns yields the same results as long as a monotonic transformation into a bivariate

normal distribution exists.

This chapter is organized as follows. In the next section we introduce the model and
present our analytic results. Moreover, we discuss and illustrate the consequences of
these results for credit risk management. In section 3.3 we investigate the robustness

of our results with respect to crucial assumptions. Section 3.4 presents our conclusions.

3.2 Analytic Results and Applications

In this section we analyze the relationship between default probabilities and default

correlations, and discuss the consequences of this analysis for the impact of macroeco-



3.2 Analytic Results and Applications 59

nomic shocks on portfolio standard deviation and for the pricing of loans. In section
3.2.1 we present the model, and in section 3.2.2 we analyze the relationship between
default probabilities and default correlations qualitatively, deriving our main analytic

results. The applications of these results are discussed in section 3.2.3.

3.2.1 The Model

As a starting point, we employ the risk-of-ruin or option-pricing model developed in
WiLcox (1973), MERTON (1974) and SCOTT (1981). The probability of a firm going
bankrupt depends on both the market value of the firm’s assets relative to its outside

debt and on the volatility of the market value of the assets.

Using ¢ as time index, we consider a bank holding a credit portfolio consisting of loans
to two firms (1 and 2) and undertaking risk management in ¢ = ¢;. The loans are due
in ¢t = 9, and we assume that the bank’s risk management horizon is identical with the
date at which the loans mature, i.e. the bank is interested in the distribution of the
t = t, value of its portfolio.” We denote the two firms’ asset values in ¢ by V;, and Va
respectively, and assume that the debt obligations of both firms are due in t = ¢, (we
denote the sum of these obligations by v; and v, respectively). According to the option-
pricing model, default of firm 7 in ¢ = ¢, occurs if V;;, < v;. We assume that in this case
the firm will repay an exogenously determined fraction of the loan’s principal (recovery
rate),® while in the other case the complete amount is repaid. Therefore, the stochastics
of the portfolio payoff in ¢ = t, can be characterized by the joint distribution of the
binomial random variables 1{V; ;, < v;} and 1{V4;, < vs}. In the standard framework
of the option pricing approach, this distribution is characterized via the distribution
of the continuously compounded rates of asset returns Z;;, = log(Vi,/Vis). The
vector (Zi t,, Zo4,) is assumed to be independent of (Vi 4,, V24, ) and bivariate normally
distributed with correlation coefficient p > 0.” Note that the event V;;, < v; can be

equally well described as
Zit, <log(v;) —log(Viy,). (3.1)

Moreover, from a ¢t = t; perspective the vector (V] ,,, V2., ) is fixed and the joint distri-

bution of (Z14,, Z24,) does not depend on the realization of this vector. Hence we can

5In section 3.3.2 we consider the case where the loans mature after the risk management horizon.

6We consider the case of endogenously determined recovery rates in section 3.3.1.

"Note that this scenario is usually derived from an extension of the MERTON (1974) framework.
Asset values in time are described by a two dimensional geometric Wiener process. This model is
described in more detail in section 3.3.2.
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normalize equation (3.1) with respect to mean and variance of Z;;,. We conclude that
it is sufficient to analyze the joint distribution of the Bernoulli variables 1{Z; < z;}
and 1{Zs < 2} where (Z1, Z,) are standardized, bivariate normally distributed random
variables with correlation p and

2= e (i=1,2). (3.2)

Throughout this chapter we will assume that z; < 2z9. The correlation between the two

def(zla 22, p)

Note that since default probabilities are given by p; = ®(z;),® the relationship between
def

Bernoulli variables is termed default correlation and is denoted by pf = p

monotonically translates into a respective relationship
def

default points (21, z2) and p
between default probabilities (p1,p2) and p®. We will use either of these representa-

tions as convenient.

3.2.2 Analytic Results

In this section we describe the relationship between default probabilities and default
correlations in qualitative terms. If default probabilities change, default points will
also change accordingly. Such a shift in default points has two consequences that prove
to be important in understanding the relationship between default probabilities and
default correlations. First, the distance of the default points from zero will change.
Second, the distance d = 25 — z; between default points may change. In order to
isolate these two effects, we first consider an increase of z; and z, with the distance
between the default points remaining constant. We denote the partial derivatives of
p%! with respect to z; and zo by p{* and pd®f respectively and obtain the following

result.

Proposition 3.1
Consider a homogeneous move of both default points to the right (i.e. a move where

the distance between default points remains constant).

(i) If p,p; < 50%, then default correlations increase (p°f + pgef > 0);

(ii) If p1,p; > 50%, then default correlations decrease (pd°f + pd°f < 0 ).

As for all other propositions, the proof of proposition 3.1 is given in appendix 3.A.

The reasoning behind proposition 3.1 runs as follows: If z; < 0 (i = 1,2), then a

83 (-) denotes the cumulative standard normal density function.
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homogeneous shift of z; and z, to the right will reduce the skewness of the binary
variables 1{Z; < z;} and 1{Zy < 2z5}. The less skewed these binary variables are,
the more information they reveal about the correlated underlying variables Z; and Z,.
Accordingly, default correlations increase towards the higher correlations of returns. If
21,22 > 0, skewness increases when default points shift to the right and hence default
correlations decrease. We call this phenomenon the skewness effect (SE). In practical
applications we are mainly interested in the case z1, zo < 0 since default probabilities
higher than 50% are not relevant. Nevertheless, the result for z;, 2, > 0 confirms the

reasoning we propose. For the rest of the analysis we will focus on the case 21, 2o < 0.°

Std. Returns of Firm 2
o

Std. Returns of Firm 1

Figure 3.1: Scatter plot of two standardized, bivariate normally distributed random variables
with correlation p = 50%.

Why does a reduction of skewness increase default correlations? Figure 3.1 shows
the scatter plot of two normally distributed correlated random variables describing
realizations of the pair (71, Z2). Note that the corresponding scatter plot for the derived
binary variables 1{Z; < z;} (i = 1,2) would depict only four points ((0,0), (0, 1), (1,0)

and (1,1)). The frequency with which each of these four possible realizations occurs

9Note that results for 21,22 > 0 and for negative correlations are also available in most cases. But
since these parameter constellations are not relevant in practice we will not discuss them.
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Figure 3.2: Stylized “Scatter Plot” of the Figure 3.3: Stylized “Scatter Plot” of the
indicator variables: asymmetric (skewed) indicator variables: symmetric (unskewed)
case. Almost no upward sloping tendency case. Strong upward sloping tendency in
in the data. the data.

can be inferred from figure 3.1 by counting the number of points in the respective
quadrants of the two “coordinate systems” inserted in the figure. The system depicted
with solid lines illustrates the case z; = 29 = —2. In this case the distribution of the
indicator variables is strongly asymmetric: nearly all data points lie in (0,0) (both

firms survive) while there are only very few points in (1,1) (both firms default).

What happens to the frequencies when we move the origin of the coordinate system
along the (broken) 45° line from (—2, —2) to (0,0) (the origin of the system with the
broken lines)? The major effect is that point mass is shifted from (0, 0) to (1, 1) which
reduces the asymmetry of the distribution. As a consequence, the upward sloping ten-
dency in the data increases and this is a manifestation of a higher correlation coefficient
pf. This is illustrated in figures 3.2 and 3.3. The size of the circles around the four
possible realizations is used to illustrate the number of observations (big circle - many

observation, small circle - few observation).

Finally, note that the skewness effect consists of two counteracting effects concerning
the information revealed about 1{Z> < 2z,} when observing 1{Z; < z;} (or vice versa).
The information content of the event 1{Z; < 21} = 1 decreases when default points
increase jointly, while the information content of the event 1{Z; < z;} = 0 increases.
This is because the information about the underlying return realizations decreases
(increases), which in turn impacts on the information revealed about the other binary
variable. If firm 1 defaults, then one can infer that Z; € (—o0,2;). This interval
increases with z; decreasing the information available about Z; from the default event.

This in turn implies that less information about Z, and, hence, about 1{Zy < 2} is
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obtained. The opposite is true for the non-default event. If firm 1 does not default,

then Z; € (z1,00), an interval decreasing in size if z; increases.

We illustrate this point for fully correlated firm returns (p = 100%). Conditional on
the default of firm 2, the probability that firm 1 will also default is ®(z;)/®(22), and
the ratio of conditional and unconditional default probability for firm 1 is therefore
given by 1/®(z,). Hence, this ratio (and therefore the information content of firm 2’s
default) decreases if z; and z, increase. The contrary is true for the information content
of the event where firm 1 has not defaulted. Conditional on the information that firm
1 has survived, the probability that firm 2 has also survived is [1 — ®(23)]/[1 — ©(21)]-
Hence the ratio of the conditional and unconditional probability that firm 2 will survive
is given by 1/[1 — ®(21)] and increases if skewness is reduced. As can be seen from
the arguments in the previous paragraphs, the effect of non-default event information

increasing dominates the effect of default event information decreasing.

We now turn to the second consequence of a change in default probabilities, namely that
the distance d between default points can change. The reasoning based on information
revelation about return realizations implies that default correlations should decrease
in d. We call this effect the distance-of-default-points effect (DDE). Unfortunately,
DDE cannot be completely separated from SE since changing the distance between
default points necessarily changes the distance from zero for at least one default point.
Suppose, for example, that one default point is fixed while the other one moves to
the right. If the smaller of the two points, z;, moves, then both effects should work
in the same direction. Skewness is reduced and the distance between default points
decreases, which should increase default correlations. If, however, zo moves, then the
two effects work in opposite directions and it is no longer clear which one dominates

def Jecreases or increases depends on

the other. Proposition 3.2 shows that whether p
the default point ratio A := 27 /2, and on the asset-return correlation p. To prepare for

the formulation of proposition 3.2, we define

pi()) = (25/32){)\ — V2t 24/25}.
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Figure 3.5: The set DC+ contains all
points below the solid line and visualizes
all combinations (A, p) that fulfill the in-
equality p < p4(1/X). The set DC- con-

tains all points above the broken line and
visualizes all combinations (A, p) that fulfill
the inequality p > 2X/(1 + A\?).

Proposition 3.2
Suppose that py, ps < 50% and consider a move of only one default point to the right.

(i) If z; moves, then default correlations increase (p$*f > 0) if p < p,()\). Note that
this inequality is fulfilled if A < 96% or if p < 56%.

(ii) If zo moves, then default correlations

e increase (p3e > 0) if p < p(1/A)
e decrease (p3f < 0) if p > 20/(1 + N?).

Figures 3.4 and 3.5 visualize the parameter sets for which, according to our theoretical
results, default correlations will increase (DC+) or decrease (DC-). Figure 3.4 depicts
the case where z; moves. In this case, default correlations increase if (A, p) lies in DC+-.
The intuition developed for SE and DDE would imply the more general statement that
pfef > 0 forall0 < A < 1and 0 < p < 1. While a formal proof is not in reach yet,
our simulation exercises have confirmed this conjecture. Figure 3.5, on the other hand,
depicts the case where z; moves. In this case, default correlations increase if (), p) lies
in DC+ and decrease if (A, p) lies in DC-.

Figures 3.6 and 3.7 illustrate the two effects identified in propositions 3.1 and 3.2.

Figure 3.6 demonstrates the skewness effect for the symmetric case where both firms
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Figure 3.6: The skewness effect. The fig- Figure 3.7: The distance-of-default-points
ure depicts the default correlation of two effect. The figure depicts the default cor-
firms with the same default probability p relation between firm 1 (p; = 0.05%) and
when p ranges from 0 to 100% (p = 50%). firm 2 (po ranging from 0 to 50%) (p =

50%).

have the same default probability. Default correlations are maximum when the binary
variables are unskewed, i.e. when default probabilities are equal to 50%. Figure 3.7
visualizes the distance-of-default-points effect for the case where firm 1 has a default
probability of 0.05% and the default probability of firm 2 varies from 0.05% to 50%.

In this case default correlations first increase (high \) and then decrease (low ).

Finally, figure 3.8 summarizes the major insights from propositions 3.1 and 3.2 and
our conjecture. Default correlations increase if default points move to the right and
if the move of the default point associated with the lower default probability is more
pronounced. An analogous result holds if default points move to the left. In the
question-mark ranges both default points move to the left or to the right but it depends

on the parameter vector (), p) whether default correlations will increase or decrease.

The next proposition completes our picture of p by exploring the boundary cases

z1 =29 =0 and 2z, 29 — —o0.

Proposition 3.3

(i) p%! has a local maximum in z; = z, = 0 and

2
p?(0,0, p) = = arcsin(p).
m

(ii) If p <1, then lim, ,  p®(z,z,p) = 0. Moreover, p®(z,2,1) = 1 for all z.
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Figure 3.8: For a given combination of default points (—3,—1.5), the figure depicts the
default-point range in which default correlations are higher than pd¢f(—3,—1.5) (i.e. DC+)
and the range in which they are lower (DC-).

The intuition of the SE and DDE effects developed above suggests that (0,0) is also a
global maximum, which is confirmed by our simulation results. Hence, (2/7) arcsin(p)
can be used as an upper boundary for default correlations. We conclude this section
by stating a result expressing how default correlation changes due to shifts in default

points depend on the return correlation p.

Proposition 3.4
Suppose that z1,z; < 0. Then there are real numbers p;, = pr(z1,22) and pyg =

pu (21, 22) with pr, < pg such that the following statements hold:

(i) (p$ef + pde) is increasing in p for p < py and decreasing in p for p > py.

def

(ii)) p§e is increasing in p for p < py, and decreasing in p for p > py,.

Moreover, if 1075 < p;, py < 0.46, then py € [0.53,0.89).

3.2.3 Applications

After stating our analytic results, we will now discuss their potential applications.

3.2.3.1 Default Correlations and Macroeconomic Shocks

In this section we explore how macroeconomic shocks impact on credit portfolios. In

particular, we address the following questions:
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1. Can default correlations of two firms decrease after a negative macroeconomic

shock?
2. Which correlation effect (SE or DD) is most relevant at the portfolio level?

3. What can be said about the size of the effects?

We start with the first question. Suppose that a macroeconomic shock scales down
the ¢t = t; asset value of firm i by the factor A; (Viy, — A;Viy, ). Then, according to

equation (3.2), z; increases by

—log(4;)

\/ Var(Zi’tQ) ’

ie. z; — 2z +06;.'% Hence, such a macroeconomic shock will move both default points to
the right, but generally by different magnitudes. We can describe this shift by a move
of 0y units in direction (1,d) where § := d,/d;. Note that according to propositions
3.1 and 3.2 and our conjecture, the default correlation between firm 1 and 2 can only
decrease if 6 > 1. Moreover, we can describe the marginal change of default correlations

by the derivative in the direction of (1,0), i.e. by

PpL 4 005 = (1 + p3) + (6 — 1) p5". (3.4)

Since pd°f + pdef > 0, we obtain that p°f + §pd°f can only be negative if pd*f < 0. Note
that for arbitrary asset correlations p we can find a pair (21, 29) for which p§ef < 0
by simply choosing z; close enough to zero (see figure 3.5). However, if we restrict
our analysis to default points associated with default probabilities lower than, say, 10
percent and higher than 10~* percent we obtain that A > 27% and can infer from
figure 3.5 that pd°f can only be negative if p > 9.9%. Moreover, our simulation results
suggest that for fixed 6 and fixed default points z; and zo, there is a critical value
p = p(8, 21, z) so that pdef + §pdef is increasing in p for p < p and decreasing in p for
p > p.' Hence, default correlations will only decrease if p exceeds a certain threshold

ﬁ(d, 21, 22)'

Summing up, we have found that default correlations will only increase if both variables

0 and p are high. In order to assess which combinations of § and p can occur, it is

10Note that §; > 0 since A; < 1.
' Note that for p < pr, and p > pgr this observation is backed by proposition 3.4. For pr, < p < ps,

we only know that (p$ef + pdef) increases in p while (§ — 1)p$ef decreases.
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important to keep in mind that the firms’ exposure to the macroeconomic shock in
t = t; might explain quite a large part of the correlation between returns in t = t,. For
greater concreteness, we add a third point in time, ¢y, define the asset returns from ¢,
to t1 by Z; 4, :=log(Vit,/Vis,), and assume that the firms’ normalized returns depend

linearly on a macroeconomic factor Z° and on idiosyncratic components ;:

Zip — IE Ziy

=0,7° + ey (i=1,2;t=11,1). 3.5
VarZ,,) Pt ( 1,t2) (3.5)

The random variables (€;¢, 27 )i—1,2.1—t; +, are assumed to be mutually stochastically
independent, and 6; and 6, are positive real numbers. Inserting equation (3.5) in
equation (3.2) and using the fact that log(Vi¢ ) = log(Vi,) + Ziy,, we finally obtain
that the default points z; and zo can be written as

2 = Z; — OZZg (’[, = 1, 2)

Z; and Zy are constants that depend on (Vi4, Vay,) 5 (v1,v2), (€1,4,€24 ), and on the
means and variances of Z;,, and Zy, respectively.'”? By normalizing the variance of
Zfl to 1 we obtain that p = 6,6,, 6 = 6,/6, and that 0 < 6; <1 (¢ =1,2). This in turn
implies that 6 < 1/p.

What can we learn from this exercise? First, since the macroeconomic factor respon-
sible for the scale-down in asset values will also explain a certain fraction of the asset-
return correlation p,'® there is a structural relationship between p and §. Second, for
fixed p this relationship limits the possible values for § from above, since p determines
a minimal joint exposure to the macroeconomic factor. Hence, an increase in p will
be associated with a decrease of the upper boundary for . Whether a macroeconomic
shock can decrease default correlations at all will therefore depend on how strongly
the upper bound for ¢§ is depressed when p rises, i.e. on the extent to which the asset
correlations are explained by the macroeconomic factor that has triggered the shock.
In our example, where the macroeconomic factor fully explains the correlation, simula-
tion results suggest that default correlations always increase if the default probabilities

p1 and po lie between 10~ and 10 percent.

12Here we have assumed that Var(Z;+,) = Var(Z;,) (i = 1,2). In the Merton framework, which is
more precisely described in section 3.3.2, this is equivalent to the assumption that (t2 —t1) = (¢1 —to)-
Hence we assume that the risk management horizon and the period during which the macroeconomic
shock is analyzed have the same length.

13In our example the macroeconomic factor fully explains p.
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We now turn to the portfolio level. In an average portfolio, the DD effect will tend
to cancel out, since there should be as many pairs of loans where d decreases as pairs
where d increases. As a benchmark, consider a portfolio where for each loan in the
portfolio with default points (21, z2) and exposure direction (1,¢) there is another loan
with (21, 29) and the opposite exposure direction (§,1). If we add correlation effects

pairwise across the portfolio, the marginal effect of each pair is given by

(1 4 0p5%) +0pi™ + p5™ = (1+0)(p1" + ™) > 0.
On a more practical level, suppose that loans are subdivided into classes according
to their default probability (for example by rating classes). Now calculate the ¢ of
each class by summing all single exposures of loans in that class. If the values for §
in all classes are about the same, then DDE should approximately cancel out and the
whole effect of the shock on portfolio correlations can be described by SE. If, however,
class exposures differ significantly, then DDE might modify or intensify the rise of
default correlations caused by SE. However, even if DDE is significant at portfolio level
and thus modifies SE, then the reasoning above suggests that the overall effect should
still be a rise in default correlations. Moreover, in terms of the whole economy, the
argument that DDE cancels out could be made even stronger, since if credit portfolios
of all banks are considered, the § for each loan class is averaged over a much higher
number of firms. This in turn should imply that the values of § are much more similar
among classes. Therefore, as we turn to the third question posed at the beginning of

this section, we will concentrate on SE.

In order to give an impression of the size of the effects at work, we have calculated
default correlations for different loan types and different macroeconomic scenarios. The

default probabilities associated with these scenarios are shown in table 3.1.

AV A B C

Initial .05 .20 7.12
Shock 1 | -15% || .12 .43 11.20
Shock 2 | -30% || .31 1.01 17.96
Shock 3 | -50% || 1.35 3.56 34.52

Table 3.1: Default probabilities in percent for different loan types and different shock sce-
narios.
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A B C
11 .98 4.21 | .18 1.38 5.18| .53 2.35 5.02
A 1.89 158 136|180 153 1.33| 1.54 1.39 1.28
3.75 262 191|338 244 184 | 2.43 1.98 1.67
10.11 546 3.17 | 8.28 476 293 | 4.48 3.18 2.43
30 2.03 6.89| .92 3.92 8.45
B 1.72 149 1.31 | 1.47 1.34 1.24
3.04 227 1.75| 2.18 1.81 1.56
6.77 413 2.66 | 3.65 2.70 2.10
3.10 11.30 22.65
. 1.26 1.19 1.13
1.56 1.39 1.27
1.95 1.65 1.43

Table 3.2: Default correlations (bold) in percent and scaling factors by which default correla-
tions increase under the shock scenarios. The scaling factor describes the multiplier by which
default correlations change compared to the initial scenario. In each cell of the matrix, the
columns correspond to the different asset correlations chosen. Asset correlations p increase
from left to right (p = 10, 30, and 50 percent). The rows correspond to the different shock
scenarios. The intensity of the shock increases from the top to the bottom row.

The first scenario (initial scenario) serves as a benchmark and the three others describe
deviations from the initial scenario induced by macroeconomic shocks of different in-
tensities. We have chosen three different loan types (labeled A, B and C) which have
different initial default probabilities. The initial default probabilities for each loan type
have been chosen as average one-year default rates of the high, medium and low rating
segments of Moody’s.'* In the three shock scenarios, asset values will be reduced by
15, 30 and 50 percent (i.e. A =0.85, 0.7 and 0.5 respectively).

In order to calculate the resulting changes in default points we finally need to fix
the standard deviation of returns (see equation (3.3)). We have chosen an average
value 0.64 for yearly returns from BERNDT (1991). We have then calculated default
correlations in the initial scenario and derived the factors by which these correlations

increase under the three shock scenarios. All calculations have been made for all

4More precisely, we have divided all firms that were rated by Moody’s in 2000 into three equal-
sized groups. The highly rated segment (labeled A) includes firms with ratings from Aaa to A3, the
medium-rated segment (labeled B) includes firms with ratings from Baaal to Ba2 and the low-rated
segment, (labeled C) includes firms with ratings from Baa3 to C. See MoopY’s (2000).
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possible combinations of the three loan types and for different asset correlations (p =
10%, p = 30% and p = 50%). Table 3.2 shows the results of these calculations.

In each cell of the matrix, initial default correlations are bold and are followed by
the scaling factors by which default correlations increase under the different shock
scenarios. The different columns correspond to the different asset correlations chosen.
For example, the third line in each cell shows the factors by which default correlations
increase under the shock scenario 2 for the different values of p. The second entry
in this line presents the factor for p = 50%. The reported results suggest that the
changes in default correlations may be substantial. Moreover, default correlations rise
most strongly relative to their pre-shock value if return correlations and initial default

probabilities are low. The effect becomes less pronounced if those parameters increase.

At this point we have concluded that at portfolio level, the increase in variances caused
by higher default probabilities after a macroeconomic shock will be reinforced by an
increase in default correlations. We now give an impression of the size of these effects
for an average loan portfolio. Table 3.3 shows the characteristics of the portfolios used
in order to illustrate our theoretical results. Note that the principal is chosen such that

all loans have an expected repayment of 1.

Principal | Recovery rate | p | Number of firms
1/(1—p) 0 50% 300

Table 3.3: Characteristica of the portfolios used for illustration.

We have considered three different types of such portfolios: portfolios only consisting
of type A loans (labeled AAA), portfolios only consisting of type C loans (labeled
CCC), and portfolios with 100 loans of each type (labeled ABC). Table 3.4 illustrates
how the standard deviations (Std) and the economic capital (EC) of an ABC portfolio
increase under the different shock scenarios we have considered. For example, if asset
values decrease by 15%, then portfolio standard deviation will increase by 33%. In
order to identify the size of the correlation effect, we have calculated the increase in
portfolio standard deviation that is achieved when only the increase in loan variances
is considered and default correlations are fixed to their pre-shock levels. These results

are reported in column (Std-Corr).

A more exhaustive study of the relevance of the correlation effect for standard devia-

tion and economic capital of credit portfolios under macroeconomic shocks has been
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AV | Std-Corr Std EC

-15% 24 33 24
-30% 95 79 51
-50% 105 167 100

Table 3.4: Percentage increase in standard deviation (Std) and economic capital (EC) after
macroeconomic shocks for an ABC portfolio. The column (Std-Corr) gives the percentage
increase in portfolio standard deviation when the increase in default correlations is not taken
into account.

provided by GERSBACH AND LIPPONER (2000) and LIPPONER (2000). Using a sim-
ulation approach, they isolate the correlation effect of a macroeconomic shock. After
the shock has occurred, they scale down return correlations until default correlations
are at the same level as before the shock. Comparing standard deviation and economic
capital obtained with the correct and the scaled-down return correlations enables them
to measure the size of the correlation effect relative to the other effects. They show
that the correlation effect may account for more than 50% of the increase in credit risk

induced by the macroeconomic shock.

An important further implication of our results is that the standard deviation of default
rates will vary throughout the business cycle, as is the case with the standard deviation
of credit portfolios. This observation is important since - as has been described in
chapter 2 - the currently proposed reduced-form credit-risk models use default rate
distributions as input for the value-at-risk analysis of credit portfolios. In table 3.5
we illustrate how default-rate standard deviations vary throughout the business cycle.
Considering an industry with an ABC firm portfolio, we have calculated the percentage
increase of the standard deviation when the economy moves from the expansion to the
recession state of the business cycle.!® Three different expansion /recession scenarios -
where the asset values increase (decrease) by 10, 20 and 30 percent compared to the
average case - have been evaluated. Our results suggest that - when using default rate
distributions as an input for credit risk models - the standard deviations of default rates
should be adapted to the business cycle. For example the simulation results in GORDY
(2000) show that the percentile values calculated by reduced-form models are very
sensitive to changes in default-rate standard deviation. For the portfolios considered

by Gordy, an increase of variances by 100% increases percentiles by two to three times.

5Employing an ABC portfolio, we have in particular assumed that the number of firms in the
industry is 300. However, the figures in table 3.5 do not change substantially for a larger number of
firms.
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AV Std-Corr Std

+10% 34 47
+20% 78 114
+30% 135 214

Table 3.5: Percentage increase of default-rate standard deviation when the economy moves
from the expansion to the recession state of the business cycle. We have assumed that the
firm portfolio of the sector or industry under consideration is of type ABC.

3.2.3.2 Pricing of Loans

The price of a loan should reflect the costs of the additional amount of capital that
has to be held against the credit portfolio when the specific loan is added to the
portfolio. In current practice, interest rates on loans in most cases merely reflect the
impact of higher default probabilities on expected returns. Our results suggest that the
impact on portfolio standard deviation should also be taken into account. We believe
that the following two observations are especially important in this respect. First,
as can be seen from table 3.2, the contribution of a loan to the standard deviation
of the credit portfolio varies with the composition of the portfolio. For example, the
default correlation of a C loan with loans in an AAA portfolio is 5.02%, while default
correlations will rise to 22.65% if the considered portfolio is of type CCC (distance-of-
default-points effect). Second, the variance effect (loans with higher default probability
have a higher standard deviation than loans with lower default probability) is reinforced

by the correlation effect (they also have a higher correlation with other loans).

Table 3.6 illustrates that it is important to recognize that a loan’s contribution to the
portfolio standard deviation varies strongly with its default probability. We compare
standard deviation and economic capital of an AAA and a CCC portfolio by calculating
the ratio by which both of these measures increase when moving from the analysis of
a CCC portfolio to the respective values for an AAA portfolio. For example, the CCC
standard deviation is 25.28 times higher than the AAA standard deviation. As before,
we have calculated the increase in portfolio standard deviation when the increase of
default correlations is not taken into account in column (Std-Corr). Note that all of
these ratios also reflect differences in the principals of the loans in both portfolios (see

table 3.3). Since we are mainly interested in the variance and correlation effect, the
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second row of the table calculates the respective ratios when the principals of the loans

in both portfolios are normalized to 1.

Principals Std-Corr  Std EC

Heterogeneous 12.10 27.20 57.13
Homogeneous 11.24 25.28 53.1

Table 3.6: Ratios by which standard deviation (Std) and economic capital (EC) increase
from AAA to CCC portfolios. The first column (Std-Corr) displays the ratio for portfolio
standard deviation when the increase of default correlations is not taken into account. The
second row shows the ratios in the case where the loans’ principals are normalized to 1.

3.3 Robustness

In the preceding section we established the theoretical foundation of the correlation
effect and illustrated its importance for credit portfolio management. In this section
we explore the robustness of our results with respect to the assumptions made during
the specification of the model. In section 3.3.1 we consider endogenous recovery rates,
in section 3.3.2 we examine the case where the risk management horizon is not iden-
tical with the maturity of the loans, and in section 3.3.3 we discuss how alternative

distributional assumptions would affect our results.

3.3.1 Endogenous Recovery Rates

In this section we uphold the assumption of bivariate normally distributed returns
but consider endogenous recovery rates. To account for endogenous recovery rates, we
assume that a certain fraction 3 of the asset value V5 can be recovered in the event of
default. Recall that Z;;, = log(Vi+,/Vis, ) and hence V; 4, = Vi, exp(Z;4,). Normalizing
the loan repayment in the case of non-default to 1, the payoff of a portfolio of two loans

is given by 2 — I; — I, where

L= Ziy, < 2} (1= BVi exp(Zisy)) (i =1,2).
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We standardize V14, to 1 and adjust § and V5, such that a certain fixed fraction B of

the loan is recovered for Z;;, = 2; and Zy;, = 2, respectively. Hence,

8= Bexp(—zl) and Vo4 = Bexp(—zQ)/ﬁ.

Finally, by normalizing the mean of (Z, 4,, Z5+,) to zero and by assuming, for simplicity,
that 74, and Z,;, have the same variance 02, we can calculate the building blocks of

the correlation between loan repayments. Variances can be derived from'6

2

EL = / W(l ~ fexp(o¢ — 2)) (C) dC

—0oQ

EI, = /zi/a(l — Bexp(o¢ — zz))go(g) d¢,

—0o0

and the covariance from the formulas for IE I; (i = 1,2) and from

EnLI, = /z:o/a /z:o/” (1 — Bexp(ai — 21)) (1 — Bexp(ay — 22))%(41; G2, p) dCi do

n/o - 2
= ﬁ_pz/_m (1 — Bexp(oC — 21)) exp{—ﬁ}g(o d¢

where

1 p{_Cf—QPQCQ'FCQQ}

SOp(Cl,CQ,P) = m ex 2(1 _ pz)

and

9(z) = /Z/a (1 — Bexp(o( — 22)) exp{—%} dc.

For the robustness analysis we have relied on numerical results for three reasons. First,
the analytic tractability of the problem seems questionable. Second, there is a quite
clear-cut intuition of how default-correlation changes for the endogenous case relate to
such changes in the exogenous case. If recovery rates are endogenous, loan repayments
in the event of default provide full information about realized returns. This implies
that default correlations in general should be higher than in the exogenous case, where
the default event only reveals that the firm’s standardized returns are below the de-

fault point. Moreover, with higher default probabilities, the event of full information

16(-) denotes the density function of the standard normal distribution.
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revelation is more likely which increases the information about joint returns available
from loan repayments. This adds to the skewness effect and default correlations should
therefore increase even more if recovery rates are endogenous. Third, the log-normal
specification of asset values implies that the amount that can be recovered in the event
of default decreases exponentially when returns decrease (see e.g. the equations for
IE I? or IE [ I,). This suggests that the difference between the endogenous and the ex-
ogenous case should decrease rapidly when returns decrease from default points, which

in turn implies that the correlation measures should not differ very strongly.

We have calculated default correlations for a wide variety of parameter constellations.
The results obtained confirm the intuition outlined above. Table 3.7 documents the
case 0 =1 and 3 =0.8.

A B C
.10 1.03 4.80| .18 1.46 5.91 | .54 2.61 6.20
A 1.89 158 1.35]181 154 1.33| 1.56 1.41 1.29
3.78 2.62 190|342 245 183 | 2.51 2.03 1.70
10.36 550 3.14 | 854 4.83 291 | 4.84 3.40 2.56
30 214 7.81| .93 4.29 10.11
B 1.73 149 1.30 | 1.49 1.35 1.25
3.09 228 1.75| 2.26 1.86 1.58
703 4.21 266 | 3.97 2.88 2.21
3.20 12.32 25.83
C 1.28 1.20 1.14
1.64 1.45 1.29
2.20 1.81 1.52

Table 3.7: Default correlations for endogenous recovery rates (o = 1 and 3 = 0.8). The table
can be read in the same way as table 3.2.

3.3.2 Rating Migration

In the last section we suggested that endogenous recovery rates do not affect our
qualitative results. We now return to the assumption of exogenous recovery rates in
examining the robustness of our results with respect to the relationship between risk

management horizon and loan maturity. In this section we investigate how our results
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are affected when loans do not mature at the end of the risk management horizon. In
order to conduct this analysis we add an additional point in time, ¢3. We assume that
the bank does risk management in ¢ = ¢;, uses the risk management horizon t = ¢
and holds zero-coupon loans maturing in ¢t = t3. As in the previous section, the loans
default if the firms’ asset values fall below the respective default points, i.e. if V3, ; <,
(1 = 1,2). Note that in such a setting the loans have to be reevaluated in ¢ = t5. In

order to derive a complete valuation framework, we make the following assumptions:

1. The asset values of both firms follow a two-dimensional geometric Brownian mo-

tion, i.e.:

( dVl,t/Vl,t )

== th
dVa/Vay

W .= (Wt)te[o,oo) is a two-dimensional Brownian motion with mean vector y =

(g1, po)T and covariance matrix

- _ ( o2 o109p )

2
g1092p0 05

i, 0; and p describe the mean, variance and correlation of the two firms’ instan-

taneous assets returns respectively (i =1, 2).

2. The instantaneous risk-free interest rate is r, i.e. a dollar invested from time ¢ to

time s in risk-free securities yields e’*= dollars.

When pricing both loans in ¢ = t5, we work with the standard risk-neutral or martingale
probability measure.l” We use p}, to denote the risk-neutral conditional probability that
firm 4 defaults in ¢t = 3, given all the information available in ¢. Since under the risk-
neutral probability measure, the expected return on all securities is the risk-free rate 7,
the risk-neutral default probabilities are given by the probabilities of the corresponding
risk-neutral asset value processes V;* := (V%)ic(o,00) falling below the firms’ respective

default points v; and vs in t = ¢5.18

"For a description of the martingale-measure approach to the pricing of securities see e.g. JARROW
AND TURNBULL (1996), ch. 5 and 6. Note that this approach is the state of the art for repricing
loans before maturity. It does, however, not take into account problems arising from the fact that -
due to asymmetric information - the bank might not be able to sell its loans to the market in ¢t = ¢
at the martingale measure price. To our knowledge there is currently no risk management approach
that combines risk neutral pricing and asymmetric information among market participants to reprice
loans.

18Gee CROUHY, GALAI, AND MARK (2000), p.100.
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Note that V* is defined in the same way as the asset value process V; except that the

return rates y; are replaced by the riskless return . Hence, the log increments

(1o8(vz) —log(viy) (s> 1)
of the risk neutral processes are distributed jointly normally with means (s—t)(r—o?/2),
variances (s — t)o? and correlation p, and are independent of V;j‘t.w Fort < s =13 we
therefore obtain that

g Ip{l()g( i) —108(Viy) — (r — 03/2) (13 — 1) < log(v;) —log(Viy) — (r — 0i/2)(t5 — t)}
’ oiV/ts — 1t - o/ — 1
_ gt ~ oBlVia) — (r —oy/2)(ta—t) _ 1ogVz) ~logVi) — (0~ /2t~ 1)
oty —1 oi/ts — ¢
- cb{, ja=t . Ji=h log (Vi) — log (Vi) — (r — 03/2)(t — tl)}
t3—t ty —t oi/T—t
where

o o) o) — o2 -t

¢ O'Z'\/tg —tl

For t = ¢; we obtain p;, = ®(z}), which allows us to fix the ¢ = #; risk-neutral default

probabilities by choosing appropriate values for z;. Once these values are fixed, the

t = 15 risk neutral default probabilities are given by

p;(,h :(I)<\/T+1Z:—\/7_'ZZ>

where
log(V:%.) —log(V5. ) — (r — 0;/2)(ty — 1
Zi — g( Z,tz) g( Z,tl) ( G/ )( 2 1) (Z — 1’2)
O'Z'\/tg—tl
and
to — 11
T = .
ts — to

19Gee e.g. JARROW AND TURNBULL (1996). Of course the same is true for the asset value processes
themselves. The only difference is that in this case the means for the log increments are given by

(s — ) (: — 02 /2).

}
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Note that 7 describes the relative sizes of the risk management period and the loan
duration after the risk management horizon. Using the ¢ = ¢, risk-neutral default

probabilities, we can describe the ¢y value Viftz of loan ¢ in the following way:

Vig, = Lie 7711 —pry (1 0)).

2,82

L; is the principal that has to be paid back

in t3 and f3 is the (exogenous) recovery rate. =05
=10
Note that from a ¢ = t; perspective, only 08 - Lo e ’
the probabilities pi ;, and p3,, are random, 06 L \ | i
implying that § .
0-4 | \\\\\ '\.y. .
pE = Corr(VLtz, V2,t2) 02 | N i
= Corr(pih,p;,tz) 0 ) ) . A \\I\:L;;%M .
8 -7 6 -5 -4 -3 -2 -1 0
= COI‘I‘(HZI,T(Zl) ’ HZQ,T(ZQ)) ° z
H,, is defined by Figure 3.9: The function H_g g ,(-) for dif-

ferent values of 7.

H,,(Z)=®(T+12—T2)

and (71, Z5) is a standard bivariate normally

distributed random vector with correlation p. Comparing p™& with p%f, we observe
that the functions 1{- < z;} are replaced by H,, ,(:) (i = 1,2). Figure 3.9 depicts the
indicator function and the function H for z; = zo = —2.9 (which corresponds to a risk-
neutral default probability of 0.2%, i.e. a B loan) and for different values of 7. It can
be seen that H is a “continuous version” of the indicator function and that H converges
towards the indicator form for 7 — co. The intuition about the relationship between
default probabilities and default correlations that led to the analytic results in section
3.2.2 should therefore still apply qualitatively. In order to confirm this reasoning we
have calculated p™# for different values of 7. The results for 7 = 1 are displayed in
table 3.8.20

Note that the results do not differ substantially from the ones obtained in section 3.2.3.
Moreover, the differences should be most pronounced for low 7, since H,, ,(-) will differ
the stronger from the indicator functions the lower the values for 7 are. But even for

7 = 0.05 (which implies that loan duration is 20 times longer than the length of the

20Note that the labeling of the different loan types in this section refers to the risk neutral default
probabilities (e.g. an A loan has an initial risk neutral default probability of 0.05%).
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A B C
11 1.05 4.81 | .18 1.48 5.91| .55 2.59 6.00
A 190 158 135|181 154 1.33]| 1.56 1.40 1.28
3.79 262 189|342 245 182 248 1.99 1.67
10.37  5.48 3.11 | 851 4.80 2.88 | 4.68 3.26 2.42
31 218 7.80| .96 4.29 9.83
B 173 149 130 | 1.48 1.34 1.24
3.09 228 1.74| 2.23 1.83 1.55
6.99 4.17 2.63 | 3.82 2.77 2.10
3.28 12.32 25.29
C 1.27 1.19 1.13
1.60 1.42 1.27
2.06 1.71 1.45

Table 3.8: Loan correlations p™& for 7 = 1. The table can be read in the same way as table
3.2.

risk management period)?! no significant deviations from the values in table 3.8 result.

3.3.3 Distributional Assumptions

In the last two sections we derived the stability of our results with respect to recovery
rates and the relationship between risk management horizon and loan duration. We
now return to the assumptions that loans mature at the end of the risk management
horizon and that recovery rates are exogenous, and examine the robustness of our

results with respect to the assumptions about the distribution of asset returns.

We will show that the crucial point of our assumptions is in fact not that returns are
bivariate normally distributed but that an arbitrary monotonic transformation of the
asset value process has this property. Let us describe the general framework we have in
mind in more detail. Suppose that there is a monotonic transformation 7 of the asset
values V74, and V3, which may depend on some aspects H;;, of the asset value history

22

up to time #;,** so that the transformed variables Z;;, := T (V;4,, Hiy,) are bivariate

normally distributed. The transformation has to fulfill the following two conditions:

21 The typical length of a risk management period in the banking industry is one year (see e.g. JP
MORGAN (1997)).

22More technically, H; ¢, is assumed to be an arbitrary sub o - algebra of U((Vi,s)sgtl)-



3.3 Robustness 81

1. Zy,, and Zy,, are independent of Hy,, and Hoy,;

2. T (-, Hiys,) is strictly increasing for all realizations of #,, .

In this case the random variable 1{V;;, < v;} that describes the default behavior of
firm ¢ can be equivalently written as 1{Z;;, < z;} where z; = 2;(v;, H;,) is increasing
in v;. We call the transformation 7 the “correlation model”. Note that the model
we have formulated in section 3.2.1 is a special case of this general framework. The

transformation used in section 3.2.1 was
T(‘/;',tza ‘/:i,h) = log(wz/wl)7

and hence #,;,, is the o - algebra generated by V4, (i = 1,2).

As can be seen from the preceding arguments, the robustness of our analysis with
respect to the underlying distributional assumptions boils down to the robustness of
the correlation model chosen and has nothing to do with assumptions about the uni-
variate distribution of returns. If the correlation model is a good approximation for
the correlation structure, then our whole analysis applies, since arbitrary univariate

distributions are supported by our model.23

Moreover, we conjecture that the intuition developed in section 3.2.2 about the rela-
tionship between default points and default correlations should apply more generally
for linear correlation models, i.e. for models where asset-return correlations are derived
from a common linear dependency on some independent factors.?* For example, it has
long been argued that stable-law distributions might provide a better description of
actual returns than the normal distribution.?> Moreover, since the sum of independent
stable-law-distributed random variables also follows a stable law law, a straightforward
specification of a linear correlation model is possible. It might therefore be insightful

to test our conjecture for such random variables.

The most important empirical objection against the linear correlation model for asset

returns is that correlations of large negative returns seem to be much greater than

ZNote that, given a continuously distributed random variable R with distribution function F' and
given any other distribution function G, we can find a monotonic transformation of R which is dis-
tributed according to G. This transformation 7 is given by T =G 1o F .

24Note that multivariate normally distributed random variable are a special case of linear correlation
models.

25Gee FAMA (1970) for a discussion of the literature or RACHEV, SCHWARTZ, AND KHINDANOVA
(2000) for a more recent contribution. Stable-law distributions can capture two important empirical
deviation from normality (thick tails and excess kurtosis).
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expected under bivariate normality.26 Moreover, there are quite a few theoretical ar-
guments of why this may be the case, ranging from contagion from some markets to
others, joint credit constraints, to changes in market structures and practices.?” In
appendix 3.B we explore the consequences of this (potential) deviation from a lin-
ear correlations model for our results. We find that higher return correlations for low
returns will tend to moderate the skewness effect or even reverse it. Whether this
mechanism has a significant impact on default correlations will have to be assessed by

empirical research.

3.4 Conclusions

In this chapter we have established the structural relationship between default prob-
abilities and default correlations. Loans with higher default probabilities will not only
have higher variances (variance effect) but also higher correlations with other loans
(correlation effect). Hence, the variance effect (which is an obvious consequence of
higher default probabilities) is reinforced by the correlation effect. We have seen that
due to these effects, portfolio standard deviation can increase substantially with higher
loan default probabilities. These results have important implications for banks and

regulators.

First, when determining relative prices of loans with high and loans with low default
probability, banks should take into account the differences in the contribution to the
overall standard deviation of their portfolio and hence to the economic capital needed

to be held against the credit portfolio.

Second, during economic downturns default probabilities will increase. This will not
only increase expected losses but also the standard deviation of loan portfolios. Hence
the increase of required economic capital during downturns will stem from at least

these two sources. We feel that this observation is important for regulators in seeking

26Gee LONGIN AND SOLNIK (1999). Note that LONGIN AND SOLNIK (1999) investigate equity
returns. Of course it is not clear whether these results can be extended to asset returns. However,
since asset returns are not directly observable, the results for equity returns can be seen as a first
indication that similar results may be obtained for asset returns, especially since for highly rated firms,
asset and equity returns should exhibit similar patterns if the value of debt does not vary too much.

2TRecent discussions of possible routes of contagion include DRAZEN (1998), EICHENGREEN, ROSE,
AND WYPLOSZ (1996), and GERLACH AND SMETS (1995). The CGFS report (COMMITTEE ON THE
GLOBAL FINANCIAL SYSTEM 1999) on the events following the Russian default in August 1998
presents a narrative account of how the effects of shocks were reinforced and spread to other markets
by market practices. Concerning the literature on credit constraints see HOLMSTROM AND TIROLE
(1997) and references therein.
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to gain a more complete picture of the consequences of macroeconomic shocks for the
banking system. It will also be important for banks which attempt to hedge against

fluctuations in required economic capital caused by macroeconomic risk.

Third, consider the consequences for current credit risk models.?® Academics and reg-
ulators have pointed out that credit risk models should take into account the fact that
default probabilities increase during economic downturns, since the banks’ expected
losses will increase. Our results emphasize this point, showing that not only expected
losses but also default correlations and, accordingly, portfolio standard deviation will
increase. Moreover, the correlation effect has different consequences for structural mod-
els on the one hand and reduced-form models on the other. The structural approach
to credit events is used by Credit Portfolio Manager from KMV and (indirectly) by
Credit Metrics (CM) from JP Morgan. This approach essentially employs the frame-
work outlined in section 3.2.1 to derive joint default probabilities. While KMV uses
a firm’s stock market value and its debt structure to derive default points (a method
sensitive to changes in asset values), CM uses historical rating class default frequen-
cies to calibrate default points. Our results emphasize that adjusting the CM default
points to the business cycle is important. Once these default points have been appro-
priately adjusted to changed default probabilities, CM will also take the variance and

correlation effect into account.

Reduced-form models, on the other hand, are used by Credit Risk™ (CR) from the
Credit Suisse Group and Credit Portfolio View from McKinsey (McK). A major build-
ing block of these models is the distribution of default rates. While BAR (2000) has
demonstrated that default rates can be predicted quite well using macroeconomic vari-
ables, thereby presenting a method of how to adjust default rate means to the current
economic environment, it is much less clear how to adjust the standard deviation of
default rates. Our results suggest that default-rate standard deviation will vary sig-
nificantly throughout the business cycle and that reduced-form models should reflect
such changes. How to estimate default rate variances conditional on the business cy-
cle therefore emerges as an important empirical issue that still awaits a satisfactory

answer.??

28 A survey of these models with respect to joint default probabilities has been given in chapter 2.
Other aspects of the models are reviewed in CROUHY, GALAI, AND MARK (2000).

2Note that formally, McK does not need default rate distributions as input. These distributions
are derived from the distributions of macroeconomic variables that are supposed to explain default
rate changes. However, in order to justify that the implied default rate variances not only reflect the
variances of the underlying macroeconomic variables, conditional default rate variances need to be
predicted accurately. But this again rises the question of how to estimate these conditional variances.
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We have derived our results for a fairly simple joint default model. However, we have
shown that they remain robust under endogenous recovery rates, loan reevaluation at
the end of the credit risk horizon and under alternative distributional assumptions for
asset returns (as long as a monotonic transformation into a bivariate normal distri-
bution exists). To gain a more complete picture, two issues have to be taken up in
future research. First, rather than assuming that default can only occur at the date
of the loan’s maturity, it should be more realistic to model default as an absorbing
barrier to a firm’s asset value process, which can be reached at any point before the
loan’s maturity.*® The robustness of our results in such a modeling framework should

be investigated.

An equally important issue is whether the linear correlation model used by KMV and
CM is appropriate. We have indicated that for correlation models where the return
correlation is higher for low returns than suggested by the linear correlation model,
the relationship between default probabilities and default correlations might even be
reversed. These results suggest that a detailed empirical assessment may become nec-
essary of whether other correlation models should enter credit risk frameworks of the
structural type. In the interim, simple regime-switching correlation models could be

used for stress testing.3!

Finally, while the impact of the macroeconomic environment on expected default rates
(and hence on average default probabilities) has been studied quite carefully, changes in
default correlations are much more difficult to handle empirically. We have highlighted
the difficulties of both modeling approaches in assessing the changes of default corre-
lations due to macroeconomic shocks. When determining the bank capital needed to
hold against a credit portfolio, it might therefore be useful to increase the default cor-
relations calculated by the models by a “security factor”. The expected losses produced

should be more stable across time.

30This issue has been discussed in more detail in chapter 2.
31Gee e.g. ANG AND BEKAERT (1999).
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3.A Proofs

In this part of the appendix we prove our main results concerning the relationship

between default probabilities and default correlations. First of all note that

Cov (1{Z1 <z}, {7, < Z2}) D

= N VVar(1{Z < z1}) Var(1{Z, < 2,}) N

P =p

21,22, 10)

In section 3.A.1 we derive some useful expressions for D and N and for their first and
second derivatives. This will be helpful in proving our main results in section 3.A.2.
The following notation will be used throughout the appendix: ®” for the distribution
function of (Z1, Zs), ¢(-) and ®(-) for the one-dimensional standard normal density
and distribution function respectively. Moreover, throughout the appendix we will
use subscripts to indicate partial derivatives. D; for example will denote the partial
derivative of D with respect to z; and D, is a short form for 3D /0z102,. Finally note
that z; always indicates the default point associated with the lower default probability
(z1 < 29).

3.A.1 The Building Blocks D and N

Since D = ®” (21, 29) —®(21) P (22), we will first derive a formula for ®” (21, 2,). Note that
(Z1, Z5) has the same distribution as (Z7, Zg) where Z, = pZ1 + ¢, and € is distributed
according to N/ (0, 1-— ,02) and independent of Z;.>2 Hence,

()= [ (G el @ (36)
Note that by the theorem of Lebesgue, formula (3.6) also applies for the case p = +1.
In this case the limit of the right-hand side of the equation is taken. In the next sections
we will take first and second derivatives of the right-hand side of equation (3.6). Again
by the theorem of Lebesgue, the respective derivatives for p = +1 can be obtained by
taking the limit of the formulas derived for |p| < 1.

32N (u,0?) denotes the normal distribution with mean p and variance o2.
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3.A.1.1 The Functions D and N

From equation (3.6) we obtain

oo 1—p2

D= [ / ) @(M)go(o d<] — B(21)P(22). (3.7)

The function N can be represented as

N = \/ (1) (1 - (1)) \/cb(zn (1- () (3.8)

and??

. 1
D |y—zp—0 = Py arcsin(p) and N |,,—,,—0 = T

3.A.1.2 The First Derivatives of D and N

Dy = () [0 ZE5) - (e (39)

-1/2

N, = %[Cb(zg) (1 - @(ZQ))} e [(D(zl) (1 . cb(zl))} o(21) (1 . 2<I>(z1)>. (3.10)

Moreover,

Dl ‘21:2:2:0 = 0 and Nl ‘21222:0 = 0_

3.A.1.3 The Second Derivatives of D and N

Du = —ap(en) |2 F=5) - #(ea)] — (1) )

P
Vi 7 m@(m

33The proof for the arcsin representation of D is given in GERSBACH AND LIPPONER (2000).
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D1y = ¢(2z1) [\/11_ PZ@(ijl_—ij) - SD(Z2)]

W = 3o 3e0)] e 0 e0)] e (- 290)]

Nio = [8(z) (1 8(20))] () (1 - 20(2)) [020) (1 - 22)] o) (1 20(20)).
Ditlacasco = =5 and Do = 5 (= =1),
i

Nit |yy=z—0 = —¢(0)* = o and Nig |4 —z—0 = 0.

3.A.1.4 Derivatives of Fractions

The following general formulas provide the link between the derivatives of D and N
and those of p3f. We define

D(Zl, 22)
F=F = — "
(Zla ZQ) N(Zl, 22)
and observe that
DN —-DN;
i="N

DuN — DN, (D:N, + DNy;)N? — DN,2NN,
Fy = N - N (3.11)
Dy N — DNy; — 2DN;  2DN?
= N2 + (3.12)
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and
DisN — DiN,  (DyNy + DNyy)N? — DN;2N N,
Fl, = e — e (3.13)
DioN — DNy — DiNy — DysN;  2DN;N,
= Z + Ns (3.14)
3.A.2 Proofs

In section 3.A.2.1 we present the proofs of propositions 3.1, 3.2 and 3.4, all of which
cover the case 21,29 < 0. In section 3.A.2.2 we prove proposition 3.3, which is con-

cerned with the boundary cases z; = 2o = 0 and z; = 29 — 0.

3.A.2.1 Interior Points (21,22 < 0)

def

We first of all calculate the derivative of p®" with respect to z; and z,.

Lemma 3.1
If |p| < 1, then

where
) e 1—-29(2)
v 2<I>(z)(1 - (D(z))
For p =1 we obtain
o o(z1) (1 - 0(22))

2N(1 - Cb(zl))

der _ P(z)®(21)
P2 = TTONG(z)
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Remark 3.1
The formulas for p = 1 can be derived as limits of the formulas (3.15) and (3.16) for
p— 1.

Corollary 3.1
If

S 2\
14+ A%’

then pgef < 0 3

Proof of corollary 3.1.

Use equation (3.16), and note that ®°(21,25) > ®(21)P(2) and that 1(z) > 0 if
z < 0. Hence, p3*f < 0 if

which is equivalent to (1 — pA)? > (1 — p?).3

Proof of lemma 3.1.

First of all note that by the theorem of Lebesgue the formulas for p = 1 can be derived

as limits of the respective formulas for |p| < 1 and that by symmetry p3° (21, 22, p) =

03(29, 21, p). It is therefore sufficient to derive the formula for p¢¢! if |p| < 1. But this

formula follows directly from

pl N N2’

equations (3.8) - (3.10) and the fact that D = ®”(21, 29) — ®(21)P(22).

|

34Remember that A = z2/21.

35This inequality follows from the more general inequality, IE( f(Z)9(Z )) > IE( f(X )) ]E(g(Z)),
which applies for arbitrary real-valued random variables Z and monotonically increasing functions f
and g (see e.g. HARDY, LITTLEWOOD, AND POLYA (1991)). In our case we can choose f(z) := 1{z <
z1} and g(z2) = <I>((z2 —p2)/(/1— p2)>. Note also that in this case the strict inequality applies,

which can be seen by examining the proof in HARDY, LITTLEWOOD, AND POLYA (1991). We thank
Lutz Duembgen for this suggestion.
36Note that z; < 0.
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To derive our main results, we draw on the fact that pd°' and pd®f are increasing (de-

creasing) functions of p in certain areas. Therefore, we now examine how p$°f and pget

depend on p. The derivatives of p{* and p3* with respect to p will be denoted by il
def

9, Tespectively.

and p!

Lemma 3.2

P = P2 e )p(a) |

1—p?

oy = T veel)

where
elz)p(( = pm) /T - )

€= N .

Hence
i+ ot = (TR yta)ioten) - vl )

Proof.

First we calculate the derivative of ®” with respect to p. In order to do so we use that

0 (22— pC - pza — ¢
a_p( 1— ,02) T (1= )3 (3.17)
Hence
z2—pCQ1
(9 21 a 1—_‘02
a_pq)p(zl,zz) = / @(Cl)a—p/\/i ©(C2) dC1dGy
! * 2 — pC
- W/_OO(P@ — C1)90(C1)90(217_p12) g

But since v/27¢(¢) = e~¢/2, we obtain

22— p¢ ) _ exp{_CQ(l — p?) + 23 — 22pC + P

2”@(()@(\/17_7 21— 7

} =: exp(7).
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Moreover, T can be written as
% + 25 — 2z9pC
T _
2(1-p?)
_ = 2p)+ 01— 0%
2(1-p?)
(= =p)? 4
20— p2) 2°
Hence
(e (222 = (L7222 () (318)
1—p? 1—p?
and therefore
0 ¢(22) “ ¢ — 2p
T — _\*2) _ o 2P
5pq) (1—p?)32 /oo(% C)(’0<\/1 — p2> %

But since the integrand can be integrated analytically to

(1- pZ)eO(%),

we obtain

Qq)p_ p(22) (21—022)

dp _\/1—p2g0 V1 —=p? .
def

We are now able to calculate the derivative of p{® with respect to p. Recall that

der _ P(21) Z2 — PZ1 p
=y { (Cb(li—p?) - ‘D(ZQ)> — Y(21) (@ (z1,20) — <I>(z1)<I>(z2)) }

Therefore, using equations (3.17) and (3.18), we find:

it = Aot (ot ygetene( 222) )
- gp(zow((j\?rfi):z - '02> {pr__pjl - ¢(21)€0(21)}.
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def def

Moreover, since p3¥(zy, 22, p) = p¥(2y, 21, p), a formula for pdef

2,p
The expression for p

is obtained by inter-

def def
1,p° 2,p

in the lemma can then be derived by using that - according to equation (3.18) - the

changing the roles of z; and z; in the formula for p given

following statement holds:

Lemma 3.2 provides the key to our main results. Note that according to lemma 3.2
the following holds:

Pl = €H (gx(p), Zl) (3.19)
pe = EH (gm(p), 22) (3.20)
1 1
def def
= H(—, ) H(—, )} 3.21
Pi,p T P2y 5[ 1+p21 + 1+pZ2 ( )
where
(1-20())(2)
H(a,2) == —az—¢(2)p(z) = —az —
20(2) (1 - (D(z))
1—pA

Since £ > 0, the signs of p‘li’e,f , pgif and p‘fflf + pg’e,f are equal to the signs of the right-hand

sides of equations (3.19), (3.20) and (3.21) respectively. To prepare for the proofs, we
will therefore - in the next two lemmata - derive some properties of the functions H

and g.

Lemma 3.3

Suppose that z < 0. Then the following statements hold.

(i) If a > 0.5, then H(«, z) > 0 for all

< 4oz—1_.7_7()
z \/2a_1—.z—zoz.

(ii)) H(a,z) > 0 for all a« > 0.65.

(iii) If 1075 < ®(z) < 0.46, then H(«a, z) < 0 for all a < 0.52.
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Proof.

(i) First we observe that

o(2)

I=12e0)

is strictly decreasing in z and converges to 1 for z — —oo. Hence

H(a,z) > —az — e (2) =: hi(2).

Note that the anti-derivative of h; is given by

/h1 = —%[azQ—l-log((I)(z))]
N §%(;;)'

We will show that hy(z) := e @ /®(z) is strictly increasing in z for z < z, which

implies that [ hy is strictly increasing in z; this in turn leads to hi(z) > 0 for z < Z.

To show that hy(-) is strictly increasing in z, note that

—e " 2028 (2) + go(z)]

Moreover,

hy(2) = (2a — 1)zp(2) + 2a®(2)

and hl(2) = ¢(2)[(4a—1) — (2a —1)22]. Hence, if o > 0.5, then h%(z) < 0if z < Z and
therefore hl)(z) < lim,_, o h)(2) = 0. Therefore, hy(2z) < lim,_, o hy(z) = 0, implying
that A/ (z) > 0 for z < Z.

(ii) Note that H is increasing in « and that it is therefore sufficient to show that
H(0.65,2) > 0 for all z < 0. Moreover, according to (i), H(0.65,2) > 0 for z < z(0.65).
But since z(0.65) > —2.31, we only need to consider the interval [—2.31,0). The proof
will proceed in two steps. For z € [—2.31,0.1] we have relied on numerical methods.
These methods use an approximation of the second term of H, which is no longer

feasible when z approaches zero. The area [0.1,0) is therefore treated in the second
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step.

For the numerical analysis we have chosen a grid of 40, 000 equidistant points and have

evaluated the function

(1-20(2)) ()
2<I>(z)(1 - @(z))'

(2)p(z) =

The values on the grid have been approximated by standard numerical integration (for
®(2)) and Taylor series expansion (for ¢(z)). The values between grid points have been

approximated from above by the mean value theorem of differential calculus, using that

d p(22) 12| +20(22) | ¢(22)
7 (Vo)) < 2@(21){ 1 d(z) (b(zl)}
for z € [21, 29].37

Now we turn to the second step of the proof, where we show that H(.65,z) > 0 for
z € [-0.1,0). We use the fact that hs(z) := ¢(2)/®(z) is strictly decreasing in z for
z < 0.3 This implies that if z > z; then

H(z) > —az — g [1 - 1?(7522)} =: ha(2)

where ¢ := ¢(21)/®(z1). On the other hand,

By(z) = —a+ T [0(2) (1 - 2(2)) + v(2)2(2)|
g ®)

2
2 (1 . (I>(z)>
3"We denote the nominator of 2¢(2)p(2) by fi and the denominator by f. Note that fi = fi
and that we can therefore write the derivative of 2¢)(2)p(2) as (f{/f2) — (fi/f2)?. But fa(z) >
@(zl)(l - @(ZQ)) and

12) = —2(1-28(2))o(2) — 20(2)*.

Finally, fi/f2 < ¢(22)/®(21).
38Note that

ha(z) is strictly increasing in z since B (2) = 2p(2) + ®(2) — 2¢(2) = ®(2) > 0. Therefore hy(z) >
lim, , o ha(z) = 0 and hence h%(z) < 0.
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and hence we obtain that h4(z) < —a + cd for z < zy where

d:= o(2) 5
2(1 - @(22))

For z; = —0.1 and 2 = 0 we have ¢ < 0.74 and d < 0.8. Hence h}(z) < 0 if & > 0.65
and therefore hy(z) > ha(0) = 0.

(iii) Since H is increasing in ¢, it is sufficient to show that H(0.52,z) < 0 for all
® 1(10°%) < 2z < ®1(0.46). This result has been derived by the same numerical

method as used in the proof of (ii).

Lemma 3.4

(i) If A > 1, then g,(-) is strictly decreasing in p.

(ii)) If 0 < X < 1, then g,(-) is strictly decreasing for 0 < p < pupin and strictly

increasing for pmin < p < 1 where

1—+v1-= )2
Pmin ‘= f

(iii) The equation gx(p) = c has the following solutions:

1
_ 2 _ _
p1/2(c) = QC{A:F \/)\ 4e(1 c)}
(iv) For all A > 0 we have g,(p) > .64 for 0 < p < p1(.64). Moreover,

p(.64) = g—;{x — /2t 24/25} = p. (V).

Proof.

Note that

( )__Ap2—2p+/\
P

All results can be obtained by straightforward calculations.
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Proof of proposition 3.1.

First of all note that by symmetry the statement for z;,2zs > 0 can be deduced from

the statement for z1,zo < 0. If 21,29 > 0, we can use that
WHZ;<z}=1-YZ >z} (i=1,2)
and that
Corr([l —UZ > a), 1-1{Z > ZQ}]) - Corr(l{Z1 >a), 1{Z > ZQ}).
But by the symmetry of the bivariate normal distribution we have®®
(14Z > 2}, 12 > 2}) 2 (42 < —a}, 1{Z < -2}

and thus it is sufficient to consider the case z1, z9 < 0 for the rest of the proof.
Recall from lemma 3.2 that

def def
@ - _Zi i ;2 —P(21)p(21) — P(22)p(22) = hi(p),

which implies that h; determines the sign of p‘ff’/f + pgf,f. First of all note that h; is
strictly decreasing in p. Hence, h; is either always higher or always lower than zero or

there is a py = po(z1, 22) such that h; is positive for p < py and negative for p > pyo.

def def

Concluding that the same statement applies for pf, + p5%, we obtain that

A (p) + P8 (p) > min{ [p57(0) + 8 (O)], [A5(1) + P8 (1)]}

for 0 < p < 1. But pf(0) = p3*f(0) = 0 and it remains to show that p$°f(1)+p3ei(1) > 0.

Recall from lemma 3.1 that for p =1

o) (1 - 0(=2))

S 2N (1 - (z1))
dor __ P(2)®0(=)
P2 OIN®(z5)

3By X 2 Y we mean that X and Y have the same distribution.
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Hence:

P+ o812V (1 0(20) ) 0(0) | = () (z2) (1 = B(22)) = () 2(a1) (1 = D (en)
=: ha(z1)

and
B (1) = @(zl){—zﬁb(zz) (1 — @(22)) — o(22) (1 — 2@(21)) }

The following three statements imply that hy(z1) > 0 for all —oo < z; < 2z, which in

turn proves that pdef + pdef > 0.

1. Thereis a Z (—oo < Z < 29) such that hY(z;) > 0 for z; < Z and hj(z1) < 0 for
21 > Z.

2. limzl_)_oo hg(zl) =0.
3. hQ(ZQ) = 0.

Statements 2 and 3 are obvious. To prove statement 1 it is sufficient to show that

hs(21) = —21®(20) (1 _ <1>(z2)) — o(2) (1 — 2<1>(z1))

has the proposed property. But
By(21) = —0(20) (1 - @(22) ) + 20()p(21)

and statement 1 follows from

1. hg(ZQ) < 0 and
2. thereisa Z (—oo < Z < 29) so that hj(z1) < 0 for all 2y < Z and h%(z;) > 0 for
all 21 > z.

Point 2 is obvious and 1 is equivalent to

S 90(Z2)(1—2‘I’(22)> —H(1 )éo
= 5,2’2 )

2 20(z) (1 - <I>(22)>
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which is true according to lemma 3.3.

Proof of proposition 3.2.

The second part of statement (ii) has already been derived as corollary to lemma 3.1.
Concerning the other statements, recall that, according to lemma 3.2, p‘ff’,f(p) >0 as

long as H(g,\(p),z1> > 0, and that p3%(p) > 0 as long as H(gl/,\(p),zz) > 0. By
lemma 3.3 this is the case if g(p) > .64 and gy,x(p) > .64 respectively. But according
to lemma 3.4, the latter conditions are fulfilled for all p < py(A) and p < p(1/A)

respectively. For p in these areas we therefore obtain that pf(p) > pfef(0) = 0.

Proof of proposition 3.4.

(i) Recall that the sign of p{¥ + p3 is the same as the sign of

H( 1)+ H( , 29)-

—’Z
1+p I+p

Obviously, 1/(1 + p) is decreasing in p which implies the existence of py. Moreover,

def def
l,p +p 2,p

will also be positive. The opposite is true if they are negative, which is the case for
0.52 - (1 + p) > 1. These conditions translate into p < 0.54 and p > 0.89 respectively.

if both summands are positive, which is the case for 0.64 - (1 + p) < 1, p

Sf,f is the same as that of H(gl/)\(p),zQ), But from

lemma 3.4 we know that g;/\(-) is strictly decreasing for A < 1, which implies the

(ii) By lemma 3.2, the sign of p

existence of p,. Moreover, since g1(p) = 1/(1 + p) and g1/x(p) < g1(p) for A < 1, we
obtain that p;, < pg.

3.A.2.2 Boundary Cases

In this section we prove proposition 3.3. To derive statement (ii), note that the nu-

def ( 40

merator D and the denominator N of p®(z, z) converge to zero if z approaches —oo.

40Gee equations (3.7) and (3.8).
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We therefore derive the limit of pf(z, z) by differentiating D(z, z) and N(z, z) respec-

tively. Using equations (3.9) and (3.10), and the fact that dD(z, z)/dz = 2D;(z, z) and
dN(z,z)/dz = 2Ny(z, z), we obtain for |p| < 1:

2<I>( < pz ) — 23(2)

' . Di(z,2) V1-p2
1 def — 1 L — - 0
z_l)f_noop (2,2) z—y—noo Ni(z, z) z—ir—noo 1—2%(2)

The proof of the arcsin representation of pf is given in GERSBACH AND LIPPONER
(2000). Finally, we show that p9*f has a local maximum in (0, 0). Obviously, the first-
order conditions for a local extremum are fulfilled.*! The second-order conditions can

be derived from the following properties of the Hess matrix of pd¢.

Lemma 3.5

Suppose that |p| < 1.

(i) The determinant D(p) := det J(p?®)|,,=,,—0 of the Hess matrix J(p) in 2z, =

29 = 0 is given by

D) = gy (i~ o) = (= -1)
= — —arcsin — - .
PI= Gar2 N 1—p2 P 1—p?
Moreover, D(p) > 0 for -1 < p<0and 0 < p <1 and D(p) =0 for p = 0.

(ii) The top left entry of J(p®) in z; = 2o = 0 is given by

1 2 .
T (p) 1= P immo = gz { - aresin(p) - —E= .

8 N? /1—p2
Moreover, Ji1(p) > 0 for —1 < p < 0, Ji1(p) < 0 for 0 < p <1 and Jy1(p) =0

for p=0.

(iii) J(p°) is negative definite if p > 0 and positive definite if p < 0.

Proof.

Recall that

1 . 1
D =z=0 = o arcsin(p) and N |,,—,,—0 = 1

41Gee gection 3.A.1.2.
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Dl |Z1=z2:0 =0 and Nl ‘le,zz:() =0

_ P 1 1
Dll |z1222:0 — _m and D12 |z1:z2:0 = %(TPQ — 1)
1
Nll |z1:z2:0 = _% and N12 |Z1:Z2:0 = 0
Using equations (3.12) and (3.14) we therefore obtain:
e DllN - DN11 1 2 . P
J11(p) = P15 zi=znm0 = Nz [s1=z=0 = W{; arcsin(p) — sz}
and
pdef| 770:M‘ e = 1 ( 1 _1)
12 [z1=22= N2 21=22= 87TN2 1 _p2 .
Hence
det J(p%") |, 1200 = ~1 [(DnN — DNp)? — (D12N)2] |21=22=0

1
4

N
1 1 P 2 1 1 2
= —_— — i - - - 1)
N { (4%2 arcsin(p) 87+/1 — p2) 6472 ( 1—p? }

= 647r12N4 {( 1'0_ > - %arcsin(p))2 - (1;—,02 — 1)2}.

We now need to verify the properties of D(-) and Ji1() as stated under (i) and (ii). To
prove statement (i) we define F(p) := 2 arcsin(p) and observe that by the symmetry
of D(-) it is sufficient to show that



3.A Proofs 101

and
Ep) = [ 1'0_p2_F(p)] [ 11_p2_1]
= (1-r0) - 152

Since A(p) > 0, it is sufficient to show that E(p) > 0 for 0 < p < 1. But this follows

2 1 1 [T+p 2
B = a2 aVi= e
Ty1-=p —p(1+p)

_ 1 [ 1 2}
f 1_,02 1+p 7_‘_3

from

which implies that E(p) > min{E(0), E(1)} = 0.

Finally we have to show that Ji;(p) > 0 for —1 < p < 0 and Jy;1(p) <0 for 0 < p < 1.

Since Ji1(+) is anti-symmetric, it is sufficient to prove that

we find that F'(p) < F(0) = 0 for p > 0.
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3.B Deviations from the Linear Correlation Model

In this appendix we explore the consequences for our results when return correlations
are much higher for low returns than suggested under the linear correlation model.
To do so, we consider an extreme example of two return variables that are perfectly
correlated for low realizations and uncorrelated for high realizations. More precisely, let
Z; and Z; be stochastically independent random variables with arbitrary distribution
functions F(l_) and F(l_) respectively and let ¢ > 0 and d be real numbers. We define Z,
by

CZ1 =+ d if Z1 S z*
ZQ = ~
A else,

and denote the resulting distribution functions of the vector (71, Z,) by F{..). First we

observe that the correlation p := Corr(Z;, Zs) between Z; and Z, is usually positive.

Lemma 3.6
Suppose that (Z,, Zs) is distributed according to F' and that IE Z1 >IE Z,. Then p>0.

Proof.
Note that

Cov(Zy, Z,) = IE[(Z1 ~EZ)(Z - IEZQ)]
= FL JE[(Z1 —EZ)(cZ+d—-TEZ)| 7 < z*]

+(1- Fj*)(IE[Zl\Zl > 21 - ]EZl> (]E Z - ]EZ2>.
Since
EZQ = le* <C]E[Zl‘ Z1 S Z*] +d) + (1 — le*)]EZh

we obtain that

cZi+d—1EZ, = c(Z1 —E[Z|Z; < z*]) +(1- Fj*)(cIE[Z1| Zy <2 +d— IEZl).
Therefore, using that

IEZ1 —IEZ, = le* (IEZl - CIE[ZI‘Zl < Z*] _d>’
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we obtain

2
Cov(Zy, Z,) = le*c]E[(Zl —E[Z4|Z < z*]) |2, < z]

+(1— FL) (]E[Zl\Zl > 2~ E[Z.|Z, < z*]) (]E 7 — ]EZQ)

which is positive by our assumption that IE Z; > IE Z,.

The next proposition shows that for default points larger than
z = max{cz* + d, z*},

the relationship between default probabilities and default correlations, obtained for
jointly normally distributed returns, is reversed if the returns are distributed according
to F.

Proposition 3.5
Suppose that (Z,Z,) is distributed according to F' and that zZ < z;,z3 < 0. Then
p?®" is decreasing in z1 and z,. Moreover, p™ is strictly decreasing if I}, is a strictly

increasing function.

Proof.

Note that for z;, 29 > Z we obtain

~ le - le*
FZI;ZZ = le* + (1 - le*)leQ 11_ Fl*
1 1l it 1
Fz*(1 - Fzz) + FZ2F21'

Therefore

F21,22 - Fz11F00,22
RO-F)
le* (1 - lez) + FZ11 (Fz12 - FOOJ?)

L(zt) = Froa (1 = Fro) (21, 22) =
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But Fi ., = F. + (1 — FL)FL and hence

1 - FL

\/lel(l_lel).

Obviously, L(-) is decreasing in z; since the numerator is decreasing and the denomi-

L(z)=FL(1 - F! )

22

nator is increasing in z; for z; < 0. Interchanging the roles of z; and 25, one can derive

the same statement for z,.

To provide the intuition for this result, we first recall the effects identified for the jointly
normal case. When moving default points to the right in this case, the information
content of the event 1{Z; < z;} = 1 with respect to the underlying return variable Z;
decreases. This implies that less information about Zs and, hence, about 1{Zs < 25} is
obtained when observing that 1{Z; < z;} = 1. The opposite is true for the non-default
event: the information content of this event increases. We have shown that the latter

effect dominates the former because of the skewness effect.*?

In contrary, for pairs of return variables distributed according to F', moving default
points to the right has only the effect of decreasing the information content of 1{Z; <
z1} = 1 with respect to the other indicator variable while the information revealed from
the event 1{Z; < z1} = 0 does not change. Note that the event 1{Z; < z;} = 0 does
contain more information about the underlying return variable Z; when default points
have moved to the right. However, this will not reveal any additional information
about the other return variable Z,, since for Z;, Z5 > Z the variables Z; and Z, are

uncorrelated.

Summing up, we have identified an effect that indicates in which direction the rela-
tionship between default probabilities and default correlations will change when return
correlations are higher for low returns than suggested by linear correlation models.
Higher return correlations for low returns will tend to moderate the skewness effect or

even reverse it.

42Gee section 3.2.2.
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Discriminatory Bailout

Abstract. In the presence of macroeconomic shocks severe enough to threaten the
liquidity or solvency of the banking system, the regulator can rely on the funds con-
centration effect to save long-term investment projects. Some banks are forced into
bankruptcy with the result that other banks obtain more new funds and remain sol-
vent. We investigate two different implementations of the funds concentration effect
and the corresponding discriminatory bailout scheme: “random bailout” and “bailout
the big ones”. While the latter can be problematic in terms of stability, it is superior
to the former in terms of welfare and credibility. A third bailout scheme, “bailout
the small ones”, would lead to severe stability problems and may support low-return

equilibria.
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criminatory bailout, Funds concentration, Aggregate liquidity, Consistent

expectations.

JEL: D84, E44, G28



106 Chapter 4 Discriminatory Bailout

4.1 Introduction

The frequency and virulence of financial crises has led to serious rethinking concerning
the appropriate form of government intervention in financial markets. A major issue
is whether such crises can or should be avoided or whether a workout approach is
superior to prevention. In particular, it is unclear how financial intermediaries should
be regulated when they are subject to large macroeconomic shocks, as has been the

case in the recent crisis in Asia.!

While in the period before 1970 less intensive competition in banking in connection with
interest rate ceilings created oligopoly profits which acted as a buffer against macroe-
conomic shocks, the present regulatory frameworks are focussed on the prevention of
banking crises through cash-asset reserves and risk-sensitive capital requirements. If
a banking crisis nevertheless occurs, a variety of approaches are applied. In the most
common case of explicit or implicit deposit insurance, the taxpayers’ money is used to
bail out banks. In some cases, banking crises have been dealt with by closing some

banks or by takeovers, which smacks of a discriminatory approach to bailout.?

Since the prevention of crises via restricted competition or ex-post bailout with tax-
payers’ money has costs of its own, and because equity will not always be sufficient to
buffer severe macroeconomic shocks,® we will focus in this chapter on the possibility of

discriminatory bailout.

Under discriminatory bailout, the regulator forces only one or a small number of banks
into bankruptcy while the remaining banks are allowed to continue with their oper-
ations although all banks may be identical with respect to their balance sheet. The
rationale for discriminatory bailout can best be understood in an overlapping genera-
tion framework where banks invest short-term deposits in long-term productive invest-
ment. During the fruition time of the long-term investments, banks need to refinance
themselves by taking the deposits from new generations of savers in order to pay back

deposits from the old generation.

Suppose that, during the fruition time, new information reveals that the real return

1See e.g. HELLWIG (1998) and BHATTACHARYA, BOOT, AND THAKOR (1998).

2This has happened e.g. during the crisis in Asia and the Swiss regional bank crisis (see RADELET
AND SACHS (1998, 1999) and STAUB (1998)).

3For example HELIWIG (1995) notes (p. 723): “Given the difficulties of recapitalization after a
spell of bad luck - and given the possibility of repeated bad spells - it is not clear what one means in
asking a bank to follow a strategy of having more equity as a buffer. More equity at the beginning -
certainly! But thereafter?”” Moreover, GERSBACH (2001) shows that requiring large equity buffers for
banks reduces equity in firms, thereby increasing credit rationing which has negative macroeconomic
consequences.
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on long-term investment is low. This shock will not allow all banks to refinance long-
term productive investment by taking new deposits, since they cannot credibly promise
interest rates that are sufficiently high to attract enough deposits from the new gen-
eration. If there is no coordination mechanism that allows depositors to concentrate

savings on a fraction of banks, regulatory intervention is desirable.

In order to save both, banks and long-term investment projects, the regulator can rely
on the following general-equilibrium effect, which we call funds concentration effect.
By forcing some illiquid banks into bankruptcy, the share of funds available for the
remaining banks will increase, since there are fewer banks competing for new deposits.
Moreover, the surviving banks can buy investment projects from bankrupt banks at
liquidation value, thus enabling them to credibly offer higher deposit rates to the second

generation. The bailout policy of the regulator is discriminatory.

To concentrate on the funds concentration effect of bank closures, we start our analysis
with a situation where the banks’ insolvency is assumed to result solely from an exoge-
nous macroeconomic shock. As the realization of this shock is not under the control of
the banks’ managers, it would be most natural to decide randomly about which banks
to close (RB). However, closure policies feed back into the banks’ strategic behavior
and we therefore also consider two other bailout schemes, namely bailout of big banks
(BB) and bailout of small banks (BS).

We compare the discriminatory bailout approach with scenarios where banking crises
are prevented completely and with the no-regulation case. Moreover, the different
implications of the discriminatory bailout schemes with respect to stability, welfare and
credibility are analyzed. We identify BB as the preferred bailout scheme if depositors
can coordinate on maximum-return assessments. BS raises severe stability problems
and may support low-return equilibria, which both can be avoided under BB. Moreover,

BB dominates RB with respect to welfare and credibility of regulatory actions.

Finally, recognizing that the welfare implication of this chapter can only be a first step
towards a more complete assessment, of the pros and cons of discriminatory bailout, we
want to stress that an important aspect of this chapter is the provision of a simple ana-
lytical framework and a clarification of the major conceptual issues involved. Given the
possibility of a macroeconomic shock and discriminatory bailout, deposits are risky. If
an individual bank raises deposit rates, it will affect its own bailout probability as well
as that of all other banks since the refinancing needs rise accordingly. Therefore, the ex-
pected returns for depositors of all banks are influenced by the decision of an individual

bank. Moreover, the distribution of deposits among banks will affect expected returns
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on deposits as well, since some banks have higher refinancing needs under asymmetric
distributions than others. These banks might have to offer higher second-period de-
posit rates than under symmetric distributions, forcing the other banks to offer higher
rates as well in order to obtain any savings at all. As expected deposit returns at all
banks are affected by individual bank decisions and by depositors’ savings decisions,
it is not a priori clear whether consistent assessments of depositors’ expected returns
actually exist. We establish a general existence result for consistent return assessments

and also identify the constellations in which such assessments may not exist.

4.2 Review of the Literature

The role governments should play in managing illiquid banks remains one of the main
unresolved issues in banking regulation (see BHATTACHARYA, BOOT, AND THAKOR
(1998)). The existing theoretical literature primarily draws on a partial equilibrium
point-of-view where systemic consequences are accounted for only by exogenous factors.
It has been stressed that closure policies have to weigh the costs of bailout (subsidies to
uninsured debtholders) with the closure costs (direct bankruptcy costs, externalities).
Excessive risk-taking incentives can occur as both costs of bailout and costs of closure.
On the one hand, bailout creates moral hazard, as the probability of surviving depends
less on the bank’s risk choice and more on the regulator’s actions. On the other hand,
it increases the bank’s probability of survival, thus raising the value at stake and, in

turn, the bank’s incentive to protect it.*

Depending on how the different costs are weighed, authors come to different conclusions
about the desirability of governmental intervention. While for example HUMPHREY
(1986) and SCHWARTZ (1995) advocate a non-interventionist view, the opposite view,
namely that in some cases bailing out banks is socially desirable, has been put forward
by MISHKIN (1995), SANTOMERO AND HOFFMAN (1998), FREIXAS, PARIGI, AND
ROCHET (1998) or CORDELLA AND YEYATI (1999).> This chapter gives a new slant
to this debate. In our model, closing some banks is necessary so that others can survive
without further government intervention. In this sense, putting the funds concentration

effect to work is both interventionistic and non-interventionistic.

A further question raised in the literature is how the decision to close a bank should

depend on important bank-specific or macroeconomic variables such as the level of unin-

4See CORDELLA AND YEYATI (1999) for a formalization of the tradeoffs resulting from these two
mutually offsetting effects.
SFor a comprehensive discussion of this issue see GOODHART (1995).
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sured debt on a bank’s balance sheet (FREIXAS 1999), the size of a bank (GOODHART
AND HUANG 1999) or aggregate investment returns (CORDELLA AND YEYATI 1999).
FREIXAS (1999) finds that under optimal policies, banks will be closed either if they
have a too low or a too high level of uninsured debt on their balance sheet. Whether
the former or the latter of these policies should be applied depends on the respective
dominance of two counteracting effects: the costs of the subsidies to uninsured debt
holders on the one hand and the monitoring incentives for debtholders (which are in-
creasing in the level of uninsured debt) on the other hand. CORDELLA AND YEYATI
(1999), investigating how closure policies can minimize the risk-taking incentives of
banks, find that banks should be bailed out if aggregate investment returns fall below
a certain threshold level. The intuition behind their conclusion is that if aggregate re-
turns are high and a bank fails nevertheless, this will signal excessive risk taking, which
is discouraged by threatening closure. Bailing out banks in low states of the variable

will increase a bank’s charter value and therefore decrease risk-taking incentives.

While the conditionality introduced in CORDELLA AND YEYATI (1999) would have no
sensible application in the crises scenarios we are mainly interested in,® distinguishing
between the relative levels of insured deposits and uninsured debt on a bank’s balance
sheet would be a further useful step for the analysis of bank closure policies in general-

equilibrium frameworks.

Finally, GOODHART AND HUANG (1999) provide a framework that justifies a “bail out
the big ones” policy as long as risk-taking incentives are not taken into account. If
these incentives are important, the optimal rescuing policy may depend on the size
of the bank in a non-monotonic way. While GOODHART AND HUANG (1999) derive
their results by comparing the costs of bank failure (contagion) and of bailout (rescuing
insolvent banks with the taxpayers’ money), we stress the following advantages of BB.
First, it helps to avoid low-return equilibria. Second, it is more credible ex-post than
RB and - in contrary to BS - guarantees the existence of consistent deposit-return
assessments. However, BB is subject to self-fulfilling prophecies and hence return

assessments might not be unique. Moreover, it might provide risk-taking incentives for
big banks.

Besides the analysis of optimal bank closure policies, an important strand of the lit-
erature has investigated the regulator’s incentives to apply such rules. BOOT AND
THAKOR (1993) examined the regulator’s incentives to close banks in a manner that

results in socially optimal bank portfolio choices. They find that the regulator’s opti-

6While the aggregate-investment indicator would surely indicate that all banks should be rescued
in such scenarios, it would still be too costly to do so.



110 Chapter 4 Discriminatory Bailout

mal bank closure policy is less tight than is socially optimal. The analysis has been
extended by ACHARYA AND DREYFUS (1989), FRIES, MELLA-BARRAL, AND PER-
RAUDIN (1997) and MAILATH AND MESTER (1994). Finally, REPULLO (1999) con-
siders government agencies with different objective functions and investigates which of
these agencies should make bailout decisions. He finds that central banks should be
responsible for dealing with small liquidity shocks, while the deposit insurance agency
should deal with large ones. While we do not address institutional design issues - as
considered in REPULLO (1999) -, incentives for regulators are briefly discussed during

the analysis of the bailout schemes’ credibility.

On a conceptual level, this chapter is related to the literature in three respects. First,
discriminatory bailout can be interpreted as a version of the “constructive ambiguity”
principle, where regulators have full discretion to let one bank go bankrupt. Two
concepts of constructive ambiguity have been discussed in the literature. In FREIXAS
(1999) the central bank deciding which banks are to be rescued follows a mixed strategy.
In GOODFRIEND AND LACKER (1999) and REPULLO (1999), the bailout policy is not
random from the perspective of the central bank but is perceived as such by outsiders
that cannot observe the supervisory information that leads to the bailout decision. Our
closure policy RB introduces a constructive ambiguity concept similar to FREIXAS
(1999) since the regulator will choose to bail out a bank with a certain probability.
The BB and the BS concept are subtle mixtures of predetermined bailout (if banks
differ in size) and constructive ambiguity (if banks are equal in size). In contrast
to FREIXAS (1999), who considers a regulator that follows a mixed strategy when
deciding about a single bank’s bailout, we investigate the whole banking system and
motivate constructive ambiguity with aggregate solvency concerns. Therefore, bailout
probabilities have to be chosen in a way ensuring that under all realizations of the
stochastic decision process, the banks that have not been closed will be able to survive.

This makes the design of such a policy more demanding.

Second, this chapter is related to the literature discussing banking competition when
deposits are risky and depositors’ assessments about the performance of a bank might
become self-fulfilling. In particular, MATUTES AND VIVES (1996) have highlighted
the importance of the perceptions of depositors about the probability of success in
banking competition. They show that return expectations can become self-fulfilling
because of economies of scale or diversification effects. In this chapter the probability
of an individual bank failure is determined by the amount and distribution of savings
obtained by banks in conjunction with the regulatory bailout approach. This creates

existence problems for consistent return assessments by depositors. Moreover, we show
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that BB (but not RB) can lead to self-fulfilling prophecies. Under BB, a bank that is
assessed as offering high returns on deposits attracts a larger share of depositors than
competitors and hence increases the likelihood of bailout in the event of a negative
macroeconomic shock. This may validate the higher expected returns that depositors
have associated with this bank in the first place. As in MATUTES AND VIVES (1996),

such self-fulfilling prophecies can create stability problems, which do not occur under
RB.

Finally, our analysis bears on the recent tradition of integrating financial intermediation
in overlapping generation models. An important strand in this literature (FULGHIERI
AND ROVELLI (1998), BHATTACHARYA AND PADILLA (1996) and QI (1994)) has ex-
amined the relative merits of intermediaries and financial markets for the possibility of
sharing liquidity risk across generations. In this chapter we investigate how macroeco-

nomic shocks can be dealt with in OLG frameworks.

4.3 The Model

The model encompasses two overlapping generations; the first generation lives from
t =0tot =1 and the second from ¢t = 1 to t = 2. Each generation consists of a
continuum of households. There is one single physical good in the economy, which can
be used for production and consumption. Moreover, there is a number of banks owned
and managed by bankers. Banks gather the households’ savings and invest them in a

production technology.” The key features of the model are the following.

1. Returns on the production technology are subject to macroeconomic risk.

2. Banks offer uncontingent deposit contracts to households, thereby exposing them-

selves to macroeconomic risk.

We first have to justify why some of the macroeconomic risk remains on the balance
sheets of the banks. According to HELLWIG (1998), a bank could in principle reduce its
exposure to macroeconomic risk traceable to easily observable indicators such as GDP
or interest rates (either by offering state contingent deposit contracts or by transferring
risk to third parties via hedging contracts). However, banks bear substantial macroeco-
nomic risk in reality. HELLWIG (1998) offers a detailed account of why this is the case.

First, available indicators are only an incomplete measure of exposure to aggregate

"For simplicity of representation we do not model bank loans to entrepreneurs.
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risk. Second, in practice banks do not conclude contingent deposit contracts for the
following reasons: the inflexibility of indexed deposit rates as a risk management tool,
the existence of transaction costs, and the market-making role of banks. Moreover,
the on-demand clause of deposit contracts may invite runs on banks if repayments
are made contingent on the realization of macroeconomic variables such as GDP at a
certain point in time. Third, hedging counterparties are often banks themselves and
hence our analysis can be applied to the counterparty banks. Moreover, banks that
shift their risk to third parties are still exposed to credit risk; this risk is likely to be

correlated with the macroeconomic risk they want to insure themselves against.®

In order to keep the analysis as simple as possible, we do not focus on the moral hazard
of banks or risk aversion of households as further possible explanations for aggregate
risk exposure of banks. However, our analysis can be applied to the excessive risk-
taking problem, which has been identified as one of the major problems of prudential
banking regulation (see e.g. DEWATRIPONT AND TIROLE (1994)). If all banks in the
industry undertake portfolio choices with a common macroeconomic risk component
that cannot be diversified, regulatory intervention can follow a logic similar to the
one outlined in this chapter. The additional question emerging in this context is how
regulatory bailout schemes affect the banks’ risk choices. We will briefly discuss this

issue as an extension to our analysis.

Finally, our model allows an alternative interpretation for the banks’ exposure to
macroeconomic risk. It draws on the uncertainty about the accuracy of the banks’
risk management systems rather than on uncontingent deposit contracts. Suppose
that banks write contingent contracts that - according to their risk management tools
- isolate them from macroeconomic risk. If banks use similar risk management tools,
the aggregate uncertainty about future returns can be interpreted as aggregate uncer-
tainty with respect to the accuracy of the contingencies in the deposit contracts: risk
management tools may overestimate production returns in one macroeconomic scenario
while they underestimate them in an other. This leaves the banking system exposed

to systematic risk.?

8 GERSBACH (1998) describes two additional scenarios in which banks do not offer contingent de-
posit contracts. In the first scenario, the regulator can commit to the failure of insolvent banks.
Macroeconomic shocks are then borne by risk-neutral entrepreneurs, as long as their inside funds are
a sufficient buffer for these shocks. In the second scenario, banking crises are worked out. Banks offer
uncontingent deposit rates that can only be paid back when the state of returns is good. Downturn
macroeconomic risk is shifted to future generations.

9This view is for example substantiated by SHIN (1999), who suggests that the risk management
tools of financial institutions tend to heavily underestimate risk during episodes of market turbulence
since they do not take into account the endogeny of future market outcomes (i. e. the fact that
outcomes depend on their own actions and that of other market participants).
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4.3.1 Technology

We assume that there is a long-term technology that pays a random return of Ry units
of the good in ¢ = 2 for each unit invested in t = 0. If liquidated in £ = 1, returns
are zero.'® Production returns in ¢ = 2 are subject to aggregate risk. Two different
realizations of Ry are possible. In the first state, occurring with probability p;, we have
low returns: Ry = 9. In the second state, with probability p, := (1 —p;), we have high
returns Ry = 79,. The realization of the aggregate productivity shock is revealed in
t = 1 and will be observed by all market participants. We assume (a) constant returns

to scale and (b) that investment at arbitrary scale is possible.

4.3.2 Banks

The need for financial intermediation can arise for several reasons (see BHATTACHARYA
AND THAKOR (1993) for a comprehensive overview). We take this need for granted
and do not model it explicitly here. A special feature of our model is that banks finance
long-term investments with short-term saving contracts. In contrast to the standard
DIAMOND AND DYBVIG (1983) framework, there is no risk of consumption timing
for the first generation in our model. The individuals of the first generation know
that they will never see the fruits of their long-term investments. However, there is
an aggregate production risk that makes consumption uncertain in the second period.
The economic problem lies in enabling both generations to participate in the benefits
of a risky long-term investment though only the second generation will see the returns

of the investment.

In ¢ = 0 there are n banks, denoted by By, ..., B,. They are long-living institutions
enabling both generations to participate in long-term investments. Banks offer deposit
contracts at deposit rates d’ to the first generation and receive an amount D! of
deposits (i = 1,..,n); all deposits are invested in the production technology. In t =1
banks have to pay back their debt d'D? to first-generation depositors. To obtain
new funds, they offer deposit contracts to the second generation at deposit rates db.
After banks have received their second-period deposits, two cases can occur for each
individual bank. First, it has raised enough funds from second-generation depositors
to pay back its debt; in this case it receives investment returns in ¢ = 2 and pays
back its second-period depositors. If returns are not sufficient to service all depositors

in ¢ = 2, investment proceeds are uniformly distributed among depositors. Second,

10We will relax this assumption later on (see section 4.6.4.1 and appendix 4.B).
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the bank cannot raise enough funds; in this case it has to declare bankruptcy, and
the investments are liquidated. First-period depositors of such banks receive only the
bank’s cash, i.e. the savings of second-period depositors if there are any. Second-period

depositors receive nothing.

We complete the description of the banking sector by assuming (a) that banks are
owned by risk-neutral bankers'! who live for three periods and consume in ¢t = 2, and
(b) that bank managers maximize expected bank profits and hence internalize losses

that accrue to depositors in case their claims cannot be fully served.!?

4.3.3 Households

There are two overlapping generations of consumers (first and second generation),
each consisting of a continuum of households living for two periods. They are risk-
neutral but want to smooth consumption over time.!> We denote the individual saving
function that describes how much funds household h in generation g (¢ = 1,2) is
willing to deposit with banks by sgs. sgn(-) is assumed to be an increasing function of

the expected return paid on bank deposits, which we denote by u.

Note that since in both periods some banks might not be able to fully pay back their
debts to depositors, both generations of households have to assess the expected returns
paid by each bank given first-period deposit rates (for the first generation) and given
the first-period allocation and second-period deposit rates (for the second generation).
We denote the resulting aggregate saving function for generation g as Sy(-) and assume

that S, is continuous and strictly increasing in u. S,(u) can be represented as an

1UNote that for the sake of tractability we have excluded the possibility of issuing equity. We could
allow for equity as long as bank reserves cannot buffer losses completely in the event of negative
macroeconomic shocks.

12To fully close the model, a microeconomic foundation of the bank managers’ objective function
would have to be derived, and it would have to be specified how bank ownership gets transfered from
one generation to the other. We deliberately abstract from the latter issue by considering only one
generation of bank managers. Concerning the former issue, it should be noted that the appropriate
modeling of firm objectives under imperfect competition is still an open issue (see e.g. DIERKER AND
GRODAL (1999)). By employing expected profit maximization, we assume that the usual risk-taking
incentive - when bank managers do not take the losses accruing to depositors into account - does not
play a major role. For instance, we can assume that the regulatory body imposes some kind of penalty
on failing banks or bank managers that induces them to internalize losses (see e.g. DEWATRIPONT
AND TIROLE (1994)). If bank managers only maximized returns for shareholders and sought excessive
risks, banks would bid up deposit rates even higher than derived in this chapter, thereby aggravating
the refinancing problems of banks in ¢ = 1. Consequently, the benefits of regulation, based on funds
concentration, would be even more pronounced when risk-taking incentives are present.

13The assumption of risk-neutrality is made for convenience and tractability as in BERNANKE AND
GERTLER (1988) and K1JOTAKI AND MOORE (1997).
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integral of the saving density function sgp(u) over an interval on the real line (with-
out loss of generality [0,1]), each point on the interval representing one household:
Sg(u) = fol Sgn(u) dh. We will refer to this representation when using the expressions
“full measure of savings” and “zero measure of savings” later on. A certain bank has
obtained the full measure of savings if it has not attracted all depositors but if the inte-
gral of the saving density function over all the banks’ depositors is equal to the integral
over all households (“full-measure bank”). If a bank has attracted some depositors but
the integral of the saving density function over the banks’ depositors is zero, then we
say that the bank has obtained a zero measure of savings (“zero-measure bank”). In the
sequel we will use functions of the type S(u) = au® with a,a € (0,00) as an example

for the saving functions of both generations.

Finally, note that the saving functions S, for deposits can be interpreted as a result
of a portfolio decision. Deposits may only be one of several saving possibilities!* that
are imperfect substitutes. In this case, the expected-return elasticity of deposits can

be quite high.

4.3.4 Example

Throughout this chapter we will use the example presented in table 4.1 to illustrate

our results. Note that R, denotes the expected investment return p;ro + ppron.

51 (’LL)
SQ (U,)

—0.2 =1.03 | -
Y Pr " Ry =1.18

1.07-u Ph = 0.8 | rop, = 1.22

Table 4.1: Example A.

4.3.5 Regulatory Policy

We will derive the necessity of regulation precisely in sections 4.4.1 and 4.5.1. For the
time being, note that it will result from the following reasoning. In the case of low
production returns it might not be possible for all banks to refinance in ¢ = 1 since

they cannot credibly offer sufficiently high second-period deposit rates. Nevertheless,

14The others are not modeled explicitly but enter the model via the specification of the saving
functions.
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it might be possible for a fraction of the banks to refinance if depositors concentrated
their savings on these banks. Without regulation though, depositors have no possibility
of coordinating their savings on such a fraction of banks; equilibria in which no bank is
able to refinance can therefore not be excluded. We will consider two types of regulatory
scenarios designed to avoid these problems. The first one (prudential banking) ensures
that the whole banking system is able to refinance in both states of production returns
by encouraging banks to offer low deposit rates in the first period. The second one
(discriminatory bailout) allows for situations where the banking system is not able to
refinance itself. The regulator solves the coordination problem of depositors by closing
a fraction of banks in order to make sure that the others can survive. Closing some
banks will have two effects: first, it will reduce the amount of second-period deposits
needed by the banking system; second, by taking over investment projects of closed
banks, surviving banks can offer higher returns on deposits. In this section we describe

the different regulatory approaches formally.

4.3.5.1 Bailout Schemes

Suppose that there are m < n banks in ¢ = 1 that have received deposits. The regulator
observes the realization ro of the macroeconomic shock, i.e. the future prospects of

aggregate production returns. The banking system is able to refinance if and only if

n

Sy(ra/d™) > " di D}, (4.1)

i=1

d"® is the highest deposit rate that has been offered by a bank in the first period.
Note that ro/dT"®* is the highest return that all banks can credibly offer to the second
generation in ¢ = 1 (because dd? cannot exceed r5). If refinancing condition (4.1) holds,
then all banks can survive (for example, if a uniform deposit rate of ro/d** is offered to
second-period depositors) and the regulator will not intervene. Consequently all banks
will be allowed to compete for second-generation deposits in this case. In the following
we will use the matrix A := (A;)", with A; := (A;p, Ajr) to summarize deposits and
investments of the banks after the regulatory decision. A;;, denotes the obligations to
first-period depositors and A;; denotes the units of investment projects that a bank
holds. Hence, if (4.1) holds, deposits and investments are given by A; = (d' D%, DY)

for ¢+ = 1, .., n since the regulator has not stepped in.

If condition (4.1) does not hold, then not all banks will be able to refinance themselves

because new funds at the largest credible uniform deposit rate are less than the aggre-
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gate obligations of the banking system.'® In this case the regulator will close a certain
number (m — k) of banks and additionally eliminate a fraction (1 —b) of the surviving
banks’ deposits. Depositors whose deposits have been eliminated will loose their claims
on the bank. The bailout schemes differ with respect to the manner in which the subset
of surviving banks, which we denote by BT, is determined. Under random bailout
(RB), Bt is chosen by randomly drawing k banks (out of the m banks which have
received any deposits). Under prudential banking (PB), the regulator also applies
RB but additionally imposes a penalty P on all banks that had to be closed. P is
assumed to be so high that a bank strategy with a positive probability of leading to
P will always be eschewed in favor of any strategy that does not involve the possibil-
ity of insolvency, including exiting from the market.!'® While the surviving banks are
chosen randomly under RB and PB, banks are ordered with respect to the amount of

first-period deposits they have gathered under bail out the big ones (BB):
DI(I)>...>DI(E):...:DIU€):...:DI(E)>...>DI(m)_

The set B* will contain the banks B, 1), ..., B;(5—1) and another £ — (£ —1) banks which
are chosen randomly from the set {B;(), ..., B;z)}. The scheme bail out the small
ones (BS) is defined in a symmetric way; the only difference is that the ordering
scheme is reversed, i.e. big banks will be closed first.!” Since both bailout schemes BB
and BS work completely symmetrically, we will describe only BB in more detail; also

all examples that will be discussed refer to BB.

The investment projects of closed banks are distributed among surviving banks in
proportion to the amount of deposits they have gathered. Hence, after regulatory
intervention, the balance sheet of a surviving bank i consists of obligations bd: D to

first-period depositors and of by D% units of investment projects where!®

noDi
bI = bI(B+) = % (42)
i€EB 1

15Tf higher deposit rates would be credibly offered by some banks, then at least the bank that has
offered dy"®* in ¢t = 0 would not be able to receive any deposits.

16Note that by offering very unfavorable deposit rates a bank can always ensure that it will never
become insolvent, regardless of the behavior of the other banks.

1"Regarding BB and BS we might also envisage ordering banks with respect to the value of their
obligations instead of ordering them with respect to their deposits, as above. Our arguments would
not be affected by a switch to outstanding-debt ordering.

18Note that we use Bt not only to denote the set of surviving banks but also to denote the set of
indices 41, ..., 4; that identify the surviving banks. Note also that if all banks in BT have only a zero
measure of deposits on their balance sheet, then the denominator of equation (4.2) is zero. In this
case investment projects are uniformly distributed among all banks in B¥.
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Hence

A . ) (bdiD} bDY) ifie B
e (Oa 0) else.

Recall now that regulatory policy must ensure that all remaining banks are able to
pay back their first-period depositors with the savings of the second generation. Note
that if a bank 7 receives exactly the amount of second-period deposits that it needs
to service its obligations (i.e. D! = bdiD?), then it will be able to credibly offer a
deposit rate rob;/(bd:) to its second-period depositors; hence the rate ryby/(bd*) can
be offered by all surviving banks, and the total amount of second-period savings that
can be attracted is at least Sy (rgbl/(bdina")). Since b/byr is equal to the fraction of
overall deposits which have not been eliminated (we denote this fraction by ¢), we

conclude that all remaining banks will be able to refinance if

53( ij) > qd7™ " D,
qd] i=1

The highest possible fraction ¢ of first-period deposits that can be bailed out under
the constraint that the surviving banks shall be able to refinance is therefore given as

solution of the equation®’

Sy (qc;;) — g™ Xn: D, (4.3)

=1

Note that under BB we have

br DY
¢= % (4.4
=1 1

Hence, k£ and b can be chosen to ensure that ¢ = ¢q. Obviously there is more than one
combination of £ and b that leads to ¢ = ¢. It is therefore important to note that
allowing the regulator to additionally eliminate a fraction (1 — b) of all the surviving
banks’ balance sheets only serves technical purposes.?’ In principle we do not allow
for the balance sheets of all banks to be scaled down arbitrarily without disruptive

consequences for the banks when continuing their operations and thus for the economy.

9Note that the left-hand side of the equation is decreasing while the right-hand side is strictly
increasing in ¢ which, together with the fact that inequality (4.1) does not hold, implies that there is
a unique solution g € [0, 1] of equation (4.3).

20This assumption allows us to avoid discontinuities (see page 130).
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If such an arbitrary scale-down were possible, an alternative implementation of the
funds concentration effect would be to scale down the balance sheets of all banks
without closing any of them completely. But under severe macroeconomic shocks (in
which our major interest lies), the scale-down needed would most likely disrupt the
banks’ operations and thus shrinking all banks simultaneously is no viable alternative.
Therefore, under all bailout schemes we will try to choose b as high as possible. Hence,
using equation (4.4) we determine k and b under BB by

l n
ko= min{lE]N | ZD{@quDi}, (4.5)
=1 =1

s = (0 (3 0r). o

Contrary to BB, the fraction ¢ of bailed out depositors under RB is in general not
determined by the choice of £ and b, since it is not clear which banks will be chosen
to survive. To determine k£ under RB, we must therefore take into account that the
fraction of remaining deposits should not exceed ¢, regardless of which banks have been
chosen. The worst case that can be thought of in terms of remaining deposits is that -
as under BB - the k£ largest banks have been chosen to survive. Hence, to ensure that
the fraction of bailed out deposits is equal to ¢ in this case, £ and b are determined as

under BB, i.e. according to equations (4.5) and (4.6).

4.3.5.2 Bailout Schemes: The Symmetric Case

In this section we illustrate the working of the bailout schemes for an arbitrary sym-
metric first-period allocation (d;, D;) where all banks have offered the same deposit
rate d; and received the same amount of first-period deposits D;. In this case all
bailout schemes will proceed in the same way. First, ¢ is determined as the solution of

a simplified version of equation (4.3):

)
nd1 D, = Sy(—). 4.7
qnai i 2 P d1) (4.7)
Figure 4.1 illustrates the solution of equation (4.7) for example A, which will be used
for all illustrations unless otherwise indicated. Second, to achieve a fraction ¢ of bailed
out deposits with b as a high as possible, we choose k = [ng]| and b = (nq)/[nq].%*

The k£ banks that will survive are chosen randomly under all schemes since all banks

ZINote that [2] denotes the smallest integer greater than or equal to x.
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Sa(re/qdy) as functions of ¢ (nDy = 2.7
and d; = 1.05, example A).

have raised the same amount of first-period deposits; hence the bailout probability of

each single deposit is equal to the fraction § of bailed out deposits.

As an example consider the case n = 4. Figure 4.2 depicts the function ¢ — [nq]. If
e.g. ¢ = 0.6, then [ng] = 3 and one bank will be closed. Moreover, b = 1.8/3 = 0.6
and 40% of each surviving bank’s deposits are eliminated.

4.3.5.3 Bailout Schemes: The Asymmetric Case

If the first-period deposit distribution is asymmetric (i.e. if not all banks have received
the same amount of deposits), the schemes RB and BB will generally produce different
regulatory decisions; under BB, always a fraction ¢ of depositors is bailed out and the
bailout probabilities for deposits depend on the size of the bank at which the deposits
are held. Under RB, in contrary, the bailout fraction can be lower than ¢ and the

bailout probability of each deposit is given by (k — 1+ b)/m.

We start, however, with an important case of asymmetric deposit distribution where RB
and BB produce the same regulatory decision: the case where one bank has obtained
all deposits and the other banks none. In this case we have £ = 1 and b = ¢ implying
that the bailout probability of each deposit is equal to the fraction ¢ of bailed out
deposits.

As an example illustrating the differences between BB and RB, consider a deposit

distribution as depicted in figure 4.3 and suppose that as above § = 0.6. To determine
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k, note that the sum of all first-period deposits is 10. Since 5/10 < 0.6 and (5+2)/10 >
0.6, we have £k = 2 and b = 10-0.6/(5 + 2) ~ 0.85. Under BB, the regulator will
therefore close bank 4 and either bank 2 or bank 3; the choice between those two banks
is performed randomly with each bank having a probability of 0.5 to survive. After
that a fraction (1 —b) = 0.15 of the surviving banks’ deposits is eliminated. Hence, the
bailout probability for deposits at bank 4 is zero, it is 0.5 - 0.85 = 0.425 for deposits
with banks 2 and 3, and it is given by 0.85 for deposits at banks 1. Under RB, in
contrast, the bailout probability is equal to (2 — 1 4 0.85)/4 = 0.462 for all deposits.
Moreover, the fraction of bailed out deposits is 0.6 if bank 1 and bank 2 have been
chosen to survive while it drops to [0.85 - (2 + 1)]/10 = 0.255 if banks 3 and 4 have

been chosen.

Finally, consider the case where one bank has

obtained the full measure of savings and the

other (n — 1) have obtained zero measures

of savings. As for the case where only one 4r 1

Deposits
w
T
1

bank has received any deposits, we obtain
k =1 and b = ¢q. But while under BB the 2k i

(n—1) small banks are closed and the bailout 1

probability for the depositors of the big bank

is g, the bailout probability under RB drops B
to G§/n. Moreover, with probability (n—1)/n,

the full measure of deposits is eliminated. Figure 4.3: Example for a first-period de-
posit distribution.

4.3.5.4 Bailout the Big Ones: The Case of Zero-Measure Banks

Concluding the description of the bailout schemes, we note that BB will slightly differ
from the procedure described above in case that some banks have only gathered a zero
measure of deposits in £ = 0. Note that under BB such banks will always be closed
if the refinancing condition (4.1) is not fulfilled. Hence, when determining g in such
a case, the first-period deposit rates offered by zero-measure banks do not have to be
taken into account. In such a situation, the regulator will therefore define d"** as the
maximum first-period deposit rate offered by positive-measure banks and will close all
zero-measure banks that have offered deposit rates higher than d"**. The BB bailout
scheme described in the previous sections will then be applied to the positive-measure

banks and to the remaining zero-measure banks.
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4.3.6 Summary: Sequence of Events

We now summarize the sequence of events.

1. Banks offer first-period deposit rates.
In ¢ = 0 banks simultaneously offer their first period-deposit rates d: (i = 1, .., n).

d; = (d%)™, denotes the vector of all first-period deposit rates.

2. Households (first generation) assess expected returns and make their
saving decisions.
First-generation households make assessments u; = (u})™, about the expected
returns that will be paid on deposits by each bank. Based on these assessments,
they decide on the amount of savings they want to deposit with each bank. We
denote the vector of all first-period deposits by Dy = (D?)”,. Finally, banks

invest the deposits obtained in the production technology.

3. Regulatory policy.

The regulator observes the realization of the productivity variable ro. If the
refinancing condition (4.1) is fulfilled, the regulator will not intervene. In this
case the deposits and investments of bank 7 are given by A; = (d{ D}, D%). If
condition (4.1) is not fulfilled, then one of the bailout schemes will be applied
and some banks will be closed. The set of surviving banks is denoted by B*.
Investment projects of closed banks are distributed among surviving banks in
proportion to the amount of first-period deposits they have gathered. Deposits
and investments of bank ¢ after regulatory policy are given by A; = (0,0) if it
has been closed and by A; = (bd: D%, by D?) if it has survived.

4. Surviving banks offer second-period deposit rates.
Surviving banks simultaneously offer their second-period deposit rates di(A) (i €

BT). The vector of all second-period deposit rates is denoted by da = (d});cp+-

5. Households (second generation) assess expected returns and make their
saving decisions.
Second-generation households make assessments us = (ub);cs+ about the ex-
pected returns that will be paid on deposits by each bank. Based on this assess-
ment, they decide on the amount of savings they want to deposit with each bank.

The vector of all second-period deposits is denoted by Dy = (D});cp+-
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6. Surviving banks pay their second-period depositors back.
In ¢ = 2 surviving banks receive returns from investments and pay their second-

period depositors back. Profits are consumed by managers.

We call steps 4 -6 the second-period subgame of the intermediation game.

4.3.7 Equilibrium Concept

In order to derive the subgame-perfect equilibrium of the game described in section
4.3.6, some subtle points have to be taken into account. In particular we need to discuss
how the households’ return assessments can be derived. Two issues are important in

this respect.

First, given an assessment ug by households in generation g (¢ = 1,2) about expected
deposit returns, the deposit distribution Dg = Dg(ug) is derived from the households’
utility maximization. We use By*** to denote the subset of all banks that are assessed
to pay the maximum expected return uy** among all banks for generation g. The
banks in Bj'** will receive all the savings of the households: ) D; (ug) = S(u)
and D} (ug) = 0 for all i ¢ B>,

i€Bmax

Since depositors are indifferent with regard to all banks in Bg**, it is unclear how
deposits are distributed among these banks. We will assume that if two banks are
in BP*, they will receive the same amount of deposits if all of their characteristics

1'22

are identica This means that indifferent depositors will randomize among their

preferred banks with equal probability and independently of each other.

Second, the households’ assessments have to be consistent. In order to give a precise
definition of consistency, we use Uy (dy, Dy) to denote the vector of expected returns on
first-period deposits resulting from the allocation (dy, D) and from regulatory policy.
Furthermore, given the matrix A of deposits and investments after regulatory policy
and given second-period deposit rates do and deposit distribution D2, we can define the
resulting vector of expected second-period returns as U, (A, d,, D2>. We will show
in section 4.4.1 that the functions U;(-) and Usy(-) are well defined for all entries i
with 7 € B, i.e. for banks that are assessed to pay the maximum expected returns
on deposits. However, if i ¢ By then bank 7 will receive no deposits and exit the

market; it is therefore unclear whether the assessment was correct in the first place. To

22Tn t = 0, banks are identical if they have offered the same first-period deposit rates and in ¢ = 1
they are identical if their balance sheets are identical and if they have offered the same second-period
deposit rate.
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deal with this problem, we introduce a so called “zero-measure test”. We calculate the
expected returns for each bank resulting from a deposit distribution Dg(ug). Dg(uyg)
differs from Dg(ug) only in one respect, namely that banks i ¢ By®* receive a zero

measure of savings instead of no savings at all:

Di (ug) ifi € Br>

zero measure else.

D;(ug) = {

Definition 4.1 ( Consistent assessments )

Given first-period deposit rates dy, an assessment u; is consistent if and only if

U, (dl, f)l(u1)> = u;.

Given the matrix A of post-regulation deposits and investments, and given second-

period deposit rates dg, an assessments us is consistent if and only if

U, <A,d2,]52(u2)> = u,.

Note that we will only consider different assessments for two banks if they are different

with regard to at least one of their characteristics.

Consistent assessments mean that depositors make optimal saving decisions?® and that
expected returns are equal to returns generated when depositors distribute themselves
among the preferred banks. Whether or not consistent assessments exist will be dis-
cussed at length in the next section. If more than one consistent assessment exists, we
apply the Pareto selection criterion and assume that the assessment which generates

the highest returns will be realized. We therefore define:

Definition 4.2 ( Optimal assessments )

max

9
high as the maximum expected return resulting from any other consistent assessment.

An assessment ug (g = 1,2) is called optimal if it is consistent and if u'** is at least as

We will see that under regulation the best assessment and the corresponding deposit
distribution are always unique. We conclude this section by summarizing our equilib-
rium concept. Note that, since banks are identical ex-ante, we constrain ourselves to

the analysis of symmetric equilibria.

231.e. savings decisions that lead to the highest expected returns, given the deposit rates offered by
the banks.
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Definition 4.3 ( Equilibrium concept )

For any given regulatory policy, a symmetric subgame-perfect Bayesian equilibrium is a
set consisting of first-period deposit rates dy = (d, .., d1), assessments uy; = (uy, ..., uy),
a deposit distribution Dy = (D, ..., D), reaction functions do = dg(A) that assign
a vector of second-period deposit rates do to each possible set A of post-regulation
deposits and investments, and a second-period deposit distribution Dy = (D, .., D5).
This set has to fulfill the following conditions:

1. Given A, second-period deposit rates da(A) constitute an equilibrium in the

subgame.

2. The second-period subgame equilibrium is symmetric, i.e. banks that are identi-

cal in t = 1 offer the same second-period deposit rate.

3. The strategies (dl, dz(-)) constitute a subgame-perfect Bayesian Nash equilib-

rium in the entire game.

4. Assessments are optimal.

The equilibrium concept is a subgame-perfect Bayesian Nash equilibrium involving two
subtleties. First, individual deposit decisions have no influence on return assessments
since the contribution of each single depositor to overall deposits has zero measure.
However, the distribution of deposits matters. Second, different deposit distributions
for the same vector of deposit rates can imply different probabilities for bank defaults,
which feeds back into the return assessments. Both subtleties raise considerable prob-
lems for the determination of return assessments. These problems will be addressed in

the following section.

4.4 Equilibria in the Second Period and Consistent

Assessments

In this section we first solve the second-period subgame and then analyze the existence
of consistent assessments in the first period. All proofs in this and the next sections

are deferred to the appendix.
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4.4.1 Equilibria in the Second Period

Recall that a surviving bank i in ¢ = 1 has bd? D! first-period deposits and by D% units
of investment projects. If the refinancing condition (4.1) holds or if no regulation is
applied in t = 1, then b = by = 1 and all banks that have received any deposits int =0
compete for second-period deposits. If, on the other hand, condition (4.1) does not
hold and regulation is applied, then b < 1, b; > 1, and the regulator closes all banks
outside of B*.2* The surviving banks’ profits in both cases are given by?®

i . J TbiDi— (1= 0)diD} —dyD; i D} > bd) D}
T —di D} else.

To analyze the second-period subgame equilibrium we define J’lnax = max;ep+{d.},
s = S5 <ZieB+ bd§D§> and

Y= {dg =d;, Di=bdiDi (i€ B+)}.

Note that dj is the lowest deposit rate that generates enough second-period deposits for
all surviving banks to refinance and that &; is the (potential) second-period equilibrium

where all surviving banks offer dj.

We start with the analysis of the no-regulation case. This case is only presented to
derive the necessity of regulation. We will restrict ourselves in this case to first-period
constellations where all banks have offered the same deposit rate d; and therefore have
received the same amount D; of deposits. Note that this implies that J’flax = d; and
di = Sy '(mdyD;) where m is the number of banks that have received any deposits in
t=0.

Proposition 4.1 ( No-regulation case )
Suppose that banks have offered the same deposit rate d, and therefore have received

the same amount D; of deposits in t = 0. Then the following statements hold:

(i) Ifry/d; > ds, then £ is an equilibrium. Moreover, from the point of view of the

banks, £ Pareto-dominates all other possible equilibria.

24Note that if no bank has been closed by the regulator, then Bt simply denotes the set of all banks
that have received any deposits in ¢t = 0.
Z5Note again that we assume bank managers to internalize losses that accrue to depositors.
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(ii) If ry/d; < d, then there is no equilibrium where all banks can refinance them-
selves. Moreover, in all symmetric second-period equilibria, where all banks offer
the same deposit rate dy, no bank can refinance itself and we have D} = 0 for all
i€ BTt

Intuitively statement (i) stems from the following reasoning. First, deviations from &;
are not profitable since higher deposit rates increase repayment obligations; deviation
to lower deposit rates either leads to the loss of all second-period deposits to the other
banks or to the concentration of all savings on the deviating bank, which both takes the
deviating bank’s profits down to zero. Second, £5 Pareto-dominates all other equilibria,
since equilibria with higher deposit rates lead to an increase in repayment obligations
and because in equilibria with lower deposit rates no bank will receive any deposits.
The mechanism leading to the latter observation is also responsible for the second part

of statement (ii) and can be explained as follows.

Assume that the refinancing condition were fulfilled for /m banks (m < m), i.e. that
25 S;l(mdlDl).
dy

If depositors could manage to deposit their savings only with a subset of m banks, these
banks would be able to refinance. But since all banks are identical, depositors cannot
coordinate to deposit with a particular subset of banks; rather they would randomize
independently between banks and, by the law of the large numbers, every bank would
receive the same amount of savings, which is not enough to refinance. This in turn
implies that none of the banks will receive any savings. Discriminatory bailout solves
this coordination problem by closing some of the banks so that the remaining ones can

raise enough new funds to refinance.

Of course there can be asymmetric constellations where one bank is able to refinance.
Imagine the case where there are only two banks and ry/d; > Sy '(diD:). If one bank
offers u,, defined as the positive solution of u = roD;/Ss(u), and the other bank offers
a lower deposit rate, the depositors’ coordination problem is solved, since they know
that the bank that has offered u, can pay strictly higher returns. Without regulation,
however, there is a severe coordination problem, because both of them would like to
be the bank that is able to pay depositors back. Therefore, in our analysis of the
no-regulation case in section 4.5.1 we will assume that no bank will receive any second-
period savings if ro/d; < dj. On the other hand, if ry/d; > dj, we assume that & is
played which - according to proposition 4.1 - can be justified by the Pareto selection

criterion.
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We now turn to the case where regulation (PB, RB, BB or BS) ensures that 5/ (qd®®) >
d3. The regulation case will be analyzed in the general setting where banks may have
offered different deposit rates in ¢ = 0. We have already derived that under sym-
metric first-period allocations, banks will offer second-period deposit rates that are
just sufficient to attract enough second-period savings to pay back their obligations
to first-period depositors. Deviations to lower deposit rates can be excluded as the
bank which has offered lower deposit rates will receive no second-period savings. Un-
der asymmetric first-period constellations, however, deviations to lower deposit rates
could be profitable for big banks, since the smaller non-deviating banks cannot cope
with all second-period savings alone. This in turn could lead to non-existence of equi-
libria or to equilibria where not all banks can refinance (despite the fact that all banks
would be able to refinance if offered deposit rates were high enough). To avoid these
problems, we assume that the regulator imposes a lower bound on second-period
deposit rates (LBD), i.e. she guarantees that no banks offers a deposit rate lower
than d5.2° This ensures that refinancing of all banks indeed occurs in equilibrium under

asymmetric first-period constellations as the next proposition indicates.

Proposition 4.2 ( Regulation case )
Suppose that regulation ensures that r/(qd™®) > d3 and that LBD is applied int = 1.
Then & is a second-period equilibrium. Moreover, from the point of view of the banks,

&5 Pareto-dominates all other possible equilibria.

Regulation LBD ensures that banks do not undercut the rate dj. Moreover, banks that
have offered higher deposit rates than di have higher repayment obligations than under
&;. This implies that deviations from &5 are not profitable and that all other possible

equilibria are Pareto-dominated by &;.

Throughout this chapter we will assume that under regulation, banks will play £ which
can be justified by the Pareto criterion. In this case, second-period deposits just suffice
to cover the refinancing needs of the banks and we can describe expected returns on
first-period deposits of bank i as u¢ = (g} + prgi)d: (i =1,...,n). ¢ (¢}) denotes the
bailout probability for bank i in the case of low (high) production returns.

26 Again we could think that a high enough penalty is imposed in case that banks do not obey.
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4.4.2 Consistent Assessments in the First Period

In this section we analyze the existence and uniqueness of consistent assessments in
the first period, assuming that one of the regulatory schemes is applied.?” Consider
a situation where there are two groups of banks, B; and By, that have offered first-
period deposit rates dy; and dyy, (dy; < dyp) respectively. Note that the assessments and
deposits for all banks in B; and for all banks in B, must be identical. Note also that this
scenario includes two important cases that need to be considered in order to analyze
symmetric equilibria of the intermediation game: first, the symmetric non-deviation
case where all banks offer the same first-period deposit rate dy; = dy;, = d and second,
the deviation case in which one bank deviates to a lower or a higher deposit rate. In the
non-deviation case all banks are in one group (without loss of generality in B;,) while
in the deviation case either the deviating bank is in Bj, while the the non-deviating

banks are in B; or vice versa.

We will now examine expected first-period returns on deposits in the non-deviation
case and in the deviation case if one group of banks receives all deposits.?® We denote
the deposit rate in the non-deviation case and the deposit rate offered in the group
of banks that has received all savings in the deviation case by d. The corresponding
return assessment is denoted by u and the bailout probability when productivity is low
(high) is denoted by ¢; (gn). Using equation (4.7) we observe that in both cases u can

only be consistent if it solves the system S(d) that consists of the equations

u = (pq+ pran)d (4.8)
) 1 Tl

@ = m‘n{ dsl(u)SQ(@) ’ 1} (4.9)

- min{ dsll(u)SQ(Z—’c‘i) , 1} (4.10)

and of the constraints ¢, > 0 and ¢, > 0. Note that refinancing condition (4.1) will
hold in both states of production returns if and only if dS;(d) < Sy(re/d). We denote
the highest first-period deposit rate at which this is the case by dy,. Hence, dy, is the

unique solution of the equation

S;l(dsl(d)) - %.

2TThe no-regulation case will be summarized in section 4.5.1.
28We will see later (in propositions 4.3 and 4.4) that we do not have to consider the case where one
bank deviates and both the deviating bank and the non-deviating banks receive deposits.
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Moreover, we use u := min{u|S(u) > 0}. The next lemma is crucial for the analysis of

consistent first-period assessments.

Lemma 4.1
Suppose that d > u. Then the system S = S(d) has a unique solution which we denote

by (ta, 1,4, Gn,a)- Moreover, this solution has the following properties:

(i) u(), @) and gn. are continuous functions of d.
(ii) uq=d for d < dy, and u4 < d for d > dy,.
(111) Qra < 1 for d > dL,' Q,d, Qh,d > 0 for all d.

(iv) G is strictly decreasing in d for all d € Dy where

Dy = {d | dSy(ig) < So(ran/d) and d > dL}.

The existence and uniqueness of a solution

10 T T T T

[0-1]=8% for § is derived from a fixed-point argument:

or R 7 the right-hand-side of equation (4.8) is a de-

= o 1 creasing function of u (since bailout proba-
? 7 - ,,,,, .4 bilities ¢; and g, are decreasing in u) while
= 6l { the left-hand-side is strictly increasing. This
5 _\\ implies existence and uniqueness of u4 be-

A , , , , cause of the continuity of the bailout prob-

4 5 6 7 8 9

abilities as functions of u. Figure 4.4 illus-
trates the solution of S. Note that v and d

Figure 4.4: The left-hand and the right- are represented by the percentage points by
hand side of equation (4.8) as functions

of u for different values of d (example A)

[u-1] (%)

which they exceed 1, i.e. u = 1.06 is rep-
Note that w is represented by the percent- resented by 6. This scale will be used for u
age points by which it exceeds 1. and d in all following illustrations.

Note that at this point our technical device
that allows for a fraction (1 — b) of the surviving banks’ deposits to be eliminated
guarantees the continuity of the bailout probabilities as functions of u and thus the
existence of a solution for S. If only entire banks could be closed, the bailout proba-
bilities would not be continuous in u. Discontinuities would appear for all u where a
marginal higher value of u requires to close an additional bank: in such points bailout
probability would fall by 1/n. Hence, consistent assessments might not exist for some

values of d.



4.4 Equilibria in the Second Period and Consistent Assessments 131

For the description of the deviation case we need to analyze the system S = S(dy;, dyp)
consisting of equations (4.8) - (4.10) where d is replaced by dy; in equation (4.8) and
by dip, in equations (4.9) and (4.10).%

Lemma 4.2

Suppose that dy;, dip, > u. Then the system S has a unique solution which we denote

by (Gidy;dips Qdursdins Thdaysdan,)-

In the next two propositions we characterize consistent and optimal assessments. Note
that in the non-deviation case where all banks have offered the same first-period deposit
rate dq, assessments for expected returns of banks are denoted by uq. In the deviation
case there are two groups of banks, BB, and B, that have offered different first-period
deposit rates dy; and dy, respectively (dy; < dy;). Here we denote the corresponding

assessments by uq; and uqy, respectively.

Proposition 4.3 ( Consistent assessments: Non-deviation case )
If all banks have offered the same first-period deposit rate d,, then uy = (g, ..., Ug, )

is the only consistent assessment under all bailout regimes.

Proposition 4.4 ( Consistent assessments: Deviation case )

In the deviation case only the following types of assessments can be consistent:
a) uy < uyp = Uq,, b) uip < uy = g, c) assessments of the type uy = usp.
More specifically, we obtain:

(i) Under the RB or PB bailout scheme, uy < uy, = g, is the only consistent

assessment.

(ii) Under the BB bailout scheme, uy; < uy, = Ugq,, is a consistent assessment and

uip < U1 = Ug,, IS a consistent assessment if and only if

(plIl7dllydlh +phIh,d11,d1h>dlh < ﬂd”

where®°

Ly = 1{ Salraifdun) > dSi(aa,) b (1= 1,h).

Moreover, an assessment uy; = uyp IS never optimal.

29This will become apparent when going through the proof of proposition 4.4.
30Note how the indicator function 1{-} is defined. 1{A} is equal to 1 if statement A4 holds and equal
to 0 if statement A does not hold.
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(iii) Under the BS bailout scheme, uy < u1p, = Uq,, IS a consistent assessment if and
only if U4, > dy; an assessment uy, < uy can never be consistent. Finally, if

Uqg,, < dy and ppdip < Uq,,,4,,, then no consistent assessments exist.

Corollary 4.1
If gh,4,, = 1 and dy; > dy, then no consistent assessments exist under BS if dyj, — dy; is

sufficiently small.

Proposition 4.3 follows directly from lemma 4.1 since expected returns for depositors
can be expressed by equations (4.8) - (4.10). Moreover, under RB, bailout probabilities
for all banks are the same, implying that the banks that have offered the highest deposit
rates will always pay the highest returns. Therefore assessments are also unique in the
deviation case. Under BB, however, we cannot generally exclude assessments that
assign higher expected returns to banks in B; despite the fact that those banks have
offered lower deposit rates than the banks in B,. This is due to a self-fulfilling prophecy
effect caused by BB. Suppose that a bank is assessed to pay higher expected returns
than the other banks. This bank will obtain more deposits than the others and hence
will be “bigger” in terms of the bailout regime. Under BB it will therefore have a higher
bailout probability. This effect can indeed compensate for lower deposit rates. To see
why an assessment uq; = uy, cannot be optimal under BB, note that in this case banks
in By, must be smaller with respect to first-period deposits than banks in B;; otherwise
bailout probability and offered deposit rates would be higher for B,-banks. But this
implies that Bj-banks have a lower bailout probability than in the case where they
receive all deposits. The formalization of these arguments leads to statement (ii) in

proposition 4.4.

Finally, the mechanism leading to consistency problems under BS is the following. If
some banks are assessed to pay higher returns than the other ones, the former will
attract all deposits. But this implies that these banks are bigger than the banks asso-
ciated with lower expected returns and will therefore have a lower bailout probability.
This could proof the initial assessment to be incorrect even if higher assessed banks
have offered higher deposit rates. In analogy to the self-fulfilling prophecy effect under
BB, this mechanism could be termed self-contradicting prophecy: by assessing a bank
to pay high returns, depositors lower its bailout probability and hence its expected re-
turns. To give an impression of the size of the effects, we note that if (for our example
A) dy; = 1.05 then no consistent assessments exist for dy;, < 1.059, a difference of nearly
1 percentage point. This can prevent banks from biding up deposit rates in low-return

equilibria. Suppose, for example, that depositors will not switch to deviating banks
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in case the deviation deposit rate lies in the non-consistency region. Then, if e.g. all
banks have offered 1.05, a deviating bank would have to offer at least 1.059 to attract
the other banks’ depositors. Such a rate may proof to be too large to be attractive,
since a deviating bank would have to trade off the higher amount of deposits with a
lower bailout probability (in our case it would decline from 0.97 to 0.95) and higher
deposit rates. Because of these problems we will not further analyze the BS bailout

scheme and rather add some additional comments when we summarize our results.

Propositions 4.3 allow us to characterize symmetric equilibria under regulation solely

in terms of the first-period deposit rate d; offered by all banks:

1. Banks offer d; = (di,...,d;) which leads to the assessments u; = (&g, ..., Ug, )
and to the deposit distribution D; = (Dl, e Dl) where Dy = Sy(gq,)/n.

2. The regulator observes the realization ry of the aggregate productivity shock and

determines ¢ as the positive solution of

gd; Sy (t1,) = &(ﬁ)

if that solution is lower than 1; otherwise § is set equal to 1. k and b are deter-
mined by £ = [ng| and b = (ng)/[nq].

3. A set Bt of k banks is randomly chosen from all n banks; each bank has the same
probability of being chosen. Investment projects of closed banks are uniformly
distributed among surviving banks. Deposits and investments of surviving banks

are given by

A= (bdlDl , nD; /k).

4. Banks offer dy = (dy, ..., d3) where

dy = Syt (qSl(adl)).

We will characterize symmetric equilibria by using the short form £ = (d;).
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4.5 Allocations Under Different Regulatory Approaches

Note that from a ¢t = 0 perspective expected profits for bank i are given by
IIl := — Prob(4;)(d: Di + P) + (1 - Prob(Ai)) E [Rlepg (1 b)dDi — diDi| A

A; denotes the eventuality of bank i being closed by the regulator or not being able to
meet its obligation in ¢ = 1 and A{ denotes the complement of A;, i.e. the possibility
of bank i living on until ¢ = 2.3! Remember that P is the penalty imposed by the
regulator under A;. While P > 0 under PB, we have P = 0 under RB and BB. Note
again that under all regulatory approaches, banks are assumed to internalize losses
that accrue to depositors. The penalty P under PB will be imposed additionally to

any other penalties that might be used to force banks to internalize losses.

4.5.1 No Regulation

In this section we analyze the no-regulation

15 T T T T L T T

case to motivate the potential benefits of reg-
T " 1 ulation. Consider a symmetric equilibrium
5 3 §
3 h 11 ks h ff h -
g o | where a banks have offered the same de
o : posit rate d; in t = 0. Note that accord-
ENRCH 1. ” .
- ; ; ing to proposition 4.1 only three first-period
-10 | L .
5l | return assessments are possible, namely dj,
o0 L , L L prd; and zero. Obviously, if d; < dy, then
01 d 4 6 8dp dc 12

only u; = d; is consistent and banks can refi-
32

[dy-1] (%) . .

nance in both states of production returns.

Figure 4.5: Expected returns w; for the If ¢, > dy, then u; = d; is no longer consis-
first generation as function of the first-

) ) i tent since under this assessment banks would
period deposit rate d; (no-regulation case,

example A). dyp stands for dgp. go bankrupt for 7y = 79 (because di > ry;/d),
which would lead to u < d;. Equilibria where
banks are correctly assessed to pay zero returns can also be excluded. Hence, the only
other possible assessment is u; = ppd;. Such an assessment will be correct if and only if

Ton/dy > J;(dl) > r91/dy where g;(d) = 5,1 (dSl(phd)). Hence, by defining d¢ as the

31Note that given A; bank i cannot pay anything to depositors since the liquidation value of the
project is zero.

32Note that in this case first-period savings amount to S; (d) and hence dj = S;* (d51 (d)) which
by definition of dy, is not higher than ro;/d.



4.5 Allocations Under Different Regulatory Approaches 135

unique solution of d%(d) = ry/d, we have derived that without regulation no consistent

assessments exist if d, < d; < dc.

Using the parameter values from example A, we illustrate the consistent-assessment,
problem in figure 4.5: if dy, < d; < d¢, and depositors assume that all banks will
survive in both states of production returns, then return assessments are given by the
upper (broken) line in figure 4.5. Actual returns paid are represented by the lower
(broken) line; if depositors assume that banks can only refinance in the high state,
then assessments are given by the lower line and actual returns paid by the higher line.
Finally, if d; < dg, or di > dc, the solid lines represent the respective consistent return

assessments for first-generation depositors.

In order to assess the benefits of regulation we also want to compare expected returns
for depositors resulting with and without regulation. For our purposes it is sufficient
to observe that banks will not bid deposit rates higher than d; = JZP which is defined
as the unique solution of the equation 7(d) = 0. 7(d) are the banks’ profits per deposit
in a symmetric equilibrium d; = d if d > d¢. They can be described by

7(d) = —pid + pa (r2h - dJ;(d)) .

Symmetric equilibria with higher deposit rates will not occur since such equilibria would
imply negative bank profits (because 7(+) is strictly increasing in d). Our results are
summarized in the following proposition.

Proposition 4.5

Suppose that banks play a symmetric strategy dy = (dy, ...,d,) in the first period and

that there is no regulation. Then the following statements hold:

(i) Ifdy < dy < dg, then no consistent assessments exist.

(ii) For both generations, the highest possible symmetric equilibrium returns are
either achieved if di = dy, or di = dzp. The corresponding unique first-period

assessments are dy, and ppdzp respectively.

(iii) If dzp < dc, then the highest possible symmetric equilibrium returns are achieved
for d1 = dL.

Note that in example A we have sz = 1.079 < dc = 1.105 and hence statement
(iii) applies. Proposition 4.5 points to the potential benefits of regulation. Without

regulation, the existence of consistent assessments is not guaranteed and it can occur
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that none of the banks is able to refinance in ¢ = 1, implying that intermediation
services break down completely for the second generation. In the following, we discuss
how regulatory approaches can avoid the breakdown of intermediation. In section 4.5.2,
we consider the enforcement of prudential equilibria with d; < dy,, and in section 4.5.3
we analyze the case of discriminatory closure of some banks in order to allow the others
to refinance. Both scenarios also help to avoid the problem of nonexistent assessments,
as we have already observed in proposition 4.3. In section 4.6 we explicitly compare
the no-regulation and the different regulatory approaches with respect to stability and

expected returns paid on deposits.

4.5.2 Prudential Banking

In this section we assume that the regulatory regime forces banks to avoid the possibility
of default.

Proposition 4.6

The unique symmetric equilibrium under prudential banking is £r,.

Obviously, prudential banking can heavily depress deposit rates and investments if a
serious productivity shock can occur. Moreover, in the case ry < u, intermediation
is impossible. In the next sections we therefore examine work-out type regulatory

approaches to banking crises and their implications.

4.5.3 Discriminatory Bailout

In this section we investigate the equilibria that occur under discriminatory bailout. In
order to describe the banks’ profits under discriminatory regulation schemes, we recall
the definition of the set D), and additionally introduce the set Dpy:

Dy = {d | dSy (@q) < Sa(ron/d) and d > dL}

Dy = {d\dSl(ﬂd)>Sg(r2h/d)}.

The sets Dy, and Dy refer to a situation where all banks have symmetrically offered a
deposit rate d; =d in t = 0. If d € Dy, then all banks can refinance in the good state
but not in the bad state of production returns while banks cannot refinance in both
states for d € Dy. Moreover, dj(d) := Sy (d81 (ad)) is the second-period deposit rate
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that - if symmetrically offered by all n banks in t = 1 - generates just enough savings

for all banks to refinance.

Now consider a potential symmetric equilibrium & = (d,), or a deviation d{*’ from
such a symmetric equilibrium where the deviating bank receives all savings. Then the
expected profits that a bank makes on each unit of deposits are given by m(d;) and

7(dd) respectively where 7 is defined by?3

Ry — dd3(d) if d < dy,
7(d) == =1 = @a)d+p(ro — ddi(d)) if d € Dy
—pi(1 = Ga)d — pr(1 — Gna)d if d € Dy.

Lemma 4.3

7(+) is a continuous function of d.

We note that w(d) > 0if d < dy, and that 7(d) < 0 if d € Dy. Hence, by the continuity
of m(-), there is a first-period deposit rate d with 7(d) = 0. We will work with the

following assumption:

Assumption 1 ( UZP )

There is a unique first-period deposit rate d where profits are zero (w(d) = 0). We
denote this deposit rate by dzp and further assume that w(d) < 0 for d > dzp.

Note that assumption UZP is satisfied if @ is increasing in d for all d € Dy, which

can be verified for our example saving functions.

Lemma 4.4
If Sj(u) = a;u® with a,a € (0,00) (i = 1,2), then %, is increasing in d for all d € Dy.

We can now turn to the analysis of the random bailout regime:

Proposition 4.7
Suppose that UZP holds. Then the unique symmetric equilibrium under random

bailout is Ezp := (dzp).

Ezp is the zero-profit equilibrium. Equilibria with higher deposit rates imply negative
profits for banks and will thus not be played. Equilibria with lower deposit rates do
not exist, since banks will have an incentive to deviate to slightly higher deposit rates

thereby collecting all savings. Figures 4.6 and 4.7 show expected returns for the first

33Remember that Ry = pyra; + Prran-
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Figure 4.6: Expected returns u; for the Figure 4.7: Profits per unit of deposits as
first generation as function of the first- function of the first-period deposit rate d;
period deposit rate d; (example A). (example A).

generation and banks’ expected profits as functions of the first-period deposit rate d;
that has been offered.

Having derived this result, we now set out to examine whether and how allocations
are affected if the regulator follows BB instead of RB. We have already indicated
that BB can lead to self-fulfilling prophecy effects when first-period deposit rates are
set asymmetrically. Banks that have offered lower deposit rates can consistently be
assessed to pay higher returns than banks that have offered higher deposit rates. To

present our results we introduce the following tie-breaking rule:

(TR) If depositors receive the same expected returns when depositing with non-deviating

banks as when depositing with the deviating bank, they choose the non-deviating ones.

Moreover, we introduce the function

9V (d) := max{w(d)S(aJ) D ug > ad},

which describes the maximum profits that can be obtained when deviating from a
symmetric equilibrium where all banks have offered a first-period deposit rate d. Finally
we distinguish the following cases for the relationship between expected equilibrium

returns for the first generation and offered first-period deposit rates:

1. There is a deposit rate dyn (d < dym) such that 7 is strictly increasing in d
for d < dym and strictly decreasing for dyg < d < dzp. (UID)
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Figure 4.8: The case UID. Figure 4.9: The case UDI.

2. There is a deposit rate dyr, (di, < dyw) such that u.) is strictly decreasing in d
for d < dyry, and strictly increasing for dyr, < d < dzp. (UDI)

These cases are illustrated in figures 4.8 and 4.9. Note that under UID (UDI), both
constellations are possible: (a) dua < dzp (dur < dzp) and (b) dum > dzp (duL >
dzp).

Proposition 4.8
Suppose that the assumption UZP holds and that TR is applied. Then the following
holds under bail out the big ones:

(i) &€ = (d) is an equilibrium for each deposit rate d € Uyay 1= argmax .y |x(a)>0-

(ii) Under UID we obtain that Eyy = (min{dUH,dzp}) is the unique symmetric

equilibrium.

(iii) Under UDI we obtain:

o Ifdy, > Ug,,, then &, is the unique symmetric equilibrium.

o If dy, < u4,,, then Ezp is an equilibrium and &;, is an equilibrium if and
only if 119 (dy) < m(dy,)S(dy)/n. No other equilibria exist.

The next corollary is an immediate consequence of proposition 4.8. It is concerned
with the cases where 7. is strictly increasing (UI) or strictly decreasing (UD) for
dy, < d < dgp.
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Corollary 4.2
Suppose assumption UZP holds and that TR is applied. Then under bail out the big

ones we obtain:

(i) Under Ul, £zp is the unique equilibrium.

(ii)) Under UD, &, is the unique equilibrium.

What is the economic intuition behind the results in proposition 4.87 Let us first turn
to statement (i). Under BB, maximum expected return equilibria are supported, since
even if banks deviate to higher deposit rates, depositors can consistently assess non-
deviating banks as paying higher returns, thereby securing maximum expected returns.
This is not possible under RB. Let us now turn to the interesting case of statement
(ii) where dyg < dzp. Equilibria with higher deposit rates are not possible, because
banks would deviate to lower rates, and depositors would switch to the deviating banks
since they can guarantee higher expected returns. Again this is made possible by the
self-fulfilling prophecy effect of BB. Lower deposit rates are not possible because banks

will deviate to higher rates. Statement (iii) can be explained by the same reasoning.

4.6 Comparison

In this section we compare the three regulatory scenarios (prudential banking, random
bailout and bail out the big ones) and the no-regulation scenario. Our comparison is
concerned with three issues: fragility issues, credibility issues and expected returns.
For two points of the analysis we have relied on simulation results: first, for the deter-
mination of the shape of %) as function of d; second, for the comparison of expected

returns in the £, and the £zp equilibrium.

For the time being, we will focus on what we call the “normal case”, namely the case
where () is strictly increasing in d. The label “normal” is justified by the fact that
.y has this property for our family of example saving functions and because @) has
behaved in this way for a wide range of other numerical examples. In section 4.6.4 we

will consider scenarios where #.) is not increasing in d.

4.6.1 Fragility Issues

Regulation improves the stability of intermediation. First, the existence of second-

period equilibria is guaranteed under regulation. Moreover, these equilibria can be
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ranked by banks according to the Pareto criterion. Without regulation, neither are
guaranteed. Second, under regulation the nonexistence of consistent assessments in
the first period, which may occur without regulation (see proposition 4.5), can be

avoided.

The crucial question in comparing the stability across regulatory schemes is whether
the proposed coordination mechanism for depositors return assessments works if there
is more than one consistent assessment. We have assumed that if there is more than one
consistent assessment, then depositors choose the assessment that promises the highest
expected returns (optimal assessment). If this is the case, all regulatory regimes yield
the same stable result, namely unique assessments and a unique equilibrium: &zp
(under RB and BB) and &, (under PB). The result for PB and RB is independent of
whether the optimal-assessment criterion holds or not. The stability of the BB regime
on the other hand depends upon it heavily: if it does not hold, uniqueness is not

guaranteed (see proposition 4.4).

4.6.2 Return Issues

Recall that in the normal case we have to compare the equilibria &£, (implemented
by prudential banking and possibly implemented without regulation), £,p (possibly
implemented without regulation) and £zp (implemented by RB and BB). The expected
returns for the first generation (u1) and for the second generation (us) in the different

equilibria are presented in table 4.2.

First Generation | Second Generation

&L | di d3(dy)

Ezp | prdzp P+ prdy(dzp)
Ezp | PiGadzp + Drdzp mSy (Cﬁ,ddzpsﬁ (adzp)) + prds(dzp)

Table 4.2: Expected returns under different equilibria

The most important question is whether regulation can improve expected returns for
both generations. We observe that returns u;(£zp) in £zp are higher for both genera-

tions than returns w; (c‘:'zp) in £,p (¢ =1,2). This is stated in the next proposition:
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Proposition 4.9
ui(gZP) > Ui(gZP) for 1 = 1,2.

Proposition 4.9 implies that regulation can

improve welfare. On the other hand, it is
not clear whether £7p also delivers higher re-
turns than £,. Obviously, u;(Ezp) > u1(Er),

but the effect for the second generation is

[u-1] (%)

ambiguous, since ¢ qdzp might be smaller
‘ ‘ than dy, and hence might offset the effect
F I L L L L * * . :
43 4 5 6 7 8 dn that d5(dr) < d5(dzp). However, in all sim-
[d;-1] (%) ulation exercises £zp also improves returns

) for the second generation compared to &;.
Figure 4.10: Expected returns for both

generations as function of the first-period
deposit rate d; (example A). improves expected returns for both genera-

Hence, in these cases discriminatory bailout

tions compared to PB and compared to the
non-regulation case. As illustration we show in figure 4.10 expected returns for the
first and the second generation under discriminatory bailout as function of offered
first-period deposit rates (for example A). The returns resulting under £, and Ep are
presented in table 4.3.3*

[di = 1)(%)  [un = 1(%) [ue —1](%) @
Er 2.64 2.64 0.34 1
Ep| 875 7.00 9.24  0.92

Table 4.3: First-period deposit rates, expected returns, and fraction of bailed out depositors
for example A.

4.6.3 Credibility Issues

The issue of credibility obviously only has a bearing on the three regulatory schemes.
The most important difference with respect to the credibility of those schemes is the
out-of- equilibrium strategy that is required. While the credibility of PB first of all
depends on the credibility of the penalties that have to be applied (which will not be

34Note that the equilibrium d; = d~zp does not exist in the no-regulation case for example A. Hence
the highest possible equilibrium returns are achieved under &y,.
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taken up here), the credibility of BB and RB depends on the impact of the respective

out-of-equilibrium closure rules.

In section 4.3.5.3 we have already illustrated that while the maximum fraction of de-
positors is always bailed out under BB, under RB it might be necessary to bail out a
significantly lower fraction of first-period deposits than would be possible. This occurs
if the deposit distribution is very unequal. The necessity to commit to lower-than-
possible bailout fractions might well reduce the credibility of the RB scheme. Agents
might expect the regulator to abandon RB and bail out more depositors if an asymmet-
ric deposit distribution occurs. As mentioned above, this kind of credibility problem

does not occur under BB.

4.6.4 Extensions

In this section we discuss three important extensions of the current model: positive
liquidation values and takeover costs, differences in banks sizes that might stem from

other sources than considered in this chapter, and risk-taking incentives.

4.6.4.1 Liquidation Value and Takeover Costs

In this section we will briefly explore cases where 1.y is not increasing in d and discuss
the consequences for the comparison of the schemes RB and BB. In order to obtain
such scenarios we had to relax two implicit assumptions: (a) that the takeover of
investment projects from closed banks does not involve any deadweight costs; and (b)
that the t = 1 liquidation value of investments is zero. In a more general setting we
assume that a fraction (1—0) of project returns is consumed by the takeover procedure.
Hence returns of such projects in the second period are given by dr,.>> Moreover, we
allow for a positive liquidation value R; of investments when liquidated in ¢t = 1; the
realization of the liquidation value can be either high (R; = 71 if Ry = r9) or low
(Ry = ry if Ry = r9;). We require that depositors whose claims have been eliminated

by the regulator will receive a return equal to the liquidation value of investments.

In appendix 4.B we show that if 7y, < ddy,, our whole analysis also applies for this more
general case. Moreover, concerning the expected returns achieved under the different
regulatory schemes, our numerical exercises have generated the following pattern. First,

profits per deposits are always decreasing in d, i.e. UZP is always fulfilled and hence

35Note that we have employed the most simple and plausible specification of takeover costs, namely
that they are proportional to the ez-post size of the project.
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Figure 4.11: Expected returns for both Figure 4.12: Profits per unit of deposits
generations as function of the first-period as function of the first-period deposit rate
deposit rate d; (example B). d; (example B).

propositions 4.7 and 4.8 apply. Second, in all cases investigated, either Ul or UDI
applies. Moreover, under UDI we always obtained dy, > tg4,,. Hence, for all examples
considered, BB implements either the same expected first-period returns as RB or
higher returns. The same is true for second-period returns: they qualitatively behave in
the same way as expected first-period returns (increase when u; increases and decrease
when uy decreases). Moreover, we observe that scenarios where the normal case Ul is
not fulfilled only occur if ¢ is sufficiently small and p; (the probability of low returns)
is high enough.3®

For illustration we use the example that is presented in table 4.4. Figures 4.11 and 4.12
show expected returns for the first and the second generation, and profits per unit of
deposits as functions of offered first-period deposit rates under discriminatory bailout.
It can be inferred from figure 4.11 that the case UD applies (i.e. uq is decreasing in
d if d € Dys). Hence BB implements the equilibrium &£, = (di,) and RB implements
Ezp := (dzp). Table 4.5 shows that expected returns for both generations are higher
under BB.

4.6.4.2 Bank Size and Growth Rates of Deposits

In this section we discuss how the interpretation of the proposed bailout policies has to
be adapted if the size of a bank depends not only on the attractiveness of the deposit

rates it has offered. In a more realistic setting, banks sizes will differ for many other

36This result is intuitively convincing. Return losses due to lower deposit rates are decreasing in p;
and increasing in .
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Sl(u) =1U D = 0.8 Ty = 0.7 Trop = 1.08 RQ =1.14
So(u) =1.05-u | pr=0.2 | 11, =0.7 | 795, = 1.40 | 6 = 0.6
Table 4.4: Example B.
[di = 1)(%)  [ur = 1](%) [uz—1](%) @
Er 4.28 4.28 3.48 1
Ezp 8.00 2.67 0.4 0.82

Table 4.5:  First-period deposit rates, expected returns, and the fraction of bailed out
depositors for example B.

reasons.®” It is therefore important to recall the actual mechanism that characterizes
the BB scheme, namely that banks that are assessed to pay higher returns (or, in a more
general view, to provide better intermediation services) will also have a higher bailout
probability. Conditioning bailout policies on the growth rates rather than on the actual
size of a bank’s deposits should therefore be a more appropriate implementation of the

spirit of BB in realistic banking competition environments.

4.6.4.3 Risk-Taking Incentives

The risk-taking incentives generated by bailout policies are an important focus of the
existing literature on bank closures.®® In this section we briefly discuss the consequences

of such considerations for the policy suggestions derived by now.

If banks can decide about the riskiness of their projects after they have received de-
posits, BB will have the drawback of providing risk-taking incentives for big banks
since they can anticipate to be bailed out with high probability. RB - in contrast - will
provide less incentives for risk taking as banks are more uncertain about the regulator’s
bailout decision. This foundation of a constructive ambiguity approach to bailout has
recently been discussed by FREIXAS (1999). In FREIXAS (1999), constructive ambigu-
ity is achieved by assuming that the regulator follows a mixed strategy when deciding

about a single bank’s bailout. In our general-equilibrium framework, bailout probabil-

37Gee TIROLE (1994) and FREIXAS AND ROCHET (1999) for general industrial-organization and
bank-specific reasons, respectively.
38See CORDELLA AND YEYATI (1999) and references therein.
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ities have to be chosen in a way ensuring that under all realizations of the stochastic
decision process, the banks that have not been closed will be able to survive. This
makes the design of such a policy more demanding. The simple version of RB we have
proposed in this chapter requires that - in out-of-equilibrium strategies - the regulator
must commit to bail out significantly less deposits than would be possible. This in turn
undermines the credibility of the RB policy (see sections 4.3.5.3 and 4.6.3). However,
it might be possible to construct RB-type policies which do not share this drawback.

To explore this possibility, recall how bank closures are determined under our RB
specification. We require the regulator to randomly draw a subset of £ banks from the
complete sample with each bank having the same probability to be be drawn. The
integer k is chosen in a way that ensures that the surviving banks will always be able
to refinance, independently of which subsample of banks has been drawn. Thus the
choice of k£ has to ensure that even if the biggest banks are chosen, the fraction ¢ of
bailed out deposits will never exceed ¢q. In cases where small banks have been drawn,
the fraction of bailed out deposits can therefore drop sharply, leading to the credibility
problems of RB.

To avoid this problem, the regulator could sequentially draw from the sample of all
banks. Each bank that is drawn will survive and the regulator continues drawing until
the critical fraction ¢ is reached. All banks that have not been drawn will be closed
and eventually a fraction of the last drawn banks’ balance sheet will be eliminated.
The most intuitive application of the RB principle to sequential drawing would be to
give all banks remaining in the sample the same probability to be drawn in the next
step. For example, if there are 10 banks and 2 have already been drawn to survive, the

remaining 8 banks will all have a probability of 1/8 to be drawn next.

However, this sequential drawing procedure would lead to a higher bailout probability
for big banks than for small banks, as is illustrated in the following example. Suppose
that there are only two banks, which have obtained deposits of D} = 0.8 and D? = 0.2
and assume that ¢ = 0.6. If the regulator draws the big bank first, then the small will
be closed and a fraction 0.6/0.8 of the big bank’s deposits will be bailed out. If the
small bank is drawn first, the maximum fraction ¢ will not have been reached yet and a
fraction 0.4/0.8 of the big bank’s deposits will be bailed out. Hence, the a-priori bailout
probability for deposits at the big bank is given by ¢; = 0.5-0.6/0.840.5-0.4/0.8 = 0.625
while the respective probability for the small bank is ¢o = 0.5-0+0.5 = 0.5. In general,
big banks will have a higher bailout probability since, given that small banks have been
drawn already, their conditional bailout probability will still be high while the contrary

is true for small banks.
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Note that in our example it would be possible to achieve an equal bailout probability of
qd = 0.6 for depositors of both banks. This could be done by altering the probabilities
with which the two banks are drawn. Denoting the respective probabilities by u;

(1 =1,2) we have uy = 1 — p; and hence
g1 = p1-0.6/0.8+ (1 — 1) -0.4/0.8 = 0.6.

This implies that g1 = 0.4 and pe = 0.6 would lead to homogenous bailout probabilities.
The most simple generalization to the case of m banks would be to assign a certain
probability weight u; to each bank ¢ (i = 1,..,m) and to define the probability of bank
¢ to be drawn, given that banks B;,, .., B;, are still in the sample by

M4

k
Zj:l Nij

It is, however, unclear whether the probabilities p, .., 4, can be chosen in way that
a-priori bailout probabilities are equal for all banks.>®> An even more general proba-
bilistic structure could be formulated by allowing for conditional default probabilities
to depend on any piece of information available from draws that have already been
conducted (e.g. on the size or number of banks which have already been drawn).
Therefore, we conjecture that it should be possible to construct a drawing mechanism
that produces uniform bailout probabilities while bailing out the maximum fraction ¢
of deposits under all circumstances. However, to construct such a mechanism in general

seems to be far from straightforward and is left to future research.

Putting together the observations from this section and those from section 4.6.4.1,
a mixture of BB and RB might be sensible. Whether the actual policy will more
closely resemble the former or the latter will depend on whether return consideration
or excessive risk-taking consideration are more important. However, to make such
combinations of BB and RB possible, an algorithm has to be found that - for any given
deposit distribution - can deliver drawing mechanisms generating any pattern g, .., gn,
of bailout probabilities.

39Note that it is quite complicated to actually calculate these probabilities. Moreover, even once
this is done one would very likely end up with a system of n polynomial equations of degree n.
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4.7 Conclusion

We have attempted to provide a general-equilibrium analysis of the funds concentration
effect and the corresponding regulatory bailout schemes in an overlapping-generations
framework. Banks invest in long-term projects that are subject to macroeconomic risk.
The projects are financed by short-term deposit contracts, offered to both generations
of households. The banks’ obligations to the first generation have to be served with
the savings of the second generation. Since deposit contracts are not contingent on
the realizations of investment returns, banks are exposed to macroeconomic risk: if
investment returns are expected to be low, banks might not be able to attract enough

second-generation savings to pay back first-generation depositors.

Without regulation, banks might bid up first-period deposit rates so that they are able
to refinance if investment returns are high but are not able to refinance if they are
low. Hence, all banks may go bankrupt in the state of low production returns since
they cannot offer sufficiently high returns to second-period depositors. This has the
unfavorable effect that long-term projects are liquidated in the state of low returns.
Moreover, for a range of first-period deposit rates no consistent return assessments

exist for first-period depositors.

In this chapter we have considered two different regulatory approaches to deal with
these problems. First, prudential banking where the regulator ensures that banks bid
up first-period deposit rates only to the point where they are still able to refinance
themselves in both future states of production returns. Second, discriminatory bailout
where in the low state of production returns the regulator closes some banks and
distributes the investment projects of these banks among the surviving ones. This
increases returns that can be paid by the surviving banks and decreases the amount of

second-period savings needed by the banking system to refinance.

Our results are as follows. First, discriminatory bailout improves the stability of in-
termediation by guaranteeing the existence of consistent assessments for first-period
depositors. Moreover, it dominates both prudential banking and the no-regulation
case with respect to expected returns paid on deposits. In the case where expected
returns ug on first-period deposits are an increasing function of first-period deposit
rates d, the two different variants of discriminatory bailout, random bailout (RB) and
bail out the big ones (BB) implement the same equilibrium. Non-increasing functional
forms of %) occur if takeover of investment projects involves deadweight costs and if
the probability of low returns is high. In this case BB dominates RB with respect to

expected returns. The reason for this result is as follows. Under RB, bailout probabili-
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ties are the same for all banks. Hence, depositors will always chose to deposit with the
bank that offers the highest deposit rates. This in turn implies that deposit rates will
be bidden up until expected profits are zero. Under BB, in contrast, banks stop the
bidding when expected returns for depositors are at their maximum, since - due to a
self-fulfilling-prophecy effect - depositors will not switch to a bank that offers slightly
higher deposit rates.

We have also considered a third variant of discriminatory bailout, bail out the small
ones (BS), and have identified that under such a regime the existence of consistent
assessments cannot be guaranteed when banks deviate from a symmetric equilibrium.
This result stems from what we call a self-contradicting-prophecy effect. While under
BB, a bank that is assessed to pay higher returns than an other bank will also have
a higher bailout probability (which can validate the initial assessment), under BS the
same bank will have a lower bailout probability than the bank which has been assessed
to pay lower returns (an effect that undermines the initial assessment). Additional to
the resulting instability, the non-existence problem may also prevent banks from biding

up deposit rates which might support low-return equilibria.

In order to ultimately assess which of the discriminatory bailout schemes, BB or RB,
should be preferred, two further issues have to be taken into account. First, to what
degree does return maximization help to coordinate depositors’ assessments if more
than one consistent assessment exists? Under RB, only one consistent assessment
exists for each vector of first-period deposit rates while under BB there might be more
than one consistent assessment. We have suggested that if more than one consistent
assessment exists, depositors will choose the assessment which promises the maximum
expected return (optimal assessment). Under this assumption assessments are unique
under BB.

Second, to what extent do bailout policies influence the risk-taking incentives of banks?
We have argued that BB will have the drawback of providing risk-taking incentives for
big banks, because they can anticipate to be bailed out with high probability. RB - in
contrast - will provide less incentives for risk taking since banks are uncertain about
the regulator’s bailout decision. This parallels the ,constructive ambiguity” approach
to bailout as analyzed by FREIXAS (1999) in a single-bank model. In our general-
equilibrium framework, bailout probabilities have to be chosen in a way ensuring that
- under all possible realization of the stochastic bailout decision - the banks that have
not been closed will be able to survive. This makes the design of such a policy more
demanding. The simple version of RB we have proposed in this chapter requires that

- in out-of-equilibrium strategies - the regulator must commit to bail out significantly
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less deposits than would be possible and optimal. This undermines the credibility
of the regulatory policy. We have indicated, however, that a RB-type policy may be
found which circumvents these drawbacks. But the comprehensive construction of such

a policy seems to be far from obvious and is left to future research.

In summary, our findings suggest that closure rules in severe crises should be a mixture
of BB and RB. Whether the actual policy will more closely resemble the former or
the latter will depend on whether return consideration or stability consideration (risk-

taking incentives, unique assessments) are more important.

Future research should integrate risk-taking incentives into the general-equilibrium
framework developed in this chapter. In particular, the following two issues have to
be addressed. First - as has already been outlined above - the construction of bailout
schemes that allow for arbitrary combinations of RB and BB and that do not share the
credibility problem of the RB scheme introduced in this chapter. Second, the analysis
of closure rules where the bailout decision may not only depend on the size of a bank
but also on other bank-specific variables such as the level of uninsured debt on a bank’s

balance sheet.

Finally, future research should also allow for banks to differ with respect to their posi-
tions in the matrix of interbank connections. ALLEN AND GALE (2000) and FREIXAS,
PARIGI, AND ROCHET (2000) have argued that this position can be crucial for the
stability of the financial system.
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4.A Proofs

In this appendix, we present the proofs of all lemmata and propositions. We start with

the proofs for section 4.4.

4.A.1 Proofs for Section 4.4

Proof of proposition 4.1.
(i) The proof will proceed in two steps.
Step 1: &5 is an equilibrium.

First, we note that if dj = dj is played (i € BY), the assessment u} = d} (i € BT)
is optimal and only the deposit distribution D% = d:D! (; = 1,..,n) is consistent
with this assessment. Second, we have to show that deviations from d) = dj are
not profitable. Deviations to higher deposit rates can be excluded since they raise
repayment obligations. If a bank deviates to di®" < dj, it is not possible for all banks
to receive a positive measure of deposits.*® But then either all or none of the non-
deviating banks receive a positive measure of deposits.** Hence, there can only be one
case where the deviating bank receives a positive measure of savings, namely if it can
attract the full measure of second-period savings. But in this case the deviation cannot
be profitable for the following reasons. Depositors only choose to give resources to the
deviating bank if returns are at least as high as returns at the non-deviating banks.
But if depositors chose to deposit with the non-deviating banks, returns are given by

min{u,, d}}, where u, is the positive solution of
u= M= raDi (4.11)

Sa(u)
If, on the other hand, depositors deposit with the deviating bank, returns cannot be
higher than min{ud®’, d$¢v}, where ud®" is the positive solution of equation (4.11) when
m — 1 is replaced by 1. Hence, the inequality ud®" > u, can only be fulfilled if m = 2

and d$®¥ > u,. But in this case the deviating banks’ profits cannot be higher than zero.

40Tf that were the case, all banks would have to be assessed paying the same return us < d$¢V. But
then Ss(us) < md; Dy, and hence at least one bank cannot refinance. This implies that us = 0 and
Sa(u2) = 0 in contradiction to the assumption that all banks receive a positive measure of deposits.

41Gince the non-deviating banks are identical with respect to all their characteristics, they will
receive the same amount of deposits.
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Step 2: Pareto-dominance.

If dy > dj, then banks obtain lower profits than in £ because repayment obligations
are higher. If dy < dj, then the amount of overall savings is bounded by Sy(ds) and
hence second-period deposits of a single bank are limited by Sa(ds)/m (since depositors
cannot coordinate on a subset of banks). But this implies that no bank can refinance
and the only consistent assessment is uy = 0 for all banks, implying that no bank

receives any savings.
(i)
The first observation is obvious and the second has already been derived under step 2

in the proof of ().

Proof of proposition 4.2.

Step 1: & is an equilibrium. We observe that if d) = dj is played, the assessment
ul = dj (i € BY) is optimal and only the deposit distribution D} = bd: D? (i = 1,..,n)
is consistent with this assessment. Deviations to higher deposit rates would increase
repayment obligations and can therefore not be profitable. Deviations to lower rates
are excluded by LBD.

Step 2: Pareto-dominance. Equilibria where some banks have offered lower deposit
rates than d} are excluded by LBD, and all other equilibria are Pareto-dominated by

&, since repayment obligations are higher than under &;.

Proof of lemma 4.1.
Step 1: The system S has a unique solution.

First, note that if uy is a solution of the system S, then ug > u. But for all v > u,
equations (4.9) and (4.10) have unique, strictly positive solutions, which we denote
by ¢ = q(d,u) and g, = g(d, u) respectively.*? Figure 4.13 illustrates the argument
by depicting the left-hand and the right-hand side of equation (4.9) for example A
and d = 1.05. Figure 4.13 also illustrates that the functions ¢;(d,-) and ¢(d,-) are

42The left-hand sides of the equations are strictly increasing in ¢; and g, respectively and they take
all values in (0, 00); the right-hand sides are decreasing in ¢; and g, respectively.
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decreasing in u for fixed d by depicting the solutions of the equation for v = 1.05 and
u = 1.07. Moreover, ¢(-,-) and g(-, ) are continuous in d and u since the left and the
right-hand side of the equations (4.9) and (4.10) are continuous functions of d and u.

Inserting ¢;(d,u) and g, (d, ) in equation (4.8), we obtain an implicit equation for u.

As we saw above, we have to restrict the

range of this equation to u > u. Hence the ' [U-1]=5%

left-hand side of this equation is strictly in- 098 | o -
creasing in u and takes all values in IR that 5 096 - |
are strictly higher than u; the right-hand side “2 \
is decreasing in u and higher than w if u is % 094 ’’’’’ e S i
close enough to u.**> Hence, by the mean 092 | ]
value theorem, a unique solution 4 of this 0o L . . .

09 0.92 0.94 0.96 0.98

implicit equation exists. This solution is a _ _
Bailout fraction q
continuous function of d since the left and

the right-hand side of the equation are con- Figure 4.13: The left-hand and the right-
hand side of equation (4.9) as functions of

tinuous functions of d. Finally, inserting 4
v & td g (example A, d = 1.05).

in ¢; and ¢, we obtain g4 := ¢(d, @4) and

Gha = qn(d, ugq).

Step 2: Proof of statements (i) - (iv)

The continuity of u() has already been shown in step 1 and the continuity of g,y and
qn,() follows directly from the continuity of 7., (-, -) and gx(-,-). Statements (ii) and
(iii) are straightforward.We now need to substantiate (iv), i.e. the monotony of g,
for all d € Dj,. Recall that

Dy = {d | dSy (ig) < Sa(ron/d) and d > dL},

and note that for d € D, we have

_ 1 T
= 4.12
0= 51> (rga) (4.12)
Qhd = 1 and
g = (Pii,a + Pr)d. (4.13)

Suppose now that d < d. If 4, < g, then we obtain g4 > ¢, ; from equation (4.12). If
on the other hand @g4 > 4, then g4 > g, ; follows from equation (4.13).

43Note that if v — u, the right-hand side approaches d, which is assumed to be higher than u.
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Proof of lemma 4.2.

The proof is along the same lines as the proof for lemma 4.1.

Proof of proposition 4.3.

Since banks are identical, assessments and deposit distribution have to be symmetrical:
u; = (u,...,u) and Dy = (D, .., D) where D = S(u)/n. Hence the expected return on
first-period bank deposits is given by equations (4.8) - (4.10). But we know from lemma

4.1 that in this case u = 14, is the only consistent assessment.

Proof of proposition 4.4.

We denote the share of deposits that the banks in B; receive by \; . First, note that
an assessment uy; < uy, always leads to A; = 0 and to a symmetric distribution of all
savings among banks in Bj,. Hence, by lemma 4.1, this assessment is consistent if and
only if uwy, = %4, and if the assessment passes the zero measure test: if all banks in
B, receive a zero measure of deposits, then depositors at B;-banks must receive lower
expected returns than u4,,. Of course, the same is true for the converse assessment
uip < uy. It leads to Ay = 1 and uy; = g, and is consistent if and only if the return

paid by zero-measure Bj,-banks is smaller than g, .

The assessment uy; < ui, = Ug,, is consistent under RB, PB and BB, since under
all those bailout schemes the bailout probability for depositors at zero-measure banks
is never higher than the bailout probability for deposits at positive-measure banks.
Under BS, however, a zero-measure bank is bailed out with probability 1. Hence,
an assessment wui, < uy = Ug, will never pass the the zero-measure test, and an
assessment uy; < U1, = Ugq,, passes this test if and only if dy; < #g4,,. Furthermore,
under PB and RB bailout probabilities are the same for all deposits. Hence, expected
returns on deposits of By-banks are strictly higher than those on deposits of B;-banks
for any consistent assessment. Finally, under BB, the assessment u, < uy; = uq,

passes the zero-measure test if and only if

(Plfl,du,dlh +Ph1h,du,d1h)d1h < Udy-
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This follows from the fact that under BB zero-measure banks are closed if they have
offered higher first-period deposit rates than all positive-measure banks and if the
refinancing condition (4.1) for the banking system does not hold. Therefore, B;-bank
deposits will be bailed out with the same probability as in the symmetric case where
all banks have offered dy;.** Hence, expected returns on B;-bank deposits are equal to
Ug,,- The variables I; 4,, 4,, (: =1, h) indicate whether the overall refinancing condition
(4.1) holds in the low (high) state of production returns, thereby setting the bailout

probability of the zero-measure Bj-banks to 0 or 1.

It remains to show that an assessment uq; = uq; cannot be optimal under BB and that
no consistent assessments exist under BS if 44, < dy; and ppdip < Ug4,,q4,,- Note that,
concerning the last point, we have already shown that uy; < uy, and uy, < uy; are not
consistent under these circumstances. Hence it remains to analyze assessments of the
type uy; = w1, under BB and BS. Note that such assessments can only be consistent
if Ay > n;/n (under BB) and A; < n;/n (under BS) respectively where n; denotes the
number of banks in B;. Hence, the statement that u := uy; = uy, is a consistent
assessment is equivalent to the existence of a real number A\, > n;/n (A < n;/n) with
u solving the system S();) described by equations (4.14) - (4.19):

u = (P + Pagni)du (4.14)
u = (pgih + Prgnn)din (4.15)
1 if g; > A
G = Vo= (i =1,h) (4.16)
gi/ N else
i —A)/(L=XN) if g > A .
Gin = (g )/ ( 1) ifg ! (i =1, h) (4.17)
0 else
. 1 791
= min S, , 1 4.18
& {d1h51(u) 2(€]zd1h) } (4.18)
. 1 T2n
= min S. , 1%, 4.19
fn {d1h51(u) 2(6]hd1h> } (4.19)

Note that ¢;; and g¢; 5, denote the bailout probabilities of banks in B; and By, respectively
(1 =1, h denotes the state of production returns). The remaining statements therefore

follow from lemma 4.5.

44Gee section 4.3.5.4 for the special treatment of zero-measure banks under BB.
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Lemma 4.5
Suppose that u < dy; < dqp,.

(i) If S(\;) has a solution u for arbitrary \; € (0, 1], then u < g, .

(ii) If g, < dy and ppdip < gy, 4,,, then S(N;) has no solution for all \; € [0, 1].

Proof.

First of all note that a solution of the complete system has to solve the subsystems S
(consisting of equations 4.14, 4.16, 4.18 and 4.19) and the subsystem S, (consisting of
equations 4.15, 4.17, 4.18 and 4.19).

(i) The proof of part (i) rests on the observation that the sub-system S}, consists of the
same equations as the system S(d;p,), which has the solution %4,,. The only difference
is that in the system S(di4), ¢ip is replaced by ¢; (i = [, h) in equation (4.15). The

statement u < 4,, therefore follows from the fact that ¢;, < ¢;.

To present this argument in a more formal way, we use the index 7 to indicate both
i =1 and i = h. Note that a solution of S, can be derived by solving equations (4.18)
and (4.19) and inserting the solutions in equation (4.17), which yields ¢; »(u, A;). Since
the right-hand side of equation (4.17) is decreasing in \; for arbitrary ¢; < 1, we obtain
that g; ,(u, ) is decreasing in \;. By inserting ¢; , in equation (4.15) we can therefore
conclude that the solution u(dyp, A;) of the resulting equation is decreasing in \;. Hence
u(dip, At) < u(dyp,0) = %g,,. In order to show that the inequality holds strictly for
A; > 0, we assume that u(dip, \;) = Uq,, for \; > 0. By inserting u = G4, in equations
(4.18) and (4.19) we can then see that ¢; = @; 4,, and therefore that g; ,(\;) < G4y, But
then insertion into equation (4.15) would imply that u(dip, A;) < @g,,, in contradiction

to our assumption.

(ii) We denote the solutions of S;()\;) by u; (i = [, h). Note that if up > ppdys, then
q.,» > 0 implying that ¢;; = gp; = 1.5 Therefore u; = dy; > Ug,, which by statement
(i) is not possible if u = u; solves S. The case u < p,d;, can be excluded by observing
that w, > 1g4,,4,, Which by our assumption leads to u = w; > ppdip. To see that
w > Udy, 4y, assume to the contrary that u = u; < @4, 4,,- Then, by equations (4.18)
and (4.19), we have ¢; > G 4,,,4,,, implying that ¢;; > Gi 4y, 4,,- This in turn leads to

u; > Ug,, d,, i contradiction to our assumption.

|

451f ¢, > 0, then g > A; by equation (4.17) and, since ¢; < g5, we also obtain that g, > ;. Hence
a1 = gn, = 1 by equation (4.16).
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Proof of corollary 4.1.

Since cji,d”,dlh Z q’i,dlh (’L = l, h), we obtain that ad”,dlh Z (ph +plql,d1h)dll, which implies

the statement of the corollary because g 4,, > 0.

4.A.2 Proofs for Section 4.5

The propositions in section 4.5 are concerned with symmetric equilibria in ¢ = 0. Hence
we will either have to analyze the case where all banks offer the same first-period deposit
rate d; or the deviation case where (n—1) banks offer the same first-period deposit rate
d, and one bank j offers a different rate d{¢". We will always denote the assessment
for the non-deviating banks by u; and that for the deviating bank by u$®". Resulting
first-period deposits are denoted by D; and D respectively.

Proof of proposition 4.5.

It only remains to substantiate (ii) and (iii). Statement (ii) is obvious for first-period
returns and follows for second-period returns, because they are given by S, * (d81 (d))
if di < dy, and by pu + phc%(dl) if d; > dp. Both expressions are increasing in
d;. Statement (iii) follows immediately from (ii) since if dzp < dc only symmetric
equilibria with d; < dy, are possible.

Proof of proposition 4.6.
Step 1: &, is an equilibrium.
Given dy = (dy, ...,dr), the only consistent assessment is u; = (dg,...,dr). Hence
the equilibrium deposit distribution is D! = S;(dy)/n (i = 1,...,n) and each bank’s
expected profits are given by

Si(d
le I;L)ph(rgh—rgl)>0.

Consider now a deviation of one bank. Deviation to di® < d; leads to u$® < u; and

hence to D3 = 0, which cannot be profitable. On the other hand d{¢ > d, leads
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to u; < u® = 7. and hence to D¢ = S| (Tigaev). This implies that the deviating
1 1

bank cannot refinance in the case of low production returns. By our assumption, the

punishment P which is imposed by the regulator in this case would outweigh all possible

deviation gains.
Step 2: No other equilibria & = (dy) with d; # dy, exist.

If d; < dy, then deviation to a slightly higher deposit rate d{*" (d; < d$¢V < dy,) would
lead to uy < uf® = Gggev = d{®. Therefore D{* = S,(d{*") < Si(dr) and the deviating
bank would be able to refinance in both states of production returns. The collection
of all savings outweighs the slightly higher interest payment. If d; > dg, the only
possible assessment is uy = (4g,, ..., 4q,) Where 4, < d;. But this implies a positive
probability of being closed and suffering the punishment P, which leads to negative

expected profits. Of course this is not possible in equilibrium.

Proof of lemma 4.3.

The proof rests on the continuity of the functions S;(-) (i = 1,2), 4y and g .y (¢ = I, h).
First we prove the continuity for the points d € Dj,. Consider a sequence (dy)nen
with d,, = d (n — o0). If dSi(ag) < Sa(ron/d), then d,51(dq4,) < Sa(ren/d) for
sufficiently large n. If dSi(@4) = S2(r2n/d), we have @y 4, — 1 by equation (4.10) and
d3(dy) = rop/d (n — o0). Hence, in both cases we obtain 7 (d,) — 7 (d).

For points d € Dy the proof is completely analogous. Now suppose that d < dy,.
Again, only the case d = dy, is interesting. If d,, — d, then ¢, 4, — 1 by equation (4.9)
and d,d5(d,) — dpdi(dy) = ro. Hence w(d,) — pp(ron — ror)-

Proof of lemma 4.4.

If d € Dy, then by equation (4.9) we obtain

03 T2l \ s

- daiju® " qd

q

implying that ¢ = cd 'u~% where

(agr;"f ) 1/(1+az)
c:=—=
ay
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and &; == o;/(1 + o;) (i = 1,2). Inserting ¢, in equation (4.8) we find that 44 can be

described as solution of the equation F'(u,d) = 0 where

a1

F(u,d) :=u — piecu™®" — ppd.

But since F(i4,d) = 0 we find that F,u, + F; = 0 implying that @), = —F;/F,.*

Hence, @, > 0 follows from

Fy(u,d) = —py
Fu(u,d) = 14 apu @+,

Proof of proposition 4.7.

The proof follows the same arguments as the proof of proposition 4.6:

(1) Ezp is an equilibrium. Deviation to d®¥ < dzp leads to ud® < wu; and hence

to D = 0, which cannot be profitable. On the other hand, di* > d; leads to
up < uf® = Ugev and hence to D{* = S(ugger). But since 7(d{*) < 0, deviation
profits are negative.

(2) No other equilibria & = (d;) with d; # dzp exist. If d; < dzp, then deviation
to a slightly higher deposit rate di®v (d; < d{®¥ < dgzp) leads to D" = S (Uggev). By
continuity, losses in profits per unit of deposits can be offset by the collection of all
savings if (d%®" — d;) is small enough. If d; > dzp, then 7(d;) < 0, which cannot be

the case in equilibrium.

Proof of proposition 4.8.

Considering a deviation d{®V # d; from a symmetric equilibrium d; = (di, ..., d;), we

make the following preliminary remarks:

(1) From proposition 4.4 we know that only the following two assessments and deposit

constellations are possible:

(Al) U(liev < Uy D(liev =0 D, = Sl(’adl)/’l’b
(A2) U,(liev > U D(liev = Sl (ad(liev) D1 = 0.

48, and F,; denote the partial derivatives of F' with respect to u and d respectively.
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A1 is consistent if d‘l1ev < d; and A2 if d‘fe" > d,. Moreover, if dy, < d;, d‘fe" < dgzp, then
the following additional consistency conditions hold. Al is consistent if Ugaew < Ug, and

A2 if Gggev > g, This follows directly from proposition 4.3 and the fact that (e.g. for
Al)

dev dev = 7
(plIl,dl,d(liev + ph[h,dl,d(liev)dl S phdl < ud(lzlev S Udl.

(2) We can exclude equilibria £ = (d;) where d; > dzp because they are negative

expected profits equilibria.

(3) We do not have to consider deviations to d‘fe" > dzp since they cannot be profitable.
They lead to zero profits in the case of Al and to zero or negative profits in the case
of A2.

(4) Ifd, € Z/{max, then d; > dy,.
Now we turn to the proof of the proposition.

(i) Suppose that d; € Upayx. Deviation to d{¢¥ # d; with d{*¥ < dzp cannot be profitable
since by TR, depositors would always choose to deposit with the non-deviating banks

(Al is consistent and g, > Ugge).

(ii) We define d =: min{dym, dzp}. From statement (i) we know that Eyy is a Nash
equilibrium because Eyp = (J) and d € Umax. No other equilibrium with d; # d
exists, since for d; < d deviation to a slightly higher deposit rate d®v > d; leads to
A2 (because Uz > 1Uq, ) and hence such a deviation is always profitable if (dfev — dy)
is small enough. The same argument applies for d; > d if d = dyg. In this case,

deviation to slightly lower deposit rates is profitable.

(iii) Case 1 follows from the same arguments as used under (ii). Consider now case 2.
Ezp is a Nash equilibrium according to statement (i). Now turn to the question whether
&1 is an equilibrium. Obviously, only deviations to d®V > dy, with Ugdev > dy, can be
profitable. Hence deviation is profitable if and only if 119 (dy) — m(dy,)S:1(dp)/n > 0.
Moreover, no other equilibria £ = (d;) can exist since for dy, < d; < dyr, deviation to
slightly lower, and for d; < di, and d; > dyr deviation to slightly higher deposit rates

is profitable by the same arguments as under (ii).
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Proof of proposition 4.9.

Suppose that u (5~Zp) > u1(Ezp). Then dgp > dzp (see table 4.2) and hence czg(cizp) >
d3(dzp). But since under E,p banks’ profits per deposit are given by

Ph (Tzh — J;(szp)> ;

this would imply that those profits are smaller than 7(dzp) = 0, which is impossible
in equilibrium. To prove that ’U,Q(ézp) < us(Ezp), we draw on the fact that CE(dZP) <
d(dzp).*” This implies that

pu + phCZ; (CZZP)
piu + prds(dzp)
< U9 (5ZP) .

U2 (gZP)

VAN

4TSuppose that d3(dzp) > d5(dzp). Then dzp > dzp which - as above - would imply that profits
per deposits are negative under £zp.
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4.B Liquidation Value and Takeover Costs

In this appendix we will relax two implicit assumptions which have been imposed to
make the presentation of our results more transparent: (a) the assumption that the
takeover of investment projects from closed banks does not involve any deadweight
costs, and (b) that the ¢ = 1 liquidation value of investments is zero. In the sequel,
the general version of the model (with liquidation value and takeover costs) will be
called the “general setting”, compared to the “specific setting” where liquidation value
and takeover costs are zero. In the general setting we assume that a fraction (1 —¢) of
project returns is consumed by the takeover procedure. (1 —0) is assumed to represent
all conceivable costs of transferring ownership. Hence, second-period returns of projects
that have been taken over from other banks are given by dry. Moreover, we allow for
a positive liquidation value R; of investments when liquidated in ¢t = 1; the realization
of the liquidation value can be either high (R; = 71y if Ry = r9p) or low (R = ry; if
Ry = r9;). We require that first-period depositors whose claims have been eliminated
by the regulator will receive a return equal to the liquidation value of investments. A
surviving bank will therefore take over the same amount of first-period depositors as it
takes investment projects, implying that such banks will have b; D¢ units of investment
projects and repayment obligations of (bd’i + (b — b)r1> D. Moreover, due to takeover
costs, the project cash flows in ¢ = 2 (if all projects are continued and a fraction ¢
of depositors has been bailed out) are given by [¢ + §(1 — ¢)|reb;D}.*® Hence, the
maximum return that can be offered to second-period depositors by bank 7 is given by

[+ (1 —q)]re
qdi + (1= q)r:’

(4.20)

Consequently, the maximum fraction § of bailed out depositors in the case where refi-

nancing condition (4.1) does not hold, is determined as the solution of the equation®®

52( [q+0(1—q)lre ) _ (qdinax_i_ (1 —q)n) iDzl (4.21)

gdr™ + (1 = g)r

48Note that the fraction of own projects in all projects hold by a surviving bank is 1/(n/k) = k/n,
which we approximate by gq.

49The corresponding equation in the specific setting is equation (4.3). Note that since k/n > g,
banks can at least pay a return as given in (4.20). Hence, by bailing out a fraction § of depositors,
the regulator guarantees that all surviving banks can refinance.
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Moreover, in the general setting, the definition of d3 has to be changed to

_; = 52_1<Z[bd11 + (1 — b)’l‘l]Di + Z TlDi),

ieB+ i¢B+

and consistent first-period assessments in a symmetric equilibrium are now described

by a general version of the system S(d):*

u = [plQI +thh]d+ [pl(l —q)ru+pa(l — qh)ﬁh]

— mi 1 1 [+ (1= @)dJrar | _

¢ = min { R [Sl(u) 52( qd+ (1 —q)ryu ) Tll] , 1}
_ o 1 1 [gn + (1 — qn)d]ran |

g, = min { p— lsl(u) S ( qrd + (1 — qn)rin ) 7“1h] ; 1}

under the constraints ¢; > 0 and ¢, > 0. In remark 4.1 we state the condition under

which this generalized version of S§(d) has a unique solution. As in the specific setting,
we denote this solution by 4 and the corresponding bailout probabilities by ¢ 4 and

n 4, Tespectively. The profit-per-deposit function 7 now reads as®

Ry — dds(d) if d < dy,
7(d) =4 —pu(l = @a)(d— 1) + pu(ron — dd3(d)) i d €Dy
(1 = @a)(d—711) = pr(1 — Gna)(d — 1) if d € Dy.

Remark 4.1
The results obtained for the specific setting can be adapted to the general setting in

the following way:

1. Proposition 4.2 holds in the general setting. Inequality di < ry/(qd™) is re-
placed by
w_ g+ 0(1=q)rs

&< U .
qdi™ + (1 —g)n

2. Ifry, < ddy, then lemmata 4.1, 4.3 and 4.5 hold in the general setting.

50Note that the formulas for ¢; and g are derived from equation (4.21).

5!Note that the definitions of the sets Dy and Dy and of the function d(-) given in section 4.5.3
remain valid (see page 136). The description of Dy, Dy and d5(-) in the general setting follows
therefore directly from the generalization of the function u.).
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3. Ifry, < ddy, then propositions 4.3, 4.4 and 4.6 - 4.8 hold in the general setting.

In proposition 4.4, the following adaptations have to be made:
(a) BB: inequality
(Pul1dy iy + Prlhdyy g ) din < Uy,
has to be replaced by
(Pud1.dyy du, + Prlhdsdn,)in + i1 — gy an )71+ Pr(1 = Thdy,di ) 710 < Uay,-

(b) BS: inequa]ityphdlh < Ug,, has to be rep]aced byphdlh—i-(plru—i-phrlh) < Ug,,-

Proof.
Part 1: Lemmata 4.1, 4.3 and 4.5.

The proofs are along the lines of the proofs for the specific setting. Concerning lemma

4.5, note that in the general setting the system S();) reads as

u = [plQl,l + thh,l)} dy + [pl(l —q)ru +pu(l— Qh,l))Tlh}
u = [plm,h + thh,h)] dip + [pl(l —qp)ru +pr(l — Qh,h))rlh}
1 if g; > A
Gg = Po= (t=1h)
gi/ A\ else

i — A /(1 =XN) ifg > A )
Gin = (q z)/( z) g =2 A (2:l,h)
0 else

¢ = min 1 1 S, [+ (1 —q)d]ra | ry 1
dip — 11 | S1(u) qdipn + (1 —q)ry ’

gn = min 1 1 S, lgn + (1 — qn)0]ron | - )
dip = T1n | S1(u) qrndip + (1 — qn)r1n ’ '

With respect to lemmata 4.1 and 4.5 we just have to verify that

(q +(1- q)é) To
L) = gd+ (1 —q)r

is decreasing in ¢ for the cases {r; = ry,ro = 7o} and {r1 = rp, 70 = rop} if d > dy.



4.B Liquidation Value and Takeover Costs 165

To derive this result we calculate the first derivative of L with respect to ¢:

wl+ (1 =an| Va)fr, = 1=0)[ad+1=an] - (@=r)[o+1-a)0]
=: H(qg)

H(g) = qd+(1—q)r1 —0qd—6(1 —q)ryu—dg—d(1 —q)d +r1qg+7r1(1—q)d
= n|(l-¢)+06(1-q) +q—(1-q)d| —dd(g+(1-q))
= a(r; —dd).

Hence we have H(q) < 0 for both cases if 1, < ddy.
Part 2: Propositions 4.3, 4.4 and 4.6 - 4.8.

The proofs for the specific setting can be generalized directly.
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