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Abstract

In this thesis we develop a method for the estimation of the flow behaviour of an incom-
pressible fluid based on observations of the brightness intensity of a transported visible
substance which does not influence the flow. The observations are given in a subregion of
the flow as a sequence of discrete images with in- and outflow across the image boundaries.
The resulting mathematical problem is ill-posed and has to be regularised with information
of the underlying fluid flow model.

We consider a constrained optimisation problem, namely the minimisation of a tracking
type data term for the brightness distribution and a regularisation term subject to a
system of weakly coupled partial differential equations. The system consists of the time-
dependent incompressible Navier-Stokes equations coupled by the velocity vector field to a
convection-diffusion equation, which describes the transport of brightness patterns in the
image sequence.

Due to the flow across the boundaries of the computational domain we solve a boundary
identification problem. The usage of (strong) Dirichlet boundary controls for this purpose
leads to theoretical and numerical complications, so that we will instead use Robin-type
controls, which allow for a more convenient theoretical and numerical framework. We
will prove well-posedness and investigate the functionality of the proposed approach by
means of numerical examples. Furthermore, we discuss the connection to Dirichlet-control
problems, e. g. the approximation of Dirichlet-controls by the so-called penalised Neumann
method, which is based on the Robin-type controls for a varying penalty parameter.

We will show via numerical tests that Robin-type controls are suitable for the identifi-
cation of the correct fluid flow. Moreover, the examples indicate that the underlying
physical model used for the regularisation influences the flow reconstruction process. Thus
appropriate knowledge of the model is essential, e. g. the viscosity parameter. For a time-
independent example we will present a heuristic, which, beside the boundary identification,
automatically evaluates the viscosity in case the parameter is unknown.

The developed physics-based optical flow estimation approach is finally used for the data
set of a prototypical application. The background of the application is the approximation of
horizontal wind fields in sparsely populated areas like desert regions. A sequence of satellite
images documenting the brightness intensity of an observable substance distributed by
the wind (e. g. dust plumes) is thereby assumed to be the only available data. Wind field
information is for example needed to simulate the distribution of other, not directly observ-
able, substances in the lower atmosphere. For the prototypical example we compute a high
quality reconstruction of the underlying fluid flow by a (discrete) sequence of consecutive
spatially distributed brightness intensities. Thereby, we compare three different models
(heat equation, Stokes system and the original fluid flow model) in the reconstruction
process and show that using as much model knowledge as possible is essential for a good
reconstruction result.






Zusammenfassung

In dieser Arbeit entwickeln wir eine Methode zur Schétzung des Stromungsverhaltens
eines inkompressiblen Fluids anhand von Beobachtungen der Helligkeitsintensitét eines
transportierten sichtbaren Stoffes, welcher die Stromung nicht beeinflusst. Die Beobach-
tungen in einem Teilgebiet der Stromung sind gegeben als eine Folge diskreter Bilder, mit
Ein- und Ausstromung iiber die Bildrédnder. Das resultierende mathematische Problem ist
schlecht gestellt und muss deshalb regularisiert werden. Wir verwenden zur Regularisierung
Informationen des zugrunde liegende physikalische Modell.

Wir betrachten ein restringiertes Optimierungsproblem, das aus der Minimierung ei-
nes Kostenfunktionals mit einem Tracking-Datenterm fiir die Helligkeitsintensitdt und
einem Regularisierungsterm besteht und ein System schwach gekoppelter partieller Dif-
ferentialgleichungen als Nebenbedingung hat. Das System besteht aus den instationdren
inkompressiblen Navier-Stokes-Gleichungen, die durch das Geschwindigkeitsfeld an eine
instationdre Konvektions-Diffusions-Gleichung gekoppelt ist, welche den Transport von
Helligkeitsmustern in der Bildfolge beschreibt.

Aufgrund der Uberstrémung an den Réndern des Rechengebiets handelt es sich um ein
Randidentifikationsproblem. Die Verwendung von (starken) Dirichlet-Randkontrollen fiir
diesen Zweck fithrt zu theoretischen und numerischen Schwierigkeiten, sodass wir statt-
dessen Robin-artige Kontrollen verwenden, die einen passenderen theoretischen und nu-
merischen Rahmen bieten. Wir beweisen die Wohlgestelltheit und untersuchen anhand
von numerischen Beispielen die Funktionalitit des vorgeschlagenen Ansatzes. Des weite-
ren diskutieren wir die Verbindung zu Dirichlet-Kontrollproblemen durch die sogenannte
“penalised Neumann”-Methode, die auf Robin-artigen Kontrollen mit einem variierenden
Strafparameter basiert.

Wir werden zeigen, dass durch die Robin-artigen Kontrollen addquate Fluidstrémungen
identifiziert werden kénnen. Dariiber hinaus zeigen die Beispiele, dass das in der Regulari-
sierung verwendete zugrunde liegende physikalische Modell den Rekonstruktionsprozess
beeinflusst. Daher ist addquates Modellwissen entscheidend, z. B. iiber den Viskosititspa-
rameter. Fiir ein zeitunabhéngiges Beispiel werden wir eine Heuristik vorstellen, die neben
der Randidentifikation auch noch automatisch den Viskositédtsparameter bestimmt, im Fall,
dass der Parameter unbekannt ist.

Der entwickelte Ansatz fiir einen physikalischen optischen Fluss-Schétzer wird am Ende
auf den Datensatz einer prototypischen Anwendung angewendet. Der Hintergrund der
Anwendung ist die Approximation horizontaler Windfelder in diinn besiedelten Gebieten,
wie zum Beispiel Wiisten. Eine Folge von Satellitenbildern, welche die Verteilung einer
beobachtbaren Substanz durch deren Helligkeitsintensitit dokumentiert (z. B. Sandstaub-
fahne) wird dabei als einzige verfiigbare Datenquelle angenommen. Die Windinformationen
werden beispielsweise fiir die Simulation der Verteilung anderer, nicht sichtbarer, Schad-
stoffe in der erdnahen Atmosphére benotigt. Fiir das prototypische Beispiel kénnen wir
eine qualitativ hochwertige Rekonstruktion des Stromungsfelds aus einer Folge (diskreter)
aufeinander folgender, 6rtlich verteilter Helligkeitsintensitdten berechnen. Dabei vergleichen



wir drei unterschiedliche Modelle (Warmeleitungsgleichung, Stokes-Gleichungen und das
urspriingliche Modell) im Rekonstruktionsprozess und zeigen, dass die Verwendung von
moglichst viel Modellwissen entscheidend fiir eine gute Rekonstruktion ist.
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1. Introduction

1.1. Motivation

In the past fifty years, the investigation of complex fluid flows received more and more
interest in a wide range of different scientific areas, e. g. fluid mechanics or meteorological
flows. The analysis of the considered flows uses measurement and simulation techniques.
However, for some realistic fluid flows neither good direct measurements can be performed,
nor are appropriate data (boundary conditions, initial values etc.) available for direct
numerical simulations. This is the case, e. g., for meteorological flows, for which, especially
in desert or maritime regions, no dense measurement grids are available.

Nevertheless, we can observe atmospheric flows indirectly by aerosols, which are transported
by the wind like a tracer. Desert dust is an example for such an aerosol, which is uplifted
in deserts and then transported over great distances (Tegen et al. [98]). Assuming a
straightforward connection between the mean dust load density in a vertical column and
the corresponding aerosol optical thickness, the movement of such airborne dust plumes can
be observed by satellite remote sensing techniques (Schepanski et al. [94] and the literature
cited therein). Moreover, the atmospheric wind system is transporting other substances
like harmful pollutants, which possibly cannot be observed directly. We assume that we
are interested in the temporal evolution of the spatial distribution of such a pollutant in a
certain domain of interest, which is an artificial truncation of the original flow domain. It
is questionable if we can use a temporally sparse sequence of intensity functions (sequence
of images) documenting the movement of dust plumes to reconstruct a reliable fluid flow
field, which describes the non observable pollutant transport accurately. However, the
complexity of this sophisticated real world application lies beyond the scope of this thesis,
so that we will consider a simplified prototypical setting, which focuses on fundamental
aspects for optimisation problems with physical models as constraints and the numerical
treatment of such mathematically complex problems.

A first idea of the approximation of the underlying atmospheric flow is to estimate the
so called optical flow field from the given image sequence. Image processing tools like
variational optical flow estimation techniques were developed over the last decades to recover
flow behavior of passive tracers like dye or particles in a fluid flow (e.g. Heitz et al. [51], Liu
et al. [71]). These techniques could also be used for the analysis of satellite observation of
meteorological flows (for example Corpetti et al. [25], Héas et al. [49], Papadakis et al. [83]).
The fundamental equation in this context is the so called “physics-based optical flow”
equation (Heitz et al. [51]), which describes the change of brightness intensity in a sequence
of consecutive images, caused by a transport field which is directly correlated to an
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underlying fluid flow. The mathematical structure of this equation is a parabolic partial
differential equation (PDE), more precisely a convection-diffusion equation. The estimation
of an unknown transport field based on this equation is an ill-posed problem (inverse
problem theory: cf. Engl et al. [31]) and requires the use of regularisation techniques, like
for example the famous Tikhonov regularisation.

Thanks to the progression of computational power after the turn of the millennium a
next step was to design methods based on PDE-constrained optimisation, also called
“optimal control”, formulations for the recovering of the optical flow. These involved
methods constitute also the framework of the present thesis. Therefore we mention two
fundamental directions of optimal control based optical flow estimation. The first one
uses the (physics-based) optical flow equation as a side condition to avoid filtering of the
given image data (approximating the spatial and temporal derivative) and decouples the
sampling rate of the image sequence and the time step size of the used numerical time
stepping scheme (cf. Borzi et al. [16], Chen et al. [22], [23]), which stabilses the numerical
process. The other approach treats the underlying physical model as a PDE-constraint for
an appropriate regularisation of the optimisation problem (cf. Ruhnau et al. [91], [92]).

We suggest in this work a combination of these two directions. First, because we want
to apply the physical model and second, we want to take into account that the given
image data is only available with a sparse temporal resolution. As side condition for our
PDE-constrained optimisation problem we obtain a weakly coupled combined model of the
physics-based optical flow equation describing the change of the intensity function of the
tracer and the Navier-Stokes equations describing the fluid flow.

Another fundamental aspect our method has to deal with is the assumption that the
given images are only truncations of more complex flow configurations. Thus the fluid
moves across the image boundaries and transports also the observed tracer over these
boundaries. We will present a method which is also able to recover the flow of the tracer
across the image domain boundaries. Therefore we use so called “boundary controls” in
our PDE-constrained optimisation problems, which represent distributed functions on the
boundary. The aim is then to identify appropriate functions, which yield the expected
movement of the tracer.

The treatment of the boundary controls, especially the use of Dirichlet controls, is widely
considered in the optimal control literature (cf. Fursikov et al. [38], [39], Gunzburger
et al. [45], Ito et al. [58]), since it arouses some complications. We will discuss the use of
Dirichlet controls and their approximation by Robin-type controls in the case of convection-
diffusion problems and for the Navier-Stokes equations (cf. Hou et al. [55], [56]). In the
end we will apply these concepts of boundary controls for the combined approach and
suggest a novel approach for physically based image interpolation and flow estimation with
respect to in- and outflow of the observed tracer across the boundaries. We will develop
the mathematical theory for the resulting sophisticated PDE-constrained optimisation
problem and solve a bunch of prototypical examples numerically by a Newton-type method.
Based on these examples we will also discuss heuristics to choose an appropriately small
regularisation parameter for the identification process in an automatic way. Moreover,
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we will suggest a segregation loop which yields, besides the boundary conditions, also an
estimate for the Reynolds-number of the fluid flow model.

The outline of the work is as follows:

The first chapter presents the description of the problem. We will discuss optical flow and
physics-based optical flow and present prototypical applications. Afterwards, we introduce
some common optical flow estimation techniques and sketch how we combine them to a
novel approach, which is well suited for the prototypical examples.

In the second chapter we discuss the standard theory of the equations which are used
throughout this thesis. Therefore we briefly introduce the used notation. Furthermore,
we present the classical existence and uniqueness theory for time-dependent convection-
diffusion equations and the time-dependent Navier-Stokes system in two space dimensions.
We also dedicate a section to the discussion of the purely linear transport equation, since
this equation is the fundamental optical flow equation in image processing. The last section
provides the theory for a system of equations weakly coupling the Navier-Stokes equation
to a convection-diffusion equation for a passive tracer by the fluid flow vector field.

The third chapter is devoted to the numerical treatment of our model equations. Since
we solve our time-dependent problems with Rothe’s method, we start with the time
discretisation. Afterwards, we discuss the spatial discretisation of the quasi-stationary
problems arising in each time step. We will use standard bilinear finite elements on
quadrilaterals. Then we specify the boundary conditions in a weak sense by a stabilised
Robin approach. The next topic we have to consider is the use of transport stabilisation
techniques in the case of convection dominance. Furthermore, the overhead needed for
solving the Navier-Stokes system is described. The solution process of this nonlinear
problem involves Newton’s method. Moreover, we use a pressure stabilisation technique
by local projections, since we have to fix the lack of inf-sup stability in the case of equal
order approaches for the velocity components and the pressure. All presented techniques
are also verified by numerical calculations of test examples. At the end of the chapter we
combine all presented techniques to solve a test case for the weakly coupled system.

The fourth chapter deals with general PDE-constrained optimisation problems. We
will first discuss the abstract theory of general optimisation problems with a linear time-
dependent PDE constraint. The optimality conditions, among them the optimality system,
are also mentioned. Based on the reduced approach we describe in the second part of the
chapter a Newton-type algorithm to solve the discussed general optimisation problems.
Here we have to represent the derivatives in the Newton algorithm by solutions of additional
PDE problems. We will also briefly discuss the structure of these subproblems. The chapter
relies essentially on the work of Becker [8], Meidner [77] and Vexler [102], since these three
authors designed the software library RoDoBo [88], which was the basis for almost all
calculations in this thesis.

In the fifth chapter we concretise the abstract setting from before for boundary control
problems. While Neumann or Robin controls are easy to handle, Dirichlet controls are
comparalbly difficult, since they require an appropriate choice of the control space. The
space H2 is the natural choice from the theoretical point of view, but it is hard to handle
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the implementati?n of functions from this space from a computational point of view, since
the use of the H2-norm requires either the evaluation of complicated boundary integrals
or the solution of additional problems increasing the computational complexity. We would
therefore like to use L2-controls, which are easy to implement. On the other hand L?-traces
have in general no H'-extension into the domain 2, although every H!'-function has a
trace in L2(942). A way out of this dilemma is the use of the Dirichlet control problem
with a very weak formulation of the original problem as side condition (cf. May et al. [76]).
This leads in general to a well-posed formulations. However, this approach is also very
sophisticated from the computational point of view. Fortunately there is a close connection
between very weakly formulated Dirichlet control problems and Robin control problems.
For the very simple case of the Poisson problem as side condition and a tracking type cost
functional it can be shown that a solution sequence of the Robin-type approach converges to
a solution of the very weakly formulated problem (cf. Belgacem et al. [I3]). We will present
the enhancement of this result to the time-dependent convection-diffusion equation and the
linearised Navier-Stokes system (e. g. Oseen and Stokes). For the Navier-Stokes equations
it becomes more sophisticated since we have no very weak L2-solution for L-boundary
data (cf. Farwig et al. [34], Marusic-Paloka et al. [75]). However, we will show that using
the theoretically justified Robin boundary condition leads to reliable approximations of
the original flow field, by presenting numerical calculations for a fluid flow in a backward
facing step with a rough boundary.

The sixth chapter collects all developed techniques for the theoretical justification of
a sophisticated optimisation problem with a weakly coupled PDE system, consisting of
the Navier-Stokes system and a convection dominant convection-diffusion equation, as
side condition. After formulating the problem correctly, we prove existence of at least
one solution of the optimisation problem. In a second step we verify the method by
means of a numerical example, where brightness patterns move across the boundary of the
computational domain. The developed method is able to reconstruct an intensity function
out of sparsely given observations of the intensity distribution.

By a further synthetic numerical test case we investigate quantitatively the numerical
behaviour of the suggested approach. We will show that we can use the developed method
to reconstruct drag and lift coefficients of a fluid flow in a benchmark channel, where only
observations of the intensity functions are available and the flow field on the lower boundary
is unknown, due to a unknown roughness of the original flow domain. In the context of a
time-independent version of this example we discuss also a heuristic technique, which choose
an appropriately small regularisation parameter in a homotopy-type method. Moreover, we
show that knowledge of the underlying flow model (e. g. the Reynolds number) is essential
for a good reconstruction result. However, with the appropriate geometry it is also possible
to estimate the correct Reynolds number. We segregate both processes and end up with a
method which is able to estimate both the model parameter and an appropriate boundary
function. At the end of the chapter we consider a fully time-dependent example and present
the functionality of our methodology for such a highly complex framework.

The final seventh chapter is devoted to the prototypical application oriented at the
meteorological problem mentioned at the beginning of this motivation. The first objective is
to combine the aspects from the synthetic examples of the last chapter in one comprehensive
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example and to show that our method is able to deal with all complexities at once. The
second and more important aspect is to compare the influence of the fluid flow model as
regulariser. We will therefore consider the reconstruction with three different fluid models.
The first one is the original model of the forward calculation. The second one is the
linearised Stokes system. The third model is the simple heat equation, which in principle
introduces only temporal and spatial regularity for the flow field. We will show by this
comparison that the reconstruction quality is clearly influenced by using as much model
knowledge as possible. Thus the large computational effort in case of the fully nonlinear
physical model is justified.

1.2. Problem Description

In this section we will develop the problem under consideration. We will define the (physics-
based) optical flow and present related prototypical examples, which we use later on for
the validation of the developed methodologies.

1.2.1. Optical Flow

As optical flow we understand the velocity vector field, which describes the visible motion
of photometric patterns in a sequence of consecutive images (cf. Horn et al. [54] or Heitz
et al. [1]). It is possible to obtain information on the spatial arrangements of objects
and their temporal change in an observed scenery by the change of photometric patterns
representing these objects. Under several assumptions, such as uniform illumination of the
scenery and nearly no reflectance of the objects, the brightness change is described by

Ol +w-VI=0, in £ x (0,7 (1.1)

This so called “optical flow equation” (also BCCE, “brightness change constraint equation”)
states that the total time derivative of the brightness intensity at each temporal and spatial
point (¢,x) is zero, which means that the brightness is a conserved quantity. Thus the
brightness value at a certain point « in the image 7y := I(x, ;) keeps constant along a
trajectory on which the value is moved to the consecutive image Zy 1 := I(x,tg41). In this
context the two dimensional vector field w describing the transport is called the “optical
flow field”.

The function
I:0x[0,7T] - R"

described by the above equation is called (brightness) intensity function. As in several
other publications we will treat this function as a continuous quantity for all our theoretical
considerations, although the given data, the images, are of course discrete samples in space
and time.

From the mathematical point of view equation (|1.1]) represents a hyperbolic PDE, which is
known as linear transport equation.
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The optical flow equation is used for very general brightness distributions observing any
objects in a given scenery. However, our focus is on the observation of a passive tracer in
a fluid flow. This concrete application is also discussed in the literature. An impressive
application was given in the article of Papadakis et al. [83]. The authors present how
imaging techniques can be used for the flow analysis of a cyclone, which was observed
by an image sequence given by a satellite. Here the brightness intensity distribution of
infrared images of the moving water clouds acts as a passive tracer and a direct connection
between optical flow in the image sequence and the underlying physical flow is assumed.

A connection between fluid and related optical flow in an image sequence was also discussed
in various other publications, where the authors developed the concept of the so called
“physics-based optical flow equation”. In the next subsection we will present this concept.

1.2.2. Physics-Based Optical Flow

Liu et al. [71] and Heitz et al. [51] as well as the literature cited therein give a good summary
of the topic. The aim is to find a connection between the observed fluid flow and the optical
flow, since it would be very promising to use optical flow methods to derive qualitatively
and quantitatively good estimations of the fluid flow field.

During the last decade the optical flow equation turned out not to be an accurate
model for image-based fluid measurements. Liu et al. [71] developed models for a bunch
of different fluid flow scenarios. One of these scenarios considers the transport of a passive
scalar tracer by the underlying fluid flow. The passive scalar has the property of attenuating
the wavelength of light rays transmitting through it. In case that the fluid itself is not
light absorbing and the scalar does not change the fluid’s density the authors derived the
following equation

L
Org + vx,y(gua:,y) = EAa:,yg —cpB(I1, I}), g=1In <LO>

for the radiance L(x, y, t) which reaches the camera through the scalar. The vector field w4
represents the planar components of the three dimensional flow field. The term B(I, [%)
indicates boundary conditions on the so-called control surfaces between which the fluid
is moving. If the control surfaces are solid this term vanishes. In case of “virtual control
surfaces” the boundary terms are negligible, if we have small relative velocities related
to the distance between the control surfaces and the camera apparatus. The latter case
occurs for satellite image observations of the lower atmosphere’s wind system. Furthermore
the connection between radiance and intensity function is given by

()= (5)

That means the brightness intensity is described by the following convection-diffusion
equation

Ol —eAl+w-VI =0, in 2 x (0,7,
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with an optical flow field w which is directly related to the planar components of the fluid
flow u = (u,v,w)T in the following way
W = CUyy, with w,, = (u,v).

Often the mentioned connection between optical flow and fluid flow requires a very specific
analysis of the real world application and even then further problems come up, such as
model uncertainties in the flow model (e. g. the wind model for atmospheric flows) or the
optical flow model (e. g. varying illumination of the images) or measurement errors. Since
these aspects are beyond the scope of this thesis we will present prototypical examples,
which on the one hand motivate interesting applications and on the other hand omit all
uncertainties so that we can directly focus on the development of our methodology.

In connection to the real world application mentioned in the motivation we will concentrate
on some fundamental problems in physics-based optical flow estimation. Our prototypical
test cases should be designed in such a way that they exhibit these special problem
structures.

The problems our method should deal with are the following:

i) The image sequence represents only an aperture of the original flow domain. Thus
we have flow of intensity signals across the boundaries. The method must be able
to recover the flow field at the boundary as well as the signal movement across the
boundary.

ii) The sequence is assumed to be temporally sparse. Thus the method should be able
to interpolate between consecutive images.

iii) Assuming the knowledge of an appropriate physical model for the fluid flow, our
physics-based optical flow estimation process should be able to integrate this knowl-
edge.

iv) We want to suggest a framework, which is flexible in terms of integrating further
information (e. g. model information, measurements in parts of the domain or on
parts of the boundary).

1.2.3. Synthetic Numerical Examples and Prototypical Applications

We present three examples. The first example concerns the interpolation aspect for a
sparsely given image sequence. An essential advantage of our method is the possibility of
interpolating an intensity signal across the computational boundary. For regularisation
we already use a physical model, although it does not exhibit its positive effect on the
estimation, due to the simplicity of the chosen original flow field.

In the second example, we consider a time-dependent (laminar) flow scenario, which is mo-
tivated by the standard benchmark channel (cf. Schéfer [93]) and a modification mentioned
in Vexler [I02]. Here the focus is on the application of the model for the regularisation and
the possibility to estimate further indirectly observed quantities like the pressure function
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and, through this, the drag and lift coefficients of an obstacle.

However, both examples will be used to verify the numerics behind the two main func-
tionalities of the suggested approach, signal interpolation across the boundaries and the
estimation of time-dependent boundary functions in a physically based framework.
Finally, a third prototypical example is oriented towards atmospheric flows, as mentioned
in the motivation of this thesis. The aim is here to reconstruct the distribution of a not
directly observable passive tracer (some kind of pollutant) by a given sequence of intensity
functions documenting the movement of an observable passive tracer (dust plumes). This
application will combine the aspects presented in the other two examples. Moreover, it has
the advantage that it presents the flexibility to integrate different types of information in our
method and it yields an idea for possible further interdisciplinary research. However, the
main objective of this example is to emphasise that using appropriate model knowledge of
the underlying fluid model leads to a clear improvement of the reconstruction results, which
justifies the increased numerical effort of working with such nonlinear and time-dependent
models. In the following, we briefly summarise the three examples.

First Example: Interpolation Across the Image Boundaries

Starting point for this example is the optical flow equation
ol +u-VI=0, 2 % (0,7].

By choosing appropriate data functions, this equation yields a space-time evolution I(x,1).
We will generate a temporal sequence of intensity functions as given data, by setting
Ty = I(x,t;). Thereby the temporal grid is sparse.

Figure shows six intensity functions documenting the movement of a bulb signal in the
domain 2 = (0,1) x (0,1) on a certain time interval [0,7]. The bulb was moved by the
solenoidal flow field

’LL(ZIZ7 t) = H(_yv x)T‘

We consider the following question:

Problem: Assuming only the siz images as given data, without any knowledge of the flow
field, except that the vector field is divergence free, the aim is to reconstruct (interpolate)
the movement of the signal on a finer resolution, of the time grid.

The mathematical task behind this problem is to prescribe appropriate boundary data for
the intensity function on the computational domain. Furthermore, we have to approximate
a reliable vector field, which transports the signal throughout the domain also by the
reconstruction of appropriate boundary conditions.
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Figure 1.1. Intensity function sequence: I= Ik

Second Example: Drag and Lift Estimation in a Channel with Unknown Roughness

In this numerical test the underlying fluid flow is described by the two dimensional
time-dependent Navier-Stokes equations

ou—vAu+u-Vu+ Vp = f, in 2 x (0,7,
V-u=0, in 2 x (0,7,
which are discussed in detail in the next chapter. We assume that no body forces (f = 0)
act on the fluid. Thus the whole flow is driven by the choice of the boundary conditions

BI(U;I,QI):Oa aQX(O’TL
Buy(u,q,) =0, 082 x (0,7,

with functions ¢; and gq,,, which have to be specified.

We assume a straightforward connection of the optical flow to the underlying fluid flow,
that means it is directly proportional to the fluid velocity

w = cu.

Thus, the optical flow is described by the physics-based optical flow equation (cf. Heitz

[51])
Ol —eAl +w-VI=0.

Assuming that w = u we end up with the following system of equations

Ol —eAl +u-VI =0,
ou—vAu+u-Vu+ Vp =0, in 2 x (0,77, (1.2)
V-u=0,

which describes the evolution of the pressure p, the velocity field w and the brightness
intensity function I. The system is weakly coupled by w, that means u influences the
physics-based optical flow equation without I influencing the Navier-Stokes system.

We want to emphasise that a mathematically correct statement requires also the choice of
appropriate initial data. We postpone an accurate formulation and the discussion of the
mathematical theory of the problem to the next chapter.

We consider a benchmark channel {2g., consisting of an inflow boundary on the left and
outflow boundary on the right and rigid walls on the top and the bottom of the channel. In
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the front segment of the channel an obstacle with rigid boundary is fixed. In this channel,
an incompressible fluid is moving from the left to the right transporting two tracer signals
twisting around the obstacle. In general, walls in channels are not smooth so that we
assume an unknown roughness at the lower boundary. The question is then the following:

Problem: Reconstruct the drag and lift coefficients of the obstacle only by a given (tempo-

rally sparse) sequence of brightness functions I, observing the passive tracer at discrete
time points.

For the evaluation of the two quantities of interest we need to reconstruct the veloc-
ity vector field of the fluid and the corresponding pressure function.

1(x,y)
0.08

Figure 1.2. Brightness function I(x,t) of a passive tracer transported by a time-
dependent incompressible fluid flow visualised at a fixed time point.
Top left: Rough lower boundary. Top right: Even wall on the lower
boundary. Bottom picture: Overlap of the contour lines of the both
brightness functions (blue: rough, red: smooth).

Working with a direct numerical simulation is not possible, due to the fact that the
roughness of the lower boundary is assumed to be unknown. The flow in a channel with a
flat bottom wall leads to a completely different flow behaviour. This is indicated by the
intensity functions in a rough and a smooth channel visualised in Figure[1.2

We will introduce an artificial smooth boundary at the bottom of the computational
domain and use physics-based optical flow estimation techniques to reconstruct the desired
quantities. The usage of the fluid model, described by the system of equations , will be
crucial for the reconstruction to achieve both a reliable flow field and pressure function.

10
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Third Example: Reconstruction of a Pollutant

As mentioned in the motivation of this thesis, an interesting idea is to use physics-based
optical flow estimation to compute a reliable vector field for ground-based atmospheric
flows in deserts only by using intensity function sequences obtained by satellite remote
sensing.

As an example we take the country Egypt, whose territory is almost completely located in
the desert (> 95%). We assume that the wind system can only be measured in certain
small areas as the Nil valley in the east and the shore line to the Mediterranean sea in
the north. In the rest of the country the measurement of the wind system is not possible.
Nevertheless, a certain knowledge about the wind system in deserts could be of interest,
since the wind potentially distributes harmful substances into populated areas. An example
for such a substance could be residues of fertilisers used in intensive industrial agriculture
projects in the south of the country in the middle of the desert. By satellite remote sensing
we can obtain information of a “natural” passive tracer, which is transported by the wind
system, namely the desert sand dust. The dust plumes have a so-called optical thickness (cf.
Schepanski et al. [94]), which influences the brightness intensities in the infrared satellite
images.

However, formulating and solving a real world application like this would require a whole
team of interdisciplinary scientists.

It should be demonstrated by the following prototypical example that the developed
techniques are able to cope with several aspects of this fictitious application.

Therefore we assume that the ground-based atmospheric wind system is described by the
Navier-Stokes equations, and neglect the influence of temperature, humidity, vertical flows
etc. Considering appropriate physical units it will turn out that the kinematic viscosity is
very small and thus we work in principle with a time-dependent Euler system, which is
then numerically stabilised for the solution process.

Since a connection between the dust plumes and their brightness intensity in the satellite
images is a topic for research by itself, for simplicity we assume again a direct connection to
the intensity function of our passive tracer. Hence, we will work with the system , with
a very small v, to generate an intensity function sequence for our artificial sand problem.
We visualised the solution of a forward calculation in a quadratic aperture (cf. Figure ,
which will be specified later.

Although the simplifications are significant in comparison to the real world problem the
main aspects like flow across the boundaries and also the application of model knowledge
can be investigated in this setting.

While the first row of pictures in Figure shows the intensity distribution and the
corresponding flow field at three different time points, the second row indicates the
distribution of the concentration c(x,t) of a pollutant, which has its source in the lower
half of the computational domain.

For this setting we formulate the following problem:

11
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I(x,y,h

c(x,y.h)

’

15d 16d 17d

3.
2.
1

0

Figure 1.3. From left to right: ¢ = 15d, t = 16d and t = 17d. Upper row:
Blue-yellow plot indicates the dust distribution. The black arrows
visualise the transport vector field. Lower row: Distribution of a
pollutant also transported by the above indicated vector field.

C_ (t)- Forward
45 Pol

CPul(t) - Expected

1 | | | | | | | | |

15 15.2 154 156 15.8 t[d] 18 16.2 164 16.6 16.8 17

Figure 1.4. Temporal evolution of the mean value for the concentration ¢ in a

domain of interest {2pe;. Green curve: Expected value. Red curve:
Forward calculation without boundary identification.

12
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Problem: Reconstruct the temporal evolution of the mean value of the pollutant in a certain
subdomain of interest 2per by a (temporally sparse) sequence of intensity functions.

The significant influence of the transport field to the mean value of the concentration
c(x,t) can be observed in Figure The red curve shows a forward calculation, where no
appropriate boundary functions were available, while the green curve shows the evolution
with the expected boundary functions.

1.3. Variational Optical Flow Estimation Techniques

In this subsection, we present the common state of the art of optical flow estimation
techniques and develop our approach which is classified into the common techniques. The
most famous methods for estimating the optical flow are the Lucas and Kanade method (cf.
Lucas et al. [73]) and the Horn and Schunck method (cf. Horn et al. [54]). Both methods
were developed in the 1980s. In the past 30 years they have been enhanced to a certain
extent. For a broad overview see Beauchemin et al. [6], Barron et al. [5] or the monograph
of Jahne [60]. We want to introduce the Horn and Schunck approach briefly ,since it is
a variational based technique, which represents the basic structure for the optimisation
problems presented later.

The Horn and Schunck Method

The Horn and Schunck method is based on the minimisation of the following functional

N

Jis(u) =Y (Hatf(tk) + u(ty) - V—f(tlc)”%%n) + g|’vu(tk)”%2(n)) ; (1.3)
k=1

whereas the terms 8,1 (tx) and vi (tx) must be approximated by the given image sequence
(Ik)ivzl. Usually one uses finite differences for the latter. With the temporal and spatial
sample rates dt, dr and dy, we have for example

~ 1

dt
A 1 . ) . .
a’f] - 2dx (I(Z +d$7]7t/§) _I(Y’ - dl‘a]atkz)) )
A 1
f=—(Z(i,; —T(i,j - .
8@/ 2dy ( (27] + dyatk) (27] dyatk))

The index k indicates a discrete time point t; € [0,7] at which the brightness intensity
function, the image, is given.

We want to emphasise that large spatial or temporal derivatives lead to possibly bad ap-
proximations of the image derivatives. Thus, heuristic ’Coarse-to-Fine’ motion estimation
methods (cf. Ruhnau [90], Brox et al. [21]) were developed in the last decades. Unfortu-
nately, estimation errors on a coarse resolution are propagated to the finest resolution and

13
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therefore we have no guarantee for good approximations of the optical flow field. We will
later on present a technique, which avoids the approximation of derivatives, but first we
discuss the functionality of the two terms in the cost functional (|1.3)).

Remark 1.1 (Data Term).

The first term in parentheses of equation is called the data term since it involves
the given image data. It expreses the fact that we are looking for a transport field which
provides an approzimation of the optical flow equation

Ol +u-VI=0, in2x(0,T]

as good as possible. In the context of observations of fluid flows it is more reliable to work
with an approzimation of the physics-based optical flow equation in the data term:

N
Y N0ed (tr) — eAL(tr) + u(t) - VIt F20)-
k=1

Remark 1.2 (Regularisation Term).
The second term in parentheses of equation s a reqularisation which has to be added
due to the ill-posed character of the scalar (physics-based) optical flow equation

Ol — € (Oped + OyyI) + udypl + vy I = 0, in 2 x (0,7,
with respect to the estimation of the two dimensional flow field uw = (u,v)T.

The whole functional can be interpreted as an inverse problem with Tikhonov regular-
isation.

By using calculus of variations,

d
dfgc]HS(u +ep)le=0 =0, VoecH

we derive a necessary and sufficient condition for a minimiser w in the vector space H,
which has to be specified. The variational derivative yields a system of PDEs in each time
point tg:

a(Vuy, Vi) + 2(u18xf + u25yf, 8xf<,01) = 72(8tf, (%fgol), T
. A A Vo = (p1,p2)" € H.
a(Vug, Vo) + 2(u10x1 + ugdyl, 0ylpe) = —2(dd, 0yl p2),
We rewrite the above equation in the following short notation:
a(Vu, Vo) + (Bu,p) = (f,¢), Vp€H,
with

(@D @D@D\ . (0
B‘((foaf)(ayf) (0,1)? ) =20l (ayf>‘

Hence, we derive a weak formulation of a steady elliptic diffusion-reaction equation in each
time point ¢.

14
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Remark 1.3 (Small Diffusion).

Setting a = 0 shows that the two equations degenerate to the same equation, which
emphasises the ill-posed character of estimating the flow field out of the scalar transport
equation. Thus, the diffusive term in the equations, introduced by the reqularisation term,
s necessary for the solution process.

The diffusive term leads essentially to a spatial smoothing of the solution. Unfortunately,
this “smoothing” of the transport smears sharp edges in the brightness distribution, so that
we have a blurring effect, which makes a “perfect” match in the data term nearly impossible.
Thus, the regularisation parameter o is a sensitive tool to adjust a good trade-off between
matching of the data term and reqularisation of the solution. Developing appropriate
strategies to choose a automatically is a delicate matter, which will be discussed later on
in another contert.

We now present a methodology based on PDE-constrained optimisation which has several
advantages in comparison to the Horn and Schunck method.

Optimal Control Approach for Optical Flow Estimation

Borzi et al. [16] formulated the following optimisation problem:

Optimisation Problem 1.4 (Optimal Control Optical Flow Estimation).
We wish to find uw € Q and I € V such that

1 N
I) =2 1 (te) — Zill5 + R(w)
2.0

is minimised subject to an appropriate mathematical formulation of the optical flow equation

Ol +u-VI=0, in2x(0,T) (1.4)
10)=1T;, in 0. (1.5)

The above mentioned authors choose as regularisation term

T T T
«Q B 2 Y 2
5// Oul?) de dt + 5//w(|vu| ) dwdt+§//|v-u\ dz dt,
0 0 0 0 N

with non-negative parameters «, 5 and ~. The first two terms are introduced to achieve
spatial and temporal regularisation needed since the given image data is under-determined.
The choice of the appropriate functions @(-) and ¥(-) is complicated, and we refer the
interested reader to the above cited literature. The last term is a penalisation term, which
guarantees that the velocities on the border of small subregions have the same value as in
the interior of the subregion. This term leads to an extrapolation of flow information into
regions without any brightness information. The usage of such a term is also common in
the classical optical flow estimation literature.

15
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Another approach for the regularisation term was presented by Chen et al. [22]. They use
as regularisation

T
R(w) =5 [ IVAu(e)|3 di (1.6)
0

and add the divergence-free constraint
V-u=0, in{?

to the state equation (|1.4)).

Remark 1.5 (Choice of the Control Space).

The authors choose a highly reqular control space by taking the above mentioned semi-norm
in equation , which is equivalent to the norm of the space H3(£2)% N 1'—1'(%7(11‘,(_(2)2 (see
next chapter for definitions of the spaces), when using homogeneous Dirichlet boundary
data. The reqularity is needed to guarantee the solvability of the state equation (cf. Chapter

:

Both references introduce a new class of optimal flow estimators based on optimal control
approaches. This concept leads to fundamental advantages as the authors mentioned in
their contributions:

i) Decoupling of the sampling rate from the images and time step size for the temporal
discretisation to enable even the treatment of large deviations of brightness patterns.

ii) No differentiation of the data is needed. Depending on the sampling rate the
approximation of the image derivatives is considerably bad and therefore only poor
estimates would be possible in the usual approaches using the approximative optical
flow equation in the data term.

iii) Using the divergence of the optical flow field for the regularisation leads to extrapola-
tion of flow information into regions without image information.

iv) We can use this approach not only for the estimating the optical flow but also for
reconstructing the image function I(x,t) and therefore for the temporal interpolation
of the images.

v) The authors showed for common benchmark examples that their optimal control
approach is superior to the usual Horn and Schunck technique.

The first two aspects are closely connected. Borzi et al. [I6] discussed that the process of
estimating a reliable velocity field by the classical Horn and Schunck approach yields only
good results as long as for the sampling rates dx, dy and dt good approximations

16
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are available. This is due to the Courant-Friedrich-Levy condition

dt dt
C =U;— — <1,
CFL = U1 + ug dy
which has to be fulfilled for a reliable numerical solution of the linear transport equation

(cf. GroBmann et al. [44]).

In the classical method the temporal sample rate dt and the time step are the same, while
in the optimal control approach we can use a finer time discretisation, fulfilling the above
condition for the state equation independent of the temporal difference of two consecutive
images 7y and Zyy1. In this sense the method is more flexible when we want to handle
image sequences with large deviations from the observed brightness patterns between two
given images.

In the approach of Chen et al. [22] the choice of the regularisation was justified by the
required regularity of the flow field in the linear transport equation. This property can
also be achieved by a combined approach, which is on the one hand more complex but on
the other hand more flexible.

1.4. Coupled Approach

We formulate a more sophisticated optimisation problem.

Optimisation Problem 1.6 (Optimal Control Optical Flow Estimator II).
Find g € Q and (u,p,I) € Vy x V, x V1 such that

N
S 1) - Tul3 + 5 /||q||2 at

l\D\H

is minimised subject to an appropriate mathematical formulation of the following system of
equations

ol +u-VI=0,
ou — Au+ Vp = q, in £2x (0,7,
V-u=0,
with homogeneous boundary conditions and sufficiently regular initial data for I and w.
The state equation of this optimal control approach with distributed domain control is
coupled by the velocity field, which is described by the time-dependent Stokes equation, to

the linear transport equation. In the context of boundary control optical flow estimation
this approach was already presented by Klinger [67].

In the next chapter we will show that we can achieve the regularity properties

{1,u} € £ (0,73 Hy (2)) x L (0,75 H3(2)? 1 HY 3, (£2)?)

17
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for this approach, which are essentially the same properties as in Chen et al. [22] except
for the additional temporal regularity in the approach above.

A major drawback of this formulation is that we introduce an additional variable p and that
we expand the system from two to four equations, which will increase the computational
cost for the solution process of this optimisation problem.

However, the proposed method shows also several advantages:

i)

ii)

iii)

iv)

If we observe a laminar fluid flow the Stokes equations

Ou — Au + Vp = q, in 2 x (0,7,
V-u=0, in 2 x (0,7

constitutes the correct physical model. In this situation the additional variable p
gets a physical meaning and can also be evaluated by this approach.

We can substitute the Stokes system by other flow models (e. g. by the nonlinear and
time-dependent Navier Stokes equations) and use therefore further a priori knowledge
of the underlying fluid flow or evaluate even not directly observed quantities.

We can also substitute the equation for the brightness intensity function by an
appropriate model for the brightness evolution. This can be used for example
to detect sources for intensity changes which localise sources of the tracer (e. g.
pollutants acting as tracer in the atmospheric wind system).

We can choose different types of control functions ¢ (e. g. boundary controls) and
adapt this choice also to our particular situation.

We can apply different data sources. For example if we have measurements of the
transport field in a subdomain {25, of the image domain (2,5, we can easily couple
this information to the optimisation by extending the cost functional by a further
term, e. g.

T
[ hu(t) = @(t) 2o, 2 .
0

To apply more knowledge about the underlying fluid flow in the case of optical fluid
flow estimation as indicated in points i) and ii) was already suggested by other authors
(cf. Papadakis et al. [83], Ruhnau et al. [91, 02] and Ruhnau [90].). There, optimal
control approaches with different fluid flow models as PDE-constraints are used with an
approximation of the (physics-based) optical flow equation as data term as in the Horn and
Schunck case. In this sense, the proposed methodology is a combination of two common
directions of optimal control based optical flow estimation.

However, the above mentioned advantages are very abstract. To fix ideas we will focus on
an approach which is able to cope with the different problems, which are specified by the
prototypical examples (see Section [1.2.3)).

We formulate the following optimisation problem:

18
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Optimisation Problem 1.7 (Boundary Control Optical Flow Estimator).
Find q € Q and (q,p,I) € Vo x V, X Vr such that

T
1Y Q
T, 1) = 5 3T - Tl + 5 [ llal dt
k=1 0

is minimised subject to an appropriate mathematical formulation of the following system of
equations

I —el +u-VI =0,
ou —vAu+u-Vu+ Vp =0, in £2 x (0,7,
V-u=0,

with sufficiently reqular initial conditions for I and w and the following abstract boundary
conditions
BI(U;17QI):O7 FCX(OvTL

By(u,q,) =0, I'c x (0,T]

involving the boundary control ¢ = (q1,q,) on I'c C 0f2. Also, boundary conditions on
0N\ I'c have to be specified.

From the mathematical point of view a fundamental question for this sophisticated boundary
control-type problem arose:

Question: What is an appropriate choice for the boundary conditions By (+;-,-) and By(+,-)
and their associated vector spaces to obtain on the one hand a mathematically well-posed
formulation of the optimisation problem and on the other hand a practicable method from
the computational point of view?

In the next chapters we will discuss and answer this question. The result will be a
novel approach for physics-based optical flow estimation with image interpolation across
boundaries. Afterwards we will use this technique to solve the three prototypical problems
and investigate the behaviour of the methodology.
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2. Governing Equations

The Optimisation Problem relies on the system of equations . The aim of this
chapter is to present the standard theory of this system of equations consisting of the
time-dependent fully nonlinear incompressible Navier-Stokes equations and a convection-
diffusion equation describing the transport of a passive tracer caused by the Navier-Stokes
vector field. Hence, we want to briefly discuss existence and uniqueness theory and the
influence of the data, especially boundary data. We will need the techniques summerised
in this chapter for the theoretical analysis of the resulting boundary control problems in
the later chapters.

2.1. Preliminaries and Notation

In the following we introduce briefly the basic notation for the theory of partial differential
equations.

We will always assume (2 as a bounded domain with Lipschitz boundary (cf. Sohr [97],
1.3.2.). In many cases {2 will be additionally polygonal and convex.

The notation for the standard Lebesgue and Sobolev spaces, LP(£2) and W™P(S2), corre-
sponds to the notation in Adams et al. [I]. Furthermore the Hilbert space W™?2(2) is
denoted by H™({2). For m < oo we denote by

(u,v) = /u(ac) ~v(x) do, (U, v)pgm) = Z /Do‘u(m)Dav(w) dx
0 0<]a|<m ¢

the usual scalar products. The norms of the Hilbert spaces are given by
[ullZ200) = (), [[wlFm () = (u,u) gm0
and the norms for L>°(£2) and W"™>({2) are

ull ooy = ess sup |u(z)|,  [|ullwm.co(0y = max [[D| ro(0).-
xes? al<m

For the L?-scalar product on a part of the boundary I" C 92 we will use the notation

(w,v)p = /u(s) <v(s) ds

r
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to avoid confusions with the usual duality pairing, which will be introduced below.

We will also distinguish between wvector and scalar valued functions by using bold face for
vector valued variables and superscripts for the space, e. g.

xeR" wu(x)e LP(2)".

For time-dependent functions we use the standard notation of Bochner functions (cf.
Gajewski et al. [40]), where for [a,b] C R the symbol LP(a,b; X) with 1 < p < co denotes
the space of Bochner measurable functions with the property

b
/||u(t)|\§(dt < .

Furthermore, we follow Dobrowolski [29] and use the notation

(z,f) = f(z) eR

to describe a duality mapping from X x X’, where X’ denotes the dual space of the normed
space X. Hence we have also the mapping

frolz f), X' =R

for every x € X. Therefore we call (-,-) a duality pairing.

2.2. Convection-Diffusion Equation

The convection-diffusion equation describes the dispersion of a given initial concentration,
temperature or brightness intensity distribution u%(z) over a certain time interval (0, T].
Therefore this type of equation is involved in general when we observe a passive tracer in a
flow. We sum up some fundamental properties of this kind of equation.

In the classical form this equation is written as

Owu(x,t) — v(x, t)Au(x, t) + Bz, t) - Vu(z,t) = f(x,t), in Q:= 2 x (0,T],
u(z,t) = g(x,t), onX:=002x(0T], (2.1)
u(z,0) = u'(x), in £2.

This equation is a parabolic partial differential equation as long as v(x,t) stays positive
and thus the spatial part with the operator

Lu := —v(z,t)Au(zx, t) + B(x,t) - Vu(z,t)

is elliptic.
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2.2.1. Existence and Uniqueness

The existence and uniqueness results rely on the following weak formulation of the problem.

Weak Formulation 2.1.
Let f € L2 (O,T; L2(Q)). Find u € L2 (o,T; Hg(fz)) with dyu € L2 (O,T; H‘1(9)> such
that

(Oru, ) + (WVu, Vo) + (B - Vu,0) = (f,9), Vi € Hy(£2) (22)
for almost every t € (0,T] and
u(z,0) = u® € L*(92).

Remark 2.2 (Prescription of Inhomogeneous Dirichlet Conditions (Strong)).
The above weak formulation does not consider the case of inhomogeneous Dirichlet boundary
conditions. Anyway, this general case can easily be transformed into the above formulation.
We follow Schweizer [96] to describe the concept.

If we assume enough regularity of the boundary data g(x,t), especially regqularity in time
then, we are looking for a generalised solution of the homogeneous problem

dw(x,t) + Lw(x, t) = f(x,t) — dg(x,t) — Lz, t) =: f, in 02
for almost every t € (0,T] and
w(x,t) =0, ondR, w(x,0)=1u’(x)—g§(z0), in0,
where g is an appropriate extension of g(x,t) into the domain.

The solution of the inhomogeneous problem can then be calculated by
u(zx,t) = w(z,t) + g(x,t).
The minimum requirement for the boundary data is
g(z,t) € H%(&Q), with H%(&Q) ={pecL?(0N): Jwec H (N),p =T (W)},
where T denotes the trace operator T : H(2) — L?(012).

Remark 2.3 (Continuity in Time).
The initial condition is meaningful in the sense that u € C ([O,T]; LQ(Q)). This follows
with a standard result (see Theorem 3, 5.9.2 Evans [33]), when

ue L? <O,T; H&(Q)) and O € L* (O,T; (H&(Q))/) .
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Considering the fact that we later on assume that the underlying transport field results
from an incompressible fluid flow we will have the additional assumption

V- B(x,t) =0, in Q

in an appropriate weak sense. For these so called “solenoidal” flow fields we have a special
property of the weak transport term.

Lemma 2.4 (cf. Lemma 2.1 Galdi [41, Chapter VIII.2]).
Let 2 C R? be a bounded Lipschitz domain. We have

(u-Vov,v) =0,
(u-Vo,w) + (u-Vw,v) =0

forallu € HY (2)" = {ue€ HY(Q)" : V-u=0 in a weak sense} and v,w € H}(£).
The proof of the existence of a solution works now in the standard way by using Galerkin’s

method (also called energy method), which is based on the following steps (cf. Evans [33]
or Schweizer [96])

1. Construction and existence of a finite-dimensional approximation u(™) of the contin-
uous solution u for m € N.

2. Calculation of appropriate uniform energy estimates for u(").

3. By compactness arguments, due to the uniform boundedness of u(™ we select
subsequences, which converge to a certain weak solution u for m — oo.

4. Showing that u fulfils the original equation.
By this proceeding we derive following result:

Theorem 2.5 (Existence and Uniqueness of Solutions).

The domain 2 C R™, with n = 2,3, is bounded with Lipschitz boundary. Moreover we have
for the initial condition u® € L?(£2) and the final time point T > 0. The operator L is
elliptic and we have one of the following conditions:

1. B(z,t) € L™ (0,T; L>(2)"),

2. B(z,t) € L? (O,T; H&iv(ﬁ)n).

Furthermore f € L? (O,T; H_I(Q)).

Then there exists a unique weak solution u € L? (O,T; H&(Q)) of equation .
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2.2. Convection-Diffusion Equation

Proof. The details of the proof are given in Evans [33, Chapter 7.1].

The second possibility for the regularity of 8 requires a modification of the second step of
Galerkin’s method, the evaluation of an uniform energy bound. This is straightforward by
testing the weak formulation with u(t) itself

5 @3+ vIVu@®)3 + (B(2) - Vult), u(t)) = (£(t), u(t)

for almost every t € (0,7]. Using Lemma and Young’s inequality we obtain the
inequality

52 @3 + Va3 < Crllu®| + Call f(B)]3-

By using Gronwalls inequality the energy estimates can be generated in a standard way
(cf. Evans [33, Chapter 7, THEOREM 2]). O

This weak solution can have a higher regularity under certain assumptions on the data
and the domain. We cite therefore the following

Theorem 2.6 (cf. THEOREM 5 Evans [33, Chapter 7.1.3.]).
Let §2 be either a bounded domain with a smooth boundary 0f2 or a convex polygon with

W e HY (D), felL? (o,T; LQ(Q)) .
Moreover B € L (0,T; L= (£2)™). Then
we L2 (0,7 H2(R2)) N L (0,T; Hy(2)), and dpu € L2 (0,T; L*(2))

Furthermore we have the following estimate

T
ess sup [[u(®llmyie) + [ (1003 + 10O 2y dt
0<t<T ;
T
SO dt+ 1 geo | 23)
0

with C' depending on §2, v and B.

Hence, under appropriate assumptions the weak solution is more regular and therefore we
can show, by using the fundamental theorem of the calculus of variations (cf. Dacorogna
[26]), that the weak solution of equation (2.2)) is also a solution to the classical formulation

in equation ([2.1)).
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2. Governing Equations

2.2.2. Linear Transport Equation (Optical Flow Constraint)

The transport of intensity patterns in a generic image sequence is described by the the
optical flow equation

in 2 x (0,77,

Opu(x, t) + B(x,t) - Vu(z,t) = 0, (2.4)
, 0 in £2, ‘

u(x,0)

with a plane optical flow field 8 (cf. Jahne [60]). From the mathematical point of view this
is a linear transport equation. Though it fits at first glance into the above presented setting
of general convection-diffusion equations by choosing v = 0 and f = 0, the character of
this partial differential equation is completely different, since the spatial operator

0
U

Lu(z,t) := B(x,t) - Vu(x,t)
is no longer elliptic. Hence, also the theoretical background changes.

The classical theory of linear transport equations is closely related to the theory (of system)
of ordinary differential equations

d
X)) =Bt X(1), with te [0,7], and X(0) = X°,
where B is required to be Lipschitz continuous in space and must be integrable in time.
Then we can apply the classical theorem of Picard-Lindel6f to obtain unique existence of a
solution X (¢). These requirements are somehow eased for fields 8 with bounded divergence
and some Sobolev type regularity in DiPerna et al. [28]. The authors derive

B e WoHR™), V-8 e LR

C

if the following conditions are fulfilled:

Bs
1+ |z

B=pB1+By ByelPR"), forl<p<oo, € L>(R").

Unfortunately, the above result covers neither the usual H'-regularity of the transport
field nor the divergence free condition in a weak sense. On the other hand the above
mentioned conditions are not appropriate for our later purposes. Hence, we will present a
well-posedness result for a special configuration.

We want to mention two articles in the literature considering the linear transport equation
in the context of optical flows. Chen et al. [22] assumes H3-regular flow fields B to have
an embedding into W1°(£2) and thus into the space of Lipschitz-continuous functions.
Furthermore, the fields are solenoidal. Then authors are able to prove existence of a unique
BV-regular solution, as long as the initial value is in BV (see the definition below for this
space).
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2.2. Convection-Diffusion Equation

Remark 2.7 (Spaces for Image Processing Applications).
In image processing usually the space of functions with bounded variations is used:

BV(2) ={uc L") : &(u) < oo},

with $(u) = sup { fu() (V - $(z)) de = ¢ € C2(2), ]l < 1}.

The reason for this is that on the one hand it contains functions which have more reqularity
than a statistical noise but on the other hand discontinuities (sharp edges in an image) are
allowed. BV(S2) is an extension of the Sobolev space

Wi 2) ={uec LY(N) : Vue LY(2)}.

Hence, together with the result in Bergouniouz [14] we have the following chain of embeddings
in two space dimensions

HY(0) c Wh(02) c BV(R) C L*(92). (2.5)

In contrast, Borzi et al. [16] assume directly C%!-regular flows which are not necessarily
divergence free to transport W'P-regular initial values into W1P-regular solutions in a
unique way, where p > 2.

We will briefly show with the same technique that a H?3-regular flow field B, which is
solenoidal in a weak sense, generates a unique H '-regular solution of the transport equation,
as long as the initial value is in H'(f2). The starting point is again the weak formulation
of the problem.

Weak Formulation 2.8.
Find u € L*(0,T; H} (£2)) such that

(Beu(t), @) + (B(t) - Vu(t),¢) =0, Vo € Hy(£2)

for almost every t € [0,T] and with B € L? (O,T; H&iv(ﬂ)”).

For this weak formulation we have the following theorem:

Theorem 2.9.

Let 2 € R? be a bounded domain with C?-boundary or convex polygonal structure. The
initial value function u® belongs to the space H}(£2) and T > 0. For the transport field we
have

BeL? (o,T; H3(2)2N Hjiv(Q)Q) :

Then we obtain a unique weak solution u € L™ (O,T; H&(Q)) N H! (O,T; LQ(Q)).
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2. Governing Equations

Proof. To prove uniqueness is standard using Lemma since B is solenoidal.

So we will only describe the existence proof. It is based on the “vanishing viscosity” method,
where we introduce a diffusion term in the weak formulation so that we are looking for a
e-dependent solution wu, of

(Oruc(t), @) + & (Vue(t), Vo) + (B(t) - Vue(t), ) =0, VYo € Hi(£2) (2.6)

for almost every t € (0,7] and with 0 < € < 1. This formulation fits perfectly to the
assumptions of Theorem Moreover B(t) € H3(£2)? is embedded in L>(£2)? (see Adams
[T, Theorem 4.12 CASE A]). Hence we can also use Theorem Altogether we obtain for
a fixed € the existence of a unique solution u. belonging to the following spaces

ue € L2 (O,T; Hg((z)) , wue € L2 (O,T; HQ(Q)) , %ue c L2 (O,T; LQ(Q)) .20

We want to emphasise that the estimate (2.3) cannot be an energy bound for the sequence
Ug, since the constant C' of the energy bounds in the above mentioned theorems is indirectly
proportional to ¢ (C' ~ 1).

Hence, we have to prove energy estimates with uniform bounds:

1. Testing with the solution itself

S ()13 + el Fus )3+ (B(D) - V). ue0) = 0. Vip € HY()
=0
due to Lemma 2.4l With
T
oss Sup lus(6)[13 < 2[[u°|13  and O/€\Vus(t)\|§ dt < ||u°[13 (2.8)

we then obtain the first two estimates.
2. Testing with Au,(t), which is possible due to the above mentioned regularity proper-

ties, we obtain

1d
5 a0 + el Au(t)[ < | (BE) - Tue(t), Aue(t)) |
A simple calculation with integration by parts shows that the right hand side can be
controlled by

1d

5 g IVue® + el du @3 < [VB®)| o (@2 IVu(B)]3-

Using Gronwall’s inequality and the Sobolev imbedding H?3(£2) < W1 we obtain

t
IVuc(t)3 < 9 Fexp | [ 1865) oy ds
0
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2.3. Navier-Stokes Equations

3. Testing with O;u. results in

1d
10eu- |3 +

5 Tl V()1 < S eI Ve (D3 + 5100 (0) 1B

and further with the bound of ||Vuc(t)||3 we obtain

d
19ruc]l3 + el Vue @)1z < ellBE) L0 (0

After integration in time w get

T
[ 100cl dt < V61 + ¢ [ 1B@IE a2 dr
0 0

Now we know that u. is uniformly bounded in L*° (0, T; H&(Q)) NH! (0, T; Lz(Q)). So

there exists a weaklyx-convergent subsequence of u. converging to u € L* (0, T; H&(Q))
Further we can choose a subsequence of this sequence which converges weakly to u €
H! (O,T; L2(Q)). Together with the uniform boundedness of EfOT [Vue(t)||3 dt we can
send ¢ to zero in equation and obtain the result of the theorem. O

2.3. Navier-Stokes Equations

In this section we will shortly summarise the theory of the Navier-Stokes equations, which
later on describe the underlying flow in the complete system of equations.

The classical form of the system is given by

owu(z,t) — vAu(z,t) + u(x,t) - Vu(z,t) + Vp(x,t) = f(x,t), in Q,
V-u(x,t) =0, in Q,
u(@,t) = gl@,t), on T,

with the viscosity parameter v > 0. Hereby we have a system of parabolic equations with
saddle point character (cf. Girault et al. [42]). A main issue is the nonlinear term, which
essentially affects all theoretical aspects.

Remark 2.10 (Inhomogeneous Dirichlet Data).
As before we state here all theoretical results for homogeneous boundary data. Inhomogeneous
boundary data are treated in the same fashion as for convection-diffusion equations (cf.

Remark[2.9).

A possible way to transform the non homogeneous case to a homogeneous one is given in the
article of Raymond [86]. Then, we are searching for a solution u(x,t) = w(x,t) + v(x,t),
where w(x,t) is an appropriate H'-regular solenoidal extension of the boundary function
g(z,1).
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2. Governing Equations

Moreover, we have to solve the system
oov—vAv+w-Vv+v-Vw+v-Vo+Vp=f—0w—w- -Vw, in {2,
V-v=0, in §2,
v =0, on 012.

A slight modification of the solution theory presented below will yield also the existence and
uniqueness of a solution of this system of equations.

The above strongly formulated problem can be transformed to the following weak formula-
tion by using the space

Holjdiv(ﬂ)” ={p e H'(2)" : ¢|spn =0, V- =0 in a weak sense}. (2.9)

Weak Formulation 2.11.
Find u(x,t) € L? (07T; H&div((})"> such that

(Ouut). ) + (Vu(0. V) + () Tl 0) = (F010). Yo € Bl )
u(0, ) = uo. '

Here we have uy € L3, (2)" and f € L? (O,T; LQ(Q)”).

The following Lemma describes in which sense a pressure is associated to a solution of the
Weak Formulation [2.11] and therefore guarantees that the weak formulation is equivalent
to the classical one, if sufficient regularity of the solution is available.

Lemma 2.12 (cf. Sohr, [97, Lemma 2.1.1 (b)] ).
Again 2 C R™, with n = 2,3, is a domain with Lipschitz boundary. Further we have
Le HY Q)" := £ (H(2)",R) with
Up) =0, V€ Hpa(2)"
Then the relation
Up)=(=V-p,p), Veecl2)"
is valid, with p € L*(2) and [, p dx = 0.

Remark 2.13 (Application of Lemma to Instationary Equations).

The pressure in the time-dependent case is introduced by applying Lemma to a
time-integrated version of equation . The proceeding is analogously to the proof of
Proposition 3.1.1 in Temam [99].

The existence of solutions can now be obtained from the Weak Formulation by the
Galerkin method described in section Crucial for the argumentation is the condition

(u(t) - Vo(t),v(t)) =0, Vo(t) € Hy(2)", (especially if v(t) = u(t) € Hy i, (£2)")
for the nonlinearity resulting from Lemma We have
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2.3. Navier-Stokes Equations

Theorem 2.14 (cf. Temam,[99, Chapter 3.3. Theorem 3.1]).
As before the domain 2 C R"™ (n = 2,3) has a Lipschitz boundary. For the data we have

fer? (O,T; (H&ﬁdiv(ﬁ)")’) . and ug € L2 ()"

Then there exists at least one solution uw € L? (0, T H&div((z)"), which satisfies the Weak
Formulation [2.11.

Proving the uniqueness of a solution is now based on Gronwall’s inequality. Since the
nonlinearity is no longer vanishing we have to estimate it. In two space dimensions we can
use for this purpose an interpolation inequality which yields

HUH%‘l(Q)Q < cllullp2(0y2[IVul 1202, (2.11)
which fits perfectly and allows to prove the following theorem.

Theorem 2.15 (Temam,[99, Chapter 3.3. Theorem 3.2]).
For n = 2 the solution from Theorem |2.1/]) is unique. Furthermore it is almost everywhere

equal to a continuous function from [0,T] into the space L3, (£2)%.

In contrast to this result in the three dimensional case inequality is changing and
we are no longer able to prove uniqueness or further regularity results. However, for our
further considerations this big gap (cf. Millennium problem [35]) will not be crucial, since
we want to investigate at first only the two dimensional case.

We present another result, which yields more regularity of the solution.

Theorem 2.16 (Higher Regularity).
The bounded domain £2 C R? has a C?-boundary or is convex polygonal. Moreover

F e L2 (0,75 (H g1, (%)) N L (0,75 L3, (2)%), and  wo € HA(2)* 1 Hj 3, ()2,

It follows that
w e L% (0,75 H2(2) N Hj 33, (2)%)

Proof. In the case of a C?-boundary this can be found in Temam [09, Chapter 3.3. Theorem
3.6].

For the case of a convex polygonal domain we have to replace the proposition of the afore
mentioned proof, which requires the indicated smoothness of the boundary, by a result
(Theorem 3) from Kellogg et al. [65]. The rest of the argumentation is then completely
analogous. O

Remark 2.17 (Higher Regularity via Streamline Formulation).

Another possibility to prove more reqularity of the solution is to arque the streamline formu-
lation of the two dimensional Navier-Stokes problem. Hereby we consider the biharmonic
operator A? and via the reqularity theory for this operator given in Blum et al. [15] we
obtain in some situations even more reqular solutions.
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2. Governing Equations

For example in the case of the domain 2 = (0,1) x (0,1) we obtain for the stream function
H*-reqularity and therefore H® for the original field, which is given by

u = curl ¥ = (2, —1)1).

Remark 2.18 (Inhomogeneous Boundary Data and Higher Regularity).

Since we have for boundary functions g € H%(BQ) only a H'-extension it is clear that the
composed solution of an non homogeneous problem (cf. Remark cannot admit H?
reqularity. We want to emphasise that we also need an increase of the reqularity of the
boundary function.

2.4. Coupled System

In the following chapters we are interested in optimisation problems with a system of
partial differential equation as side condition consisting of the transport of a passive
tracer and a flow equation describing the transport field, in our case the fully nonlinear,
time-dependent and incompressible Navier-Stokes equations. The tracer being passive
means mathematically that the function is not coupling back to the flow model, so that we
have the following system of equations:

ol (x,t) —eAl(x,t) + u(x,t) - VI(x,t) =0, in Q,
owu(x,t) — vAu(x,t) + u(x,t) - Vu(z,t) + Vp(x,t) = f(x,t), in Q, (2.12)
V- u(z,t) =0, in Q.

Further theoretical investigations of more general systems of this kind, which are fully
coupled are considered in the works of Diaz et. al. [27] or Norman [81].

We will consider only our particular situation, with the following weak formulation.

Weak Formulation 2.19.
Find
I(@,t) € L* (0, T; Hy(2)) and w(w,t) € L* (0,T; Hj g3, (2)")

so that

(0I(t), ) + & (VI(t), V) + (u(t) - VI(t),1) =0, Vo eHE(92),
(Oeu(t), ) + v (Vu(t), V) + (u(t) - Vu(t), @) = (F(t),@), Ve €Hjy(2)"

and

I(x,0) = IO(:I:) € H&(Q), u(x,0) = uo(m) € L?hv(_Q).

Under the assumption of sufficient regularity of the solution pair this weak formulation is
again equivalent to the classical formulation. The pressure is treated as in Lemma [2.12
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2.4. Coupled System

Theorem 2.20 (Existence and Uniqueness Coupled System).
The domain 2 C R? is bounded and has a Lipschitz boundary. Moreover we have

FeL(0,T(Hy(22)), w'eld,(2? 1°cL¥®)
for T > 0 and we have e,v € R \ {0}. Then there exists a unique solution pair
{I,u} € L2 (0,T; Hy (2)) x L* (0,75 Hy 4, (2)?) .

Proof. Since the solution of the parabolic convection-diffusion equation is not coupling back
to the Navier-Stokes system, we can deduce this easily by the previously stated existence
results.

Starting from the Navier-Stokes part of the system

(Gru(t), @) +v (Vu(t), V) + (u(t) - Vu(t),¢) = (£(t).0), Yo € Hy g, (2)"

we know that for the assumed regularity of the data and the domain we obtain a flow field
u € L*(0,T; H&div(())z) due to Theoremm

With this w all assumptions of Theorem [2.5] are fulfilled and we have also the existence of
a unique I € L*(0,T; H}(£2)). O

Remark 2.21 (Inhomogeneous Dirichlet Data for the Coupled System).
Inhomogeneous Dirichlet data are again handled as in the sections before. We can establish

2
u e L? <O,T; Hclﬁv(Q) ) in Remark|2.10. Moreover, Theorem s also wvalid for u €

L? (O,T; Héiv(Q)Q) and with Remark@ we extend the result for functions I(x,t) with
non homogeneous boundary data.

Thus we showed, that the theory of the coupled approach can be handled by a slight
technical extension of the presented standard theory. This is changing if we want to work
with pure transport in the passive tracer equation, which means € = 0.

Nevertheless, due to the increased regularity properties of the Navier-Stokes solution we
can obtain the existence of a unique vector field with

we L (0,75 H3(2)2 1 HY 4, (£2)%)

for very special situations (cf. Remark [2.17)). Then the assumption on the transport term
stated in Theorem [2.9] would be fulfilled and we could obtain a unique

Iel? (o,T; H&(Q)) .

The next example shows a setting of assumptions for which the above sketch of the solution
theory will work.
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2. Governing Equations

Example 2.22.
Let 2 =(0,1) x (0,1). Moreover, we have
F e L2 (0,75 (Hy(2)2)) 0 £ (0,73 L, (2)?)
u’ € H?(2)* N Hy 4, (12)?,
I° c m} ()
for T >0 and we have v € R\ {0}. Then there exists a unique solution pair

{I,u} € L (0,T; HY(£2)) x L (0,T; H*(2)2 1 H} 4, (£2)?)

Remark 2.23 (Boundary Control or Identification).

A big problem considering boundary control and identification problems is thlat non homo-
geneous boundary data, with a strongly prescribed boundary function g € H2(£2)? cannot
be treated in this way.

In this case, we have only H'-reqularity (see Remark of the transport field w, which
is not sufficient for Theorem 2.9

For a proper well-posedness theory we have either to guarantee higher regularity of the
boundary function g or to use other types of boundary conditions.
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3. Discretisation and Numerical Treatment

In this chapter we will present all necessary techniques for the numerical calculation of the
coupled system given in equation (2.12)) in Chapter

Since the equations are time-dependent we discuss the Rothe method for time discretisation
with the implicit Euler or the Crank-Nicholson scheme. By this we obtain quasi stationary
partial differential equations in each time step, which are then solved by the finite element
method (FEM) with bilinear elements. Since we want to solve each component with
the same class of elements we have to introduce stabilisation techniques to guarantee
inf-sup stability. We use the local projection stabilisation (LPS) for this. Furthermore we
describe Newton’s method for solving the arising nonlinear system and present two common
techniques for the stabilisation of transport dominant processes, the SUPG and a slightly
modified LPS technique. For us it seems advisable to use the LP stabilisation, since it yields
just as good results as the SUPG, but it has the property that Discretise-then-Optimise
and Optimise-then-Discretise interchange with each other in context of PDE constrained
optimisation problems.

Special attention is paid to the implementation of given boundary data. The reason is
that weakly treated boundaries are easy to handle from a numerical point of view and very
useful in the treatment of boundary control problems, which we will consider in Chapter
Here we extend a special suggestion for the Poisson problem from the literature to general
convection-diffusion-reaction equations and the Navier-Stokes equations. By a bunch of
numerical example we will show that weak implemented boundary conditions are almost
equal to the strong implementation in terms of quality and quantity, even for transport
dominant processes and the mentioned coupled system from Chapter

3.1. Time Stepping Schemes

We use Rothe’s method (cf. Grossmann et al. [44, Chapter 5.1.5]) for the time discretisation
of the PDE problems discussed in the last chapter.

In a general form this PDE is usually given with the solution variable u(¢, ), which fulfils
the following weak formulation

(Gru(t), v) +a(u),p) = (f(H).p), VYpeV,

o(0) — 00 (3.1)

for almost all ¢ in the time interval I = (0,7]. Here a(-,-) denotes a bilinear form. The
general case of semilinear forms can be reduced to this case (see Section [3.5.2)).
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3. Discretisation and Numerical Treatment

We split the time interval I into subintervals of the form

I={0}UnLULU...Uly_1Uly,

with I, = (tm—1,tm], where ky, := t,, — t,;,—1 represents the size of the mth subinterval
and the time points are distributed in the following way

O=to<ti <...<ty_1 <ty ="1T.

Hence, the mentioned partition gives us the temporal grid.

For our theoretical discussion we discretise the weak formulation from formula (3.1]) via
the f-method (cf. Grossmann et al. [44]):

For m > 0 we seek for a solution (¢, ) in the time point ¢,, for a given u(ty,—1, ),
which fulfils

o (ultn) = ult-1). ) = 0 (£(tn), ) — alultn). ) +

+(1=0) ((f(tm-1). 9) = alultm1).9)) . Vi€ V.

By certain choices of 8 we obtain classical time stepping schemes. We want to present
three well-known examples:
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1. For 8 = 1 we obtain the backward Euler scheme. Then, on every time point t¢,, with

m > 0 we have to solve

(U(tm)v ‘P) + kma (u(tm)a ‘P) = km (f(tm)a SD) +u(tm-1,9), VoeV.

The backward Euler method is a strongly A-stable, implicit time stepping scheme of
first order accuracy. It damps out oscillations very quickly, but also oscillatory parts
of the solution.

. For the choice of # = 0.5 we obtain the Crank-Nicolson scheme (CN scheme). Here,

we have to solve for every time point t,,, with m > 0, the equation

(1) + 50 (1. 0) = (wttoct) 52 51000 4 5000 6

K
- 761 (u(tm—1)7 ‘10) , VeeV.

This time-stepping scheme has an temporal accuracy of second order. It is also
implicit, but only A-stable, which means that it preserves oscillating solutions since
it has almost no dissipation. This property cause an advantage, but also a drawback
for errors introduced by initial values or produced during the solution process. The
CN scheme is not able to damp errors during the calculation and therefore disturbs
our approximation.



3.2. Finite Element Discretisation in Space

3. A method suggested by Rannacher [85] yields better aproximations of our solutions.
Therefore, we choose a fixed amount of backward Euler steps (e. g. two steps) at
the beginning of the time stepping scheme and then switch over to the CN scheme
simply by changing the parameter 6:

1, ifm < K,
O =
0.5, ifm>K.

This procedure is still accurate of second order, but in contrast to the pure CN
scheme it damps out error contents of the initial solution.

Remark 3.1 (Further Time Stepping Techniques).

The shifted 0 scheme adds ﬁ to 0 = 0.5. It can be used for damping computational errors
arising during long time computations (see Heywood et al. [52]), without losing the second
order of convergence.

The Fractional-Step-0 scheme combines the positive aspects of the backward Fuler and the
CN scheme in a more complex way (see Bristeau et al. [20]).

Remark 3.2 (Time Discretisation for Optimisation Problems).

Meidner [T7] uses Galerkin discretisations in time and space to guarantee the same discrete
system independent in which order discretisation and optimisation is performed. The
spatial discretisation with a Galerkin approach is presented in the next section. For the
time discretisation we have the possibility to use either a discontinuous Galerkin method
dG(r) or a continuous Galkerin method c¢G(r).

The ¢G(r) method uses continuous trial functions of degree r and discontinuous test
functions of degree r — 1, while the dG(r) method is based on the usage of discontinuous
trial and test functions of degree r (see Erikson et al. [32, Chapter 9.2.1 & 9.2.2] for a
detailed discussion).

However, we want to emphasise that the dG(0) method, where all occurring integrals are
evaluated with the box rule, leads directly to the above stated backward Euler scheme (6 =1
in the 8-scheme).

Furthermore the ¢cG(1) method, where all occurring temporal integrals are approximated
with the trapezoidal rule, generates the CN scheme (0 = 0.5).

For almost all optimisation problems consider in this work we will work with the dG(0)
method for the temporal discretisation.

3.2. Finite Element Discretisation in Space

A well-established method for spatial discretisation is the finite element method (FEM). It
is based on the discretisation of the following weak formulation of an general elliptic PDE
or an elliptic part of a parabolic PDE, after discretisation in time has been performed by
the methods presented in the last subsection.
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3. Discretisation and Numerical Treatment

Weak Formulation 3.3.
Find a suitable w € V' such that

a(u, ) =U(p), VeeV, (3.2)
with a bilinear form a(u, @) and the linear form l(p).

Remark 3.4 (Nonlinear Equations).
We concentrate at first on the linear case. The general nonlinear case can be treated by
Newton’s method discussed later on.

The above stated weak formulation will now be discretised by searching a discrete solution
uyp, in the finite dimensional subspace V}, C V' which fulfils

a(un, pn) = Ulen), Vo € Vi (3.3)

The character of the discrete space V}, and its connection to the finite element method will
be described below. Firstly, we describe how to derive an algebraic system of equations

from equation 1) Therefore, we choose a basis f}(Ll), e ,f,(lN) of Vj, with dim(V4) = N.
With this basis we have the following representation of the discrete solution

N .
Up = Z Csz}(;). (3.4)
i=1

Substitution of this representation into the discrete weak formulation for each of the N
basis functions leads to the following discrete system

Apa = by, or in more detail Zal §h,€h)—l(§ ) j=1,...,N.

This system can now be solved by an arbitrary linear solver and the discrete solution can
be generated by substitution of the solution vector « into the representation formula (3.3]).

The essential part of the above mentioned discretisation is the choice of appropriate
basis functions for the ansatz space V},. In the finite element method we use polynomial
functions for the approximation on a decomposition of the computational domain into sub-
domains of similar form and size (e.g. triangles or quadrilaterals in two space dimensions).

Throughout this work we will choose an ansatz space containing continuous functions,
which are piecewise bilinear polynomials in 1 = span{l,z,y,zy} on a grid of (regular)

quadrilaterals (cf. Braess [I8] and Brenner et al. [19)]):

Vh I{uh Q%R|uh€C( ) uh|T€Q1}
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3.3. Boundary Conditions with Weak Implementation

3.3. Boundary Conditions with Weak Implementation

Later on we will consider the estimation of boundary conditions to recover a certain flow
situation from given data of a passive tracer. Therefore the prescription of boundary data
is a major aspect of this thesis.

We will describe in this subsection the concept of weakly formulated boundary conditions.
This formulation has two positive aspects for us. At first, it is simple to handle for the
implementation of the boundary conditions. The second aspect will be revealed in the later
chapters, when we consider optimisation problems. We will see that the control variable,
the distributed boundary function, enters directly in the optimisation framework, without
using any sophisticated extension operators. Furthermore the connection to Robin-type
boundary controls will become more obvious.

For starting the proceeding of weakly imposed boundary conditions we state the following
strongly formulated Poisson problem:

—Au = f, in £2,

1
Onu = m (¢gp —u) +qn,  on I
Then the weak formulation is given by searching a solution u € H'(£2) such that

(Vu, V) — i (ap — u, ¥)a0 — (an, Plon = (), Ve € H' (). (3.5)

The parameter p is crucial. If p tends to infinity we see directly that the above weak
formulation reduces to the weak formulation of a Poisson problem with Neumann boundary
conditions.

On the other hand if 4 — 0 the Dirichlet part, that means ¢p — u, on the boundary
becomes dominant.

This limit process can be used for the approximation of Dirichlet boundaries and is known
as the penalty or penalised Neumann method in the literature. It goes back to the work
of Babuska [2]. The big advantage of this weak implementation of Dirichlet boundary
data is the computational simplicity, since we do not have to set the matrix values for the
boundary in a strong manner. The drawback of this approach is that it leads to more and
more ill-conditioned discrete problems when p is chosen too small.

To overcome this difficulty Juntunen et al. [63] suggested a consistent stabilised ver-
sion of the penalty method. They use the following weak formulation for the discretised
problem:

Weak Formulation 3.5.
Find up, € Vi, such that

(Vun, Von) 4+ b(ap,n; un, on) = (f,0n) +brlannsen),  Veon € Vi,
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3. Discretisation and Numerical Treatment

with 5

b ; ) = an ) + - 7an )

(QD,h Up, SOh) [+ o (< Up, <Ph>ag <Uh 4D,h @h>80 (3 6)

+ <Uh — 4D 90h> - (Onun, Onn) |
1+ 6 MM o0 i+ 6 ’ 00
and
N _opd
br(an,n; on) = o <QN,h790h>09 P <QN,h78n90h>897 (3.7)

where § > 0 is a user specified parameter.

Now we are able to choose p = 0 for a fixed § > 0. Then, by prescribing § by a function
depending on the mesh size ¢ := 7(h) we obtain the well known Nitsche method [79]

(Vun, Vop) — (Onun, n) g0 — <uh — 4Dk, 3n<Ph>
1

+ 5(h) <Uh - QD,haSDh>aQ = (fien), VYeneVh.  (3.8)

This approach is often used for the prescription of Dirichlet boundary values in a weak
sense. Hence Babuska’s penalty method and the Nitsche technique are connected via the
above mentioned method.

12

This concept carries also over to the general convection-diffusion-reaction equation. For
simplicity we consider here only the case, when ¢y = 0 and examine the formulation

—vAu+ g -Vu+ cu = f, in 2, (3.9)
1

vopu = ; (gp — u) + 5 (B-n)u, on df2, (3.10)

where the special form of the Robin-type boundary condition is needed for the solution
theory.

Remark 3.6 (Solution Theory).
The solution theory for a fixed p > 0 is obtained by a straightforward modification of the
standard techniques mentioned in Chapter[3 and is presented in another context in the

proof of Theorem in Chapter [

For abbreviation purposes we skip now the index h. By introducing the bilinear form
a(u, ) == v (Vu, Vo) + (8- Vu, ) + (cu, p)

and for the boundary part

vd
R
Vo
p+6

op

+ m <(/3 ‘n)u, 8n90>39 )

b(gpiu, @) = ((Onu, @) 5o + (U — qD, On@) gp) + (u—qp, )y

TR
<(5 “n)u, ‘P>ag

_r
<anu7 8n90>3.(2 2(/1, T 5)
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3.3. Boundary Conditions with Weak Implementation

We finally obtain the weak formulation

a(u, ©) +b(gp;u, ) = (f,¢), VYeeV. (3.11)

Lemma 3.7. A solution of problem (3.9)- also satisfies equation .

Proof. Firstly, equation (3.9)) is integrated over the domain after multiplying with an
arbitrary test function ¢ € V. Integration by parts yields

a(u, ) — V{0, ©) 5o = (f, ). (3.12)

We multiply now formula (3.10) with the same test function and integrate over the boundary.
Then multiplication with

1
p+0
leads to
P 1 1L
N nw, ¢ = < - Uy Y SY : ) . 1
o (Ont, ©) g0 PR (gD — u, @) + 201+ 9) ((B-m)u, )y (3.13)

Doing the same again with the test function d,¢ and the factor

I
T
we get
ovp 0 O
- nW, Un E— — U, Un a7 o . sy Un . 14
M+5<8 U, Onp) 9 M+5<QD U, Onp) 9 2(M+5)<(5 n)u, Onp) g - (3.14)
The equation (3.11]) is now the sum of equations (3.12]), (3.13]) and (3.14]). O

Again we can consider the case p = 0 for the bilinear form b(gp;u, ) and obtain a
Nitsche-type formulation for the convection-diffusion equation

1
bxi(gp; u, ©) = —v ((Onu, ©) g0 + (4 — aD, On) 5g) + i (U —=3qD,¥)90 (3.15)
with an appropriate choice of ¢ in dependence of the mesh size h.

Remark 3.8 (Time-Dependent Equations).

As mentioned in the section about the time stepping schemes in the beginning of this chapter
in the Rothe method we have to solve in each time step a quasi-stationary equation, with
an additional reaction-type part

kin (u(tm)’ 90) .

This equation fits in the discussed setting and therefore we can apply the implementation
of weak boundary conditions also to time-dependent convection-diffusion equations.
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3. Discretisation and Numerical Treatment

Remark 3.9 (Consistency to the Linear Transport Equation).
Chosing v = 0 we have the linear transport equation. In this case the boundary form
b(qp;u,p) degenerates to

=

(8- 1) @)y + 2 (B m)u, an@m) |

1
b(QD;’LL, 90) = m <<U - qDaQD>8_Q -

Without the stabilisation, § = 0, we obtain

1 1
b(gp; u, ) = p (u=ap,¥)on =5 ((B-n)u,0)y,-

Setting =0 and § > §y > 0 we yield a Nitsche-type formulation for the weak prescription
of Dirichlet boundary data

1

Furthermore we have the opportunity to prescribe only the inflow boundary condition on
I'r,, that means all € 082, such that B -n < 0. By choosing the positive parameter § as

follows
1

(B-m)

0<d:=—

we obtain
blapsu, ) === ((B-n)(u—qp).¢)p, - (3.16)

This formulation is consistent with a suggestion for Nitsche-type inflow presented in the
work of Freund et al. [36].

Now we are able to prescribe different kinds of boundary conditions at different parts of
the domain’s boundary simply by the choice of u and é. Hence, boundary conditions can
be handled very elegantly from a computational point of view.

Moreover, in the case of the Laplace equation it was shown in the cited literature, that
there are almost no differences in terms of the accuracy or convergence properties, between
the strong or the weak implementation of the Dirichlet boundary data.

The following examples indicate that this is also valid for the time-dependent convection-
diffusion-reaction equation:

Example 3.10.
For our example we choose the following parameters:

v=01, B=(-yx)7, c=0 and f=0.

On the outflow boundary, B-n > 0, we prescribe zero Neumann conditions and the Dirichlet
condition is given by

gV = —16(z — )z —3), if y=0 and z € [g,3],
D 0, if y=0 and z€0,)U(3,1], ory=1 andz € [0,1].
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3.3. Boundary Conditions with Weak Implementation

,

u(x)
0.1 O'% |Q""\3| |Q"Z|l\ 0'5\ \Q"‘T"\ \gi\?\ Pi\B\ \0'9
- '} |
0 1

Figure 3.1. Reference solution uy, at the end time point 7" = 1. It was calculated
on an equidistant time grid with £ = 0.01 and 262144 spatial nodes.

The time interval is given by I = [0,1] and the initial function u® is zero, except from

the above mentioned boundary part. For the time discretisation we use the time-step size
k =0.01. Then Figure|3.1| visualises the solution for a fine spatial discretisation.

Table 3.1. Approximation error for the Babuska approach with 6 = 0 and either

= h (denoted by ug)) or ;1 = h? (denoted by ugff)).

(M) (1))

n [ung (1) =y, " (Dl 2y (rate)  |[ung(1) =y, " (1)llz2(2)  (rate)
16 (h2) 5.4805 - 1072 3.7324 - 1072
64  (hs) 3.6551 - 1072 (0.58) 9.5563 - 1073 (1.98)
256 (ha) 2.5465 - 1072 (0.52) 2.2491-1073 (2.04)
1024 (hs) 1.5941 - 1072 (0.68) 5.1633 - 1074 (2.06)
4096 (he) 9.1364 - 1073 (0.80) 1.2110-1074 (2.05)
16384  (hs) 4.9378 -1073 (0.89) 2.8686 - 107° (2.04)

~ 1 ~ 2

Tables[3.1] and [3-3 show the comparison of the strong implementation of Dirichlet boundary
conditions (as given in the used software library Gascoigne [12]) to the weak implementation
presented in this subsection (we perform the weak implementation in the same FEM library).
We see that all approaches, the strong implementation, the Babuska technique and Nitsche’s
method, behave equally well under mesh refinement. The drawback of Babuska’s method is
that the system matriz becomes more and more ill-conditioned as p tends to zero. This can
be observed if we work with an iterative linear solve (e.g. GMRES or multi grid method)
and document the number of iterations to reach a required tolerance. The number of steps
increases for a decreasing . At a certain point, we are not able to drop below the chosen
tolerance.
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3. Discretisation and Numerical Treatment

Table 3.2. Comparison between the solutions of a strong implementation (uﬁf)

left) and weak implementation (ung) right) of Dirichlet data for the

above mentioned example. We choose the parameters y = 0 and
= %g in the computation with the weak boundary conditions.

i

n luny (1) = uf) (Dl 2y (rate) — ung(1) —uf ()] 12()  (rate)

16 (ho) 3.6920 - 1072 3.3736 - 1072
64  (hs) 1.0511-102 (1.81) 7.0302-1073 (2.26)
256 (ha) 2.8277-1073 (1.89) 1.6388-1073 (2.09)
1024 (hs) 7.4948 - 1074 (1.92) 4.2435 - 1074 (1.96)
4096  (he) 1.9902 - 1074 (1.91) 1.1114-1074 (1.93)
16384  (hs) 5.5419 - 107° (1.84) 2.8843-107° (1.95)

~ 2 ~ 2

Now we consider a discontinuous boundary condition to confirm the same behaviour of
both methods under mesh refinement, although the order of convergence is reduced in this
case.

us(x) uw(x)
0.00 0.200 0.400 I:I.‘6|I:I‘I:II mn ‘?.‘B‘D‘Dl 0 1.00

-0.134 113

Figure 3.2. Left: Reference solution. Right: Weak approximative solution.

Example 3.11.
We make the same general assumptions as in the first example:

v=01, p=(-yz), c=0 and f=0.

On the outflow boundary we prescribe zero Neumann conditions and the Dirichlet condition
is given by

I,

@ J1, if y=0 and xe[%,
)U(?—L,l], or y=1 and z €0,1].

b = 0, i y=0 and x €0,

i1

The left figure in Figure shows the solution calculated with a high resolution in space
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3.3. Boundary Conditions with Weak Implementation

and time. The right picture shows the approrimative solution with the weak implementation

of the boundary data ug‘:)

Table 3.3. Comparison between the solutions of a strong realisation (ugls) left)
and weak implementation (uéw) right) of Dirichlet data given by qg).
Here e;(1) denotes the L2-error for the following three cases: (i = 1)
strong implementation, (i = 2) weak implementation with y = 0 and
)= ﬁ (Nitsche) and (i = 3) weak implementation with p = h?
and § = 0 (Babuska).

n e1(1) (rate) ea(1) (rate) es(1) (rate)

16 (hy) 9.8953-1072 9.0139 - 1072 8.5817-1072

64  (hs) 6.2585-1072 (0.63) 4.4553-1072 (1.02) 4.3177-1072 (0.99)
256 (hs) 3.5042-1072 (0.84) 2.2277-10"2 (1.00) 2.1727-10"2 (0.99)
1024  (hs) 1.8528-1072 (0.92) 1.1231-1072 (0.99) 1.1069-10"2 (0.97)
4096  (he) 9.2703-107% (1.00) 5.7986-1073 (0.95) 5.7568-1073 (0.94)
16384 (h;) 4.2118-1072 (1.14) 3.2087-1073 (0.85) 3.2014-1073 (0.85)

~ 1 =~ 1 ~ 1

Table[3.3 compares the strong implementation of the above given discontinuous Dirichlet
boundary conditions to the weak implementation with Nitsche’s and Babuska’s method.
Although the order of convergence reduces to one the methods behave equally well under
mesh refinement. The reason for the order reduction is the reduced reqularity of the solution
in this case. We want also to emphasise that the weak solution shows a slightly oscillatory
behaviour in the vicinity of the discontinuities on the boundary, which is not the case in
the strong implementation (see Figure .

At first glance this seems like a drawback, since we want to conserve positivity of the
intensity function in our application later on, but on the other hand the oscillation only
affects the patch of cells around the discontinuities on the boundary and smooths out in
the interior of the domain. Hence, the influence of these artefacts gets lost under mesh
refinement.

With the last example we want to investigate the behavior of the solution for different
choices of the parameter 9.

Example 3.12. Therefore we choose the same configuration as in Ezample and
observe the changes of the discrete solution on the 4096-node grid while we change oy in

h
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3. Discretisation and Numerical Treatment

Table 3.4. Changing parameter § = %.

S0 lung(T) — uf (1)l 2y
1 1.7905 - 102
10 1.8813-1073
100 1.7988 - 1074
1000 1.0500 - 1074
10000 1.1067 - 1074
100000 1.1137-1074

Table gives us an overview of the quality of the approzimation if we increase dy.
Obviously the approximation becomes better for larger 6g and stays qualitatively on the same
level also for choices of huge values for §g. So we decide to skip any further investigation
of an appropriate choice of &g and take big values for this parameter.

To sum up we have discussed a methodology to implement Dirichlet, Neumann or Robin
boundary conditions in a weak sense, by prescribing two parameters, for a general time-
dependent convection-diffusion equation. In the case of Dirichlet boundary conditions we
observed by numerical experiments almost equally well behaviour in terms of convergence
and quality of the approximation in comparison to the strong implementation. We assume
therefore that the theoretical results presented in the literature for the Poisson problem
and the time-independent convection-diffusion equation carry over to our case, and skip a
further investigation.

We will now concentrate on another important aspect, when dealing with the approximation
of convection-diffusion equations. Since we want to work with continuous finite elements,
we have to introduce transport stabilisation in the case of dominant convection.

3.4. Stabilisation for Transport-Dominated Flows

Starting point is again the weak formulation of a convection-diffusion equation

(Owu(t), ) + e (Vu(t), Vo) + (B(t) - Vu(t), o) = (f(t),9), Yo eV

For us, the case f = 0 and ¢ <« 1 is of special interest, since it corresponds to the
(physics-based) optical flow equation, which we will use in our later investigations. For
notational brevity we therefore choose f = 0 and remark that the argumentation will be
straightforward with a general right hand side.

With Rothe’s method from Section [3.1] we generate the following quasi-stationary equation
(Um, ) + kmt (5 (Vm, Vo) + (By, - Vm, ¢))
= (1, ) + k(1 — 0) (s (Vtn1,Y9) + (B s - Vit go))
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for all p € V', where u,, = u(ty,).

Hence we have to solve an elliptic convection-diffusion-reaction equation of the form

€ (Vu,Vp) + (B -Vu, gp) + (u, ) = (g,9), VoeV (3.17)

in every time-step, where

A

é — kaE:, /8 — km9187

(9:) = (m-1,9) + bn(1 = 6) (= (Va1 90) + (Bns - Vitm1.9) ).

This convection-diffusion-reaction equation is also well-posed (cf. Evans [33, Chapter 6])
since V- 8 = 0.

We now consider a finite element approximation u; € V}, of equation (3.17])
€ (Vun, Vion) + (3 ' VUh,SOh) + (un, pn) = (9:n),  Von € Vi

It is well known that spurious ocsillations can be introduces in the approximation, when
we work with a continuous finite element ansatz space V}, for the mentioned convection
dominant problem. Thus we need to stabilise the discretisation by techniques, which are
presented in the next subsection.

3.4.1. Streamline-Upwind-Petrov-Galerkin
The SUPG-method (Streamline-Upwind-Petrov-Galerkin) is based on adding the term

s(up, o) == Y Or (Res(uh)73 : th)

TeTy
to the left hand side of equation (3.17)). Here Res(-) denotes the residual of equation ([3.17))

Res(u) = —éAu+ B - Vu+u —g. (3.18)

The essential term which is responsible for the stabilisation is
(B Vun,B-Ven) .

The other terms only guarantee the consistency of the method since the bilinear form s(-, )
should become small for a good approximation uy, to the solution wu.

Unfortunately the computation of the whole residual is costly and with bilinear elements
even impossible, due to the appearing Laplacian. That is the reason why we will work with
a quasi-consistent SUPG method, where we avoid the diffusion term in equation (3.18)).
Therefore we modify the discrete version of equation by

€ (Vup, Vo) + (B - Vuy, + Uha‘Ph) + s(un, on) = (9, 0n), Veon € V. (3.19)

47



3. Discretisation and Numerical Treatment

The convergence of the method is then guaranteed by the choice of the parameter

h h?
Sp=mind —— 1
T mln{2’/8|79km67 }7

where | - | denotes the Euclidean norm. It holds § ~ h and therefore the stabilisation term
tends to zero with h tending to zero for better approximations. For further details of this
method see the monograph of Kuzmin [70].

3.4.2. Local Projection Stabilisation for Convection Dominance

Another possibility for the convection stabilisation was introduced in the work of Becker
et al. [10]. In this work the authors analyse a stabilisation based on local projections (LPS)
for the steady problem

u+ (B-V)u=f, in £.

As mentioned before we obtain exactly this formulation in every time step, after using the
6-method for time-discretisation. See therefore equation (3.19) with & = 0. We set

s(un, on) = sLps(un, @n) == Y 01 (7 (B - Vun),mh (B - Vo))
TeTh

as stabilisation term. The operator m;, = I — Py, consists of the difference of the identity
operator and a projection operator

Pop, 2 Vi, — Vap

defining a mapping of the current trial function space V}, onto the coarser one V5. The
so defined mapping measures fluctuations of the convection term. The parameter 7 is

chosen as follows L

k01BI

This scheme also stabilise the original unstable problem in almost the same quality like
the SUPG scheme as the following benchmark examples indicates. However, an import
advantage is that the procedures “optimise” and “discretise” can be interchanged for the
LPS approach, which makes the LPS approach more reliable for our optimisation problems
later on.

o7 = do

3.4.3. Numerical Examples

In the literature stabilisation techniques are usually compared through several benchmark
tests. We want to present calculations for the above two stabilisation techniques to show
that both methods work equally well. Therefore we present briefly the results of both
techniques for the slotted disc benchmark, which can also be found in John et al. [62].
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3.4. Stabilisation for Transport-Dominated Flows

Example 3.13 (Slotted Disc Benchmark).

In the slotted disc benchmark three different structures are rotated in the computational
domain 2 = [0,1]% by the divergence free transport field B = (0.5 — y,x — 0.5) on the
time interval [0,T)]. Furthermore ¢ =~ 0 and f = 0. The initial value u° represents three
structures, which have the form of a slotted cylinder, a cone and a hump (see Figure .

u(x,z)

|

0.5

éu.z
s

-0.08

Figure 3.3. Initial configuration: u(a,0). Slotted disc benchmark.

The computed solution uy, is then compared after a whole rotation T' = 27 =~ 6.28 to the
initial value. We made two calculations with a CN-scheme initiated by two Euler steps on
a 129 x 129 nodes grid with 1000 time steps. The first one is the ’quasi-consistent’ version
of the SUPG method, where only the Laplacian is not taken into account due to the choice
of bilinear trial functions (cf. discussion above).

The second method is the LPS technique described in the last subsection. In this situation
we choose the stabilisation parameter dg = 0.3.

Figure shows the results of these calculations (Left: SUPG. Right: LPS). Qualitatively
there is almost no difference between these two methods. Hence, we will prefer the LPS
method for the optimisation problems, due to the mentioned advantage in the context of
optimisation problems.

Furthermore Figure (bottom) shows that smooth structures like the hump are not
affected by the stabilisation. In fact for C°°-structures we need no stabilisation at all.
Without stabilisation the transport of the cone structure leads to serious oscillations, which
propagate through the whole computational domain. This effect can be captured by both
methods equally well. In contrast the sharp edges of the slotted cylinder pollute the
solution of the transport process, unless we choose very fine spatial and temporal grids. In
view of image processing applications this is a serious issue, since in general sharp edges in
an intensity distribution are given in most cases.

With the second example we want to emphasise that the weak formulation of the boundary
data (see last section) does not essentially influence the behaviour of the LPS method.

Example 3.14 (LPS and Weak Boundary Conditions).
Here we use the flow field B8 = (—y,z)T. The parameter € is chosen very small and f = 0.
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50

u(x,y) u(x,y)

'l 6838 6838
1

-0.176244 -0.176244

i

i

Figure 3.4. Benchmark after one rotation.
Top Left: SUPG method. Error: ||up(T) — ilj2 = 6.596e — 2 and
Var= max(up (7)) — min(uy (7)) = 1.35.
Top Right: LPS method. Error: |up(T) — il|2 = 6.913e — 2 and
Var= 1.29.
Center: Expected solution for comparison.
Bottom: Comparison between the LPS solution and the expected
one. The hump structure is unaffected by the stabilisation. Also the
cone structure is almost exactly transported, while the slotted disc
is heavily disturbed.



3.5. Nonstationary Navier-Stokes Equations

-0.345069 . -0.345069 1.18607

Figure 3.5. LP-stabilisation for a time-dependent convection-diffusion equation.
Left: Strongly implemented boundary data on the inflow bound-
ary. Right: Weakly formulated boundary conditions on the inflow
boundary.

We consider the time interval [0, F] with 1000 time steps and a spatial resolution with

129x 129 nodes. We set the boundary on the inflow boundary (I, = [0,1])

1, Vx € [0.1,0.3],
g(x,y) = 1 —100(z — 0.6) - (x — 0.8), Vx € [0.6,0.8],
0, else,

which is transported into the computational domain. As stabilisation we use LPS.

The results for a strong implementation of the above given boundary function (left picture)
and a weak formulation of the boundary data (right picture) are given in Figure The
smooth part of the boundary function is transported in the same way for both formulations.
However, the box signal shows peaks in the discontinuities on the boundary, but the LPS
technique damps this oscillations in the interior of the domain. Thus, the transport of the
signal into the interior of the domain is almost similar.

3.5. Nonstationary Navier-Stokes Equations

The Navier-Stokes system bears several difficulties we have to deal with, due to its saddle
point character and its nonlinearity. We start with the continuous weak formulation

Orult), @) + v (Vult), V) + (ult) - Vu(t),0) — (1), V- @) = (F(1),0), Ve e V.
(N7 V- u(t)) 0, Ve M,

with V' denoting the test space for the velocity components, which is chosen as HE(§2)" as
long as we use homogeneous boundary data, and M the space for the pressure component,
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which is usually L?(£2) \ R. By setting

a(u)(p) = v (Vu(t), V) + (u(t) - Vu(t), ¢) — (p(t),V - @)

we can use the Rothe technique from Section [3.1 by applying the 6-method to the differential
part of the equation system so that we obtain the quasi stationary problem

(Wins @) + kb (V (Vi Vo) + (Wi - Vi, @) — (0m, V- ) = (F, ),

(57 w) = 0 (3.20)

for all ¢ € V and p € M, with an F which consists of the known problem data and the
already calculated solution t,,—1 := u(tm—1)-

We deal with the nonlinearity by using Newton’s method. For the resulting linear sub-
problems we will discuss the stabilisation of the pressure approximation, since we work
with an equal order approximation for pressure and velocity, which is not inf-sup stable,
by itself.

3.5.1. Weak Boundary Conditions

We want to describe how Nitsche’s method can be applied to the nonstationary Navier-
Stokes system. The main issues are already developed in an article and the habilitation
thesis of Becker (cf. [7] and [§]) for the stationary Navier-Stokes equations.

Starting point for our considerations is a quasi-stationary problem ({3.20) in an arbitrary
time-step t,,.

For abbreviation purposes we skip the index m and divide the whole equation by k,,6.
Hence we obtain

v(Vu, Vo) + (u-Vu, @) — (0, V-p) +r(u, ) = (f,p), VpeV,
(V- u,) =0, Vi € M,

where k > 1, since we assume that k,,0 € (0,1]. This weak formulation is only appropriate
as long as we have V = HE(£2)". In the case V = H!(£2)" we have to add the boundary
bilinear form

b({w,p}, ¢) = =V (Ont, P) g + (M P) 0 (3.21)

due to integration by parts.
Moreover, we define the following (semi-) linear forms
a(u)(ﬂo) = (vua VLP) + (u -Vu, (10) tr (’u" 90) )
C(p, ‘10) = _(p7 A QO)
and have

a(u)(p) +b({u,p},p) +clp,p) = (f,9), VeV,

3.22
—c(p,u) =0, Yu e M. (322)
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3.5. Nonstationary Navier-Stokes Equations

We can now in general act as in Section and introduce a weak implementation of the
boundary data by replacing b(-,-) by an appropriate formulation of the strongly formulated
boundary data

vOpu —pn = ,le(qD —u) +%(un) u. (3.23)

Remark 3.15 (Connection to the Solution Theory).
The second part of the right hand side of equation is introduced for the solution
theory of the resulting modification of the Navier-Stokes system, since

(u-Vu,u) = % {(u- n)u,u)aQ

cancels out in the usual argumentation of finding appropriate uniform bounds in the Galerkin
technique presented in Chapter[2.2.1 For a fived u > 0 we obtain therefore also unique
solvability.

After discretizing in space we can also introduce a stabilised penalty approach for the
calculation, since we have again ill-conditioned problems for very small y like in the case of
the convection-diffusion equation (cf. Section [3.3). The stabilised semilinear form is given
by

o

bZ(QD; u)(p) = Tite (VO — pn, @) 5o + (U — gp, VOnp +1n) 50)
1 Iz
w0 (w—gp,p)ogn — 2(u + 0) (u-n)u, @)y, 320
5 )
~5 ﬁ,u, (VOpu — pn, VO + Ym) 5,
op
—+ m <(’u, . n)'u,, vy —+ wn>89 .

While b9, (+;-)(-) corresponds to the penalty formulation the parameter choice 1 = 0 and
d = 7(h) results in a kind of Nitsche formulation for the Navier-Stokes system

h 1
bg( )(QD§ u)(p) = = (Onu — p1, )50 — (U — qp, Onp + Y1)y + ~(h) (u—4qp,¥)sn,
which looks almost like the one Becker obtained in [8]. Like for the convection-diffusion

equation we find the following result:

Lemma 3.16.
A solution pair {u,p} of the strong formulation

—vAu+u-Vu+ Vp+ rku = f, in 2,
V-u=0, in §2,
which fulfils the boundary condition satisfies also the equation

a(u)(p) + b, ({u,p}, ) +clp. o) = (f.0), Vo€V,
—c(p,u) =0, Yu eM.
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3. Discretisation and Numerical Treatment

Proof. By multiplying the classical Navier-Stokes equation with appropriate test functions
o and 1), integration over the domain {2 and partial integration we obtain equation (3.22))

with b(gp;u)(¢) as in equation (3.21]).

Afterwards the boundary condition is multiplied with ¢ and integrated over the boundary.

We obtain after multiclation with ﬁ

I
T

__*
2(p+9)

(VOpu — pn, )y + (w—ap,¥)so (w-n)u, )y, =0. (3.25)

T
Furthermore, we multiply the boundary condition with the test function
vop@ + Ymn (3.26)

and integrate over the boundary and multiply with the factor —ﬁ. This yields

o )
T (VOpu — pn, VO + Y1) 5 — P (u—qp,vone +9Yn),,
op
+ i +90) ((u-n)u,vdpp +9Yn),, = 0.

Adding up equations (]3.21[), (]3.25[) and (]3.26[) leads directly to bz(QDQ u) () together with
the (semi-) linear forms for the interior of the domain we obtain that {u,p} also fulfils the
weak formulation. O

Remark 3.17 (Time-Independent Navier Stokes System).
The case k = 0 represents the case of the steady Navier-Stokes system.

We want to present a few numerical examples which involve this possibility to prescribe
the boundary data. But at first we want to describe how we deal with the nonlinearity in
the Navier-Stokes system and we want also to discuss stabilisation aspects.

3.5.2. Newton’s Method

We assume we are in a fixed time step, so that we can skip for abbreviation ¢,,. Furthermore
we set k,, = 1 and decide to work with § = 1. Then, we consider the equation (3.22))

a(u)(p) + b3 (gp;w) (@) + c(p. ) = (f,9),  VpeV,
—c(p,u) =0, Ve M,

which involves the nonlinearities

(Vg and ol (e e)og — 8 (- nju )y

in the semilinear forms a(-)(-) and b(+;-)(+).

We will linearise this equation using Newton’s method by stating the following problem:
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3.5. Nonstationary Navier-Stokes Equations

Find @ = (u,p) € X =V x M, so that

g(x)(T) =0, Vr=(p,pn) € X,
with
g9()(7) == a(u)(p) + b (qp: w) (@) + c(p, ) — el u) — (f,¢) = 0.

With the Fréchet derivative we can state Newton’s method in update-form for this prob-
lem:

Compute 5*) from d(f?g(:c(k) + 776("3))(7-)’ .= —g(a:(k))(r),
77:

b D) — k) 4\ 50,

With the damping parameter Ay € (0,1] we can globalise the convergence of the otherwise
only locally convergent Newton method. The price of the globalisation is the loss of
quadratic convergence of the method, which reduces to superlinear convergence.

In the linear parts of the above mentioned Fréchet derivative we can substitute u by d,,
and p by d,, where 51(5’,) and 5,(,k) are the defects for velocity and pressure. The nonlinear
part has the following form

L vug = (00 vul. ) + (a9 Vo).

Moreover the boundary part has a similar structure.

Thus, we have to solve in each step of Newton’s method a linearised PDE with the finite
element method in the unknown variable 6*) until the residual of the original system is
sufficiently reduced.

3.5.3. Inf-Sup Stability for Equal Order Approach

Using the finite element method from Section [3.2] for the spatial discretisation of the
Navier-Stokes equations can lead to further trouble in the pressure approximation. The
problem becomes already obvious in the case of the linear Stokes system with homogeneous
Dirichlet data.

We consider the saddle point system (cf. Girault et. al. [42])

a(u, ) +cle,p) = (f,p), Ve €V,

3.27
—c(u,pu) =0, Vi eM (3:27)

given in an abstract notation, where

a(u, ) == (Vu, V),
clu,p) i=—(u,V-u).

The aim is then to find a pair {u,p} € V x M such that the above system is fulfilled.
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3. Discretisation and Numerical Treatment

For the discretisation we have to choose appropriate finite element spaces Vj, and Mj,
and solve the linear algebraic system resulting from the discrete counterpart of the above
problem

a(un, pp) + cen.pn) = (F,en), Yen €V,
— c(up, pn) =0, Vi €M,

For a reasonable approximation of the pressure p, we need in this context a further
condition

min
un €My

en€Vin [[@nllv lienll s

which is called the discrete “inf-sup”-condition.

There exist pairs of finite elements connected to appropriate spaces V;, and M}, like the
Taylor-Hood element, which obey these conditions.

However, we want to work for computational simplicity with bilinear finite elements
Q; = span{l,x,y,xy} for both the pressure and the velocity approximation. Then we
have V;, = th and My, =V}, with

Vii={pn: 2R ‘ onlT € Q1 and py, € C(£2)}.

For this choice the inf-sup-condition is not fulfilled and requires therefore an adequate
stabilisation. This stabilisation effect can be achieved by using again a stabilisation with
local projection. The procedure is for example described in Braack [9].

The concept is to add the bilinear form

sps({wn, pn}s {en mn}) = Y ar (V (wnpn) , V (thim))
TeTh

to the left hand side of the divergence equation of the weak formulation in formula (3.27)).
The fluctuation operator m, is defined as in Section [3.4.2] where we used the LPS method
for the convection stabilisation. The parameter

_

14

ar

is a piecewise constant function controlling the influence of the stabilisation.

Remark 3.18 (Two-Level LPS).

The presented technique is called the two-level LPS approach. It can also be used to stabilise
the convection term in the Navier-Stokes equation, which works essentially the same way
as presented in Section or as described in the work of Braack et al. [17]. In the
mentioned article also other applications of stabilisation techniques are discussed.
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3.6. Numerical Examples for the Coupled System

3.6. Numerical Examples for the Coupled System

We will finish this chapter by a numerical example for the fully nonlinear and time-
dependent two dimensional Navier-Stokes equations, which is coupled to the pure transport
equation. That means the resulting velocity field transports a passive tracer through the
computational domain 2. The resulting system of equations consists of four components in
this situation. It is solved in a monolithic way with help of the techniques presented in this
chapter. Special attention is paid again to the application of weakly imposed boundary
data.

(0,0.41m)

outlet

u=

0.9m

inlet
X

Figure 3.6. Computational domain for the benchmark problem.

Starting point is the famous CFD benchmark, which is for example presented in Schéfer
[93]. We will now briefly describe the configuration.

We want to solve the system in in the computational domain (2, which is drawn
in Figure We modified here the length of the channel in comparison to the original
channel. The left boundary of the channel is the inflow boundary and the right one the
outflow boundary. On the inlet we prescribe

_ - T
w(z.t) = <4uy(0.41 —y)sin(%§) ’ 0)

0.412

for the velocity u. Here u denotes an averaged velocity of 1.5%. Furthermore, we set

0.1min(¢,1) { 1 4 cos <7r (y — yz)2) ,  for all y with |y — y;| < r,
I(x,t) = "

0, else

on the inflow boundary for the passive tracer I(x,t). We specify the value of the radius as
r = 0.075m. Furthermore we have y; = 0.12m and y» = 0.3m. The outflow on the outlet
is a Neumann type boundary condition for both parts, the Navier-Stokes part and the
transport part of the system. In the Navier-Stokes case this type of boundary is also known
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3. Discretisation and Numerical Treatment

Figure 3.7. Forward calculation: Result of the intensity function I(x,8) for
the described configuration. Upper half: Interpreted as grey scale
image. Lower half: Colored scalar bar for a better visualisation of
the solution.

as “do nothing”-boundary condition (cf. Heywood et al. [53]). For the above described
configuration we choose the initial conditions

u®(z,t) =0, %z, t) = 0.

Moreover we set the parameters v = 1()_3’"72 and € = 0 in the system 1) That means
that the system of equations describes the flow of a fluid with the fluid density p = 1%.
The Reynolds number is defined as

with a time dependent mean velocity u¢ and a characteristic diameter d = 0.1m. Hence on
the time interval [0, 8s] we have for the above configuration a varying Reynolds number

Re € [0, 100].

The result of a calculation on a mesh with 41504 spatial nodes and a temporal time step
size of k = 2.5-1072 at the endtime point ¢ = 8 is visualised in Figure Here we use
in the bottom half a color map visualisation, while in the upper half a visualisation by
a grey-value scale was used. The reason is that we want to emphasise that we interpret
I(x,t) as a grey value image later on, although we usually use a colored scale for a better
visualisation of the results.

We used the Crank-Nicolson scheme with two initial Euler steps as time stepping scheme (cf.
Section . For all components of the system we used the LP stabilisation for convection
stabilisation and to guarantee the inf-sup stability. We used the following parameter
choices:
h? ) h ) h
Pressure: a=0.3—, Velocity: d, =0.2————, Intensity: 6y = 0.3——r.
v k0wl k0wl

In Figure we visualised the solution of the intensity component I(x,t) of the system for
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Figure 3.8. Lines with box: Difference between the approximation with strong
implemented boundary conditions and the one with Nitsche-type
boundary data. The z-axis denotes here the number of the time
step t; for ¢ = 1,...,3200. Light green: |[Ij, s¢x(t) — Ip Nit(t)]|2. Dark
green: |lup ser(t) — wn,Ni(t)||2. Lines with circle: The same for the
penalised approach Ij pen and wp pen.

four different time points ¢t = 2,4, 6,8 and for three different techniques of prescribing the
h

boundary condition: The Nitsche approach was used in the upper row (u =0 and 0 = 135)-
The Neumann penalisation technique was applied in the middle row (y = h? and 6 = 0) and
in the bottom row we used a strong implementation of the boundary data. On first glance
we see no qualitative difference between the three different techniques. In fact there is a
difference if we compare the solutions of the weak approaches in the L?-norm to the strong
solution for different time points. A plot of these differences for ¢t = 0.25¢ with ¢ = 1,...,32
is given in Figure We see that the weak implementations produce almost the same
solution as the strong implementation up to a certain discretisation error in the laminar
phase of our solution. With beginning of the dynamic behaviour at ¢ ~ 3.75 the difference
between the weak implementations and the strong implementation increases. This is quite
certainly due to the stabilisation effects, since small differences between the solutions on

the boundary are differently prolongated through the computational domain.

However the weak implementations produce solutions which are equal to the strong
implementation up to a marginal difference of 10™3 over the whole computational domain.
Due to the convergence properties of the weak implementations (c.f. Section we
can expect that this difference is decreasing under mesh refinement. Hence the weak
implementations constitute equally good ways to implement boundary conditions.
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0.0800

E0.0400 E0.0400
0.00 0.00

-0.00276 -0.00276

Figure 3.9. Results: I(x,t) for t = 2,4,6,8 in groups of three graphs from top
left to bottom right. Each graph represents one of three different
techniques for the implementation of the boundary conditions: (top)
Nitsche approach (§ = 1—80, p = 0), (middle) penalisation approach
(6 =0, u = h?) and (bottom) strong implementation.
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4. PDE Constrained Optimisation

In this chapter we want to present the general formulation of PDE constrained optimisation
problems. We need this concept to deal with the application mentioned in the introduction.
We will start with a brief theoretical introduction into the topic. Starting point is the
reduced approach, which is based on a reduction of the originally constrained problem
to an unconstrained optimisation problem introducing a solution operator and treating
therefore the state variable implicitly. During our discussion we mention existence and
uniqueness results and derive optimality conditions. Finally we will describe a numerical
algorithm to solve PDE constrained optimisation problems.

4.1. Theoretical Considerations

In this section we introduce the notation and the conceptual background of PDE con-
strained optimisation. The problems will be stated in an abstract way and a few basic
theoretical results will be presented (existence, uniqueness). We follow essentially the
theses of Becker [8], Meidner [77], Vexler [102] and the monograph of Troltzsch [100] .

We will later on investigate identification or inverse problems, where we are interested in
the recovering of a distributed quantity. The formulation of such problems fits into the
following abstract setting of a PDE-constrained optimisation problem:

Optimisation Problem 4.1.
We search for a minimal value of the cost functional J(-) depending on the state function
u € X and control function q € Q:

T

T
Taq) = [ Gilalt)dt + wajr(u(T) + 5 [ rla(t) di
0 0

such that w and q also fulfill the PDE side condition

(O, ) + alg; w) (@) + b w) () + (w(0) —u°, 0(0)) = (f,0), VX  (41)

Now we want to discuss the elements of the above formulation in a general and abstract
way. In the further chapters of the work we will consider concrete optimisation problem,
which can be embedded in this abstract setting.
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4. PDE Constrained Optimisation

The cost functional has two essential parts: The data or fitting terms and the regu-
larisation term. The first two terms in J(u,q) are the fitting terms for an observable
quantities. In view of identification problems we will also refer to these terms as data
terms. The parameters k1, ko are either zero or one and switch between data terms at the
end time or for the whole time evolution. . The aim is to minimise these fitting terms.

Remark 4.2 (Observation Operator).
Often the fitting terms are in least squares form, sometimes involving a so called observation
operator M : X —'Y

jr= 1MW) = M3, jet) = | M(ult) = M@)]7.

The last term in J(u, q) is called the regularisation or control term r(-). It is in general of
Tikhonov type:

r(q) = llg — ¢*[I3),
with @ denoting the spatial space of the control ¢(t).

The parameter a > 0 is the regularisation parameter, by which we can choose the influence
of the regularisation. The regularisation especially stabilises ill-posed problems, which
occur for example in theory of inverse problems (cf. Engl et al. [31]). In the control
community this term has the functionality to adjust the cost of the control.

As a side condition for the above mentioned minimisation of the cost functional in general
we will have a system of partial differential equations. The parabolic equation in is
called the state equation. The term a(q;u)(p) is a semilinear form in the interior of the
domain, and b(q, u)(p) is the boundary counterpart of a(-;-)(-).

Remark 4.3 (Boundary Control Formulation).

Throughout this work we will consider boundary control problems. Therefore we assume
the term b(-,-)(+) to contain always the control q, while a(-)(-) depends only on the state.
The concrete form of this term for different problems is extensively discussed in the next
chapter.

The last aspect is the choice of function spaces. We have to take special care if we want
to find theoretical justified formulations. We start with the spatial space for the state
variable, which we denote by V. Then V' denotes the dual space of the Hilbert space V. If
there exists another Hilbert space H with a dense embedding of the form

Ve H<V, (Gelfand triple).
Then an essential result yields that
X :={u:ueL*0,T;V), duc L*(0,T;V')}
is continuously embedded in C([0,T], H) (see Remark for a concrete example).

The Hilbert space Q for the control variable is generally given as a subspace of L2(0,T; Q),
where we have to specify the special structure of the spatial Hilbert Space @) for the
concrete situations later on.
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4.1.1. Existence and Uniqueness

Now we examine the existence and uniqueness of a solution of the optimisation problem.
Therefore we define what we mean by the term solution.

Definition 4.4 (Solution of the Optimisation Problem).
A pair (4,q) € X x Q, which fulfils equation 1s called a ‘local solution’ of the abstract
Optimisation Problem [4.1} if there exists U, C X and U, C Q such that

J(u,q) > J(4,q)

for all solutions of equation with (u,q) € Uy x Ug. If Uy, x Uy = X x Q we call the

pair (4,q) a ‘global solution’

Furthermore, we describe the set of admissible functions F,q by

Fad :={(u,q) € X x Q: J(u,q) < 00, equation (4.1)) is fulfiled}.

Theorem 4.5 (Existence Theory: Abstract Linear Optimisation Problem)).
We assume the following:

1. The functionals jiy(u) and jr(u) are convex with respect to w:

Jr(Aur + (1 = Nug) < Njr(ur) + (1 — M) jr(u2), with A €[0,1] and 7=1,T.

2. The functional r(q) is convex with respect to q

r(Aq1 + (1= XN)g2) < Ar(qr) + (1 — N)r(ge),

3. J(u,q) is coercive with respect to q :
J(u,q) Z allglle+ 5, VgeQ,
with a > 0 and Kk € R.
4. The state equation admits a unique solution, and the terms
a(u)(p) = a(u, @), blg,u)(p) = b(q;u, p)
are linear.

Then there exists at least one local optimal solution (u,q) € Faq, which solves the Optimi-
sation Problem [{.1]
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4. PDE Constrained Optimisation

Proof. Given the unique solvability of the state equation we can introduce a linear and
continuous solution operator

S:Q—=X,  u(t)=5S(q)).

By substituting this expression into the cost functional we obtaine the reduced cost
functional

i(q) = J(5(q). q)
and have thus reformulated the problem as an unconstrained optimisation problem. The
coercivity is transfered to the reduced cost functional

J(a) > allqllg + .

Hence j(-) is bounded from below, and we define

0 := inf j(q).
;ggj(q)

Now we introduce a minimizing sequence q™:

lim j(¢"™) = 6.

n—oo

By using the coercivity we get for all n > N, with N large enough
lg™lo < B,

with an uniform bound B. Due to the Hilbert space structure of @ we derive the existence
of a weakly convergent subsequence such that

g™ —~qeQ. (4.2)

The reduced cost functional j(q) is also convex, due to the convexity of j;, jr and r.
Furthermore j(g) is continuous, due to the continuity of S and the used functionals j;, jr
and 7.

With these properties j is lower semicontinuous (generalisation of Troltzsch [100, Satz 2.12]
for Bochner spaces), which means that

. . . (n) .
lim inf j(q"") > j(q).

The latter results from the weak convergence in equation (4.2). The last inequality yields
directly that ¢ must be the minimum of j(gq). Since u = S(q) is a unique solution of the
state equation, (u,q) € Fuq is a minimiser of J(u, q). O

Remark 4.6 (Nonlinear State Equation).

The treatment of nonlinearities in the semilinear forms a(-)(-) and b(-,-)(-) can also be
presented in a general framework (see Troltzsch [100]) with further assumptions on the
forms. However this lies beyond the scope of this introduction. Therefore we postpone
the discussion of the existence theory for a concrete boundary control problem with the
fully nonlinear and nonstationary Navier-Stokes equations as PDE constraints to the next
chapter.
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Remark 4.7 (Uniqueness).
We assume the individual parts of the cost functional to have better properties so that the
reduced cost functional is additionally to the above mentioned properties strongly conver

F(Ag+ (1= Np) < Aj(g) + (1= A)j(p)
forall A € (0,1) and q,p € Q, with p # q. Then the solution of Theorem 1S unique.

The reason is that for two minima in p # q we have j(p) = j(q) = mingeg j(G). Due to the
assumed strong convexity we obtain immediately the contradiction

JAg+ (1= N)p) < Aj(g) + (1= N)i(p) = gggj(fi)'

Example 4.8 (Setting with a Unique Solution).
The cost functional which we will use very often in this work is given by

k1 =0, K2 =1, jr(u(t)):= %HU(T) —al3 and r(g(t)) = lla®)l 7290

with Q@ = L?(0,T; L?(012)). Hence, we have

1 _ @
J(u,q) = §HU(T) - U”% + §||QH%2(0,T;L2(8Q))'
It is easy to show that

lu(T) —al3, and lqllZ2 (07200

are strictly convex with respect to w and q. Furthermore J(u,q) is coercive due to

1 _ «
J(u,q) = §HU(T) - UH% +§HCI”2L2(0,T;L2(8(2))

>0
(0% (6
> §HQH%Q(O,T;L2(8Q)) 2 allallz20m;22002) — 5

Thus as long as the state equation is linear and admits a unique solution for this particular

choice of the control space, Theorem [{.5 will give us the existence of a solution, which is
unique due to Remark[{. 7

4.1.2. Optimality Conditions and Lagrange Principle

As before we still hypothesise the existence of a unique solution operator S in this section.
S gives us then a one-to-one and onto correspondence between the control ¢ and the state
u. That means we can still introduce a reduced cost functional like in the proof of Theorem

Hence, we reduced our constrained optimisation problem to an unconstrained one for which
we can formulate first- and second-order necessary optimality conditions with the help of
the following definitions (see Werner [104]):
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Definition 4.9 (Differentiability Concepts).
Let X and'Y be normed spaces with U C X nonempty and open and

f:U=>Y.

1. The mapping [ is called “Gateaux” differentiable in x € U, if there exists a continuous

linear mapping T € L(X,Y") with

lim f(x 4+ héx) — f(x)
h—0 h

=Téx, Vére X.

For the mentioned continuous linear mapping T we will also write

f(z)(6z) := Téz.

2. If the convergence in equation is uniform with respect to the direction, that

means
Hf(a:+ ox) — f(z) — T5x||y

52| x —0 6| x

Then the mapping f is called “Fréchet” differentiable.

=0.

With these definitions we can formulate optimality conditions as follows.

Theorem 4.10 (Necessary Optimality Conditions).

Let the functional j be twice continuously Fréchet differentiable in a neighborhood of a local

solution q € Q of the unconstrained optimisation problem

min j(q).
qEQ](Q)

Then we have

First-order necessary Condition:

7'(q)(0g) =0 Vg€ Q.
Then q is called a stationary point of j(-).

Second-order necessary Condition:
7"(q)(g,6q) >0,  Véq e Q.

That means that j"(-) is positive semidefinite in q.

This theorem reflects common knowledge and its proof can be found in the standard

literature, see for instance Troltzsch [L00] or Nocedal et al. [80].

Also from the standard literature we cite the sufficient optimality conditions:
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Theorem 4.11 (Sufficient Optimality Conditions).

Let the functional j be twice continuously Fréchet differentiable in a neighborhood of the
control q. The first order necessary optimality condition in equation s fulfilled.
Moreover, there exists a v > 0 such that:

7"(9)(8q,6q) > |64y,  Véq € Q, (4.6)

which means the second-order sufficient condition is fulfilled.

Then the unconstrained optimisation problem in admits a local minimum in q.

4.2. Optimisation Algorithm

Starting from the derived conditions efficient algorithms can be developed to solve the
optimisation problem. Therefore a representation of the first and second derivatives of j(-)
is needed.

We follow in this subsection the work of Meidner [77] and Becker [§], since they described
the optimisation algorithm used in the Software library RoDoBo [88], which we used for
the calculations presented later on.

4.2.1. Representation of First Order Derivatives

We can obtain such representations by the useful identity:

j(Q) - J(q7u) = £<q7u7 Z), (47)

where L(-,-,-) denotes the Lagrangian, which is defined as

£(g,u,2) = J(g,u) = (D, ) — alg;u)(2) = b(gs w)(z) — (w(0) = u°,2(0)) + (£, )

by the difference between the cost functional and the state equation. Thereby the auxiliary
variable z denotes the adjoint state.

By identity (4.7) we see that the first derivative of j(-) is given by
7'(0)(8q) = Lg(q,u, 2)(0q) + L1,(q, u, 2)(6u) + LL(g, u, 2)(62) = 0, (4.8)
where du = S’(q)(dq) and 0z is the g-derivative of z in direction dgq.

Remark 4.12 (Optimality System).
The first-order necessary condition is equivalent to the existence of a triple

(Q7uaz) GQXXXXa
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which solves the optimality system of the Lagrangian L(-,-,-) for the constrained problem.
In terms of the Lagrangian we can state the optimality system in the following way:

L(q,u,z)(p) =0, Voe€X, (state equation), (4.9)
L, (q,u,2)() =0, Vi eX, (dual equation), (4.10)
Ly(q,u,z)(p) =0, VpeX, (gradient equation). (4.11)

Furthermore, we found a representation of the first derivative

7'(0)(0q) = Ly(q,u, 2)(5q)
by the solutions u and z of the state and the dual (or adjoint) equation
Li(q,u,2)(p) =0, YoeX, and L(qu,2)(p)=0, VpeX.

We will use this representation to formulate a Newton-type method to calculate a solution
of the optimisation problem in the next section.

4.2.2. Representation of Second Order Derivatives

To formulate a Newton-type algorithm we need also a representation of the second order
derivative. This is again derived by the identity (4.7). A large amount of terms occur if we
take the derivatives with respect to ¢, since z and u depend on the control ¢ in an implicit
way. We find the following representation

i"(q)(6q,7q) = L}, (q,u, 2)(8q,7q) + Loy (q,u, 2)(6u, 7q) + L1, (q,u, 2)(6z,7q).  (4.12)

if we assume that the following two identities hold:

Ly (q,u,2)(0q, ) + Ly (q,u,2)(0u, ) =0, VpeX,
Ly,(q,u,2)(6q, ©) + Liy, (g, u, 2)(0u, @) + LY, (q,u,2)(62,9) =0, Vo e X.

The first one is the so called tangent or linearised state equation and the second one is
called the additional adjoint equation.

These two additional equations can be used to calculate du and dz. Hence, for two given
directions dq and 7q we can express the second order derivative with respect to the two
given directions by equation . Therefore we have to solve the tangent and the
additional adjoint equation. For a rigorous justification of equation (4.12)) we refer the
reader to Meidner [77].
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4.2.3. Newton-CG Method

Newton’s method for the calculation of a root of the first order derivative for the reduced
cost functional is given by the following iteration

7" (@) (64W,n) = —i' (@) (m), WneQ,

which starts with a good initial choice for ¢° and terminates after an appropriate stopping
criterion is fulfilled.

We will concretise the situation now for the Optimisation Problem with k1 =1, kg =0,
set

j(u) = ji(u),  plg,q) ==

oo

T
[ rtato).av) d
0

and assume furthermore that r(-,-) is a symmetric and positive definite bilinear form.
Hence, also p(+,-) is symmetric and positive definite. Moreover, the control is only part
of the boundary semilinear form b(g; u)(¢) in the state equation (4.1)). Then, for the first
order derivative we obtain

7'(9)(0q) = Ly(q,u, 2)(8q) = p(g, dq) — by(q,u)(dg, 2).

The adjoint variable z is evaluated from the adjoint equation

= (02, 0) + (2(T]), 9(T)) + ay(u)(@, 2) + by (g, u) (9, 2) = G (u)(p) Vo eV, (413)

which means that we integrate backward in time with the initial condition z(7") = 0.

The second order derivative is given by

]"(q)(dq, TQ) = ,0(5(], TQ) - b;/,q(qa U) (6(]7 Tq, Z) - bz,q(Q7 U)((S’LL, 74, Z) - b;(‘]a ’LL)(T(], 52)
At first we have to solve the tangent equation

(Debu, @) + (3u(T), p(T)) + ay,(u)(du, ¢)
+ b, (g, u)(p) = —by(q,u)(dg, ), YpeV.

Afterwards we solve the additional adjoint equation

— (302, 9)) + (82(T), p(T)) + ay(u)(p, 62)
+ by, (g, u) (p, 02) =—an, (u)(5u, ¢, 2) — by, (w)(6u, ¢, 2)
—by(q,w)(0q, @, 2) + 5" (u) (p, 6u),
VoeV.  (4.15)

Now, we can sum up all steps of the optimisation loop in Algorithm
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Algorithm 4.1. Optimisation loop

1. Choose an initial ¢° € Qp, up € RU{+oo} and set k =0.
2. Solve the state equation (4.1).

3. Evaluate the cost functional.

4. Evaluate the residual f;:= —j/(qk))(&](k)) for i=1,2,...,dim Qy:

i
4.1 Solve the adjoint equation.
4.2 Compute:

7@ (66 = r(g®,64*)) — b (¢®), u®)) (¢, 2),

5. Stop if | fi|| <tol (norm | -|| must be specified).

6. Solve the linear system

7"(a")(6aM , 7a) = 5 (a®) (7¢{?)

without assembling of the matrix:
6.1 Solve the tangent equation (4.14).
6.2 Solve the additional adjoint equation (4.14).

6.3 Evaluate the matrix-vector product
7"(9)(6q,7¢i) = 7(8q, Tqi) — bl ,(q,u)(0q, T, 2)
— by o (g, w) (0u, 7qi, 2) — b (g, u)(Tqi, 62).
and perform a step of the CG-method.
6.4 Repeat from Step 6.1 until:
i) a chosen tolerance for is reached, or
ii) a fixed ammount of steps was performed.

7. Update the control: q(kH) = q(k) + )\kq(k).

8. Go back to Step 2.

(4.16)
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Remark 4.13 (CG-Method for the Linear System (Step 6)).

Although the matriz Ai; == j"(q)(dgi, 0q;) is not assembled in the algorithm it is indirectly
involved in each Newton step. The CG method requires positive definiteness of this matriz,
which is especially the case in the neighborhood of a local minima. However, the positivity
of (Aq, q) can be generated by choosing greater values for o, such that the computational
process becomes more stable. Unfortunately we are often interested in choosing small values
for a, especially in the case of identification problems.

In such cases we try for example to work with a so called “Inexact-Newton method”, where
the residuum of the linear system is not sufficiently reduced in each Newton step. In this
case we will usually have a much higher amount of Newton steps to reduce the Newton
residuum.

Hence, in such cases another possibility is to work with a homotopy method in o, where we
start with a larger value of o to generate a better initial value ¢° for a second calculation.
If the calculated value q is closer to the local minimum we can use it as initial value for a
calculation with a reduced regularisation parameter.

Remark 4.14 (Line Search (Step 7)).
The relaxation parameter A\ is needed for the globalisation of the convergence area of

Newton’s method. It can be evaluated by line search techniques (cf. Nocedal et al.[80)] for
details).
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5. Boundary Control Problems

After presenting the theory and numerics for abstract PDE-constrained optimisation
problems we want to concretise the topic in this chapter and discuss so called “boundary
control” problems, which we need to deal with the questions mentioned in the introduction
of this thesis (cf. Chapter [L).

One fundamental assumption in our prototypical application was that we observe an
aperture of a bigger flow domain. Then, in absence of external forces the flow is completely
described by the unknown boundary conditions. Now, boundary control formulations can
be used to recover these conditions.

Thus, a main objective of this chapter is to present a boundary control formulation, which
is well suited for our application, theoretically justified and can be easily handled from the
computational point of view.

To re-establish the unknown boundary functions it seems likely to work with a Dirichlet
control approach. However, this approach leads to complications either in the theoretical
justification or in the numerical treatment. We will describe these contrary propositions
by considering an Dirichlet control problem, with the simple Poison equation as PDE side
condition.

An interesting approach discussed in the literature over the last two decades is that using

a Robin-type approach

1
Opu=—(q—u
= (g =)

for the description of the boundary data leads to a theoretically justified approach, which
yields also a reliable approximation of the original Dirichlet control problem.

We will use this idea also for the time-dependent convection-diffusion equation and the
(linearised) Navier-Stokes system. We will show well-posedness for the boundary control
formulations for these PDE constraints. Furthermore, we will discuss the connection of
the pu-dependent solutions of the Robin-type problems to Dirichlet control problems for
the respective equations. For the time-dependent convection-diffusion equation and the
linearised Navier-Stokes system we will be able to prove that the solutions of the Robin-type
problems converging to a solution of a Dirichlet control problem, when p tends to zero.
For the fully nonlinear Navier-Stokes system we will present the obstacles for proving such
a result.

However, we will confirm by numerical test cases that the Robin-type approach with a
fixed and small y is well suited for our reconstruction purposes for the mentioned types of
PDEs.
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5. Boundary Control Problems

5.1. Survey of Dirichlet Control Approaches for Elliptic
Equations

Before we consider Dirichlet control problems for time-dependent convection-diffusion and
the Navier-Stokes equations, we first sum up theoretical aspects of the state of the art
literature.

At first let us state the problem:

Optimisation Problem 5.1 (Dirichlet Control Problem (Poisson Equation)).
We want to find q € Q so that the cost functional

1 _ _ _
I(u,q) = 5l —al3+ 5 (Alg—a),a - a);

becomes minimal, under the side condition that a sufficiently reqular u fulfils the Poisson
equation

—Au=f, in {2,
u=gq, onl,
u=g, ondR\I

for given functions f and g, which are also sufficiently reqular. Hereby u € L%(£2) and
q € Q are given functions.

Remark 5.2.

In the following we assume that the control boundary I' is the whole boundary of the
computational domain. The general case can be treated in the same way as described in the
next sections by slightly modifying the notation and the argumentation.

Thle appropriate space for the boundary functions, and therefore the control, is the space
H2(I'). However we will see that this space increases the numerical effort drastically and
therefore discuss L2-controls and their approximations.

5.1.1. Hz-Control

For notational brevity we set ¢ = 0 and remark that the general case is also working in the
same manner.

Then we need an operator with the property
A:H2(00) — H 2 (00)

such that
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5.1. Survey of Dirichlet Control Approaches for Elliptic Equations

defines a seminorm which is equivalent to the H 3 (042)-seminorm

2
/ /'“ o y|n)‘ doy, | doy-, (see Galdi [T, p. 44 ff]).  (5.1)
02 \on

ik ooy

For example Of et al. [82] and John [72] work with the Steklov-Poincaré operator for this
purpose. In the following we will briefly describe this approach.

It is clear that the homogeneous Poisson problem
—Aw =0, in {2,

(5.2)
w =g, on 012

admits a unique solution in H!(£2) for g € H %(F ). As figured out for example in Menad
[78] the Steklov-Poincaré operator is now defined as a mapping

Psp : H2(002) — H 2(0R), with g+ Opw.

The so defined operator is symmetric with respect to the L? inner product on the boundary
and furthermore positive definite. Hence, we have

2 _
Due to the unique solvability of the state equation for ¢ € H %(&Q) we can introduce a
solution operator S(q) = u and formulate the reduced cost functional

@) = T(S(a)sa) = 515(@) ~ ey + Slal?y

which admits a unique solution due to Theorems [4.5 and [4.7]

Remark 5.3 (Increased Numerical Effort for H §—C0ntrols).

The resulting optimality condition is only a slight modification of the gradient equation in
contrast to the choice of other possible control spaces. We therefore postpone the statement
of the optimality system. However, we want to emphasise that either the complicated
boundary integral in equation has to be calculated or the auxiliary variable w is needed
in the solution process and therefore the Poisson equation has to be solved, which
obviously increases the costs of the numerical calculation (especially in view of further time
dependent systems of equations).

5.1.2. L2-Control

We have seen that the use of the space H %(8!2) necessitates the solution of an auxiliary
problem or the calculation of complicated boundary integrals. Therefore, we prefer to
simply use the space L2(942) for the control to avoid this problem.

How to use this control space was for example described by May et al. [76] and Belgacem
et al. [I3]. For this purpose the authors used the very weak formulation of the Poisson
equation:
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5. Boundary Control Problems

Very Weak Formulation 5.4 (Poisson Equation).
For given q € L?(082) find u € L*(2) in a way that

—(u, Ap) + (¢, 0n) = (f. )
is fulfilled for all p € HE(2) N H?(2).
Here the control is in L?(9f2) and the optimal control problem admits also for this

formulation a unique solution (u,q) € L?(£2) x L?(9f2), since we have for the very weak
formulation the existence of a solution operator (see the above mentioned literature)

S L2(00) — L*(N)
and we are therefore able to embed the problem into the abstract setting of Theorem

Remark 5.5 (Equivalence to Weak Formulation).

In case that the solution admits higher regularity (for example uw € H'(£2)) we have
the equivalence between the above mentioned very weak formulation and the usual weak
formulation:

Find u € Bq + H}($2) such that
(Vu, Vo) = (f0), Vo€ Hy(2),

where B is an extension operator, which prolongates boundary functions into the interior
of the domain.

The introduction of the very weak formulation has the big advantage that the control
enters now the variational setting in a direct way as in the case of Neumann or Robin
controls.

Hence the optimality system is given by
(0, A9) + (0,000) = (F.9), V€ HU(2)NHX(2),  (Primal equation),
_(S?)a AZ) - (’U,, @) = —(I_L, @)7 v@ € L2(Q)7 (Dual equation), (53)
a{q,p) — (Onz,p) =0, Vp e L2(092), (Control equation).
The system admits a unique solution {u,q, 2} € L*(£2) x L?(I") x H?(2) N H}($2).

Under the assumption of higher regularity for the state solution u, the dual solution z and
the control ¢ we obtain the classical formulation of the above mentioned optimality system

—Au = f, in £2,
u=q, on 02,
—Az —u = —1u, in (2, (5.4)
z =0, on 02,
aq — Opz =0, on 912.

76



5.1. Survey of Dirichlet Control Approaches for Elliptic Equations

Remark 5.6 (Optimality System for H%)
The optimality system for the H %-formulation differs from system only in the control
equation:

aPspq — Opz = 0, on 052,

where Pgp constitutes the Steklov-Poincaré operator mentioned in the section before.

In contrast, a big disadvantage of the very weak formulation is that it is not easy to handle
from the numerical point of view. For example we have no chance to solve this problem
with bilinear finite elements due to the Laplacian acting on the test functions.

A way out of this dilemma is presented by Belgacem et al. [13], who uses a Neumann
penalisation of the Dirichlet condition like we present it in Chapter [3.3] for the Poisson
equation. The technique is closely related to another approach of proving existence of a
very weak solution u € L?(£2) presented for example by Marusic-Paloka [74].

In this approach the following penalisation of the state equation

—Auy, = f, in £2,
1 5.5
Onuy, = ;(q — Uy), on I’ (5:5)

is used to show existence of a solution of the very weak formulation by proving uniform
boundedness of u,, in L*(£2) and L?(942) with respect to p.

Belgacem et al. [13] realise that it seems very promising to work with this approach also for
numerical calculations of Dirichlet control problems. The advantage is that this approach
is very easy to implement and has good convergence properties which we presented in

Chapter [3-3]

We will now present the theoretical background of this approach. Here we employ argu-
mentation techniques used in the articles of Hou et al. [55], [56] which are different to the
argumentation chosen in the paper of Belgacm et al. [I3]. The advantage is that the pre-
sented argumentation is more flexible for the extension to more complicated time-dependent
boundary control problems, which we will show in the subsequent sections.

Starting point is the following perturbed optimisation problem. We will briefly discuss the
(unique) existence of a solution and afterwards answer the question if a y-dependent solution
convergences to a solution of the optimisation problem with the very weak formulation as
side condition.

Optimisation Problem 5.7 (Poisson Equation with Robin-Type Control).
We seek (uy,q,) € HY(£2) x L*(892) such that the cost functional

1 _ a _
«7(%7 qu) = 5“% - U||% + §||Qu - ‘I||L2(8Q)

1s minimal subject to the following Weak Formulation where f € L?(82), u € L*(2)
and q € L*(082) are given functions.
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Weak Formulation 5.8 (Poisson Equation with Robin-Type Boundary).
Find u, € H'(£2) such that

(Vi Vip) — ; (G —w) @) = (f0), Ve HY(®).

For a fixed 0 < u < 1 and g, € L?*(812) we have

1 1
V3 + ;HUuH%z(aQ) < [[fll2llupllz + ;HQMHL?(E)(Z)||uu||L2(6_Q)
and with the general Poincaré inequality (cf. Brenner [19] formula (5.3.3.)])

lwlla < € (IVellz + @]l z2goe) ) (5.6)
and Young’s inequality we obtain the a priori bound

3 2 1 2 Corpz 1y e
Z”V“u’b + @”Uu”m(ag) = §||f”2 + EHQMHLQ(SQ)‘ (5.7)

With this bound we can obtain by standard argumentations the existence and uniqueness
of the state equation (see the Galerkin method in Chapter . Hence there exists a
solution operator u, = S(g,) and by Theorem and Remark we get the existence of
a unique minimiser (4,,q,) € H(£2) x L?(12).

By the corresponding Lagrangian
1
‘C(u/m Qs Zu) = J(Uua qM) - (VUM, vz,u) + ; <(Q,u - u,u)a Zu> + (f» Zu)
we derive the optimality system
1
(Vu,, Vo) — m (g —up, ) = (f, ), Vo € H'(£2), (Primal equation),
1
(V,Vz,) + . (p,2,) — (up, @) = —(u,p), Vpe HY (D), (Dual equation), (5.8)
1 ) .
a{qu, p)+ m (zu,p) =0, Vpe L*(I'),  (Control equation).
The solution pair (u,q,) of the optimisation problem is then characterised by the triplet

(W, qu> 2u) which solves the above system. Therefore the existence of z,, € H?’N H&(Q) is
needed.

Now we have to check that {u,,qu, 2.} converges to a solution of the optimal control
problem.

Theorem 5.9 (Convergence Properties).
For an arbitrary p the triplet (u,,qu, 2u) is a solution of the optimisation problem .
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Furthermore we assume that {2 is convex and polygonal. For the triplet sequence (W, qu, 2u)pu
we have then the following convergence properties

q. — G € L*(092), (5.9)
u, — @ € L*(92), (5.10)
z, — 2 € H)(92), (5.11)

when p — 0.

Proof. We will use three steps to prove these properties.

1. If we choose ¢ = 0 we know that their exists a unique solution of the Weak Formulation
which we indicate by 4. Since (uy, 2., ¢q,) is the minimum, we have

N 1 _
T gu) < J(@,0) = Sl —all3+ HQMHLQ (02) = HUHQ +lall3,

after using the triangle inequality on the right hand side.

Furthermore, we obtain for ¢ = 0 and the corresponding solution @ by the a priori
bound in formula ([5.7]) and the inequality (5.6]) the following estimate

lal3 < ¢ (IVal3 + al3200)) < CIFI3:

Combining the last two estimates yields the following uniform bound for g,

Cra
laull 202y < 2% (5.12)

2. Now we want to prove that u, is uniformly bounded in the L? norm. Therefore we
have again a look at the a priori bound (5.7)). With the bound for the control g, in

formula (5.12) we obtain now

C
||m||2+ ||uu||L2aQ) ||f||2+ e

Hence, we have

C u,o
luullz200) < Crae and [V ly < =122 (5.13)

VI

The first inequality yields again uniform boundedness of u, in L? on the boundary.
The second bound is not uniform. Anyhow, for a fixed u we can use the inequalities
for a duality argument to obtain uniform boundedness in L?(§2).

We introduce the auxiliary dual problem

—AXN =y, in {2,
A=0, ondf.
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80

From the classical regularity theory of elliptic operators (see Satz 7.6 in Dobrowolski
[29]) we have
[z < Cllugllz, (5.14)

since {2 is a convex polygon.

Now we test the dual problem with u,, and integrate over the domain. After integration
by parts we get
2
lunlls = (VA V) = (OnAs ) -

Using the Weak Formulation [5.8| again yields
I3 = (£, A) = (OnX i) g < I Fll2lM2 + 100l 2 002) [wull L2(002)-

And finally by the uniform bound for the boundary norm for u, and the estimate we

obtain (|5.14])
lsall3 < (£l + Crae) Il a2y < Craallunll
and with this the uniform bound

[uallz < Craa-

. Finally we discuss the sequence of the dual variable z,. Therefore, we test the dual

equation with z,. Afterwards we apply with the usual inequalities used throughout
this proof and get ||u, — ul|2 < C, which is a consequence of the first step of this
proof. We find

1 _
HVZ;»H% + *”Zu”é 00) = H“u - U||2qu”2 < Cf,ﬁ,aHZu”2
1 (092)
1 2 1 9 1 2
< Craa+ 52l < Craa+ 31Vl + Sl2ul22(00)

Because of 1 < % we get the inequality

1
V213 + ;”%H%aam < Craa

which yields

lzull202) < VECraa, and  [[Vzulla < Craa-
We have
z, —2€ HY ()
and
z, — 2 € L*(0)
because of ||zl 12(90) < C, since /i < 1 and z, converges weakly in L* to zero on

the boundary:

. . . 2
lim (21, p)gq < lim llzullz200) 1ol 2200) < lim /i€ =0, ¥p € L7(092).

Hence, the limit value 7 is in Hg(£2). O
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Remark 5.10 (Other Regularity Results).

By the last theorem we can guarantee that the sequence of optimal solutions (u, 2u,qu) n
w converges to a limit (i, 2,§) € L*(2) x H} (£2) x L*>(I") for j — 0. We will use this result
to check if the limit is a solution of the optimality system that arises from the optimisation
problem with the very weak formulation. Thus we will see that the dual solution Z admits
even more reqularity since we work with a convex polygon as computational domain.

We also want to mention that under the assumption of further reqularity of the domain
(e. g. C? boundaries) we have even higher reqularity of the limit function. See for example
the following theorem, which also yields a qualitative statement about the convergence in .

Theorem 5.11 (Theorem 4.2, Belgacem et al. [13]).
The domain §2 is smooth (C?%-regular) and u € L*(£2). With s € [0,1] we have

< Ou'~*||ala

|2 — 5HH1+S(Q) + [lgu — QHH’%“(&Q) >

Moreover, we have
lu — @l gag) < Cp'~|lalla,

were both constants are independent of .

Thus, by this theorem we obtain the weak convergence of the sequence (W, 2y, qu), to

(@, 2,G) € H(2) x H?(£2) x H%(aﬁ) for the limit case s = 1.

Once we have shown that this sequence converges to a solution of the optimisation problem
with the very weak formulation as side condition we know that this solution admits more
regularity and therefore we can also work with the usual weak formulation from Remark
9.9l

However, we want to emphasise again that for general polygonal domains we lose the above
stated regularity H'(2) x H?(£2) x H%(ﬁﬁ) of the triplet (u,Zz,q), since Opz does not
longer belong to H%(&Q) due to the corner points of the domain. Nevertheless for special
sttuations we can still obtain higher reqularity results, see therefore Remark 2 in May et
al. [T6] or the discussion in Section 4.2 in Belgacem et al. [13].

We can easily check that the obtained limit triplet is also a solution of the optimality
system (5.3]).

By partial integration in the primal equation of (5.8)) and choosing the subset
H*(Q)NH}(2) c HY ()
we obtain

- (’a,ua A‘P) + <'a,u76n(p>69 = (fa (P) ’ V(p € HQ(“Q) N H(%(“Q)
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The convergence of the first term is clear. The second term can be obtained by the following
identity

<ﬁ,u -4, p>a_(2 = <au - q~uap>3(g + <Cju - q, p>3Q , Vpe LQ(ag)-
The second term of the right hand side tends to zero, due to the convergence properties of
Gu- The first term can be obtained by estimating the primal equation and using the second

estimate in formula (5.13))

1, . c - .
p (U = G 0) o < IIfll2llell2 + [IVuull2IVellz < N (U = Gur ) < VIC.
Thus, we get

—(@,8¢) + (3, 0np)pp = (f. ), Vo € HY(2)N Hy(12). (5.15)

Now we have a look at the convergence in the dual equation of (/5.8)).
- L, - _
(VZ#, V‘P) + ; <z;u 90>ag - (uua 90) =—(4¢), Ype Hl(Q)

For each p € (0, 1] the equation is also valid for the subspace Hg(£2) C H(2)

(V§M7Vg0) - (a,uﬂo) = - (7?"790)'

By the convergence properties of Theorem [5.9|we obtain that the limit functions Z € H}(£2)
and % € L?(£2) fulfil the equation

(V2, V) = (4, 0) = = (u,¢).

This is due to the regularity theory of elliptic operators on a convex polygon equivalent to
the classical formulation
—u, a.e. in (2,

i
5.16
zZ2=0, a.e. on Of2, ( )

with 2 € H?(2) N H}($2). Hence, # and @ fulfil especially the dual equation in system

63).

Finally, we have to check the convergence to the optimality condition in the system ([5.3)).
We start with the optimality condition for the perturbed problem

1
O‘<qm/’>arz = <Zuvp>an'
"

The convergence on the left hand side to the limit ¢ € L?(9f2) is clear. Only the convergence
of the boundary form on the right hand side remains. Therefore we multiply the classical
formulation in equation with ¢ € H'({2) and obtain after integration over the
domain the equivalent weak formulation

(Vi, V(p) - <(9n§, 90>8.Q - (ﬂ, 90) = - (ﬂ, (,0) 9 V(p € Hl(Q)
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5.1. Survey of Dirichlet Control Approaches for Elliptic Equations

Using this weak formulation and the one for the dual problem in system (5.8)) we find

1

M (Zus ) g = (= (0nZ, 0)g0) = —(VZ4, V) + (G — U, 0) + (VZ, V) — (@ — 4, p).

Thus

1

— {2y Pan — (= (OnZ,0)50)

0 < |(V(z - 2, Vo) | + | (@ - 5. )| (5.17)

for all ¢ € H'(£2). Due to the convergence properties of the terms on the right hand side
of the last estimate we get

N . 2
}}1}% E <Z}La §0>30 = - <8’n27 §0>8_(27 VIO € L (80)7

which means that the limit of the triplet also fulfils the control equation of the optimality

system (5.8]).

Hence, we have shown that the sequence of solution pairs (u,,q,), of the Robin-type
boundary control problem converges to a solution of the Dirichlet control problem with
the very weak formulation as PDE side condition. That means especially that we can use
the Robin-type controls for the approximation of Dirichlet controls.

Numerical Example

u(x,y)

-40 -30 -20 -10 0.02 0.04 0.06

-50.0001 -8.69844e-5 3.06544e-12 0.0625003

z(x,y)

Figure 5.1. Example left: State solution @(x). Right: Adjoint solution
2(x). Note that the two bulges show in different directions due to
the values of the scalar bar.

We confirm the utility of the above mentioned approximation approach by a numerical
example in this context taken from the numerical test chapter of the work of May et al.

[76].
Example 5.12.

We have the initial configuration

f=-2 a=-@+ )@l-n)+yl-y), =0, a=00L
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5. Boundary Control Problems

As a result the unique analytical solution of the optimality system is given by
. 1
§=——(z(l-2)+y(l—y), onl,

1

i=——(z(l-2) +y(l-y), nf
Z=xy(l—z)(1—vy), in §2.

We visualised the solutions in Figure[5.1]

Table 5.1. For a fixed uniform discretisation of the unit square (0,1)? into 16384

cells we compare in this table the approximations w,, g, and z, of the
Dirichlet control problem of Example for pu; = 0.1-27° (bisection

of 0.1).
i N —unulliee)  (rate)  [[d—anullree)  (rate) 2= znpullLze) (rate)
5.4918-10~1 2.5365-10° 5.2399-1073
2.9194-10~! (0.87) 1.5121-10° (0.75) 3.6127-1073 (0.54)

5164-10~ 0.92 .6644-10~ 0.80 305810~ 0.65
1.5164-10! ) 8.6644-1071 ( 2.3058-1073 (
7.7501-1072 (0.95) 4.8019-107¢ (0.85) 1.2893-1073 (0.83)
3.9184-10~2 (0.97) 2.5871-1071 (0.89) 6.7921-107*  (0.92)
1.9671-1072 (0.99) 1.3626-10~! (0.93) 3.4789-107*  (0.97)
.8268-10~ 0.99 .0585-10~ 0.95 7759-10 0.99
9.8268-1073 7.0585-1072 1.7759-10~%
4.8855-1073 (1.08) 3.6211-1072 (0.96) 8.7771-107°  (1.00)

N O Utk W R O

We insert now the identity for the control g, which is described by the control equation in
the system , into the primal equation. This is possible since the test functions of the
primal equation are in H'(£2) and therefore have at least an L2-trace on 0f2. Then we
derive the coupled system:

Find (uy,z,) € H'(2) x H'(£2) such that

(Vuu,VsD)Jrl(umsoH%(zm@ = (f,9), Ve H\(1),
a ) an (5.18)
(V2u, V) + p (2, @) — (up, @) = —(u, @), V¢ e HY(N).

This system ((5.18]) is discretized with bilinear finite elements (for details see Chapter |3)).

Remark 5.13 (Newton-CG). The Optimisation Problem can be solved of course
also with the Newton-CG method presented in the Chapter[]. Nevertheless we solve the
optimality system directly, since we consider an easy conver optimisation problem with a
stationary PDE as side condition, where the unique solution of the optimisation problem is
described by the optimality system, which can be reduced to the system due to the
structure of the control equation.
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5.1. Survey of Dirichlet Control Approaches for Elliptic Equations

The number of unknowns is doubled in comparison to the original state equation and the
above system is now nonlinear. But with a usual Newton method for nonlinear systems
(like it is used for example for calculations of the Navier-Stokes equation, see Chapter
this system can be solved easily and efficiently.

On the other hand the Newton-CG method requires in each CG step the solution of two
additional PDEs with the complexity of the original state equation plus a further additional
computation of the dual equation in each Newton step. Each of these equations is in our
particular case linear and therefore easy to solve by a usual linear solver. However in
our experience at least two Newton steps with several CG-steps are necessary to achieve
a sufficient accuracy, so that the direct calculation via the above mentioned system is in
general more efficient than the Newton-CG method in this context.

This is changing drastically when we are working with time-dependent equations, since we
cannot directly solve the optimality system due to forward and backward integration in time.
Treating the time as a third spatial dimension would increase essentially the complexity, so
that in this case the Newton-CG method is a very efficient means to calculate the solution
of the optimisation problem.

Table 5.2. The table documents the error evolution under mesh refinement for

p = h2.
cells  |la —unullr2)  (rate) [ —aqnulliz) (rate) |2 —zn,ll2o)  (rate)
64 8.3277-102 8.5997-10~1 1.3383-1073
256 2.0916:10~2 (1.99) 2.2927-10~1 (1.91) 3.6281-10~4 (1.88)
1024 5.1813-1073 (2.01) 5.9050-10~2 (1.96) 9.2573-107° (1.97)
4096 1.2896-10~3 (2.01) 1.4862-1072 (1.99) 2.3262-107° (1.99)

16348 3.2240-1074 (2.00) 3.7117-1073 (2.00) 5.8232-107¢ (2.00)
65536 8.0659-107° (2.00) 9.2659-10~4 (2.00) 1.4563-10~° (2.00)
262144 2.0173-107° (2.00) 2.3149-10~* (2.00) 3.6409-10~7 (2.00)

We make two experiments for the above mentioned optimality system. The first one
considers the parameter 1 and the quality of the approximations to the analytic solutions
of the Dirichlet control problem in the example. The second one considers the convergence
under mesh refinement for the convenient choice h? for u, as mentioned in Example
in Chapter (3.3

In both cases we compute (u,, 2,) directly from system by bilinear finite elements
and compare them to the analytic solution in the L?-norm. For the control ¢u We compare
the state solution on the boundary u|sg to the analytic solution ¢ in the L?-norm on the
boundary.

In Table we see that we achieve better approximations of the Dirichlet control problem
for decreasing p. At first glance it seems like a good idea to work with this Robin-type
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approach to generate approximations of Dirichlet control problems. But we also want to
emphasise that the numerical problem gets more and more ill-conditioned for decreasing pu.
If we drop the value of ; under 1078 the residual of our problem becomes larger, which is
an indicator that our approximation has lost its accuracy. Hence the problem is not solved
properly and the approach is not able to resolve the Dirichlet control problem up to any
given accuracy.

The second test which is documented in Table shows that the approximation is
converging to the expected solution under mesh refinement if we choose p = h?. We
achieve the same quadratic convergence properties in h as May et al. [76] for this particular
example with a strong implementation of the L?-Dirichlet control. Also for this parameter
choice the problem remains, that the system becomes ill-conditioned for small u, which
means here the choice of very fine meshes.

However, the fact that we cannot solve the system for arbitrarily small p is unsatisfactory.
Since this effect was already observed for the discretisation of the state equation (cf.
Chapter , we are able to avoid this problem by working with the stabilisation of the
Neumann penalisation in the discretised version of the optimality system. Thus, we write
the discrete optimality system as

(vuha V(P) +b(Qha Uh,s (/7) - <f7 90) ’ VQO € VX:
(Vzha v@) +b(0a Zhs @) = (uh - ’aa @) ) vSa € VX:
a<qh>p>8_(2 = b(O;Zh,p), Vp € VQ7

with 1
mew%=;wf%wbm

Afterwards, we substitute b(q; u, ¢) by the stabilised version

19

b(q;u, @) = — m (<3nU, ‘P>an + (u — g, 3n90>39) +
o

w40

which is for § = 0 equal to the original form.

—(u—gq, 90)89
wto (5.19)

(Onu, 8n‘a0>ag )

By setting p =0 and § = % we implement the Nitsche method to realise the Dirichlet data
in a weak sense. We yield the discrete optimality system

(vufw VQO) - <a’nuh7 SO>8.Q - <Uh — 4h, 8n‘;0>89 + % <Uh — dh, 90>BQ = (f7 90) )
(Vzn, V) — (Onzn, 80>a(z — (zn, 3n90>a(z + % (2n, @an — (un, p) = — (4, ),
Q <Qh7p>80 - <an2h7/)>a(z — (zn, anp>an + % (h, P>aQ = 0.

This is almost the same optimality system as Becker obtained in [8] when he followed a
discretise-then-optimise approach, where the PDE side condition was discretised with the
help of Nitsche’s approach. The only different term in the above system is

(2h, Onp) oo
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5.1. Survey of Dirichlet Control Approaches for Elliptic Equations

in the control equation, which is not present in Beckers approach. However, the dual
equation in the above system yields a discrete dual solution z; which vanishes on the
boundary. The test function p is a restriction of an element of the usual finite element
space Vj, (cf. Chapter to the boundary. That means that the normal derivatives of
this continuous function will stay bounded. Hence, the additional term in our formulation
is vanishing. In this sense we can interpret our optimality system as equivalent to the one
of Becker.

Remark 5.14 (Connection between Boundary Control Approaches).

We see that there is a close connection between the different presented ways of implementing
Dirichlet boundary controls. The very weak formulation, which yields us the theoretical
background, is closely connected to Robin-type boundary controls. Moreover, this Robin-type
conditions can be treated on the numerical level by a stabilised implementation, which
represents in the limit case Nitsche’s technique of implementing weak boundary data.

Table shows a calculation for Example where Nitsche’s implementation of Dirichlet
boundary data was used. We see that it yields very good results and the expected quadratic
order of convergence with respect to h.

Table 5.3. Results for Example calculated with the stabilised bilinear form
1} for y = 0 and § = h (that means Nitsche’s method with

10
~v = 10).
cells o —unull2(2) (rate)  [|§ = qnullzz(e) (rate) |2 = zpullz2(e)  (rate)
64 5.5517e-2 7.4167e-1 9.4447e-4
256 1.12220-3 (2.31) 1.9473¢-1  (1.93) 1253304 (2.91)
1024 2.2077¢-3 (2.35) 500382  (1.96) 1.6763e-5  (2.90)
4096 4.3912¢-4 (2.33) 1.26960-2  (1.98)  3.4947c-6  (2.26)
16384 9.0726¢-5 (2.28)  3.1989¢-3  (1.99)  9.6545c-7  (1.86)
65536 1.9737e-5 (2.20) 8.0297e-4 (1.99) 2.6353e-7 (1.87)
262144 4.5111e-6 (2.13) 2.0116e-4 (2.00) 6.9195e-8 (1.93)

5.1.3. Comparison of L2- and H z-Control

After the introduction of H2- and L2-control problems in the last two subsections we want
to present a brief closing discussion of the differences and the connection between these
approaches in this subsection.

Therefore we compare between the choice of the L?-norm, the H 3-seminorm or the H3-norm
defined as

[ull? 4 = HUH%Q(OQ) + |ul

H?(90) H3(00)
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5. Boundary Control Problems

In terms of the operator A used in the introduction of this section, this may be expressed
as

A=1, (L*-norm),
A = Psp, (H%—semi norm),

A =1+ Psp, (H%—norm).

Remark 5.15 (Numerical Realisation).

We want to emphasise that we worked directly with the optimality system in case of the
L2-control (A = 1) in the last subsection. The reason was that we simply substituted q by
expressions of the dual solution z, due to the control equation.

Thlz's is changing when we work with the Steklov-Poincaré operator Pgp for realizing the
H?z-control. The control equation then reads

aPsp(q) — Onz =0, on 0f2
in a strong form. Hence, we would have to invert this operator in some way.

Howewver, this inversion can be avoided by working with the Newton-CG method. We
remember the methodology described in Chapter|4.2.5 The essential part was to represent
the first and second derivative of the reduced cost functional. In this representation the
reqularisation term r(q,q) is involved directly.

In our particular situation the reqularisation term has the concrete form

r(w.y) =5 [ Porlely ds
o1

for different x and y in H%((?Q) The expression

Psp(z)
is then evaluated by solving an additional problem
—Aw, =0, in 2,
(5.20)
Wy = T, on 0f2

and the setting Pgp(x) = Opws.

Hence, to work with an H -control in a Newton-CG method requires the solution of two
additional problems for x = q, and x = dq to evaluate the expressions needed

r(¢,0q),  and (g, 7q),
and therefore essentially increases the computational costs.

For the following calculations we use the described approach to solve the H -control problem.
At the end of this remark we want to emphasise that the described modification to treat
H?2-Dirichlet controls is carrying easily over to the case of time-dependent equations. Then
we have to solve additional equations of the above mentioned form in each time step.
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5.1. Survey of Dirichlet Control Approaches for Elliptic Equations

As mentioned in the work of Of [82] for the example problem with

a=(a?+y?)
we see very different behaviour for the solutions with respect to the mentioned choices of
the control space. The left image of the upper row of Figure shows the solution of the

=

and f(x)=0

L2 versus H12

0.1 02 0.3
‘I H\II\‘\II

0.0014 0.3949

_—

H12 semi norm
216 217 218 219 22 09] \2\“2|2\HHH2|‘|2\3\H||224 2.25

2.151991 2.25369

Figure 5.2. Calculation with o = 11 Upper row: Left: L?-control. Right: H 3-
control. Lower row: H 2-seminorm control. The last image was a
little bit rotated for a better visualisation.

L?-control. Here the solution tends to zero in the corner points. This is due to the discrete
control equation

g
@ (qn, Plog = (Onzh: P)og = (2, Onp)og + 3 (2n,p) =0
and the fact that it vanishes in the corner points of the boundary.

The right }l)icture of the upper row of Figure shows the result for the calculation with
the full H2-norm in the cost functional. It is directly comparable to the L2-solution (left
image) since we use the same color scale. Obviously the unnatural behaviour that the
solution declines in the corner points is avoided, due to the appropriate mapping behaviour
of the Steklov-Poincaré operator, although there is a slight curvature downwards in the
corner points.

The image in the lower row of1 the figure shows the solution of the problem which uses only
the seminorm part of the Hz-norm in the cost functional. It has larger values (see the
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change of the color scale) due to the fact that there is a singularity in the corner point
(0,0).

However, we also want to emphasise that this effect becomes more irrelevant as the control
term tends to zero, due to the choice of a smaller «. This is also clear observing the control
equation. The effect is documented in Figure In the right image we see the L?-solution,
which represents the singularity in the corner (0,0) more appropriately, and shows only a
slight decline in the corners.

ddd

hl2 seml hl2
HIH‘HHIHH|IIHIHH‘H\ HII|IHIHIH‘HHIHII|IIHIHH‘H\
1.2919 H 11.6488
Figure 5.3. a = 0.001. Left: |- |H%(BQ)' Middle: || - ”H%(an)' Right: || [|z20)-

For better visibility we rotate all three images by about 180 degrees.

Conclusion

We want to sum up this section to fix ideas for our further considerations. We have seen
that the theory of Dirichlet controls is a delicate matter due to the appropriate choice
of function spaces. For the very weak formulation we find a good access to this topic,
but from the numerical point of view the very weak formulation is not appropriate for
implementations with bilinear finite elements.

Therefore, we searched for a theoretically justified approach to treat Dirichlet conditions,
which is moreover very easy to implement. We found such an approach in the penalised
Neumann method. The approach based on Robin-type control problems with a penalisation
parameter p. For varying u we obatin a sequence, which converges for small values of u to
the desired solution of the very weak formulated Dirichlet-control problem.

Although this approach is reliable from a theoretical point of view the method gets
troublesome from the numerical point of view, if we want to choose a very small penalisation
parameter u, since the appearing discrete systems are no longer appropriately solved. We
can fix this issue by enhancing the boundary bilinear form by stabilizing terms described
in Chapter , where a stabilisation parameter § is introduced.
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Then we can even send p to zero in the state equation and work with a Nitsche formulation
for the implementation of the Dirichlet boundary data.

So it seems to be appropriate to deal with Dirichlet controls by weak implementation of
boundary data, since this is easy to handle from the numerical point of view, and the
control is entering the optimisation formulation in a “natural” way.

Finally we discussed the choice of the appropriate control space from the numerical point
of view. We saw that for a huge influence of the control term steered by the regularisation
parameter o we obtain very different solutions. Here the choice of an H3 -control, which
can be realised by the Steklov-Poincaré operator, seems at first glance more natural, at
least in the vicinity of corner points. The drawback is the increased computational effort
for the numerical realisation. In the case of small values for « the effect becomes more
and more negligible. Hence, in situations where the influence of the control costs (or the
regularisation) becomes small or the resolution of corner points is negligible it seems more
appropriate to work with an L2-control.

5.2. Dirichlet Control for the Time-Dependent
Convection-Diffusion Equation

The presented topics for the very simple elliptic equation mentioned in the section before

will now be carried over to the time-dependent convection-diffusion equation.

Starting point is the minimisation of the cost functional

J(u, )—Jd

N’\Q

T
/ (g—q"),q—q")dt (5.21)
0

and as side condition we want to use the time-dependent convection-diffusion equation.

Written out, the strong formulation reads

ou —vAu+ B -Vu=f, in £,
u=q, on 912, (5.22)
u(z,0) = u’, in £2.

For j’d(') we can choose an appropriate data term. Here we will work with

T
=5 [ llutt) — a3 .
0

where the target function u € L?(0,T; L?(2)). Furthermore, we will set ¢* = 0 for the
further theoretical discussion.

l\.')\}—t

Moreover, we assume throughout the whole section that 2 is a convex polygon in R2.
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The existence theory is again given by the results of Chapter as long as we can define
an appropriate solution operator

S:0— X, q—u=.5(q).

This depends both on the structure of the transport field 8(¢) and again on the choice
of the control space Q. For the latter we have essentially the same possibilities as in the
section before.

Remark 5.16 ( Ha- Controls).

From the theoretical point of view it seems at first glance again more appropriate to work
with HZ-controls since this is the appropriate space to achieve a meaningful formulation
of the problem. Unfortunately the numerical effort becomes again expensive due to the
fact that we have to solve an additional stationary Laplace problem in each time step to
realise the mapping of the Steklov-Poincaré operator. However, the solution process can
be performed in general as described in Remark[5.15 in the framework of the Newton-CG
method by solving the necessary additional problems. Hence, in the case that the effort is
justifiable (e. g. the number of system components n is essentially greater than the number

of controls m (n > m)) it is easy to realise an Hz -control.

If each system component has a boundary control the numerical effort is doubled. Since
this is the case in the following we skip a further discussion of Hz-controls and focus on
Dirichlet and Robin controls with g € L*(02). That means in particular that A = 1.

Again we will argue with the help of the very weak formulation in the case of Dirichlet
controls in L?(042) and discuss the existence and uniqueness of a solution. Afterwards,
we use this to prove the existence of a unique solution of an optimisation problem, which
involves the very weak formulation as side condition.

5.2.1. Very Weak Formulation

We follow Marusic-Paloka [74] and use very weak formulation:

Weak Formulation 5.17 (Very Weak Formulation).
A function u € L? (O,T; LQ(Q)) is called a very weak solution if it fulfils

T
/ £), 8p(t)) — v (u(t), Ap(1)) + v ((t), Dnp(t)) oo,
0

T
~ (B it u(t) Yt = [ (10).00) dt + (s, 4(0))
0

for any test function

(pE.)E:{U : UEL2(0,T;‘7), and ﬁtUELQ(O,T;V')},
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with V := H*(2) N H{(2). Furthermore, we assume
u € L*(0),
fer?(0,1;12(%)),
g€ L*(0,7;L%(09)),
B L2 (0,75 Hy (2)") N L (0,75 L(2)") .
Remark 5.18 (Initial Value u°).

The space V is dense and continuously embedded in L?(2). Hence it defines the Gelfand-
Tripel (see Wioka [105])

VL) L.
Like in Remark we can argue that X is continuously embedded in C ([O, TY; LQ(Q)). In
this sense the initial value is meaningful.

Remark 5.19 (Solenoidal Transport Fields).
A simple calculation shows

— (V- B,up) + ((B-n)u, )y, = (B Vu,0) + (B Vo, u).

Using the assumed solenoidal character of the transport field and ¢ € H?(12) NH () yields
the identity

(B'VU,QO):—(B'VQO,U),

which was used in the very weak formulation. Moreover, we have for B € H}, (£2) and
u € H(£2) the relationship

(B-Vu,u) == {((B-n)u, u>60. (5.23)

DN =

The aim is now to prove the existence of a unique minimising pair (i, §) of the following
optimisation problem.

Optimisation Problem 5.20.
Find (4,q) € L?(2) x L?(012) so that the cost functional

T T
1 _ o
Iq) = 5 [ =l de+ 5 [1a(O)2(a0, dt
0 0
is minimised, under the condition that u fulfils the (very) Weak Formulation .

We will need the existence theory of the very weak solution u € L? (0, T L2(_Q)> for a
given q € L? (0, T; L? (8(2)), which is given by the following theorem.
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Theorem 5.21 (Existence of a Very Weak Solution).
The domain (2 is a convex polygon. For the diffusion coefficient we have 1 > v > vy > 0,
with vy € R\ {0}. Then there exists a unique solution L> (O,T; LQ(Q)) of the very weak

formulation, under the assumption of appropriate reqularity of the data (e. g. like Weak

Formulation .

Proof. The proof works like the one for the heat equation in the article of Marusic-Paloka
[74]. We will give a sketch of the basic steps.

1. We introduce an auxiliary problem by the following weak formulation:

Weak Formulation 5.22 (Equation ((5.22)) with Robin-type Boundary).
The data has the same regularity as in the Weak Formulation[5.17. We seek a function
u € L? (O,T; H1(0)> such that

T
/{ — (u(t), 9p(t)) + a(u(t), ¢(t)) + bq(t); u(t), @(t))} dt
0 T
- (“07@0(0)) :/(f(t)wo(t)) dt
0

forallp € X :=3v:velL? (O,T; Hl(Q)) and Oy € L? (O,T; (HI(Q)>/)} , with
the bilinear forms

a(u, ) = v(Vu, Vo) + (B - Vu, ¢),
1

b(Q7u7 SO) :'i (U —q, 90>8(2 - 5 <(,B . n)“? 90>6_Q7 with JUAS (07 1]

2. By the standard Galerkin method (cf. Section we can proof existence and
uniqueness of solutions of the last equation. Therefore we need appropriate energy
bounds, which are given by testing with the solution w,(t) itself. We obtain for
almost every t € [0, T

3 3710 O + PP )18 + a6 oy = (F0 ) + 7 Gat) a6

—=:Lhs

due to equation (5.23)). By the modified Poincaré inequality already mentioned in
formula (5.6) and Young’s inequality we obtain

1
Lhs < C| f(?)]]2 (\|V“u(t)||2 + ||u,u(t)||L2(BQ)) + ;H‘Z(t)HLQ(BQ)||uu(t)HL2(BQ)
2C? v 2 1
< THf(t)H% +t3 (HVuu(t)H% + HW(QHL?(@Q)) + ;H(I(t)”%?(aﬂ)

1
+ @Huu(tmzﬁ(an)-
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Since we assumed 0 < vy < v <1 and p € (0,1] we have also v < % Moreover, by

the inequality (¢ + d)? < 2¢? + 2d? we can then derive by further estimation of the
right hand side

2C?|f(@))I3 | 1 2 v 2, 1
< 22 WAWN2 |~ Z il
Lhs < ” + M”Q(t)HLQ(&Q) + 4||Vuu(t)Hz + QMHUM(LL)HL?(@Q)

and finally after absorbing the terms involving u into the left hand side

1d 3v 1 2C? 1

5 7 IOz + I Vua @13+ ﬁ”“u(ﬂ”?‘ﬂ(an) < 70||f(t)H§ + ;HQ(UH%%M)‘
(5.24)

Estimation of all necessary energy bounds follows by the same techniques we already

presented in the first chapter of this work. Hence, we obtain the existence of a unique

weak solution of the auxiliary problem in the Weak Formulation [5.22]

wy € L2 (0,7 HY(2)) 1 L (0,7 LA(82)) .

Moreover, we directly obtain the estimates

T T

1
[l By dt <0 and [ 1VuOlaq dt < O (529)
0 0

The uniqueness also follows from the energy bound ([5.24]) for the difference of two
solutions v and v with the same data v, f and g, since the convection-diffusion
equation is linear.

. We need a further estimation in L?(0, T'; L(2)) for the sequence u,. We can generate
such an estimate by using the following duality argument
—OA(t) = vAX(t) — B - VA(t) = uu(t), in (0,7] x £2,
Mz, t) =0, on (0,7 x 942,
ANz, T) =0, in £2.
Testing the last equation with wu, and integrating over space and time yields after
integration by parts and using the above boundary and initial conditions of A
T T
J @B de = [ { = @A ua0) + v (TNO, Tuu(0) + (8- Tuu (1), A1)}t
0

0
T

—/V<6n)\(t),u#(t)>89 dt.

0

Now we can use the Weak Formulation and again that A\(¢) vanishes on the
boundary

T T
J @3 dt = [ { (F0.20) = (@uA®), ut)) g } it + (4,200
0 0
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5. Boundary Control Problems

With the first estimate in equation ([5.25)) and the estimate (2.3)) from Theorem

we can now easily deduce the uniform bound

T
[l 13 de < c. (5.26)
0

Here we need the regularity assumptions on the domain (convex polygon) and that
B € L= (0,1;12(2)?).

4. However, since the last mentioned bound is uniform with respect to u, we have the
weak convergence of a subsequence which we again denote by u,

u, —u weakly in L*(0,T; L*(£2)). (5.27)

Together with
u, —u weakly in L*(0,T; L*(952)), (5.28)

which we derived by the first estimate in (5.25)), we can now show that u, converges
to a solution of the very weak formulation (see Weak Formulation [5.17)).

Therefore, we use the test space L? <O,T; H?(02)N H&(Q)) c L? (O,T; Hl(Q)) in
the Weak Formulation [5.22] After spatial integration by parts we obtain

T
/ £),00(8)) + v (w(£), Ap(8)) + v (1, (£), Bnp ()
0

T
~ (B To(t)un(t) } dt = [ (F(0)0(t) dt+ (4, (0)).
0

All convergence processes in this equation can be treated by the properties ([5.27))
and ((5.28)), except the convergence to ¢ on the boundary. However, this convergences
can be proven in the following way.

By the Weak Formulation [5.22] we get after a few transformations with the help of
the identities of Remark [5.19]

T

T
[ un®) = a(e)p®)) e = [ { (£(00(0) = v (Vi (1), V()
0 0
— 5 (B Vu(t),(0) + 3 (B(O) - V(1) s (1)

+ (wa(8), B (1) | dt = 1 (u”,(0))

for all ¢ € L? (O,T; H1(0)> Now we use again that 8 € L™ (0,7; L*°(£2)), employ
the general Poincaré inequality (5.6 and afterwards the inequalities in formula ([5.25))
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5.2. Dirichlet Control for the Time-Dependent Convection-Diffusion Equation

and p < (/i since p € (0,1] to obtain
T

/(uu(t) —qt). (D) di| < VEC =0, for p—0, Ve L? (0.T:H(2)).
0

Hence,
uu’m — g weakly in L%(0,T; L2(912)). (5.29)

. The uniqueness can also be obtained by generating an L? a-priori bound due to a
duality argument very similar to the above presented technique. The course is the
following:

Consider the problem
—OA(t) —vAXNE) — B - VA(t) =u(t), in (0,T] x 2,
Az, t) on (0,T] x 042,

t)=20
Mz, T)=0 x 2.

Since u € L? (0, T; LQ(Q)> we have due to Theorem
A€ L20,T; H*(2)) N L>®(0,T; HY(2)), and 9\ € L*(0,T; L*(12)).

It is now easy to deduce the following a priori bound

T T
JIu®I3 dt < [ ¢ (a3 +1118) d (530
0 0

by the techniques presented in this proof.

If we now assume that we have two solutions u; and ug in L?(0, T; L?(£2)) of the very
weak formulation for the same set of data the difference of these solutions w = u; —usg
must solve the homogeneous problem. Hence by the estimate we obtain the
uniqueness, since

T
J @)1 dt = 0.
0

Remark 5.23 (Connection to the Penalised Neumann Method).

The auziliary problem introduced by the Weak Formulation [5.23 was mentioned before as
penalised Neumann method for the implementation of weakly imposed Dirichlet data (cf.
Chapter . There we suggested a stabilised version of the boundary bilinear form, namely

vl

_u+5
vud

RO "
o+ 5 <8nu,6n<p)89 2(M+ 5)
op

+ m <(:3 “n)u, 8n‘P>aQ

b(gp;u, p) = (<8’n«u7 @)a(z + (U — d4p, 8n<P>aQ) + <U — 4D, 80>a(2

1
TR
<(ﬁ “n)u, 90>a(3
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for the numerical approximation of Dirichlet data.

For the modified form we could even send i to zero, as long as we choose an appropriate
0 > 0. The numerical method behind this is Nitsche’s technique for the implementation of
weakly imposed Dirichlet data.

In view of the above proof Nitsche’s method seems somehow connected to the approximation
of very weak solutions.
Now we are able to justify the following theorem, which provides us with the existence of a

unique minimum of Optimisation Problem

Theorem 5.24 (Existence of a Minimum).
There exists a unique minimum

(1, 4) € L* (o,T; LQ(Q)) x L2 <O,T; L2(8Q)) ,

which minimises
T T
1 —n2 « )
Iaq) =5 [ =l de+ 5 [1a(O)2(a0, dt
0 0

subject to the Weak Formulation [5.17
Proof. Theorem yields the existence of a unique solution operator
S:L200) —» L*(), q—u=5(q).

This operator is linear and we can introduce the reduced cost functional

T T
, 1 _ a
i@ =5 [ISta) =l di+ 5 [ la)F200) dt
0 0

Since the cost functional has the same structure as in Example [4.§ we can apply Theorem
and Remark [£.7) and obtain directly the statement of this theorem. O

5.2.2. Penalised Neumann Approach

In the last section we saw that the penalised Neumann formulation for the convection-
diffusion equation converges to a solution of the very Weak Formulation [5.17] with
tending to zero. As in the case of the steady Poisson problem we want to formulate
now an optimisation problem with the Weak Formulation as side condition. After
showing existence of a unique solution pair (u,, g,) of this problem we will investigate the
question whether the sequence of minimising pairs in u is converging to a solution of the
Optimisation Problem with the very weak formulation of the convection-diffusion
equation as side condition.

We consider the following optimisation problem.
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5.2. Dirichlet Control for the Time-Dependent Convection-Diffusion Equation

Optimisation Problem 5.25 (Robin-type Boundary).
Find (uy,q,) € L? (O,T; Hl(Q)) x L? (O,T; L2(a(z)) such that the cost functional

T T
1 _ «
T an) = 5 [ e = a3 dt + 5 [ 101z o) d
0 0
is minimised, under the condition that (uy,qu) fulfils the Weak Formulation .

For this problem we formulate the following theorem.

Theorem 5.26 (Minimum of the Robin-type Aproach).
For every p, with 1 > u > 0 and v with 1 > v > 0, there exists a unique minimum

(0, qu) € L2 (O,T; Hl(Q)) x L2 (0, T: L2(8(2)) :

which minimises

T T
1 _ leY
I(upy qu) = 5 [ Mup(®) = all3 dt+ 5 [ lau®)17200) dt
2 2
0 0

subject to the Weak Formulation[5.23.

Proof. Since we have unique solvability (see the second point in the proof of Theorem [5.21]),
we can introduce a solution operator and argue as in Example and Theorem O

Remark 5.27 (Regularity of the Vector Field ).
We want to emphasise that the high reqularity requirements

B € L2 (0,T; H, (2)") N L (0,5 L(2)")

can be weakened in this case, since we need L (0,T; L>(£2)") only for the duality argu-
ments in the existence theory of the very weakly formulated Dirichlet problem. For the
existence and uniqueness theory with the above described Robin boundary condition it is
completely sufficient to require only

B e L?(0,T; Hy, (2)").

Remark 5.28 (Advantage).

The big advantage of the above mentioned optimisation problem is, beside its simplicity
from the theoretical point of view, that it is very easy to handle from the numerical point
of view. We can directly use the Newton-CG algorithm formulated in Chapter[{.2.3. The
arising PDEs have a similar structure and can be solved very efficiently with the implicit
Euler or the Crank-Nicolson scheme in time and simple bilinear finite elements in space.
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5. Boundary Control Problems

5.2.3. Convergence

We will now prove that the sequence (uy, g, ), of solutions of the Optimisation Problem
[5.25] converges to a solution of the Optimisation Problem That means we can use
the penalised Neumann approach for an efficient calculation of an approximation of the
Dirichlet control problem in Optimisation Problem

We need therefore the optimality systems of the Optimisation problems and
Optimality System 5.29 (Optimality System of Optimisation Problem [5.20]).

A~

A solution (4, 2,q) of the following three equations characterises the minimum (4, q) of the
Optimisation Problem[5.20.

1. State equation: Find u € L? (O,T; LQ(Q)), which fulfils

T
J{= @)~ v (0, 80) 4 v(0. 009000 (B- Vo) } e
0
T
S GZ0) :/(ﬂ p) di
0
for all p € X.
2. Dual Equation: Find z € X such that
T T
[{@on+v@89+ -V fa=- [w-up) d
0 0

is fulfilled for all p € L*(0,T; L?(£2)).
3. Control Equation:

T T
a/(q,p>69 dt = V/(@nz,p>89 dt, Vpe L*0,T;L*(00)).
0 0

Optimality System 5.30 (Optimality System of Optimisation Problem [5.25]).
A solution (ty, 24, qy) of the following three equations characterises the minimum (4, 4,)
of the Optimisation Problem [5.25]

1. State equation: Find u € L? (O,T; HI(Q)>, which fulfils

{ = (w,000) + v (Vu, V) + (B Vu, ) + ; (u=q,9)90

1

T
_ §<(6’n)u’¢’>a(2}dt_ (uo,go(())) = /(f7 p) dt
0

forall p € X.
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5.2. Dirichlet Control for the Time-Dependent Convection-Diffusion Equation

2. Dual Equation: Find z € X so that

T

J{- @200+ 0 (V2 V0) = (B V2.0 + 7 2. hag
0

+

| =

T
(B-m),¢)pq | dt = [ ((ult) = u(0) ¢(1)) d
0

is fulfilled for all ¢ € L?(0,T; H'($2)).
3. Control Equation:

T T

1
/(q Pan dt = M/ z, 0o dt,  Vp € L*(0,T; L*(012)).
0 0

We will show that the sequence of triplets (u,, 24, qu), converges to a solution (u, z, q) of
the Optimality System [5.29] and therefore to a solution of the Optimisation Problem [5.20]
for 4 — 0. For this we need several convergence properties, which we prove in the next
theorem.

Theorem 5.31 (Convergence of the Sequence (u,, 24, q,)).
With
(wps 20 4) € L2(0,T; H' (£2)) x L*(0,T; H' (£2)) x L*(0,T; L*(942))
we denote a solution of the Optimisation Problem subject to the penalised Neumann

formulation of the convection-diffusion equation by Theorem |5.20. The resulting sequence
in W has a convergent subsequence with

qu—q weakly in L* (0,T; L*(992)) , (5.31)
uy, =0 weakly in L? (0, T, L2(0)> , (5.32)
w, =@ weakly in L (0,T; L*(952)), (5.33)
z, — 2 weakly in L* (O,T; H&(Q)) , (5.34)
and
zy, — 2 weakly-* in L™ <O,T; Lz(Q)) . (5.35)

Proof. We present the proof in four steps. In principle it is an extension of the proof of
Theorem to time-dependent problems.

1. To prove this we consider the state equation in the Optimality System [5.30] with
¢ = 0. Thus we have the solution pair (@,0) which yields a functional value J(w,0)
which is either equal to or greater than the one belonging to the minimising pair
(wu, qu) of the optimisation problem mentioned in Theorem That means

J(u#, Qu) < J(ﬁ7 0)
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or after the application of a view elementary estimates

2/mu mw+lﬂm anﬁ</w Mﬁ+/wmﬁ(m®

Hence, we need an estimate for |||, » (0.7:L2(2))" We can easily deduce this inequality

by testing with ¢(¢) = @(t) in the Weak Formulation of the state equation with
q(t) = 0. We obtain

T T
J{GH 101 + oIV + a0 } it = [ (FO.a0) dt (53)
0 0

and estimate with the general Poincaré inequality ([5.6)

T

[ (re).a) at <

0

{CIF@aIIVa)ll + ClFOaE®) | 200) } dt

v C
< (LS 113 + L1vai3 + SIAB+ 10l o } at

D\q O\H

Since v, u € (0, 1] we obtain

T

[ (0. dt <

0
Thus we obtain for equation (5.37))

{CIFOI+ 1920 + 5 1a(Olla0) } .

T
d 1 C
!d D13+ IVEOIE + 150 Faqany dt < [ 17013

0

After integration of the first term and applying Poincaré s inequality (5.6 we then
receive

T

T
- 1, C
/\ Mﬁ</@WMM%MMM@wﬁﬁSCHw%+/ywwﬁﬁ
0

(5.38)
Using the last inequality in formula (5.36)) we find

T
C2 _
2/muHmm<ewW@+;/wmﬁw+/w@ﬁﬁsqwm.ww>
0 0

Since this bound is uniform with respect to u we obtain the following weak convergence
of a subsequence
qu — ¢ weakly in L*(0,T; L*(012)).



5.2. Dirichlet Control for the Time-Dependent Convection-Diffusion Equation

. Moreover, we have
/ (83 e = / e (8) = (t) + a(8) 3 dt < 2 / Ju(8) = @) 3 + 203 de
Hence, we find with the inequalities in (5.36]) and ([5.38]) the bound

T
Jla @I dt < Co g
0

which is also uniform with respect to p. That means we found the property ([5.32]).

. Starting with the Weak Formulation [5.22] of the state equation we can obtain by a
similar argumentation the following a priori bound

T
d 3v 1 C
)13+ IV @)3 + w200 dt < = [ @15} dt
dt 2 I v

T
Cs
+22 [ Ol dt.
0

(5.40)
Here we can also bound the control term on the right hand side, due to formula

(5.39) and obtain the bounds
Cow,friu
J Tl o0y < Cospan. ond [ [Fufde < =008 (5
0 0

That means w,, is uniformly bounded in the L?-norm on the boundary and we have
therefore
u, — @ weakly in L*(0,T; L*(952)).

. Finally we discuss the uniform boundedness of the dual variable z,. Therefore, we
test the dual equation in the Optimality System with z, itself and use the
identity (5.23)). We get then

T
1d
- [ gl dtﬂ/l\m )13 dt
0
1 T
4 / Iy dt = [ () =500 2,(0) dt (5.2
0 0
T
< [ foutt) = 5Ol (D)l dt = R
0
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We use Youngs inequality for the right hand side and afterwards the Poincaré
inequality ([5.6)

T
Ris < [ {Slhun(t) = a3 + 51200 B} de

0
T

< {01501 + & (193013 + D)) }
0

C

By choosing k = 3 we deduce

T T T
C _ v 1
Rhs < o= [ lu, () — a3 dt + 5 [ 195018 dt+ - [ 1200300 dt
0 0 a 0

since v < i for v, € (0,1]. The first term on the right hand side is uniformly
bounded with respect to p due to the formulas (5.37) and (5.38]). Using the last
estimate for the right hand side in (5.42)) we end up with

T T T
d 1
- [ Gl de+v [ 192013 @t + - [ 120100 8 < Copna
0 0 0

The first term of the left hand side yields

T
d
—/aqu(t)H% dt = —|[lz.(T)II3 + 12013 = =(0)]13,
0

since the initial value for the backward integration is zero. Thus we have the following
bounds:

T
JI92013 dt < Cp00
0

T
[ 1O 00y 6t < HCp 0,00
0

lzu()ll2 < Crau0,as  (by asimilar argumentation).

Since all these bounds are uniform we obtain the following convergence properties of
subsequences

2z, — % weakly in  L? (O,T; H1(9)>
=z, — % weakly in L? (O,T; H&(Q))
2, —0 in £?(0,7; L*(092))

and

/
2y — % weakly-x in <L1 (O,T; L2(Q))> : 0
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5.2. Dirichlet Control for the Time-Dependent Convection-Diffusion Equation

Now we want to show that the sequence (uy,z,,qu), converges to a solution of the
Optimality System and therefore characterises a solution of the Optimisation Problem
[5.20] with the very weak formulation of the convection-diffusion problem as side condition.

Theorem 5.32 (Passage to the Limit). The unique solution triplet (w,, 2u,qu) of the
Optimality System converges by the convergence properties of Theorem to the
solution of the Optimality System [5.29 for p — 0.

Proof. We discuss one after another the convergence in the state, dual and control equation.

1. The convergence of the state equation works like in step 4, in the proof of Theorem
[5-:24] Only the convergence to the control term needs a slight modification, since
here g, depends on p and is therefore also involved in the convergence process

T

T T
/<“u —q780>arz dt < /<“u _quv‘»0>arz dt"’/@u —q, 90>an dt.
0 0 0

By the convergence property in ([5.31)) the second term on the right hand side vanishes.
By analogous estimates as in step 4 of the above mentioned proof we derive

T

/<uﬂ—qu7¢>ag dt| < \JuC —0 for pu—0,
0

and finally

T
(U, ©) gy dt —>/<q, Voo dt, V€ HY(92).
0

2. For the convergence in the dual equation we start with the weak formulation

T

1
J{= 00 +v (72 V0) = (8- V240) + 7 (P
0

_|_

DN |

T
<(/3 ) n)zuv (P>3Q } dt = / (Uu —u, QO) dt
0

for all ¢ € L? (O, T;H 1((2)) Now we choose the test functions from the subspace
X+ C L2 (0,T; H(92))

with
X* = {v cv e L? (O,T; H&(Q)) and v € L? (O,T; LQ(Q)) }
That means we find
T

/{ — (Orzp, ) + v (Vzu, Vo) — (B - Vzyu, @) } dt = / (uy —a, ) dt.
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Since the equation is linear passing to the limit is standard. We use the properties
n (5.34) and (5.35) to pass to the limit on the left hand side (remember 8 €
L (0,T;L>*(£2))). The convergence on the right hand side can be treated by

formula (5.32). We find

T T
/ (02, 0) + v (V2, V) — (B- V2, ¢) / (5.43)
0 0
This formulation is equivalent to the classical formulation
—02(t) — AZ(t) — B(t) - VZ(t) = u(t) — u(t), in 2 x (0,7,
z(t) =0, on 012 x (0,77, (5.44)
2(T) =0, in 2

due to the usual regularity theory for parabolic operators, since in this particular
case z(T) is zero and @ — @ is in L? (0, T; L2(9)>. That means we have the results
of Theorem [2.0] and obtain the higher regularity

£ L2(0,T; HA(R)NHY(2))  and 8,2 € L2(0,T; LX(92)),

and the estimate

0<t<T

T
ess sup [|4(0) oy + [ {180 o) + 0203} dt < © / Ju(t) = a(t) 3 dt.
0

To sum up, we found
e L2(0,T; H(2) N Hy(2)), and 8,2 € L? (0,73 L2(2)) < L (0,73 V"),

with the dual space V' of the space V = H?(2) N H}(£2). Hence, 2 is in X and the
weak formulation of the dual equation in the Optimality System is equivalent to
the one in equation ([5.43). Thus Z must be the unique solution of the dual equation

in the Optimality System

. Now the convergence in the control equation remains. We start with the weak

formulation of the perturbed problem

T T
1
oz/<qu,,0>8(2 dt = —M/<Z“,,0>8_Q dt, Vpe L? <O,T; L2(8!2)).
0 0

The convergence on the left hand side can be obtained by the property (5.31)).

For the right hand side we wish to show

T
‘/<an2 — (;zu> ,p> dt‘ —0, VpelL? (O,T; L2(8(2)) .
0 on
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We multiply the classical equation (5.44]) with an arbitrary function of the subset
L%(0,T; HY(02)) of L%(0,T; L?(£2)) and obtain after integration by parts

T T
— [{@2.0) +v(V2,0) = (9u2. 0)p — (8- V2,0) } dt = / (=) dt.
0 0

By this equation and the dual equation in Optimality System [5.30| we find

T T T

O/<anz+’j’;,<,o> dt| < /(C{%(é—zu),g@) dt| + /(V(zu—z),w) dt

o0 0

(B-V(zu—2), V) dt

(@(t) = uu(t), (1)) dt

S—_ o S Y— e

_l’_

N

T
/ (B- nzmgoagdt.
0

It is easy to verify the convergence to zero of the first four terms on the right hand
side by the properties of Theorem The last term converges to zero since 3 is in
L*> (0,7 L>(£2)) and z, converges weakly to zero in L?(0,T; L?*(812)). Hence, we

have
T, T
/u<zu,p>89 dt %/<8nz,p>69 dt,
0 0
with a test function p = p|gg in L? (O,T; L2(8Q)>. O

Since the triplets (uu, 24, q,) and (u, z,¢q) characterise unique solutions (u,q,) and (u,q)
of the perturbed Optimisation Problem [5.25] and the Optimisation Problem [5.20] we can
state that the solution pair (u,,q,) converges to a solution of the Optimisation Problem
[5.20] with the very Weak Formulation [5.17] as PDE side condition. That means that also in
this case we can use the perturbed approach to approximate Dirichlet controls in the sense
of the very weak formulation.

After a short numerical example we will discuss a few modifications of the problem and
their influence on the presented theory.

Test Example

We present a numerical example for the convection-diffusion equation which is based on the
Example We obtain the right hand side f and the target function u(t) by choosing
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the solution

(x(1—=2)+y(l-y),

ﬂZ;D(CE(ley(ly)),

5= t(t— Day(1 - 2)(1—y)
and we evaluate the equivalent classical formulation of the Optimality System for the
further assumptions

v=1  B=(@y—0505—xz)", a=0.1

on the data. The computational domain {2 is the unit square (0,1) x (0,1) and the time
interval [0, 1].

Table 5.4. Results for a calculation with p = h? on different meshes. The norms
are evaluated at the midpoint of the time interval t* = 0.5.

cells  [lun(t*) —a(t*)[2  (rate) [lzn(t*) —2(t")[2  (rate) [lgn(t*) — q(t")llL200) (rate)

4 1.62-1071 4.01-1073 7.56 107"

16 3.69-1072 (2.1) 1.18-1073 (1.8) 1.92-1071 (2.0)
64 9.39-1073 (2.0) 4.36-1074 (1.4) 4.82-1072 (2.0)
256 2.37-1073 (2.0) 1.68-1074 (1.4) 1.21-1072 (2.0)
1024 6.05-10~* (2.0) 1.02-1074 (0.7) 3.19-1073 (1.9)
4096 1.57-107% (2.0) 8.75-107° (0.2) 8.63-104 (1.9)

We calculate the solution with the Newton-CG method presented in Chapter .2l The
occurring boundary bilinear form is given by the Robin-type approach

blgsus ) = ; (u—q,9)90 — % ((B-n)u, )50

to realise the discussed methodology of the section before. For the first numerical study
we use the parameter choice u = h?. Moreover, we use the Crank-Nicolson scheme with a
time step size k = 0.005 for the temporal discretisation.

The development of the numerical error for this configuration is given in the Table
The example indicates that the error development under mesh refinement is analogous to
the case of the time-independent Laplace problem. Furthermore, we visualise the state
variable and dual variable for different time points in the Figures [5.4] and

We want to emphasise that the problem becomes troublesome from a numerical point of
view, when p becomes too small. This is reflected by an increasing number of Newton-steps
in the optimisation process to obtain a certain tolerance for the Newton residual. A remedy
for this is to use the bilinear form given in Remark to stabilise the numerical scheme.
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ut.x,y)
025 05 o|.75||||}w

0.00457738 1.24897

Figure 5.4. Calculated state uj at five different time points.

z(t,x,y)
_O'O\;l\ -0.008 ||

-0.01563 0.000873

Figure 5.5. Calculated dual solution z; at five different time points.
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Setting 1 = 0 and & = d), we obtain a Nitsche-type weak implementation of the Dirichlet
control.

In Table we document the error development under mesh refinement for this parameter
choice and observe also the expected properties.

At first glance an exception to this seems to be the dual solution for both parameter choices.
However, the errors in the dual solution are small and we apparently observe here the
temporal discretisation error.

Table 5.5. Results for a calculation with § = % on different meshes. The norms
are evaluated at the midpoint of the time interval t* = 0.5.

cells  [lun(t*) —a(t*)[2  (rate) [zn(t*) = 2(")[2  (rate) [lgn(t*) — q(t)l|lL200) (rate)

4 2.52-1072 4.28 1074 9.00 - 102
16 7.96-1073 (1.7) 1.17-1074 (1.9) 2.82-1072 (1.7)
64 2.00-1073 (2.0) 6.78 -107° (0.8) 8.07-1073 (1.8)
256 4.89-10~* (2.0) 7.41-107° (-) 2.16 - 1073 (1.9)
1024 1.17-107% (2.1) 8.02-107° (-) 5.40 - 10~* (2.0)
81-10~ 2.1 2310~ — 61-10~ 1.8

4096 2.81-107° 8.23-107° 1.61-1074

Remarks on other Data Terms

The proof of the above mentioned results depends essentially on the structure of the cost
functional and therefore also on the type of the data term. In the following we are mainly
interested in comparing the state function to measurements given in a finite number of
time points

N
=~ 2
> llult) — alf3.
k=1
Hence we want to discuss briefly the theoretical background of this case.

To get started we concentrate on the case of two given measurements 4 and 1, and the
aim is to minimise the cost functional

T
1 _ Q
Tu,q) = 5l = @l + 5 [ 100 di (5.45)
0

subject to an appropriate formulation of the convection-diffusion equation with the initial
value u(tg) = tp in L2(£2).
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5.2. Dirichlet Control for the Time-Dependent Convection-Diffusion Equation

Remark 5.33 (Boundary Identification).

The interpretation of this problem is two- fold. On the one hand we can say that we control
by « the influence of the time dependent-boundary function to obtain a function u(x,t)
which is as close as possible to the second measurement.

On the other hand we can also interpret this as a boundary identification problem. The aim
is to minimise the data term and to send a to zero to neglect the influence of the control.
However, without the control term this is an ill-posed problem. So the control term is very
important since it acts as reqularisation term and is necessary for a well-posed formulation
of the problem. In this sense we are not controlling anymore, since the task switches to the
evaluation of a good reqularisation parameter which allows for a very good fit in the data
term.

Obviously Theorems with the very weak formulation of the convection-diffusion
equation and Theorem [5.26] with the penalised Neumann approach are still valid after
a switch to the cost functional in equation (5.45)) (this was discussed in Example {4.8)).
Hence, we have also the existence of a unique (u,q) € L?(0,T; L?(£2)) x L*(0,T; L?(02))
of the Optimisation Problem and (uy,q,) € L?(0,T; HY(£2)) x L?(0,T; L*(812)) of
the Optimisation Problem [5.25 when we change the cost functional to the one in formula
(15.45)).

We would again prefer to work with Robin-type conditions, since it is simple to handle. The
first question is whether the above stated results of convergence of the sequence (u,q,)
is still valid if we modify the cost functional in the mentioned way. Thus, we have to be
careful, since the cost functional influences the argumentation in the proof.

However, the question becomes more or less obsolete for the discussion since we change
our optimisation paradigm as we mentioned in Remark The aim is now to identify
boundary conditions in such a way that we find a function w(t) which fits the target at the
end time point as good as possible. Hence, we are not limited to Dirichlet control problems
and can tackle this problems directly with the presented Robin-type control problems
regardless whether the result converges to an appropriate Dirichlet control problem or
not.

Nevertheless we will now briefly discuss the changes for the convergence proof to see that
both formulations are closly connected also for the choice of the cost functional in equation
(15.45]).

First we observe that we lose the estimate
T
J 113 dt < Cun g
0

which we obtained only by the good structure of the L?-tracking type term in space and
time. Fortunately by a duality argument like in Step 3. in the proof of Theorem [5.21| we
can find an analogous estimate independent of the use of the data term.
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Moreover, all estimates for the dual equation stay valid since we can bound the term

(uy(T) - ﬂla SO(T))
in terms of
[ (T) = a3,
which can be controlled following the argumentation in Step 1. in the proof of Theorem

B.3T1

Thus, all convergence properties of Theorem [5.31] are conserved.

To show that the limit triplet (i, 2, §) is a solution of the Optimality System of the
very weakly formulated optimisation problem we used the parabolic regularity theory
for the adjoint equation to show the convergence of the dual equation and the control
equation. This was possible since 4(t) — @(t) was in L?(£2) and 2(T) = 0. Now we lose
these properties since the initial value for the backward integration of the dual equation
@(T) — u is not necessarily in H'(£2).

However, as long as we have higher regularity of the whole system we will obtain also a good
approximation of the Dirichlet control problem with the penalised Neumann technique.

Remarks on Pure Transport Problems

Finally we want to remark on the linear transport equation as side condition, since this
equation is essential for image processing purposes. Due to v = 0 we obtain the bilinear

forms
a(ua ()0) = (/3 ’ VU, 90> )
b(g;u, ) = —((B-n)(u—q),¢)p
when we work with the state equation given in formula (3.11)) (cf. Remark [3.9).

(5.46)

That means especially that we are able to control only the inflow. Thus, we may change

the regularisation term to
T
@ 2
S a3, d
0

Then we obtain the optimisation problem

Optimisation Problem 5.34 (Image Interpolation across the Boudnary).
Find (u,q) € L? <O,T; HI(Q)) x L? (O,T; LQ(FIn)> so that

T
1
J(u,q) = 5”“( - U||2 / ||L2 (I'mm) dt

is minimised subject to

(Oeu(t), ) + alu(t), o) + bg(t); u(t), ©) = (f(t),¢), Ve H' (1),
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5.2. Dirichlet Control for the Time-Dependent Convection-Diffusion Equation

with the bilinear forms given in in almost every t € (0, 1], with an initial value
u(0) = u in L2(02).

Remark 5.35 (Existence of Solutions).

We want to emphasise that we cannot prove ezistence of a unique minimum for this Robin-
type control problem (see Optimisation Pmblem for the choice of the above spaces for
the state and the control and the initial value.

The starting point would be to formulate the problem with artificial diffusion
v(Vu,V).
For this equation we obtain for a fixed p a unique
(v qv) € L2 (0,73 H'(€2)) x L2 (0,T; LA(Ip) ) -

Then for this sequence in v we have to show convergence, which is not trivial since the
parameter v will usually occur in the denominator of the bound and thus we have no
uniform boundedness with respect to v. With further assumptions on the data B, u° and @
it should be possible to show existence results.

However, we will mostly work with a small amount of diffusion in our numerical schemes
for stabilisation issues. Moreover, the usual equation we have to deal with in physics-based
optical flow estimation is the equation

Ol (x,t) +u(x,t) - VI(x,t) = eAl(x, 1),

which is covered by the theory presented in the preceding sections as long as u has appropriate
reqularity conditions. We skip a further theoretical discussion of the pure transport equation
and present two examples to show that the numerical method is also working for this
configuration.

5.2.4. Numerical Examples

Given are two functions Z;(x, t;) : £2 — R™ (see Figure at different time points tg = 0
and t; = T. The initial function Z;(a,t) is transported by the vector field 8 = (1,0)7 into
Zo(z,t) by the linear transport equation

Owu(z,t) + B(x,t) - Vu(z,t) =0, in 2 x (0,7,
u(x,t) = q(x,t), on I, x (0,77, (5.47)
u(x,0) =Z;(x), in §2.

z,
z,

Remark 5.36 (Connection to Image Processing).
We can interpret Z; as grey value distributions. The linear transport equation is then the
model for the grey value transport in the two dimensional image domain, which is referred
to as optical flow equation (cf. C’hapterm). The task to identify the intermediate images
between the two given ones is called image interpolation.
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Figure 5.6. Image sequence of two intensity funtions (Zj)2_,. Left: Z;. Right:
Z5. The lower half of the images shows a heat map (Red: Highest
value. Blue: Lowest value.). The upper half shows an interpretation
as grey value distribution.

As long as we have a concrete boundary function g(x,t) describing the inflow of I(x,t) for
all t € (0,T] we can easily obtain the evolution of the grey value distribution by a simple
forward calculation. Unfortunately we have no knowledge of such a function in general. A
forward calculation with simply setting g(x,t) = 0 or ¢q(x,t) = Zo(x)|ss representing this
lacking knowledge of ¢(x,t) is given in Figure We see that these approaches produce
grey value distributions, which do not fit to the expected functions.

Remark 5.37 (Regularisation Parameter «).

The aim is to identify an appropriate boundary function by using the Optimisation Problem
[5.3] Therefore we need an appropriate choice of the reqularisation parameter . Choosing
such a parameter is a delicate matter, since we want to choose on the one hand a very
small parameter to obtain the best possible fit in the data term. On the other hand we
need enough regularisation to be able to calculate a solution. We postpone the discussion of
heuristic parameter choice rules for a to the next chapter and work here with the fixed value
of o = 1073, since this yields significant results for the current presentation of transport
dominant optimal control problems.

Figure shows the results of a calculation of the above mentioned optimisation problem.
Hereby we used a grid hierarchy to achieve a good initial value for a calculation on a 65 x 65
node spatial grid. Furthermore we used 80 equidistant implicit Euler steps on the time
interval [0,0.2]. We want to remark that we avoid to work with a transport stabilisation
technique, due to the smooth character of the assumed solution and the transport field. We
see here that the calculated discrete grey value distribution I (, t) is a good approximation
of the expected function I(x,t).

To emphasise the connection to image processing problems (see Remark [5.36) and the
necessity of stabilisation techniques in the case of general grey value distributions I(x,t)
we discuss another configuration in the next example.
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Figure 5.7. First row: Forward calculation with I(x,t) = 0 on 0f2. Left: Initial
function. Right: Result at end time T'. Second row: The same with

I(z,t) = Zo(x)|gg for all ¢t € [0,T].

-0.00157

Figure 5.8. Results of the boundary identification for o = 1073. From first
row to third row, left to right: % with ¢ = 1,...,8. The error:

11n — Il 12(q) = 4.99 - 1074,
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Figure 5.9. Yoshimi-Example: Left: Z;. Right: Z,.

Numerical Example: Image Interpolation Across Boundaries

We have taken a picture of the authors cat Yoshimi by a modern digital camera. The
image was directly converted to an grey value image by the camera. Afterwards, we take

two apertures Z{ and Z5 of the grey value image. The two choosen apertures fit to the flow
field

B =(1, O)T
for a fixed time interval [0, T7).

Figure [5.9] shows the two available grey value images Z; and Zy. We will now proceed with
the same techniques presented in the last section to calculate intermediate images of the
two given images.

The result of a calculation with the Crank-Nicolson scheme on the time interval [0,0.2]
with 160 time steps is given in Figure The left picture is the one we expect, while
the right one is calculated. We see that there are wave perturbations next to the chair,
the ear of the cat and in the background. This effect results from transport instabilities,
which can be suppressed by using the techniques presented in Chapter Figure |5.11
shows an LP stabilised version of the example on a 257x257 node grid. Qualitatively the
result looks much better than the one in Figure but we still have some oscillations
in the neighborhood of sharp edges (e. g. chair). However, by the introduction of the
stabilisation we smooth out sharp fronts in the function I(t,«) which leads to a blurring
effect in the image as we can see if we compare the bottom right image in Figure [5.11] to
the expected image at the end time point (the right one in Figure . That means that
the stabilisation represents a trade off between high oscillations on sharp structures in the
image and blurring the image. Both aspects lead to a misfit between the original second
image Z and the grey value distribution at the end time I(7T"). We observe this also by
the L2-errors in Table and suppose that the major amount of the error was influenced
by a insufficient stabilisation.
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Figure 5.10. Left: Expected solution at % Right: Interpolated solution by the
presented optimisation process. The calculation was done on a
257 x 257 grid, without any further stabilisation techniques.

Figure 5.11. 257 x 257 grid with LP-stabilisation: § = O.llﬂiz.Upper left: %.
2

Upper right: L. Lower left: 3. Lower right: 7.
2 1
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5. Boundary Control Problems

Nevertheless, it is a remarkable result that we are able to reconstruct the image up
to 5 % in each time step without further tuning of the parameters « for the regularisation
and J for the stabilisation. Thus, we conjecture that it is possible to obtain even better
results by working out sophisticated strategies for choosing «, § or working with a another
stabilisation technique.

Table 5.6. Difference between the calculated solution I, on a 257x257 spatial
grid and the expected solution. The table shows the L?-norm dif-
ference and the relative difference in percent at four different time
points. The four corresponding calculated images are given in Figure
5.11

1) = I@®)l2 LBz %

3.08-1072 4.77-1071 4.2
3.43-1072 486-1071 5

3.53-1072 4.85-1071 5.3
3.54-1072 480-10"1 5.4

N[ Sol=als |

5.3. Dirichlet Control for the Time-Dependent (Navier-) Stokes
Equations

We first state the optimisation problem for a general solenoidal vector field 3.

Optimisation Problem 5.38 (Dirichlet Control for the Oseen System).
Minimise

T
Tuq) =Ja(w) + 5 [ lat) . (5.48)

with respect to w € V and q € Q, subject to an appropriate weak formulation of the Oseen
equations

Oru(t) — vAu(t) + B(t) - Vu(t) + Vp(t) =0, in 2% (0,7T],
V- u(t) =0, in 2% (0,T], 10
u(t) = q( ) on 982 x (0,T], (5.49)
u(-, o) = u’ in §2.
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5.3. Dirichlet Control for the Time-Dependent (Navier-) Stokes Equations

We will only discuss the following choice

5 / Jut) — a3 d

of the data term and comment on other choices in form of remarks.

The theoretical background is widely discussed in the literature. Exemplarily we want to
mention the article of Fursikov et al. [38] and the literature cited therein.

As in the sections before we consider the possibility of approximating a L?-Dirichlet control
problem by a sequence of solutions of Robin-type control problems. Thus, we discuss the
access to the topic by the very weak formulation, to be able to work with L?(942) as control
space. We start by introducing the following very weak formulation on the basis of the
discussion in Chapter 2 in Farwig et al. [34].

Weak Formulation 5.39 (Very Weak Formulation).
A function

wel? (O,T; L2(Q))

1s called a very weak solution if it fulfils

T T
J{ - @.00) ~ v (w.2¢) +(a.000)00 ~ (8- Voow) } dt = (u0(0)) = [ (£.0) d
0 0
for any @ with
e L ([o, T); H(2) N H&div(ﬂ)) and Oup € L ([o,:r); (HQ(Q) N H&ydiV(Q))/>

and

T
/ )) —(a(t) -n,&(t)),, dt =0,
0

for £ € L? (0, T;H) with H := {v € HY(2); [ov dz = 0}. Here, the data is assumed to be
in the following spaces

ge L (0,7;L2(09)"),
Fer?(o,1;H(2)"),
B € L (0,75 Hy, (2)") 1 L% (0,75 L(2)")

and u® is in L?(£2)2.
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Remark 5.40 (Wrong Formulation for Fully Nonlinear Navier-Stokes).
The above very weak formulation is not valid for the choice

B(t) = u(t),

since u(t) € L2(2)"™ and therefore the term

T
/(u(t) Ve, u(t)) di
0

cannot be defined unless we choose ¢ € Wh ()", or in two dimensions H3(£2)?, due to
embedding properties (see for example Adams et al. [1]).

A well defined very weak formulation for the fully nonlinear Navier-Stokes equations is
given in Marusic-Paloka [75)]. Hereby

u(t) € L1 (2)"
and therefore in L*(£2)? for two and L3(£2)3 for three space dimensions.

Further theoretical insight to very weak formulations for the fully nonlinear Navier-Stokes
equations can be found in Farwig et al. [3])].

Hence, for an L?-fitting term in the cost functional the access by the very weak formulation
s not given.

In the following we distinguish between the linear case and the nonlinear case.

5.3.1. The Linear Case (8 # u)

In Farwig et al. [34] also the existence and uniqueness theory for very weak formulations
is discussed. It based essentially on a duality argument. Here we want to present again
an approach working by penalised Neumann approach like in the case of the convection-
diffusion equation to show the connection between the L?-Dirichlet control approach with
the very weak formulation of the Oseen problem as side condition and the Robin-type
control approach.

We start with the following weak formulation

Weak Formulation 5.41.
We seek a function u € L? (0, T; Hclm(ﬁ)2) such that

T T
/{ — (u(t), dup(t)) +a (u(t), (t)) + b (a(t); u(t), @(t)) } dt = /(f(t)wp(t)) dt
0 0
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is fulfilled for all
/
pEX = {v iv € L2 (0,73 Hyy (2)2) and O € L2 <0,T; (Hii(2)?) )} ,

with the following bilinear forms

a(u, ) =v(Vu, Vo) + (8- Vu,¢),

b(g;u, p) = ; (u—q,0)90 — % ((B-n)u,p)y,

We are able to prove the following existence theorem for this Weak Formulation.

Theorem 5.42.
For € (0,1] and q, f given as before and

B e 1*(0,T; Hyy, (92)?)

there exists a unique solution w € L*(0,T; HY (£2)?) of the Weak Formulation m

Proof. We test with the solution itself and gather

T
J {5 51O + AT + Ol } d < / I®) o) dt
0

1
o / la(®ll 200 [w(0) 1200y dt.
0
(5.50)

Using the same techniques as in the proof of Theorem (Holder, Young and Poincaré
inequality in formula (5.6))) we find after absorbing the u-dependent terms on the right
hand side into the left hand side

T
1
()3 +v [ IFu(@)3dt+ . [ )]0 d
0 0 (5.51)

T
1
el + e [ IFOIF - [ 1a) a0 d
0 0

Now the existence and uniqueness for a fixed p € (0, 1] is again obtained by the standard
Galerkin technique (cf. Temam [99]). O

This means we can find a unique u, € L2 <O,T; Héiv(Q)z) Moreover, we can find a

pressure function p, € L?(£2) which is unique up to an additive constant.
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Remark 5.43 (Associating a Pressure Function).
Subtracting the right hand side from the left hand side in the Weak Formulation[5.]1], it is
easy to show (cf. Remark’ that we gather a functional I € H=1(82) which fulfils

lp)=0, V€ Hjqg(02)?

for the subset H&div((})2 C HL (2)% (cf equation ) Hence, we can associate an
appropriate pressure p € L*(2) with [, p(z) dx =0 by Lemma .

Hence, the Weak Formulation [5.41]is equivalent to the following weak formulation.

Weak Formulation 5.44.
Find a pair (u,p) € L* (O,T; Hl(Q)Q) x L? <O,T; LQ(Q)) so that

T
/ { (Oeu(t), (1)) +v (Vu(t), Ve(t)) — (p(t), V- (t)) + ; (u(t) = q(t), p(t) 0
0

T
+(B()- V). @(t) dt = [ (Ft). ) } dt.
0

T
/ (&(t),V - u(t)) dt =0
0

is fulfilled for all p € L2 (O,T; H1(0)2> and € € L? (0, T; L2(Q)).

Furthermore, we obtain by the estimate (5.50) for a fixed g € L? (0, T; L? (6(2)2) a uniform
bound for u, on the boundary. Thus, we have

u, — @ weakly in L2 (o,T; L2(8{2)2) .

In order to prove the connection between the weakly formulated problem and the very
weakly formulated problem we need a further uniform bound for w,, in L? (O, T; L2(Q)2).

We can achieve this estimate by a duality argument like in the case of the convection-
diffusion equation. We have the classical formulation

—OA(t) — vAX(t) — B(t) - VA(t) + Vr(t) = uy, in 2 x[0,7),
V-A(t) =0, in 2 x[0,7),
A(t) =0, on 02 x [0,7T),
A(T) =0, in 0.

For this formulation we have analogous regularity results as in the parabolic regularity
theory as long as we assume a sufficiently regular vector field 8(¢) and appropriate regularity
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of the domain. For example in the Stokes case (8 = 0) or for 8 € L™ (0, T; LOO(_Q)Q) this

can easily be obtained (cf. Temam [99, Proposition 3.1.2. and Chapter 3.5.1.]). Then, we
find

T T T
JINO oy dt < € [lual e and |23 < C [ w3 ot
0 0 0

Testing the classical formulation above with u,, and integrating over time yields after a
few transformations

T
/ 3 dt = )+ [ = O, 1) o el
0

With
[A@) 2 < CIA@) |52 (02)2
00 A ()| 2200)2 < CIA®) |2(02)2
we gather
T T
/||uu(t)||% dt < | A(0)]l2]lu’(|2 + / (||f(t)||2 + ||u,u||L2(8(2)2) A | zr2(02)2 dt.
0 0

Using Young’s inequality with a clever choice of the parameter and the above mentioned
regularity results we find

T 1 T
[l de < 5 [ w3 ar
0 0

T

T

1

i +e [ (IFOI+ lwulFaonp) di+g [ a3 d
0 0

Absorbing the u-dependent L?-domain terms into the left hand side and using that Uy,
stays uniformly bounded on the boundary we end up with

[ @18 dt < Cpo g,

and therefore
w, =@ weakly in L2 (0,T; L%(12)?) . (5.52)

To prove that @ is a solution of the (very) Weak Formulation works now in the same
way as in the case of the convection-diffusion equation. Also the convergence property

T
/<uﬂ(t) —q(t),p(t))yo — 0, for p—0 andforall pe L? (O,T; L2(89)2) (5.53)
0
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can easily be deduced in the Oseen case in the same fashion as in the convection-diffusion
equation. We discuss only the divergence equation. Since u, € L? (O,T; Hclliv(ﬁ)2> we
have

T
/v wl(t),€() dt =0, VE€ L2 (0,T;H).
0

Integration by parts yields

— (wu(t), VE®)) + (uu(t) - n,€(1)) 5 di = 0. (5.54)

The convergence in the first term is clear due formula (5.52) since V&(t) € L? (0, T; LQ(Q))

and the second term converges due to property (5.53]). This is obvious after resorting the
terms in the second integral

T

//uu dmdt

0

and realising that £(t)n € L? (0, T; L2(8Q)2) due to

T T T
J16@mla oo dt < [ 16010 dt < C [IEOIn e d
0 0 0

Combined we have the convergence of equation ([5.54)) to the second property in the very
Weak Formulation [5.39]

T
[ @) VE®) = (at) - n.€W)g dt =0, Ve L2 O.T:%).
0

Thus, we can formulate the following Theorem

Theorem 5.45.
Assuming (2 is bounded with a sufficiently reqular boundary and the vector field B has
sufficient reqularity. Then, there exists a unique very weak solution

we L2(0,T; L2(2)?)
of the (very) Weak Formulation [5.59

Remark 5.46 (Convergence in the Oseen-Case).

The technique we chose to prove the existence theorem shows that we can use the Robin-type
Oseen equation to approximate solutions of the very weak formulated Oseen equation for
L2-boundary data.
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After proving the unique existence of solutions of the Robin-type formulation and the very
weak formulation, we can use Theorem [4.5] and Remark [4.7] to justify the following two
theorems, since the Oseen system is linear.

Theorem 5.47 (Optimisation Problem with the Very Weak Formulation).
For 0 < vy <v <1 there exists a unique minimum

0 2 (0138 0) 12 00

which minimises the cost functional

T

/ Ju(t) - a(®)l3 de + 5 [ a3z d

0
subject to the (very) Weak Formulation [5.39

Theorem 5.48 (Optimisation Problem with the Robin Formulation).
For every 0 < u <1 and 0 < vy <v <1 there exists a unique minimum

(wrq,) € L (0,73 Hiz, (2)%) x L2 (0,T; L3(092)%)

which minimises the cost functional

T

J(u,q) =3 / [|u(t) (t)|l5 dt + / ||L2 a0)2 dt

0

subject to the penalised Neumann approach stated in the Weak Formulation |5.41].

Remark 5.49 (Convergence of the Sequence (uy,q,))-

It should be possible to argue analogously by the optimality systems as in the case of
the convection-diffusion equation to prove the convergence of the sequence (u,, q”) to a
solution (@, q) of the optimisation problem mentioned in the Theoremfor the very
weak formulated Oseen equation. Thus, the Robin formulation should also exhibit the
possibility to approximate Dirichlet controls for the Oseen system.

Howewver, the proof is rather technical. We skip the details here due to the following reasons:
The first one is that in general we will work with the fully nonlinear Navier-Stokes system
instead of the Oseen equations, where we have no appropriate very weak formulation. The
second reason is that we will work with Robin-type controls in the final application chapter,
since the numerical example at the end of this chapter indicates that this approach is
working very well for L?-boundary controls.

5.3.2. The Nonlinear Case (8 = u)

If we consider the case 8 = u everything becomes more complicated, since the nonlinearity
influences intensively the whole theory. For example we are no longer able to prove
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existence of a minimum by Theorem Hence we have to prove the existence of a
minimum separately.

Furthermore, the whole framework of working with very weak formulations and L?-controls
is not working as before, since we need a different function space for the state variable (cf.

Remark |5.40)).

However, there are widely discussed approaches for the treatment of Dirichlet controls in
the Navier-Stokes case in the literature. For example in the time-dependent case the work
of Fursikov et al. [38, 39] or in the steady case Gunzburger et al. [45] and the literature
cited therein.

Especially we want to mention the work of Hou et al. [55, [56], where a penalised Neumann
approach for the approximation of Dirichlet controls in the steady Navier-Stokes case is
considered. The authors are able to show that the limit of the sequence ({uu, Puts qu> for
1 tending to zero is both, a suboptimal solution of a Dirichlet control problem without
data restrictions and an optimal solution of the Dirichlet control problem with data
restrictions. Their argumentation’s based on a specific choice of the cost functional, namely
the minimisation of the vorticity of a flow, to obtain (weak) convergence results. Thus,
also in the Navier-Stokes case there seems to be a connection between Robin and Dirichlet
control problems.

We will briefly discuss the theory of a Robin control problem for the fully nonlinear Navier-
Stokes system with a tracking type cost functional. Starting point is the modification of
the Weak Formulation [5.41] for the nonlinear case:

Weak Formulation 5.50.
We seek a function u € L* (0, T HjiV(Q)Q) so that

T T
J{ - w000 + a w@) e(0) + bla®:u@)e®) dt= [ (F0.00) } dt
0 0

is fulfilled for all
/
pEXN = {v tv € L2(0,7; HY, (2)?) and 9w € L2 <O,T; (Hii(2)?) )}

with the following semilinear forms

a(u)(p) =v(Vu, Vi) + (u- Vu, ¢),

b)) = -, 1= 0.)a = 5 (- M. 2}y

First we observe that Theorem [5.42] is still valid in the nonlinear case:
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5.3. Dirichlet Control for the Time-Dependent (Navier-) Stokes Equations

Theorem 5.51.
For p € (0,1] and q, f given as before we find the existence of a unique solution u €

L? <O,T; HéiV(Q)Q) of the Weak Formulation|5.50,

Proof. We discuss the differences in proving this result. For abbreviation we will sometimes
omit to write the time variable in the following discussion.

e For the above described Robin boundary data the term

1

) (8- ”)U,u>ag + (8- Vu,u) =0

is obviously vanishing due to the test with the solution itself. Therefore the existence
theory is working also in the nonlinear case

B =u.

as before by the standard theory (cf. Temam [99]).

e The uniqueness cannot be obtained that easily, since here the same problems occur
that we already mentioned in Section

Fortunately the two-dimensional uniqueness can be achieved like in the standard case
of Theorem due to the following estimation:

As usual we assume we have two different solutions u, v of the Weak Formulation
for the same data f and q. Building the difference of the two equations and
testing with the difference w = u — v yields

1d

1
5@”“’”% +v||Vwl|3 + EHWH%?(E)Q)? = (w-n)u,w)y, = (w - Vu, w)

N = N

+ - (v - n)w,w),, — (v- Vw,w).

The last two terms on the right hand side cancel each other out (see Remark |5.19).
Reformulation of the boundary integral as domain integrals gives us

1 1
—i(w-Vu,w)+§(w~Vw,u)

on the right hand side. We present now only the basic steps, since a detailed
argumentation can be found in the work of Klinger [66, Proof of Satz 4.19] for an
analogous problem.

By the interpolation estimate (cf. Galdi [4I, Chapter I1.2, Lemma 2.2 and Exercise
2.9])

1 1
leollzaap < clwl3 ] gy

we can treat the two domain integrals. We obtain

| = (w- Vu,w) | < c|wlls||wl]| g1 (pllwl g o)
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5. Boundary Control Problems

and 1 1 1 3
|(w - Vw, u) | < cllull3 ullFgp w3 llw] 7 g

Using Youngs inequality with p=¢ =2 and p =4 and § = % yields

el Kllwl3 1wl o) IIwII?p(n)Q’
= 2 2K

- - Rlulleli@elwld | 3lwlf o
[wll3 [[wll Fr (g2 lwll3 1wl 7 g < 4 4R

Hence, we have

| — (- Vu,w) |+ | (w- Vw,w) | < (c(8)|ullf g + @) [wll3]ullf o) lwl

=3
1 3 9
GRS w71 ()
Now we use the general Poincaré inequality
lwl3 0 < e (Vw3 + w207

for the second term on the right hand side. Furthermore, we use 1 < 1 and choose the

parameters « and & so that we are able to absorb the terms 4 || V|| and H'wHL2 )
into the left hand side. Finally, we get the inequality

Ll < c()30) (D)3

Since

t
/5 ds < cl/Hu W oy ds+02ess[zttlpHu ”2/”“ ()17 (2)2 ds
) se

is bounded due to the a-priori bounds, we can apply Gronwall’s inequality. The fact
that w(x,0) = 0 yields the uniqueness. O

Now we consider an optimisation problem involving the Weak Formulation [5.50]

Theorem 5.52 (Optimisation Problem for the Navier-Stokes equations).
For every 0 < u <1 and 0 < vg < v <1 there exists at least one minimum

(i, ) € L2 (0,73 HY, (2)2) x L2 (0,73 L3(02)%)

which minimises the cost functional

/ Ju(®) = a(t) dt + 5 / I9(®) 300y dt

subject to the Robin-type approach for the fully nonlinear Navier-Stokes equation in the
Weak Formulation [5.50.
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5.3. Dirichlet Control for the Time-Dependent (Navier-) Stokes Equations

Proof. We follow the proof of Hou et al. [55], which considered an optimisation problem
with the steady Navier-Stokes systems as PDE constraint. In general we have to consider
the following steps:

—

. Choosing a minimising sequence {u*) q(*)}.
Showing uniform boundedness of the sequence in appropriate norms.

. By usual compactness and embedding results choosing converging subsequence.

Ll

Showing for the limit of the convergent subsequence:
a) That it fulfils the state equation.

b) That it is indeed a minimum of the cost functional.

Thanks to Theorem [5.51| we have the existence of a unique solution u,, in L? (0, T;H Clhv(Q)2>

for a given ¢, € L? (0, T; LQ(Q)Q). That means especially that the set F,q of admissible
minimisers is not empty.

We choose a minimising sequence {uu ,q } in k which fulfils the Navier-Stokes equation
with Robin boundary conditions (Weak Formulation |5 -

; u® gk ; —.f
o ) = G, ) =0

By Young’s inequality we have again the coercivity

1
2

T

o 1

Tu,) > 5 [ a3z dt > o /Hq oo dt| 5
0

Then we are able to bound the control on the boundary

<

1
HqELk)||L2(o,T;L2(aQ)2) <~ Jwd qf)+ 5 <B

1
a 2~

with a k-independent constant B.

Via the usual a priori estimate from the existence theory we obtain the uniform bounds

T
JIvubzae <y,

[ 12 00y dt < Co.
0

Hence, by the general Poincaré inequality 1} we obtain that (u&k))keN is uniformly
bounded in L? (O, T; Héiv(9)2>.
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5. Boundary Control Problems

Furthermore, we get also from the same a priori estimates that the sequence is uniformly
bounded in the space L>(0,T; L?(£2)?).

Moreover, we receive by compact embedding properties the strong convergence property
J1u9® w13 dt >0, (k- )

for a subsequence.

These bounds yield the (weak) convergence of a subsequence. It is then standard to pass
to the limit in the Weak Formulation We gather

(Orun(t), ) + v (Vuu(t), Vo) + i <uu(t) = q,(1), ‘P>

- % ((up(t) - n)uy(t), ‘P>8Q + (uu(t) - Vuu(t), ») = (f(t), @) -

01?2

Now we have to show that the solution pair {u,,q,} is optimal.

At first we use the convergence properties from above and obtain

0= Jim J(uP,q) = lim /uu —a)g dt+ Jim f/uqu 22002 dt
/ Juaa(®) = @(t) 3 dt + lim inf & / e
Since the norm || - || z2¢0,7;12(902)2) is continuous and convex we obtain by a standard

argument (see the end of the proof of Theorem in Section {4.1)) that the norm is also
weakly lower semicontinuous and we have

0> / Juwa(8) = w(t)[ de + / 90200 ¢t = I (s, q,)

Thus, we obtain the optimality of w, and gq,,. O

Remark 5.53 (Convergence to a Solution of a Dirichlet Control Problem).

In dependence of p we gather again a sequence of solutions of this Robin-type optimisation
problem. The question is now whether the limit of the sequence for u — 0 is in some sense
again a solution of a Dirichlet control problem.

The problem is that the pair of the L?-tracking type and the L?-regularisation term on the
boundary is not appropriate for a meaningful statement of a Dirichlet control problem for
the Navier-Stokes equation.

On the other hand we can only generate convergent subsequences in L> (O,T; LZ(Q)Q) and

L? ((),T; LQ(&Q)Q) as in the Oseen case.
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5.3. Dirichlet Control for the Time-Dependent (Navier-) Stokes Equations

That means we are not able to prove any convergence result for the sequence (u,, q“) n
our setting.

Only by changing the cost functional we are perhaps able to prove a connection between the
penalised Neumann control and the Dirichlet control problem (cf. Hou et al. [55] in the
steady case).

5.3.3. Numerical Example

Figure 5.12. Top: Original domain with a rough lower boundary £2. Bottom:
Almost the same domain {2 with a lower boundary which is flat.
The red area marks the observation domain {20y which is used in
the data term of the optimisation problem.

In this subsection we want to present a numerical example for the above discussed boundary
control problems in the case of the two dimensional unsteady Navier-Stokes system.

At first we will describe the setting. Starting point is a backward facing step channel as
computational domain. Many numerical calculations in the case of Navier-Stokes boundary
control considering the backward facing step in the literature, see for example in Choi
et al. [47], or Tto et al. [58] or Becker [8] to mention a few of them. But mostly the authors
are interested in the reduction of vorticity in these cases.

We present another interesting example which is also motivated by a physical application,
namely the flow in a backward facing step with an unknown roughness of the lower wall
(see Figure . A related example for the standard benchmark channel with rough walls
for the identification of finitely many parameters was given by Vexler [I02]. The difference
is that we want to identify a distributed quantity by the mentioned optimisation problems
with either a Robin control or a Nitsche-type Dirichlet control.
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5. Boundary Control Problems

Given is for a example a velocity field u in the red area {2ops of the rough channel (upper
picture in Figure for a known inflow on the left side of the channel and a free outflow
boundary on the right side of the channel, while the flow field is zero on all other walls of
the domain, including the rough lower part of the boundary. The aim is now to reconstruct
an appropriate flow field v in a channel with a smooth and flat lower boundary, which
fits u as good as possible in the observation domain {20ps. The background is that we
have in real world applications measurements of flows in channels with rough walls, where
the structure of the roughness is in general unavailable. The proposed method is able to
reconstruct a reliable flow field out of the measurements under the assumption that the
walls are flat.

Remark 5.54 (Connection to Real World Application).

The estimation of so-called effective boundary conditions on an auxiliary boundary chosen
above an unknown boundary structure is also discussed in the literature, e. g. Friedmann
[37]. In connection to available velocity data in certain areas of the flow domain, the
described technique should be able to recovery such effective boundary conditions. The
flow data could be obtained for example by so-called particle image velocimetry (PIV) or
hot-wire statistics, e. g. Drozdz et al. [30)]. Later on we will present ezamples, where we
connect the image data directly to the flow on an artificial truncated domain to estimate
reliable flow informations, which are only indirectly described by the movement of a passive
tracer. We will use schlieren images of the tracer instead of particle images.

We want to use our Robin-type boundary control problem from Theorem for the
mentioned problem. Here we modify the cost functional in the following way

T

/ - ’Ll, H2 ,20bs dt+ - 2 /”q HL2 (I'Bottom)? dt’
0

with IBottom denoting the flat lower boundary of the channel. To obtain a reliable u for a
test case we performed a forward calculation in a rough channel, where the roughness was
described by the function

1 1
y(x) = ~2 sin (27x) cos (2(7)7m> m.

Furthermore, we chose as time step size k = 0.01s on the time interval [0, 2s] and a spatial
discretisation with 18817 nodes, that means an average spatial resolution of h = 0.03125m.
For the inflow on the boundary part {0} x (1m,2m) we took the function

g = ~242 = )y~ 2)(y - )

and the viscosity parameter v = 1%2. Hence we have a Reynolds-number Re € [1,10].

The solution process for the optimisation was again performed by the Newton-CG method
from Chapter [, where we used the techniques mentioned in Chapter [3] for the solution of
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5.3. Dirichlet Control for the Time-Dependent (Navier-) Stokes Equations

the PDE subproblems. However, we want to discuss the choice of the parameter and some
other specific features.

We want to choose a relatively small regularisation parameter a = 10~%. Unfortunately
the CG-method is not converging very well for this choice. Hence, we resign solving the
linear system up to a certain accuracy in the overall Newton process for the optimisation
and only perform a fixed amount of CG steps. The result is a Quasi-Newton method (cf.
Remark . This Quasi-Newton method is applied to a mesh evolution and after each
refinement we use the calculated control of the preceding grid as given information ¢* in
the regularisation term

dt.

T
S [l - a ®lie,..
0
Hence, the information of the control for a certain regularisation parameter « is kept for
the process by the function g* and it is even possible to increase the parameter o after
each refinement step to guarantee that the Newton residual drops below a prescribed
tolerance.

However, we performed three grid refinements for the choice of & = 10™* and stopped the
process when the method achieved a Newton residual within the range 1076 to 1075,

Remark 5.55 (Choice of the Regularisation Parameter).

Here we fix the parameter « since for this example we still stay in the context of optimal
control. If we interpret the presented example as an identification problem the question
arises how to choose a suitable o to achieve a good trade-off between the fitting of the
data term and an appropriate boundary function in the regularisation. We will discuss
this question in the next chapter within the scope of the application mentioned in the
introduction.

Now we make last statements on the computation of the PDE subproblems. Instead of
the boundary semi-linear form b(q;u)(¢) in the Weak Formulation we will use the
stabilised semi-linear form bi(q; u) () from equation (3.24) in Chapter to even allow
very small choices of p without getting any trouble in the numerical calculation of the
PDE subproblems.

The results for a calculation with § = % and p = 0 (Nitsche-type formulation) are given
in Figures and for the time points ¢ = 1 and t = 2. We also performed a Robin
control with the parameter setting 6 = 0 and = 0.01. The results for this setting look
almost like in the Nitsche case as we can see in Figure

Remark 5.56 (Robin Approach Versus Nitsche Approach).

As we mentioned before the Nitsche approach is a realisation of a Dirichlet control, where q
fits u|ry, ..., while in the Robin approach the control function q differs from the restriction
of the state solution w on the boundary I'gottom, Since we have

Opu —pn = (q—u)+%(u~n)u
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5. Boundary Control Problems

on this boundary part. We visualise this difference in Figure [5.15

Nevertheless, the state solutions of both approaches are almost equal to each other

”uRobm - uNitsche”%
||uNitsche“%

~T7.4-1073, (relative error)

for the particular choice of a small reqularisation parameter oo = 10™* (see Figure .
Hence, in the context of identification problems, where we want to minimise the data term

1S(q) — ull%

by reducing the influence of the regqularisation
@ 2
slla—allo

i. e. by choosing small «’s, it seems to be more appropriate to work directly with a Robin
control formulation, since we obtain almost the same state solution as in the Dirichlet
case. Furthermore, we have in this context besides an easy implementation technique also
a satisfying theoretical justification of the optimisation problem (see Theorem .

control
1.32776

1.2

o
(]

0.4 [ , ‘ i

0

-0.4

-0.777831

Figure 5.13. The controls on the boundary Ipgttom at the time point ¢ = 1.
Upper row: Nitsche control gyjische (0 = % and p = 0). Lower
row: Robin control ggapy, (6 = 0 and g = 1072). We see that both
controls show clear differences, although the corresponding state
solutions looks alike (see Figure .
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-04

-1.6

-1.77228

Figure 5.14. Second component of the state solution w(t, x) at the time point ¢ =
1. Upper row: Approximation v, (1, ) with the the Nitsche control
configuration § = ﬁ and p = 0. Middle row: Approximation with
the Robin control configuration 6 = 0 and p = 1072, Lower row:
Second component of the original flow configuration.
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u(x,y)

\I4|.\II\II\I5 6

-0.0256894 6.00491

v(X,y)
-1.6 -1.2 -0.8 -0"|4|||||\||0
-1.77228 0.368428

Figure 5.15. Comparison between the boundary control on an even wall to the
original configuration at t = 1. Nitsche-type control problem § =
Who and p = 0. Upper couple of images: Visualised approximation
of the z-component u(1, ) of the velocity field u = (u,v)T (top)
versus the original solution in the rough channel (bottom). Lower
couple: Same presentation for the y-component of the velocity field.
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u(x,y)
-0.08 -0.05 -0.03 O °'ﬂ’%‘f’|u9rﬂ?| 0.075

-0.0911993 0.095619

v(X,y)

-0.025 0.025 005 0.075

-0.0425663 0.0985723

Figure 5.16. Same configuration and presentation as in Figure for the time
point ¢t = 2
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6. Boundary Identification for the
Observation of a Passive Tracer

All the numerical examples of the last chapter consider a feedback function w for the
transport field in the data term ||u — /|3, which was always assumed to be available by
given measurements or simulation data. In this section we will enhance the presented
techniques to the complex situation mentioned in the introduction (see Chapter [1f) of this
thesis.

Available are now only indirect measurements of the fluid flow by information of the
behaviour of a passive tracer, which is transported by the unknown flow field. The aim is
to recover appropriate boundary conditions which drive the flow that causes the observed
distribution of the passive tracer.

In mind we have the application from Chapter which we want to solve with the
approach presented in Optimisation Problem in the introduction. In the first section
we concretise the mathematical problem by using Robin-type boundary conditions and
classify the problem as an inverse problem which is regularised by the boundary control
formulation. Afterwards, we formulate the problem weakly and choose appropriate vector
spaces. In the third section we present theoretical results, which are also summarised in an
article by Klinger [68]. We present then a simple numerical test example for a solution of
the developed optimisation problem.

In a further step, we will discuss the choice of the regularisation to be able to cope with
a synthetical example. For the investigation of the dependence of the method on the
regularisation parameter we restrict the example to a time-independent version.

For this time-independent example we present a heuristic to stop a homotopy method in
the regularisation parameter for an appropriate choice of the parameter, which leads to
good reconstructions. In this context we can furthermore investigate the influence of the
fluid model parameter v, which is indirect proportional to the Reynolds number describing
the fluid flow. We will show that it is possible to estimate this parameter in addition to the
boundary identification in a segregation process. Finally we use the developed techniques
to solve the time-dependent version of the example and discuss the results.
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6.1. Robin-type Boundary Control Problem

We recall the system (|1.2]):
Ol —eAl +u-VI =0,
ou—vAu+u-Vu+ Vp =0, in £2x (0,77, (6.1)
V-u=0,
with the initial conditions

I(x,0) = I°(x) and u(z,0) = u’(x), in 2.

We assume that no external forces influence the fluid and thus the flow is described only
by stating appropriate boundary conditions. In view of the observations of the previous
chapters we decided to work directly with Robin-type boundary conditions instead of
Dirichlet boundary conditions

Ol = (g = 1) = = (w-n) 1, on 992 x (0,71,
K1 2
1 1 (6.2)
V@nu—pn:—(qu—u)—g(u-n)u, on 0 x (0,T].

u

Remember that, for small parameters p; and g, this represents in principle Dirichlet
conditions.

Figure 6.1. Image sequence: [ = (Z1)$ peq for tp =0.04(k — 1) with k=1,...,6
and T = 0.2 from left to right.

In the identification problem, which will be considered in the following, we assume that we
have temporally discrete brightness intensity functions I of a passive tracer. The model for
the temporal evolution of the tracer in the fluid is given by the system (6.1). We want to
emphasise that we assume that no information of the fluid flow vector field w is available
for the identification process.

Example 6.1 (Examples for I ).
We present two examples for intensity functions. In Figure we see a bulb function

(z) = 2 (1 + cos (%) \/(:U — ~T0)2 + (y — y0)2) ., for \/(:U — xO)Q + (y — y0)2 <,

0, else,

1y

(6.3)
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6.1. Robin-type Boundary Control Problem

which is moved by a solution of the Stokes system, namely

w=rk(—yx)", with kK = o
The presented domain shows only the aperture (0,1) x (0,1). Hence in- and outflow of the

bulb function through the domain boundaries are essential in this example.

The second example in Figure[6.4 shows the flow of a passive tracer in a benchmark channel
with a rough lower boundary as we have mentioned it in Chapter[1.2.3. The geometry for
the example is given as in the example in Chapter|[3.0, except for a unknown roughness
of the lower boundary. The light red area in the pictures represents the observation (or
image) domain 0o, which is an aperture of the original domain.

t=1, ¢d=0.301, cl=0.037 t=2, ¢d=0.747, c|=0.060 t=3, cd=1.142, ¢c|=0.084

|

t=4, cd=1.283, c|=0.094 t=5, ¢d=1.097, c|=0.081 t=6, cd=0.663, cl=0.0626

Figure 6.2. Intensity function I := T (z,t) of a tracer in a channel with rough
lower boundary {2 at the times t = 1,2,3,4,5,6. The light red
colored box is an example for an observation domain {2 of the tracer,
where nearly no obvious differences in the intensity function can be
observed. Thus ambiguities are possible and therefore the boundary
identification problem becomes an ill-posed inverse problem.

By & we denote now the nonlinear solution operator which has the following mapping
behaviour:

S:91 X Qy—Vp and S(q1,q,) = 1(t).

Our goal is then to find appropriate g; and g,, such that I(¢) fits to the given data I. Thus,
we will minimise the following data term

IC (a1, q4) — 1|37,

where C = M o S with the measurement operator M : V; — M, with a vector space M,
which has to be specified.

In general this problem is ill-posed, due to the lack of uniqueness or continuous dependence
on the data of the solution. Consider therefore the second example illustrated in Figure
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6. Boundary Identification for the Observation of a Passive Tracer

with the observation domain 2. The available intensity function I(¢) in 2 is at
different time points almost identical, although the flow is drastically changing during the
time evolution (see I(t), drag and lift coefficients at t = 2, t = 3 and ¢t = 4). Assuming
no knowledge of the functions on the boundary of 2¢ it is impossible to reconstruct the
correct flow configuration in a unique way. Thus we have to prescribe additional knowledge
in form of known boundary conditions (e. g. the rigid walls in the benchmark channel) or
estimates or measurements of the functions on the boundary (e. g. q,,)-

Even in the case that a unique pair (qr, q,,) exists the identification of boundary functions
is an inverse problem (see Engl et al. [31]) due to the lack of continuous dependence on
the data and we have to regularise the problem in any case. The task is thus:

Minimise I1C (g1, qy) — 11137 + Ra (a1, 40) » with respect to ¢; and q,,.

For the theoretical consideration in the next subsections, we concretise this abstract setting.
As data term we simply assume a functional of tracking type in the L?-norm at discrete
time points as already mentioned in the introduction. The reason for this choice is the
subsequent use of the method for data in form of image sequences, which we assume to
have a high spatial and a sparse temporal resolution. For the regularisation we use the
famous Tikhonov technique for the distributed boundary functions. We end up with the
minimisation of the following cost functional:

T
(o .
J(I,q1,q,) = 5 Z ~ I3 + 2 HQI( ) — QI(t)”%?(aQ) dt

/ 190() = Gu®) 3200 .

under the side condition that the functions I, u and p fulfil an appropriate weak formulation

of equation (6.1]) and ( -

6.2. Mathematical Formulation

To discuss the mathematical theory for the problem presented in the last section, we need
a concrete mathematical setting, which we formulate now. We define the optimisation
problem and the needed spaces and weak formulations.

Optimisation Problem 6.2.
Find
{1,u} € 22 (0,1 H'(R2)) x L2 (0,T; H}, (12)%)

and

q={a,q,} €Q= {L2 (0.7:2(992)) x L* (0, T L2(89)2)}
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such that for a = a1 = ag

|9

(& [
I =5 Y1) - T3+ 5 [ lawl di
j=1 0

becomes minimal under the side condition that the following weak formulation is fulfilled.

Weak Formulation 6.3.
Find a pair (I,u) € L? (O,T; Hl((Z)) x L2 ((),T; H&iv(9)2> such that

T

[ = 00,00(0) + ar () 1), 6(0) + b (wlt)sar(0: 1(2), 6(0) dt = (1°0(0))
0
T

[ ((0),800(0) + au (w(0) (0(0) + bu (@ (0; wl0)) (9(0) dt = (u”,0(0)

0
1s fulfilled for all

Vb E X = {¢ L)€ L2 (O,T; Hl(Q)) and Oy € L* (O,T; (Hl(n))')} ,

pEe X, = {cp Lpe L2 <O,T; Héiv(Q)Q) and dyp € L* <O,T; (HdliV(Q)Q)/>}

and with the semi- and bilinear forms

ar(wi 1,9) ==& (VI, V) + (u- V%),
au (W) () = v (Vat, Vo) + (u -V, p)
1

br(u; qr; 1,1) := Ml[ (I —aqr,¥)g0 — 3 (w-n) L)y,

bu(qy; u)(p) = Mlu (U =gy, P)oo — % ((w-n)u, @)y, -

6.3. Theoretical Results

In this section we will prove the existence of solutions of the presented optimisation problem.
We will proceed in two steps. First, we prove existence of unique solutions of the Weak
Formulation In a second step we can by the existence of solutions of the system prove
the existence of minimisers of the optimisation problem. We following the argumentation
presented in Klinger [68].

Theorem 6.4 (Existence and Uniqueness (Weak Formulation [6.3])).
For fized parameters py and i, in (0,1] and given boundary functions qr and q,, with the
above required reqularity there exists a unique solution pair

(L up, } € LP(0,T; HY(2)) x L*(0,T; H, (2)?).
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6. Boundary Identification for the Observation of a Passive Tracer

Proof. The following proof is a combination of the techniques in the proofs of Theorem

2:20] in Chapter [2.4 and Theorem [5.42] in Chapter

By Theorem [5.42] we have the existence of a unique solution
U, € L2(0,T; Hiso (12)°).

In the first lines of the proof of Theorem we argue that for such a solenoidal transport
field (see Remark [5.19) the convection-diffusion equation with a Robin boundary condition
admits also a unique solution

I,, € L*(0,T; H(2)) N L>(0,T; L*(£2))

by the standard Galerkin technique. We skip now the indices i and p,, for abbreviation.
To sum up we have shown the existence of at least one solution pair {I,u}, since the
system is nonlinear, due to the dependence of the function I on the velocity field w.

We have to prove that {I,u} is the only solution pair. Therefore we assume as usual the
existence of two possible solutions {I,u} and {I, @} for the same data e, v, us, fiy, gr and
q,,- The difference of these solutions is denoted by the variables w = u —uw and K =1 —I.

Since the Navier-Stokes part of the system is completely independent of the intensity
function, we can argue as in the proof of Theorem and obtain that w is almost
everywhere equal to zero. Thus u = @ almost everywhere and the difference of the first
part of the system is

(D1, ) + = (VE, V) + /jf (K)o + (- VE, 1) = 0.

The uniqueness follows then directly by testing with ¢» = K and using Remark O

Now we are able to prove the existence of a solution of the optimization problem. Therefore
we assume for brevity p := u; = . However, the proof is also working in the general case.

Theorem 6.5 (Solution of Optimisation Problem [6.2)).
For a fized p € (0,1] we have the existence of at least one minimiser

I, € L2(0,T; H'(%2)),

uMeLQ(OTHdW )

qr, € L (OTL28Q)
a4, € L* (0,T; L*(092)%)

of Optimisation Problem [6.9
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6.3. Theoretical Results

Proof. The proof works analogously to the one of Theorem Thanks to the last theorem
of this section we have the existence of solutions of the state equation and therefore the
admissible set is not empty.

We skip the index p for abbreviation, set ¢ = {qs,q,} and choose then a minimising

sequence
(10, 0 gk)y

in the admissible set with the property

lim J(I® ¢®) = inf J(I,q)=:0.

k—oc0 {I,u,q}

By the same arguments as in the mentioned proof of Theorem [5.52| we can find a uniform
bound of the form

k
||q( )||L2(0,T;L2(8Q)3) < B.

Hence, the control components are bounded in L? (O,T; L2(8Q)) and by the energy
estimates (5.24) and (5.51) we receive all necessary uniform bounds for I*) and u(*):

I € L0, T; L?(£2)) N L2(0,T; H'(22)) N L*(0,T; L*(012)),
u®) e L0, T; L*(02)%) N L2(0,T; HL,, (2)%) N L*(0, T; L*(812)?).

We can then extract the following subsequences

I®) T weakly in L*(0,T; H'(£2)),  weakly- in L®(0,T; L*(2)) as k' — oo,
0,T; L*(912)),
0,T; H} (2)?), weakly-x in L>(0,T; L*(2)%) as k' — oo,

0,T; L*(002)?).

weakly in L?

ult) g weakly in L?

~~

weakly in L?
By compactness results we obtain again the strong convergence
I%) 1 in L2(0,T; L2(2)), u*) = w in L*(0,T; L*(2)?)
of a subsequence.

Passing to the limit in the state equation is then a standard task. The only thing that
remains to be shown is the optimality, which is obtained as in the proof of Theorem [5.42]
due to the convergence properties and the fact that the regularisation term is again convex
and continuous and therefore weakly lower semicontinuous. O

Remark 6.6 (Connection to Dirichlet-Controls for pu — 0).

In the last chapter we discussed how the Robin-type controls are connected to Dirichlet
controls in the case of convection-diffusion equations or the Navier-Stokes system. The
access to this connection was always that we were able to formulate an appropriate very
weak problem. In the above example such a very weak formulation is hard to find, since
we know that a solution u(t) of the very weakly formulated Navier-Stokes equations is

only in L*(£2)? (see Remark . However, this reqularity for the velocity field is far
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6. Boundary Identification for the Observation of a Passive Tracer

too weak to formulate the convection-diffusion equation very weakly in the sense of the
Weak Formulation[5.17. Since for the following boundary identification problems it is not
necessary to work with a Dirichlet-control formulation, we postpone a further theoretical
investigation of the connection between the mentioned approach and Dirichlet-controls to
future work.

Example 6.7 (Simple Test Case for low Reynolds-Numbers).

We will at first consider a very simple example, which will not accommodate to the inherent
dynamic behaviour of the Navier-Stokes system, but emphasise that the method is able to
reconstruct the transport of a signal across the boundary.

Therefore, we recall the sequence of brightness functions in Figure of Example[6.1. The
computational and observation domain is 2 = [0,1] x [0,1]. The time interval is given by
(0,0.2]. Furthermore, we choose

ir=0.  4,=00" ¢=1 e=1"" wv=1
for the state equations.

The sequence Iy (x) of intensity functions documents the movement of a bulb signal by a
given analytic solenoidal function. It was generated by setting

T = 1(t1), ty =0.04(k —1),  fork=1,...,6
of a solution I of the equation

oI +pB-VIi=0, in [0,1]? x (0,0.2],
I(z,0) = Iy(x), in [0,1]?,

with B = %ﬂ(—y,x)T and appropriate boundary conditions.

For the reconstruction we solved the Optimisation Problem [6.2] with the Newton-CG
method presented in Chapter [4} Since the CG method is not converging very well for small
parameters « we apply an inexact Newton method (cf. Remark , by performing only
a bunch of CG steps. We stop the Newton-type method if the residual drops below 107>,

Furthermore, we start the computation with setting the initial transport field u® = (-2, 2)7,
since we observe by the image sequence that the signal is moving from the center of the
bottom boundary to the center of the left boundary.

For further stabilisation reasons we perform moreover a homotopy method in a. We start
with a large o and solve the optimisation problem. Afterwards we use the solution as an
initial value for a further solve of the optimisation problem with a reduced o. We loop this
procedure a few times (3-5 steps) until a ~ 1073, Essential for the process is the choice of
the parameters p; and p, for the Robin-type boundary conditions. However, we also want
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Figure 6.3. Calculated Solution for a ~ 1073. Left column: From bottom to
top: I(Z,t) with ¢ = ]%T and k = 1,3,5,7. Middle column: Cor-
responding transport field. Right column: Corresponding pressure
function.
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6. Boundary Identification for the Observation of a Passive Tracer

Table 6.1. Error: ey, j, := || — Ih7k||%2(9><[0 o). The expected brightness function
has the following norm g := ||I||%2(QX[O o) = 2-454 1071

Case €hk Rel. Error (6’*7]“)
1 1.735-1073 0.71%
2 7.976-10~* 0.33%
3 6.205 - 10~* 0.25%
4 5.616 - 10~4 0.23%
5 5.346 - 10~* 0.22%

to investigate the connection to Dirichlet controls. Therefore, we use the boundary forms
developed in Chapter [3.3

el
bar 1, ) == — — (O, )y + (I — a1, Ont0)r) + ——— (I — ar,
(ar; 1,v) (i1 +0; (< ¢>a(z ( qr ¢>a(2) e ( qr 7/1>ag
epror K1
- Onl, On ——((u-n)l,
wr + 51 < ¢>6() 2(/«‘[ + 5[) <( ) w>89
Orpr
Sl ot S -n)I,0,
iy ()L on)
for the convection-diffusion part of system (6.1) and from Chapter m
Ou
b(gy;u)(p) == TR (V0w —pn, @)y + (U — Gy, V0P +EM) o)
1 Hu
+ tw + O (U —qu: P)on — m ((u-n)u, )y,
0
- 5u1f::u <V8nu —pn, Van‘P + £n>8(l
2(5u + Nu) oL

for the Navier-Stokes part. We compare then the cases:

512511:03
6I:5u:07
5I:5u:07
1
o= T WD 5 0
0, u-n>0 5

-1 u-n <0
oy =4 (lwn) 0w =0,
! {0, u-n>0 “

in Table [6.11
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I = flu =1,
wr = py = 0.1,
NI:Nu:hv
IU/I:M’U,:O7
MI:07 Mu:hv

(Case 1),
(Case 2),
(Case 3),

(Case 4),

(Case b)



6.3. Theoretical Results

The first three cases are Robin-type conditions, which fits to the Weak Formulation [6.3]
Thus the theory developed in the last section is applicable. The fourth case considers
weakly imposed Dirichlet data in the sense of equation for the convection-diffusion
part and equation for the Navier-Stokes part of the system (see Chapter . We
want to emphasise that we have no theoretical justification for this method. The fifth case
is a combination of the cases before.

The result of the calculation for Case 3 is visualised in Figure We see that the method
is able to recover the movement of the signal.

As Table indicates all parameter choices lead to a good interpolation of the original
signal transport. We have for larger u a bigger error, since we observe several artefacts
of the signal on the inflow boundary as the signal enters the computational domain (see
Cases 1-3). This is for small choice of p; and p,, or the Dirichlet boundaries (Case 4) not
the case.

\

\
NN
N

Figure 6.4. Top: t = 0.04. Bottom: t = 0.0425. Left Column: Transport field
for the weak Dirichlet boundary control. Right Column: Transport
field for the Robin-type control approach with py = po = 0.1. The
left transport field is immediately changing and has therefore a kink
in the time variable.

However, in the Dirichlet case (Case 4) we observe kinks of the transport field in the time
points, where image information is available as Figure indicates for 1 = 0.004. The left
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6. Boundary Identification for the Observation of a Passive Tracer

column shows two consecutive time steps (from top to bottom) for the transport vector
field in the Dirichlet case and the right column shows the same for Robin-type boundary
controls with puy = p, = 0.1.

This effect can be avoided by using for the Navier-Stokes part of the coupled system the
Robin-type prescription of the boundary controls (e. g. with p, = h) and for the transport
equation we use the weakly imposed Dirichlet conditions (see Case 5).

Remark 6.8 (Dynamic Behaviour).

The presented example does not need the fully nonlinear Navier-Stokes equation in our
coupled system, since the dynamic which is usually introduced by the nonlinear term has no
effect on the presented flow scenarios. Nevertheless, we choose them as a proof of concept
for the possibility of the coupled estimation of the flow field boundaries and the boundary
conditions of the intensity function.

In a next step we will investigate flows with higher Reynolds numbers, where the use of the
fully nonlinear Navier-Stokes system has an effect to the process. Before doing so, we will
shortly comment on a few algorithmic aspects, especially on the choice of the regularisation
parameter in the context of boundary identification.

6.4. Algorithmic Aspects: Brief Overview of Parameter Choice
Techniques

The presented examples of the last subsection are problematic in that they can hardly
be calculated for small regularisation parameters «, due to the ill-posed character of the
boundary identification problem. Even if we use a homotopy method in a we need a
growing amount of Newton-type steps to reduce the residual below a given tolerance, as
we decrease . Our aim is therefore to present in this subsection heuristic techniques for
the choice of appropriate regularisation parameters.

Thus, we start by recalling the abstract setting of the Optimisation Problem
. ~\ P2 S a2
min ([15(@) ~ 11 +olla - all3) (6.4)

with the solution operator S and two norms defined as

T
(Y 1
11113 = 52 11(t)13 and ||ql|3 = §/Ilq||%z(am2 dt.
j=1 0

The problem (6.4)) is the Tikhonov regularisation of the nonlinear inverse problem
S(q) =1.

In our particular case the ill-posed character comes from two sources:
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1. Uniqueness: For example assume the two intensity functions

P (1 + cos (0%) a) , for a:=+/(z—05)2+ (y— 0.25)% < 0.2,

0, else,

Il(x, 0) =

(@ 1) = (1 + cos () 5) . for bi=/(z—05)7+ (y — 0.75)2 < 0.2,

0, else.

I

We set ¢ =0 and v = 1 in system (6.1)). For the boundary conditions we choose
I(z,t) =0, w(x,t) = (2n — )7 (0.5 —y,z — 0.5)7 on Of2.
The Navier-Stokes part of the system has the (analytic) solutions

u(zx,t) = (2n — D)mw(0.5 — y,z — 0.5)7,

n — 27T2
p(m,t) — _u (

2 3

1
x—$2+y—y2—),
assuming that the initial conditions u° is choosen appropriate and the pressure is
normalised by [, p(x,t) de =0 for all t € [0,T].

This solution transports the initial brightness function I (x,0) for any n € N to the
final signal Is(x,T) by the linear transport equation in system . That means
that on the mere basis of the two intensity functions, we cannot find a unique vector
field which transported the intensity signal in the observation domain.

Remark 6.9 (Selecting a Solution).
Although we are able to calculate a solution for the Optimisation Problem (see
Example we have to be very careful trusting our results. Without further prior
knowledge it is always doubtful that the estimated flow field represents the vector field
which transported the signal originally.

As mentioned for example in Engl et al. [31] one can use further information for q
to select a certain solution out of a variety of different solutions. Furthermore, we
may restrict the number of possible solutions by using more information, if available,
about the domain geometry. If further informations of the flow field itself for example
in an aperture of the observation domain is available they can also be used to achieve
a better approximation of the “real” flow field.

2. The solution does not depend continuously on the data, which means that the nu-
merical method for the solution process becomes unstable.

The structure of problem accommodates this fact. For increasing « the regu-
larisation dominates and makes the numerical process stable, but the minimisation
process leads to

lg-dlle—0 = a=q
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6. Boundary Identification for the Observation of a Passive Tracer

However, the approximation of a solution could be bad in terms of the data term
N 2112 . ~
18(@) — Illar =: err(q),
with an error err(q), which is maybye very big.

Decreasing o makes the method more unstable, while the fitting term is much smaller,
and thus the approximation error for noise free data I tends to zero. Hence o deals as
a knob to adjust a good trade-off between the opposed proposition of approximation
accuracy and stability of the numerical process (see also Engl et al. [31]).

A first step for stabilising the numerical solution of the optimisation problem was
mentioned in Example [6.7], where we used a homotopy method in a. However, in
many applications I is not given as an analytic function. We have to take into ac-
count errors introduced by approximations or interpolations of possibly even defective
measurement data. In the literature these error sources are collected by the term
“noise” and the noise level is denoted by 6. We have for the disturbed measurement
function ° then the relation
-1l <é

in a norm which has to be specified.

As mentioned in the second point, the choice of « is crucial for calculating good approxi-
mations for inverse problems. Due to this fact it is no suprise that it is a very attractive
topic in modern inverse problem literature. It is beyond the scope of this thesis to present
all possible directions and developments. We will only give a brief prospect of possible
directions for investigations and available techniques. Two fundamental directions are
a-priori and a-posteriori choice rules. The latter is often based on the Mozorov discrepancy
principle

1S(q5) — I°||ps = 79, with 7> 1, (6.5)

which can then be used to calculate . In the case of PDE constrained optimisation this
was done for example by Griesbaum et al. [43] and for nonlinear problems by Kaltenbacher
et al. [64]. They use a Newton method to solve the root finding problem in equation (6.5)).

The discrepancy principle can furthermore be used as stopping criterion for iterated
Tikhonov methods. The iterated Tikhonov method for nonlinear inverse problems is for
example described in Scherzer [95]. In this method we calculate at first a regularised
solution g’ := g, and afterwards we compute successively the n-th iterate g by

a5 = argmin (|IS(@ — 11 +alla - ;713
qc

The method stops if equation is in some sense fulfilled. The method represents a stable
way of estimating as good as possible a solution as long as the noise level § is available.
We want to emphasise that this method is different to the mentioned homotopy method for
the Example [6.7] since the old control function is here entering the cost functional directly
in the regularisation term.
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6.5. Time-Independent Numerical Example

All these iterative methods suffer of course from the fact that the optimisation problem
must be solved in each iteration. Especially in the case of PDE constrained optimisation
with a time-dependent nonlinear and coupled PDE system as constraint like the one in
equation this procedure is very expensive, as long as the convergence rate in « is too
small.

A suggestion for accelerating the convergence process is the non-stationary iterated
Tikhonov method, which adapts the regularisation parameter in each iteration of the
iterated Tikhonov method. Here the functional reads

2
|

gy = argminl|S(@" ) ~ "+ 8@ ) (a-a"") I} +aalla —a"

qeQ
and is also known as Levenberg-Marquardt method. For example Hanke [48] describes how
the method can be applied to nonlinear PDE based inverse problems.

Calculating the sensitivity S’'(q) can be done by solving additional PDE problems. The
method therefore possibly increases the number of PDE solves and it is not clear if the
reduction of iterations by the acceleration really reduces the number of overall PDE solves
drastically. Furthermore, the approach has no proper stopping criterion if the noise level is
uncertain.

Our aim is to use a homotopy method in « to stabilise the solution process even for
small choices of a. Therefore we want to use a heuristic technique for reducing « to an
appropriately small value on the one hand and stopping the algorithmic routine as early as
possible. In our situation we assume that we have no knowledge of the noise level. Thus all
methodologies basing directly on Mozorovs discrepancy principle are not appropriate for
us. However, there are examples for so-called “heuristic parameter choice rules” for linear
or nonlinear inverse problems described in the literature (c.f. Engl et al. [3I, Chapter
4.5], Clason et al. [24], Ito et al. [59] and Jin et al. [61]).

Investigating heuristics has always an experimental character. Thus we need to solve a large
amount of optimisation problems. Especially for the PDE constrained optimisation problem
presented in this chapter this is not convenient, since the time-dependent problems need a
huge amount of computational time. Thus, we introduce an analogous time-independent
example and discuss heuristic parameter choice rules in this context. Later on we will use
our experiences also for the time-dependent case.

6.5. Time-Independent Numerical Example

First we describe the numerical example and discuss in remarks the differences to the
time-dependent case. Afterwards, we present first results, which prove the ability of the
suggested method to estimate quantities which are not directly observed by the given
data. Finally we discuss a heuristic technique for automatically running the identification
process.
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6. Boundary Identification for the Observation of a Passive Tracer

6.5.1. Estimation of Drag and Lift in a Benchmark Channel

0.41m

0.1m

0.9m

Figure 6.5. Computational domain with rough lower boundary {2r. Due to the
unknown roughness, we perform a boundary identification problem
on the domain (2, which is indicated by the red dotted lines.

The test case we have in mind is a combination of the examples in Chapter and at the
end of Chapter [5.3

The data Iy for our test case is constructed by solving the system

—€AIR(£IZ) + uR(w) . VIR(a:) =0, in g,
—vAug(x) + ur(z) - Vug(x) + Vpr(x) =0, in g, (6.6)
V.-ug(x) =0, in g
for the boundary data
UR(x) = 4Umaxy(0.41 — y), on Iy, := {0} x [0,0.41],
vopug(x) — p(x)n(x) =0, on Ioy :={0.9} x [0,0.41],
up(x) =0, on I'p =002\ (Ith U lou)
and
0.075 (1 T —Yi , Yy € Br(yi),
Ir(x) = ( eos (T -y ))> Y () on Iy,
0, else,
EanIR(CC) = 0, on FOuta
Ig(z) =0, on Ip,

with v = 10_3%?, p= 1%, e =10"° and Umax = 1.8 in the computational domain (2g,
which is visualised in Figure [6.5

For the intensity boundary condition we set y; = 0.12m, yo = 0.3m and r = 0.075m.
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The roughness of the lower boundary is given by the function
9 .
y(z) = —0.05 cos <2m:> sin (107x) m.

The resulting flow situation, which is presented in Figure can furthermore be charac-
terised by two common quantities, namely the drag and the lift coefficients (see for example
Schéfer [93])

2 2
€D 22D D, CL 22D L
where p denotes the fluid density, which we assumed to be 1%, D = 0.1m is a characteristic
length and the mean velocity is given by & = 2 max |ui(x)| = 0.222. Furthermore the
vector

(Fp,FL)" = /ﬁn ds
C

defines the drag and lift forces, with
N :=vVu —pl.
We calculated the values on a globally refined mesh with 2696 nodes:
cr, = 0.6717, cp = 6.2529

and remark that we used the equal order Finite Element element approach with LP
stabilisation for pressure and transport dominance as it was presented in Chapter

Now we assume that the function which describes the roughness on the lower boundary is
not available. Hence, we assume that the lower boundary is smooth and flat, what essentially
influences the solution. See therefore Figure and the drag and lift coefficient:

&L = 0.0110 loL=el Sogam).  ap = 5.2888 1o =enl 1549 .
|ev| |ep|

As mentioned above, we assume that the function () represents the transport of a passive
tracer, which can be directly observed. Thus the function I(x) is also available in this
scenario and we will use this information to estimate appropriate boundary conditions for
the flow on the lower boundary.

The aim is then to minimise
I(1.q) = SIT = InlBagen,y + Slal (6.7)
4) = 9 RIL2(Qons) T 9 qll12(rp)2 )
subject to the system but this time for the domain {2 = [0,0.9] x [0,0.41] instead

of the domain 25 described before (the red box in Figure . We choose moreover for
the cost functional an observation domain 20ps = [0,0.9] x [0.05,0.41], assuming that the
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data in this area is trustworthy. Furthermore I's indicates the bottom boundary where we
prescribe the Robin-type condition

1 1

l/anu—pn:—(q—u)+§(u~n)u, on I'p=10,0.9] x {0}
u

for the velocity vector field. The intensity function has homogeneous Dirichlet data on this

boundary. For all following numerical calculations we choose the parameter i, = h?.

Remark 6.10 (Remarks on the Solution Theory).

The problem is a time-independent version of the problem formulated at the beginning of the
chapter. A main ingredient of the used model is the Navier-Stokes system. For this system
we know that there are differences in the uniqueness theory for the time-dependent and
time-independent case. For the time-independent case we know that only for “sufficiently
small” data the solution is unique (cf. Temam [99, Chapter 2, Theorem 1.3]), while we
have in the time-dependent case no restrictions on the data.

Thus, we have to modify Theorem[6.4) Nevertheless we conjecture that we can guarantee
the existence of a solution of the optimisation problem with the time-independent PDE
side condition. The result can analogously be proved by the same techniques presented
throughout this thesis, since Theorem [6.5 requires only the existence of a solution of the
PDE side condition.

However, the statement of optimality conditions in terms of the Lagrangian or the refor-
mulation of the problem by a reduced cost functional to formulate a Newton-type method
needs the existence of appropriate Lagrange parameters (existence of an adjoint state)
or the existence of a unique solution operator. Since this cannot be guaranteed for the
Navier-Stokes equations we have also no chance to obtain this for our coupled model. Then
we have to restrict ourselves to smallness assumptions on the data. For the Navier-Stokes
equations we find discussions of this issues for example in the works of De los Reyes
et al. [87], Gunzburger et al. [{6], Roubicek et al. [89] and Troltzsch et al. [101)].

We skip a further discussion, since our main focus lays on the time-dependent case, and we
only need the time-independent case for the investigation of the reqularisation parameter.

6.5.2. A Heuristic Stopping Rule for a Homotopy-Type Method

For the above presented example we can make a parameter study for the regularisation
parameter .. We consider therefore the parameter sequence

A

a

=5 fori=0...25  and a=1000.

&%)

To stabilise the optimisation process for small choices of «; we use the solution for the
previous parameter «;_; as initial solution for the optimisation algorithm (the homotopy
method mentioned in the sections before).

Again we use only a fixed amount of CG steps and perform then Newton steps (inexact
Newton method) until the Newton-residual drops below a threshold of 1075.
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p(X.y)
-0040 0.0 0040 0.080

-0.059

u(x,y)
0.0 0.10 020 030 040

-0.015 0.44
v(X,y)
-0.10 0.0 HImmozo

-0.19 0.24

1(x,y)
0.12

0.0 0.040 0.080
-0.0067 0.15

Figure 6.6. Channel Flow (Re = 20). From top to bottom: Pressure, Velocity in
x direction and y direction and the intensity function. Left: Results
without identification: q|r, = 0. Right: Original flow in the domain
with rough bottom boundary. Compare the graphs to the results of
the flow with an identified boundary condition on the bottom wall

in Figure
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-0.040 0.0

-0.059

V<x Y)
-o 10
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Figure 6.7. Channel Flow (Re = 20). From top to bottom: Pressure, Velocity
in x direction and y direction and the intensity function. Left:
Estimation with boundary identification on the bottom boundary
for the choice o = 2 of the regularisation parameter. Right: Original
flow in the domain with rough bottom boundary. Compare the
graphs to the results of the flow with zero boundary conditions on
the bottom wall in Figure
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6.5. Time-Independent Numerical Example

The results of the calculation are given in Figure The dotted curves in the bottom
plot show the data term and regularisation term

N 1
A(0) i= S111(0) ~ 113 (green) (@) = 1@y g2 (red)

and the overall functional value J, (I, q) (blue). Furthermore, we visualise the relative
error of the a-dependent drag and lift coefficient in the top figure

_ len(e) —ép| (

_ len(e) — e (
ép]

~ blue
e )

errp(a) : green), erry(a) :

by the connected curves.

Due to the magnitude of the data function I we choose the scaling parameter ¢ = 1000 to
guarantee that the data term for the uncontrolled case is not too small. Usually we have
§l17(a) = 1])3 € [0.1,1].

At first we observe that the lift coefficient stays for small « clearly below 10% relative error.
In comparison to the 98% relative error in the channel with zero boundary conditions
on the bottom wall this is a remarkable result. The same can be observed for the drag
error function errp(a)) where the value stays for small « at approximately 2% which is also
impressive in comparison to the 15% relative error in the drag estimation in the channel
with homogeneous boundary conditions on a flat bottom wall. For the concrete choice
a =~ 2 we find actually the optimal values

&L = 0.6599 lL=cl Lyg0) . p = 63034 10 = enl 819 ) .
leL] |cp

Figure [6.7] shows a comparison between the estimated pressure, z-velocity, y-velocity and
intensity function on the left side to the original ones on the right side for the best parameter
o~ 2.

We see from the top plot in Figure that the drag and lift coefficient is for a =~ 4
already estimated with the same magnitude of accuracy as for smaller values of «. Since
the numerical method becomes more unstable for small « in terms of a higher amount
of needed steps for the inexact Newton method to achieve the prescribed tolerance for
the Newton residual, we should therefore choose « as big as possible. The aim is now to
establish a criterion to find automatically an appropriate a.

Ideas in this direction are presented in the articles of Kunisch et al. [69] for linear inverse
problems and Ito et al. [57] for nonlinear inverse problems, especially for problems in
the context of PDE constrained optimisation. Here they introduce the “optimal value
function”

jla) = 1;1;1(} {J(u(a), q(«)) subject to P(u(a),q(a)) =0},

where J represents the cost functional and P(-,-) the PDE constraint. On the basis of j(«a)
the authors developed an ordinary differential equation for the function j(-), which is then
approximated by a model function m(«a). By solving the optimisation problem for different
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Figure 6.8. Dependence on the regularisation parameter . Top: Relative error
of the drag coefficient errp(a) (green) and lift coefficient erry («)
(blue). Bottom: The functional value in dependence of a: j(«) (blue).
The data term d(c) := 1%9||I(a) — Ig||3 (green). The regularisation

term: r(a) := %Hq(a)H%Q(FB)Q (red).



6.5. Time-Independent Numerical Example

« they are able to compute the coefficients of the model function. Afterwards, they use
the value m(0) as estimation for the unknown noise level 6. This noise level approximation
can then be used to calculate with a Newton or Newton-type method a root « for the so
called damped Mozorov principle

1
jl@) + (a¥ — a)j'(a) = 552, with v € [1, 00].
Our experiences with a Newton-type method, where we approximate the higher derivatives

10°
10% . ! g

-2 ) |.4 ‘-2 I 0 | 2 1
10 10 10 a 10 10 10

Figure 6.9. The function g(a) = d(«a) — ar(a). In the zeros of the function the
data term and the penalty term are balanced.

of j(a), showed that this methodology for our example leads to a-values in the range
[1073,1072], which is in our particular example far to small in our opinion, since values in
the range [0.3, 3] show the best results.

That is why we use another heuristic technique, which for example Clason et al. [24] used
for linear inverse problems with L!-data fitting terms. The idea is to find an appropriate o
by balancing the data d(«) and the penalty term ar(a). The heuristic procedure has also
the name “zero-crossing” method. We consider therefore

g(@) = d(@) — ar(a),

which we plotted for our problem in Figure The task is now to find the biggest root of
the function g(«).

Again we like to apply a Newton-type method. We used a secant method to avoid the
calculation of the derivative ¢'(«), since we need again a representation of this derivative
by solutions of PDE problems.

However, both methods converge only for initial values in a certain neighborhood of the
root we wish to find. For different choices of starting values we were not able to produce a
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6. Boundary Identification for the Observation of a Passive Tracer

converging iteration, since this neighborhood seems to be very small. Geometrically this
is clear, when we consider the special structure of the function. The function values for
a < 0.1 are very small and the curve is parallel to the abscissa, while for bigger values
the function has a winding structure. The iterations of the method always jump between
values bigger then 1 and smaller as 0.1, but are not able to localise the desired root in the
interval [0.1, 1]. Thus we have to globalise the convergence area somehow.

We tried at first to work with line search strategies, also known as damped Newton-method.
However, we stopped our attempts if we exceed more then 100 steps, since this meant to
solve also the optimisation problem more then a hundred times, which seems unattractive,
due to the resulting huge computational costs.

0.03

0.02

0.01

-0.01

-0.02

-0.03

Figure 6.10. The family of functions g,(a) for the values o = a (red), o = 0.5
(cyan), 0 =5 (blue) and o = 50 (purple). The vertical lines in the
different colours represent the respective values for 0. We see that
if the root a* is close to o we found a good approximation of the
original zero-crossing method.

We suggest thus a modified balancing strategy, due to the following observation. We
introduce the function

go(a) = d(@) — or(a),

with ¢ > 0. This function is clearly a monotonically increasing function, since

d(ar) < d(az), for a1 < ao, (monotonically increasing),
>

r(ag), for a1 < ao, (monotonically decreasing).

The latter can be easily deduced by the minimising property of the optimisation problem
(see for example Ito et al. [59]). Thus the function has in general only one root (see the
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6.5. Time-Independent Numerical Example

examples in Figure and due to its monotonical structure it is possible to achieve by a
secant method very easily a good estimation of the root of the function g,(«). The only
thing we have to care about is to damp the method, with respect to negative values for
«, which are not allowed for the optimisation problems. The Algorithm describes the
procedure. The algorithm can also be suited with further line search techniques to globalise
the convergence of the method. However, in all our experiments this was not necessary.

Algorithm 6.1. Newton-type method for g,(-) with a damping strategy for
providing positivity of c.

1. Choose an initial q°, set k=0 and set «aj = am; and Okt+1 = %k

2. Minimise the cost functional in equation (6.7) subject to the
system for aj and 1.
= q*, ¢, d(aw), d(agy1), r(ag) and r(ags1).

3. Increment k and set A=1.

4. While % > Tol;

|ag—
4.1 Calculate apiq = ap — /\% with the approximations:

r(ag)—r(akg—1)
O —Qk—1

d/(oék) ~ 7d(a§z:i(ikl_l) and r’(ak) ~

4.2 While a4 <0
4.2.1 A<+ 0.5\
_ d(ou)—or (o)
422 apy1 =ag — )\m
4.3 Minimise the cost functional in equation (6.7) subject to the
system for apy = @', d(ogsr) and 7(ogyq).
4.4 Increment k and set A =1.

(secant method)

We compute the difference of both functions

9(@) = go(@) = (o — a)r(a).
and observe that o = o yields g(0) = g,(0). Thus the function g« (a) has the same root
o as g(a).

Furthermore for o > o* the root of g,(«) is in the interval (a*, o), as long as we consider
the biggest root a* of g(«) and g(a)) > 0 for all @ > o*. The reason is that

g(a*) =go(a) = (0 —a")r(@) >0 = g,(a") <0
= >0

and on the other hand

go(0) = g(o) > 0, due to o > o*.
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Algorithm 6.2. Strategy to find a root of g(a) = d(«) — ar(a) based on the
Newton-type method in Algorithm

1. Choose an initial qO, set | = 0 and set ar,;. Furthermore choose
0] = OIni -

2. Apply Algorithm [6.1] = «

3. Increment [ and set o, = qj_1.

lor—oy_1|

4. While o]
4.1 Set arp; = 2ay—1 and apply Algorithm [6.1].

> Tolo

= .

4.2 Increment [ and set o, = ay_q.

Since g, is a combination of continuous functions, it is continuous as well and therefore
has its root in the interval (a*, o).

Hence, if we already have a good estimate & for o*, we can use Algorithm for the
function g4 (a) to obtain a better estimation of a* of the function g(«). The quality of
the approximation of & can be evaluated by calculating the value gs(&). A small value
indicates that the equation g(&) ~ 0 is well approximated, which was the required condition
of the zero crossing method.

The mentioned consideration leads to the following strategy. Since in general we also lack
information on a good choice for ¢ we could start with a big oy and estimate roughly
the root ag of gy, (). Afterwards, we check if the estimated root «ag is close to oy by
checking % < Tol with a certain tolerance Tol. If this is not the case we take ag as
o1 and repeat the process. In consideration of the fact that a broader range of « values
leads to qualitatively equal results in terms of the drag and lift reconstruction (see Figure
we can choose a relatively big tolerance. Thus a few steps of this heuristic should be

sufficient to find an o with a good reconstruction property. We summarise the procedure
in Algorithm

Remark 6.11 (Other Root-Finding Techniques). We want to emphasise that there
exist global converging root finding techniques to calculate the zero of

g9(a) = d(@) — ad(a)

like for example the Dekker-Brent method (see Quarteroni [84)]). However, these methods
tnvolve usually the bisection method, which we want to avoid in this context, since «
influences the computation of the PDE constrained optimisation problem.
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6.5. Time-Independent Numerical Example

Table 6.2. Algorithm for the first test case with the initial values 0 =1 and

a = 1000. As tolerance for the stopping criteria s, :

lon—1]

we choose 0.01 and for s, := lon=gn_1]

we choose 0.1.

_ lom—om ]|

[an_1] m «

n o a lan, — ap—1|  |d(a) — or(a)]
1 1 1000 3.405 - 1072
2 1 500 500 2.424 - 1072
3 1 191.12 308.88 1.577-1072
4 1 47.24 143.89 1.027-1072
5 1 13.66 33.57 7.557-1073
6 1 1.98 11.68 3.105- 1073
701 0.96 1.02 9.880-10~*
8 1 0.49 0.48 1.882-1073
9 1 0.80 0.31 4.423-107°
0.81 0.008 (s < 0.01)

10 0.81 1.61 2.774-1073
11 081 0.81 0.81 8.124 .10~
12 0.81 0.47 0.33 1.754-1073
13 0.81 0.70 0.22 1.295-104
14 081 0.72 0.02 4.131-107°
0.71 0.004 (s < 0.01)

15 0.71  1.43 2.586 - 1073
16 0.71 0.71 0.71 6.082 - 10~
17 0.71  0.49 0.22 9.466 - 10~*
18 0.71  0.63 0.13 3.170 - 10~
19 0.71  0.70 0.07 1.632-107°
0.69 0.003 (s < 0.01)

0.71  0.69 (s, < 0.1)
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6. Boundary Identification for the Observation of a Passive Tracer

For a very small choice of a we can perhaps not even solve the optimisation problem, unless
we apply a homotopy method in «, as mentioned in the sections before.

Our proposed heuristic technique has the advantage that in the beginning the iterations
oy are permanently decreased (see Table n =1,...,7) unless the magnitude of the
sought o* is reached. Using the solution of the optimisation for ay_1 as initial values for
the solution with «y., we can combine the homotopy method with the a-strategy and thus
stabilise the numerical solution process for the optimisation problems.

Pressure
0.0 O‘IQ o
-0.040 0.18

Velocity Magnitude
0.10 0.20 o'ﬁq‘ . |p\'|40

4.3e-08 0.49

Figure 6.11. Second Test Case (v = 2 - 10*3’”72, Re = 10). Left: Estimated.
Right: Original. Top: Pressure function. Bottom: Magnitude
of the velocity components. Regularisation parameter: a = 1.07.
The estimated values are ép = 9.167 (Rel. error: 0.1%) and
¢, = 0.267 (Rel. error: 9.3%). In comparison: For q|r, = 0 we
have ¢p = 8.142 (Rel. error: 11.3%) and ¢, = 0.078 (Rel. error:
73.4%).

The algorithmic behaviour for our particular example is presented in the Table [6.2] We
choose a relative tolerance of 1% for the root finding process with Algorithm m and if o;
has a relative difference of 10% to o;_1 we accept the root a* of this function g, (-) as a
reliable « for the optimisation process. The evaluated a = 0.69 is close to the expected
value, but the process still needs many steps to obtain «.
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6.5. Time-Independent Numerical Example

However, we want to demonstrate the functionality of the suggested identification technique
for three other test configurations with unknown boundary roughness. We present the
results in Table In the upper part of the table the expected values ¢p and cj, are
compared to the estimations ¢p and ¢y with the above described strategy. The lower
part of the table shows the results for ¢ = 1 fixed. The process needs then of course a
lower amount of steps and therefore solves of the optimisation process. The relative errors

Pressure

0.0 0.040 0.080 |qr‘.|\\2\|\||9']6
-0.028 0.19

Velocity Magnitude
0.10 020 030 040

3.9e-08 0.47

Figure 6.12. Third Test Case (v = 2 - 10_3"‘72, Re = 10). Left: Estimated.
Right: Original. Top: Pressure function. Bottom: Magnitude
of the velocity components. Regularisation parameter: a = 0.66.
The estimated values are ép = 9.797 (Rel. error: 0.2%) and
¢r, = 0.86 (Rel. error: 9.6%). In comparison: For q|r, = 0 we
have ¢p = 8.142 (Rel. error: 16.8%) and ¢;, = 0.078 (Rel. error:
91.8%).

between these two techniques show only marginal differences so that it seems advisable to
choose o = 1 for this concrete problem class of identification problems. The Figures[6.11
[6.12 and [6.13] show the results of the second to the fourth test case. The upper image pair
always visualises a comparison between the expected pressure (right) and the estimated
one (left). The lower image pair visualises a comparison between the velocity magnitude of
the estimated flow (left) and the expected one (right). We want to emphasise that, beside
the boundary roughness, we also changed the viscosity parameter v to demonstrate that
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6. Boundary Identification for the Observation of a Passive Tracer

the procedure is also working for different flow configurations.

Remark 6.12 (Final Remark - Advantage of the Presented Heuristic).

Finally we want to emphasise that the presented technique relies on pure heuristics and
thus it is possibly not transferable to more complex geometries and configurations. However,
the technique had for us the big advantage that we could use it as some kind of automatic
stopping rule for our homotopy type method in «, which we needed to solve the problem
appropriately.

We observed that the special structure of g,(a) as monotone increasing function in a leads
to sequences of ax which in the beginning decreases, which could perfectly used in the
homotopy technique to produce in each step good initial values for the optimisation process.

Pressure

00 0040 0.080 0.12

-0.021 0.16

Velocity Magnitude
0.10 0.20 0.30 0.40

1.7e-08 0.43

0.16

Figure 6.13. Fourth Test Case (v =1.5- 10_3%2, Re ~ 13.3). Left: Estimated.
Right: Original. Top: Pressure function. Bottom: Magnitude of
the velocity components. Regularisation parameter: o = 0.24. The
estimated values are ép = 7.989 (Rel. error: 1%) and é; = 0.933
(Rel. error: 6.3%). In comparison: For q|r, = 0 we have ¢p = 6.710
(Rel. error: 14.6%) and ¢, = 0.039 (Rel. error: 95.5%).

Moreover, we want to emphasise that we are not certain that the application of the “zero-
crossing” method for our problem really leads to a reliable choice of the regularisation
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6.5. Time-Independent Numerical Example

parameter in terms of the quality of the reconstruction of the flow. We merely observed
that we are able to stop the homotopy method by this approach automatically for an
reqularisation parameter, which yields to a comparatively good reconstruction of the drag
and lift coefficient.

Table 6.3. Boundary identification for four test cases with different rough bound-
aries and viscosities. Upper half: The described strategy in the
Algorithm for a tolerance of 10% relative difference in o; and
1% in each root evaluation of g, (a). Lower half: Estimation of «
by Algorithm with fixed ¢ = 1. Original values: ¢p and cg.
Estimated values: ¢p and é;. The number n indicates the number of
evaluated optimisation problems to obtain an appropriate a.

Test cp cr, a-Strategy (Total n) ¢p el

1. | 6.253 0.672 0.69 (19) 6.345 (1.5%) 0.706 (5.0%)
2. | 9178 0.293 1.07 (8) 9.167 (0.1%) 0.266 (9.3%)
3. | 9782 0.952 0.66 (23) 9.798  (0.2%) 0.860 (9.6%)
4. | 7.907 0.878 0.24 (46) 7.980  (L0%) 0.933 (6.3%)
Test ) cr a for o =1 (n) ¢p ér

1. | 6.253 0.672 0.81 (8) 6.338 (1.4%) 0.697 (3.8%)
2. | 9178 0.293 1.07 (8) 9.167 (0.1%) 0.266 (9.3%)
3. | 9.782 0.952 0.79 (12) 9.786 (<0.1%)  0.854 (10.3%)
4. | 7.907 0.878 0.49 (12) 7.980  (L0%) 0.929 (5.8%)

6.5.3. Dependence on the Model Parameter (Reynolds-Number)

As we mentioned in the last subsection, the time-independent setting decreases computa-
tional costs and enables us to experiment with the regularisation parameter. Furthermore,
we can use this example to investigate the dependence of the reconstruction on model
uncertainties. We will create these uncertainties by the Reynolds number Re, which
characterises the fluid flow. We recall the definition of the Reynolds number
C
Re — u d7

1%

with the characteristic velocity u¢, diameter d and the fluid viscosity v. For our specific
situation the diameter d = 0.1m is always given by the diameter of the obstacle. The
characteristic velocity is also always given by the mean inflow u = 0.27. Thus the Reynolds
number is indirectly proportional to the viscosity parameter v

2
Re =027 -1,
S
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6. Boundary Identification for the Observation of a Passive Tracer

In the following experiments we will use the intensity functions of the First Test Case and
the Fourth Test Case of the last subsections, which were calculated for a certain fixed
viscosity v. We will assume that for the identification process only a vague knowledge
of the viscosity 1% is available. The size of the deviation will be given by the following
formula

VO =v+ by,

with a percentage 9, to investigate the influence of the model parameter v.

Table 6.4. First example. Boundary identification for the First Test Case with
different deviation levels § of the viscosity v and the corresponding
drag and lift estimation. In parentheses the relative error related to
the expected values for the drag and lift is given.

) 15 cr,

1% 63712 (1.3%) 0.702 (4.3%)
5% 6.507 (3.5%) 0.721 (7.1%)
10% 6.679 (6.2%) 0.749 ( )
20% 7.007 (11.4%) 0.792 (17.7%)
) ( )
) ( )

50% 7.997 (27.2%) 0.942
100% 9.583 (52.4%) 1.148

We present the results of the First Test Case (v = 10_3m—2) in Figure and Table[6.4{and

for the Fourth Test Case (v =1.5- 10*3%2) in Figure and Table 6.5, All combinations
were calculated with the same strategy for choosing the regularisation parameter as in the
last subsection.

We see that for small perturbations of the viscosity parameter we still achieve good
approximations of the drag and lift coefficients. If the uncertainty is too large (> 50%) the
flow situation is clearly different to the original one. To make sure that this is not an effect
of an early stopping of the parameter strategy we present in Table the estimates of the
coefficients also for very small regularisation parameters for a fixed amount of deviation
d = 50% of the viscosity parameter. We see that for small « the estimates have the same
relative errors so that we can draw the conclusion that the modeling error is dominant in
this case. Thus we can conclude that the boundary identification process is not able to
adjust the lack of model information, so that reliable model information is fundamental for
the presented boundary identification technique.

Remark 6.13 (Real World Applications).

Due to the observation for the time-independent examples in this chapter it becomes
clear that model information is essential for a good identification process. Obviously the
coefficients cp and cy, are directly influenced by the change of the viscosity. We conjecture
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Pressure

||m\ump
.o—l

0.08
0.04 Original 5%
0.
-0.04
-0.06

20% 100%

Velocity Magnitude
0.45

0.40

Original 5%

2.9e-08 20% 100%

Figure 6.14. First Test Case. Top group: Pressure function for the original flow
configuration (top left), identification with 5% deviation of the
viscosity parameter v (top right), 20% deviation (bottom left) and
100% deviation (bottom right). Bottom group: Same as the top
group for the velocity magnitude.
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therefore that in analogous real world flow situations accurate model knowledge will be
crucial for a good identification process.

However, at the moment we cannot make any statements for flow situation like the one
presented in the Third Example of Chapter[1.2.3, In this prototypical example no obstacle
influence the flow. Thus it is not clear if the boundary identification for a different flow
model is able to generate a qualitatively good reconstruction of the flow features. We will
investigate this topic in the next chapter.

Table 6.5. Second example. Boundary identification for the Fourth Test Case
with different deviation levels d of the viscosity v.

1) cp cr,

1%  8.0393 (1.7%) 0.9402 (7.1%)
5%  8.2256 (4.0%) 0.9658 ( )
10% 83740 (5.9%) 0.9915 ( )
20%  8.9286 (12.9%) 1.0749 (22.4%)
) ( )
) ( )

50% 10.4698 (32.4%) 1.3205
100% 12.6055 (59.4%) 1.6590

Table 6.6. Influence of the modeling error related to the regularisation parameter
investigated by the boundary identification problem for the First Test
Case with a fixed deviation level of § = 50% for different regularisation
parameters . In parentheses the relative error related to the expected
values for the drag and lift is given.

«Q CD CL,

102 7.104 (13.0%) 0.246 (63.5%)
102 7.507 (191%) 0.490 (27.2%)
100 7797 (24.0%) 0.715  (6.2%)
100  7.960 (26.6%) 0.899 (33.5%)
1071 8.018 (27.5%) 0.959 (42.4%)
1072 8.014 (27.5%) 0.951 (41.3%)
1073 8.022 (27.6%) 0.959 (42.4%)
107%  8.018 (27.5%) 0.956 (41.9%)
107° 8.016 (27.5%) 0.953 (41.6%)
1076 8.018 (27.5%) 0.956 (41.9%)
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Pressure

iw —
-0.10

Original 5%

0.0 _

0.021 20% 100%

Velocity Magnitude

0.43
0.40
0.30
Original 5%
0.20
0. ] 0 _
1.7e-08

20% 100%

Figure 6.15. Fourth Test Case. Top group: Pressure function for the original
flow configuration (top left), identification with 5% deviation of
the viscosity parameter v (top right), 20% deviation (bottom left)
and 100% deviation (bottom right). Bottom group: Same as the
top group for the velocity magnitude.
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6.5.4. Heuristic Algorithm for Boundary Estimation and Parameter
Adjustment

The last subsection demonstrates that the viscosity as model parameter drastically influences
the behaviour of the fluid flow. In general we will also have only a vague notion of this the
parameter. Thus, the question arose if it is possible to estimate also the viscosity and to
combine this process with the identification of the boundary function.

We will discuss in this subsection a heuristic procedure for the considered time-independent
example. Starting point is the following observation. Figure [6.16] shows a plot of the
functional value

. ¢ A
jv) =) - 720000,

in dependence on the varying viscosity parameter v in the system . We want to
remark that the functional is not vanishing for the exact viscosity parameter v, since the
data function I was interpolated on the observation domain {2gps and has therefore an
interpolation error. Furthermore, the roughness was chosen as in the First Test Case
(see Figure and the function I was generated by a forward calculation with the
viscosity parameter v = 1073, Figure indicates that the minimum of the graph is
log(1073) ~ —6.91, which marks almost the accurate value for the viscosity on a logarithmic
scale. Thus, in case the computational domain is known, we should be able to identify the
viscosity parameter pretty well.

Such parameter identification problems and their numerical treatment are extensively
discussed in Vexler ([102]). However, we will in the following rely on a heuristic technique
for derivative free minimisation in the case of one-dimensional functions which is known as
successive parabolic minimisation. It is described for example in Heath [50]. We present
the procedure in Algorithm[6.3] By the values Kmax and kmin we can prescribe the interval
in which we are looking for a reliable viscosity parameter v = exp(x) with & € [Kmin, Kmax]-
Thereby, we looking for the minima on the logarithmic scale, since the choice v = exp(z)
guarantees that the viscosity stays positive.

A huge drawback of the method is that it is not necessarily converging to a minimum, since
it can also calculate a maximum. However, we can check the curvature of the parabola by
the leading coefficient of the polynomial and adjust the triplet (zg, z1,x2).

In order to find an appropriate triplet we worked with the following initial setting in
all examples of this subsection: We calculated the functional values at five equidistant
points Z; between Kmin = —9 and Kmax = 0. Then we checked which of the three triplets
(Zo, Z1,%2), (%1, T2, T3) or (To,Ts,x4) fullfils the condition in Step 3. of the Algorithm
and has the minimum functional value in the middle point. For the resulting triplet we
perform Algorithm

Applying Algorithm to the above example leads to an estimation of v ~ 9.951 - 1073,
which is a 0.5% relative error to the expected value. The reason for the difference is the
noise in the data due to the interpolation error. For this estimation we needed overall 14
evaluations of the state equation (Tol = 1073).
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Figure 6.16. The functional value j(v) for v = exp(x) for varying x. The
minimum is marked by the red dotted line at  ~ —6.9, which is
almost the desired v.
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Figure 6.17. The functional value j(v) for v = exp(z) for varying z if the rough
lower boundary is substituted by a smooth and flat wall with
homogeneous Dirichlet data. The minimum is marked by the red
dotted line at x ~ —6.1. The green dotted line marks the value of
the expected viscosity parameter.
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6. Boundary Identification for the Observation of a Passive Tracer

Algorithm 6.3. Successive Parabolic Minimisation

1. Choose Kmax = g > X1 > T2 > Kmin
2. Solve system (6.6) for v; =exp(z;) and calculate j; + j(v;i).

3. If jo > j1 and j2 > j; accept z;. Otherwise return to Step 1. and
choose new points.

4. Calculate the coefficients ag,a; and as of the interpolation
polynomial, e. g. 1in Newton representation

p(x) = ap + a1(x — xo) + az(x — x0)(z — 1)

5. Tnew — %((x(]‘f'xl) -

Calculate jney < J(Vnew)-

ai
a2

) and solve system (6.6) for ipey = exp(Tney)-

6. If Zpeyw < 11
If jJuew < J1: 24 T1, T1 ¢ Tpew, J2 < J1 and ji < Jnew-
else: g ¢ Tpey and Jo < Jnew-
else
If jnew < J1: X< T1, T1 4 Tnew, Jo < J1 and ji < Jnew-
else: I ¢ Tpey and j2 < Jnew-

7. If |xg—x1| < Tol or |r;—z3| < Tol stop the program and accept exp(zi)
as approximation of v. Otherwise return to Step 4.
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6.5. Time-Independent Numerical Example

As mentioned troughout the whole section the roughness of the channel is assumed to be
not available. Thus, the first question that arose is how the choice of an smooth and flat
boundary on the lower wall influence the curve of j(v). The answer is given in Figure
We see that the minimum of the curve is now shifted in comparison to the original
situation. If we use the successive parabolic minimisation in Algorithm to estimate the
value of the parameter we derive a value of v &2 2.305 - 1073 (rel. error > 100%). Although
the value has the same magnitude as the expected one and is thus certainly a better choice
than using an arbritary value, an appropriate identification of the drag and lift coefficient
will not work as Table [6.5] in the last subsection indicates.

The next thing we want to investigate is how the functional value behaves in dependence on
the viscosity parameter if the lower boundary is smooth, but a suitable boundary function
is prescribed. Thus, we will use the boundary function we estimated for the exact viscosity
1073 in the second last subsection. The curve for j(v) of this setting was plotted in Figure
Although the graph looks different to the setting where the roughness was known
(compare Figure and Figure the minimiser lies at almost the same point  ~ —6.9
and the behaviour of the curve around the minimiser is also very similar. By Algorithm
6.3 we calculated v ~ 9.87 - 10~%, which is a relative error of 1.3% in comparison to the
expected viscosity parameter.

0.5
04r-
i(exp(x))

03-

0.2

0.1~

Figure 6.18. The functional value j(v) for v = exp(z) for varying x if the rough
lower boundary is subsituted by a smooth wall and an estimated
boundary function for ¥ = 1072 is prescribed on this boundary.
The minimum is marked by the red dotted line at x ~ —6.92.

This observation suggests a heuristic, which makes it possible to adjust also the viscosity
parameter, while the boundary function is estimated. We try to segregrate both processes
and loop over them until a sufficient minimum is found. The rough structure of the
procedure is sketched in Algorithm

In the beginning the suggested segregation loop is very expensive due to the repeated
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6. Boundary Identification for the Observation of a Passive Tracer

use of Algorithm which involves probably a big ammount of Newton-type steps for
the root finding problem g,(a) = d(a) — or(ar) = 0. Remind that each Newton-type
step requires the solution of a PDE-constrained optimisation problem with an inexact
Newton-CG method from Chapter @l For each solving of these optimisation problems we
need to solve up to 140 PDE’s. However, at the end of the process when v is pretty good
adjusted « is also not changing very much and is therefore estimated in a few Newton-type
steps. Due to this observation we suggest a second segregation loop, which integrates
Algorithm [6.3] into Algorithm [6.I] The procedure is described in Algorithm [6.5] and can
also be interpreted in the way that we perform only one Newton-type step of Algorithm

for the root finding of g(«) in Algorithm

R1 R2

Figure 6.19. Channels for the forward calculations in this subsection to obtain
the data function 1. Right: R1 was also used for the first test case
in Section Left: R2 was also used for the second test case in
the mentioned section.

Remark 6.14 (Remark on Algorithm .

We use Algorithm [6.3 in Step 2.4 of Algorithm[6.5, which requires to find a triplet tri:=
(:L‘o,l‘l,xg) with xg > x1 > xo and Jjo > 71 and Jj2 > 71, where Ji j(VZ) with v; =
exp(x;). We always use in the kth iteration the triplet of the old iteration tritk—1) .=

(wgk_l),xgk_l),xgk_l)) and check if one of the following triplets

(k—1) (k—1)
S e ]
o .’L'[()k_l) + l’gk_l) (k1) l’gk_l) + xék—l)
trip /= (———F——— 21 =),
2 2
(k—1) (k—1)
trig == (xgk_l), i e B ;mZ ,:cgk_l))

fulfils the condition and which has the minimal functional value in case that more than one
triplet fulfils the condition. The rsulting triplet tri®) is used for the current calculation. If
none of the triplets fulfils the conditons, we decrease the smallest value and increase the
biggest value of the triplet unless we find a new triplet tri®) which satisfies the condition.

By this technique we can guarantee that we have always a triplet for Algorithm[6.3, which
has a length |xog — x2| which is in general decreasing. The later issue explains why we
need in the end of the overall Algorithm less inner iterations of Algom'thm (see the

example in Table .
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6.5. Time-Independent Numerical Example

Algorithm 6.4. Segregation loop I.

1. Set ¢ =0, a©® =103, »© =10 and k=1

2. Use q(¥ and apply Algorithm — v

3. Use a® and v and perform Algorithm — q(l) and oY
4. While max {|v®) — =D | q*) — q(k_l)”%g(FB)z} > Tol

4.1 Increment k.
4.2 Use q¢*~1) and apply Algorithm — vk
4.3 Use a*Y and v® and perform Algorithm — q(k) and o

Algorithm 6.5. Segregation loop II.

1. Assume l/(k_l),y(k),ozk_l,ak and qk are already calculated.

ok —1]

k) _,,(k—1) —
2. While max{y(z)/(kli(l)| |7 o akll} > Tol
a) Calculate api; = ap — Ak%g(ak) with g(a) = d(a) — (o)
and A\ = 1.

b) In case i1 < 0 perform damping by decreasing A\, until ayiq >
0.

c) Minimise the functional (6.7) subject to the system )
with v®) for the evaluated apy; = ¢*tY d(ayyy) and 7(agyr)-

d) Use ¢**t1 in Algorithm = pk+l)

e) Increment k.
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6. Boundary Identification for the Observation of a Passive Tracer

Table 6.7. Numerical results for eight different Cases. Upper table R1: Data
function I was obtained by a forward calculation with the left geometry
in Figure forv =15-10%,v =12-103,v = 1-1073 and
v = 8.6-10"%. The values for the forward calculation are given by
v, ¢p and c¢y. The estimations obtained by using Algorithm are
given by the values 7, ¢p and ¢é;. The values ¢p and ¢;, show the
results for a calculation in a channel with smooth lower boundary
for the exact viscosities and the values v, ¢p and ¢y, are obtained
after estimating the viscosity in an smooth channel by Algorithm
Lower table R2: The same calculations for an intensity function,
which was obtained by a forward calculation in a channel with the

right geometry in Figure

R1

Re 14 CD Cr, v éD éL
~13.3 [1.5-1073 7.906 0.948] 1.41-1073 (5.7%) 7.689 (2.7%) 0.930 (1.9%)
~16.6 |[1.2-107% 6.922 0.780| 1.16-1072 (3.0%) 6.858 (0.9%) 0.793 (1.7%)

20 1.0-107% 6.253 0.672| 9.95-10% (0.5%) 6.285 (0.5%) 0.696 (3.7%)
~23.3 [86-107* 5.774 0.596| 8.76-10"* (1.8%) 5.878 (1.8%) 0.636 (6.6%)

Re 6D EL v ED EL
~13.3 [6.710 (15.1%) 0.039 (95.8%)| 2.95-1073 10.713 (35.5%) 0.174 (81.2%)
~ 16.6 |5.865 (15.3%) 0.021 (97.3%)| 2.56-1073  9.644 (39.3%) 0.132 (83.1%)

20 5.289 (15.4%) 0.011 (98.4%)| 2.30-1073  8.936 (42.9%) 0.105 (84.3%)
~23.3 |4.875 (15.6%) 0.005 (99.2%) | 2.14-1073  8.492 (47.1%) 0.090 (84.9%)

R2

Re v cp cr, 1% ¢p r
~133 [1.5-107% 8.556 0.895| 1.42-1073 (5.3%) 8.366 (2.2%) 0.924 (3.2%)
~16.6 |[1.2-107% 7.416 0.738| 1.19-1073 (0.6%) 7.472 (0.8%) 0.827 (12.0%)

20 1.0-1073 6.648 0.659| 1.05-1073 (1.5%) 6.883 (3.5%) 0.747 (13.3%)
~23.3 [86-107* 6.103 0.610| 9.22-107% (7.2%) 6.396 (4.8%) 0.697 (14.4%)

Re ¢cp Cr, v cp cr,
~13.3 [6.710 (21.6%) 0.039 (95.6%) | 2.24-1073 8.766 (2.5%) 0.100 (88.9%)
~ 16.6 |5.865 (20.9%) 0.021 (97.1%) | 1.77-1073 7.467 (0.7%) 0.059 (93.0%)

20 5.289 (19.9%) 0.011 (98.3%)| 1.45-1073 6.579 (1.0%) 0.036 (94.5%)
~23.3 |4.875 (30.1%) 0.005 (99.2%) | 1.22-107% 5.936 (2.7%) 0.023 (96.3%)
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6.5. Time-Independent Numerical Example

In the end we want to emphasise that the presented algorithms are only heuristics and have
no theoretical justification. However, we will present a bunch of test cases to exemplify the
functionality of the presented technique. Thus, we consider two channels with a different
roughness for a different set of Reynolds numbers and present numerical results.

In Figure [6.19] we visualise the two different geometries, which are denoted by R1 and
R2. For these channels we consider the Reynolds numbers 13.3,16.6,20 and 23.3, which
corespond to the viscosities 1.5-1072,1.2-1072,1.0 - 1072 and 8.6 - 10~% and produce by
solving the state equation the observation J (x), which we use as data function in the cost
functional of the optimisation problem. Afterwards, we applied Algorithm to evaluate
both the viscosity parameter and a boundary function on the lower boundary. As tolerance
we used Tol = 1072 in the algorithm. The results of all calculations are presented in Table
0. (|

Table 6.8. Algorithm applied to the test data function I for the configuration
R1 (see Figure[6.19) and v = 1-1073. The procedure stoped after

step 13 as % droped below the tolerance of 1073.

k v®) (No. It.) % U, %
1 2.3046-1073 (18) - 1.0000 - 10>  —

2 1.3310-1073 (15) 4.22-107Y  5.0000-10%>  5.00-107!
3 1.0608-1073 (11) 2.03-107'  2.2054-10>  5.59-10!
4 9.5933-107% (11) 9.56-1072  1.0406 - 10>  5.28 - 107!
5 9.2965-10"% (14) 3.09-1072 2.2511-10'  7.84-107!
6 9.3085-107* (5) 1.28-107%  7.3675-10"! 9.67-107!
7 9.8488-107* (9) 5.80-1072 2.1205-10"% 7.12-107!
8 1.0050-1073 (13) 2.04-1072  7.1430-10"' 2.37-10°

9 9.9817-107% (3) 6.77-107%  7.7008-10"! 7.81-1072
10 9.9567-107* (1) 2.51-107% 7.7881-10"' 1.13-1072
11 9.9378-107% (2) 1.89-107%  7.7595-10~! 3.67-1073
12 9.9452-107* (6) 7.39-107*  7.7260-10"' 4.32-1073
13 9.9452-107* (8) <1-107* 7.7392-107' 1.71-1073

Compared to the values ép, ér, nu, ¢p and ¢z, the Algorithm [6.5] yield with the values D,
¢p and ¢f, good estimations. Thus the algorithm performs very well in consideration of
the fact that we have used minimal information for the fluid flow model (inflow boundary,
homogeneuous Dirichlet conditions on the top wall and the obstacle). Finally we present
in Table [6.8| the behaviour of Algorithm [6.5| for the case R1 and v = 1073.
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6. Boundary Identification for the Observation of a Passive Tracer

6.6. Numerical Example for the Time-Dependent Case

Finally we want to apply the presented techniques for a time-dependent example. However,
the computational cost increases drastically so that we avoid the estimation of the viscosity
parameter and assume that this parameter is already known. We concentrate on the
identification process of the boundary functions on the lower boundary. To choose «
appropriately small we use the homotopy method with the heuristic automatic stopping
rule from the time-independent example.

We will at first describe the forward calculation, which we use to generate the intensity
function for the identification process. Starting point is again the benchmark channel in
Figure [6.5| with a rough bottom boundary. The equations for the forward calculation are
now given by the time-dependent system in equation (6.1]). The initial functions for the
intensity I°(x) and the transport field u°(z) will both be zero. The boundary conditions
are given by

t
W(@, 1) = Amaxy(0.41 — y) sin (7;) C on Iy = {0} x [0,0.41],

on I'oy := {0.9} x [0,0.41],
on Ip := 6(2\(F1nul“out)

vopu(x,t) — p(x,t)n(x) =0,
u(x,t) =0,

for the transport field and

0.075 min(¢, 1) (1 + cos (%w/y — yz)) , Yy € Br(yi),

I($,t) = on Fln7
0, else,
el (x,t) =0, on I'out,
I(x,t) =0, on Ip,

for the intensity function. The parameters in this setting are chosen as follows:

2 k
V= 10_3m—, p= l—g, e=10"° and Umax = S.QE.
s S s
Thus the Reynolds number calculated with the mean velocity u = %max lui(x,t)] ~ 1
is approximately 100. For the intensity boundary condition we have ¢ = 1,2 and set
y1 = 0.12m, y2 = 0.3m and r = 0.075m.

For the numerical realisation we use the implicit Euler method for the time discretisation of
the time interval [0, 8] with 1600 time steps to resolve the dynamics of the problem. For the
spatial discretisation we use bilinear finite elements for all four components p(x,t), u(x,t)
and I(x,t) with LP stabilisation for the convection dominance and to ensure inf-sup
stability.

We calculate again on a mesh with 2696 nodes. In the right columns of the Figures [6.20)
and we visualise the velocity magnitude and the intensity function at four different
time points t = 2,4, 6, 8.
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Velocity Magnitude

o

ol

Figure 6.20. Velocity magnitude (Re ~ 100). Left Column: Result of a forward
calculation with homogeneous Dirichlet conditions on the bottom
boundary (implicit Euler with 80 time steps). Right Column:
Results for a forward calculation with the roughness on the lower
boundary (implicit Euler with 1600 time steps). From top to
bottom four different time points ¢t = 2,4, 6, 8.
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6. Boundary Identification for the Observation of a Passive Tracer

Figure 6.21. Intensity function I(x,t) (Re ~ 100). Left Column: Result of
a forward calculation with homogeneous Dirichlet conditions on
the bottom boundary (implicit Euler with 80 time steps). Right
Column: Results for a forward calculation with the roughness on
the lower boundary (implicit Euler with 1600 time steps). From
top to bottom four different time points ¢t = 2,4, 6, 8.
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6.6. Numerical Example for the Time-Dependent Case

Our aim is again to identify appropriate boundary conditions on the bottom wall, which
yield a good approximation of the flow scenario only by taking the information on the
intensity function into account. Moreover, we assume that the intensity function is only
given on a sparse time grid, that means we have only a sequence

A

Ii(x) = I(x, ty), with k=1,...,80, and tp —tp_1=0.1

as given data.

Drag | f Estimated
: — Expected
—Hom. Dirichlet

Figure 6.22. Drag coefficient: Original flow in the rough channel (blue curve,
time steps: 1600). Estimated flow by the boundary identification
process (green curve, time steps: 80) for o« = 0.497 (obtained by the
a-strategy in Algorithm . Flow in a channel with homogeneous
Dirichlet boundary on the bottom wall (red curve, time steps: 80).

The boundary identification is then performed by solving the Optimisation Problem
with an inexact Newton-CG method, where we only performed a few CG-steps in each
Newton step and several Newton steps until we drop below a threshold of 10~ for the
Newton residual.

We set ¢ = 100 to scale the data term and avoid to control the intensity function on
the boundary, since we assume that there is no essential transport of the signal across
the bottom boundary. To find an appropriate a we use the strategy we used in the
time-independent case. Due to repeated solving of the optimisation problem and the
larger amount of Newton steps the computation becomes very time intensive and expensive
(compare Chapter as long as we calculate on the same temporal discretisation as for
the forward calculation. We will therefore choose a temporal discretisation with a time
step size of the same quantity as for the given intensity sequence I, (dt =0.1).
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0.3 | . !
Lift : f ; Estimated
—Hom. Dirichlet

0.15
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Figure 6.23. Lift coefficient: Original flow in the rough channel (blue curve,
time steps: 1600). Estimated flow by the boundary identification
process (green curve, time steps: 80) for o« = 0.497 (obtained by the
a-strategy in Algorithm [6.1)). Flow in a channel with homogeneous
Dirichlet boundary on the bottom wall (red curve, time steps: 80).

For the mentioned time discretisation a forward calculation with homogeneous Dirichlet
boundary conditions on an flat bottom boundary is visualised in the left columns of Figures
and Especially for the intensity function, we see essential differences to the given
data in the right column (see Figure [6.21]).

In comparison to this Figures and show the results of our identification process
(right columns of the figures). Although we see still differences compared to the expected
solution, the solution seems better fitted than the one with a zero Dirichlet boundary
condition on the bottom boundary. The quality of our identification is again documented
by the drag and lift coefficient, which are visualised in Figures and The blue
curves indicate in these figures the expected values, while the green curves indicate the
estimate and the red curves the drag and lift coefficient for the benchmark channel with
a smooth and flat boundary and prescribed homogenuous Dirichlet conditions. We see a
significant improvement by the boundary identification process. Nevertheless the result is
not as satisfactory as in the time-independent case.

One reason could be that the a-strategy fails. The a-strategy is presented in Table and
seems to be working fine. To make sure that the chosen parameter is reliable we calculated
the solution also for & = 1072 and visualised the estimated drag and lift coefficients in
Figures and We see that in some areas the green curve fits the original drag and
lift curve better. However, spurious oscillations are introduced in the initial phase and in
the second half of the time interval for our solution. The reason for the oscillations is that
in this particular example the boundary identification must also absorb the discretisation
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Velocity Magnitude

2.3 -
1.2e- oau

Figure 6.24. Velocity magnitude (Re ~ 100). Left Column: Results for a
forward calculation with the roughness on the lower boundary
(implicit Euler with 1600 time steps). Right Column: Results of
the Boundary Identification Process with o = 0.497 obtained by the
a-strategy from Algorithm From top to bottom four different
time points ¢t = 2,4, 6, 8.
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Figure 6.25. Intensity function I(x,t)(Re ~ 100) . Left Column: Results for
a forward calculation with the roughness on the lower boundary
(implicit Euler with 1600 time steps). Right Column: Results of the
Boundary Identification Process with a = 0.497 obtained by the
a-strategy from Algorithm [6.1} From top to bottom four different
time points t = 2,4, 6, 8.

188



6.6. Numerical Example for the Time-Dependent Case

error, which results from choosing a large time step size dt = 0.1 in the numerical scheme
in contrast to the time step size dt = 0.005 for the forward calculation. The chosen time
step size for the optimisation problem is not able to resolve the dynamic behaviour. Thus
the dynamics of the flow is introduced by the identified boundary condition gq. We see
this effect mainly in the time period [6, 8] in the lift coefficient (cf. Figures and [6.27).
However, the choice of a large « suppresses the fitting of the discretisation error and in this
sense our a-strategy is reliable. Nevertheless, an interesting topic for future work would
be to work with a time-dependent «, which is smaller in the laminar starting phase and
becomes larger in phases where the identification process starts to fit the discretisation
€rror.

4 T T T T )
Drag Es_tlr.nated
— Original
3 —Hom. Dirichlet
2, —

Figure 6.26. Drag coefficient: Original flow in the rough channel (blue line, time
steps: 1600). Estimated flow by the boundary identification process
(green line, time steps: 80) for a = 1073. Flow in a channel with
homogeneous Dirichlet boundary on the bottom wall (red line, time
steps: 80).

Another possibility to reduce the influence of the discretisation error is to choose a smaller
time step size, which on the other hand increases the already large computational effort of
the solution process.
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Figure 6.27. Lift coefficient: Original flow in the rough channel (blue line, time
steps: 1600). Estimated flow by the boundary identification process
(green line, time steps: 80) for a = 1072. Flow in a channel with
homogeneous Dirichlet boundary on the bottom wall (red line, time
steps: 80).

Table 6.9. Algorithm for the time-dependent boundary identification problem
with initial value o = 1000. As tolerance for the stopping criterion

Sq 1= % in a we choose 0.01.
-

n a |y, —ap—1| |d(a) —7(c)]
1 1000 1.598 - 1071
2 500 500 1.434-1071
3 225.894 274.106 1.191-101
4 58.003 167.891 7.232.1072
5  25.564 32.439 4.974 - 1072
6  7.703 17.861 2.725- 1072
7 2201 5.411 1.170 - 102
8  0.256 2.036 3.702-1073
9  0.745 0.489 2.690 - 1073
10 0.539 0.206 6.138 - 10~
11 0478 0.061 1.960 - 10~4
12 0.493 0.015 5.627-107°
13 0.499 0.006 2.710-107°
14 0.497 0.002 4.206 - 1076
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7. Prototypical Application: Monitoring
Pollutants in the Atmosphere

This final chapter is devoted to demonstrate the ability of the developed techniques to solve
complex problems, which we have to face when we consider real world applications. Our
main objective is to demonstrate that using the modeling knowledge leads to more reliable
results and thus the increased computational cost of the method is justified. Essential for
these investigations is that we have comparable quantities. These quantities are not always
available for real world applications. Moreover, real world data is in general disturbed by
model uncertainties and unknown measurement errors, which influences the optimisation
problem drastically. Thus the validation process should be performed in a framework where
certain informations are available. Nevertheless, the emphasis should rely on a complex
application, which is oriented at a real world scenario. That is the reason why we will use
a synthetic prototypical application, which has an environmental physics background and
was already motivated in the introduction of this thesis (Chapter 3rd Example).
More precisely the motivating application is to reconstruct the wind flow in the lower
atmosphere by using a sequence of satellite images observing the movement of dust plumes
in the desert. The dust plumes act as an observable passive tracer in the ground based
horizontal atmospheric flow. Accurate knowledge of the wind field is needed since it
describes also the movement and distribution of harmful and possibly not observable
substances. As quantity of interest we consider the mean value of the concentration of
such a substance in a certain subdomain of the computational domain. The question is
then if it is possible to compute the temporal evolution of this quantity by means of a
reconstructed flow field, which we obtain by the use of our method.

We will proceed as follows. At first we will motivate the background of the prototypical
application, explain the complications and describe the simplification which leads to
the example. Furthermore, we will make simplifications and describe how we achieve
comparable data by a forward calculation. Afterwards, we will use our methodology to
solve the problem and compare our result to the expected values. The next step is to
discuss the influence of the used fluid flow model. We will compare the original fluid flow
model to simplified models (Stokes system and heat equation). We will show that the
quality of the reconstruction is definitely increased by using as much model knowledge as
possible.
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Figure 7.1. Top: False colour image taken by a geostationary satellite. Black
coloured structures indicate water clouds. Sand dust plumes are
coloured in magenta. Bottom: Schematical image of the northern
African countries. The red coloured box indicates the computational
domain f2. The right hand side indicates the intensity functions on
this domain. It is clear that we have movement across the boundaries
of this domain.
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7.1. Problem Description

7.1. Problem Description

The motivation for our prototypical example is the following scenario in environmental
physics. We consider the Sahara desert, which is the biggest desert on earth. While we have
very good measurements of the wind system in densely populated areas at the boundary of
the desert, we have nearly no information about the wind in the interior, due to a lack
of measurement stations. However, by satellite remote sensing we can observe the wind
system due to the movement of water clouds, desert dust and other visible aerosols. See
therefore the top image in Figure which shows an image of the northern part of the
African continent. Black coloured structures indicate water clouds and magenta coloured
structures mark dust plumes. We can interpret the dust aerosols as a passive tracer of
the wind system in the desert and we can use optical flow estimation techniques to gather
informations of the optical flow field in a sequence of these satellite images. In a more
statistical framework this was done by Bachl et al. [3], [4].

However, in the context of atmospheric flows especially physics-based optical flow techniques
are of high importance, if we assume that this optical flow field represents an approximation
of the underlying physical flow. Then we could use the approximated flow field to evaluate
further quantities, which cannot be directly observed. As an example we think of a source
of a harmful pollutant in the middle of the desert. The substance will be transported by
the wind system. We want to estimate the amount of this substance entering populated
areas.

To fix ideas we state the problem in a concrete context. We choose as computational domain
a quadrilateral aperture of north east Africa, which contains almost the whole area of Egypt
(see bottom picture in Figure . In the North at the coast and around the Nil river
the region is densely populated and we assume that on the upper and the right boundary
distributed measurements for the wind field are available. However, the artificial boundaries
of the computational domain in the west and in the south run directly through the desert
and we assume that no or only sparse measurements of the ground-based wind system
are available. Our developed method fits now perfectly to reconstruct reliable boundary
conditions, which yield an approximation of the flow. Furthermore, information about the
wind system could be of interest to judge the consequences of intensifying agriculture in
the desert. Industrial agriculture is a source for air pollution (pesticides, fertilisers etc.)
and the pollutants are distributed by the wind system. Moreover, we can assume that
several of these substances cannot be directly observed by satellite remote sensing and
therefore information about their temporal evolution could be of high interest.

However, we face a lot of difficulties, if we want to consider this highly sophisticated real
world example:

e The most important aspect is that to the authors knowledge there exists not correla-
tion between a measured brightness pattern by a camera and the mean density of the
dust in the vertical column observed by the brightness pattern. Thus, the intensity
function is no physical meaningful quantity in connection to the dust plumes and
therefore also the connection to the underlying physical flow field is not clear.
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e Even if a physical meaningful model for the dust transport would be available, the
satellite images are not constantly illuminated due to the changing altitude of the
sun. Thus, the physics-based optical flow equation is certainly not valid and needs a
reliable modification.

e Moreover, increasing wind speed raises dust, while slow speeds lead to a deposition
of sand. Both effects influence the intensity function and have to be introduced to
the model.

e The Navier-Stokes system is only a part of a more complex weather model (introducing
also temperature, humidity etc.) describing the wind system.

e The satellite data is disturbed by measurement errors.

e The data is also polluted by errors introduced due to post-processing of the data (e. g.
taking out the background or filling in the gaps in the data, due to water clouds).

A competitive method for this real world application must be adapted to all these difficulties.
This adaption process requires also a validation of several steps related to the mentioned
issues. However, this is beyond the scope of this thesis and we will concentrate on validating
our methodology for a prototypical example, where we generate the data and thus have
the information on the underlying flow field and the transported tracers. Furthermore, we
know the physical model for certain and can assume a direct connection between optical
flow and underlying physical flow. Our scenario focuses on the following aspects:

e The images define our computational domain. They represent only an aperture of
the original flow domain. Thus our method must be able to reconstruct:

— The fluid flow field across the computational domain boundaries. Therefore we
have to estimate appropriate boundary conditions for the function w(x,t).

— The transport of intensity signals across the boundary. Again this is realised by
estimating an appropriate boundary condition for I(«,t) in space and time.

e Furthermore, we want to be able to decouple the sampling rate of the satellite images
and the time step size of our numerical calculation to be able to cope with image
sequences which have a sparse temporal structure.

e Finally we want to introduce as much knowledge about the fluid model as possible.

7.1.1. Setting and Forward Calculation
As mentioned before we will consider a domain
2 =(0,a) x (0,a)
with a = 800km, which represents a quadrilateral aperture of almost the area of Egypt.

Nearly the entire country is part of the desert (> 95%). The only exception is the Nil
valley in the east and Nil delta in the north of the country. We assume in our example
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that the right boundary represents the river Nil and the top boundary the coast line. Later
on we will prescribe boundary conditions on these boundaries, while we assume that we
lack such dense wind field information on the left and the bottom boundaries.

Oriented on the realistic application our scenario needs a time-dependent flow across all
boundaries. Thus, we perform a forward calculation on a bigger computational domain
{2%or, which contains 2.

At first we assume that the ground-based wind field is described by the two-dimensional
Navier-Stokes equations. Furthermore, we assume a straightforward relation to the intensity
function documenting the movement of dust in {2g,.. To generate dynamical behaviour we
design a domain for the forward calculation by means of the examples we presented in the
last chapter. Figure indicates the domain {2, by the green colour. The red coloured
box indicates our aperture {2, where we consider the flow later on for the reconstruction.
We prescribe an inflow profile on the left magenta boundary part

T
. 1 L a
u(x,t) = <u min(¢, 1) max (0, m(y —0.5)(1 — y)> ,0> , with « = 2.813g

and the “do nothing” outflow condition on the right side of the channel. On all other
boundaries we prescribe homogeneous Dirichlet conditions. The curved shape of the lower
boundary was chosen to generate more dynamical structures of the flow. It is given by the

2
y(x) = 0.3sin (gw) cos (187ra:) .

We prescribe two kinds of sources for the intensity function I(x,t). Firstly, the “west

function

Outflow
2a

da

Inflow

Figure 7.2. Computational domain {2p,, for the forward calculation (green) and
aperture (2 for the estimation (red). The left magenta boundary is
the inflow boundary and the right boundary is the outflow boundary.
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wind” transports signals into {2g,, by the boundary function

I t) = 2 max <sin (Trt - g) + 1,0> <1 + cos (g|y - 0.75|)> . |y —0.75] < 0.25,

0, else.

Secondly, we introduce a source term into the convection-diffusion equation by the right
hand side function:

320min(t, 1)(y — 1)(1.5 —y)(z — 1)(1.5 — x), for |z —1.25] < 0.25,
flz,t) = and |y — 1.25| < 0.25,

0, else.

Moreover we choose the following parameters in the equations. For the diffusive term in
the convection-diffusion equation we choose

e = 0.001.

We will briefly discuss the choice of the viscosity in the Navier-Stokes part of the system.
Since we assume no temperature influences in our simplified model we consider the kinematic
viscosity of air at 15°C, which is 1.48 - 10_5%2. We have to convert this quantity to our
unit system, which results in the value

a
=8.183-1079=.
v d

The value is comparably small and thus we work actually with a convection stabilised
version (see the LP stabilisation in Chapter [3.4.2]) of the Euler system.

Figure [7.3] shows the result of this forward calculation for two different time steps. Figure
shows a discrete sequence of the intensity distribution I(x,t) for the aperture x € (2, 3)
and y € (0.8,1.8).

7.1.2. Reconstruction of the Distribution of a Pollutant

In this subsection we formulate a prototypical problem, which we want to solve. Starting
point is the temporal sequence (Zy)4_, of spatial intensity distributions in 2 documenting
the movement of a passive tracer (transported dust plumes), which we constructed by the
forward calculation in the last subsection.
We assume that we have no knowledge of the underlying flow field, except for the boundary
data at the right and top boundaries of (2.

The objective is now to evaluate the temporal and spatial distribution of a second, not
directly observable passive tracer, which is described by the equation

oe(x, t) — nAc(x, t) + u(x,t) - Ve(zx, t) = f(x,t), in 2 x [to, T).
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v Magnitude

1. 2. 3.
I‘\H IIHH\HlI
4,

0.

Figure 7.3. Results of the forward calculation visualised by a coloured magnitude
map and vectors. Top: ¢ = 25d. Bottom: ¢t = 28d. The red
quadrilateral indicates the aperture we will later on consider for the
reconstruction.
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I(x,y) 15d03h
4.
4.
2-

_‘

Figure 7.4. Example for an intensity function sequence Z documenting the
movement of the passive tracer in the domain (2 from ¢; = 15d03h
to ty = 17d with 6t = 3h. We see a highly dynamical movement of
the tracer. The tracer is sparsely distributed in space and we want
to emphasise that the tracer is transported across the boundaries.

0.
-0.6

Figure 7.5. A second passive tracer, a pollutant, with source in the lower left
corner of {2, which is transported through the domain by the solution
of the forward calculation on 2. The green box indicates the area
of interest {2p.; where we want to evaluate the mean concentration
of the pollutant.
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Figure 7.6. The mean Cpg(t) of the concentration c(x,t) of the pollutant in
the domain (2p.t depending on the time variable t. Top: For the
whole time horizon of the forward calculation. Bottom: For the time
interval ¢ = [15d, 17d).
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7. Prototypical Application: Monitoring Pollutants in the Atmosphere

We assume c(x,t) to be the concentration of a harmful pollutant. The source f(x,t) of
the pollutant is known (e. g. area with intensive industrial agriculture in the desert). To
evaluate a reliable distribution of the pollutant, we need a good approximation of the
transport vector field u(x,t). However, the transport vector field is the same field that
transports the observable passive tracer, which is documented by our sequence (Ik)évzl-

Thus we have to estimate appropriate boundary functions of w(x,t) on the left and the
lower boundary and for the intensity function I(x,t) on all boundaries. We will employ
our method to obtain this information by using only the intensity function sequence.

To show that our reconstruction is reliable we define a quantity of interest, which is the
spatial mean of the pollutant concentration in a certain detection area {2pe¢; at a fixed time
point

1
Cral(t) = Iz / c(w, 1) de.

Det

The domain {2pe; could be interpreted as a densely populated area, where we want to
figure out how big the amount of the transported pollutant is.

Figure shows the function Cp)(t) for the wind field obtained by the forward calcula-
tion.

Our objective is now to recover Cpy], by identifying appropriate boundary conditions on
the left and lower boundaries with our physics-based flow estimation technique.

7.2. Numerical Results

We divide this results section into two parts. In the first subsection we will illustrate the
ability of our method to recover the flow, even with sparse given data. In the second
subsection we concentrate on the influence of the fluid model.

7.2.1. Reconstruction by Boundary Identification

As mentioned before the objective is to reconstruct the flow on a certain time interval by
the methodology developed throughout this thesis. We will concretise the setting of the
PDE constrained optimisation framework for this special problem.

The computational domain is given by 2 = (0,a) x (0,a). For the control boundary, the
left and the lower part of the boundary, we set

I'con = {0} X (O,CL) U <07 CL) X {0}

As time interval we choose [15d, 17d]. The time discretisation is given by k£ = 0.025d. The
spatial mesh consists of 1089 equidistantly distributed nodes.

200



7.2. Numerical Results

We wish to find a minimum of the functional

J(u,I) :%

N T T
o 5
S = Tl + 5 [ 19u(®are, dt+5 [ lar®l3aony dt
k=1 to to

with o = 100 subject to an appropriate weak formulation of the system

Ol —eAl +u-VI =0, in £2 x (to,T],
ou —vAu+u-Vu+ Vp =0, in 2 x (to, T,
V'UZO, iHQX(to,T].

The boundary conditions for this system are given in the following strong formulation for
almost every time point ¢

e I(t) = :I (ar(t) —I(t)) — % (u(t) -n) I(t), on 942,
vBhu(t) ~ p(t)n =~ (@lt) ~ u(t) - 5 (ult) ) u(o) on 02\ Toon,
Vonu(t) — p(t)n = N; ((u° +a(t)) - u(t)) - % (w(®) -n)ul),  on Ion

where @ denotes measurements of the flow field at the right and upper boundaries, which
are assumed to be accurate. Furthermore, we have the initial conditions

I(x,0) = Zp(x) and u(zx,0) = u(x), in £2,

which are also assumed to be given. The boundary conditions of the initial value u at the
boundary part I'co, are used to set boundary conditions for the left and lower boundaries
for the whole time horizon to stabilise the computational process. However, the control q,,
has to adapt to the temporal change of the boundary conditions on I¢gy.

The parameters are chosen as follows
e=10"3  v=818-10""  pu1=h* and 2 =h

For the realisation of the control in the convection-diffusion part of the system we want to
set 1 = 0 and use therefore a Nitsche-type formulation (Chapter equation (3.15)))

1
— ((Onl, @) 50 + (I — qp, Onp)9p) + 5 (I—qp,¢)90

with
5_{—u~n, ifu-n <0,

0, else.

All following computations are based on the weak formulation of the problem, which is
achieved in the same manner as in Chapter [6.2
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7. Prototypical Application: Monitoring Pollutants in the Atmosphere

Now we have to specify the choice of the regularisation parameters o and 8. In comparison
to the example in Chapter [0] it is somehow complicated to define an appropriate criterion
for an automatic stopping rule consisting of three terms in the cost functional. However,
we still need a homotopy type method to stabilise the solution process. We decided to start
with a = 10% and 8 = 103 and reduce /3 by 0.1 after each step until 8 = 1072. Afterwards,
we reduce « in the same manner until we reach a threshold of o = 1073, It would be an
interesting topic for future work to adjust both parameters in this context automatically.

After discussing the whole setting of the optimisation problem we will now consider two
different intensity function sequences. The first one is coupled to the time step size k. That
means we have in each time point an observation of the intensity distribution

80
(),
k=0
The second sequence consists of 17 observations, which are equidistantly distributed over
the interval [15d,17d] (k =1,...,16 are illustrated in Figure [7.4):

16
(),
k=0

The results of our computations for the sequence Z(3) are visualised in Figures and
Figure shows from left to right the intensity functions I(x,t) for the original
function, for a forward calculation without control and the reconstructed flow problem.
From top to bottom the time points ¢t; = 15.4, to = 15.8, t3 = 16.2, t4 = 16.6 and t5 = 17
are visualised. Figure visualises the magnitude of u(x,t) for the same arrangement
of methods and time points as before. We see that our PDE-based optimisation process
is able to reconstruct the inflow of the intensity signals. Therefore also the boundary
conditions of the transport field are qualitatively well adapted.

However, we also want to compare the results of the transport reconstruction more
quantitatively in the context of the transport of the non-observable pollutant. Therefore,
we visualise the quantity Cpg(t) in Figure The graphs indicate the temporal evolution
of the mean value of the concentration in {2p.;. Green indicates the expected evolution.
Blue is the result of a forward calculation without the reconstruction process. The orange
curve indicates the reconstruction with the decoupling of sampling rate and time step size
(sequence Z(?)) and the pink line shows the result if in every time step intensity function
informations are available (sequence Z().

We observe immediately that the reconstructed curve yields a progression almost as
accurate as the expected curve. Thus we were able, by use of our methodology, to gather
enough information of the flow field to reconstruct the distribution of the pollutant in the
chosen time interval. We even showed that we are not determined to couple time step
size to sampling rate by using sequence Z(3). The results of the reconstruction for the
two sequences Z) and Z(® are almost the same. This indicates on the one hand that
the sampling rate for Z() can be chosen even bigger. On the other hand we see that the
differences to the expected curve must have another source. A further look on the left
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7.2. Numerical Results

Figure 7.7. Visualisation of the spatial intensity distribution I(z,¢x) at different
time points t;. Rows: From top to bottom ¢, = 15d + k0.4d with
k = 1,...,5. Columns: Left: Expected Distribution. Middle:
Forward calculation without reconstruction. Right: Reconstruction
by boundary identification problem.
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204

Magnitude
3.
. . . 3.
. . . 0.06

Figure 7.8. Visualisation of the magnitude of the vector field u(x,t) at different
time points t;. Rows: From top to bottom t; = 15d + k0.4d
with £ = 1,...,5.Columns: Left: Expected Distribution. Middle:
Forward calculation without reconstruction. Right: Reconstruction
by boundary identification problem.




7.2. Numerical Results

column of the expected intensity distributions in Figure gives us the answer. The
differences result from the spatial sparsity of the intensity function signal. At some time
points bigger areas of the computational domain have almost no intensity informations
(indicated by the blue background). In these areas the reconstruction of the flow field
suffers, which explains the difference in the temporal evolution of Cpg(t).

The results of this subsection show that the method is working appropriately. However
the approach is very sophisticated from the numerical point of view, since our flow model
includes the fully nonlinear term

u - Vu,

which has to be treated by a Newton-type method in the forward calculation. Moreover,

the flow is solenoidal
V -,

which means that we have to deal with a saddle point problem. A first indicator that
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Figure 7.9. Recovery of the quantity of interest Cpoi(t). The green curve indi-
cates the expected curvature. The blue curve shows the progression
if we perform a forward calculation without reconstruction. The
dashed orange curve shows the result if the flow field is identified
by the boundary identification problem, with intensity informations
only every fifth time step (sequence Z(?)). The dashed pink curve
shows the reconstruction, when intensity information in every time
point of the time discretisation is available (sequence Z().

the flow model has probably a high influence on the reconstruction can be obtained by
performing forward calculations with the original boundary conditions for varying viscosity
parameters v. Figure visualises the results of these computations. The graphs show
the percentage of the relative error

L 1CY(t) — Cpa(t)]

erry(t) :== Cra (D] (7.1)
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for the temporal evolution of Clg';)l(t) for different v.

The right graph shows the curves for three values of v smaller than 10~*. Here we see
almost no difference, since the diffusive part of the system has a smaller influence than
the artificial diffusion introduced by our convection-stabilisation technique (LPS, Chapter
3.4.2). The left graph in Figure shows the curves for v = 1072, v = 1073 and v = 10~%.
Here we see that the evolution of the quantity of interest is violated up to 4%, which
indicates that the flow field clearly changes. However, this example does not completely

Rel. Error Rel. Error
4 T T T T T T T T T 09 T T T T T

o8

071

06

0.5

041

03[

02

o1

0 0
15 152 154 156 158 16 162 164 166 168 17 15 162 154 156 158 16 162 164 166 168 17
t[d] t[d]

Figure 7.10. Relative error err,(t) for forward calculations with given boundary
conditions but different values for v. Left: v = 1072 (blue), v =
1073 (dashed green) and v = 10~% (dashed red). Right: v = 1074
(blue), v = 1075 (dashed green) and v = 10~? (dashed red).

reveal how the reduction to simpler flow models changes the results of the reconstruction.
Thus we devote the next subsection to show that the needed computational effort to use
the whole model information in the method for the mentioned problem is justified in terms
of an increased quality of the reconstruction.

7.2.2. Influence of the Flow Model in the Reconstruction Process

We simplify the configuration of the last chapter to concentrate only on the fluid model.
Therefore, we assume that the intensity function is available at all times t. We denote this
function by Z(t). Thus we can directly describe the signal transport at the boundary and
do not have to reconstruct this information. We then have the condition

cOnI(t) = :I (Z(t) - 1(1)) — % (w(t)-n) I(£),  on R

in the strong formulation. Furthermore, the cost functional changes to

/ 110 =00+ 5 / l9uOlizre,
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Hence, the objective is now to estimate only the boundary conditions of the flow field at
the left and lower boundaries to obtain the best possible recovery of the function Z(t).

We want to compare three different physical models:
Model I: Original Flow Model for the Forward Calculation
As in the last subsection we use a weak formulation of the system of equations

Ol —eAl +u-VI =0, in 2 x (tog, T},
Ou — vAu +u-Vu+ Vp =0, in 2 x (to, T,
V-ou=0, in 2 x (to, T},
with the same boundary conditions as in the chapter before. Again the parameters are

given by
e=10"3 and v =8.18-107Y.

This model represents the underlying physical model for the flow as we have described it
in the forward calculation, which we used to generate our data. Thus it represents the
application of the whole model.

Model II: Time-Dependent Stokes System

In the second model we skip the nonlinear term, which results in saving an essential amount
of computational cost for the forward calculations in the optimisation process. The system

reads as follows
Ol —eAl +u-VI =0, inQX(to,T],

ou — vAu + Vp =0, in 2 x (to, T,
V-u=0, in 2 x (to,T].

The parameters are chosen as follows
e=10"3 and v =1.

Thus the Stokes system acts in principle as regularisation, which we already mentioned
in the introduction of this thesis (Chapter and . It provides us with a flow field
u(z,t) in the space L*(0,T; H}, (£2)?). However, this reduced fluid model still requires
the flow field to be divergence free.

The boundary conditions are also slightly modified to

Vonu(t) — pt)n = Mil (@(t) — u(t)), on 92\ Toon,
vou(t) = pltin = —— (' +a(t) ~ul) . on eun

with the parameters (1 = h? and Hu,2 = h chosen as before.

Remark 7.1 (Mathematical Theory for Model II). An existence proof of at least
one solution of the optimisation problem can be obtained in the same fashion as in the

proof of Theorem[6.4], due to the discussion for the linear case in Chapter[5.3
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Magnitude

Figure 7.11. Magnitude of the transport field. Rows from top to bottom:
ty = 15d + k0.5d with k = 1,...,4. Columns from left to right:
Expected Flow (ugxp(,t)), reconstruction with Model I (Navier-
Stokes system, unast(,t)), reconstruction with Model IT (Stokes
system, ugy(, t) and reconstruction with Model III (Heat equation,
UHeat (.’IJ, t)) .
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Figure 7.12. Relative error e(u) (equation (7.2)) with Mod := NaSt (green
curve), Mod := St (dashed blue curve) and Mod := Heat (dashed
red curve).

Model III: Heat Equation
For the third flow model we simply use the heat equation

Ol —eAl +u-VI =0, in 2 x (to, T,
ou — vAu =0, in 2 x (to,T].

with v = 1. In this example the heat equation has the function of temporal and spatial
regularisation of the reconstruction process and the method can be interpreted as a different
formulation of the optimisation problems used for optical flow estimation mentioned in
Chapter [I.3] This formulation does not result in a saddle point problem. Thus the
Lagrange multiplier p(z,t) is no longer needed. This leads to the following formulation of
the boundary control

VOnult) = Mil (a(t) — u(t)), on 92\ Toon,
vopu(t) = /141,,2 ((UO 4 q(t)) — u(t)) , on Icon-

Remark 7.2 (Mathematical Theory for Model III).
Here we have to be a careful since we have no longer the property:

V-u=0.

Howewver, the equation

(v-u,ﬂ) = —{(uw-n), 1)y, — (u-VI,I)

N =
N |
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Figure 7.13. Reconstruction of Cpy(t). Upper graph: Expected Progression

(green curve), recovery with unast (Model I, dashed blue curve),
recovery with ugy (Model II, dashed pink curve) and recovery with
Upeat (Model III, dashed red curve). Lower graph: The relative
error err(t) (equation (7.1)). Model I (Navier-Stokes system, green
curve), Model II (Stokes system, dashed blue curve) and Model III
(heat equation, dashed red curve).
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is still valid and can be used to obtain the usual estimates by the standard inequalities
(Young, Hélder, etc.). We find

d 1 1
a\lf(t)\lg +V|[VI®)]3+ ;HI(t)H%?(aQ) < eIV -u@® I3 + ;Ilf(t)!\%aag),
which means that we need the regqularity property
V-ue L2 (0,T; LX(92))

to obtain all usuall energy bounds by the Gronwall lemma. However, we conjecture that
this property can be obtain by having a closer look on the reqularity theory for the heat
equation with Robin boundary conditions on our quadraliteral domain, since H?-reqularity
of the flow field u should be sufficient to obtain the required reqularity property. For the
standard theory this is given (see Theorem @)

We perform computations for optimisation problems with these three models and present
the results in the following. First we compare the reconstructed flow field directly. Figure
shows the images of the magnitude of the flow fields. The first column shows the
expected solution ugxp(,t), the second column presents the solution of the reconstruction
with the original flow model as side condition. We denote the flow field by unast(x,t). The
third column visualises the results ugi(x,t) with the Stokes system as flow model. Finally
the fourth column shows the results wpeat(,t) with the heat equation as model for the
flow. From top to bottom we visualise the time points t; = 15.5d, to = 16d, t3 = 16.5d and
t4 = 17d respectively in every column. Obviously all three models recover the principle
movement from left to right. However, detailed features could only be recovered by using
the “exact” flow model for the reconstruction. This is emphasised by Figure [7.12] where
we visualised the relative error

HuMod — UExp Hiz (O,T;LQ(Q)Q)

e(u) := , (7.2)

HUEXP HiQ (O,T;LQ(Q)Q)

with Mod := NaSt (green curve), Mod := St (dashed blue curve) or Mod := Heat (dashed
red curve). Obviously the usage of the exact model in the optimisation process outperforms
the both “reduced” models

Finally we want to present how the reconstructed flow fields influence the temporal evolution
of our quantity of interest Cpei(t). We visualise a comparison between all three models
and the expected curve in Figure We see that using the original fluid model leads
to a clearly better reconstruction of the quantity which stays below a threshold of 5% in
terms of the relative error err(t) defined as in equation (7.1)). Over certain subintervals of
the time horizon this error drops even below 1% relative error. However, all three models
can be used to obtain a qualitative impression of the progression of the curve. This is
also indicated by Figure [7.14] which visualises the distribution of the pollutant in the
domain of interest 2pe;. Again the columns and rows are arranged as in Figure The
principle distributions look similar. However, there is a clear difference between the Model
IT (3rd column) and Model IIT (4th column), compared to the expected distribution (1st
column).
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Figure 7.14. Concentration c(x,t) of the pollutant in the domain of interest
Opet = (0.7,1) x (0.7,1). Rows (top to bottom): tx = 15d + k0.5d
with £k = 1,...,4. Columns from left to right: Expected flow
(upxp(x,t)), computation with unast(x,t) (Model I), with wug;(x, t)
(Model II) and with wpeat(,t) (Model III).



7.2. Numerical Results

Remark 7.3 (Application of Simpler Models in the Computational Process).
We want to state explicitly that in our opinion the heat equation, which introduces no model
information at all seems inadequate for the target recovery process. However, the Stokes
system is able to represent features of the original fluid flow. Thus it is an interesting
idea to work with this simpler model (no nonlinearities) in the homotopy method to obtain
a good initial value for the optimisation with the full model and a small reqularisation
parameter o.
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8. Conclusion

In this thesis we investigated a sophisticated time-dependent PDE-constrained optimisation
problem, with a weakly coupled system of equations as side condition, which consists of two
parts. First, the time-dependent Navier-Stokes system describes an underlying fluid flow in
the computational domain. This velocity field is weakly coupled to a convection-diffusion
equation, which describes the intensity distribution of an observable passive tracer. The
mentioned optimisation problem enabled us to reconstruct features of the flow field, only
by information on the temporal and spatial distribution of the passive tracer. Thus we
could use the technique to compute quantities of interest that cannot be observed directly.
In this final chapter we want to recall what has been achieved in this thesis and where we
see possible directions for further research.

Connection to Physics-Based Optical Flow Estimation

We showed that the presented optimisation problem is closely related to variational optical
flow estimators. It is an enhancement which combines two fundamental directions: On
the one hand the regularisation with physical prior knowledge and on the other hand the
use of PDE-based optimisation for the decoupling of time discretisation of the intensity
function from the sampling rate of the given image sequence. Both techniques rely on
optimal control formulations, which allowed us to combine them easily. Setting the focus on
identifying boundary functions in certain model situations we chose a concrete formulation
out of a broad variety of possibilities. The choice of different models for the observed flow
phenomenon or the evolution of the intensity function would lead to completely different
methods, which are better tailored for the respective problem.

Boundary Control I: Time-Dependent Convection-Diffusion Equation

As mentioned, the optimisation problem can be interpreted as a boundary control problem,
with a sophisticated coupled PDE constraint. Before we dealt with the whole system, we
considered both parts of the system independently. Thus, we began with the time-dependent
convection-diffusion equation. We found a mathematically well-posed formulation of the
optimisation problem by using a Robin-type formulation of the boundary conditions. This
method has the advantage that it can be treated very easily from a numerical point of
view, since neither additional problems nor complicated boundary integrals must be solved.
Furthermore, we were able to prove that a sequence of solutions of the Robin-type problem
is converging to a solution of a Dirichlet control problem with the very weakly formulated
PDE as constraint when a model parameter is dropping to zero. From the numerical point
of view, we were able to formulate a “general boundary” condition, which allows to switch
between Robin and Dirichlet control. However, with respect to pure transport problems
(e. g., the hyperbolic linear transport equation), the theoretical results were lost, even
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though we could show the numerical solvability for several test cases. Here is an interesting
direction for further research, especially since in the image processing community the linear
transport equation as optical flow equation has a very important role.

Boundary Control II: Time-Dependent Navier-Stokes System

We were also able to deliver the existence theory for the optimisation problem with the
Navier-Stokes system and Robin-type boundaries. Nevertheless, we could only prove the
connection to Dirichlet controls in the Oseen case, since the very weak formulation of the
Navier-Stokes equations has reduced regularity properties. However, a connection between
Dirichlet controls and approximating Robin controls was indicated by our numerical
experiments. Thus, further research in this direction would be interesting.

Boundary Control III: Time-Dependent Coupled System

Due to the weak coupling between the Navier-Stokes system and the convection-diffusion
equation it is straightforward to prove existence of at least one solution of the optimisation
problem with the coupled system and Robin-type boundary controls as constraint of the
optimisation problem. Again, the connection to Dirichlet controls cannot be figured out
due to a lack of regularity of the solution. However, by our numerical experiments we
figured out that it is appropriate to work with the Robin-type control for the reconstruction
purpose in our prototypical applications.

Physically-Based Image Interpolation Across Boundaries

After developing the method and the corresponding theory we started with a first proto-
typical example to present the functionality of the method. Therefore, we used a sequence
of six synthetic intensity functions at six equidistant time points of the time interval.
Then we reconstructed the intensity function on a finer time-grid by our method. Hereby
the estimation of the flow field across the boundaries is essential. Moreover, it turned
out that in the vicinity of intensity signals the method is able to reconstruct even an
appropriate transport field. However, in this context the use of the fluid model acts only
as a regularisation technique of the flow field and has no further physical meaning.

Benchmark with Rough Lower Boundary: Reconstruction of Drag and Lift

The second example is more focused on the influence of the fluid model. We considered
a benchmark example, where the concrete choice of the physical flow model is essential.
The channel is motivated by the standard obstacle benchmark in numerical fluid dynamics,
which is modified by a rough bottom boundary. The boundary roughness and the choice of
the viscosity clearly influences the drag and lift coefficient in this example. While the inflow
and outflow conditions are fixed, the flow at the bottom boundary is not given, due to an
unknown roughness. Our method was applied to reconstruct a reliable boundary function
on an artificial smooth bottom boundary, only by using information on the intensity
function. At first we tested the method in the context of a similar time-independent
example. The method performs very well for different kinds of roughness. Thereby the
reconstruction is performed by using a homotopy method for the regularisation parameter,
which was stopped automatically by a heuristic, which seemed to be appropriate for the
presented problem class. In a second step we could even present a segregation loop, which
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is able to adjust the Reynolds number and the boundary function and yields a reliable
approximation of the lift and drag coefficients. Finally we applied the methodology to a
time-dependent example and showed that the method works also in this context.

Nevertheless, the example has a very synthetic character, and it would be interesting to
apply the method to a more realistic problem and investigate its behaviour for such a
problem class. Furthermore, the “parameter choice rule” and the segregation loop for the
combined estimation of viscosity and boundary functions rely on pure heuristics. Thus a
more detailed mathematical investigation is a possible direction for further research.

Prototypical Application: Interdisciplinary Example between Image Process-
ing, Environmental Physics and Numerical Mathematics

Finally we considered a prototypical application, which is motivated by a meteorological
example and combines all complexities our method is designed for. By this example we
could confirm that our methodology is also working in a more complex scenario, where we
have to estimate essential features of the fluid flow and signal transport across boundaries.
Moreover, we emphasise that this process is also working in the case of decoupling between
the sampling rate of the data and the time step size of the temporal discretisation.

However, the main result of this prototypical application is the justification of using
knowledge of the underlying fluid model. We compared the use of the original fluid model
(Euler-type system) to a linearised Stokes system and a simple heat equation. We showed
that using the original model in the optimisation problem yields clearly the best results with
respect to the reconstruction of the underlying flow. Thus the higher computational effort
is justified. In addition, our experiments yield more insight for the numerical treatment of
this problem classes. Using reduced fluid models to generate initial values for our numerical
algorithm with the full model could be of interest in future research.

Further Directions for Future Research

Atmospheric transport fields for the distribution of pollutants is an interesting and chal-
lenging topic, and an important future problem is how to combine different measurements
to achieve even improved estimates of quantities of interest. The idea is to increase the
accuracy of the estimated transport field by “switching on” ground-based measurements
in regions where the image data is not sufficient to identify the field. This application of
additional data could also be designed in an optimisation framework, which is oriented at
estimating the quantity of interest up to a certain accuracy. This could be an idea for an
“optimal measurement design”.

From the numerical point of view the whole reconstruction process should be designed more
efficiently. For example, the Newton-type method for the optimisation problem should
be adapted to the complexity of the problem. Balancing between the accuracy of the
used iterative solver to solve the linearised problems in each Newton-step and the Newton
residuals could possibly save a huge amount of computational effort, since we have to solve
several time-dependent problems for each step of the iterative linear solver. Furthermore,
the regularisation method should be investigated more systematically to reduce the amount
of needed solves of optimisation problems for obtaining an adequate reconstruction. In
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8. Conclusion

addition, the application of spatial and temporal adaptive techniques (cf. Becker et al.
[11]) to the involved PDE problems could immensely reduce the computational effort for
the considered nonlinear time-dependent PDE problems. A way towards this objective in
the framework of environmental transport problems was already presented by Vihharev
[103].

In the last reference it was demonstrated that information on the wind fields can be used
to obtain sources for the distribution of chemical substances in the atmosphere. In case
that such dense wind field information is not available it would be an interesting topic
to investigate the possibility of combining the presented reconstruction techniques from
this thesis with such kinds of source identification problems, e. g. by segregating the two
identification processes.
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